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ABSTRACT

This work is primarily a study of linear pursuit-evasion games,
although several concepts and results are presented that apply to any
zero-sum two-personr differential game.

The direct method of Pontryagin, specifically dealing with linear
pursuit-evasion games, is presented and discussed. It is shown how it
applies to several information structures. An interesting question is
that of the optimality of the strategies generated. It turns out to
be closely related to the continuous limit of the discretized informa-
tion structure used, and of the induced e-strategies. It is shown that
the limit strategies are locally optimal. A condition is also found
under which there are e~strategies enjoying the same property. The
phenomenon that can prevent these strategies from being globally opti-
mal is described, providing criteria to check this optimality. An an-
alysis is given of Pshenichnyi's nonregular points, linking them with
the abnormal problem of the calculus of variations and with Isaacs'
concept of a barrier.

Pontryagin's technique is also applied to multistage games, the
main emphasis being on a system-theoretic formulation where the controls
are unbounded and the capture set is a subspace. Explicit criteria are
given for completion to be possible with the three main information
structures. Following Kalman, special attention is given to the case
where the capture subspace is a submodule of the system, and his strong
controllability theorem is generalized.

The second part of this study is an investigation of a specific
example; Isaacs' Isotropic Rocket. The previous technique is applied
to it, and readily gives interesting results. However, because of the
phenomenon mentioned above, the corresponding trajectories, Isaacs'
primaries, are not always optimal. The investigation is pursued with
the more classical Hamilton-Jacobi theory, generalized by Isaacs to a
game-theoretic form of Bellman®s dynamic programming.

The game of kind, where the payoff is capturc or escape, is first
investigated. This determines barriers that can either define a closed

capture region or represent discontinuities of the optimal time to go.

iii




The concept of cone of semipermeable directions is emphasized, and a
geometrical construction of it is given. This concept is used to pre-
sent Isaacs' "envelope barrier."” It is shown that for a certain range
of parameters this barrier does not provide the complete solution of
the game of kind. Two other semipermeable surfaces are attached to it,
which sometimes succeed in defining a closed capture region. When they
do not, two more surfaces are constructed, but they do not close the
barrier either. Two new concepts are introduced: the "envelope junc-
tion," which is a way in which two semipermeable surfaces can join at
a nonzero angle and still form a barrier, and the "singular surface,"
which is a semipermeable surface, the trajectories of which all come
together at a singular point.

Finally, the game of degree, where the payoff is the time of cap-
ture, is investigated. As was pointed out by J. V. Breakwell, the op-
timal solution involves trajectories having a state constrained arc.
The concept of singular state constraint is introduced. It is shown
that nonsingular constraints are reached and left tangentially by the
optimal trajectories. The general corner condition for differential

games is derived. It includes the "indifference condition,” two par-
ticular cases of which are Isaacs' "equivocal surface" and Breakwell's
"switch envelope." In the present game it is the latter form that oc-
curs, but the equations of the switching surface are extremely involved,
and numerical integration of them was not feasible in this study. Some
analytical results are derived on the shape of this surface, and conjec-

tures are presented on how the complete solution of the game may look.
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INTRODUCTION

This work 1s devoted to the study of linear pursuit-evasion games, a
special class of two~person zero-sum dynamical games. Dynamical games
include differential games, where a continuous system is governed by a
set of differential equations, and multistage games, where a discrete

system 1s governed hy a set of difference equations.

Problems of pursuit appeared in the Russian literature at an early
stage of development of modern control theory. A well-known example is

the pursuit problem of Kelendzeridze in the book, Mathematical Theory of

Optimal Processes, by Pontryagin, et al. But the full concept of the dif-

ferential game was first introduced by Rufus Isaacs in various Rand re-

ports as early as 1954, and in his book, Differential Games, in 1965.

The distinctive feature is that both players try to do the best
possible with no a priori knowledge of what the opponent is going to do.
A striking difference with a two-sided control problem, where one player
knows the whole future control of the other one, appears in the fact that
while Kelendzeridze was able to apply the maximum principle to the latter
case, Pontryagin (Reference [21]) investigated the use of this technique

for the former case and found that it usually does not apply.

In the zero-sum game, the only one we shall consider, there is a
performance index which one player, whom we shall cail P , for pursuer,
tries to minimize, and the other player, whom we shall call E , for
evader, tries to maximize. Therefore, we have a minimax problem very
much like the corresponding case of the classical, static, game theory of
Von Neuman -and Morgenstern. But here the game has dynamics, and the

strategies sought are closed-loop control laws,

A very important question in such games is that of the information
structure, At present, the game theoretic form of the most basic con-
cepts and tools to ﬁandle partial information~-observability, filtering
techniques--is missing or unsolved. We shall consider only deterministic
structures. It will always be assumed that both players know the state

perfectly. The information available to them on each other's control

will, however, be varied.
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In a pursuit-evasion game, the game is "completed" when the state
enters a capture set. The performance index is the time the game lasts
until completion, or 'capture." The evader tries to survive as long as
he can while the pursuer, on the contrary, strives to capture him as
quickly as possible. This type of game has provided several of Isaacs'

problems. One of these will be considered here, in the second part.

In the first three chapters, we discuss a direct method of Pontryagin,

specifically dealing with linear pursuit evasion games.,

In the first chapter, this method is introduced and discussed. It
is extended slightly to allow various information structures, differing
by the amount of information available to the pursuer on the evader's
future control, including the case where this whole future is known. The
object of this technique is to provide an "estimating function" T(z)
such that for a game starting at =z , capture is surely possible in a

time no longer than T(z) .

In the second chapter, our main objective is to study the optimality
of the process proposed by Pontryagin., We use, following Fleming and
Friedman, e-strategies, consistent with the information structure intro-
duced in the first chapter. We find a condition under which oﬁr estimat~-
ing function can be optimal with such strategies, for small enough € .
Then it is seen that, without this conditionm, T(z) can still be optimum
for the continuous process, e-strategies actually yielding capture times
arbitrarily close to it as € 1is decreased. The limit of the e-strate-
gies is investigated and characterized. It is shown, then, how the
estimating function and the corresponding strategies can still fail to be
optimal, essentially because they can lead to trajectories that would
lie inside the capture set for some time before the calculated capture
instant. A necessary and sufficient condition for this not to happen is
discussed, Finally, non-regular points are briefly investigated, and one

kind identified with Isaacs' barriers.

The third chapter is the only onec dealing with multistage games.
e~-strategies naturally lead to a discrete version of the game which is

briefly considered, mainly from the point of view of the information
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structure. This yields the concepts necessary for applying the previous
techniques to the system theoretic formulation of the multistage game,

with unbounded controls. 1In that case, the estimating function is shown
to be optimal, The particular case where the capture subspace is a sub-

module is investigated and an earlier result by Kalman {19] generalized.

The remaining three chapters deal with a specific example: Isaacs'

Isotropic Rocket Game, described in [17] and [18].

In the fourth chapter, this game is introduced, and its various
descriptions presented. Then we apply to it the method of the first
chapter, which rapidly yields an estimating function., However, this es-
timating function is not optimal in the whole state space, the condition

of Chapter Two being violated.

In the fifth chapter, we use Isaacs' technique and try to solve the
"game of kind" qualitative game, the outcome of which is capture or
escape. It turns out that Isaacs' conjectures, according to which his
solution would have been complete, are not verified for all values of
some parameters. Trying to complete this solution leads to the concept
of envelope junction, a corner condition for barriers. A new type of
barrier is also introduced, the singular barrier, where all member tra-
jectories meet at a singular point, But we have not been able to finish
the problem completely, due to the fact that the solution seems to be

linked to another unsolved problem, of the following chapter.

The sixth and last chapter deals with the "game of degree' quantita-
tive game, the outcome of which is longer or shorter capture time. It is
shown that the solution involves a "safe contact," first perceived by
J. V. Breakwell and already investigated under his supervision. The oc~
currence of this safe contact is iinked to the phenomenon pointed out in
Chapter Two, causing the estimating function to be non-optimal. Then, we
need to allow a corner in the optimal trajectories. The general corner
condition for differential games with integral payoff is derived, largely
using the concept of field, and resting upon ideas developed by Isaacs
and Breakwell. However, the partial differential equation it leads to in

this game is so complicated that we were unable to integrate it numeri-




e

cally. Some analytical results are derived concerning the qualitative

shape of its solution, and conjectures presented on how the solution of
the game may look.




TP AN

TF Yo e,

TTTTeD

T LT

TT e ST R

[0 A S v

R T O L P o P

LS VR SO

e - A

Bia . B T

i snd e e e ek =

1. THE DIRECT METHOD OF PONTRYAGIN

In this chapter, we present the method developed by Pontryagin [22,
23,24] to deal with linear pursuit-evasion games. In doing so, we dis-

cuss how the method can apply to various information structures,

1.1 Statement of the Problem

In an n-dimensional Euclidean vector space E , a system is governed

by the differential equavion

dz
JE=Cz-u+v 1.1

where
z 1is the state of the system 2z € E ;
C 1is a constant nXn matrix;
u € P is a control variable chosen by the pursuer;
v € Q@ is a control variable chosen by the evader;
P and Q are closed convex subsets of E .

Admissible control functions u(+) and v(.) are measurable functions

of time, taking their values in P and Q respectively.

A given subspace L of E 1is called the geometrical space. The

orthogonal projection of E onto L is called =« .

A given closed convex subset e of L is called the capture set.
The dimension of € can be n . In that case, L = E , and the operator

it is simply the identity.
Capture 1is defined as
nz€C.

The general problem can be stated as deciding whether it is possible,
knowing the state 2z at each instant, and with some suitable information
on the evader's control, to construct a control function u(.) such that
capture will eventually occur, If this is possible, in what time, and

how should the control u be chosen?




The question of the evader's '"best" behavior will be considered

later.

1.2 Kemarks

Before going into the analysis of this problem, we shall make some

remarks about its formulation.

i) Dynamics. The dynamics described in (1.1) may seem somewhat

restrictive as compared to the more general formulation
z=Cz - Gu' +Jv' . (1.1a)

However, we restrict u' and v' +to belong to compact convex subsets,
Therefore, (1.la) is equivalent to (1.1) by letting
Gu' =u Jvt = v

and it is straightforward to see that if u' and v' belong to P' and
Q' , closed and convex in their respective spaces, u and v belong to

closed convex subsets P and Q of E .,

The use of constant sets P and Q corresponds to constant matrices
G and J , which is consistent with the fact that we take a constant

matrix C .

ii) Many-Control System. Another generalization one might want to

congider is a many-control system:

z=Cz + u1 + u2 + eee + up

P, .

uy € i

But the approach we take is essentially unsymmetric. We investigate what
can be done with the control u , knowing how the other control can act

on the system. Whether v is under the control of a single player or is

the added effcct of several players' controls makes no difference.
We can reduce this formulation to the first one, letting

-u1=u€P=—Pl

eo e = = + e +P .
u, + + up vEQ P2 q
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And notice that Q 4is still conve:x.

iii) Convexity. We insist on the compactness and convexity of the
sets P and Q because the following theory, at several points, depends
critically on it, It is, therefore, interesting to notice that, in as-
suming the convexity of these sets, there is no loss of generality. It

is a well-known fact in control theory that, for a dynamical system, any

‘point of the convex hull of a non-convex control set could be approximated

as closely as desired by chattering between n values belonging to the

control set itself,

The convexity of the capture set e 1s needed as well, and must be
regarded as a restrictive assumption. Notice that it is verified by the

interesting special case
C = {0}
which corresponds to capture being defined as

zEM LeM=E M orthogonal complement to L

1.3 The Information Structure

Following Pontryagin, we introduce a special information structure,

which we shall call the lower rule €.

At each instant t the pursuer knows the state z(t) and the

evader's control history v(t) for a time € in the future, namely
v(s) t<s<t+e written vit, t+e] .
A pursuit strategy, then, is a mapping

_ [to,to+e]
u e [to,to+e]xExQ =P

ct

wri
=— . t + 3
u u(t,z(to),v[to,to+e]) t Sttt +e

In this chapter, this definition will be enough for our purposes.

As the system is time-invariant, we can arbitrarily set to =0 .
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The question of the updating of the function U as time goes on will be

discussed in the second chapter (Section 2.3).
Three cases will be considered:

Q) € as big as desired by the pursuer. The evader's control is

known by the pursuer for the whole future.

This reduces the problem to a classical formulation, used by Kelendzeridze,
Varaiya [27], Kalman [19], and other authors. Does there exist, for
every control history v(.) a corresponding cohtrol history u(.) such

that capture occurs in finite time?

B) € 1is a given positive number, possibly very small. This is the
case considered by Pontryagin, He gives, in addition, a time of
capture valid for every positive € . This suggests the third

case:

Y) € =0: Only the present value of the evader's control is known.
This is again a classical problem, considered by Pontryagin
himself in [21,24], and other authors. This knowledge has been
found, in some cases, to be necessary for optimal strategies to

exist.

We shall consider this case as a limit of the previous one, following

Fleming [11,12,13] and Friedman [14,15].

1.4 A Sufficient Condition

We want to find a sufficient condition for capture to be possible,

and an estimatingﬁfunction

T: E-R

such that a state 2z can surely be captured in a time no longer than
T(z) . Pontryagin reaches this objective by constructing a set of cap-

turable points VT , a function of the real variable < , such that

enVv =2C
(o]




. e if zo € VT y there exists a pursuit control such that, with
o]

z(0) = Z, the solution of (1.1) verifies

z(e) € VT -
o

As a consequence of the second property, at time € there exists a new
pursuit control insuring the same inclusion at time 2¢ and so on. Thus,

eventually

Z(To) € Vo or i z(ro) € C,

Therefore, any mapping T(.) of the state space into the reals such that

[

z € VT(z)

is an estimating function,

e 6 oo i

From now on, the estimating function we consider shall always be the

t smallest real number T(z) such that the above inclusion is verified.

The construction of VT can depend on € ., We must clearly have

c
v.(e) =V_(g) Ve <S¢,V

since the control u constructed with the rule el can also be con-

structed with the rule 62 . We shall also see a construction, proposed

|
|
|

by Pontryagin, giving a set V'r valid for every positive € .

We shall actually find a family of sets WT in L, and define V_
3

as

V= ¢>(-r):r'1wT = (z|m(mz € W)

T
where &(71) = eTC is the transition matrix associated with C . We shall
have
v =C vV =(z|nz¢€Q)
o o

so that the family VT verifies the first condition = Vo =C,.
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1.5 Properties of the Sets WT

It is straightforward to verify that the solutions of (1.1) verify

T
1t =t)z(t) = 1d(7v )z () + 7 S © o(r) [v(t -r)
[o] (o] — [o]

o

w7

TTTY

- u(To-r)]dr . ‘ 1.2)

Sriary s

; To simplify the equations, we introduce the notations

u = nd(r)u P = nd(xr)P
by r
v = 10(r)v Q. = m(r)Q .
by r
Now, assume that we have the inclusion
(7t )z(0) € W_ . (1.3)
o} T

(o}

Given v[0,e] we want to be able to construct a control u[0,e] such
that

T
71 (t )z (0) +S °
o]

T ~€
[o}

T
v_(t-r)dr - S © 4 (t-r)dr € W .
r r T-€
T,"€

Sh o 3 B ia e o

Or, defining the sum of a set and a vector in the usual way

ety

3 T T

: ﬂ®(?o)z(0) + S ° vr(T-r)dr € WT_€ +-§ ° ur(T-r)dr .

4 T, € T,"€

1 Define the integral of a set Pr as the set of all possible integrals of
F functions u, taking their values in Pr . The existence of a function

u. verifying the last inclusion is equivalent to

T
n@(To)z(O) + S °

T ~€
o}

T
o

- W P dr .

Vr(T r)dr € . +-s iy

T ~€
o}

Wiy i

This must be true for every possible control v(:) , so this is equivalent

to

10
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T
K®(To)z(0) +-s °
T =€

T
dr C W ° . .
Qr r . _€-+S Prdr (1.3a)
o] 'ro-e

Finally, as we want this to be true for every point verifying (1.3), this,
in turn, is equivalent to
o %o
W cw
: F S Q dr c et S P dr , (1.4)
o T =€ ) T =€
o o

which is the characteristic property of the sets WT

1.6 Geometric Subtraction

In order to ease the handling of relation (1.4), Pontryagin intro-

duces the following operation:

Given two subsets A and B of a vectorial space, define their

geometric difference as

D=AZXB D = {z|B + z S A}
which means that D 1is the biggest set such that
D+BCA.,

If D is non-empty, we say that A star includes B : AP B ;

we say that the property of complete sweeping is verified if: A =B + D .

Proposition:

i) if A and B are convex, their geometric difference is
convex;

ji) A ¥ (B+C) = (A¥B) * c=A%B

33
@]
]
&

%
(@]

1%
[oe}

iii) (A+B) * c 2 (A*Cc) + B .

Proof:

i) Let D=AX¥B be non-empty. Let d) and d, belong to

D . By definition, for every b € B , their exists an
ai(b) € A such that

d +b+a (), 1=1,2.

11

e
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Consider d = aﬂl + (1«a)d2 and check that a(b) = aal(b)
+ (1-a)a2(b) verifies

AT T RS L

>

d+ b = a(d1+b) +-(1—a)(dé+b) =-a(b) . Yb -

4 if A 1is convex, a(b) € A and the first result is proved.
< Notice that we do not need the convexity of B . In the
sequel, however, only convex sets will be met. There is con-

, sequently no point in stating the result with more generality.

ii) Consider A = (A*B) ¥ ¢, and d € D, we have, by definition,

d € (A¥B) ¥ C<x=>d + C € (A¥B) <==> (d+C) + B S A .

Now, the addition (d+C) + B is associative; thus, the last

relation is equivalent to
d + (C+B) CA<==>d € A ¥ (C+B) ,
which proves the second result,

iii) Consider D = (A*¥C) + B, and d € D . By definition, there
exists e €A X¥C and b€B such that d = e + b . Now we

have

e+ CCA=>d+CCA+bCA+B=>dE (A+B) ¥ C

which proves the third result, Notice that it is generally
; not true that (A+B) ¥ C = (AXC) + B . It is enough, to see
it, to take B = C and a case where A ¥ C does not have

complete sweeping (see Fig. 1). However, we have the follow-

ing simple but interesting property:

Progosition:

If A 2 C has the property of complete sweeping, then this is true
for (A+B) * C and (A+B) ¥ c = (A%C) + B .

13

Proof:
: Let D = (A*C) + B .
3
: Then D+C=(A¥C) + C+ B =A+1B,

the last equality because of the assumption of complete sweeping on
3 A ¥ C . And this proves the claim.
12
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1.7 Construction of the Sets WT

Relation (1.4) can be written as

T T
w Cw +S P dr !s Qdr . 1.5)
T=-€ i€

Depending on the information structure, we can use (1.5) in different

ways. We consider the three cases of Section (1.3):

[}

@) € arbitrarily large. We can use € = 7 , and find immediately

the set we call Wiaﬂ

(9 €T . T

w =|C + P dr}| % Q dr .

T r r
o o

However, it is easy to see that this family will generally not

verify (1.4) for a smaller € . In fact, we have, using the

first proposition of Section 1.6,

(oo) =€ T i ad T

W =C+S Pdr+s P dr !S er’-*s Q dr

T Ir r r r
[o] T=€ (o] T=€

1-€ T-€ T T
2 C+S P dr -"-‘S er+s P _dr -"-‘S Q dr
r r r r
(o] o T=€ T=€
where the right hand side is the same as in (1.5). However,

because in general the addition and geometric subtraction of

T T=€
S Prdr and S Qrdr do not commute, the inclusion is
T-€ o]

strict and (1.4) violated.

This set is nevertheless very important, because only when it does
verify (1.4) is an e-strategy optimal. We shall discuss this point in
Chapter 2.

B) €_given positive. We use the induction argument of Section 1.4,
(e)

and construct the corresponding set W'r

14




Sl e A R e

i

b A L

RrE A S L

Eiwean it e U

kg

Nt b e

R

PR I S 4

s i e
.

(e) € € 2¢
W = [{ ~==- C+S P dr ’—"S Q dr +S P dr
T Ir r

(o] € r

2¢ ne ne
’-"S Q dr|-==-=- +S Pdr58 Q dr ,
(n-1)e (n~L)e

ne = 1 .,

This construction is called by Pontryagin the alternating sum

of the sets

Ske ke

U = P dr and v S Q dr .

k

(k=-1)e © K )k-1)e

Our set Wie) is defined only for discrete values of <7 .

T(z) , thus, takes only discrete values, but this is not in

contradiction with our theory so far.

For the continuous case, we will use another, continuous, definition,

but this one will be used for the case of discrete systems in Chapter 3.

Y) € _goes to zero. We define a set Wio) as a limit of the pre-
vious construction. The precise topology involved is discussed
in [23] and [24]; it will be presented in Section 2.6. For the
time being, we shall consider it as a pointwise limit: every
point belongs to it which can be approximated as closely as

desired by a point of a WEE)

w© - {z
T

It clearly gives the compact set. This set is called by Pon-

. In other words,

(®,)

3z, €W T o lz - 251" -0 as & —9%} .

i

tryagin the alternating integral and denoted by

-

(o) '
wT° = Sc,o [:perr:]ar .

Notice that this is a mere notation, Pr x Qr may not exist,

(o)

and W'r still be non-empty. Again because of the properties

15
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(3)

of the geometric difference, the set WT verifies (1.4) as

soon as & < € . Thus Wéo) verifies it for every ¢ .

5) = 0 : another definition. Finally, in the case where P ¥
r

€
Qr for every r , we can consider another set family

T
LR X
W‘r C+ So (Pr Qr)dr

and verify directly that it has the required property (1.4):

T=€ N T "
wT =1{C + S (Pr-Qr)dr + S (Pr-Qr)dr
o T=€

T T
Cw +S Pdrig Q. dr .,
r r

T-€ T-€
Notice the particular feature of this construction: the exis-
tence of the corresponding family of sets W; depends only on
the existence of Pr X Qr . Therefore, if for some capture set
C this family exists, this will be true with every capture set,

including C = [0} , or capture defined as point coincidence,

Besides the point we just mentioned, the use of this definition will

be interesting in the following discussion.

1.8 Relative Size of tha W;s

(el) (e.)
Let us first compare W,r to W,r with 62 > el

(e,) € €
w2=C+Szpdr-"-‘SzQ,dr
o xr T

16
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(el)
1f €2 = 261 , the last expression is W€ . This argument used re-
2
cursively shows that, when they are both defined,
(e;) (e.))
w 2 2w 1,
T T

and thus, in the limit as € goes to zero

OB
T

T
. . (o9 (e)
Using the same calculation to compare W‘r to WT where : 1/n
it is seen that
w(oo) D W(G) .

T T

Finally, we compare W; to any er) . Using recursively the following
12

calculation:

T T
' W * Cw x
W + S (P %Q )dr e t S . P dr

T-
T T

Clw  + S P_dr 1‘8 Q dr
T=€ 1€

for T =€ , then 2¢ , and so on, shows that

wCew
T

YVe=

(e) nEN,
T

Sla

and thus, taking into account the other three inclusions derived:

(e.) (e,)
wCw®cy Yoy 2 gy,
T T T T T

If, now, we remember the definition proposed for T(z) , each of these

T

T-€

Qrdr

sets gives a corresponding estimating function, and the above inclusions

translate into

(o) 1 2 ()

T(z) >T (z) >T

(z) >T (z) >T

17
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where

T(z) = o if nd(7)z ¢ W'r Y .

The last three inequalities simply say that the time we know to be suf~-
ficient to capture increases as the amount of information available on
the evader's control decreases. This agrees with what we said in Section

1.4.

An interesting simplification occurs when Pr S>Qr for every r ,

with complete sweeping. Then, W; exists, and we have

T T T
t = * =
W S Qdr = C+ So [(Pr Q) + Qr]dr C+ s P dr

(o} 0

and thus

T T
w'=(C+S pdr)ES er=w(°°)
T I r T

(o] (o]

which, in view of the chain of inclusions derived, proves that the four
constructions give the same set W‘r , and we can use the most convenient

construction, W% , for instance,

In consequence also, the function T(z) does not depend on the in-
formation structure, Assuming more knowledge of the evader's strategy
does not allow us to improve our a priori estimate of the capture time.
However, once v{(:) 1is actually known, we might be able to take better

advantage of it and capture in a shorter time,

18
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2, OPTIMALITY

In this chapter, we address ourselves to two problems which are to a
great extent interconnected: the question of the optimality of the pro-
cess we describe, and the question of its limit as € goes to zero, what
we shall call the limit process. We shall also be obliged to introduce

the motion of regular point, and we shall make a brief analysis of non-

regular points.

2.1 The Concepts of Optimality

The approach taken so far is essentially unsymmetric. We have as-
sumed that the pursuer has an information advantage over the evader,
This allows us to ask for a strong type of optimality: we want to use

optimally the information available. We seek a function
w(t;z(t ), vit ,t +e])
! o'’ "0’ o

providing the minimum capture time over all such functions for every
admissible history v[to,t°+e] . Let J(u,v) be the actual capture
time

J(uo,v) = min J(u,v) .
u

Now, if the evader plays optimally, he will choose his control in such a
way as to maximize the above functional, so that

J(uo,vo) = max min J(u,v) .
vV u

In the classical saddle point formulation, one only seeks a control op-
timal against the opponent's saddle point control. Here, we want to know
how to modify the purster's control to take into advantage a possible
deviation of the evader from his optimal control, and we do not require
that there exist o saddle point, although we shall see further in what

sense there is one.

It is interesting at this point to review the exact relation between

the maximin operation and the saddle point.

19
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Let J(u,v) be a continuous functional:
J: PXQ-oR

where P and Q are compact subsets of topological spaces

Then J reaches its extrema on P X Q .,
Let

Arg min J(u,v) = W (v) , Arg max J(u,v) =
u€pP vEeERQ

Proposition: The existence of a saddle point:
J(u*,v) < J(u*,v*) < J(u,v*) Y(u,v) € P XQ

is equivalent to

min  max J(u,v) = max min_ J(u,v) = J(u*
WEPVER vEQUEP

0, x x 0, x *

u (v¥) = u v (u) =v

Proof: (2.1a) implies (2.1) trivially, by the definition o
Let us prove that (2.1) implies (2.la):

by definition of v° R
J(u*,vo (u*)) > J (u*,v*)
and by (2.1)
J(u*,vo(u*)) < J(u*,v*) .
Thus
J(u*,vo(u*)) = J*,vh vVt = vt

where this definition of w2 s valid, if not necessarily

let uo provide the minimax:

(]

m
"2

J(llo,\vo(uo)) S J(ui\r (u\:)) Y u

Apply this with u = u* , and use (2.2):
J(u",v*) = J(u*,vo(u*)) > J(uo,vo(uo)) .

20

A and B .
vo(u) .

2.1)
v

(2.1a)
£ uo and vo

(2.2)
unique. Now,

.
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By definition of v°
/ o *
J\uo,v (uo)) > J(uo,v )
by (2.1)
J(uo,v*) E_J(u*,v*) .
Therefore, all three inequalities reduce to equalities, proving that
min max J(u,v) = J(@¥,v¥) vo(u*) =v*,

u v

Clearly, the proof can be repeated mutis mutandis to derive the rest of

(2.1a), proving the proposition, 1f the mapping J is injective (one

to one), then we also have uo = u* y V. = v¥ uniquely.

The technique we shall use to construct the control u will be to
have the estimating function decrease as fast as possible., However, this
does not guarantee optimality with what we know of the estimating func-
tion. Actually, defined as a sufficient time for capture, it is not even
necessarily unique. We have no proof that another f(z) could not be

found, that would lead to a different strategy.

But assume now that at each instant, E can insure that capture
will not occur in a time less than T(z) . Then, having this function
decrease as fast as possible will indeed be the optimal behavior for P .

T(z) will then be said to be optimal.

Therefore, we are led to the investigation of the maximin strategies,

and of the optimality of the sufficient capture time we have displayed.

2.2 A Result by Gusyatnikov and Nikolsky

In [16], Gusyantnikov and Nikolsky give a sufficient condition for
T(z) as defined here to be optimal, by displaying a S-efficient strategy

for any positive 3§ , for the evader. This condition is the following:

Condition A:

* P, D Q'r YT , complete sweeping,
' : -v_€ep_? T . 2.3
e YucP , IVvERNQ uo= Vo € T QT Y (2.3)
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Condition A says that the element v which provides the complement v -
to uT in P'r * QT is independent of <+t . In particular, if for some

T, 0V is unique, then this v will verify (2.3) for every 7 . -

Under this condition, a $-efficient strategy is displayed, of the

form
vW = v(t,z(t ), ult ~¢,t ]
! o” ! o "o

in terms of the constant complement of u , And for every positive § ,
there is an € small enough so that this strategy insures that capture
will not occur in a time less than T(z(O)) -~ 8% . (This is the defini-
tion of a d~efficient strategy.)

We see then that it should be possible to define properly the limit
of this strategy, which would yield the capture time T(z(O)) . Actually,
we shall try to display an optimal strategy (O-efficient) with a finite

€ , the limit of which as € goes to zero will be obvious,

2.3 Jumps of the Estimating Function

To analyze the variation of the estimating function, we introduce
the concept of jumps of the estimating function (see [22] and [24]). We
know that if

then, because relation (1.3a) is verified, there exists a control u(:)

such that

z(e) € WTO_G if z(0) = zZ,

However, relation {1.3a) might be verified for some smaller < If

1 .

7. is the smallest such T for which it holds, we can find a control

)
uo(o) such that

z2(e} € W_ T(z(e)) =1 -e<T - €.
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We shall say that with the strategy v(.) , the estimating function has a
jump 8T at zo + The behavior we propose for the evader is to make this

jump as small as possible, and, if possible, zero.

At this point, a difficulty arises. At time To , the evader chooses
a control vo[to,to+e] . Assume he can choose it such that the corres-
ponding &t be null., Let tl belong to the interval (to,to+€) . From
z(tl) , under the previous controls, assume there exists a control
v'[tl,tl+e] that avoids a jump in the estimating function as well., We
are not assured that v° and v' agree on [tl,to+€] , so that although

such a control v exists, the evader might not be able to use it and

might let a non-zero jump occur,

To solve, or rather eliminate, this problem, we use Fleming's defini-
tion of a strategy (introduced in [11]). We assume that both players
choose their contrels at time to for the whole interval (to,to+e) and
play them. Consequently, the question of updating the control function at

an interior point becomes irrelevant, This is Fleming's minorant game

or Friedman's lower e~strategy (hence the terminology "lower rule € ").

A continuous strategy will be, by definition, the limit of such a process.

It was proved by Fleming [12,13] that the value of this discretized
game has a limit as € goes to zero., Moreover, this limit is the same
as the limit of the majorant game, defined in the same way but giving the
evader the information advantage (Friedman's upper e¢-strategy). Fleming's
proofs are made discretizing also the dynamics, and allowing, then, for
mixed strategies at each move (and for fixed duration games). Friedman
[14,15], generalizing a work of Varaiya and Lin, gave the proof using
continuous dynamics, and, in [15], for a class of games including ours,

wvith pure strategies,

Therefore, we know our game has a saddle point, and that the limit
of the maximin capture time is the saddle point value of the game. From

liow on, we shall investigate this lower e-strategy. We shall see under

23




what conditions the evader can always prevent a Jjump., We shall take

to = 0 since the game is time-invariant,

2.4 A First Necessary Condition

i We are seeking an optimal e-strategy. If a strategy v[O,eJ is

such that, for n0(t )z € W. ,
o’ “o )

i T T

_ 0 . o

3 b1 b1t -

1 ®(To)z° + S ¢(r)v(To r)dr € int {%TO-G + s Prd%} )

T =€ ~-€
(o} TO

then, by continuity, this is true for some T smaller than To , and

there will be a jump in T(z) . Thus, a necessary condition on v is
that

T

ﬂ¢(To)Zo + S ° ¢(r)v(7°-r)dr € 5{%1 _

T =€ o
o

3 T

j + S ° p d%} . (2.4)
i3 71-¢ ¥

(o)

3 A necessary condition for this to be always possible is

T g

T T
W o+ S °  0(r)Qdr = W+ S °  0(x)Pdr . (2.5)
o o

% T =€ T =€
3 o] o

; Then, because n®(ro)zo € BWTO , W.ro is convex and IQrdr is compact,

s there always exists a control v° such that

’ T, . T
3 (1 )z + T S ° Q)v’(1 -r)dr € a(w + nS ° 0(r)Qd1}
: o O (o} w T

- o -€
To € To

E T
‘-, = a {w -c + s o ¢(r)Pdr} .
3 To T, €

Proposition: Condition (2.5) implies
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T T
wT = C+ S P dr X S Qdr , complete sweeping.
o o

Proof: We first prove that the fact that it is true for every sufficiently

small ¢ , for every 1t , implies that it is true for every ¢ :

T T T-€
WT + S Qrdr (wT + S Q dr> + S Q dr
T=2€ ) =€ ¥ T=-2¢€ r

T=€ T
w + g Q dr + S P dr
=€ r r

T=2€ T~€
"T-€ T
=W 2 d;
r=2¢ + ) Pr r + S Prdr ,
T=2¢€ T=€

and this proves this first claim, Then, taking € = T , it becomes

T T
W+ S Qdr =0C +S P dr ,
T T r
o )

which proves the proposition.

In this case, thus, W:O) = wic»

exist, since we do not require that Pr E)Qr , and if it does, it may not

. But W; may be smaller or not

have complete sweeping.

2.5 Characterization of the Strategies

From the previous remarks, we can characterize the candidate optimal

strategies vo and uo . We need the following simple result:

Lemma: Let W be a closed cunvex set in a Euclidean vector space., Let

A be a closed set. Let { € oW, and let n be a normal to W
at { (normal in the definition related to convex sets; see

[26]). Finally, let A € A be such that

{n,\) = M?EXA (n,p) .

Then A €OA and & ={ + A € O(W+A) . Conversely, if ¢ €
O(W+A) , there is a normal n to W at { such that ({n,\) is

maximized.
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Proof: The first part of the claim is trivial, Let II be the tangent

hyperplane normal to n at € . Assume ¢ belongs to the in-

terior of W + A, Then, there exists a neighborhood of it con-

s

tained in W + A , which contains a &' such that

(n,é'*g) > <n,§—§) = (n,k) ’

and since &' € W+ A, there exists a €' and a ' such that,

P

gtewixleA §'=€'+X'0

Lt e oy

We have
<nok') = (nyg"g') = (nrg"g) + (n,C‘C') .

Now, because W is convex and n 1is a normal, it is an elemen-

tary property of convex sets that
(n,8-¢') >0

and consequently
(0,2} > (n,&'=¢) >(m,2)

which is in contradiction with the definition of )\ . This proves
the direct part. Conversely, let n be a normal to W+ A at

£ . Then (n,t) is maximum, and thus both (nm,A) and (n,{)
are, Hence n is normal to W at € , and the lemma is

proved,

From this fact, we infer a simple characterization of the strategy

that verifies (2.4) under condition (2.5).
o
= ¥ p . . -

Let n_ be a normal to WTo at Qo Q(To)zo Any v (.) veri

fying
%o o
(HO:“ S o(r)v (To—r)dr) = maximum

T =€
(o]

verifies (2.4), i.e., since the inner product is linear

T

g ° (no,ﬂ®(r)v°(ro—r))dr = maximum .
T =€
o
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Thus, v must verify almost everywhere in r € [TO‘G,TOJ

(n , 10 (r)v° (1 -r)) = max_ .
o ° vER
This implies, since the operator #®(r) is continuous, that vo(t) be-
longs to the boundary of Q for almost every t . This is a game theo-
retic version of Contensou's optimality principle. For instances of its

use in differential games, see [18] and [20].

Another important consequence of (2.6) is that the function vo(-)
is actually independent of € . Consequently, its limit as ¢ goes to

zero is simply its limit as t goes to zero, and is given by

* = A pii] .
v rg vmng (no, (TO)V) 2.6)
Similarly, whatever v{(¢) 1is there exists a normal n. to W,rl_,e such
that uo verifies
(ne,ﬂ¢(r)u°(71-r)) = max . (2.6a)

Notice that if v = v° , then n€ = no .

The function uo(-) depends on € and v[O,e] through n€ . How=-

ever, as € goes to zero, and consequently T to to ’ n€ tends to a

1
o
normal nG to wTo , and u (0) to an argument of the corresponding

maximum:

%X
= pr{0] .
u Arg umZxP (no, (To)u)

In particular, if n° is unique, this is independent of v , and uniquely
defined if " P is strictly convex.

2.6 Technical Results

At this point, we need some technical results. We consider the
space K of the convex compact subsets of L , and, following Pontryagin

[24], give it a metric defined by

dist (A,B) = max {dist(a,B) , dist(b,A)} .
a€A bEB
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It is easy to check that this is indeed a distance. It is stated in [24]

that with the induced topclogy, K is complete.

We also introduce the notation (1) = ﬂ¢(¢)zo ) T(zo) =1 and

for v smaller than 1 let the distance from E(t) to W be D(1):
1

= i / = 3 - —_ -
D(7) dlst\g(‘r),wT) ng%{r; le =l = [[¢ -] .

n(t) is uniquely defined in wT , due to the convexity of this set,

Lemma 1: The vector t(t1) is left differentiable at 7T = T, -

Proof: Let
A1 A
s ==Lt om-t ] b = bn)
Al A
M0 = &= [nGes0-1] 0 Sner) =t
and
INTGYD) é ;L-EW' -£ ] is a convex set.
ot TO-ST o )

Clearly, 4Of{(37) has a limit AOf = -ﬂ@(TO)Czo as BT goes to

zero and
DL ®T) = &5+ 0BT .

We also have, since 7(1) belongs to WT ,

o1

T
An(dr) € AW (BT) = (-51—-("(,r -§o) + JL'S ° Qrdr>
T o 70—51

* 1 T
T =BT
o]

This expression for AW is valid because W’r verifies (2.5).

Let KTO be the tangeni cone to WTo - Qo at the origin.
Locally, the boundary of WTO - ;o is contained between KTO
and an arbitrary, fixed cone interior to KTO . Thus, locally,

as ®t goes to zero, g? (WTO-QO) can be made arbitrarily close
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to KTO (which is invariant under scalar multiplication). Also,
the integrals can be made arbitrarily close to QTO and P,r .
o

Therefore, AW(d1) has, locally, a limit Awo :

AW =(x + Q )ip .
o T T T
o o) o)
Let Ano be the closest point of AMO to A§0 . We shall prove
that it is the limit of A :

My (dT) - Ano as 5T -0 ,

Assume ‘the above statement is false., Then, there exists an e*

positive such that for every ©&t , there is a 671 smaller than

8t , for which

_ - *
On(87)) = On lan -an Il > € .

Replacing AWO by its tangent plane at Ano , it is easy to see
that this implies that there exists a fixed £ such that

lag -, | > g -n |l + ¢ . )

Now, in view of what was said previously, we can choose dt such

that for any 871, < 51 , with Ag(arl) = Agl ,
lag -8, ]| < a
dist(Awl,AWo) <a so that dist(Ano,AWT) <a

then, since Anl provides a minimum of "Agl-An" , & € AWGTD
and with the last inequality, and the triangular inequality:

lag,-an || < 1ot ~an | + @
and therefore, with the first inequality

g ~n, | < l1ag -aq | + 20 .

Now P is a fixed number independent of €&v . Thus « can be
chosen smaller than %B , and this gives a contradiction with the

inequality (*). Therefore A&n(5t1) has a limit Ano , and we have
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Lemma 2:

Proof:

dn(r)
d;r = —Amo
=T,

and Lemma 1 is proved,
The convergence of 41 to Ano is Lipschitz in T .

The proof is elementary and cumbersome. It presents no interest

in itself and will only be sketched,

Consider first the closest point An* of AWT to A@o . It is
sufficient to prove the result for the cocnvergence of An* to
Amo , and then remark that by the convexity of AWT , On* is
closer to An than Af to A§0 .

To prove the result for An* , notice that the convergence of
AW‘r to Awo is Lipschitz, from the argument of* the fixed cwnes

presented in Lemma 1.
Then distinguish between two cases:

° Amo is not a corner point., Then show that the directions of
the normals to AWT at On* and to AWO at Ano must agree

to first order, which gives the desired result,

° Amo is a corner point. Then the result comes from simple
geometric arguments on the farthest point where An* can be,
knowing that the boundary of AW'r lies within first order
distance of the boundary of AWO .

In both cases, the result is proved.

Corollary 1: Let n(1) = §{(1) - n(v) , n(r) = “;?;7“ ; then

Proof:

° dn(T) _
N = Tar - AT]o - A§° !
T=To

and if & £0 , f(t) has a limit ﬁo , and is Lipshitz, as
5t =0 .

The first part of the claim is trivial,

Because of Lemmas 1 and 2,
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n(t) = -flo 31 + d1 8(61)

where O0(57) 1is a vector verifying ”5)(61)" =0(01) <pd7.
Thus

In(o)l = ”ﬁOHBT + BT 0(37)
and
I.10 I.10 -
A(1) = - 7o + =27 0(87) + 0(57)
”no” ”noﬂ

which proves the claim, with

Corollary 2: The distance D(1) is left differentiable at T, its

derivative is

_ db(n)

P _ = ADO = IInO" .
=T,
Proof: We have
D(1)~D(7 )
D(T) = "n('r)" , and AD(ST) = ST = = DS(:)
- "n(r)"
57T

which, with the calculation of Corollary 1, proves Corollary 2.

Remark 1l: It is easy to see, by the separation theorem for convex sets,
that n(r) is a normal to -WT . Consequently, if the normals are
unique, Lemma 1 can be proved more directly. However, we want to allow

for the case where Qo is a corner of wTo y and we need Lemma 2.

Remark 2: A proof similar to the one we gave in Lemma 1, using the same
tools, can easily be made to prove the convergence of ne to nO in the

previous section.
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2.7 Sufficiency: A Local Theorem for e-Strategies

Again, let z_ and 1 be such that T(z ) =t :
) o ) 0

C(To) = mb('ro)zo € BWTO () & WT y Vo<

Following Pshenichnyi [25], we define a regular point as a point =z

where
d
e |:e|ist(§(¢),wé\wr =-tb_#0,
(o]

and thus, this number is negative. We have seen in the previous section

that this derivative exists.

Theorem: If z0 is a regular point, under condition (£.5) the evader

can prevent a jump of the estimating function at z_ . Precisely, there
exists an eo such that for any € smaller than eo ’ T(z(e)) = TO - € .
Proof: We want to prove that using v® defined in Section 2.5 there does

not exist any T smaller than To y OT = To - Tl , such that

T T
P(t. )z + S 1 ﬂ¢(r)v°(r -g)dr € W +S 1 7 (r)Pdr
1" o 1 T, =€

Tl‘e 1 T1‘€

N1
=W + S 1 (r)Qdr . (2.8)
T

Tl-e

First, notice that by definition of To , Ot goes to zero as € does,

for any T, that would verify (2.8).

1
For every given s € [0,e], 1let r, = T < s and r, = T, = S -
Also, let v1 provide the maximum in the following product (where
v = (r)v )
r

~ 1l A
max (v_ ,A(t))) = (v ,n(x,))
vERQ ( Ty 1 ) 5 1

where n(tr) is defined as in Section 2,6. Let also ﬁ(rl) = ﬁl . Ve

have, for every s,
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l A o A 1l A 0 A
(Vrl:n]_) - (Vrl’nl> < I(Vrlanl) = (Vro:no)l +

(o] o
167 48,0 = g i)l

0O - o A
I (vr )nl) (vr ’nl>|
o 1
and we show that the three differences on the right hand side are Lip-
schitz in ®t . It is obvious for the third one, and it is a consequence

of Lemma 2 in the previous section for the second one.

The first difference is the variation of the support function of

6*(ﬁ(T)|WT) .

It is proved in [26] that 8* is convex in # , and, as such, Lipschitz
at any point of the relative interior of its domain., This, together with
Lemma 2 and the obvious Lipschitz character of its dependence on WT ,
proves that this first difference has the claimed property. Consequently,

there exists an M independent of 87 such that

(vE B = (v ,8) <mer vs . 2.9)
1 1

Moreover, remember that vo(s) , and thus ﬁl and v1 , are not functions

of €. Thus M can be chosen independent of € as well.
We integrate the previous relation for s varying from O to ¢€:

T
l 1l o] A
( S [vr(rl-r) - vr(rl—r)]dr ) nl) < MedT.

-
Y

We subtract n(rl) (defined as in Section 2,6) from the left hand side
of (2.8), and project on ﬁl , a normal to le at q(Tl) , and compare

with the right hand side, using the lemma of Section 2.4, This gives
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1 o ~
<n(T1) + S v (r=r)dr , 8(1)))

Tl-e

T

T
D(Tl) - { S ! [v;(wl-r) - vg(rl—r)]dr , ﬁl)
T, "€

> ADOST + 0(812) - MedT .

But € can be chosen to make this difference positive for every &7 ,
since &7 goes to zero with € , which proves that inclusion (2.8) is not

verified. This proves the theorem.

Remark: Lemma 2 allows us to use the intermediary of the function &% ’

and thus avoids an investigation into the regularity of the function v .

Under condition (2.5) we have not only proved that the variation of
T(z) is locally optimal, but also we have the much stronger result that
there exists an e-strategy actually yielding this rate of decrease. This
may be considered as very important when it comes to the implementation

of an optimal control.

2.8 Sufficiency: A local Theorem for the Limit Process

In the previous section, we were seeking an e~strategy yielding the
time of capture T(z) . But the existence of such a strategy is not
necessary for T(z) to be optimal, It suffices to be able to find
H-efficient strategies for arbitrarily small &'s . Then, according to
our discussion of Section (2.3), T{(z) is optimal and corresponds to a

saddle point.
Consider a trajectory =z(t) , and let

2 = 1001 )z (1) 2 = ¢, € awTo T(z(O)) = 7

o
and notice that, with To -t=1,

> 3‘*
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T % T §1—0| ST T 31 7, T T
Assume that, for every 1, 2 €W T=e< 7<% .
T T o = 0

We have:

1 1
Oz = = - - - =
T(81) Y- (zT 2, ) € 57 (WT z_ ) = AW(BT) .
o) o
It is easy to check that dist[AW(S7+e),AW(BT)] goes to zero with ¢ .
The space K beéing complete, there exists a limit
M= lim = (w - )
0 875007 TO-ST o/’
so that, in particular, our Corollary 2, Section 2.6, holds without con-

dition (2.5). The above inclusion yields

v =-u €AMW .
T T [o]
o o

With our definition of WT , the pursuer can always achieve this goal.
Thus

*
(AWO+PT )y C QT or 0 € (AWO+P'r ) = QT .
o o o o

With these definitions and remarks, we prove the following fact:

Theorem: At a regular point 2, if the origin belongs to the boundary
of (AWO+PT0) x QTo , the evadexr can insure that the estimating function

will have a jump of the order of ¢ O(e) at most.

Proof: Under the conditions of the theorem, there exists a v* such that
vE = up  cannot belong to the interior of AW
o] o] o

If the pursuer does not choose u?o such that v#o € BAWO , according

to our previous calculations z'r cannot belong to W'r for every T in

a neighborhood of To + Therefore, let us assume that u = u* . Let

v o~ u¥ = Ay €oaw .
T T o )
o o

Ayo is the limit of a function AyT belonging to AWT , of the form
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Moreover, yT can be chosen to belong to the boundary of W . Let
T

zz be a trajectory generated by a strategy (u,v) agreeing with u*,6v*

at To . For instance, u and v constant. Then

1 * 1
5= (zT-Qo) =50 (yT-CO) + 0(d1)

and thus
*
= + 0
2. =V, dt 0(d1) ,

which proves that z:

is at a distance &t 0(d1) of the boundary of
WTO—ST at most. Using the assumption that zo is regular, ADO is
defined and non-zero. The jump of the estimating function is of the
order of
L dist(z , oW ),

Tt

JA\))
o

and thus, with a given step € , this jump is of the order e 0(e) at

most. This proves the theorem.

Assume, now, that this holds in the neighborhood of a trajectory,
except, possibly, at finitely many points on any trajectory. Then, if we
decrease € , the number of steps in a given interval increases like
1/¢ . But if the jumps decrease as ¢ O(e) , the total jump during that
time goes tou cero with € . We say that, locally, we have exhibited a

S-efficient strategy for arbitrary o .

2 What remains to be done is to see whether the set family W'r has
§ the properties required by the theorem. We shall prove, in the next
section, that Pontryagin's alternating integral verifies the following

relation.

Proposition:

B ein
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where KTo is the tangent cone to W.ro - Co at the origin. Since

0€ BKTO , our previous discussion holds.

2,9 Properties of the Alternating Integral

To carry out our program, we need some preliminary definitions and

results,

Definition: A geometric difference C = A X B is said to have complete
sweeping (c.s.) in the direction of n when a boundary point of C + B

having this direction for normal is also a boundary point of A .

Notice that then all such points will have that property. Notice
also that at every boundary point of C there is at least one normal

having c.s. in its direction.

Lemma: For every set A, B and C for which this combination exists,

we have
[A+B)f0)+s)ﬁc = (A+2B) ¥ 2C

where the notation of the left hand side has an obvious meaning.

Proof: From the results of Section 1.6, we would have the left hand side

included in, or equal to, the right hand side, To prove the
equality, we prove that any boundary point of the left hand side
is a boundary point of the right hand side.

To do so, we prove that all three geometric differences have
complete sweeping in any direction in which the last one of the

left hand side has. Once this is proved, the result follows

rapidly:
Let

D, = (A+B) X c D, = (D +B) ¥c D = (A+2B) ¥ 2c .
Consider a boundary point d2 of 02 , and a normal n to D2
at d2 such that (D1+B) ¥ C has c.s. in its direction. Con-
sider then
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Because of the hypothesis of c,s, in that direction, we have

d2 + ¢ € 6(01+B)

and as n 1is also normal to D1 + B at d2 + c ,

dy=d, +c-DbE€ oD, n normal to D, at d .

By the same reasoning, we deduce that

dy+ec=-bE€ A

with d1 = d2 + 2¢c - 2b , and again using the fact that n is a

common normal, that this implies

d, € [ (a+2B) ¥ ac)

Therefore, the only thing we have left to prove is the following

proposition:

Proposition: Let n be a direction in which (D1+B) X C has c.s., then

(A+B) ¥ C and (A+2B) ¥ 2C have c.s. in that direction.

Proof: If we replace the first set of a geometric difference by a set
which has at every corresponding point of its boundary (common normal) a
bigger radius of curvature of "less acute' corner points (larger cone of

normals), no direction can lose its c.s. property.

[(A+2B) ¥ C] has this relationship with [((A+B) C) + B} , thus,
in a direction n where (D1+B) ¥ C has c.s., [(A+2B) % C] ¥ ¢ has,
too. Now, notice that (see Section 1.6) [(a+2B) X C] % c = (a+2B) % 2C .
Take a boundary point d of this set, where n 1is a normal. Let

¢ € C maximize the inner product (n,c) . Then
d + ¢ € o[(a+2B) X ¢},

and comparing the normals, it follows that
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d + 2c € 3(A+2B) .

Thus, (A+2B) % 2C has c.s. in the direction of n . Then, because of
our introductory remark, (2A+2B) ¥ 2C has, too. And by mere similitude,
(A+B) ¥ C as well,

Thus, the proposition is proved, and, consequently, the lemma.

Now, we can prove the last proposition of the previous section.
Notice that, by induction, this property is true for any alternating sum
of two sets of the form

[a+B) *0) +B) ¥ c....) +B) 2 c= (A+nB) ¥ nc n =2,

Consider the set W.ro defined by the alternating integral

T
(o] *
= pP = .
W S [P %o lur
o e,0

We have

1 1 1 (%
_ - C= - —
5T [wwo go] "<6T (wro-ar go) + o7 s Prdr>

10-81
T
* 1 S o
- - ero
o7 T ~87
o

The left hand side can be made arbitrarily close to

n~1l n-1
B ot &0 ) 2 [ T ).
&1 TO-ST 0 ot . r o1 T -87 r
o o)
T T
1 o * 1 o] _ob
+ 51 ST..151 Prdr) 57 ST..$61 Qrdr n=2
on on

which, by continuity of the geometric difference for convex sets (see

[24]) can be made arbitrarily close to
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This set, in turn, can be made arbitrarily close to the right hand side
of the above inclusion.

ok R

)

TS e VAo

Thus, the distance between the two sides of this

inclusion goes to zero with 87T , and we have the property claimed:

- X
KT = (AW0+P'r ) QT
o [o] [o]

the existence of the other limits proving that AWO # E . Notice that
Awo is not necessarily a cone, but has KTo as its recession cone. The
above geometric diiference does not necessarily have complete sweeping.

It has under condition (2.5) as we saw in Section 2.6.

2,10 Sufficiency: A Global Condition

In this section, we shall assume without proof that the strategies
u* and v*

only have isolated simple jumps, so that there always exists
a left continuous definition of them at any point.

a2 ol

O oty A

Should this be not true at some point, only the strong version of

the condition derived would hold, and it would no longer imply the weak

TR

one. Notice that if such a behavior happened at more than isolated

points of a trajectory, we could always replace the "chattering" control

by an equivalent non-chattering one, due to the convexity of the control
sets.

i) The Problem. We have seen that under condition (2.5), if
T(zg)
z(e)

property, etc. However, what may happen is that

:f; ei e< T - e= To >0 .
& o} o

o
Then, the point =z

4]

: o
Ty 1 there exists an €° such that T z(e") = T, "€ Let

u

z', T(z') = T ~ e , and there exists an €' having the same

ST ol 1 L IR

1]

z(e) is such that

rL

»‘
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10 (1%)z° € W
T

o o (2.10)
@(t')z € SWT. T -1 =31>0

or a non~regular point. Otherwise our local proofs would hold in a neigh-
o)

borhood of 2z , in contradiction with the hypothesis. If we rule out,

by assumption, non-regular points of second kind (see next section), then,

as we shall see in the next proposition, relations (2.10) hold at 2°

s .

Similarly for the case of the continuous process, we have seen that
a jump would be of the order of € O(g) because the distance of z_ to
the boundary of WT is of that order. But the proof fails if z(t)
comes arbitrarily close to a point verifying (2.10).

Therefore, we must impose some conditions on points of this type.
And since z0 can be approached arbitrarily closely on the trajectory

without jumps, the only points to consider are those of the following
set F :

F =3[0 W ] N [oGr)x W 1) <° = ¢ =61 >0

being understood that this boundary is to be considered only where it
separates the intersection from a region where T(z) is in the neighbor-

hood of To .

Proposition: F 1is the union of parts of the boundary of C, and of loci

of non-regular points of first kind.

Proof: We assume that ﬂ@(r')zo € BWT, , but an arbitrarily close point
z) does not belong to any W_, , with ' in the neighborhood of 7' .
To T

This can happen in two ways:
® Either: for € sufficiently small, locally we have
awT - w'r° Yt € (1°- €, °+¢) .
Then it is easy to see that z° is non-regular at <t'; moreover,

z:. belongs to the envelope of the WT's , which will be seen to

be the characteristic property of non-regular points of first kind.

® Or else: WT is not defined in an open neighborhood of <T' . But
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if it is defined and has an interior for «t' , it is defined, by
continuity for some larger <t . The only possibility, thus, is
that ' =0 so that wT is not defined for <t < 7' . Then
w,=20C.

Therefore, the problem is reduced to checking whether the trajectories we
have defined penetrate such surfaces. In the absence of non-regular

points of second kind, we have the following result:

Theoren: The necessary and sufficient condition for the estimating func-
tion to be optimal is that the corresponding trajectories do not cross

the manifold F .

ii) Sufficient Conaitions. Sufficient conditions can be derived on

the structure of the game, not requiring the actual computation of the
trajectories. Notice that, in principle, once the sets WT are known,

the manifold F 1is known,

A first, obvious, sufficient condition is F = g . However, this
rarely happens, although one could construct examples that satisfy this

condition.

We can deduce different conditions from another idea: it suffices
to insure that a trajectory arriving at zo would lie in VT'-G a time
€ earlier, Then, there is no jump in T(z) at z° ; thus the problem
mentioned does not occur. This is what we shall call "condition B."

It is insured by the following strong version:

Let zo € F ; there exists a neighborhood of zo for which, if

g v t that

Z 04c € BWT°+6 , there is a ngrmql n_ to W, ooat zg . such tha
the corresponding u and v verify, for every normal n' to WT,
at zo,

T

1 o o ] 1 t
(n 'V (8) uT(s)) > {n V2 (s) < ))
(2.11)

Ytr=1 4+ €~-5 0<s<e

where u'(+) and v'(.) are defined similarly to uo,vo , with n' and

' . This condition, directly derived from

1o (t'+¢€) z(to-e) € WT,

+e ’
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actually means that, judged according to the sets VT, , the strategies

o ©
(u,v’) are not worse, for the evader, than the optimal pair (u',v') .

This condition is still complicated, but two interesting forms can

be derived from it, easier to check,

The first one is condition A of Gusyatnikov and Nikolsky (see Section

o
2.2), In that case, a u corresponds to vo such that
W-vlepr %q Vr
T T T T
insuring that condition B is satisfied.

The superiority of this condition is that it comes the closest to
dealing with the raw data of the problem. This point is investigated in
more detail in [16]. Its main restriction is that it requires PT ;>E>QT
for every <+t , which gives the pursuer an excessive superiority over the

evader.

Another form is the weak version of (2,11), valid with our assump-
tion on the regularity of the optimal strategies. Then (2.12) is insured
by

(n',v:,-u:,) > (n',v%,—u;,) (2.11)

which can be derived as a limit of (2.11) or by an argument similar to

that of Section 2.8, Notice that if we allow "safe contact,” then the

strict inequality in (2.11) can be replaced by "greater than or equal to.'

*

Finally, this is verified if v can be determined as a function of

x

z only, independent of T . Then, v' =v' , and as u'

provides a
minimum in the expressions of (2.12) (or (2.11)), condition B is satis-
fied. This form is also a structural cordition, not requiring that F

be explicitly found.

2.11 Non-Regular Points

i) Characterization. Since we have been obliged to assume that all

the points of our trajectories were regular, it is interesting to see in

more detail what happens at a non-regular point. (We prefer to keep the
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terminology singular for another type of point we shall introduce in

Chapter 5.)

A non-regular point, we recall, is a point where

E‘% dist(g (1) ,wT)

0 Q(To) = ﬂ¢(ro)zo € BWT

=T, 0

ZAILT S i Y i S &

C(t) € W_, Vr<<q
T o

We can easily verify the following fact:

Proposition: At a non-regular point, the gradient of the estimating

function is infinite.
Proof: Consider an inverse image z'(t) of 7(1) by
20 € oo m  1e'@) = 7.

It is possible to choose it in such a way that the limit of the line
(zo,z') does not reduce to Qo when acted upon by the operator nQ(To) .

Thus, the length of h(t) =2' - 2, verifies
ol = MDD with M) <M as T o .
Now, as h goes to zero, we have

T(z) - T(z') = 6¢ = {(V(2),h) + 0(67°)

where WVI(z) is the gradient of T(z) . Now, let fi = H%H ,

2
(V1(2),8) = ?1::())(3:1; >zt 4 060 .
[o o]

Thus, if ADO is zero, the inner product is infinite, which proves the

proposition.

ii) Classification. To go further in the analysis, it is convenient

to distinguish between two kinds of non-regular points:

e First kind: €(tr) does not penetrate WT , and more precisely,

there exists a positive € such that

k) b -
(1) £ WT Yt € (To e,10+e) T # Ty ¢

14




. ® Second kind: the above property is not verified. {(t) may either

§ belong to the boundary of WT for a finite interval in 1 , or

. penetrate into the interior of W'r .
The interest of this classification appears in the following fact:

Proposition: A non-regular point of first kind lies on the envelope of

the sets V .
T

Proof: This immediately follows from the definition, transformed in

b TEenBwh WA T FA S A

terms of =z and V .,
o} T

This envelope is clearly a discontinuity in the function T(z) .
This is consistent with our remark that the gradient of T(z) is in=-
finite. Actually, the envelope is a barrier according to Isaacs. What

we have here is a mere statement of Isaacs' envelope principle (see [18]).

iii) Properties of Barriers. Such an envelope is a closed manifold

(see also [25]). Thus, if a trajectory reaches it from regular points,

the set of regular points on this trajectory is open.

T v, ST Tl ST I 31 4 s F T e S TN

Moreover, if this trajectory comes from "outside" the barrier,
namely, from the exterior of the union of sets, the envelope of which is

the barrier, then it has a finite jump in the estimating function,

But because of the previous remark, the proof of Section 2,8 holds

along the trajectory, yielding the following result:

Theorem: Under condition B, trajectories generated by the limit process
never cross a locus of non-regular points of first kind that would induce

a jump in the estimating function.

Finally, we have the following result, not really needed in a theory

of the optimality of the process, but interesting because it corresponds

B to the cases which are usually met:

Theorem: If along a barrier as defined in this section the normal to

- WT is unique, then a trajectory generated by the limit process having a

point in the barrier lies completely in it.

Proof: At a point where the normal to WTO is unique, the cone KTo

is a half space, and its boundary the hyperplane tangent to wTo . Then

- 45
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GAWO is a hyperplane parallel to BKTO .

The fact that the point is non-regular means that
AD :.-.A - A =
o o Co 0

and since Amo lies, by definition, on BAWO , this is true also of

AQO . Now, consider
ﬂ¢(To)Z(0) = n0(t ) (cz_~u'+v’) = VTO uTo AQO .

If v* and u* are chosen according to (2.7) and (2.7a), v:o - uio
belongs to béwo . As Ago does, too, we see that n®(ro)2(0) is either

zero or parallel to BKTO , and thus to BWTO .

In both cases, this implies that éo is parallel to BVTO . As we
know that zo lies on the envelope of the family VT , We see that under

the continuous law, 2z vremains on this envelope.
This proves the theoren.

iv) Non~Regular Points of Second Kind. Non-regular points of

second kind appear as points where the estimating function has an in-

finite gradient without being discontinuous.

We propose the following example, which shows that such points can

exist, and gives scme indication of what they actually represent,

Consider a two-dimensional game where the geometrical space is the
whole state space; therefore =n =1 the identity. Let the dynamics be
defined by

- -~
C =( ) ¢, positive real numbers
o =a

and P =Q , so that 1?"r * Q'r = {0} . Finally, let the capture set C

be the disk centered at the point
o
x=0 y_-w

and of radius £ =«/h?+0?/w so that its boundary goes through the point
(1,0) .
46
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Since PT % QT = {0} , WT is constant and equal to C : with the
proposed strategles, the two players' actions cancel each other and the

state follows the free dynamics of the system. The transition matrix

of C 1is
‘a": '\:’;
e cos3 WwT -2 Siuoey g
(1) =
-0t -QT
e sin ot e cOos WT

so that for a fixed z , {(1) = ®(7)z describes a logarithmic spiral

as T variles.,

The capture circle has been chosen such that it is the osculating
circle to the spiral through that point at ¢ =1, y =0 . As a conse-
quence, this whole spiral, outside of C , is a locus of non~regular

points of second kind.
In fact, for a point
as
e cOS ws

Qs
-e sin ws

we have
e~ 0(T8) e w(t-8)
E(t) =
e-a(T-‘s) sin w(t~s)
and thus
172
D(1) = [e-zoz('r-s) + 27»c_z e-a('r-s) sin o(1-s) + %]
W
_Jazmz
w [ 2
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It is a simple matter to check that

1) for t<s D(1) >0, and D(s) =0
db(t) _

2) for Tt =s =0
dvt

. a2D(1) a>p() ]

3) for T=s ——%==0 and ———3—=—0f»Jaz+<n2<o,
dx drt

establishing that

1) T(z) =s

2) z 1is a non-regular point

3) it is a non-~regularity of second kind
which is what we wanted to show.

Notice that T(z) = s proves that the gradient of the estimating
function has a finite component tangent to the spiral. Since this gradi-

ent is actually infinite, it is normal to the spiral.

This finishes our discussion of non-regular points of second kind.

2.12 Conclusion

We have characterized directly the controls u® and vO , and found

a direct construction of their limits u* and v* .

An interesting feature is that while u” is, under some conditions,
optimal against every v , it was found that its limit u* often does not
depend on v . This is true if the sets WT do not present corner

points, except, possibly, for countably many values of < .
Notice also that
*
(n, 70(7) (v=0)) = ((n¢(7)) n,v-u)

where K®(T))* is the adjoint operator to n®(t) . Let, then, ) =
P *
(“°(T)) n, and it is seen that the controls u¥ and v  must be such

that




LR

i (M2@*,v*)) = min max (A2 (u,v))
u v

é - vhich bears a close resemblance to the Pontryagin Maximum Principle.
4 , Because of the possibility of the occurrence of corner points in the

1 f Sets WT , the variation of )\ may be difficult to describe. ) may even

be non-unique. And it is noteworthy that the geometric subtraction can
introduce corners without any of the constituting sets having one (and

: still without violaiing condition (2.5)).

With regard to the question of the optimality of the process de-
scribed, we have found that under condition (2.5) the time T(z) can be

optimsl for an e-strategy, and a fortiori, of course, for the limit pro-

o owhn i o

3 y cess, But this condition is not needed for the limit process, and we
have found that the alternating integral is, as far as local behavior is

concerned, the optimal capture set.

B R N i ot

s o

However, the corresponding trajectories can still fail to be op-

timal by crossing a barrier or penetrating the "non-usable part" of the

P capture set., Actually, in all instances known, it is the second phe-

e DT S R e

nomenon that occurs., As will be seen in the second part, this leads to

. state constrained optimal trajectories along a ''safe contact." Condition

{ B is sufficient to prevent this from happening.

In addition, all sufficiency conditions must exclude non-regular
peints of second kind. Apart from that, all conditions are both neces-

sary and sufficient,

- oo ss sk o 2RO s I T




3, MULTISTAGE GAMES

In this chapter, we consider multistage games, that is, games in
which the system to be controlled is in discrete time, governed by a

difference equation. We shall briefly discuss the discrete equivalent of

system (1.1), and then turn to the system theoretic formulation, with
3 unbounded controls, for which the present technique turns out to be par-

ticularly well adapted.

3 3.1 The Discrete Game

In a very classical way, the system (1.1) can be transformed into a

discrete one, letting

z(ne) 2 z2() eC =00 20
yields

z(n+l) = ¢z(n) - u(n) + v(n) (3.1)
where

u(n) € P v(n) € Q.

P and Q are compact convex sets derived from the original one idn a

trivial way. Define

P_ = n¢"P Q = nd'qQ .
n n

And as in the first chapter, consider the sets

o = (( (((C”)o)i Qo) * Pl) *Q )+ Pn—l) * 9

(9 =<\ % &
Wn =(C+1= Pi>~§(}i

(o)

n

Rt ks R e Ul a

and the sets Vn and V defined by

v = (z|ne"z € w)
n n

vi“’) = (z|1"z € wr(l°°)} .

Kl e Sty b LR v e A R

(e

n

aye the sets of capturable points,

And we claim that Vn and V

50




SR S LR g R A E S

VT L

e B e A

Ao

it

yar e whd s e T TR aaty

TR T e e
«

s i . s s A A7 e T

& b i

respectively, when v(n) is known of the pursuer as step n , and when

the whole future history v(:) is known.

The proof for Vn is rigorously the same as in Chapter 1; there is

(9 .
n since the situation

is slightly different: we add steps together instead of letting the

no need to repeat it., We prove the claim for V

step grow up to the capture time.

7z (n) = 10"z(0) - 2 uk(n—l-k) + E vk(n—l-k)

k k
7T = .
K ¢ u Vi ¢y

We have

where

ne>

u

For simplicity of notation, let

?, = ﬁuk(n—l—k) 9, € szk
n 2 vk(n-l-k) ‘{/n € ka .

For capture to be possible in n steps, it is necessary and sufficient

<=
1}

that there exist a e, such that
n
¢ - c
®"z(0) cpn+1yn€ )

or equivalently, that

n | N
ﬂQZ(O)+Vn€c+:Pk'

And, for this to be possible for every Wn , it is necessary and suffi-

cient that
n - -
1(¢z(0)+:QkCC+$Pk
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or equivalently that

'z (0) € (C + Zj Pk> - z': Q

which proves the claim.

3.2 Capture with No Information on v

In the continuous case we had the possibillity of letting ¢ go to
zero, Here, if we want to have the information advantage of the pursuer
vanish, the only thing we can do is assume that he has no information on
v . Then, as we want capture to be possible whatever v is, it must be
possible if the evader plays ''as if he knew" the pursuer's control. Thus,
we are actually led to the study of the majorant game, which was n