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FOREWORD 

This digest contains the results of theoretical and experimental research 

work carried on within the Laser Division of the Air Force Weapons Laboratory 

during the six months ending 1 May 1971. 

The contributions in this digest generally represent the highlights of 

recent work, reported in a concise, timely manner. More complete technical 

reports and journal articles written during this time period are abstracted 

herein. 

The work reported has been performed under the Air Force Advanced Develop¬ 

ment Program 644A, Project 3326 of Exploratory Development Program 62601F, 

ARPA Order 313, or ARPA Order 1256. 

The Laser Division Digest is published semiannually in the Spring and Fall 

of each year. The Digest is compiled and edited by Major John C. Rich (LR). 
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ABSTRACT 

(Distribution Limitation Statement No. 3 

This^igest covers the unclassified high-energy laser research performed at the 

íJab0rft0ry durin8 the 6 months ending 1 May 1971. This report 
includes individual technical contributions in the specific areas of laser 

systems and devices, optics, optical systems, propagation, and laser effects. 
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Nd:GLASS AMPLIFIER DRIVEN BY A Nd:YAG OSCILLATOR 

C. R. Jones 4 

Introduction 

The Solid State Laser Branch at the Air Force Weapons Laboratory is developing 

a high-average-power, high-peak-power laser system. The oscillator and amplifiers 

comprising such a device may be constructed on the basis of the liquid-cooled, 

segmented-laser concept using neodymium-doped glass material. Unfortunately, the 

development of a segmented-glass laser oscillator has met with considerable diffi¬ 

culty because of undetermined optical problems associated with the disc geometry. 

A chain of disc-laser amplifiers driven by a Nd:YAG oscillator may provide a 

suitable alternative configuration for the high-average-power system. At best, 

the price for such a modification would be the addition of another disc amplifier 

of 10 to 20 dB optical gain to compensate for the typically low-energy output 

0.1 joule) of Nd:YAG laser oscillators. However, it is possible that associa¬ 

tion of a Nd:YAG oscillator with Hdiglass amplifiers may be impractical because 

of low gain in the amplifiers. This reduced gain could arise from a mismatch 

between the peaks of the Nd:glass and Nd:YAG fluorescence spectra in the X = 1.06y 

region. A more dramatic gain decrease, however, could arise from the linewidth 

difference in the 1.06)j emission spectra of the two materials: The spectrally 

narrow Nd:YAG pulse may simply burn a hole in the broad, inhomogeneous gain profile 

of Nd:glass. It is the purpose of this paper to report the results of an investi¬ 

gation undertaken to determine the magnitude of the gain reduction due to the 

above phenomena. 

Experiment 

The experiment involved the comparison of the gain experienced by a pulse 

emitted from a Nd:YAG oscillator in passing through a Nd:glass amplifier with 

the gain of a Nd:glass-oscillator pulse passing through the same amplifier. 

Both oscillators, Q-switched with rotating mirrors, produced Nd:YAG and Nd:glass 

pulse durations of 20 and 50 nanoseconds respectively. Two Nd:glass amplifiers 

preceding the test amplifier were necessary in order to boost the approximately 

2 



50-millijoule Nd:YAG pulse to the maximum 5-joule level before entering the test 

amplifier. The set-up of the experiment is otherwise similar to that described 

in some detail elsewhere* (in which one preamplifier was used). Care was taken 

to ensure that the amplifier chain did not self-oscillate, a phenomena which 

limited the Nd:YAG pulse input energy to about 5 joules. All of the Nd:glass 

was Owens-Illinois, Inc., ED-2 laser glass. It is significant that no optical 

damage within the test amplifier rod could be visually detected even though the 

output end of this amplifier experienced giant-pulse flux densities in excess of 

15 joules/cm2. 

Results and Discussion 

The results of the experiment are summarized with the data plotted in 

Figures 1, 2, and 3. In each graph the numerical gain of the test amplifiers is 

plotted as a function of the capacitor-bank energy discharged into the amplifier 

flashlamps. Each plot is the gain characteristic of the amplifier for one 

particular energy density of the input laser pulse. This input energy was 

changed by changing the pumping level on the two preamplifiers. The oscillator 

flashlamp energy was held constant to ensure that the intensity profile of the 

input laser pulse remained the same for all data points. 

Figure 1 illustrates the small-signal-gain behavior of the amplifier and 

clearly indicates that there is a small spectral mismatch between the Nd:YAG 

emission and the Ndrglass fluorescence peak. Reportedly, other laser glasses 

have even greater mismatches with NdrYAG. The small-signal input data would not 

be affected by hole-burning effects since insignifant energy is swept out of the 

amplifier by the pulse (that is, in fact, the definition of small-signal gain). 

The gain curves of Figures 2 and 3 are in the transition region between 

small-signal gain and saturated gain. Since, the saturation parameter (which is 

the inverse of the gain storage coefficient) for ED-2 laser glass is about 7 

joules/cm2, these data would exhibit any significant energy depletion effects in 

the amplifier. The fact that there is less separation between the NdrYAG and 

Ndrglass gain curves than in the small-signal case indicates that hole-burning 

is an insignificant process for pulses of 20 nanoseconds or greater duration. 

*Jones, C. R., Avizonis, P. V., and Sivgals, P., Behavior of Neodymium-Glass 
Laser Amplifiers, AFWL-TR-70-150, 1970. ^ 
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Apparently, cross-relaxation (energy transfer between Nd ions) rates in ED-2 

glass are great enough to negate hole-burning effects on this time scale. The 

lower limit to this excitation transfer rate constant is, then,about 10-13 

cm3/sec (ED-2 has a nominal Nd density of 3 x 1020 cm-3). The actual rate con¬ 

stant is probably much larger than this since such relaxation processes commonly 

occur on picosecond time scales. 

Conclusions 

The data clearly demonstrate that Nd:YAG pulses are amplified by ED-2 laser 

glass only slightly less efficiently than pulses from an ED-2 glass oscillator. 

This snail decrease in gain arises primarily from the spectral mismatch between 

the Nd:YAG laser emission wavelength and the Nd:glass gain profile peak. 

It appears, then, that it is feasible to drive an ED-2 glass amplifier chain 

with a Nd:YAG oscillator. Hole-burning effects in the power amplifiers should 

be insignificant. 

Acknowledgements 
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Q-SWITCHING WITH DIMETHYL SULFOXIDE 

AND OTHER ORGANIC LIQUIDS 

P. Sivgals 

During our search for a cooling fluid which would more closely match the 

index of refraction of glass, an interesting phenomenon was observed when an 

axial gradient laser (AGL) was filled with dimethyl sulfoxide (DMSO). When the 

AGL was used as a normal-mode oscillator with flat mirrors, the burn pattern on 

Polaroid film showed very pronounced filamentary lasing, i.e., many intense spots 

within the lasing aperture. The time-resolved photographs of the output pulse 

train (Figure 1) showed that considerably fewer pulses were produced and the 

pulses that were produced had a shorter width and a higher amplitude, i.e., 

pulse sharpening effect. Further experiments showed conclusively that this 

effect was produced by the liquid itself and occurred only when the liquid was 

within the laser resonator. 

Similar pulse sharpening effects and filamentary lasing was observed when 

the DMSO cell was placed within the normal-mode Nd:YAG oscillator. However, 

when the YAG oscillator was Q-switched with a rotating mirror, the giant output 

pulse was identical in amplitude and width (20 ns) with or without the DMSO cell. 

Literature^search revealed that pulse sharpening was previously observed by 

T. Katzenstein with other liquids such as acetone, benzene, and methanol. 

S. V. Gaponov et al., of the Soviet Union, have gone a step further and have 

produced Q-switched pulses by intentionally misaligning the flat mirrors. We 

have repeated Gaponov's experiment with acetone and DMSO and have obtained a 

single giant pulse with duration of 20 nanoseconds and energy of about 0.7 joules. 

The active element was a Nd:glass rod 3/8 by 6-1/2 inches pumped approximately 

three times above the threshold energy. Filamentary lasing was still observed 

and the beam divergence was in excess of 20 milliradians. 

Instead of flat mirrors, a hemispherical resonator was set up using a one 

meter radius of curvature back mirror and a 35 percent reflective flat dielectric 

as an output mirror. One of the properties of this type of a resonator is that 

the laser output is relatively insensitive to the mirror alignment. When the 
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acetone-filled optical cell was Introduced into the hemispherical resonator, 

pulse sharpening was immediately obvious on a time-resolved photograph of the 

output pulse train. When the output mirror was misaligned by about 7.5 milli- 

radians, a single giant pulse was again obtained. Figure 2 shows the output 

from a hemispherical resonator with and without the liquid cell. Figure 3 

shows the integrated output with acetone cell within the resonator before and 

after mirror misalignment. Note that a single giant pulse is obtained after 

mirror misalignment. 

REFERENCES 

1. Katzenstein, J., Magyar, G., and Seiden, A. C., "Laser Q-Switching by 
Organic Solvents," Opto-Electronlcs, 1, pp. 13-19, 1969. 

2. Gaponov, S. V., Goncharov, A. G., Kraftmakher, G. A., and Khanin, Ya. I., 

"Obtaining a Giant Pulse in a Solid-State Laser with the Aid of Organic 
Solvents," ZhETF Pis. Red., _U, pp. 370-373, 1970. 
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A METHOD OF OBTAINING PARTICLE-FREE OPTICAL SURFACES 

P. Sivgals 

In many applications clean, particle-free optical surfaces are highly 

desirable to reduce scattering losses and, in high-power lasers, to decrease the 

probability of damage to the surface. For example, in the axial gradient laser, 

as many as 120 optical glass surfaces are encountered by the laser pulse in a 

single amplifier stage, thus surface scattering may be a significant fraction 

of the total losses. 

When a glass surface is examined with a 100-power microscope, surface con¬ 

tamination is clearly visible as the surface is illuminated with an ordinary 

microscope light at near grazing incidence angle. The position, angle, and focus 

of the illuminating source should be adjusted to obtain the maximum contrast 

between the dark background and the scattered light. We have observed a great 

number of optical glass surfaces in this manner (glass discs, mirrors, beam 

splitters, etc.) and have found that the particle density is at least 104 per 

square centimeter and often several orders of magnitude higher; this is true 

even after the surface is carefully cleaned using conventional cleaning tech¬ 

niques, such as ultrasonic agitation in detergent solution, chromic acid bath, 

distilled water rinse, ultrasonic agitation in distilled water with a final 

rinse in pure ethanol, and ultrasonic agitation in ethanol. In addition, many 

acids and bases were used as vapor degreasing technique in various organic 

solvents. All of these methods failed to remove most of the particle contamina¬ 

tion except for the large 5 to 10 ym size particles. The largest particles 

measured were approximately 1 to 2 ym in diameter with most of the scattering 

centers in the submicron diameter range. The vast majority of these scattering 

centers were found to be on the surface rather than any defect in the surface 

itself because after another cleaning (or wiping) the particle distribution 

around a reference mark, such as a scratch, could be completely rearranged. It 

is believed that electrostatic attraction between the particles and the glass is 

the force that holds the particles on the surface. 

13 



As suggested by Dr. A. H. Guenther of this Laboratory, the replicating tape 

cleaning method was tried. In this method the optical surface is wetted with 

clean reagent-grade acetone or methyl acetate and an actyl cellulose film (tape) 

is carefully placed on the top of the glass surface so that a bond is formed 

between the wet film and the glass. After the cellulose film dries completely, 

it is peeled off the glass surface. The particle contamination previously 

observed is almost entirely removed, leaving a very clean surface. Of course, 

the glass surface must be chemically clean prior to the use of the replicating 

tape. A thick replicating tape is recommended because it is easier to peel off 

the surface. The only disadvantage of this method is that it will leave some 

of the cellulose film around the edges of the optical surface. Also, if the 

cellulose is not completely hardened when peeled off, some of the cellulose may 

be left on the surface. 

In addition to cleaning the surface, the optical element may be completely 

encased in the cellulose for storage. This will protect the element from 

scratches, dust, fingerprints, and other contamination while in storage. 

14 
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ACOUSTIC BEAM-SPLITTER FOR INFRARED LASERS 

G. H. Nickel, G. M. Goodfellow, D. F. Terwilliger, and D. A. Holmes 

Introduction 

For high-power cor.:i„uous-wave lasers, especially of the molecular type 

operating in the infrared, heam-splitters that do not undergo thermo-optical 

deformations are not available; hut they are required if both phase and amplitude 

of laser beams are to be examined. 

To address this problem, a technique is described which appears promising 

and employs a diffraction grating of ultrasonic waves in the air path across a 

laser beam. The phase grating created in this manner has a grating spacing equal 

to the acoustic wavelength, and the phase modulation depends on the grating 

"thickness" (width along the laser beam path), the relative compression in the 

sound waves, and the variation of the index of refraction with density. This 

principle, discovered 40 years ago by Brillouin, has been used to slew laser 

beams rapidly in information retrieval systems. 

The principal difficulties in establishing an acoustic diffraction grating in 

air have been noted by Richardson . First, the coupling of sound waves from 

ultrasonic transducers into a gas is very poor; and second, because the density 

of a gas is very low, the change in the index of refraction in an acoustical 

grating is very small for a gas when compared with solids or liquids. Also, 

there can be a problem with multiple diffraction if the grating "thickness"’is 

too great. Balancing these drawbacks are the facts that extremely high-power 

densities are envisioned for laser beams (or else more conventional techniques 

would be used), and that current IR detectors can detect very low levels of 

radiation. Hence, a very small beam-splitting fraction can be tolerated. The 

system to be described produced a very high signal-to-noise ratio with a 

mercury-cadmium-telluride (MCT) detector used in conjunction with a lock-in 

amplifier. 

16 



Theory 

An explanation of the use of an air-acoustic diffraction grating as a C02 

laser beam-splitter can begin with a description of the ultrasonic transducers. 

The transducers are constructed of PZT ceramic materials which have a piezo¬ 

electric coefficient of typically 3 A/volt. Thus, application of 100 volts 

peak-to-peak to the transducer will produce a peak-to-peak surface displacement 

of about 3 X 10-6 cm. Since the motion is sinusoidal with radian frequency 

2tt X 10+6/sec, for 1 MHz, the peak-to-peak velocity variation is about 20 cm/sec, 

giving an rms velocity of approximately 7 cm/sec. As pointed out by Landau2, the 

case of acoustic radiation whose dimension is large compared to the wavelength 

is easily treated by assuming that the sound wave particle velocity v equals the 

normal surface velocity of the radiator. Hence, the energy in the soïnd wave is 

p(vp)2 ergs/cm3; the acoustic power is pc(vp)2 ergs/cm2/sec; and the density varia¬ 

tion in the wave is about ¿p/p = vp/c. The resulting index of refraction change is 

then 

fin - 3 X IO"4 ^ = 3 X 10-4 ^ = -3- x 1Q~4 X 20 ^ 2 x 1Q_7 

P C 3 x 104 

The peak-to-peak phase modulation fi* is just the total phase across the acoustic 

grating times the fractional change in index of refraction, 

¿4> 
fin - L 

n 10.6p 10-3 for L = 1 cm 

As developed by Goodman3, the power in the nth order diffracted uniform beam is 

proportional to 

J 
n 

Therefore, the beam-splitting fraction F can be defined as 

In the case of a very small argument, J^x^x11, and thus one has the relation 

17 



The diffraction angle can be calculated from the transmission grating rela¬ 

tion, sin 0 = nX/d, where n is the order number, A is the laser wavelength, and 

d is the grating spacing. The grating spacing d for the acoustic grating is 

defined d * c/v, where c is the velocity of sound in the medium, and v is the 

frequency at which the transducer is driven. Therefore, for the first order 

diffracted beam, one has sin 0 * Av/c. 

To ascertain if there may be distortions upon the diffracted laser beam due 

to the phase grating, the interaction of an optical wave with an acoustical wave 

is developed in the sense of the diffraction theory. The Fresnel diffraction 

integral is used to calculate diffracted fields created when a free Gaussian beam 

propagates through a sinusoidal phase grating that it translating perpendicular 

to the direction of propagation of the optical beam. It is assumed that the 

grating does not aperture the Gaussian beam. 

Considering that the Gaussian beam is propagating in the positive z direction, 

we take the z = 0 plane as the integration surface for the Fresnel diffraction 

integral. The transverse coordinates in the z = 0 plane are taken as (Ç n). The 

wave amplitude in the z = 0 plane, normalized to beam power P, is taken as 

(1) 

In equation (1), w is the beam spot size and R is the beam phase radius of curva¬ 

ture in the X = 0 plane. When R > 0, then the beam is considered to be focused 

at the point z = R. The amplitude of the phase shift in wavelength units induced 

by the phase grating is A. The peak-to-peak phase variation <|> is simply equal 

to AttA. The spatial period of the phase is 1/v in the Ç direction and the grating 

is considered to be moving in the positive Ç direction with velocity V. A con¬ 

stant arbitrary phase factor is denoted by $ and the field v(£,n) is oscillating 

at the angular frequency to. 

Defining x and y coordinates with x corresponding to Ç and y corresponding 

to n, the diffracted field is taken as u(x,y,z). For z > 0, the Fresnel diffrac¬ 

tion integral gives 

18 



00 

u(x,y,z) = exp [2ïïiz/X+iTr(x2+y2)/Xz]/(iAz) íí dçdnv(ç,n) 

— œ 

• exp [i7r(Ç2+n2)/Az] exp [-2ttí(Çx+ny)/Az] 

To evaluate the integral in equation (2), we use the identity 

+0° 

exp [id cos 6] = exP (1¾0) 

(2) 

(3) 

With the help of the identity equation (3), we substitute equation (1) into 

equation (2) and obtain 

u(x,y,z) = -í^2P/ttw2(z)j */2 exp j^iriz/A-itan-1 {tt(z-R)w2/ARz}] 

• exp ^y/w(z)^ 2+iTry2/AR(z)J 

• ^ i^Jq (2ttA) exp ^iq<fi-i(üj+2TrqvV) tj 

• exp |^-(z-qvAz)2/w2 (z) J 

• exp £í(tt/Az) ^x2- |x-qvAz}2 |l-z/R(z)[jJ 

where 

and 

w2(z) = w2 j(l-z/R)2 + (Az/7tw2)2| 

R(z) * -^Rw2(z)/w2j/)l-(z/R)-RzA2/Tr2w4} 

(4) 

(5) 

(6) 

The irradiance of the diffracted field is taken (in the scalar wave approxi¬ 

mation) as 

I(x,y,z) = |u(x,y,z) (7) 

19 



The various diffracted orders will not "overlap" when 

viz >> w(z) 

In the approximation of equation (8), we have 

(8) 

I(x,y,z) “ j^2P/T7w2(z)J exp |^-2(y/w(z)j 2J 

00 

• £ Jq2(2îrA> exp [-2(x-qvAz)2/w2(z)l 
q=—oo n (9) 

“ ^ °f e’U‘ti0n <9, Clear1^ the transmitted beam (aero order, 

q o is not distorted by the phase grating and remains Gaussian. This is so 
eca s d (2,4) , SM11 a_si uhich is the case here^ aBt oad° 

diffracted beam (q - ± 1) has no distortion either, as 

(2ttA) a 47T2A2 

for very small arguments and equation (9) becomes, 

I±1(*.y,s> = [>i2P/w2(s>] exp [-2 y/w(a)2 -2(xtia)2/w2(a)] (W) 

«nro?xT°nt T V eXPOnential ^n(ffrates a displacement of 
— z from X due to 1st order diffraction. 

Experimental Procedure 

surfa!eVrTU“rS ^ “Uh and bach 
urfaces, and are mounted in a 1-inch brass cylinder as show in Figure 1. 

ac transducer is 3/4-i„ch in diameter, and is nominally resonant at 1 MHa 

^o ransducers are used in this experiment: one as a receiver „„„„ted in a 

xed position, the other as a transmitter mounted in a tuo-axis translation 

»ount to facilitate alignment for parallelism and separation. 

°P‘«-“o„ of experimental technique led to the arrangement show in Figure 

2. The transducer is 100 percent square wve modulated, thus diffracting the 

rioVi^üf? S0 Chat the deteCt0r °UtPUt -- apP- - -e pL Model 
21 lock-in amplifier. T„o immediate advantages are re,Used „hen using the 

lock-i„ amplifier. First, its increased signal-to-noise ratio can be exploited. 
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— MICRODOT CONNECTOR 

Figure 2. Block Diagram of the Experimental Arrangement 
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and second,, this method ensures that the output response is due only to the 

diffracted beam rather than to spurious signals or side lobes of the main 

beam. 

Angular position of the detector is determined with a voltage from a battery 

and potentiometer which is applied to the external horizontal input of a Tek¬ 

tronix Model 549 storage oscilloscope. Thus, lateral movement of the detector 

produces a horizontal trace on the oscilloscope. Consequently, as the detector 

is swept across the path of the diffracted beam, the beam profile can be stored 

for observation, photographs, and/or comparison. 

The detector is mounted vertically and cooled with liquid nitrogen. A gold 

mirror reflects the horizontal diffracted beam up into the end-looking MCT 

detector. 

The electronics used to drive the transducer consists of a modified amateur 

radio transmitter and a modulator circuit as shown in Figure 3. A 6146B oscil¬ 

lator tube, in conjunction with a 1-MHz crystal, generates the RF driving power. 

A pi-type network matches the 4-kohm oscillator output impedance to the 300 ohm 

impedance of the transducer. Negative pulses from the variable-rate pulse 

generator (OE-22 and 2N3642 transistors) are used to toggle the SF7473N J-K 

flip-flop integrated circuit. The nominal 1-kHz square wave output of the J-K 

flip flop provides the reference signal to the lock-in amplifier while simulta¬ 

neously switching the GE-12 transistor. The 6146B oscillator is cathode-keyed 

through this switching action, providing square wave modulation of the transducer 

for phase locking in the PAR Model 121. 

Oscilloscope traces of the diffracted beam profiles for Gaussian and donut 

modes are shown in Figure 4. The signal disappears when the transducer is 

turned off and/or when the laser beam is blocked, indicating that the system is 

not just seeing a spurious reflection. The importance of chopping the transducer 

drive instead of the laser beam is that the very low intensity wings of the main 

beam, which are not necessarily negligible in comparison to the diffracted beam, 

are rejected by the lock-in amplifier. (Of course, a beam chopper would have 

violated the basic premise that no solid material intersects the beam.) 

In this experiment, the main beam was about 16 watts, having an e~2 diameter 

of 1.2 cm at the transducers, spreading to 1.9 cm at the detector position, 

about 2 m down the beam. The driver produced about 120 volts peak-to-peak, 
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(a) A Laser Operating in the Gaussian Mode

(b) A Laser Operating In the Donut Mode

Figure 4. Profiles of the Diffracted Beam 
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corresponding to about 5 watte at a 50 percent duty cycle, or 2-1/2 watte average 

power delivered to the transducer. This provided about 1/4 watt of acoustic 
power. 

Sot* care had to be taken to shield the transducers fro« air currents since 

hlowing across the acoustic cavity causes the output to vary considerably. It 

has been suggested that the use of a „adulating fluency „„ch higher than any 

frequencies nontally found in air turbulence should „i„i„i2e this problen. 

The beam-splitting fraction is F . (*/2)2 v Ur? m the present case, since 

the square wave modulation makes the average beam-splitting fraction 1/2 of the 

peak value Since the original beam had a peak Intensity of v5 „atts/cm*, the 

ranted beam could be expected to have 1/2 pwatt/cm* intensity. This seems 

to be reasonable in view of the advertised D* of MCT detectors of .1(,10 Us, 

a bandwidth of 100 Hr and a detector sise of 1 mm*, one needs a power of 10-0 

watts to give a sig„al-to-„oise ratio of unity. Since this is falling on a 

detector area of 10- cm2, the threshold ^ ^ ^ 

a Signal-to-noise ratio of about 50 in the peak intensity region, which seems to 

a reasons e value, at least in terms of orders of magnitude. Lacking a more 

accurate value of the diffracted power, the beam-splitting fraction of 10- is 

probably close. The diffraction angle for this experiment was calculated to be 

This \ °r Yf 10’6 mlCr0nS’ v of 1 M2* a"d c of 3.35 x 104 cm/sec in air. 
his angle agreed with experimental results. 

Discussion 

It should be possible to use a 1/4-wave matching plate to increase the 

acoustic power coupled into the air by about one order of magnitude. Also 

there are transducer materials that can be driven at considerably higher power 

levels than the PZT-5 used in these prototype experiments. Thus, a diffracted 

power density on the order of milliwattsW instead of uwatts/cm* could be 

expected. 

On the other hand, the problem of acoustic wave attenuation becomes more 

important as the diameter of the laser beam increases. Richardson shows an e- 

attenuation length at 1 M„s to be about 50 cm in argon, and somewhat less in air. 

pr ncipal offender in air is water vapor, so the gaseous medium should be 

controlled in any event, and argon might as well be used. The attenuation effect 

can e minimised by using appropriately-phased opposed transducers. 
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Another possible problem area involves the grating thickness, or width of 

the acoustic waves along the laser beam. Multiple diffraction occurs if this 

distance exceeds AsAIr where Ag is the grating spacing, or sound wavelength, 

3nd XjR is the light wavelength. This maximum thickness is about 1 cm in this 

case (Xs = 365 u, measured). It may not be that the multiple diffraction is at 

all important in this application, since the amount diffracted is so very small 

that second order effects are many orders of magnitude less than the first order 

diffracted beam. 

Using a flowing argon atmosphere, or at least dry air or N2, one should be 

able to extend this method to handle a 10-cm beam rather easily. For these 

large systems, it may be necessary to design an acoustic cavity in much the same 

manner that optical cavities are currently designed. It may also require 

special processing of the output data in order to counter effects of acoustic 

beam attenuation. 

Summary 

A method for noninterference sampling of high power C02 laser beams has been 

described. The technique employs an ultrasonic diffraction grating generated in 

the air path across a laser beam. A very small fraction (^10-6) of the main 

beam is diffracted through a small angle (^2°) on either side. Profiles of 

Gaussian and donut modes from low power C02 lasers have been obtained with the 

acoustic beam-splitter. 
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DIFFRACTION OF AN UNAPERTURED FOCUSED HERMITE GAUSSIAN 

BEAM BY A MOVING SINUSOIDAL PHASE GRATING* 

J. E. Korka and D. A. Holmes 

Consider that the Hermite Gaussian beam is propagating in the positive z 

direction and we take the z = 0 plane as the integration surface for the Fresnel 

diffraction integral. The transverse coordinates in the Z = 0 plane are taken 

(Ç,n). The wave amplitude in the z = 0 plane, normalized to beam power P, 

is taken as 

Vnm(Ç,n) = (2p/™2)1/2 exp [-(Ç2+n2) (l/w2+Í7r/AR)] 

* Hn (/2Ç/w) Hm (/2n/w) 

• exp I2ttAí cos ^2ïïv[Ç-Vt] + ,)} exp (-itot) (1) 

In equation (1) w is the beam spot size and R is the beam phase radius of curva¬ 

ture in the z = 0 plane. When R > 0, then the beam is considered to be focused 

at the point z = R. The amplitude of the phase shift induced by the phase 

grating is A. The spatial period of the phase is 1/v in the Ç-direction and the 

grating is considered to be moving in the positive Ç-direction with velocity V. 

A constant arbitrary phase factor is denoted by <(. and the field v (ç,n) is 

oscillating at the angular frequency oj. 111 

We now define x and y coordinates with x corresponding to Ç and y corres¬ 

ponding to n. The diffracted field is taken as u^x.y.z). For z > 0, the 

Fresnel diffraction integral gives 

Unm(x,y,z) =txP 2^iz/A+iïï(x2+y2)/Xz]/(i^z) 

00 

j* j dÇdnvnm(Ç,n)exp[i7r(Ç2+n2)Az] • exp[-2Tri(Çx+ny)/Az] (2) 

*»mffeceíer ^70 Lrer Division Oigest contains an article by D. A. Holmes on 

PhasfrraHna0" a"Jnaperturfd F°cused Gaussian Beam by a Moving Sinusoidal 
Phase Grating. This paper is an extension of that paper and considers a 
general Hermite Gaussian beam. 
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To evaluate the integral in equation (2) we use the identity 

+00 

exp [iócos 9] = £ i^j (6) exp(iqe) 
q=- (3) 

With the help of the identity equation (3) we substitute equation (1) into 

equation (2) and obtain 

unm(x,y,z) = -i(2P/™2(z)) I/2 expj^Triz/A-itan-1 {7r(z-R)w2/ARz(] 

• exp £-^y/w(z)j2 + iïïy2/AR(z)J 

+°° 

‘ iqjq(2ïïA> exp[iq((.-i((i)+2TrqvV)t] • exp [-(x-qvAz)2/w2(z)] 

• exp |í(tt/Az) (x2- jx-qvAz (2 jl-z/R(z)()J 

• [w2|(l-z/R)2-Az/Trw2}2/w2{z)-2iAz(l-z/R/TTW2j(n+m)/2 

• Hn(-/2(x-qvAz)/w(z)) • Hm(-/2y/w(z)) (4) 

where 

w2(z) = w2|(l-z/R)2 + (Az/ttw2)2} 

and 

R(z) = - ^Rw2 (z) /w2^/ |l-z/R-RzA2/7r2wl+| 

The irradiance of the diffracted field is taken (in the scalar 

tion) as 

(5) 

(6) 

wave approxima- 

ÏÎx.y.z) = |u(x,y,z)I2 

The various diffracted orders will not "overlap" when 

(7) 

vAz >> w(z) (8) 
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In the approximation of equation (8) we have 

I(x.y,a) - 0/™2(2)]exp[-2(y/„(2))2j 

+00 

’ A Jq (2,i,e,Ip[-2<*-<I''At)2/v2(2)] 

' iv2 C(1~z/R)2-A2/itw2J 2/w2 (z)-21A2(l-2/pj/itw2 f0+1,1 

■f>„(-ÆyMz>)}2 ■ {HB(-Æ(x-,vA2)/„(2))J2 

An arbitrary wave f in 

inodes given by 
the z - o plane can be expressed as 

a sum over the Hermite 

(10) 
ni.n.z-o) - £ V A v 

n=o 11111 nm 

The diffracted field of this wave in the 2 - 2 , 
zo plane is then given by 

Hx,y,t.2o) - ¿ £ A u ( 
n=o n” nm'x,y'z 2o) (11) 

In order for the grating to be useful as a , ■ 

arbitrary wave is only scaled in the diff T ^ 3h°" that an 
orders we „„st show that fraCted orders- For the q . 1 and q , 0 

where K is 

that 

YU + vAz,y,2=z ) 
q=l = Ky(x,y,z=z ) 

° q=o (12) 

a complex constant. 
If we compare 

the amplitude functions we see 

(X + vl2>y,2eZo) ^^•(Xlu^x.y.x.., 

where 
q=o (13) 

K'(x) = i J2 (2nA) exp (i<f¡ _ 27riN 
Vt)/J (2nA) 

■ oxp[(i-/Xro) (2vlv + (vAZo)2j (,. 
zo/R<zo))] (14) 
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Using equation (11) for the q = 1 case and equation (13) we can show that 

00 00 

nx-vAz,y,z=z0) q=1 = g g AnmUnm(x-vXz:’y’z=zo> q=i Ü5) 

00 00 

■„5 £ q.0 

= K’ (x)'í'(x,y, z=z ) 
q=o (16) 

Thus we see that the first order mode is just a scaled sample of the zero 

order, except for the phase term linear in x. This linear term can be explained 

when one realizes that the observation plane (the z=z0 plane) is not normal to 

the propagation direction for any order except the zero order. Therefore this 

grating may be useful if one can correct for the linear phase shift term. 

If one is interested in intensity, we take the absolute square of equation 

(16) and get 

I(x-vAz,y,z=zn) . 
u q=l K I (x,y,z=z0) q=o (17) 

where K - (2ttA)/Jo (2irA)]2. 

Thus we see that for the intensity profile the grating is useful since it 

produces a scaled profile in the first order. 
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PHOTON POPULATION DECAY IN A FABRY-PEROT CAVITY 

D. A. Holmes 

The concept of a decay time of a photon in an optical cavity is often used 

in the analytical description of laser devices. ’ Assume, at time t = 0, that 

Nq monochromatic photons reside inside a passive optical cavity such as that 

shown in Figure 1. The usual approximation for the photon population at later 
3 

times is given by 

N(t) * Noe"L/ c (!) 

where the decay time t^ is commonly written as 

tc = -2n£/cln(R1R2) (2) 

When the exponential approximation (equation (1)) is valid, the average time 

<t> that a photon spends in the cavity is simply equal to t . 
c 

It is the purpose of this work to give the exact expressions for the photon 

population N(t) and the average time <t>, using the idealized model described in 

Figure 1. The initial conditions will be specified by photon distributions 

ÍrÍx) and ’ w^ere fg(x) distributes the photons which are traveling to the 

right at time t = 0 and fL(x) distributes the photons which are traveling to the 

left at time t ■ 0. The initial population is thus given by 

£ £ 

No = J fR(x)dx + j fL(x)dx (3) 

o 0 

We first discuss the photon population N(t). The population can be con¬ 

structed by observing the distributions as they travel with speed v = c/n and 

undergo successive partial reflections at the end reflectors. For m an even 

integer and (m-l)£<yt£m£, the population is 

*Many additional references can be found in references 1 and 2. 
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X = O x={ 
Figure 1. A parallel-plate (Fabry-Perot) optical cavity with infinite mirrors. 

The intensity (or power) reflectance of the left mirror is while that for 

the right mirror is R2. For time t>P, the medium between the mirrors (0<x<£) is 

assumed to be lossless, homogeneous and isotropic with refractive index n. At 
time t = 0, N0 identical photons exist in the cavity, all of which are traveling 

parallel to the x-axis. The only way a photon can escape the cavity is via 

transmission through one of the end mirrors. 
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N(t) 

m 

(rir2)2 
^ fR(x)dx J fR(x)dx 

m£-vt 

m 

(rir2)2 
R„ 

R„ fj^(x)dx + 

X, 

Í 
fL(x)dx 

vt-(m-l)£ 

(A) 

For m an odd integer and (m-i)Ä,.<vt<mJ!,, we have 

N(t) - (^R,) 

m-1 
2 

-m£-vt 

Í 
X, 

fR(x)dx + R2 J fR(x)dx 

mî,-vt 

(R1R2) 

m-1 
2 

vt-(m-l)£ l 

R-j^ j fL(x)dx + J* 
o vt-(m-l)£ 

fL(x)dx (5) 

♦ 
The exact solutions (equations (4) and (5)) bear little resemblance to the 

approximation (equation (1)), however, for certain discrete values of t, the 

exact and the approximate solutions are identical. When vt = mf' (m even), 

equation (4) gives 

m 

“(f) = No(R1R2)2 <6> 

which is identical to the result obtained by using equations (1) and (2), hence, 

the approximate form (equation (1)) does provide an estimate of the gross time- 

dependent behavior of N(t). 

The exact and approximate solutions can be used to obtain the photon loss 

rate. For m an even integer and (m-l)£ <vt<m£, we have 

dN(t) 
dt R1R2 

(m£-vt) + ^l-R^ jvfL(vt-m£+£) (7) 
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For m an odd integer and (m-l)£svt^m£, we have 

m-1 
dN(t) 

dt 

m-1 

(R1R2) 2 (l-R2)v fR(,£-vt) + (RlR2) 2 (l-R^v fL(vt-m£+£) (8) 

From equations (1) and (2) we obtain 

dN(t) 

dt (9) 

For arbitrary initial distributions and reflectivities, it is certainly not 

clear that equation (9) represents a valid approximation to equations (7) and 

(8). When R1 and R2 are close to unity, however, it can be argued qualitatively 

that equation (9) is representative of the gross behavior of the photon loss 

rate because the change in N(t) is small over a cavity transit time. 

Now we discuss the average cavity time <t>. Using equations (7) and (8) and 

the definition 

we obtain 

where 

00 

(10) 

(ID 

(12) 

(13) 

An alternative derivation of <t>, which is perhaps more simple and direct, is as 

follows. Consider an infinitesimal slab Ax located at position x. This slab 

contains fL(x) Ax photons moving toward the left with speed v = c/n at time 

t = 0. The average time t^(x) that these photons remain within the cavity is 

given by 
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(1_Rl)(RlR2)Í (x+2i£)/v 

^1-R2 (x+£+2i5,)/v (14) 

Evaluation of the sums in equation (14) yields equation (13). A similar proce¬ 

dure is used to obtain tr(x) and averaging "ver the initial photon distributions 

yields the final formula (equation (11)). In general, <t> depends upr the 

initial distributions, except for the special case f (x) = f (x). 

A physical interpretation of equation (11) can be realized by considering 

the following conceptual experiment. Suppose we have a very large number of 

identical empty cavities of the type shown in Figure 1. At time t = 0, a single 

photon is created in each cavity, subject to the constraint that it can only 

travel parallel to the x-axis. For each cavity, the probability that its photon 

lies between x and x + Ax and is moving toward the left at time t = 0 is 

(fL(x)/NojAx. The probability that a photon (moving toward the left at t = 0) 

leaves the cavity at t - 2 is (i-rJ, the probability that it leaves the cavity 

at t = (x+O/v is (1^2^, and so on. Photons initially moving toward the 

right are considered in a similar manner. Suppose that the time each photon 

disappears from its cavity is measured. If these disappearance times are 

averaged, then the resultant average will approach <t> as given by equation (11) 

as the number of cavities becomes infinite. 

To consider a specific example, let us assume the following analytical forms: 

fR(x) = %e » Mx) = St6 
a(£-x) 

(15) 

where gR, and a are arbitrary constants. Using equation (15) in equation (11), 

we obtain 

<t> = — < ga¿ - «ft - 1 + A . R2(1+Rl)gR+Rl (1+R2)8l 
av a£ . c 7 W \ e -1 (i+hh) (%+0 

A case of physical interest occurs when 

(16) 

RlR2e 
20LÜ 

1 and 8R/8L = (r^r^I /2 
(17) 
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Conditions (equation (17)) thus simulate a laser, operating at threshold prior 

to time zero, whose gain a suddenly drops to zero at t ■ 0. Under these condi¬ 

tions <t> = tc; in addition, equations (1) and (9) are exact. 

It is a pleasure to acknowledge several helpful discussions with Dr. P. V. 

Avizonis. 
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PARAMETRIC STUDY OF APERTURED FOCUSED GAUSSIAN BEAMS 

D. A. Holmes, J. E. Korka, and P. V. Avizonis 

Introduction 

Diffraction of Gaussian beams by circular apertures has been the subject of 
I 2 3 i 

several recent papers. ’ ’ ’ In the present paper, we would like to consider 

some additional features of apertured and focused Gaussian beams. To use a 

simple analytical approach we assume that the focusing element is an ideal lens 

and that the wave-field magnitude is Gaussian over the lens. Simple kinds of 

phase distortion are introduced and the subsequent changes in the nature of the 

focused beam are discussed. Numerical illustrations have been prepared using 

generalized dimensionless coordinates. 

Diffraction Formulation 

To set up the problem, we define an (r, 0, z) cylindrical coordinate system. 

The ideal thin lens is assumed to lie in the z = 0 plane while the output beam 

travels in the positive z direction. The focusing problem will be handled by 

postulating a convergent Gaussian beam diffracted by an annular aperture in the 

z = 0 plane. The transmitting portion of the annular aperture occupies the 

region a _< r £ b. The diffraction calculations are applicable to the region 

z > 0 and are subject to the usual restrictions governing the use of Fresnel 

diffraction integrals in the scalar wave approximation.^ 

The aperture field is taken as 

v(r) = vq exp £-(r/w)2-(ÍTrr2/AR)-i$J (1) 

In the sense of geometrical optics, the beam is focused at a point on the z-axis 

a distance R from the z = 0 plane, hence, the plane z = R is called the focal 

plane. The focal range R is taken to be positive which implies a time variation 

given by exp[-iiot]. In equation (1), w is the beam spot size^ at the aperture, 

A is the vacuum wavelength, and t is a phase distortion which we shall restrict 

to be a function of r only. 
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For convenience in later calculations, we shall assume that v is a real 
o 

constant and is normalized so that total power Po is always transmitted by the 

aperture. In the scalar wave approximation, we can then always determine vp by 

the relation 

b 

Pq = 2tt ^ dr r |v(r)|2 (2) 

a 

When v(r) is given by equation (1) we have 

v2 = ^2Pq/ïïw2^/Jexp^-2(a/w)2j-exp^-2(b/w)2jJ (3) 

Using the Fresnel diffraction integral,^ we write the scalar wave complex 

amplitude of the diffracted beam in the cylindrical coordinate system as 

b 

u(r, z) = (2tt/Xz) ^ dP P v(p) j0 (2npr/Xz)exp[iirp2/Xz] (4) 

a 

where we have omitted a phase factor on the right hand side of 

-i exp[i2Trz/X+iiTr2/Xz] 

The irradiance of the diffracted beam is taken simply as I(r,z) = |u(r, z)|2. 

In any plane z = constant, the power passing through a circle of radius r 

centered on the z-axis is given by 

r 

P(r, z) = 2ir ^ dp p |u(p,z)|2 (5) 

o 

On-Axis Irradiance for Ideal Beams 

We now assume $ = 0 in equation (1) and r = 0 in equation (4). With these 

restrictions l(0,z) can be written as 

1(0,z) = v2 NUM/DEN (6) 

where 
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N™ ■ [exp (-(a/w)2) - exp(-(b/w)2)l 2 

+ 4 exp [-(a2 + b2)/»2] si„2 [,(b2 . a2,(z.R)/2>2R] 

DEN » (Xz/ttw2)2 + (z-R)2/r2 

It is commonly assUmed that I(o,t) is aymmetrlcal7 about the point z = R but 

inspection of equation (6) reveals that this is not generally the case. 

(6) Tf!* “ 0!,ti,,,l2ati0n '":0ble"1 that readily solve using equation 

)' k flrSt C0n8l,ier that 8 is et e constant value z and that R is 

var a le. In this case l(0.zo, is regarded as a function of R and there exists 

an optimum value of R which maximizes 1(0^,. This optimum value is simply 

- a0. Physically, this means that an on-axis detector located at an arbitrary 

thaTg ” 1° “ÍU reCeIVe the lar8eSt 8l8nal “hen tha ba“1 ls (ntused such 
t R = zo. This is true regardless of the values of a, b, and „. If „„„ the 

jam ecus is fixed at R = ^ and the on-axis detector is physically moved along 

„illT 8 the aperture- lt is generally found that the detector signal 

first increase, then pass through a maximum and then decrease. 

For fixed a, b, P^, and 1, the focal point irradiance is maximized for 

» - », i.e., the case of uniform illumination. The analytical proof of this 

maximization is not difficult, but will not be given here; numerical illustra- 

tions will demonstrate this fact later TVm f -¡ 
r- The f0cai P01"' ittadiance is defined 

as Lf - 1(0,R) and is given by 

_ 2™2P0 exp[(b2-a2)/w2]-l 

(AR)2 exp[(b2-a2)/w2]+l 

The maximum value of I £ is given by 

lim If = Tr(b2-a2)P /(ar)2 
w-x*> 

We now define the dimensionless parameters 

and 
a = a/b 

ß = b/w 

(7) 

(8a) 

(8b) 
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Using equation (8) and rearranging equation (7) we get 

(AR)2lf (2/82) {exp[(32(l-o2)j -l| 
= --- (9) 

ïïb2Po exp[82(l-a2)]+l 

In Figure 1 we have plotted equation (9) as a function of 8, with a as a changing 

parameter, to illustrate how the focal point irradiance is influenced by trunca¬ 

tion and central obscuration of the focused Gaussian beam. There are two points 

of interest for this figure. First, for relatively large a values, the focal 

plane irradiance is insensitive to large changes in 6. Secondly, to efficiently 

utilize the transmitting aperture (i.e., maintain largest possible value of If), 

one should confine 6 to the range 0 _< 8 < 1. 

Diffraction of a Gaussian beam by a circular, opaque disk with no outer 

truncation can be accomodated by equation (6). This case occurs when b +- and 

it is then found that equation (6) reduced to 

2P /ttw2 
KO,z)---2--- (10) 

(Az/ttw2) + (z-R)2/R2 

Note that equation (10) is independent of a. The on-axis irradiance (equation 

is, in fact, the result for the free [a * o, b — °°] Gaussian of power P 

It is important to note that this result applies for fields normalized such 

that power Pq is always transmitted past the aperture plane. The similar problem 

of an opaque disk illuminated by a uniform field is discussed by Stone.® 

To illustrate the behavior of equation (6), a set of dimensionless quantities 

is defined as 

Y = Trb2/AR (lla) 

Ç = Z/R (11b) 

and 

1(0,ç) = I(0,z)/If (11c) 

In Figure 2, we have plotted the normalized irradiance 1(0,ç) as a function of 

the normalized distance ç with a, 8, and y as changing parameters. For large 

values of y, the curves become more symmetrical about the point ç - 1, 
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Figure 1. Normalized focal point irradiance (AR)2If/Trb2P versus b/w with a/b 

as a changing parameter. The curves are labeled with the°value a. For all 

values of a, the curves show that the focal point irradiance is maximized for 
$ -*- o or w -* «o. 

41 



Figure 2. Normalized on-axis irradiance 1(0,ç) as a function of normalized 
distance ç from the aperture with a, ß, and y as changing parameters. For each 
figure, the curves sharpen as y increases. Note that, by comparing (a) with (c) 
and (b) with (d), the change from ß = 0 to ß = 1 does not greatly change the 
general shape of the on-axis irradjLance curves; this behavior is indicated in 
Figure 1. The ß = 0 solution for 1(0,ç) is 

ÎÎO.ç) = (l/ç2) sinc2[y(l-a2)(ç-l)/2ç] 

which shows clearly that 1(0,ç) becomes a more sharply peaked function of ç as y 
increases. 
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approaching the behavior predicted by Born and Wolf.7 Large y systems are not 

unusual in optical systems used at visible wavelengths. However, small y values 

can easily characterize long focal length infrared systems, e.g., for R = lOOircm, 

A - lOum and b = 1 cm, we find that y = 10, for which the irradiance distributions 

are distinctly unsymmetrical about the geometrical focus. This could certainly 

be the case for laboratory type optical setups. Again, in general, there is not 

much dependence upon ß for values of 0 to 1, as expected from previous section 

considerations, and Figure 1. Also, it is clear from Figure 2 that the maximum 

on-axis intensity does not occur at the focal point, expecially for small y, but 

is displaced substantially to ç < 1. 

Irradiance Distributions Near the Focus 

It is convenient now to transform equation (4) to a function of the dimen¬ 

sionless parameters and coordinates defined in equations (8) and (11) and 

Ç = 2rb/AR Q2) 

with a new integration variable x = p/b. Using equation (1) in equation (4), the 

transformation yields 

2yvo f 
u(Ç,C) = J0(TrÇx/ç)exp[-(£x)2-ix2Y(ç-l)/ç-i$]xdx (13) 

The amplitude vq cannot be expressed in terms of the dimensionless parameters; 

therefore, it is convenient to normalize equation (13) to the nonaberrated, 

($ = 0), focal point amplitude. 

u(£,ç) 
J J0(TTÇx/ç)exp[-(Bx)2-ix2Y(ç-l)/ç -i$] xdx 

(ç/232)[exp(-a2ß2)-exp(-ß2)] 
(14) 

The normalized irradiance is given simply by 

ïu.o = |ua,o|2 = |u(ç,ç) |2/if 

where the normalization is such that Ï(0,1) = 1. 

We have prepared several three-dimensional plots which illustrate the 

behavior of equation (15); these are shown in Figure 3. 

43 



(U 

(O 

<e; 

(%) 

.500 

1.000 

io 

.500 

1.000 

30 

(D) 

.750 

1-000 1.000 

in » 

tf) 

Figure 3. The I(Ç,ç) surface. The normalized irradiance is plotted on the 

vertical axis. The (Ç,ç, I(£,ç)) coordinate axis form a right hand coordinate 

system. The axes cover the ranges 0 < I(£,ç) < 1.6, 0 < Ç < 2.5, and 0.5 < r 
.1 1.5. In each figure, $ = 0. 
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Power Distributions Near the Focus 

We define the normalized power as, 

P(Ç,ç) = P(r,z)/P 
o 

where P(r,z) is the integrated intensity from o to r and is defined in equation 

(5). Using equations (5) and (15), we obtain 

PU,0 W6)2 nî(n>e)dn 

exp(-a2ß2)+exp(-32) J 
o 

(16) 

We have prepared three dimensional plots of the normalized power corresponding 

to those of Figure 3; these are shown in Figure 4 and apply for ideal beams 

Í = 0. 

In Figure 5, we show predictions of equation (16) when t - 1 and 1 . 0. The 

focal plane (or far field) power profiles shown In Figures 5a and 5b may be 

considered as generalizations of Figure 8.13 on page 397 of Born and Wolf.7 

From Figures 5a and 5b, It is possible to derive the approximate formula 

P({,1) » 1.25((-0.14) (17) 

which is a very good approximation over the ranges 0.3 ¿ r 0.7 and 0 ^ B < 1 

with a - 0. Figures 5c, d, e, and f are quite useful in evaluating the'focll 

plane power as a function of beam truncation and obscuration. 

We shall now assume 0 - 0 and ( = 1 and show that equation (16) implies that 

energy Is conserved, in spite of the many approximations that are used to obtain 

the Fresnel diffraction Integral in the form given by equation (4). Conservation 

of energy requires that 

lim P(Ç,1) = 1 
Ç-x» (18) 

TO show that equation (18) Is satisfied, we shall write equation (16) In the 

following form 

P(Ç,1) = ^(01,3)^(^,0,3) 
(19) 
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ALPHA IS 0.000 

Figure 4. The P(Ç,ç) surface. Each plot here corresponds to a plot in Figure 3. 

The normalized power is plotted on the vertical axis. The (£,ç, P(Ç,Ç)) coordi- 

nate_axes form a left hand coordinate system. The axes cover the ranges 

0 £ P(Ç,ç) < - , 0 < •' < 2.5 and 0.5 £ Ç £ 1.5. In each case, $ = 0. 
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Figure 5. Focal plane profiles. In (a) and (b) we show P(Ç,1) as a function of 

K with a and 6 as changing parameters. Each curve is labeled by the correspond¬ 

ing value of a. In (a) , ¡3 = 0 and in (b), 3 = 1. In (c) and (d), we show the 

normalized power as a function of 3 for selected values of Ç and a. In (d) the 

curves are labeled by the corresponding value of a; the curves in (c) correspond 

to the same values of a. In (e) and (f) we show constant power loci; each curv*> 

is labeled by the corresponding constant value of normalized power. Graphs (e) 

and (f) would be useful for quickly estimating the required radius for a focal 

plane aperture that is to transmit, say 50 percent of the total focal plane power 
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where 

f1(a,ß) = (213)2 )-exp(-2ß -1 

f2(£,a,ß) 

1 

^ dx x 'J0(yx)exp(-ß2x2) 

a 

(20a) 

(20b) 

By taking the limit as Ç + » in equation (20b) and by rearranging the order of 

integration, we can obtain 

Urn f2 
£-►00 

^ 1 » 

J dn n exp[^-(ßn)2J J do a expJ^-(ßo)2J ^ dp p Vpri)Vp°> (21) 

Now we use the following identity 

00 

^ dp p (pn) (pa) = 6(a-n)/a 

o 
(22) 

Substituting equation (22) into equation (21) and then performing the integra, 

tion over a we obtain 

1 

lim f2 = ^ dn n exp|-2(ßn)2J = 1/^ (23) 

and thus equation (18) is exactly satisfied. All of the approximations used to 

obtain equation (19) exactly balance; a similar compensation of approximations 

is discussed by Stone. ^ 

Phase Aberrations 

In this section we consider the effects owing to the phase distortion term 

¢. We shall limit the discussion to only two simple analytical expressions for 

¢, a Gaussian distortion and a cosinusoidal distortion. The Gaussian distortion 

is of the form 

$ = (2irA) exp(-2(r/w)2) 
(24) 
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i is si„ply defined es the peek velue of the phase distortion in „„„bet of „ave- 

engths. One motivation for assuming » of the form (equation (24)) is to provide 

a simple, though perhaps crude, model of the effects owing to beam heating of any 

mirror surfaces that may be used to reflect the beam prior to the aperture 

very mirror in the optical train before the aperture, absorbs a small fraction 

of the beam power. This small fraction is not insignificant, however, because 

e absorbed energy is converted to heat near the surface of the mirror and this 

eat orces dimensional changes in the mirror surface. Ihe simplest possible 

"»del is to postulate that each mirror expands in a direction normal to its 

re looting surface by an amount proportional to the local beam Irradiance. Thus 

a normally plane mirror surface will become a convex Gaussian surface when sub- 

jected to a Gaussian local irradiance distribution. 

By neglecting near field diffraction between mirrors, one then arrives at 

t e Gaussian phase term as given in equation (24). Such a phase distortion can 

be visualized approximately as consisting of two significant components: a 

qua ratio term in r plus a more complex function. By a straightforward expansion 

Of the exponential we find that 

$ = (2ïïA)jl-2(r/w)2 + higher order termsj (25) 

The quadratic term merely contributes to an effective change in focus. The new 

focal distance is R where 

1/R = 1/R - 4AX/w2 

The higher order terms contribute to a degradation of the irradiance at the 

focal point. 

(26) 

new 

As an aid to understanding the implications of the Gaussian aberration 

(24)>’ “e haVe the “'ves in Figure 6, which are based on the 

J. 

u(R/z) = 2ß2 ^ dx X g(x,R/z) exp^-(ßx)2-27TiAexp(-2ß2x2)] 

g(x,R/z) = _exp[ixVa-R/2)/(R/z)l 

exp[-a2ß2] - exp[-32] 

y' = irb2/Az 

(27) 

(28a) 

(28b) 
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(B) 

(C) 

wíhT!'6' ,I(R/z) “ lufR/z)|2 versus R/z, calculated from equations (27) and (28) 
with y and a as changing parameters. For all graphs we have ß = 1 ?Lh Ü ( } 
is labeled by the corresponding value of A. Th! A = 0 curves peak ¡t R/z - ï I* 
was discussed in the text. For 0 < A < 1 it is seen rhaf- a fcpR u " 1 aS 

m06t 0f the peair ‘t r?ixed «cívTsí e “r'6”1 
co:;™“tPha8e dlSt<,rti0n U thUS 8ee" “ a significant cha^f-fcL 
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Equations (27) and (28) are obtained by returning to equation (4), setting 

r - 0, considering a as a constant, and reformulating the normalized wave 

amplitude as a function of the normalized focal range R/z. It is interesting 

to note in Figure 6 that for non-zero values of u, the effect of phase distor¬ 

tion is minimized. The physical reason for this is that a substantial part of 

the phase distortion is blocked out by the central obscuration. 

Now we consider the case when phase distortion is a sinusoidal function of 

¿iro cos(2ïïr/T) 

where T specifies the spatial period of the sinusoidal phase distortion. 

One of the reasons for choosing to examine equation (29) is that, in an 

approximate way, equation (29) does have connection with physical reality. For 

example, consider a water cooled mirror with circular, equally spaced coolant 

c annels behind the reflecting surface. When the surface of the mirror is 

loaded with a nearly uniform heat input, one would expect surface deformations 

that depend on radius in a nearly periodic manner while possessing axlmuthal 

symmetry. Such a physical situation is roughly approximated by the phase dis- 

tortion (equation (29)). 

set 
TO put equation (29) in the dimensionless form required by equation (14), we 

$ = 2ttô cos(2ïïvx) 
(30) 

where v = b/T. A numerical illustration, shown as Figure 7, depicts the influ¬ 

ence of equation (30). It should be noted that the location of the peak in the 

on-axis Irradiance moves closer to the aperture as the values of Í run from 

+1/4 to -1/4. This shows that, for „ . 1, the sinusoidal phase aberration 

contains a large cha„ge-of-focus component. For v - 5, we found that the plots 

o rradiance for Í - +1/4 appeared very much the same as for 6 - -1/4, indicat¬ 

ing that, for v = 5, the change of focus component in the phase aberration is 

negligible. 

»hen v is an integer and o - S = „, it is possible to derive a relatively 

simple expression for the focal point irradiance. By „sing the identity 
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(31) 

4-00 
exptlzcose] = 2 ikj (z) eXp[ike] 

Ic^co K 

equation (14) reduces to 

u(Osl) = J (2ttô) 
(32) 

T r (- ' 15 lndePMdent °f the valu. „f v . b/T 

and Z : ^ ? Pl0t£ed I<0’1, aS a fl,,,CtÍOn °f * f°r Varl°“S »f « and a and for v - 1. The polnt here ls that the focal p(¡lnt ¿ 

a ear to be 8lglllflcantly nffectnd by cha„8es in n on ß. The transvIrse 

irradinnce distrihntions are atrong fnnctiona of v even thongh the focal point 

rradiance la relatively inaenaitive to the preciae (interger) value of 
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POWER PROFILES FOR APERTURED FOCUSED GAUSSIAN BEAMS 

D. A. Holmes, J. E. Korka, and P. V. Avizonls 

This note is an extension of "Parametric Study of Apertured Focused Gaussian 

Beams" which was published by us in the Laser Division Digest of December 1970. 

In the previous note, we showed that the normalized irradiance distribution in 

the vicinity of the focus is given by 

I(£,ç) = |u(ç,o|2 

where 

1 r 

f V*Çx/ç)exp -(Bx)2-ix2Y(ç--l)/ç]xdx 

ü(Ç.O=--—_A_ 
(ç/2B2) Jexp(-a262)-exp(-ß2)J ^ 

and 

a = a/b 

ß = b/w 

Y = ïïb2/AR 

Z = z/R 

Ç = 2rb/ÀR 

As before, the symbols are defined as follows: 

a Inside radius of annular aperture 

b Outside radius of annular aperture 

r,z Cylindrical coordinates 

w Spot size of Gaussian aperture field 

A Vacuum wavelength 

R Radius of curvature of aperture field phase front 

Po Power transmitted through aperture 
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In any plane z - constant, the beam power passing through a circle of 

radius r, centered on the z axis, is denoted by P(r,z). We shall now transform 

this power to be a function of the dimensionless coordinates Ç and ç and define 

the dimensionless power p(Ç,ç) as follows 

p(Ç,ç) = P(Ç,ç)/P (2) 

We see that 0 < p(ç,ç) < !. By integrating 1(^,0, we can obtain 

p(ï,Ç) - we)* spt-VHxpH^i nT(njt)dn 

exp[-azß2]+exp[-82] J 
(3) 

We have prepared so« three-dl-ensional plots of p({>c) vhlch are companlons 

to the plots of 1(5,0 published In the previous note; these plots are shown as 
Figures 1 through 12. The axes in each figure cover the ranges 

0 < Ç < 2.5 

0*5 < Ç < 1.5 

°ipa,c)±i (4) 

In each figure, the normalized power, p(Ç,ç) is plotted on the vertical axis 

The £ axis appears to extend into the paper in each figure. The (Ç, ç, p(e,0) 

coordinate axes thus form a left handed system. 

Equation (3) is rather complicated, but we have found that, for ç = 1 the 

normalized power p(Ç,l) can be represented by a rather simple formula over a 

limited range in Ç. Sy a rather unsophisticated graphical analysis we have found 

P(Ç,D = 1.25(Ç-0.14) 

Equation (5) is valid for the following conditions: 

0.3 1 Ç £ 0.6 

0 < ß < 1 

a = 0 

56 

(6a) 

(6b) 

(6c) 



For 0 « 1, the interval on Ç may be extended to 0.3 _< Ç < 0.7. The accuracy of 

equation (5) is no worse than about 5 percent under the conditions of equation (6). 

To emphasize the simplicity of equation (5) we can rewrite the expression in 

terms of the un-normalized focal plane power P(r,R) as follows 

P(r,R) = 1.25)[Dr/AR]-0.14|Po (7) 

where D is the outside diameter (D = 2b) of the final transmitting aperture and 

R is the distance from the aperture to the focal plane. 
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Figure 3. The p(Ç,Ü Surface for 
a = 0, 6 = 0, y = 30 

Figure 4. The p(Ç,ç) Surface for 
01 = 0, ß = 0, y = 50 
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Figure 7. The p(Ç,ç) Surface for 

a=0.5, ß=0, y=30 
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Figure 8. The p(Ç,ç) Surface for 

a=0.5, 8=0, y=50 



Figure 11. The p(Ç,ç) Surface for 
a=0.75, 6=1, y =30 
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Figure 12. The p(Ç,ç) Surface for 
a = 0.75, ß = 1, y = 50 



COMPARISON OF FAR-FIELD IRRADIANCES FOR AXICON AND CASSEGRAIN TRANSMITTERS 

D. A. Holmes, M. L. Bernabe, and R. R. Selleck 

In this note, we compare the far-field irradiances projected by two different 

beam expanding transmitting systems. The first system is the axicon, shown in 

Figure 1, consisting of two conical mirrors. The second system, shown in Figure 

2, is the on-axis Cassegrain telescope, consisting of two spherical mirrors. 

The input beam for both systems shall consist of a truncated Gaussian whose 

wave amplitude is given by 

vi(r) = V exp(-r2/w2) for o < r < 
(la) 

vi(r) = 0 for a < r (lb) 

In equation (1), V is a constant, w is the familiar Kogelnik and Li spot size, 

r is the radial coordinate and a is the radius of the truncating aperture. 

If the input beam, as described by equation (1), is projected to the far 

field without the benefit of beam expanding opitcs, then the diffracted wave 

field, evaluated on the optical axis, is given by 

a 
„ _ 2tt V exp(2ïïiz/A') f , „ 
i ÍAÍ \ exP(-(p/w)2) p dp (2) 

In equation (2), A is the wavelength and z is distance measured from the final 

aperture of radius a. The far-field on-axis irradiance is given by I. = |u.|2 

as follows i 

- [™2V/Az]2 [l-exp(-a2/w2) ]: (3) 

In equation (3), V is assumed to be a real constant, without loss of generality. 

We now consider the case of the axicon. The wave field in the final aperture 

plane (see Figure 1) is given by 

t(r) = |(r-b+a)/rj ^ V exp |-(r-b+a)2/w2J 
(4a) 
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(Ab) 

for b-a < r < b, and 

V (r) = 0 for b-a > r and b < r 
a 

Near-field diffraction effects between mirrors are neglected in calculating 

equation (A). 

The far-field wave amplitude, evaluated on the z-axis, is given by 

b 

ua - ^2iTexp(2iriz/X)/iXz^ I dp p va(p) (5) 

b-a 

The far-field on-axis irradiance is I = |u |2. We shall now define a normalized 
a 1 a 

far-field irradiance as Y » I /1. where I. is given by equation (3). Thus it is 
a a i i 

seen that T measures the increase in far-field irradiance obtained by passing 
a 

the truncated Gaussian wave through a beam-expanding axicon optical system. 

It is convenient to define the following dimensionless parameters: 

m ® b/a (ba) 

ß ■ a/w (6b) 

The quantity m may be called the expansion ratio or magnification, while ß simply 

is the ratio of the input bean truncation to the input beam spot size. 

Using equations (6) and (3), we obtain 

I 
a 

Aß ^ dy[y(y+m-l)] exp(-ß2y2) 

jl-exp(-ß2)[2 

(7) 

In equation (7), we note that the dependence on z, X and V has conveniently 

dropped out. In numerical computations, we shall permit m to become as small 

as unity for mathematical convenience. 

In the case of the Cassegrain telescope, the wave amplitude over the final 

concave mirror (primary mirror), neglecting near field diffraction effects, is a 

scaled version of equation (1). The primary mirror field is thus given by 

6A 



• vc(r) - (aV/b^xpí-aV/bV) for a < r < b 

vc(r> “ 0 for a > r and b < r 

Nata that « consider that the telescope is in afocal adjustment 

The far-field wave amplitude, evaluated 

(8a) 

(8b) 

on the optical axis, is u given by 

u, - (2Trexp(2ïïiz/À)/iAz )5 dp p vc(p) 
(9) 

where s measures distance from the piane of the primary mirror. The far-field 

on axis irradiance is given by 

(ïïbw2V/aAz)2 jexp^-(a2/bw)2j-exp(-a2/w2)J ‘ (10) 

e now define the normalized irradiance I = I /1 The quanti j ^ 

measures the change in far-field irradiance obtained by passing ^truncated 

0 ussian „ave through the beam expanding Cassegrain telescope, „sing the 

dimensionless coordinates (equations (6a) and (6b) 

m = b/a 

ß = a/w 

we obtain 

m2[exp(-32/m2)-exp(_ß2)-|2 
I *-- -~ 

[l-exp(-ß2)] 2 (ID 

In Figures 3 to 7, ve show some numerical calculations of ï and I from 

ZTT (7) an<i <11)-_respectlvel>'- ^ ^ curves of ï versus m. notice 

obs ’ " T V8 8ma11’ Ic 1S leSS tha” U”1£y; ChlS 18 because the “■'«ol 
b curation (secondary mirror) prevents all the power in the input beam from 

being transmitted to the far-field. 

The figures clearly demonstrate the limiting behavior of equation (7) for 

large values of m. For "larae" valnoc n-e u 
large values of m we have, from equation (7), 
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I 
a 

Aß4 m 

i 

^ dyiyW2 exp(-ß2y2) 

l-exp(-ß2) 
(12) 

which shows that I is linearly dependent on m when m becomes significantly 
â 

larger than one. The graphs actually show I to vary nearly linearly with m 
cl 

for m > 1. 
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ON-AXIS FOCAL PLANE INTENSITY VARIATIONS 

DUE TO TELESCOPE MIRROR MOTION 

C. DeHainaut, J. E. Korka, and L. Sher 

Summary 

Calculations have been performed to evaluate the average loss in intensity 

at the focal plane when the telescope mirrors translate longitudinally in an 

oscillatory fashion from their nominal separation. The results indicate that 

in order to keep the loss in intensity less than 10 percent, the relative vibra¬ 

tory motion must be less than 65 y, vector, or 46 y, RMS. 

Analysis 

Assuming a uniform plane wave incident on the secondary and no aberrations 

in the system we obtain a beam with radius of convergence R from the telescope. 

This radius of convergence is a function of the radii of the secondary (rj) and 

the primary (r2) and of their separation (d), and is given by 

r2(ri + 2d) 

R = 2(2d + ri - r2) (1) 

The intensity on-axis normalized in the focal plane is given as a function of R 

and Z as 

I = sinc2^(b2-a2)(Z-R)/(2XZR))lo (2) 

where b is the outer radius of the primary, a is the radius of the obstruction, 

X is the wavelength of the radiation, and z is the distance along the optical 

axis. For a given set of telescope parameters, a, b, r.^, the distance to 

the focal plane z is determined by a given d . The variation in the normalized o o 
intensity, i.e., 1/10 from a nominal do> is shown in Figure 1, where the varia¬ 

tion is calculated in millimeters. 

For oscillatory motions of the separation d of the type: 

d = dQ + A sin ait (3) 
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Figure 1. Normalized on-axis focal plane intensity versus 

primary-secondary movement from the nominal. 

73 



we wish to determine the time average of the quantity I/I , i.e., 

T T 

T/Io H ï j (I/Io)dt = Y J sine2[a,b,z,R,A,d]dt 

o o 

Since we have assumed a periodic input for d, we can assume that I/I is 
o 

periodic; thus 

(4) 

2ir 

I/Io = j sine2[a,b,X,R,z,d0,A sin 6]d0 (5) 

o 

Since there is no closed-form solution to the above integral, it must be evalua¬ 

ted numerically. We approximate the integral as: 

_ -L N 

I/I0 = 27 £ sinc2 [•••A sin 9k]A6 (6) 
k=l 

where A0 = 27t/N, 6. = k Thus 
k N 

ino= n ^ siRc2 [• • -A sin(k I1)] (■/) 

To note the loss in the intensity as a function of A, the quantity determined 

was : 

F-ii.-m) 

The quantity F was determined for several pairs of do and z, as a function of A, 

with similar results. Figure 2 shows F versus A. These results indicate that 

the relative motions are indeed critical, especially for equipment that may be 

subjected to a vibration environment. For example, the permissible relative 

oscillatory acceleration between the mirrors is: 

X 
max 

2 
= w^x 

For X = 53, and converting to g-units: 

X 
max 

2.1 X 10"4 f2 g 
°rms 

(8) 

(9) 
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where f is the oscillation frequency in Hz. Thus at 

f = 10 Hz, 

f = 30 Hz, 

f = 100 Hz, 

X < 
max 

X < 
max 

X 
max 

0.02 g 

0.19 g 

2 g 6rms 

rms 

rms 
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AN IMAGING TECHNIQUE FOR 
BEAM FORMING AND POWER REMOVAL 

D. A. Maier, J. E. Korka, and R. R. Selleck 

A method of obtaining a desired field distribution at a specific plane with 

a master oscillator-power amplifier laser system was investigated theoretically 

and experimentally. We consider a beam generated by a CO2 laser oscillator and 

amplified by passing through a C02 laser amplifier. The objective is to control 

the intensity and power distribution in this beam at a particular plane beyond 

the amplifier section. The method is simple, yet novel in this application. A 

system of mirrors or lenses is used to image a plane prior to the amplifier into 

its conjugate plane after the amplifier. If diffraction and nonlinearity of 

laser grain are ignored, the optical field in the object plane will be reproduced, 

magnified or reduced, by the optical system in the image plane. If diffraction 

and nonlinearity of the amplifier are small effects it is possible to control the 

intensity and power distribution at a plane after the amplifier by placing an 

aperture with the desired transmittance in the master oscillator beam prior to 

the amplifier. 

The feasibility of removing power from the central portion of an amplified 

C02 beam using a central obscuration in the master oscillator beam was investi¬ 

gated. Removing power from a laser beam has application if this beam is projected 

through an on-axis Cassegrain telescope. The central part of the beam in such a 

telescope will be reflected back toward the laser device. Figure 1 illustrates 

the experimental apparatus which was also used as a model to perform diffraction 

calculations. 

The Fresnel diffraction integral was used to calculate the field distributions 

at successive planes in the system. The optical field, Un+1, at the (n+l)th 

plane was found by using the field, Un, in the nth plane as follows: 
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where 

U = complex amplitude of field 

A = constant related to the magnitude of the field 

A = vacuum wavelength of light 

Zn * ax^al distance from plane n to plane n+1 

k = propagation constant * 2tt/A 

Pn “ radial coordinate in the nth plane 

a » the inner radius of any annular aperture 

b * the outer radius of any aperture 

<í»n = the optical power of the nth surface 

Jq - zeroth order Bessel function of the first kind 

The object plane field was assumed to be: 

V^o) = u exp[-(p0/w)2 - Iïïp^/xrJ 

where U was normalized for unit power between a and b 
o o 

w = Gaussian spot size 

R * the radius of curvature of the input phase front 

Figure 2 is a plot of the calculated intensity distribution in the image 

Plane for ao = 0.3175 cm, bo = 2.5 cm, w = 1.77 cm, and R = ». 

Experimentally the image-plane intensity and power distributions were 

observed on quenched phosphorescent screens and by variable aperture power scans 

With an annular object an annular image „as formed with and without the amplifier 

active. With the amplifier off the central spot of intensity, predicted by cal¬ 

culations. was not noted. With the amplifier on and operating in the saturated 

gain region, an annular image with an Intense central spot was observed. The 

power was measured with a variable radius aperture with and without the central 

obscuration in the master oscillator beam. Figure 3 is a plot of the percentage 

of power removed from the image plane as a function of radius. Forty-one percent 

of the power which had been present in the center of the amplified beam was re¬ 

moved by placing a central obscuration in the object plane. The total power in 

the beam remained nearly constant. 

79 



en 
~2L 
LU 

Figure 2. Calculated intensity distribution 73.76 cm from M2 (image plane), 
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These calculations and experiments demonstrated that power could be removed 

from the center of an amplified laser beam using a cewcral obscuration in the 

input beam and an imaging technique. If the obscuration can be resolved by the 

optical system, some advantage will be gained with this technique even when the 

amplifier is saturated. The less saturated the gain media, the better this 

technique is expected to work. 

Further experiments are planned to show the applicability of the imaging 

technique for beam power removal in a specific system. A better understanding 

of the capabilities and limitations of this method will be obtained. 
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A REGENERATIVE RING AMPLIFIER FOR A CHEMICAL LASER 

John A. Love III 

With the advent of high-power chemical lasers, the challenge of efficiently 

extracting a high-energy chemical laser beam must be met. To date, an unstable 

confocal resonator has been coupled to a one-kilowatt arc discharge HF laser at 

Aerospace Corporation in El Segundo, California. High-energy, 1.5 times diffrac¬ 

tion limited, beams have been successfully extracted. For this laser, the small 

signal gain-gain length product (a0L) is approximately unity. The saturation 

intensity Is estimated to be about 200 watts/cm^. For lasing media with 

such high saturation parameters, the regenerative ring amplifier is a promising 

candidate for extracting high-energy beams by using relatively low input inten¬ 

sities (I0 << Is) from a master oscillator. Admittedly, there might be some 

engineering constraints which would prohibit the use of a regenerative ring 

amplifier with a particular laser. However, this subject will not be addressed 

in this paper. 

Regenerative ring amplifiers (Figure 1) operate in two ways: Unconditionally 

stable and conditionally stable"*". The unconditionally stable ring (G0R < 1) 

cannot oscillate by itself and will amplify only when there is an injected signal. 

The conditionally stable ring (G0R > 1, GR < 1) can oscillate by itself. How¬ 

ever, if a sufficiently large signal is injected, the gain will saturate to the 

point where oscillation is inhibited and only amplification can occur. 

I chose to calculate the steady state output by watching the temporal build-up 

of the electric field input to the amplifier just inside of the ring. The expres¬ 

sions to be derived must consider the electric field amplitude and not the power. 

This is due to the phase change upon reflection from a dielectrically coated 

mirror as shown by the Fresnel reflection coefficients2. The steady-state elec¬ 

tric field input amplitude to the amplifying region is the sum of the following 

infinite series: 

EIN != * •{[(t81r+t)82^+t:]s3r+t}g4r, ’ (1) 
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Figure 1. Reflective regenerative ring amplifier 
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where the te™ Inside eech successive psir of brackets are the input to the 

2 ;;f;pon *ach pase- F°r is the i„pUt t» 
amplifier on the second pass and (tgprtt^m Eo is the input on the 

third pass. For equation (1): 

E0 - electric field amplitude from the master oscillator. 

t - electric field transmission coefficient into the ring amplifier. 

r - external electric field reflection coefficient for the input 

mirror.* 

g1 = exp(l/2a1L) - the electric field gain for the ith pass. 

ai * saturated power gain coefficient for the ith pass. 

Equation (1) can be rewritten: 

EIN = t+-*-84rt+84g3r2t+848382r3t+8483828lr4t 

The steady-state electric field output amplitude is: 

(2) 

where 

E = rE - Et g t' It o IN Sea11 out (3) 

?ss - steady-state saturated gain for the electric field. 

t = electric field transmission coeffic 

with tt' = 1+rr'. 
-cient out ol the ring amplifie: 

The above treatment differs from that of gucrek1. „e derived coupled analptical 

expressions for the output power. aiyticai 

Figure 2 presents data for an amplifier hav-íno = t, 
um. Fisur. 1 a.8 ^eneously broadened gain 

medium. Figure 3 presents data when the 

the former. 
gam is inhomogeneously broadened. For 

a 
a 

o 
1 + I/I 

s (4) 

*In reality, this reflection coefficient is rj r' r' r! where r' is the 

electric field reflection coefficient for the ith mlrror> For j = r, 

assuming that mirrors 2, 3, and 4 are perfect reflectors (r,«r,4,=1)1 

product is r. ¿34» 

internal 

and 

the final 
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Figure 2. Regenerative ring amplifier for medium with homogeneously 

broadened gain. 
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For the latter. 

+ I/I s 
(5) 

Equation (5) deserves some special attention. First, the small signal gain 

s assumed to be the same .. 1„ the homogeneous case; that is. the number 

density f atoms at the center frequency is the aame. Second, the saturated 

the” 8h T' f°r the 1"h0'*0eeneous case ^ the homogeneous case since 
the number density of atom, in the Inhomogeneous line width is larger. There¬ 

fore, the gain relationship in equation (5) ImnTt.e 
density case The u.t < iie<,Uatl°n (5) a -on-constant atomic number 

How ' n “ HF'DF laalni a°ne 18 inhomogeneously broadened 
However, the constancy of the atomic number density is not validated. Hevele- 

Isss, equation (5) will be asatima/i v 

than equation (4,. ^ ^ ^aaaa”ta“ve of a chemical laser 

Bucre?“rc™oant ^ ^ ‘ ^ ^ ^ ^ “ that W 
caek. Common to both data aet. is the conclusion that if the reflectivity of 

th input beamsplitter is high (conditionally st^le), a low input field is 

ufficient to tickle" the ring amplifier For blah pi 
passes rh.r ^ ^ ,, ampiitier. For high reflectivity, the number of 
P ses that the field stored within the ring (-E Í rait-oa * v, 
_. . , S'' “tn' to achieve a steadv 

igTa»deCrS Vary larga' ^ a reSUlt> the P<,War at0rad -E ES very 
high and the net output power is very high. Notice that the low "tickle" power 

is about one percent of the saturation parameter. 

laJTteTï' ^ 2 that tha has a 
ge steady state saturated gain for the inhomogeneously broadened case (non- 

constant atomic number density case). 

Figure 4 compares . low. inhomogeneously broadened, gain system with a high 

ga „ system. The obviously anticipated results are produced. For a high gain 

system, the numerical data show that the reflectivity (R) has 
where TR = i -n, u, u rerxectivity (R) has an upper bound 

^ hlghar tha S"aU ^g-1 g“"- -he lower this upper bound. 

Figure 5 presents data typical of high gain chemical lasers. 

In conclusion, a reflective ring amplifier is an effective optical means 

“ F a ^ InPUt Pt,“ar fr°" * oscillator can produce a very high output 
pow;r f hlg, galn medlj_ Ihl> „elctle„ power is of the order of P 

of the saturation parameter (P ). 
8 
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TELESCOPIC AMPLIFIER 

D. A. Holmes, P. V. Avizonis, J. A. Love, and J. E. Korka 

We consider the amplification of a laser beam by a gain medium that is 

uniformly distributed between the lenses of a beam-expanding Galilean telescope. 

Such a telescope, in afocal adjustment, is shown in Figure 1. The common focal 

point is identified by the point F on the optical axis. 

The laser beam is considered to be propagating from left to right in Figure 

1. Between lenses the beam occupies a conical region that is presumed to be 

filled with a uniformly distributed small signal gain aQ. 

To treat this amplifier problem, we set up the approximate geometrical model 

depicted in Figure 2. We consider a conical beam, of half-angle 6o> that 

appears to be coming from point F. A spherical coordinate system is set up with 

F as the origin and the z-axis as shown in Figure 2. 

The spherical surface that occupies the region r = f and 6 £ 0o is taken as 

the input boundary; i.e., over this surface the conical beam flux is taken to be 

the same as the irradiance distribution of the laser beam as it enters the nega¬ 

tive lens of the telescope. The output boundary surface is taken as the spher¬ 

ical surface r * mf and 6 90; it is essentially at this surface that the 

amplified conical beam is recollimated by the positive lens. 

In Figure 2, let us refer to the volume element Sdr and write a power 

balance for this volume element. The power entering the element is IS, where 

we assume now that the irradiance I is uniform over the area S. Similarly, the 

power leaving the volume element is (I+dl)(S+dS). The power generated and added 

to the conical beam in the volume element Sdr is simply alSdr, where the gain a 

is assumed to be essentially constant throughout the volume element and of the 

form 

a = a0/[l+I/Is] 

is the saturation flux and aQ is the small signal gain. 

(1) 
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Figure 1. Geometrical configuration under consideration. In the gain region, 

the uniformly distributed small signal gain is a0. 

Figure 2. Approximate analytical model, valid for lenses with large f-numbers. 

The dotted lines delineate the boundaries of the conical beam. The center of 

the spherical surfaces is the point F. 
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The power balance on the volume element Sdr gives 

(I+dl) (S+dS)-IS = ctlSdr 

The area S is given by 

IdS+Sdl = alSdr 

S = 4ïïr2sin2(60/2) 

Using equations (1) and (3) in equation (2), we obtain 

(2) 

(3) 

dl/drr21/r = a0I/[l+I/Is] (4) 

The initial condition on I is simply that T ^ at r - f; the final condition 

is that 1 = I2 when r = The power gain of the amplifier is 

Gp = m2l2/h (5) 

There are two instances where equation (4) reduces to an easily solved 

linear equation: the highly saturated amplifier and the small signal amplifier. 

In the highly saturated amplifier, we have 

1/1S ^ 1 (6) 

for all values of r. In this case, the solution for I is approximately 

1 = aoIsr/3+[Il_ctoISf/3Hf/r); (7) 

and the power gain is 

G = 1+a SL (m2+nrfl) (Ic/3Ii) P 0 O -L (8) 

In the small signal amplifier, we have 

ms « i (9) 

for all values of r. The solution for I is approximately 

I = I-jJf/r]2 exp [a0 (r-f ) ] (10) 
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and the power gain is 

Gp = exp(a0£) (11) 

Some numerical solutions of equation (4) have been obtained by computer 

integration. To prepare numerical illustrations, equation (4) was transformed 

with the following substitutions. 

1 = 1/lg > (dimensionless irradiance) (12a) 

y * r/f = (m-l)r/i,; (dimensionless coordinate) (12b) 

Using equation (12), we thus obtain 

di/dy+2i/y - aoAi/[(m-1)(1+i)] (13) 

An alternative differential equation can be derived by defining p - iy2; then 

equation (13) becomes 

(m-1)(y2+p)dp - aQJlpy2dy (14) 

In Figures 3 to .14 we show numerical integrations of equation (13). The 

plots show i versus y for a variety of values of m, aoi, and i^ In Figures 

15 and 16 we show the power gain Gp versus o^it with m and ±1 as parameters. 
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2H2.31 

54.52 

14.96 

2.60 

Figure 3. 1/½ versus r/f with an initial condition of I-pIg/lO. The telescope 

expansion ratio is m=3. From bottom to top, the curves are identified by the 

parameter values aQl = 1, 3, 5, and 10. The power gain for each curve is 

indicated by the G value at the right border. 

G = 58.09 

G = 

G = 

19.89 

0.51 

2.28 

Figure 4. 1/½ versus r/f with an initial condition of I-i=Ig/2. The telescope 

expansion ratio is m=3. From bottom to top, the curves are identified by the 

parameter values ct0£. = 1, 3, 5, and 10. The power gain for each curve is 

indicated by the G value at the right border. 
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521.95 

81.02 

lHí 

Figure 9. I/Is versus r/f with an initial condition of I^Ic/lO. The telescone 
expansion ratio is m*1;. _ 1 9 . e ce-Lescope 
naramp<-°n ^ ^5, Fr°m b0tt°m t0 t0p* the ^rve¡ ¡reld¡ntifiëd bTlhe LX ,vilLe! Mri’i’i: lc: f„r each Xe L 
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15.90 

6.97 

3.96 

1.73 

Figure 13. I/Is versus r/f with an initial condition of Ii=5Is. The telescope 

expansion ratio is m=5. From bottom to top, the curves are identified by the 

parameter values aQl = 1, 3, 5, and 10. The power gain for each curve is 
indicated by the G value at the right border. 

0.92 

4.40 

2.81 

1.50 

Figure 14. I/Ig versus r/f with an initial condition of I^lOIg. The telescope 

expansion ratio is m=5. From bottom to top, the curves are identified by the 

parameter values a0£ = 1, 3, 5, and 10. The power gain for each curve is 
indicated by the G value at the right border. 
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Figure 15. Log^o Gp versus log,Q 

Each curve is identified by a dif 

the values at the right border. 

a0£ for a telescope magnification of m=3. 

ferent initial condition i^, as indicated by 

^?10 ^ V!rSuS l0g10 a°£ for 3 telesc°Pe magnification of m=5. 
initial condition ^ of the normalized irradiance is indicated for each curv 
the column of numbers at the right border. 

The 

by 
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GAUSSIAN BEAM PROPAGATION THROUGH A DIELECTRIC PLATE 

D. A. Holmes 

Using a geometrical approach, Pierre Laures1 has investigated the propagation 

of a Gaussian beam through a refractive index discontinuity. In the present 

work, we consider a similar problem from the electromagnetic wave standpoint. 

The wave approach allows an analytical estimate of the complex amplitude factors 

of the reflected and transmitted beams, in addition to giving the location of the 

beam waists. More significantly, a wave approach can include the effects of 

internal reflections within a dielectric plate. Within the approximations used 

to obtain Gaussian beam solutions to the wave equation,2 the transmittance of a 

Gaussian beam through a dielectric plate is identical to the plane-wave trans¬ 

mittance. 

We now discuss the transmission of a coherent light beam, with a Gaussian 

intensity profile, through a dielectric plate, limiting ourselves to the case of 

normal incidence. Consider the beam to be travelling in medium 1 in the positive 

z direction with a transverse electric field: 

where 

+ 
U1 E+f+(z) exp 

[■ 
jkj^z-f 

+ 
1 (la) 

^(z) = +j(k1/2) / jz-z|+j(k1/2)^wJ1j2J (lb) 

k! “ 27rni/* (1c) 

In the above equations*, A is the vacuum wavelength, ^ is the refractive index 

in medium 1, w^ is the "beam radius" when the phase front is plane and E+ is 

simply a constant amplitude parameter. The beam -aist is located in the Jlane 

z=z+. The transverse electric field u+ is perpendicular to the z axis. 

*Much of the notation in this paper is the same as that used in reference 2. 
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The dielectric plate, medium 2, is defined by the plane boundaries z=z and 

z=zp+d, where d is the thickness of the plate. The refractive index of the 

plate is n2* Medium 3 occupies the region z>z^+d and is characterized by refrac¬ 

tive index n^. In this work, we obtain an analytical expression for the Gaussian 

beam propagating in medium 3 due to the beam incident in medium 1. We shall also 

find an expression describing the reflected beam in medium 1. 

By changing the subscript 1 in equation (1) to a subscript 3, e.g., u^ -* u^, 

then we have an expression for the transmitted electric field in medium 3. The 

electric field of the reflected beam In medium 1 is written as 

2 

U1 “ (W0l) Eîfï(z) exP [+Jkxz - fx(z)r2] (2a) 

f1(z) = -j (kx/2) / |^z-z” - j(k1/2)(w“1j J (2b) 

We describe the wave field within the plate as a superposition of a positively 

travelling beam and a negatively travelling beam. The electric field, u^, of the 

positively travelling beam is written similarly to equation (1) while the electric 

field, u2, of the negatively travelling beam is written similarly co equation (2). 

The parameters of the reflected and transmitted beams are found by requiring 

the total tangential electric and magnetic fields to be continuous across the 

plane interfaces. Continuity of the electric field leads to 

fx(zp) = fj/zp) = f2^zp^ = f2^zp) 

f2^Zp+c0 = f2(zp+d) = f^izp+d) (3b) 

From equation (3) we obtain 
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(5c) z^(1 + ?)2p'?z" 
(5d) 

Continuity of the electric fields also requires that 

-JM, v+ lzp - +Jklzp + -jk2zn +jk.z 
Ele + Eie “ E2e P + E”e 2 p 

E+e-jt2(2p+d) + E.e-jk2(2p+d) ^ c+/jk3(Zp+d) 

E3C 

(6a) 

(6b) 

In order to obtain equation (6) we have used equations (3) and (4). 

In the Gaussian beam approximation, we assume that the transverse magnetic 

fields are proportional to the electric fields, so that continuity of the total 

tangential magnetic fields across the dielectric interfaces leads to 

-JVÎ* J"rp + M'+jklZp ■ -i*2^Vp + ik2E:e+Jk^p 
■jkoz 

2 2 

-ik^e-^^ + jk2E-e+Jk2(V-> = _Jk3E.e-^3<V«) 

(7a) 

(7b) 

Equations (6) and (7) are analogous to equations which describe plane wave 

propagation. The solutions for E3 and E^ can be written as 

exp j(k3-k1)Zp+jk3d 

-ni+n3- 

cos(k2d) + j 
nln3+n2 

sin(k2d) 
2nl J . 2nln2 . 

(8) 

E1 -J2klzP 
„+ e 

n2(ni-n3) + j (n1n3-n|)tan(k?d) 

^(n-j^+nj) i- j(n1n3+n2)tan(k2d) 
(9) 
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The electric fields of the transmitted and reflected beams are now com¬ 

pletely determined in terms of the incident beam parameters for the geometry 

under consideration. We have used the approximation that the transverse elec¬ 

tric and magnetic fields are perpendicular to the z-axis. In finding the 

transverse magnetic fields from the Maxwell equations, we invoked approximations 

of the following type, 

jkiui 

9u. 
_i 

3z “ + JkiUi 

i * 1, 2, 3 (10) 

2 
which are valid within the Gaussian beam approximation . These approximations 

led to the relationships (6), (7), (8), and (9), which are identical to the 

complex-amplitude relationships describing plane-wave propagation. 
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REFLECTANCE CALCULATIONS FOR LOSSLESS 

MULTILAYER DIELECTRIC STACKS 

J. E. Korka, M. L. Barnabe, and D. A. Holmes 

The theory of using alternating high- and low-index quarter-wave thin-film 

layers to obtain high-efficiency reflection coatings has been considered by 

Heavens . It is the purpose of this paper to present a quick method to deter¬ 

mine how many layers of low absorption film materials will be needed on a given 

substrate to obtain a highly reflective surface. We shall define R as the 

intensity reflectivity, ng as the real substrate index of refraction, no as the 

real refractive index of the incident media, ^ as the next layer and so forth 

to n^, the real index of the medium next to the substrate, and l the total 

number of layers in the system. 

A formula for the maximum reflectance of a non-absorbing quarter wave stack 

has been derived and is given by 

R = [(l-P)/(l+P)]2 (1) 

where P for a system with an even number of layers is 

P 
even 

n„ 
1-2 

n£.-l nj¿-3 

and P for a system with an odd number of layers is 

(2) 

D _ n£ V2 n3 " 

P°dd = [ví .^ ni 
The systems we are concerned with are alternating hi-lo layers of the same 

materials with the incident medium being air. We can then define the index 

ratio a = n£/n1_1 and nQ = 1.0. Substituting for these expressions we can 

reduce the expressions for P to 

n n 
0 s 

(3) 

P 
even (4) 
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,,e"l/(ns/nî) 
(5) P 

odd 

The expression for R can then be reduced to two forms 

(7) 

(6) 

These expressions can also be used for the absorbing substrates. All one 

needs to do is use the complex refractive index for the substrate and the abso¬ 

lute square instead of the simple square in equations (6) and (7). We can 

further reduce equation (7) if we define a reduced substrate index 

and the even quantity SL’ ■ Ä-1 and obtain 

(8) 

By comparing equations (6) and (8) we see that we need data for even-layer 

systems only since all odd-layer systems can be reduced to equivalent even- 

layer systems. 

Figures 1 through 10 are for such even-layer systems and may be used as an 

aid to determine how many layers one must coat to obtain a given reflectance 

greater than 95 percent. However, one must remember that this treatment neglects 

absorption in the layers and thus can be used only in cases where the films are 

only slightly absorbing. 
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Figure 2. 
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R versus a for a substrate with a real index of refraction of 1 5 

shown are for multilayer stacks of 6, 8, 10, 12, and 14 layers/ The 

the 14-layer stack are centermost while the outermost curves are for 

110 



RE
FL

EC
TR

NC
E 

SUBSTRATE INDEX =2-0 

Figure 3. R versus a for a substrate with a real index of refraction of 2 0 

The curves shown are for multilayer stacks of 6, 8, 10, 12, and 14 layers. The 

curves for the 14-layer stack are centermost while the outermost curves are 
6 layers. 
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Figure 4. R versus a for a substrate with a real index of refraction of 2.5. 
The curves shown are for multilayer stacks of 6, 8, 10, 12, and 14 layers.’ The 

curves for the 14-layer stack are centermost while the outermost curves are for 
6 layers. 
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Figure 5. R versus a for a substrate with a real index of refraction of 3.0. 
The curves shown are for multilayer stacks of 6, 8, 10, 12, and 14 layers. The 

curves for the 14-layer stack are centermost while the outermost curves are for 
6 layers. 
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Figure 6. 
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Figure 8. R versus a for a substrate with a real index of refraction of 4.5. 

The curves shown are for multilayer stacks of 6, 8, 10, 12, and 14 layers.* The 

curves for the 14-layer stack are centermost while the outermost curves are for 
6 layers. 
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Figure 9. R versus a for a substrate with a real index of refraction of 5.0. 

The curves shown are for multilayer stacks of 6, 8, 10, 12, and 14 layers. The 

curves for the 14-layer stack are centermost while the outermost curves are for 
6 layers. 

117 



RE
FL

EC
TR

NC
E 

SUBSTRATE INDEX = 11.9+72.81 

INDEX RATIO 

Figure 10. R versus a for a silver substrate with complex index of refraction 

11.9 + 72.8i. The curves shown are for 2, 4, 6, 8, 10, 12, and 14 layers. 
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TRANSMISSION THROUGH LASER WINDOWS FOR 

COHERENT AND INCOHERENT RADIATION 

John Loomis 

Introduction 

The linear attenuation of radiation passing through a material window 

follows Beer's law: 

P = P e 
X o (1) 

where Px is the radiation power at distance x into the window, Po is the power 

at X = o and B is the absorption coefficient of the material. In addition to 

attenuation, radiation impinging on a window will undergo multiple reflections 

off the front and back surfaces of the window. For off-normal angles of inci¬ 

dence, small beam diameters and thick windows, these multiple reflections may 

be spatially distinct. For incoherent radiation the degree of spatial coinci¬ 

dence of multiple reflections does not affect the proportionality between 

reflected, transmitted, and absorbed radiation. However, when coherent radiation 

undergoes multiple reflections which are spatially coincident, interference 

effects modify these relationships. 

Although the exhibition of interference effects in a plane, parallel trans¬ 

parent plate is a standard subject in most optics texts,1 it is important to 

develop a consistent notation and set of equations appropriate for the study of 

windows as components in a laser system. The relevant experimental quantities 

are the amounts of reflected, transmitted and absorbed power as a function of 

the incident power and material properties. The remainder of this paper will be 

devoted to calculating these quantities for coherent and incoherent radiation 

normally incident on a plane, parallel plate of window material. The analysis 

is based on that given by R. Weil2 in calculating absorption coefficients when 

interference effects are present. 
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Calculations 

Consider the situation depicted in Figure 1. A laser beam of constant 

intensity Po is directed normally onto a plane, parallel window of thickness Jl, 

absorption coefficient 3, and index of refraction n. Of this incident power, 

an amount, ?f, is reflected backwards, a portion PT is transmitted, and the 

remainder P^ is absorbed. Multiple reflections occur at faces A and B of the 

window because the absorption is assumed to be small and the window to be thin. 

In the steady state situation, a standing wave will develop in the window with 

components traveling in both directions. 

INCOMING LASER BEAM 

E0’P0 

REFLECTED BEAM 
EF,PF 

A 
ABSORBED POWER 

PA 

ER(x,fc 

El(x) 

N F 1 
r * "1 

A B 

TRANSMITTED BEAM 

Er» pr 

Figure 1. Distribution of wave trains for laser beam 

propagating through a material window. 

The amplitude reflection and transmission coefficients r and t will 
J qv qv 
depend on the boundary (q = A or B) and on the direction of incident light 

(v = Left or Right) at that boundary. Let y = ß/2 + k where 

2ïïn 

K -r~ 
o 
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inside the material. 

2tt K =r 

o 

in air, and \q is the radiation wavelength in air. Let Ex denote the amplitude 

of the electric field at x. The power in a given direction at a given location 

(boundary B for example) may be obtained for coherent radiation by summing the 

amplitudes of the component multiple reflections and then squaring. For inco¬ 

herent radiation, the power is given by summing the squares of the amplitude of 

the component multiple reflections. Table I shows the component amplitudes at 

boundary B. The amplitude from the (2m + l)th pass through the window goes as 

am " rBR rAL (2) 

The net power is then proportional to 

un=o 

for coherent radiation and 

S. .=/-,32 (3) 
incoh m v ' 

for incoherent ratiation. The sum is a geometric series which equals 

2 

coh 1-a, 
(4) 

and 

incoh , 2 
1-af 

(5) 

respectively. The powers at boundary B are 

PR * nER = nEo tAR exp(-ß£)S (6) 
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nEL * nEo tAR rBR exP(-^)S (7) 

where S is 

or 

PT = ET - Eo 'L 'br «pf-eíjs 

coh 

1'2rBRrALeXp(~e£)cos(2KÄ)+rBRrALeXp(“2ßil) 

incoh 
1"rBRrAl.eXp(-2eii) 

as appropriate, 

is 

The power absorbed in the sample from the right 

PAR = pRexP(60-PR 

and from the left travelling wave, 

PAL = pL-pLexP(-ßO 

for a total absorbed power of 

PA nEoStARÍ1_exP(~e£^ [l+r§Rexp(-ß£)] 

For incoherent radiation, the power reflected from the window is 

PF = rARPo + tALPLexp(_ß£) 

For coherent radiation, the power reflected is obtained from 

P = E* 
F F 

where 

rAREo + tALELexp("YÄ) 

(8) 

(9) 

(10) 

travelling wave 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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The amplitude coefficients t and r may be replaced by reflectivity and trans- 

mittivity coefficients T and R where, as shown on pages 41 and 42 of reference 1, 

T + R = 1 

nt2 * nt2 
AR BL 

r2 = R 

It 2 
n BR 

—t2 = T 
n AL 

n-1 
AR ‘BL ‘BR ‘AL = n+1 

r._ = r„T = = -r 

(17) 

(18) 

(19) 

(20) 

Transmitted, absorbed, and reflected power may now be expressed as 

PT = T2 Po S exp(-6£) (21) 

P = (1-R) P S [l-exp(-ß£)] [1 + R exp(-ß£)] 
A O 

(22) 

and, for the coherent case: 

P=RP + TP S , exp(-ß£) [R(R+D exp(-ß£) -2Rcos(2k£)] 
roo con 

(23) 

or, for the incoherent case: 

P = R P + T2 R P S_, u exp(-2ß£) 
F o o incoh K 

(24) 

where 

coh 
1-2R exp(-ß£) cos(2k£) + R2 exp(--2ß£) 

(25) 

and 

incoh 
1-R2 exp(-2ß£) 

(26) 

Discussion 

The absorption of incoherent radiation can be expressed as 

PA = Po U-exp(-St)] îrrSRIW (27) 
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from equations (22) and (26). In the limit of low absorption coefficients, 

equation (27) can be rewritten as 

ß (28) 

The absorption of both coherent and incoherent radiation can be obtained 

from combining equations (21) and (22) to eliminate S, 

P 
A 

[1-exp (-8)1)] 
1+R exp (-6¾.) 

T exp(-eJl) 
(29) 

Again in the limit of small absorption coefficients, equation (29) can be 

expressed as 

*PT 1+R 

As pointed out by Weil, equation (30) might also be written 

(30) 

A 

£P„ 

BR 

4 + rBü) 

(31) 

In this form it is apparent that applying an anti-reflection coating to the back 

face, so that rBD -»■ 0 and 
BR 

"BR 
+ 1 

reduces equation (31) to 

A 

£P„ 
(32) 

for both incoherent and coherent radiation. 

The appropriate expression to use in calculating the absorption coefficient 

of an uncoated material for either coherent or incoherent radiation is 

8 
PA 2n 

*PT n2+l 

(33) 

where equations (19) and (2Ü) have been used to replace R in equation (30) by 

the index of refraction. 
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Interference effects may be monitored by measuring either P , P or P 
TA F 

since each depends on scoh- In the limit of low absorption, 

PT“Po 
(1-R): 

1-2Rcos(2kJ¿)+R2 
(34) 

PF ' Po 
2R[l-cos(2icO 1 

1-2Rcos(2k£)+R2 
(35) 

P = P -- 

° 1-2Rcos(2k£)+R2 

The important term is cos(2k£) where k 

swing equation (34), for example, from 

2ïïn 

(36) 

Variations in its argument can 

min- pi ' (mf po 

For CdTe, 

R * 0.21 

and the transmitted power could be reduced by as much as 56 percent for a change 

of ir in the argument of cos(2k2). Assume that A = 10 microns and £ = 5mm. The 

thickness and index of refraction will vary with temperature. For CdTe, 

n " n df " 4 * 10"5 ’C'1 

o, - if = 6 X 10-6 .c-l 

n = 2.67 

and the temperature change required to change the transmitted power from its 

maximum to its minimum value is 
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AT 1 X_1_ 

4 ni, a + 
(37) 

AT 4.1°C 

Assume now that both faces of a CdTe window are coated with anti-reflection 

coating such that R = 0.01 at À ■ 10 microns. Roughly speaking, for incoherent 

radiation 1 percent of the power will be reflected off each face of the window 

while 98 percent of the incident power is transmitted, assuming negligible 

absorption. Under the same conditions for coherent radiation, as the temperature 

of the window changes, the transmitted power will fluctuate between 96 percent 

and 100 percent while the reflected power varies correspondingly from 4 per¬ 

cent to zero. If the output of a given laser system is sufficiently coherent, 

then, interference effects will be important in evaluating the performance of 

windows. Reflected power, in particular, may increase to as much as twice the 

reflected power of incoherent radiation. 

Conclusions 

The transmission of laser radiation through windows depends on the degree of 

coherence of the laser beam. With coherent radiation, multiple reflections off 

the front and back faces of the window may interfere. These interference effects, 

when present, may be observed by measuring variations in transmitted power as a 

function of the temperature of the window. Since they are highly temperature 

dependent, interference effects may affect the performance of windows in high 

power laser systems. 

The correct expression for the absorption coefficient ß is 

P. 

ß = 
£P 

T n2+l 

where P^ is the power absorbed by the window, P^, is the power transmitted by the 

window, I is the thickness of the window and n is the index of refraction. The 

dependence on n arises because of reflections off the back face of the sample. 

The expression is independent of the coherence of the radiation since interfer¬ 

ence changes in PA are directly proportional to interference changes in PT. 
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POINTING AND TRACKING SIMULATION AND DESIGN 

Robert J. Johnson 

Introduction 

The pointing and tracking systems presented by Hughes Aircraft Company in 

the Field Test Telescope (FTT) and the General Electric Company in the Laser 

Beam Control System (LBCS) have created a need for evaluations which will 

determine whether or not these systems will meet the required Air Force Weapons 

Laboratory (AFWL) specifications. In meeting this need the AFWL has taken two 

courses of action. The first is an experimental testing of the FTT (the LBCS 

is not in hardware form) and the second is an analytical study of both the FTT 

and the LBCS. It is the latter course of action with which this report is 

concerned. 

By taking an analytical approach, it is possible not only to duplicate 

control system response through simulation but also to predict the response in 

realistic tracking situations. In either case, if the systems are not per¬ 

forming adequately, an analytical approach provides some logic to determine 

the source of the inadequacy and an intelligent means by which to overcome it. 

Approach 

Several steps are being followed in the analysis of the FTT and the LBCS. 

The first is to define the dynamical model. This model allows the systems to 

be simulated in the time domain by using the digital computer. These simula¬ 

tions in turn make it possible to interject realistic tracking problems into 

the control loops and thus afford a means of evaluating the system performance 

capabilities. Finally, if the performance is not acceptable, there are two 

digital computer programs available for optimizing system parameters toward 

improved performance. 

Dynamical Model and Simulation. The control systems of both trackers have been 

depicted by block diagrams as shown in Figures 1 and 2 for the FTT and in 

Figure 3 for the LBCS. The diagrams of the FTT represent an accumulation and 

detailed expansion of several simplified block diagrams submitted by Hughes. 

The block diagram of the LBCS is rather simplified, but this is commensurate 

with the state of development of the system. 
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To model these systems It Is necessary to convert the Laplace domain 

representations of Figures 1, 2, and 3 into the time domain. The time domain 

will permit a comparison of the simulation results with actual transient test 

results. 

The time domain description is effected by a dynamical (state) model of 

the form 

x(t) = f(x(t), u(t), t); x(t ) - X - _ — o — (1) 

where 

3c(t) * n-dimensional vector describing the system state 

n * order of the system 

^i(t) = m-dimensional vector describing the input to the system 

m = number of external inputs to the system 

This model represents a set of first order differential equations which can be 

solved on a digital computer by any number of integration schemes. 

Optimization. In the event that the responses obtained from either of the 

trackers are not acceptable, it is desirable to have a method that will manipu¬ 

late the system until acceptability is obtained. Several methods are available 

for adjusting system parameters, given the dynamical model, such that an optimal 

or suboptimal performance is obtained. 

To optimize the performance of the tracker, it is necessary to specify a 

criterion by which to judge the performance. A commonly used criterion is 

defined by 

t 
f 

PI = 

t 
o 

where 

Xdl’ xd2 * 

x^, X.2» ' * * » xn are system states 

11’ Xd2* xdn are ^es:*-re^ system states 

w^, ..., wn are weighting coefficients, whose sum must be unity 
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From equation (1) one can redefine the state model as 

x(t) » f(x(t), P, t); X(t ) * X (3) — - _ — o —o 

where £ is a parameter vector of dimension p. ?_ represents a set of free 

parameters (i.e., free to be adjusted) in the system described by equation (3). 

The method by which optimization is effected is as follows: 

1. Select an initial set of parameters. 

2. Solve the dynamical system described by equation (3) over the time 

interval of interest. 

3. Measure the performance criterion of equation (2) over the same time 

interval. 

4. Adjust the parameters and repeat steps 1, 2, and 3. 

5. Continue until the best value is obtained for the performance criterion. 

Obviously there must be some method for logically adjusting the parameters to 

minimize equation (2); otherwise the adjustment would require excessive 

computing time. 

The method now being used for optimization is a combined grid and star 
1 2 

search which has been implemented on the digital computer. * It was chosen 

for its simplicity and availability. The search procedes by establishing an 

initial grid based upon the magnitude of pre-established parameter bounds and 

then reducing the size of this grid in a direction that leads to a minimum 

value of the performance criterion. In addition to this method, another tech- 
3 

nique is being considered which functions by a pattern search. This latter 

method promises simpler operation. 

Results 

The major emphasis in obtaining results has been placed upon modeling and 

simulation. These results have been needed to allow comparison with experi¬ 

mental data and thus to establish model integrity. As the integrity has been 

gained, the model has been subjected to realistic tracking problems that typify 

what will be expected of the working system. When the model does not seem to 

perform adequately, it has been subjected to parameter optimization in an 

attempt to obtain a more satisfactory system. 
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Dynamical Model and Simulation. The FTT has been the major concern in modeling 

and simultion. This empahsis is due to the fact that the FTT exists as hardware, 

whereas the LBCS does not. 

FTT 

The first step taken in simulating the FTT was to model the rate loops 

included within the tracking loops of Figures 1 and 2. Using the form dictated 

by equation (1), the total system is modeled by a set of 38 dynamical equations 

(i.e., n «= 38). Once simulation was initiated upon the digital computer, it 

became necessary to simplify the model by neglecting the structural dynamics. 

As indicated earlier, these structural terms are of a very high frequency and 

created stability problems in the integration methods used for digital simulation. 

These problems occurred because of the need to integrate at a rate about ten 

times faster than the fastest time constant in the system. In practice it was 

necessary to utilize a small step size (At “ .00001) to simulate without the 

structural dynamics. 

A step size as small as that indicated above is not generally desirable from 

the standpoint of computer computation time. Thus a root-finding program was 

implemented upon the digital computer to determine which elements in the FTT 

control system responded at a fast enough rate to justify the need for the 

small step size. These roots directly indicate how fast the system responds. 

By isolating the elements involved, it was felt it might be possible to either 

neglect the problem causers or at least determine a more exact integration step 

size (hopefully smaller). Unfortunately, finding the roots of the characteristic 

equation polynomials for the inner azimuth and elevation control systems became 

a problem in itself. The roots involved were found to range from very small 

to very large and thus created difficulties for the root-solving program. It 

became necessary to try several different methods of root extraction before one 

was finally found (courtesy of Hughes Aircraft Company) which gave the proper 

roots. These roots are given in Tables 1 and 2 for the inner azimuth and 

elevation axes respectively. Although these roots include the structural 

dynamics, it is possible to isolate them and locate the roots that require 

the small step size when integration is done with the structural dynamics 

excluded. These roots are 

X13 = -3.94 xlO3 

X12 - -1.636xl03 
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for inner azimuth, and 

X15 != ~3.94x103 

^1/, = -1.64xl03 

for elevation. In both cases the first 

tion, and the second is in the gyro. 
root listed is in the system compensa- 

TAELE 1 

Inner Azimuth Closed Loop Roots 

Al,2 = -1.99238x103+j4.60663x10^ 

A3,4 = _8*76971xlO+j1.96192x103 

X5,6 = -6-59004xl0"+j6.31359xl02 

À7,8 = “1'°2220xl02+j4.02792xl02 

A9,10 = "1*21687x10+j9.53510x10 

Àn = -1.1836 7x10 

A12 = -1.63688x103 

x13 = -3.94029xl03 

TABLE 2 

Elevation Closed Loop Poles 

Al,2 = -1•95540x103+j3.88878x10^ 

A3,4 = ~2•10594xl02+j4.22491xl03 

A5(6 = “9 -2730 3xl0+jl.9549 3x10 3 

A7,8 = -6-60066xl0¿41j.36102xl02 

A9,10 = ~9•50174xl0+j 3.99305xl02 

All,12 = -1-23302x10 +j9.47690x10 

= -1.18363x10 

xu = -1.64077x103 

= -3.9 40161x10 3 
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An effort was made to simulate the elevation axis rate loop of the FTT with 

the two roots listed above removed; however, the results were not successful. 

It is possible that some further assumptions could be made which would allow 

these roots to be neglected yet insure a working simulation. In addition, 

there has been a frequency domain study on the FTT done in parallel with this 

time domain investigation. The results of this study indicate that the FTT 

control systems are operating in a region which has very little margin for 

stability. This stability problem combined with the wide spread of very fast 

and very slew responding transients in the system is apparently precipitating 

another difficulty in finding the time solution to the FTT model. With such a 

combination it seems that the added "dynamics" of a multi-ordered integration 

scheme are influential on the stability of the time solution. To overcome this 

problem, the natural recourse was to decrease the step size for the integration 

scheme. However, for the system at hand the step size was already small and 

computing time would become an even greater problem. To overcome the effects 

of the high-order integration scheme and reduce computing time, a very simple 
4 

Euler method of integration was employed. While such a scheme tends to have 

less accuracy than a higher order one, the net effect was to reduce the 

computing time required by a factor of four and increase the amount of allowable 

leeway in the integration step size. 

Rate Loop: The simulation of the rate loop for both the inner azimuth and 

elevation axes, with only structural dynamics excluded, produced results which 

indicated that the Coulomb friction inherent in the FTT should be accounted for 

in the model. This friction is described as shown in Figure A. Figures 5 and 

6 are plots of the inner azimuth and elevation axes, respectively, for two 

arbitrary levels of friction. The variables plotted are measured at the output 

of the quadratic filter immediately following the gyro in Figures 1 and 2. 

Position Loop; Only one comparison between simulation and actual data has 

been made on the FTT for the position loop. There are other simulations, as 

will be shown, but they are devoted to the interjection of test inputs and 

scenarios into the position inputs of only the model. A comparison of results 

is shown in Figure 7. The plot illustrates the FTT and model responses for a 

step command interjected directly following the TV compensator in the elevation 

tracking loop. 
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TEN TIMES ORIGINAL FRICTION VALUE 

FIGURE 5- FTT SIMULATED AZIMUTH RATE 
LOOP RESPONSE AT GYRO TO 
.125 RAD/SEC STEP INPUT 
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FIGURE 6- FTT SIMULATED ELEVATION RATE LOOP 

RESPONSE AT GYRO TO 125 RAD/SEC STEP 
INPUT 
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are a „„»ber oí inputa being Injected as direct position comanda 

into the simulated azimuth and elevation tracking loops cortlned. The first 

to be considered la a constant acceleration command and is shown in Figure 8 

as it is applied to the azimuth and elevation axes. The system error response 

shown in Figures 9 and 10 for azimuth and elevation, respectively. The TV 

compensator used to generate these plots is given by 

TV COMP (Is-) 
(4) 

Hie sample rate is 120/second, and K = 1600. 
'TV 

lhe second Input to oe considered is a scenario and Is sho„ in Figures 11 

and 12 for azimuth and elevation commands, respectively. These coranands are 

m aircraft coordinates and must be transformed into tracker coordinates to be 

meaningful. The transformation for the elevation axis Is one to one and thus 

can be used as Is. For the azimuth axis the transformation Is effected by the 
relationship * 

n. = ñ cose dt s c (5) 

» ere n is the time derivative of the tracker coordinate variable plotted in 

igure 11 ec is the variable plotted in Figure 12, and nc is the transfotmed 

position input to azimuth axis. The system error response is shown in Figures 

13 and 14 for the azimuth and elevation axes, respectively. 

LBCS 

The simulation of the LBCS has met with stability problems, and thus a 

solution has yet to be obtained. These problems appear during simulation on 

the digital computer and cause the system dynamical response to diverge to the 

point of computer overflow. The LBCS is presently being exa.üned for possible 
redesign of the digital compensator. 

ij£íl-mlZatl°n- ^ FTT ‘»'W* Presently in the initial stages of being 
optimized with the program of reference 2. Although there are no conclusive 

results available yet, the preliminary indications are that computing time will 

he long. Additionally, the FTT appears to be operating in a narrow range of 
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stability margin and is thus extremely sensitive to parameter variations. With 

this type of sensitivity, it has been difficult to obtain any reasonable con- 

vervence upon an optimum parameter. 

The nature of parameter optimization schemes seems to be such that they are 

better suited to optimizing one system than another depending upon the search 

technique involved. With this suitability in mind, the optimization scheme of 

reference 3 will be implemented in addition to the one now being used with the 

hope of obtaining more meaningful results. 
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^ w^p'ê.tiœ^aifrîgTTisrt0 Cllmp— Alded • '"O1“00'1 C11££- 

2‘ 5ei8e^’ G'’ —- -1Sorith°; for Parameter Optimization in Dynamic System Design 
M.S. Report, Dept of Medí and Aerospace Eng, Oklahoma State University. 

3. Moore, C. F., et al.. Multidimensional Optimization Using Pattern Search 
LSU-T-TR-23, AFOSR Contract No. F-44620-68-C-0021. ° ^ 

4. Hildebrand, F. B., Introduction to Numerical Analysis. New York: McGraw- 

151 



GEOMETRIC OPTICS OF THERMAL BLOOMING IN GASES: I 

P. V. Avizonis, C. B. Hogge, R. R. Butts, and J. R. Kenemuth 

Introduction 

The thermo-optical effects on the laser beam due to absorption by the media 

that the beam is propagating through have been treated by a number of authors, 

primarily in liquid media.1 8 An interesting treatment was that of Akhimanov9 

which presented a very nice approach to the thermal blooming problem in a 

liquid by usings Maxwell's equation. The analytical solutions were obtained 

in the geometric limit at steady state; consequently, the results were no 

different than that of the Eikonal approaches. 

Gebhardt and Smith10 were the first to publish such thermo-optical effects 

in gases in the presence of transverse mass flow to the propagation direction. 

Their approach was a steady state, paraxial ray deflection angle Eikonal 

approximation, in one dimension. Smith11 further reported a steady state 

paraxial ray intensity formulation in terms of the divergence of the ray vector 

field. We have reported our initial investigations of such propagation 

effects in gases in the transient and late times (times long compared to the 

acoustical transient time across the laser beam), using paraxial Eikonal 

formalisms. It was found that several disagreements with previous work existed. 

First, the experiments indicated that in all cases (except with very small az, 

where a is the absorption coefficient and z is the absorption path length and 

az < 0.1) a Gaussian beam became an expanding doughnut for all subsequent times 

before convective mass flow became significant. This is in opposition to the 

data and calculations reported by Smith.11 We believe that this may be due to 

the way that data was taken, namely integrating the laser beam profile over the 

aperture of a variable diameter iris. Furthermore, the formulation of the ray 

intensity equation, as represented by Equations 8 and 9 of Reference 11, is 

not quite correct, in the sense that the independent radial parameter "r" is 

not the same as the initial radial parameter in I(r,o) of the Eikonal formalism 

as developed by Bom and Wolf.12 As a result. Smith did not obtain the caustics 

on the periphery of the beam, which is characteristic of a doughnut.18 

As indicated by Bom and Wolf,12 the ray intensity equation can only be used 

for the ratio of intensities along any one given particular ray, and not as a 
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a general functional relationship within the ray field of different rays. If 

properly used, the doughnut shape is indeed obtained theoretically in 

reasonable agreement with experiment. This leads to the second dilemma, in 

that the paraxial treatment of the Eikonal represents a first order expansion 

of the ray vector, and thus should be good only in the limit of the thin lens 
13 

approximation. On the other hand, the experiments reported were, in some 

cases, substantially beyond the thin lens situation, yet the agreement with 

calculations was still satisfactory. 

Because of the above mentioned discrepancies, a detailed development of 

both the energy absorption and Eikonal formalisms is examined in this report. 

Since we are dealing with two coupled equations (an energy balance equation 

which describes absorption, heating, and heat dissipation, and beam intensity 

or ray optics equation, which describes the resultant behavior of the beam), 

each equation is examined for its significance, and then their coupling is 

determined. The energy balance starts with equations of continuity, momentum, 

and of state; the consequent behavior of media density to the laser beam 

intensity is thus determined. The conditions for the reduction of the above 

equations to simple thermodynamic functions (including kinetic effects of 

vibrational energy relaxation into translation) are established. The Eikonal 

equation is then analyzed in terms of limitations of higher order terms in the 

determination of the ray trajectories. In addition, we show that the approxi¬ 

mations inherent to the paraxial solution (and to higher order solution for 

that matter) can be relegated solely to the aspect of the determination of the 

ray trajectories. That is, once a particular set of trajectories is specified 

(and it does not really matter how one gets this description), one need not 

introduce additional approximation errors into the determination of the 

intensity profiles as is usually done with the ubiquitous "paraxial approxi¬ 

mations." 

Using the thermodynamics developed here, we will show the time development 

of collimated Gaussian beams subjected to a number of cross-wind speeds. The 

stationary intensity profiles obtained in the asymptotic limits of long time 

periods are indicated for some of the more interesting wind velocities. 

Throughout the calculations made, we constantly try to judge the validity 

of the perturbation expansion on the description of the intensity profile. In 

addition, several cases are presented where second order terms are retained 

in the expression obtained for the ray trajectory. Here too, we try to deter¬ 

mine the parametric range of validity of the results. 
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Theory 

This problem may be approached by first examining the physics of energy 

deposition into the gaseous media, then the behavior of ray optics, and finally 

the self-consistent influence of the above upon each other. 

A. Energy Deposition 

The energetics are examined first by considering the equations of continuity 
and momentum. 

9p/9t + pV«v + v*Vp = 0 

9v/9t + (v*V)V = -(1/p)VP (1) 

The usual thermodynamic notation is used, where density is p, v is the 

particle velocity, and P is the pressure. A first order perturbation expansion 

is used on the density and pressure, since the physical effect here is very 

small (al is maximally on the order of 0.1 watts/cm3, and more like 0.01, 

where I is the laser intensity). Therefore with p = p+p1 and P = P +P ’ the 

equations of continuity and momentum become 

9p./9t + p V*v = 0 
-L 0 

9v/9t = -(l/po)vP1 (2) 

By differentiating in time the continuity equation and combining it with the 

momentum equation, the wave equation of interest is obtained. 

92p1/9t2 = V2PX . ^ (3) 

The pressure definition may be obtained from the energy equation, 

pT 9S/9t = <j)-V*q 

where T is the temperature, S is the entropy, * is the viscous dissipation 

(it will be assumed that ¢=0 for gaseous systems) and q is the sum of heat 

sources and losses. 
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(5) -V*q - 7* (KVT) + 0£/8t) 

If heat conduction and absorption of optical power are the only important 

heat flow parameters, then q is defined by equation (5), where K is thermal 

conductivity and (ä£/3t)o is the absorbed and thermalized laser power per unit 

volume. It will be defined more explicitly later. If the ideal gas equation 

of state is now evoked, PV - RT, where V is the specific volume (V - 1/p) and 

R is the gas constant, and defining the entropy as T3S ■ C 3T+P3V (where C is 
V V 

the heat capacity at constant volume), the time dependent pressure relationship 

may be obtained with some manipulation. 

p3P/3t « (Y-l)p2T3S/3t + y 3p/3t (6) 

Here y = Cp/Cv, where is the heat capacity at constant pressure. Combining 

equation (6) with (5), the pressure definition is obtained. 

p3P/3t = (y-Dp [V*(KVT) + (3£73t)o] + yPSp/St (7) 

If the expansions in pressure ard density are applied to equation (7), as 

in equation (1), the first order perturbation form of equation (7) is obtained. 

Po9V9t “ (y-1)p0 tV-ÍKVT^ + (3£'/3t)o] + yP^Pj/St (8) 

Substituting the above relationship into equation (3) by differentiating 

it once in time and recognizing that the sound speed c may be defined as 

c = (yRT) , the driven sound equation is obtained. 

(3/3t)[32p /3t2-c2V2p ] = (y-1)[V2(KV2T) + (3ff/3t) ] (9) 

The heat input rate (energy thermalization rate) is established by kinetics of 

the system. For simplified kinetics of a two level system, where the only 

important parameters are the energy absorption rate from the lower level and 

relaxation of the upper (assuming no depletion of lower level), the kinetics 

may be obtained from energy balance. 

(d£/dt)aba = CdK/dt)^ + (d£/dt)o (10) 
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“ere ls absorbed power from the laser beam and Is equal to el 

(energy required to take the molecules from the lower vibrational state to'the 

Wer one). is the energy In the vibrational state, and E is the energy 

that has relaxed from the vibrational state into heat. ° 

This kind of system is quite a good representation of how the absorption 

of 10radiation would work if the beam was passed through a cell containing 

7 8aS- In 0,13 Caae- the 1“« energy drives the molecules from 

the lower vibrational level (100 - the symétrie stretching mode) to the upper 

vibrational level (001 - the asymmetric stretching mode). Consequently 

energy in the upper vibrational state for (¾, £ is represented by the 

nimber density "N" of molecules that are in the Wl) state. The vibrational 

energy relaxes from this state by means of thermalizing collisions with other 

C02 molecules. The life time of molecules in the 001 state is thus defined 

SS T. All other kinetic rates for CO., are much faster, therefore, they ere 

neglected for this discussion. 

(dff/dOvib = hv(dN/dt) = aI£-hvN/T 

hvN = al£[1-exp(-t/î)] 

lhe absorption coefficient is assimed to be independent of time, thus no 

absorption bleaching is possible. The heat input rate may be then determined. 

(d£’/dt)o *= al£ [1-exp (-t/i) ] (11) 

The importance of the heat conduction term of equation (9) (where it was 

assumed that over the temperature range of interest, the thermal conductivity 

was constant) may be assessed by taking the terms in the right-hand brackets 

as a change in the volumetric heating rate of the system, 3q/3t, 

3q/3t = KV2T + al¿[1-exp(-t/T)] 

and solving the above equation by transforming it into a temperature form 

(p°C T^3t * 1,16 laser intenslty is assumed to have a Gaussian profile, 

ll = I0exP(-2R )» where R is the radial position, w is the radius at exp(-2): 

Jid Io is the peak intensity. It will be assumed that I£ does not significantlj 

eplete due to absorption along z, thus 32T/3z2 = 0. Under such conditions. 
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2 2 2 
V T = 3 T/3R + (1/R)3T/3R (radial synnnetry) , the temperature equation may be 

solved using Hankel transformation1^ in R. The on-axis solution (R = 0) is 

quite simple, and may be approximated by equation (12). 

T(0,t) (aw2Io/4cpoK)ln(l+8Kt/w2) (12) 

It is quite evident that the temperature will grow linearly with time until the 

value of 8Kt/wQ > 1, then the rate of temperature growth will decrease due to 

conduction from the beam axis. For atmospheric gases the thermal diffusivity 

e = k/poc - 0.25 cm ; for a typical beam radius of 2 cm, it would take 2 seconds 

before conduction became significant. Consequently, for experimental times of 

less than 2 seconds, conductivity may be neglected, and equation (9) may be 

integrated once in time after equation (11) is substituted into it. 

32p1/3t2-c2V2p1 = (y-1)(t-T[l-exp(-t/x)]}aV2I^ (13) 

The next part in the examination of the linearized hydrodynamic equation 

(equation (13)) is to determine how important is the role of the transient 
2 2 

namely 3 p^/3t term. To accomplish this, we make the assumption that 

the laser intensity is Gaussian and in the region of interest it is not 

substantially depleted. Consequently, we study equation (13) without z depen¬ 

dence. This may not be necessarily the "realistic" condition from the experi¬ 

mental sense, but nevertheless it is pertinent to the determination of the 

importance of the time transient. This is so because if we assume no signifi¬ 

cant laser intensity depletion, this represents the "most severe" condition to 

driving the density waves as the intensity is maximum. Also, as before, it 

is assumed that a is constant. 

The solution may be obtained by assuming a form of p such that 

P 1(R, t) = -(a/c2)(Y-l){{t-T[l-exp(-t/T)]}l¿(R)-(l/T)<J>(R,t)exp(-t/T)} 

(14) 

where $(R,t) is an arbitrary function to be determined. Performing the 

appropriate differentiation, with V2 = 32/3R2+(l/R)3/3R and defining I£(R) = 

Ioexp(-2R /w2), the equation for $(R,t) is obtained. 32/3z2 is approximated 

to be zero under the rationale of the preceding paragraph. 
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(15) 
2 3£ 
T 

í_ 
2 

T 

2 2 
-c V $ It(E) 

This equation may be solved by performing the Laplace transformation in 

time (t+s) and the Hankel transformation in R (R->o) . The boundary conditions 

are 

(since is a small perturbation), and the boundaries on $ become $(0,R)=0 and 

¢(8,a) = I(a)/s[(s-l/î)2+v2a2] 

= !_Í° exp[-(w2o2/8-t/i)] Sin(cat) 
dt 4ca 

Here, the Hankel transformation of the Gaussian (R-'o) was accomplished as 

defined below. 

RI (R)J (oR)dR - (w2I /4)exp[-w2o2/8] = l(o) 
J Z o o 
o 

The inversion of o+R is performed in a similar manner as the Hankel transform 

is self-reciprocal. 

dHR,t)/dt= (w2Io/4c)exp(t/î) 

00 

2 2 
exp(-w a /8)Sin(vtajJ (aR)da 

0 
o 

(16) 

The on-axis case (R=0) of equation (14), and consequently, that of equation 

(16) may be examined from the point of trying to ascertain the importance of 

the second term in the large brackets, (l/x) 0 (o,t)exp(-t/x) as a function of 

time, as opposed to the first term in the large brackets {t-T[l-exp(-t/-r) ] }Io 

in terms of their importance to p(o,t). 
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Equation (16) may, in the case of R-0, be integrated to yield 

di(o,t)/dt * -i('/2Tr/4c)wIoexp(t/T-2c2t2/w2)Erf(i/2 ct/w) (17) 

where Erf is the error function, in this case of imaginary argument, and is 
defined below. 

t 

Erf (i/2 ct/w) « 2/2Mc/w) f exp(2cV/w2)d£ 

The on-axis (1=0) solution of equation (14) becomes now 

p(o,t) * -(a/c ) (y-1) (2Pt/tt) j (l/w2){t-T[l-exp(-t/T)]} 

t 

+ i/2? (l/4TCw)exp(-t/T) J expU/T-2cV/w2]Erf(i/2 cÇ/w)dç| 

o 

(18) 

where Io was defined as 2Pt/to2 for « Gaussian beam with PT being the total 
power. 

The absolute magnitude of the first term in the large brackets on the 

right-hand side of equation (18) is plotted in Figure la as a function of t 

in terms of t, for various radii w of the beam. A t = 4xl0‘5 sec was selected 

and approximates the relaxation rate of the 001 level of C02 at a 0.1 of an 
atmosphere. Likewise, the second term, 

t 

V = i/2? (l/4Tcw)exp(-t/T) • j exp(Ç/T-2cV/w2)Erf(i/2 CÇw)dÇ 

o 

is plotted in Figure lb for the same w, for comparison purposes. It is quite 

evident that the first term is greater and grows much faster, while the second 

term dies out rapidly and represents the transient solution to the on-axis form 

of equation (14). Quite evidently, after a t > 10x, the first term dominates 

the solution in all cases by more than an order of magnitude, and the time 

transient terms of equation (18) may be neglected. Consequently, the steady 
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State solution of equation (14) becomes 

Pj/R.t) = -(a/c2) (y-1) (t-T)l(R) Q9) 

and this may also be directly obtained from the First Law of Thermodynamics. 

The conclusion here is that steady state solutions to the sound equation aré 

quite adequate in most situations associated with thermal blooming and may be 

obtained through either the First Law of Thermodynamics13 or by setting the 

time derivatives of equation (13) to zero. On the other hand, for very small 

beam radii, the transient term may initially dominate for some value of t/i 

and lead to higher order beam instabilities. 

The next case of interest is that of thermal blooming in the presence of 

wind. It will be assumed that the wind is uniform both in direction and 

intensity along the propagation axis, and is at right angles to the z axis. 

The problem may be formulated again by considering the equations of continuity 

and momentum, and linearizing them as before. 

If the wind velocity is in the x direction, and the beam is propagating in 

the z direction, then the Euler's Equation becomes 

(y-1)[1-exp(-t/T)]aV2I (20) 

where v is the wind velocity and V2 = 92/3x2+32/9y2+32/9z2. The development 

of the above equation follows exactly the development of the no wind case 

except that v = V;L + v, namely the velocity is composed of particle velocity 

and wind velocity v having only an x component. Again, based upon similar 

arguments as under no-wind case, a steady state solution may be obtained if 

third order and second order time derivatives are dropped (under the same 

justification as before). Under the assumption that wind is subsonic, i.e., 

ov and consequently c2»v2, equation (19) reduces to 

(If + 3 ï 
3x^pl (a/c )(Y-l)I(x,y,z) (21) 

where the value of l-exp(-t/x) - 1, since the steady state solutions 

that t/x>>1. The above equation may be written in explicit integral 

the retarded solution. 

assume 

form of 
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I(x',y,z)dx' (22) 

X 
2 

“ -(a/c v)(y-1) j 

x-vt 

First order explicit relationships have been thus developed between gas 

density perturbation and laser intensity after the transients have died out, 

both with wind (equation (22)) and without wind (equation (19)). Having 

defined the relationship between laser intensity and gas density, one may now 

proceed to the solution of the Eikonal equations where the above relationships 

are coupled through the refractive index as defined below. 

(n-1) /(n -1) = p/p = 1 + P-./P (23) 
o o l o 

B. Geometrical Optics Treatment of Thermal Blooming 

1. Geometrical Optics 

In the presence of weak index of refraction changes, it is customary to 

solve the equations of geometrical optics by a perturbation expansion of the 

type by Keller.'*'^ There one assumes that any departure from a straight line 

ray trajectory is driven by 

n(r,t,e) = no+n1(r,t) (24) 

where n(r,t,e) is the local index of refraction at time t located at vector 

position r, .and where n^(r,t) is the perturbation to the constant index no. 

The parameter e measures the departure of n from nQ and will eventually be set 

equal to unity. One then proceeds by expanding the parametric representation 

for the ray trajectories in a Taylor series expansion around e = 0, 

r(s,t,Ro,e) = ro(s,t,Ro)+er1(s,t,Ro)+(e2/2!)r2(s,t,Ro)+... (25) 

where it is assumed that 

n(r,t,e) = nfr + r + (e2/2!)7 +...,t] (26) 
o 1 ¿ 

In equation (25), Rq is the initial location of a particular ray, usually taken 

at s = 0, where s is the ray arc length. One can show that the quantities 

appearing in equations (24), (25), and (26) must satisfy the "ray equation" of 

geometrical optics 
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(d/ds) (ndr/ds) = Vn (27) 

with two boundary conditions: 

r(o,t.Ro) = Ro 

and 

dr(o,t,Ro)/ds = u (28) 

where u specifies the initial direction of the ray at r = Ro. For our work 

here, we will always take ü = e , where e is a unit vector along the z axis, z z 
the assumed direction of propagation. Inserting equations (25) and (26) into 

(27) it is possible to evaluate succeeding terms in the Taylor series represen¬ 

tation for r. The first three such terms are 

r (s,R ) = e s+e R ; R = e R^ o o z ro o ro (29) 

r1(s,t,Ro) 

s 

(s-a)V n (r,a) ; T 1 
o 

do (30) 

r=r (a) 
o 

r2(s,t,Ro) (s-a) i (r1,vT)vTn1-(1/2)vTni-ezvTn1*I vTni dt 

r=r0(T) 

e •Vn. z 1 VTn1(r,t) dx 

,(T) 

do (31) 

r=r (a) 
i o 

where = transverse gradient, and where boundary conditions of equation (28) 

have already been applied. The degree of complexity of succeeding equations 

increases rapidly with result that most often only the sum of equations (29) 

and (30) is used to trace ray trajectories. Clearly, such a representation 

for r should only be valid when r.»r- and (dr/ds)öe . This is the familiar l ¿ z 
"paraxial" approximation. Simply stated, this approximation assumes that the 
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true lay trajectories r do not deviate ''much*1 from the unperturbed ray 

trajectories r . 
o 

It has been our contention and concern that in many of the experiments 

which are or were pursued, the conditions for validity of the paraxial optics 

were being violated (because one had the formation of "strong thermo-optical 

lenses") to the extent that higher order terms in the expansion for r (equation 

(25)) should be kept. Therefore, in the next section, after the three physical 

problems considered in this report are described, a comparision is made of the 

traces for Yo, tQ + and ^ + r2 for the analytically simplest case. 

2. Test Cases and Intensity Distributions 

For the purposes here, one can conveniently describe three different 

problems. The first problem considers short-time regimes, with no wind. These 

conditions produce the purest form of the well known thermal blooming, the 

physical result being a beam which rapidly diverges with time. The case is 

also the simplest analytically because of the cylindrical symmetry of the 

problem. 

The second and third problems are actually the same, the only difference 

being the time regimes of interest. For these cases, a constant cross wind 

is assumed. Case 2 treats the time development of the beam intensity profile 

for short-time regimes after the beam power has been turned on. Case 3 is 

then the steady state wind problem, or in other words. Case 2 for long-time 

regimes. The refractive index equations to be used for these three problems 

were developed earlier. It is stressed again that the solutions obtained 

here for all the intensity patterns are not self-consistent, in that the index 

changes described by equations (19), (22), and (23) use the initial intensity 

distribution and do not allow for subsequent changes. However, it is apparently 

true that two important effects happen near the transmitter: (1) the intensity 

pattern remains very close to its unperturbed shape; and (2) most of the ray 

bending is imparted in this region. As a result, we have seen remarkable 
I O 

agreement between experiment and theory. 

Computation of intensity patterns can be accurately accomplished within 

the approximations of ray optics if one simply specifies the complete family 

of ray trajectories r(s,t,Ro). (For a fixed time t, the family is specified 

here by all possible initial points Ro.) That is to say, when performed properly, 

the tasks of determining the trajectories r(s,t,Ro), and then computing the 
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resulting intensity patterns can be completely separated with the desirable 

result that one needs only to introduce errors into the approximation for the 

analytic form of r(s,t,Ro). Thus, because there was some question of the 

accuracy of the paraxial approximations, we will compare the ray traces of 

ro + r^ and rQ + r^ + (^/2) for the experimental Case 1 as described above. 

In Figure 2, a plot of first and second order perturbation to the ray 

trajectory versus Ro is presented for the most severe ray bending case of high 

pressure (400 torr) and long times (~300 msec). Clearly, even when the devia¬ 

tion of the rays from their unperturbed position (Rq) is large, the first 

order paraxial approximation still agrees fairly well with the more accurate 

second order solution. Because the second order solution is significantly 

more complex than the first, it was felt that the deviation of these quantities 

as shown in Figure 2 was not sufficient to require the use of the second order 

solution in the computation of the intensity profiles. 

One can show that the intensity along any particular ray of a family of 

• 4 u 12 rays is given by 

I(r(s),t,Ro) = I(r(o),t,Ro)exp{- 
r 

(V-f,)ds’) (32) 

where r(o) = Rq and where I(r(s),t,Ro) and I(r(o),t,RQ) are the intensities at 

r(s) and r(o) , respectively. The integration of equation (32) is taken along 

the particular ray of interest. It is important to realize here that when one 

computes the intensity in this fashion, it is only proper to plot I(r(s),t,Ro) 

versus r(s,t,RQ). It is a common mistake to plot I(r(s),t,Ro) versus Ro. 

The line integrations are most easily performed when trajectories are 

parametrically represented as they are in this case. However, to perform the 

divergence operation and subsequent line integration indicated in equation (32), 

one would seemingly have to first solve for s = s(r(Ro,t)) unless some other 

simplifications are made (i.e., identifying 3/9x -+ 3/9xo> etc., where x^ is 

the x-coordinate of Rq) . This problem can be circumvented by appropriate 

identification of parametric coordinates and by use of a Jacobian in the 

following way: 
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Figure 2. Evaluation of the importance of second order 
term in the Taylor Series Expansion of the 
Eikonal ray trajectories. 
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dr/ds = f(s,t,R ) = f(s,t,x ,y ) 
o o o 

V = 0/3x,3/9y,9/9z) 

r(s,t,Ro) = [x(s,t,Ro), y(s,t,Ro), z(S>t,Ro)] 

then 

V • dr/ds = (JV ) • dr/ds 
o 

where 

J = 

3x /3x 
o 

3xo/3y 

3x /3z o 

3yo/3x 3s/3x 

3yo/3y 3s/3y 

3y&/3z 3s/3z 

3x/3x 
o 

3x/3y 
o 

3x/3s 

3y/3x 
o 

3y/3yQ 

3y/3s 

3z/3x 
o 

3z/3y 
o 

3z/3s 

(33) 

(34) 

and 

V 
o 

3/3x 
o 

d/Syo 

3 /3s (35) 

The quantity on the right side of equation (33) will thus remain a function 

of the parametric coordinates, so that the proper line integration specified 

in equation (32) can be performed. This procedure introduces no error into 

the computation of the intensity profile on a nonplanar surface of constant 

phase. The intensity profile in a plane perpendicular to the propagation 

direction^Ij^(r,t,Ro)^ is thus more properly given by 

Ijjr(s) ,t,Ro) ] =1 [r(s) ,t,Ro] [êz*dr(s)/ds] (36) 

Thus, by using the procedures described above, it is possible to achieve a 

rigorously normalized and correct intensity distribution, no matter how bad or 

good the approximations may have been for r(s,t,RQ). In particular, for the 
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case of an initially collimated beam and the paraxial approximations for r(s,t,R ) 

(which is what is being treated here) equations (34) and (36) become respectively 

as below. 

J = 

3x /3x 
o 

9x /3y o' 1 

3x /3z 
o 

3yQ/3x 0 

3yQ/3y 0 

3yo/3z 1 

3x/9x 3y/3x 

3x/3y 3y/3yo 

3x/3s 3y/3s 

0 

1 

I [r(s),t,R ] = I [r(s),t,R ] 
o o 

(37a) 

(38a) 

For the cylindrically symmetric problem, equation (37a) reduces further to 

J = 

3R /3R 
o 

3R /3 z o 

0 

1 

0 

3R/3R 
c 

0 

3R/3s 

0 

1 

0 
(37b) 

where Vq - (l/Ro)(3/3Ro)(R^), which is useful where no asymmetry exists such as 

winds perpendicular to z axis. 

The two-dimensional solution for the intensity specified by equation (32), 

using equations (22) and (23) to describe the refractive index, is plotted in 

Figures 3 and 4. The former is at a fixed observation distance (z = 560 cm) 

showing the intensity profiles as a function of time; the latter is at a steady 

state distribution (t + ») at observation distances between z = 0 and z » 560 cm 

Under the appropriate conditions, it is possible to obtain an analytical 

expression for the laser intensity distribution along either the x or y axis. 

If it is assumed that the wind is out of the minus x-axis, equations (22) and 

(23) may be combined to specify the refractive index under small perturbation 

limits . 

n(x,y,z) = 1 + (no-l) l-a[(y-1)!z P0v] I0(x,y,z)dx (40) 

x-vt 

Using the paraxial approximation for ray trajectories, equation (32) for 

the intensity, and computing along yo = 0 axis, it is possible to derive an 

analytical, non-self-consistent (as described earlier) intensity distribution 
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(see appendix). 

ln(I/Io) = (-2M/ct) ! [1-exp (-as)] ds 

1 + (2M4)/í3i )[as - 1 + exp(-as)] 

+ 6 
[1-exp(-as)] ds 

1 + (2M0/a ([as-1 + exp(-as)] (Al) 

where 

M 

e 

2(y-D (no-l)aIo/c2pow2v 

X exp(-2x2/wi') - (x -vt) exp[-2(x -vt) /w ] 
0 0 O o 

X 

° 2 2 
exp(-2x¿/w¿)dx 

. 
X -vt 

0 

For this derivation, as before, a collimated Gaussian beam is used 

I = I exp(-2x2/w2) 
o oo o 

As mentioned before, the solution is along yQ = 0, and xq and yQ are ray 

positions in the z * 0 plane, w is the e-2 radius of the laser beam, and it 

is assumed to be the same along both the x and y axes. 

Equation (41) may be integrated to yield the analytical expression for 

the intensity ratio. 

I(x,o,z) 
I 

oo 

exp(-2x2/w2) 
0 

{l+(2M<j>/a¿) [az-l+exp(-az) ] H l+(2M6/a ) [az-l+exp(-az) ] } 

(42) 

Under steady state conditions, i.e., vt>>x , <f> and 6 become 

2 2 
é = x exp(-2x /w ) 
Tss o r o 

ss 

o 2 2 
exp(-2x /w ) dx (43) 

; 
—00 
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Since the right-hand side of equation (42) is written in terms of xo> and 

the desired intensity definition is in terms of x, a transformation from xq to 

X is required as defined below and derived in the appendix. 

2 2 2 
x - (M/a ) [az-l+exp(-oiz) ]exp(2x /w ) 

o ° 

Equation (42) under steady state conditions is plotted in Figure 5, with wind v 

as a parameter, z = 560 cm and a = 2x10 cm . It is interesting to note that 

one sees the beam bending effect asymptoting (established by the location of 

the intensity peak) to a value of z/w ** 1 or one beam radius. Also, there is 

an intensification effect at certain slow wind velocities which has been 
16 

experimentally seen in certain instances. 

Validity Limits 

In considering the use of the above discussed techniques, it is necessary 

to investigate the limits of validity of such techniques. It is especially 

important to examine the density-refractive index relationship defined by 

equations (19) and (23). These relationships are based upon weak interactions 

where the solution for the sound wave equation may be specified by p = po + ep^, 

where e is the order of smallness. If we specify a stronger interaction one 
2 

has to look at the next order term, namely p = p + ep, + e /2 p2. This is 
o J- 17 

derived and discussed in more detail in a subsequent report, and extended 

to the sum of all orders of smallness, resulting in a refractive index 

equation covering all values of density perturbations. For the case of plane 

thermal blooming 

n = 1 + (nQ-l)exp 

2 2 
(y—l)ct(t—t)Iq exp[-2R /w -azi 

— 

c 

(44) 

the refractive index relation becomes as above. 

This examination is carried in the form of the symmetrical-no wind problem, 

but it could have been just as well done for the wind case. 

Series solutions for the ray trajectories and the intensity distribution 

may be obtained for the Eikonal equations using the equation for the index of 

refraction (equation (44)) derived elsewhere.17 We consider only the transverse 

gradient of the index of refraction and thus the differential equation of 

interest becomes indicated 
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The solutions of this equation require integrations along the ray trajec¬ 

tories. If we assume an initially collimated beam for which r(t*o) = ro> then 

the effect of the ray deviations on the values of n and V^n along the actual 

ray trajectories may be included by expanding these expressions in a Taylor 

series about r = r . 
o 

If as a first approximation, paraxial ray trajectories are assumed, it is 

possible to calculate the first order terms in time for the ray trajectories. 

The second order approximations to the ray trajectories are then used to 

obtain second order terms in time for the ray trajectories. Using the ray 

trajectories obtained in this manner, the intensity distribution may be 

obtained from equation (32). 

The solutions for the trajectories and intensity distribution rapidly 

increase in complexity as higher order terms in the series solution are 

obtained. Solutions to fourth order in time have been obtained but are so 

unwieldy as to be of little practical use. Some general observations can, 

however, be made based on these solutions. 

The dominant terms in the coefficients of the powers of time in the series 

solution are independent of pressure. Thus, the pressure dependence should be 

expected to be weak. This is in agreement with the experimental observations. 

The dominant terms in the coefficients of the powers of time are those for 

which no“l appears to the same power as the time. A large multiplicative 

constant always accompanies no-l to the same order in which no~l appears. 

Thus a series expansion in no~l should not be expected to converge rapidly. 

This should be expected on the physical grounds as a result of the nature of 

the refractive index driving function. 

The lowest order of z appearing in the dominant coefficients for the 
2 

different orders of time increases for high orders of time. Thus while z is 
4 

the lowest order in z for the term of first order in time, z is the lowest 

order in z for the term of second order in time, z is the lowest, order in z 
g 

for the term of third order in time, and z is the lowest order in z for the 

term of fourth order in time. Thus an expansion in z would have to be carried 

to many orders to correctly represent time dependence of relatively low order. 



A characteristic time is determined by the nature of the absorbing gas and 

the power and diameter of the laser beam. Normalizing the time to this 

characteristic time scale permits one to estimate the rapidity of convergence 

of the series solution. In general, convergence is rapid when the normalized 

time is much less than unity. For the conditions of the experiment the fourth 

order series solution converges with less than 5 percent error for 100 msec at 

25 torr and 140 msec at 200 torr. Thus an even higher order solution is 

required in order to achieve good convergence to the 200-msec experimental 

observation.^ 

The above considerations lead us to conclude that the approximation of the 

exponential refractive index equation (42) by series expansion in time does 

not lead to solutions which converge sufficiently rapidly to be accurate for 

experimental conditions normally encountered. On the other hand, if the 

absorption coefficient is low, as in air, then the first order approximation 

to exponential form of the refractive index is adequate. Because of the above 

rationales the evaluation of thermal blooming with and without wind has to be 

also accomplished with the exponential form, and this is covered in a subsequent 
„ 17 

report. 

APPENDIX 

Equation (41) which describes the ray intensity may be derived by following 

the steps outlined by equations (29), (30), (32), and (33), if yQ (the y 

coordinate in the z = 0 plane) is set to zero. It is easily shown that if 

yQ = 0, also the wind is in the x plane. Equation (32), whose solution is the 

case in point, becomes 

I(x,o,z) I(xo,o,o)exp{- 

z 

o 

[V*(dr/ds)]dsl (1-1) 

For this derivation, r is taken as the paraxial ray trajectory vector, and 

based upon the rationales presented earlier and in Figure 3, it is limited to 

r = rQ + r^. From equations (29) and (30), one therefore has 

x + 
o 

t \ 9n (S-CO ã7 da 

o J 

+e 
V 

t \ 9n 
<s-0> 37 da 

o -1 

+ e s 
z 

(1-2) 
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dr 
ds 

(1-3) 
9n 
9x — do r 

o 
+ e 

y J 

9n 
3y dr + e 

where e^, e^, are Cartesian unit vectors. Using equations (33) and (37a), 

it is possible to define V*dr/ds. 

Note that the integration indicated by equation (1-1) is along the ray 

trajectories r. By the transformation used to obtain equation (1-4), one can 

now integrate along the rQ trajectory, or more specifically, along the para¬ 

metric variable which characterizes the ray trajectories "s." 

Using equation (40) for the index of refraction, it is readily shown that 

along y * yo “ 0 the following relationships exist: 

2 
da = (2M/a)[(l-exp(-as)]{xq exp(-2x^/w2) 

3x o o 

- (xo-vt)exp(-2xo-vt)2/w2)} = (2M/a) [1-exp(-as) ] <(> 

32n 

3y2 o o 

da = (2M/a)[l-exp(-as)] exp(-2x/w ) dx 

X -vt 
o 

= (2M/a)[1-exp(-as)]0 (1-5) 
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s 

o 

a2- 
3xoäyo 

da = O 

9n(x,y,z)/9x|— = 3n(xo,yo,z)/3xq 

ro 

3n(x,y,z)/3y|- - 3n(xo,yo>z)/3yQ 
o 

The evaluation of 3xo/3x, 3yo/3x, 3xo/3y, and 3yQ/3y as required by 

equation (1-4) is accomplished by first noting (from equation (1-2)) that 

X 

s 
» 

X + 
o 

0 

(s-a) |f- da 
o 

y (s-a) (1-6) 

after which the evaluation of the Jacobian of equation (37a) (or rather its 

inverse) yields the necessary derivatives (at yo = y = 0). Equation (1-4) 

becomes as written below. 

V»(dr/ds)I 
yo 

(1-7) 

as it is readily determined (from equation (1-6)) that 3x/3yo - 3y/3xo = 0. 

Substituting the appropriate derivatives of equation (1-6) into (1-7) and 

combining with (1-5), it is possible to perform the integration along "s" as 

required by (1-1), thus resulting in the intensity equation (41) for the case 

of y = 0 and wind in the x plane. 
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A GEOMETRICAL OPTICS TREATMENT OF THERMAL BLOOMING 

C. B. Hogge and R. R. Butts 

In a geometric, or ray, optics treatment of the problem of thermal blooming 

of a laser beam propagating in an absorbing medium, it is cas tomary to make 

what is called the "paraxial" approximation. This approximation consists of 

representing the ray trajectories by the first order terms in a perturbation 

expansion solution of the ray equation. In the terminology used below, the 

paraxial approximation corresponds to setting r = ro + rj. In what follows, 

we examine the validity of this approximation for a severe case of a beam 

propagating through a highly absorbing medium by comparing the relative sizes 

of the first and second order terms in the perturbation expansion. W>- also 

investigate the convergence of another series solution of the ray equation. 

By the ray equation, we mean 

where n denotes the index of refraction, r is the vector (R,z) to a point on a 

light ray, and s denotes arc length measured along a ray. We derive n by 

assuming the relation 

where p denotes density, and pQ and no denote the initial density and refractive 

index, respectively. The density can be found from the first law of thermo¬ 

dynamics and the equation of state of an ideal gas. Assumption of no wind and 

of a collimated beam with a Gaussian initial intensity profile results in the 

following form for n: 

n » 1 + ^no - 1^ exp j-kjte e-otz| 

where ot is the absorption coefficient of the gas, V.2 is a constant depending 

on the beam size, and kj is a constant which depends on both the gas and the 
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peak initial intensity. Time and the spatial coordinates are denoted by t, R, 

and z, respectively, the z-axis being the axis of the beam. If one assumes a 

wind of speed v in the x direction, then the index of refraction takes the form 

x-vt 

du 

We emphasize that these calculations are not self-consistent in the sense that 

the initial intensity profile is used to calculate the refractive index; the 

fact that the intensity changes with time is not taken into account. The 

methods illustrated below are the same, in principle, for the problem of thermal 

blooming with or without wind. To simplify the arithmetic, we will treat here 

only the case with cylindrical symmetry (i.e., no wind). The problem of thermal 

blooming in the presence of a wind is treated more extensively by Dr. Avizonis 

elsewhere in this digest. 

We investigated two methods for obtaining an approximate solution to the 

ray equation—a perturbation expansion due to J. B. Keller* and a power series 

expansion. A third method, a different power series expanision, was investi¬ 

gated by Dr. John Kenemuth.** 

In the perturbation expansion, one writes the index of refraction as 

n = 1 + ey 

and assumes that the components of the corresponding ray trajectories are 

holomorphic in e. It is understood that we are interested in the value of r 

when e = 1. The equation to be solved is 

with conditions 

dn dr | d2r 
ds ds j 2 dsz 

Vn 

r 
s=0 

and e 
z 

*Keller, J. B., "Wave Propagation in Random Media," Proceedings of Symposia in 
Applied Mathematics, 13, p. 227, Amer. Math. Soc., New York, 1960. 

**Private communication. 
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where êR and êz denote unit vectors in the radial and z directions, respec¬ 

tively. We write 

r - r + er i + e2r? + ... 
o 1 ^ 

Then 

e 

00 

d¡i V 
ds Lu 

i=0 

i 
e 

dr 

ds 
-+ (1 + ey) e1 

i=0 

eVy 

Setting e = 0 in the above equation, we obtain 

d2r 
-— = 0 
ds2 

Integrating, we get 

r = R ê + sè 
o or z 

Differentiating the ray equation with respect to e and setting e = 0 yields 

with 

d2ri 

ds2 
Vu 

r=r 
o 

dr 
_o 
ds 

H 
s=0 

dri 

ds 
s=0 

0 

The solution is 

s 

rl (s) = l (s-t) VTu/ro(t)) dt 

0 

where denotes the transverse gradient operator. Successive differentiations 

yield further coefficients in the expansion. Solving for r2, 
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dt dt 

An alternate method of obtaining an approximate solution is to regard the 

transverse component of r as a function of Rq and z, say f(Ro,z). Expanding 

in z, we get ' 

fM-£o(Eo)+f.(Ro)*+f2(K0)H+--- 

Our initial conditions tell us that ^(rJ = Rq and f^R^ = 0. It remains 

to solve for fn when n 2. This can be done by taking successive derivatives 

with respect to s, setting s = 0 at each step. The result to order z4, is 

f R i 1 5n z2| 1 |~9 2n 
o n 3R 2! n [aR3z 

— In in] 
n 3R 3z 3! 

+ A J~ ^3n + i 2n . a_ M 
n [3R3Z2 n 9R 9r2 n2 \3R/ 

_ 1 in s2n + 6_ 3n /sn\2 3 32n 3n] z4 
n 3z 3R3z n2 3R [dz/ " n 3R 4Ï 

where n and all its derivatives appearing in the coefficients are evaluated at 

R * R and z = 0. 
o 

Given the ray trajectories, there are several ways in which one can calcu¬ 

late the intensity. For the perturbation expansion we used 
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I(R,z) 

For the ray trajectories given by the power series expansion. 

KR.Z) . i(ro.o) !» (ff) + (H)2 

1/2 

An advantage of the power series approximation is that one can derive an 

analytic form for the intensity, whereas use of the perturbation expansion 

requires machine computation of integrals to evaluate the intensity. 

A question of practical importance is the celerity of convergence of the 

various expansions. With each expansion, as one keeps more terms to approxi¬ 

mate the ray trajectories, the intensity calculations rapidly become unwieldy. 

Computations of the ray trajectories were done using parameters pertinent 

to an experiment done by Dr. Kenemuth using a C02 laser propagating in a C02 

absorption cell. The values of the various parameters are as follows: 

n = 0.3 (meters)-* 

Power = 63 watts 

Beam waist * 1.7 cm 

Pressure * 100, 200, and 400 torr 

z “ 5.59 meters 

Because of the large value of az, which is a characteristic length for the 

system, the power series exhibited slow convergence rendering accurate intensity 

calculations impractical. Fortunately, in the perturbation expansion, 

|r2| « Irjl, indicating rapid convergence. Therefore, intensity calculations 

were done using the approximation r = ro + r . The results of the calculations 

are illustrated in Figure 1 where the intensity (normalized by dividing by the 

initial peak intensity) is plotted as a function of R for times ranging from 0 

to 260 milliseconds in 20-millisecond increments. The on-axis intensity 

decreases with time. The pressure was taken to be 400 torr. 

In addition to the calculations described above, Dr. J. R. Kenemuth derived 

an approximation for the ray trajectories using an iterative.technique involving 
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R (cm) 
Figure i. Normalized intensity as function of distance. The curves are 

parametric in time running from t*=o (top curve at R=o) to t-260 
msec (bottom curve at R-o) in increments of 20 msec. 
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Taylor serles expansions of the gradient of the Index of refraction in time and 

in R - Rq. Intensity calculations using this approximation are in progress. 

The various approximations for the ray trajectories are compared in 

Figures 2, 3, and 4» where R is plotted as a function of Ro for z - 5.59 meters 

and a pressure of 400 torr. The times are 60, 120, and 260 milliseconds, 

respectively. Shown are the approximations obtained by letting r - rQ + rj and 

r - rQ + ri + r2 in the perturbation expansion, 

R • fo+ f2 It + f 3 It + ^ fr 

in the power series expansion, and R correct to order t3 using Dr. Kenemuth's 

techniques. For reference, the line R = Rq is also shown on these plots. 

The authors wish to express their appreciation to Mr. William Trebilcock 

for the computer plots. 
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Figure 2. Comparison of ray trajectories for the case of z=5.59 m and 
p=400 torr. Time is 60 msec. 
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Figure 3. Comparison ot ray trajectories for the 
p=400 torr. Time is 120 msec. case of z=5.59 m and 
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Figure 4. Comparison of ray trajectories for the case of z=5.59 m and 
p=400 torr. Time is 260 msec. 
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EXPERIMENTAL INVESTIGATION OF THERMAL BENDING 

W. L. Visinsky 

Laser beam propagation in an absorbing medium leads to a heating of the 

medium with a subsequent change in the refractive index. The initial Gaussian 

distribution of the beam is distorted to an annular distribution which expands 

radially outward in a symmetrical fashion. Buoyancy forces come into play after 

several hundred milliseconds and the hot rising gas sets up a convective wind 

perpendicular to the propagation axis. This wind then leads to the crescent¬ 

shaped intensity distribution of the laser beam caused by the beam bending into 

the region of higher refractive index (into the wind). The time-dependent 

effects of the absorption of laser energy by the medium are» initially, thermal 

blooming and, finally, thermal bending once the convective wind is established. 

This paper will present the theory and experimental verification of thermal 

bending for those situations when the medium is not assumed to be stationary. 

Thermal Bending 

A laser beam propagating in an absorbing medium which is not stationary will 

see changes in the refractive index of the medium. If the velocity of the 

medium (here assuned to be perpendicular to the propagation axis) is much 

greater than the convective velocity previously discussed, the major effect 

will be a bending of the laser beam into the wind. For very low wind speeds 

one would expect to see blooming. In fact, at zero velocity, the beam under¬ 

goes only thermal blooming. At very high wind speeds, the beam should propa¬ 

gate as if there were no absorbing meditan present. These conditions define 

the constraints on laser beam propagation in a wind. 

Theory 

The optical axis of the beam is taken as the z-axis and the wind is assumed 

to be in the direction of the x-axis. We further assume that the gradient of 

the refractive index is normal to the z-axis such that 

(dn/dz) = 0 
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Then the vector equation 

d/ds(ndR/ds) = Vn 

has a z component 

d/ds(n dz/ds) = * 0 dz 

Taking 

dz/ds ■ cos 6 

we have 

d/ds(ncos 6) = 0 

or 

neos 6 ■ constant (1) 

where 

n = index of refraction 

6 = angle the ray path makes with the x-axis 

For the atmosphere, n « 1 and heating leads to a decrease in the refractive 

index of the air which gives a new refractive index of l-|An|. If we assume 

that the rays are initially parallel to the optical axis (6 = 0) and set up 

equation (1) for the near and far field, we have 

(1-1 An I ) cos 6 * neos 0 ‘ o 

or 

1-1 An I ■* cos 0 

For small 0 the expansion leads to the expression 

0 ■ (2An) 1 /2 
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We must now determine the change in the refractive index as a function of 

the intensity of the beam and the parameters which characterize the medium. 

Equating the increased energy content of the medium with the energy absorbed 

from the beam at constant pressure, and using the equation of state of an ideal 
2 

gas, Kenemuth, Hogge, and Avizonis arrive at a density solution 

p - Poexp[-a(y-l)I(R,Z)t/yPo] (3) 

where 

p = density 

y = Cp/Cv - ratio of the specific heat capacities 

a * absorption coefficient 

Pq * pressure 

I(R,Z) = laser beam intensity at radius R 

t » time the laser beam has been on 

If the refractive index may be related to the density of the atmosphere, 

by (n-l)/p = (no-l)/po, we can substitute in equation (3) and solve for 

An * n -n: 
o 

p/po = (n-l)/(no-l) = expt-a(y-l)I(R,Z)t/yPo] (4) 

Expanding the exponential and retaining the first order term leads to 

An = (no-l)(a(y-l)I(R,Z)t/yPo 

which upon substitution into equation (2) yields 

0 = (2(no-l)(a(Y-l)I(R,Z)t/yPo))1/2 (5) 

In this derivation we have not made any assumptions as to the wind. In fact 

this expression would just define the expansion of the laser beam in a symmet¬ 

rical fashion in thermal blooming; the change in the refractive index is 

cylindrically symmetrical. 

To introduce the wind into equation (5), we first define a characteristic 

time as 
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where 

t 
c 

2Ro/V 

R0 * radius of the beam 

Vx “ velocity of the wind 

This characteristic time indicates how long a particular parcel of air has been 

in the beam; moreover, it is a measure of the amount of beam energy which will 

appear in the medium as heat. Substitution of the characteristic time into 

equation (5) yields 

6 “ (4(n0-1)((Y_1)dI(R»Z)R0/Yp0vx))l/2 

The introduction of the wind into the equation also changes the symmetry that 

is inherent in the thermal blooming situation. For times which are shorter 

than tc, the symmetry should still exist. However, for times greater than t , 

the symmetry no longer exists. In these situations, the region of higher C 

refractive index is one direction—into the wind—so that we should see the 

beam bend. 

Tucker and Hancock1 arrive at the following equation for bending into the 
wind; 

6 = VoV'/2 <7> 

Equations (6) and (5) agree well; in fact, the only difference is the nuaerlcsl 

multiplication factor. 

Equations (5) or (6) can be used to determine the amount of bending into the 

wind for times greater than the characteristic time. It may not always be 

advantageous to talk about bending since as the speed increases the degree of 

bend will decrease. Although the degree of bending may be extremely difficult 

to measure for higher wind speeds, the beam diameter will give the required 

measure of beam bending. This is true because, as we have just shown, the 

degree of bending is directly related to the size to which the beam would 

expand in the characteristic time if there were no wind present. This can 

perhaps be even better illustrated by referring again to Tucker and Hancock. 

Their expression for 6max for the case of no wind is given as 

195 



0 
max ■ (2ivi>“V/cpTe)l/2 (8) 

If we use the characteristic time defined earlier and relate 6 with and 
max 

without a wind, we see that 

(9) 

The fact that the basic equations for bending and blooming are related is 

logical. Referring back to the point that the increased energy content of the 

air is directly related to the absorption of laser energy, the time the parcel 

of air is in the beam is the only time in which energy may be absorbed with a 

wind present. The basic absorption process is the same with or without a wind, 

and the characteristic time determines the amount of energy deposited. One 

argues, therefore, that following the characteristic time, the beam will show 

a steady-state bending into the wind. The lateral dimensions of the crescent¬ 

shaped beam as well as the extent of the bending will be directly related to 

the maximum extent the laser beam would have bloomed to in that characteristic 

time in the absence of any wind. 

Experimental Considerations 

We have already indicated that, because of the convective wind established 

in thermal blooming, thermal bending is the end product of the blooming 

process. This bending, however, would be difficult to measure in terms of the 

velocity of the wind. What is needed is a system which will have the capability 

of varying the wind speed and the direction of the wind. This would provide 

the capability of investigating the full range of bending phenomena which we 

have discussed--from the maximum bending to the point where the medium no 

longer absorbs sufficient energy to produce any detrimental effects on the 

beam. Various methods of providing this capability will be discussed. 

A wind tunnel would provide the full range of wind velocities desired. 

However, a well designed wind tunnel with the associated gas supply is an 

expensive item to build and to maintain. Turbulence, always present in a wind 

tunnel, may also present problems at very low wind velocities. 

Perhaps the easiest way to obtain a full range of wind velocities is to 

slew the laser beam through the absorbing medium, thereby simulating the wind 

blowing across the beam. A single rotating mirror can provide this slewing 
3 

capability. The simulated wind velocities, in such a case, are not constant 
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across the entire beam propagation path and it would be difficult to relate a 

specific degree of bending to a specific wind velocity. The reduction of data 

cotained with a slewed beam would be tedious. 

Translating the laser beam through the absorbing medium would provide a 

constant velocity along the entire beam path. The degree of bending into the 

simulated wind could be easily obtained for a wide range of wind speeds. To 

fully investigate thermal bending, we must have the capability of translating 

a laser beam at higher velocities. Since the heating of the medium due to 

absorption will begin to thermally bloom the beam in a few milliseconds, we 

should have the capability of providing simulated wind velocities whose 

corresponding characteristic time (t = 2R /V ) would approach the initial 

thermal blooming time. This velocity, of course, would be the velocity at 

which the laser beam would propagate as if there were no absorbing medium 

present. If, for example, we assume a time for the onset of thermal blooming 

of 2 msec and a beam radius of 1 cm, the corresponding maximum velocity of 

interest is 100 cm/sec. The system to be described in this paper provides a 

means of reaching these maximum velocities as well as a means of investigating 

those velocities which give thermal bending. 

Translator Design 

We can slew a beam through a medium by using one rotating mirror. By using 

two rotating mirrors, we can take the angular motion of beam slewing and convert 

it into translational motion. The system used in the experimental investigation 

of thermal bending is based on this principle and is illustrated in Figure 1. 

Figure 2 illustrates the location and use of the beam translator in the experi¬ 

ment. 

The CO2 laser beam, with a peak power of approximately 100 watts and a beam 

spot size of approximately 2 cm, enters the input side of the beam translator. 

This side of the translator consists of two 6-inch mirrors which rotate in 

phase with each other and are separated by a distance of approximately 17 inches 

at a 45° angle. The synchronization of phase is provided and maintained 

through the use of the gearing system consisting of a 5-inch drive gear and 

two 12-inch driven gears. A DC servomotor is used to drive the 5-inch gear. 

In current operation the beam first strikes the low mirror and is slewed across 

the face of the top mirror. The rotation of the top mirror converts the slew 

into translation through the absorption cell which contains pure C02. Motor 

rotation is reversible and, thus, provides the capability of changing the 
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simulated wind direction. 

Two turning mirrors are used at the end of the absorption cell to bring the 

beam back into the beam translator on the output side. The function of this 

side of the beam translator, which is a mirror image of the input side, is to 

take the trarslation out of the laser beam and provide a stationary beam in 

position. This greatly facilitates the investigation of the beam profile with 

a scanning system. The scanning system used in this experiment provides both 

real-time viewing of CO2 beams and recording capability. Framing rate is 400 

frames/sec. 

The system we have just described provides the capability of translating 

a laser beam through an absorbing medium. The simulated wind in such a system 

may be varied from 0 to approximately 3000 cm/sec, providing the capability of 

investigating the full range of thermal bending. It has the advantages of 

repeatability, fine control, and low cost. We will now discuss the experimental 

results using this system to investigate thermal bending. 

Experimental Results 

This section describes the translation at various velocities of a C02 laser 

beam through a CO2 medium. The absorption coefficient was measured at a C02 

pressure of 25 torr and was found to be approximately 2 x 10-3 cm-1. This 

absorption coefficient was assumed to be constant for the range of CO2 pressures 

used in this experiment. Total length of the absorption cell is 559 cm and 

total translation distance in the cell is 7.62 cm. Wind velocities have been 

investigated from a low of about 15 cm/sec to a high of 250 cm/sec for CO2 

pressures of 100 torr and 200 torr in the absorption cell. 

At the lower velocities the crescent shape and the bending into the wind 

are readily apparent. As the wind velocity increases, the crescent shape 

closes up into what appears to be a flattened Gaussian distribution. At still 

higher velocities the flattening of the beam shape is not evident, but the size 

of the beam is still characteristic of the size that the beam would have bloomed 

to in the characteristic time. Figure 3 illustrates the above effects. These 

pictures were taken from the scanner viewing screen and they show quite vividly 

how the laser beam bending decreases with increasing wind speed. The maximum 

extent of thermal blooming for the same condition of 200 torr CO2 in the 

absorption cell as well as the original beam size are also shown for comparison. 

In Figure 4 we compare the extent to which a stationary beam blooms as a 
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function of time with the degree of bending observed for various wind velocities 

as a function of the characteristic time calculated using equation (9). In 

Figure 5, the degree of bending (again represented as the ratio of the maximum 

extent of the bent beams to the original spot size) for both wind directions 

investigated is plotted as a function of the wind speed. 

Conclusion 

In summary we have shown the relationship between thermal blooming and 

thermal bending. We have represented the results of thermal bending experi¬ 

mentation which used a beam translator to simulate the wind velocities. Theory 

and experiment are in good agreement. 
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PROBLEMS ASSOCIATED WITH PROPAGATION 
IN AN AERODYNAMIC ENVIRONMENT 

W. L. Visinsky and C. B. Hogge 

Laser systems designed for use in aerodynamic environments will encounter 

many problems. Aircraft in flight generate local disturbances in the atmos¬ 

phere which in addition to the normal atmospheric turbulence must be considered 

in the laser propagation models. In what follows, we will discuss wake 

turbulence, boundary layers, jet exhausts, clear air turbulence, and shock 

waves on laser beam propagation. 

Wake Turbulence 

Wake turbulence is generated by flying aircraft. The effect is caused by 

the normal generation of lift on the aircraft wings and can be characterized 

by two counter-rotating vortices which extend some distance behind the air¬ 

craft. It has been stated^" that the vortices from junbo jets might persist 

to a distance of 14 nm behind the aircraft and that at 9.5 nm this wake 

turbulence could possibly invert an F-104 in 1 sec at accelerations approaching 

15 radians/sec2. Under normal atmospheric conditions these contained "tornadoes" 

could be located at the flight altitude of the aircraft or below. 

Laser beam propagation through the vortices of the aircraft wake would be 

detrimental. The basic interaction is a refractive bending of the laser beam 

and a subsequent spreading of the radiation due to fluctuations in the refrac¬ 

tive index. Scattering off of the wake turbulence as well as the jet exhaust 
2 

turbulence entrained in the vortices would also be present. 

Boundary Layer 

Boundary layers around aircraft surfaces may be either turbulent or laminar. 

The effect of a turbulent boundary layer on beam wave propagation is probably 

the most difficult to analyze. In a turbulent boundary layer the important 

paraneters are the thickness of the boundary layer, the size of the turbulent 

eddies and the strength of the turbulence. 

A few experimental measurements have been made of the degradation to optical 

resolution experienced when "looking" through turbulent boundary layers 



surrounding airplanes in flight. For example, a 10.6-p imaging system with 

8-pradian resolution suffered a degradation to 20 yradians when operated at 

35,000 feet at subsonic speed.* 

On the other hand there is a proliferation of theoretical analysis (of 

questionable value) on this subject. For example, Liepmann estimated a 

theoretical limiting resolution (at visible wavelengths) for a Mach-2 sea-level 

flight of A X 10-4 radians. Hufnagel,on the other hand, estimated for the 

same conditions a limiting resolution of A x 10~5 radians. 

It is readily apparent that there la some disagreement on the extent of 

boundary layer effects and many more experimental measurements need to be made 

before a really useful analysis can be performed. 

Jet Engine Exhaust 

The degrading effects of jet engine exhaust on laser beam propagation 

preclude the operation of any high resolution system in their environment. 

Measurements of. the degree of turbulence in the jet exhaust have been made 

and the effects on 0.628-y and 10.6-p laser beams have been evaluated. Maximum 

turbulence in the jet exhaust is about two orders of magnitude higher than 

very strong atmospheric turbulence. With such strong turbulence, the spreading 

of even 10.6-y beams can be very substantial at any reasonable distance. For 

example, a 10.6-y beam propagating through 1 meter of jet exhaust turbulence and 

focused at 500 meters would be spread to approximately three times the unper¬ 

turbed focal spot size.^ 

Clear Air Turbulence 

The same turbulence which unexpectedly buffets aircraft in flight, usually 

called clear air turbulence (CAT), can have strongly deleterious effects on 

laser beam propagation. These pockets of turbulence, often 10 to 100 miles 

wide horizontally but only a few thousand feet thick vertically, exhibit 

turbulence levels that are one to two orders of magnitude more severe than the 

surrounding air space. As an example, the peak intensity of a laser beam 

focused at 3 km in a CAT pocket whose turbulence is characterized as inter¬ 

mediate would suffer a 20 percent reduction. Clearly, avoidance of CAT is 

highly desirable. 

*D, Ross, private communication. 
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Shock Waves 

In supersonic flight, and to some extent at subsonic speeds, aircraft 

generate shock waves. The predominate effect of these shocks is to induce an 

almost uniform refractive effect on optical waves passing through them. Thus, 

if a tracking and illuminating system operates at the same wavelength, the 

detrimental effect of shock waves should be minimal. Experimental observation 

of supersonic shock wave refractive effects are difficult to perform, but 

preliminary data indicate a bending upper limit of 50 yrad (at 6328 Â). This 

number is believed to be very conservative. 

Refractive Effects 

The high-speed passage of an aircraft through an otherwise quiescent 

atmosphere will produce a locally nonuniform average density gradient. As a 

result, an optical beam propagated to or from the airplane will experience 

a net refractive effect similar to a prism. This prism effect will depend 

strongly on the "looking" direction relative to the aircraft. 

Various opinions on the severity of these effects range from very minimal 

to completely debilitating. We hope that within a year experimental numbers 

will be available to evaluate the true severity of this problem. It should 

be noted that the effect will surely become more pronounced the faster and 

lower that the aircraft flies. 

Weather 

While adverse weather conditions can strongly effect the usefulness of a 

high resolution laser system, such conditions will effect both ground based 

and airborne based systems. Researchers have been studying for many years 

the gross effects of numerous weather conditions on laser beam propagation. 

Generally speaking, as a laser rule of thumb, one can say that when "seeing" 

is good (in the meteorological sense), conditions will be good for a high 

resolution optical system. 

Of particular interest to airborne systems are the effects of large 

thunderstorms on imaging systems. Propagation through such storms is clearly 

impossible, and is therefore really not of interest to us here. Of more 

interest, however, is the fact that the stronger convective activity associated 

with the disturbance will greatly increase the probability for clear air 

turbulence for many miles around the storm itself. As already discussed, CAT 

can have significant effects on otherwise ideal propagating conditions. 
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Conclusions 

Airborne optical systems will encounter numerous physical effects which 

will tend to degrade the total performance characteristics. Of particular 

importance will be the self-induced effects such as wake and jet exhaust 

turbulence, boundary layer turbulence, and average refractive effects. The 

extent of these degrading conditions will probably place certain restrictions 

on operating configurations. It is hoped that within the next 6 months 

additional experimental data will be available to help evaluate the true 

severity of these problems. 

CAT and naturally occurring weather are conditions about which little can 

be done. It is desirable, of course, to avoid air space regions affected by 

these disturbances. Clearly, then, especially for CAT, meaningful tactical 

positions could be achieved if some means of locating and mapping these 

disturbances were possible. 

REFERENCES 

1. Krier, G. E., Letter to the Editor, Aviation Week, 20 April 1970. 

2. McCormick, B. W., "Aircraft Wakes: A Survey of the Problem," presented 
at FAA Symposium on Turbulence, Washington, DC, 22-24 March 1971. 

3. Liepmann, H. W., Deflection and Diffusion of a Light Ray Passing through a 
Boundary Layer, Douglas Aircraft Corp. Report SM-14397, Santa Monica 
Division, May 1952. 

4. Hufnagel, R. E., "Random Wavefront Effects," The Practical Application of 
Modulation Transfer Functions, Perkin-Elmer Corp., March 1963. 

5. Veed, A. M., Tuttle, J. W., Derivation of an Optical Modulation Transfer 
Function for Turbulent Boundary Layers, General Dynamics Report ERR-FW-347, 
1964. 

6. Hogge, C. B., Visinsky, W. L., "Laser Beam Probing of Jet Exhaust Turbulence," 
Appl. Optics 10, 4, 1971. 

7. Loving, N. V., "Highlights of CAT Test Programs," presented at FAA Symposium 
on Turbulence, Washington, DC 22-24 March 1971. 

208 



PROPAGATION THROUGH A SHOCK WAVE 

W. L. Visinsky 

An experiment was condncted at the Hnlloman AFB teat track facility to 

was^^ntir^ti °f Sh0Ck "aVeS °n laSar bea” propa8atlon' Tha experiment 
bv J E 3Un ^ "lth ^ ““-foot-per-second rocket sled test condncted 

y the Electronics Division of the Air Force Weapons Laboratory. 

A He-Ne laser beam was used to investigate the effect of the shock wave. 

Blolo“’ Z T‘Ced lD Fl8Ur6 ^ ““ Pr0Pa8a“d fr°" AlP- to 

o r? T h 6 0,0 hl8h'8PMd Ca"eraS (5° “■" 200 ft-s/sec) were need 

3000T lOV6raU e£feCtS ^ the bea”- 1,16 t0tal Ptopagation path was 

“leT reir0Cket 8led t0°k 8aC t0 traVal t0 Bl0Ckh0USe - 
reached a velocity of 3470 feet/sec at that point. Sonic velocity was reached 

somewhere between 500 and 800 feet do™ track or 1 to 1.25 seconds after firing.* 

rocke? T reC°rdS Clearly Sh°“ Start °f the P“ from the 
rocket as it passes Blockhonse Dog. ihere is some vibration of the spot as 

the sou,d wave from the rocket firing reaches the laser hot this clears np in 

a fe^ frames. The lighting of the second stage at approximately 500 feet do™ 

the track is also clearly visible. The major effect o, the shock wave on the 

beam appears to he a decrease in intensity or. in other words, a spreading in 

spo s ze. Bending of the beam is not apparent in the film and, from the 

fiTetVhat a bend °f half the bem diameter should be discernible in the 
fila. Strip, an upper limit on the bending would be approximately 100 prad. 

?t?t bending should be much less than this and would seem to emphasize the 

cha Wh trUe be”dlng 18 8 f”Ctl°n 0t tha t0tal '«»sfty 
change »,e„ one considers that the shock wave has thickness, the net change 

i bend is much less than when the shock wave is assied to he an abrupt change 

thickness included one sees that the ray path will bend back toward the 

not bÜ °r' °ther UOrd8’ the °f ba,,‘i lnd"“d ^ ehock will 
great as for the case of the abrupt, instantaneous change. See Fig- 

nre ^For an abrupt change, the degree of bending would be calculated as 

-radians or 50 times as great as the upper limit mentioned above. 

*Hugh Southall, private communication. 
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Figure 1. Holloman. AFB Test Track and Laser Propagation Path. 

Figure 2. Contours of Constant Ratio of Density to Free Stream 
Density (Idealized) 
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modeling propagation through turbulent boundary layers 
BY THIN RANDOM PHASE SCREENS 

C. B. Hogge and W. L. Visinsky 

If the Self-l„duced turbulence around an aircraft in flight la sufficiently 

oca ired relative to the entire propagation path length of interest, one may 

investigate the average degrading effects of this boundary turbulence by 

modeling the random atmospheric index of refraction fluctuations as a thin 

random phase screen. The problem is trivial if one knovs the covariance 

function of the resulting phase fluctuations across an otherwise perfect 

optical beam. Let *(r) be the relative phase (in wave numbers) at r of an 

optical beam after it has traversed the turbulent layer. Then the covariance 
function is 

= < (¢(r)-<<()> j ^(r+p)-<(|)>j; 
(1) 

where the < > brackets denote in theory an ensemble 
time average. 

average, but in practice a 

c,(p) = «í>(r)<Krfp)> + <<£>2 _ 2<(4)>2 

<<()(r)(()(r+p)> - <(j)>2 
(2) 

If «p> = 0, which we will assume is true in our case, 

Cif>^ “ <<í>(r)4i(r+p)> (3) 

when p = 0 

C^(O) . <+2> = „2 
(4) 

where o2 is the variance of the phase fluctuations. We are assuning here that 

the phase degradation is spatially and temporally stationary. 
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For an ideal Gaussian beam focused at z = F, the field strength u(r)on axis 

(r = 0) in the focal plane is given by the cylindrically symmetric Fresnel 

integral. 

where the quantity in the brackets [ ] is the amplitude distribution at the 

transmitter plane. The other parameters are PT> the total output laser power; 

n0» the atmospheric average index of refraction; kQ, the wave number (kQ is 

2tt/X, where A is the optical wavelength); the transmitted beam spot size 

(or radius); and F, the distance to the focal plane. Because the beam is 

assumed to be focused at z = F and because we are also observing the field in 

that plane, the phase term reflecting the focusing property of the beam has 

cancelled out." To include the effect of the local turbulence on the beam, 

we select one member of the ensemble of phase distributions <KF) across the 

beam. While the beam actually must propagate a finite distance toward the 

receiver before it experiences this phase degradation, we assume this distance 

is very short compared to F and therefore treat the beam as if it had this 

phase distribution when it left the exit aperture of the optical system. Hence 

the analogy to the "thin phase screen." The field distribution becomes 

u(0,F) 
2P nki 

T o o 

uo 

j dr' r’ exp^-r,2/(Ujj exp(i2ïï<f>(r')) (6) 

The on-axis intensity in the focal plane is given by 

2P„ 

1(0,F) * u(0,F) * u(0,F) 

2 oo oo 

(7) 

KO,F) = 
TTO), 

( T °) ^ dr'dr" r'r" expi- ~^r,2+r"2j 

o o |_ W1 

• exp^i2ïï ^(r')-(j)(r")jj (8) 
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The average intensity is then 

<1(0,F)> 

(9) 

Note that the averaging operation only affects the phase terms, the 

remaining terms being deterministic. 

Now by a very simple geometrical optics argument, and the Central Limit 

Theorem of statistics, one can show that, for any member of the phase distri¬ 

bution ensemble considered, the phase variations represent a Gaussian stochastic 

process. Therefore, the quantity ^(r')-(()(r")j when considered as a new random 

variable of time can be shown to be normally distributed. Hence, one can show 

that 

<exp ji2ir ^<f>(r')-<i>(r")jj > = exp£-< ^(r1 )-({>(r")) 2J > (10) 

The averaging here being taken with respect to time. Expanding we get 

^-4ïï2 - c^ir') ij)(r") = exp 

We have assumed that the stochastic process is stationary in both time and 

space, so that <<()(r,)(J)(r")> is only a function of |r' - r" | = p. Hence, 

exp ^-4ir2(o2-C^(|r,-r"|)^ (12) 

Thus for the intensity, 

I(0,F) = (¥*)' Í ! Trail 
dr'dr r r" exp 

o o 

• exp j^4iT2(o2-C^ (| r’-r" |)) (13) 

where p = r' - r". 
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We pause here to indicate the fallacious reasoning in the preceding deriva¬ 

tion. in equation (5) we have assumed radial symmetry of the illuminating 

source. Hence 

The random phase distribution, written in equation (6), however, should be a 

function of both Cartesian coordinates, x' and y'. Thus it is a function of 

the vector r'. We have treated it, however, simply as a function of the 

magnitude of r’ in the derivation presented here and to be rigorous, this is 

not true. One can show, however, that the correct formulation does produce 

exactly the same results as equation (13). Because no improved insight is 

gained by the formally correct derivation, and because the principles involved 

are much more transparent in this slightly fallacious derivation, we will 

simply assert here that equation (13) is correct and no longer belabor the 

point. 

Continuing with equation (13), we now make a change of variables. Let 

p' = l/2(r' - r") 

R' = l/2(r' + r") (14) 

so that 

r' = R' + p' 

r" = R' - p' (15) 

Equation (13) becomes 

<1(0,F)> 

/ vOX^+R' -. 

j~7 (~r^') I 2‘ M (^-e’2) exP^ ^r(R,2+P,2) 

exp [-4ît2(o2-C^(2p'))] 
(16) 
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Letting 

R = R’/oji 

p = ^ p'/wi (17) 

so that 

<1(0,F)> 2pt /VoVl 2,üjÏ ? r 
~2 \ F / T“ J 2 J dRdp(R2-p2) exp[l(R2+p2)J 

^ o o J 

• exp p7r2dp^J 
(18) 

One can readily show that when o2 = 0, the constant phase case reduces to 

2P„ 
<1(0,F)> = 1(0,F) = 

^ai2 ' F / / 4 c 
(19) 

so that 

00 

' 4 j J dRdp (R2-p?) ,,-(^+02)^2 (o2-Ct(.'T u,,.,)) (20) 

Equation (20) describes ho» the peak focused intensity (relative to the 

peak focused intensity „hen there are no randor, phase fluctuations) varies as 

a function of the covariance of the phase variations. 

The form of Cp(x) is yet to be specified. We have no experimental indica¬ 

tions of form of this function. As a result, „e have chosen the frequently 
used Gaussian form 

V*) - u2expjx2/i2| (21) 

„here t is a parameter characterising the transverse correlation length of the 

Phase fluctuations. As „e „ill sho», the relative size of i to the transmitter 

radius strongly affects the focusing ability of the optical system. Defining 
¿/(DJ = f, equation (20) becomes 
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(22) <1(0.F)> 
I 

o 
dRdp(R2-p2) exp R2+p 2+4TT2a2 e_2p 2 / f 2 

Case I: f << 1 

Equation (22) becomes approximately 

<1(0,F)> 
I 

o 

-4it2o2 
« e 

f « 1 

4 dRdp(R2-p2)e_(R2+p2) 

o o 

-4Tr2a2 e 

(23) 

Thus, for the case of phase fluctuation which have a very small spatial coherence 

length, the peak intensity is degraded like the variance of the phase fluctua¬ 

tions. This limiting case is most frequently used as a "worst case" estimate 

of the degradation suffered by a random phase distorted optical system. 

Case II: f >> 1 

With a minimum of algebraic manipulation, one can easily show (the expected 

result) that in this limit, the peak intensity is not degraded. 

<I(0»F)> 
I 

= 1 

f » 1 

(24) 

Results 

Equation (22) has been programmed on the CDC 6600. In Figure 1 we have 

plotted versus f for a phase variance of one-tenth of a wave (a * 0.1). 
o 

The transmitter spot size (radius) is 50 cm. Note that these results are 

independent of the focal distance. 

Equation (23) was tabulated and is shown in Figure 2. Of particular 

importance we note the extremely rapid decrease in the relative peak intensity 

—for phase variances larger than one-tenth of a wave (a = 0.1). 

Conclusions 

In the formalism developed here, we are treating the localized boundary 

layer turbulence as a source of phase degradation very much like a random thin 

phase screen. This analogy is probably very good whenever the thickness of the 
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boundary layer turbulence is small compared to the total propagation path of 

interest. In addition to this, we were motivated also by the fact that much of 

the experimental data available in the literature on propagation through 

turbulent boundary layers describes experiments performed to measure the RMS 

phase distortion of optical beams. While the method presented here assumes 

that no further degradation is experienced by the optical beam as it propagates 

to the focal plane, it is not difficult to incorporate an ambient turbulent 

atmosphere in the problem. 
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Turbulence degradation of focused gaussian beams 

C. B. Uogge 

In Che pant years, a nmber of Interesting papers have been published which 

attempt to treat the problem of a beam wave propagating In a turbulent atmos¬ 

phere. Unfortunately, most of the methods lack sufficient generaUty to treat 

the more meaningful and realistic problems of Interest. Lutomirskl,1 however, 

has developed a method from first principles which treats the generel beam 

wave propagation problem. To apply the method, one need only know the atmos¬ 

pheric Modulation Transfer Functions for a spherical wave when taken at the 

transmitter for a point source at the receiver. The MTF* may be estimated 

from theoretical considerations, or It may be measured directly. The latter 

situation circunvents the often undesirable feature of having to make any 

assumptions about the nature of the turbulence. 

In this paper, we will consider one particular aspect of the propagation 

of beam waves: How well can an optical system (transmitter sire and optical 

wavelength) deliver energy to a target? In particular, we will only consider 

systems which are focused (in the geometrical sense) at the targets, and then 

ask the question: what Is the value of the maximum intensity on target? We 

will impose a number of assunptlons to simplify the calculations. 

(1) Assune that the transmitted beam resembles the perfect Gaussian beam 

usually described for Ideal, single-mode lasers, while such beams are theo¬ 

retically infinite In extent, we will define a beam radius (at the transmitter 

output it will be given by %) which defines the point on the intensity profile 

where the intensity is equal to 1/e2 its maximum value. The initial beam 

therefore has cylindrical symmetry. 

(2) Assume that the turbulent atmosphere is homogeneous and isotropic, so 

that its statistical properties (in particular its structure constant C ) Ire 

constant as a function position. Therefore, by symmetry arguments, the average 

beam profile in the focal plan will also be cylindrically symmetric. Furthermore, 

the MTF will have cylindrical symmetry as well. 

*Henceforth, "MTF" will always refer to the 
Function unless otherwise noted. 

atmospheric Modulation Transfer 
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(3) In the usual developments of Fresnel and Fraunhofer diffraction theory, 

small angle assumptions are made. For the development here, the same approxi¬ 

mations are assumed. 

(4) By the symmetry in the problem, we will assume that the maximum 

intensity at the target will still occur along the optical axis of the system 

By assumption (1), this is clearly true at the transmitter plane. 

Generalized Intensity Distribution 

Following Lutomirski's formalism, one can show, using assumptions (2) and 

(3) and the assumption of cylindrical symmetry in (1), that the time average 

intensity at any point* (£,z) along the beam is given by 

^ u(£ + £./2) • u*(r - p/2)e(z d2£ (1) 

r 

where Mg(p,z) is the spherical wave MTF,** and where X is optical wavelength, 

k = 2irA is the wave number and where p = |pj . u(x) is the field distribution 

at the exit pupil of the optical system; for the case considered here. 

(2) 

where F is the focal distance and where Pt is total power leaving the optical 

system. We get that 

u(£ + £./2) (_r*£ + P.*p/4 + jr*p) (3) 

*The vector jj describes the radial position in a cylindrically symmetri 
z is the linear distance of vector £ from the transmitter plane. 

**By symmetry, the MTF is only a function of the magnitude of |p|. 

c system; 
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u*(r - ¿/2) 
}/ Jo exp J'(¡7 + î?) + £•£/« - re) (4) 

2P. 
u‘(r - £/2)„(r + p/2) - exp |(r2 + p2/4) . ¿ 

ti\2 F TTU) (5) 

become will 

where r - |r| and p - l£|. 

The integral in the square brackets in equation (1) (call it L,) 

f „-Í2r2/ü)2^ ik/-i - I\r.^ 
rdrde (6) 

5 .-Mr'J. 
O OO 

Because e -2r2/io2 

as 0 is an even function, equation (6) can be written 

2PLe-(o2/2„2) f I ,-(2^1 n n 
rdrde (7) Ll ' e»2 6 ^ /2U°) Í ] *~(2r '“Jeœlkrpcoeed ‘ f)1 

0 o o *- J 

Performing the 0 - integration, 

2P 

TUÜ' 
2, J e-(2^/^) 2 (krp[i . 1] rdrj 

0 o ' / 
(8) 

The r - integration produces 

-1 = Pfc exp j - 
kV 

2ü)2 + 8 
o 

2 (i -1) (9) 

Equation (1) can now be written as 

2tt 

<I(£,z)> = Í Í pdpde M (p>z).e-if ppcose e-Qp2 
(zX)2 J J 8 (10) 

0 0 
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where 

o 

Performing the 0 - integration. 

<I(£,z)> 2’ft ( 

(zA)2 ¿ Pdp M (pz)e 
o 

-Qp' 
(12) 

Equation (12) describes the average intensity distribution at any point 

along the path of propagation in terms of the atmospheric MTF as viewed at the 

transmitter from a point source located on the observation plane at z. 

To simplify the problem we will limit our investigation of the intensity 

to its value at £ = 0; i.e., on-axis. By assumption (4), and clearly from 

equation (12), the maximum intensity in any z-plane will occur for this value 

of £. Equation (12) becomes 

<1(0,z)> pdp M 
s (p ,z)e“^p 

2 
(13) 

Finally, we choose to investigate the intensity only in the focal plane; 

i.e., z = F. Hence, Q = —- , and equation (13) becomes 
2to2 

0 

<I(o,z)> 2TPt f 

(zA)2 3 
Pdp M (p,z)e s -(p2/2“o) (14) 

This result is the fundamental equation used in this paper. Before its 

properties are investigated, we will consider briefly the atmospheric MTF. 

Atmospheric Modulation Transfer Function 

Consider the following situation: Place a point source at z = 0. In a 

plane located at z = L place a collecting lens of diameter D. Assume that 

there is a turbulent medium between z = 0 and z = L. Defining the combination 

of the turbulent medium and the collecting lens as an image forming system, one 

can show that its Modulation Transfer Function is given by the normalized 
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two-dimensional (spatial) Fourier transformation of the intensity distribution 

in the image plane. Let vO:) be the complex quantity which describes a wave 

that deviates (not grossly) in amplitude and phase from a spherical wave. 

Assume that the collecting lens is diffraction-limited so that on the image 

side of the lens the field can be written as 

where 

v(r) - w(£) q(jr) (15) 

if |rI _< D/2 

if |r| > D/2 

and where q(r) describes the deviation of the wave from an ideal spherical 

wave. Then, for the case where a long time average is taken, one can show 

that2 

MTF = MTF • <q(r') • q*(r")> 

system diffraction 
limited lens 

(16) 

where q*(jr") is the complex field conjugate to q(r"). 

New the total field on the object side of the lens can be written as a 

spherical wave times its deviation. Hence, 

q*(r")> 

is the cross-correlation of the complex fields at _r' and r;" and can be measured 

experimentally in a number of ways. The cross-correlation of the deviations 

(<q(r') • q(r")>) can readily be determined from the knowledge of this quantity; 

therefore, its importance to image forming optical systems is clear. 

In general lens design theory, one finds that the MTF of a system can 

frequently be represented by a product of the system's component MTF's. In 

this vein then, the quantity in the brackets of equation (16) is defined as 

the Modulation Transfer Function of the atmosphere. 
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Now, if one defines 

u(r) = e(l(^ + i^I^) 

where £(r) and «(»(r) are the log amplitude and phase fluctuations 

perfectly coherent point source, then one can show* that 2 

(17) 

of an otherwise 

<q(r’)q(r")> = exp | D (|r' - r"l)| - Ms(p,z) (i8) 

where D(p)** is called the wave structure function4 and is defined as 

D(P) - D£(p) + yP) (19 

where D£(p) and yp) are the log amplitude and phase structure functions. 
These functions are defined as 

Oj(e) - <p(£') - t(r")l2> 

D/P) ■ "[»(£') - Hr")J2> (20) 

where, under the seeunption oí locally hcmogeneous and Isotropic turbulence 

one can show that D( and D depend only on p - |r' - r"|. For a spherical ’ 

wave (point source) FriedJ shows that D(p) is 

2 oo 

DCP.t) - 8r^ j df j KdKfl-jJ&ilL (2.il0 (n) 

O o L ^ 

where Jo(x) Is the oth order Bessel function of the first kind and where 

♦n(s,K) Is the power spectrum of the atmospheric Index of refraction fluctua¬ 

tions. Equation (21) Is completely general and can treat any locally homogen¬ 

eous power spectrum. In practice, one normally selects a spectrmu which has an 

m2erhteaIren.“8“Pti0°S ^ d° ^ the ass^tions 

**If a lens is used to define this function, 
coordinate parameters will appear. then some nonessential scaling 
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inertial4 subrange that varies as* K-11/3, although frequently people5,6 have 

used other more mathematically convenient forms. The simplest type spectrum, 

often called the Kolmogorov spectrum, is 

<í>n(K,z) - 0.033C^(z)K-11 /3 (22) 

where c£(z) is the atmospheric structure constant and is the only measure of 

the degree of turbulence when this form of the spectrum is used. While experi¬ 

mentally this spectrum has been shown to be valid (under good turbulent mixing 

conditions) for spectral wave numbers, K, in the inertial subrange, it has been 

noted that at either limit (K -► « and K -► o) disagreements have been observed. 

In fact, it is clear that at the lower limit (K ■+■ o) the spectrum becomes 

meaningless in that it predicts an infinite amount of energy in turbulent 

eddies with wave number** K = o. While this mathematical singularity is 

bothersome on physical grounds, <|>n(K,z) normally appears in integrals which 

still remain bounded when both the K and z integrations are performed. Further¬ 

more, for many applications, the form of the spectrum for large and small wave 

numbers has often been shown to be of little consequence to the final results. 

Just the same, however, for some problems people have been forced to modify the 

Kolmogorov spectrum. Tatarski used the following form for the refractive 

index power spectrum: 

<|>n(z,K) - 0.033(:2(2)^1 i/vi^m)2 (23) 

It modifies the Kolmogorov spectrum for7 K > K - 5.92/ä , where £ is called 
moo 

the inner scale of turbulence, and, in so doing, attempts to account for the 

viscous damping effects experienced by the smallest turbulent eddies. Von 

Karman suggested a spectrum of the form^ 

4>n(z,K) 
0.033c2(z)e_(K/Km)2 

(K2 + (2"/Lo)2)11/6 

(24) 

*This general form of the spectrum was derived on the basis of physical grounds 
and dimensional analysis.^ 

**0ne can easily convince himself that the energy in the wave numbers 
K - (dK/2) to K + (dK/2) may be that thought of as the energy in the turbulent 
eddies of size-. L - 2tt/K. 
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This form not only modifies the spectrum for viscous effects, but also accounts 

for the finite energy requirements of the very small wave numbers. L is 

called the integral scale* of turbulence and provides a length measurement over 

which the index of refraction fluctuations remain correlated.8 Lutomirski1 has 

shown that the relative size of Lq to the transmitting aperture diameter can 

have significant effects on the focusing characteristics of an optical system. 

While this may be true, the use of equation (24) for the spectrum only serves 

for our calculations to complicate the mathematics, and does not add to the 

understanding of the physical processes which are occurring. Thus we choose 

to use equation (22) for the power spectrum of the refractive index fluctuations, 

not because it more correctly represents the turbulence characteristics (which 

it does not), but because it simplifies and clarifies the analysis to be per¬ 

formed, and, in addition, yields numerical results which tend to be conservative 

when compared to the results obtained for the power spectrum of equation (24). 

Using equation (22) in equation (21), the K-integration yields 

F 

D(p,F) - 2.91 k* pV3 J C2(z)(f)5/3 ds (25) 

o 

where we have set z = F. 

We next assume that the turbulence is stationary over the path of propaga¬ 

tion. (See assumption (2).) As a result, we will let 

C2(z) = C2 
n n 

where C2 is a constant independent of z. The final integration in equation (25) 

can now be performed. We get 

D(P,F) = (2.91)(f)k3(F c2)p5/3 (26) 

*There is some disagreement (or confusion) about the definition of L a' 
for this spectrum. Tatarski defines this parameter as the integral sea' 
turbulence, whereas Lutomirski defines it as the outer scale. 

used 
of 
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Defining 

C^) ■ Cn) <27) 

the spherical wave MTF (equation (18)) becomes 

M (p,F) = e"R(X’F Cn)p5/3 (28) 
S 

Parametric Studies of Focused Gaussian Beams in Turbulence 

Combining equations (28) and (14), one obtains an expression for the peak, 

on-axis intensity of a perfect Gaussian beam focused through spatially station¬ 

ary homogeneous and isotropic turbulence. 

2ttP 
<1(0 ,F)> 

(AF): 

00 

T I , -Rp5/3 -p2/2o)2 
pdp e e H ' o (29) 

A change of variables will produce a slightly more convenient form. Let 

X = then equation (29) becomes 

2irP 
<1(0,F)> = 

(AF) 

T 2 T j 5/3x5/3 -x2/2 — ürlxdxe o e 
2 o J 

(30) 

Defining* N = Ri^5/3, we get 

2tt a)2 P 
<1(0,F)> = 

(AF)2 J 
dx e -Nx5/3 -x2/2 

(31) 

To familiarize the reader with the general behavior of beams focused in a 

turbulent media, we show in Figure 1 a plot of 

<I(0>F)>/^2TrP^,/(AF)2j versus ti>o 

*See appendix for nomograph to determine N. 
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for numerous values of F C^. Note that for the case of no turbulence, an 

increasing aio produces a continuously increasing intensity. This represents 

the ideal diffraction limited case. In practice, however, for propagation 

paths in the atmosphere, turbulent conditions do exist with the subsequent 

result that the focused peak intensity always tends to saturate with increasing 

u>o. This limit depends on both A, and F and its value will be discussed in 

more detail at a later time. 

We now will investigate several properties of equation (31) with the 

thought of providing some guidelines for optimising an optical system of the 

type considered in this paper. It is of interest to point out that this entire 

analysis can equally as well be applied to systems designed to image incoherent 

sources viewed through a turbulent atmosphere.*^ 

Normalized to the No-Turbulence Case. If the atmosphere were a perfect 

transmission medium completely free of turbulence, then C2 = 0; hence N ■ 0. 
n 

Letting I^,j, = <I(0,F)> for this case, we get from equation (31), 

2it U)2 FT 

Thus, equation (31) can be written as 

<T(n - T Í ^ -Nx5/3 -x2/2 <I(0,F)> = INT • 1 X dx e e 

o 

(33) 

In Figure 2 we have plotted <I(0,F)>/INT versus N. We observe that for 

larger N, i.e., larger ^F C2j's, larger u^'s, and smaller A's, the optical 

system performs less and less like the ideal system. Clearly then, one might 

want to specify a value of N in design criteria to ensure that the system 

operate in excess of some specified performance level (often specified in 

number of diffraction limits which might be defined here to be [<I(0,F)>/I^TJ1/2). 

Normalized to the Intensity Limit for Large Transmitting Apertures. Next 

consider the effect of increasing without limit the size of the transmitter 

radius. By equation (29) 1t is clear that the intensity becomes 

*Some distinctions must be made when the turbulence is only locally homogeneous 
and isotropic. 
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<1(0,F)> 

00 

2irPn 

(AF); Í pdpe 
-Rp5/3 

(3A) 

Integrating equation (34) we get 

2ïïP, 
I. - 

(XF) 2 5 

T_ 3 r(6/5) 
r6/5 

(35) 

Now, in the classical limit of no turbulence (equation (31)), the intensity 

increases without bound as -*• «. We observe, however, that whenever any 

degree of turbulence is present (this means R y 0), there is a limit to the 

maximum intensity. Using equation (27), we see that 

(0.087) PT X2/5 

rl6/5 
(Cn) 

¢)/5 
(36) 

Of particular interest in equation (36) is the fact that IT increases for 
¿4 

longer wavelengths; the dependence on F and C2 is not unexpected, and deserves 

no comment other than to note a rather strong dependence on the focal length. 

Dividing equation (31) by equation (35), we get 

<I(0.F)> 5 
31(6/5) N 6/5 -Nx 5/3 -X2 /2 

X dx e e ' (37) 

In Figure 3 we have plotted <I(0,F)>/IL versus N. We note that as N 

increases (that is for larger F C2, larger o^'s, and smaller A's) the optical 

system approaches its limit of performance. Clearly, then, we do not wish to 

design a system which is approaching its limit capacity, and as a result again 

we would probably wish to choose an upper limit for N. 

An Upper Limit for the Transmitter Aperture Size. If equation (37) is 

plotted as a function of a family of curves will result (for different 

F C2,s and X's). The general shape of the curve would, however, be as shown 

in Figure 4. 
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Figure 4. Ratio of Intensity In Turbulence to Saturated Inten-i^ 
a Function of the Transmitting Radius. density as 

In the limit as u* + 0, equation (37) becomes 

:I(0 tF)> r6/5 

r(675T ("o) 

80 t5atR6/5trai8ht llne drah,n tangent to 

“ “ 3 r(6/5)‘ We now arbitrarily define 
the curve at a,2 « o will have a slope 

a limiting aperture, as the a)2 

tangent line and the limit line of 

wL = 0.118 
A6/5 

(FCn) 
3/5 (38) 

Which corresponds to N . r(6/5)j 5/6 . 0.608, and , 0.465. 

IL 

thlS defÍ“Ítl<>n aPPearS rather arbitraiy' “a P”1“ '-at this vaine 

matl C° e8P°" t° tha 1"terSecl:lon of curves i" Figures 2 and 3 and mathe- 
matically implies that 

<I(0,F)> _ <1(0,F)> 

NT 
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Thus, in some sense a balance has been set between the quality of operation 

achieved as compared to the ideal case where there is no turbulence, and the 

more realistic case of a very large transmitting aperture in the presence of 
turbulence. 

In Figure 5 we have plotted ^ versus F C* for numerous values of X. 

System Wavelength Dependence. Again consider an ideal system with no 

turbulence. From equation (32) we see that if we specify PT and F, then there 

is a continuum of combinations of ^ and A which will produce exactly the same 

INT’ SuPP°se we start with o>o = a and A « b. Then 

v-uaï . 
Requiring INT(w¿,A') = INT(a,b) , we get the combination cf o/, and A' must 

satisfy 

or 

a 
b 

A' =(aK (39> 
Choosing a = 0.25 m and b - 10.6y, equation (39) plots as the straight (dotted) 
line in Figure 6. 

Let us no» return to the problem of a turbulent transmission medium, and 

again ask the same question: If PT and F ere specified,beforehand (and held 

fixed throughout) and If the corresponding Intensity, <1(0,F)>, Is set by 

selecting »o - a ■ 0.25 m and A « b = 10.6p, what other combinations of (»'.A') 

»111 produce the same intensity! Using equation (31), one can readily sh™ 

that the combination («/.A') will be specified by the integral-transcendental 
relation 

(40) 
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where 

00 

G(N) - ( * dx e-“*573 e'*2/2 

o 

(41) 

(42) 

(43) 

In the case of no turbulence (c2 = 0) equation (40) is readily seen to 

reduce to equation (39). Otherwise, the ratio G(N2)/G(N1), which is seen to be 

a function of a, b, X ', and u>' will alter the ideal case as represented by 

equation (39). We have solved equation (40) for several values of F C2 and 

the results are plotted in Figure 6. Several things are worth noting^all of 

which are a result of the fact that shorter wavelength radiation is affected 

more by turbulence than longer wavelength radiation. 

First we see that for all values of A’ < 10.6U the transcendental curves 

lie below the dashed line representing the ideal (no turbulance) case. Hence, 

for a given wavelength (<10.6y) one must transmit a beam whose radius is larger 

than the corresponding ideal beam radius. This directly supports the above 

statement that the turbulence affects the shorter wavelengths more. 

Secondly, note that each curve approaches an asymptotic value of A,(<10.6p) 

ss ^0 -► ®. The reason for this is clear if we recall equation (36). 

I L 0.087 (36) 

Keeping PT, f, and C2 fixed, and decreasing A, we decrease the limiting 

intensity which an optical system with an infinitely large transmitting 

aperture can achieve. With A = 10.6p and % = 0.25 m inserted in equation (30), 

we will obtain some value for <1(0,F)>. Now, when A' becomes so small in 
equation (36) that 
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<1(0,F)> > Il(A') 

to 58 0.25 m o 
A = 10.6y 

we see that one is physically unable to satisfy the constant intensity require¬ 

ment. Hence there is a limiting value of A , for each value of F C2: such that 
■PI ^ ^ 

for all A < Al one cannot possibly construct an equivalent optical system 

capable of focusing to the same peak intensity even if an infinitely large 

transmitting aperture could be used. 

Curves such as these in Figure 6 might be used in performing cost-effective 

analyses. For instance, if the operating turbulence characteristics and focal 

range are known with reasonable certainty, one might design the transmitting 

optics near the knee of the appropriate F C2 curve. In so doing, the cost of 

constructing as small a telescope as possible would be achieved. 

We must point out here that these parametric curves are a function of the 

reference wavelength and transmitting aperture chosen. If one prefers, other 

pairs of parameters(o)o,A) could be chosen as a reference. Likewise, similar 

curves can be obtained if one simply assigns a numerical value to tine minimum 

peak intensity required* (for a specific task) and the corresponding pairs of 

(ü)o»A ) then determined from equation (31). However, as long as we require P^, 

to be the same for both optical systems, one can easily convince himself that 

this latter procedure is exactly the same as what we have done, the only differ¬ 

ence being the choice of the reference w and A. 
o 

This last remark suggests yet another parametric curve of interest. Suppose 

we have an optical system with a fixed transmitting aperture diameter. The 

variables of interest now are the total power, PT> and the wavelength. Again 

we will require the peak intensities for the two optical systems to be the same. 

In the case of no turbulence we get that 

pt(a') (44) 

where we indicate that the total power is a function of the wavelength. In the 

presence of turbulence, this equation becomes 

*P^, must be specified also if this approach is to be taken. 
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(45) 
PTU') 

_(?TM 

\ X2 , 

\ |"g(N1 ') 

/ LG(N2 
(X'); 

where 

Nl' 

N2’-(^)(í)t^HK5/ 

(46) 

(47) 

We did not compute the results of equation f ~ 

be don* in the future. ’ ^ £°r ChlS V^C> ^ it will 

Conclusions 

tlonn" “8 Precedin8 - »ave tried to illustrate ace of the calcula- 
which are possible with the mathematical forman a 

to treat the propagation of h Sm eveloped by Lutomirski 

treated the J ^ “aVeS ^ »-ile we have 
treated the simplest possible problem of a focused c.v.si.n k 

of stationary turbulence (described by the Kolmogorov spectnT ^ 

:;r: tpr-Tn! c;:.^ ::::., 
pz;:;:::!sults pre8e,,ted here sh-id - -—-- - - ^.1 
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APPENDIX: the System Par^^ , 

The nomograph shown in Figure 7 facim-a^o a 

system parameter, N, œed in Fi8„res 2 j / the 

Beginning with tte proper value on th P t .is nnT ^ a',d " 
through the specified .., . ” ” ^ a 5tralBbt line 

with I », e ^ “o - n0tIn8 the intersection of this line 
with the intermediate variable'' axis. One then draws a straight lin h 

this intermediate variable and the reared value on the 1 ax thf t 

noting the intersection of the Hne uith the N axis, ihe re^^cd s 

eter variable N is given by this intersection. ? 
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INTERMEDIATE VARIABLE 

N SYSTEM PARAMETER 

Figure 7. Nomograph for Evaluation of System Parameter N 
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COMPUTER SIMULATION OF BOUNDARY LAYER TURBULENCE 

C. B. Hogge and W. L. Visinsky 

The turbulence generated In aerodynamic boundary layers may cause signifi¬ 

cant laser propagation problems. Experimental data of the temperature and hence, 

density fluctuations in an aerodynamic boundary layer is virtually nonexistent, 

although some information may be gleaned from experimental hot-wire anemometry. 

Experimental information indicates that velocity fluctuations in a turbulent 

boundapr layer are 4 to 10 percent of the local mean velocity. This same 

source indicates values of 30 to 60 percent for turbulent jets and 2 to 5 per¬ 

cent for turbulent wakes. We can, perhaps, relate these data to experimental 

information on Cn (the structure constant of the refractive index fluctuations) 

in a jet engine exhaust.2 Taking a value of Cn = 3 x 10"^/3 as typical for 

the turbulent jet exhaust would lead one to conclude that C values for the 

turbulent boundary layer might be approximately 5 x 10“fem-1/3. 

One can use existing propagation theories to try to predict the degrading 

effect of the boundary layer turbulence on an idealized laser beam focused at 

arbitrary distances from the aircraft. This involves defining (or assuming) 

a form for the index of refraction structure constant (Cn) which varies with 

position away from the aircraft. Two things must be made clear. First, the 

form for Cn(z), where z is the parameter specifying distance away from the air¬ 

craft, is a pure guess fabricated to model what is thought to be the behavior of 

the turbulence in the vicinity of the airplane. There is no experimental 

evidence why this (or for that matter any other) model is more preferable or 

correct. However, the numerical results for the degradation do appear to be 

somewhat insensitive to the choice of the form of Cn(z), depending only on the 

general property that Cn(z) decreases as one moves away from the airplane. 

Secondly, all theories of beam wave propagation in locally homogeneous and 

isotropic media require that the turbulent characteristics (Cn(z)) change "slowly" 

with position. The question of "how slowly" is still open ^discussion, but 

surely for strongly local boundary layer effects, the assumption of locally 

homogeneous and isotropic turbulence must fail. (One could perhaps argue that 

to be locally homogeneous and isotropic, the turbulence characteristics must 
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not change over a beam diameter in the transverse direction and over a couple 

of beam diameters in the longitudinal direction. Clearly, for 50-cm transmitting 

optics, one could easily violate the assumption of local homogeneity and iso¬ 

tropy.) To the extent to which this assumption is violated, one must judge the 
validity of the calculations presented here. 

It should J* pointed out that if the intense turbulent boundary layer is 

found to be extremely small (much less than a beam diameter), one might get a 

better estimate of focal distribution degradation by treating the layer as a 

thin, random phase screen. We have investigated this approach to the problem 

in a cursory fashion, and some of the initial results are presented in another 
article in this digest. 

Finally, we Indicate that one can treat the boundary layer turbulence aa 

a thin phase screen and also include the remaining Intervening turbulence In 

the problem. We have only Just begun work on this approach and it Is reported 
briefly in a short article in the digest. 

In view of the preceding discussion, we will assume that the refractive 
structure constant Cn varies as follows: 

Cn(z) = U(1 + Ve'P1"2^2^]^ 

where U is the limiting value of turbulence far away from the aircraft, V is 

an arbitrary parameter designed to greatly increase the turbulence structure 

constant for points near the aircraft, L is the distance from the aircraft to 

the focal plane, and M is an arbitrary parameter designed to adjust the rate 

in the reduction of turbulence as one moves away from the aircraft. 

Using the theory of Lutomirski,3 we can show that the average maximum 

intensity of a perfect Gaussian beam focused at distance L in the presence of 
turbulence is given by 

27rPT f 2 /o 2 
<I(0,C-U>-ï- l o M (p ,z)e-p '2“1 dp 

(U)2 J s 
o 

where wj is the transmitted beam spot size, A is the wavelength, P ls the 

total power in the beam, and Ms(p,z) is the spherical wave MTF as seen at the 

244 



transmitter from a point source located at the receiver. Assuming a Kolmogorov 

spectrum of turbulence, one can then shew that 

Ms(p,z) exp 

L 

-1.45 k2p5/3 J dz 

o 

C2(L-Z) 
n 

where k = 2tt/A. In the absence of turbulence, Mg(p,z) = 1, the peak intensity 

of a focused Gaussian beam is 

2tudiP 

1(0,L) --L - I 
ÍAL)2 

In the parametric analysis which follows, we have computed versus V, 

M, and L. We have set A = 10.6 microns, U = 5 x 10-16m-2'3,* and ut = 0.25 m 

for all cases. The parameter n shown in the Tables is related to (ML2) and 

expresses a distance (in meters) from the aircraft at which the turbulence 

level has dropped to 1/e2 of its initial value (C2(0)=UV). For example, if 

the boundary layer thickness was 10 cm and we were focused at 1000 m our 

intensity from Table III would be degraded to 0.9 of its original value. This 

value would be associated with a maximum turbulence in the boundary layer of 

5 x 10_11m-2/3, or approximately the figure quoted earlier for the boundary 

layer turbulence from velocity considerations. 
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*This limiting value of C2 is characteristic of intermediate to weak turbulence. 
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Table I 

INTENSITY DEGRADATION FOR BOUNDARY LAYER TURBULENCE 

V = 1 X 103 

X/T * 
Range to focus (m) n(m) NT 

500 0.050 0.991 
I 0.158 0.982 

0.500 0.966 
1.58 0.914 

1000 0.100 0.983 
I 0.316 0.965 

1.0 0.934 
3.16 0.841 

2000 0.20 0.966 
I 0.632 0.931 

2.0 0.875 
6.32 0.720 

3000 0.30 0.950 
I 0.948 0.900 

3.0 0.822 
9.48 0.627 

4000 0.400 0.935 
I 1.264 0.870 

4.0 0.775 
12.64 0.553 

Table II 

INTENSITY DEGRADATION FOR BOUNDARY LAYER TURBULENCE 

V = 1 X 104 

I/I * 
Range to focus (m) n(m) NT 

500 0.050 0.987 
I 0.158 0.900 

0.500 0.777 
1.58 0.515 

1000 0.100 0.975 
I 0.316 0.816 

1.0 0.628 
3.16 0.331 

2000 0.20 0.951 
I 0.632 0.684 

2.0 0.444 
6.32 0.184 

3000 0.30 0.927 
I 0.948 0.585 

3.0 0.338 
9.48 0.123 
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Table II (cont'd) 

Range to focus (m) 

4000 

n(m) 

0.400 
1.264 
4.0 

12.64 

I/I * 
' NT 

0.905 
0.508 
0.2 70 

0.092 

Table III 

INTENSITY DEGRADATION FOR BOUNDARY LAYER TURBULENCE 

V = 1 X 105 

Range to focus (m) n(m) I/I * 
' NT 

500 

1000 

2000 

3000 

4000 

0.050 
0.158 
0.500 
1.58 

0.100 
0.316 
1.000 
3.16 

0.20 
0.632 
2.0 
6.32 

0.30 

0.948 
3.0 

9.48 

0.400 
1.26 

4,00 
12.64 

0.947 
0.467 
0.228 
0.072 

0.899 
0.288 

0.117 
0.033 

0.814 
0.154 
0.055 
0.015 

0.742 
0.102 
0.035 
0.009 

0.681 
0.075 
0.025 
0.006 

*^NT = with no turbulence. 
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PROPAGATION IN EXTREME TURBULENCE 

C. B. Kogge and W. L. Visinsky 

In a previous paper, the authors reported on the use of a He-Ne laser to 

probe the extreme turbulence of a jet engine exhaust.^ Measuring the amount 

of spreading induced on collimated and focused beams and then using the theory 
2 

of Gebhardt and Collins, we determined an index of refraction structure con¬ 

stant (usually denoted by Cn) characteristic of the turbulence in the exhaust. 

While the numbers for structure constant determined in this manner agreed 

fairly well with other measurement techniques, we must point out that the 

validity of the approximations made in the Gebhardt and Collins theory, in 

particular for the focused beam case, are positively violated. In fact, it 

appears that for most focused beam problems of interest, their assumption is 

violated. 

One can show that for the collimated beam case, the particular assumption 
2 

of concern requires that 

>> IT 

where Çl is the Fresnel number of the aperture 

(1) 

and where 

(*>1 is transmitted beam spot size 

X is wavelength 

z is distance to the observation plane 

Thus, as long as one is well within the near field of the transmitting aperture, 

uj, this requirement will be satisfied. 

For the case of a beam focused at z = F, where F is less than the Rayleigh 

range of the transmitting spot size, the requirement becomes 
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2 
0)i 

>> 1 
\zQ.2 

(2) 

However, if, as assumed, one is focused well within the near field of the 

transmitting aperture, then Í2 >> 1, and clearly, condition (2) cannot possibly 

be satisfied. While this is true in general (and in particular in our case) , 

Gebhardt and Collins state that they still feel that their results should yield 

"good estimates" of the physical situation. The results of our analysis of 

our data appear to substantiate their beliefs. 

This contradiction in the validity of the assumptions used for our earlier 

analysis has lead us to review further our beam spreading data with two other 

theoretical models. While many theories are becoming availablewe have 

confined our analysis to the work of Ishimaru5 and Lutomirski.6 We choose to 

investigate these two particular theories because of their markedly different 

approach to the problem of beam spreading in turbulent environments. 

With the assumption that the original Gaussian-profile beam will remain, 

on the average, Gaussian in shape, one can readily show from Ishimaru's theories 

that 

= 1 - <X2(z,o)> + <X2(z,io)> 

where u)t is the average spot si?e of the beam at the observation plane after 

traversing the turbulence, is the theoretical spot size of the beam at the 

observation plane in the absence of turbulence, and <X2(z,u))> is the mean square 

log amplitude fluctuations at a distance z from the transmitter plane and a 

radial distant ui from the center of the beam. According to Ishimaru, 

<X2(z,w)> = 0.033^7/^11/^ £-r (- J dxC2(zx)GA(x) 

o 

The spatial filter function GA(x) is a function of u) as well as the normalized 

distance x. It is a weighting function which emphasizes or de-emphasizes the 

effect of the turbulence along the path. The transcendental equation given 
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above may be solved for the beam-spread ratio for both collimated and focused 

beams with the proper substitutions in the weighting function. 

Lutomirski's theory basically concerns the determination of the spherical 

wave modulation transfer function in the presence of turbulence. While being 

able to treat generalized aperture problems, the formalism is significantly 

less cumbersome for the case of a perfect Gaussian beam. For a focused 

Gaussian beam observed in its focal plane, 

where and ojo were defined before and where ajj is the transmitted beam spot 

size. 

1 

R = 1.455 k2 z j C2 £z(l-x)J ¿x 

o 

For a collimated Gaussian beam, Lutomurski's theory yields 

oo 

f -Rp 5/3 -Qp2 
\ p e K e dp 

o 

where 

Q = + 

These equations have been programmed on the GDC 6600. To simplify the 

analysis, we have assumed that the structure constant does not vary over the 

width of the engine exhaust. 
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Collimated Beam Results 

In Figure 1 the computer results of Ishimaru’s and Lutomirski’s theories 

are plotted for a z = 12.4 meters. In Figure 2 their results are plotted for 

z = 16.8 meters. On both graphs we have reproduced the data of Table 2, 

reference (1), using Gebhardt and Collins’ theory. Note that for these points 

we used the measured values of the collimated beam spot size. If one similarly 

uses the measured values of ^ to determine (^/^)2 in the present analysis, 

we see that excellent agreement results. Of particular interest is the fact 

that the Gebhardt and Collins points always fall between Ishimaru's and 

Lutomirski's curves. We think this is to be expected, however, since the 

Gebhardt and Collins theory is a modified version of Ishimaru’s theory. The 

latter theory calculates the variance of the scintillation of the log amplitude 

"off-axis" for an ideal Gaussian beam. It is well known that the Rytov approxi¬ 

mation begins to fail for points sufficiently far "off-axis." We feel that for 

degrees of turbulence sufficient to spread the beam (either focused or colli¬ 

mated) by a factor of two or more, Ishimaru's theory is no longer valid. Notice 

the rapid drop, without an apparent limit of Ishimaru’s curve. This curve 

actually begins dropping very fast for a beam spread much less than a factor 

of two and suggests that Ishimaru's theory may be failing even sooner. 

The Gebhardt and Collins theory predicts a beam spread simply from the log 

amplitude scintillation occurring at the center of the beam. Thus it does not 

suffer from the same problems encountered by Ishimaru's theory. There are, 

however, other differences between these two theories which make a complete 

comparison difficult. 

The Lutomirski theory also does not suffer from instabilities for points 

for off-axis. Because the theory is developed around the atmospheric MTF, the 

results remain well bounded as long as the form of the MTF remains bounded. 

Using the Kolmogorov Spectrum, the MTF does remain bounded and hence the theory 

plotted in Figures 1 and 2 show a well behaved shape. 

Focused Beam Results 

We observed experiments that for the degrees of turbulence present in a 

jet engine exhaust, a focused spot will spread on the order of seven times its 

original diameter. As a result, in view of the preceding discussion, it is 

clear that Ishimaru's theory cannot be applied to these cases. Thus in Figures 

3 and 4 we have plotted the results of Lutomirski's theory for the range of C2's 
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Figure 1. Intensity degradation for a collimated beam. Propagation 
path is 12.4 meters. 
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Figure 2, Intensity degradation for a collimated beam. Propagation 
path is 16.8 meters. 

25.3 



FOCUSED BEAM 

Figure 3. Intensity degradation for a focused beam. Propagation 

path is 12.4 meters. 
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Figure 4. Intensity degradation for a focused beam, 
path is 16.8 meters. Propagation 

255 



of interest. Also plotted are Gebhardt and Collins' results, once again using 

the measured spot sizes (see Table 3, reference 1). Note that even though the 

assumption used in the Gebhardt and Collin-: theory for the focused beam is 

violated (as discussed earlier), their results agree reasonably well with 

Lutomirski's if the experimentally measured spot sizes are used.* 

Conclusions 

In summary, Lutomirski's method seems to be ideally suited for most appli¬ 

cations of beam spread or turbulence degradation in turbulence. Methods which 

are inherently dependent on the radial form of the Rytov approximation may 

develop problems for those high degrees of turbulence or long ranges where the 

beam spread would be approximately two times the original beam size (an intensity 

degradation to 1/4 the original value). 

We have presented our results of the comparison of three methods of beam 

wave propagation in turbulence. Our treatment is not meant as a condemnation of 

any of the methods nor an ultimate statement of fact. We do feel, however, 

that more thorough investigations of other regions of the turbulence spectrum 

are warranted before any final decisions are made. 
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LASER BEAM PROPAGATION THROUGH JET EXHAUSTS 

K. G. Gilbert, C. B. Hogge, and W. L. Visinsky 

ABSTRACT* 

C02 (10.5 micron) and He-Ne (6328 Â) laser beans were passed through the 

highly turbulent region in the exhaust of a jet engine (J-57 with afterburner). 

Experimental information was obtained on the absorption, scattering and turbu¬ 

lence effects of the jet exhaust on both laser beams for various propagation 

paths. Estimates of a structure constant that would characterize the turbulence 

in the exhaust are made from the beam spread of focused and col.’¿mated beams. 

The structure constant obtained in this manner is then compared with the 

structure constant determined from scintillation measurements on the C02 and 

with the results of hot-wire anemometer readings in the exhaust. The various 

methods yield results for the structure constant that are in good agreement 

(typically a structure constant of the order of 3 x 10-5m_1/3). 

*This report has been published as AFWL-TR-70-128, December 1970. 
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C02 LASER AIR BREAKDOWN CALCULATIONS 

G. H. Canavan and S. D. Rockwood 

The calculations reported here test the vaUdity of interpolating between 

“ i"' frreqUenCy “;e0ry and to predict a breakdown 
th ' 1-5t 01-5 x 10 ] volt/cm (peak) for a large diameter C02 

. -micron laser beam in air. Ihe number density, n^cm-3). and thermal ' 

energy density. ET(eV/cm3). 0f Marwellian electrons of temperature T (eV) 

interacting with air of density ^(molecules/cm3) obey 6 

= (R,/1 - R 
\ 1 a 

n )n n 
n/ n £ (1) 

F - R, - R - 

¿=1 

R- ~ ~ RTRn in n 
e a ni ne 

(2) 

where I - ionization potential of air = 15 eV, 

Ra(cmfc/sec) . ^2.8,3(,(0.026/^)0^-°52^ + 8.32^ 

is the three-body rate of electron attachment to 02.3’4 and the explicit 

temperature dependence of the terms on the right-hand side of equation (2) is 

shewn in Pig !. F(eV-cm3/sec> - + „2)) ls the 

"put p otteu for E = Eth and scaling vertically on (e/E )2 for other 

luxes ^e collision freq^ncy. v . 1 3,7 1^./2 uas ibtal^d fro„ the 

et al.. and Phelps.6 ^(eV-cmi/sec) is the loss rate due 

to impact ionization and is plotted together with the energy needed to therm- 

alize the new cold electron produced with each ionization. R (eV-cm3/sec) Is 

the energy lost in vibrationally exciting N2 molecules with a^ate based on 

the cross sections measured by Schulz.8 R£(eV-cm3/sec) , t « 1-5, are the 

energy loss rates for impact excitation of the A3l,a>„, and C3, s’tates of »2 

(Ref. 5) and the A3£ and B3E states of 02 (Ref. 9). 
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Figure 1. Energy loss rate of Maxwellian electrons interacting with air 
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After a brief transient, the electron temperature stabilizes at a quasi¬ 

equilibrium value, Tq, where the laser input is balanced by the sum of the loss 

terms. Thus Figure 1 contains the graphical solution of equation (2) for 

Tq(E2) which is plotted in Figure 2 along with the time constant for electron 
growth, 

h = ^V1 - Rann)nnj for nn = 319 cm"3 

As an example of the use of Figure 2, let E2 - 312 (volt/cm)2, point B . 

Read vertically from Bo to B to find Tq = 2.4 eV; read horizontally from B ‘ 

to the intersection with .he positive branch at B*; then read vertically to 

tfa = sec for nn 319 cm 3. Owing to the strong exponential behavior of 

^ on Te, the quantity (rJI - switches rapidly from a large negative 

value to a large positive value as Te passes through Tth = 1.9 eV, which 

determines the cw threshold field Eth = 1.5b volt/cm needed to break down STP 
air. Since 

Ri/I « Rje-1^ = 1 . -I/T 
l-8e e 

and 

R 
a 1.2 -31 

the cw threshold 

E2cw “ T„ ' O) 

is but weakly dependent on nn and is insensitive to diffusion so long as 

Rann >:> D/l2î e-8*» cE^h/8ïï = 2.3g watt/cm2, independent of diffusion lengths 

L >> 1_3 cm. Thus, for E < 1.5b volt/cm, balance with vibrational losses 

occurs at Tq < 1.9 eV; e.g., point A of Figure 1, where R^n^ >> R^yi, so that 

■>e(t) - ne(0) ^p(-lia(Tq)iin2t). For E » 1.5(, volt/cm, balance »ith Ionization 

losses results at Tq » 1.9 eV (i.e., point C) so that for t > 1.121I l/2/(n E2' 

sec, ne(t) - ne(0) «•pf^T^t]. q V " ' 
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Even for E such that ng > 0, breakdown occurs during a square pulse of 

length tp only if < tp/N where N = £n nn/ne(0). Locate this value of 

on the positive branch in Figure 2, read horizontally to find T , and vertically 

downward to find E2. This value of E2 yields the energy flux, cE2/8tt, and 

energy fluence, tpcE2/8TT, necessary to produce ne(0)eN electrons during the 

pulse tp as plotted in Figure 3 for N = 44, STP air. For 2_u < t < 1_9 sec, 

a large is necessary to produce breakdown, which implies E >> E^, so 

that essentially all of the laser energy absorbed goes into ionization as at 

point C of Figure 1, yielding an energy fluence dependent threshold of 10 

joules/cm/. As tp increases for a given energy fluence, E decreases, wasting 

an ever increasing fraction of the absorbed energy in vibrational and electronic 

excitations, so that the threshold energy fluence increases slowly as t 
P 

increases from 2_g to l_g sec. For longer pulses the fluence threshold 

increases linearly with t in order to maintain E > E , , and the actual thresh- 
P — th 

old becomes an energy flux of 2.3g watt/cm2. Since this threshold scales on 

(E/u))2, the 1.06-micron measurements of Smith and Tomlinson'*'0 were reduced by 

a factor of 100 for comparison. Smith's point,* however, was actually obtained 

with a CO210.6-micron laser in air and is strong evidence for the correctness 

of our results. Approximating the breakdown flux by equating F and in 

equation (2) to obtain 

cE2/8tt - m u)2INc/4Tre2t v 
e P 

lor tp << N/RAnn2, and as the cw value from equation (3) for longer pulses,is 

well borne out by the exact solutions shown in Figure 3. 

The assumption that the electrons have a Maxwellian distribution is justi¬ 

fied by calculationswhich solve the quantum mechanical kinetic equation^ 

for the time evolution of the distribution function of electrons interacting 

with a quantized 10.6-micron radiation field and cold nitrogen molecules, 

producing near Maxwellian distributions with temperatures indicated by the 

points on Figure 2 which are in excellent agreement with the predictions of 

the analytic model presented here. 

The authors wish to express their gratitude to Major W. A. Whitaker for 

many helpful discussions during this work. 

*D. C. Smith, private communication. 
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INTERACTION OF HIGH-INTENSITY LASERS WITH OPTICALLY THIN AEROSOLS 

P. E. Nielsen and G. H. Canavan 

Atmospheric aerosols which are optically thin to a laser, whose intensity 

is sufficiently great that the particle's energy loss through thermal conduc- 

tivity negligible, heat rapidly and uniformly, vaporizing in place. There 

are two mechanisms whereby the breakdown threshold might be lowered by the 

expanding vapor of such particles. First, the vapor might heat sufficiently 

that thermal ionization could become significant, leading to strong free-free 

absorption and subsequent breakdown. Second, the vapor might expand into the 

air with sufficient velocity to shock-heat the air, producing a thin strongly 

absorbing region of large thermal ionization, and leading to a radiation- 

supported shock wave. The first of these mechanisms depends upon the maximum 

temperature the vapor reaches and the ionization potential for the material 

under consideration, while the second depends upon the limiting velocity reached 

by the expanding vapor. These phenomena are conveniently investigated within 

the framework of a Sedov model, in which the density, p, and temperature, T, 

of the expanding vapor are assumed uniform, with the velocity, v, varying 

linearly with radius from the center to the edge at r. The equations for 

conservation of vapor mass, momentum, and energy are 

4 
ïïpr M = Const (1) 

P 4tt r¿ 
dr 
dt 4(1«) (2) 

and 

-47rpr2v + W (3) 

where k is Boltzmann's constant, W the rate of energy input from the laser, and 

N and p are the total number of particles and pressure within the vapor. Use 

of the equation of state 
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(4) 
3NkT 

P-7 
4itr3 

converts equations (1) through (3) into those for the time development of the 

radius, velocity of expansion, and temperature of the vapor 

r - V 

• _ 5kT 1 
m r 

and 

T . -¿Tv , 2W_ 
r 3Nk 

(5) 

(6) 

(7) 

where m = M/N. Equations (5) through (7) are easily solved numerically, once 

a functional form has been assigned to the laser heating term W. In general 

W - UP (8) 

where u is the mass absorption coefficient in the vapor and f is the laser 

flux. We expect that as the vapor expands the mass absorption coefficient 

will decrease, and we assume it to vary as a power of the density 

u 3n-3 
(9) 

where uo is the mass absorption coefficient in the solid. If n * 1, the vapor 

continues to absorb like the solid, a clearly unrealistic case, while as n ->• 00 

absorption in the vapor rapidly ceases as it expands. The theory of pressure 

broadening within the vapor would predict n * 2, and this value is often 
3 

assumed in estimating vapor opacities. 

It is convenient to write equations (5) through (7) in terms of the 

dimensionless variables r ■ xr , v * yv , and T - ZT . 
o ^ o o 
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and 

dz 
dw 

_ -2zZ + f2 „ ro]/lN3n-3 
(12) 

where w = tvo/ro and we have made explicit use of equations (8) and (9) for W. 

Thus, the solutions for r, v, and T as a function of time depend upon n and the 

dimensionless combinations a - 2mfyoro/3kvoTo and ß = 5kTo/mV2, of the initial 

radius, velocity, and temperature of the vapor. Numerical calculations demon¬ 

strate that the solutions are in fact insensitive to ct and 3 individually, 

depending rather upon a2/ß, a quantity which is independent of v , the only 

parameter in equations (1) through (12) which is undetermined for any particular 

particle and incident laser flux. This is demonstrated in Figure 1, where we 

show the maximum value reached by Z, denoted Z , as a function of a2/ß. The 
11 UlaX 

error bars" show the amount by which the solutions vary for different a and ß 

which have the same value of a2/3. It will also be noted that the dependence 

of the solution upon n is likewise a weak one. The quantity Z^ is the param¬ 

eter which determines whether or not the mechanism of thermal ionization within 

the vapor can occur and lower the breakdown threshold, for such ionization will 

occur in significant amounts only if the temperature of the vapor approaches 

approximately 1/10, where I is the ionization potential. Thus, we must have 

kTmax - I/,^> or zmax = I/10kTo = Z^. For any material we can determine , 

and determine from Figure 1 the value of a2/3 at which Z will reach this^ 

critical value, implying significant thermal ionization. For example, carbon 

has an ionization potential I of 11 eV, and a vaporization temperature T of 

5100°K, so that Zcr(c) = 2.5. Entering Figure 1 at Z (c), we find the value 
_ p cr 

of a /6 at which - Zcr to be given by <a2/B>cr . 55. Fro«, equations <11) 
and (12), we note 

or 
3 

±_ 
45 fe)3 ft)2 (u°r°f'°) (13) 

and solving equation (13) for f2, we fing a2/3 exceeds 55 for f > 3.6 x 1017 

erg/cm2/sec, if Woropo = 1 (its upper limit if this model is to retain its 

validity). It is of interest to note that over the range of interest, 

max 
1 
2 (a2/3) 

1/3 
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Figure 1. Maximum vapor temperature versus the sauare nf eh« ^ .u 

ïn ^beCr“^raJ 7« “ »»iO them,! 

which that temperature might be achieved,' íSdlíâm??“"“8 at 
possible aerosols. maicated for several 
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so that one may obtain an approximate analytic expression for the critical 

flux for thermal ionization as a function of material-dependent parameters by 

setting 

or 

2Z 
cr [45 (po) ( %Vo) 

-,1/3 

f ±po (14) 

For carbon, equation (14) yields 4.6 x 10^ erg/cm^/sec, which agrees well 

with the graphical solution obtained from Figure 1. In a similar way, critical 

fluxes for Si02 and NaC£ have been determined as outlined on Figure 1, and the 

results are summarized in Table I. 

Table I 

f2 (erg/cm2 /sec) 

8.1 x 10lfe 

6.1 x 1016 

9.4 x 1016 

The second mechanism which could lead to a lowering of the air breakdown 

threshold, that of shock—heating the surrounding air, depends upon the limiting 

velocity achieved by the expanding vapor, which we denote v . The dimensionless 
OO 

parameter corresponding to this is y^ = v^/v^, but it is more convenient to 

focus attention upon 

yj^12 - voo/(5kTo/m)1/2 

which is independent of any initial velocity and which has a simple physical 

interpretation as the ratio of the final velocity to that corresponding to the 

initial temperature of the vapor. In Figure 2 we show y /ß1/2 as a function of 
* 00 

FLUXES FOR BREAKDOWN OF AEROSOL LADEN AIR 

Aerosol 

Si02 

C 

NaCJl 

To(K) 

2500 

5100 

1686 

f1 = flux for thermal ionization 

f2 = flux for shock heating 

KeV) 

14 

11 

12 

Z fi (erg/cm2/sec) y 
cr -1 J °° cr 

6.5 

2.5 

8.3 

4.7 x 1016 

3.6 x 1017 

4.3 x 1016 

761/2) 

5.03 

1.57 

6.05 
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Figure 2. Maximum velocity of expanding vapor sphere versus the square of the 
incident laser flux, in dimensionless units. This velocity determines 
the temperature to which ambient air will be shock-heated; critical 
fluxes at which the expanding vapors of various aerosols are predicted 
to cause strongly absorbing shock fronts are indicated. 
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a2/(3, and note that as in the case of Z , the results are only weakly 

dependent upon n and the individual values of a and ß. Shock-heated air will 

achieve a temperature of about 1 eV and be significantly ionized if v = 20C * 
oo s * 

where Cg is the speed of sound in STP air. This relation allows us to determine 

a critical value 

y»/il/2)cr " 20cs/(5kVm)1/2 

at which shock heating will be important. Again using the example of carbon, 

we find 

y./8l/2,cr - i-* 

which by Figure 2 corresponds to a value of a2/3 = 1.5, or f = 5.9 x 1016 

erg/cm2/sec. Again we note that within the range of interest 

yœ/el/2 = f (a2/3) 

from which we derive an approximate expression for the critical flux for shock 

heating. 

f > 7 x 102 poCs3 (15) 

which for carbon gives the result f > 5.5 x 1016 erg/cm2/sec. Graphical 

solutions for critical shock-heating fluxes for Si0? and NaCji have also been 

obtained, and are outlined in Figure 2 and summarized in Table I. 

We note that in all cases the fields at which the breakdown mechanisms of 

thermal ionization and shock heating are expected to become significant are 

above the clean air breakdown threshold5 of 2 x 1016 erg/cm2/sec at 10.by. 

However, these results are independent of frequency, so that while optically 

thin particles pose no additional threat to the transmission of C02 laser 

radiation, thresholds for higher frequency lasers may be substantially reduced. 

*This relation can be estimated from reference 4. 
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hydrodynamic calculations of laser interaction 
WITH ATMOSPHERIC AEROSOLS 

P. E. Nielsen and C. H. Canavan 

There are t»o mechanisms by which the threshold for the laser-induced 

breakdown of air might be lowered through interaction with aerosols. First, 

the aerosol vapor itself might heat sufficiently to become thermally ionized, 

leading to strong free-free absorption and subsequent breakdown. Second the 

shock which is driven into the air might heat it sufficiently to produce strong 

absorption within the thin layer of the shock wave, leading to a radiation- 
driven shock. 

In order to determine the extent to which the threshold for air breakdown 

by intense laser radiation is likely to be lowered by the presence of particu¬ 

late contaminants, we have investigated the heating, vaproization, and subse¬ 

quent developmait of atmospheric aerosols within the framework of a one¬ 

dimensional Lagrangian hydrodynamic computer code. The position, x, velocity, 

V, density, p, and pressure, p, 0f each Lagrangian cell develop in time 

according to the equations 

dx 
dF = y 

dv 

It (p+q) 

dt -P div v 

and 

(1) 

(2) 

(3) 

•g ■ -y(p+q) div V - (y-1) div u + (y-1) Q 
(4) 

Whsrs q is an artificial pressure designed to enable the numerical treatment 

of shock waves, u = -WT, with K the thermal conductivity, is the heat flux 

Q is heating, due to the laser, and we have assmned the equation of state 
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P * (y-1) pe (5) 

with e the specific internal energy. 

Initially, the first N of M spherically symmetric cells are taken to be 

solid, with density po> temperature To, and a mass absorption coefficient to 

the incident laser radiation of yo. The remaining cells are taken to be air 

at standard temperature and pressure, and are assumed to be transparent to the 

laser radiation. A solid cell is released and becomes a vapor cell with an 

initial energy of CTv when the total energy deposited within that cell is 

equal to L + CTv> where L is the heat of vaporization, C the specific heat, 

and Tv the vaproization temperature. In the vapor phase, the mass absorption 

coefficient is taken to be ^(p/Pq)11 \ where n is a parameter most commonly3 

taken to be 2. For 1 < n < ®, one obtains absorption in the vapor intermediate 

between the unphysical extremes of absorption as strong as in the solid and no 

absorption at all. As we shall see, the results are insensitive to the choice 
of this parameter, if n * 1.5, 

In Figure 1 we show density, velocity, and pressure profiles just after 

vaporization for an optically thin particle whose linear absorption coefficient 

is 103 cm"1 and whose radius is 10-4 cm. As would be expected, such particles 

heat uniformly, vaporizing in place. In their subsequent development, as can 

be seen in Figure 1, the pressure and density are approximately uniform 

throughout the vapor, and the velocity increases linearly from the center to 

the edge. These features are characteristic of a Sedov4 model for vapor 

expansion and heating. Accordingly, we have performed an exhaustive analysis 

of the interaction of lasers and optically thin particles within the framework 

of this model. These results are presented in a separate report,5 and the 

conclusion reached is that such particles cannot lower the threshold for air 
breakdown at 10.6p below that of clean air. 

In Figure 2 we show density, velocity, and pressure profiles just prior to 

complete vaproization for an optically thick particle, with a linear absorption 

coefficient of 104 cm'1 and a radius of 10-3 cm. It will be noted that the 

optically thick particle vaporizes in a way which is qualitatively different 

from that of the thin particle. The thick particle vaporizes over an extended 

period, during which time there is a more or less nondivergent mass flux in 

the vapor boiling off the surface. The vapor expands at supersonic velocities, 

ultimately shocking into the surrounding air and going subsonic when it has 
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Figure 1. Velocity, density, and pressure profiles of an optically thin aerosol. 
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Figure 2. Velocity, density, and pressure profiles of an optically thick aerosol 
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and 1 eV to be the temperatures at which vapor and air respectively are ionized 

sufficiently to breakddown. We show these critical values of Z, and the fluxes 

at which they would be achieved, in Figure 6 and Table I for several common 

aerosols. The examples given span a reasonable range of material parameters, 

and we therefore conclude that the presence of atmospheric aerosols can lower 

the threshold for air breakdown up to two orders of magnitude below the 10.6y 

threshold for clean air. It is of interest to note that these results are 

independent of laser frequency, except in the frequency dependence of the 

absorption coefficient. As we have taken the limit of this coefficient going 

to infinity, our results determine a threshold at all frequencies. 

Table I 

FLUXES FOR BREAKDOWN OF AEROSOL LADEN AIR 

Aerosol 

NaC£ 

Si02 

C 

H2o 
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f 

f 

T (K) 
V 

1686 

2500 

5100 

373 

flux for thermal ionization of aerosol vapor 

flux for shock heating of surrounding air 

KeV) 

12 

14 

11 

12.6 

CTv(erg/gm) 

2.38 X 109 

3.44 X 109 

3.50 X 1010 

1.57 X 1010 

fj(erg/cm2/sec) f2 (erg/cm2/sec) 

2.04 X 1015 

2.40 X 1015 

1.87 X 1016 

1.77 X 1017 

5.36 X 1014 

3.99 X 1014 

2.59 X 1015 

1.18 X 1017 
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THREE-MICRON LASER WINDOW ABSORPTION COEFFICIENTS 

K. G. GILBERT 

Introduction 

Even miniscule absorption of laser radiation by a window can cause significant 

degradation in far-field beam quality. When a non-uniform high-power beam tra¬ 

verses a window material, various thermal gradients appear. If the beam profile 

s center-peaked, the resultant gradient between the window center and edge causes 

a center budging; a lens forms, and the effective system focal length decreases, 

n important result of this total thermo-optical distortion is a reduced brightness 

« the original focal plane. The extreme sensitivity of this lensing effect is 

ma e clear by noting that an induced optical path difference of Just 4 microns in 

ength between the center and the edge of a 15-cm-radius aluminum oxide (A1203) 

w n ow can cause the recession of 2-km focal plane to approximately 1 km. The 

distorted intensity at 2 km has now decreased nine-fold from its original 
value. 

laser absorption of eight candidate window materials has been measured 

calorimetrically in the 2.8-micron (p) regime. Thermally-induced window lensing 

and aberration were also studied by observing the transmitted energy on a 

thermally-deactivated fluorescent screen. The laser used for these experiments 

was the Aerospace Corporation continuous hydrogen-fluoride system. The beam 

profile was found to be nearly Gaussian, with a peak intensity and total power 

of approximately 2.3 kW/cm2 and 0.75 kW, respectively. 

Most^of the windows evaluated exhibit 2.8 p absorption coefficients well below 

0.01 cm . Thermal fracture is generally not the limiting feature of these 

materials. A secondary window effect is stress-induced birefringence, causing 

polarisation-dependent optical paths. The thermal lensing effect, however, is 

generally more important. 

Experiment 

Figure 1 shows the experiment. Samples are mounted behind a 1-cm graphite 

aperture; this restricts the near-normal incident laser energy to the window’s 

central portion. Energy reflected from the two window surfaces enters a thermo¬ 

pile. three-point mount with rubber tips thermally isolates the window yet 
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Figure 1. Experiment. 
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leaves it essentially unconstrained. A single thermocouple is attached to the 

front surface of each window at a distance of 1.1 cm from the window center, or 

about 0.6 cm outside the laser energy path. A trace of thermally conducting 

epoxy is used to bond each thermocouple to its window. Transmitted energy 

continues against a flat turning mirror and is displayed on a thermofluorescent 

screen. A nearly-colinear helium neon beam also traverses the heated portion of 

the window and is viewed on a screen. Framing cameras (30 fps) record both 

images. The overall accuracy of the temperature measurement is about 5 percent. 

Approximately 750 watts of laser energy are incident on the windows. The 

beam profile was determined by transmitting energy through a variable-diameter 

iris located at the beam focal plane. A Gaussian profile with a 1/e2 radius of 

0.44 cm fits the data well. The peak intensity was obtained by measuring surface 

recession rates in linear ablators. The agreement with the peak intensity 

obtained by extrapolating power-measurement data on a very small-diameter iris was 

good. 

The Aerospace Corporation hydrogen-fluoride laser emits primarily at 2.79 p, 

2.71 u, and 2.83 y, although eight vibration-rotation transitions contribute 

between 2.64 y and 2.87 y . The output coupler used in this series of experiments 

was a slit device with a KC1 window. The laser beam at the exit slit was com¬ 

posed of two lobes. Total power output was about 900 watts for constituent 

flows: m^ = 7 gm/sec, m^ - 1 gm/sec, ^ = 1 gm/sec. Run times were limited 

only by gas supply; two minutes of continuous operation were typical. 

Results 

Window absorption coefficients are inferred from the radial thermocouple 

response. A three-dimensional heat transport program first calculates the 

necessary central energy absorption (joules/cm) to yield the observed radial 

response. Uniform bulk absorption is assumed. The material absorption coefficient 

follows from this result. Next a window-center temperature response is tabulated. 

This latter calculation establishes the important thermal gradient which drives 

the lensing mechanism. Window reflectivity is measured directly by means of a 

thermopile. Sample irradiation times range from 12 to 75 seconds. 

Figure 2 shows a recorded radial thermal response for a magnesium fluoride 

window. The smooth curve in Figure 2 is the inferred temperature response at 

the central window position. Notice a temperature difference of approximately 

5 C is established between the window center and edge in 4 seconds. The 
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10 
BULK ABSORPTION COEFFICIENT = 0.0052 cm"' 

O 
e 

TIME (see) 

experimental 18 “ fU ^ 

calculated re.ponse of the center of the ûindo». ^ ÍS the 

calculated average absorbed 

the total incident power is 

approximately a ■ 3.92/750 = 

energy is 3.92 watts/cm of window thickness and 

750 watts, the resulting absorption coefficient 

0.0052 cm 1. 

since 

is 

Table ! deacribea material thermal parameters together „ith all measured 

absorption coefficients and reflectivities. Columns 2 through 4 sh» room 

emperature values of the thermal conductivity, material density, and specific 

eat Column 5 lists the measured surface reflectivity (both faces,, „bile the 

nal column gives the absorption coefficients. Multiple values of this latter 

parameter are given whenever several measurements „ere made on one window 
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F“”8 0£ the tra”S"ltted be“” Projected on a themofluorescent screen show 

detectable distortion only for fused quarta. The transmitted helium neon laser 

beam also displayed marked Interference patterns Indicative of optical distortion 

of the fused quarta. Far-fleld distortion In other materials was not observable 

due to Inherent spatial and temporal fluctuations in the beam together with 

atmospheric degradation. This latter absorption is very evident, as the wave¬ 

lengths in this lasing spectrum overlap the strong 2.8 u H20 vibrational band. 

Discussion 

steady state temperature gradient between the center and edge of the windows 

is achieved in a characteristic time required for heat to flow to the sample edge, 

V r MD’ “lth r the dista"« irom beam edge to sample edge and D the material 

thermal diffusivity. Measured steady state temperature differences range from 

0.75 and 1.0’C for silicon and aluminum oxide, respectively, to 3.8 to 5.2°C for 

the fluoride crystals. Fused silica was unique, in that its center reached an 

annealing temperature (v 1150-C) after 50 seconds of irradiation, while its edge 

never exceeded 100°C. 

The effective focal length of a 
thermo-lensed window can be shown to be 

c R2 

f " 4(n-l)AX (1) 

Here R is the window radius, n is the material refractive index, and AX is the 

established optical path difference across the window. Furthermore, if the 

original focal distance of the optical train is f,, then the focal length after 

heating, , follows from: 

(2) 

The real importance of focal plane recession is the concomitant reduction in 

beam brightness in the original focal plane. This intensity reduction can be 

estimated from the above two equations. For example, if one were to operate the 

Aerospace Corporation hydrogen-fluoride laser with a window of 10-cm radius and 

an initial system focal length of 5 km, assuming the incident beam has a 

Gaussian profile, then the predicted intensi . , at 5 km will be diminished in 
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amounts ranging from 3 perçant (A1203) to 11 percent (C.r2) and 58 percent (SI). 

The fused silica of course shows a considerably greater brightness degradation 

than any of these values. 

Conclusion 

Absorption coefficients can be measured calorlmetrically for candidate chemi¬ 

cal laser window materials, with an overall accuracy of about 10 percent. At the 

same time, sufficient Information could be obtained about the thermal gradients 

present in the windows during Irradiation to estimate the thermo-optical distor¬ 

tion as well as Its effect on the far-field brightness. 
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UNSTEADY-STATE HEATING OF A FINITE DISC 

BY LASER RADIATION 

W. T. LAUGHLIN AND J. S. SHABERMAN 

The investigation of the effects of both pulsed and continuous laser beam, 

on materials has brought about a renewed effort to solve a particular class of 

heat flow problems. Although the heating of materials by a laser can sometimes 

be represented approximately by one-dimensional heat flow analyses, for most 

laser effects experiments it is desirable to account for the heat conducted both 

into the depth of the sample as well as radially away from the irradiated spot. 

Also most heat transfer solutions available in the literature apply to semi- 

infinite solids. As larger lasers are developed and the sire of the irradiated 

spot increases relative to convenient, small sample dimensions, it becomes 

extremely useful to have temperature solutions for bodies of finite radius and 

expecially of finite thickness. 

General analytical solutions to a series of heat flow problems of direct 

interest for a finite right circular cylinder with azimuthal symmetry have been 

obtained by N. V. Olcer1- 2. Prom his results a particular solution has been 

derived and applied to the unsteady-state heating of materials by pulsed or 

continuous laser radiation. The solution finds the temperature, T (r r t) in 

s finite right circular cylinder with azimuthal symmetry of radius 0 < r’< a’ 

and thickness -b < z < b, which obeys the heat conduction equation 

y2T = i II 
K 9t (1) 

subject to the initial condition that the temperature of the cylinder be uniform 

throughout : 

T(r, z, 0) = T 
o (2) 

The disc is heated symmetrically on one face by the laser beam and reradiation 

occurs from all surfaces, so the boundary conditions are 

+ hT 0 at r = a and z -b (3) 
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and 

9T 
X3n + hT = fat z => +b 

where n is the outward pointing normal to a surface. The thermal diffusivity, 

"• and the the™al cMdwctlvity, K, are treated as two independent properties’ 

and are assumed to be independent of temperature. The energy being reradiatei. 

hT. used in the boundary condition equations, is an approximation to the Stefan 

Boltzmann radiation law • 

Q * eo T4 
o 

where the coefficient, h, is defined as 

(4) 

h = 4ea T3 
o o (5) 

where 

e = surface emissivity 

a0 “ Stefan-Boltzmann constant. 

It should be noted that the flux entering the disc's front surface, f(r,t), 

can be a function of both radius (radially symmetric) and time. This rather 

flexible boundary condition insures that the actual solution will be applicable 

to a wide variety of laser heating problems. The temperature solution is a 

series-eigenvalue expression, is complex algebraically, and must be evaluated 

by computer. Two applications will be shown here to illustrate how it can pre¬ 

dict the temperature history in a laser-irradiated sample. 

(a) Unpainted 2024 Aluminum Plate 

The continuous 10.6-micron beam intensity profile is represented by a 

Gaussian so that f(r,t) in equation (3) is 

f(r) = Imax exP (-r2/2a2) (6) 

Where Imax ls the maximum ^tensity at the beam center. Figure 1 shows a compari 

son of the form of the temperature solution with experimental temperature rise 

data from a thermocouple attached to the center rear surface of the sample. Here 

the computer program made a -best fit" to the experimental data and solved for a 

surface absorption coefficient, a, of about 7 percent for this aluminum sample. 

292 



Figure 1. Theoretical and experimental temperature rise in 

unpainted 2024 aluminum. Maximum intensity - 2 kW/cm2; 

sample thickness - 0.10 cm; laser spot size (a) - l.o cm. 
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(b) Single-Crystal Barium Fluoride WinHrw 

The continuous 2.8-micron beam was represented by a Gaussian intensity 

profile. The temperature solution was modified to model uniform absorption 

throughout the bulk of the window by using an extremely thin sample, suppressing 

conduction along the window axis, but maintaining the correct flux per unit 

volume of sample. The program was then used to fit experimental temperature rise 

data at long irradiation times from a radially distant thermocouple. Figure 2 

shows the good agreement in the form of the predicted temperature history with 

the data. A bulk absorption coefficient of 0.0003 cm for the window material 

is thus obtained directly by the computer program. Figure 2 also gives the 

corresponding calculated temperature history of the center of the window. 
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Figure 2. Temperature rise in barium fluoride 
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