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recommerded for future work. Preliminary thermal-mechanical properties and plate slap
gscreening data kave been obtained on CVD infiltrated 4-directional Omniweave reinforc-
ed carbons, suitable for thermal shields, in which composite fiber bundles are packed

{in 4-directions with close~to-cubic symmetry, When high modulus filaments are used,

this material shows high impact resistance and high strain to failure (1.5-2.5%
elongation) at maximum load in tension at room temperature, in addition to high sur-

face hardness (rejuiring diamond grinding) and uniform recession in simulated thermal
shield ablation tests,
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reflection on any of the commercial items discussed herein or on any manu-
facturer,
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ABSTRACT

Several tyoes of carbon-carben composites have been developed, in which
either high or lev modulus carbon fider bundles extend continuously in
several directious in three dimensione. Ablation screening tests at 90 atm.
stagnation pressure have shown that 3-directional reinforced graphites, having
a high pzopurtion of fibers {n the axial direction can have ablation rates
gimilar to ATJ-8 with proper matrix processing. Fine-textured, cubic,
7-directional-reinforced composites have shown performance similar to 3-
directiongl samples with similar procesging. Comparison abiation data on the
3-D Mod. 3 €:-C composite and IP fibrous graphite are also included.
Preliminary flexure and plate slap screening tests on "7-D reinforced graphite"
indicate & potential for a tough composite with isotropic properties, and
further development of this concept is recommended for future work. Preliminary
thermal-mechenical properties and plate slsp screening date have been
obtained on CVD infiltrated 4-directional Umniweave reinforced carbons,
suitable for thermal shields, in which composite fiber bundies are packed in
4-directions with close-to-cubic symmetry. When high modulus filaments are
used, this material shows high impact resistance and high strain to feilure
(1.5-2.5% elongation) at maximum load in tension at room temperature, in
addition to high surface hardness (requiring diamond grinding) and uniform
recession in simulated thermal shield ablation tests,
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SECTION I

INTRODUCTION

This three-year program has been concerned with exploratory development
of "multi-dimensional reinforced” graphite materials having improved perfor-
mance for re-sntry applications where hardening is a requirement. The initial
objectives, guidelines for the development, and studies related to the use
of metallic additives in the materials, were described in AFML TR-69-67, Vol. I
(SFRD). Processing studies and material characterization, including ablatiom,
plate slap and property comparisons, were described in Vclumes II and III (U).
Some observations and test data related to fundamental mechanisms affecting
performance of carbon-carbon composites were presented at the Carbon Composite
Technology Symposium held in January, 1970 (Ref. 1.).

The program has emphasized effects of constituent characteristics and
microstructures whicli result from different processing techniques on the
following: (a) resistance to ablation at high heat flux and high stagnation
pressure, (b) mechanical behavior in flexure and tension, and (c) resistance
to spall from flyer plate impact. Reinforced graphites for nose tips and
candidates for carbon-carbon thermal shield frusta have both been considered.

The effort related to nose tip applications included an early exploration
of CVD-infiltrated, carbonized felt and foam which were subsequently impregna-
ted with pitch formulations end graphitized. Other than a higher ultrasonic
attenuation, the needled rayon-precursor felt composites processed in this way
showed no advantages over similar material densified entirely by CVD infil-
tration, Other types of composites (wool felt and reticulated foams) could
not be filled to the high density required for this application. These
materials have & relatively low resistance to crack propagation, similar to
the bulk graphites, which was an additional reason for abandoning this type
of reinforced graphite, in favor of composites made from three-dimensional
weaves .

The work in 1969, reviewed in AFML TR-69-67 Vol. III, explored the appli-
cation of 4-direction reinforcements, including GE-RESD "4-D Omniweave",
to nose tip constructions. Although compaction of a woven cylirder to a cone
with a highly unidirectional tip was demonstrated, the high anisotropy resul-
ting from the use of high density PAN-precursor tow resulted in cracks in the
graphitized composite. Ablation performance of a pitch-impregnated 4-D com-
posite (made from 10,000 filament Type II tow) and of a CVD-infiltrated
Thornel 40 braid composite were both inferior to CVD-infiltrated composites
having a less unidirectional, closer-to-cubic reinforcement geometry. Test
resulis also indicated the need for finer texture than had been obtained in
the first samples, and the need to reduce the cracking at reinfcrcement bundle
interfaces.

Conliequently, work in 1970 directed towards nose tip development has
included "4-D" composites having finer weave texture (small bundles), and
close-to-cubic symmetry. The geometry of this reinforcement construction,
discussed in detail in Volume III, i{s illustrated in Figure 1.
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Figure 1 - Unit cell (smallest repeating unit of structure) for 4-D cubic
packing; 1 .nes within hexagonal bundles represent fiber direc-
tions parailel to the cube diagonals. Note that the interstitial
pores are connected, deformed tetrahedra which fill 25% of space.

Section II of this report describes the studies conducted during
1970 related to nose tip materials. In addition to the 4-D reinforcements,

3-D constructions having a high axial component of fibers, and 7-D cubic
reinforcements (first described in Volume III) have been compared using both
low-density low-anisotropy fibers and high-density, high-modulus fibers.
Microscopic studies indicated that the latter should have improved resistance
to oxidation and vaporization (Ref. 1).

Developments related to thermal shield frusta under this program include
the early comparisons of felt, foam and three-d:mensional weaves (made with
conventional textile looms) and discussed in Volume II. The plate slap data
on naterials of this type (Volume III) indicated superiority of woven rein-
forcements with steeper fiber angles to the thickness direction. Ablation
tests after plate slap showed the possibility of accepting partial damage
(as in a 4-D reinforcement) without degrading surface ablation performance.
Note also that data on carbonized wool felt (Volume II) suggests use of this
material as a sub-shield insulation with significant cormpression strength.

During 1970 the concept of a 4-D, high-modulus fiber reinforced thermal
shield with a CVD-infiltrated matrix was pursued. The characterization nf
4-D with a graphitized pitch matrix (Volume III) showed that high-anisotropy
reinforcements resulted in large property anisotropies when the 4-D geometry
was deformed by large amounts; consequently, emphasis was placed on the tightly
packed cubic symmetry illustrated in Figure 1. Studies by Gebhardt (Ref. 2) in
1969 for the AFML Advanced Development Program demonstrated feasibility of
preparing CVD-infiltrated 4-D cylinders, and indicated benefits from the hard
as-deposited matrix on mechanical properties. These studies are the basis of
the developments report:d in Section III of this report.
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SECTION II ]

NOSE_TIP MATERIAL DEVELOPMENT

1. OBJECTIVES AND PLAN OF EXPERIMENTS

a. Incentives for Development

Multi-dimensional reinforced graphites should provide a basis for im-
proving several of the performance characteristics which limit the application
of "polygraphites" (processed from particulate material) for atmospheric
entry under severe environmental conditions. Such improvements are based on
the assumption that certain observed types of mechanisms operate to affect
the material properties, and that high-density, flaw-free materials are
accomplished by optimized processing. The anticipated improvements are these:

ALl il A

(1) Reliable prevention of catastrophic failure from thermal stress
which develops in the center of a solid nose tip, or at the inner
wall of a thick shell: Although the generation of stress will de-
pend on the combinations of thermal conductivity, thermal expansion
and elastic constants in different orientations, ability of the
material to relieve the stress by forming non-propagating micro-

s cracks (which account for some ductility in polygraphites) can be

increased in certain directions by high-strength fiber reinforcement.
The reinforcement geometry and dimensions, relative to the thermal
stress gradient, strength of reinforcement relative to the matrix,

and distribution of microcracks aiready present as a result of cooling
during processing (an inevitable characteristic of all graphites)
affect the ability to relieve such stress without complete fracture.

(2) Improved hardening capability: :szinforcement with high-modulus ]
fibers in certain directions can increase strength in critical direc- i
tions (as in bending a sharp tir), provide higher stress wave attenu-
ation, and reduce crack propagation, thus raising the spall threshold. ]

(3) Reduced surface recession rate: Although texture of woven reinforce-
ments may cguse greater surface roughness than polygraphites, this
may not occur if density uniformity is obtained throughout the compo-
site and if fibers are well bonded to the matrix., Filaments orier-
ted at high angles to an ablating surface may be less susceptible to
mechanical 1emoval than grains of polygraphite. High-strength fibers
and matrix constituents may alsc be more r~sistant to particle
erosiovn,

] | (4) More reliable detection of signiiicant flaws: The regular lattice |
of a carefully prepared weave prcvides a basis for detecting irregu-

larities with high sensitivity by radiography or ultrasonic measure-

ments parallel to the reinforcement directfons, which is not available

with a '"statistical" naterial like polygraphite. :
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b. Problems Requiring Study

It was recognized at the beginning of the program that the potential ad-
vantages of multidirectional reinforced graphites could be realized only if
the selection of constituents and processing techniques were sufficiently
optimized so that certain important material characteristics were achieved.
Ideally, an arrangement of high-modulus, high-strength and high-density fiber
reinforcements having a uniform packing geometry and fine texture (minimum
possible dimension of reinforcement bundles) was = goal of reinforcement fabri-
cation, The graphite matrix filling the interstices between filaments and
filament bundles arranged in different directions should be similar to that
of a bulk graphite suitable for nose tips, in having no large »r continuous
residual pores or cracks. Good bonding between reinforcements and matrix, and
both strength and dimensinnal stability at high temperatures were also set
as goals fur the processing of these reintorced graph.te composites.

Fundamental limitations to achieving all of these characteristics in
a single material were encountered, however:

(1) Thermal expansion anisctropy inhercnt to carbon and graphite fila-
ments results in residual stress and cracks at interfaces between
bundles oriented in different directions, after cooling from a high
temperature required to insure constituent thermal stability.

(2) Reinforcement packing geometries result in large cavities separa-
ted by smaller channels, which tend to plug before densification
by infiltration and chemical vapor deposition (CVD) or impregna-
tion and carbonization is completed.

T

Thermal expansion of unidirectional bundles showed significant differen-
ces between low and high modulus fibers (AFML TR-69-67 Vol. III pp 72-73.) 1
Consequently, a "trade-off" was postulated between the benefits resulting ;
from high-modulus, high~density filaments and the increased microcracking ]
inherent to composites made from them., Differences in weave geometry affect
both microcrack location and formation and the degree to which pores can be ]
filled during processing; hence, this was also a variable requiring study,

Addtional trade-offs were postulated, based on the economic factor of
greater time/cost to prepare high-quality fine-textured weaves and to fill
completely the residual porosity by many repeated impregnation cycles. The
technique of a single low-temperature infiltration without graphitization
promised not only much mcre rapid processing, but a minimum of microscopic
damage as a result of lower mismatch in thermal contraction of fiber bundles,

Finally, the trade-off between high temperature stability and high
temperature strength of the matrix constituents was recognized as a problem
area requiring a relatively empirical approach, since the "ease of graphi- !
tization" varies with carbon precursor as well as thermal history. ;

Consideration of these problem areas indicated need for comparison of ]
samples covering a variety of material variables, Performance in nose-tip
type of ablation environments was the primary basis for this comparison.
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C. Comparisons in Ablation Screening Tests

Two series of tests in the AEDC 5MW arc at 90 atmospheres stagnation
pressure were conducted at 6-month intervals. Samples were prepared with
combinations of constituents and process histories which would provide ans-
wers to questions about effects of certain characteristics on ablation pes-
formance. Bulk density and microstructure were used to select the best speci-
mens to £ill the available test positions, and microscopic evaluation after
test was used to assist interpretation of the test data.

In the first series, the questions asked were: (1) Can rapid CVD-infil-
tration of low-anisotropy-fiber weaves provide ablation performance similar
to ATJ-S? (2) Does heat treatment to graphitization temperatures affect such
materials? (3) Is fine texture (small bundle size) important? and (4) Does
geometry (3 vs &4 direction reinforcement) make & difference with similar size,
density, and other characteristics? Comparison samples of CVD-infiltrated and
pitch + resin impregnated C-C composites with high-anisotropy fibers, as well
as ATJ-S and 3-D Mod. 3 composite material were included for compariscn. The
differences in texture perpendicular to the axis are illustrated in Figure 2.

32,400 £il. 2,160 fil.
CXH CXH
4-D 4-D
: CvVD CVD
10,000 fi1, 5,760 fil.
Modmore II (axials)
4-D CXH
CVD 3-D
CcvD
10,080 fil,
Thornel 40 [
4-D i 3-D Mod. 3
pitch + :
resin,
graphitized

Figure 2 - Polished sections of composites in first series of ablation tests
showing comparison of bundle sizes. 10 X.




The results of the first series of ablation tests indicated that coarse
texture does legrade performance significantly; both the 32,400-filament low-
anisotropy bundlies and the 10,000-f ilament high-anisotropy bundles resulted
in composites with higher receesion rates than 2,160-filament low-anisotropy
bundles with the same (4-D) geometry and an as-infiltrated CVD-carbon matrix.
Tha 3-D and 4-D fine-textured materials were similar, with and without an
anueal tc over 2700°C, although this heat treatment did not produce the same
degree of graphitization found in the resin-impregnated 3-D Mod. 3 or in ATJ-S.
The highly graphitized 4-D composite made from Thornel-40 and pitch + reein
impregnations was inferior to the CVD-infiltrated fine-textured composites,
These results provided encouragement for the rapid infiltration as a technique
in processing, although residual porosity was significant in the samples which
were tested, and heat of ablation wes not quite equal to the average for ATJ-S,

Consequently, the second series of tests wat used to compare all-fine-
textured reinfercements with either low~anisotropy, low-density or high-ani-
sotropy, high-density filaments in the weave. CVD-infiltration was combined
with graphitization and multiple impregnation processing, using both pitch
and resin, in attempts to produce both maximum density and high temperature
stability in the composite constituents. Several sequences of processing
were conducted in parallel and both microstructure and ablation perfcrmance
compared at similar density levels, Samples having 3-D, 4-D and 7-D geo-
metries were compared, and a fairly large matrix of samples was made available
for test. The final selection of samples to fill the availabie test slots
was based not orly on microstructure and density of the candidates, but to
a limited extent, on the performance of the £irst few specimens tested, in
order to answer the following questions:

(1) Can the high~density, high-anisotropy filaments in fine-textured
weaves provide ablation performance comparazble to or superior to
that resulting from low-density, low-anisotropy filaments, with
comparable densification and thermal history?

(2) 1Is there a significant difference in ablation performance due to
weave geometry when 3-D, 4-D and 7-D composites have similar bundle
dimensions and similar densificat on and thermal histories?

(3) 1s there a difference in performance due to the type of matrix
constituent in contact with filaments and the type used to fill
the larger interstices, with comparable densification and thermal
histories?

The results of these tests have permitted some specific recommendations |
regarding future development of these types of composites, and have shown
that ablation performance comparable to the bulk graphite standards can be
achieved. In the following portions of this section, the fabrication and
processing of 3-D and 4-D composites will first be discussed, and this will
be followed by a discussion of 7-D reinforced graphite development. Micro-
structures in the ablation comparison materials are compared with those of
the experimental composites. Finally, in part 5, the detailed test results
and post-test evaluation of the samples are presented.
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2, 3-DIRECTIONAL AND 4-DIRECTIONAL REINFORCED COMPOSITES

a. Selection and Characteristics of Fiber Reinforcements

Post-ablation microscopy had previously shown that acrylic-precursor
fibers ablated less rapidly than the lower density rayon-precursor fibers,
in both oxidation and vaporization (AFML TR-69-67 Vol. III and Ref. 1.) The
higher anisotropy of the high-modulus fibers aggravated the cracking around
the bundles made from the 10,000 filament tow which was available. Conse-
quently, a search was made (in January, 1970) for acrylic-type precursor tow
having a smaller number of filaments, in order to make reinforcements with
finer texture.

An initial sample of 3000 filament tow from Fiber Technology Inc.,
"S$5-3000" (later termed C-3000) was found to be suitable for Omniweave
fabrication of 4-D reinforcements, which was not the case with a 720-filament
acrylic-type precursor yarn from another source. Consequently, high-aniso-
tropy-fiber reinforcements were made from this material, and a yarn with
approximately the same packing diameter was made from cellulose-type precursor
material for low-anisotropy-fiber reinforcements having similar texture. Due
to later delivery, the acrylic-type fibers could not be made into composites

. in time for the first series of ablation tests.

The acrylic-type-precursor fibers had a smaller diameter than the Modmore
II PAN-precursor fibers studied previously, as shown in Figure 3. However,
1 the properties provided by the vendors were similar, as indicated in Table I.

P

Figure 3 - Microstructure of acrylic-type precursor filaments from Fiber Techno-
logy, at left (impregnated with phenolic resin and heated to 2750°C)
compared with Type II fibers in 2500°C graphitized pitch, right.

Polarized light, 1390 X.




TABLE I

FILAMENT DATA FOR COMPOSITES TESTED IN ABLATION

Characteristic Fiber Technology Whittaker Union Carbide
or Property CXH XL C-3000 Modmore II Thornel 40
Carbon Content, 99.0  88.0  99.0" 99.0 99.9
Per Cent
Immersion Density, 443 = 1.70-1.75  1.75 1.56
8/cc [ ] [ ] L ] L ] [ ]
Gross SegtionArea, 1.0 1.1 0.5 - 0.658 0.7 0.6
Te““}gf‘“‘?“gth' 163.4>  125.6°  330P 350-450 259¢
psi
Elastic Modulus, c
TEehe 5.4 4.9 49 35- 45 41.3

Notes: a-Measurement of first batch was 0,65 x 10~7 1n.2, used for tensile data.
b-Tensile data is average of 15 measurements with l-inth gage length.
c-Data reported in AFML-TR-69-67 Vol. I, p. 9.

The C-3000 was provided with a low twist of 1.2 turns per inch and a
teflon coating of 3 to 4 per cent., The tow had been heat treated at a tem-
perature in the range 2000° to 2400°C (Ref. 3.)

The cellulose-type precursor filaments were prepared with both a high
final processing temperature (CXH) and a low temperature (CXL) with the dif-
ferences shown in Table I. The CXL was used only to check effects of filament
purity on ablation performance, and most composites were made from CXH, which
has properties identical to the standard twisted 2-ply CX-2, For CX-3, three 720-
filament precursor strands were combined to make a tow with 1.2 turns per inch,
carbonized, and coated with 3 to 4 per cent teflon; the resulting 2160-filament
tow closely matched the C-3000 in lateral dimensions. A small amount of 45-ply
tow, with 1.0 turns per inch and teflon coating was also made from CXH, for
fabrication as a coarse-textured 4-D compos!te with "CXH-45" bundles.

Strand breaking strengths determined by Fiber Technology Inc. showed
that the specially prepared bundles had good mechanical properties. The
average of 15 tests on CX-3 with treatment "H" was 18.1 pounds (4.84 grams
per denier), while the average with treatment "L" was 16.5 pounds (the 45
ply CXH did not break at 200 pounds,) The C-3000 was impregnated with
epoxy befcre test and broke at 61 pounds. The special preparation and
teflon -oating provided good handiing characteristics during weaving and
the resulting bundles did not show the regions of larger filament separa-
tion which had been found around separate plies of twisted 2-ply yarn in
previous composites,

Tabile I also shows data on the fibers used ipn the composites included
for comparison in ablation tests: Whittaker Corp. Modmore II and Union
Carbide Corp. Thornel 40 (grade WYF.)
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b. Ormniweave Fabrication

The GE-RESD '"Omniweave" fabrication techniques showed promise initially,
because 4-directional reinforcements could be compacted to higher density and
closer-to-cubic symmetry than had been obtained by another procedure (AFML-TR-
69-67, Vol, II pp 9-11.) In exploring the potential of this type of reinforce-
ment for composite nose tip materials, several problems were identified as cri-
tical to the successful development of the concept:

(1) Could fine-textured composites be prepared with uniform, tight packing
and without lost yarns or other defects ?

{(2) Could the more sensitive high-modulus fibers be fabricated as in (1)
as well as low-anisotropy materials ?

(3) Could the process be scaled up to billet dimensions without loss of
quality, or could coarse-textured constructions suffice without a
serious degradation in ablation performance ?

The first two questions were 8Studied under this program dy preparing
31 x 31 element strips with both CX-3 and C-3000 fibers. The question of
substituting coarse texture was studied with a 6 x 6 element strip of CX-45,
The problem of scaling-up fine-textured tightly packed Omniweave tc an 84 x 84
element construction was a more difficult undertaking, however, and was left
for separate study under another program.

The answer to the first two questions was positive, although the strips
were not quite as tightly packed as had been hoped, and there were some varia-
tions in packing density along the length, as different techniques of fabrica-
tion were employed. Radiographs of the 31 x 31 element weaves are shown in
Figures 4 and 5.

Figure 4 - Radiograph of Omniweave #229, made from 31 x 31 C-30C0 tows;
Top: 0°; Bottom: 90°, 1X,




e

Figure 5 - Surface texture and radiographs of 31 x 31 element Omniweave strips
made with CXH-3 fibers (#213 at right) and CXL-3 fibers (#214,
at left;) note packing density variations along length. 1X,
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As shown by the radiographs, the CX-3 weaves were about 0,8 inch square
as woven, while the C-3000 was 1,2 inch square. Bulk densities were about
0.65 g/cc averege for the CXH-3 and CXL-3 (45% dense) and 0.7 g/cc for the
C-3000 (40 % dense.) The surface projection of the fiber angle was the same
on both sides of each weave and varied from 36° to 43° in the CX-3 weaves
and from 34° to 44° in the C-<3000. Compacting experiments on a low-density
portion of the CXL-3 weave showed that a portion with 37,50 projected surface
angle as woven (47.4° f£ibér to the weave direction) could be changed from
29,39 (38.5° fiber angla to weave direction) to.57.2° (65.5° fiber angle to
veave direction) with increases in packing density of 33% and 25 % respectively.
The more tightly packed portions were more resistant to such deformation.
Total lengths woven were about 16 inches for the CX-3's and 14 inches tor
the C-3000 weave.

¢, 3-Direc W t Piber rials Inc 1

The weaves purchased from FMI were interded to provide a comparison of
ablation performance with the same fibers and matrix constituents in the finest
textured 3-D orthogonal construction which could be prepared by existing
methods., Fiber Technology CX-2 yarn was used in the first of these and in
the lateral direction of the second, while C-3000 tow was used for the axial
oriented bundles in the second case.

The "standard" FMI 3-D billet was constructed with 1/8 irch spacing be-
tween axial fiber bundles, which left interstitial voids that were too large
for successful processing to nose tip materials. Consequently, the FMI weave
techniques were modified to prepare billets with 0.04 inch axial center-to~
center spacing, as shown in Figure 6. Four ends of CX-2 yarn, or two ends of
C-3000, were used in each axial bundle (vertical in Figure 6) while two ends
of CX-2 (CXH~1 in the billet with C-3000) were used as laterals, A fibrous
filler was added during weaving between each perpendicular lateral layer, ard
this fibrous filler accounted for 5.4 % of the weight of the first billet,
Figure 7 illustrates the uniformity of the all-CXH reinforced billet.
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Figure 6 - RaC.ographs of FMI weaves with 0.03-inch bundles on 0.04-inch
centers (left) and with 0.06-inch bundles on 0,125-inch ccntors
(right). 1 X,
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Figure 7 - FMI billet made from CXH yarn with 0.04 inch

between axial (longitudinal) bundles and a
fibrous filler added during weaving. 1X
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The second billet prepared by FMI was initially planned to have 720
filament acrylic-typ2 precursor reinforcements in the lateral directions,
but this yarn could not be handled with sufficient ease to permit efficient
fabrication, so only a few layers (first 1/8 inch) were added, and CXH was
used in the remainder, After the first 3 inches were woven, an attempt was
made ty add three times as much filler between each of the layers., However,
as shown in Figure 8, this resulted in too much spreading between the later-
al bundies. Altbough the whole billet was utilized in the tesf:s, the por-
tions of specimens subjected to ablation were all tgken from the central
region having uniform spacing of CXH laterals and filler corresponding to
that in the first billet.

Figure 8 - Radiographs of FMI-woven 3-D billet with
a high axial component of acrylic-precursor
fibers on 0.04 inch centers; top half was

a region in which a larger proportion of
filler was added during weaving. 1 X,
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d., Preparation of All-CVD-Iafiltrated Composites

A technique for rapid infiltration of woven composites had been developed
by GE-RESD under a separate program, and a major objective of the first series
of ablation tests was the evaluation of this matrix when applied to the AFML
reinforcements, Although neither the Omniweave nor the FMI weave made from
C-3000 were available in time for processing before this test series, the X
reinforced materials in both geometries and with both coarse and fine con-
structions were processed for th2 experiment. :

The technique, which has heen described previouzly (Ref, 2, p. 202), is
termed "direct r.f. infiltration", since it involves direct coupling of the
field from an r.f. coil with the weave suspended in & rapidly moving gas
stream at about 1 atm. pressure. The objective is creation of a temperature
gradient in the material similar to that obtained by the heated-substrate
temperature-gradient method, and deposit microstructures are similar to those
obtained in the "1100°C PCTG" deposit discussed in Volumes 1Y and III.

A preliminary experiment was conducted to enrsure that this technique was
capable of penetrating a block of nose tip dimensions. As shown in Figure 9,
a two-inch cube was cut from the ''standard" FMI weave purchased for this pro-
gram, and suspended in the coil so that sz temperature grvadient was formed in
a manner similar to that which would rzsult if a billet were moved slowly
through the coil. After sectioning, the block showed deposit at the center
line about 1 inch from each of the surfaces, indicating that penetration was
achieved. Since this billet contained no fibrous filler, the interstices
were not filled and total bulk density was relatively low (below 1.5 g/cc.)

The samples for test were all infiltrated as 0.7 to 1.2 inch square
portions of the weave. In most cases, the infiltrated blocks were ground to
cylinders and infiltrated a second time, and in some cases a rinal infiltration
was conducted on the ground tips. Such a procedure is consistent with the
processing which could be applied tc a nose tip.

The increases in density, which resulted from 14 to 40 hours of infil-
tration at temperatures estimated to be about 1100°C, were as follows:

CXxH 3-D (FMI) 0.64 g/cc to 1.55 g/cc
CXH-45 4-D 0.77 g/cc to 1,59 g/cc
CXH-3 4-D 0.63 g/cc to 1.65 g/cc
CXL-3 4-D 0.59 g/cc to 1,61 g/cc

The initial densities were measured after an initial heat treatment in vacuum
to 1700°C in all cases,

Cylinders of 3-D and 4-D (XH composites were heated in a Brew resistance
furnace for 1 hour above 2400°C; power settings indicated at least 2750°C, and
probably 2900°C was reached (deposition on the sight glass prevented accurate
temperature measurement.) The 3-D sample expanded 1.8 % in length without any
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