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ABSTRACT

This work is primarily a study of linear pursuit-evasion games,

although several concepts and results are presented that apply to any

zero-sum two-person differential game.

The direct method of Pontryagin, specifically dealing with linear

pursuit-evasion games, is presented and discussed. It is shown how it

applies to several information structures. An interesting question is

that of the optimality of the strategies generated. It turns out to

be closely related to the continuous limit of the discretized informa-

tion structure used, and of the induced E-strategies. It is shown that

the limit strategies are locally optimal. A condition is also found

under which there are E-strategies enjoying the same property. The

phenomenon that can prevent these strategies from being globally opti-

mal is described, providing criteria to check this optimality. An an-

alysis is given of Pshenichnyi's nonregular points, linking them with

the abnormal problem of the calculus of variations and with Isaacs'

concept of a barrier.

Pontryagin's technique is also applied to multistage games, the

main emphasis being on a system-theoretic formulation where the controls

are unbounded and the capture set is a subspace. Explicit criteria are

given for completion to be possible with the three main information

structures. Following Kalman, special attention is given to the case

where the capture subspace is a submodule of the system, and his strong

controllability theorem is generalized.

The second part of this study is an investigation of a specific

example; Isaacs' Isotropic Rocket. The previous technique is applied

to it, and readily gives interesting results. However, because of the

phenomenon mentioned above, the corresponding trajectories, Isaacs'

primaries, are not always optimal. The investigation is pursued with

the more classical Hamilton-Jacobi theory, generalized by Isaacs to a

game-theoretic form of Bellman's dynamic programming.

The game of kind, where the payoff is capture or escape, is first

investigated. This determines barriers that can either define a closed

capture region or represent discontinuities of the optimal time to go.
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The concept of cone of semipermeable directions is emphasized, and a

geometrical construction of it is given. This concept is used to pre-

sent Isaacs' "envelope barrier." It is shown that for a certain range

of parameters this barrier does not provide the complete solution of

the game of kind. Two other semipermeable surfaces are attached to it,

which sometimes succeed in defining a closed capture region. When they

do not, two more surfaces are constructed, but they do not close the

barrier either. Two new concepts are introduced: the "envelope junc-

tion," which is a way in which two semipermeable surfaces can join at

a nonzero angle and still form a barrier, and the "singular surface,"

which is a semipermeable surface, the trajectories of which all come

together at a singular point.

Finally, the game of degree, where the payoff is the time of cap-

ture, is investigated. As was pointed out by J. V. Breakwell, the op-

timal solution involves trajectories having a state constrained arc.

The concept of singular state constraint is introduced. It is shown

that nonsingular constraints are reached and left tangentially by the

optimal trajectories. The general corner condition for differential

games is derived. It includes the "indifference condition," two par-

ticular cases of which are Isaacs' "equivocal surface" and B-eakwell's

"switch envelope." In the present game it is the latter form that oc-

curs, but the equations of the switching surface are extremely involved,

and numerical integration of them was not feasible in this study. Some

analytical results are derived on the shape of this surface, and conjec-

tures are presented on how the complete solution of the game may look.
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INTRODUCTION

This work is devoted to the study of linear pursuit-evasion games, a

special class of two-person zero-sum dynamical games. Dynamical games

include differential games, where a continuous system is governed by a

set of differential equations, and multistage games, where a discrete

system is governed by a set of difference equations.

Problems of pursuit appeared in the Russian literature at an early

stage of development of modern control theory. A well-known example is

the pursuit problem of Kelendzeridze in the book, Mathematical Theory of

Optimal Processes, by Pontryagin, et al. But the full concept of the dif-

ferential game was first introduced by Rufus Isaacs in various Rand re-

ports as early as 1954, and in his book, Differential Games, in 1965.

The distinctive feature is that both players try to do the best

possible with no a priori knowledge of what the opponent is going to do.

A striking difference with a two-sided control problem, where one player

knows the whole future control of the other one, appears in the fact that

while Kelendzeridze was able to apply the maximum principle to the latter

case, Pontryagin (Reference (21]) investigated the use of this technique

for the former case and found that it usually does not apply.

In the zero-sum game, the only one we shall consider, there is a

performance index which one player, whom we shall call P , for pursuer,

tries to minimize, and the other player, whom we shall call E , for

evader, tries to maximize. Therefore, we have a minimax problem very

much like the corresponding case of the classical, static, game theory of

Von Neuman and Morgenstern. But here the game has dynamics, and the

strategies sought are closed-loop control laws.

A very important question in such games is that of the information

structure. At present, the game theoretic form of the most basic con-

cepts and tools to handle partial information--observability, filtering

techniques--is missing or unsolved. We shall consider only deterministic

structures. It will always be assumed that both players know the state

perfectly. The information available to them on each other's control

will, however, be varied.
& 1



In a pursuit-evasion game, the game is "completed" when the state

enters a capture set. The performance index is the time the game lasts

until completion, or "capture." The evader tries to suxvive as long as

he can while the pursuer, on the contrary, strives to capture him as

quickly as possible. This type of game has provided several of Isaacs'

problems. One of these will be considered here, in the second part.

In the first three chapters, we discuss a direct method of Pontryagin,

specifically dealing with linear pursuit evasion games.

In the first chapter, this method is introduced and discussed. It

is extended slightly to allow various information structures, differing

by the amount of information available to the pursuer on the evader's

future control, including the case where this whole future is known. The

object of this technique is to provide an "estimating function" T(z)

such that for a game starting at z , capture is surely possible in a

time no longer than T(z)

In the second chapter, our main objective is to study the optimality

of the process proposed by Pontryagin. We use, following Fleming and

Friedman, e-strategies, consistent with the information structure intro-

duced in the first chapter. We find a condition under which our estimat-

ing function can be optimal with such strategies, for small enough e

Then it is seen that, without this condition,. T(z) can still be optimum

for the continuous process, c-strategies actually yielding capture times

arbitrarily close to it as e is decreased. The limit of the E-strate-

gies is investigated and characterized. It is shown, then, how the

estimating function and the corresponding strategies can still fail to be

optimal, essentially because they can lead to trajectories that would

lie inside the capture set for some time before the calculated capture

instant. A necessary and sufficient condition for this not to happen is

discussed. Finally, non-regular points are briefly investigated, and one

kind identified with Isaacs' barriers.

The third chapter is the only one dealing with multistage games.

e-strategies naturally lead to a discrete version of the game which is

briefly considered, mainly from the point of view of the information

2



structure. This yields the concepts necessary for applying the previous

techniques to the system theoretic formulation of the multistage game,

with unbounded controls. In that case, the estimating function is shown

to be optimal. The particular case where the capture subspace is a sub-

module is investigated and an earlier result by Kalman [19] generalized.

The remaining three chapters deal with a specific example: Isaacs'

Isotropic Rocket Game, described in [17] and [18].

In the fourth chapter, this game is introduced, and its various

descriptions presented. Then we apply to it the method of the first

chapter, which rapidly yields an estimating function. However, this es-

timating function is not optimal in the whole state space, the condition

of Chapter Two being violated.

In the fifth chapter, we use Isaacs' technique and try to solve the

game of kind" qualitative game, the outcome of which is capture or

escape. It turns out that Isaacs' conjectures, according to which his

solution would have been complete, are not verified for all values of

some parameters. Trying to complete this solution leads to the concept

of envelope junction, a corner condition for barriers. A new type of

barrier is also introduced, the singular barrier, where all member tra-

jectories meet at a singular point. But we have not been able to finish

the problem completely, due to the fact that the solution seems to be

linked to another unsolved problem, of the following chapter.

The sixth and last chapter deals with the "game of degree" quantita-

tive game, the outcome of which is longer or shorter capture time. It is

shown that the solution involves a "safe contact," first perceived by

J. V. Breakwell and already investigated under his supervision. The oc-

currence of this safe contact is linked to the phenomenon pointed out in

Chapter Two, causing the estimating function to be non-optimal. Then, we

need to allow a corner in the optimal trajectories. The general corner

condition for differential games with integral payoff is derived, largely

using the concept of field, and resting upon ideas developed by Isaacs

and Breakwell. However, the partial differential equation it leads to in

this game is so complicated that we were unable to integrate it numeri-

3



cally. Some analytical results are derived concerning the qualitative

shape of its solution, and conjectures presented on how the solution of

the game may look.
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1. THE DIRECT METHOD OF PONTRYAGIN

In this chapter, we present the method developed by Pontryagin [22,

23,24] to deal with linear pursuit-evasion games. In doing so, we dis-

cuss how the method can apply to various information structures.

1.1 Statement of the Problem

In an n-dimensional Euclidean vector space E , a system is governed

by the differential equation

dz C z - u + v (1.1)

dt

where

z is the state of the system z E E;

C is a constant nXn matrix;

u E P is a control variable chosen by the pursuer;

v E Q is a control variable chosen by the evader;

P and Q are closed convex subsets of E

Admissible control functions u(.) and v(.) are measurable functions

of time, taking their values in P and Q respectively.

A given subspace L of E is called the geometrical space. The

orthogonal projection of E onto L is called vt

A given closed convex subset e of L is called the capture set.

The dimension of G can be n . In that case, L = E , and the operator

T is simply the identity.

Capture is defined as

A z C 

The general problem can be stated as deciding whether it is possible,

knowing the state z at each instant, and with some suitable information

on the evader's control, to construct a control function u(.) such that

capture will eventually occur. If this is possible, in what time, and

how should the control u be chosen?

5
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The question of the evader's "best" behavior will be considered

later.

1.2 Remarks

Before going into the analysis of this problem, we shall make some

remarks about its formulation.

i) Dynamics. The dynamics described in (1.1) may seem somewhat

restrictive as compared to the more general formulation

i = C z - Gu' + Jv' . (l.la)

However, we restrict u' and v' to belong to compact convex subsets.

Therefore, (l.la) is equivalent to (1.1) by letting

Gu' = u Jv' = v

and it is straightforward to see that if u' and v' belong to P' and
, closed and convex in their respective spaces, u and v belong to

closed convex subsets P and Q of E

The use of constant sets P and Q corresponds to constant matrices

G and J , which is consistent with the fact that we take a constant

matrix C

ii) Many-Control System. Another generalization one might want to

consider is a many-control system:

z = C z + u1 + u2 + ... + up

ui E P.

But the approach we take is essentially unsymmetric. We investigate what

can be done with the control u , knowing how the other control can act

on the system. Whether v is under the control of a single player or is

the added effect of several players' controls makes no difference.

We can reduce this formulation to the first one, letting

-U U C P =-P1

U2 + ... + U = v E Q q 2 + + P q
p q=2 .. +

6



And notice that Q is still convex.

iii) Convexity. We insist on the compactness and convexity of the

sets P and Q because the following theory, at several points, depends

critically on it. It is, therefore, interesting to notice that, in as-

suming the convexity of these sets, there is no loss of generality. It

is a well-known fact in control theory that, for a dynamical system, any

point of the convex hull of a non-convex control set could be approximated

as closely as desired by chattering between n values belonging to the

control set itself.

The convexity of the capture set e is needed as well, and must be

regarded as a restrictive assumption. Notice that it is verified by the

interesting special case

C = (0)

which corresponds to capture being defined as

z E M L 9 M = E M orthogonal complement to L

1.3 The Information Structure

Following Pontryagin, we introduce a special information structure,

which we shall call the lower rule c

At each instant t the pursuer knows the state z(t) and the

evader's control history v(t) for a time e in the future, namely

v(s) t < s < t + e written v[t,t+e]

A pursuit strategy, then, is a mapping

u: (to,to+C] X E X Q P

written as

u = U (t;z(to),V~to t0 +G]) to < t < t o + e

In this chapter, this definition will be enough for our purposes.

As the system is time-invariant, we can arbitrarily set t = 0
7
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The question of the updating of the function u as time goes on will be

discussed in the second chapter (Section 2.3).

Three cases will be considered:

a) c as big as desired by the pursuer. The evader's control is

known by the pursuer for the whole future.

This reduces the problem to a classical formulation, used by Kelendzeridze,

Varaiya [27], Kalman [19], and other authors. Does there exist, for

every control history v(.) a corresponding cohtrol history u(.) such

that capture occurs in finite time?

e is a given positive number, possibly very small. This is the

case considered by Pontryagin. He gives, in addition, a time of

capture valid for every positive e . This suggests the third

case:

e = 0 : Only the present value of the evader's control is known.

This is again a classical problem, considered by Pontryagin

himself in [21,24], and other authors. This knowledge has been

found, in some cases, to be necessary for optimal strategies to

exist.

We shall consider this case as a limit of the previous one, following

Fleming [11,12,13] and Friedman [14,15].

1.4 A Sufficient Condition

We want to find a sufficient condition for capture to be possible,

and an estimating function

T : E -R

such that a state z can surely be captured in a time no longer than

T(z) . Pontryagin reaches this objective by constructing a set of cap-

turable points V , a function of the real variable r , such that

0iV =C
0



0 if z E V , there exists a pursuit control such that, with
0 T0

z(O) = z , the solution of (1.1) verifies

z(G) E VT -
0

As a consequence of the second property, at time e there exists a new

pursuit control insuring the same inclusion at time 2e and so on. Thus,

eventually

z( ) E V or nz('r ) E C.
0 0 0

Therefore, any mapping T(.) of the state space into the reals such that

z E VT()

is an estimating function.

From now on, the estimating function we consider shall always be the

smallest real number T(z) such that the above inclusion is verified.

The construction of V can depend on e . We must clearly have

V (i)_V (2) V 1 < 2  T

T' 1 21 C
since the control u constructed with the rule El can also be con-

structed with the rule e2 . We shall also see a construction, proposed

by Pontryagin, giving a set V valid for every positive E

We shall actually find a family of sets W in L , and define V
tT

as

V = 0(-)IC-W = (zIIre(T)z E W 3
TC

where D(T) = e is the transition matrix associated with C . We shall

have

W=C V = zi zEc
0 0

so that the family V verifies the first condition 9 V = C
T 0

9
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1.5 Properties of the Sets W.

It is straightforward to verify that the solutions of (1.1) verify

A(T-t)z(t) = JI1('r )z(O) + 0 (r)[v(-r-r)

0

- u(T -r)]dr (1.2)0

To simplify the equations, we introduce the notations

u = nR(r)u P = ((r)P- r r

v = 7tO(r)v Qr = 90 (r)Qrr

Now, assume that we have the inclusion

Io(. W() E IV (1.3)0 T
0

Given v(o,e] we want to be able to construct a control u[0,E] such

that

T( )z(O) + v (r-r)dr - O u (r-r)dr E W

o 0

Or, defining the sum of a set and a vector in the usual way

10 -).z(O) + 0 v (T-r)dr E W + u (-r)dr

o U

Define the integral of a set P as the set of all possible integrals ofr

functions u taking their values in P . The existence of a function
r r

u verifying the last inclusion is equivalent tor

wD (.To)z(O) + vr(--r)dr E W _E + o Prdr
E fT -C

0 0

This must be true for every possible control v(') , so this is equivalent

to

10



0 (T o W O ) + 0 Qrdr 'r WP (1.3a)

0 o

Finally, as we want this to be true for every point verifying (1.3), this,

in turn, is equivalent to

W + 0 Qrdr CW-E + o Prdr , (1.4)

0 T -C 0 I -E
0 0

which is the characteristic property of the sets WT

1.6 Geometric Subtraction

In order to ease the handling of relation (1.4), Pontryagin intro-

duces the following operation:

Given two subsets A and B of a vectorial space, define their

geometric difference as

D = A * B D =(zjB + z A)

which means that D is the biggest set such that

D + B A

If D is non-empty, we say that A star includes B : A D B

we say that the property of complete sweeping is verified if: A = B + D

Proposition:

i) if A and B are convex, their geometric difference is

convex;

ii) A 2 (B+C) = I C =A B - C = A 2! C - B

iii) (A+B) V C (A-C) + B

Proof:

i) Let D = A B be non-empty. Let dI and d2  belong to

D . By definition, for every b E B , their exists an

a (b) E A such that

d i + b + a i(b) , i = 1,2

i i i

11!



Consider d = ad + (1-a)d and check that a(b) = aal(b)
1 21

+ (l-a)a2 (b) verifies

d + b = Cc(d +b) +-(l-C) (d*+b) =-a (b) . Yb

if A is convex, a(b) E A and the first result is proved.

Notice that we do not need the convexity of B . In the

sequel, however, only convex sets will be met. There is con-

sequently no point in stating the result with more generality.

ii) Consider A = (AgB) * C , and d E D , we have, by definition,

d E (AlB) I C <-=> d + C C (A-B) <==> (d+C) + B 9_A .

Now, the addition (d+C) + B is associative; thus, the last

relation is equivalent to

d + (C+B) 9_A <==> d E A - (C+B)

which proves the second result.

iii) Consider D = (A1C) + B , and d E D . By definition, there

exists e E A 1 C and b E B such that d = e + . Now we

have

e + C (A => d + C CA + b _ A + B => d E (A+B) I C

which proves the third result. Notice that it is generally

not true that (A+B) - C = (A-C) + B . It is enough, to see

it, to take B = C and a case where A 2 C does not have

complete sweeping (see Fig. 1). However, we have the follow-

ing simple but interesting property:

Proposition:

If A - C has the property of complete sweeping, then this is true

for (A+B) - C and (A+B) ! C = (A-C) + B

Proof:

Let D = (AC) + B.

Then D + C = (AIC) + C + B = A + B,

the last equality because of the assumption of complete sweeping on

A ± C And this proves the claim.

12
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1.7 Construction of the Sets W

Relation (1.4) can be written as

W C W + P dr - Q (1.5)

Depending on the information structure, we can use (1.5) in different

ways. We consider the three cases of Section (1.3):

) arbitrarily large. We can use E = T , and find immediately

the set we call W

/

W = Q r - dr
0 0

However, it is easy to see that this family will generally not

verify (1.4) for a smaller e . In fact, we have, using the

first proposition of Section 1.6,

W( C + Prdr + Prd Qrdr A Qrdr
T0 o -o -E

[- C + Prdr) - Qrdr + Prd -* Qrdr

where the right hand side is the same as in (1.5). However,

because in general the addition and geometric subtraction ofp p
P dr and Q dr do not commute, the inclusion isJ rr

strict and (1.4) violated.

This set is nevertheless very important, because only when it does

verify (1.4) is an E-strategy optimal. We shall discuss this point in

Chapter 2.

1) e given positive. We use the induction argument of Section 1.4,

and construct the corresponding set W(E)

14



= ( (((( + 0 Prd Qrd + Prd

c2e \' n
Qdr ------ + Prdr) Q dr

r (n-1) r (n-l) r

nE =T

This construction is called by Pontryagin the alternating sum

of the sets

Uk= SQE E P rdr and Vk SkE Qrdr(k-l) r(k-1)

Our set W (M is defined only for discrete values of T.T
T(z) , thus, takes only discrete values, but this is not in

contradiction with our theory so far.

For the continuous case, we will use another, continuous, definition,

but this one will be used for the case of discrete systems in Chapter 3.

e goes to zero. We define a set W(o) as a limit of the pre-

vious construction. The precise topology involved is discussed

in [23] and [24]; it will be presented in Section 2.6. For the

time being, we shall consider it as a pointwise limit: every

point belongs to it which can be approximated as closely as
w(e)

desired by a point of a . In other words,

w(o) = z E. W w iz - o as -4 " as
= i 0) - s

It clearly gives the compact set. This set is called by Pon-

tryagin the alternating integral and denoted by

IV(0 )  rQr

S = ,0[pr r]dr

Notice that this is a mere notation. P -* Q may not exist,

and W ( ) still be non-empty. Again because of the properties
1

C 15
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[t 1

of the geometric difference, the set W verifies (1.4) as

soon as 6 < e • Thus WCoe verifies it for every E

) = 0 : another definition. Finally, in the case where P rr

Q for every r , we can consider another set family
r

W C + (PrIQr)dr

and verify directly that it has the required property (1.4):

W,= + i:(P*Q)dr) + (PrIQr)dr
0 T-E

+ P dr I Q d

(T-C - r -I + 5 Prdr) T

Notice the particular feature of this construction: the exis-

tence of the corresponding family of sets W' depends only onT

the existence of Pr IQr Therefore, if for some capture set

C this family exists, this will be true with every capture set,

including C = (0) , or capture defined as point coincidence.

Besides the point we just mentioned, the use of this definition will

be interesting in the following discussion.

1.8 Relative Size of the W's

(Ce) (Ce)
Let us first compare W to W with e2 > C

W2 = ( + o:2 Prdr) o QrdrC 22 r 2

( C p£ d  l Qrdr + P r d  - Qrdr
6o ) 

I

16



(2)D (ei) '62 6

2 i 2 (2SW + 2 P dr I Qr
2 i

If E2 = 2 1 , the last expression is W . This argument used re-
1 62

cursively shows that, when they are both defined,

(62) (61)

W2 1W DW ,

and thus, in the limit as E goes to zero

W(E) D W (o)

Using the same calculation to compare W (CO) to W where e= T/n,
T

it is seen that

w ( C) D w(G) .
T

Finally, we compare W' to any W Using recursively the following
T

calculation:

W= W' + (P±Q)dr CW' + P dr Q r)
T T-6 r-- r JC-L

(",-e + Prd - Qrdr
T-C T-C

for - = c , then 26 , and so on, shows that

W' W G= n EINT Ir n

and thus, taking into account the other three inclusions derived:

W(e) (62)

W' CW(o) cW Cw C w( O) .
T T T

If, now, we remember the definition proposed for T(z) , each of these

sets gives a corresponding estimating function, and the above inclusions

translate into

(0() (62) (O)T'(z) > T (z) > T (z) > T (z) >T (z)

17



where

T(z) = oo if MD( )z W VY.

The last three inequalities simply say that the time we know to be suf-

ficient to capture increases as the amount of information available on

the evader's control decreases. This agrees with what we said in Section

1.4.

An interesting simplification occurs when Pr kQr for every r

with complete sweeping. Then, W' exists, and we have

W' + SoQrdr C+ i+ Q dr C+ Prdr

and thus

W C+ Prdr)± Qrdr =
( )

or o 0r T

which, in view of the chain of inclusions derived, proves that the four

constructions give the same set W , and we can use the most convenient

construction, W' for instance.

In consequence also, the function T(z) does not depend on the in-

formation structure. Assuming more knowledge of the evader's strategy

does not allow us to improve our a priori estimate of the capture time.

However, once v(.) is actually known, we might be able to take better

advantage of it and capture in a shorter time.

18



2. OPTIMALITY

In this chapter, we address ourselves to two problems which are to a

great extent interconnected: the question of the optimality of the pro-

cess we describe, and the question of its limit as e goes to zero, what

we shall call the limit process. We shall also be obliged to introduce

the motion of regular point, and we shall make a brief analysis of non-

regular points.

2.1 The Concepts of Optimality

The approach taken so far is essentially unsymmetric. We have as-

sumed that the pursuer has an information advantage over the evader.

This allows us to ask for a strong type of optimality: we want to use

optimally the information available. We seek a function

u°(t; z (to), v [to, to+E ])

providing the minimum capture time over all such functions for every

admissible history v[t ,to +E . Let J(u,v) be the actual capture

time

J(u°,v) = min J(u,v)

u

Now, if the evader plays optimally, he will choose his control in such a

way as to maximize the above functional, so that

J(u°,vO ) = max min J(u,v)

v u

In the classical saddle point formulation, one only seeks a control op-

timal against the opponent's saddle point control. Here, we want to know

how to modify the pursuer's control to take into advantage a possible

deviation of the evader from his optimal control, and we do not require

that there exist a saddle point, although we shall see further in what

sense there is one.

It is interesting at this point to review the exact relation between

the maximin operation and the saddle point.
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Let J(u,v) be a continuous functional:

J : P X Q -flD

where P and Q are compact subsets of topological spaces A and B

Then J reaches its extrema on P X Q

Let

0 0
Arg min J(u,v) = u (v) , Arg max J(u,v) = v (u)

uEP vEQ

Proposition: The existence of a saddle point:

J(u*,v) < J(u* ,*) < J(u,v*) Y(u,v) E P X Q (2.1)

is equivalent to

iiin max J(uiv) = max minii J(uv) = J(u*,v*)
u EP v EQ v EQ u E P

(2.1a)

u 0V*) U* v u*) v

0 0
Proof: (2.1a) implies (2.1) trivially, by the definition of u and v

Let us prove that (2.1) implies (2.1a):
0i

by definition of v

J (U*,v (u* > (u ,v)

and by (2.1)

J~u*,° (u * ) <J~u*,v*)

Thus

J(u*,vO(u*)) = J~u*,v*) vO(u*) = v* (2.2)

where this definition of v ° is valid, if not necessarily unique. Now,

let u provide the minimax:

00

Apply this with u = ul* , and use (2.2):

j (u'1 v) J u*,vO()1 J ( 1 , vo uo)
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0By definition of v

J(Uv°(U)) > J(uov*)

by (2.1)

J(u ,v*) > J(u*,v*)
0

Therefore, all three inequalities reduce to equalities, proving that
Io

min max J(u,v) = J(u*,v*) v0 (u*) = v*
11 V

Clearly, the proof can be repeated mutis mutandis to derive the rest of

(2.1a), proving the proposition. If the mapping J is injective (one

to one), then we also have u = u* , v = v* uniquely.

The technique we shall use to construct the control u will be to

have the estimating function decrease as fast as possible. However, this

does not guarantee optimality with what we know of the estimating func-

tion. Actually, defined as a sufficient time for capture, it is not even

necessarily unique. We have no proof that another W(z) could not be

found, that would lead to a different strategy.

But assume now that at each instant, E can insure that capture

will not occur in a time less than T(z) . Then, having this function

decrease as fast as possible will indeed be the optimal behavior for P

T(z) will then be said to be optimal.

Therefore, we are led to the investigation of the maximin strategies,

and of the optimality of the sufficient capture time we have displayed.

2.2 A Result by Gusvatnikov and Nikolsky

In [16], Gusyatnikov and Nikolsky give a sufficient condition for

T(z) as defined here to be optimal, by displaying a 8-efficient strategy

for any positive 8 , for the evader. This condition is the following:

Condition A:

& P Q Y-r , complete sweeping,

SVu P ,3 v E Q: u-v P Y-' (2.3)
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Condition A says that the element v which provides the complement v

to u in P I Q is independent of T . In particular, if for some

To f v is unique, then this v will verify (2.3) for every T.

Under this condition, a 8-efficient strategy is displayed, of the

form

V = V(t,z(t) , U[to-et O )

in terms of the constant complement of u , And for every positive ,

there is an e small enough so that this strategy insures that capture

will not occur in a time less than T(z(0)) - 8 • (This is the defini-

tion of a 8-efficient strategy.)

We see then that it should be possible to define properly the limit

of this strategy, which would yield the capture time T(z(O)) . Actually,

we shall try to display an optimal strategy (0-efficient) with a finite

e , the limit of which as e goes to zero will be obvious.

2.3 Jumps of the Estimating Function

To analyze the variation of the estimating function, we introduce

the concept of jumps of the estimating function (see [22] and [24]). We

know that if

z EWo -r
0

then, because relation (1.3a) is verified, there exists a control u(.)

such that

z(e) E W if z(O) = z 0
00

However, relation (l.3a) might be verified for some smaller 'r . If

'] is the smallest such T for which it holds, we can find a control

0
u°C.) such that

z- T(z(e)) l - < ° -
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Let

6 T0 - •

We shall say that with the strategy v(.) , the estimating function has a

jump 3T at z . The behavior we propose for the evader is to make this

jump as small as possible, and, if possible, zero.

At this point, a difficulty arises. At time T0 , the evader chooses0

a control v Otof,t0+e] . Assume he can choose it such that the corres-

ponding Z5T be null. Let t belong to the interval (t0 t o+0 . From

z(t ) , under the previous controls, assume there exists a control

v'[t t 1+G] that avoids a jump in the estimating function as well. We1' 1

are not assured that v and v' agree on [tl,to +] , so that although

such a control v' exists, the evader might not be able to use it and

might let a non-zero jump occur.

To solve, or rather eliminate, this problem, we use Fleming's defini-

tion of a strategy (introduced in [11]). We assume that both players

choose their controls at time t for the whole interval (t ,t +e) and

play them. Consequently, the question of updating the control function at

an interior point becomes irrelevant. This is Fleming's minorant game

or Friedman's lower c-strategy (hence the terminology "lower rule e

A continuous strategy will be, by definition, the limit of such a process.

It was proved by Fleming [12,13) that the value of this discretized

game has a limit as e goes to zero. Moreover, this limit is the same

as the limit of the majorant game, defined in the same way but giving the

evader the information advantage (Friedman's upper c-strategy). Fleming's

proofs are made discretizing also the dynamics, and allowing, then, for

mixed strategies at each move (and for fixed duration games). Friedman

[14,15], generalizing a work of Varaiya and Lin, gave the proof using

continuous dynamics, and, in [15), for a class of games including ours,

with pure strategies.

Therefore, we know our game has a saddle point, and that the limit

of the maximin capture time is the saddle point value of the game. From

uow on, we shall investigate this lower c-strategy. We shall see under

23
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what conditions the evader can always prevent a jump. We shall take

t = 0 since the game is time-invariant.0

2.4 A First Necessary Condition

We are seeking an optimal E-strategy. If a strategy v[OE] is

such that, for. A(DT )z E Wo

t(-To)z + It D(r)v(To-r)dr E int + 0 Pdr)

0 0

then, by continuity, this is true for some T smaller than T , and
0

there will be a jump in T(z) . Thus, a necessary condition on v is

that

9 t )z + 0 ( (r)v(r-r)dr E

0

0 P d r (2.4)
T E r

0

A necessary condition for this to be always possible is

W + iT 0 (r)Qdr = W + 0 0(r)Pdr . (2.5)
S00

Then, because 9tD(T ° )z oE 6W WTo is convex and Qrdr is compact,

there always exists a control v such that

MD ft )z + It Q(r)v°(T -r)drEdSW +E 6 0(r)Qdr00o o-e - -o o J-
o 0

6 W, (w + g iO 0 ((r)Pdr)
o

Proposition: Condition (2.5) implies
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W =C + Pr dr - Qrdr , complete sweeping.r Qr

Proof: We first prove that the fact that it is true for every sufficiently

small e , for every T , implies that it is true for every E

W + Qrdr = W + Q dr Q dr
-r -2 E - E ,-2€ E

4 +

= W + Q dr + P dr- T2Er r

W P dr + P dr
-2 E r r

and this proves this first claim. Then, taking E = r , it becomes

W + Qrdr = C + P drQ r r
T o o

which proves the proposition.

In this case, thus, W(O= W( O)  But W' may be smaller or not

exist, since we do not require that P D Q , and if it does, it may not

have complete sweeping.

2.5 Characterization of the Strategies

From the previous remarks, we can characterize the candidate optimal

0 0
strategies v and u . We need the following simple result:

Lemma: Let W be a closed cunvex set in a Euclidean vector space. Let

A be a closed set. Let t E W , and let n be a normal to W

at (normal in the definition related to convex sets; see

[26]). Finally, let X E A be such that

(n,%) max (n,).

Then X E 6A and = + X E (IV+A) . Conversely, if
6(1+A) , there is a normal n to IV at such that (nX) is

maximized.
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Proof: The first part of the claim is trivial. Let 11 be the tangent

hyperplane normal to n at . Assume belongs to the in-

terior of W + A . Then, there exists a neighborhood of it con-

tained in W + A , which contains a g' such that

and since ' W + A , there exists a ' and a ' such that,

tE W X'E A = '+

We have

(n,X'>= = +

Now, because W is convex and n is a normal, it is an elemen-

tary property of convex sets that

and consequently

which is in contradiction with the definition of X . This proves

the direct part. Conversely, let n be a normal to W + A at

E . Then (n,E) is maximum, and thus both (n,X) and (n,t)

are. Hence n is normal to W at , and the lemma is

proved.

From this fact, we infer a simple characterization of the strategy

that verifies (2.4) under condition (2.5).

Let n be a normal to WTo at to = t( o)z " Any v°(.) veri-

fying

(n,0 0 ((r)v 0(o-r)dr) = maximum

0

verifies (2.4), i.e., since the inner product is linear

0;-  (n°0 (r)v (c -r))dr = maximum

000
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0Thus, v must verify almost everywhere in r E (To-,To

(nn9(r)v (To-r)) = max

This implies, since the operator 90(r) is continuous, that v°(t) be-

longs to the boundary of Q for almost every t . This is a game theo-

retic version of Contensou's optimality principle. For instances of its

use in differential games, see [18] and [20].

Another important consequence of (2.6) is that the function v 0.)

is actually independent of c . Consequently, its limit as E goes to

zero is simply its limit as t goes to zero, and is given by

v* = Arg max (n,1t( )v) . (2.6)
v EQ 00

Similarly, whatever v(.) is there exists a normal n to W~l. such
0

that u verifies

(ne, 0 (r) u° (v.-r)) = max . (2.6a)

0

Notice that if v = v , then n = nE 0

The function u (.) depends on c and v[O,c] through n . How-

ever, as e goes to zero, and consequently T1 to t , n tends to a

normal n to WTo , and u (0) to an argument of the corresponding
maximum:

, Arg max (no,90(T )U).
u EP 0 o

In particular, if n is unique, this is independent of v , and uniquely

defined if' P is strictly ponvex.

2.6 Technical Results

At this point, we need some technical results. We consider the

space K of the convex compact subsets of L , and, following Pontryagin

[24], give it a metric defined by

dist (A,B) = max (dist(a,B) , dist(b,A))
aEA bEB
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It is easy to check that this is indeed a distance. It is stated in (24]

that with the induced topology, K is complete.

We also introduce the notation 1(r) = fl( )z , T(Z ) = 0 and

for T smaller than T let the distance from t(r) to W be D(-r)

D( r) = distf( (r),W ) =min It(t)-4ITIEW

() is uniquely defined in W , due to the convexity of this set.

Lemma 1: The vector I(T) is left differentiable at T = 0

Proof: Let

= -c q( o 8  -  %o = (co = t

and

AW(5) = F [w_-o] is a convex set.
0

Clearly, At(5.) has a limit A0 =-gI(-o)Cz as 6- goes to

zero and

A6(b') = "Ao + 0(8,r)

We also have, since q(Q) belongs to W ,T

,rAq(6') E AW(Ot) = ( '- + 0 Qrdr
:0 TO - 5 T r

0 P dr .

0

This expression for AW is valid because W verifies (2.5).

Let K- be the tangent cone to WTo - to at the origin.

Locally, the boundary of WTo - to is contained between KTo

and an arbitrary, fixed cone interior to K'o . Thus, locally,

as 8T goes to zero, 1 (W1o- o) can be made arbitrarily close
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to KTo (which is invariant under scalar multiplication). Also,

the integrals can be made arbitrarily close to Qo and Po

Therefore, AW(OT) has, locally, a limit LW 0
o

o= (K + Q), P 0

Let Aro be the closest point of AW to Ao . We shall prove
000

that it is the limit of Ar

0AM('r) -*A °  as 5

Assume the above statement is false. Then, there exists an e

positive such that for every 5T , there is a 6T smaller than

5r , for which

Replacing AW by its tangent plane at Aqo ,it is easy to see

that this implies that there exists a fixed such that

1Ln o-411l > IlIAo-n4oll + P.(,

Now, in view of what was said previously, we can choose 5T such

that for any 6TI < 5r , with A(T I) =AI

IIn o-a lI <a

dist(AW IAW o) < aZ so that dist(Aqo~ , ) < a

then, since 6q, provides a minimum of iIA- ,Aq E AWC8-r)

and with the last inequality, and the triangular inequality:

and therefore, with the first inequality

1I40-4 1 1 < 11to-A9o11 + 2a

Now P is a fixed number independent of T . Thus a can be
1

chosen smaller than 1 , and this gives a contradiction with the

inequality (*). Therefore Aq(5T) has a limit A , and we have
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d (r) j -4I _d -T 0

0

and Lemma 1 is proved.

Lemma 2: The convergence of L to L o is Lipschitz in T

Proof: The proof is elementary and cumbersome. It presents no interest

in itself and will only be sketched.

Consider first the closest point An* of W T to Ao . It is

sufficient to prove the result for the convergence of to

IN , and then remark that by the convexity of AW , Li* is

closer to Lj than A4 to ,o "

To prove the result for Ln * , notice that the convergence of

AW to AW is Lipschitz, from the argument of-thefixed cones-r o

presented in Lemma 1.

Then distinguish between two cases:

* Ai 0 is not a corner point. Then show that the directions of

the normals to AW at Lq* and to W 0 at A o0 must agree

to first order, which gives the desired result.

L jo is a corner point. Then the result comes from simple

geometric arguments on the farthest point where A* can be,

knowing that the boundary of LW lies within first order

distance of the boundary of AW 00

In both cases, the result is proved.

Corollary 1: Let n(r) = ((r) - r( ) , () =I( ; thenin T )TI

dn(,r)
o d = 0 0

0

and if A 0 , (r) has a limit I 0 and is Lipshitz, as
0 0

68r -4 0

Proof: The first part of the claim is trivial.

Because of Lemmas 1 and 2,
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n(r) = - 8 r + 6- '6-)0

where 'O(b) is a vector verifying II6(6T)l = O(8-r) < p b.

Thus

IIn( )I = IIYo015 + §t 0(6)

and

0 0
n (-r) + M (80)6 + 5()

0 0

which proves the claim, with

o
n o =- "

Corollary 2: The distance D(T) is left differentiable at T , its
0

derivative is

dD ( ") I1 II11
T=T 0 0

0

Proof: We have

D(-r)-D(ro) D

D(-) = Iln( )ll , and 6mD(8T) = 0 (,r)
Ea 6'r

5,r

which, with the calculation of Corollary 1, proves Corollary 2.

Remark 1: It is easy to see, by the separation theorem for convex sets,

that n( ) is a normal to -W . Consequently, if the normals are
T

unique, Lemma 1 can be proved more directly. However, we want to allow

for the case where o is a corner of WTo , and we need Lemma 2.

Remark 2: A proof similar to the one we gave in Lemma 1, using the same

tools, can easily be made to prove the convergince of nE to n in the

previous section.
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2.7 Sufficiency: A Local Theorem for E-Strategies

Again, let z and 'r be such that T(z ) =
0 0 0 0

0

Following Pshenichnyi [25], we define a regular point as a point z
0

where

d Ld=st( ( ),W =O= 0

and thus, this number is negative. We have seen in the previous section

that this derivative exists.

Theorem: If z is a regular point, under condition (2.5) the evader
0

can prevent a jump of the estimating function at z . Precisely, there

exists an c such that for any e smaller than e ' T(z(e)) = To - C •

Proof: We want to prove that using v defined in Section 2.5 there does

not exist any T smaller than To , 5 = 4o - T1 , such that

(r1)z ° + 1 (r)v0 (t1-c)dr E W-E+ AlD(r)Pdr

= W + J('(r)Qdr . (2.8)
1 1-

First, notice that by definition of T , Y6 goes to zero as c does,

for any T1 that would verify (2.8).

For every given s E[O,e] , let rI =T 1 - s and ro = T 0 s1
Also, let v provide the maximum in the following product (where

v = AID(r)v )r

max (v n (v1  n

where a( 7 ) is defined as in Section 2.6. Let also n(ri) = i We

have, for every s
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(l,i v ,I) < J(v ,n I ) - (vo ,n o
( V 1 i 1 v 0^

n~0~~ (v0  jrrr r00(0 0

<(Vr
0 0

0nl0

and we show that the three differences on the right hand side are Lip-

schitz in &T . It is obvious for the third one, and it is a consequence

of Lemma 2 in the previous section for the second one.

The first difference is the variation of the support function of

W:

It is proved in [26] that 8* is convex in n , and, as such, Lipschitz

at any point of the relative interior of its domain. This, together with

Lemba 2 and the obvious Lipschitz character of its dependence on W ,

proves that this first difference has the claimed property. Consequently,

there exists an M independent of 6T such that

r1,n 1 ) - (vr ,In) < r Ys . (2.9)
1

Moreover, remember that v°(s) , and thus nI  and vI , are not functions

of e . Thus M can be chosen independent of e as well.

We integrate the previous relation for s varying from 0 to E

( (Tr) - v(Tl-r) ]dr , nl) h 8-TT I v -r - r

We subtract q(TI )  (defined as in Section 2.6) from the left hand side

of (2.8), and project on nI , a normal to WTI at q(TI ) , and compare

with the right hand side, using the lemma of Section 2.4. This gives
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(T 1  0

(n(T I ) + v (T O-r)dr ,n(T

T r

- max Vr(l-r)dr n(Tl)

Tl
( ) r 1 n )

= D ) - ( [vr'('r-r) - v(T -r)]dr h >
I r11

> AD 6r + O(bT2) - C5 T-0

But E can be chosen to make this difference positive for eve'ry 6T

since bT goes to zero with E , which proves that inclusion (2.8) is not

verified. This proves the theorem.

Remark: Lemma 2 allows us to use the intermediary of the function 5*

and thus avoids an investigation into the regularity of the function v

Under condition (2.5) we have not only proved that the variation of

T(z) is locally optimal, but also we have the much stronger result that

there exists an c-strategy actually yielding this rate of decrease. This

may be considered as very important when it comes to the implementation

of an optimal control.

2.8 Sufficiency: A Local Theorem for the Limit Process

In the previous section, we were seeking an c-strategy yielding the

time of capture T(z) . But the existence of such a strategy is not

necessary for T(z) to be optimal. It suffices to be able to find

b-efficient strategies for arbitrarily small 6's . Then, according to

our discussion of Section (2.3), T(z) is optimal and corresponds to a

saddle point.

Consider a trajectory z(t) , and let

Z' = Ito( -t)z(t) z = 0E T(z(0)) =

10 0

and notice that, with T - t = ,

o
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I

z = lira = v - u
= ' - [T-, T -T0 T o 0 o

0

Assume that, for every , z E W T -3 < - < -r

T T 0

We have:

1 111z (T) - (Z-z E - (W -z)=w()
0

It is easy to check that dist[AW(br+E),AW(,r)] goes to zero with .

The space K being complete, there exists a limit

L\W = urn ~W-8r
0 5'r-*0 8

so that, in particular, our Corollary 2, Section 2.6, holds without con-

dition (2.5). The above inclusion yields

v -u E LW
o o

With our definition of W , the pursuer can always achieve this goal.

Thus

([wo +P )C Q or 0 E (AW +P ) - Q
0 0 0 0

With these definitions and remarks, we prove the following fact:

Theorem: At a regular point z , if the origin belongs to the boundary0

of (AW +PTO) ! Q'o , the evader can insure that the estimating function

will have a jump of the order of e 0(e) at most.

Proof: Under the conditions of the theorem, there exists a v* such that

f- uv 1  cannot belong to the interior of AW

If the pursuer does not choose u. such that vo E AW , according

to our previous calculations z cannot belong to W for every T inT T

a neighborhood of T . Therefore, let us assume that u = u*. Let0

*v -u* =6y E aw
v T 0 0

Ay is the limit of a function ?Ny belonging to AW1 T of the form

35

Fi



Ay =T- (YT-{o) L W(ST)

y W •
r W'r

Moreover, y can be chosen to belong to the boundary of W . Let

z* be a trajectory generated by a strategy (u,v) agreeing with u*,v*
T

at -, . For instance, u and v constant. Then

1 (z _ o) =1
(z (- - o) + 0(0r)

and thus

z y + 6 0(-T)

which proves that z* is at a distance bT 0(T) of the boundary of

W o-bT at most. Using the assumption that z is regular, D is0o 0

defined and non-zero. The jump of the estimating function is of the

order of

t 1
dist(z , W ,

0

and thus, with a given step E , this jump is of the order C 0(c) at

most. This proves the theorem.

Assume, now, that this holds in the neighborhood of a trajectory,

except, possibly, at finitely many points on any trajectory. Then, if we

decrease e , the number of steps in a given interval increases like

I/e . But if the jumps decrease as e O(G) , the total jump during that

time goes to ,ero with e . We say that, locally, we have exhibited a

b-efficient strategy for arbitrary 5 .

What remains to be done is to see whether the set family W has
T

the properties required by the theorem. We shall prove, in the next

section, that Pontryagin's alternating integral verifies the following

relation.

Proposition:

K (1V +P ) *QT
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where KTo is the tangent cone to Wro- o at the origin. Since

0 E 6Kro , our previous discussion holds.

2.9 Properties of the Alternating Integral

To carry out our program, we need some preliminary definitions and

results.

Definition: A geometric difference C = A 1 B is said to hax e complete

sweeping (c.s.) in the direction of n when a boundary point of C + B

having this direction for normal is also a boundary point of A

Notice that then all such points will have that property. Notice

also that at every boundary point of C there is at least one normal

having c.s. in its direction.

Lemma: For every set A , B and C for which this combination exists,

we have

[A+B)!C)+B)C = (A+2B) 2C

where the notation of the left hand side has an obvious meaning.

Proof: From the results of Section 1.6, we would have the left hand side

included in, or equal to, the right hand side. To prove the

equality, we prove that any boundary point of the left hand side

is a boundary point of the right hand side.

To do so, we prove that all three geometric differences have

complete sweeping in any direction in which the last one of the

left hand side has. Once this is proved, the result follows

rapidly:

Let

D1 = (A+B) I C D2 = (DI+B) ± C D = (A+2B) ! 2C.

Consider a boundary point d of D , and a normal n to D2

at d2  such that (D I+B) C has c.s. in its direction. Con-

sider then

37
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b = Arg max (n,b)
b EB

c = Arg max (n,c)
cEC

Because of the hypothesis of c.s. in that direction, we have

d2 + c E (DI+B)

and as n is also normal to D1 + B at d2 + c

d1 = d2 + c - b E 6D , n normal to D1 at d

By the same reasoning, we deduce that

d 1+ c - b E MA

with dI = d2 + 2c - 2b , and again using the fact that n is a

common normal, that this implies

d2 E 6((A+2B) - 2C]

Therefore, the only thing we have left to prove is the following

proposition:

Proposition: Let n be a direction in which (D +B) - C has c.s., then

(A+B) 1 C and (A+2B) - 2C have c.s. in that direction.

Proof: If we replace the first set of a geometric difference by a set

which has at every corresponding point of its boundary (common normal) a

bigger radius of curvature of "less acute" corner points (larger cone of

normals), no direction can lose its c.s. property.

((A+2B) - C] has this relationship with [((A+B) * C) + B] , thus,

in a direction n where (D I+B) - C has c.s., [(A+2B) ! C] ± C has,

too. Now, notice that (see Section 1.6) [(A+2B) - C] ! C = (A+2B) 1 2C

Take a boundary point d of this set, where n is a normal. Let

c E C maximize the inner product (n,c) . Then

d + c E ((A+2B) - C] ,

and comparing the normals, it follows that
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d + 2c E 6(A+2B)

Thus, (A+2B) - 2C has c.s. in the direction of n Then, because of

our introductory remark, (2A+2B) - 2C has, too. And by mere similitude,

(A+B) I C as well.

Thus, the proposition is proved, and, consequently, the lemma.

Now, we can prove the last proposition of the previous section.

Notice that, by induction, this property is true for any alternating sum

of two sets of the form

[A+B) - C) + B) * C....) + B) - C = (A+nB) ! nC n= 2 p

Consider the set W o defined by the alternating integral

W = [Pr*Qr ]dr

0 ' e,o

We have

1 . J_ L + 0 P dr

0

0 -- Q dr.
5'r -5 r

0

The left hand side can be made arbitrarily close to

n- n[5 i0 ° " n-  d) ° - - "  r

)Pdr * Qrd) ....
0 0

+ - T Pr dr" *-1 Qrdr n = 2 p

on on

which, by continuity of the geometric difference for convex sets (see

(24]) can be made arbitrarily close to
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0 n TO) T ) 0o)

+ -- -0 +-- "" Q

7T( o_85 -

This set, in turn, can be made arbitrarily close to the right hand side

of the above inclusion. Thus, the distance between the two sides of this

inclusion goes to zero with 8T • and we have the property claimed:

K = (AW +P ) - Q
o o

the existence of the other limits proving that LZW 0 E . Notice that0

AW is not necessarily a cone, but has KTo as its recession cone. The

above geometric difference does not necessarily have complete sweeping.

It has under condition (2.5) as we saw in Section 2.6.

2.10 Sufficiency: A Global Condition

In this section, we shall assume without proof that the strategies

u * and v* only have isolated simple jumps, so that there always exists

a left continuous definition of them at any point.

Should this be not true at some point, only the strong version of

the condition derived would hold, and it would no longer imply the weak

one. Notice that if such a behavior happened at more than isolated

points of a trajectory, we could always replace the "chattering" control

by an equivalent non-chattering one, due to the convexity of the control

sets.

i) The Problem. We have seen that under condition (2.5), if

T(z ) To 0 there exists an co such that T z(e ) = - e . Let

z(C0) = z' T(z') = T - C, and there exists an C' having the same

property, etc. However, what may happen is that

o0
0 .r - e=T >0.

i e = e < o 0o

0

Then, the point z = z(e) is such that

40



z0 E6W T 0  8' (2.10)

or a non-regular point. Otherwise our local proofs would hold in a neigh-
0

borhood of z , in contradiction with the hypothesis. If we rule out,

by assumpti6n, non-regular points of second kind (see next section), then,
0

as we shall see in the next proposition, relations (2.10) hold at z .

Similarly for the case of the continuous process, we have seen that

a jump would be of the order of e 0(e) because the distance of z to
T

the boundary of W is of that order. But the proof fails if z(t)

comes arbitrarily close to a point verifying (2.10).

Therefore, we must impose some conditions on points of this type.
0

And since z can be approached arbitrarily closely on the trajectory

without jumps, the only points to consider are those of the following

set F:

F = 6(((TO)lW] 1 wD 0 - = r > 0

being understood that this boundary is to be considered only where it

separates the intersection from a region where T(z) is in the neighbor-
0

hood of T

Proposition: F is the union of parts of the boundary of C , and of loci

of non-regular points of first kind.

Proof: We assume that 0(T')z ° E W , but an arbitrarily close point

z' does not belong to any WT , with T' in the neighborhood of T'

This can happen in two ways:

0 Either: for e sufficiently small, locally we have

WT CWO VT E (T°-C,T°+0

Then it is easy to see that z is non-regular at T'; moreover,

o belongs to the envelope of the W 's , which will be seen toZTt

be the characteristic property of non-regular points of first kind.

* Or else: W is not defined in an open neighborhood of T' . But
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if it is defined and has an interior for T' it is defined, by

continuity for some larger T . The only possibility, thus, is

that T' = 0 so that IV is not defined for T < T' . Then

~W, = C.

Therefore, the problem is reduced to checking whether the trajectories we

have defined penetrate such surfaces. In the absence of non-regular

points of second kind, we have the following result:

Theorem: The necessary and sufficient condition for the estimating func-

tion to be optimal is that the corresponding trajectories do not cross

the manifold F

ii) Sufficient Conaitions. Sufficient conditions can be derived on

the structure of the game, not requiring the actual computation of the

trajectories. Notice that, in principle, once the sets W are known,

the manifold F is known.

A first, obvious, sufficient condition is F = 0 . However, this

rarely happens, although one could construct examples that satisfy this

condition.

We can deduce different conditions from another idea: it suffices
0

to insure that a trajectory arriving at z would lie in V , a time
0

earlier. Then, there is no jump in T(z) at z ; thus the problem

mentioned does not occur. This is what we shall call "condition B."

It is insured by the following strong version:

Let z E F ; there exists a neighborhood of z for which, if

z To+ E 6W TO+  , there is a normal n to W o+ at z -o+ such that
0 0

Lhe corresponding u and v verify, for every normal n' to W,

0
at z

00

(n' v°(s) -u°(s)) > (n',v.T(s) - u' r(s))

YT = T' + -S 0 < s < C

where u'() and v'(.) are defined similarly to u ,v , with n' and

This condition, directly derived from

S(-'+) 0z(to0-) 0 E IV,+2

,12



actually means that, judged according to the sets V , , the strategies

(u ,v° ) are not worse, for the evader, than the optimal pair (u',v')

This condition is still complicated, but two interesting forms can

be derived from it, easier to check.

The first one is condition A of Gusyatnikov and Nikolsky (see Section
0 0

2.2). In that case, a u corresponds to v such that

0 0
u T( T 2QT

insuring that condition B is satisfied.

The superiority of this condition is that it comes the closest to

dealing with the raw data of the problem. This point is investigated in

more detail in [16]. Its main restriction is that it requires P -QT

for every T , which gives the pursuer an excessive superiority over the

evader.

Another form is the weak version of (2.11), valid with our assump-

tion on the regularity of the optimal strategies. Then (2.12) is insured

by

(n, ,,) > (n',v,-u, (2.11)

which can be derived as a limit of (2.11) or by an argument similar to

that of Section 2.8. Notice that if we allow "safe contact," then the

strict inequality in (2.11) can be replaced by "greater than or equal to."

Final:y, this is verified if v* can be determined as a function of

z only, independent of T. Then, v* = v , and as u' provides a

minimum in the expressions of (2.12) (or (2.11)), condition B is satis-

fied. This form is also a structural condition, not requiring that F

be explicitly found.

2.11 Non-Regular Points

i) Characterization. Since we have been obliged to assume that all

the points of our trajectories were regular, it is interesting to see in

more detail what happens at a non-regular point. (We prefer to keep the
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terminology singular for another type of point we shall introduce in

Chapter 5.)

A non-regular point, we recall, is a point where

dd-t- = 0 t('r ) = 'T( o)z °  E NW

0

t(r) £W , VT< 0o0

We can easily verify the following fact:

Proposition: At a non-regular point, the gradient of the estimating

function is infinite.

Proof: Consider an inverse image z'(T) of r( ) by

z' (T) E ¢(-)I 1T(T) T(z' (')) = r .

It is possible to choose it in such a way that the limit of the line

(zojz') does not reduce to to when acted upon by the operator 90(T 0

Thus, the length of h(r) = z' - z verifies

Ih( )l = M('r)D( ) with M(T) < M as T -4 T-0 0

Now, as h goes to zero, we have

T(z) - T(z') = 6,r = (W(z),h) + (62)

where 7(z) is the gradient of T(z) . Now, let i = h

irh 1
2)7 (z, = 6 +°O(8 2) 1

= M(r) D(T) >  M + 0(8 T)
0 0

Thus, if AnD is zero, the inner product is infinite, which proves the0

proposition.

ii) Classification. To go further in the analysis, it is convenient

to distinguish between two kinds of non-regular points:

o First kind: 9(T) does not penetrate W , and more precisely,

there exists a positive e such that

VT E(oE + To
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0 Second kind: the above property is not verified. (r) may either

belong to the boundary of W for a finite interval in T , or

penetrate into the interior of W

The interest of this classification appears in the following fact:

Proposition: A non-regular point of first kind lies on the envelope of

the sets V

Proof: This immediately follows from the definition, transformed in

terms of z and V
o

This envelope is clearly a discontinuity in the function T(z)

This is consistent with our remark that the gradient of T(z) is in-

finite. Actually, the envelope is a barrier according to Isaacs. What

we have here is a mere statement of Isaacs' envelope principle (see [18]).

iii) Properties of Barriers. Such an envelope is a closed manifold

(see also [25]). Thus, if a trajectory reaches it from regular points,

the set of regular points on this trajectory is open.

Moreover, if this trajectory comes from "outside" the barrier,

namely, from the exterior of the union of sets, the envelope of which is

the barrier, then it has a finite jump in the estimating function.

But because of the previous remark, the proof of Section 2.8 holds

along the trajectory, yielding the following result:

Theorem: Under condition B, trajectories generated by the limit process

never cross a locus of non-regular points of first kind that would induce

a jump in the estimating function.

Finally, we have the following result, not really needed in a theory

of the optimality of the process, but interesting because it corresponds

to the cases which are usually met:

Theorem: If along a barrier as defined in this section the normal to

W is unique, then a trajectory generated by the limit process having a

point in the barrier lies completely in it.

Proof: At a point where the normal to WVo is unique, the cone K.To

is a half space, and its boundary the hyperplane tangent to W.o . Then
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W is a hyperplane parallel to 6K o

The fact that the point is non-regular means that

ADo =Ai -A~=o
6D o L 0

0 0and since 0q lies, by definition, on AW , this is true also of

A Now, consider

w)r M(0) = (r )(cz -u*+v*) *
0 0 0 0

0 0
* *

If v* and u* are chosen according to (2.7) and (2.7a), Vo - Uo

belongs to 0W . As A does, too, we see that WD('r )(0) is either

zero or parallel to 6K o , and thus to Wro

In both cases, this implies that Zo is parallel to V o . As we

know that z lies on the envelope of the family V , we see that under

the continuous law, z remains on this envelope.

This proves the theorem.

iv) Non-Regular Points of Second Kind. Non-regular points of

second kind appear as points where the estimating function has an in-

finite gradient without being discontinuous.

We propose the following example, which shows that such points can

exist, and gives some indication of what they actually represent.

Consider a two-dimensional game where the geometrical space is the

whole state space; therefore it = I the identity. Let the dynamics be

defined by

C = a,(c positive real numbers

and P = Q , so that PT 2t Q = (0) . Finally, let the capture set C

be the disk centered at the point

x=0 J -a

and of radius X =£-+ /1 so that its boundary goes through the point

(1,0)
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Since P I Q = (0) , W is constant and equal to C with the

proposed strategies, the two players' actions cancel each other and the

state follows the free dynamics of the system. The transition matrix

of C is

e Cos~ WT 3,I t
' (T) =

e sin oT e cos oT

so that for a fixed z , (-r) = (-r)z describes a logarithmic spiral

as T varies.

The capture circle has been chosen such that it is the osculating

circle to the spiral through that point at a = 1 , y = 0 . As a conse-

quence, this whole spiral, outside of C , is a locus of non-regular

points of second kind.

In fact, for a point

a~s

e Cos Ws

-eas sin cus

we have

-a ('r-s)
cos C(T-s)

\e " Oa '- s ) sin w(,'-s))

and thus

D (e r) 2a -a(,-s)_1/2
D([) = [2a(-s) + a e )sin w(T-s) +
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It is a simple matter to check that

1) for T < s D(T) > 0 , and D(s) =0

dD(')
2) for T = s -= 0dr

3) for d = s d2 D() = 0 and d3 D(,r) =-Ci 2 < 0
do 2 d 3

establishing that

1) T(z) = s

2) z is a non-regular point

3) it is a non-regularity of second kind

which is what we wanted to show.

Notice that T(z) = s proves that the gradient of the estimating

function has a finite component tangent to the spiral. Since this gradi-

ent is actually infinite, it is normal to the spiral.

This finishes our discussion of non-regular points of second kind.

2.12 Conclusion
0 0

We have characterized directly the controls u and v , and found

a direct construction of their limits u' and v*

An interesting feature is that while u is, under some conditions,

optimal against every v , it was found that its limit u* often does not

depend on v . This is true if the sets W do not present corner

points, except, possibly, for countably many values of T

Notice also that

=v-u)

where (10(T))* is the adjoint operator to MV(T) . Let, then, x =

n , and it is seen that the controls u* and v must be such

that
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(,(u*,v*)) n= max (X,i(u,v))

u v

which bears a close resemblance to the Pontryagin Maximum Principle.

Because of the possibility of the occurrence of corner points in the

sets W , the variation of % may be difficult to describe. X may evenT

be non-unique. And it is noteworthy that the geometric subtraction can

introduce corners without any of the constituting sets having one (and

still without violating condition (2.5)).

With regard to the question of the optimality of the process de-

scribed, we have found that under condition (2.5) the time T(z) can be

optimal for an c-strategy, and a fortiori, of course, for the limit pro-

cess. But this condition is not needed for the limit process, and we

have found that the alternating integral is, as far as local behavior is

concerned, the optimal capture set.

However, the corresponding trajectories can still fail to be op-

timal by crossing a barrier or penetrating the "non-usable part' of the

capture set. Actually, in all instances known, it is the second phe-

nomenon that occurs. As will be seen in the second part, this leads to

state constrained optimal trajectories along a "safe contact." Condition

B is sufficient to prevent this from happening.

In addition, all sufficiency conditions must exclude non-regular

points of second kind. Apart from that, all conditions are both neces-

sary and sufficient.
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3. MULTISTAGE GAMES

In this chapter, we consider multistage games, that is, games in

which the system to be controlled is in discrete time, governed by a

difference equation. We shall briefly discuss the discrete equivalent of

system (1.1), and then turn to the system theoretic formulation, with

unbounded controls, for which the present technique turns out to be par-

ticularly well adapted.

3.1 The Discrete Game

In a very classical way, the system (1.1) can be transformed into a

discrete one, letting

A eC A
z(n = z(n) e = () =D

yields

z(n+l) = z(n) - u(n) + v(n) (3.1)

where

u(n) E P v(n) E Q.

P and Q are compact convex sets derived from the original one in a

trivial way. Define

Pn =- n¢np Q = eQ .

And as in the first chapter, consider the sets

=n (... (((c+p) 0 Q) + P, Q1  * + Pn-) 1 Q-l

= .. (C + P. n

n "' g- (- "' Q-

and the sets V and V defined by
n n

V = (zj¢nz E W I
n n'

V ( O) = (z Ignz E W( 00)

n n

And we claim that V and V (CO) are the sets of capturable points,
n n
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respectively, when v(n) is known of the pursuer as step n , and when

the whole future history v(.) is known.

The proof for V is rigorously the same as in Chapter 1; there isn v . )
no need to repeat it. We prove the claim for V since the situation

n
is slightly different: we add steps together instead of letting the

step grow up to the capture time.

We have

l z(n) = nz (0) - uk(n-l-k) + vk(n-l-k)

where

k kk
uk nku vk =tkv .

For simplicity of notation, let

Yn Uk(n - l - k) n E ;Pk

tn = n Vk(n- l - k) n

For capture to be possible in n steps, it is necessary and sufficient

that there exist a C n such that

11onz(O) " n + 'n E C

or equivalently, that

1toznz(0) + n C + k

And, for this to be possible for every 'n ' it is necessary and suffi-

cient that

Ito nz (0) + Q C + k
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or equivalently that

'n(0) c- 4.+ Pk)- Ut Qk ,

which proves the claim.

3.2 Capture with No Information on v

In the continuous case we had the possibility of letting 6 go to

zero. Here, if we want to have the information advantage of the pursuer

vanish, the only thing we can do is assume that he has no information on

v . Then, as we want capture to be possible whatever v is, it must be

possible if the evader plays "as if he knew" the pursuer's control. Thus,

we are actually led to the study of the majorant game, which was not

needed in the continuous case.

By analogy with the previous constructions, we are looking for a

set % such that
n

Ionz(O) E (3.2)
n

insures that it is always possible for the pursuer to obtain

Sn-l z(l) E n-i (3.3)

and, in addition,

: 19 = C .

Inclusion (3.3) reads

Anz() - u () + V (0 )Y V Q

n1-1 n-i n-i n-i n-i

Therefore

Aonz(0) _ U n-1 (0) + Q n-l C n-1

equivalently

Itnz() - un1(0) C n- -n-"
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The existence of such a u is equivalent to

IDnz (o) C (n-i 1 Qn-i + Pn-i (3.4)

and as this must be a consequence of (3.2),

n 0 n-1 n-l ) + n-(3.4a)

More precisely, as (3.4) is a necessary and sufficient condition to in-

sure that (3.3) is possible, we replace (3.4a) by the equality, and

using it recursively together with = C , define n
o n

((. ((n Qo) + P) ±Ql) + PI .. Qn-]) + Pnil

Remarks

As could be expected, l does not exist unless, in particular,
n

C Q . The relative size of the three sets W is easy to check:
W n

n n n

by straightforward application of the propositions of Section 1.6. They

may also be used to establish that if Pi - Q, , for every non-negative

i , with P- = C , and if P i-i Qi has complete sweeping, then

n n n

3.3 Concluding Remarks

We have not said anything about optimality so far.

In the case of V later referred to as the strong controlla-
n U

bility case, we have seen that nz(o) Vn to insure z(l) E Vn-1

This corresponds to the local theorems of Chapter Two. But we have the

same "global" problem. We are not sure that the evader can simultaneously

prevent the state from penetrating every V i of smaller index.

One should therefore either find an equivalent of condition B, but

this could be more difficult than in the continuous case, or redefine the

family V in such a way that Vn+ 1 includes all points z such that
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the evader cannot prevent the state from drifting in one step into Vn

simultaneously with the n-1 previous sets V.1

We did not investigate this problem. We notice only that if V Dn

V n- for every n , then the problem does not arise, and the previous

construction yields the optimal capture time.

3.4 System Theoretic Formulation

We turn now to the discrete system with unbounded controls. We must

obviously reintroduce the matrices G and J through which they act.

We also change our notations to more traditional ones.

We deal with the system

x(k+l) = F x(k) - G u(k) + J v(k) (3.5)

where

x E X an n-dimensional vector space

F is an nXn constant matrix

u E U an i-dimensional vector space

v E V an m'-dimensional vector space

G and J are nXm and nXm' constant matrices.

A subspace Al of X is given, and capture is defined as x E M . We

choose a complement L of M: L G M = X and we define it as the pro-

jection onto L parallel to MA

Ax E L x -Jx E M

and capture is equivalent to Ax 0

We introduce, in addition, the notations

P = t range (F IG = it range (F J)

P and Qk are vector subspaces of L .

We can still define a geometric subtraction: given two subspaces

A and B

A 1 B = D = (x Ix + B C A)
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But this operation is now particularly simple. Two cases arise:

A B A - B = A with complete sweeping

A B A B = 0 or, equivalently, does not exist.

And finally, from the Cayley-Hamilton Theorem,

Pi range (AG, IFG, , ' 9" 1FPG) P p

and similarly for the Qi's , so that we can stop all our constructions at

n steps.

3.5 Strong Controllability, Capturability and Ideal Capturability

We apply the same technique as previously, with vector subspaces.

We again have the three main information structures:

a) Strong Controllability. The control v(k) is known for the

whole future. If the state can be brought to the origin, we

shall say, following Kalman (19], that it is strongly control-

lable modulo M

We have

Wk = )P- Qi

Thc ,efore

W k )P if ~Pi~ Q

= 0 if

The condition for the existence of W can be written as an

explicit condition on the coefficients of the matrices involved:

a , Fk-l
rank A G: .G:.. )IF G] = rank ((G:VJ:rFG i3FJ .

k-i k-i9F GiAF i
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Notice that W may exist (be non-empty) while a set of lower
k ( C)

order would not. The states of the corresponding V are

still strongly controllable, since, as we saw in Section 3.1, the

argument for that case does not proceed by induction.

We find that for every k , either all states controllable with

u alone in exactly k steps are strongly controllable in

exactly k steps, or none is. in the latter case, however,

some states may still be strongly controllable in less than k

steps. But the pursuer will not, then, be able to keep the

state in M until time k , or to have it reach M at time k

only.

) Capturability. The value of v at the present step is known.

If a state can be brought into Mt with that information, we

shall say that it is capturable modulo M

We have

W= ( . o.(( Q) + P -) ± Q1 ) + P2  "' + Pk-J - Q k-

Therefore one of the two following possibilities must arise:

* All geometric differences non-empty W = YP.
kVI

* Otherwise Wk =0

The condition for Wk  to be non-empty is

k-

P-0 -- Q (P0+P 1 ) DQ 1  . Pi Qk-i

which can be transcribed in terms of the matrices, considering

:t as the -natrix corresponding to the projection operation

rank [GjAJ] = rank [9G] rank [1G'JrFGj9FJ ]

= rank [g:GFG , etc.

It suffices that Pq -Qq or rank [,q G-nFqJ] = rank CRFqG] Yq

it suffices also that P 2Q or rank [GIJ] = rank [G]
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These three conditions are increasingly restrictive; the first

one only is necessary. Because i and F generally do not

commute, P 0 Q does not imply the second condition. Notice

that the existence of Wk  implies, as it should, the existence
C)k

of W (  The interesting fact is that they are equal.

The conclusion about the capturability modulo 9 in exactly k

steps is the same as in the case of the strong controllability.

Only the conditions under which the controllable states are

capturable are more stringent.

Jy) Ideal Capturability. No information is available on v . By

analogy with the concept of ideal observability, we shall say of

a state that can be brought into M in that case that it is

ideally capturable modulo M . We have

-k ((. Q1 ) + Pl) 12 ... - Pk-i

Therefore, two possibilities again arise:

0 All geometric differences are non-empty = P

0 Otherwise k =0 .

The condition for to exist is
k

Q0 (0) P Q P + P 1Q .. P " Q
o 1 o 1 i k-i

and this condition can be written in terms of the matrices:

ITJ = 0 rank (G:AFJ] = rank (G] rank [AG:AFG19F J]

= rank (IG:ItFG]

etc.

Again, it suffices that P Q rank -- =Fq-1 q
rank (AFq-1 G] V q but the first condition only is necessary.

The situation is similar to what it was in the two previous cases,

with even more restrictive conditions that clearly imply the existence of

the two other sets, and then they all are equal.
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3.6 Discussion, Optimality

We find that in the case of unbounded controls, unlike in the other

case, a change in the information structure does not change the nature of

the sets of controllable states. It only changes the condition under

which these sets have the desired property.

In other words, if some states are, say, ideally capturable in k

steps, then all states controllable in k steps are strongly controllable,

capturable and ideally capturable. What can be changed by the information

structure is the subspace M , modulo which the system has the discussed

properties. In particular, changing the information may allow us to

bring more coordinates of the state to zero. This is not in contradiction

with our previous statement which holds for a fixed subspace M

As far as the optimality of the capture time is concerned, we have,

of course, the same "step by step" optimality as in Section 3.3. But the

"global" problem is now much simpler.

We consider the relation

x(l) = F x(O) - G u(O) + J v(O) E Vk

and we know that the pursuer can achieve this if, letting P = range G

F x(O) + J v(O) E Vk + P • (3.6)

As V k+P is a vector space, (3.6) is equivalent to a set of linear equa-

tions on v . If x(O) does not belong to Vk+ 1 , then, by definition,

it is not verified identically. Then, the set of all v's that verify

it is an affine set in V , possibly empty. The union of a finite number

of such sets cannot be the whole space V .

Thus, if T(x) = p : x E Vp and x E Vk V k < p , then there are

v's for which none of the relations (3.6), with every k smaller than

p , is verified.

This solves the problem by showing that p is indeed optimal.
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3.7 Invariant Capture Space

We are going to investigate the case where the subspace M is in-

variant under F . A reason for doing so is that it corresponds to a

natural problem in the frame of modern algebraic system theory. M is

then a submodule of the module structure induced on X by polynomials

in F

The results take a simple form, and we are able to generalize to the

multiple input case a result proved by Kalman (19] in the single input

case.

i) The Strong Controllability Theorem. We first prove two simple

lemmas.

Lemma 1: If a state is controllable modulo M in p steps, it is also

controllable in p+q steps, q > 0 . This is an immediate conse-

quence of the invariance of M . Translated in our notations,

this implies:

OFx P. I( Pqx E Pi V q > 0.

Lemma 2: If W (  is non-empty, then W( q is not empty either, for
p P+q

every q > 0

Proof: Assume

This means that for every sequence vv,..v , there exists a

corresponding sequence uo,01 ) . u 1  such that

I( tFkGuk = J1tFkJvk,

or equivalently

FkGuk- FlkJvk E M
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Using the invariance of M under F , we multiply by Fq

F k+qGU- e k+qJV E M
k k

and as this is possible for every sequence vk ,it is equivalent

to

Pi Qi

which together with the relation we started from gives

Pi ' Qi or p+q P 1 0

We can now prove the following theorem:

Theorem: When M is invariant under F , then

* Either all the states controllable with v alone (modulo M ),

are controllable with u , and then all the states controllable

with u are strongly controllable;

* Or no state is strongly controllable.

Proof: Assume that some states are strongly controllable. Then there

exists a non-empty ( and thus, by Lemma 2, W is non-empty.

n-n

By Lemma 1, all states controllable with u are given by

~nX
I(Fnx E P.

and all states controllable by v similarly with the Q i's . Thus, if

(3.7) is verified, all states controllable with v are controllable

with u , and all states controllable with u verify

F nx E W
(C
n
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and thus are strongly controllable.

If (3.7) is not verified, no state is strongly controllable, since

it is verified as soon as some are. This ends the proof.

ii) Absolute Concepts. We want to investigate under what condition,

once the pursuer has brought the state in M , he will be able to hold it

in M . When he is able to do so, we shall say that the system is abso-

lutely strongly controllable, capturable or ideally capturable. Condi-

tions for this to happen in the case where M is not invariant can be

given, but they are not very interesting. Here, with M invariant, the

situation is very simple.

Let us first make a few remarks about this question in the case of

the strong controllability. Let 2 be the smallest integer for which

is not empty. Then W contains the origin. Thus, with the in-

variance of M , if the state has been captured at time p , we have

x(p) E M F x(p) E M RF x(p) = 0 E W o)

and the pursuer is able to have the state return to M every 2 instants

of time. However, if he wants the state to belong to M at a given in-

stant m larger than p+X , m = p+q , he can always achieve this since

Fq~p EM Fqx(p) = 0 C W(w)
q

and we know that W(_) does exist.
q

If we want the system to be absolutely strongly controllable, then

W must exist:1

0 0

This insures P Q due to the inveriance of M , as is easily checked:
k k

if for every v there is a u such that

tGu = 9Jv Gu - Jv E M,

k
we can multiply both sides of the second inclusion by F , which gives

the result. But chis implies capturability. We therefore have the fol-

lowing result:
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Theorem: Whena M is invariant under F , the concepts of absolute strong

controllability, capturability and absolute capturability are equivalent.

The problem of ideal capturability is of no interest when M is invariant,

since ideal capturability requires that the range of J be in M , and

then the evader would have no control on Ilx

This finishes our discussion of the discrete problem.

62



4. THE ISOTROPIC ROCKET GAME AS AN EXAMPLE

In this short chapter, we present a special pursuit-evasion game:

the Isotropic Rocket Game (I.R.G.). Our aim is to discuss its formula-

tion and to apply to it the results of the previous theory.

4.1 Description of the I.R.G.

The Isotropic Rocket Game was proposed by Rufus Isaacs in [17] and

(18]. In these references, Isaacs gave an analysis which, although

farther than ours from being complete, brought out several new and inter-

esting features. This analysis covers most of what we present in Sec-

tions 5.2, 5.3 and 6.2. We shall often refer to this work. We have

tried to stay as close as possible to the notations of [18]. However, it

was not always possible to keep exactly the same notation, partly because

this game appears at two different places in the book, with different

notations. A correspondence between ours and those of these two discus-

sions is given in Appendix C.

In this game, the dynamical possibilities of the two players are

as follows:

P. The pursuing object is to be thought of as a rocket able to

direct its thrust in any direction, whence the name of the game.

It has a bounded thrust-to-mass ratio, that is, an acceleration

the magnitude of which cannot exceed a fixed value F . Within

this restriction, this acceleration can be changed instantly

and is the pursuer's control.

E. The pursued object is a maneuverable target, with bounded

velocity. The maximum possible magnitude of this velocity is

w . Within this restriction, it can be changed instantly and is

the evader's control.

Notice that neither of these two descriptions is very realistic. A

rocket is not steered by instantly changing the direction of its thrust,

and we allow the target, an aircraft or an incoming missile, for instance,

infinite accelerations. However, simplified as it is, this model will

still give meaningful non-trivial results about the chase. In addition,
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it will yield new concepts for a general theory of differential games.

Capture is obtained when the relative distance of the two players

falls below a fixed radius of capture 2 . This can represent two players

of finite radii 21 and 12 with 1 +Y2 = 2 , or a pursuer with lethal

radius 2 pursuing a point-like target. We shall think of it in this

second and more realistic way, knowing that the analysis is equally valid

for the other case. Whether the capture set C must be regarded as an

open or a closed sphere is not important at the modelling stage. Depend-

ing on the techniques used, the question will be answered in the way that

best fits the mathematical formulation.

4.2 Dimension of the Geometrical Space

The chase occurs in the three-dimensional physical space, but we

neglect gravity. To recover Isaacs' two-dimensional formulation, we im-

mediately state the following fact:

Proposition: An optimal chase occurs in a fixed plane.

Proof: Let r be the vector from P (center of the capture sphere) to

E , and v be P's velocity. Consider the plane I defined at each

instant by P , r and v , which thus contains E . Take a moving

rectangular coordinate system (x,y,z) with its origin at the point P

and such that the x- and y-axes are in 1 - for instance, the y-axis

aligned with v . In these axes, the relative coordinates of E are

x
r (Y

and P's velocity is

This coordinate system has an angular velocity w with respect to the

inertial space:
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0x)

Consider a new coordinate system (X,Y,z) , still rectangular, with the

same origin and the same z-axis, but having, with respect to the previous

one, an angular velocity -a)z . This new system has, with respect to the

inertial space, an angular velocity

and r and v have for components

-4

Let - denote the time derivative with respect to the axes (X,Y,z) and

d- the time derivative with respect to the inertial space. We decompose

every vector on the (X,Y,z) axes. For any vector a(t) , we have by

definition

(t / (t)

a~t) = M F(t)/ = (t))

r (t) (t)
and, by the classical laws of kinematics,

-* -*

Applying this to r and noticing that = w - v ,we find

=Wx-U

Y' Wy - V

0 z + NWy- Ya)X
-V

and similarly with which gives
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=F 
X

=F yo = Fx+ v.

0 F+ V.

If we notice that capture is defined by X2+Y2 < X2 , we see that all tle

information is contained in the four-dimensional game in X,Y,U,V . For

this game, the controls are the projections (wxw Y ) and (Fx, F Y ) of

w and F on i .

Moreover, the dynamical equations of that game are linear, of type

(1.1). We can apply the optimality principle, derived in Chapter Two,

and we find that the optimal strategies must verify

2 2 2 2 2 2
W X + wy = W + -F

and therefore

w =0 F =0.
z z

Placing this in the z equations of our two differential systems yields:

,x = co, = 0

(When r and v are aligned, we can choose this solution.)

Therefore, the coordinate system (X,Y,z) has a fixed direction in

inertial space. As a consequence, the plane I , in which the chase

occurs, call be considered as fixed in space.

This proves the proposition.

14.3 Representations

Two main representations of our dynamics will be used.

i) 4-DiRepresentations. The first one is four-dimensional. The

origin of the coordinate system is at the center of the pursuer's circle

of capture. The orientation of the axes is fixed in inertial space. The

state variables are the relative coordinates X,Y of the evader, and the

components U,V of tle pursuer's velocity.
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The equations of motion are

X U+ Wx

y = -V + w(

U =F

V =F

wi th

2 ) *) F) F <F
2 < W - 2 2"x + w- "" Fx +  Y< F-

This form is linear, and the previous theory will apply to it directly.

Notice a vectorial formulation of it, with vectors of the geometrical

space:

r = (U)+

(4.2)
v=

where and are unit vectors, the direction of which are the con-

trols. Here it has already been assumed that the players choose their

controls oni the boundary of the control sets.

ii) 3-D Representations. It is possible to find a three-dimen-

sional represenitationi: its equations are much more complicated thani (.),

and non-linear, but it will be desirable in the subsequent theory to use

the lowest dimeasional representation.

The game is obviously insensitive to absolute orientation in the

plane. We cani take advautage of this by choosing the y}-aXis, for instance,

parallel to the pursuer's velocity. Then this velocity is represented by

a single variable, its muagnitude.

Agini, we assumne that both players choose controls of maximum mag-

nitude, so that we cani represeut their controls by a single parameter for

each. Following isaacs, we choose to give the directions of these con-

trols by their ngle, measured clockwise from the y-axis: q for the
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pursuer and f for the evader.

The equations of motion are easy to derive. They are (see Appen-

dix A):

= -y sin (p + w sin
v

Fsin y + w cos 4 - v (4.3)
v

4 = F cos Cp

These coordinates are related to the previous ones through the formulas

x 1 (-UY + VX) (4.4)

y = (UX + VY)
v

In this system, the capture set is a cylinder of revolution around the

v-axis. As a consequence, we shall also use the cylindrical form of the

same coordinates:

x = r sin 0

y = r cos e

and the equations of motion now are

r =w cos (4-e) - v cos e

e -Fsin P + f sin (-e) + X sin e (4.5)
v r r

4 = F cos (p

The various coordinate systems are depicted in Fig. 2.

iii) Parameter. The unit of length can be chosen arbitrarily, so

as to assign any desired numerical value to I . This being done, the

unit of time can still be chosen so as to assign any desired valve to w

Then the game is completely defined by a single numerical value for F
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In our analysis, we have chosen not to nondimensionalize, in order to

let the nature and meaning of intermediary quantities and relations be

more apparent. But the previous remark shows that a single non-dimen-

sional parameter is needed to characterize the game. We shall use

2
w

P = 2F.9

The factor two in the denominator has been put there for reasons of con-

venience that will appear later.

4.4 Results From the Previous Theory

i) Formulation. We use the linear representation, and we define:

_U = U FX 0=(_= ( ) u (F )(

And the matrix C is then

0 0 0 1 0 1 0
0 0 0 e 0 0

P and Q are disks in their respective subspaces. The geometrical sub-

space is the subspace of the first two coordinates, in which capture is

defined by

Cz I (zX,+ Y2 < Y2

where, to comply with the formulation of our theory, C has been chosen

as a closed set.

The operator ItO( ) is given by the matrix

= 1 0

so that P and Q are circles centered at the origin and of respec-

tive radii F and w . Notice that whatever the relative value of the

parameters, for small enough T , P TC Q.
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It is shown in Pontryagin [24] that this implies that, if the evader

knows the present control of the pursuer, capture is impossible if it is

defined as point coincidence: £ = 0 . We shall reach this same conclu-

sion without the assumption that the pursuer's control is known by the

evader (see Chapter 5). In fact, we are in a case where the sets W

are disks, and have a single normal at each point of their boundary.

Therefore, the concluding remark of Section 2.5 holds; (2.7) and (2.7a)

define unambiguously the controls u* and v*, independently of each

other.

ii) Estimating Function. The sets C , P and Q are all

disks. After Pontryagin, we notice that in this case the operations of

sum, geometric difference and integral of sets reduce to sum, difference

and integral of radii. The alternating integral

SQ]dr

-r r

is the disk centered at the origin, and of radius Q(T) given by

5: c2
SQ(T) = £ + (rF-w)dr = F -- -WT + 2 (4.6)

0
than T o is given by

00

= =

so that T(z) = °  is thle smallest positive root of the equation:

2 2 2
(X-TU) + (Y-V) = Q(T) . (4.7)

We can use the formulation (4.2) to express (4.7) in a different form

= r - Tv

so that (4.7) becomes

IF - = •Q(T) (4.7a)

We notice that Q(T) is quadratic in T , when llt(T)II is linear. Thus
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equatiun (4.7a) always has a solution if jj (0) > Q(O) , namely

JJJrJ > , which is always verified for the starting point.

This means that if Q(T) does not vanish, capture will always occur

in finite time. Q(T) never vanishes if its determinant is negative:

2
w - 2F < 0 equivalently p < 1

We therefore have the following important result:

Proposition: For p smaller than one, capture occurs from all initial

conditions.

iii) Barrier. We have a somewhat simpler way of using equation

(4.7a). Instead of translating r by -vT , we prefer to translate W

by +vT and directly check whether the point considered belongs to this

capture set.

Drawing these sets for a given v , we obtain Fig. 3, which is the

same as Fig. 5.5.4, p. 114, in [18], although obtained by completely dif-

ferent means.

The most prominent feature of this figure is the existence of an

envelope. It is a line of non-regular points of first kind, or barrier.

Its equation is easy to establish. We use the axes of the three-dimen-

sional representation. Then the circles verify the equation:

x2 + (y-vr) 2 = F 2F - WT +

and their envelope is given parametrically by

W-FTy- v'- Q(t)
v

(4.8)

+ -F2+ 2wFT + v2 - w2 Q(t)
v

The double sign in x accounts for the two symmetric parts of the en-

velope. Here, the parameter T is the estimated time to go just inside

of tle discontinuity, and on the barrier itself, which verifies the con-

ditions of the last theorem of Section 2.11. (But the trajectories of
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the barrier do not have the shape of the envelope (4.8), since they have

a varying v

When p > 1 , Q(T) vanishes for some T, , this envelope defines a

curvilinear triangle of increasing size as v is increased. The locus

of its vertex on the y-axis is a straight line at:

x= 0

y = r v 1

We shall later refer to this line as the "crest." We are insured that,

inside this region, capture will always occur.

4.5 Conclusion

The technique developed in the first part has given us a positive

answer to the problem of completion: for p < 1 capture is always pos-

sible. Moreover, if we can check that the trajectories do not cross tha

barrier or penetrate the capture circle, we have the optimal time of cap-

ture and the optimal strategies. This will be found to be the case for a

large region of the state space.

However, it will be seen that some of these trajectories would in

fact penetrate C . Consequently, we do not have the optimal strategies

for the region these trajectories come from. Neither can we assert

that for p > I evasion occurs from outside the region of finite T(z)

This problem will be investigated in the next chapter by trying to

construct directly all the barriers. It will be seen that escape is

probably not possible unless p is larger than some p larger than one.
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5. THE GAME OF KIND

In this chapter, we generalize the concept of barrier and use it to

investigate the game of kind, the outcome of which is qualitative:

capture or escape.

5.1 Semi-Permeable Surfaces

i) Analytical Description. In [18], Isaacs introduces the concept

of semi-permeable surfaces. Let the dynamics of a game be (we use

and * for the controls):

= f(z,qP).

Let S be a surface and V its normal. Suppose it is such that

min max (Vf(z,P,*)) = 0 . (5.1)

We shall always assume that f is "separated," that is, of the form

f(z,pI) = h(z,V) - g(z,p)

so that

min max (v,f(z,q,*)) = max (v,h(z,)) - max (v,g(z,p))

Equation (5.1) has an obvious geometrical meaning: it states that player

E cannot force the state to cross S in the direction of v , when

player P cannot force it to cross S in the other direction. Thus,

if they both try to do so, the ensuing motion will be in S . S is called

a semi-permeable surface. Its analogy with the barrier of Chapter Two

is obvious, particularly in view of the last theorem of that chapter.

In particular, if such a surface defines a closed region containing

the capture set, with v pointing outside, the evader can make sure he

will never penetrate this region if he starts from outside, and thus never

be captured.

Even if this region is open, such a surface can still represent a

discontinuity of the capture time if capture is only possible on one side

of it.
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The way to construct such surfaces is discussed in (18]; we shall

indicate it only briefly.

Given a line of initial conditions, one first determines at each

point of it a vector V normal to this line and verifying (5.1). The

same relation also determines p and ' , uniquely if the "vectorgrams"

P and Q are strictly convex, and thus .

The differential equations for the normal V along a trajectory

are well known to be the adjoint equations. See, for instance, (3]. 8z

being a vector tangent to the surface, it verifies

and taking

where the star denotes the adjoint operator, we have, defining q as

q = (v,5z)

= (V, 6f=z) + =0

so that if q is zero at some time, it is at every time, and we check

that V stays'normal to the surface.

ii) Geometrical Description. Notice that (5.1) provides one rela-

tion only between z and V , so that at each point of the state space,

there usually exists a cone (hypercone) of "semi-permeable v's , and

a corresponding cone of "semi-permeable directions" f . We propose a

simple geometric construction bf these two cones.

For a given point z , let P = g(z, ) , p E 0 the set of allow-

able cp's , and let Q = h(z,*) , T the set of allowable 's

Notice that as compared to our earlier definitions, the terms independent

of the controls in f , Cz , for instance, have been arbitrarily cast

into one of the functions h or g , thus translating P or Q by the

same amount.
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Let a bitangent plane be a plane (hyperplane) I such that

1) 11 contains one point at least of each of the sets P and Q;

2) P and Q are both entirely contained in the same half space

defined by I

Let V be normal to I , opposite to the half space containing P

anid Q.

Proposition: v is a semi-permeable normal. The corresponding semi-per-

meable directions are the vectors joining any point of I (-)P to any point of H C) Q

Proof: Let

g(z,0P*) E In-P h(z,Tf*) E l-nQ .

Because of property two

(v,g(z, )) < v,g(z, *)) V

Thus

(V,f(z,,*,r*)) = min max (V,f(z,P, )

Since g(z,q*) and h(z,**) both belong to 11 , their difference is

parallel to I , hence normal to v . Therefore, relation (5.1) is veri-

fied and the proposition proved (see Fig. 3).

iii) The I.R.G. In our case, with f given by (4.3), we can

represent the vectorgram as follows (see Fig. 4).

In an (*,,') space, visualized with its axes parallel to the

(x,y,v) axes, Q is a circle of radius w centered at the origin and

lying in the plane; P is an ellipse centered at a point (O,v,O)

with one principal semi-axis of length F parallel to the ' axis, and

Fr -
the other one, of length - in t..e * plane normal to r

In the case drawn in Fig. 4, there are two separate cones of v's

given by our construction, one "above" the plane of P and one "under."

Correspondingly, there are two cones of semi-permeable directions.
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FIGURE 4.. The Cone of Semipermeable Directions

xV

FIGURE lIa. The IRG Vectogram
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If one extremity of the axis of P lying in the . plane is in-

side Q , then there is a single continuous family of v's , and of semi-

permeable directions. By elementary geometry, it is easy to see that we

are in the first case for

2  2
Q = IL + v - 2Fx - w2 > 0

1 2v

If Q, < 0 , the two cones merge together to yield the second case. This

family splits again into two separate cones, on each side of the . '

plane, when

22
F r 2 +F- 2 <0= -- + v + 2Fx - w < 0.

1

Notice that for positive x (the game being symmetric with respect to

the yv plane; we shall always consider this half space), Q has a

2 2 2
minimum for v = Fr , x = 0 , y = 2. , Q2 = , so that it can

be negative only when p > 1

Notice that for Q or Q equal to zero, a particular semi-per-
1 2

meable direction is f = 0 , meaning that relative rest satisfies (5.1).

The sign of Q will turn out to be important in part of the analysis.

5.2 The Natural Barrier

i) The B.U.P. It is pointed out in (18] that the game can terminate

only in the "usable part" of the capture set, such that, v being the

outward normal,

mi max (vf(z,(, 0) < 0

For convenience, the capture set will now be considered as open, so that

trajectories arriving tangentially to it still provide escape. Hence

the strict inequality.

This usable part has a boundary given by

min max (%f(zCP, ))= 0
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Comparing this with equation (5.1), it is clear that we can attach to this

line a semi-permeable surface having the same normal v , and thus tan-

gent to C . Trajectories of this surface do not provide capture along

the B.U.P.

This surface locally separates the state space into two regions.

The first one contains the usable part of C , and a game starting from a

point of this region can be completed in a simple way. But from a point

in th6 other region, if capture is possible the trajectory must in some

sense go around the surface. Therefore, this surface is a barrier; it

represents a discontinuity in the time of capture. This barrier emanating

from the B.U.P. is called the natural barrier.

In our case, the boundary of the usable part is the curve defined

by

rain max [w(x sin (p + y cos (p) - vy] = w2 - vy = 0

or

w - v cos e = 0

It exists only for v > w . Projected on the yv plane, it appears as

a hyperbola, extending from v = w , y = I to infinity asymptotic to

the v-axis.

ii) Equations of the Natur! Z 'rr. At this point, we need to

establish the differential equations resulting from (4.3) together with

(5.1).

(5.1) gives, with the components of V being Vx P vy and Vv

min maxF y Y in + v cos P + w(Vx sin + vy cos t

-vV = 0 (5.2)

Introduce the following notations:

P = ,/4 + V20
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Ve = yV - XV

2

-- Vv - -v V+ 
2 V v2

The strategies satisfying the minimax condition are given by 
(5.3), which

shows that the evader points his velocity parallel to, and in the same

direction as, (V Vy)

Ve V

(5.3)

V Vv

0 P

and (5.2) becomes

H1 y =C 5.2a)
HI = -F a + pw V Vy v 0( . a

The dynamical equations and the adjoint equations are then

Yve vx  VyV
=-F - +w- = -F

v2 P x v2

xve v Vxv
- -- V (5.4)

vo P Y v-2

2
Vv  Ve

-F - Vv F v3a =-+ v

These equations will appear again; they actually are the Euler-Lagrange

equations of the optimization problem. They are discussed in Appendix A.

It is shown, in particular, that in the other coordinate system, 
their

closed form integration, with any initial conditions, presents only 
ele-

mentary difficulties.

According to (5.2a), H must be a first integral of (5.4); this

can be checked directly from the equations. H actually is the Hamil-

tonian of the "abnormal" optimization problem in the game of degree, as

we shall see later.
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We know the vector v at the terminal point of the corresponding

trajectories. Consequently, following the usual practice of dynamic

programming, we integrate (5.4) backwards from the curve B , calling T

the time to go. We choose the velocity as the parameter of , and to

distinguish it from the running variable, call it s . Similarly, when

needed, the corresponding angle e will be labelled . On S we have

x = v -(w/s)2 Vx = P V1-(w/s)2

y = I(w/s) Vy = P(w/s)

v = s VV =0

where p is an arbitrary parameter, since the length of the vector V

is of no importance. Notice that an immediate consequence of equations

(5.4) is the first integral

p = constant.

The solution is, for the half space x > 0

%/..W2 (I FTr-'2 Is
x= v 2F v

Y2T3 _ I F w 2  + (s2 2 F) + w2_

(5.5)w-FT +v-
= -F Q(T) + VT

v

v = /F2r2-2wF +s2 = /(w-FT)2+s 2 - w2

and for the adjoints

Vx=P v

w-FT (5.6)
y v

w-FT

Vv v

The integrand in v has a minimum for T = w/F , and for this value our
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formula gives

2 2 2
v =s -w >0

so that v is well-defined, as well as x and y

Notice that x has the sign of Q(T) . As in the previous theory,

the barrier closes in the (y,v) plane if and only if Q vanishes. And

if Q(TI ) = 0 , then our surface intersects the (y,v) plane along the

straight line a y = vT1 . For p = 1 , the surface is just tangent to

the symmetry plane, and thus to the symmetric part, along that line, with

w/F

It is interesting to compute the equations of a cross-section of

this surface by a plane v = constant. We eliminate s between v and

x , and obtain:

/F2 T2+2wF-w2x = Q(T)

y -F Q(T) + VTv

We recognize equations (4.8), thus completely identifying this surface

with the barriei already mentioned.

iii) Termination. However, although the trajectories (5.5) are

smooth, sections at constant v of the surface (4.8) have a cusp for

F [w= .+ (w2-2F,+2v)

value which is always larger than w/F , and thus than the lower root of

Q(T) if there is one, so that this cusp does not appear when the barrier

closes.

The explanation of this cusp when the trajectories show no such

anomaly is that the surface actually has a cusp, but the constituting

trajectories are tangent to it, so that they are smooth across it. We

have a verification of this fact by calculating the envelopes of the

projections of the trajectories on two different planes, and checking

that contact with the envelope is obtained for the same T in the two
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projections, so that the two entelopes are the projections of the same

curve in the three-dimensional space.

It is lengthy but straightforward to see that formulas (5.5) give

6x 6v V v x v --w [2 2 2Fwr 2(s2_w2_F]

S [ - 2FwT - 2(s2F]
- 5 2 v

which agrees with what we have just said.

This phenomenon is interesting in several respects. First, it shows

that the barrier comes to an end. In fact, after the cusp, the surface

is still semi-permeable, but with the vector V pointing inside the

capture region, so that it would correspond to a situation where the

evader would be trying to force capture, against the will of the pursuer.

This part must thus be discarded.

But also, it will appear that this is not an isolated case, but hap-

pens on most of our barriers. This case is the only one for which we

have simple analytical formulas allowing a detailed analysis of the situ-

ation. A full understanding of the geometry of this case will help in

other instances.

5.3 The Envelope Barrier

i) The Envelope Barrier. Another problem was pointed out by Isaacs.

On % we have
2 2

Ar = s 2 -W F.9

so that for s < 1 the trajectories (5.4) actually arrive at

from inside the capture circle, which they have thus penetrated at an

earlier time. This is a typical occurrence of the problem pointed out

in Chapter Two. As a consequence, these trajectories cannot be retained

as escape trajectories.

We shall therefore consider % as interrupted at the point B
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v = s = +1 cos = cos = r =
/w2+Fl

and the crest at a point A'

x = 0 y = v v=
0

The barrier presents a "hole" at its lower v end, and what happens in

that region is unanswered by the previous theory.

The way out of this difficulty was found by Isaacs: from B , one

constructs a semi-permeable line of the lower dimensional game in which

the state is constrained to remain on the capture circle. It is shown in

[18] that this line has the following properties. Let 5) be this line.

It is tangent to 1 at B;

It is such that a barrier can be constructed from it, made of tra-

jectories that reuch C tangentially to .!D

This barrier, the "envelope barrier" & , provides a smooth exten-

sion to the natural barrier.

These facts can be understood in the following way. We know that at

each point of the state space, there is a cone of possible semi-permeable

directions. Taking a point on the non-usable part of the capture cylinder,

we can find in this cone a direction (actually two) which is tangent to

the cylinder. This defines a field of directions on the surface of the

cylinder, equivalent to a differential equation. The curve 1) is the

integral of this equation through B

Clearly, v is normal to D at each of its points. Therefore, the

trajectories constructed with this v form a barrier. By construction,

they are tangent to !D , and this is the only way in which a barrier can

reach the non-usable part of C without penetrating it.

It is clear that once !D is reached, playing the strategies of the

semi-permeable surface will cause the state to follow 9 since they

define a direction always tangent to it. Moreover, if we look a priori

for trajectories straying on the surface of C , J appears as a semi-
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permeable line, since t itself is semi-permeable.

Notice that D is for the envelope barrier a cusp of the type dis-

cussed in the previous section, and the prolongation of the trajectories

was, of course, discarded.

ii) The I.R.G. With our equations (4.5), the condition that a

trajectory lie on C is

= w cos (*-e) - v cos e = 0

cos (*-e) = cos eW

sin (*-e) = Vw-vcose
w

the sign of sin (*-e) being chosen in such a way that the evader runs

away from the center line, toward the non-usable part.

The dynamics become:

= sin (P + (v sw2v2cos2e)

(5.7)
= F cos

Referring to our vectorgram (Fig. 4), the requirement i = 0 obliges the

evader to choose his control at the point of Q which lies in the plane

of P . Then, considering the restricted vectorgram in this plane, our

geometrical theory shows that the pursuer must choose his control at the

point of contact of one of the two possible tangent vectors. We choose

the one that gives an increasing v to be in agreement with the natural

barrier at B . It is found by maximizing the ratio / . Notice that

it is clear from the geometry of the vectorgram (Fig. 4) that such tan-

gents exist only if Q < 0

.We introduce, following Isaacs,

F 1

a =--vc = I (v sin e + /w2-v2 cos2e)
v2

The semi-permeable direction is obtained for

a ~
sin =(p cos c =_ c-a2

8 c
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and the corresponding equations of motion are

2 2
C C-ac

c

We can eliminate the time, avoiding a technical difficulty where e =

v_ _~2in +/ v2cos2e 2

de ,/c 2 - a 2  vsne+v2
- + = (5.8)

dv F F"

This equation does not seem to be integrable in closed form. Since in

(18] only analytical solutions are sought, deliberately excluding numeri-

cal integrations, the problem is left at this point with the conjecture

that 0) might reach the (y,v) plane, whenever p > 1 at least, and

the envelope barrier together with the natural barrier seal off a capture

region. Escape would occur for any starting point outside this region.

It turns out that some more analytical results can be obtained.

Then, the use of high-speed computers allows us to check them, and to

proceed further with the investigation of the problem through numerical

integration of the equations.

5.4 Termination of the Envelope Barrier

i) Termination of D . The curve !D is obtained by integration of

(5.8) from B toward lower v's . This integration can be carried out,t22

at least in principle, as long as c - a > 0 . The question is whether
2 2

it reaches the symmetry plane before reaching the surface c = a , It

cannot reach the plane v = 0 where c is finite and a infinite.

In the region of interest, both c and a are positive. Thus, we

want

c>a or v sin 0 + v/A2 -v2cos2 e >-F
__- V

In the vicinity or a = 0 - v sin a is positive. We isolate thev

square root and square both sides. This gives
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22Q1 2 - 2F sine0- w2 < 0,

v

which is consistent with our remark of the previous section, based upon

the geometry of the vectorgram.

Let Q be the curve Q = 0 , r= It has a minimum in x for

2~w
v sin = i 2 1 - p.

2F.9

From this, we immediately conclude that

1) For p < 1 , the curve ! never meets the symmetry plane e = 0

2) For p= , if D reaches e = o , it is at the point A:

v =- ./F

Thus, let us see in more detail what happens at that point.

Equation (5.8) shows that upon reaching 0 , 9 has to be parallel

to the v-axis. Thus, an integral can pass through A only if it has a

curvature greater than that of ) at the same point.

Using its equation Q1 = 0 , we find for Q

d) F2 2 ( cos 3 e)3 FX cos e ( F

At A , sin e = o v = v1FY,, we obtain

Differentidting (5M8) with respect to e , using c = a , one can check,

after some rearrangements, that

d 2  F e- co e [v

2sin cinO-2c2/

2 2

When v goes to /eX and e to zero simultaneously with c -a
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this quantity satisfies, since sin e is positive,

e v cos e
dv21 F2 Vw2_v2cos2e

Therefore, no curve satisfying (5.8) can exist at A , and we have the

following result:

Proposition: For p = 1 , the curve 9 does not reach the symmetry

plane.

It has been found by numerical integration that it terminates at a

point D , which is an equilibrium point of the relative motion, given by

v = 0.6002 X w e = 0.0543 rd

Consequently, the envelope barrier does not seal the "hole" left by the

natural barrier.

For values of p sufficiently larger, !D does close. The limiting

value p has been numerically found to be

p - 1.062

ii) The Envelope Barrier. To compute an incoming trajectory, we

need the adjoint vector V at each point of D . vv and v can be
v Ve

obtained from the fact that v is normal to D . Then, the third com-

ponent Vr can be obtained from H = 0 for the three-dimensional game.

In the cylindrical system of coordinates, we have

2 2

1 + - 2 + w +6 r + v~v sin e- v cos e= 0
v2 r r rr

The first of the following two relations comes from the fact that v is

normal to 9 . Placing it in the above equation and rearranging, Hl

becomes a perfect square and yields the second relation:

Vc2a2
Vv F e

(5.9)
1 v cos e

r = 2cose2 v•
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It is convenient to introduce the parameter p

2
2 Ve

P Vr+ 2
r

and the angle :

Vx = p sin y Vr = P cos (v-e)

V = P cos Y Ve = rp sin ( '-)

and relation (5.9) yields r , and consequently all three adjoints,

through

w cos (e-r) = v cos e • (5.9a)

Notice that a consequence of this last relation is that at B , where

v cos e = w , e = y . Therefore, Ve = vv = 0 and Vr = p . We have

a verification of the fact that v is the same for both barriers at

this point.

It has been found that the envelope barrier is terminated by a cusp

of the type already described, that reaches the capture circle at D

It is an interesting problem to find a way to characterize such a

cusp with absolute certitude when the available data is numerical, and

therefore approximate. In particular, it seems difficult to distinguish

a cusp from a "fold" with very small radius of curvature.

The solution lies in the fact that together with the trajectories

defining our surface, we compute, with a separate set of equations, the

normal vector v . This allows us to follow continuously a given side of

the surface, and consequently to distinguish between a cusp and a finite

radius of curvature, no matter how small (see Fig. 5).

A numerical localization of the cusp is possible with good accuracy

by computing a curve on the surface, other than a trajectory.

The situation is now the following:

For p < 1 We have a smooth open barrier terminated by a cusp.

Capture will occur from any initial condition, in agreement with
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FIGURE 5. Characterization of a Cusp

the results of Chapter Four. The precise shape of tha optimal

capture trajectories will be investigated in Chapter Six.

For p = 1 : The natural barrier closes forming a crest on the (y,v)

plane. But the trajectories of the envelope barrier never reach

that plane. Thus, the two symmetric parts of this barrier are

tangent at A' and separate toward lower v's

For I < p < po : The envelope barrier forms a crest on part or

all of its length. It is still open at the lower v end.

For p Po : The two barriers form a continuous surface that seals

off a region of the state space. An evader coming from outside

this capture region can always escape.

Figure 8 schematically depicts the situation for p = 1 . The en-

velope barrier has been arbitrarily interrupted at y constant for

clarity.

5.5 The Envelope Junction

i) Motivation. The two barriers we know so far correspond to V

chase in which the evader side-steps in an attempt to outmaneuver the

pursuer. Curve D terminates for small v's because the pursuer is

then too maneuverable. We expect that the evader will take advantage of

his greater speed and essentially flee from the pursuer.
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Consider, in particular, a chase starting in the symmetry plane, at

low v . It is intuitively clear that both players will direct their

controls in the direction of the vector v . The ensuing motion, a

straight chase in the physical space, will appear in the state space as a

parabola in the (y,v) plane, the equations of which are given by

dv

dY~w -v =F
dt dt

that integrates into

y (w-v 2  (w-v)2]Y " Yo = 2F 0

If p > 1 , the barriers reach the (y,v) plane. One of these parabolas

just reaches the crest and provides escape. It should be part of a bar-

rier, since a parabola immediately under it fails to reach the barrier.

For the worst case: p = I , yo = I still corresponds to a posi-

tive v Precisely, it must go through A' which gives0

v w.
o 2

We notice that such an escape trajectory, if it is to be retained astpart of the barrier, presents a corner where the parabola reaches the
crest. Hence the need for the equivalent of a corner condition for bar-

riers. This is provided by the following theory.

_____________ a an bii) A Corner Condition. Let S and S be two semi-permeable

surfaces intersecting at a non-zero angle. Each of them locally separates
a an R ao b

the space into two regions: R and R for S , and similarly for Sb

1 2
the subscripts being determined by the direction of v (we purposely

avoid specifying whether V points into region one or two). The com-

posite surface locally separates the space in two regions R and R2

Let us say that

R= Rn CRb (dihedron less than n
1 1

R2 R R (dihedron more than Vt .
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The composite surface S is obtained by discarding the por-

tions of Sa and Sb lying in R2 . Let (p1 be the control of the

player who tries to go into region 1, and q)2 the other player's control.

We make the following assumption:

Assumption: On semi-permeable trajectories arriving at J = a sb
condition (5.1) uniquely defines T,

Under this hypothesis we prove the following theorem:

Theorem: For S to be a barrier, it is necessary that the trajectories

incoming to the junction do not cross it. They must either be tangent to

it or present a corner.

Proof: Let us assume the contrary: some paths, say in Sa , actually

cross J . Two situations can occur at J

1) T 1  . When the state reaches J , player 2 will keep his
a a

strategy Tp2 . If player 1 keeps his strategy (pl , by the current hy-

pothesis he will let the state penetrate Rb C R . If he plays any
2 2

other strategy, by our previous assumption he will let the state penetrate

R2 C R2 . In every case the state penetrates R2  and S is not a

barrier.

a b a
2) (l = c0l . Then when reaching J on S, player 1 has a con-

btrol that prevents crossing of S , and consequently of J . Therefore,

the trajectories of Sa cannot cross J

Tais ends the proof.

Remark 1: b ib not necessary. A pair of strategies (0,, )

can generate paths reaching S tangentially without being equal to

(CPi,(2) at J . In that case, the theorem states that the trajectories

of Sa will fall back into R1 . Player 2 is thus obliged to change his

strategy. He has the choice between two possibilities:

b b1) Either switch to T2; then player 1 will switch to (P, and the

game will follow a trajectory of S , which supposedly leaves J

2) Or vary so as to be always in accordance with a on the

incoming trajectory at J . Player 1 must then choose the corresponding

control a and the state will traverse J
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a
Remark 2: J is for S a cusp of the type discussed earlier, so that

Sa actually comes to an end on J . The same reasoning as in our proof

applies to the junction of a barrier with the non-usable part of C and

gives the envelope barrier. In that case, the surface we join on is not

semi-permeable, and the evader has an infinity of strategies that prevent

crossing it. But we needed to assume the unicity of cp on the incoming

trajectories only.

iii) The "Roof" for p = 1. For p = 1 , the parabola we have

described above is tangent to the barrier at A' . It is thus natural to

construct an envelope junction from A' on the envelope barrier 8 . As

we do not have the analytical expression of the envelope barrier, finding

the junction, say J , as a barrier of the game constrained to lie on

is not feasible. We choose a different approach:

Let f(v,z) be the direction defined by the controls verifying

min max (v,f(z,p1)) = (V,f(VZ)

b
Let V be the vector v on . The problem is to find whether the

equations

(V'fV'z))= 0
(5.10)

b
(V ,f(v'z)Y 0

a Vb

have, for a given z , a solution v A v The first equation says

that v belongs to the local cone of semi-permeable normals, and the

second one that the corresponding direction is tangent to . We are

looking, in the cone of semi-permeable directions, for a direction tangent

to F , other than that of the trajectory of .

If such a direction exists, for z in some neighborhood of A' , we

can consider, on the surface , the field of directions f(va,z) , and

integrate it as a differential equation. As we are looking for a curve

lying on the envelope barrier, which is known only numerically, carrying

out this program presents some technical difficulties. The ideas of the

numerical method used are outlined in Appendix B.

In our case, equations (5.10) can be made simple, introducing the
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parameters p and y as in the previous sections, and a = e-r , the

angle between (v xV ) and r . (Notice that r* = .

They become:

H1 = -Fa + p(w-v cos T) = 0

-F(v 2V V + p2 r 2sin a bsin a) + pv 2o[w cos ( b-b ) (5.11)

v cos rb] = 0

bTo avoid difficulties in the case Vv = 0 , we solve the first equation

for v and put it in the second one. And we look for the roots in T

of the equation:

S2 b v~2 2 2 2 2F VVv F2 (w-v cosr) -rsin_Fprsinsina

22 b b
+ v p (w-v cos y)[w cos (r-y v cosr =0 (5.11a)

where, we recall,

S=e- (pb P)

It can be checked that H = 0 implies that this equation admits the

root r = y , but we want a different one. At A' , r = 0 is the

desired root. For other points, this equation was solved numerically by

Newton's technique.

We were able actually to compute a junction I and the corresponding

semi-permeable surface R . The main feature is that J meets the cusp

terminating 6, and not D , at a point J

x = 0.772 10-2 2 y = 1.37287 1 v = 0.6438 w

Consequently, the "roof" R , while it does seal the hole between 6 and

the symmetry plane, still leaves a "hole" in the barrier between the end

of & and the trajectory of R arriving at J . This situation is de-

picted in Fig. 7.
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5.6 Singular S.P.S.

i) Motivation. For 1 < p < p 2 , where P2 Z 1.092 , the envelope

barrier forms a crest on part of its length, but the end of this crest

has a smaller slope than the parabola at that point. Consequently, this

parabola cannot be part of a barrier, since after reaching S it falls

back in the escape region, violating our necessary condition. Also, and

this is closely related to the previous fact, a parabola immediately

"under" it still reaches the barrier and provides escape, showing that

the previous one was not a limiting escape trajectory.

Loosely speaking, on that parabola the evader was too strong. The

limiting one, the one that verifies our theorem, is the parabola that

reaches the crest tangentially, and this determines the point where the

roof must attach. However, a new problem arises.

If from that point we apply the previous construction, we still find

a junction J and a corresponding roof R . But now, we start from a

point where g is not tangent to the symmetry plane. Consequently, the

trajectory of 51 reaching the crest does not lie in that plane, but

reaches it at a non-zero angle. Therefore, the envelope roof is now made

of two symmetric strips, leaving a hole between these two, in addition to

the hole already described in the case p = 1.

In particular, we have not found what semi-permeable surface our

parabola is imbedded in. To solve this problem, we need a slightly new

concept.

ii) The Singular S.P.S. We have seen that, at each point of the

state space there is a cone of semi-permeable directions. We claim that

the family of trajectories generated by such a cone, by backward integra-

tion, is in fact a semi-permeable surface. We call such a surface a

singular S.P.S., referring to the point where all its trajectories meet

as its singular point.

That it is a semi-permeable surface can be seen by the fact that

each vector v at the singular point is normal to a tangent plane of the

cone at this point. This is a consequence of our geometric construction
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of this cone as the envelope of a family of planes 11 normal to the V's

Then, the transformation

6- z

transforms such a plane into a tangent plane at an ordinary point of the

surface, and v being governed by the adjoint equation will still have a

constant, thus zero, dot product with 8z

This proof is based upon our geometrical theory of the semi-permeable

cone. But the same fact can be seen in Isaacs' analytical theory, con-

sidering his theorem on the construction of semi-permeable surfaces ([181,

theorem 8.3.1, p. 208). He parametrizes the initial curve with s and

proves that

6z.

is a constant. If it was zero at T = 0 , it remains zero for every T

This can happen in two different ways:

either V is normal to the line z(s) (ordinary semi-permeable
surface)

or z./ s = 0 Y i (singular semi-permeable
surface).

We are going to employ this concept to complete the roof.

iii) Completion of the Roof. Observe that at the end of the crest,

incoming trajectories need not be tangent to F . As long as their pro-

longation falls back into the capture region, as is the case for the

parabola we retained, they do not violate our necessary condition.

From the point where we attached 11 , we can construct a singular

surface, limiting it to those trajectories that are tangent to g , and

thus belong to P . All the trajectories of this family fall within the

conditions of our theorem. This surface provides a smooth extension to

the previously constructed roof, and completes it toward the symmetry

plane.
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Construction of the roof was carried out numerically for various

values of the parameter. The shape of the surface obtained depends on

this parameter. We found that two limiting values p1  and p2 have to

be considered. Precise numerical determination of these values is dif-

ficult, due to low sensitivities. According to our calculations, they

are in the ranges

1.056 < p1 < 1.057 < p 1.062 < 1.091 < p2 < 1.092

For 1 < p < p1 , we have the same qualitative situation as for

p = 1 . The envelope junction reaches the cusp on 6 . The roof seals

the hole between the envelope barrier and the symmetry plane, but leaves

two symmetrical ones between its last trajectory and the cusp on 8 .

For pl < p < P2 , the envelope junction reaches the curve 1) . We

have a closed capture region delineated by the natural barrier, the en-

velope barrier and the composite roof. Notice that the smallest value of

the parameter for which the capture region is closed has been taken down

from p0  to pi , closure, between these two values, being provided by

the roof.

For p2 < p , the crest has a slope larger than that of the para-

bolas on all of its length. No roof occurs. The natural barrier and the

envelope barrier together define a closed capture region.

5.7 The Main Singular Barrier

i) Junction of Three Surfaces. From the point J where the en-

velope junction 1 meets the cusp on 8 , we can generate another singu-

lar surface, A , that provides a smooth extension to the roof toward the

side." The question of whether this semi-permeable surface, together

with the rest of the barrier, still forms a barrier turns out to be dif-

ficult in two respects. The first problem has to do with what happens at

J . It will be discussed here. The second one has to do with the inter-

section of A and & . It will be mentioned at the end of this sub-

section, discussed in Section 5.8, and again at the end of Chapter Six.

At J , the trajectories of A seem to violate the necessary condi-
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tion. Our theorem, however, was for the junction of two ordinary sur-

faces, and did not exclude the possibility of a third, singular one.

In this instance, it turns out that the direction fa of the roof

and the vector v of A verify

(Vsfa) > 0

It means that for this pair of surfaces, it is the pursuer who has

the advantage of the larger region (region 2 of the theorem).

Then, upon arrival at J on a trajectory of A , the sequence of

decisions is as follows:

1) Since the trajectory extends into the escape region, the pursuer

switches to the roof strategy.

2) If the evader does not switch, he will let the state drift below

the roof. If he switches to the roof strategy, he places the

state on a trajectory that goes back into the capture region.

Thus he must choose the envelope barrier or the envelope junction

strategy.

3) Thus the pursuer is obliged to switch again to counter the evader.

If the pursuer had switched to the envelope barrier strategy to start

with, without the evader switching first, he would have let the state go

above the roof in the escape region. On the other har.d, the evader could

not directly switch to the envelope barrier strategy, because then the

pursuer would not have switched and the state would have gone under the

singular barrier in the capture region.

The effect of the various choices can be shown in a diagram. We

have plotted horizontally the three choices of the pursuer, by the name

of the surface he plays according to, an( vertically the choices of the

evader. In each box, we have written P or E according to whether P

or E wins with that combination. N stands for neutral. The arrows

indicate the sequence we have described.

Several remarks must be made about this description.
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E P E

E P E

P E N

First, notice that we are obliged to assume that the players know

each other's control. This is not a very serious problem. One can, for

instance, say that an infinitesimal loss is acceptable to them, and that

the motion of the state during an infinitesimal time gives them the

necessary information.

Observe also that the pursuer's last move could have been replaced

by his going back to the singular barrier strategy. But then the evader

would switch again, and we could have an infinite cycling, all supposed

to be instantaneous! This is because what we have is a matrix game with

no saddle point. We deliberately exclude the consideration of mixed

strategies, which would anyway be of little help in a qualitative game.

To solve this problem, we assume that both players prefer the neutral

outcome to the risk of letting the opponent take the better. Then, the

natural sequence of decisions is the one we proposed.

The second, and much more difficult, problem arises at this point.

The envelope barrier trajectories can be considered as falling back into

the capture region defined by the singular barrier. In fact, the P and

the N in the last row of our matrix are not firmly established. This

will be discussed in the next section.

ii) Shape of A. . We must investigate the qualitative shape of
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S, and see whether it seals the hole.

The first fact is that, whereas the trajectories close to the roof

look like the roof and come from the capture cylinder, when we go to dif-

ferent enough directions (larger T's ), we find trajectories that do not

come from the capture set. Moreover, we find that this surface, too, is

terminated by a cusp, where the backward computation of those trajectories

must be stopped. This cusp does not touch C

The situation at this point is depicted by Fig. 8, where we purposely

avoided specifying what happens at the intersection of A and c

5.8 Another Envelope Barrier, Discussion

i) The Barrier 8' . If A is actually part of the barrier, it is

easy to find yet another smooth extension to it. Let B' be the point

where a trajectory of , is tangent to C . Note that according to what

we said in Section 5.4, B' has to lie in the region Q < 0 since at

that point there is a semi-permeable direction tangent to C

This direction can be imbedded in a family, as we argued when we

constructed the curve J . We must just take the other sign for O,

giving a decreasing v . We can in this way compute in C a curve

given by equation (5.8) but with the opposite sign:

d - (v sill e + %/w2-v2cos2e) 2 (F2v22 /82

dv FF

and joining along this curve, a new envelope barrier is' can be con-

structed. The fornulas for the V's are the same, except for a minus

sign in %)v "

In the vicinity of B' , ,' blends smoothly into A , since the

V's are continuous across B' . It has been found, however, that start-

ing at the point where the trajectory through B' touches the cusp,

&' intersects A at a non-zero angle, cutting off the cusp. If we

delete both surfaces beyond this intersection, we have a simple dispersal

line of the game of kind.
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S' also intersects t , as !D' intersects 9 . Figure 9 is an

attempt to describe this set of surfaces.

ii) Discussion . We have a system of semi-permeable surfaces ap-

parently separating a closed capture region from an escape region. But

the situation is more complicated than that.

As shown by Fig. 9, there is a common point to 6' A and the

natural barrier. From that point to J , there must exist a line of in-

tersection of A and the composite natural envelope barrier. The tra-

jectories of F penetrate A along this intersection, and the necessary

condition of Section 5.5 is violated. Therefore, the set of surfaces we

have described does not constitute a barrier.

The problem cannot be solved by discarding the part of 6 "above"

A , as the existence of I and A itself is based upon the existence

of & . A conjecture will be presented later as to how the barrier may

look. Using the game of degree, a part of A would be discarded. &'

would be kept complete as a barrier, and not truncated where it inter-

sects A.

Then we still have trajectories of & crossing the intersection( with S' However, this is not a contradiction for the following

reason: along this intersection, the "escape region" is the region out-

side of both & and S' • When seen as such, the intersection has only

trajectories leaving it. The part of & inside 6' merely defines the

region for which 8' is a barrier. Inside of & , S' does not exist.

This conjecture is depicted by Fig. 10.

5.9 Conclusion

Our investigation of the game of kind can be summarized as follows:

p < 1 The natural barrier and the envelope barrier together form

an open barrier terminated by a cusp. Capture occurs from

any initial condition.

1 < p < P1 We have not been able to display a barrier sealing off i

region of the state space. We conjecture that an open bar-
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rier exists, made of six intersecting semi-permeable sur-

faces, plus their image in the symmetry plane. Following

these surfaces could involve a six-stage chase.

pl < P We have a closed capture region; an evader starting far

enough away will always escape. The configuration of the

barrier depends on the relative values of p and p2

P < P2 : The barrier involves the natural barrier, the en-

velope barrier, the envelope roof and the singular roof.

P2 < P The roof no longer exists. The closed barrier is

made of the two surfaces found by Isaacs.

106



-4

II

"-4
H

'-4
-4

0
I-4

107

I



CL

ca

4-)

0

co

0

108)



6. THE GAME OF DEGREE

The previous chapter was concerned with the qualitative problem:

capture or escape. It yielded surfaces of discontinuity of the qualita-

tive problem or "game of degree" we want to investigate now. What are

the optimal strategies and the corresponding capture time and trajec-

tories?

6.1 The Hamilton-Jacobi Equation

i) The Problem. Let the capture region as defined by the previous

chapter be e'. When the barrier is open, C' is the whole state space,

deprived of the capture set.

We are looking for a pair of strategies qp (z), i*(z) defined in the

capture region, and such that

1) cp(z) 4t (z) E T VzEC'

2) The equation of motion

f(z, (z),h (z))

has a solution, not necessarily unique, lying in e' for

t every z(0) E'

3) These solutions transfer z(O) to the terminal manifold

in a finite time, and yield a uniquely determined payoff
*6 *

J(z,pi ) = V(z), (in our case, J is simply the time of

capture), verifying

min max J(z,p,*) = max min J(z,p,*) = V(z)
V(') V(' V(') H'

The main tool used in the solution of this problem is a generalized

version of the Hamilton-Jacobi equation. It was first derived by Isaacs

who called it the "main equation". His derivation can be found in (183.

Berkovitz (1) gave a more rigorous derivation, using a variational tech-

nique. Several other authors gave proofs of varying generality. A

recent one we already referred to can be found in Blaquiere Grard, and
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Leitmann [3] uses Leitmann's geometrical theory of optimal process, and

is similar to Isaacs' second proof.

We shall give a simple derivation, valid only under too strong

assumptions. It follows Caratheodory's method, as did Chattopadhay [10]

for a slightly different case. Our aim is to point out that the exis-

tence of a saddle point in the Hamiltonian is sufficient to insure that

the game itself has a saddle point.

We directly arrive at a sufficient condition, reached by Isaac

through his verification theorem, and by Berkovitz through a generaliza-

tion of Hilbert's invariant. Notice that Berkovitz' technique being

variational yields the Euler-lagrange equations. Hence the need of

Hilbert's invariant to show that they are the characteristics of a

partial differential equation. In every case sufficiency arises from

the consideration of a field of extremals. (See [53).

ii) Derivation. We consider the more general case of a non-

stationary, integral payoff game, defined by

z = f(z,9p,4,t)

J =K(zt) +ft L(zcp,*,t) dt (6.1)
tf
0

where t is the first instant such that z(t)EC, the terminal mani-
f

fold (possibly time varying).

We define the Hamiltonian function

" H(z,?,c,4,t) = L(z,(p,4t,t) + <K?,f(Z,CP,*,t)>

Assume that

min max H(z,?,p,,t) = max minlf(z,?\,cp,*,t) = H*(z, ,t)

and that this extremum is attained for a uniquely defined pair of con-

trols, except, possibly, on some singular manifolds. Let these controls

be
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cpT*= cP(z,X,t) (

verifying conditions 1) and 2) above.

Consider the Hamilton-Jacobi equation

Ft) = 0 (6.2)

Theorem: Under the above assumptions, if the Hamilton-Jacobi equation

(6.2) has a continuously differentiable solution V(z,t) the

restriction of which to C verifies

V(z,t)I = K(z,t)

and if the restrictions to a suitable interval (t ,t ) of theof

strategies

*(Z ' t l1 ( ' t)

transfer (zo,to ) to 2 at tf, then these strategies are opti-
0

mal in the sense of section 6.1, and the corresponding payoff is

V(zo,t ).

4o

Proof: To prove this result, we first establish Caratheodory's lemma:

Lemma: Let the scalar function N(z,Cp,*,t) have, for every z and t

a unique saddle point equal to zero, at (p*(z,t) and 4r (z,t)

N(z,c,**(z,t),t) > 0 V p, p' (P*(z,t)

N(z,(p*(z,t),I* (z,t),t) = 0

N(z,tp*(z,t),*,t) < 0 V 'E', * ' 4r*(z,t)

and assume that (Cp),pr*) transfers the state (z ,to ) to e

at tf, then the game with payoff
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/t
flN(z,(p,*,t) dt z(t I ) e
t

0

admits ((p ,4 ) as optimal strategies for the initial con-

ditions (zo,t ), and the optimal payoff is I = 0.

Proof of the Lemma. It is a simple matter to check that, for any t I

I(z OP ,*,t) N(z,cp*,*/,t) dt < 0
t

0

tf

I(z 0, , ,t) = f N(z, **,t) dt = 0
-t 0

I(ZopXV*,t) = N(z,cpV*,t) dt > 0
t

0

hence I verifies (6.2) and the lemma is proved. Then,

introduce

N = L + V+ y )

where V(z,t) verifies (6.2). Clearly, by definition of H

N verifies the assumptions of the lemma.

Next, observe that along a trajectory, N = L + -, so that
dV dt

being continuous

t f ftf

I= f N dt = V(zfltf) - V(z ,t o) + f t  L dt
t t

o o

and since V(zfltf) = K(z,t), we have

I = J - V(z ,t )
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As V is a function of time and state only, and not of cp and

4, finding the minimax of I for a given (zo,t ) is equivalent
0

to finding that of J. We apply Carathe'odory's lemma to I, and

recall that its optimal value is zero. We immediately obtain:

J has a saddle point

The optimal strategies are Cp0 and
The optimal payoff is J = V(z ,t )

0 0

which proves the theorem.

Remark: In our case, f, and consequently H, is separated:

H = HE(Z,') - H (Z, P)

so that we are assured that it has a saddle point.

It is well known that equation (6.2) can be solved using the method

of characteristics, which yields the Euler-Lagrange, or canonical, equa-

tions

(6.3)

=H* -

where, as we shall do from now on, we represent the gradient of V by

the symb~ol ?\. We call its components the adjoint variables.

It is interesting to notice that the semipermeable condition (5.1)

can be regarded as the limit of (6.2), where V/)t 0- 0, when the

gradient of V is infinite. Then, the term in <Vz,f > is predominant,

and by rescaling to a finite v such that ? = v/v o , and letting v °

go to zero, the term in L disappears.

This corresponds to nonregular points of the linear theory, and to

the classical abnormal problem of calculus of variations.
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6.2 The Primaries

i) A Compact Form. We use representation (4.2) (see[4 1). The

Hamiltonian is:

H 1 V' + w?~ - a + F'9
r v

the saddle point is obtained for

A r -' v
a = (6.4)

where P = I7rj a . This yields

H*= 1-Fa + Pw - 'v

The adjoint equations are

=0 = constant
r (6.5)

V r v V r
0

.-4 --4

where \o is the adjoint vector ?v at time of capture, and T the

time to go T = tf-t.

Now, the capture set C: is a surface of constant payoff

= 0. Therefore the gradient of T is normal to C, which gives

- P = i =0 (6.6)
0 v

0

where p is given by if = 0. At r= 0, let

w =pv Cos~
r oV0=P 0

so that I = 0 gives

:1.

p v Cos - w
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which is consistent with our claim that along the B.U.P. the adjoint

vector is infinite.
-4

The consequence of equations (6.5) and (6.6) is that ?r and
r

have a constant direction, ? being parallel, and opposite, to
v v

This together with (6.4) gives the first important result on the
r

game of degree:

In an optimal chase, the evader runs in a straight line in the

physical space, and the pursuer keeps his acceleration parallel to the

evader's velocity, describing a parabola.

We integrate the equations of motion with the calculated optimal

controls. (The subscript zero stands everywhere for the time T = 0,

t =t)

f

V =V 0
2

r + v T T FP-
o 0

taking into account that r= 2, we obtain
0

r + T- W Tr - F 2I) 2

we can eliminate v in terms of v, we find

O2

r - vT = Q(r) Q(T) = FT - w +

we recognize equation (4.7a), thus identifying the time to go along

those trajectories, the primaries, with the estimating function of the

previous theory.

ii) 3-D Representation. To investigate the shape of our trajec-

tories, it is convenient to come back to the three dimensional representa-

tion.

115

4a



As our Lagrangian L is constant, maximizing H or H is the

same problem, and the Euler-Lagrange equations (6.3) are the same as

in the game of kind.

Thus our trajectories are still solutions of (5.4). The only dif-

ferences are that v must be replaced by ;\, and that p, still con-

stant along a trajectory, is no longer arbitrary but defined by

1
p s Cos w

The detailed treatment of these equations is given in Appendix A. It is

convenient, to express their solution, to introduce the parameters

= s sin 0

=s cos p -. fl-w

and the equations of the trajectories and of the adjoints are:

x = Q(T) ? =p-
v x v

Y = FQ(T) + VT =P p -F (6.7)
v y v

v = ( + (T-FT) -PT
v

Notice that as expected

2 2 ()2
x + (y-vT) =

Notice also that equations (5.5) appear as a special case of these with

=;F_-w2  and I= w.

For p > 1, all the primaries meet on the line 1: = 0, y = v T1

where Q(T 1 ) = 0. In the region where the natural barrier exists, this

line is its crest. From each point of it there is an infinity of opti-

mal trajectories yielding the same capture time. This line is similar
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to the point A ofthe Homicidal Chauffeur game. (See [18],[17]). But

for v < -FX, that is beyond the point A' toward the lower v's,

this line is under the roof, inside the capture region. There, it

represents a line of focal points. It is known that beyond such a point

the trajectories are no longer opt.imal (see [7J). We shall, later on,

p.-opose a solution to this problem.

We musL invesdgr~t whet1.,-r - fil¢c :'f r u,rar2e. Pr'esen!s an

other singularity, in particular in tae (:ase p < I where a does not

exist. We calculate the functional determinant:

D(x,y,v)
~D(r, ,tj)

This determinant is

1 r-2

t-w + F Q ( - -(- FQ (r) + w F r + v -f

V V

(-FT) (T,- 2 Q(T))A 3 Q(v r - 2

- (q-FT) Q() (Fr-w)(11-F ) + v3v v
v

We first look at the case q-FT = 0, v = , which gives

q-w -F Q ( 0 )

Q(T_(T)

0 Q(T)0

For q 4 FT, we add some linear combinations (involving the coefficient

/q-F ) of some lines to others, yielding the same qalue:
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(FT-w) -(Ft-W) (T-FE)v 0

= -FT - - (I-w)v

01

The primaries' correspond to T > w, thus this determinant is zero only

for Q(T) = 0. For p < 1, it is never zero, the field has no sin-

gularity.

The second question to ask is whether this field fills the whole

space. It was seen in Section (4.4) that for every (x,y,v) there

corresponds a T, and once T is known, it is straightforward to

deduce from (6.7) that

vx
Q(T)

= -t + FT

and T being a root of

2 2 2
x + (y-vr) = Q(T)

2 2 22
we see that x /Q(T) is greater than one, and consequently that v2- 2

is always positive.

6.3 The State Constraint

i) The Concept. Having identified T along the primaries with the

estimating function, it is natural to check whether the corresponding

trajectories penetrate the capture set, as suggested by the behavior

of the barrier.
2

Calculating r we find

x2~r +2 2p + E._w 2

r L = TP(T) -z FT 2 _w



2 2
as expected, r = 2 for T = 0. But the polynomial P(T) can have

a positive root. Actually, since P(0) is positive, it has two such
roots or none. The limiting case corresponds to a trajectory tangent

to C-.

A whole portion of the field must be discarded because of this fact.

It would correspond to trajectories penetrating 2 and leaving it again

before capture. This is sketched in Fig. 11, in which the shaded region

is left unaccounted for by the present construction.

(-

FIGURE 11. The Primaries

This problem was discovered by J. V. Breakwell and Boardman; see

[4]. The solution is their concept of "safe contact," that appears in

other games as well. (See (6) and (20]).
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Let us consider the general game (6.1). We have to discard trajec-

tories because they penetrate C at a nonzero '. If this happens in

the usable part of the capture circle it raises no problem since in that

region we know another strategy that forces immediate capture anyway.

Let us consider the case where this happens in the nonusable part of

the capture set. Then, the region where we have no trajectory is adja-

cent to this nonusable part of , where E can prevent immediate

capture.

In that part of C, E can in particular maintain the state at the

surface of the capture set, without penetrating it. One can in principle

chose a coordinate system such that e be the set z < e, and the
n

"safe contact condition" is:

n = f (z,I,) = 0 (6.8)nn

(We restrict ourselves to a first order constraint. See (81.) and this

can be viewed as a relation that i has to satisfy. We assume that

the optimal paths include a leg of this type, leaving C the first

time they meet a trajectory of the n-dimensional game doing so. We

check a posteriori that this allows us to construct a field of extremals

filling the previously empty region, and to which the verification theo-

rem applies.

Consider the reduced game in the (n-i) first state variables on

the surface of C. We kfiow its sensitivity vector at the point where

the trajectories already known leave e: since V(z) has to be

uniquely defined, it is the projection of the n-dimensional sensitivity

vector at the same point. (See the "jump condition" in (3] and (9]).

Therefore, we can integrate constrained trajectories backward from these

points, together with their adjoints.

Then, at each point of a constrained path, we can compute a in-

coming extremal of the unconstrained game, recovering the missing ad-

joint by the main equation II = 0. If this construction actually yields

a field of trajectories filling the void region, we have reached our

objective. According to Issacs' terminology, the extremals of the n-
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dimensional game constructed in this way will be called the "tributaries"

of the constrained trajectories.

Notice the obvious similarity between the construction and the one

that led to the envelope barrier. The curve 1) now appears as a natural

limit of the constrained game, and the envelope barrier itself as the

corresponding family of tributaries. About this construction, we prove

the following simple result.

Definition. The state constraint (6.8) is said to be singular if the

equation

f n(z,** (z )O, (z,?) = 0 (6.8a)

cannot be solved for ?n  in terms of the (n-l) first V s, and

z. For a further discussion of the terminology and of the relation

with known results of calculus of variations, see Appendix D.

Theorem. If the safe contact condition is not singular, the state con-

straint is reached (and left) tangentially.

Proof. Let 2 = (z.,..., Zn), = (z n.. ?nl), and denote a

control "r satisfying the safe contact condition. The dynamics

of the reduced game are

Z Z

Its optimal strategies are given by the functions 0 (z,S0 and

4r(z,?) verifying

(Ln- ^ ^ ^ ° ^ °0
min max (,,v) + k (Zn,,

n-i
z ̂  0 (69

121k(Zc,,o (6.9)I 121



and moreover, this quantity is H = 0.
th

The n component of ?\ in the n-dimensional game, at any

point of the constrained game is given by I* = 0, where

H* = min max (zc,' ) + kfk(z,, $ ) = L(z, *,

n
+ nkfk(z, , ,* )  (6.9a)

1

Under our hypothesis, we have a simple way to find a solution

of this equation. Let ? satisfy
n

f (ZICP*(Z i*Cz = 0
n

For this ? , fk (Z,cP*,**) = ?k(z*, *) for every k < n.

Consequently, (6.9) and (6.9a)are identical,, and yield identical

implicit functions. Once z and ;n are known:
n n

0. A

~(Z,2 (Z

and therefore

0  0
H1 H + ;\ f n(zp ' ,*) 0

which proves that this 2 is the solution sought. Then, the

equality of ti.%e opttimal controls on both arcs proves the theorem.

The proof can easily be generalized to a multivariable state con-

straint. It does not specify whether the point considered corresponds

to an incoming or outgoing trajectory of the n-dimensional game. It

therefore applies to both.

ii) The I.R.G.:Locus of Tangency Points (See (4]). In our case,

there is no such thing as singular controls, and the theorem applies.
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We look, therefore, for the locus of the points where a primary is tan-

gent to . This will be given by a simultaneous solution of

F= - F(r+-w) + w)2 + 2

23 2 + [ri~w2 ~ - r + 2,2(r,-w) 0

3 22 2 2
= F - + 2F(-w)t + (-w)+ - F = 0

The algebraic condition for this two polynomials to have a common root

is that their resolvant be zero. This gives, after some calculations:

2 F2 2 +2 3 142 2
=FZ + 8FI - 1 F -3t + 4FI) = 0

where =-w. This equation is of second degree in 2, and could

thus be solved for t in terms of t. Using, then, the suitable root

of P'(T) = 0 would give the desired locus.

But this technique gives very complicated formulas we prefer to use

a different one: Take the common root T as the independent parameter.c

The simple operation

P(,r) - rP'( -) = 0

immediately gives 1, and placing it back in P'(T) 0 we find t:

1 2 3F Tc
2 c

F + 22
c

(6.10)

F 2 + 4Z2 2 2 C

(F2 + 21)2
C

and it can be seen by direct substitution that these formulas give

A = 0. For T = 0, equations (6.10) give
C

1=w =Ft
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which are the coordinates of B. The curve is the constrained trajec-

tory corresponding to T = 0.c

The locus of tangency points lying between ) and the B.U.P., who are

tangent at B, is therefore tangent to the B.U.P. It turns out to be

extremely close to ) and numerically very difficult to separate from

it on part of its length.

It is clear that at T. 0, formulas (6.10) giveC

d =

If we notice that the B.U.P. ! is given by r = constant, this shows

that the locus of capture points of the tangent trajectories is also

tangent to % at B.

For p > 1, let TI be such that Q(I) = 0. Clearly, the tangency

point corresponding to Tc = r1 must be at the point of intersection

of the line ( with e. For p = 1 the locus of tangency points is tan-

gent to the symmetry plane, and it intersects it for p > 1. However,

constrained trajectories arriving at a point of this locus with Tc > T1

must be discarded because the corresponding primary would go through (

before capture occurs, and thus would not be optimal.

iii) The I.R.G.: Constrained Trajectories. We ilready know that the

safe contact condition gives * independently of p as

cos (-) =- cos 0w

-92
sin ( 9- e) = w v cos 9

and that the corresponding dynamics are equations (5.7). The Hamiltonian

is

= --~%;9v cos in]- F[ sin - ?x cosq]+ 1If + vvin0
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The optimal control is thus

sinc0 e e+=

0
which is consistent with our claim that (p ( p at every point. The

corresponding Hamiltonian is

H =-(sin e+ wvcse) Fa + 1 0

and the path and adjoint equations for the constrained game

1 2Y

0=-~~~~~ co 2 vin+wv 2)

~'v ~ cos e v sine +Jw _v2c 2 e

2 2~2 wVcos e9

2

k ~ e in w- os [sin e+ 22 co ~ ]F4_L

Finally, comparing this Hamiltonian with that of the three dimensional

game, we obtain

?e 2 2 ;\

To e=~vwvr cose2

which can be rearranged :;o as to yield a perfect square that gives

v Cos C 6 w
r 4w2-v2 cos2 6 2 . v cs
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We recognize the relations we had along 9. But here p is no longer

arbitrary, and integration of the adjoint equations is needed to provide

A P and A • Their initial conditions are obtained by placing (6.10) inp v

(6.7).

The constrained trajectories actually lie between the curve of tan-

gency points and D. They go around the end of D in a state constrained

form of Isaacs' ;swerve maneuver. Due to the fact mentioned earlier, the

resulting two-dimensional field does not always fill the empty region of

the capture cylinder. Figure 12 is a scale drawing of the capture cylin-

der surface, for p = 1.

The corresponding three dimensional field of extremals, if it does

not fill the whole void left by the primaries, still gives a smooth ex-

tension of the previous field. It contains trajectories coming from the

external side of &.

For p > p, , the curve ) closes, and this construction succeeds

in filling the portion of the capture region non accounted for by the

primaries interrupted at (. Therefore, it gives the complete solution

of the game.

6.4 Corner Condition

For 1 < p < p 2 P we expect that for starting points with small v,

the trajectories of' the game of degree, similar to those of the game of

kind, will first go away from the capture cylinder, and then reach the

field already known and follow it. Hence the need for a corner condition.

Terminology. We are interested in the conditions that must hold on a

surface S where two fields of extremals join. S locally divides the

space in two regions. Let the incoming trajectories be in region -, and

the outgoing ones in region +. The corresponding sensitivity vectors

are A- and A . Let n be the normal to S pointing in region +,

so that by definition:

<n, fop- )> > 0
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Kn f( )> 0

A simple result is the following "jump condition":

Proposition

+ (6.11)

Proof. V(z) is assumed to be uniquely defined in the whole space. From

its values on S, its directional derivatives in a plane tangent

to S are uniquely determined. And these are the projection of

A in that plane. This proves the proposition.

Notice that the argument depends on the existence of the

directional derivatives of V in S, and thus on the existence

of an open neighborhood of z in S. It does not hold as such

on the boundary of S.

As a consequence of this proposition, once S, and thus

n, is known, we can determine ? -, the main equation for re-

gion - allowing us to calculate a. This is equivalent to saying

that we can solve the game with terminal surface S and terminal

payoff V(z) s added to the integral part of the performance in-

dex. We still need a condition to determine S.

Assumption. Assume that in a neighborhood of S we have:

<n, f_ )> > 0
(6.12)

<n, f (cp,*7)> > 0

Namely, none of the players can prevent the state from crossing

S by keeping his optimal strategy of region-. Then, we have a

result similar to the classical corner condition. (See (5) and

(9)).
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Theorem. Under condition (6.12), the corner condition is

? \ =+ (6.13)

Proof. Assume one of the players decide to switch earlior, on a surface

translated from S by M2. Then, because of (6.12) the other

player is obliged to switch also. Taking (6.11) into account,

the change in payoff, to first order, is

6v <(-),> -<n, >

If a is not zero, this quantity has the sign of a, and thus

there exists a small enough 52 such that the variation in pay-

off has that sign. Therefore, the player whose advantage it is

should have switched earlier. This ends the proof.

At this point, a new, typically game-theoretic, phenomenon occurs:

assume that one of the two inequalities (6.12) does not hold. Then the

player who can prevent the state from crossing S is also able to pre-

vent his opponent from taking advantage of the potential variation of

payoff we just pointed out. Therefore, a switching surface S can occur

with

<n, f ((,PA )> < 0 a < 0 (6.1,4a)

or

<n, f(p*-,+)> < 0 a > 0 (6.14b)

Before we investigate what new relation replaces (6.13), we make the

following remark, concerning a game with separated dynamics:

Proposition. If the dynmics are separated, one at most of the two

inequalities (6.12) can be false.

proof. By simple calculation we have:
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<n, fQP, <n,hn g (T)>

by definition of n, we have

onf ) 0 n, h(-) > <n, g

<n,f( ,4)> > 0 (n, h(*+)) > <n, g(cP+)>

Assume that

Kn,f~Qp)+,-)> < 0 (n,h(*-)) < <n, g((+)>

together with the previous two inequalities yields

<n, f(cp-,'+)> = <n, h('+)> - <n g -)> > 0

and similarly for the other case. This proves the proposition.

The indifference condition. Assume, for definiteness, that

<n, f(Opt, 4-)) < 0 (6.14a)

Then, according to what we said, we can have, on S, a < 0.

If upon reaching S the pursuer changes his control but the evader

does not, the state drifts back into region -. The pursuer must switch

back to p , causing the state to reach S again. The sequence is

then repeated, inducing "chatter". We assume a convex vectorgram so that

chatter can always be replaced by, and cannot be better than, a simple

strategy. Thus the pursuer must choose a control such that the

state follows S:

<n, f(CpI = 0

we call (p,4-) the traversing strategies and (p ,1+ ) the penetrating

strategies. S can be the switching surface of the optimal game only if
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the traversing strategies still optimal, namely if, as on an optimal

trajectory, the rate of decrease of V is equal to the value of the

Lagrangian with the corresponding controls. Notice that because of (6.11)

f )> < f h>

so that the Hamiltonian is uniquely defined and our condition can be

written

H- L(p,-) + f(P,)> =0

But we know that

min H(kp, -) = H( ,Cp ,4 ) = 0

We therefore have this complement to the previous theorem.

Theorem: (The Indifference Condition). If condition (6.12) does not

hold, but instead (6.14a) for instance, then at a corner point we

must have a < 0 and in addition one of the following two condi-

tions must hold.

. (P

or

Arg min(?-,(p,*-) non-unique.

The first possibility corresponds to the switch envelope, a phenom-

enon first discovered by J. V. Breakwell and A. W. Merz in Isaacs' homi-

cidal chauffeur game (20J. The trajectories reach S tangentially, and

then, to the choice of the evader (or of the pursuer for the case (6.14b))

the state can either follow the switch envelope, or leave it on a trajec-

tory of region +.

The second possibility has an interesting interpretation when the

Lagrangiun is independent of (p, in the minimum time problem for instance.
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Then P (Q in the case (6.14b)) must have an affine set as part of

its boundary, and ?- must be normal to it. In particular, if P

lies in an affine set 3f but has only relative extremal points in-its

boundary, (a line segment, a conic section) then ?- must be normal to

For a two dimensional game, the only proper subspace is a straight

line, so that the possibility we have just discussed can occur only if

one of the players has a linear vectogram, and we recognize Isaacs'

equivocal phenomenon. We see that in the higher dimensions, this is

not required. In the isotropic rocket game, for instance, an equivocal

surface of this type could occur with ?- parallel to r, and thus

normal to the plane of P.

Let us finally notice that our description (Chapter 5) of how

two semipermeable surfaces can join is the limiting case of a switch

envelope. The unicity assumption we had to make merely ruled out an

equivocal junction. There does not seem to be any reason why this could

not occur. We did not describe it because we did not need it, and be-

cause it is clear how the present more general theory would apply. The

case (6.13) leads, for barriers, to a smooth surface, since the adjoint

is normal to it.

6.5 The Switch Envelope

i) The Indifference Condition. In our game, we already know a

line where a corner occurs: The envelope junction. If we regard the

barriers as limits of the trajectories of the game of degree, we con-

clude that we must find a switch envelope passing through that line.

The choice of strategies, traversing or penetrating, would rest with

the evader, and a be negative.

Let tile switching surface be a surface X given as

v = v( ,y)

Then, its normal is
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v
- - = -p

v
n= = -q

1

(We have used the traditional notation p here, not to be confused with

the parameter of our game. This notation appears only in the present

subsection). According to (6.11)

?\ ?\ apx x

= - aq (6.11a)

y y

+ a

v v

and we have two relations. The main equation of region - and the in-f difference condition which, here, is a tangency condition

H(O -FO + wP- v;\ + 1= 0
y

<n, f(',*-)> = "-F (py-qx) (6.15)
V

+ = +P q - + q -vq + F 0"-

where

1+2 + +2(2 2
p =jp - 2a(p + q? a+(p + q

13y

= c(py - qx)

- L2_-~ /+ py- qx -2 r(py-qx) 2  1
2a(\e [ 2a
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Conceptually, the parameter a can be eliminated between the two equa-

tions (6.15), leaving a first order partial differential equation on

v(x,y).

Actually it can be seen that this elimination can be avoided, by

directly finding the equations of the characteristics of this system of

equations. If the two relations are written

HI(x,y,v,p,q,a) = 0

G(x,y,v,p,q,a) = 0

define

6H G G NltEI = 7 7-a - Tx 7-a

and similarly for [Y], V], [PJ and [Q], and then the characteristics

have the same equations as for a single partial differential equation:

dx dy dv -dp -dq =d

-P] [Q] = p[P] + q[Q] = I + p[VJ = Y] + q[V]

and an additional relation is needed to propagate a. It is easy to

derive as

a (/bI G 6G M +1 (HG G 1G _ 6G M1\d x = +\ k p - * - + P (§ RP TV-

+ q(11 G-G 1 ~)d

We now have a problem of Cauchy: pass an integral of (6.15) through .

It is known that unless ,) is a characteristic, this problem has a well

defined solution.

ii) Shape of X. Two major difficulties occur in trying to actually

compute an integral of (6.15).
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First, on , + is infinite, so that only its direction is known.

This is, in principle, compensated for by the fact that we have another

piece of information: we know the direction of ?-, namely V_. Thus

we can choose the direction of n, normal to , in such a way that the

limit of ?- for points tending to I be v- But this program is

exceedingly difficult to carry out. It would have to be done by itera-

tion on the position of n as a function of the point of J considered.

In addition, the problem is made even more difficult by the fact

that ?+ is not known explicitly as a function of the state. It is

computed by completely separate means, together with the state along a

trajectory. Thus, what is known numerically only, is a family of func-

tions Z(c TI T) c' 1T) where T is the tangency v, and

T2 are the parameters along the state constrained and the unconstrained

trajectories. A computation in the (TcT rl, T2 ) space makes the quan-

tities p and q become complicated functions of the variables that we

cannot express explicitly either.

For these reasons, numerical integration of our partial differential

equation did not appear to be feasible within the scope of this disserta-

tion. But some interesting results can be found about the shape of a

solution.

The way the problem of Cauchy is solved is the following: at each

point of g the partial differential equation defines a cone of possible

normals to the surface. The requirement that it be normal to 'J deter-

mines this normal. Then the necessary initial conditions are known to

integrate the equations of the characteristics. At the end J of ,

the second requirement disappears, and all the directions satisfying

the equations can be used. Consequently, the solution of (6.15) has the

desired shape, providing a field of extremals similar to the singular sur-

face for those arriving in the vicinity of J.

We can also show that this solution actually lies in the region we

conjecture, between the envelope barrier and the roof. Equations (6.11n)

are identically satisfied along a solution. They express the fact that

the projections of A and ;- on the tangent plane to J are equal.

Therefore, by continuity, the projections of I and v' on this plane
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at J must coincide. The vectors v being normal to the two barriers,

this is possible only if the tangent plane to X lies in the dihedron

defining the capture region.

Finally, notice also that the directions of the vectors v imply,

as must be, a < 0.

Figure 13 is a schematical cross section of the barriers by a plane

v constant.

A-

FIGURE 13. Position of the Switch Envelope

Because we have not been able to compute this surface--and conse-

quently not the field--either, we cannot carry further the solution of

this game.

Some questions arise about the possibility that the construction

proposed is part of tile solution of tile game of degree. We shall try

to answer them and to present a reasonable set of conjectures.

6.6 Conjectures

A first question arises about the trajectories of the (y,v) plane.

There, we know that the optimal trajectories are a set of parabolas,
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deduced from each other by translation parallel to the y-axis. But this

poses two problems: These trajectories belong to the field of primaries,

and we now pretend that they are imbedded in another field, making a

corner with the first one. And furthermore, this corner occurs on a

switch envelope, so that these parabolas should be tangent to X. But

it is obvious they have no envelope, so that they cannot be tangent to

X, unless this surface itself is tangent to the symmetry plane. This

last possibility is ruled out by the fact that g belongs to K, and,

except for p = 1, is not tangent to the symmetry plane.

We conjecture the following answer to these questions. The switch

envelope surface K intersects the (y,v) plane at a nonzero angle,

and not v/2 either, along a line 2, passing through A'. The trajec-

tories of the field -arriving tangent to K at 2 come from the region

x > 0, as the trajectories of the envelope roof indicate, thus leaving

between them and the symmetry plane a region not accounted for by this

field.

Along 2, the field of incoming trajectories is interrupted. In

other words, due to the discontinuity of the normal of X, the restric-

tion of V(z) to K is differentiable in a closed half surface only.

Thus, the argument that the component of ; in the tangent plane to K

is continuous does not hold any longer. What does hold is that the com-

ponent tangent to 2 is continuous. This gives one less condition.

On the other hand, for a trajectory arriving at 2 the evader can-

not prevent the state from crossing X, again because of the angle in

that surface at that point. Therefore, the requirement that this trajec-

tory be tangent to K does not persist either. Therefore, using the

degree of freedom left in determining ?-, we can, from each point of

2, generate a one-parameter family of extremals e:tending from the one

tangent to k to the parabola. This fills the void left by the previous

field. This singular roof now appears as the natural limit of this con-

struction, giving strength to the conjecture.

Notice that the fact that ?J- must be normal to 2 and that

- must generate the parabolas as optimal trajectories still does not
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allow to compute independently of K, as any adjoint ?- contained

in the (y,v) plane generates the same trajectories. But we conjecture

that this line lies in the region y < vT 1 , Q(T1 ) 0, so that the

field of primaries is interrupted between its singularity and capture.

The parabolas, then go through a, but ape imbedded in a field with no

singularity there.

We shall uow present a conjecture giving a tentative solution of

the problem of the termination of the singular carrier, left unsolved

in the previous chapter. We have seen that there is a point B' where

a trajectory of the singular surface A is tangent to the capture cyl-

inder. Extending from B' into the capture region, there is a locus

of points where the trajectories incoming to J are tangent to e.

From each of these points, we can generate retrogressively a constrained

trajectory, and incoming to these a three dimensional field of tribu-

taries. Qualitatively, the constrained trajectories look like ' and

the tributaries like the trajectories of &'.

Let C be the point wirere the trajectory of 4 through B' is

tangent to the cusp on A. From this point, the envelope barrier $'

cuts the trajectories of K. Similarly, the field of tributaries just

described will interfer wit,, the field of trajectories incoming to K.

Thus, a dispersal surface will occur, a locus ofpoints where the time

to go in both fields is equal.

The trajectory of 4 through B' belongs to both fields, and C

will thus belong to the dispersal surface. Therefore, this surface

intersects J, and, as the rest of its field, A must be interrupted

along that line.

Here again, V(z) must be uniquely defined on the dispersal sur-

face. The only way in which the field on one side can have an infinite

gradient and not the field on the other side, is for the dispersal sur-

face to be tangent to the barrier at their intersection. Figure 14

sketches this situation.
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FIGURE 14. Singular Barrier and Dispersal Surface

Since following A does not enable the evader to avoid capture,

there is no contradiction in having an optimal trajectory of the game

of degree have a common point with the barrier. This is similar to what

happens in the Homicidal Clauffeur [20] and other games.

This construction still does not fill the whole state space with

extremals. Another field would join on the one just constructed,

possibly through an equivocal surface generated from the end of the

singular barrier. The common trajectory to 4 and &', through B'

and C, also would have to be considered as it is the end of the

barrier &', and the other edge of the "hole" left in the proposed

barrier,

6.7 Conclusion

Our investigation of the Isotropic Rocket Game can be summarized

as follows:

The linear theory shows that for p < 1, capture always occurs,

in a line not larger than an estimating function we were able to con-

struct explicitly. However, this time is not always optimal.

A more classical approach led tc the following situation:

p < 1. We exhibited a composite field of extremals made of part of the

primaries, a safe contact, and its tributaries. Although no

analytic proof is available, our computations indicate that

this field probably fills the space, with no conjugate point,

and thus provides the complete solution to the game.
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1< p < pI We have been stopped in our investigation by an excessive

technical difficulty in the integration of a partial dif-

ferential equation. Since any sufficiency argument rests

upon the construction of a complete field of extremals, we

can only propose conjectures. We have not been able to

display a closed set of barriers. Furthermore, we have

proposed a construction that would give trajectories going

around the known barriers. Consequently, our tentative

conclusion is that capture occurs from any initial condi-

tion. For outer regions of the state zpace, an optimal

chase would then involve eight stages or more.

P1 <p < P2 We have found a set of semipermeable surfaces forming a

closed barrier: it defines a closed capture region. If

the game starts outside this region capture will never

occur. If it starts inside, capture will always occur.

For a small portion of this region, the optimal trajectories

seem to involve the same singularity as in the case I < p <

P., that we have not been able to compute.

p < P. We still have a closed barrier, of simpler configuration

than in the previous case. The same field as in the case

p < 1 seems to account for the whole capture region, again

providing the complete solution.

Conclusions

Information Structures. We have seen that Pontryagin's direct

method can be extended to various information structures. In the basic

form, the pursuer knows the evader's control for a time G in the future.

Letting e grow to infinity gives the case where the whole future con-

trol of the evader is known. Giving a fixed finite value to e leads

to a discrete estimating function T(z,E). It is possible, in partic-

ular, to check directly that for a given point z, T(z,E) increases

as c is decreased. Pontryagin proposes a construction, the alternating

integral, that gives an estimating function valid for every positive C.
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[
This suggests an investigation of the limit of the pursuit process pro-

posed as e goes to zero.

We modify somewhat Pontryagin's process by considering the minorant

game or lower c-strategy where the players choose their controls sequen-

tially. Then, using results of Fleming and of Friedman on the convergence

of the game as e goes to zero, we have a well-defined notion of contin-

uous strategy that lends itself to the following analysis. We have given

an explicity characterization of the strategies obtained by this varia-

tion of Pontryagin's technique. This allowed us to show that they have

a well defined limit as e goes to zero, that we were able to characterize

in a way reminiscent of the Maximum Principle. An interesting result is

that for a wide variety of games, this limit strategy of the pursuer is

independent of the control chosen by the evader at current time.

Optimality. Since in the unsymmetric approach taken, the pursuer has

some knowledge of the future control of his opponent, it is possible

to seek a pursuit strategy optimal against that control, which is more

than usual saddle point condition. The strategy proposed by Pontryagin

achieves this goal provided that th estimating function is the optimal

time to go in the usual sense. We therefore investigated the optimality

of this pursuit time. We found a condition under which there is an e

small enough so that this time is locally optimal with the corresponding

c-strategy. Then, using our definition of a continuous strategy, we

proved that for that limit, the estimating function always has this local

property. Some of the intermediate results derived for these two proofs

are of interest by themselves.

We have described the phenomenon by which the global trajectories

can still fail to be optimal. Understanding this mechanism gives us

direct means of checking the optimality of the trajectories computed in

any instance. We also derived a condition under which we are assured of

this optimality. Unfortunately, it is not explicit and not much simpler

than the direct check. However, it allowed us to derive several more

restrictive sufficient conditions, including an earlier one by Gusyatnikov

and Nikolsky.
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Nonregular Points. The previous analysis emphasized the importance of

Pshenichnyi's nonregular points. We proved that they are points where

the gradient of the estimating function is infinite. We distinguished

between two kinds of such points. The first kind was shown to be associated

with Isaacs' concept of a barrier. The second kind is not as well under-

stood. An explicit example was nevertheless given to show that it can occur.

Multistage Games. The construction proposed by Pontryagin naturally

leads to the consideration of multistage games. It was seen that most

of the concepts introduced in the continuous case carry over to the dis-

crete case. Our main interest has been in a slight modification of the

resulting discrete theory: the system-theoretic formulation where the

controls are unbounded and capture is defined as point coincidence modulo

a subspace. In that case, the constructions performed take a very simple

form, and explicit criteria were given on the coefficients of the matrices

involved for capture to be possible with each of the three main informa-

tion structures. We also considered the case where the capture subspace

is invariant under the free dynamics of the system, and generalized to

the vecf:or valued controls case an earlier strong controllability theorem

by Kalman.

Isotropic Rocket Game. In the second part, we investigated an example

considered by Isaacs: the Isotropic Rocket Game. An object having an

acceleration of constant magnitude tries to get within a distance 2 of

an object having a velocity of constant magnitude. We generalized Isaacs'

formulation by assuming that the chase occurs in the three dimensional

physical space, but immediately proved that an optimal chase occurs in

a fixed plane, and has, in a suitable set of reference axes, linear dyna-

mics. The state space is then four dimensional, as the components of the

pursuer's velocity must be considered together with the relative coordin-

ates of the evader with respect to the pursuer. The linear theory was

applied to that representation. It showed, in particular, that when the

unique parameter p of the game is smal.'er than one, capture occurs

from all initial conditions. This is a good approximation of the com-

plete situation in that the limiting value of the parameter we found is

very close to one. However, this game exhibits the typical phenomenon
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where the linear theory fails to yield the optimal solution. Therefore

we could not conclude from that theory that for p > I the evader would

escape, and we found later that this is probably not true.

Game of Kind. We used a reduced three dimensional state space to pursue

the analysis of this game using Isaacs' generalization of the Hamilton

Jacobi theory. We first investigated the game of kind. We emphasized

the concept of local cone of semipermeable directions, and gave a geometri-

cal construction of that cone. In particular, we were led to the considera-

tion of a new type of semipermeable surface generated from one point by

that cone of directions: the singular surface. We also used that concept

to give a simple description of Isaacs' envelope barrier concept. We saw

that this envelope barrier can be considered as a particular application

of a more general result as to how two semipermeable surfaces can join at

a non zero angle in a barrier: the envelope junction.

Game of Degree. We finally investigated the game of degree, for which

we proposed a derivation of the genexAlized Hamilton-Jacobi equation by

Caratheodory's technique. The game of degree involves a safe contact

first pointed out by Breakwell and Bordman. It is similar to Isaacs'

envelope barrier. We introduced the concept of singular state constraint

and proved that if a state constraint is not singular, optimal trajec-

tories reach and leave it tangentially. This result can be shown to

imply a result by Weierstrass about the same question. We also derived

a general corner condition for differential games. It was found that it

can take two forms: either the same requirement as in the one player op-

timization that the adjoint vector be continuous, or, if a certain in-

equality is not satisfied, the indifference condition. This condition

itself can take two forms, one having Isaacs' equivocal phenomenon as

a particular case, the other one being Breakwell's switch envelope.

The detailed solutions for the Isotropic Rocket Game was discussed

at the end of Chapter Six. A detailed description of the barrier was

given at the end of Chapter Five. We left the problem unsolved for a

small range of the parameter p. The solution in this interesting case
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seems to be very complicated. We conjectured that it involves at least

an eight-stage chase, with two corners and two safe contacts.
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Appendix A

EQUATIONS OF THE EXTREMALS

We start with the simplest, four-dimensional description of the game

X= -U+w
x

Y= -V+w y
(A.1)

U = Fx

V F

and we introduce the reduced coordinates

1

= - (vx - uY) (A.2)v

_ l (ux + vY)Y = 2 (u "y

We define the angle A between the two systems by

sinA 
V

cosA -v

and introduce new control variables p and V1 by

F sin A +F cos A =F cos ; FX cos A -F sin A =F sin C;
X FY xY

w sin A + w cos A= w cos '; wX cos A- Wy sin A = F sin ;
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so that Cp and 4 are the angles defining the position of F and w in

the new coordinate system, all angles being measured clockwise from the

y axis.

Differentiating (A.2) and placing (A.1) in it, and taking the last

transformation into account, we obtain the equations of the game in

the three-dimensional representation

F -F y sin (p+ w sin
* v

y = F sin Cp + w cos -v (A.3)= v

v = F cos CP

and we want the equations in cylindrical coordinates

x = r sin e
(A.4)

y = r cos e

We differentiate (A.4), place (A.3) in it and solve for r and e We

obtain

= w cos(', - e) - v cos e

= - sincp+ wsin(*- e) +! sin e (A.5)
V r r

= F cos p .

Now, we need the equations relating the various representations

of vJ = X (we call J the value of the game to avoid confusion with the

coordinate V of (A.1)]. Let J be given by

J= J(X, Y, U, V) = J2(x, y, v)
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Let

Ax --= -

A jl x
y =

AU 1
bjI x =

AV = 3T ~Jl v = J

Taking partial derivatives of (A.2),

V(2-X = --- x)
v V

v vv v 2

FU U  v- v

v

Placing this and the other trivial partials of (A.2) in 6Jl/AX, we

obtain, after some rearrangement

6J 1 J 6 2 6 6 2 y 6J 2 v _ . + U
AX = + Jy - +  v X - - -(-x + x

6x1  TJ x  6~oy 6x 6v 6 _ (.x yx,

Ay = Y + - = (+ -x = + - 3'

from which it follows that

S= I(v .,- UA,)
x

(A.6)
X,= -( uA + VA)
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which simply checks that (x ,X and (Ax, AY) are the same vector

X expressed in their respective coordinate systems. By the same

means, we compute AU and Av

A U (U + y)X_ ( _ X)\ +-
v v v v v v

A = (Vx_ x) "- V _ y) y+v
v v V v v v

from which it follows that

X =.!(% + v) (A,6a)

which means the dot product v • is conserved in the change ofv
coordinates . We obtain also, after a rather lengthy calculation

a2  2 2 2 1~ 2 20 + A - 2 (YXX x 2 +XV

%hile (A.7)

2 2 2 9 2 +2

P , +A = )x y

is obvious from (A.6).

Finally, we make a purely geometric transformation on the radius

vector r and on a perpendicular axis

rX = X x + yXy

(A.8)

X = yX - xX
°" y

hence, obtaining other forms for p and a

2 2, k
p -= +

r 2

&2 = + Xv
v v
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This justifies the notations used in the main body of this dissertation

We are going to find the equations of the extremals. The Euler-Lagrange

equations are more easily integrated in the four-dimensional representation

But as we know that the absolute orientation in the geometrical space is

ignorable, we shall always assume that at the instant of capture, T=O, we

have A = 0, or U = 0, V = v. Consequently, the expressions for A U and

A which we have are

= u

A1 . = y

AU PO = V

A xv =t 0 V

and we shall use these relations in the equations of the trajectories

because our ultimate aim is to have their equations in the three di-

mensional system, as a function of the parameters x0 yo: Vo X xyo)

at T = 0. As the system is time invariant, the same equations can

be used from any such set of "final' conditions, even if they do not

correspond to capture. In particular, Ne have used them to compute

trajectories in coming to the various singularities in the game. The

Hamiltonian is

{ = AxU - AV + Awx + 1,y + AUFx + Vy + 1

and its maximized form is

11* = -1U - %yV + pm - F!+LT = -FU + wp-v +1 0.

The adjoint equations are
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AX = 0 A = constant
x

y = 0 A = constant

A u = AX AU = -AxT + o

S= A Av = T+ Xvo

where

o = + XVo

c 0 poAx + Xv0 Ay.

A and Ay will be used to denote the final value of X and X . The

dynamics, with the optimal controls, are., for the velocities

dU AU-T +P 0dU = _ = F--=u

dT =-U F F (T

dV AV  -AyT + XVo
dT -V F - F

a G(T)

Define In(- )  as

The above equations give

U = -F(A x1 - PI o )

V = -F(AyI I - XvoIo) + V0
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The other two state variables are then given by

AX
X = x + J UdT - W T

o° o P
TAy

Y = Yo +  VdT- A- wT

We integrate by parts

o UdT = TU - f T UdT

o o

and similarly for V we find

X = x° - w AXT + UT + F(AxI 2 -oIl )

p
(A.9)

Y = YO - w XT + VT + F(AI - X I
Y p 2 volI

The I Is can be expressed analytically. Clearly, we have
k

ot lo P 2 T + PCT e
0 d 1 p I -o0 p2 2 -c+ a 02 Pao -

Then I is obtained from the remark that

Il - ci 01 a( T) - a 0 K(r)

and I is obtained from the fact that
2

2 2 2 12p 2 j- 3c 0  + (T 02° 1

so that

i2 = a[aT + C1 22 2 2 0 o~ "01
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The expressions for U and V can be made simpler by introducing, in-

stead of I0

L X (xvoAX- pAylo

and it gives

U = - [AxK(T) +AYL(T) (
(A.10)

v = - [AYK() -Ax(-) )+ v.

X, y. and v are obtained placing (A.9) and (A.lO)in (A.2), with the

expressions we have given for I I and I The adjoint are ob-

tained using (A.6)

X = [Axv + FL( )]

y = v{[AyVo - FK(T)] (A.11)

v v v{- Y]- 2 [CoK(T) + ( Y - x A 1 o]+ X 0 o}

The general formulas for x, y, and v are exceedingly complicated. We

have done the computation using the intermediary quantities X, Y, U,

and V. This completes determination of the extremals in the general

case.

However, our formulas break down for c0 = pao. because Io is

no longer defined. This happens when the vectors (0'. XVo), and (AxAy)

-ire parallel, and in the case of the primaries in particular.

Assume we have

(A.12)

vo p%
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Placing this in the equations for AU and A., they become

AvU-- Ay(--r + ao)
&P

0y 100 -T K(r) y0  prI-

Then the velocities are given by

dU A X  X- PT

HT- P IXO- p'TI

dV Ay X°  PT

and integrating, we find a formula valid for all T's

AX

U = -F- K(T)

P (A.13)

V F - A K(T) + v
P

Then, we must consider the integrals

x[= SU(s)dsP o

integrating first from T = 0 to T = a0/p, then for T > o0

c° AX 'r A 2X-- (-ps)ds F: --
T_ p =F 0 p 2

P P p0-
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ao
P

A '22
x(ps- 2u)ds = F - 2CT +

P Pp p 2 0 p

O/P

We notice that these two expressions can be written as a single formula

A X

YP= F LI (r --- Q)K(T) -t 0

Now, if we take the corresponding expressions for the general case,

place (A.12) in them assuming that I is defined, we find identically

the same equations. Consequently, one can use the same formulas,

checking first whether co - pa 4 0, and assigning any value, say

zero, to I if o

Finally, since it gives simple formulas, it is worth deriving the

equations for the reduced coordinates in the case of the primaries

where Xvo = = Placing this in our formulas, we find

AX (w+ Ftx 0 x P 2)

Y = yo (w+ :),r+ v-

AY
U = -F- T-

V = AX F +V

p 0

We apply to this the transformation (A.2), and introduce the parameters
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x0  = sin Ax = p sin

Yo= cos A,, = cos

v = s Vo =0

and the intermediary quantities

s sSin

= s cos

we obtain for the three-dimensional representation

V Q(T) 
Y = v-

v -[ 2 +(q -rr)2]

where Q(T) =F-/2 " w+ 2.

The adjoints are

x =P
x v

x =F (A.15)
y v

X = -"

v v

It is interesting to notice some simple combinations

0 = DT
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and H = 1+ (w- r)p =O, yielding

1
- w

These are all the equations we need in the last two chapters for the

theory as well as for numerical computations.
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Appendix B

COMPUTATION OF

We want to compute a curve I on the surface 9 . Let us review

how the various elements of the problem are given.

The curve D is obtained by numerical integration of Eq. (5.8).

We consider it as parametrized by the value s of the velocity. Once

a point o. D is known, we have analytical formulas for the trajectory

of S tangent at that point and for the adjoints along it, as i func-

tion of the time to go Te from the point of 8 to. Thedefored a

point of 1 is represented by its parameters (s, TI). is defined by

an initial point and a field of directions on S. This direction is

obtained, at any given point of 6, by solving numerically Eq. (5.11a)

for y . This angle allows us to compute v with H1 = . This vector

can be placed in the dynamics to obtain the direction f(vz).

We cannot simply use an integration routine with that direction f

for two reasons: first, due to round-off and truncation errors, the

curve would quickly drift off the surface S. Even if this was avoided,

it would not give the parameters of the computed point on 6. As we

need these parameters to compute Vb and subsequently y, we would have

to do some extremely tedious interpolation to find them.

For this reason, we directly look for I in the form T= Tl(s).

Using s as the independent variable is convenient because the incre-

ment on s is then chosen arbitrariy, and (5.8) integrated once up

to the new value. The rest of the integrating procedure is done by

varying TV using analytical expressions to obtain the corresponding

point z = (x, y, v).

We want to copy a classical integration routine of numerical

analysis. Such techniques use the quantity dTI/ds that we do not

have. But more precisely, what is really needed are such expressions as
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d~l (B. 1)5TI ds

%here several such increments, with various arguments of the function

d- l/ds, are averaged in a suitable way. In our case, instead of com-

puting dT 1/ds, we compute a vector V normal to the intersecting sur-
face, thus to 6.8T is obtained by computing the value T e+ 6T

of T where the trajectory of parameter s0 + 8s intersects the plane

0normal to V through z . This is done by solving for T1 in

V " (B.2)

where

= Z('r so + 8s) - -.

Since we have analytical formulas for Z(TI), we can differentiate

the dot product with respect to TI, and thus solve (B.2) in an effi-

cient way with Newton's technique. Notice that for I the angle between

the trajectory of 6 and the tangent plane to the roof is large

enough so that this technique is quite accurate.

In our case, computing V is a rather longoperation. We have

tried to keep the number of times we compute it as low as possible.

For that reason, we have used an Adams method of order four started

with a Runge Kutta method of order four.

We give, thereafter, scale drawings of the crest (computed by the

same program) and of for p = I and p = 1.001.
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Appendix C

ISAACS' NOTATIONS AND OURS

Isaacs 105-116 Isaacs 244-254 This Work

xE x X

YE- y  y

u U

v V

r -Ua

U v

X x x

y y y

v v v

- VI  Vx

_ V2  vy

- V3  Vv
. u ve

P p, C

PE P2  P
VXE =-V x - AX

VyE = -Vy - Ay

AU
v Av

+ s s s

s P + P

Q(T) Q(T) Q(T)

a a

C C
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Appendix D

REGULAR STATE CONSTRAINT AND A RESULT BY WEIERSTRASS

In Section 6.3 we defined a regular state constraint and show that

if an optimal path contains such an arc, it is reached and left tangen-

tially. This result obviously applies to the control problem, the

one-player game. Similar problems were studied in calculus of varia-

tions, and it is interesting to relate the two approaches.

The problem of joining an unconstrained arc with a constrained

one was considered by Weierstrass, and appeared in his lectures as

early as 1879 at least [5]. The problem he deals uith is his paramet-

rical form of the calculus of variations. In control theory language.

it can be stated as a problem in a two-dimensional state space with the

simplest dynamics

(D.1)

and the objective is to minimize

'1A3 F(Xl, x2 U,) U2)dt

where F is assumed to be of class C in all of its arguments (foiC2
our purposes, C suffices).

Weierstrass wants the integral to depend only on the geometrical

path followed, lie shows that the necessary and sufficient condition

for this to be true is that F be homogeneous of degree one in (UV, U2).

F(x 1 , x., kU1, kU2 ) = x2 , U1, U, k > 0
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and a consequence of this is that there exists a function

FI(XI, x2 ) UI, U2 )

such that

F = U2F
U IU 1  2 1

F U -UF

UU 121 (D.2)

-UU UIFI

where 2

1,3 1 3

i = 1,2

j = 1,2 .

We add that the second partial derivatives of a homogeneous function of

degree one are homogeneous of degree minus one; thus, F1 is homogeneous

of degree minus three in (U 1 , U2 ).

We introduce Weierstrass' excess function, which, because of the

homogeneity of F can be written as

E(:,x 2 , UIU 2, I, U9 ) 1 [FUI(xlx 2 , UIi 2 ) - Fu(X VX 2 ,U1 U2 )] +

+ U2[Fu2 (xlx 2 ,)I, 2 ) - FU2 (X 1 ,x 2 ,Ul, U2 )]

assuming that the controls are the cosine and the sine of the same
2 2 =1b ecln n sn h

angle y (we can always chose U + U2 = I by rescaling and using the
1 2

homogeneity of F), and using the mean va.lue theorem, one can express

E by means of F I The form found show;s that if
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FI(XI, x2 cos r, sin y) = 0 VY

then the relation E = 0 can be verified only if

u1 1 u2 = V2

which shows that the boundary is met and left tangentially. The problem

of calculus of variations is said to be regular if (D.3) holds at

every point. Notice that from the homogeneity of F1 (D.3) is equiv-

alent to

F(x, X , U1, U2) 0 if (u2 +u) 0. (D.3a)

We shall assume that the coordinates have been chosen in such a

way that the boundary of the state space is x2 = 0 . We want to

compare the condition (D.3) with ours, which can be expressed, in this

case, as follows: Let the optimal control, obtained by minimizing

the Hamiltonian, be given by

= UI(x 1 , x2 X 1) X2 )

2 = U2 (X, x2) XV X2 )

and we ask that the equation

U2 = 0

be solvable for X2 , or in other words, that there exist a function A2

such that

U2 (x1, x2 , X1 , A2(x 1, x2, xl)] = 0 . (D.4)

We form the Hamiltonian
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H = XIU + X2U + F(X x2, U U2).
1 1 2 2 1' 2 '2

As UI and U2  are unrestricted, the minimum must occur at an interior

point, thus given by

)I- I + FUI = 0

(D.5)

U2 - X2 + FU2  = 0.
2

Moreover, since we want a minimum, and not a maximum, we must have

6 = U2F > 0 i = 1,2 (D.5a)1i J "

Equation (D.5) must be used to determine U1 and U2) (D.Sa) allowing

to choose between two solutions. First, notice that multiplying the

first equation in (D.5) by U1, the second by U2 and adding, and then

making use of Euler's identity for homogeneous functions, we find

XIU+ X2 2 I= X1U1 + X2U2 + F = 0

showing that a consequence of (D.5) is H = 0. This is not necessarily

possible for any pair (Xi. X2 ).

Let us differentiate (D.5) at a fixed point (x1, X2 )) using (D.2)

U2F dU - UIU2F dU =-d
2 1 1 1 21 21

(D.6)
-U1U2FIdUI + U1FIdU2  -dX2

The first consequence is that this system can be satisfied only if

U1dX1 + U2dX2  = 0 , (D.6a)
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which shows that U1 and U2  are defined only as long as X1 and X

satisfy a given relation. Equation D.6a, together with (D.5) gives

dH = 0 and is consistent with our previous remark that H has to take

a fixed value, namely zero.

We assume thus that X1 and X are varied simultaneously according
1 2

to (D.6a). Then the two equations (D.6) are redundant. But we can

arbitrarily decide to choose U and U such that
1 2

2 2U I + U2 = 1 (D.7)

since their ratio, giving the direction (U1 , U2), only matters. Then,

we have

U1dU1 + U2dU2 = 0 (D.7a)

and placing that in (D.6), we find, making use of (D.7)

tU2  -1
2 

(D.8)Ii 2 1

where U2  is now a function of xi, x2- and X .

This relation could have been obtained starting from the beginning

with

= cos y

(D.la)

12 = sin y

instead of (D.i), and having y as only control. But this approach

yields less information. It does not clearly show the existence of a

contraint or the X's., and the equality 11 = 0 must be borrowed from

the general theory to establish (D.8).

We see that under condition (D.3), U2  is continuous in X.. More-

over, from our assumptions on the regularity of F, under condition

(D.7) FI is bounded from above. Therefore, in view of (D.5a), we
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have, for some fixed m

12 < II < 0 (D.9)
6,2 F1

This still does not prove that U2 = 0 has a solution, because

the added condition on the X's can restrict the possible values of

0
X2 to a finite interval, or to a semi-infinite one, such as X 2< 2

(or X2 _ X 0).

Assume that U2  is defined for some (Xi, x2 ). Vary X2 by dX2

and we see that we can find the corresponding variation dX, from (D.6a),
2

except when U = 0. In that case, from (D.7), U = 1. Assume that
12 0

the allowable X 2's have an upper bound of 2 . Then, as X2 increases

0 0
toward X2 U2  decreases toward U2 = 1. And as 2cant be larger

towar U2  2u2cnn elre
0

than one, we necessarily have u2 = -1. Similarly, if X2  has a lower bound,

it corresponds to U2 = +1. This, together with the continuity of U2

and with (D.9), shows that the equation U2 = 0 always has a (single)

root in X 2 . Therefore, our condition (D.4) is satisfied.

The conclusion is that Weierstrass' condition implies ours, which

is thus more general. However, it must be noticed that the earlier is

much more elegant than the latter in that it can be readily checked

from the data of the problem, without actually determining U2 ( Xx 2 1) 2 ).

Similar simple conditions might exist for the control problem but

we did not investigate this question. However, it is interesting to

notice a typical case where our condition is not met: when a control

determined by the state constraint otherwise has a "bang-bang" behavior

(and except if the constraint happens to imply an extreme value of the

control). A typical example is the Dolichobrachistochrone problem.

In these cases, the additional adjoint is actually provided by

singular arc conditions. This shows the close relation between singular

solutions and the question of how a state constraint is joined on.
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