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ABSTRACT

in this report, the reflection and scattering models
and the propagation model including the effects of
realistic ocean boundaries are further developed.

A brief introduction which includes a short history of
the scattering and propagation work performed at ARL
and the considerations which motivated the research
represented ir this report is given in Chapter I. In
Chapter II, the theoretical foundations of the scattering
by acoustically penetrable surfaces are presented. The
formulas developed in Chapter II are used in Chapter III
to investigate the effects of various realistic ocean
bottoms on the performance of bottom bounce sonars.
Once the effect of a known bottom on the signal can be
predicted, the problem of predicting the physical prop-
erties of the bottom from the signals it returns
becomes manageable. Certain relevant aspects of this
problem are discussed in Chapter IV, specifically, the
prediction of the forward reflected signal from measure-
ments of the backscattered signal. In Chapter V, propa-
gation in a surface duct with realistic boundaries is
treated, and the attenuation per mode due to boundary
roughness is calculated for the Epstein model. Finally,
the preliminary work on the experimental measurements of
the scattering by acoustically penetrable, rough surfaces
is presented in Appendix A.
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I. INTRODUCTION

The detection, localization, and classification of targets in

the ocean environment require extensive and detailed knowledge of the

propagation of acoustic energy in the ocean. Typically, sonar opera-

tion is a complex problem involving the propagation of sound in an

inhomogeneous medium with imperfect boundaries (a perfect boundary is

a plane, acoustically impenetrable surface). As a consequence of the

medium inhomogeneity and the boundary imperfections, two related

limitations on sonar operation arise. Due to the inhomogeneity of the

ocean, so called "shadow zones" and sound channels exist in the ocean.

The propagation of signals into a shadow zone or in sound channels

depends in a very complicated manner on the ocean surface and bottom.

The effects of the imperfect ocean boundaries are seen as losses in

the strength of the returned signal and as reverberation returns. The

bottom bounce mode and the surface duct mode are two examples of sonar

operational modes which are required to obtain coverage of certain

regions of the ocean volume, but which, nevertheless, are limited by

the ocean boundaries.

The development of more effective sonars requires increased

knowledge of the physical nature of the ocean surface, the bottom, the

water between these surfaces, and the effect of these factors on the

propagation of sound. Accordingly, extensive full scale sea tests

have been conducted to study the ocean environment, the acoustic scat-

tering properties of the ocean surface and bottom, and long range

propagation in the ocean.

1
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Full scale experiments at sea are an invaluable source of data

for typical conditions that might be expected in an operational situa-

tion. Environmental conditions, surface wave structure, and bottom

composition and roughness can only be obtained by in situ measurement.

However, the generally uncontrolled sea conditions and lack of precise

knowledge of the test geometry can introduce ambiguities when particular

aspects of scattering or propagation theory are to be investigated.

In response to these difficulties measurements using models where the

geometry and the physical composition and topography of the boundary

surfaces could be precisely controlled were initiated.

In view of the complex and entangled effects of the medium and

its boundaries, the trea4ment of acoustic propagation in the ocean

is greatly facilitated by separating it into two problems. The first

problem is the study of propagation in an inhomogeneous medium with

perfectly reflecting plane boundaries. The second problem deals with

propagation in a homogeneous medium with imperfect boundaries, thaL is,

the reflection and scattering problem. The reflection and scattering

problem is further simplified by separating the effects due to the

topography of the boundary and the effects due to the acoustic pene-

trability of the boundary, which depends on the physical composition of

the boundary media.

In 1961, a research program was initiated at Applied Research

Laboratories to investigate experimentally and theoretically the reflec-

tion and scattering of sound from the ocean boundaries. The first

studies conducted under this program involved the reflection of sound

by plane layered sediments of the type usually found in abyssal plain

areas and the scattering of sound by a pressure release sinusoidal

surface. These studies were performed under Contract NObsr-72627 and

resulted in very satisfactory agreement between the experimental and

theoretical results.

2
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Upon completion of these investigations, the study of the

scattering properties of pressure release randomly rough surfaces was

undertaken. This work was done under Contracts NObsr-93127,

N00024-68-C-1112, and N00024-68-C-1275 and covered the period from

January 1967 to April 1970. The experimental program resulted in the

measurement of the forward, specular, and backscattering properties at

the frequencies 100, 200, and 500 kHz of four rough surfaces with

different rms heights. The frequency-roughness regimes investigated

represent the extremes of the cases where the wavelength is much greater

than the roughness to the case wi ce the wavelength is very much less

than the roughness.

The theoretical investigations conducted under this program have

resulted in a totally new and very powerful formulation of scattering

problems. The theory which is now available gives very good agreement

for all cases of forward and specular scattering and predicts thu- way

in which the range behavior of scattering depends on roughness. The

theory had previously proved inadequate for backscattering predictions

at low grazing angles. This defect in the theory has now been corrected.

This final report is a summary of the researc on acoustically

penetrable rough surface scattering and propagation in a surface duct

with a realistically rough boundary. This work was performtl under

Contract N00024-70-C-1279 from I April 1970 to 31 March 1971. The

work done under this contract represents an effort to combine the topo-

graphical and physiological effects of the bottom into a unified scaz-

tering treatment. Further, the surface duct propagation study is an

attempt to incorporate a realistically rough boundary into the propa-

gation model.

This final report is composed of the following sections. A

brief introduction to the report has been given in Chapter I. The

3
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theoretical foundations of scattering by penetrable surfaces are

presented in Chapter II. In Chapter III, the formulas developed in

Chapter II are used to investigate the effects of various realistic

ocean bottoms on the operation of bottom bounce sonars. Once the effect

of a known bottom on the signal can be predicted, the problem of pre-

dicting the physical properties of the bottom from the signals it

returns becomes manageable. Certain relevant aspects of this problem

are discussed in Chapter IV, specifically, the prediction of the for-

ward reflected signal from measurements of the backscattered signal.

In Chapter V, the propagation in a surface duct with realistic bounda-

ries is treated, and the attenuation per mode due to boundary rough'ness

is calculated for the Epstein model. Finally, the preliminary work

on the experimental measurements of the scattering by acoustically

penetrable, rough surfaces is presented in Appendix A.

The theoretical and experimental methods developed in these

investigations should prove useful in the choice of some of the opera-

tional characteristics of present and future sonar systems. In

addition, further understanding of the limitations imposed by the

properties of the boundaries on detection and localization capabilities

of modern sonars shculd result from these studies. Another important

consequence of these investigations is the verification or improvement

of mathematical models being used in numerous computer simulation

studies of optimum sonar operation.



II. REFLECTION COEFFICIENTS FOR
A ROUGH, ACOUSTICALLY PENETRABLE SURFACE

A. Introduction

It was pointed out in Chapter I that the scattering behavior of

the ocean boundaries depends on both the topography and the physical

composition of the boundary. The topography controls the scattering

while the physical composition of the boundaries determines the

acoustic penetrability of a surface, and as will be seen later, the

two effects interact. On some boundaries, for example the water-air

interface, the acoustic impedance is so large that practically all of

the sound remains trapped in the ocean; consequently, the scattering

depends entirely on the surface topography (including bubbles, etc.).

On the other hand, the problem of scattering at the ocean bottom requires

for its solution the inclusion of the effects of both the topography

and the physical composition of the bottom. The scattering due to

topography alone has a very extensive literature and is now thought to

be well understood. However, very little is known about the effect of

the acoustic penetrability of the boundary on scattering. Most of the

literature available treats only the single interface case and does not

give a very good account of the interrelation of the topography and

acoustic penetrability of the scattering surface. In this section of

the final report, the effect of the acoustic penetrability of the ocean

bottom will be incorporated into the scattering integral developed

earlier in the program, and the interaction of the topography with the

penetrability will be discussed.

5



Historically the problem of calculating the scattered pressure

from an acoustically penetrable interface, such as the ocean bottom,

has been treated in a number of ways. The most common method has been

to assume that the pressure scattered by the acoustically penetrable

interface is given by the pressure scattered from a perfectly reflecting

surface modified by a suitable reflection coefficient to account for the

penetration losses. The form of the reflection coefficient is deter-

mined by the boundary conditions at the surface, and its value is deter-

mined by the local geometry (local slope of the surface). If the surface

is plane or suitably smooth, the local geometry is the same everywhere

on the surface and the reflection coefficient is usually assumed to be

the Rayleigh coefficient. It should be pointed out that to arrive at

the Rayleigh coefficient it is necessary to assume that the incoming

radiation is a plane wave and that the outgoing (reflected) wave is

radiated in the local specular direction. This assumption is incon-

sistent with the integral equation of scattering which is based only on

wave mechanics (as opposed to ray theory). It will be shown that the

restriction on the outgoing wave can be easily removed in the context

of the potential formulation, and in the limit kr » 1 (k is the wave

number and r is the separation distance of the source and surface),

this fcrmulation results in a reflection coefficient identical to the

Rayleigh coefficient for the single rough interface case.

For smooth surfaces, it is usually assumed that the reflection

coefficient can be removed from the ýcattered pressure integral. Since

the slopes are small, the local value of the reflection coefficient may

be everywhere approximated by the value of Rayleigh coefficient refer-

enced to the mean plane, and this coefficient can be removed from the

integral as a constant. When this is done, the remaining integral can

be evaluated in a straightforward manner, and it gives the expression

for the field scattered by a pressure release surface. However, if

the surface is rough, the boundary conditions are only given locally,

6



so the value of the reflection coefficient varies from point to point on

the surface. Thus, the reflection coefficient cannot be removed from

the integral for the scattered pressure except in an averagcd form. Due

to the large rms roughness of the surfaces considered in this program,

a treatment of the reflection coefficient within the context of the

scattered pressure integral has been pursued. This basic approach has

been modified in several ways to give expressions for the reflection

coefficient. These results will be discussed later in this section

and may be generally classified as the series, the exact, and the sta-

tionary phase expressions. In addition, the reflection coefficient

given by Kuo 1 is included in this section for the sake of comparison.

B. Formal Development

The reflection coefficients presented in this section were all

calculated for the same sets of bottom parameters. The parameters
2

used were those given by Mackenzie for four separate coastal bottom

samples (these data were originally published by Hamilton et al. 3 ).

The samples used in this section were: sample number 13 (sand-silt-

clay), sample number 27 (clayey fine silt), sample number 28 (silty

very fine sand), and sample number 32 (sand). The attenuations for

these samples at 30 kHz were 5.61, 1.42, 2.63, and 4.48 dB per foot,

respectively.

1. Kuo's Reflection Coefficient

The reflection coefficient given by E. Y. T. Kuo is presented

in this section because it is a fairly well known result which can

serve as a basis for comparison with other reflection coefficients. 1

7



The coefficients are calculated for a backscattering geometry on the

assumption of a single interface and are given by

P -c lclrq (l-7 2 )p 2c (p2 -•i)
2 ) + 2 ,, W

P2 c2 Y + P1C11 (P2c 27 + P(Cln)1)

where

1 (C)2 (12)1 , (2)

and

' = sineD

Here, 1 is the receiver grazing angle, pI and cI are the density and

sound velocity in the first medium (water), and p2 and c 2 are the

density and sound velocity in the second medium (bottom). This coef-

ficient is restricted to fairly smooth surfaces. !he coefficient

given by Eq. (1) was evaluated using the parameters of all four bottom

samples, with the results shown in Dwg. AS-71-213. Near normal inci-

dence these curves approach the value of the Rayleigh coefficient;

however, at low grazing angles they become quite large. Although these

coefficients, when used in conjunction with Kuo's scattering coeffi-

cients, give fairly good fits to some backscatter data, it is thought

that reflection coefficients that have average magnitudes greater than

unity over large ranges of grazing angle must be regarded as nonphysi-

cal. At any given grazing angle a reflection coefficient could, without

violating any energy considerations, have a magnitude greater than

inity due to focusing effects. However, to exhibit this behavior over

a large range of grazing angles implies a large radius of curvature of

the mean plane, which is inconsistent with the assumptions that have

already been made about the nature of the surface. In conclusion, to

8
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understand the relatively good agreement of Kuo's results with

experimental data, it is necessary to consider the entire expression

for the scattered field. The separation of the scattering coefficient

from the reflection coefficient does not appear to be consistent

because, ir the limit of rigid or pressure release surfaces, the reflec-

tion coefficient obviously does not give the correct values. Thus,

Kuo's result does not conform to the generally accepted definition

of a reflection coefficient and can only be meaningful in the context

of his scattering theory.

2. The Calculation of the Pressure Density in the Case of
Penetrable Interfaces

a. Single Interface

In the introduction to this section it was pointed out

that the adjustment of the boundary conditions to account for the

acoustic penetrability of the scattering interface has usually been

done by incorporating the Rayleigh reflection coefficient R(CP. ) into1

the scattered pressure

ps = R(cp )pi

Further, it was stated that this method is inconsistent with the wave

mechanics viewpoint of the integral equation. It is a simple matter

to avoid this inconsistency by starting with the potential expression

for the reflected or scattered field and then determining the unknown

pressure density on the surface.

Consider the geometry in Dwg. AS-70-795. The line

indicated by pi connects the source Q and the surface point N. The

line labeled pR connects the surface point N to the receiver at A.

10
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I

Then the incident pressure density at N due to the source at Q is

given by

i 1 ro

pi(N) = e • (3)
0

where r° = IQNI. The reflected or sca.ttered field, PR(A), at the

receiver A, due to the distribution of pressure on the surface, is

given by

S

where P is some as yet unspecified pressure density (potential) on

the side of the surface towards A, here r1 = JANI, k1 is the wave

number in the upper medium, and n is the outward normal with respect

to the surface.

The problem is to calculate the reflected or scattered

pressure pR(A) at A. The calculation of PR(A) could be performed if

P- were known; hence, the problem reduces to that of determining P.

Consider Eq. (4); if the field point A is allowed to

approach the boundary point N, then Eq. (4) becomes

iS 
(•iklrs

p (N) = 2n (N) + f ( r) (

S

where the integral term represents the multiple scattering term.

If it is assumed that as a first approximation pR(N) Rp (N),

12



where R is some unknown constant, then Eq. (5) may be solved by

iteration yielding

/-ikrs\
p(N) = Rp (N) + /efB.(I .(~ d 6

S

If multiple scattering is negligible, then Eq. (6) may be approximated

as

PR (N) =- Ri (N) CT()

and then

R

-P(N) (8)

It may be said that Eqs. (7) and (8) are fairly obvious,

but in obtaining them in this manner, it is clear that they are

approximations and that the method of performing the exact calculation

is indicated.

The problem has now been reduced 'o finding R, which

is some pressure density coefficient. It will now be expedient to

collect certain quantities which will prove useful in the calculation

of R.

The pressure transmitted through the interface is also

an outgoing wave, and it is given by

/ ik 2 r 2\Sr1'e 9)
PT = w)e dS '(9)

S

13



where

pT is taken at some field point B in the lower medium,

w is the pressure density on the lower side of the surface,

r 2 = INBI,

k2 is the wave number in medium 2, and

n is the outward normal with respect to the surface.

Using the same analysis as in Eq. (4), it is easily

seen that

T p (N)

211

(lO)

where T is again some unknown constant.

Now, for penetrable, liquid boundary media, the

boundary condition is the continuity of the pressure across the bound-

ary interface. A consequence of this condition is Snell's Law

-) . e= - .~ ,t1k1 k2

where k and k2 are the wave vectors in media 1 and 2, and t is the

unit tangent at point N of the boundary. If the interface were per-

fectly plane, then Eq. (11) reduces to

k cose - k cose

which is the usual expres3ion of Snell's Law.

14
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The boundary condition itself is not sufficient to

uniquely determine p; however, a further condition is obtained at the

boundary from the hydr Tdynamic equation of continuity. This equation

implies that if the interface remains intact, then the normal component

of the velocity is continuous across the interface.

It is well known that for a homogeneous medium the

velocity fields are easily related to the pressure fields. In fact,

the normal component of the velocity field (p in the jth medium is

related to the pressure pj by the simple expression

= 1 - (12)

where pj is the static density of jth medium.

The pressure den-•ities ýi and w are related similarly to

the normal component of the surface velocity density x

i3

The application of the boundary condition and the continuity

condition gives the two following independent equations:

Pi(N) + PR(N) = pT(N)

Id (13)

i (N) + R (N) = (T(N)

Substituting Eq. (12) into Eqs. (3), (4), and (9), respectively, and

distinguishing between outgoing and incoming waves give the following

15



expressions for the normal component of the incident, reflected and

transmitted velocity fields:

ik1 6ro

1 n 7L 701

qR(N) -- R B ik1 - - ik(] i

and

T(N) = T - - Pi

P2 ik2 r0 ~

The quantity k /r 0/n can be identified as k n, the component of the

wave vector in medium 1 which is locally normal to the surface. Hence,

ýr

k =k 0 k sin(el+0)knl kI 1 1-=15

where 0 is the inclination of the local slope to the mean plane.

Similarly, the term k 2 r 2/ýn can be identified as the normal component

of the wave vector in medium 2. Further using Snell's Law, this com-

ponent is uniquely determined as

6r 2
kn2 = k2 = k 2 sin(92+) 0 (16)

16



Substituting Eqs. (7), (10), and (14) into Eq. (13) and

solving for R give the pressure density, V,

L Rp.(N)

where

P2knl ir - Plkn2 [1 - Tikro]

Pk l1 - kr + P 1kn2[ - r~
In the limit as kIr° >> 1 and k2r° >> 1, Eq. (17) has the same form

as the Rayleigh reflection coefficient for a single interface. Equa-

tion (17) has certain inherent advantages over the Rayleigh reflection

coefficient. First of all, since the reflected or transmitted fields

were given in terms of an integral equation which required only the

incident pressure density on the surface, no condition on the reflected

or transmitted field arises. For example, the condition of specularity

of the locally reflected field is not present; this is in accordaý.ce

with the usual wave mechanics viewpoint. Second, it was not necessary

tc make the appLal to 1he tangent plane approximation. Further, the

theory utilized spherical waves and contained no requirement that the

surface be in the farfield of the source. Realistically, for most

sources, the surface should be far enough removed so that nearfield

source behavior can be neglected in the pressure density on the surface.

From the preceding derivation, it is clear that, for a

source removed many wavelengths from a penetrable surface, a Luitable

approximation for the surface pressure potential, 9, is given by

modifying the incident pressure density pi(N) by the factor R. Further

this factor R is equivalent to the Rayleigh reflection coefficient but

does not contain the explicit assumption of specularity to determine

the surfac:e pressure density of the reflected field.

17



b. Double Interface

It was just shown that, for a single rough interface,

the Rayleigh reflection coefficient referenced with respect to the local

incident angle will be the correct result if multiple scattering among

features on the interface is negligible. However, in the case of two

rough interfaces the correct result will not be obtained by assuming

the two interface Rayleigh reflection coefficient and by modifying

it to include the local incident angles as has been done by Clay. 4 '5

The only other paper to treat scattering by rough layers is by Krishen

and Koepsel.6 They recognize the inadequacy of Clay's method and

attempt to account for the scattering between layers. They assume

that each layer is in the farfield of the other and use Eckart's7

method to obtain the scattered pressure at one interface due to the

presence of the other rough interface. Further, they assume that the

Rayleigh reflection coefficients are valid at each interface and pro-

ceed on the basis of this assumption. Several objections can be

raised to their method. First, Eckart's method does not lead to the

correct expression for the pressure scattered or transmitted by a

rough surface. Further, for the reasons mentioned previously, it is

not intuitively obvious that the Rayleigh reflection coefficients

should be applied to the scattering at each interface.

Th' -essure at some receiver A above a rough surface

is given by the potential integral in Eq. (4). In the case where the

water-bottom interface is acoustically penetrable and contains

another interface at some deeper depth, the pressure density, [1, at

the water-sediment interface must include the interaction and inter-

ference effects due to the sub-bottom reflections. The geometry is

shown in Dwg. AS-71-354.
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The method used to calculate the equivalent pressure

density due to a double interface is identical to the method used for

the single interface, but in addition it will rely heavily on the

calculation of the scattered pressure given in previous final reports.

This method allows the integration over tne lower scattering interface

to be bypassed.

Assume that the two interfaces are represented by the

stochastic processes z = Yl(x,y) and z 2 = ý2 (x,y) and that the mean

planes of the two processes are parallel and separated by the vertical

distance n. Assume further that

KUX MAX<h

1 2

and that the insonified area of the surface is much greater than h2 and

also includes many correlation lengths. From these conditions it may

then be assumed that the pressure density (or normal velocity field

density) at any point on the lower interface is the sum of the contribu-

tions from a region of the upper interface which is many correlation

lengths in size. The significance of these assumptions is that now

the equivalent pressure density must be calculated in terms of the

average pressure densities and normal velocity densities contributed

by the lower interface; that is, the averages are taken before calcu-

lating the equivalent surface potential. In general, taking the

averages of the expressions used to derive the equivalent pressure

density is much easier than taking the average of the equivalent pres-

sure density itself. It should be recognized, however, that if the

contributing surfaces have dimensions of only fractions of a correla-

tion length, then the equivalent pressure density ,uist be calculated

first and the average of this quantity taken.
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Using these assumptions, the equivalent pressure density

in the case of a double interface is found to be

R = i (18)

where

R I+nR 2e 
-i2k 2 sine2h

R 12 23 -i2k 2 sine2h (19)
1 + AkR12 R23e

The quantities RI2 and R23 are the reflection coefficients which would

exist at interfaces 1 and 2, respectively, if medium 2 were infinite in
extent; they are given by Eq. (17). R23 is calculated using the average

pressures at interface 2. Finally, A is the term which arises because

part of the pressure at interface 1 has been scattered upwards by the

lower interface.

If it is assumed that the upper interfacc has mild

slopes, then A is given by

A = •' 2cot e -in 2 k2hcose 2+iý 2t 'k 2 cOs92)A = K i-cte 2) e1 2 TI 2 )

where 112 is the local slope of the lower interface, and t' is the

vaiiation of the separation of the interfaces about the mean value h.
Performing the average indicated in the previous expression yields

22 2 2
s k2 cos e2h

,o2 2
s2 k6cs h 2(1+s 2 a2k2cos2 e

Z-= i cot 1 ) 2/e , (20)

. + s a k2 cos 2j
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where s is the rms value of the lower interface slopes, and a is the

rms value of the fluctuation of the interface separation ý' about the

mean value h.

Clearly, in the limit of two plane, parallel interfaces

A � 1 (since s and a -- 0) and R approaches the Rayleigh reflection

coefficient for the two interface case. However, it must be noted

that Eq. (19) can not be obtained by simply taking the Rayleigh reflec-

tion coefficient and referencing it with respect to the local geometry.

To obtain a valid expression for the equivalent pressure density in

the case of a double interface, it is necessary to start with the

appropriate pressure expressions and boundary conditions.

It should be emphasized that R [Eq. (19)1 is not a

constant, but rather is a function of the local geometry of the upper

interface. This dependence is contained in the R12 terms, which are

simply the reflection coefficients for interface 1 referenced to the

local geometry. Consequently, R12 is a function of the slopes of the

upper interface and must be used in conjunction with the scattering

integral exactly as the single interface reflection coefficient shown

in Eq. (20).

c. Summary

In this portion [Section B] of Chapter II, the effect

of the surface configuration and physical composition on the boundary

value (i.e., the equivalent pressure density) used in the scattering

integrals has been calculated. This work was motivated by the need

to determine the boundary values in a manner which was consistent with

the integral equation of scattering and, consequently, required no

assumptions about the direction of propagation of the reflected or

scattered field, For the case of a single interface, it was found
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that if the source was many wavelengths from the surface, the correct

boundary value for a rough, acoustically penetrable surface is given

by multiplying the incident pressure density by the Rayleigh reflection

coefficient referenced with respect to the local slope. In the event

there is another rough interface underlying the water-bottom interface,

the equivalent pressure density on the bottom must include the scat-

tering and interference effects of the sub-bottom interface. However,

it was found that these effects could not be accounted for by simply

referencing the two interface Rayleigh reflection coefficient to the

local slope because this does not account for the scattering by the
sub-bottom.

The scattering and interference effects of the sub-bottom

can be propexl1 accounted for in the context of the potential theory

while simultaneously avoiding any restrictions on the direction of

propagation of the waves scattered at the water-bottom interface.

The single and double interface pressure density

coefficients (reflection ioefficients) given by Eqs. (17) and (19)

depend upon the local slopes of the scattering surface. Hence, these

expressions must be retained in the scattering integral, and averaged

over the interface slopes along with the other slope dependent terms.

The remainder of Chapter II is devoted to methods of calculating the

averages over the surface slopes when the scattering interface is

acoustically penetrable. In addition, since the slopes play an impor-

tant role in both the scattering and the acoustic penetration of an

interface, considerable attention is given to the interaction of these

two effects on the basis of their slope dependence.

3. Series Evaluation oi the Rayleigh Coefficient

In order to treat surfaces with fairly large rms roughness,

an evaluation of the reflection coefficient within the integral for

23



the scattered pressure was carried out for a single interface. Using

this approach, the conditions under which the reflection coefficie-r

can be separated from the scattered pressure integral were examined.

The series expression which results from this method was evaluated for

various roughnesses aid for the same four bottom samples used in the

evaluation of Kuo's reflection coefficient.

The scattered pressure at point A is given by the integral

/ iklrl\

pA) = JJ [(N)43- L__ -~~dS ,(21)

S

where

4 is pressure density at the variable pcint N on the surface,

n is the outward normal to the surface, and

rI is defined in Dwg. AS-68-lIoo.

The value of P on the boundary is given by

ýL(N) L -R i(N) (22)

where p. is the value of the incident pressure on the surface and R is

the reflection coefficient given by Eq. (17) or Eq. (19), which will

later be shown to be a function of the local slope of the surface. If

it is n-w assumed that the incident pressure is of the form

ikr
0

pi D(-3)
i~or

0
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then it is obvious that

ikr
RD o24)

O e~():21t r '(4

and

,ik r 
ik x1\

ps(A) R ,•- (o--o (e \ rl

S

It is shown in the Final Report under Contract N00024-69-C-1275 that

this integral becomes

(e /ik(Ro0+R if\
p (A) 1)k ff eo(' )ee7 e~Y dxdy ,(26)

-iff D. o- 1 -le-iT " "" "

where

7 = sine] + siner (27)

and ei is a unit vector directed along line R If it is assumed that

ex l =8)

e 1 = cose (28)y r '

e• e = sine
z 1r
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then

(• eX + ^e y-e " = -sine + cosOr (29)

The integral for the scatterud pressure becomes

ff eik(R o+Rl1)'
-ik -i kT•ik+•

Ps(A) = )Dor 7"iD'0 [R(-sineOr ycos r)]dxdy " (30)

S

At this point a suitalle expression for the reflection

coefficient R must be given. Referring to Dwg. AS-70-795, p. Ii, the

single interface reflection coefficient is given by

P2 c 2 sine1 - pleIsinO2 ,
2= p 2 c 2 sin 1 + PICIsinD2

where Eqs. (15) and (16) have been substituted into Eq. (17), k has been
replaced 'by c' and 0 = el+ P and (2 = %2 -P. This is the standard

Rayleigh reflection coefficient referenced to an infinite plane oriented

at an angle P to the mean plane. Application of Snell's Law to the

formula is accomplished through the substitution

2 1 2 2

sine2  C os2 ( N co = - Cos (32)

where N = c, is the acoustic index of refraction. Applying Eq. (32)c2

to Eq. (31) gives

Pcsin(e +P) Pl N2 Cos(

R(e +p) = ,2 1  N l (33)

Psc 2 sin(e +p) + N N2 cos (e+6 )
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Expanding sin(e1 +0) and cos(e 1 +P) and using various trigonometriQ

identities, Eq. (33) maý be arranged into the form

A + B1 - C'4D + Eq] + F (34)

R1G ~~ + ~ +ý +r CA+B1+C 4 ET

where

S= tanp (35)

A = p2 c 2 sinO1

B = p 2c; coseI

c = ,N (36)

2 2
D=N - sin 1

E = sin2eI , and

2 2
F = N - cos-0

Since n is the tangent of P, it is obvious from Dwg. AS-70-795 that 0

is just the slope of the local tangent plane with respect to the mean

plane. Because the formulation is restricted to the plane of inci-

dence (e " = O)f it may be assumed that T = . Using this result

in the original pressure integral gives

Ps(A) =k-ik(__) Do (e 0 ' e\ikT R )(-sine +C°Sr)

2iT~~~ ~ ~ ff0R0R 1 xdy

S

(57)

where R(e 1 ,N) is given by Eq. (34).
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It is now obvious why the reflection coefficient cannot be

separated from the integral for the scattered pressure a priori.

The dependence of R upon %, a quantity which appears within the integral,

places restrictions on the separation. Here it is recognized that

Sand n are random variables and that ps(A) must be replaced by the

ensemble average <ps(A)>. If it is assumed that the surface height, •,

and the surface slope, q, are independent, then the integral for

<ps(A)> takes on the simple form

• (A)>f ik De Rik R (e)(-sine +cosOr) dxdy

/ (38)

To separate an effective reflection coefficient (in an averaged form)

from the integral it must also be assumed that rj is stationary so that

!P()- Re.n)lýoe -k) f Dosiner e i(Ro R 1)

0i

s (39)

(e ik7)dxdy

Since ý is also stationary, its expectation value may also be removed

from the integral, leaving only a form which is immediately recognized

as the pressure reflected from a plane surface, pr'

<Ps(A)> = -[<ýR(el,n)> - coter<TIR(el,)>] <eik- >pr (40)
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Assuming a Gaussian distribution of heights, the average over • gives

<Ps(A)> = -[•R(e 1 ,n)> - cote<r<R(e 1 ,q )>] e-g/2pr (41)

where g =(kTy)2 and a is the rms height value.

The expression in brackets in Eq. (41) may be regarded as

an effective reflection coefficient which has been averaged along with

the slope terms in the integral for the scattered pressure and then

separated from the integral in an averaged form. The expectation values

<R> and <IR> are still quite difficult to evaluate directly due to the

complex form of R. In order to evaluate these expressions, R(elT)

is expanded in a Maclaurin series;

R(el,' ) = R P: 0 + R +L= 22 (42)

where

A - c~F p2 c 2 sine1  N 7 cosR lq=0 A= r Pc N7P2 P2 c2 sine 1  N 1cos e

"•2 L .j 6-R4 2B,-pF ]"-F_=O (A+CVr ) (43)

[ArC-1r2 B CE-2D-BE1 ir _ CE 1

IA+2FII - 4c
RJ 21 7 L 74F]L 2 V Tj

j=_ (A+C )3

5)



The first term of this series is equivalent to the Rayleigh reflection

coefficient for a plane surface. This series expansion of R(6l,q) has

been widely used in rough surface scattering literature (Refs. 8-14).

Using this expansion the evaluatioi: of the reflection coefficient is

straightforward and is given by

[<R>- coter<"R>] = [R(l - <ý> cote) + R'(<ý>-<> cot@,)

+ E: (<T> - <ri3> coter) + .. (44)

where R and its derivatives are evaluated at n=O.

The only expectation values to be calculated are of the form

<T1 = J f P(r)dn , (45)

-tane 1

where the lower limit of -tanO1 represents a simple shadowing considera-

tion for backscattering geometry. In forward and specular scattering

the upper limit is replaced by the tangent of the receiver angle.

For a Gaussian distribution of surface slopes and for 2, an odd integer,

Eq. (45) becomes

<f11 t 2 e1
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where s is the rms value of the surface slope and r is the incomplete

gamma function. Similarly for I even,

> r + 27 -7,y•
2s2

_2 )/(47)
For the forward and specular scattering cases the expectation values

of r contain additional incomplete gamma functions depending on 0 .r

These expectation values may be easily calculated and combined with

the values of R, R', R", etc., to find the value of the effective

reflection coefficient [<R> - cote <rR>1.
r

It should be noted here that the expression [<R> - cote <ýr>],r

which has been called the effective reflection coefficient, actually

contains terms which arise from the exact treatment of the surface

slopes in the scattered pressure integral as well as from the penetra-

bility of the surface. The rigorous treatment of the surface slopes

produces the term (-siner + cose r) in the integrand of Eq. (30). This

term is a result of the scattering process and is independent of the

penetrability of the surface. Averaging this term together with R is

necessary because they both depend on rl, but this averaging results in

an effective reflection cofficient in which effects of scattering are

combined with effects of penetrability., To see this more clearly, it

is only necessary to examine the behavior of the effective reflection

coefficient for an impenetrable rough surface. For a pressure release

surface R(O1,r) = -1, so the effective reflection coefficient is given

by

[i - Coto >]
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If <r> is calculated according to Eq. (41) with the appropriate limits

on the integral for each scattering geometry, tle results are given by

[l - coter<T>]sPECUm L 1

S• oo<nl L -cote([•) 1
and

El1- cote r 11C SCATTEF 1 -cote e (48)'

These results are shown for various values of S(rms slope) in

Dwg. AS-71-294 for backscattering geometry and in Dwg. AS-71-295 for

forward scattering geometry. This expression represents the contribu-

tion to the effective reflection coefficient that is due solely to the

scattering process. In Dwg. AS-71-295, curves corresponding to the

larger values of s were not plotted because they all lie quite close

to the s = 0.5 curve. Realistic values of the rms slope of the ocean

bottoms are generally quite small. For the model surfaces used in this

program the rms slopes range from s = 0.1 to s 0.3. From

Dwgs. AS-.71-294 and AS-71-295 it is obvious that for these small slope

values, the slope dependent term is very nearly unity except at very

low grazing angles. Since this scattering contribution can be calcu-

2r

lated ~~~ ta excty a tru refecio coficet whc epnsonyuo

[Ie - ot e < r2>] (9)
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where the expression in the numerator is the effective reflection

coefficient and the expression in the denominator has been shown to

be the scattering contribution to the effective reflection coefficient.

Using this result the scattered pressure for a Gaussian distribution of

heights if given by

Ps = [1 -coter <ý>] e-g/2 Pr

where T depends only upon the penetrability and obviously is unity

for an impenetrable or pressure release surface. Because the slope

dependent term [1 - cote r <r>] is nearly unity, for the cases corsideredr

here it will be assumed that the effective reflection coefficient pro-

vides an adequate approximation to the true reflection coefficient

given by Eq. (49).

The effective reflection coefficient [<R> - coter<DR>]

will now be evaluated for a penetrable surface under the assumption

that it adequately approximates the true reflection coefficient and

thus represents the change in the scattered pressure due to the pene-

trability of the bottom.

To allow for attenuation in the bottom the velocity c 2 must

be complex with an imaginary part that is proportional to the attenua-

tion. This makes the constants A, B, C, D, and F in the expressions

for R, R', R", etc., complex, and hence the entire effective reflection

coefficient is a complex quantity. Plots of the magniitude of this

coefficient for various bottoms with several values of the rms slope

are given in this section.

Drawings AS-71-24, AS-71-25, and AS-?(-26 show the reflection

coefficients for various source and receiver geometries for Mackenzie's

sample number 32 at a frequency of 5 kHz. The measured attenuation
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of 4.48 dB per ft at 30 kHz was extrapolated to 5 kHz assuming that

attenuation varied as the square root of the frequency. Drawing AS-71-24

shows the magnitude of the effective reflection coefficient plotted

versus grazing angle for a specular scattering geometry (er= e1).

In the limit of no roughness the first term in the series expansion

of R(e,i) is the only nonzero term. This term is just Mackenzie's

original result for a plane attenuating surface and is plotted as a

solid line in Dwg. AS-71-24. The dashed line represents a small rms

slope of 0.05 and shows little deviation from the zero slope term.

The dotted line represents a larger rms slope value of 0.10 and exhibits

large fluctuations in the region around the critical angle which occurs

at a grazing angle of 30 deg for this surface. The failure near the

critical angle is a problem inherent in the formulation of this method

and will be discussed later. Similar results are obtained for back-

scatter and are shown in Dwb. AS-71-25. Here the plane surface term

has no meaning and is not plotted. The forward scatter curves shown

in Dwg. AS-71-26 are typical and have no fluctuations as long as the

incident grazing angle is not in the region immediately around the
critical angle. Similar results are shown in Dwgs. AS-71-214 and
AS-71-215 for bottom sample number 28, which exhibits a critical angle

near 10 deg. 'the forward scatter curves were not plotted since, for

these rms roughness values, the forward scatter coefficient was very
nearly a constant (R=0.29). Samples number 2-7 and 13 do not have a

critical angle but instead have an angle of intromission at about

6 deg. The reflection coefficient curves, shown in Dwgs. A;e-71-216,

AS-71-217, AS-71-218, and AS-71-2].9, are relatively smooth because the

angle of intromission is actually below the lower limit of the range of

grazing angles of interest. It is expected that an angle of intro-

mission will produce the same kind of fluctuacions in the reflection

coefficient as that observed near the crýtical angles. Again the

forward scatter curves were omitted because they were very nearly

constant.
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It was first thought that the fluctuations near the critical

angle were simply the result of not retaining an adequate number of

terms in the series expansion given by Eq. (25). However, a partial

sum decomposition of the series shows that this is not the case and

that the series is actually diverging in this region. This indicates

that the problem is inherent in the formulation of the method. The

presence of fluctuations near the critical angle points out several

similarities between this approach and the method used by Brekhovskikh

to treat the reflection of spherical waves from a plane interface,

which suffers similar difficulties.15 Brekhovskikh uses a plane wave

decomposition of a spherical incident wave, and saddle point integra-

tion to arrive at an effective reflection coefficient given by

0 kR1

where

N = [R"(eo) + R-(e)cote]

Here R' (eo) and R"(eo) are the derivatives of the reflection coef-

ficient with respect to e. The reflection coefficient itself is of

the same form as Eq. (17). In the derivation of this spherical wave

reflection coefficient, it is assumed that R(e) is slowly varying.

Near the critical angle this is no longer true and the derivatives of

R with respect wc e become large. Thus, as Brekhovskikh shows, the

series is no longer valid near the critical angle.

The application of these ideas to the series given by

Eq. (27) is straightforward. It was initially assumed that the first

term of Brekhovskikh's series was an adequate approximation to the

spherical wave reflection coefficient. This approximation is quite
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good because kR1 is very large for the scattering geometries being

considered. At this point the failure of the series development

presented in this section is difficult to understand because the terms

that cause Brekhovskikh's coefficient to be invalid near the critical

angle have simply been neglected on geometrical grounds. However, when

the effects of roughness are included, the reflection coefficient

takes on the form R(e+p), where 0 is the random angle associated with

the slope of the local tangent. In order to evaluate R it is necessary

to expand it in the Maclaurin series given by Eq. (25). Since the

reflection coefficient is of the form R(e+p), it can easily be shown
that

7e- = TpR = 2

117 -7see~

Thus, the derivatives of R with respect to r which appear in the

Maclaurin series behave in much the same manner as the derivatives of

R with respect to e which had previously been eliminated from

Brekhovskikh's formula. Consequently, the effective reflection coef-

ficient given by Eq. (27) suffers the same fluctuations at grazing

angles near the critical angle. If Eq. (24) could be evaluated directly,

then the fluctuations associated with the expansion could be avoided.

Direct evaluation of Eq. (24) might be accomplished using numerical

integration techniques although this approach is complicated by the

fact that R(&I,r) is a complex function of real arguments. An alter-

nate method utilizing the complex nature of R would be to express

R(e ,)> and <jP(Ol,G)> as contour integrals. The evaluation of

these contour integrals, however, is not straightforward because of

the presence of branch cuts. These ideas are being investigated at

the present time.

To summarize the results of this subsection, it was shown

that an effective reflection coefficient, for a single interface, which
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could be removed from the integral for the scattered pressure in an

averaged form was given by

[•QR> - coter <i>

It was also shown that, for small values of the rms slope, the

scattering contribution to this expression could be neglected and that

the effective reflection coefficient represented the change in the

scattered pressure due to the penetrability of the surface. For

larger slope values the true reflection coefficient was given by

Eq. (49) and can be easily calculated from the effective reflection

coefficient. In order to calculate the effective reflection coeffi-

cient for penetrable rough surfaces, R(Ol,j) was expanded in a

Maclaurin series in r. This technique made the evaluations of <R>

and <rR> quite simple but introduced fluctuations near the critical

angle, or angle of intromission. It was shown that these fluctuations

were a result of using the Maclaurin expansion in a region where the

function was not slowly varying. The closed form expression for the

effective reflection coefficient, [<R> - cote r<rR>], is, however, ther

result of a rigorous derivation, and so the Maclaurin expansion can

be expected to give the correct results in the regions where R is slowly

varying. This gives a reflection coefficient which is valid over all

angles for surfaces where R varies slowly and is valid over a large

range of angles for surfaces that exhibit a critical angle or an angle

of intromission. In addition, if the rms slope is very small, as it

often is for realistic ocean bottoms, the fluctuations in the derivatives

of R in the Maclaurin series are insignificant because the derivatives

are multiplied by expectation values of powers of I which are extremely

small. Thus, good results can be obtained near the critical angle if

the slopes are small enough. This aspect is illustrated by Dwg. AS-71-24,

where good results are obtained for s=0.05 but fluctuations occur when

s=0.I.
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The results given in this subsection are derived specifically

for a single interface. The double interface problem, however, can be

treated in a similar manner and will also result in an expression that

fluctuates near the critical angle because the expression will still

involve the derivatives of R 2. It is expected that the effective

reflection coefficient for a double interface will be valid over approxi-

mately the same range of angles and slopes as the single interface

reflection coefficient. However, it should again be pointed out that

these expressions are valid for a large number of the combinations of

slopes, angles, and bottom parameters of practical interest.

4. Stationary Phase Evaluation of the Reflection Coefficient

As seen in the previous subsection on the series evaluation

of the refie. tion coefftcient for the single interface case, accurate

re-i -As - bte .-btained for certain special cases. In the event that

,ýe source a :;zing angl,. i3 near the critical angle (or angle of intro-

j.:ission, d&pending on wheth,•r the index of refraction N is greater than

or les- '!an 1) and -chat the rms slope is moderate, the series evalua-

tion faa_.; because of the behavior of the derivatives of R. A series

evaluation of the double interface reflection coefficient would fail

for identical reasons.

A method of evaluating the reflection coefficient which is

valid for the case where both the rms heights and slopes are moderate

or large is given by the stationary phase evaluation. This method

avoids the difficulties encountered in the series method. In the sta-

tionary phase method the reflection coefficient is evaluated at the

angle ¢ which is the local grazing angle at the stationary phase points.

If (p is the angle between the plane of incidence and the scattering

plane, the assumption C =O implies that only the scattering in the
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plane of incidence will be of interest. The local angle 0 is then

given by

sine. - • cose.
sin¢= 1 x y •i

where at the stationary phase points

v v

v Sx V .

and

v = k(cose - cose cosc) = k(cose. - coser)

v y= -k(cose sincp) = 0 ,

v z = -k(sine r + sine. i) "

This gives

sine (D ( cose i c°Sr + sine isinel r) l/

(52)

• = sin ~i + r'

where 6. is the source grazing angle and 0 is the receiver angle. If
e .+p instead of 0 is used in the reflection coefficients given by

Eqs. (17) and (19), then for the single interface case the reflection

coefficient becomes
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and for the double interface case the reflection coefficient becomes

(.+ e) +@ -i 2 sine2 h

R(1i, )- 1 2( _2  e(54i 2 k2 sine2 h)
1 + _/ R 2 3 R 1 2 i

It should be noted that R given by Eq. (53) is identical to the R1 2

contained in Eq. (54). The other terms in Eq. (54) are constants

with respect to the stationary phase calculation; consequently, in

the following chapter only Eq. (53) will be discussed.

For the backscatter case, e = T - e., so ' = A/2. Thus atri

all incident grazing angles, the reflection coefficient for back-

scatter geometry is a constant. In the specular direction, e = e., sor 1

0 = 0.. This simply reproduces Mackenzie's original curves for the

reflection coefficient from a smooth penetrable surface. For the

forward scatter case, 0 = (ei+er)/2. The curves for this case are

given in Dwg. AS-71-28. These results are particularly easy to inter-

pret in that each point on the surface is assumed to reflect in the

specular direction with respect to the local tangent plane at that

point. Thus, the reflection coefficient depends only upon the scat-

tering geometry. Once the position of the receiver is specified, the

only points whicb can contribute to the field at the receiver are the

stationary phase points.

Examination of Eq. (37) reveals that the results given in

Eqs. (53) and (54) are not yet complete. According to Eq. (37), the

slope dependence is contained in both R and the scattering integrand as

R(ei,,)[sine - rcose ] (55)
r r
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Considering the complete slope dependence contained in

Eq. (55), the stationary phase result then becomes

/e. + e
R(ei',)[siner - Tcoser = R( 2 r) F(Oier) , (56)

where R is given by either Eq. (53) or Eq. (54", •..d F 1s 2uckmann's

F and is given b-

f 1 - cos(e•. *Or)

r sine
I r

Previously, it was pointed out -hat because both R and the

scattering term given in the brackets in Eq. (55) are slope dependent,

the acoustic penetrability of the surface interacted with the scatter-

ing. This same effect occurs when a stationary phase calculation is

made since the term which is then obtained is not just R but rather RF

given by Eq. (56).

The statiýsnary phase calculation presented L ere is a
16 17generalization of the results of Hagfors and Stogryn. On the

basis of a stationary phase calculation, they obtained a reflection
coefficient which, in the case of backscattering, was simply a constant
factor equal to the Rayleigh refikýction coefficient evaluated at

normal incidence.
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III. THE EFFECT OF A ROirF,, PENETRABLE LIQUID BOTTOM
OF SONAR OPERATION

The motivation for the theoretical work presented in the previous

section, and in previous final reports, has been to develop realistic

models of sonar operation in the ocean environment. Prior studies

have verified the mathematical models which apply to an ocean
boundary composed of plane layered sediments or a pressure release
sinusoidal surface- More recent work has resulted in the develop-

ment of a model of forward and backward scattering at the zea

surface. The previous theoretical work was somewhat simpler than the

present case, since the scattering effects were due only to topog-

raphy. In developing a model for a rough ocean bottom, an additional

complication is introduced, since now both the topography and the

physical composition of the bottom affect the scattering behavior.

The model that will be presented in this report is incomplete in

several aspects. First, the model is restricted to liquid bottom

types; that is, the shear mode of propagation must be insignificant

in comparison to the compressional or longitudinal mode of propaga-

tion. Second, this model has not as yet been experimentally verified.

Special aspects of the simplest case (single interface case) have
16 17'been discussed in the literature (Hagfors and Stogryn, for

example), but a ge: -ral verification will not be completed until

the end of the next contract year. The preliminary experimental work

is reported in Appendix A, however.

The effects of a rough bottom are encountered in a number of

situations. In general sonar operation the presence of a rough

penetrable bottom will degrade the effective range of the sonar and
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also give rise to a reverberation return which uiay" mask the presence

of a target. For a sonar which operates in a bottom bounce mode the

type of bottom present in the area of operation is of critical

importance. If the bottom is smooth but penetrable, then the sonar

system will stiffer only a loss in signal level. Where the bottom is

rough but re-latively impenetrable, the sonar system will be degraded

in several respects. The scattering effect of the bottom will be

observed as a general beam broadening with consequent loss of bearing

accuracy. Further, a rough bottom will give rise to fluctuations in

the returned signal. Obviously, a rough, penetrable bottom will give

rise to a combination of the effects just mentioned.

It is important to determine the aominant effect of the bottom;

that is, whether penetration or roughness is the dominant loss factor.

The importance of this point is best illustrated by an example.

Assume that the perpendicularly measured bottom loss in two regions

was -20 dB. If, in one region, this loss was primarily due to

roughness, then at the grazing angles for which a bottom bounce sonar

is operated the loss will still be large and significant signal fluctua-

tion and beam degradation will also occur. Suppose thart in the other

region the loss was due mainly to penetration. Then at the usual

operating angles the loss will perhaps be only -5 dB (assuming

c BOTTOM > CWATER), and associated beam broadening and signal fluctua-

tions will be insignificant. Consequently, in the second region the

bottom bounce mode may be effectively employed at low grazing angles.

These considerations take on added weight when it is realized that it

is impossible to acoustically map the entire ocean; hence, the local

sonar operator will occasionally have to make a determination of the

suitability of the bottom for the bounce mode.
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A. Physical Description of Some Ocean Bottoms

To be worthwhile, the effects of the bottom presented in this

report should represent some fairly typical bottom types. However,

those bottoms which are composed of rock or compacted sediments must

be excluded since the shear mode will be an important propagation

mechanism. Essentially, these regions are centered near the

midoceanic ridges which are generally considered to be topographi-

cally unsuitable for bottom bounce operation anyway.

The other major physiographic provinces that are of interest,

which are also thought to be usually good reflectors, are the conti-

nental margins and the ocean basin floor. The continental margins

are usually found at moderate depths (100 - 1000 fathoms), have thick

sediment layers, and the topography may consist of a small average

gradient (1:200 - 1:600) with small local relief (10 - 20 meters).1 8

An even smaller scale relief may be due to strewn rocks and boulders1 9

or to the characteristic sinus~nidal ridges resulting from turbidity

currents.18Y20 The principal reflections from the continental margin

may then either be due to the bottom itself or t,' a sub-bottom that is
21

2 to 10 meters deep. These features are characteristic of the

Atlantic Ocean and particularly the North Atlantic Ocean.

The ocean basin floors are generally f-und at deeper depths

(1000 - 4000 fathoms), have a nonexistent or thin (0.2 - 4 meter)

organic sediment layer overlying a fairly dense bottom,19 and the

topography may consist of an average gradient less than 1:1000 and,

except for isolated hills and sea mounts, relative relief of less

than 1 meter.18 The ocean basin is thought to be quite smooth, and

where it is not, the organic sediment tends to smooth over the small

scale features. The principal reflections from th' en basin floors

are due either to the bottom or a very near lying sub-bottom. These

features are characteristic of large areas of the Pacific and



Indian Oceans, and to a lesser extent to certain portions of the

Atlantic Ccean.

In addition to the fact that the physical description of the

ocean bottom is well correlated with the type of physiographic

province, the acousti.c parameters are also moderately well correlated

with the plysiographic provinces. A consequence of these relation-

ships is that acoustic domains in the ocean largely coincide with

physiological provinces.

Table I gives the parameters and the physical description of the

four ocean bottom models which will be used in the study of the effects

of a rough, penetrable bottom on bottor- bounce sonar operation. The

ve-locity and density parameters used in these models are based pri-
3 22

marily on the data presented in Hamilton, et al.,3 Sutton, et al ,

Shumway, 2 3 Hamilton, 24 Nafe and Drake, 2 5 and Hampton2 6 for d.fferent

physiographic provinces in both the Atlantic and Pacific Oceans.

Note that in the two layer models given here, the upper layer is a

low speed layer; i.e., cBOTTOM < cWATER . The shear velocity has been

omitted since it is assumed that the bottoms behave as liquid layers.

The absorption used in Table I is based on the data in

Shixway,23 Wood and weston,27 Cole,28 and Hampton.26 The absorption

is based on an assumed first-power frequency dependence, which allows

the wave number, k, to be wr!LLen 16

k--k° +i)

where the absorption per wavelength, a', given in Table I is then

related to the usual absorpticn a given in the sonar equation by

• a
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The advantage of writing aZ' instead of a is that a' is a nondimensional

quantity, and if the frequency does obey a first-power law, then the

absorption at any frequency is easily obtained using the simple

relation given.

B. The Theoretical Prediction of the Forward Reflection and
Scattering of a Sonar Beam by a Penetrable Bottom

145
It has been postulated by Kuo and assumed by Clay' that the

scattering behavior of a penetrable, rough bottom is given very

simply by

open 2 (57)

where a is just the scattering coefficient for ar- impenetrable roughi

surface and is defined as the ratio of the intensity scattered by the

impenetrable rough surface in the direction of interest to the

intensity reflecced in the specular direction by an impenetrable

plane surface. According to Clay, R(.i) is the Rayleigh reflection

coefficient defi:ied at the given Incident angle, e,, for perfectly

plane layers with parameters identical to the rough layers. Hence,

R(ei) is defined by Eq. (33) with the local slope angle 0 set to

zero. According to Kuo, R(9i) is given by his R(y) [Eq. (1)] for the

case of backscattering.

The viewpoint implicit in the expressions given by both Kuo and

Clay is that 'he scattering features due to the physi.ccl pzoperties

of the bottom and the scattering features due to the acoustical

properties of the bottom are completely separable and may be inde-

pendently expressed by the terms as and R(el), respectively. In

general this viewpoint is incorrect since both R(ei) and the scatter-

ing factor depend on the local rough surface slope value. These

terms must be combined when the average over the slopes is to be taken.
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When extended to multiple layer media, the breakdown of Clay's

viewpoint Is even more severe since, as seen in Eq. (19), the reflec-

tion coefficient now depends on both the local slope and the local

separation of the layers [which depends on the local height t(x,y)].

Hence, the effects of the physical and acoustical properties of the

bottom are now bound together in both the average over the surface

slopes and the average over the surface heights.

These arguments may be mitigated under several circumstances,

but only for the case of a single interface. If the slopes are

small, then for many scattering configurations they may be ignored.

Or in cases where the slopes are significant, they may still be

ignored in forward scattering if the grazing angles are noc too

small. In these two cases Eq. (57) as given by Kuo or Clay will

give good results (provided a is correctly calculated). However,8

for backscatter, or low grazing angle forward scatter in the case of

one interface, or any type of scattering in the case of multiple
layers, Eq. (57) will not hold.

For the ocean bottom models to be used in this section, the

scattered intensity is given by

,~ff'fik [(Ro-R) + (lR

ie21) sss fs (Oj )* ~,n D*
S 5

X ~ L\ X y "y el (8

x x 'y y zl"
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where the notation is identical to the notation used in Eq. (26), and

the source strength has been normalized to unity. This equation is

the extension to acoustically penetrable rough surfaces of the potential

formulation given in the Final Report under Contract N00024-69-C-1275.

The boundary value has been modified by the inclusion of R(ei,•)l
the pressure density coefficient (or reflection coefficient). R(Oi,rI)

is given by either Eq. (17) or Eq. (19) according to whether the

bottom contains a single or double interface.

Upon making the stationary phase calculation given in Section II,

Eq. (58) becomes

x~k( -R')•-') + ,R,(Q = IF(6F 1,e)R(e, ei e) 12 (k) 2  ff D *D iLk[(R 0 - 0

(59)

The integrals given in Eq. (59) have been calculated in the previously

mentioned final report for a surface with a normal (Gaussian)

bivariate height distribution and Gaussiwi: correlation function, and

they included a realistic insonification function and the Fresnel

phase approximation.

The intensity scattered by an acoustically penetrable rough

surface is then given by [recall F(e, er ) is defined by Eq. (56)]

re 1 r

\Isro Pr 2r 2 K n7o -+0n3oo lo+ 
M+
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where
g k 2 72h22

A is the insonified area defined by the -3 dB down points,

2K22I22

N 22

2KR1

5 lOglo(e)
K 20 is a beam function constant,

L is the correlation length of the upper surface,

a = cose - cose,

1 = 2roorlo(roo +rlo),

R2 = 2roorl/(roo sin2 er + rlo sin2 ei), and

a and 1 are the semimajor and semiminor axes, respectively,

of the elliptical insonified area, A = cX3.

Since the important features of Eq. (6o) are rather difficult to

discover in its present form, let us investigate these formulas for the

case where the receiver is in the specular direction. Using the defini-

tions of M, N and a, and some algebraic manipulation gives

IFO, ROl )1e g n +n (+n )11/2

s2r (+)2 n~ • [(1 + ) 1 + (61)

One significant but often misunderstood aspect of reflection and

scattering phenomena, demonstrated in Eq. (61), is the range dependence.

The n=o term is just the coherently scattered intensity; since this

term can be considered to be the reflection by a lossy plane, the

geometrical acoustics (optics) range dependence, (roo+rlo)'-2, is
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obtained as expected. For n=l, .. , , the terms in Eq. (61)

represent the incoherently scattered intensity. Clearly, for N and

M very large (recall that M and N depend on and R, respectively),

the range dependence of the incoherently scattered intensity will

also be given by geometrical acoustics. The condition of M and N

large is obtained when the insonified area is many wavelengths in

dimension and the roughness is not too great. When M and N are

small, Eq. (60) becomes

k2 iF(ei2'- )R(O gi'r) g2e-g A n

(is)~ gt)+i i (62)(Is) (s) coherent+ 2 2 R 061
roorlo 0=l

Here, the incoherently scattered pressure is now area dependent and
2has Fraunhofer range dependence, (r r lo)- . The condition of M and

N small which leads to the abcve equation is obtained when the insoni-

fied area is small with respect to a wavelength and/or when the

roughnes6 features are quite large. Even for a large insonified area

it is interesting to note that Eq. (62) will be obtained for quite

rough surfaces. The physical interpretation of this result is that

for a fairly rough surface the individual surface features behave as

independent scatterers with dimensions on the order of a wavelength.

Equation (62) is also obtained if the insonified area is only a few

wavelengths in diameter.

Equation (60) thus has two important consequences. In addition

to its ability to predict the correct shape of the forward scattered

field, it also predicts that the range behavior of the scattered

field makes a transition from (r oo+r lo)-2 for a very smooth surface

to (roorlo)-2 for a very rough surface or for a very small insonified

area. The transition in the range dependence is obtained strictly as

a result of using the Fresnel phase approximation. This situation

should be contrasted with the range dependence by all of the other

64



scattering theories (see, for example, Refb. 5,6,7,8,9,10,11,12,13,14,

16,17) which use only the Fraunhofer phase approximation, and conse-

quently obtain only a range dependence of (roorlo) . Obviously, in

the limit as the surface approaches a plane this result will fail

(unless, it can be shown that a real source at infinity still insoni-

fies only an area of a few wavelengths).

To obtain the scattering coefficient generally used in field

work, the source strength and the total travel path are us,.'

divided out. Since the source strength has already been nor.lized

to unity, the scattering coefficient of an acoustically penetrablE,

rough surface is given by

Open 2(3°pens = <B/ (roo+rlo) ,63

where (IS) is given by Eq. (60). This result will be used in the

next subsection in conjunction with the parameter values listed in

Table I to demonstrate the effects of an acoustically penetrable

bottom on bottom bounce sonar operation.

C. Discussion of Results

The acoustic parameters given in Table I will be used in

Eq. (63) to study the effects of some typical rough, acoustically

penetrable bottoms on bottom bounce sonar operation. The only

additional quantities which must be supplied are the rms heights and

slopes which might be encountered in the different physiographic

provinces. In the interests of brevity, only two bottom provinces

are considered. On a shallow bottom (continental margin), greater

roughness can be expected than on a deep bottom. (ocean basin) due

to the presence of turbidity currents and much greater depositional

activity. Due to the great variability to be found in the bottom

structure, it will be possible to investigate the scattering for
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only a few typical but arbitrarily chosen roughness values. The

values of the rms height and slope which wi'l be used here are given

in Table II. For the single interface case, the values of a and s

represent the rough paaiameters at the water-sediment interface. For

the double interface case the subscript 1 indicates the water-sediment

roughness parameters, while tae subscript 2 indicates the sub-bottom

roughness parameters. Notice that the sub-bottom roughness is here

the same for both deep and shallow bottoms.

In Dwg. AS-71-389 the effect of roughness alone on a sonar beam

reflected from an acoustically impenetrable bottoir in the plane of

incidence is illustrated. The sonar has a conical beamwidth of

8 deg measured with respect to the half-power points and is operating

at a frequency of 3.5 kHz (X = 18 in.).

TABLE II

SOME TYPICAL ROUGHNESS PARAMETERS FOR

REALISTIC OCEAN BOTTOMS

Bottom Province/ RMS Height, RMZ Slope,
Model C s = afL

1. Continental Margin, 12 in. S 0.1
Single Interface

2. Continental Margin, 01 = 12 in. sl 0.1

Double Interface 02 9 in. s2 = 0.05

3. Ocean Basin,
Single Interface a = 1 in. s = 0.0085

4. Ocean Basin, 01 = I in. sI = 0.0085
Double Interface 02 = 9 in. s2 = 0.05
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The beam reflected by a perfectly reflecting plane bottom is

included for comparison. The beamwidth of the beam reflected by a

plane appears to be broader than 8 deg for the simple reason that

the angles shown in the drawing are measured with respect to the

point where the beam axis intersects the surface. This makes the

beam appear to be about twice as broad as it would be if the angles

were measured with respect to the image point where the source can be

thought of as actually being located. The slight roughness assumed

for a deep bottom has resulted in a beamwidth increase from 8 deg

to 9 deg at 30 deg grazing incidence with no other perceptible effects.

The greater roughness assumed f.)r Lhe shallow bottom has resulted in

a beamwidth increase from 8 deg to 12 deg at 30 deg grazing incidence

and the loss of about 4 dB from the specular portion of the be•a. It

should be emphasized that the beam broadening is given with respect

to the source, i.e., the ship; it appears to be larger in Dwg. AS-71-389

because of the way the angles are referenced.

The curves given in Dwg. AS-71-390 represent the effect of the

single and double interface shallow bottom model on a bottom reflected

sonar beam at 15 deg grazing angle. The beam which would be reflected

by an acoustically impenetrable plane is also included for reference.

For the single interface case the peak value of the beam is displaced

downward by about 3 deg from the beam axis. The reason for this

angular displacement of the beam maximum is that the portions of the

beam which are incident at higher grazing angles have greater pene-

tration into the bottom if c BOTTOM > cWATER* For a low speed bottom

the peak would be displaced to the opposite side of the beam axis or

the beam would have a null at the angle of intromission. There is

also a 4 dB loss in the specular direction due to penetration, in

addition tc the 4 dB scattering loss. When an intermediate deposi-

tional layer is present that provides a good impedance match between

the water and bottom, then the penetration losses increase drastically.

Ordinarily, for a smooth sub-bottom and little absorption the peaks

of the multiple lobes due to the sub-bottom inte.ference would be
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very close to the level of the single interface scattering. However,

since the sub-bottom can also scatter acoustic waves, the sub-bottom

is a source of scattering interference with the waves reflected by

the bottom itself. The amount of lobing that occurs depends on how

many wavelengths the sub-bottom lies below the bottom. For the

assumed shallow bottom model, the sub-bottom lies about 7 wavelengths

below the bottom, and consequently there is considerable lobing due

to interference. Drawing AS-71-391 shows the effect of the shallow

(rough) bottom on a sonar beam incident at 30 deg grazing.

Drawings AS.-71-392 and AS-71-393 show the effect of the typical

deep ocean bottom model on a sonar beam incident at 15 deg and 30 deg

grazing, respectively. Since the water-sediment interface was

assumed to be quite smooth, little beam broadening has taken place.

Again the main effects of the bottom at 15 deg grazing have been the

displacement of the beam peak and some penetration losses. In the

case of an impedance matching intermediate layer, there is some

additional penetration loss with very little lobing. The lobing

effect is much less here since the sub-bottom lies only one and

one-half wavelength below the bottom. At 30 deg grazing, the main

effect of a smooth, acoustically penetrable bottom has been to produce

a slightly narrower beam with about 10 dB loss near specular angles

and only minor lobing.

It must be emphasized that the descriptions of shallow and deep

bottoms given here are strictly arbitrary; there is no rule which

states that a deep bottom must be smoother and have thinner sediment

deposits than a shallow bottom. On the average these descriptions

might hold, and at the very least they can be considered reasonably

representative of ocean bottoms.

In summary, several general comments can be made on the effects

of rough, acoustically penetrable bottoms on bottom bounce sonar
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operation. If the bottom is rough, then directional ambiguity is

introduced into the target location due to the beam broadening

caused by scattering. Further, if the bottom is both rough and

penetrable, then considerable beam distortion, or lobing, and level

decrease due to penetration may occur on bouncing a signal from the

bottom. Aklso, some of the secondary effects would become more

important. For example, volume reverberation would increase in

duration and possibly level since scattering would increase the

insonified ocean volume. In addition, broad scattered beams would

contribute to mutual interference among several sonar systems

operating in the same vicinity. Finally, a rough bottom introduces

fluctuations into the scattered sound field as the insonified area

moves along the bottom. Of course, the fluctuations depend on the

density of scatterers in the insonified area. If there are very

many scatterers in the insonified area, then the fluctuations will

be small as the insonified area moves along the bottom, since each

return will represent a large statistical sample. For this reason

the fluctuations in a signal scattered by a deep bottom will be less

than in a signal scattered by the identical bottom at a shallower

depth, since the insonified area increases with depth.
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IV. THE IN SITU DETERMINATION OF THE SUITABILITY OF THE
OCEAN BOTTOM FOR BOTTOM BOUNCE SONAR OPERATION

There are many operational circumstances in which one would like

to use the bottom bounce mode, but knowledge of the suitability of

the bottom for such sonar operation is lacking. Regional acoustic

atlases have been compiled, but at best these can supply only very

broad outlines as to the usefulness of the bottom bounce mode at a

given location. Ideally, what a shipboard sonar operator desires

would be a very simple method to determine the characteristics of

the bottom using readily available equipment.

If there is only one ship available, then the bottom measurements

must be made in the backscattering configuration. The question then

naturally reduces to: What can be predicted about the forward scatter

behavior from measurements of the backscattering? To be able to answer

this question requires that the theoretical foundations of forward and

backscattering be well understood.

The theoretical formulation of scattering developed at

Applied Research Laboratories (ARL) predicts forward scattering

accurately if the rms height and slope of the scattering surface are

known. Also, backscattering predictions are quite good from normal

incidence down to 50 deg grazing angles. Below 50 deg, the typical

flattening out of the backscattering curves, which is observed in

all backscatter measurements (acoustic, radar, and laser), is not

predicted by the usual theories. It was first postulated by
29

Kur'yanov that the correct agreement between measured and predicted

backscattering could be obtained if it were assumed that the surface
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was composite in nature; that is, in addition to the roughness features

which are easily measured, there occurs on most natural surfaces a

small scale roughness which is usually characterized by a much larger

rms slope than that of the large scale roughness. The concept of

scattering due to large scale and small scale roughness features has

received additional theoretical and experimental support in the papers

of Beckmann, 3 0 Fuks,1 Fung and Chan, 8 Volovova and Zhitkovskiy, 2

Zhitkovskiy and Lysanov,33 and Schmidt.34 Some natural examples for

this type of feature would be ripple on swell, boulders strewn on a

hill, etc. The first theories developed using the composite surface

concept gave good predictions of backscattering after all of the

parameters had been adjusted, but in many cases for the same parameter

values only nonsense could be obtained for forward scattering. The

reason for these failures can be traced directly to the approximations

made in the treatment of the surface slopes.

The composite theory developed at ARL utilizes an exact slope

treatment and can, consequently, predict both forward and backscatter-

ing from the same set of parameters. Unfortunately, the small scale

features usually cannot be measured; hence, they can only be determined

by adjusting the parameters until the theory fits experiment. This

requires a certain amount of faith on the part of the theoretician.

It should be noted that this procedure is not as weak as it sounds.

Since the large scale roughness is well known, only the small scale

parameters must be guessed. However, the guess obtained for one

surface at one frequency gives a good fit for all the other surfaces

and frequencies, which instills considerable faith in the procedure.

The most surprising aspect of the small scale roughness features

is that their effect is only evident in low grazing angle back-

scattering; forward scattering and high angle backscatter are largely

determined by the large scale roughness features.
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The backscattering by an impenetrable surface, which has small

scale roughness (/a = 100) with large rms slopes, is shown in

Dwg. AS-71-355. Notice the almost constant level from 75 deg on

down to 20 deg grazing. The backscattering level seen in this curve

can be adjusted to any arbitrary level by merely changing the values

of the rms height and/or slope. Examination of the forward scatter-

ing curve for the same parameter values reveals that the relatively

large change in the distribution of energy seen in the backscatter

direction is obtained at a cost of only 1/3 dB in the forward specular

direction. While the curve given in Dwg. AS-71-355 was derived from

theoretical considerations, experimental curves of like shape have

been obtained by Nolle et al.35 for a very similar experimental

situation. No attempt was made in Dwg. AS-71-355 to match the physical

parameters of Nolle' s experiments.

If the backscattering for impenetrable surfaces composed of the

single small scale roughness but various large scale roughnesses is

plotted, one obtains the curves shown in Dwg. AS-71-356. If the small

scale parameters are adjusted slightly, but the large scale parameters

held fixed, the .urves shown in Dwg. AS-71-357 are obtained. The only

change seen is that the limiting level at low gra-ing angles has been

adjusted upward 5 dB.

The significance of Dwg. AS-71-357 is that at grazing angles

less than 45 deg no information on the large scale roughness features

is retained, since the backscattering at those angles is controlled by

small scale roughness. Consequently, if only the backscattering data

for a single frequency and at grazing angles less than 45 deg were

available, no conclusions about the large scale roughness could be

reached, and hence no prediction of forward scatter could be made.

(Remember, it is only the large scale roughness which affects

forward or specular scattering.) In Dwg. AS-71-356, it is seen that

no information on the large scale roughness is retained at grazing
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angles less than 30 deg. It should be noted that the scattering due

to the small scale roughness is frequency dependent, in some cases

varying as frequency to the fourth power; therefore, the masking

effect of t1e low grazing angle backscatter may not be as pronounced

at other (principally lower) frequencies. The effects due to the large

scale features &ppear to be largely frequency independent;32,3 hence,

the informatiou about the large scale features will be retained if

frequency adjustments are made to reduce the small scale scattering.

In view of the difference in the levels at normal incidence for

the different roughnesses in Dwg. AS-71-356 and AS-71-357. the obvious

question might then be asked: Suppose the data for normal incidence

(90 deg grazing) were available, could anything be inferred from these

data? First, recall that the surfaces considered in these figures are

acoustically impenetrable. For an ocean bottom the return at normal

incidence will depend on both the penetrability and the roughness of

the surface as given in Eqs. (61) and (63). If the acoustic parameters

of the bottom are unknown, then it is impossible to determine the

relative influence of the topography and the acoustic penetrability on

the scattering. Consequently, it will not be known if the loss

measured at normal incidence was due primarily to scattering or to

penetration. The importance of this point was discussed in the

example given in the introduction to Chapter III.

It was pointed out in Chapter II, in the discussion of the

stationary phase evaluation of R(ei), that for backscattering,

case. Consequently, the shape of the backscattering curve from a

penetrable surface remains constant, with only the level shifted

downward. Therefore, for a fixed frequency, it is necessary to have

the backscattering curve for the entire range of grazing angles

from 90 deg to 10 deg (or, at least from 90 deg to 40 deg) if

any inferences about the large scale roughness are to be

drawn. The implication of these facts is rather severe if
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it was hoped that forward scattering performance of a bottom bounce

sonar could be predicted from simple observations of the backscatter-

ing return level from the sonar and the on-board depth soumder since

these pieces of equipment will not cover the requisite angles or

frequencies.

At present, it seems that the only way to obtain data on the

bottom roughness from backscatter measurements using present ships'

equipment will require some fairly sophisticated signal processing.

Even this method will require that the return from a very small

region of the bottom (fractions of a correlation length) must be

resolved by the receiver.

If a wideband source, for example an explosive charge, is used,

then the ability to differentiate between the bottom losses arising

because of scattering and acoustic penetration increases. This

technique is complicated by the necessity of using wideband,

multichannel filtering and recording equipment.

The separation of the losses due to scattering and bottom

penetration is based on a presumed difference in the frequency

dependence of the two effects. The scattering is assumed to be

frequency dependent while the acoustic penetration is not. It is

well known experimentally and theoretically that if the bottom

features are large with respect to the wavelength, then the scatter-

ing is frequency independent and varies only as the slopes of the

scatterer and not the heights. This effect is associated with the

high frequency [in reality, large g(g k 7 2 h,] limit of scattering.

To obtain roughness information from a wideband source requires that

the frequencies present should represent both the high frequency

limit and the low frequency limit. The data recorded using explo-

sive sources are usuallj contained in the 5 octave band from 1 to

50 kHz. These frequencies represent wavelengths of 2 to 60 in.
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Based on the rather incomplete knowledge of the roughnesses to be found

in the ocean (see Chapter III), the frequency band of 1 to 30 kHz

adequately represents the high frequency limit but is only margirally

close to a low frequency limit. However, for mar~y ocean regions the

I to 30 kHz band provides sufficient frequency dependence to determine

the relative effects of roughness.32,34

The assumption that the acoustic penetration of the bottom is

frequency independent holds only for a bottom from which the return

comes primarily from a single interface. If the bottom consists of

several layers with different acoustical properties, the angular

dependence of the reflection coefficient will be complex and in every

instance will be associated with the parameters of the layers and the

frequency of the sound wave, Similarly, if the absorption is strongly

frequency dependent, initerpretation of the bottom returns is again

rendered difficult.

Considermble qualitative data are, however, provided by the

short pulses which are associated with explosive sources. Zhitkovskiy36

describes a method of measuring the distances between irregularities

on the ocean floor. Brekhovskikh 3 7 shows data from which much

qualitative information on the character of the bottom can be deter-

mined by a fairly inexperienced operator after only a cursory

inspection.

In summary, the feasibility of in situ determination of ocean

bottom characteristics depends on the available measurement apparatus.

The bottom characteristics of interest have been shown to be the large

scale topography of the bottom and the acoustic penetrability (which

depends on the physical composition and structure of the bottom). To

adequately determine these characteristics from simple measurements

of the backscattered signal level requires at least the range of
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grazing angles from 90 deg to 40 deg. The confidence in this

determination will be substantially increased if the data for several

different frequencies are also available. The equipnent presently

available in tne form of on-board sonars and depth sounders is not

adequate for this determination. If additional equipment in the form

of wideband, multichannel filtering and recording equipment is

available, then explosive sources may be used to obtain the necessary

angular and frequency measurements. However, in many cases, the

reduction of these raw data and the subsequent prediction of forward

scattering require sophisticated analysis by experienced personnel.

The ideal situation would be to have a profilometer which has a

sufficiently narrow beam so that the insonified area of the bottom

would be a few correlation lengths. The time record of this return

would then represent a bottom profile with sufficient resolution

to determine the topographical features of interest in forward

scattering. Further, if the source were calibrated, then the level

of the returned signal could be used to determine the acoustic

penetrability of the bottom. Under these circumstances the forward

scattered signal could be predicted.
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V. ACOUSTIC FMLD IN A SURFACE DUCT WITH A ROUGH SURFACE

A. Introduction

The acoustic field is derived for a cw point source located in

an inhomogeneous medium with a rough surface. Application is made

to the case of a surface duct, and examples are given for two cases

(bilinear and Epstein). The effects of surface roughness are intro-

duced by means of an effective reflection coefficient. Lapin38-40

and Lysanov 4143 show that a statistically rough boundary can be

approximated by a flat boundary with some effective reflection

coefficient in the case of waveguide propagation, but the form of

this coefficient will, in general, be different from the expression

for reflection from a single uneven surface. Lysanov 43 explicitly

carries out the calculations for the case of a Gaussian surface

overlying a bilinear surface duct.

Recently Bucker44 has given an excellent treatment of

propagation in a layered waveguide with lossy boundaries. Bucker,

however, gives the effect of roughness in terms of a plane wave

reflection coefficient S, which does not allow for the variable

nature of the medium. The reflection is assumed to take place frcom

a pseudoisovelocity layer which is allowed to shrink to zero. Bucker

makes no attempt to drive S from the statistical nature of the surface.

He assumes various values for the dB loss per surface reflection SLn

and then calculates the reflection coefficient S from the equation

SLn = -20 log10 Is • (64)
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The propagation model that Bucker formulates assumes an impedance

boundai7 condition. The value for the impedance is determined from

the plane wave reflection coefficient. In order to find initial

approximate eigenvalues, Bucker relates each mode to a ray and

ari'ives at a boundary attenuation in the form of an imaginary component

to the eigenvalues. Specifically, he obtains

SL + BL -k"
nH -20 log10 e n (65)

n

where BL is the bottom loss of the ray associated with mode n,n

H is the ray horizontal cycle distance, and k" is the approximate
n n

imaginary part of the eigenvalue which is due to the lossy boundaries.
49

Bucker- assumes various values for SL since the values for SL given
h46 n n

by Mars seem to be too high for the experimental cases he treats.

The rough surface propagatio2 problem has also been treated by

Clay.47 Clay shows that surface scattering produces an increase in

mode attenuation and a decrease in coherence of the signal. Ray

theory has been applied to this problem by various authors.48-53 A

useful survey of both ray theory and wave approaches has been given

by Schulkin.54 The present report will follow the treatment given by

Bucker, but will use Green's functions and attempt to arrive at

expressions for the surface loss per bounce which relate directly the

ray angle, frequency, and peak to trough heights.

B. Green's Function Solution

The wave equation for a point source, with angular frequency W,

located in a layered inhomogeneous medium is given by

So2(z) 2 0Qo5((r-7 0 ) e- (66)
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where P represents the pressure, e(z) is the sound velocity

(variable in the coordinate z), and 6(r-r 0 ) 1, the three-dimensional

Dirac delta function. The strength Q of the source is equal to the

density times the volume velocity, that is, mass flow per second. If

cylindrical coordinates (r,e,z) are assumed with azimuthal symmetry

and a time factor of exp (-iat) is suppressed, the following equation

is obtained:

2 6Q(r)b(z-z)

7T r- (67)
r ( 6r-~ )(+)NP 2itrr 6

where P now represents the time independent pressure. The wave

number k(z) is defined as ayc(z) and the source is located at z = z0

and r = o, as indicated in Dwg. AS-70-767. The vertical depth

coordinate z varies from 0 : z _ w. and the range coordinate r varies

from 0 < r < -. The boundary conditions imposed on Eq. (67) are that

a) P must satisfy a radiation condition for r -. wand z - (

b) 3P'dI (68
P/ z=o

c) P and -a be continuous across any discontinuities in the

velocity-depth profile (such as the bilinear profile).

The statistical nature of the surface at z = o will be introduced by

means of an effective reflection coefficient which then determines y.

In the Green's function approach, Eq. (67) is separated into

the following forms:

87



VELOCITY c (z) RANGE

* RECEIVER
(r,z)

SOURCE
(0,z.)

ARL - UT
AS -70 -767
RLD - WDC

88 6 -29- 70

I-IP



[-(r .~)+ kr]G (rX) -) (69)

2

[.A + k (Z) G ] 2(z-'zoy-k) = -ioWQ0(Z-ZO) (70)

where k is the separation constant. IVv the resolvent Green's function

technique, the solution of Eq. (67) is given by a complex convolution

of G 1and G.

|1

P(rzz) f Gl(r,=)G -)dX21i (• - - z (71)

where the contour C separates the singularities of the Green's functions.

The solutions of Eq. (69) and Eq. (70) that satisfy the required

boundary conditions are given by

Gl(r,) = H ( tr)( k = Xl/2,o < arg ) < 2A) (72)

12ZZ' k) WT2,l oo

G2 (Z,zo,-X) = n2 (zo)[nl(z't) - X-n 2 (zo)] < z < (73)W(n2 ,nl) z

where Ho(tr) is the Hankel function of the first kind, and

n(O, 7n(O,)

9 2(0)
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The Wronskian of n and n1 is represented by W(n2 ,nl), where n2 is

a solution to the homogeneouf3 part of Eq. (70) and has outgoing waves

at z -+••, and where n1 has outgoing waves at z -- •. The primes

indicate differentiation with respect to z.

When Eq. (72) and Eq. (73) are used in Eq. (71), the solution

for Eq. (67) is obtained as

P( r,z,z 0) = -4, W(n 2,nl)

where z< and z> denote the smaller or larger, respectively, of the

variables z and z
0

When Eq. (75) is integrated by Cauchy's residue theorem, the

normal modes (plus any branch line integrals) are obtained. The

poles yielding the normal modes are given by the zeroes of the

expression

[n,(O,t) - yn2(0,E)] • (76)

The normal mode expansion can be written as

z OQ n2 (z,'n)n2 (Zo' n)H# (nr)
P(r,zz o 2 n n (77)

n=o n

where

O 2N f 2 n 2 (0,1 6yf 2 (z,%)dz + n - (78)
n n
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or

n~(0,~ Ti (0 to) -n2(O,)1~

Equation (77) can also be written as

P•r' /2 n2(z, t)n2( z )e (79)
P(r,z,zo) \•-/ n.o °

n 1o .N(0 ( -21t n-- 0n( %n)1/

In general the eigenvalues will be complex. The lossy boundaries

add an extra imaginary component k" to the complex eigenvalue tn. (In
n

the surface duct case, boundaries mean the surface and any velocity-depth

discontinuities.) Approximate values for k" can be found in the

following manner (Bucker, Urick, and Watt56):

SL -k'tH n =20 logl10 e n , (8o)
n

or

SLn (8,)n 8.686 H '
n

where SL i.- the surface loss per bounce, and H is the ray horizontaln n

cycle distanm. SL is defined by

Sn -20 lOglo Isf , (82)

where S is t"- nlane wave reflection coefficient from a pseudoisovelocity

surface layer that is &.lowed to shrink to zero.
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Explicitly, S is related to the boundary condition at the surface

through the formula

i no (s+! (83)
3+1

where (tna) 2 = (cI/Vs) 2 
- and v is the sound velocity at the

surface. Therefore, if either S or 7 is a known quantity, it is

possible to find the attenuation (kn) from Eq. (76). In this report

the plane wave reflection coefficient will be assumed to be known.

The mode attenuation factor k" is approximately given byn

-20 logl 0 Isi
k - 8.686 H (84)

n

From classical scattering theory the coherent reflection

coefficient for a Gaussian surface is given by

-2(k sine 0")2

where 0n is defined by the condition cos 0n = [vsRe(•n)/W], and

a is the rms height value for the rough surface. If a peak to trough

height h is known, then a good approximation (Longuet-Higgins) for a

is given by the equation

h (86)
2,f

Equation (82) will now be calculated for one of the cases Bucker

considered. He found that a reasonable value for SL was between zero
n

and one dB per bounce, yielding a value of S between -1 and -0.8913.

For a peak to trough height of 2 ft and an average grazing angle of

3 deg, Eq. (85) yields a value of S equal to -0.92 for a frequency of
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1.5 kHz. Therefore, Eq. (85) appears to be a valid method for

introducing the surface roughness into waveguide problems.

Marsh46 and Marsh, Schulkin and Kneale 5 7 have arrived at

another expression for the surface loss per bounce using the Neumann-

Pierson spectrum. Their expression for SL is given by
n

SL n = -10 1oglo(l - 0.0013 bs/2hl/lOL) P (87)

where h is the average trough to crest height in feet, L is the

isotherm-Il layer depth in feet, and b = fh is the frequency-wave

height product in kHz x ft. Since Marsh's formula for SL does notn

depend on the grazing angle en, Eq. (87) is not believed to be a

valid formula for introducing the losses due to surface scattering.

Computer programs for propagation loss versus range are

presently being completed for two surface duct profiles. The

profiles (Epstein and bilinear) are shown in Dwg. AS-71-188. (The

figure has been taken with permission from the paper by Bucker and

Morris.58 ) Various surface conditions are being considered for

these two velocity-depth profiles, and propagation loss curves will

be published as soon as the computer programs are completed. The

Epstein profile is a five-parameter velocity function which has ber'.

examined for ray theory solutions and normal mode solutions.

Explicitly, the Epstein profile is given by

- A sech z-z) + B tanh (88)c 2(z)

where the quantities A, B, D, zl, and H are parameters.
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The bilinear profile is also a well known, extensively treated,

velocity function. 5 0  It is given by

c

c(z) 2y 0 -0 z z (89)

0

co

c

c(z) 0 < z <2 27,l(Zz-a) 1/2 za

1 0o a c- 0l

In Dwg. AS-71-188 the parameters are given by co 4940.94 ft/sec,0

za = 326.67 ft, yo 0.O144, and y, = -0.438. These values were

taken directly from Pedersen's article. 5 0

Table II illustrates the effects of surface roughne•s on

the first three modes of the Epstein surface duct considered by

Bucker and Morris. The values for Re( n) in column two do not

correspond to the roots obtained from

[n•(zl, n) - mn2 (zl,'n)] = 0

but correspond to the pressure release condition

n 2(z ln)= 0

However, for the first few modes the values of Re(cn) will nearly

be the same. In column three the peak to trough heights are given

from zero to 6 yd. The values for the rms heights, calculated from

Eq. (86), then range from zero to 2.12 yd. Column four gives the

surface loss per bounce as found from Eq. (82). The grazing angles
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for the equivalent rays are given in column five. In column six the

reflection coefficients as calculated from Eq. (85) are given.

Column seven gives the horizontal range values in kiloyards as calcu-

lated from the following expression given by Pedersen and White: 6 0

H n2 In Id. In 12(aX )1/2 +

H-"1/2 In Idl - (2(cXi)1/2 + r]

where all quantities on the right of the equation are defined in

Ref. 60, and where the subscripted quantities are evaluated at

the surface. The mode attenuation factor k" is calculated from
n

Eq. (84) and is given in column eight. The reason for the low losses

due to surface roughness is because of the small grazing angles and

the fairly low frequency.
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APPENDIX A

MODELING A PENETRABLE SURFACE: SELECTION
OF MATERIALS AND PARAMETER MEASUREMENT

by

Helge Wieder* and Pat Welton

The use of model surfaces in experimental scattering measurements

is a well established procedure. The models heretofore used in scatter-

iiig work at Applied Research Laboratories have been made of pressure

release materials. These scattering surfaces are representative of

the ocean surface or an extremely gaseous ocean bottom. The scattering

by the pressure release model surfaces is influenced only by the

topography of the surface. The roughness of the topography of the models

varies from quite smooth to very rough, and by using different frequencies

the models can be scaled to represent regions of the ocean bottom ranging

from abyssal plain areas to the midocean ridges.

In modeling acoustically penetrable ocean bottoms, not only should

the expected topography be well modeled, but also the physical parameters

and structure of the model should bear a reasonably direct relationship

to realistic ocean values. While it is easy to obtain the topography

desired by simply making molds of the pressure release models, the

scaling of the physical parameters required considerable effort in the

selection and measurement of the various materials available. In this

appendix the selection criteria of a modeling material and the actual

measurement of the physical parameters of this material will be

discussed.

,
Visiting Exchange Scientist from the Federal Republic of Germaany
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A. Selection Criteria

Recall that the experimental work which is to be performed under

this program is the measurement of scattering by an acoustically

penetrable liquid bottom of known statistical description as a function

of angle and frequency. If the statistical parameters are to remain

constant, then the model material must be permanently moldable. This

requirement eliminates the use of the actual muds and unconsolidated

sediments found on the ocean bottom in the making of the models, since

the statistics would be unstable. When considering a permanently
moldable material the first criteria which must be applied is the
approximation of this material to a liquid. Essentially, this implies

that the shear velocity must be small with respect to the compressional

velocity. Some of the first materials which come to mind are trans-

ducer window materials. The agents are polyurethane compounds which

behave like rubber in that they will only support a very small shear

wave component, and hence very little conversion from compressional to

shear mode occurs. These materials have the further advantage of having

a pc product (p is the density, and c is the speed of sound in the

material) which is very close to that of water and which allows these

materials to be used as a binding agent for sedimentary materials. In

this manner a moldable compound can be made which has pc values very

close to those actually encountered in the ocean bottom but for which

the binding agent is practically acoustically invisible.

The binding agent is Scotchcast 221 polyurethane, while tne

filler material is No. 5 sandblasting sand. The acoustic characteristics

of the penetrable material can be altered by varying the proportion of

filler material to binding agent. Number 5 sandblasting sand was

selected as a filler material because it is the finest sand commercially

available. A very fine sand is necessary to prevent settling of the

fille.- during the curing of the binding agent. The only disadvantage

of using sand as a filler material is that a pc product less than that
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of water cannot be obtained. However, this defect can be remedied by

usIng the very fine, commercially available plastic beads which are

used to malke reflective paint.

It should be noted that as the proportion of filler material

to binding agent is increased, the rigidity and hence the shear

velocity of the compound increases, and the approximation to a liquid

bottom is diminished.

B. Measurement of the Acoustic Parameters

Appropriate samples were made for each of the separate parameter

measurements. Each sample was placed in a vacuum chamber prior 'o

curing to remove any air bubbles entrained during the thoroWug mixing

of filleraterial and binding agent. The measurements described in
this section were made for pure Scotchcast 22]. or focr Scotchcast and

sand. No samples of Scotchcast and plastic beadz nave beer prepared

as yet.

1. Shear Velocity in Pure Scot-h.ist

The shear vc,'-ity • dete.niined oy measuring the Lame"

constant, P, and by using the equation

ct = . (Al)

The value of P was determined according to two standard

mechanical tests. The first determination was made by the method of

the torsional pend;•lma.

A cylindrical sample of Scotchcast 221 ytf length 8 in. and

radius 1/8 in. was rig•dly clamped at the upper end, while a metal
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weight of moment of inertia e was rigidly fixed at the lower end. The

metal weight was displaced a small angular distance from equilibrium

and was released so that it described torsional os-illations. The

period of the oscillations was measured. The value of t is obcalned

from

22
r-W 19 (2

T•r

,;herc L is the angular frequency of the oscillations, I and r are the

!eigth and radius of the sample, and e is the moment of inertia of

the suspended weight, which can be easily determined from standard

formulas.

The second method of determining ý' was a standard deformation

test. A cylindrical sample of Scotchcast (diameter 3 in., length

4.5 in.) was deformed in a hydraulic press by a force in the direction

of the axis. Length and diameter of the sample were measured as a

function of force. From these measurements Young's modulus E and

Poisson's ratio a were determined. Then

E (A3)
P- 2-(l-+7a

The values of ii determined from the two methods were very close:

=T 1.33 x 106
m

I 1.31 x l06N
m
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if the density of Scotchcast 221 is 1.06 g/cm5 , then the shear velocity

is

c = 55.3 m/sec 115 ft/sec

Subsequent error analysis indicated the values of 4 were probably

accurate to within ±2%.

2. Density and Porosity Measurements of Mixtures of
Scotchcast 221 and Sand

The No. 5 sand used in these measurements consisted of pure

quartz sand (the density of quartz is 2.65 g/cm3). The grain size

distribution was checked in standard sieves and the sand was found to

be distributed as shown in Table Al. The sand is very well sorted,

since approximately 70% of the sard grains are between 0.250 and

0.177 mm in diameter.

Three disk-like samples (diameter 5.5 in., thickness = 1 in.)

were made using different proportions of Scotchcast 221 and sand. The

measured and computed values of the density and porosity are given in

Table A2.

5. Velocity of Sound in Mixtures of Scotchcast 221 and Sand

Next the sound velocity in each of the three samples given

above was measured. Since the sound velocity is fairly difficult to

measure, three different techniques were used to determine the sound

velocity.

METHOD I: The travel time differences between a source and

a receiver are measured when the sample is in place between the source

and receiver and when it is removed. The sound velocity in the sample

is then given by
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TABLE Al

DISTRIBUTION OF GRAIN SIZE

BY WEIGHT OF NO. 5 SAND

Sieve No. 0 % by weight

no,

45 0.350
5.2%

60 0.250
69.8%

80 0.177 11 18.8%
120 0.125

4.4%
170 0.088

_ __}1.8%

others

TABLE A2

DENSITY AND POROSITY VALUES

OF SCOTCHCAST-SAND MIXTURE

Mixing Ratio by Weight Measured Computed
Density Porosity

Scotchcast:Sand g/cm3  %

Pure Scotchcast 1.06 100%

1:1 1.51 71.5%

1:3 1.86 45.6%
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C C (A)c water At
water d

where cwater is the velocity of sound in water measured when the sample

is removed, d is the sample thickness, and At is the travel time

difference. While this method is not particularly accurate, it does

have the advantage of allowing c to be measured for a wide range of

frequencies to determine dispersion. The velocity of sound in water

at 72 0F was found to be

Cwater = 1463 m/sec

The velocity of sound as a function of frequency for the three

different samples measured is given in Dwg. AS-71-358. In the range

of frequencies measured, the sound velocity in pure Scotchcast was

independent of frequency, while in the mixtures the velocity appears

to be slightly frequency dependent. Error analysis of the measurement

technique indicated that error for mixture 1:1 was about

Acl:1 = ±36 m/sec

while for mixture 1:3 the error was probably

Ac 1 : 3 -±70 m/sec

These error bounds are indicated in Dwg. AS-71-358 by the vertical

extensions about the measured point.

METHOD II: If the frequency is varied and the frequency

difference of neighboring maxima of the reflected signal (steady state

part of a long pulse) is measured when the source and receiver are on

the same side of the sample, then the sound velocity can be calculated

from
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c 2 dLf (A5)

Of the three methods used, this method should give the most accurate

measurement of the sound velocity if the absorpticn is not too great.

However, at the frequencies used here, the absorption was large enough

that pulse distortion did occur, and consequently the accuracy of the

results were reduced somewhat. The average value of four measurements

for each of three samples is shown in Table A3.

METHOD III: The time difference between the very short

pulses (shorter than 2d.c) reflected from the front and the rear

interface of the sample was measured. This method has the advantage

of measuring the velocity over twice the thickness instead of just

over one thickness, as Method I. However, care must be taken to allow

for the phase change which occurs upon reflection at the rear interface,

and the correct portion of the two pulse returns must be compared. The

average value of four measurements for each of three samples is given

in Table A3 under the heading Method III.

TABLE A3

THE VALUES OF THE SPEED OF SOUND IN

MIXTURES OF SCOTCHCAST AND SAND

MIXTURE METHOD I METHOD II METHOD III MEAN VALUE

Pure Scotch- 1743 m/sec 1800 m/sec 1789 m/sec 1777 m/sec
cast

1:1 1826 m/sec 1959 m/sec 1925 m/sec 1903 m/sec

1:3 2253 m/sec 2401 m/sec 2346 m/see 2333 m/sec

The values of the speed of sound listed in Table A5 under Method I are

the average values of the speed of sound measured in the frequency

range 100 - 500 kHz.
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4. Measurement of the Absorption

The absorption of a medium is generally identified as the

imaginary part of the complex wave number

k=k + ia
0

Absorption is usually measured by varying the source-receiver

distance while maintaining a constant source output; the signal loss

after spherical spreading has been removed is then the absorption loss

(assuming a homogeneous mediam).

In the case at hand, the determination of the absorption is

not so simple since only one sample of absorbing material of fixed

thickness was available. The absorption can be determined, however,

by measuring the reflected level of a short pulse and the front inter-

face and the transmitted level of this pulse through the disk. The

transmitted pressure is given by

TPi = T12 T2 1 e piPi (A6)

where Eq. (A6) represents the transmitted pressure for pulselengths

L < 2d material T is the single interface transmission coefficient
cwater 12

from water into the material, T21 is the single interface reflection

coefficient from the material into water, and d is the thickness of

the sample. Consideration of the boundary conditions gives

S1 + RI2 T 12

1 + R21 T 21 P (A7)

and

R12 2 'R21
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where R represents the reflection coefficient, and the subscripts

indicate the same interfaces as those of the transmission coefficients.

Substituting Eqs. (A7) into (A6) gives

TR2 e-ad (A8)
T= (1 - R1 2 ) e

The experimental quantities which have been measured are the magnitudes

Ij'I and IR12 1, and the absolute value o-P Eq. (A8) is

ITI = [1 - IR1212]e-a1 (A9)

Consequently, a is given by

Both JR1 2 1 and ITI have been measured as a function of frequency in the

range 150 to 500 kHz for each of the three samples. From these measure-

ments a can be determined according to Eq. (AlO). In Chapter III of

this report, it was pointed out that if a has a first power frequency

dependence, then k could be written as

k=ko(l+i ) + (A-l)

where

a' y ,a (A-12)

and X is the wavelength in the material.
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The values of a and a' for each of the mixtures are given in

Table A4. The value of a' is also plotted in Dwg. AS-71-359 as a

function of frequency. From the drawing it appears that W' is a

constant, and consequently a does indeed have a first-power frequency

dep-denee.

TABLE A4

THE MEASUREMENT OF THE ABSORPTION COEFFICIENI VERSUS FREQUENCY

Frequency Pure Scotchcast Mixture 1:1 Mixture 1:3
S(ir.-I) a" a(in.-I) al a(in.-I) U1

150 0.34/in. 0.159 0.39/in. 0.194 0.49/in. 0.300

200 0.37/in. 0.129 0.38/in. 0.142 0.52/in. 0.239

250 0.46/in. 0.129 0.64/in. 0.192 0.45/in. 0.165

300 0.65/in. 0.152 0.83/in. 0.207 0.68/in. 0.208

350 0.73/in. 0.146 0.77/in. 0.165 0 .84/in. 0.220

400 0.81/in 0.142 0.97/in. 0.182 0 .95/in. 0.218

450 0.98/in. 0.152 1.17/in. 0.195 1.07/in. 0.218

500 1.29/in. 0.180 1.46/in. 0.219 1.16/it. 0.213

0.149 ± 0.016 0 .187± 0.023 0 .223•±0.034
Mean Mean Mean

:f the mean value of the absorption is scaled to a frequency

of 3.5 kHz, it is found that the absorption in dB per foot for each of

these materials is

Pure Scotchcast - 0.85 dB/ft

Mixture 1:1 - 1.09 dB/ft

Mixture 1:3 - 1.29 dB/ft
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These values are quite typical of those a!tually occurring

in ocean bottoms.

5. Summa

The mean or best values of the data presented in Tables Al - A4

are collected into Table A5. On the whole, the errors in the measurements

are on the order of 3% or less except for the absorption coefficient, for

which the error is about 10%. The greater dispersion in the absorption

coefficient values arises because of the difficulty of measuring the

reflection coefficient at normal incidence. The difficulty was simply

geometrical; the precision of the positioning system used was not good

enough to be certain that the transducer beam was perpendicular to the

sample at each measurement.

The most striking feature of the physical parameters given in

Table A5 is the excellent modeling obtained. The values are quite

typical of higher speed bottoms (cbottom > ct) and are also completely

consistent for modeling purposes (that is, none of the parameter values

are anomalous with respect to the cther values).
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APPENDIX B

Personnel on Contract N00024-70-C-1279

Naue Deree Period
M. L. Boyd B.S. in Physics April 1970 - March 197lR. L. Deavenport M.A. (Math) April 1970 - March 1971H. G. Boy M.S. in Physics April 1970 - March 1971

P.J. Welton B.A. (Math/Physics) April 1970 - March 1971r
I

115

Preceding page blank



I

REFERENCES

1. E. Y. T. Kuo, "Wave Scattering and Transmission at Irregular
Surfaces," J. Acoust. Soc. Am. 36, 2135-2142 (1964).

2. K. V. Mackenzie, "Reflection of Sound from Coastal Bottoms,"
J. Acoust. Soc. Am. 32, 221-231 (1960).

3. E. L. Hamilton, et al.,"Acoustic and Other Physical Properties
of Shallow Water Sediments," J. Acoust. Soc. Am. 28, 1-15(1956).

4.* C. S. Clay, "Estimation of the Statistical Properties of the
Ocean Bottom," Hudson Laboratories Technical Report No. 138
(December 1967).

5. I. Tolstoy and C. S. Clay, Ocean Acoustics (McGraw-Hill Book Co., Inc.,
New York (1966).

6. K. Krishen and W. W. Koepsel, "Analysis of Acoustic Wave Scattering
from a Rough Layer," J. Acoust. Soc. Am. 46, 617-622 (1969).

7. C. Eckart, "The Scattering of Sound from the Sea Surface,"
J. Acoust. Soc. Am. 25, 566-570 (1953).

8. A. K. Fung and Hsiao-Lien Chan, "Backscattering of Waves by
Composite Rough Surfaces," IEEE Ant. Propagat. AP-17, 590-597
(1969)

9. B. E. Parkins, "Omnidirectional Scattering of Acoustic Waves by
Rough Imperfectly Reflecting Surfaces," J. Acoust. Soc. Am. 41,
126-134 (1967).

10. A. A. Kovalev and S. I. Pozdnyak, Radiotekn 16, 28-33 (1961).

11. A. K. Fung, R. K. Moore, and B. E. Parkins, "Notes on
Backscattering and Depolarization by Gently Undulating Surfaces,"
J. Geophys. Res. 70, 1559-1562 (1965).

12. P. Beckmann, "Depolarization of Electromagnetic Waves Backscattered
from the Lunar Furface," J. Geophys. Res. 73, 649-655 (1968).

117

Preceding page blank



REFERENCES (Cont'd)

13. D. E. Barrick and W. H. Peake, "Scattering from Surfaces with
Different Roughness Scales; Analysis and Interpretation,"
Research Report BAT-197A-IO-3, Battelle Memorial Institute,
Columbus Laboratories, 1 November 1967.

14. T. Hagfors, "Scattering and Transmission of Electromagnetic
Waves at a Statistically Rough Boundary between Two Dielectric
Media," in Electromagnetic Wave Theory Part 2 (Pergamon Press,
New York, 1967), pp. 997-1012.

15. L. M. Brekhovskikh, Waves in Layered Media (Academic Press,
London and New York, 1960), Chapter 4.

16. T. Hagfors, "Backscattering from an Undulating Surface with
Applications to Radar Returns from the Moon," J. Geophys. Res. L9,
3779-3783 (1964).

17. A. Stogryn, "Electromagnetic Scattering from Rough, Finitely
Conducting Surfaces," Radio Science 2, 415-428 (1967).

18. B. C. Heezen, et al., "Physiographic Provinces and Acoustic
Domains" JUA(LJF) 17, 15-24 (January 1967).

19. R. M. Pratt, "The Ocean Bottom," Science 138, 492-495 (1962).

20. R. B. Patterson, "Relationships between Acoustic Backscatter and
Geological Characteristics of the Deep Ocean Floor," J. Acoust.
Soc. Am. 46, 756-761 (1969).

21. W. B. Randlett and N. J. DiPiazza, "Bottom Reflection Loss
Measurements in the Western North Atlantic," Proceedings of the
22nd Navy Symposiwm on Underwater Acoustics, Washington, D. C.,
ONR Symposium Report ACR-llO (1964).

22. G. H. Sutton, et al., "Physical Analysis of Deep Sea Sediments,"
Geophysics 24, 779 (October 1957).

23. A. Shumway, "Sound Speed and Absorption Studies of Marine
Sediments by a Resonance Method," Parts I and II, Geoph-ysics 25,
451, 659 (196o).

24. E. Hamilton, "Thickness and Consolidation of Deep Sea Sediments,"
Bull. Geop. Soc. Am. 70, 1399 (November 1959).

118



REFERENCES (tont'd)

25. J. Nafe and C. Drake, "Variation with Depth in Shallow and Deep
Water Marine Sediments of Porosity, Density, and the Velocities
of Compressional and Shear Waves," Geophysics 22, 523 (July 1957).

26. L. Hampton, "Acoustic Properties of Sediments," J. Acoust.
Soc. Am. 42, 882 (1967).

27. A. Wood and D. Weston, "The Propagation of Sound in Mud,"
Acustica 14, 156 (1964).

28. B. Cole, "Marine Sediment Attenuation and Ocean-Bottom Reflected
Sound," J. Acoust. Soc. Am. 38, 291 (1965).

29. B. F. Kur'yanov, "The Scattering of Sound at a Rough Surface with
Two Types of Irregularity," Sov. Phys.-Acoust. 8, 252-257 (1963).

30. P. Becknann, "Scattering by Composite Rough Surfaces,"
Proc. IEE '5_3, 1012-1015 (1965).

31. I. M. Fuks, "Theory of Radio Wave Scattering at a Rough Sea

Surface," Radiofizika 9, 876-887 (1966).

32. L. A. Volovova and Yu. Yu. Zhitkovskiy, "Acoustic Determination
of Same Irregularities of the Ocean Floor," Oceanology (USSR) 6,
867-871 (1966).

33. Yu. Yu. Zhitkovskiy and Yu. P. Lysanov "Reflection and Scattering
of Sound from the Ocean Bottom (Reviews," Soy. Phys.-Acoust. 13,
1-13 (1967).

34. P. B. Schmidt, "Bottom Reverberation Measurements in the Norwegian
Sea and North Atlantic Ocean," Informal Report No. 69-58, Naval
Oceanographic Office (1969).

35. A. W. Nelle, et al., "Acoustical Properties of Water-Filled Sands,"
J. Acoust. Soc. Am. 35, 1394-1408 (1963).

36. Yu. Yu. Zhitkovskiy, "An Acoustic Method for Measuring Distances
Between Irregularities on the Ocean Floor," Oceanology (USSR) 6,
874-875 (1966).

37. L. M. Brekhovskikh, "On the Role of Acoustics in Exploring the
Ocean," Atmospheric and Ocean Phys. Series i, 1050-1064 (1965).

119

I w • ......



REFERENCES (Cont' d)

38. A. D. Lapin, "Scattering of Sound Waves in Irregular Waveguides,"
Soy. Phys.-Acoust. 4, 272-279 (1958).

39. A. D. Lapin, "Sound Scattering in an Irregular Waveguide at the
Normal Mode Critical Frequencies," Soy. Phys.-Acoust. 15,
490-493 (1970).

40. A. D. Lapin, "Sound Propagation in Inhomogeneous Waveguides,"
Soy. Phys.-Acoust. 15, 198-200 (1967).

41. Yu. P. Lysanov, "On the Field of A Point Radiator in a
Laminar-Inhomogeneous Medium Bounded by an Uneven Surface,"
Soy. Phys.-Acoust. 7, 255-257 (1962).

42. Yu. P. Lysanov, "Influence of Inhomogeneity of the Medium on
Wave Scattering by an Uneven Surface," Soy. Phys .- Acoust. 13,
66-70 (1967).

43. Yu. P. Iysanov, "Mean Coefficient of Reflection from an Uneven
Surface Bounding an Inhomogeneous Medium," Soy. hys .- Acoust. 15,
340-344 (1970).

44. H. P. Bucker, "Sound Propagation in a Channel with Lossy
Boundaries," J. Acoust. Soc. Am. 48, 1187-119. (1970).

45. H. P. Bucker, "Normal Mode Solution for Sound Propagation in a
Surface Duct with a Rough Surface" (U), JUA(USN) 19, 13-28
(January 1969). (CONFIDENTIAL)

46. H. W. Marsh, "Sound Reflection and Scattering from the Sea Surface,"
J. Acoust. Soc. Am. 35, 240-244 (1963).

47. C. S. Clay, "Effect of a Slightly Irregular Boundary on the
Coherence of Waveguide Propagation," J. Acoust. Soc. Am. 36,
833-837 (1964).

48. W. C. Meecham, "Propagation of Radiation in an Inhomogeneous
Medium Near an Irregular Surface," J. Acoust. Soc. Am. 25, 1012(L)
(1953).

49. J. G. Parker and R. W. Bryant, "A Statistical Ray Theory of Sound
Propagation in Oceanic Isothermal Surface Layers," Naval Research
Laboratory Report No. 4196 (20 July 1953).

50. B. J. Schweitzer, "Sound Scattering into the Shadow Zone Below an
Isothermal Layer," J. Acoust. Soc. Am. 44, 525-530 (1968).

120



REFERENCES (Cont'd)

51. H. N. Van Ness "Calculation of the Scattered Field in the Shadow
Zone," JUA(USN) 19, 47-54 (January 1969).

52. A. D. Selfer and N. J. Jacob.son," Ray Transmissions in an
Underwater Acoustic Duct wit' - Pseudorandom Bottom," J. Acoust.
Soc. Am. 43, 1395-1403 (19t8i,

53. Yu. P. Lysanov, "Average Decay Law in a Surface Sound Channel
with an Uneven Boundary," Sov. Phys.-Acousts. 12, 425-427 (1967).

54. M. Schulk'n, "The Propagation of Sound in Imperfect Ocean Surface
Ducts," U.S. Navy Underwater Sound Laboratory Report No. 1013
(22 April 1969).

55. R. J. Urick, "Intensity Summation of Modes and images in Shallow-
Water Sound Transmission," J. Acoust. Soc. Am. 46, 780-788 (1969).

56. A. D. Watt, VLF Radio Engineering (Pergamon Press, Oxford, 1967),
pp. 244-255.

57. H. W. Marsh, M. Schulkin, and S. G. Kneale, "Scattering of Under-
water Sound by the Sea Surface," J. Acoust. Soc. Am. 35, 334-340
(1961).

58. H. P. Bucker and H. E. Morris, "Epstein Normal-Mode Model of a
Surface Duct," J. Acoust. Soc. Am. 41, 1475-1478 (1967).

59. M. A. Pedersen and D. F. Gordon, "Normal Mode Theory Applied to
Short-Range Propagation in an Underwater Acoustic Surface Duct,"
J. Acoust. Soc. Am. 37, 105-118 (1965).

60. M. A. Pedersen and D. White, "Ray Theory of the General Epstein
Profile," J. Acoust. Soc. Am. 44, 765-786 (1968).

121


