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FOREWORD

This report was prepared by the Department of Metallurgical
Engineering, The Ohio State University, Columbus, Ohio. ‘the
principal investigator for this project was Dr, Mars Fontana,
under Contract F33(615)-69-C-1258. This contract was initiated
under Project No. 7312, "Metal Surface Deterioration and Protec-
tion," Task No. 731202, "Metal Surface Deterioration,” during
the period October, 1969 through October, 1970, This
work was administered by the Advanced Metallurgical Studies Branch
of the Metals and Ceramics Division, Air Force Materials Labors-
tory, Wright-Pattcrson Air Force Base, Ohio, under the direction
of Dr, C., T. Lynch and Dr. H. B, Xirkpatrick.

This mamuscript was released by the author in Jamusry, 1971,
for publication.

This technical report has been reviewed and is approved.

» ’

C., T, LYNC

Chiasf, Advanced Metallurgical Studies
Branch

Metels and Ceramics Division

Air Force Materials Laboratory
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ABSTRACT

Activation energies of 6-7 kcal for stress corrosion cracking
were determined for unalloyed titanium and titanium alloys Ti-f-4
and Ti-8-1-1, and AIII in CHqoOH + HT1 + H>0 and CH;OH + Bro solu-
tions, suggesting that either chloride ion attack or titanium hydride
formation describe the cracking mechanism, Chemical metbods, to .
reduce the water content of methanol to low levels and tc accurately
determine these levels, have been developed to examine the effect
of small water concentrations on the stress corrosion cracking be-
havior of titanium in methanol enviromments. The effects of grain
size and state of stress (including uniaxial tensiom, biaxial tens:io:
combined bending-torsion, and notched bars) on crack initiation,
crack propegation, and crack mode are being evaluated for titantux
alloys in methanol enviromments. Studies on the effect of grain
size of Ti-6-4 on stress corrosion cracking in CHgOH + Ho0 + MaCl
solution show that increased resistance with decreasing grain size
is due primarily to increased crack initiation time,

Work on the fundamental aspects of stress corrosion cracking of
high-strength steels includes studies of effects of structure on
crack velocity, hydrogen interactions with the steel, acoustical
emission, dissolution of iron carbides, and growth kinetics of passive
filws, Crack velocity in a 250 maraging steel was changed substanti-
ally at the same strength level by aitering the structure. Variations
in crack velocity are related to microstructures determined by the
electron microscope, Studies on hydrogen absorption show that the
kinetics of hydrogen entry depended critical’y on the potential as
it relates to the chemical identity of arseaic-containing species,
Analysis of permeation transients for Fe-Cu alloys shows clear indi-
cations of variations in hydrogen trapping related to aging-related
coherency strains, Growth kinetics of passive films at pH 4 and €
are reported and optical constants are found to exhibit wider varia-
tions at these pH's than at pH 8. The dissolution of the film was
shown to increase with decreasing pid.

Work on the delayed failure of high-strength steels shows that
ductility is significantly affected by specimen size, hydrogen charg-
ing conditions, and extent of prior deformation, Failure times de-
creage with increase in charging times.
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SECTION I
IFTRODUCTION

This Technical Report covers the period October 1969 - October
1970. The program is aimed at developing fundemental informatiorn
concerning tie nature and control of stress corrosion cracking with
primary emphk.sis on titanium alloys and high strength steels,

Pursuant to the coupling aspects of this program, five lectures
ard eeminsrs were held at AFML by our staff. A post-doctoral fellow
continued his research at AFML.
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SECTION II
TITANTUM AND TITANIUM-BASE ALLOYS (F. H. Beck)

The objective of this program is to obtain a better understanding
of the factors resporsible for stress-corrosion cracking in titanium-
base alloys. Invesiigations described below are designed to characterize
various titanium-enviromment stress~cracking systems. The effects of
microstructure and state of stress on crack initiation ard propagation
are important parts of these studies.

A. STRESS-CORROSION CRACKING OF UNALLOYED
TITANIM IN METHANOL SOLUTIONS (C. M. Chen)

1. Aims and Significance of Work

Stress-corrosion cracking studies of titanium alloys Ti-8-1-1
and Ti-6-4 in methanolic solutions have been presented in previous pro-
gress reports. This report is concerned with stress corrosion studies
of unalloyed titanium (RMI-70) in CHL0H + 0.17% HCl + X% H20 solutions,
Results show that when the water content of the solution is greater than
1.6% there is no stress corrosion susceptibility, and below this value
intergranular failure occurs in about 1.5 hours (Fig. 1). The crack-
ing mechanism is discussed in relation to the activation energy and the
effect of gra.a size on susceptibility. An activation energy of about
5.7 kcal may be due to the diffusion of the chloride ion in the methanol
solution. The linear relation between failure time and D™% (where D is
the grain size) suggests that dislocation pile-ups, resulting from
external loading, cause stress concentrations at the grain boundaries
and thereby play an important role in the intergrarular cracking suscep-
tibility.

2. Experimental Procedure and Results

The legs of unnotched U-bend specimens (0.6 mm x 7 mm x 77 mm)
were placed in short lengths of 25.4 mm glass tubing which served as
stressing jigs. These assemblies were plac=d in the test solution and
the temperature was controlled to within +0.1°C with a thermoelectric
temperature regulator. The specimens were oriented with the long axis
perpendicular to the rolling direction. Grain size was adjusted by
repeated straining (0.3% or 1%) and amnealing for various times at 815°C
in evacuated vycor capsules. Solutions of CHZOH + HC1l + H,0 were pre-
pared from Baker absolute methanol, Applied Chemical reagent grade HC1,
and double distilled water. The specimens were mechanically polished
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rolling direction; specimen stressed to yield).
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through 600-grit emery and then rinsed in acetope and methanol prior to
stress-corrosion testing. ‘The compositior of the umlloyed titanimm is

stated below.
Composition of Umalloyed Titanium
Zlemert % Element
c 0.02
R 0.011
Fe c.31
0 0.30%
H 103
a. Effect of Water Content at Constant

HC1 Concentration of CH.OH Solution
on Stress Corrosion Susceptibility

Failure time vs. water content is shown in Fig. 1. iben
the water content is less than 1.3% the failure time is short--approxi-
mately 3.5 hours. When the water content is greater than 1.8%, the
specimens did not fail in two months. The critical water content is
about 1.6%. Cracking is intergramlar as illusirated in Fig. 2.

b. Apparent Activation Energy of
Stress Cracking
As is shown in Fig. 3, the activation energy was deter-
mined in the temperature range from 0° to S0°C. When the texperature
was increased, the failure time was decreased and there was a linear
relationship between the reciprocal temperature and the logarithmic
failure time. The activation energy is about 5.7 kecal. This value is

almost the same as those determined for Ti-6-I and Ti-8-1-1 alloys shown

in Fig. b

c. Effect of Grain Size on Failure Time

1)

]
L}

AP T

Specimens were stress corrosion tested in CH,0H = 0.28%

H-0 + 0.17% HC1 solution at 40O°C. Figure 5 shows thzt as the grain size
of the specimen was increased, the failure time was decreased. There is a
linear relationship between the failure time and D% where D is the grain

diameter.

3. Discussion

The effect of water content in methanol solution on the
stress-corrosion cracking of Ti-6-U was discussed in detail in Technical

:
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Report APML-TO-2. When the water content is below i.6%, the passivator,
H.0, is insufficient to passivate defects in the oxide film for speci-
mens stressed in the solution. These defects are believed to he in the
axide and in the cracking paths located in the grain boundaries. The
octivation energy for stress-cracking is about 6- 7 kcal for unalloyed
titarium and titanium alloys Ti-6-k or Ti-8-1-1. The stress corrosion
mechaniem is discussed as due to either titandum hydride formation or to
chioride ion attack. Diffusion of hydrogen in g-titanium is much easier
<“han in o-titanium, and the diffusion coefficients in these phases cbey
the following equations: *

v b hediidag f

Dy = 1.95 - 107° exp(- éﬂ‘%ﬁ)azlsec (1)
D =18 - 102 exp(- En%ﬁ)az/m (2)

Although Ti-8-1-1 and Ti-6-I alloys are a-alloys, it is possible to
have g-phase plus irtergranular g-phase by appropriate heat treatments.
However, the unalloyed titanium shows only a-phase, and the measured
activation energy is only one-half of that of the diffusion of hydrogen
in the a-phase. On the other hand, the activation energy of diffusion
for the chloride ion in aqueous solittion is 4.2 kcal. Therefore, it is
not unreasonable to assume that the activation erergy for stress crack-
ing is due to the diffusion of chloride ions to the crack apex in the
methanol soclution in the case of the un=lloyed titanium.

Av——

In Petch's! relation, the fracture stress is proportional to
D%, According to Eshelby, Frank, and Nabarro,Z when the disiocation
source is located at the center of the grain, the mmber of dislocations
that can be accommodated in the grain is,

(A IR PRI o ?
cab il ol e by

_ kntgD
= (3)

n

where D is the grain diameter, and Tg is the average resolved shear
stress which is assumed to be equal to the applied stress 14 minus the

average internal stress 1; to overcome the resistance to dislocation
motion; i.e., 1 = 13 - 71j. The stress concentration due *o n dis-
lpcation pile-ups is n times the average resolved shear stress; i.e.,

Lkt 2 o i n i

¢ £ > o - Ly ¥ A8 R
LA od YR ) T A i e AR RN e ) N AR CGER G S A DA TSN N 5 g Y R tSaraat &
g
i tes PEALA A X
5 " 5 X . ‘ L) PO
* iy Y o & R RSSO h 4 e K LA \ W b B ’ i

knt3D

n's's = 1 .

(k)

*From R. J. Wasilewski and G. L. Kehl, "Diffusion of Hydrogen in
Titanium,” Metallurgia X1, 50, 301 (November, 1954).

9

b e e 0 s IR Lo AT St
Y Y L T ST | D TP R D




SLUA Ry v (0 LY

AR AT ICHTH

TN W ek R E

KA AL SR £ 1 (3F Prasg 2 odn A 5

Sk T ey HAN

oy sy o bl

7

Yielding is assumed to occur <hen a critical shear stress, 1o, which is
independent of the grain size, is produced at the head of the pile-up.
If the shear stresses &re converted to uniaxial tensile stresses such
that :3 = 0a/2, 14 = 0;/2, and 1, = 0,/2, then, the critical shear stress

is gliven by

vtk(O'a'O’):_: *D
i - oe (5)
8Gb
Therefore,
R e (6)

In addition tc this shear stress, nig, there is & field of
normal stress at the head of the dislocation pile-up according to Stroh's®
analysis of the stress distribution. Stroh showed that the tensile
stress normal to the line OP in Figure 6a is given by

= .13:(%)% 15 sin 6 cos% (7

The meximm value of ¢ occurs at cos ¢ = 1/3 or 6 = 70.5°; i,e.,

w2 ) ®

Theref.re, when the grain size becomes laryger, the normal stress concen~
tration at the grain boundaries becomes larger and is proportional to
D%*. B~bertson and Tetelman' have shown that there are linear relations
between failure time and D™% in the system of dbrass in mercury and brass
in Mi; enviromment. In the unalloyed titaniuwm the failure is intergranu-
lar and the linear relation between the failure time and D% suggests
that the normal stress concentration caused by the dislocation pile-ups
at the grain boundaries is related to the intergranular susceptibility
as schematically shown in Fig. 6b.

B. STRESS CORROSION CRACKING OF Q (UNALLOYED),
a + 3 (Ti-6-4 and Ti-8-1-1) AND p-III
(Ti-11.5Mo-62r-4.5Sn) ALLOYS IN METHANOL
SOLUTIONS

1. Aims and Significance of Work

Stress corrosion cracking of unalloyed Ti, Ti-8-1-1, and
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Ti-6-4 ({.e,, <z and a + B alloys) have been investigated in methanol +
HC1 + Y20 solutions. This report is concerned with stress corrosion

tadies of 8-IIY {B-phase alloy) in methanol + HC1l + H>0 solutions and
unalloyed T%, Ti-6-4, Ti-8-1-1, and g-IIT alloys in methanol + Bro
solutious,

Ir methanol + 0,17% HC1 + X H20 solutions the water content
necessary to prevent cracking of g-III was determined to be greater
than 1,5% and the activation energy for cracking in the same envircn-
ment was about 5.5 keal; this activation energy is essentially the same
3 that obtained for unalloyed titanium and the a + f alloys. This
suggests that the diffusion of chloride ion in the methanol solution
plzys an important role in the cracking process,

Tests on unalloyed Ti, Ti-6-k, Ti-8-1-1, and p-IIT alloys in
methanol + Bro solutions show that very small amounts of bromine will
cause stress corrosion cracking; e.g., with only 5 x 107%% Br,, Ti-8-1-1
failed in 2-3 mimites, heat-treated p-III failed in 5-7 mimutes, and
Ti-6-4 failed in 20-50 minutes, When the Br, content was less than
5 x 10°°, all the alloys failed except as-received Ti-8-1-1 1 R,D, and
the heat-treated p-IIT allcys.

Metallographic observations showed that when unstressed speci-
mens of unalloyed Ti and B-III alloys are dipped in methanol + Brp
solution, bromine attacks the grain boundaries, and after extended
times these materials become somewhat porous and brittle., X-1ay analy-
sig for the unalloyed titanium after long exposure times showed a
pattern for titanium only.

s

2. Experimental Procedure and Resultis

The legs of unnotched U-bend specimens (77 mm long x 7 mm
wide) for unalloyed T¢ (0,64 mm thickness), Ti-8-1-1 (0.25 mm), Ti-6-4
(C.25 me) were placeu in short lengths of 25.4-mm glass tubing which
served as stressing jigs; similar type specimens of $-III alloy (0.13
mn x 6 mn x 40 mm) were stressed in short lengths of 17-mm glass tubing.
All specimens were oriented with the long axis perpendicular to the
rolling direction, pH-III specimens were heated at 1700°F for two hours
followed by a water quench to assure an all B microstructure.

All specimens were mechanically polished through 600-grit
emery, rinsed ir acetone, and dipped in methanol prior to stress-
corrosion testing, Specimens for metallographic observation were rough
polished with 6 um diamond compound followed by 0.05 um alumina, and
etched with Kroll's solution.

Test solutions of CH3OH + HCl + HoO were prepared from Baker's
absolute methanol, Allied Chemical reagent grade HCl and double dis-
tillec water, Solutions of CHaOH + Br> were prepared from Baker's abso-
lute methanol and purified btromine,
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a. Effect of Water Content at Copstant
HC1 Concentretion of CH3OH Solution

on Stress Corrosion Susceptibility

Failure time vs, water content is shown in Fig. 7 for
the as-received material of Ti-8-1-1 alloy. The critical water content
is about 0.6% H-0; specimens failed in 10-1000 minutes below this water
content and in 1000-10,000 minutes or more when the water content was
increased above 0.6%. Failure time vs. water content is shown in Fig. 8
for as-received material of B-III alloy. The failure time increased
from about 20 mirmtes to about 100 mimutes when the water content was
increased from 0.28% to 1.3%; however, the failure time was greatly in-
creased when the water content was greater than 1,5%,

b. Apparent Activation Energy of Stress
Cracking of g-III Alloy

Figure 9 shows the activation energy for B-III alloy de-
termined in the temperature range from 0° to 50°C. When the tempera-
ture was increased, the failure time decreased; the activation energy
is about 5.5 kcal, This value is almost the same as those determined
for unalloyed Ti (5.7 kcal), Ti-8-1-1 {7.1 kcal), and Ti-6-4 (6.3 kecal).

¢c. Stress Corrosion Cracking in CH,0H + Bro
solutions

The effect of bromine concentration in CH30H on SCC is
shown in Fig, 10a for Ti-8-1-1, ir Fig, 10b for B-III, in Fig. 1Oc for
Ti-6-4, and in Fig, 10d for unalloyed Ti. In all cases these are for
ag-received materials (either with or without mechanical polishing
through 600-grit emery paper). Failure times are plotted against the
logaritimic concentration of Brp., In Ti-8-1-1 alloy the curve shows a
minimum at about 0.5% Bro. When the concentration of Br. was decreased
the fallure time increased and there appears to be a linear relation-
ship between the failure time and logarithmic concentration of Brs., The
specimens without mechanical polishing are more susceptible than those
with mechanical polishing; the B-III alloy shows the same tendency.
Upon decreasing the Bro concentration, the failure time decreasea at
first and then increased linearly with the logarithmic concentration.
When the concentration was reduced below 5 x 10~%% Brz, the specimen
did not fail in 4k hours. Specimens without polishing are more sus-
ceptiole than those with polishing, The failure time of Ti-6-4 was
not greatly affected by Brz concentration sbove about 0,05%; reducing
the concentration below 0,05% increased the failure time linearly with
logarithmic concentration., When the concentration was below 5 x 10"%%
Bro, the specimen did not fail in L4 hours. Unalloyed titanium speci-
mens without polishing showed the same tendency as Ti-6-4, Specimens
with polishing showed minima similar to the Ti-8-1-1 and B-III alloys.
When the concentration was below 5.10~%% Bro , the specimens did not
fail in 100 hours,
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The curve for heat-treated 2-IIT zlloy is shown in
Fig. 10e. This curve shows the same terndency as for the Ti-6-h ailoy.
When the concentration was below 5 x 10™°% Bro, the specimen did not
f2il in &% hours.

d. Metzllograpkic Observations

1) When unstressed specimens of unall titanius were
dipped in a soiution of methanol + 1% Bro, bromine attacked the grain
boundaries; witk increzced exposure time some of the grains were dis-
solved out and the material bzcame porous and very brittle, Figure 11
shows the pcrous material after 68 hours exposure in the solution.

Thiz porous material was ground to powder for x-ray zmalysis to iden-
tify the corrosion preducts., However, it showed a2 patterm for titznium
only.

2) When tke unstressed specimens of heat-treated S-III
alloy were expesed to a solution of methanol + 0,05% Bro, broamine
attacked the grain boundaries and the material became very brittle.
Fignre 12 shows the grair boundary ccrrosion of B-III exposed in the
solution for 164 hours. Wwhen external stress wes applied, transgram-
lar and intergramlar SCC occurred as shown in Fig. 13. %hen the ex-
ternal stress was very high the cracking was almost entirely trans-
granmular and appeared to follow some characteristic crystal plane., The
cracks cr-!::ssed the slip lines (formed by plastic deformatiion) as shown
in Fig, 14,

3) The heat-treated S8-III specimen in methanol + 0,1
HC1 + 0,28% H-0 failed by both transgramilar and intergramilar crack-
ing. As shown in Fig. 15 the transgramular cracking follows some
characteristic crystallographic direction.

L) The long axis of the Ti-8-1-1 specimen was cut
parailel, at 45°, or perperdicular to the rolling directicn, and the
stress was applied parallel to the long axis of the specimen, As
shown in Fig. 16 cracking follows, more or less, the rolling direction.

3. Discussion

In CH50H + 0,17% HC1 + 0.29% H20 solution, the activation
enery of the cracking process for unalloyed Ti, Ti-6-4, Ti-8-1-1, and
B-III alloys is about 6-7 kecal regardless of the phases present. If
stress corrosion susceptibility of these alloys is due to titanium
hydride formation by supersaturation of hydrogen in the material, the
activation energy for the cracking process should be determined by the
hydrogen diffusion process, Therefore, the activation energy should be
different: 6.6 ¥cal in O-phase and 12.4 keal in B-phase according to
Egs. (1) and (2) for the diffusion coefficients. This mey suggest that
the diffusion of the chloride ions in the solution plays the iniportant
rcle in the stress cracking process,
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In methanol + Bro solution there is no doubt about the reaction
of bromine with titanium and its alioys to form TiBr, which is very solu-
ble in the methanol solution., Trkerefore, it is reasonable to assume that
the process in the intergramilar stress corrosion cracking is due to
bromine attack as follows:

Ti + 2Br> —»TiBr,

dissolved in methanol (9)

This reaction occurs a2t the grain boundary ir the absence of an external
stress. However, fast transgranular cracking of stressed specimens could
result from bromine attack, titanium hydride formation, or stress sorp-
tion processes. This will be investigated in future studies.

4, Future Work

It is improbable that a universal model can be used to inter-
pret all stress corrosion phenomena for titanium and its alloys, In
aqueous and methanol solutions there are many controversies concerning
titanium hydride formation and chloride ion attack. Furthermore, it is
worth noting that stress corrosion susceptibility exists in pure carbon
tetrachloride and mercury; in other words, without hydrogen or chloride
ions, Therefore, the causes for the susceptibility may be different in
the various envirommental systems. Further research is designed to
examine these variables, as follows:

a, Susceptibility due to titanium hydride formation
will be intensified in @ and O + B alloys by
charging hydrogen, either by absorbirg from
hydrogen gas or by cathodic polarization. Titan-
ium hydride is expected to be formed at the slip
planes in @ alloys and at O-B grain boundaries in
a + B alloys.,

b. Susceptibility due to chloride ion or anodic dis-
solution will be examined in P alloys; titanium
hydride formation will be more difficult for speci-
mens treated at the corrosion potential or at anodic
polarization potentials. Also, the solubility of
hydrogen in P-phase is very large.

c. OStress relaxation experiments direct observation of

the cracking provess by microscopy, and investigations
of susceptibility in a gaseous environment are planned.
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C. EFFECT OF GRAIN SIZE ON STRESS CCRROSION i
CRACKING OF Ti-6-4 ALLOY IN METHANOL-H-0 :
NaCl SOLUTIOK (I, J. Loomba)

i
1. Aim and Significance of the Work i.

;%' Most of the work reported in the literature on stress corro- g‘
< sion cracking of titanium and its alloys has been devoted to examining i
5-' the crack propagation path and the effect of different experimental

- variables on failure time, Section II-A reports the effect of grain -
size on failure time for unalloyed titanium in CHsCH + 0,17% HC1 + 0.28% %

H-0 solution,

The aim of this investigation was to determine the effect of 3
grain size on crack initiation and crack propagation times, crack initi- :
ation and propagation paths, and the effect of stress on crack initia-
tion and propagation times.

2. Experimental Procedure .-
a, Materials i

The experimental work was carried out on 0.025-inch !
thick Ti-6-4 alloy sheet obtained from Reactive Metals, Inc, The L.
composition of the alloy and physical properties of the as-received
material are given in Table I, Strips were sheared from the alloy [
sheet with rolling direction parallel to the length of the strip,
These strips were rolled to 10% reduction along their longitudinal
direction. The rolled specimens were then annealed at 918 + 10°C for .
different lengths of time to obtain different grain sizes. To cdeter- i
mine the effect of stress on crack initiation and failure time, speci- )
mens were sheared similarly from the sheet and annealed at 600°C for
six hours., The physical properties of these heat-treated specimens
are given in Table II, The dimensions of the specimens in all cases e
were 0,020 inch thick x 0,25 inch wide x 1.468 inches long, with the
long axis in rolling direction.

Heat treatment was done in a vacuum electric furnace at
a pressure of 10°°® mmHg or better, Tensile testing was done on an
Instron testing machine, Three specimens (0,022" x 0.,25" x 1,5" gauge
length) were tested for each heat treatment., Table II contains the
average value of yield strength and Young's modulus.

— Foramt
gt e b T Al AL b St

After heat treatment all the specimens were polished on
600-grit silicon carbide paper., Specimens for metallographic work were
final polished on 6-ym diamond polishing compound followed by 0,05 um
gamme alumina powder, Etching was done with the solution of following
compositions: HF, 2%; HNOs, 6%; H20, 92%.
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Table I, Composition and Physical Properties of Ti-6A1-4V Alloy
Camposition
Element i Weight

c 0.03

N 0,912

Fe 0.13

Al 6. )4

v 4.3

0 0.108

H 50 ppm

Physical Properties

Ultimate tensile strength
Yield stress (0.2% offset)(transverse)

134.8/139.1 ksi
127.0/132,9 ksi

Above composition and properties were provided by the supplier,

Table II.

Physical Properties of 10% Rolled and Annealed at 918°C

Yield stress (0.2% offset)
(transverse) (average) 127.5 ksi

Young's modulus (average) 6.335 x 10° psi

Physical Properties of Specimens Annealed at 600°C

Yield stress (0.2% offset)
(transverse) (average) 130.0 ksi

Young's modulus (average) 8.0 x 10° psi
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The test solution used throughout the investigation was
methanol + 0.3% water saturated with NaCl, Sodium chloride and methanol
were reagent grade (water content of methanol varied from 0.02% to 0.04%).

y Double distilled water, containing less than 1 ppm of impurities ex-

pressed in terms of HaCl, was used. Freshly prepared soluticn was used
in each experiment,

2
i
-
3
4
7

b. Experimental Apparatus

Three-point loaded, unnotched bend specimens were used.
A Ti-6A1-LV alloy wire was used to connect the specimen to an Anotrol
potential controller. A Luggin probe placed near the sample surface
was connected to the calomel reference electrode through KCl solution,
A platimm electrode was used as the ccunter electrode. An optical
microscope was used to observe crack initiation and propagation at 100X,

The objective lens was coated with silicon to protect it from the
methanol solution,

The deflection of the specimen is related to the stress
by the following formula:

2
d=..S_E. ,
6Et

where
d = the maximum deflection in inches,

S = the maximum stress in psi,

= the length between supports of specimen holder
in inches,

E = the Young's modulus of the material in psi, and
t = the thickness of the specimen in inches.,

The deflection was measured with a deflectometer to
0.0001-inch accuracy. After the specimen was stressed to the desired
extent, the specimen and holder was placed in the test cell, The
counter electrode was placed near the specimen and the glass dish was
covered with a plexiglass sheet containing holes for receiving the
microscope objective and Luggin probe (the cover was used to keep mois-
ture pickup by methanol from the atmosphere to a minimum), The glass
dish and Luggin probe were then filled with 600 ml of freshly prepared
methanol + C.3% water and NaCl (saturated) solution. A potential of
O mV (SHE) was applied in all cases, The time was recorded from the
time the potential was applied. Cracks were observed to initiate from
pits. The initiation of the crack was recorded as that time when any
of the pits transformed to a crack, Failure time was taken as that
time when the material had failed completely.

32




R NAD L
AR e

N e e

ORI
LR L ARTEN

B I s
BN

—

Lo BN & B o

i —

3. Results
Examples of grain 3izes obtained by strain annealing zre shown
in Pigs. 17-23, Tabvle IITY shows the grain size variation with change
in annealing time.,

a. Stress-Corrosion Cracking

In 211 stress corrosion test, when the potential was
applied, corrosion started at once as localized corrosion in the form
of pits elorngated in a direction normal to the tensile axis (at
100X). Figure 24 shows some of these elongated pits. Cracks started
inside the elongated pits in 211 the tests performed in this investi-
gation. The crack appears as a dark black line against ihe dull tlack
background of the pit. Almost every pit gave rise to a crack, as shown
in Fig. 25. Almost every elongated pit shown in Fig. 24 contains a
crack, In all cases the crack started from the middle of the specimen
and not from the edges. These cracks were observed to propagate in a
direction perpendicular to the appiied stress. The cracks would then
proceed to grow until encovntering another crack, as shown in Fig. 26,
Crack propagation rate was slow in the beginning but increased as the
size of the crack increasei. The crack size shown in Fig, 25 was ob-
tained 18 minutes after initiation (Fig. 24). It took only eight minutes
for the crack in Fig. 25 to zrow across the width of the specim=n.

b, Effect of Stress

Figures 27 and 28 show the relation of stress to initia-
tion time, propagation time, failure time, and rate of crack propagation.
As apparent from Fig, 27 the initiation time, propagation time, and
failure time decreased with increasing stress level, As the stress
level was increased from 50% of the yield stress (0,2% offset) to 110%
of the yield stress the propagation time decreased from 139 minutes to
J9 minutes, Table IV shows the applied stress, initiation time, pro-
pagation time, and failure time for these experiments.

c. Effect of Grain Size
g

Pit density and crack density increased with increasing
grain size at a constant stress level. It was also observed that the
pit had to grow larger in omall grain size specimens to give rise to a
crack as compared to larger grain size specimens,

Figure 29 shows that crack initiation (pitting) occurs
ot the ¢-B grain boundary. Cracks propagating from the pits are both
transgramilar and intergranular in nature, Figures 30-33 show the
crack paths in different grain size specimens. The crack path is mixed
(i.e., both intergranuler and transgranular) in all the cases,
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Fig. 17 - Grain Size of 10% Rolled and 1 Hour Annealed
Specimen at 918°C; Average Grain Diameter
0,004l Inch (1000x)

Fig. 18 - Grain Size of 10% Rolled and 2 Hour Annealed
Specimen at 918°C; Average Grain Diameter
0.0057 Inch (lOOOX)
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Pig, 19 - Grain Size of 1{% Rolled and 4 Hour Anuealed
specimen at 918°C; Average Grain Diameter
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< a2y

i
'

ST

ford Boeed
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= Specimen at 918°C; Average Grair Diameter
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Specimen at 918°C; Average Grain Diameter
0.0110 Inch (1000X)
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Fig. 23 - Grain Size of 10% Rolled and 6l Hour Annealed
Specimen at 918°C; Average Grain Diameter
0.,0130 Inch (1000x)
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Fig, 24 - Pitting and Crack Initiation; Crack Ini*iation
QCccurred in 9 Minutes after Potential Was
Applied, (100%)
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Table IYXI. Average Grain Diameter of Ti-6-U4 Subsequent
to 10% Cold Reduction (rolling) and Anneal-
ing for Various Times at 918°C

Annealing Time Average Grain Diameter
(hr) (inch)

1 0,00kk4
2 0.0057
" 0,0064
8 0,0072
16 0.0095
3 0,0110
6k 0,0130

The grain diameter was calculated by counting the mumber of
grains in a L-inch® area of the vhotographs taken at 1C00X.
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Fig, 25 - Crack Propagation from the Pit; Shape of the
Crack 18 Minutes after the Initiation (100X)

Fig. 26 - Linking of Propagating Cracks; Shape of the Crack
18 Minutes after the Initiation (100%)
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Fig, 27 - The Effect of Applied Stress on Crack Initiation, Crack
Propagation and Failure Times
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28 - The Effect of Applied Stress on Crack Propagation Rate,
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Fig., 29 - Pitting Occurs at the Grain Boundary
(600X%)

Fig, 30 - Mixed Mode of Failure in 10% Rolled and
2 Hour Annealed Specimen at 918°C (1000X)
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Ffig. 31 - Mixed Mode of Failure in 10% Rolled and 8 Hour
Annealed Specimen at 918°C
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Fig. 33 - Mixed Mode of Failure in 10% Rolled and 64 Hour
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Figures 3%-35 show the relation between D-* (D is grain
diameter} to crack ipitiztion time and failure time, respectively. The
crack initiation time and faijure time give straight lines when plotted
against D-*, The initiation time of the smalles: grain size specimen is
about 300% longer than that of the lsvsest graiu size specimen investi-
gated, Also, the propsgation time of the smallest grain size specimen
(failurc time less initiation time, Fig. 36) is about 21% longer taen
thair of the largest grain, Thus, the decrease in failure time with in-

- creasing grain cize is mainly attributed to the crack initiation time,

k., Discussion
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