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INTRODUCTORY  REMARKS 

Jenny Bramley 
Night Vision Laboratory 
Fort Belvoir,  Virginia 

I want to welcome this audience  to the 1970 Army Numerical 
Analysis  Conference.     As you all realize,  this  year one particular 
topic,  namely pattern recognition,  has been singled out for 
emphasis. 

My opening remarks on pattern recognition may at first appear 
to be directed solely  towards a narrow field,  but   I hope to make 
clear  that  they are much more general. 

According to the latest unabridged Webster's Dictionary,   the 
noun "pattern" has  16 different meanings.  Including "patron saint's 
day in Ireland."    But even if we restrict ourselves to the more 
conventional meanings of  "pattern," such as "representative 
instance" or "typical example," or "mechanical design," or "form 
or configuration," we must conclude that PATTERN RECOGNITION is 
the most  encompassing  of  all disciplines.     For  example,  in atomic 
theory, we try to recognize the pattern of atomic energy levels, 
in electron devices,  we want  to recognize the  pattern of,  say,   the 
voltage-current characteristic, while in numerical analysis, we 
obviously  try to recognize the pattern of number  sequences. 

Forgetting  these claims  to grandeur  for our  chosen topic,   I 
should  like to quote  the formulation given by Brick and Owen  in 
a book  called  "Computer and   Information Sciences": 

"Pattern recognition Implies  the assignment of a name or 
representation  (be  it  simple or  complex)   to a class   (or group of 
classes)   of stimuli whose members  have something  in common.     They 
are "similar"  in a useful sense.     One of  ehe major problems  in 
pattern recognition  is  the determination of a  set  of represen- 
tative characteristics which 

(a) exploit differences between pattern stimulus  classes; 

(b) are of minimal sensitivity  to variations among members 
of  the same class,  i.e.,   they are most  characteristic 
of  the class as a whole,  and 

(c) satisfy   (a)   and  (b)  with maximum efficiency as measured 
over  the  ensemble of J pattern classes   to be handled." 

Ill 
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Problems In pattern recognition (In the narrower sense of 
the word)  arise In a variety of fields, some of which are Included 
among the papers at this conference.    As I see It, once a set of 
representative characteristics has been specified,  the types of 
solutions desired fall Into two basic categories: 

1. We want to clarify a pattern distorted during trans- 
mission or reception so as to make it more readily recognizable 
by a human observer. 

2. Uomg a specified training data set, we want to design or 
train a recognition apparatus so that — within prescribed limits 
of error — it can recognize samples not included in the training 
set. 

: 

I 
Sometimes,  the human observer specified in the first 

category may be replaced by a recognition apparatus, i.e., 
approach acts as a preprocessor for the second. 

the first 

In conclusion I want to say that we have tried to include both 
broad overviews and specific applications among the papers at 
this conference.    We hope that you will recognize the pattern of 
our endeavors. 

o •      •      • 

The Army Mathematics Steering Committee,  the sponsor of these conferences, 
wished to  thank the various speakers and chairmen for their help In the 
conduction of the 1970 Army Numerical Analysis Conference.    Dr.  John Glese, 
the Chairman of the conference, and the members of his Arrangements Committee— 
Jenny Bramley, Francis Dressel, Jack Hlllard, and William Sacco—are to be 
congratulated on organizing such an informative program on the Theory and 
Foundations of Pattern Recognition. 
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FEATURE  EXTRACTION:     A SURVEY 

M.  D.   Levlne 
Department of Electrical Engineering 
McGill University, Montreal, Quebec 

I would like to thank the organizers of Cue  1970 Army Numerical 
Analysis Conference for Inviting me here to present this talk today. 
The subject of my talk Is primarily based on material appearing in a 
paper published in the Proceedings of the IEEE entitled "Feature 
Extraction: A Survey" and appearing in Volume 57, No. 8 of its 1969 
issue [1]. For a complete set of references, I recommend that you 
refer to this paper. The talk will be a presentation of different 
slides, but because of the large number involved it will be impossible 
for me to give the individual credit for most of these. 

Let me begin by asking the following question:  "Do we as human 
observers know what we are looking for? Do we really know what the 
desired features are or should be?" I contend, after considerable 
study in this area, that in fact we do not.  It is interesting to 
make a comparison between some of the really fantastic operations that 
the human mind is capable of achieving as compared with the rather 
mundane tasks that computers have been so far programmed to do. 
Slide (1) [all slides are at the end of this article] shows a sample 
of scanned letters A which was obtained in a character recognition 
project; it is obvious that the different A's vary in many aspects, 
however, it is quite easy for a person to recognize all six examples 
as a letter A. How are we doing this? Are we using template matching? 
Possibly, but in addition, human recognition is very dependent on 
context.  For instance, if we examine slide (2), I think everyone 
would agree that most people would read the words shown as THE CAT 
even though the secohd letter in the word THE and the second letter in 
the word CAT are identical.  It appears that we are using context in 
order to read this. Similarly, slide (3) shows an interesting phenomenon 
known as the "Peter-Paul Goblet" [2].  In this case, the appearance of 
a part depends on the whole in which it is embedded rather than the 
contrary, which is usually accepted as the conventional wisdom.  Let 
us consider slide (4).  "Is this an elliptical object or is it a 
circle in perspective?" We really cannot answer this question without 
the use of context until we examine slide (5) where it becomes 
obvious that in fact it is a circle in perspective representing the 
hoop being held by the little boy [3]. A similar example is shown 
in slide (6).  What does this figure represent? If we examine slide 
(7) we see that is is a puddle and in fact th-'.s really stresses the 
importance of contextual information which ic required for human 

*Those slides for which figure captions (and references in the captions) 
appear, refer to this paper. 
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recognition [3]. Another question we may ask Is the following:  "Are 
familiar patterns recognizable no matter where or how they fall on the 
retina of the eye? Slide (8) shows that we can tolerate considerable 
ambiguity in this respect.  If one tilts one's head slightly to the 
right, one can see that this figure represents a little puppy; if 
on the other hand one tilts one's head to the left, one can see that 
the figure could possibly represent the chef in a rather prestigious 
restaurant. Human recognition is very heavily dependent on verbal 
cues as well. For Instance, if we examine slide (9), it is quite 
difficult for us to decide what this figure represents. However, if 
I present to you a very simple cue by saying that it belongs to a 
rather ill-defined category, such as for example musical instruments, 
I think most of your will agree that the figure is recognizable as a 
violin.  Finally, let me show you slide (10) which represents the 
"RAT-MAN FIGURE" [2].  If we look at this in one way, we can see a 
little rat with a rather long tall scurrying around. On the other 
hand, with a little bit of imagination we can also see this figure 
as the portrait of a man (rather ugly, I guess) wearing large glasses, 
which in fact are quite the style these days.  It has been shown that 
after viewing many animals most people will see this as a rat.  In 
other words, the previous visual cues have conditioned the recognizer 

v to see this as a rat; however, there are people who will still see 
this as a man. My Intention in showing you th-se last few slides is 
to demonstrate to you that man's capabilities as far as feature 
extraction and pattern recognition are concerned are very complicated 
and are really not well understood. Therefore, when we set ourselves 
the task of programming a computer to perform quite similar operations, 
we are setting for ourselves a very difficult task Indeed. 

The main body of my talk will be concerned with two main headings: 
the first, micro-analysis and micro-operations, and the second, macro- 
analysis and macro-operations.  This division is really only helpful 
from a conceptual point of view and in fact I think one could put 
strong arguments for taking any particular method and considering it 
under heading one rather than two and vice versa. I will briefly 
discuss under various headings some Interesting, or what I consider 
the most interesting methods and philosophies. Most of the methods 
are unfortunately rather primitive and it will become obvious that a 
considerable amount of research is required to develop organized and 
theoretical methods for obtaining features.  In my talk I will stress 
the importance of practical problems for the following reasons: 

(I) I think that in engineering we should use practical problems 
to stimulate the discovery of new techniques and 

(II) I feel this is where the important real problems arise. 

For example, it is not enough to write a program which will categorize 
chromosomes or cells; in an actual situation one finds overlapping 

. > 
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chromosomes or cells and a very important aspect of such a problem 
would be the writing of a program which could distinguish between, for 
example, two chromosomes that are overlapping and a large chromosome. 
The problem of isolating different parts of a picture in order to 
then recognize them is a difficult one for a computer, and therefore 
the solution to the problem of deriving geometrical relationships is 
not easily found.  If we examine slide (11) we see that it is very 
easy for us to distinguish figure (a) submerged in figure (d) even 
though a rather complicated pattern has been superimposed on the 
former. Now I think that if we had to write a program to distinguish 
or isolate figure (a) we would be confronted with a difficult task 
indeed. 

Let us examine the standard conceptual configuration which is 
typically used for pattern recognition problems (shown in slide (12). 
On the left, we assume that the image is obtained by some hardware 
device which could be a flying spot scanner, an image dissector, a 
mechanical device or some other digitizer such as for example, in the 
case of charts of graphs.  In this way we are able to take a picture, 
a chart, or any other data and represent them internally in the 
computer as a list of data. This is referred to as the transducer 
stage. The next stage is the preprocessor or feature extractor 
followed by the classifier which classifies the different inputs 
to the whole system.  Generally speaking, the feacure extractor and 
preprocessor stage is not really very well defined and is usually 
accepted to mean anything that occurs between the hardware, trans- 
ducing stage and the output classification stage. 

Suppose we are confronted with a real problem.  Do we have any 
rules or theory to guide us with respect to the feature extraction 
stage (slide 13)? Generally speaking, the following three points 
are relevant: 

(1) What features are important? - in fact we have no theory 
to guide us. 

(li) The design of feature extractors has until now been empirical 
and uses many ad hoc strategies, and finally 

(lii) We can usually get some guidance from biological prototypes 
and possibly maybe even psychology. 

-i 

The first concept which I wish to examine is referred to as 
smoothing. Here, we are concerned with the averaging-out of noise 
much in the same way as the problem which arises in the case of 
electrical noise. The noise in the digitized Image case can either 
be represented by the absence or the appearance of a signal. An 

-■■■■- - - - - - ■ ■ ■ ■ ■ —.^-J  . .■'- 



■■■I""11-11"' l,i!"iiM ■»■■««Hniii^iMaai^ 

example of a noisy situation  is  demonstrated  In slide   (14)  which is 
a x80 magnification of a sectioned lung.    The structure that is 
visible here is  the alveolar structure which is prevalent in the 
human lung.    This slfle was  used in a project in which  I am presently 
involved and one of whose main objectives is  to obtain the mean 
linear intercept of the alveolar structure in the lung  [4,5,6]. 
This measurement  can be related  to the internal surface area of the 
lung which is  of  interest   to  pathologists  in their study  of emphysema. 
In order to obtain the mean  linear intercept  it  is desirable to 
neglect such things as small  specks which are artifacts  and  the holes 
in  the alveolar walls.     From a physical point of view one knows  that 
there are not actual holes   in  the walls but  these can arise either 
because of the way  in which   the histological section was  obtained or 
because of noise in the digitization process.    Therefore,   the first 
difficulty to us  in this  problem and in fact most such  problems 
is   the smoothing-out or elimination of this  noise.     One method of 
accomplishing this  is demonstrated in slide  (15).    Normally the 
image matrix is  rectangular  and one superimposes on this matrix a 
3x3 submatrix or window where each element  in the submatrix can 
assume one of  eight light density values,  Y  , Y  ,   .   .   .,  Y„, where 
Y    represents white and Y    represents black. Using the relationship 
tnat  I will show you, we can map the original digitized matrix A 
into a new matrix B which has  been smoothed or averaged.   Slide  (16) 
shows  the algorithm that we used.     If the sum of  the  light densities 
impinging on a given submatrix is greater than a threshold and the 
middle element  is  not white,then we set b      equal to B....     If on the 
other hand,  the middle is  blank we set b..   equal to Y„.     If  the sum 
is  less than a  threshold,   then we set b.   equal  to Y   , which is  in 
fact just making it equal to white.    There are many problems even 
with such a simple method.     For example, how large an aperture should 
we use?    Is  3 x 3 enough?     Should we use 5x5 and so on?    What kind 
of aperture?    Is  there any value in using a square aperture?    Maybe 
we  should use a hexagonal aperture as shown in slide   (17) .     How do 
we  choose the  threshold  for   the algorithm that  I just discussed? 
Should we choose it once and  for all, or should we make  it adaptive 
to  the actual data?    It  can be easily shown with such an algorithm 
that  it is quite possible for us to insert things or remove others 
that are of interest to us.     Slide  (18)  shows a digitized version 
(matrix A)  of  the  lung section  that  I showed  in slide   (14).     Slide 
(19)   is just a  close-up of  slide  (18)  showing the different  grey 
levels represented by a number  from 0  (blank)   to  7.     Slide   (20) 
is the smoothed version, matrix B,  of  the original digitized matrix 
A and we can see  that the  lines are generally thicker and   the islands 
or  specks are generally bigger   in size. 

Another operation similar   in nature to the one mentioned above 
is  that    related  to filtering operations on lines.    Mainly,   these 

have been used for real time  character recognition where one is 
concerned with stroke analysis  in real time as a person writes on 
an  instrument such as a RAND  tablet.     In fact  the methods  are 

i 
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similar to those generally In use In numerical analysis. As opposed 
to the general averaging problem mentioned above. In this case the 
line for the most part Is well defined. Usually a thinning operation 
Is also performed in real time. 

Contour tracing is generally used for obtaining line drawings. 
The contour or outline carries a significant amount of the information 
required for the recognition of objects and an additional advantage 
is that it is Independent of translation, size and rotation. An 
example of the use of contour analysis is the experimental reading 
machine for the blind by Mason and Clemens [7],  The contour is 
determined before any coding which later can be used in the recog- 
nition of the characters. The next slide, slide (21) shows the 
simple algorithm for following the contour. The follower turns right 
after meeting a white element, turns left after meeting a black 
element, but after three similar moves is required to make the 
opposite choice.  This is necessary since in view of the noise in 
the scanning process, it is quite possible to return to an element 
and find a different reading.  Slide (22) shows a human fingerprint 
which was obtained during a project whose main objective was the 
determination of a digital method for generating a reference point 
in the fingerprint [8].  The contour was used to determine the 
ridge curvature, and then a standard gradient method was employed 
to find the direction of movement.  In such a noisy situation, as 
can be seen from the slide, it is quite difficult to program a 
contour follower which will always successfully follow the desired 
contour.        . - 

At this point It Is interesting to consider the general area of 
line drawings and sketches and Indeed the intimate relationship 
that exists between the field of computer graphics and pattern 
recognition. After all, in both areas of endeavour one is concerned 
with visual Images as programmed on the computer.  An interesting 
system where graphics and pattern recognition were used to advantage 
is that suggested by Krull and Foote [9]. These authors were 
Involved with a contour follower whose progress was monitored on a 
graphics console and the program so constructed that human inter- 
vention was possible when the follower failed.  Another interesting 
problem in this area is the recognition of faces from photographs. 
In order to accomplish this, It is necessary to first determine line 
drawings and from these perform the necessary pattern recognition. 
In a similar vein is the problem of cartoon recognition, in particular 
political cartoons.  It Is well known that we are able to recognize 
faces of different political personages drawn by different cartoonists. 
How do we do this?  It would be interesting to study this problem 
as it may give us some interesting insights into the pattern 
recognition in both humans and computers. 



 lILIWIIIHMWIWimi "     p"1 ii WMIflilifKl 

Related to contour followers are the programs or algorithms 
which perform edging operations. This procedure is equivalent to 
that of differentiation and results in a display of the sharp 
changes in a given image.  The reason possibly for the interest in 
this type of procedure is that it is hypothesized that the visual 
cortex in the human tends to detect straight lines. What we are 
doing here is high frequency filtering as opposed to the averaging 
operation discussed previously.  Slide (23) is an example of an 
image communication system which incorporates separate transmission 
of high and low frequency content. This is an example of a possible 
picture communication system and is really not suggested as a 
technique for pattern recognition. A possible advantage of this 
typt of communication system is that fewer samples are required 
for the low frequency data than for the high frequency data which 
it is hypothesized contain the information obtained by an edging 
operation. Slide (24) shows a typical receptor configuration 
postulated by Deutsh [10] which was used as an Integral part of his 
SLEN. One can see that the ON receptors in the middle have a 
weighting of two while the OFF receptors on either side have 
weightings of minus one.  If we excite this array, for example, with 
an even excitation, then the output of this sort of a combination 
would be zero. On the other hand, if we convolve this array with 
long orthogonal lines, the output would also be zero. Slide (25) 
shows how a SLEN might be connected to give us a binary output. We 
can now arrange these SLENS in groups to cover a whole field and 
Deutch has used this concept to recognize digits.  Since we 
recognized that edging is a process of differentiation, we may 
accomplish this In two dimensions as ie shown in slide (26). If 
we apply an edging operation in two dimensions to a typical scene, 
for example an office scene (slide (27)), we can produce a line 
drawing of this rather complicated image. The next slide,(slide (28)) 
shows the lower half of the previous picture.  The features are 
given by line segments at any one of eight different angles and 
the centers of the lines are plotted. Slide (29) shows a close-up 
of the previous image.  It is quite obvious that this scene is far 
too complex for such a simplistic approach and one would have great 
difficulty in making any headway with only this type of operator. 

s 

Another interesting approach to pattern recognition and preprocessing 
is that using spatial frequency response methods as has been done at 
the Jet Propulsion Laboratory with respect to the image enhancement 
of lunar pictures [11, 12]. This is accomplished using a digital 
filtering or as it is otherwise known, spatial filtering, and is 
capable of producing some rather striking results.  Slide (30) is 
an example of an unprocessed radioisotope scanner chest film. The 
horizontal lines that can be seen are rather distracting to the 
observer. Slide (31) shows the same film after the removal of the 
scan lines and slide (32), after a low pass filtering operation. 
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which has the effect of removing the disturbing non-random structure. 
A comparison of slides (30) and (32) shows the power of these 
methods.  Slide (33) shows an unprocessed radiograph of bone while 
slide (34) shows the same radiograph after the background has been 
removed using a high pass filter and the contrast has been enhanced. 
A considerable amount of detail is now visible which was not available 
in the original film.  Slide (35) shows an unprocessed retina photo- 
graph while slide (36) shows an enlargement of the section which will 
be enhanced.  Slide (37) gives this area after some contrast 
enhancement and slide (38) shows the same scene after even further 
enhancement. Note the improved definition of the blood vessel wall 
in a picture which is quite striking. 

Shape and curvature are two concepts which are of great concern 
in pattern recognition.  It has been stated that "inflection points 
on a contour are its informationally richest part" [13]. Slide (39) 
shows a picture where the regions of curvature on the original 
photograph have been connected by straight lines.  I think it is 
obvious to everyone that this line drawing represents a small kitten 
and thus all the pertinent Information is represented by the curvature. 
Slide (40) shows a simple way of coding the curvature along a straight 
line where an eight level scale is used for quantizing the directions 
along a given curve.  This method of coding, called chain encoding, 
has been postulated by Freeman [14] and has been used to describe 
pieces in an apictorial jigsaw puzzle. The problem in this case was 
to use a computer to solve jigsaw puzzles where only the shape of 
the pieces is of importance. 

Another topic of Interest can be referred to as correlation 
methods. These are often called either template matching or windowing 
techniques.  In general, the operation can be performed either 
optically or digitally. Some of the problems associated with this 
type of approach relate to the fact that correlation methods are 
sensitive to translation magnification, brightness, contrast, 
orientation, and noise of any nature. Often one reads in the literature 
that by using prenormalization as an initial stage one can then 
successfully apply correlation methods. However, prenormalization is 
extremely difficult since even examples of one particular type of 
object may not have similar shape.  If we do assume that the appli- 
cation of correlation methods to pattern recognition by computer is 
difficult, an Interesing argument arises with respect to human 
recognition.  I have often discussed this with psychologists who 
insist that the basic level of human recognition is premised on the 
use of templates.  Is this In fact a valid argument? I am prepared 
to agree with them that at the lowest level of recognition, even in 
the computer, it is necessary to use templates. However, a question 
does arise as to how high in the hierarchy of pattern recognition 
can one go until one reaches a point at which templates are no 
longer useful. 

. 
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A large number of templates have been postulated In the literature 
and some of these are shown In the following slides.  Slide (41) shows 
an edge detector very similar to the SLEN previously discussed. Slide 
(42) demonstrates one of the problems that arises with such an edge 
detector where we desire to correlate with respect to an object 
exhibiting a certain radius of curvature.  We can see the effect that 
orientation has by noting that the correlation increases monotonically 
with the radius of the object and decreases with the angular rotation 
of the edge.  Slide (43) shows a window which could be used for 
detection of corners; slide (44) shows a line segment detector which 
would unfortunately be very sensitive to the width of the line, and 
would require extreme uniformity in the lines being detected to be 
of any use; slide (45) shows two interesting windows - one for detecting 
orthogonal intersections, and one for detecting spots, again of a 
certain uniform size.  Slide (46) shows an interesting example of 
correlation techniques which have proven to be successful. The 
application is in the area of real time recognition of hand printed 
characters. As the person writes on a RAND tablet, the pattern 
recognition program in the computer is required to identify the 
printed characters. A property vector is constructed, which describes 
the position of the "pen" as a function of time, using the matrix 
shown in the slide.  The next step is to correlate these vectors. 
Note that here we have an extremely valuable piece of additional 
information, that is, the temporal information which is usually 
not available in the cases mentioned above. 

k 

i 

An important concept in preprocessing and feature extraction is 
that of connectivity. Let us consider a previous slide where 1 showed 
you the detailed alveolar structure in the lung. Here we were Interested 
in the mean linear intercept which can then be related to the total 
internal surface area of the alveoli in the lung.  In order to 
determine the mean linear intercept, it is necessary to detect 
intersections with the wall structure, which by the way, is known to 
form a connected set.  It is extremely difficult to detect the inter- 
sections using, for example, the intersection detector I showed you 
a moment ago.  For one thing, it is necessary to ignore all the islands 
and specks and other artifacts which are not part of the alveolar 
structure. To solve this problem we used the concept of connectivity 
which has the effect of labelling the wall structure with one label 
as shown in slide (47), and all the other extraneous material in the 
slide with other labels which could then later be Ignored. Slide (48) 
shows a blow-up of the previous slide where the two islands which are 
not part of the desired structure are shown to have different labels 
than the wall structure Itself.  It is interesting, that connectivity 
is an important criterion for human visual recognition as well, but 
the big problem in its computer application is the effect of noise. :•-, ! 
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What kind of topologlcal properties can one actually use as 
features? There Is, of course, an Infinite variety and the specifics 
will depend on the actual application.  People have used lakes, loops, 
holes, arcs, arches, curves, etc., etc., etc. Two Interesting properties 
which are slightly different from the usual ones appearing in literature 
are presented by Munson [15].  Slide (49) shows an example of how one 
might obtain what Is called the concavity in a figure. First a contour 
follower Is used to obtain the contour of the figure 7 and from this 
the convex hull is calculated. The concavity is then defined as 
the connected region adjacent to both the figure and the hull. 
Similarly, slide (50) shows an example of how one might obtain the 
enclosures in a figure. Here we define the enclosure as the connected 
regions of ground touching the figure but not the convex hull. 

Let me now briefly discuss the concept of macro-processing, where 
I again would like to stress that this is really a conceptual cate- 
gorization rather than, in most cases, a practical one. The first 
concept of Importance here is that of parallel processing an approach 
that has been deified considerably in the literature.  Everyone 
agrees that parallel processing is a good idea but not much has been 
produced of a practical nature along these lines. There are many 
theoretical ideas on how this could be incorporated into pattern 
recognition problems. An interesting application is that of Hawkins 
[16] who has used electro-optical techniques in the form of image 
intenslfler tubes. He was able to perform parallel operations of 
addition, substractlon, multiply sums, spatial filtering and threshold 
logic.  As an example, let us consider slide (51) which shows a 
typical scene at one moment in r.ime.  Slide (52) shows the same scene 
a little later where now a man with a white shirt is standing behind 
the tree; notice his shadow in the foreground.  Now if we difference 
the two scenes in parallel, we see on the resulting slide (53) white 
regions which represent the shirt and shadow of the man. Of course, 
we are still left with the problem of pattern recognition in this new 
scene which Is by no means a trivial task. 

A feature which is of considerable importance to human recognition 
is that of textural Information. This type of global concept is 
easily recognized by people, but it is extremely difficult to achieve 
on a computer.  Essentially, in this case, we are interested in the 
frequency content of the spatial data.  For example, in slide (54) 
showing different lung sections, the pathologist is interested in 
grading the lung sections according to the degree of emphysema 
prevalent. We can see in the slide that the texture, at least in 
part of the sections, varies from section to section with the one at 
the top left hand corner being a normal lung and the one at the bottom 
right hand corner being a diseased lung. To program the computer to 
recognize these textural differences would be an extremely difficult 
task. 
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How do we as human observers describe a given object? This is 
usually done by using certain terms describing its shape, and of 
course we desire to do this in the computer as well. An interesting 
shape descriptor is the medial axis transform due to BLUM [17], The 
gross properties of the MAT are related to the structural properties 
of the pattern and can therefore be used as a description of the 
shape.  The MAT is generated by causing a given pattern to shrink 
down in size by allowing the area outside the pattern to propagate T 
with uniform velocity into the pattern. The MAT is then defined by 
the locus of self-intersections of the propagating boundary area. 
We may also use a grass-fire analogy to describe the construction 
of the MAT.  If we consider the pattern superimposed on a field of . 
grass, and if we consider that a fire is lit on the boundary of the \ 
pattern, we may Imagine the fire propagating to the center and 
extinguishing itself when the waves would meet up with each other. 
The lines of extinction can be considered to be the MAT.  In fact 
this process has been shown to be reversible if the temporal 
information is retained.  Slide (55) shows typical medial axis 
transforms for some simple objectc.  Slide (56) shows the MAT in 
terms of propagating wave as described previously, as does slide 
(57).  Slide (58) is an interesting demonstration of the possible 
usefulness of the MAT.  On the left is a simple sketch of a "stick 
man" and on the right is the same man, grossly distorted. Note 
however that the MAT's in both cases are similar and possibly this 
might be used as a powerful method of shape description which would 
overcome the usual problems in matching objects belonging to the 
same class. Finally slide (59) shows a CRT display of the MAT for 
a dog. 

I now come to what I consider to be the most promising approach 
to the pattern recognition problem, that is, the use of articular 
analysis or a linguistic approach to produce a two dimensional 
pattern recognition language. This is analagous, I feel, to how a 
human perceives and recognizes patterns. An interesting book on 
this subject is the one by Neisser [2].  Some papers on this subject 
have appeared but a considerable amount of research has yet to be 
done.  It is possible to make an analogy between pattern Images and 
ordinary language as shown in slide (60). Here we may arbitrarily 
relate the parts of the Image to the characters, the more complicated 
structure in the images to sentences, and the overall pictures or 
subpictures to paragraphs in a language. This powerful concept 
may be organized as shown in slide (61) which shows a hierarchical 
configuration for pattern recognition using articular analysis. At 
the lower level is the feature extractor which would use methods and 
algorithms of the type I have already discussed. The output of this r 

stage would be fed to a block where names would be assigned to 
classes of property lists as described in the previous stage. Next 
the program would, using a given pattern recognition language, make 
statements about relationships between the objects, the classes and 
the properties previously recognized. On the basis of these t;i 
statements the algorithm would then produce a classification which 

10 
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obviously would be quite different from the normal classification 
procedures now found in the literature.  I further feel that for this 
type of approach to show results one will have to perform the design 
of the language in a man-machine interaction environment as shown in 
slide (62). Parenthetically, I might add that we are presently 
developing such a system in the Department of Electrical Engineering 
at McGill University. At the bottom is shown a person interacting 
with a hybrid computer system via either a typewriter or preferably 
a graphics display and light pen.  The graphics display unit would 
be capable of displaying grey tone pictures of quite large matrices 
in order that the effect of computer algorithms on images and scenes 
can be evaluated properly.  In addition, via the display, the person 
is capable of interacting with the image scanner, requesting various 
scans as desired. This is not such an unusual environment, since it 
should be accepted that pattern recognition is intimately related 
to images, as is graphics.  In this context, an interesting study 
would be the relationship between such a postulated two dimensional 
pattern recognition language and certain graphics languages now 
appearing in the literature. 

Finally to end this talk let us examine the tremendous power 
of the human brain to perform recognition when the clues presented 
by the eye are minimal.  Consider slide (63). This is not a set of 
meaningless random lines but represents solid configurations; we 
all can recognize that this is a washerwoman on her knees next to 
her bucket of water! 
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DIGITAL IMAGE PROCESSING FOR TERRAIN PATTERN RECOGNITION 

Lawrence P.  Murphy 

Geographic Information  Systems  Branch,  Geographic Sciences  Division, 
U.   S.  Army Engineer Topogiaphic Laboratories,  Fort Belvoir,   Virginia 

ABSTRACT.    The U.   S.  Army Engineer Topographic Laboratories  have evaluated 
and  tested a prototype digital  image processing system for  performing pattern 
recognition experiments.     Tests  and  procedures are described  for  evaluating the 
Natural  Image Computer  (NIC)  with  its  systems software,   in addition  to  the 
conclusions  reached from the analysis.     The prototype system was  designed as 
an exploratory laboratory device  for pattern recognition studies  and  limited 
feature delineation capability using vertical aerial photography as  an in- 

' put.     The structure of  the  recognition algorithms  is based upon  recognition 
and  correlation to basic  feature shapes and statistical  characteristics of 
the grey scale distribution of Military Geographic  Intelligence.     The.NIC 
is  a versatile laboratory device  capable of accepting cut   film photographs 
and producing grey scale digitization of  the  imagery at  16,   32  and 6A grey 
scale  levels. 

INTRODUCTION.    The mapping and  intelligence community has  developed 
photographic collection systems  that  acquire data at a  rate  far  in excess of 
man's  ability to utilize or analyze.     However,   to date  little  progress has 
been made  in automating the processes  of detection,  recognition,   extraction, 
and symbolization of geographic  intelligence and mapping  information contained 
on vertical aerial photography. 

In considering the eventual backlog    of mapping and  intelligence photo- 
graphy,   the U.   S.  Army Engineer Topographic Laboratories   (USAETL)   of  the U.   S. 
Army Topographic Command  (TOPOCOM)   initiated a pattern recognition    research 
program for mapping and military  intelligence in 1963.     To  implement  this 
pattern recognition research,  USAETL contracted with the Aeronutronics Divi- 
sion of Philco-Ford in late  1964  to design,  fabricate,   test  and  produce a 
system study and analysis  for a prototype pattern recognition  system,  the 
Natural  Image Computer  (NIC).     This  contract included contractor  testing of 
the system    and development  of  software  to  identify and extract  orchards, 
woods,   lakes,  oil tanks and  railroad yards.      The prototype NIC system was 
delivered  to USAETL in mid-1967.     In-house  testing and evaluation of  the NIC 
concluded  in mid-1969 with  the completion of an evaluation  report.     Though 
in-house work is continuing with  the  system,   this paper will  describe  the 
NIC system hardware and software and  the  tests and results  developed during 
the evaluation period at USAETL. 

SYSTEMS DESCRIPTION.    A block diagram of  the NIC system with  systems 
flow is  shown in Figure 1.     The NIC  is a modular system consisting of PDP-7 

I Digital Equipment Corporation computer,  paper tape and small  dual r.iagnetic 
tape units,   teletypewriter,   image processor,  monitor scope and  plotter. 

Nine by nine inch film transparencies are mounted on  the X-Y  film table 
which moves  in increments of   .005  inches  under computer  control.     The flying 

i spot  scanner  (CRT)  produces a spot  of   .001  inch at the film plane,  which can 
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oe positioned to anyone of 256 by 256 points. When the film table is in a 
fixed position, the scanner field of view is therefore approximately 1/4 inch 
square at the film.  Film density values are digitzed at 16, 32 and 64 grey 
level steps for 0.00 to 2.00 diffuse density. The NIC controller is unable 
to store this large an array (256 x 256) of multi-level grey level information. 
Consequently, a field of 64 x 64 points, or one sixteenth of the 256 x 256 
array, is stored in the controller. 

During the film scanning operation, the processor can be instructed 
to perform a linear-threshold operation at a given X-Y location within the 
scanner field of view. 

' 

This operation is defined as D = 1, S >. 

D = 0, S < 

S =  Z  C 
Ax, Ay 

Ax,Ay Ax,Ay 

Where D = binary decision 

S = pre-decision sum 

9 = threshold value 

"Ax,Ay 

Ax, Ay 

weighting function 

image values 

The processor performs this operation by deflecting the scanner beam Ax.Ay, 
and multiplying the results I.  . by the corresponding stored weighting 
function value C,  . .        ' y 

Ax, Ay 

The weighting function, a two-dimensional array of numbers, is designed 
to enhance selected local image shapes.  Typical weighting functions "masks", 
designed by the contractor are shown in Figure 2. All of the masks are designed 
to produce S = 0 when applied to a field of uniform grey level imagery. A 
dot in each mask indicates where the mask sum is accumulated. A generalized 
masking routine is available for the operator to quickly develop new mask designs 

Ax, Ay 

The sum S can be generated by using either the 0-63 image values 
(6 bits) or a binary version of the image value. The binary value of I, 
is developed by reading the film and comparing the results to a "clip- 
ping level" from 0 through 63 when processing in the 64 grey level digitization 
mode.  If I.  .  exceeds or equals the clipping level, the grey level code 

value is replaced with a 1 in forming S; otherwise it is replaced with 0. 
The main purpose of this process is to emphasize transitions in grey level image- 
ry and to provide enhancement of the resulting data. 

Up to 1,024 mask points may be stored in the processor representing any 
mask points within that limit. The processor may be directed to output the 
binary results of the mask application to the plotter, the monitor CRT or 
transmit the results to the controller. Once the processor has received and 
stored the mask data and instructions from the controller it performs the 

48 

1 ■       ■ 



""I" ■wuiiiiimpmij.up. ■'" "'  ■ " ■" ' ""M »■■>■■ ■■■ i ill) W.IIII||ipil,||uWp|lllilw|Mi|,i HWP" 

f I 

operation independently of the computer. The processor can expand the mask by 
factors of 2 and 4, and coarsely rotate the mask about the central point of 
application. 

FUNCTIONAL TESTING. Three types of recognition processes and series of 
linear feature tracking tests were performed in evaluating the prototype NIC. 
The recognition tests were based on (1) feature recognition by analysis of 
image grey scale statistics, (2) orchard recognition by masking techniques 
and grey scale analysis, and (3) railroad yard recognition by masking techniques 
only. 

The recognition testing of woods, lakes, orchards, railroad yards, urban 
areas, rivers and bays was based solely on the imagery grey scale spatial 
distribution statistics. Sample areas of each test feature were selected at 
a nominal photo scale of 1:50,000.  A total of 576 test images were used. 
The statistical (STA) program was used to develop grey scale statistics for 
each of the image types by field scan which is a 64 x 64 point array at 64 
grey levels. Twenty-two types of grey scale distribution statistics were 
developed for each image tested.  An example of computer printout (Figure 3) 
is identified as follows: 

a. Mean-average grey level of the 64 x 64 field (4096 points) 

b. Variance (o^) - the averaged square deviation from the mean 
grey level. 

c. Distribution - the distribution of the 4096 points in 
the coded grey levels. 

d. Total texture 1, 2 - a measure of texture of the field. 
A count (summation) of the first and second nearest neighbors 
that are a grey level from the given point. 

e. and f. Difference No. 1 and No. 2 - these are detailed lists 
of the number of first and second neighbor differing grey 
level that were found in the texture calculations. 

/     g. Run length X and Y - continuous tone column or row grey 
level runs in the digitized grey level 64 x 64 array. 

From the statistical program output data, twenty-two sets of limit values 
were extracted from each of the images processed. The upper and lower limit 
(range) of each grey scale distribution parameter was determined for each image 
type.  A sample of the tabulated data is shown in Table I.  This figure illus- 
trates the properties that were extracted to form simple decision criteria 
limits for determining whethtr a feature existed in the test imagery. As an 
example, in order for a feature to qualify as a wooded area it must have a 
mean grey level of 30.48 to 42.87, a variance about the mean of 0.18 to 6.21 
and so on, as extracted from statistical data derived from the set of test 
imagery.  If all of the 22 statistical measures for any image sample met 
these simple decision criteria, it was classified as that image type defined 
by the decision criteria limits. 
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The next slide  (Table II)  shows^fhe resultant  false alarms   (false 
identification)   produced when using  this simple decision criterion  for each 
test  image   type.    Column  two of  the  table shows  the false alarm rates produced 
by accepting  the wooded area  (120  images)  statistical range for a  zero woods 
error miss  decision rule.     In reading  this column of  the table,   19  lakes of 
the 48  tested provided grey scale statistical properties which  fell within 
the range  of   the wooded area decision  rule.    Consequently,   these  19  lake 
images were  falsely "identified"  as woods.    The remainder of  the data for 
column  two  can be interpreted in like manner.     If all of the non-wood test 
samples were  combined  into a class  called "other",   26 other images  from the 
test  set  of  456  images would have been  falsely classified as woods.     Conse- 
quently,   a  false alarm rate of 5 percent would result when processing for 
wooded  areas. 

The  same  testing  technique was  performed for each of  the  features listed 
in column  one of  the  table.    The range of  the 22  statistical parameters  for 
each test  image listed in column one was used to develop a zero error  (miss) 
decision  rule  for that  image type.     The results show that high  false alarm 
rates  occur between many of  the tested  features. 

ORCHARD RECOGNITION BY MASKING TECHNIQUES AND ANALYSIS OF GREY SCALE 
STATISTICS.     The second series of  tests  performed on  the NIC were  in the use 
of an algorithm as a combination of   iterative masking techniques  and statis- 
tical  calculations.     It  is designed  to  detect  the regular spacing of  trees  in 
an orchard,   shrink each  tree to a single point and determine the mean and 
variance  of   the sets of distances  from every point  to  its nearest neighbor.    The 
decision  criteria are based on the  idea  that orchards exhibit uniformity in 
the distance of each point  to its nearest neighbor. 

Orchard  feature extraction routines were performed on 96  fields of 
known orchards  and 186  fields of non-orchard imagery as selected  from photo- 
graphy of  1:50,000 scale.     Data from 15  fields of known orchards were used  to 
develop  the ETL orchard recognition decision criteria.    The decision criteria 
as recommended by the  contractor were also tested.     The next  illustration 
(Figure  4)   shows  a 64 grey level printout of an orchard field with  the most 
representative grey levels outlined  for  each orchard  tree.    This   is  a sample 
of the densitometric information that  is analyzed by means of  the Orchard 
Algorithm.     In  the first step of  the process  the NIC determine which grey 
level  coding  in the grey level imagery array accounts  for 25 percent of the 
4096 array points.    This grey level  is  then grey level clipped,   assigning 
ones  to  the  tree-sized clusters and  zeros  to the non-qualifying points      The 
resultant binary array is  then further processed by the orchard algorithm. 
A printout  resulting from this process  is shown in Figure 5.    The elements in 
this printout  are identified as follows: 

a.     Orchard Algorithm - The  four columns of  3-diglt numbers 
list the "closest distance" for each point on the processed 
image.    The clusters of ones in the orchard binary imagery 
array are successively shrank by a series of group detection 
and shrinking masks until the center of each tree sized object 
is located.    The closest distance is the resolution distance 
from a point to its nearest neighbor. 
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b. Mean, Variance, Number - The mean distance (MD) between 
tree centers, the distance variance from the mean, and the 
number of points (NP) in the orchard algorithm results. 

c. SR - A "shift right" is performeJ using the unmasked 
original clipped binary data array.  Each value is the number 
of points resulting after each one resolution element 
right shift and a logical "and" operation.  Twenty-five 
one resolution element shifts are performed. 

d. SD - Shift down is the same as "shift right" except the 
matrix shift is downward (90°). 

e. 4D - A diagonally downward shift at -45° through 20 one- 
resolution elements with a logical "and" operation after 
each shift and a point count. 

f. AU - A diagonally upward shift at 45° processed as in 
4D above. 

The point counts from the shifting routines result in high and low 
values referred to as peaks and valleys in the illustration.  The next slide 
(Figure 6) shows a plot of these data from the orchard algorithm point out. 
This graph shows the periodicities that may be expected by shifting and 
logically "anding" a clipped image, element at a time over the original 
clipped image. This result occurs only with very regular spacing of discrete 
features in rows and columns. 

From the orchard algorithm, five values were extracted and two values 
calculated for use in forming the orchard decision criteria limits. The 
parameters used and decision logic are shown in the next illustration 
(Figure 7). The decision parameters used are identified as follows: 

1. Mean distance between trees. 

2. Distance variance (a^) about the mean. 

3. Number of points (trees). 

4. Ratio of Mean Distance to Variance Calculations. 

5. Number of peaks. 

6. Number of valleys. 

7. Total point count difference (correlation difference) between 
peaks and proceeding valleys in the shifting routine. 

Before a field is Identified as an orchard, all seven of the extracted 
statistical values must fall within the orchard Decision Criteria Limits set 
for 1:50,000 scale photography. Two sets of Orchard Decision Criteria Limits 
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were used in the testing, the decision criteria limits determined by con- 
tractor and a modification of these limits developed by ETL. The ETL mod- 
ification was based on a sample set of 15 test images where the upper limit 
of tree spacing criteria was raised to approximately 50 feet at ground scale, 
the variance criteria lower limit was reduced and the correlation difference 
lower limit was increased.  Ninety-six known orchard images were processed 
by the orchard algorithm.  The data from this processing were subjected to 
the contractor's recognition criteria and the ETL modified decision criteria 
limits. Table III shows a summary of the results of this analysis. Using 
the contractor's recognition criteria, 70 images were correctly identified 
from the test set. Twenty-six (26) images or 27 percent were falsely re- 
jected (missed).  Eighty-four images were correctly identified using the 
ETL modified decision criteria and, thus, produced a false reject or miss 
rate of 12.5 percent. 

f r t 

One hundred and eighty-six (186) non-orchard images were subjected to 
the orchard algorithm and decision processing to determine the approximate 
false alarm rate for orchards in non-orchard areas. Table IV show the results 
of this processing where 12 different map feature images are identified in 
the test imagery. The major part of the imagery falls in the southwest area 
of the U. S. as was the imagery used in developing the recognition decision 
parameters. Thirty-eight images were falsely identified as orchards using 
the contractor's recognition criteria limits producing a false alarm rate 
of 20.4 percent. Five test images were falsely identified as orchards using 
ETL modified recognition criteria producing a false alarm rate of 2.7 percent. 

RAILROAD YARD RECOGNITION BY MASKING TECHNIQUES.  The railroad yard 
recognition program is based on line and edge mask application to detect 
the parallel striations appearing in the imagery.  Although not reliably 
resolved by the NIC scanner, this appearance is caused by the tracks in the 
railroad yard image. Masks shown in Figure 2 of the type represented by 
"a" through "g" are used to detect these thin parallel streaks of density 
differences. The masks are rotated to each of eight orientations separated 
by approximately 22 degrees.  These masks are applied over a 128 x 128 
element area to detect edges and lines. Distributions of the mask sum 
values are accumulated and then printed on the teletypewriter. The print- 
out specifies the angle of application for the line or edge mask and the 
mask sum values. A typical example of a plot of these quantities for a 
typical railroad yard is shown in Figure 8. The number of mask sum points 
accumulated at each angular application is shown in this figure. As expected, 
a high mask response is noted when the masks are applied in the general 
direction of the railroad yard.  In this illustration, the railroad yard 
was mounted in the NIC scanner with the railroad yard paralleling the x scan 
motion. 

A series of tests were performed using the railroad yard program as 
applied to 25 test images. Ten of the images were known railroad yards 
and 15 of the images were non-railroad yards. An example of plots for line 
and edge mask results for non-railroad yard and railroad yard features is 
shown in the next Figure 9.  It is evident from these plots that poor data 
separation exists at the output. The line mask sums do not produce signifi- 
cantly different plots. The edge mask sums produce greater separation in 
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the plots of the data.  The most distinguishing event for railroad yards in 
either plot is the occurrence of a single high peak mask sum value. Based 
on this observation and other angular relationships, the contractor devised 
a railroad yard decision logic which ETL used to analyze the results of the 
railroad yard program process data. 

The decision criteria used in the analysis of the masking data to 
determine the existence or non-existence of a railroad yard is based on the 
number of edge and line peaks, angular relationship of the peaks, and first 
and second peak ratio values. Twenty-five test Images were processed with 
the railroad yard program and the resultant data were subjected to the rail- 
road yard decision criteria. The results of this processing are shown in 
Table V.  This type of processing and logic performs badly as evidenced 
by the miss rate of 20 percent, false alarm rate of 40 percent and the 
combined error rate of 32 percent where all 25 test images were used. 

FEAIURE TRACKING. A linear feature tracking program was developed to 
investigate the procedures and operational problems associated with the 
extraction and delineation of mapping and military geographic intelligence 
features. The tracking program was designed to detect the edges of linear 
features and output the results on the plotter and teletypewriter. The 
program operates mainly in two modes, prediction and search.  In the first 
mode, the system is given the X-Y location of the linear feature edge to be 
delineated and instructed to predict the next probable location of the edge. 
In the second mode, if the feature edge is not detected, what search pattern 
should be entered to locate the edge? The actual program consists of four 
major sections as follows: 

a. Tracking Routine - Predicts the most probable next 
position of an edge based on the direction of the present 
edge point and the last direction moved in arriving at the 
present point. 

b. Test Routine - Applied the appropriate mask as predicted 
in above and signals success or failure. 

c.  Search Routine - When the predicted point fails, jumps 
to exploratory routines and searches the itamediate area. 

Operator Assistance Routine - Permits the operator to 
Initialize the program and assists during the operation 
of the program. Allows display of the area, mask scale 
factor change, printout of 6A x 64 grey level area over 
the last good point, move scanner table, apply any mask 
and print result, reenter starting parameters. 

The tracking of program basically entails the application of a long 
(approximately 10 resolution elements in length) edge detection mask (see 
Figure 10).  Sixteen masks representing different angles of applications are 
used. To operate the program, the operator specifies, through the teletype- 
writer, the grey level operation mode, size of the area to be processed. 
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center X and Y coordinates of the Initial search area, initial search direc- 
tion, mask scale factor, threshold response.  Additionally, the teletype- 
writer prints the X and Y table movements, and "X" when in the search routine, 
or the word "HELP", along with the current mask number, each time the program 
needs help. 

Testing of the tracking program consisted of tracking roads on two sets 
of photographs at 16, 32 and 64 grey levels. The results of test runs at 
16 and 64 grey levels on the first photograph were unacceptable. Using 
the same photograph, the tracking program ran at 32 grey levels but, on its 
best run, required operator assistance twelve times. 

A second photograph (Figure 11) was used for tracking tests. This 
photograph is twice the scale of the first test photograph or approximately 
1:25,000 scale. At first, this second photograph could not be road tracked 
at any grey level coding. The photograph was subjected to two stages of 
photographic enhancement using orthochromatic emulsions in photo lab pro- 
cessing. Figure 12 shows the tracking run results using the enhanced 
photograph. Although this road would not track satisfactorily at 16 grey 
level input coding, the tracking programs perform well at 32 and 64 grey levels. 
At 32 grey levels of input, eight breaks occurred. At 64 grey levels of 
input, six breaks occurred. The two tests were repeated with approximately 
the same results.  Even though the test at 32 grey levels produced more 
breaks, the resultant plot was smoother and appeared to be a better carto- 
graphic representation of the road. 

DISCUSSION - EVALUATION OF TEST RESULTS.  In evaluating the data and 
test results developed during the testing of the NIC, many limiting factors 
became apparent to performing automated analysis of aerial imagery.  In the 
use of imagery grey scale information, the statistical outputs are not only 
non-gaussian but are of great range. Within the range of many of the statis- 
tical outputs gross discontinuities occur.  Limited separation of features 
is detected by comparing the range of each statistical output. Separation 
of features is not detectable by comparing the peak number of occurrences 
in each statistical output. 

The results of the grey scale spatial distribution analysis provide 
little supporting evidence of the separability of the major map feature 
classes or subclasses using the statistical techniques developed by the 
contractor. There is evidence that the broad classes of cultural and non- 
cultural features may be separated. Other parameters such as shape correlation, 
feature height and spectral response will be required in the recognition 
algorithms. A considerable effort will be required to collect controlled 
imagery by region, season and exposure. Other statistical properties.and 
transformations should be sought in developing feature recognition algorithms. 

A limited amount of testing was performed using 16 and 32 grey scale 
levels as input from the scanner for orchard algorithm processing.  It was 
apparent that there is an increase in the orchard recognition error rate 
with less than 64 grey levels of input to the system. Testing performed 
was insufficient for determining the actual performance fall-off rates due 
to grey scale resolution.  It should also be determined if other types of 
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orchard processing and analysis can be developed. The current orchard pro- 
cessing routine has been packaged as an automated program at ETL. This 
program requires approximately 2.5 minutes of processing by the NIC for 
each 64 x 64 element image array before it determines the existence or non- 
existence of an orchard. 

The results of the railroad yard recognition program testing did not 
g produce the recognition accuracies reported by the contractor. The high 

false alarm rates shown from the ETL testing indicate that other parameters 
are definitely required in the recognition algorithm.  Indications are that 
grey scale statistical parameters will need to be added to the railroad yard 
recognition criteria. Modification of the program, recognition parameters 

A      and logic will be required. 

The results of the tracking tests show that the present program is 
easily mislead by road intersections, grey scale structure edges intersections, 
grey scale structure edges intersecting with roads and breaks in the road 
image. There is a definite indication that fine grey scale Information, such 
as presented at 64 grey levels, causes the system to be mislead when edge 
tracking. The tests showed that tracking at 32 grey levels will produce a 
smoother and more cartographic representation of the road. 

i 
During the testing, it was observed from the CRT monitor that it is 

possible to clip a very narrow range of grey scale values from the photo- 
graph representing the road or roads.  In this case, much of the edge noise 
about the road is eliminated.  If the tracking program were modified to 
accommodate clipped grey levels and apply edge or line masks to this binary 
image rather than to the 16, 32, or 64 grey level Images, it would perform 
with fewer breaks in the plotter road track output. 

CONCLUSIONS.  Based on the in-house testing of the prototype NIC at ETL, 
it is concluded that the NIC is satisfactory for performing experiments ixt 
pattern recognition and delineation from a wide variety of photographic input 
materials. However, software and hardware improvements to the NIC should be 
made for future work to Increase its efficiency and accuracy.  This will 
Improve simulation and modeling and reduce eventual cost of any systems 
developed. The statistical criteria limits used in the recognition algorithms 
are questionable because of the small sample sizes, the narrow regionallty 
and seasonality of the test image data base used. Broader contextual clues 
and more optimal program strategies must be pursued. The lack of automated 
data analysis programming for the system causes excessively complex and 
time consuming analysis of the output data by the system's user.  Some means 
for rapidly analyzing the data that the NIC can produce must be developed. 

The development of an operational system based on the NIC concept 
*      could evolve only through long range development.  Even so, image variability 

on a world basis and on the basis of film and processing variability will 
restrict the number of automatic pattern recognition operations that may be 
implemented.  It will be necessary to prepare regional versions of certain 
programs as well as scale a.id seasonal adaptations. Color and height informa- 

t      tlon will be required as Inputs to Increase the confidence level of the 
recognition algorithms. A more realistic first goal would be to develop 
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an Interim operational system where the man makes the majority of the decisions 
in the system. This system is envisioned as providing for the merging of data 
from more than one channel of input, a color display with light pen editing 
capability, and automatic tracking and output of most linear and area features. 
Pattern recognition and delineation experimentation and development should 
continue in the meantime with the NIC. 
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MEAN, VARIANCE 
40.79,  6.35       (A),   (B) 
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FIGURE 3.     STATISTICAL PROGRAM PRINT-OUT 
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227 334 366 

© 
© 

VALLEYS 

PEAKS 

FIGURE 5.    ORCHARD ALGORITHM PRINT-OUT 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Is 
Mean 

Distance 
ok? 

Yes 

'Distance, 
Variance (j?) 

ok? 

Yess 

'No^ 
'of Points 

(Trees) 
ok? 

Ye ss 

MD/DV 
Ratio 
ok? 

No 

No 

No 

No 

Yes 

No;* 
of Peaks ^x^^ No 
from Shift ^>" 

Routine 
.okp 

Yes 

ff  Valleyl , 
from Shift \_M. 

Routine 
ok?. 

Yes 

'Total 
No Valley to    ^—"^J 

Peak Diff._ 

Data at "2" available from 
Masking Results,  Distance  and 
Statistical  Calculations  and 
Point Shifting Routines. 

Upper and Lower Limits  for 
each of  these Decision Points 
are determined empirically  from 
a large Imagery Data Base. 

Print 
"Non-Orchard" 

I 

65 
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PATCH RESULTS 
KNOWN ORCHARD FIELDS 

POSITIVE 
ORCHARD RESPONSES 

TEST PATCH NO. ORCHARD CRITERIA NO. OF 
FIELDS 

TESTED 
CONTRACTOR MODIFIED 

REMARKS 

1 4 2 7 Poor separation of Ore 
trees. 

2 4 3 4 

3 10 1.0 12 

4 3 9 10 Variance of MD very 
small. 

5 4 15 16 Variance of MD very 
small. 

6 15 15 16 45% of missed field is 
non-orchard. 

7 16 15 16 

TABLE VII, FIELDS 14 15 15 

TOTALS 70 84 96 

FALSE REJECT RATE 
(MISS RATE) 

27.1% 12.5% 

% 
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PATCH RESULTS 
N0>!-ORCHARD FIELDS 

TEST PATCH - TYPE 

POSITIVE 
ORCHARD RESPONSES 

WATER & PIERS 

LIGHT INDUSTRY 

HEAVY INDUSTRY 

RURAL HOUSING 
DEVELOPMENT 

RURAL AREA - MAIN 
ROADS 

DRY WASH 

VINEYARD (LARGE ROW 
CROP) 

URBAN AREA - ROW 
HOUSES 

CULIVATED AREA - 
FALLOW 

NEWLY CULIVATED ARKA 

MEADOW/PASTURE 

WOODED 

TOTALS 

FALSE ALARM RATE 

ORCHARD CRITERIA 

CONTRACTOR 

0 

0 

1 

6 

1 

7 

13 

MODIFIED 

0 

0 

1 

0 

0 

4 

0 0 

0 0 

8 0 

38 5 

20.4% 

67 

2.7% 

TABLE IV 

NO. OF 
FIELDS 
TESTED 

8 

8 

16 

39 

16 

16 

16 

16 

10 

16 

16 

186 

REMARKS 

Includes some rural 
streets but no houses. 

Some rural houses In 
each field but no large 
town major roads. 

Crop tends to line up 
In rows although dim. 

Includes streets and 
landscaping. 

October (Fall) photos; 
many contrasting trees. 
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RAILROAD YARD RECOGNITION PROCESSING 

1:50,000 Scale Criteria 

MESS RATE 2/10 = 20% 

FALSE ALARM RATE  6/15 = 40% 

COMBINED ERROR RATE 8/25 • 327, 

TABLE V 
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FIGURE  10.  BASIC TRACKING MARKS 
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FIGURE 11. TEST IMAGE USED FOR TRACKING RON EXAMPLE 
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Start 
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MULTI-IMAGE CLUSTERING 

r Robert M. Harlick 
Engineering Topographic Laboratories 

Fort Belvolr, Virginia 

ABSTRACT.    One technique used for Image data analysis Is 
clustering.    Clustering procedures group the data points or resolution 
cells Into blocks having members which are highly Interrelated or 
similar.    The distinct blocks are hypothesized as having been produced 
by different environmental entitles or processes.    Hence, examination, 
of the blocks yields interpretation concerning the nature and 
diversity of the environment from which the data were gathered.    Since 
the blocks reflect the "natural" structure of the environment as seen 
by the Instruments which collected the data, clustering techniques 
can help the researcher formulate the concepts needed to deal with 
the Instrument-environment system. 

A measurement space and spatial clustering procedure Is utilized 
on a multi-Image data set obtained from the northern part of Yellowstone 
Park with the Michigan 12 channel scanner system.    The results Indicate 
that about a half-dozen distinct environmental categories can be 
recognized without any ji priori ground truth Information. 

I.    MULTI-IMAGE CLUSTERING.  Clustering Is a way to automatically 
extract Information from data. In our case multi-Image data (1-10). 
The traditional way to extract Information from Imagery Is to present 
the Imagery to skilled photo-Interpreters for analysis.    But this Is 
a slow process Intended only for limited amounts of Imagery.    To 
analyze the large amounts of data which today's remote sensors gather 
by airplane and satellite, automatic processing techniques must be 
used. 

The automatic processing techniques fall Into two classes: 
supervised and unsupervlsed.    Clustering Is an unsupervlsed technique. 
With supervised techniques, one gathers a training set of data for 
which one knows the correct identification of each distinct entity 
in the data.    One then estimates the necessary conditional probability 
distribution and determines a decision rule from them.    The decision 
rule can then be employed to Identify any other data set gathered 
under similar conditions.    With unsupervlsed techniques there Is no 
training data set or decision rule.    One attempts to determine the 
structures in a data set.    Distinct structures are then Interpreted 
as corresponding to distinct objects or environmental processes. 

i 
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The advantage of the supervised techniques Is that the scientist 
Is able to decide what types of environmental categories among which 
he wishes to distinguish.  The decision rule then determines to which 
such environmental category an arbitrary data entity belongs. The 
disadvantage of the supervised techniques Is that they are sensitive 
to mis-calibrations. Any slight difference between the sensor cali- 
brations or state of environment for the training data and the new 
data will cause error.  For Instance, if one were analyzing multi- 
images to determine vegetation or crop type on the basis of multi- 
spectral image grey tone, then one would find that the grey tone 
associated with a crop when it is sunny Is not the same grey tone 
associated with it when it is cloudy. Perhaps it had rained and the 
ground was wet or perhaps it was hot and the ground was dry perhaps 
the Irrigation and fertilizer were different; these differences too 
would make different grey tones. Perhaps one corn field was planted 
a few weeks before another or the hybrid of corn was different. 
Perhaps the film emulsions came from different emulsion batches or 
the developers were not all of equal strength.  It is obvious that one 
could compile a long list of the intervening variables, to measure 
them (if he could), which affect the environment-image system 
calibration. 

The advantage of the unsupervised techniques Is that they are 
\     not sensitive to calibration problems. Two small-area patches of 

corn growing in the same field are going to be detected as being 
similar because they have similar grey tone associated.with them. 
The disadvantage of the unsupervised techniques is that they are not 
able to identify what are the distinct environmental structures 
they determine. 

II.  POTENTIAL APPLICATION OF THE MULTI-IMAGE CLUSTERING TECHNIQUE. 
The use of the potential information contained in images is well 
documented in the remote sensing literature, a selected sample of which 
is given in reference 10-24. One can potentially determine vegetation 
species distribution, location of mineral deposits, worldwide distri- 
bution of geomorphic features, sea surface temperatures, location of 
fish schools and Icebergs, spread of pollutants, cloud cover distri- 
bution and movement, developing storm systems, water movement, soil 
and vegetation moisture content, transportation networks, and extent 
of urbanization to name a few. 

What is not clear is what sensor or set of sensors is best for 
what jobs. By employing multi-image clustering to Imagery obtained 
from a set of sensors, one can determine the distinct environmental 
structures as seen through the sensor's eyes.  By then comparing 
these structures to what is actually in the environment, as determined 
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from field work, one can tell what categories among which the set of 
sensors will distinguish best. This procedure is more efficient 
than one based on supervised techniques since it only has to be 
performed once while the supervised technique will have to be evalu- 
ated for each a priori set of categories chosen. 

Once the multi-image clustering technique is developed so that 
I' it can be cheaply implemented in real time, another use for it will 

become feasible:  it can be used to pre-process the data performing 
a feature extraction function. The features obtained will not be 
sensitive to the calibration problem.  Identification decisions are 

• then made as usual on the basis of the extracted features. The 
result will be a multi-image processing system which can work well 
despite the calibration difficulties. 

III. DATA ANALYSIS. Twelve images taken by the Michigan scanner 
system were the multl-image data set. These Images were taken of a 
2 mile by 6 mile area in the northern part of Yellowstone Park at 
approximate coordinates 100O30' by 44057' on September 19, 1967. 
Figure 1 shows an old panchromatic photograph of the area taken in 
1954. Each Image of the multi-image set was, in effect, a picture 
taken with a different narrow-band filter where the filters passed 
light in narrow bandwidths from the near infrared band part of the 
spectrum through the ultraviolet portion of the spectrum. Table 1 
tabulates these bands. The images were digitized to 256 levels on a 
grid of 220 x 1260 for a total of about 270,000 resolution cells 
for each image.  Each resolution cell contains the returns from 12 
spectral bands coming from a 20 ft. x 20 ft. small-area ground patch. 
Successive resolution cells contain returns from small-area ground 
patches separated by a gap of 20 ft. 

In order to reduce computer time, the original twelve images 
were processed to yield four smaller images, but with most of the 
statistical and spatial structure preserved.  The first part of the 
pre-processing consisted of a principal components analysis. A 
principal components analysis may be considered in the following 
fashion.  In any image, some grey tones occur more frequently than 
others. We may consider the relative frequence of the grey tones on 
the image as defining a one-dimensional probability distribution. This 
probability distribution has a mean and variance.  Similarly in the 
twelve image multi-image set each resolution cell has a 12-tuple of 
grey tones.  Some of these 12-tuples occur more frequently than 
others, and we may consider the relative frequency of the 12-tuple 
grey tones as defining a twelve-dimensional probability distribution. 
This probability distribution too has a mean and variance. The 
variance Is called the total variance. A principal components 
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Figure 1.   1954 Photographic Image Taken of Area 
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Imaqe Wavelenntb band 

1 800-1000 milli-rnicrons 

2 720-800 

3 660-720 

4 620-660 

5 580-620 

6 550-580 

7 520-550 

8 500-520 

9 480-500 

10 460-480 

11 440-460 

12 400-440 

Table   1      Tabulates the wavelength bands for each 
of the images 
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analysis, as might be expected, determines principal components. The 
first principal component image is obtained by taking that linear 
combination or weighted average of the original twelve images such 
that the variance of the probability distribution of grey tones on 
the first principal component image is higher than it could be for 
any other linear combination. The second principal component is 
obtained by taking that linear combination, orthogonal to the first, 
such that the variance of the probability distribution of grey tones 
on the second principal component image is higher than it could be 
for any other linear combination orthogonal to the first.  In general, 
the kth principal component image is obtained by taking that linear 
combination, orthogonal to the earlier 1st, 2nd, ...,(k-l)th linear 
combinations of the original twelve images such that the variance of 
the probability distribution of grey tones on the kth principal 
component image is higher than it could be for any other linear 
combination orthogonal to the earlier 1st, 2nd (k-l)th ones. 
Because the sum of the variances of all the principal components 
equals the total variance of the original twelve-dimensional proba- 
bility distribution, the ratio of the variance of the kth principal 
component to the total variance is called the variance accounted for 
by the kth principal component. The variance accounted for by the 
kth principal component is an indicator of how much statistical 
structure from the original twelve images is preserved by the kth 
principal component image. 

The principal components provided the following results.lt 
was determined that the first component accounted for 97.4% of the 
variance, the second component 1.6% of the variance, and the third 
component .9% of the variance. The respective weights used in the 
linear combination are listed in Table 2. 

Table 2 has an interesting interpretation. The first linear 
combination has weights which are all positive and which are about 
the same magnitude. The first principal component image is then very 
close to what a panchromatic image of the area would be. This should 
not be surprising since most photo interpreters will prefer a 
panchromatic image over any narrow-band image because they see more 
structure in it. The second linear combination weights the infra-red 
part of the spectrum negatively, the middle of the spectrum hardly at 
all and the ultra-violet part of the spectrum positively. This 
weighting trand from the infra-red to the ultra-violet is almost a 
linear one.  It is indicative of the fact that the spectral 
reflectance curve for most natural objects shows that when infr^-red 
reflectance is high, then the ultra-violet reflectance is low and 
when the ultra-violet reflectance is high then the iafra-red is lov. 
Hence, the weighting done by the second principal component will 
enhance the difference between those objects with high infra-red 
and high ultra-violet reflectance.  The third linear combination is 
perhaps indicative of the spectral reflectance difference between 
vegetation and rock. The spectral reflectance curve for most 
vegetation slopes positively at the ultra-violet end of the spectrum 
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1st               2nd                 3rd      1 

Principal Component              { 

% Variance Accounted for            j 

Wavelength Band 97.4%             1.6%               .9%     I 

800-1000 .15702 -.33153 .27651 
|       720-800 .22758 -.33529 .26796 
|       660-720 .28342 -.31332 .13188   I 
|       620-660 .23184 -.23019 .11530   | 

j       580-620 .20199 -.16154 .010509 

|       550-580 .17486 -.094258 .025696 

I       520-550 .32559 -.070442 .25499 

|       500-520 .24756 .031677 .04638 

|      480-500 .42727 .09246 -.12730   j 

|      460-480 .52815 .22196 -.60118   j 

j       440-460 .25916 ,30966 .043766 

400-440 .14078 .65714 .61121 

; 4 

Table 2       Table of weights used to obtain the lirf'ear 
combinations for the Ist, 2nd, and 3rd 
principal components. 
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while that for ryollte (a volcanic rock known to be prevalent In 
the area photographed) Is almost flat in that very same region. 
Hence, weighting the 460-480 mllll-micron part of the spectrum 
negatively and the 400-440 milll-micron end of the spectrum posi- 
tively will enhance the difference between vegetation and ryollte. 

Since the first three principal components accounted for about 
99% of the variance, there is no need to cluster twelve images. 
Almost all the information is contained in 3 linear combinations 
(principal components) of the original twelve. However, because the 
clustering procedure treats each image equally, the second and third 
principal component images, which together only account for a few 
percent of the total variance, would be unduly emphasized. Therefore, 
a new set of images, called the principal components dispersed images, 
was prepared by taking linear combinations of the first three 
principal components. The linear combinations are mutually orthogonal 
and result in distributing the variance almost equally among the 
dispersed images. Table 3 shows the weights used in these linear 
combinations. 

The next step in the preprocessing consisted of reducing the 
size of the.  three dispersed principal component Images. Each waa 220 
resolution cells horizontally by 1220 resolution cells vertically. 
They were reduced in size to 73 resolution cells horizontally by 406 
resolution cells vertically by taking every third row of resolution 
cells and every third resolution cell on each such row taken. To 
compensate for the roughening effect by such a reduction, a fourth 
Image was prepared by reducing the size of the first principal 
component image by averaging the grey tones of nonoverlapping 
3x3 blocks of resolution cells. 

The final step in the preprocessing consisted of quantizing the 
grey tones of the four images to 13 quantized grey tone classes. This 
was done in two parts: the images were first quantized to 64 grey 
tone classes by a folded-tall linear quantizing procedure (see Figure 
2). The folded tails quantizing is essentially a linear quantizing 
procedure modified to Ignore extreme wild points on the tails of the 
distribution. In other words, instead of determining the highest 
grey tone and the smallest grey tone and then equally divide the 
resulting interval up into 64 pieces as the linear quantizing does, 
the folded tails .linear quantizing determines a "high" grey tone 
less than the highest and a "small" grey tone greater than the 
smallest and equally divides that resulting interval up into 64 
quantized classes. Of course, grey tones higher than the determined 
"high" and smaller than the determined "small" get put in the highest 
and smallest quantized class respectively. 

82 

- ■ ■ ^ L^^^^. 
mm 



,   I ■^JJi.llL-»^»'i.'»-i'm»I^Will..i'ipWl'''fWlllp|l!»l||||p^M=r^'lllll:i   -I.IH1|.I..-IIJ.I."J;"1UII,JI|. lim i i.- 11-..«..., i. - ■' i »■* in umz^qmim mumuiiwm\Luw^rmm 

I       I 

t 

Ä 

1st Principal Component 

2nd Principal Component 

3rd Principal Component 

1st 2nd 3rd 

Dispersed Components 

1.//3 

1/76 

1//2 

1//3 

-2/V6 

0 

1//3 

1//6 

-1//2 

Table 3 Table of weights for the mutually orthogonal linear com 
combinations used to disperse the variance of the first 
three principal components. 
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The spatial quantizing procedure further reduces the number of 
quantized classes from 64 to 13 In a way which capitalizes on the 
spatial dependence of the 64 quantized grey tone classes.    A 64 x 64 
Markov transition probability matrix is set up where the  (l,j)th 
element is the probability that a resolution cell having a grey tone 
in the ith grey tone class will be next to a resolution cell having 
a grey  tone in the jth grey tone class.    The spatial quantizing uses 
the information in this matrix to form quantized classes whose grey 

f tones have a high probability of occurring next to each other. 
Hence,  spatial continuity of grey tones tends to be preserved. 

i These quantizing procedures are fully described  in reference  18. 

After quantizing the four  Images to 13 grey tone classes,  the 
if' images were clustered. 

IV.    DESCRIPTIVE OUTLINE OF SPATIAL CLUSTERING.  The clustering 
procedure starts by finding sets of resolution cells called center 
sets.     Center sets are good places to build a cluster around.    Resolu- 
tion cells whose grey tone N-cuples are similar enough are 
sequentially added to the existing center set.    When there are no 
more resolution cells similar enough, the existing cluster Is complete, 
and a new cluster is begun from a new center set. 

We assume that each object on the ground produces grey tones 
which are similar and homogeneous.    There can be any spatial distri- 
bution of objects;  one object may only occur once and another hundreds 
of times or each object may occur approximately the same number of 
times.     It would be Intuitively reasonable to form center sets from 
those spatial locations which have fairly homogeneous measurement 
space coordinates and which are representative measurements of a 
class of objects.    However, since the location and extent of objects 
are unknown to the clustering procedure, it must try to induce this 
information from the data structure.    Since we assume that the set 
of measurements recorded from any object form a homogeneous set of 
highly similar grey tones, and the location of these measurements 
in the image sequence is a small, more or less, spatially connected 
region,  perhaps by breaking up the image sequence into a set of 
spatially connected subsequences and examining the measurements in 
each subsequence we can obtain the necessary information.    Thus we 
make each spatially connected subsequence:     (1)   large enough to 
include within it a substantial proportion of the measurements 
recorded from at least one object;  and (2) small enough so that the 
substantial proportion of the measurements recorded from the 
object make up a large proportion of the measurements in the subsequence. 
If we can form subsequences in this way,  then the empirically observed 

^ probability distribution of the grey tone N-tuples In the sequence 

85 



 ■       " —rn^^vrn-^. 

will be dominated by the substantial proportion of grey tone N-tuples 
In the sequence recorded from some particular  type of object.    Thus, 
If a particular object occurs only once then there will be one 
subsequence dominated by It.     By picking out the kind of measurements 
which typify that subsequence  (I.e.  those which have high probability 
or high self-association In the subsequence) ,   then the set of all 
the spatial locations containing these measurements la a good center 
set. 

A grey tone N-tuple has high self-association If  there Is high 
probability that a resolution cell having that grey tone or a grey tone 
similar to It will be contiguous  to a resolution with the given grey 
tone N-tuple.    Two grey tone N-tuples are said to have high cross- 
association If  there is high probability that a resolution cell 
having one of  the grey tone N-tuples, or a grey tone similar to one 
of them, will be contiguous  to a resolution cell having  the other 
grey tone N-tuple or a grey to similar to the other. 

Since the clustering procedure we have proposed starts with 
center set one, build on it until no more similar measurements can be 
found, and then starts building on center set two,  etc., we must 
specify how the order is determined for center sets.    We should 
naturally start with the most Important center set and here importance 
can be correlated with self-association.    That center set is most 
important which has the highest self-association of all center sets 
in the subsequence form which  It originates. 

Next we must consider exactly how each center set grows.    If 
there exists a resolution cell outside but next to some resolution cell 
in the center set and if the cross-association of the grey tone N-tuples 
of these resolution cells are sufficiently high and the self-association 
of  the grey tone in the original center set  is not too different 
from the self-association of the grey tone in the outside resolution 
cell,  then the outside resolution cell is added to the center set. 
When no such outside resolution cell exists,  the growing is terminated 
and a new center set is defined.    A precise description of the 
clustering procedure can be found in reference (8). 

V.    RESULTS. A map of the distinct environmental objects as 
determined from the clustering procedure is displayed in Figure 3. 
The computer took .3 hour processor time and 1.8 hour wall time to 
produce these results.    Some of the regions on the map can immediately 
be seen as representing some of the dominant types of categories 
in the area.    A detailed comparison of the map with the ground truth 
for the region is required to make a good evaluation of these results. 

) 
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Thls Is the first time that such a clustering algorithm has 
been tested on a multi-image and there are some problems with the 
clustering procedure Itself which have to be solved.    One problem 
concerns  the specification of the clustering parameters.    This first 
time they had been specified on a trial and error basis and it resulted 
in much wasted computer  time.    It should be possible to determine 
them from appropriate probability distributions which the multi-image 
generates.    A second problem concerns boundary delineation.    It appears 
that some boundaries extend too much while others not enough.    The 
problem may be related  to either optimal determination of clustering 
parameters ot to the way the clusters themselves grow.    A third 
problem is concerned with the large amount of computer time needed to 
implement the algorithm.    A careful study of the growth of the 
clusters can probably lead to a new algorithm for which the computer 
time is cut by an order of magnitude. 
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FACTOR ANALYSIS APPLIED TO MULTISPECTRAL DATA 

Everard G. A. Barnes and Francis G. Capece 
Geographic Information Systems Branch 

Geographic Sciences Division 
U. S. Army Engineer Topographic Laboratories 

Fort Belvolr, Virginia 

ABSTRACT.  Several techniques are used by the Bendlx Aerospace 
Corporation under contract to the U. S. Army Engineer Topographic 
Laboratories (USAETL) to analyze remote sensing data collected with 
the Bendlx Bultlspectral scanner. The primary technique used by Bendlx 
was factor analysis. This technique separates the underlying physical 
phenomena which affect the signals recorded by the multlspectral 
scanner. After these "factors" are separated and enhanced Images 
can be produced which show the Individual and/or collective effects 
of each Isolated factor on the original data. The manner in which 
a factor affects the original data may be used to enhance or emphasize 
those features which are determined to be of interest. Scatter 
diagrams are also formed which show whether two factors, when 
plotted against each other, separate or cluster the data points.  If 
clustering occurs then additional enhanced imagery termed window 
Imagery can be produced. This technique has useful application in 
analyzing multlsensor data. 

Results of the contract study, plus examples of original Imagery, 
enhanced imagery and scatter diagrams are included. 

I.  INTRODUCTION. A contract for the exploitation of multi- 
spectral techniques for the location of engineer construction 
materials was awarded in March 1969 to the Bendlx Corporation. 
Multlsensor flights were carried out in March 1969 over an area of 
SW Louisiana (Figure 1). The data discussed in this paper were 
acquired using a Bendlx Multlspectral Scanner, Bendlx Thermal 
Mapper, and a 70 mm Hulcher camera mounted In a Beechcraft D18S 
aircraft. 

Analysis techniques were applied solely to the multlspectral 
scanner data. Data samples were stored, during analysis, in an 
IBM 360/50 computer. The bulk of the data analyzed were obtained 
over a small area of the Delta south of Lake Charles, Louisiana, 
which contains many beach ridges. The portion of terrain selected 
for the detailed analysis is known as Pumpkin Ridge (Figure 2). 
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II.  INVESTIGATION. 

1. Data Acquisition Equipment. The airborne components 
of the Bendix system include a multlspectral scanner, an electronic 
subsystem and an analog tape recorder.  (Figure 3). The scanner has 
eight channels operating in the spectral range from 0.38 (ultraviolet) 
to 1.0 micront (near IR). Tapes recorded inflight have eight 
channels of video data and one channel of synchronized signal. 
Some processing of the multlspectral scanner signals are performed 
inflight.  The video signal produced by the scanner has a nominal 
bandwidth so FM recording of the signal was necessary to preserve 
information over the entire frequency range. Since the AR 1600 
recorder was not an FM tape recorder frequency modulation of the 
viedo signal was accomplished on the electronic subsystem and then 
passed to the AR 1600 for analog recording. 

Once collected, the video signals are displayed in the labora- 
tory by playing the tape back through a wide band FM system.  (Figure 
4A). An Ampex FR-1800H tape recorder is utilized for this purpose. 
At this point single channel imagery may be produced by directing 
the video signal from the desired channel to a film recorder. 
Digitized samples may also be taken from the analog tapes.  (Figure 
AB). This was accomplished by taking a S-u sec sample simultaneously 
from each channel at the output of the recorder. This sampling point 
occurs at a constant, adjustable, time delay from the leading edge 
of the video signal. When the video signals are film recorded side 
by side, these sampling points appear as a straight line In the 
120° field of view of the scanner and running the total length of 
the flight line. These samples are recorded on a digital tape 
transport and subjected to analysis techniques. Thus the analyzed 
data contained sampling points from both the important features 
and their background and should qualify as a representative sample 
of the imagery. 

2. Analysis Techniques. The technique chosen by Bendix 
in this investigation was a form of factor analysis known as 
principal components analysis. The technique was chosen for 
the following reasons: 

(1) With factor analysis no a priori knowledge was 
required and ground truth is used solely to Infer conclusions about 
the derived variables. Thus data of an unknown origin may be 
analyzed and enhanced Imagery produced without information about 
the source of the data. 

(2) The eight channels of the MS possess high first 
order correlations; they are not independent. In addition, an 
examination of the bandpass of the eight channels reveals a 
certain amount of overlap. 
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(3)    Due to some properties of  the approach which will be 
mentioned  later,  the application of the technique usually results  In 
fewer "meaningful" variables than the original number of variables 
(channels). 

3.    Derivation. Assume that we have a data matrix X consisting 
of m rows each representing an MS channel and n columns each 
representing an observation.    This matrix has correlation between 
elements as we have stated earlier.     The object of factor analysis 
is  to find that matrix which will transform the data matrix X 
into a new matrix with uncorrelated elements.    The new matrix we 
will call the factor score matrix and  the matrix that does  the 
transforming we will call the factor coefficient matrix. 

In order to work with the data it must be in standard form. 
The means of  the rows of X must be computed and subtracted from 
appropriate elements in X.    The matrix must thei  be multiplied by 
the inverse of the standard deviation matrix related to the matrix 
X.    This new matrix now in standard form we shall call our 
standardized data matrix X .    Multiplying X    by its transpose X 

and divided  through by n to normalize the matrix we get the 
correlation matrix R 

1 T 
R - n XS XS 

We now find the eigenvalues and eigenvectors associated with 
R.  Since R is real and symmetric, the eigenvalues are positive 
definite and the matrix of eigenvectors U is orthogonal (UU - I = UU~ ). 
By definition URIT - D where D is a diagonal matrix of eigenvalues of R. 

D - dlag (X-.X-, . . • »Xg) where X's are the eigenvalues of R 

Since U is orthogonal 

URUT - D 

Defining E - dlag (/Xj", /xj» • • •» ^6  ) then 

EE - D 

URUT - EE 

Pre- and post-multiplying by E  we get 

-1  T -1 
E URU E  - I 
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Substituting for R we get 

-1   T T -1 
E UX XgU E nl 

If we define the factor score matrix to be F - E "TJX then it 
must have the property of independence between elements. By definition 

T   T T 
F1 ■ XgU (E-V T T -1 

Xl  U E 
8 

If the elements in F are uncorrelated then the off-diagonal 
elements of its correlation matrix must be O's. Referring back 
to equation * and substituting we get 

T   -1   T T -1 
FF = E UX XgU E nl 

The off-diagonal elements are 0 so the elements of F are uncor- 
related. The new matrix F has m rows and n columns but now the rows 
represent factors rather than MS channels. Geometrically, factor 
analysis defines a transformation from one set of axes (channels) 
to a new set (factors). The factor coefficient matrix that does 
the transforming of X is P = E~^U an 8x8 matrix whose rows 
represent factors and columns represent MS channels. The set of 
measurements in a row of P represent a vector which assigns weights 
to the different channels for a particular factor. 

This anlysis associates direction of maximum data variation 
with the first variable. This occurs because eigenvalues of R 
represent an indication of amount of variance contained in the 
factors. The higher the eigenvalue, the greater the variance. 
With eight eigenvalues their sum =8. If the sum of the first three 
eigenvalues equal 7 then g or 87.5% of total data variation is 
contained in the first three factors. These may possibly be the 
only variables worth considering. The underlying trends or factors 
cannot be defined except possibly with ground truth information. 

Rotated analyses are also derived from the initial factor 
coefficient matrix. A straightforward rotation of axes following 
an exact analytic criterion results in a new set of factors. Two 
rotating procedures, Varlmax and Oblimin rotations, were applied. 
The Varlmax procedure attempts to simplify factors by extracting 
components that tend toward unity or zero while maintaining 
zero correlations of factors. The Oblimin procedure minimizes a 
similar expressions without the requirement of maintaining zero 
correlation. 1/ 

1/ H. Harman, Modern Factor Analysis 
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4. Manipulation. After the factor coefficient matrix and 
factor score matrix have been determined these matrices can be used 
several ways* Using the factor coefficient matrix a set of enhanced 
Images possessing a continuous scale of grey levels can be produced 
which show the effect the Individual factors had on the original 
Image. A row of the factor coefficient matrix yields processing 
constants that when slightly modified to fit the analog system are 
used to yield enhanced signals.  Each channel of the original 
recorded data Is delivered to a separate processor and multiplied 
by the corresponding element of the factor coefficient matrix. 
The modified channels are summed forming a new signal which Is a 
linear combination of the eight channels.  In vector language 
multiplying each channel and their summation Is comparable to a dot 
product.  Imagery Is then produced using a fiber optics cathode 
ray tube (CRT). Black and white areas on the Imagery Indicate 
correlations (+ or -) with the factor; while grey areas In the 
Imagery Indicate little correlation. 

Scatter diagrams can also be produced by using the factor 
score matrix (the data matrix multiplied by the factor coefficient 
matrix). Two rows of this matrix each representing an Individual 
factor are plotted in pairs. If by plotting these factors the 
distributions of several targets don't appreciably overlap, clusters 
are formed which Indicate that certain features are separated 
by these two factors and hence some type of enhanced imagery may 
be producible. Usually the first few factors yield the most 
distinct target clusters, especially when two adjacent factors are 
related. By establishing boundaries around clusters corresponding 
video signals representing these boundaries may be applied to an 
analog system as threshold voltages. With the present system only 
two processed video signals may be thresholded simultaneously. 
The Imagery resulting from the two dimensional decision process is 
termed window imagery. This window imagery wiir.be a binary image 
(black versus white) enhancing those points within the threshold 
limits, preferably the target desired. 

If the threshold of target A includes no other target spectra, 
the technique will work perfectly.  If not, the threshold levels 
must be set to either minimize incorrect decisions or guarantee the 
inclusion of all of Target A. The choice of approach would depend 
upon whether the problem posed required minimizing the false 
alarm rate or the miss rate. 
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III.    DISCUSSION.    The objective of applying factor analysis 
was to produce enhanced Imagery which   would contribute to the ability 
to distinguish between marshes, beach ridges, and open water.     The 
area we will analyze will be Pumpkin Ridge  (Figure 5). 

An example of Imagery produced from the scanner data before 
analysis  techniques were applied is shown in Figure 6. 

i 
The eight channels appear from left to right with the ninth 

film strip representing the sum of the eight channels.    The average 
spectral properties of the three terrain types are represented 
in Figure 7 on a quantizing scale of 0-256.    Note that in considering 
standard deviation no single channel could effectively separate , 
the three terrain features.    The lower graph shows the same 
results  on a voltage scale. 

Figure 8 shows the results of application of principal 
components analysis  to the scanner data.     Images representing the 
effects of the individual factors  (1-8) are shown from left to right. 
The matrix of weights used to produce the imagery of Figure 8 is 
shown In Figure 9.    This is a form of the factor coefficient matrix 
produced in factor analysis.    The original factor coefficient matrix 
is shown above.    The values had to be transformed to fit the analog 
system. 

Figure 10 shows the mean and standard deviation of the three 
features now plotted on a voltage scale indicating that factors 1 
and 2 separate the features considerably and that factors 3-8 do not. 
The latter factors describe more subtle differences in the target 
spectra and may be useful for more difficult discrimination problems. 

Concentrating further on Figure 9, several conclusions about 
the nature of the factors could be drawn.    The eigenvalues related to 
factor 1 consistently ranged between 4 and 6.5 accounting for 
50-80% of the variance in the collected data.    Also the coefficient 
vector of factor 1 consistently gave a maximum weight to channel 1 
(UV)  and decreased to Channel 8 (Near IR).    This factor was 
determined to be a measurement of the albedo. 

The eigenvalues for factor 2 invariably ranged between 1 
and 2.5 accounting for from 12 to 30% of the total variance of the 
collected data.    The coefficient    vector associated with factor 1 
usually weighted the UV and blue-green channels against red IR 
(high negative values versus high positive values).    Thus on the, 
average 70-90% of the variance of data was contained In the first 
2 factors.    It would seem likely then that scatter diagrams 
(previously discussed) would result In maximum clustering using 
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these two factors.    A scatter diagram that resulted from plotting 
these two factors In pairs against each other Is shown In Figure 11. 

Figure 12 contains scatter diagrams ralatlng other  factors 
to each other.    Figure 11 definitely shows the greater clustering 
of the data. 

The scatter diagrams strongly Indicate that the windowing 
technique mentioned earlier can result In an enhanced  Image with 
the Important features enhanced.    Finding the approximate threshold 
values from the scatter diagram and applying window processing, 
each feature emerged distinctly  (Figure 13). 

A color enhanced photo of Pumpkin Ridge was created from the 
three enhanced photos  (Figure 14).    The example given demonstrates 
the application of factor analysis and window processing.    Most 
often two features would be uniquely distinguished, but  this 
example shows the possible marlt of the technique. 

IV.    CONCLUSION. The purpose of this project was  to develop 
procedures for automatic recognition of certain geologic features. 
Since the final decision of  the photolnterpreter concerning the 
appearance of a feature includes information about its  surrounding 
elements,  it would be up to  the interpreter to decide whether or not 
the area selected by factor analysis actually is the designated 
feature.    It seems evident that principal components analysis would 
have limitations caused by seasonallty, regionallty, moisture 
content, etc., which would limit the ability to distinguish features 
with a unique set of processing constants.    More data would have 
to be collected over the same area at different times  in the year 
and over different areas  (both adjacent and distinct)  under varying 
moisture conditions '•o determine the seriousness of the  effects of 
seasonallty and regionallty on the processing constants so as to 
determine the generality of the solutions. 

This analysis demonstrated that Imagery which enhanced drainage 
patterns and manmade objects could be produced.    It was also 
shown that byproducts of factor analysis, scatter diagrams and the 
window process,  could sufficiently separate local marshes from 
beach ridges and open water as was Illustrated in the Pumpkin Ridge 
slide.    This, however, depended on how separable the spectra of the 
desired features became after factor analysis had been applied. 

-» 
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Thus the feasibility of such an approach has been shown even 
though the analysis was hindered because of data acquisition over 
a limited area at one point  In time. 

Analysis of multlspectral data could be Improved by: 

1. Refining existing  techniques Including the development of 
special purpose hardware for Implementing the techniques. 

2. Applying additional  techniques such as the recently 
popular Bayeslan decision theory to the factor analyzed data. 

3. Acquiring more data over the same area at different 
times and different areas under varying moisture conditions to 
study the generality of  the procedure. 

4. Improving existing hardware to allow more factors to be 
used simultaneously In the window process. 
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Area 19 of Lake Charles,   La. 

FIG. 2 
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Analog Data P r o c e s s i n g Equipment 

FIG. 4A 

Digi ta l Data Sampl ing 

FIG.4B 
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AERIAL PHOTO OF PUMPKIN RIDGE 

FIG. 5 
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False Co lor C lass i f i ca t ion 
o f M u l t i s p e c t r a l Da ta 

F r o m C o m p u t e r Ana l ys i s 

WATER 

MARSH 

THIS BEACH RIDGE IS A POTENTIAL LO-
CATION OF SAND AND GRAVEL DEPOSITS. 
MAPPING OF POTENTIAL DEPOSITS SIM-
PLIFIES THE SEARCH FOR ENGINEERING 
CONSTRUCTION MATERIALS. THE PHOTO-
GRAPH ,»AS MADE ON AERIAL EKTACHROME 
FILM NEAR LAKE CHARLES, LOUISIANA AT 
AN ALTITUDE OF 2000 FEET ON MARCH 24, 
1969. 

THE COLOR CODED IMAGE IS BASED ON COM 
PUTER ANALYSIS OF MULTISPECTRAL SCAN-
NER VIDEO OF THE SAME LOC AT lOu. THE 
CLASSIFICATION OF MARSH. V-ATER. A\D. 
BEACH RIDGE IS PERFORMED AUTO VAT I -
CALLY TO MAP TARGETS Of l\TEW ST ( r -
EXTENDED AREAS. 
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MIXTURE PROBLEMS IN PATTERN RECOGNITION 

William John Sacco 
Ballistic Research Laboratories 

Aberdeen Proving Ground, Maryland 

ABSTRACT. This paper Is concerned with the analysis of a class of 
problems Involving mixture varlates (functions of several random 
variables).  The explicit Inclusion of a mixture as a separate 
category In pattern recognition problems Is studied, and plausible 
forms for the mixing densities In such problems are derived. Methods 
for the estimation of mixing parameters and mixing distributions, 
using mathematical programming techniques, are presented. 

CHAPTER 

TABLE OF CONTENTS 

ABSTRACT 

INTRODUCTION 

PRELIMINARIES ON PATTERN RECOGNITION 

COMPUTATION OF MIXTURE DENSITIES 

2.1 u - wr + (l-w)s 

2.2 u - wr(w) + (l^w)s(w) 

2.3 u - r(w) + s(w) 

SOME PLAUSIBLE MIXING DENSITIES 

ESTIMATION OF MIXING PARAMETERS 

MIXTURE DISTRIBUTIONS 

5.1 Identlflability 

5.2 Compactness and Convexity 

ESTIMATION OF MIXING DISTRIBUTIONS 

6.1 Finite Mixtures 

6.2 Arbitrary Mixtures 

REFERENCES 

PAGE 

116 

119 

128 

129 

141 

145 

149 

152 

155 

156 

157 

162 

163 

170 

174 

The remainder of this article has been reproduced photographically 
from the author's manuscript. 

115 

■ 

ii    -   -■ -- - 



"^I—Ii" .,l,.l...,ll-...l. "•'■"• jipimM 

INTRODUCTION 

This paper is concerned with the analysis of a class of 

f.tatistical problems involving "mixtures".    The problems sJ:udiea 

include the explicit consideration of mixtures in pattern recognition, 

and the estimation of mixing distributions.     (Mixture problems have 

also been extensively studied in pattern recognition in connection 

with unsupervisod estimation ) 

i 

Let K(w) and L(u|w) be distribution functions defined for w 

in a set W. The distribution function H(u) is said to be the mixture 

of L(u|w) and K(w) if 

H(u) = j L(u|w)dK(w) . (1) 

In this expression, K(w) is called the mixing distribution. 

Similarly, let k(w) and i(u)w) be density functions defined for w e Wj 

then the density function h(u) is called the mixture of i(u|w) and 

k(w) if 

h(u) = J £(u|w)k(w)dw , (2) 

W 

and k(w) is called the mixing density. 

Let the dependence of u on w be given by an expression of the 
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form 

u = g(w,t1,...,tni) (5) 

where t, ,....t    may themselves be functions of v.    If w.t1....,t    are 

random variables of known densities,  then the density of u can be 

expressed in the form (2), where ü(u|w)  can be derived from  (j)  and 

the known densities; and analogously for distributions. 

In pattern recognition,   if u is an observed measurement which 

we wish to classify, we can apply statistical decision-theoretic 

methods if we know the density of u under the hypotheses that u comes 

from each of the classes in question.    A special case of pattern 

recognition is signal (or target) detection; here there are usually 

considered to be  two classes,  "noise" and "signal".    Under many 

circumstances,  it is more realistic to consider the possibility 

of a mixture class, part noise and part signal.    Here the measurement 

u will depend on a mixing variate w,  as well as on other variates 

which may be functions of w.    Thus the problem of determining the 

density of u becomes one of computing a mixture density,  given the 

densities of w and the other variates. 

In Chapter 1 of this paper we review basics of pattern 

recognition which are needed in the remainder of the paper.     Chapter 2 

discusses recognition and detection situations in which various 

simple types of mixing occur,  as expressed by simple forms of the 

dependence  (5); methods of determining h(u)  in these cases are 

presented.    Chapter 5 derives plausible forms for the mixing density 
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k(w) in euch  situations. 

The pattern classification problem treated in Chapter 2 

involves assigning a measurement u to one of a set of classes, where 

the classes are defined in terms of values of a mixing variate w. k 

This problem can be reformulated as that of estimating w; given u. 

Chapter k  discusses the computation of maximum-likelihood estimators 

for w for several of the cases treated in Chapter 2. 

Chapter 5 introduces the problem of estimation of mixing 

distributions. Let Q be a set of distributions K(v), each defined on 

W, and let H(u) be defined by (l). Given a set u ,...,u of 

independent measurements of u, we wish to determine the mixing 

distribution K(w) e 0 which produced H(u). Conditions under which 

H(u) determines a unique K(w) ("identifiability") are reviewed.  In 

general, the empirical distribution H (u) defined by u ,...,u may 

not itself be of the form (l); however, we prove, under suitable 

assumptions on Q,  that there always exists a unique H(u) of the form 

(l) which is "closest" to H (u) in a certain sense. 

Chapter 6 reviews the methods which have been used to 

estimate mixing distributions, and formulates mathematical programming 

approaches to the estimation problem. 
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CHAPTER 1 

PRELIMINARIES ON PATTERN RECOGNITION 

In this chapter we review some basic facts about pattern 

recognition.    The pattern classification problem Is formulated as a 

problem of statistical hypothesis testing^  and the optimum Bayes 

discriminant functions are defined.     For the two-class case^   e.g.  the 

case of signal detection, the concept of an Operating Characteristic 

(OC)  curve is introduced;  this curve describes the tradeoff between 

the two possible types of error.    The sequential approach to pattern 

classification is formulated,  and a method for its solution using 

dynamic programming is given. 

The problem of pattern recognition is often said to consist 

of two parts:     (l) the extraction of pattern features  (the characteri- 

zation problem) and (2)  the optimum classification of pattern classes 

(the classification problem).    The former is concerned with finding a 

comprehensive set of distinguishing characteristics and. the latter 

deals with the problem of making optimal decisions in classifications. 
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We adopt the usual approach of characterization which deter- 

mines a mapping of an event into a set of real variables x  ,Xp;...jX  , 

called attributes,  which hopefully characterize the event.     It is con- 

venient to represent the pattern by a point X in d-dimensional space. 

Thus X =  (x, ,x„,... ,x,).    Most successful solutions in the field of. 

pattern recognition hinge on the judicious selection of attributes. 

Unfortunately there are few general results that can serve as guides 

when selecting attributes. 

5 
A pattern classifier    is a device which assigns a vector 

X  ■■  {x  ,x?,...}x  )  to one of several categories R1,Rp,... ,R  .    An 

objective of the pattern classification scheme is to select a set of 

scalar functions d  (X),dp(X),...,d (X),  called discriminant functions, 

so that for all X e R. 
i 

d  (X) > d (X)       i,j=l,2,...;n,       j^i 

This is equivalent to partitioning X space Into n sets.    For each X 

in R., d.(x) > d.(x) for all J / 1. 

Two approaches for determining discriminant functions are fre- 

quently uaed;  the non-parametric  (non-statistical) approach, and the 
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statistical approach.     In this papor we  shall restrict ourselves to 

the statistical approach. 

In the  statistical apiroach, the classification problem 

reduces to that of statistical hypothesis testing.    Each pattern 

class, R.,  is  assumed to have two probability functions,  p(x|l)  and 

p(l),  associated with it.     The function p(xli)  is the probability of 

occurrence of pattern X given that it is  sampled from class i.    The 

function p(i)   is the probability of occurrence of class  i.    A pattern 

classifier is  said to be  optimum in a Bayes  sense if decisions are 

made according to a rule which minimizes the average  "loss" of deci- 

sion making.    The discriminant functions which are used to implement 

Bayes decision making are 

R 

d.(x)  = -   £   Ui|j)p(Xlj)p(j) 

.3=1 

where X(i|j), the so-called "loss" function, represents the loss 

incurred when the classifier places a pattern actually belonging to 

the class R. into category R. . 

The classifications are made in the following manner: 

i. The vector X is presented to the classifier. 

ii. The classifier computes Max[d.(X)] = d^(X), say, and 

assigns the vector X to clpss R . For the special important case 
K. 

n  -= 2 and X(l|l)  = X(2|2)  = 0,  the decision rule reduces to the 

following: 
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Otherwisa,  assign X to Rp. 

In many applied problems the X(i| j) and p(i)  are not available. 

For this reason it is important to consider decision rules which do 

not explicitly include this information.     In the Appendix we shall have 

occasion to use Operating Characteristic  (OC) curves    which require 

prior knowledge only of p(x|l) and p(X|2)  for the two-class problem. 

For the two-class problem we wish to partition all of X space into 

two Be%B fl/and ü } where 

n.   = {x|X is assigned to R^   , 

and 

n2 = {Xlx is assigned to R2}. 

Associated with the partition are two error probabilities, 

a = j    p(x|2)dX , 

n. 

and 

ß = J   P(X|I) 

0„ 

dX 

The quantity a  is the probability of assigning a sample X to 

class R, when it truly belongs to class Rp, and vice versa for ß. 
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Thus, for each partition there is associated the errors a  and 

ß. An OC curve is a plot of a versus ß for a class of partitions. 

As an example, let X be a scalar quantity; let p(x|l) be a 

normal distribution with mean n-, and standard deviation a,, and let 

p(x|2) be a normal distribution with mean Up and standard deviation 

dp (see Figure l,l). 

For each value X* on the line we have a partition, 

^ = [x| - oo < x s X*} and n2 = [x(X* < X < "J. Moreover, 

X* .A. — 

ö a f JL  exP -  (X - ^?)
2

/2CJ: 
« /2n"op -oo     2 

dX 

ß =  f   J^     exp - [(X - n1)2/2a2dX . 

yr* 1 

From Figure 1.1 it can be seen that as X* increases, a increases and 

ß decreases.    This relationship between a and ß can be plotted as a 

curve.    This curve is called the OC curve and is  illustrated in 

Figure 1.2. 
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Figure  I.I   Probability  Density  Functions 
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Figure 1.2 Operating Characteristic  (OC)  Curve 
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In many situationa the claFBi.cation decision need not be 

made on the basis of a single measurement. Thus the observer need 

not always make one of the decisions D. (that class R is present) 

but instead may make the decision W ("wait for another measurement"). 

The loss incurred by this delay will in general be dependent on which 

class R we are measuring. Let W. equal the delay loss incurred if 

R. is truly the class being measured. The objective of the observer 

is to minimize the expected cost. The decision policy that achieves 

the minimum expected cost is called the "optimal" policy. 

A more realistic problem arises when one considers that there 

exist at most (say) n available observations remaining before a 

terminal decision D. must be made.  If the decision W is made, at the 
i 

next decision there will be only n-1 possible observations left. If 

n = 0, then one of the terminal decisions must be made. Let 

f (p ,p ) be the cost of search using an optimal policy, given that 

there are n available observations remaining before a terminal 

decision must be made. We can write a functional equation which will 

yield the optimal policy. The equation is an application of 

7 
Bellman's Principle of Optimality.  In the case of three classes, 

the equation is 
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If the decision is Dp respectively, the expected losses incurred due 

: * 

to terminal Incorrect decisions are^ 

'p2X(l|2) +p3X(l|5) 

P1X(2|l) + P5X(2[5) ^respectively. 

P-^Oll) +P2\(5|2) 

If the decision is W, the expected cost is p W + p-Wp + P,W, plus 

the cost of continuing from that point on, having observed some value 

of x. The probability of observing a value between x and x + dx is 

Cp1p(x|K1) + PoPCxlRp) + P,p(x|R-,)] dx. Having observed the value x, 

the probabilities 

P(X|R1)P1 

pi = P^Rllx) = p1p(xiR1) 4.p2p(x|R2) ^P3p(x|R^)  ' 

and 

Pi = p(Rp|x) 
pCxJR )p^ 

VjPi^WiT-'r P?P(X1TQ + P5P(X[R57 

are obtained from Bayes rule. 
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P2X(l|2) + p5X(l|3)j  decision D1 

P1X(2|.l) + p5X(2|5);  decision D2 

f
n(PpP2) = min 1 

For n = 0, 

p^DIl) + PpX(3|2);  decision D, 

plWl + p2W2 + P5W5 + J 1   PiPUlV^n-Ai^) ^ J 

0 in- 

decision W. 

ZJ^VQ)  = min 4 

P2X(I|2) + P5X(I|5); ^ 

P1X(2|l) + p5X(2|3); D2 

P^CJII) +P2X(5|2);  D5 
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CHAPTER 2 

COMPUTATION OF MIXTURE DENSITIES 

In classical detection problems, it is usual to consider two 

alternatives or states:  (S ) the target (or ojjher event of interest) 

alone is present; (Sp) background (or noise) alone-is present. In 

many situations, alternative (S,) is unrealistic; rather, it is 

appropriate to consider an alternative (S,) in which a mixture of 

target and background is present. 

Suppose, for simplicity, that we are making only a single 

measurement, so that the vector X of Chapter 1 becomes a scalar, call 

it u.  (This restriction will be relaxed at the end of the chapter). 

We wish to decide whether an observed measurement u arises from 

alternative (Sp) or alternative (S,). In order to use the methods of 

Chapter 1, we need to know the probability density function of u under 

hypotheses {sA  and (S-). 

The density function of u under hypotheses (S,) will in 

general depend on the proportion w in which target and background 

are mixed. In this chapter, we consider several specific forms for 

this dependence, namely 

(l)    u = wr + (l-w)s 
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(2) u = wrCw) + (l-w)s(w) 

(5) u = r(w) + s(w) 

where r and s, as well as w, are random variables.  In the following 

sections we shall provide motivation for the forms (l) - (5), and 

shall derive probability density functions for u assuming various 

density functions for w, r, and s. 

2.1 u = wr + (l-w)s 

Suppose one wishes to scan a photograph or a natural scene 

with a sensor having a field of view of fixed size and shape in order 

to identify an event of interest. For each positioning of the sensor 

one obtains a measurement u. The problems that one can consider vary 

in accordance with the properties of the sensor. The first class of 

problems that we shall discuss involves a sensor which is assumed to 

measure an average "intensity" over its field of view. Each element 

in the field of view is assumed to receive equal weight in the 

averaging process. An example of this situation occurs when one 

wishes to detect a target embedded in foliage. One can visualize the 

field of view V of the sensor as partitioned into two regions, R.. and 

R-, (see Figure 2,l) where R contains target elements only and R- 

contains foliage only. (Note that R.. and R0 need not necessarily be 

connected regions.) Let w be the fraction of V containing target 

area of R 
elements, and let w = „ „ . Then the measurement u taken over 

' area of V 

the region V can be represented as u = wr + (l-w)s> where 
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Figure 2.1    Field of View of Sensor 
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and 

r = the average intensity over IL   , 

s = the average intensity over Rp , 

0 & v & 1 . 

The quantities r,  s, and w are  assumed to be random variables. 

Given the measurement u, we wish to decide whether state Sn or 

state S-, obtains.     In order to use the statistical decision theory 
3 

approach of Chapter 1 it will be necessary to compute the probability 

density function of u under hypothesis S,.    We denote this function by 

p(u|S,).    Let p(u|S1) be the. density function for u under hypothesis 

S-.   (corresponding to w = l)  and let p(u|S2) be the density function 

for u tinder hypothesis Sp (corresponding to w = 0).    To facilitate 

further discussion let f^r) = p(u|si), f2(s) s p(u|Sp),  and 

h(u)  = p(u!s,).    We wish to determine h(u), where 

u = wr + (l"w)s, 

and w, r, and s are random variables with density functions k(w)^ 

f^r),  and fp(s),  respectively.     Let R be the range of r,   S the range 

of s,  and W the range of w. 

In deriving h(u) we choose to fix the variables r and s at 

constant values initially.    Then u behaves as a monotonic function of 

w when r and s are held constant.    Thus the conditional density 

i(u|r,s) can be obtained from the probability density, k(w),  or w by 
o 

a univariate method of derived distributions    yielding 
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i(u|r,S) = k« U-Sv   1 
'r-s |r-s| 

Moreover, one can derive the joint density function g(u,r,s) from the 

expression 

g(u,r,s) = f(r;s)^(u|r,s) 

where f(r,s) is the joint density function of r and s. Finally the 

density of u is obtained by integrating g(u,r,s) with respect to r 

and s. Thus we have 

h(u) = J J f (r,s)k(g) -^ dr ds 

T(u) 

where 

T(u) = [(r,s)|r e R, s e S, and — e W] . 

Letting R = [c,d], S = Ca,b], W = [0,l] and assuming that r, s, and w 

are independent, we obtain the expression 

d ß(u) 

h(u) = J  J  f1(r)f2(8)k(H5|).(^) ds dr 

7(u) a 

b  ß'Cu) 

: + J   J   f1(r)f2(s)k(H5|)(^) dx ds, 

7'(u) c 

where 

ß(u) = max{a,mln(u,b)}, 7(u) = min{d,max(c,u)3 , 

ß'Cu) = max{c,min(u,d)], 7'(u) = min{b,max(u,a)} . 

The two integrals evolve as a result of partitioning T(u) into two 

sets T., (u) and Tp(u), where 

(2.1.1) 

'I 

:< 
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^(u) = [(r,s) |r e R,  s e S, r > s,  and Ü ^ ^ •- l]   , 

and 

T0(u) = {(r,s)|r e R,  s e S, r < c,  ai,.i  ü - ---"- ^ l]   , 

or equivalently, 

T-Cu)  = {(r,s)|r e R,  s e S, and s ^ u ^ r]   , 

and 

T0(u)   = {(r,s)|r fi R,  s e S,  and r s u ^ s}   . 

Examplg 1.     Suppose 

(i)    r and s are constants. 

(ii)    s > r. 

(iii)    w  is uniformly distributed on [a,B] where 

0 s a < ß s i (see Chapter 3 on the plausibility of this). 

Then u is uniformly distributed on [s - p(s-r),  s  - a(s-r)]. 

Example 2.     Suppose 

(i)    r is a constant. 

(ii)    s and w are statistically independent, 

(iii)    s is uniformly distributed on [a,b]. 
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Then 

or 

(iv) w is uniformly distributed on [0,1], 

h(u) =  f  ri- (~)dw , v '   J  b-a vl-w   ' 
T(u) 

(b-a)h(u) =  J 1^ dv ^ 
T(u) 

where 

T(u)  = {w|0 ^ w ^ 1 and a ^ —=• ^ t,} 

We consider three subcases: 

(i)    r < a.    Then 

fa-u     b-u"[ 
La-r ' b-rJ 

'(u)  ={ 
for      r ^ u ^ a 

b ' Bl 
and 

(b-a)h( u,={ 
toO 

for      a ^ u < b 

for      r ^ u ^ a 

^u-r' for      a s u s b 

The graph of this function has the form 

(b-a)h(u) 
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) 

(ii)    a < r < b.    Then 

u-a 

T(u)  = ^ 

(0, ~|)      for      u •- u < r 

and 

(b-a)h(u) 

(0, ^      for      r < u £ b 

£n(^)        for     a <• u < r 

for      u .--: r 

fb-Ts 
c in^S7^        for     1• ^ u < b 

whose graph has the form 

(b-a)h(u) 

r b 
Figiire 2.5 

(ili)    r > b.    Then 

T(u) = [a, mln(u,b)], 

and 

M—)       for     a s- u s b 

/r-av 
(b-a)h(u) = 

The graph of (b-a)h(u) has the form 

in(—)       for     b -^ u <: r 
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(b-a)h(u) h 

Figure 2.k 

Example $•    Suppose 

(i)    r,  s,  and w are statistically independent, 

uniformly distributed random variables. 

(ii)    R = [c,d], S = [a,b],  and W = [0,l]. 

(iii)    For definiteness, let 0<c<a<d<b. 

Then 

where, 

(d-c)(b-a)h(u) = I^u) + I2(u)  , 

^(u) 

for u ^ a 

(d-a)in(d-a) + [/(u)   - e(u)]ün[7(u)  - ß(u)] 

■[d-ß(u)]Md-ß(u)] - [7(u)-a]inC7(u)-a] for u > a 

and 

I2(u)  - (b-c)^n(b-c)  + [7'(u)]M7,(u)   - ß'(u)] 

-[b-ß'(u)]^n[b-ß'(u)] - [7,(u)-c]fe[7'(u)-c] 
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Furthermore, 

where 

and 

(d-c)(b-a)h(u) = - 

k + h (u)  for  c ^ u < 

k^ -  h2(u)  for u s a 

k, + h,(u)  for  d < u s b 

k, = (b-c)in(b-c) - (a-c)in(a-c) , 

k2 = (d-a)fa(d-a) + (b-c)in(b-c) , 

k, = (b-c)in(b-c) - (b-d)^n(b-d) , 

h (u) = (a-u)in(a-u) - (b-u)in(b-u) , 

h2(u) = (d-u)in(d-u) + (u-a)in(u-a) 

+ (b-u)in(b-u) + (u-c)£n(u-c) , 

h,(u) = (u-d)in(u-d) - (u-c)in(u-c) . 

I^u) + I?(u) 
Let c=l, a=2, d=5, and b--^. Then h(u) =  r—   , and 

k., = k0 = k, = 5 ^n 3- The graph of h(u) is given in the following 

figure. 

12 3 4 

Figure 2.5 
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Then 

where 

Example h. Suppose 

(i) r, s, and w are Independent random variables. 

(li) r and s are normally distributed. 

(iii) f^r) s NC^oJ) J f2(s) H NCtig^g). 

h(u) = J k(v)>e(u|v)dw 

W 

je(ulw) = NCvv^ + (l-w)|Ji2 ; w2a^ + (l-w) ög) . 

Then 

Example ^. Suppose 

(i) r, s, and w are independent random variables. 

(ii) r and s are distributed exponentially. 

-X,r -XpE 
(iii)    f^r) a X^    ■L    ; f2(s) = X2e    ä       r,s s 0 

where 

h(u) = J k(w)i(u|w)dw , 

W 

T(u>w) 
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* 

and 

T(u,w) = {s: 0 s S =s jiL] . 

Substituting for f and f2, integrating and simplifying, we obtain 

X2u X.u 

'W'T^b'^-'^. 

Example 6. The Step Function Case. 

In many pattern recognition problems, probability 

density functions for r and s are approximated by histograms obtained 

from sample measurements. With this in mind we define 

m 

^(r) = I   a.Hfr-r.) 

i=l 

and 

f2(s) = Y   b.H(s-s ) 
J=l 

where 

H(x) = { 
1 J x > 0 

"0 ; x £ 0 

We shall determine the function h(u) with f,(r) and fp(s) defined as 

above, and with a uniform density function for w. It follows from 

equation (2.1.1) that 

m  n 

h(u) = ^ ^ a^jtl^i^u) + I2(i,j,u)] 

1=1 j=l 

139 

mmmmmmmmmmmimim 
4 

— t-".^- —.^.-W.,.,». ,-;.-„.■ ..^..:,,. a,;:„. i,  »a»^ia^^^^;,,a.....,.,:/^toa.^^  , . .. ... . . „a. ^;,,,^;.u.;„..^,.^m,.;:..,.,,.,.. .,.I....^M.  ,..  , , ... -,i^:^,^ 



„„„,T,,-^^„^^^,,-T.T-,-v-™.-,.,T,,,^n™^.OT™^^.-.i,r^.. ,------ -„.^„^.^^-.„^„.^„^„.i,,,,«,,,^^^ 

whr:.( e 

I fa) 
a    r 

In(l,t5,u) ^ 1   !   k(^:1)  ds dr , 
1 ' '    >>        J    r-s r-s     ' 

and 

Ö tu) 
b   V 

[2(i,J,u) = J   J 

7 (u) c 

jvi    dr ds , 
r-s s-r     ' 

and 

ß (u) = max [s , inin(u,b)] , 

7. (u). = min [d, max(r.,u)] , 

ß.(u) = max [r., min(u,d)] , 

7 (u) = mln [b, niax(u,s.)] 
J u 

For w uniformly distributed -on [0,1], we obtain 

1.(1,J,u) = (d-s )in(d-s ) + [7. (u) - P.(u)]in[7. (u) - ß (u)] 
"^ J J        1 J 1 J 

- Cd - ß (u)]inCd - ß.(u)] - [7. (u) - s ]in[7. (u) - s ] , 

and 

I2(i,j,u) = (b-r^Mb-r^ + iy.iu) -  ßi(u)]in[7J(u) - ß^u)] 

- Cb - ß.(u)]in[b - ß. (u)] - C7.(u) - T.ltniyAv)  - r. ] . 

2.2 u = wr(v) + (l-v)s(v) 

In Section 2.1 we considered the "mix" variate u, where 

u = wr + (l-w)s. 
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This model represented a sensor which obtains an average of 

"intensities" over its field of view and the average intensities r 

and s were not dependent on w. 

One can conceive of situations when r and s would be dependent 

on w. Indeed, for an integrating sensor, the value of \i  corresponds 

to a sample size in the sense that a value of w close to C leads to 

greater variability in the measurement of r, while a value close to 1 

makes the measurement of s more variable. This would give rise to an 

expression of the form 

u = wr(w) ^ (.L-w)t;(w) . 

Our objective is again to derive an expj'ession for the density 

function h(u). The quantities r,  s,  and w are assumed to be random 

variables with densities ^(r), fp(s), and k(w), respectively. The 

variate u is a monotonic function of s when r(w) and w are held 

constant. To obtain the distribution of u we imagine that the two 

variates r(w) and w are held fixed at some arbitrary value while s 

varies over its possible range according to its distribution. The 

probability distribution of u which then results is the conditional 

distribution of u given r(w) and w. Moreover, u becomes a monotonic 

function of the variable s although the equation relating u and s will 

contain the parameters w and r(w). Hence the conditional density 
o 

cp[u|w, r(w)] can be derived from fp(s|w) by a univariate method 

giving cp[ulw, r(w)] = r— f I— ^ '      wl . Furthermore one can then 

produce the joint density function, gCu,r(w)|w], of u and r(w) 

conditioned upon w by the expression 
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g[u,r(w)|w] = ^ ^ [r(w)|w] f2 [^^M | w] . 

One obtains the density of u (conditioned upon w) by integrating the 

function gCu,r(w)|w] with respect to r(w), taking pains to keep the 

argument of the function f- in the range of the variable s. This 

yields 

i(u|w) = ^ J   f.Ww) |w] f2 [HlgM I w] dr . 

T(u,w) 

) 

In the above, the set T(u,w) = [r(w)jr(w) e R(w) and 

•V^* '  e SCw)}, where R(w) is the range of r(w) and S(w) is the range 

of s(w). If we let R(w) = [c(w), d(w)], and S(w) = [a(w), b(w)], then 

T(u,w) = {r|c(w) s r s d(w) and a(w) ^ j^- s b(w)] . 

From the inequalities a(w) ^ 
u-wr 

s b(w), we obtain 

(l-w)a(w) + wr(w) s u s (l-w)b(w) + wr(w). From Figure 2.6, we 

visualize the dependence of the lirAits of integration upon u and w. 

u * (l-w)b (w) +■ wr(w) 
or 

*s-u - (l-w)a(w) + wr(w) 
or 

r{w)=-i-u--^a(v.) 

c(w) d(w) 

Figure 2.6 
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Hence 

with 

and 

UCu,w) 

ü(u|v) = ^   J fCr(w)|v] f2 [H=gM | w] dr , 

L(u,w) 

L = max[c(v); i u - -^ b(w)] , 

u = min Lwu ■ ^ a^w^ d(w^] 

There axe two cases to distinguish. If 

(l-w)a(w) + wd(w) s (l-w)b(w) + wc(w), then T(u,w) is 

[c(w), iu- (^)a(w)] for (l-w)a(w) + wc(w) s u s (l-w)a(w) + wd(w) 

[c(w), d(w)] for (l-w)a(w) + wd(w) < u ^ (l-w)b(w) + wc(w) 

[iu 1-w 
V w 

b(w), d(w)] for (l-w)b(w) + wc(w) s u ^ (l-w.)b(w) + wd(w) . 

If (l-w)a(w) + wd(w) a (l-w)b(w) + wc(w), then T(u,w) is 

'Cc(w), iu-(i~) a(w)] for (l-w)a(w) + wc(w) s u s (l-w)b(w) + wc(w) 

' ^-(~£)b(w),ili-(iji)a(w)] for (l"w)b(w)+vfc(w)=s u ^ (l-w)a(v)+wd(w) 

.[Ju - (^i)b(w), d(w)] for (l-w)a(w) + wd(w) s u s (l-w)b(w) + wi(w) . 

Finally, to determine h(u) we must integrate with respect to wj the 

result is 

h(u) = J k(w)i(u|w) dw . 

W 
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2.? u = r(w) + s(w) 

Suppose the variable u is a count of the number of 

occurrences of a certain event in the field of view of a sensor or 

perhaps in a sub-region of a picture. Then a model for u which 

arises quite naturally is 

u = r(w) + s(w) .' 

Examples of this model might arise as follows:     Suppose that 

the sensor does not simply integrate the detected intensity over its 

field of view, but instead forms an image of it and analyzes the 

image.    Here the analysis may involve features or subimages of a given 

size, e.g. edges of a given length or "blobs" of a given area, such 

that a single feature either lies entirely in R,  or entirely in R0. 

If what we are measuring is the number of such features,  then the 

measured count over the field of view will be the sum of the counts 

over R,  and over R-.    In general, these counts will depend on w, since 

if R,   (say) is small, there may be no room for the features to occur 

in it. 

Proceeding as in the earlier sections, we obtain 

h(u)  = J k(w)      J       f1(r|w)f2(u-r(v))dr dw^ 

W T'fu,*) 
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T'(u,w) = {r|c(w) s r ^ d(w)   ;  a(w) < w - r s: b(w)] 

As an example suppose r(w) and s(w) are independent random 

variables possessing Poisson distribution.., dependent on w.    Then 

and since the sum of two independent Poisson variates Is a Poisson 

variate, 

where 

7(w) = X(w) + ß(w) 

For X(w) = wX., ß(w) = (l-w)e, where \  and ß are constants, 

je(u|w) = e 
-[w\+(l-w)ß] rwX+(l-w)ß]u 

U! 

p-ß -[X-ß]w [a-ß)w+ß] 
" e u! 

■u 

a.    Suppose w is distributed uniformly on [a,b] where 

0 S a < h s 1.    Then 

b -ß     b 

h(u) = J k(w)i(u|v) = f^j J e-
(X"ß)w[(X-ß)w + ß]u dw. 

a a 

Repeated integration by parts yields 
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h(u) = C(X-0)(b-a)u!]-1[e-p{pu + up""1 + u(u-l)pu-2 +...+ u!} 

-e-V + uq
U-1+U(u-l)q

u-2+...+ u!}] , 

where 

and 

p = aX + (l-a)ß , 

q = bX + (l-b)ß . 

b. Suppose w is distributed as follows: 

k(w) = ai + ^w j  w1 s w s w.+i ;      i=l,2,...,n-l 

where k(w)  is continuous and 

0=w1<w2<...<w   = 1 . 

Then 

n   w 
v ri+1 

h
^  =   L   J      (ai+biw)i(u|w)dw 

i=l w. 

n w. 

=   I [ ^ J      ^(u|w)dw + ^ J     wi(u|w)dwj 
i=l        wi wi 

Substituting for i(u|w)  and integrating both integrals by parts, 

repeatedly, we obtain 

* 
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.... .      . ;....       .   .        ... 

h(u) = [(\-p)u!]"1 ^   a. [e    ^ {pVp^'^Cu-Dp^-2 +...+ ulp.+ul} 
i=l 

i  f u  ,       u-1  ,     /    , \  u-2   ,       ...        ,     ,\"1 - e        iq.  + uq.       + u(u-l)q.       +...+ u!q.   + u!M 

n 

+ [(X-3)2u!]"1   ^bi[e"Pi{pf1
+(u+l)p^(u+l)up^;L

+...+ (u+Dlp. 

i=l 

-Q,- 

where 

and 

+ (u+l)!}-e    1-[q^+1+(u+l)q^+(u+l)uq^"1 +...+ (u+l) Iq^Cu+l) l} 

+ ße    ^q" + uq^"1 + u(u-l)q"_2 +...+ u!qi  + ul} 

- ße ^ + up^-1 + u(u-l)pj"2 +...+ u!p.   + ul}] , 

Vi = (X-ß)wi + ß , 

qi = (X-ß)wi+1 + ß  . 

Extension to a Set of Measurements 

Let us suppose that for each positioning of the sensor one 

obtains several measurements, x.. ^Xp,... ,x,.    Let X = (x1,...,x,).    Let 

us assume that for each of the classes S.., Sp, and S, the components 

of X are statistically independent.    This allows us to write 

pCxIs^ = p(x1|s.)p(x2|Si)...p(xd|s.);      1=1,2,3. 

Each x^ is then a mixture variate and the theory discussed in Sections 

2.1 to 2.3 is applicable. 
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CHAPTER 5 

SOME PLAUSIBLE MIXING DENSITIES 

In this chapter we derive several plausible density- 

functions; k(w), for the random variable w. 

Consider the problem of scanning, with an aperture or 

window, a two-dimensional photograph (or natural scene).    Suppose 

(i)    The target and photograph are rectangular-shaped, 

(ii)    The window is square-shaped, 

(iii)    The edges of the window and target are parallel to the 

edges of the photograph as illustrated: 

r 

TARGET 

•S    UNITS- 

V) 

Z 

WINDOW 

(iiii) Each possible position of the window is equally likely. 

Let the window be a urit square and let the target be S(> l) units 
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long and T(> l) lanits wide. Let w be the ratio 

area of overlap of target and window 
area of window 

We wish to find the probability density function, k(w), given there 

exists an overlap of window and target; Assuming that each admissible 

position of the window with respect to the target is equally likely, 

we can derive the expression 

, ,   s      S+T-2-2inw      ^ ^     „., 
k(w) =  s-r-sr ;  0 < w < 1 , S + T 

For S = T, we obtain 

k(w) = S - V fa w ;  0 < w ^ 1 . 

As either S or T approaches infinity, k(w) approaches a uniform 

distribution on [0,1], 

Suppose next that 

(i) The target and window are circular-shaped with radii 

of R(> l) units and one unit, respectively. 

(ii) Each possible position of the window is equally likely. 

(ill) w(s) is the ratio 

area of overlap of the target and window . 
area of window 

Then 

w(s) 
S.,(s)  + S0(s) 

? " y(s) Vl-y2(s) + sin"1 y(s) 

- S +lly(s)I Vl-y2(s)  + sin'^Wsl ■i^[|y(s)| ^lyCs)! 

for      0 s y(s) <; i 

for       -1 s y(s)  so 
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S2(s) = — 

and 

[t(S)  - y(s)] ^R2 - [t(s)   - y(s)]2 - li ,Iu-^t(S)-y(s)^ 

t(s)  = R - 1 + s  , 

v(s)  =s
2
+2(R-l)(s-l) 

yvs; 2(s + R-i) 

The variable s is a random variable having n ilensity function 

Z{s) = R+^ " S      0 ^ s ^ 2 . 

Estimates of the probability density function for w nuiy be obtained 

by computer simulation. One could sample s, many tlnr;;, from a dis- 

crete version of its cumulative distribution, evaluiiln w(s), and con- 

struct a discrete approximation to k(w). The proceiliu-c could be 

repeated for a family of R values. 

For the discussion above, we selected two exmuples where the 

variate w could range over the entire interval [0,1]. Another 

possibility is suggested by the two cases illustratt•,i below: 

..^-WINDOW 

-TARGET 

X 

WINDOW 

IARGET 

In these cases the target is smaller than the window in either, one 

or both dimensions, so that the target never comploldy fills the 

window. These examples show that the values of w inlc.hl, be restricted 

to an interval, say, [0,ra], where m < 1. 
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Even in an application where target shape is not regular, 

the above analyses may provide useful approximations.    Moreover, 

knowledge of the properties of density functions for w in various 

cases can be used as a guide in selecting window shapes. 

CHAPTER k 

ESTIMATION OF MIXING PARAMETERS 

In Chapter 2 our aim was to assign the given measurement u to 

one of two classes, S- or S,, where Sp corresponded to background only 

and S, to a mixture of target and background. The dependence of u on 

the mixing variate w was assumed to be of the form, e.g., 

u = wr(w) + (l-w)s(w) 

where w = 0 corresponded to case Sp and w ^ 0 to case S,. Thus our 

problem in Chapter 2 was, in effect, to decide whether w = 0 or w ^ 0 

for the given u;  the problem could thus have been regarded as one of 

estimating w, given u. 

If we know the density function i(u(w) of u conditioned on w, 

it is reasonable to choose as our estimate the value of w that most 

likely caused the given value of u to occur, i.e. the value max i(u|w). 
w 

In Chapter 2 we determined i(u|w) in various cases; some of these are 

summarized below. 

Example 1'. This example corresponds to Example 1 of 

Section 2.1. Solving u = wr + (l-w)s for w we obtain 

B-U w = s-r 

Since r and s are constants a measurement u uniquely determines w. 
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Example 3'. This example corresponds to Example 2 of 

Section 2,1. For definlteness suppose r < a < b.  It is easy to show 

that l(u|v/) is uniformly distributed on [wr + (l-w)a, wr + (l-v)b], 

that is, 

■^N = (b-aj"(l-w)  '  ^ + (1"w)a ^ u - ■WT + (l-w)b • 

Also it is easy to shov that 

max  i(u|w) = i(u|w*) 
0 ^ w ^ 1 

where 

b-u 
b-r 

Example k'.    For Example k we obtained 

?  P ? 2 
i(u|v) s H(w|i1 + (1-W)M.2 ;  w 0£ + (l-w)  cfg) (1) 

Example 5'. For Example 5'we obtained 

M 
X1U X^u 

11 ^     H g   r "i^   "^n (ulv^-Ii^l^rLe      "e    J- (2) 

Analytical determination of        max        X(u|w) appears to be 
0 ä w <; l 

difficult for equations (l) and (2); the best way to determine the 

maximum is probably by rlirect search. For the next example, however, 

we can give an analytical treatment. 

152 

I: 

"t'- -■'"-""'" — 
Ja.»,,',!...,--,«,,,,,,..,-!..,^..!-..;.,.-.^^^,..,..-,..  ■...,....:...^i.....l...mt.,..,. 

-■■''j't-'">-'" ' ""^■•"'— ■■ »MttHJ^Mr^r.^:.™ fV..;. ..^..■-;.^ . ... ..^;;.. >, .. . . , . 



r-   ^ ■■ -■r^-^r^r^'^'-™-.-'™??™^^^^ 
:^r.^:---:-.:::--:  _..__...... w.,..;,..,v.v?.r.  ..,: ,, ..^ ., ,.-^, 

^ i 

Example 6' . For the Poisson example in Section 2.5 we 

obtained the likelihood function 

i(u|w) = e-ße-[>-ß]w ^+(l-w)ß]
U 

(3) 

Suppose, for defihiteness, that \ < ß. The maximum likelihood 

estimate w(u) is the value of w in [0,1] at which the likelihood 

function is a maximum. In this case we choose to work with the 

logarithm, £n  i(u|w). If the maximum belongs to the open interval 

(0,l), then a necessary condition on w is obtained by setting to zero 

the derivative of in i(ulw): 

= 0 W 

vX + (l-w)ß'' 

5 in i(u|w)  = 

aw 

From Equation (3), we have 

5 in^(u|v) = (ß_x)(l 

Substituting in Equation k we get 

w = |^ . for  \ s u ^ ß . 

Since the sign of the derivative is positive for all values of w when 

u < X and negative for all values of w when u > ß we have the 

complete solution 

Hu) 

1      j    u < X 

IS ■■ ^v- 
,  0      J    u> ß 
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CHAPTER 5 

MIXTURE DISTRIBUTIONS 

Chapter k considered the problem of estimating the mixing 

parameter w, given a single observation u.    In this and the following 

two chapters we treat the more difficult problem of determining the 

mixing distribution K(w), given a set of independent observations 

u, ,...,u   which define an empirical distribution H (u),  and similarly 

for densities. ' 

Let fi be a set of distributions K(w)> each defined on a set 

W. (For example, W might be the interval [0,1], and Q might be the 

set of uniform distributions on subintervals of W.)    Let 

H(u)  = J L(uIw)dK(w) (1) 
W 

where for each w, L(u|w) is a distribution. Given u,, ...,u , we wish 

to estimate the particular distribution K(w) in Q which produced 

XL. , ... ,u . This is essentially the problem of unsupervised 

1 2 5 U 
estimation, ' ' ' which arises in connection with communications, 

control, and pattern recognition. 
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^.1 Identlfiabiljty 

The first consideration in attempting to find K(v)J given 

u,,...,u , is whether specifying H(u) does in fact uniquely determine 

K(w). Let 

Q' = {H(U): H(U) = J L(u|w)dK(w) j K(v) e Qj . 

W 

Let A denote the mapping from Q to 0',  i.e. H=AK.    We  say that Q'   is 

identifiable if A is one-to-one.     In this case, A"    exists and we 

have K=A    n.    Teicher      has  shown (generalizing a result of Feller    ) 

that mixtures of Poisson distributions L(u|w)  are always  identifiable, 

but that mixtures of binomial or uniform distributions are not in 

general identifiable. 

H(u) is called a finite mixture if it has the form 

M 

H(u) = P1L(u;ei) +...+ PM(ujeM)      ;      P. s 0,   ][   P. = 1 . 

i=l 

Here M is finite, but its value may not be known; in addition, the 

p's and ö's may not be known. In the finite case, the estimation 

problem reduces to that of estimating M, 9 = (9 , ...,9 ), and 

P = (p, ,...,PM), given u.,.. .,u . Teicher  has established a 

sufficient condition for the identiflability of finite mixtures, and 

used it to prove the identif lability of all finite mixtures of gamma 

12 
or one-dimensional Gaussian distributions. Yakowltz and Spragins 

have generalized these results by proving that the class of finite 
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mixtures of a family 3 of distributions is identifiable  if and only 

if 3 is linearly independent over the field of real numbers.    In 

particular, they have proved identlfiability for such families as 

multivariate normal, products of univariate exponentials, two- 

parameter Cauchy or negative binomial,  and one-parameter translations. 

5.2    Compactness and Convexity 

In general, the empirical distribution H (u)  defined by the 

observations u-,,...,u    does not belong to 0',  so that even if 

identifiability holds, A~"Ti    may not belong to f).     In this section 

we prove,  for a vide class  of Q's, that there always exists a unique 

IL^Cu)  in Q'  which is "closest" to H (u)  in a certain sense. 

Let J3 be the class of all distribution functions on the real 

line.    The Levy metric on J5 is defined     by 

L(F,G) = lnf{h:  F(x-h)-h ^ G(x) ^ F(x+h)  + h} 

for all F, G in 3.    Let Q be a subset of ^ which is convex, and compact 

in the Levy metric.    The function A maps Q onto Q', which can be 

regarded as a subset of £  .    Using the metric defined by the £   norm, 

we have 

Proposition 1.    Suppose the function L(u|w)  is, for each 

w e W, a distribution on a closed subset of the real line.    Suppose 

L(u|w) is continuous in w for each fixed value of u.    Then A ig 

continuous. 
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Proof: The weak convergence of K to K is assured by the 

corKÜtlon L(K ,K) -• 0 [13]. This means H (u) converges pointvn'se to 
n 

Hr,(iO-    The cter.lrcd result then follows from the dominated convergence 
11 

P 
thoore.'R foi' ^ '. 

Cprollaxy■ Q' is closed. 

Proof: Q is compact and a continuous image of a compact set 

is compact. Thus Q' is compact. Since £ is a metric space it 

follows that Q'   is closed. 

Proposition 2. Q' is convex. 

Proof: Let IL^u) = J L(u|w)dK1(w) and H2 = J L(u|w)dX2(w) 

belong to 0' . Then KAW)  and K2(w) e 0. Let 0 < a z 1.    Then 

H(u) = an^n) +  (l^)ll2(u) 

= a      L(u|w)äiL(wl + (l-a)      L(u v)dK0(w) 

= J L(uiw)(adK1(w) + (l-a)äK2(w)) 

= J L(u|w)d[QK1(w)  + (l^)K2(w)]   . 

Since Q is convex ^(w) + (l-a)K2(w) e Q.    Thus H(u)  e Q' . 

A well-known theorem in approximation theory is the following: 

Let S be a closed and convex subset of a Hubert  space M.    Given any 

X e W there exists a unique vector Yo e S such that  ||X - Yj S ||X - Y|| 

for all Y e S.    In our case we identify Q1   with S, <C2 with M, H ^u) 

with X,  and IL^ with Y    to obtain the desired result. 
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To see that compactness and convexity of Q  are reasonable 

assumptions, let [a,b] be any closed interval on the real line, and 

let n , be the class of all distribution functions K such that a,b 

K(w) = 0 for w < a and K(w) = 1 for w > b. 

Proposition $. Q , is convex, a, o 

Proof: Let ^(w), K2(w) e Q and let 0 s a s i. Then 

K(w) = aK, (w) + (l-a)K?(w) is continuous from the left, and non- 

decreasing. Furthermore K(a) = 0, K(b) = 1. Therefore K(w) e 0. 

/. 

Proposition k.    0 , is compact. 

Proof: Since 0 is a metric space. It is compact if and only 

if it is complete and totally bounded. (A st.o Q of a metric space 

is totally bounded if for every e > 0 It is possible to cover Q by 

a finite number of spheres B (q.) ,{i=l,2},.. ,n.)  with centers in Q.) 

The proof for completeness is essentially the proof given In [13]: 

Let F, ,Fp,... be a sequence of functions in ft  that satisfy the Cauchy 

condition. L(F ,F ) -• 0 as n.m -• a>.    Consider the set of ratlonals 
' v n' m        ' 
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M = {x-,Xp,...,x ....)> ordered as a sequence, on the interval [a,b]. 

Since the values of F (x ) are bounded, we know that there exists a 
n' s' 

subsequence of functions F (x),F (x),...,F (x),... which converges n V 
at every point of M. The limit v(x ) = lim P (x ) is defined on M v s'      , H,     s' 

k -» oo      k 

and is a non-decreasing function on M.    Set 

F(x) =      sup   v(xs). 
X     < X s 

The function F(x) is defined everywhere on [a,b] is non-decreasing 

and continuous from left. Also F(a) = 0, F(b) = 1. Indeed for any 

€ > 0 there exists an n such that L(F ,F ) < e for m & n. We can find 
n m 

a z such that F (z) < e. Then for x < z-e 
n s 

F (xs) s Fn(z) + e s 2e;   \ s n 

imd therefore 

v(x ) s 2e. 
s 

Since e > 0 is arbitrary, F(a) = 0. A similar argument proves 

F(b) = 1. It is easy to see that F (x) converges to F(x) at every 

continuity point of F(x). Thus 11m L(F ,F) -• 0. From this last 
k -»   \ 

result and L(F ,F ) -• 0 it follows that lim L(F ,F) -• 0. 
n _ CD 

We next show that Q is totally bounded. Thsre is no loss of 

generality in letting a = 0, b = 1. Given e, we consider a grid of 

2 1 
n squares on the unit square, 0 ^ x ^ 1, 0^ F(x) ^ 1, where — > e. 

This grid is pictured below. 
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F(x) 

A 
2. 

(0,0 

'/. 
V\ 

(i.n 

The e-net for Q is composed of all "East-North" paths from '(0,0) to 

(l,l). Each distribution function is within a distance e (in Levy 

metric sense) from one of the East-North paths. Indeed, given a 

distribution function G(x) .we may select F(x) to be the closest 

East-North path subject to the condition F(x) ^ G(x). Then 

F(x + -) + = a G(x) which implies that L(F,G) ^ e. 
n   n 

160 

  iirMlilmi 11 '    ■-  ■iMiiiiiiMliMtliiMl—itliM - in 111 1 11 urn Biagte ■■■■■ 



w^iw^w^ai^B^^^^ 

I 

VS^^^^^S^KHSMIS^m^t^immtmmmmmim!" '   •r-rri^isami^mmm.mmmmmmmsr'vwmfitmvi.w' .*.*■>:•'■ 

CHAPTER 6 

ESTIMATION OF MIXING DISTRIBUTIONS 

The estimation problems associated with mixtures have 

received considerable attention during the last five years. Many- 

authors, both mathematicians and specialists, have dealt with these 

problems, not only because of their interesting mathematical content 

but because of their great importance In many theoretical and applied 

sciences. The large variety-of problems that have been considered 

Is due to different choices for objective functions and different 

assumptions regarding the a priori knowledge available.. We shall now 

review some of the solutions to estimation problems. 

We shall first treat finite mixture problems. We will, 

review the results of Doetsch , Medgyessy , Stanat , Sammon , 

McCormick  and Choi . Then we present l) a non-linear programming 

formulation of the Choi problem uölng an objective function based on 

the uniform norm and 2) a Lagrange multiplier solution to yet another 

mixture problem. 

Turning to arbitrary mixtures we review the Keely-Krüse 

results and present a direct linear programming formulation of their 

problem. ' 
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6.1 Finite Mixtures 

We stated in Section 5'1 that H(n) is a finite mixture if it 

M 
is of the form H(u) =- S p.L.(uj9.) (or in terms of probability 

M M 
density functions, h(u) = E p.l. (ujÖ )) where p. a 0 and E p. = 1. 

i=l ^^ 1   i       x i=l 1 

M is finite, but its value may be unknown. Each L.(u;9.) (i.(uj0 )) 

is a distribution function (density function) with a parameter 9 

which may be unknown. We assume that we are given a sequence 

u,,u„,...,u of independent observations selected according to the 

mixture H(u). Our objective is to estimate the unknown parameters 

among M, P, and 9. 

There are several cases to consider. 

Case 1. M, Pt and 9 are all unknown 

Only a few special problems have been treated when M, 9, and 

P are all unknown. 

Ik ... 
Doetsch  has assumed H(u; to be a mixture of normal functions 

and exhibited a linear operator which reduced the variances of the 

summand functions without changing their weights or means. 

15 Medgyessy  extended Doetsch1s work to a large class of finite 

mixtures with the restriction that the summand functions be univariate 

and have no more than two Vmknown parameters. 
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Stanat  has exploited the techniques of Doetsch and 

Medgyessy for the purpose of treating empirical functions and 

extended the techniques to include summanri functions which are 

multivariate. Two cases were studied in detail, the multivariate 

normal and the multivariate Bernoulli. 

To illustrate the technique we describe the univariate, 

normal summand case due to Doetsch.""    ; 

Assume h(u) is equal to a weighted sum of univariate normal 

functions, 

M M 

h(u) = I^PiNOv^ Pi>^ I Pi-1^ 
i=l 1=1 

where the parameters p., [X., o., and M are all unknown. Also, for 

deflniteness assume a. ^ a. , for all i. Let $(cu) denote the Fourier 

transform of h(u) and §'.(üU) that of the summand function N(p..,a.). 

Then 

M 

*('«) = 2, v^^} 
1=1 

2,P1exp(jiYJ - | a^2), 

1    2 2 
A function Z(X,cu) = exp(p X ou ) is defined which will 

determine a linear operator on the summand functions of $(fü), that is, 
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l*H  - $(UJ)-/,(X,U;)  =^ P15.(ou)-Z(X,U)) 

1 

M 

= )j P1exp(,jti1uj  - ^af1 - X
2

)(Jü
2
). 

1 

The properties of §*((Jü) are dependent on X as follows: 

(1) For X = 0, l*(u)) = |{{u). 

(2) For 0 ä X S a1, #*(«)) is the Fourier transform of a. 

weighted sum of normal probability functions. 

(3) For X > a1, i*(X) is not a characteristic function. 

('0 For X = a1, f*(u)) is the Fourier transform of a 

weighted sum of normal probability functions, at least one of which 

is degenerate.  In particular if h*(u) is defined to be the inverse 

transform of $*(u)), then for X = a,, 

M 

h*(u) = P1N1(H1,0) + £ P.NOI.^
2
 - a2). 

i=2 

If ^'(u) is defined to be the cumulative function of h*(u), then 

H*(u) has a discontinuity of height p at the value \i..    This fact 

and the knowledge of the critical value of X are sufficient to specify 

completely the summand function with minimum variance. This 

function can be subtracted from the original function h(u) and the 

procesG repeated. 
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M 
Sammon ' has considered a mixture 

M 

h(u) = Y   p.^U-^)   ;   p. S 0, ^ 
i=l 

P. =1 

where /<(u) is of a particular form. The aim is to determine the 

unknown parameters M, p , and p,.. 

I S 
mear 

operator T to h(u). ThenT[h(u)]= S p.c.(u-,.) where TC^] = cv.  He 
•i _T    -1-        1 

The method of solution involves the application of a llr 

M 
S 
1=1 

shows that a linear operator can, In general, be found so that each 

element a(u-\i.)  has a large narrow positive peak in the neighborhood 

of its location parameter \i.  and relatively small amplitude elsewhere. 

Therefore, the location of the individual elements p,. and the weights 

p. can be found by inspection. The parameter n is found by counting 

the number of individual peaks. 

Case 2. M Is Known; 9 and P are to be Determined 

Maximum likelihood procedures together with mathematical 
1 Q 

programming provide an approach      to the problem of estimating P sjid 

M 
9.    Let Q = (p1,P2,...,PM;ei,e2,...,eM) and h(u;Q) =   Z   p.i.(u;e.). 

Let u,,^, ...,u be observations of the random variable u. The 

likelihood function associated with these observations it. 

X{u1}... }uniQ,)  = h(u1;Q)h(u2;Q)...h(un;Q) 
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The P and which maximize X are called maximum likelihood 

3 and have many desi-abl statistical properties. The 

problem of maximizing X subject to thi constraints on P is a 

mathematical progr -ninr; p -:b n. 'ometimes it is also desirable to 

constrai so th*v a •:« physical requirements are not violated? 

To describe another approach (involving a different objective 

function), due to Choi"̂ , we need to introduce additional notation. 

Let H^(u) be the empirical distribution based on the samples 

ul,u2''",un' ^n^u^ = (num^er ui s u)/n* the subscript 

n on Q denote estimators based on n samples. Choi has treated the 
n 

problem of finding which minimizes 

S(Qn) = J [H(u;Qn) - Hn(u)] dH^u). 

He proves that is a strongly consistent estimator of Q and that 

for all Q in 0 and for all n sufficiently large, with probability one, 

the unique exists and it is the only solution of the normal 

equations of 3(0^• 

We shall now present a non-linear programming approach to 

this case, using an objective function different from that used by 

Choi — namely, the uniform norni 

||H(U) - G(u) || = sup |H(u) - G(u)| . 
u 
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Thus i|Hn(u) -HQ(u)||^ _    mw |Hn(u ) -IL(u.) 

Problem: 

i=l,2,...,n n'  x' 

M 

= max|Hn(u.) -   Y   p L(u ,-6 )) 

= S1(Q)  = S1(P,9)   = t 

Minimize S^P.G)  = t 

Pi ^ 0 ; 

a.  £    B. £ b 
i i       i  ' 

U-i- 

The expression t ^  |Hn(u.)   -   ^   pX^G.) 

implies 

and 

j=l 

taVui) -Kwv J r i'  j' 

taIpjVvV-W 
so the problem becomes a non-linear programming problem for which 

numerical solutions may be obtained using any of a number of 

18 
techniques . The problem reads 
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whe n 

min t 

M 
t+   I   PjIjj(ui;9j) ^ Hn(ui);       i=l,2,...,n 

M 

t  -   Y   p.L.(u.;t.) ^ - H (u.);   •  1=1,2,...,n 
L   ^j .r  i    .1 nv  i" 

0=1 

V.   >~ 0 i 

a.  ^ 9. ^ b. 
iii 

Pl + P2
+---+% = 1- 

Case 3.    M and 6 are Known; P to be Determined 

X 

M 
Letting L. (u)  = L. (uj6 ), we have H(u)  =   E    p,L (u) where 

i ii i=l    ±  1 

I p    =1 and p.  a 0.    Given u, ,u0,...,u    we wish to find the vector *i i -   x   H n 

T1 which minimizes 

M 

S(P)  = J(Hn(u) -   ^   p.L.Cu))^. 

1=1 

The Lagrange multiplier approach is to minimize 

M 

J(P)  = S(P).+ 2X(][   P.   - 1) 

i=l 

with respect to P where X is a Lagrange multiplier. The solution is 

obtained by solving simultaneously the system of linear equations 
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obtained by setting i   *-    = 0 for 1=1,2,... ,M, namely, op. 

AP = b - XU , 

where A = (a   .)  and a      = ]* L, (u)L,(u;du,   i, J-;/,... ,M;   b it :. 

column vector with b.   = J L. (u)H (u)du,  i«!,?,,. .,M,  and ü i;'; p. 

column vector of M components all equal to  1 . 

6.2    Arbitrary Mixtures 

In 196^ Bobbins      studied estimating sequences for the general 

mixture problem and suggested the problem of obtaining explicit 

construction of the sequences.    A method for constructing such 

21 
sequences has been presented by Deely and Kruse    .    Their results 

are obtained under the following assumptions: 

1. The class Q = {K(W)]   of mixing distributions  is defined 

on a compact subset W of the real line. 

2. For each w e W,  L(u|w) is a distribution on a closed 

subset U of the real line. 

For each natural number n, Deely and Kruse define 0    to be 

the class of discrete distributions on W with weights at 

w..   .w0 ,...,w    ,  where the w.     are chosen so that for any K e Q In' 2^      ' mr in J 

there is a sequence  [K ] with K    e 0   which converges weakly to K. 

Their approach is to find K* e Ü    which minimizes ||H^(u)   - H (u)|| 

= sup|HK.(u)  - H (u) I for K e Q  , where H (u)  is the empirical 
u 

distribution based on the first n observations.    They prove the 

following theorem which guarantees the desired convergence. 
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Theorem; Suppose 

(i) L(u|v) is continuous on U X W. 

(ii) Hj^ =1^ for ^^2 e Q  implies ^ = K2 

(identiflability condition). 

(iii)  [K*(w)] is a sequence for which 

K*(w) e 0 and HH^ - Hj = inf ^(u) - Hn(u)||. 
n       K e fi n 

Then Prob  { lim K*(w)  = K(w); w any continuity point of K] =1. 
n -. oo n 

Finding the desired distribution K*(w)  is shown to be 

equivalent to finding an optimal strategy in a certain game which in 

turn is equivalent to solving a linear programming problem. 

A more direct linear programming formulation will now be presen- 

ted.    A discrete approximation of H(u)  is given by 

H(u) « k1L(u|w1) + k2L(u|w2)  +...+ k^ulwj, 

where k.  s 0 and E k.   =1.    Then 
i i 

||H (u)  - H(u)|| ~       max |H (u.)  - H(u.) ] 
1=1,2,...,n 

m 

^axlH^u.)  -   I   k.LCuJw.)! 

^MCk^k^...,^) 

The problem is to determine 

minimum   M(k.. ,k„, •.. ,k ) 
(k^kg,...,^) 
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i 

subject to the conditions 

k. & 0 
1 

and 

k + k0 +...+ k = 1. 12      m 

Let L (u ) = L(u |w ) , t = min M(k ;k0,...;k ). 

Then t ä |H (u ) - E kL.(u.)| implies that 
j=1 J J 1 

m 

* a Hn^i)   "   I   WJ  ' 
j=l 

and 

ts i v^v-W' 
The problem reduces to finding 

where 

      .     ■ 

min t 

m 

t+   I   ^.(u.)  ^Hju.);       1=1,2,...,n 
J=l 

ra 

t -   ^   k.L.Cu.) ^ -^(u.);       1=1,2,...,n 

j=l 

kl+k2+---+km=1 

t,k.   s 0 
'   1 
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This is a linear programrrnng problem with 2n + 1 constraintt 

and m + 1 unknown quantities k, ,k0,...,k ,t.    We may write the 

problem in the standard matrix form 

min Z = CX 
X 

subject to the constraints 

AX = b 

X ä 0 

where X = (x,,Xp,...,x    p)  is a column vector;  x,   = t, Xp = k ,...j 

x    n   = k  , x   ,_ is a surplus variable; b =  (b., .b.,....,b_   ,n)  is a m+1        m'    m+2 ^ K  1'  2'      ' 2m+l 

coluran vector with 

b. = H (u.);  1=1.2,... ,n 
i   n i      ' '  ' 

n+j 
Hn^ui^  ,5=1,2,...,n 

b2n+l = 1; 

and C = (c^Cp, ...,c p) is a row vector with c, = 1 and 

c2 = c5 'm+2 0; A = (a. .)  is a (2n+l)   x  (m+2) order matrix; 

A = 

1 vv • •  w 
1 vv  ■  • •   \^ 

1 vv  •  • ■  \^J 
1 -vv .  . 

■ -\("l' 

1 -h^) . . • -w 
1 ■w ■ ■ m    n 

0 1        1 .    1 
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ANALYSIS OF GEOMETRICAL MOMENT FEATURES 

EXTRACTED FROM DIGITIZED TANK PHOTOGRAPHS 

USING AN ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM" 

I ;' 

I  » 

James R.  Rapp 

Ballistic Research Laboratories 
U. S. Arniy Aberdeen Research and Development Center 

Aberdeen Proving Ground, Maryland 

Success in classifying patterns using geometrical moment features 

has been reported by a number of investigators, including M-K Hu, 
2 3 F. L. Alt,    and J. W. Butler.      These encouraging results, obtained with 

patterns of fairly simple nature, indicate that moment features may have 

significant potential for discrimination of the more complex spatial 

patterns representing signatures of army targets and their diverse 

environments.    We use the term signature here to refer to the output 

of a sensor of some kind which is used to derive information about the 

presence or location of targets.    In the present investigation, photo- 

graphic signatures of a tank in a wooded environment are used, as they 

provide a convenient source of input data for an initial study such as 

this.    The differences in the spatial composition of contrast details 

within photographic signatures of tank and background areas indicate 

that perhaps geometrical moment features might provide a basis for dis- 

tinguishing between them.    The main object of the experiment, then, is 

to determine how useful certain moment features are in characterizing 

the photographic signatures of tanks and typical backgrounds. 

This paper has been reproduced photographically from the author's notes. 
Messrs. Roberto and Rapp submitted their paper in two parts. Part II by 
Mr. Roberts can be found directly following the present article. 
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A digital computer was used to generate moment feature data for 

specific pattern classes.    In order to provide input data in a discrete 

format compatible with digital processing methods, digitized picture 

samples were derived in the manner shown schematically in Figure 1.   Raw 

signature data consisted of a set of 11 photographic transparencies con- 

taining different aspect views of a medium tank located just in front 

of a thick grove of trees.   All photographs were taken at one site and 

different tank views were obtained by in-place rotations of the tank in 

30-degree increments through 300 degrees.   The resulting gray scale 

transparencies were subsequently digitized by a flying spot scanner 

system and recorded on magnetic tapes.   These digital pictures contain 

over one million picture elements with density information resolved to 

64 levels of gray.   Portions of these digital pictures were used as 

samples of target and background for this investigation.   The dimensions 

of the sample areas were chosen so that samples in the target class con- 

tained a practical minimum of nontank picture elements.   Square sample 

areas, 100 elements on a side, were chosen on this basis.   In order to 

reduce the amount of computer time required to perform the moment feature 

computations on these sample picture areas, the effective resolution 

within the sample areas was reduced fourfold by averaging over non- 

overlapping 16-element arrays to produce new samples with only 25 ele- 

ments on a side.   The corresponding size of these elements on tlie 

actual tank is   roughly 6 centimeters.   A test was made to determine 

the effects of this averaging process on the values of moment features 

176 

^^'-■""""■'-•••■'■'trriiiliiiinrT-riiirti' 
^ ..■.■■ - 

--- -°^^^"-'"; ■■-" v-.<..»ww^i-.i.-^.^„^ ■, ,,. ..;,.■. ...    ,    .  ^i,  



m^nr'WiB^rWIWSIW^ 
. ^ s^w^m^m^^mmM.fm>r^ 

■ 

and only minor changes in moment values for corresponding areas were 

observed.    These differences should not affect the results of this 

i nves ti gati on si gni fi cantly. 

The reduced-resolution gray scale pictL..c: samples were also pre- 

processed for detail contrast enhancement using two different algorithms. 

Basically, these procedures are intended to increase the level of con- 

trast, i.e., the numerical difference between picture elements, in 

regions    of the picture samples where significant "detail" exists.   The 

resulting preprocessed picture samples are thus referred to as detail 

enhanced pictures.   One preprocessing routine transforms each gray level 

picture array into a new array consisting of the sum of squared first 

differences at each point in the original picture.   This form of pre- 

processing is a close digital approximation to the process of taking 

the squared magnitude of the gradient function for a picture defined by 

a continuous picture function.    In view of this similarity, we refer to 

these new samples as gradient preprocessed samples or simply gradient 

samples.      The second preprocessing routine is a digital approximation 

to the process of forming the Laplacian of a picture function in the 

analogous case of a continuous picture sample.   A 17-point Laplacian, 

equivalent to that used by Bogusz et al. in their work, is implemented 

in a manner which can be conveniently thought of as a convolution process 

wherein the original picture sample is convolved with an appropriate 

Laplacian mask.   This mask would consist of a 5 x 5 array of weighting 

elements.    The 16 elements in the periphery of the array are -I's, the 

central elements are O's.   The absolute value of the Laplacian is used 
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and the resultant samples are referred to simply as Laplacian samples. 

Both sets of preprocessed picture samples were used in addition to the 

basic gray scale samples as inputs for the moment feature extraction 

program to determine if there might be an advantage to using detail 

enhancement prior to moment feature computation. 

The input samples were chosen from two basic classes, target and 

nontarget or background.    Illustrations of the kind of information con- 

tained in these samples are given in Figure 2 in which ten representative 

background samples are outlined together with five samples from the 

target class.    Since all eleven pictures in the data set contain identi- 

cal backgrounds, all of the background samples, comprising 64 non- 

overlapping areas such as those shown outlined here, were selected from 

this picture.    The diversity of picture content represented by the 

samples within each class is evident in this picture, which is only one 

of eleven different aspect views of the tank.   A finer breakdown of these 

sample areas was established to create subclasses within which the 

variation in subjective picture content is considerably reduced. 

Accordingly, two subclasses of background were established, trees and 

foreground; both are illustrated in the pictorial example.   The target 

class was similarly divided into three subclasses:   fore and aft, turret, 

and wheels.    The outlined portions covering the tank include two turret 

samples and three samples of fore and aft.    Figure 3 illustrates some 

additional sample areas in the target class from a different tank picture. 

The two upper blocks represent samples from the turret subclass, the two 

lower left blocks are samples from the fore and aft subclass, and the 
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two blocks in the lower right are sample areas representing the wheels 

subclass.   A total of 70 samples make up the target class population 

which is comprised of 22 turret samples, 32 wheels samples, and 16 fore 

and aft samples.   The input sample distribution is illustrated in 

Figure 4.    The three different digital versions of a particular sample 

area are shown in Figure 5.    Blanks aopear here in places where zeros 

normally occur in these printouts. 

Figure 6 illustrates the form of the basic geometrical moments. 

The pictorial data are represented by a pattern function P(x,y) desig- 

nating the encoded density at discrete values of the coordinates (x,y). 

The order of the moments is specified by i and j which are integer 

values in the range [0,4].    Moments of this form are independent of 

overall pattern "intensity" since they are expressed in terms of the 

normalized pattern value D(x,y).    This normalization effectively removes 

the sensitivity of these moments to such factors as scene brightness and 

exposure times which typically affect photographic renditions of real- 

world scenes.    Capital letters and the symbol  'T are used to designate 

the 27 moment features.    Ten of these moment features are basic moments 

and the remainder are algebraic combinations of these moments, some 

resembling statistical parameters commonly used to characterize distri- 

butions.    Six of the moment features are equivalent to those constructed 

by Hu in his investigation of the recognition of well-defined shapes 

such as those represented by the printed characters in the English 

alphabet.    These features are independent of the position, size, and 

orientation of the pattern and are referred to as moment invariants.    It 
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is noted, however, that substantial differences exist between the types 

of visual patterns considered by Hu and those with which the present 

investigations are concerned.    Specifically, the patterns used here were 

derived from portions of ohotographs of a tank scene, and therefore the 

patterns do not contain a single object of interest surrounded by a ^ 

featureless border.    For this reason the invariance properties of these 

moment features are not as significant for this investigation as for 

Hu's work. 

In the present investigation, we have attempted only to determine 

the degree of separation provided by each moment feature individually. 

In this endeavor, we establish the threshold value which best separates 

the input samples into their prescribed classes.    This is done by 

assuming that the errors in classification which result from assigning 

either class of input to the wrong class are of equal importance.    In 

this situation then, the criterion for best separation is that the 

threshold be set to maximize the separation factor, which is the average 

of the fractions of correct classifications for both classes.    This form 

of separation factor does not unduly weight the classification rate for 

the class having the larger number of samples.    Results of the BRL 

investigation are based uoon class separation data of this kind. 

The feature value distributions within each class and subclass will 

be illustrated by the histograms in Figures 7, 8, 9, and 10 which are 

representative samples of the data for the set of 27 moment features. 

In Figure 7, the histograms for Feature A measured on gray scale samples 

are shown, and the distributions for different classes may be readily 
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compared.    The abscissa axes for these histograms represent the computed 

values of Feature A normalized with respect to the mean value for all 

picture samples.    It is evident that very little separation between target 

and background classes could be achieved using this feature.    Furthermore, 

the distributions for the subclasses also overlap to such an extent that 

no pair of subclasses can be reasonably separated.    The distributions for 

all subclasses are quite similar except that the samples from the fore- 

ground class are somewhat more clustered about the mean.    Although the 

data are not shown here, the histograms for Feature A measured for 

gradient and Laplacian samples reveal that the same sort of situation 

exists.    The preprocessing methods provided no significant improvement 

in the class separation achievable using this feature.    Of all the 

features examined in the study. Feature A provided the least discrimi- 

nation between the basic target and background classes.    Feature A is 

a basic second order moment about a vertical axis through the pattern 

centroid.    Feature B is the corresponding second order moment about a 

horizontal axis through the pattern centroid; histograms showing the 

results using this feature are presented in Figure 8.    Although a con- 

siderable amount of overlap in class distributions is evident here as 

well, the means for the target and background classes are different. 

There is an observable trend toward higher values among the target 

class samples than among the background samples.    Quantitatively, the 

difference in potential for target and background discrimination for 

these two features, A and B, -'s indicated by their respective separation 

factors, 0.58 vs 0.74.    The difference in separability is probably due 

131 

'■^-^■^■■■■>c ■  :-:.   ..,..       ■,:■;■■       .   ■ 



to the differences in the horizontally oriented pattern detail compo- 

sitions being more pronounced than the vertically oriented detail 

structure.   Other features also tend to reveal this disparity between 

class separabilities for moment features which differ only in the coordi- 

nate axis involved in their definitions. 

Figure 9 shows the histograms for Feature G measured on gray scale 

samples.    Feature G is a basic fourth order moment measured with respect 

to the horizontal coordinate axis, and it was found to be effective in a 

number of specific situations.   An example is the separation of wheels 

and trees subclasses, for which the separation factor was found to be 

0.96.   The effects of preprocessing in conjunction with this feature are 

interesting to note.    The use of gradient preprocessing, for example, 

reduced the separability of the trees and wheels samples, and likewise 

the Laplacian preprocessed samples were less well separated for these 

subclasses.    However, the separability of the basic target and background 

classes was improved by preprocessing.   The histograms for Feature G 

measured on gradient samples are presented in Figure 10.   The separation 

of target and background samples afforded by this feature is the best 

that could be attained in the course of this investigation.   The separa- 

tion factor in this instance was 0.84.   A sutmiary of the best features 

and their separation factors for several classes and subclasses is pre- 

sented in Figure 11.    This table shows that no single feature was out- 

standing for all the cases tested.   Also, the use of preprocessing methods 

for detail enhancement is not consistently beneficial, even though in 

some cases the preprocessed data could be separated to a greater extent 
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than the gray scale data. Even for the same feature, the effects of 

preprocessing were not uniform in the sense of producing similar differ- 

ences in the separation factors for each pair of classes and subclasses. 

As a result, it is not possible to determine whether preprocessina 

should be used in conjunction with a particular feature without soeci- 

fying which classes are involved. Similarly, the best feature for 

separation of a given pair of classes indeed depends upon whether or not 

preprocessing is performed and, if so, which technique is used. 

A number of factors may be cited which influence the results of 

this experiment directly and serve to limit their applicability. The 

selection of sample dimensions, for example, was made rather arbitrarily 

for convenience in processing, and it is well to note that the results 

of this investigation might have been significantly different had sample 

areas of a different size been chosen. Certainly the choice of position 

for the sampling window with respect to the picture details is somewhat 

arbitrary also. Both of these factors are related to such operational 

parameters as target range, sensor configuration, signature processing 

mode, and requirements for target identification. An important limi- 

tation insofar as interpretation of the results is concerned is that the 

number of samples in each class is relatively small. On the whole, how- 

ever, the extensive intraclass spread of values for many of the features 

tested clearly indicates that they would not be suitable as discriminants 

for this task. In general, those features which were defined exclusively 

in terms of moments with respect to the vertical axis through the pattern 

centroid seemed to demonstrate the least potential. The more complex. 
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"invariant" features were relatively unsuccessful also, which suggests 

that their additional complexity and attendant processing difficulty is 

probably not warranted for this application. 

It is difficult to fully assess the comparative potential of geometric 

moment features on the basis of this experiment alone.    Little information 

exists concerning the efficacy of other types of features for pattern 

recognition involving patterns as complex and diverse as those of the 

signatures of army targets in typical backgrounds.    However, this experi- 

ment demonstrates that the information contained in certain relatively 

low order geometric moments does serve to characterize spatial patterns 

of this sort to some extent.    Additional testing of the more promising 

features would appear to be worth consideration.    It might also be 

profitable to examine the feasibility of using a number of geometric 

features jointly or in conjunction with other kinds of features to test 

their effectiveness for target and background discrimination. 

* 
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ANALYSIS OF GEOMETRICAL MOMENT FEATURES EXTRACTED 
FROM DIGITIZED TANK PHOTOGRAPHS USING AN ON-LINE 

PATTERN ANALYSIS AND RECOGNITION SYSTEM 

PART  II 

Donald F.  Roberts 
Information Sciences Division 
Rome Air Development Center 

Grlfflss Air Force Base,  New York 

PROBLEM DEFINITION.  The feature evaluation study conducted  at Aberdeen 
concentrated on analyzing each feature Independently.    In order to determine 
the discriminating power of the 27 moment features jointly,  the gray scale, 
gradient and Laplaclan pattern features were used In an Independent study 
conducted at Rome Air Development Center.    The study was carried out using 
the On-Llne Pattern Analysis and Recognition System (OLFARS), developed at 
RADC and Involved: 

(1) Analysis of the geometric structure of the. data. 
(2) Design of classification logic. 
(3) Evaluation of the given features. 

Before reporting the results of this study,  I would like to briefly 
describe the OLPARS system.    A detailed description of the system Is 
contained In Reference [1]. 

PATTERN RECOGNITION:    AN OVERVIEW.    First let us examine the relationship 
of OLPARS to pattern recognition in general.    A typical pattern recognition 
system can be described as having two components. 

A Feature Extractor and a Classification Device (Figure 1).  OLPARS 
represents the second component.     It is an on-line graphics oriented computer 
system used in solving two related pattern recognition problems:     pattern 
analysis and pattern classlication. 

The pattern classification problem can be stated as  [1]:     "Given a set 
of L-dlmensional statistically generated sample vectors (i.e.  L-measurements) 
from each of K class (i.e. K states of  the environment) design K decision 
regions  (possibly K + 1 if a reject region is Included)  in the L-space, 
according to some goodness criterion.    An L-dlmensional vector from an unknown 
class is then classified by determing the decision region which contains 
the vector." 
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The pattern analysis problem involves analyzing the sample vectors in 
the L-space and selected subspaces in order to determine "structure" in the 
data. The term structure is used to denote inherent geometrical relation- 
ships between and within the K classes of data. Some examples are: regions 
of dense vector population, modality of the classes, and presence of wild 
shots. OLFARS allows the analyst to graphically identify this structure. 

Samroon [1] makes the following observation concerning the utility of 
pattern analysis: "Although the pattern classification problem is defined 
independently of the pattern analysis problem, it is our contention that 
the pattern classification problem can be solved far more effectively by 
first performing the analysis function. The reason we believe this to be 
true is that, with the possible exception of seme non-parametric techniques, 
the existing pattern classification algorithms either explicitly or Implicitly 
make definite assumptions regarding the class data structure.  Hence, If 
the data structure assumptions Implied by the use of a particular pattern 
classification algorithm are not valid, the resulting decision logic in 
general cannot be expected to be good.  If, however, the data were first 
analyzed and then the appropriate pattern classification algorithm were 
selected to fit the data structure, one could expect a superior solution." 

OLPARS IMPLEMENTATION. In designing the OLFARS system we have taken 
into consideration the following system objectives [1]: 

(1) The system must be capable of processing large quantities of 
high-dimensional vector data. 

(2) The system must provide efficient means for the user to inter- 
act with the data. 

(3) The system must be capable of being expanded in a simple and 
straightforward manner to allow the addition of new mathematical 
and graphical routines. 

(A) The system must provide the user with a convenient means for 
performing pattern analysis and pattern classification. 

(5) The system should provide a great deal of flexibility in 
selecting mathematical techniques for solving the analysis 
and classification functions. 

Some examples of the kinds of implied assumptions made by various pattern 
classification algorithms are: the assumption that the class conditional 
probability density functions are multivariate gausslan, the L-measurements 
are statistically independent, the class conditional probability 
density functions are unlmodal, or the distribution of the classes in the 
L-dimensional measurement space are pairwise linearly separable. 
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This last objective Is very Important.  Often the solving of a pattern 
recognition problem Is a learning process.  That Is, at any point In the 
process, the decision as to which mathematical algorithm or technique should 
be applied to the data, must be based on previous results.  For example, 
some of the analysis algorithms are Iterative techniques requiring adjust- 
ment of parameters before each Iteration.  Often automatically constructed 
decision boundaries require modification; therefore, we have put the man in 
the middle, giving him control of the system and providing him with information 
through a graphics console. 

The processing of large quantities of vector data is supervised by the 
OLPARS Vector Filing System. Data sets that are too large to be stored in 
the main computer memory are stored on a peripheral high speed drum.  Segments 
of the data are then rapidly swapped in and out of memory as required. 

The Vector Filing System also provides data interaction capabilities. 
New data sets may be created by applying transformations and logical operations 
to existing data sets. A variety of transformations are available.  The 
logical operations of union, not union. Intersection and not intersection 
may be applied to subclasses of the data. 

To fulfill the analysis requirements, OLPARS provides the analyst with 
clustering algorithms, transformations and mappings. Clustering algorithms, 
such as ISODATA [2] and Similarity Matrix [1], permit the analyst to Identify 
data structure in the original vector space. A non-linear mapping technique 
developed at RADC [3], and eigenvector and discriminant plane projections 
allow the analyst to view data structure In one, two, and three dimensional 
displays on the C.R.T. 

In pattern analysis, the problem typically involves identification of 
multimodal classes and the partitioning of these classes into unlmodal 
subclasses. The motivation for such a procedure is that classification 
logic consisting of simple linear or plecewlse classes often require compli- 
cated decision logic for separation and usually inhibit the classification 
process in general. For example, consider the data set consisting of K 
classes represented by the tree structure in Figure 2A.  If class C, of the 
set were found to be blmodal, the class would be subdivided and the resulting 
data structure would be. as in Figure 2B.  Classification logic must then be 
designed for K + 1 classes. 

The classification module of OLPARS provides the analyst with three 
techniques for the design of logic. The first technique Involves on-line 
creation by the analyst of decision regions in eigenvector planes.  Before 
the analyst can graphically create decision regions, he must first have the 
data vectors in a perceivable frame of reference. The L-dlmenslonal vectors 
must therefore be mapped into a fitting subspace.  It has been shown that the 
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eigenvectors of  the lumped covariance matrix define such a subspace.     In 
particular,  the two eigenvectors corresponding    to the maximum two eigenvalues 
define the best fitting two dimensional plane In the least squared sense. 

The second method Is an automatic thresholding technique using Fisher's 
Linear Discriminant for all pairs of classes.    Fisher's Discriminant Is 
the direction In the L-space which maximizes the difference between the class 
means relative to the sum of their variances.    In the event that there Is 
statistical overlap of target classes  (non-linearly separable data), a 
likelihood ratio technique is available to the analyst to give the best 
separation under cost control.    In addition, the data may be projected on to 
the discriminant plans defined by the Fisher Discriminant and a similarly 
defined vector orthogonal to it.    This option is available to the analyst 
for on-line modification of automatically created decision logic. 

The third classification technique available consists of simple nearest 
mean vector logic.    Once the logic design Is completed,  the decision boundaries 
are stored in the computer and an Independent set of data may be tested. 

HARDWARD.  The hardware for OLPARS is a CDC 160 4B computer driving a 
BR-85 graphics display.    The analyst communicates with the computer and 
manipulates data via lightgun action,  alphanumeric keyboard, and function keys. 

OLPARS CONTROL TREE.  The OLPARS system can be described functionally by 
a tree structure (Figure 3).    Here the nodes of the tree represent options 
available to the analyst.    These options are displayed in the form of a menu 
on the extreme right and left sides of the C.R.T.(Figure 4).     By light gunning 
these options,  the analyst automatically moves to another level in the 
control  tree and calls on the mathematical algorithms and graphic displays 
needed  to analyze his data. 

. 
ANALYSIS AND CLASSIFICATION OF TANK DATA. The normal procedure for a 

pattern recognition problem is to arbitrarily divide the original data vectors 
into two sets. One to be used for the design of logic and the other for the 
testing of that logic. However, since there were relatively few sample 
vectors in each class, it was not feasible to split this particular data set. 
Consequently, the results reported are only for a design set of sample vectors 
and are therefore considered preliminary. We hope in the future to obtain 
additional sample vectors for testing purposes. 

The 27 dimensional Gray scale. Gradient and Laplaclan data vectors are 
represented on the OLPARS system by the tree structure as shown in Figure 5. 
Each of the sets contained the following: 
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CLASS SYMBOL 

W 
E 
T 
F 
B 

CUSS DESIGNATION 

Wheels 
End views (fore & aft) 
Turrets 
Foreground 
Background (Trees) 

NUMBER OF SAMPLES 

32 
16 
22 
39 
25 

Preprocessing of the data consisted of normalizing along each of  the 27 
coordinate directions  (I.e.    n * 0, a = 1). 

Pattern analysis was carried out using the Non-Linear Mapping algorithm 
and Eigenvector projections. 

For logic design Fisher's Linear Discriminant, and  the Discriminant Plane 
Techniques were utilized.    Classification logic was designed  for the five 
class problem and results for  the two class problems were obtained by combining 
the appropriate decision regions,     (i.e.  tank vs. non-tank) 

LAPLACIAN.  Pattern analysis of the Laplaclan data revealed no particular 
iosyncrasies in the data, and all five subclasses appeared  to be uni-modal. 

Results of  the logic design are given by the confusion matrix in Figure 6. 
For  the five class problem there were 23 errors or 83.4% correct classification. 
As  Intuitively expected, most of  the confusion occurred between the Foreground 
and Background classes.    However,  since the real problem Is to separate tank 
from non-tank,  these errors are not significant. 

GRADIENT.  Pattern analysis  of  the gradient data produced significant 
results.    On both,   the Non-Linear Mapping Plot and the projection of the data 
onto  the two eigenvectors corresponding to the largest two eigenvalues, we 
were able to identify a "wildshot." 

Any sample vector that is geometrically located,  a relatively large 
distance from the mass of the sample vectors may be designated a "wild shot" 
by the analyst.    Tb« underlying reasons for such an occurrence range from 
card punchinr, erf 0 faulty sensing equipment in the field.     In any case, 
since it is desli i have operationally clean data for  the design of 
classification  loific;>such vectors are often eliminated by the analyst. 

Analysis also showed the E  (fore and aft)  class to be bimodal.    Conse- 
quently,  the class was divided  into two subclasses.    The resulting structure 
is shown in Figure 7. 

Classification logic was designed for the six classes shown in Figure 7. 
For  the six class problem,  there were 13^ errors or 90.9% correct classifica- 
tion.    As a result of combining decision regions,  there were 3 errors or 
98.4% correct classification for  the two class problems   (Figure 8). 

I 

201 

- --•■ 



"   " '   "    ' ' '     '•  ,11 ■ "  >'■ "  ^^^mm^^^m 

GRAY SCALE.  The structure of the Gray Scale Data was very similar to 
that of  the Gradient Data.    Analysis showed  the E (fore and aft)  class  to be 
bl-modal and the existence again of a "wild shot" In this  class.    However, 
the "wild shot" was not the same vector Identified In the Gradient Data Set. 

The six class problem yielded 7_ errors or 94.7% correct classification. 
For  the two class problem there was 1^ error or 99.2% correct classification 
(Figure 9). 

CONCLUSIONS.. A few conclusions may be drawn, based on the above results. 
The original gray scale features appear to contain sufficient information to 
detect the tank in the given environment. 

Some discriminatory information has been lost by implementing the 
gradient transformation and a significant amount of discriminatory informa- 
tion lost in the Laplacian transformation. 

In addition, by projecting the data on to the various Discriminant Planas, 
[1] we were able to hypothesize that the gradient classification logic is 
probably not as good as the percentages indicated.    The pairwise two dimensional 
plots showed that in most Instances,  the two classes were relative close with 
points from one or both classes located very close to  the separting threshold 
or boundary.    Similar gray scale plots revealed distinct class separation 
in most instances. 

Future studies might explore the possibility of designing classification 
logic with a subset of the original 27 gray scale features.    An on-line 
feature evaluation module will be added to the OLPARS system in the near future. 
This module will provide the capability to conduct such a study.    The first 
objective, however,  is to obtain additional sample vectors with which to 
test the logic already designed. 

Although the scope of this  problem was narrow (i.e.   tank In one environment), 
the gray scale extraction technique may prove useful in a wide variety photo 
reconnaissance problem and warrants further study. 
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A FAMILY OF CUBIC  SPLINE SUBROUTINES 

R.  D.   Scanlon 
Benet R&D Laboratories 

Watervliet Arsenal 
Watervliet,  New York 

ABSTRACT.    A subroutine package designed  to evaluate the 
coefficients of interpolating and approximating cubic splines under 
a large variety of circumstances  is described.     The advantages of 
the package are argued.    An application involving  tangential strain 
is examined. 

INTRODUCTION.  A computlst Is frequently asked to manipulate 
experimental data in accordance with a mathematical analysis  of the 
physical situation...a typical example being a request for the first 
derivative.    Since there is almost always a shortage of time and 
money,   there is a great Interest In something fast and cheap. 

The first difficulty is noise,  the random element which 
overlies  the desired signal.    Traditionally one Improves the 
signal by concentrating on the randomiclty of the noise and the 
coherence of the underlying process but in doing this, we may run 
counter  to strong opinions the experimentalist has about characteristics 
of the physical process.    He may insist that it  is monotonic over 
some Interval or that its slope is monotonic.    He may have certain 
notions of smoothness;  he might prefer that the fitted function 
would take the form of a curve which a graphic artist would draw 
through  the data. 

In practice,  this means that the fitted curve should be 
about as smooth as the artist would draw it but must not depart 
too far from any one group of the data points.     If we attempt to 
fit the data with a function which is analytic over the whole 
interval, we will almost inevitably do violence to one or the other 
of these constraints. 

A second problem is that of scale.    The fit must be precise, 
but not  too precise;  smooth, but not too smooth.     Over-precision 
takes  time and in computation,  time is money. 

A plecewlse analytic function preserving some degree of 
continuity across the Joins has proved an excellent working tool 
In both of these areas. 
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A separate but related question Is overall efficiency In 
computation.    This Is not at all the same thing as efficient coding. 
The polishing of  Inner loops has a place In large scale computations 
but Is a positive evil In jobshop scientific computation.    The 
computlst should be enabled to keep his eye on the desired course 
of  the calculations without getting lost in the Intricacies Of 
threading the problem through the machine. 

One solution Is the problem oriented language where the 
statements are directed solely to the problem and all machine 
oriented questions are laid aside.    It Is quite likely  this Is the 
road which scientific computation will ultimately take.    Lacking 
such a language,  It Is our contention that In the meantime It Is 
possible to write families of subroutines which embed a problem 
oriented structure In Fortran. 

This paper Is a description of such a family of subroutines 
designed to handle many of  the difficulties associated with the 
manipulation of discrete data as though It were continuous.    They 
are also designed to provide results quickly and easily with a 
minimum of specialized coding and a maximum of help in avoiding 
pitfalls.    These routines are programmed for reasaonble efficiency 
but It is hoped  that flexibility and ease of use have been preferred 
over mindless polishing.    One notes that in most scientific 
computation, program run time Is a small proportion of program 
preparation time. 

The Spline and Its Mathematical Analog 

A spline Is a thin strip of metal, wood,  or plastic.    When such 
a strip is bent,  it takes on a shape of smoothly distributed tension 
which is pleasing to the eye and at the same time mechanically 
elegant.    The use of the spline to fair ships'  lines probably started 
shortly after man began building planked vessels and the resulting 
hulls are noted for their blending of beauty and utility.    Of 
equal antiquity Is the use of a spline, known as a tawami jaku, 
by the Japanese carpenter to produce the powerful,  sweeping curves 
which distinguish Japanese rooflines. 

One form of  the spline,  as used in lofts when fairing lines on 
full-scale plans, is a grooved strip constrained to pass through 
chosen points by means of weights which have projections that ride 
in the groove.    The bending movement of such a spline,   considered 
as a thin beam,  is defined by 

i 

M(x) R(x)       j z2dA 
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where E Is Young's modulus and R the radius of curvature. 

We are allowed by custom to replace R(x) by 1/y" and since the 
spline is of constant cross section, we write 

M(x) = ky". 

Because of the way that the weights are free to move along the 
groove, this is a simply supported beam:  the variation of M(x) 
between the weights is linear and is continuous at the constraining 
points. 

This approximation can be represented by a piecewise cubic 
polynomial with a continuous second derivative and possible jump 
discontinuities In the third derivative at the knots, nodes, or 
joins which replace the constraining weights. 

Definition of a Cubic Spline 

Given an interval 

a <_ x <_b, 

a mesh on the interval 

A: a = x^^ < x» < .. .< Xj, - b, 

and an associated set of ordlnates 

Y:  ft» y* '« 

then a cubic spline satisfies 

S. (Y;x) e C2 on [a,b] 
A 

S& (Y^j)  - y      (j  - 1,2,...,N) 

and is coincident with a cubic on each sublnterval 

«i_l lx ix4       (i = 2,3,...,N) 

If in addition 

(P) <P> rh-l S&
vp'(a+) - Sa

vl"(b-) (p-0,1,2) 
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the spline Is said to be periodic with period  (b - a) . 

If, alternatively, 

SA(Y;Xj)  " yj  + ej 
with the e. subject to some minimizing constraint,  it Is said to be 
approximating rather than an interpolating spline. 

Foundations 'of the Algorithms 

Without going into detail, we desire to indicate the general 
paths which can be followed in constructing cubic spline algorithms. 

Since M(x)  is linear between joins, we have on the kth sublnterval 

where 

\ - SÄ<Y;V 
*k ■ "k - "k-i 

By integrating twice and making use of 

.2 
S E C 

we are lead to 

fkM^V^H^VlMfc*! yk+ryk   yk-yk-i 

k+i 

This set of N-2 conditions with two additional constraints on 
the end conditions will allow us to compute a solution for an 
Interpolating cubic spline. 

For an approximating cubic spline, we can minimize 

-b N 
{S"(x)}2 dx + X I {S(x ) - y.) 

Ja j-l   3 
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where the first term Is a popular measure of smoothness and the second 
term Is an even more popular measure of  the departure from the data. 
The parameter X Is Introduced to strike a balance between the two. 

For  the case where there is a Join corresponding to each data 
point, a variational demonstration leads to 

S'" (x -)  - S,M (x.+) = X  {S(x,) - y,} 
j j' 'j 

and this, together with the relationship derived for the interpolating 
spline gives us 

A 
^-■^^^^i1^-1 

<+i   ^   « 

_i 

+ { k+l      1  r        1  . _2    .       1 ,v M 

yk+l"yk     ^^k-l 

With suitable constraints on the end points, we will be able to compute 
a solution for an approximating cubic spline with N data points and 
N joins. 

For the case of N data points and M joins where N > M we 
define a set of M + 2 cardinal splines 

Sk(xj) - Ök j  (j-1,2 N) 

W -0 (i-1 and N) 
(k - 1,2 N) 
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(j - 1.2.....N) 

(1 =■ 1 and N) 
(k - 1 and N) W = 0 

K^ - sk.i 
It Is readily seen that these form a basis set for all cubic 

splines over the given mesh and the minimization problem can be solved 
directly. 

Classification of Spline Routines 

The names of the routines (consisting of 5 or 6 letter groups) 
are codified here so that their interrelationships may be seen at a 
glance. Expanded information about calling sequences and returned 
information is given for those routines which are starred. 

Interpolating, S (Y;x ) 

Periodic 

yr 

Normal Precision  - SPLNP 
Extended Precinion - DSPLNP 

Non-Periodic 

Normal Precision  - SPLND 
Extended Precision — DSPLND 

Approximating,  S (Y;x ) - y. + e. . N points, M joins  : 

N = M 

Periodic 

Normal Precision  - SPLPW 
Extended Precision - DSPLPW 

Non-Periodic 

Normal Precision  - SPLSW 
Extended Precision - DSPLSW 
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. 

N > M 

Periodic 

Normal Precision  - SPLFP 
Extended Precision - DSPLFP 

Non-Perlodlc 

Normal Precision  - SPLFT 
Extended Precision - DSPLFT 

Evaluating: 

(These routines evaluate a previously constructed spline 
function or its derivatives at a given point.) 

Periodic 

Normal Precision  - SNTRP 
Extended Precision - DSNTRP 

Non-Perlodlc 

Normal Precision  - SNTER 
Extended Precision - DSNTER 

SPLNP, an example of an interpolating, periodic, normal precision, 
cubic spline. 

SUBROUTINE SPLNP (N, X, Y, DY, A, DUM) 

flhe number of data points. 
Vector of x-coordlnates of the data points. 
Dimensioned >^ N. 

Y     Vector of corresponding y-coordlnates. 
Dimensioned >^ N. 

DY    Upon return, this vector will contain (as a by- 
product) the fitted slopes corresponding to X and Y. 
Dimensioned >. N. 

A(J,K) Upon return, this array will contain the coefficients 
of the interpolating, cubic spline. Dimensioned at 
J = A, K >_N. 

V = I a/ 
1-0 

where z - x - X (K-D 

for X(K-l) < x < X(K) 
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J"   < 

K- < 

1, a 

4,  a. 

1. 
2. 

N-l 
n 

x < X(2) 
X(2)  <^x < X(3) 

X(N-l)  <^x < X(N) 
X(N)  < x 

'. 

DUM(J,K)    A working space. Dimensioned at J = 2,  K >_ N. 

SPLSW,  an example of an approximating, non-periodic, normal 
precision cubic spline. 

SUBROUTINES    SPLSW    (N,X,Y,W,YDP,A,IA,VA,IB,VB,ALAM) 

N        The number of data points. 
X        Vector of x-coordlnates of  the data points. 

Dimensioned > N. 
Y        Vector of corresponding y-coordlnatas.    Dimensioned 

W        Vector of non-negative weights assigned to corresponding 
data points.    Dimensioned ^_ N. 

YDP      Upon return,  this vector will contain (as a by- 
product)   the fitted second derivatives at the corre- 
sponding x-coordlnates.  Dimensioned >_N. 

A(J,K)  Upon return,  this array will contain the coefficients 
of  the approximating cubic spline.    Dimensioned at 
J - 5, K > N. 

* -1 v1 

where      z = x - x,   . 

f°r Vlix<xk 

J- < 

1, a 

»:• 3, a2 

4, a, 
5.0" 
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1, x < X(2) 
2, X(2) £x < X(3) 

K- {   ... 
N-l,      X(N-l)   <.X < X(N) 
N, X(N)  <^ x 

IA,VA      Desired constraint at leftmost point. 

y'=VA 

yj = VA 

Xj - VA * y^ 

Desired constraint at rightmost point.     Same 
structure as  IA,VA. 

Value of X  In 

{S"(x)}2 dx + X ^ w? {S(x,) -y,}2 

i J=l J 3 3 

SNTER, an example of a function with multiple entry points for 
evaluating a non-periodic,  normal precision,  cubic spline.    Two of 
the entry points are. In effect, subroutines but the entire routine 
is defined as a function so that the proper return coding will be 
generated for those entries which are truly functions. 

After the spline has been constructed and before any evaluation 
calls are made, a cell must be made to SINIT to Initialize this routine. 

FUNCTION    SNTER    (XA,Y,  YP, YDP, YTP) 

XA Desired argument. 

Returned valves: 

7 Y 
YP y' 
YDP y" 
YTP y"1 

ENTRY    SINIT    (N,L,X,A) 

An Initializing entry. 

N lumber of Joins. 
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A, Interpolating spline 

5,  approximating spline 

X   Vector of x-coordlnates of joins. Dimensioned ^ N. 

A(J,K) Array of coefficients as returned by a spline routine 
such as SPLNP or SPLSW. Dimensioned at J = L, K >_N. 

ENTRY G  (XA) 

Returns y as a function value. 

ENTRY GP  (XA) 

Returns y' as a function value. 

ENTRY GDP  (XA) 

Returns y" as a function value. 

ENTRY GTP  (XA) 

Returns y"1 as a function value. 

An Application 

Several of these routines were used recently to perform a 
typical series of analytic manipulations on some empirical data. 
The results were satisfactory and form an interesting example. 

A hollow cylinder with a crack in the inner surface was 
subjected to internal pressure. Circumferential strain readings 
were taken at 16 positions on the outer surface for 10 crack depths 
and A pressures. The strain gages lay in a plane perpendicular to 
the axis. Of the 640 possible readings, 16 were missing because the 
tube ruptured before the last scheduled measurement, 35 were missing 
because of gage failure, 3 were apparent gage failures, and one was 
judged a transcription error. These 39 missing points were replaced 
by bi-quadratic interpolation. 

Considering these readings as representing the tangential 
strain at selected points on the circumference of a circle, it was 
desired to determine numerically the shape of the perimeter of the 
distorted figure and from this the increment, AA , In this area. 

i 
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Then It was desired to evaluate 

5-      r      E ^V£.l/2 
P 2(1^)^ 

5 and 

P 2(l-v)' 

d(AV /P) o 
 *-l 

da 

1/2 

where 

a + 2.  [<rTJ 

a - crack depth 
E - Young's modulus 
v - Polsson's ratio 
K - Opening mode stress intensity factor 
P - Pressure 
r. - Outer radius 

ay - 0.2? tensile yield stress 
AV - AA  Unit length 
00 

The problem of determining the Increment in area is somewhat 
ambiguous since we lack any direct knowledge of the radial displac- 
ment. However, if we can Interpolate the tangential strain measure- 
ments with an angular function and ussume that the departure of the 
distorted perimeter from the original circle is small, then two 
simplified approaches suggest themselves. 

We can integrate the tangential strain to obtain the change in 
length of the perimeter 

2IT 

AP ree(e)de , 

and, assuming the distorted figure remains circular, the change in area 
Inclosed by the perimeter is 

2PAP + (AP)2 AA 
% Tr 
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As an alternative approach we can assume that any dlsplacemnet 
of the perimeter Is solely radial,  that Is 

ue   (r2>9)  i 0 

and  then from 
3u (r    e)    u    (r    e) 

£e (r2e) =7 L-Jj-^  T
r
2t 

9      2' r2        36 r2 

we have 

and 

Ur <r2.e> " ee (r2.e)   ' r
2 

AA 

.2Tr    r2+..u(r2 6) 

r dr de 
o      r. 

Since these two approaches give reasonable bounds on the distor- 
tion of a circular cross section, we can assume that the degree to 
which they approximate each other Is an Indication of the number of 
significant figures In our approximation of the Increment in area. 

Since e. is a periodic function and the data was very smooth 
(Figure 1) we chose the Interpolating, periodic spline routine, SPLNP, 
to perform these operations and were able to obtain agreement to 
about four figures. 

To indicate the smooth nature of the strain data as interpolated 
by a periodic spline and the obvious nature of the transcription error, 
we show the data and the fitted spline functions for four pressures 
at a crack depth of 0.117 Inches in Figure 2.    The datum at +86° 
and 30,000 psl looks like an outlier.    It was recorded as 945 y 
In/in and quite likely was really 845 p in/in as Indicated by  the 
dashed curve. 

As an interesting sidelight,  it is apparent upon close inspec- 
tion of Figure 2 that the minimum strain is not at the Indexed 
zero.    Examination of the sectioned tube confirmed that the gages 
were,  indeed, displaced a small positive angle from the true location 
of the crack.    Of course, this has no effect on the computation. 1 
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To approximate AVQ we used a non-periodic,  approximating cubic 
spline routine,  SPLSW.    As a guide to the choice of X we used the 
knowledge from physical considerations that 

A, 
da2 

Is strictly monotonlc increasing and so we wanted X to be small 
enough to make this true of our approximating spline.  On the other 
hand, we must evaluate a*  and K * by an Iterative process and X 
must not be so small that this process is unstable. A value of Xs 

100 proved to be a reasonable compromise leading to rapid and stable 
convergence of K *. See Figures 3, 4, and 5. 

: 

Conclusions 

The spline routines presented here have been used  in a large 
variety of circumstances.    They have proven easy to use and satis- 
factory in their results.    Their use is unhesitatingly recommended 
In the manipulation of experimental data. 

i 
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Tangential Strain Measurements 
Interpolated by a Periodic 
Cubic Spline I 

Figure 1. 

Plot of data and interpolating, periodic ipline in polar coordinates. 
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Figure 3> 

Second derivative of K * for X, ■ 25000. Nete lack of monotoniclty. 
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Second derivative of K*,    As X Is decreased, the graphed function becomes nearly 
monotonlc Increasing. 

,     -100_ 

-100. 

-100 _ 

0.0 

}x«2500 

0.1 
229 

}x-iooo 

EFFECT OF VARIOUS VALUES OF X 

ON THE SECOND DERIVATIVE OF 

THE TARGET FUNCTION 

Figure 4. 

I 0.2 I 0.3 

}X-250 

            - tttmmmm,, 



o 
o 
< 

> 
o 

Ui 

\ 
i 

O 

Ui 
> 
o 

(0 
UJ 

10 
o 

o 
d 

S 
o 
cvi 

o 
d 

230 

■     - rilMMIMi^BM ■IMIMIIHMMMIIHMH 



m^mmm^m^mm '.''ii      i. i    ii.. i  mi imJLHiiiiii—pyTi^ww—l iii|i PMIIII iiiiiiiiMm 

PATTERN IDENTIFICATION - A REVIEW OF PERCEPTION RESEARCH 

Selby Evans 
Texas Christian University 

In the title of my paper I have proposed to review the psychological 
research on human pattern perception.  This Is a task at once easy and 
difficult.  It is easy Because, if one Imposes a definition of pattern 
corresponding to the definition commonly used in the study of machine 
pattern recognition, the psychological research is disappointingly sparse. 
The task is difficult because those aspects of psychological research 
which might bear on machine pattern recognition appear in several specia- 
lized contexts with divergent orientations. 

For the most part, psychology has not confronted the problem of 
pattern recognition as it is encountered in efforts to develop automatic 
pattern recognition systems.  In fact, psychologists often use the term 
pattern to refer to any complex visual array, without regard to the 
question of whether the Instances of a class could be recognized by a 
template method or not. As workers in machine pattern recognition know 
very well, this distinction is crucial; they have come to use the term 
pattern to refer to cases in which the variability within a class makes 
a template approach ineffective. That humans can recognize patterns of 
this sort has, of course, been known; but it has nut been regarded as a 
problem meriting serious explanatory effort.  Psychologists have dealt 
with the problem of assigning distlngulshably different objects to the 
same class, but they have done so under the term "concept identification" 
and they have been principally concerned with objects differing along 
clearly defined and named dimensions, such as color, number or the like. 

To understand why psychology has generally ignored the problem which 
has proved so formidable in machine pattern recognition, we have to 
consider a fundamental problem in the study of perception.  In all sciences, 
perception Is part of the system of observation, the system which carries 
to the scientist information about the object under study. Perception has 
worked very well In that role, as it has in the more general and essen- 
tially similar role of providing humans with information about the every- 
day environment.  In this role, perception Is almost never questioned. 
Indeed, it cannot be broadly called into question without conjuring up 
the ghost of unproductive solipsism, which asks "How do you know the 
world is really as you perceive it to be?" 

The study of perception cannot dispense with perception as a part 
of the observing system. But perception is also, in this particular 
case, the object of study. This dual role can, I think, be handled if 
the two roles are carefully distinguished and kept conceptually separate. 
But the two roles have offered various opportunities for subtle confusions. 

I thank Dr. R. M. Fenker and Dr. Leona Alken for comments on the manuscript. 
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Perhaps as a result, there has been the perslstant tendency of 
perception psychologists to study special cases—cases which have what 
I call a high G factor. That Is, they get people to say 'Gee, look at 
that!" Visual Illusions, ambiguous figures, and so forth, have received 
a great deal of attention, I think, because they demonstrate that percep- 
tion can properly be called into the question. Perhaps such demonstrations 
are necessary, but they may not get us far toward understanding real life 
perception, which is remarkably accurate. 

Remarkably? Did 1 say remarkably? What, after all, is remarkable 
about recognizing a truck as a truck? After all, it is a truck.  If 
someone bought it was a goldfish, that would be remarkable. 

i 

But you who have worked toward the development of machines to duplicate 
human pattern recognition know that the human perceptual process is indeed 
remarkable. We psychologists are indebted to the field of machine pattern 
recognition for defining the problem - a problem that has been invisible 
to most psychologists because they studied perception in terms of an 
environment known to them through their own perception systems.  It was 
only when the environment was seen through a different system—as a raw 
data matrix of light Intensities across a scene, for example—only then 
did the problem become apparent.  In this review, I am going to focus 
primarily on work which I think contributes materially to solving this 
problem. 

BACKGROUND. There is one topic, Gestalt psychology, which deserves mention 
in the context even though it did tend to confuse the roles of perception. 
Despite this confusion, Gestf.lt psychology embodies a number of important 
observations about human pattern perception. Perhaps the most important 
is the subjective phenomenon of figure-ground. The phenomenon is simply 
this: when we look at a scene, a drawing, or a photograph and attend to 
a particular object, we see the object as figure, an integral unit distinct 
from the rast of the scene (which is subjectively in the background). 
This perceptual organization, which delineates a region of visual scene 
as a unit to be recognized, is accomplished without any awareness on our 
part and we normally take it as given. The Gestalt psychologists made a 
number of observations about this phenomenon but I think the most Important, 
from the standpoint of automatic pattern recognition, is the phenomenon 
itself. 

Because our visual systems are so successful at selecting units to 
be recognized, it apparently did not occur to anyone that this selection 
might be difficult.  It is quite difficult, of course, from the standpoint 
of machine pattern recognition, as anyone who has contemplated the problem 
of identifying particular objects in a scene can testify.  In fact, many 
efforts at automatic pattern recognition have tended to avoid this problem, 
either by selecting such things as hand printed letters - in which the 
units are clearly delineated - or by working with problems such as terrain 
classification, in which the entire photograph can be used as a unit. 
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I would suggest that the ability to separate a visual scene Into 
suitable units may play a key role In human pattern identification 
processes. Of course, In one sense it must, since It selects the parts 
of the scene which will, be treated as a unit for the purpose of recog- 
nition.  But quitt i.?~\     fropi that essential and obvious role, if we 
acknowledge that a huma  „ci  break up a scene into suitable units for 
recognition, we must .^K.uwledge that he can also break up a single 
object into suitable and simpler units of recognition. The figure-ground 
phaaomenon may thus give hunans the capability of separating any complex 
figure Into a set of simpler component units.  Such separation could be 
recursively applied through several stages, if necessary, to reduce a 
complex figure to a number of simple units and their spatial relation- 
ships. Perhaps such an atrangement would simplify the pattern recog- 
nition process. 

1 am not going to review further the work of Gestalt psychology 
because its observations are too thoroughly contaminated by confusion 
between the two roles of perception. The observations have considerable 
intuitive appeal, but they were cast in terms of suhjective descriptions. 
What was required to go beyond this level was a new methodology and a 
new frame of reference. 

THE NEW METHODOLOGY - OBJECTIVE DESCRIPTION OF THE STIMULUS.  Gestalt 
psychology had resisted the notion that a pattern - in psychological terms, 
a stimulus - could be analyzed strictly in terms of its physical charac- 
teristics. The Gestalt view, if correct, would leave automatic pattern 
recognition In a rather difficult situation. Automatic pattern recogni- 
tion has nothing to work with except the physical characteristics of the 
stimulus. Moreover, one must wonder what It Is that the human visual 
system could respond to in the stimulus other than its physical charac- 
teristics. We would have to grant, of course, that the human system has 
a great deal available to It In the form of memory and processing capability 
But to the extent that the stimulus presented to a subject Influences 
his response, one must assume, I think, that the response is a function 
of the physical characteristics of the stimulus.  This point of view was 
set forth and championed vigorously by James J. Gibson (1959) and for 
these efforts he must be credited with challenging the domination of 
Gestalt psychology and reorienting at least some research in perception. 

Another contribution to this line of development was made by 
Attneave and Arnoult (1956). They noted that most research on pattern 
or form perception was done with familiar or, at best, arbitrarily 
constructed figures.  Such research, they pointed out, was limited in 
its conclusions to generalizations about the particular figures used 
in the study.  In contrast, psychologists had long been using techniques 
of statistical Inference which allowed them to generalize their results 
to populations of people. Attneave and Arnoult suggested that the same 
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kind of generalization could be used for making Inferences about a 
population of stimuli If there were methods for drawing random samples 
from such a population. These authors then proposed a number of methods 
for creating unfamiliar forms by rules which incorporated random processes. 
Thus a large number of forms could be drawn, aach being a random selection 
from the population defined by the generating rules. 

Still another significant contribution was made by Fltts (Fltts, 
Weinstein, Rappaport, Anderson & Leonard, 1956) and a number of his 
associates. Their Interest was Initially stimulated by developments in 
information theory and by efforts to apply these developments to the 
study of pattern perception. Fltts and his associates also devised 
methods for generating patterns so as to sample them from a defined popu- 
lation. These patterns were much simpler than those generated by 
Attneave and Arnoult, but this simplicity permitted Fltts and his associates 
to determine an information measure associated with the sampling procedure. 
Thus he could manipulate the average amount of information per stimulus. 
This measure has been used rather extensively since then in psychological 
research, although it has proved to be too ambiguous and too abstract to 
be related in any simple fashion to pattern identification performance, 
its Introduction, however, did constitute a major step toward the objective 
quantification cf stimulus characteristics. 

A fourth contributor was Brunswick (1958), who introduced the notion 
of representative design and what he termed ecological validity. With 
respect to pattern Iderclfication, the thrust of Brunswick's argument was 
that the stimuli of an experiment should be representative, in an appropriate 
sense, of real world stimuli. Brunswick's efforts in this direction 
were not very successful, but his proposal was appealing and efforts toward 
that objective have continued. 

Out of these efforts, 1 think it has become clear that what is needed 
as a basis for research in human pattern identification is a specification 
of the relevant characteristics of real world stimuli. We know Intuitively 
that our environment is very orderly, but we do not have any delineation 
of the rules of that orderliness. Perception surely makes extensive use 
of the orderliness, and we can hardly expect the characteristics of human 
perception to show up in our experiments until we can Identify, manipulate 
and measure that orderliness. What we need is a kind of theory of 
environmental patterns, as a complement to any theory of pattern identification. 

Let me now turn to some recent efforts in that direction. What 
aonstltutes a pattern? The best source of objective Information at present 
seems to lie in the work on machine pattern recognition. From that work, 
it is clear that members of a pattern class should not be template- 
recognizable.  On the other hand, they presumably must cluster in some 
feature space if they are to be recognizable at all. These principles 
provide some guidelines, and several pattern generating methods have been 
developed in terms of these guides. Figure 1, for example. 
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shows the results of a technique (Vargas 7) which Introduces recurring 
regularities Into a sequence of numbers or graph points (Evans, 1967). 
The regularities are Introduced by favored transitional probabilities 
In a Markov process, a method which permits substantial control over the 
generating characteristics. In particular, It permits control of the 
Information content of the stimuli and of their adherence to a pattern 
class. The stimuli generated In this fashion are relatively unfamiliar 
but even so they exhibit a discernible pattern. Their unfamiliarlty 
permits the investigation of pattern learning as well as pattern 
identification. 

i 

In many cases, a pattern may be thought of as a prototype, a 
configuration typical of a population of patterns. In Figure 2, another 
pattern generating method is illustrated. This one (Evans and Mueller, 
1966) was designed specifically to incorporate a prototype and to 
produce members of a population in the form of deviations from the 
prototype. The prototype may be thought of as a point in a multi- 
dimensional space. The deviations are produced by adding the equivalent 
of an error component, a random variable, unimodally and symetrlcally 
distributed about zero. This error term is Independently obtained for 
each dimension of the prototype and produces a dispersion of points 
clustering around the prototype.  In its original form, of course, 
the pattern is simply a sequence of numbers. These are then plotted 
as column heights or points on a graph. Alternative forms are possible, 
as illustrated by the schematic airplane shown in Figure 3. 

The preceding examples of pattern generation have been used 
principally with unfamiliar figures. These figures were designed to 
Incorporate general properties which we assume characterize the orderli- 
ness of the natural environment. There are however, more specific 
kinds of orderliness - in particular the orderliness in familiar 
patterns - which presumably should be represented in research.  In order 
to Incorporate familiar configurations into stimuli appropriate for 
research, we borrowed a notion from Shannon (1949). Long ago in 
studying the transitional probabilities of English grammar, Shannon 
used humans as repositories of the statistical characteristics of 
grammar. In the samt; way, one might reasonably assume that humans are 
repositories of the itatistical characteristics of the visual environ- 
ment and that they make use of these characteristics when they draw 
figures. 

Accordingly, we engaged a commercial artist to draw a number of 
figures in such a way as to allow us to decompose his figures into 
parts which could be reconnected in a number of different ways. Thus, 
by drawing at random from these components, we can construct patterns 
which are samples from the population of possible patterns made from 
these components. Examples of this generating procedure, Vargus 10 
(Evans, Hoffman, Arnoult & Zinser, 1968) are shown in Figure A. 
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In producing the Vargus  10 patterns we have been able to Introduce 
familiar components but we have sacrificed  the characteristics achieved 
earlier,  that of producing patterns which are deviations from a proto- 
type.    In Figure 5 Is Illustrated a method* for producing deviations on 
a prototype when these are drawings ol flmlllar figures of    the Vargus  10 
class.    These  figures are achieved by taking a single point, which might 
be thought of as a pen point,  on a strongly constrained  "random" walk. 
The walk Is guided by the path which the drawing point must follow If It 
Is to construct the required figure.    The constraint allows the drawing 
point to wander a bit, and that wandering Introduces the required varia- 
bility from Instance to instance.    The amount of variability Is, of course, 
subject to program control. 

Other researchers have used approaches similar to this.    For example, 
Posner  (1964)  has used figures composed of an array of dots and produced 
deviations by allowing the dots to take on different locations in 
different instances.    Ellis   (Ellis & Feuge,  1966) used Attneave and Arnoult 
polygons and Introduced deviations by small changes in the locations of 
the corners.    A number of  texture generating methods have also been 
developed, but  I think this presentation is better  limited to the generation 
of forms. 

In this section I have reviewed some approaches to a methodology for 
research on pattern identification.    Taken together they constitute a 
methodology which allows psychologists to sample from a defined population 
of relatively unfamiliar stimuli,  to introduce some relevant variables 
associated with pattern characteristics, and to measure or control these 
variables.    No doubt new pattern generation techniques will be required, 
but the present methodology has permitted several important steps toward the 
understanding of human pattern Identification.    Let me now turn to empirical 
and theoretical contributions toward that objective. 

EMPIRICAL AND THEORETICAL CONTRIBUTIONS.   The great majority of machine pattern 
recognition techniques can be regarded as measuring an input pattern in terirt 
of a number of  features and  then locating the pattern as a point in a multi- 
dimensional feature space.    The classification of the pattern is obtained by 
associating its location in some way with a particular pattern class.    If we 
take this process as a preliminary model for human pattern identification, we 
can view one major line of empirical research as being a selection of a 
feature space for human pattern perception.    This research has been done 
principally by D. R. Brown and his associates.    Brown worked with patterns 
generated by one of the techniques proposed by Attneave and Arnoult, a 
technique which produces randomly shaped polygons of a predetermined number 
of sides.    Pattterns of this kind have been used by various researchers, and 
some of these devised reasonable ways  to measure the patterns so as. to 
obtain quantities representing subjective attributes.    This work can now 
be viewed as an exploratory effort toward defining a feature space composed 
of dimensions relevant  to human performance. 

This effort was supported by the Department of Defense Project THEMIS 
Contract  (DAA05-68-C-0176),  under the Department of Army to the Institute 
for the Study of Cognitive Systems through the TCU Research Foundation. 

240 

^'-•"~'^ -" --■■-^-■- inimiiiifiiidiiii 
—^ —--  ■■■ 



•^—m^^mmmm^m-mmm ^^^W"»W^W(!WWPi^wppiW|^^W " ■«"■ wwmwi 

241 

- 

to 
tn 
01 
CJ 
o 
u 
a 

«••••»• 

<•«••      •■ 

seaceesBcccs 

•    c ««•••c« 

e 
o 

■§ 
t-l 

0) 
c 

•H 

o 
o 

•acst       93tt 

r    i 
a*    eio»9S99 

>> 
£• 

ID 

a 

4) 

3 
00 

o u 
o. 
E 
o 
u 

ill       til .yw^rrJ1     Ji* 

llrik. i Wfiitili.Mi, tffjUiiMEm^ ; 

',«4ik££^ 

XMm 
fFrrLcrrr ^ j kffl 

:ri;;irrr;. '' i 

• Kn Li  it-i.iMiri-i- t.ruwfl 
■ IK i t ii i-funi rt t ri.c en« 

±mmm 
BUK« 
■ KR« 

■ col 
*.a.r| 

sr 
DOM« 

J n ■■ «n ■••■«■•!• «<i 
rill, >-irnuh;a>antfc«i i: 

rornr.t-■•■ 
Kl.k rj 
«l-t •- 
•i '. », ■ 
• i.t. i.-«ri I'Knrii  i i.rL:!!« VK3« 
■ ••Er Ut.Ul MI^I'I'UtJVMUkHa 
«■aicrKi.ut.-vi.^unL-rur-oa« 
«h.»r:D«nriF.'<:i  i  CHKOMI.IJ«« 

wmmmn»*>mt m't-nmtiouttmm 
tlHU*f-UM.^(:>'*'K..ai«lfiuni>Ga 

Stji 
hl_ ^ 

ruai 

13 
0) 
O 

O 
u 
(X 

CO 
0) 
o 
ä 
cd 

(A 
c 

^3 

m 
PMMS K ■ ■•• 
—"    >M 

O 

m 
01 

rH a 
I 
5 

.. 



r 

Brown (Brown & Owen, 1967) and his associates set out to extend 
this effort In an orderly fashion. They assembled all the measures 
used by previous researchers and added new measures where these 
seemed likely to subsume several previous measures or to provide 
better representation of a perceptually relevant variable. This step 
resulted In an Initial collection of 130 measures. The set was reduced 
to 80 by eliminating measures which were essentially duplications of 
others. 

The 80 measures, of course, would not be expected to be Independent 
of one another.  In fact, one ought to expect substantial Intercorre- 
latlons among 80 measures taken on the sane pattern. Brown's next step 
therefore, was to reduce the 80 measures to a much smaller set of linearly 
Independent dimensions. He did so by measuring 1000 random polygons In 
terms of these dimensions, obtaining the intercorrelations among the 
measures and applying factor analytic techniques to obtain a small number 
of factors which would represent most of the variance of the 80 measure«. 

Factor analysis has been described by a previous paper In this 
meeting, so 1 will not elaborate on that. The technique might be regarded 
as a brute force approach, since there would be mathematical relations 
among various measures taken on a figure. But In this case brute force 
promised to be faster and considerably less expensive. The factor 
analysis, augmented by some judgment, produced 12 factors which accounted 
for most of the variance In the 80 measures. 

These Independent dimensions, of course, do not correspond completely 
to any of the original measures. In general, they represent clusters of 
measures. Nevertheless, by considering measures which relate strongly 
to these dimensions, one can assign a name to each dimension. I will 
here mention only a few of the most important, by way of suggesting the 
kind of features that humans may attend to when they Identify patterns. 

Compactness: This measure was most strongly related to the area of 
the enclosing rectangle. (Since the shapes were standardized for actual 
area before the measures were computed, the area of the enclosing 
rectangle would indicate the extent to which the patterns spread out to 
occupy a larger area.) 

Jaggedness; This measure principally represented the first four 
moments of the interior angles of the contour. 

Skewness; Two measures are represented in this case; one relative 
to the X axis and one relative to the Y axis.  Skewness relative to the 
X axis was simply the skewness of the distribution of X coordinates of 
the contour. Skewness relative to the Y axis was similarly obtained 
with the Y coordinate. 
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Ma^or axis; This dimension reflected the extent to which the pattern 
exhibited an enlongation on a major axis. 

( 
This brief summary cannot, of course, do Justice to the scope and 

thoroughness of Brown's work in determining these measures. They provide 
a tremendous opportunity for studying human performance as a function of 
objective and quantitative measures of forms.  I expect that they will 

J provide the basis for substantial advance in the study of form perception. 
Brown and his associates have already conducted a number of studies 
with these measures (Alken & Brown, 1969a; Alken & Brown, 1969b; Alken & 
Brown, 1969c; Behrman & Brown, 1968; Brown & Andrews, 1968; Brown & 
Brumaghim, 1968; Brumaghim & Brown, 1968; Mavrides & Brown, 1969; Brown 
& LoSassa, 1967). The general trend of the results is to indicate strong 

t relationships between Brown's measures, especially those mentioned 
above, and such performance variables as similarity judgments and discrim- 
ination difficulty. Most of these studies have used Attneave and Arnoult 
figures and have not introduced the within-class variability that I 
consider essential to represent a proper pattern recognition task. 

More recently, however. Brown and two of his associates have used 
patterns generated by techniques like the Vargus 9 system described 
earlier. In order to permit measurements of the patterns, however, it 
was necessary to transform them into closed polygons. This was accom- 
plished by graphing the patterns in polar coordinates rather than in 
the cartesian coordinate system used In Figure 2. Examples of such 
patterns are shown in Figure 6. 

Let me describe one study based on these patterns so as to illustrate 
the techniques and some of the findings. Mavrides and Brown (1970) 
presented subjects with patterns or forms representing a single prototype; 
these were mixed with other forms generated by a random process. The 
task she gave to the subjects was to select those forms which adhered 
to the same pattern. This task was analogous to the unsupervised learning 
task that has been described by researchers such as Cooper & Cooper (1964) 
and Haralick & Kelly (1969). Research in our laboratory, to be discussed 
later, had demonstrated that subjects could do this task with Vargus 7 
and Vargus 9 patterns in the format shown in Figures 1 and 2; Mavrides' 
interest was whether this performance could be related to Brown's measures. 

To answer this question, Mavrides employed a discriminant function 
technique, in accord with an earlier suggestion by Rodwan & Hake (1964). 
This technique is doubtless familiar to most members of this audience, 
but perhaps I should mention that it includes finding a set of weights 
for a linear combination of measures so as to maximize the combination's 
correlation with a prescribed dichotomy.  It is usually employed to 

* provide a classification function, but in the present application the 
function was treated as a descriptive model of human performance. 

1     ■ "^M 



 n "iiuM m  

iSt 

i 

f   v   ^ 
ca 
< vO 

CD 
< > «- ■ 

C DO 
•H i     l i x » ^ K ■ I 

■a 

^f    -f   V    < 
^f  -t  ^ 

do 

"8   <! I 

244 

»  -- --' — - ^^-^M„, 



«jaiMIMII mm  
JflF?««« 

The experiment contained a number of groups differing in their 
previous experience with the patterns,  a variable which naturally produced 
different levels of performance.    A discriminant function was obtained 
for each group, relating its modal classifications of patterns  to  the 
pattern measures.    An optimal function was also obtained relating  the 
"true" classifications to the measures.    For the group which classified 
in close accord with the true classes,   the discriminant function yielded 
weights similar to the optimal function.    For groups which were less 
successful in this sense, the discriminant function indicated heavier 
weightings on measures which were less closely related to the true 
class.   In both cases the function proved to be quite successful as a 
model for the human classification performance. 

This study indicates that human pattern Identification can be 
usefully described in terms of a discriminant function and that,  in 
conjunction with Brown's measures,  the weights obtained for the function 
can be used as Indications of the features to which the subjects are 
responding.     In this particular study,  for example, some of the groups 
which did not classify according to the true categories apparently attended 
more strongly to jaggedness and skewness than they should have for optimal 
discrimination.    More important than the particular variables, however, 
is the demonstration of a technique which would permit a systematic 
investigation of the features to which people respond in a pattern 
identification task. 

Another possibility offered by this  technique is the comparison of 
human pattern identification with an optimal model.    Mavrides used two 
sets of patterns, with differing levels of deviation from the prototype. 
With the set which had a low level of deviation, humans could do about 
as well as the model.    But with the more deviant set ot patterns,  the 
optimal model d4d better than did the humans. 

The comparison is not entirely proper, because the model was based 
on knowledge of the true classes and  the humans were not given this 
knowledge.    Nevertheless, the comparison is worth noting In view of the 
general superiority of humans in pattern identification.    Mavrides' 
results suggest that a relatively simple linear model can surpass human 
performance when the relevant feature space is known.    On the basis of 
this and of observations in our laboratory,  I would be willing to 
speculate that presently available statistical decision techniques are 
substantially superior to human capabilities when the two are on equal 
footing.    The secret of human success at pattern recognition must lie 
somewhere else. 

I have reviewed this piece of research in some detail to show 
what can be done with the measures developed in Brown's research program, 
especially when they are combined with sophistical statistical techniques. 

i 
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Rather than review other studies In this area, may I just summarize 
a few major conclusions: Subjects change the features they use in 
accordance with the task imposed upon them, the viewing conditions (such 
as visual noise), and the statistical distributions of features within 
the set of patterns.  In the case of a pattern identification task, for 
example, the subjects find without assistance a set of features which 
discriminate between the classes of patterns.  In fact, subjects in this 
task will discard features they normally prefer in favor of other features 
if the other features provide strong clustering (Alken, 1970).  These 
results therefore suggest that one basis for the highly successful pattern 
Identification by humans lies in their ability to select an appropirate 
feature space for a particular set of circumstances and to do so spon- 
taneously. 

In view of the suggestion above, one might reasonably ask, do 
humans achieve their pattern identification success by using a feature 
space of high dimensionality? This question has been addressed by 
Fenker (Fenker and Brown, 1969). Fenker had a subject make similarity 
judgments about patterns in terms of a number of different conceptual 
dimensions. The subject judged how similar patterns were in complexity, 
for example, in esthetic appeal, and in other such properties. He then 
employed a multi-dimensional scaling technique (Kruskal, 1964) which 
allows an Inference as to the number of underlying dimensions the subjects 
were using when they formed their similarity judgments. This technique 
does not provide a completely explicit method for inferring the number 
of dimensions, and Inferences are not entirely indisputable. Nevertheless, 
Fenker's results point rather convincingly to the conclusion that 
subjecti typically used three dimensions as a basis for their similarity 
judgments. A number of other studies (Behrman & Brown, 1968; Brown & 
Andrews, 1968; Alken & Brown, 1969a; Alken & Brown, 1969b) corroborate 
this conclusion. Thus it appears that the key to human success in 
pattern identification does not lie in the dimensionality of the decision 
space but in a highly effective ability to select an appropriate feature 
space for the given circumstances. 

One should not conclude, of course, that humans only use three 
dimensions when they classify patterns. A more reasonable Inference 
would be that they only use three dimensions at a time.  If I may again 
speculate, I would suggest that humans probably execute pattern identi- 
fication as a hierarchical classification process, assigning a pattern 
to some very broad category, then asslging it to one of a small set of 
divisions within that category, and proceeding recursively to greater 
precision of classification until some desired level is reached. Such 
a process would keep the number of categories at any decision point small. 
In turn, three well chosen dimensions might suffice. The process would 
require facility in choosing appropriate dimensions, and that seems to 
be available to humans. 
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One Implication of this classification procedure Is that It would 
almost never result In a pattern which was completely unclasslftable. 
An unfamiliar object would simply not allow pursuit as far down the 
classification tree.  Common observation suggests that humans are Indeed 
able to classify any pattern presented to them. Those of us who have 
tried to conjure up unfamiliar figures, such as the ones I presented 
earlier, have long been aware that there Is no such thing as an 
unfamiliar figure to a human subject.  It may simply be a Jagged 
silhouette or some sort of a graph, but It certainly belongs to some 
class.  Similarly, In the natural environment the unlnitiate may encounter 
a large number of crawling things which he calls bugs or insects.  To 
the biologist, of course, this gross classification is distressingly 
inaccurate.  But the tolerance limits of this category make it possible 
for the observer to include within it many new species that he has never 
seen before. 

Thus the hierarchical process seems to be compatible with some 
human characteristics.  It has a serious weakness in that any Inaccuracy 
at the upper level classification dooms the remaining steps to failure 
and jeopardizes the whole process, unless there is some capability for 
detecting this circumstance and retracing or restarting.  Even this 
weakness, however, may be compatible with human characteristics, because 
parallel processing—which must be abundant in human perception—could 
compensate for the weakness by pursuing all reasonable paths until one 
Is definitely confirmed. 

There is a great deal more that could be said about the work of 
Brown and his associates, but time requires me to move on to another, 
rather different topic. 

PRIMITIVE FEATURES. Research In physiological psychology has developed 
evidence which may indicate the nature of the elementary or primitive 
features used In the visual system of higher mamals. This work has 
been carried out primarily by Hubel and Wiesel (Hubel, 1963; Hubel & 
Wiesel, 1965; Hubel & Wiesel, 1962; Hubel & Wiesel, 1963; Hubel & Wiesel, 
1959; Hubel & Wiesel, 1969). Their strategy has been to establish 
relationships between characteristics of stimulation on the retina and 
the activity of individual neurons in the higher visual centers. 

A subject, generally a cat or a monkey, is first anesthetized and 
placed in an apparatus which holds the head still and ensures that Its 
eyes are pointed in a particular direction. An electrode is implanted 
into a fairly well specified position in the target region, such as the 
primary visual cortex. The electrode senses the activity of a single 
cell; readings taken from It are monitored while a stimulus (usually a 
spot of light) is moved around In the visual field. Different placements 
of the light may result In changes in the activity sensed by the electrode. 
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If such changes are found,  there will normally be a region, more 
or less round or rectangular,  la which the location or movement of the 
light makes a difference In the cell's activity.    Beyond this  region, 
the light will be found to have no appreciable effect.    This region In 
the visual field projects through the lens of the eye to a region on 
the retina,  and this  latter region Is referred to as the receptive 
field.     It is assumed that the receptor cells In this region project, 
perhaps through several stages,   to the cortical cell being sensed by 
the electrode.    But  that Is merely an assumption;  the receptive field 
has only a functional definition.     It Is that part of the retina In 
which  stimulation Influences the functioning of the cortical cell. 

The receptive fields reported by Hubel and Wiesel have functions 
which seem to be analogous to  the two dimensional linear operators, or 
filters, which have been used  in some work on pattern recognition and 
pattern enhancement.     I will therefore describe the receptive fields 
as   J.{ they were two dimensional filters,  eventhough that description is 
probably an oversimplification. 

The simplest fields may be regarded as spot detectors  (see Figure 7). 
Some of these fields have positive effects in    the center and negative 
effects on the periphery;  thus  they would maximally respond  to a spot 
of  light striking only the center of the field.    Other receptive fields 
of similar shape and size have an Inverse arrangement of positive and 
negative effects.    They would thus be maximally activated by a bright 
field with a single dark spot lying over the center of the receptive 
field.     In general,  complementary receptive fields seem to be available 
for detecting similar dark configurations on a bright background.    Thus 
I will not make any further distinction between the two kind of fields 
and will simply discuss the kinds of configuration the fields respond to. 

The spot detectors clearly could function as differentiating filters 
which might reduce an image to  contour lines.     Indeed the spot detectors 
at the cortical level apparently do not respond substantially either  to 
brightness alone or to darkness alone but only to differential levels of 
brightness lying properly across  them. 

At the next level, again from the functional standpoint,  are the 
line and edge detectors also shown In Figure 7.    These fields are 
maximally activated by lines or edges properly oriented and  located with 
respect to the fields.    Hubel and Wiesel have suggested that these 
detectors might be produced by a hierarchical organization on the spot 
detectors.    In other words,  a single line detector might be formed by an 
appropriately chosen set of spot detectors.    This arrangement Is 
Illustrated in Figure 8. 
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Connnon arrangements of lateral geniculate and cortical receptive  fields.    A.    "on"-center 
genlculate receptive field.    B.    "off-center geniculate receptive field.    C - G.    Various 
arrangements of simple cortical receptive fields.    +, areas giving excitatory responses  ("on" 
responses);  -, areas giving Inhibitory responses  ("off" responses).    Receptive-field axes 
are shown by continuous  lines through field centers;   in the figure  these are all oblique, 
but each arrangement occurs in all orientations.     (From Hubel and Wiesel,  1962,  reproduced 
with permission.) 

Figure 7 
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Possible scheme for explaining the organization of simple receptive fields. A large 
number of lateral geniculatc cells (G), of which four are Illustrated, have receptive 
fields with "on" centers arranged along a straight line on the retina. All of these 
project upon a single cortical cell (C), and the synapses are supposed to be excitatory. 
The receptive field of the cortical cell will then have an elongated "on" center 
indicated by the interrupted lines in the receptive-field diagram.  (Modified from Hubel 
and Wiesel, 1962, reproduced with permission.) 

Figure 8 
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Still higher order receptive fields have also been described.    These 
respond when an appropriate stimulus, for example,    a properly oriented 
line, appears anywhere within the receptive field.    These fields could be 
thought ,of as feature detectors which are Insensitive  to  the exact location 
of the feature. 

At  the next higher  level of organization,  Hubel and Wiesel have 
identified receptive fields which respond to stopped  lines or edges and 
to corners or projections.     It is worth noting that  this last set of 
receptive fields seems to  function so as to detect abrupt changes in 
contour and these abrupt changes may represent the most important 
information in the figure. 

There appears to be a wide range of sizes for these receptive fields. 
Figure 9 presents the distribution of sizes observed by Hubel and Wiesel 
for both the simple spot detectors and the slightly more complex edge 
and line detectors.     (These results were obtained in cats.)    It should be 
noted in interpreting this distribution that one degree of visual angle 
subtends about half an inch at 30 inches.    Thus these receptive fields 
are not small compared to objects ordinarily recognized by cats.    One 
should not assume,  then,   that the function of a receptive field is merely 
to enhance the edges or contours.    On the basl.T of research presented by 
Dr.  Zinser in another session of this meeting,  I would suggest that these 
fields are better interpreted as contributing to an analysis of the figure 
Into elementary components.     Nor should we assume that they are simply 
operating on contours.    The larger receptive fields are large enough to 
contain the entire image of small objects at normal viewing distance. 
They could be used to obtain information about the gross characteristics 
of the Image, such as the direction of a major axis. 

It is obviously impossible to conduct this kind of research on humans. 
But supplementary evidence  (Antelman, Olson, & Orbach,  1969)  has been 
developed as a result of  the Hubel and Wiesel research.    The technique for 
obtaining this evidence was to present subjects with a visual scene composed 
entirely of lines having a particular slant.    After the subjects had 
stared at this scene for a substantial period of time,  one might expect 
that any line detectors suitable for that slant would be somewhat fatigued. 
Thus,  if the subjects were tested with a new set of lines of the same 
slant,  the subjects might be less successful at detecting them than at 
detecting lines of different slants.    This expectation was confirmed. 

On the basis of these data, one might speculate that the mammalian 
visual system analyses patterns into contours composed of lines or edges of 
various slopes.    It then registers the presence and approximate location of 
corners, projections, and  invaginatlons.    These features may serve as the 
basic description in terms of which pattern identification operates. 
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AREA OF RECEPTIVE FIELDS IN DEGREES* OF ARC 

Distribution of 119 cells in the visual cortex with respect to approximate area of 
their receptive fields. White columns indicate cells with simple receptive fields; 
shaded columns, cells with complex fields.  (From Hubel and Wiesel, 1962, reproduced 
with permission.) 

Figure 9 
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Speculation of this sort on the basis of physiological data Is always 
hazardous because alternative Interpretations are always possible and one 
can seldom establish an unassailable case for a particular Interpretation. 
Nevertheless, this evidence can be used, 1 think, as a basis for hypotheses 
about preprocessing mechanisms In human pattern perception, as discussed by 
Dr. Zlnser In another paper In this meeting. 

SCHEMATIC CONCEPT FORMATION. A final topic I should like to discuss briefly 
Is one which we have been studying intensively in our laboratory. Pattern 
identification is generally thought of as assigning oatterns to previously 
established classes. There has, however, been some work in unsupervised 
learning (Cooper & Cooper, 1964; Cooper, 1967; Nagy, 1968; Haralick 6. 
Kelly, 1969) in which classes are found without previous identification or 
external advice from a trainer. As noted earlier in connection with the 
Mavrides' study, humans can also form pattern classes without assistance. 
A number of studies (Brown & Evans, 1969; Edmonds, Mueller & Evans, 1966; 
Edmonds & Mueller, 1967; Evans, 1964; Rankin & Evans, 1968; Rosser, 1967; 
Bersted, Brown, & Evans, 1969) have shown that unassisted humans can sort or 
distinguish patterns, such as those shown In Figures 1 and 2, according to 
prototype or generating source. On the basis of ).his research we conclude 
that humans can select a feature space which yields well defined clusters. 

This process seems to have the potential for an important role in 
human pattern Identification, and we have been attempting to model it. 
Time is too short for me to go into detail about these efforts, but I would 
like to illustrate some of our results. Figure 10 shows the earliest effort 
(Evans, 1969).  In this and subsequent models, we have sought to use elemen- 
tary processes which were compatible with psychological theories of 
learning. From the viewpoint of machine pattern recognition, however, our 
models may be regarded as hierarchically organized probabilistic adaptive 
automata which learn to select functions so as to minimise an error signal 
derived by trying to predict one part of a pattern on the basis of another 
part. This first model performed at levels somewhat above that of the 
human subjects.  Later studies (Brown & Evans, 1970), with somewhat Improved 
instructions and stimulus formats, have found better human performance. 
The model has proved encouraging with respect to prediction of performance 
in this limited task; comparisons with human performance, as found in a 
recent study, are shown in Figures 1.1 and 12. 

This model is part of our effort to develop a model for human pattern 
identification. Many of the other points I mentioned earlier will also be 
Incorporated. We are hopeful that developments on this model will allow 
psychology in the future to give more construcitve answers to the question 
of how humans recognize patterns. 
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NOTES ON THE KALMAN FILTERING TECHNIQUE 

John Matsushlno,  SSAD,   SAFEGUARD 
Communications Agency Analysis Division 

Fort Huachuca, Arizona 

I.     INTRODUCTION. The Kaiman filter  Is a digital filter which  is widely 
used on digital computers as an effective data processing technique.     Its 
successful applications are due to Rudolph E.  Kaiman. 

According  to classical data processing methods,  the observation    vector 
y^^ is obtained sequentially at discrete time t,, t.,  t-,   ..,,  t. ,  that is, 

y^ at t., y« at t-,.. .sequentially.    At each Instant of  time, an estimate of 

the x vector Is formed based on all previous data plus  the data at  that time 
Instant.    Thus,  if we have a set of observation vectors,  then 

yl ' H1X + vl 
y2 = H2x + v2 

y3 = H3X + v3 

y.   ■ H. x + v.   . 
'k       k k 

where Hi» H« H.  are fixed and known matrices, x Is the parameter to 

be estimated,  and v-, v2, v_,   ..., v    are the measurement noises,  this type 

of data processing results in an enormous amount of data to be stored.    In 
particular, matrix inversion becomes a difficult task since the array of 
vectors Is quite large. 

Based on the estimation technique we are Interested in, the procedures 
are a bit different, that is, at time t.  -, we assume that we have an estimate 

x^ based on the observation y*««    Then at time t., a new set of data is obtained 

and a new estimate x.+.. Is formed based on x. and the observation y  .    Thus, 

at t - 0, we assume we have an estimate x.  based on the observation y  ; at 

t - t^, we form an estimate x2 based on the previous estimate x.  and the 

observation jr. ) at t ■ t.t a set of observation data y. becomes available and 

we form a new estimate x, based on x2 and y».    This procedure requires storage 
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of the current estimate x.  and the current data y    only, and the size of 

matrix to be Inverted becomes much smaller compared to the classical method 
previously discussed.     In particular.  If the matrix elements are scalar, 
matrix Inversion Is a simple division. 

The lastly discussed data processing method is stated by a mathematical 
model defined by the prediction equation and the observation as 

x(k + 1) = (Kkl x(k) + u(k)   ... prediction 

z(k) = Hx(k) + v(k) ...  observation 

the state to be estimated at time t. 
k 

time at k th sampling Instant 

the state of the linear dynamical system at t, 

vector control function in linear, dynamical system at t. 

where:    x(k + 1) 

'k 
x(k) 

u(k) 

z(k) 

H 

V(k) 

*(k) 

observation data at t.   linearly related to x(k) 

observation matrix at t. k 
measurement noise at t. k 
state transition matrix relating to x(k) 

Given a state x(k)  at t. ,  the problem is what are the methods we can 

use in order to obtain a new estimate x(k + 1)?    The Kaiman filter is that 
method which will give the desired estimate. 

II.     THE RECURSIVE KALMAN FILTER EQUATIONS. The Kaiman filter equations 
are used in the order they are given below; that is, steps 1 through 5. Having 
completed step 5 return to step one and go on through 5 recursively until Che 
P(k) matrix indicates that £(k) is sufficiently accurate.    In this respect, the 
Kaiman filter is recursive. 

1. Predicted linear estimate of the state x(k) at t,  before z(k) is processed 

xp(k + 1) - *(k)ft(k) 

2. Covariance of error in the predicted estimate of the state t.  before 
zCk) is processed 

P(k + 1) -♦(k)P(lO«T00 
P 

3. Optimal gain matrix K(k)  for the Kaiman filter at t.   such that error 
existing between the state and the predicted state will be a minimum. 

K(k) - P  (k) HT[H P  (k) HT + R(k)]"1; R(k) - E[v(k) vT(*R 
P P *• 
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Let x(k + 1)  = x(k) + i(k)At. 

By definition, x(k + 1)  = (ti(k)x(k), so that 

(|)(k)x(k) - x(k) + x(k)At *(k)=1+l^At 

Assuming linearity,  41 (k)   can be written in vector  form as 

^00 =! + iioo ioo = j + 9x00 loo At 

3k(k)    x(k) 3x(k)    x(k) 

)(k) 1+li0iIAt 
3x(k) 

1 + 
S* 3£ 
3x 3x 

3x 5x 
3x 3x 

At 

Let At = unity.    Then 

"l    0 
♦ 00 

0    1 

0    1 

0    0 

fl 
*   (k) 

IV.    GAIN INITIALIZATION. During a computation,  the covarlance matrix 
P(k)  may intermlttenly give the values of its elements practically equal to 
zero.    When this happens the computer will gyrate with  the zero elements of 
the P(k)  elements, without giving values for the P (k + 1)   computation of 

the next sttge.     In order to cure this,  the gain K(k) must be initialized so 
that  the computer can go on.    The gain by definition is 

K(k)  - P  (k)HT [HP WH1]"1 

P P 

P (k)  - E 
P 

[xp(k) - xCk)]' 

[i (k) - x(k)]   [x(k)  - x(k)] 
_ P P 

[x   (k)   - x(k)]   [x   (k) 
p P 

[* (k)  - i(k)]' 

x(k)] 

Ex Ax Ax I 

xAx       Ax     I 

Therefore, 
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A.    Linear estimate ft(k) of the state x(k) at t.   using the data z(k) 

Ä(k)  - *(k) + K(k)[z(k)  - H(k)xn(k)] 
P P 

5. Covarlance of error matrix In the estimate of state at t, ; 

P(k) = E[ft(k) - x(k)]T[ft(k) - x(k)] 

P(k) - Pm(k) - K(k) HP (k); 
P P 

Note that k Is  zero In steps 1 and 2 Initially and that k is 1 In steps 3, 
4,  5.    Then in the next  stage k becomes 1 in steps 1 and 2 and k is  2 in 
steps 3,  4,  and 5. 

III.    THE STATE TBANSITION MATRIX »(k). 

Case 1.    (Kk)   Is a constant matrix associated with a first-order 
differential equation with constant coefficients.    In this 
event,  <Kk)   causes no trouble. 

Case 2.    ♦(k)  is time varying due to time-varying coefficients.    In 
this  case,   let 

x(k + 1)  - *(k)x(k) + B(k)u(k) 

k - 0, x(l) - (K0) x(0) + B(0)u(0) 

k - 1, x(2)  - (Kl)x(l) + B(l)u(l) 

- <Kl)[(K0)x(0) + B(0)u(0)] + BUM!) 
Therefore 

x(2) - (Km(0) + ♦(l)B(0)u(0) + B(l)u(l). 

k-1 
In general, f or k > J, (Kk.J) - H (ti(i) - <t>(j)*(J+l)   ... (|)(k-2)(ti(k-l). 

i-j 

Since iti(k,J) is the product of all the previous transition matrices,  to 
compute it becomes very difficult even on computers. 

Case 3.    An easy method for computing ^(k). 
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K(k) - 
"Ax2 Ax Ax fl- 

AxAx Ax2 
■ 

^0 

"Ax2' 

AxAx 
|[Ax2 AxAx] 

[1 0] 
TAX

2 

[AX^ AxAx  Ax 

AxAx 

2 

&i     » K(k) = 

,srj At = i      L1- 

♦ 
The element AxAx for P (k) is zero by definition in this case since 

P 
E[AxAx] - 0 . 

V. A SIMPLE NUMERICAL EXAMPLE. To illustrate the use of the Kaiman 
filter, assume that observation data is given in the table below. 

0 0 966 

1 966 
't* 

2 1930 

3 2900 

4 3860 
V 

5 4840 966 

Before the first stage computation can start, some preliminary calcula- 
tions must be made as follows: 

a) P (1) 
P I AxAx 

AxAx 

A-2 

Ax 
from previous page 

Let Ax be a convenient value such as 1 meter 
At be 1 second.  Since E[AxAx] = 0, 

Pp(l) 
1 0 

0 1 
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b) From case 3, In section III, 

)(k) 
1  1 

0 1 
*T(k) - 

1 0 

1 1 

c)  H = [1 0),  H  = 

d) Assume that R(k) - E[v(k) v'(k)] = 0.10. 

0 
1. xp(l) 

2. Pp(l) 

960 

"l 0 

0 1 

3.  K(l) = P (1)HT[HP (1)HT + 0.10]"1 
P       P 

111 0] + .1 

_ ( r _ -^ 
"l    0 1 1    0 1 

■ m o] 
0    1_ 0 0    1_ ^0 

.-r              V   ^ p    - 
1 -1 i .91 

[1 + .1]   - i.i ■ 

.0_ .0J , 0_ • 

4- 0.1) 

Note that matrix inversion is a simple diversion since the elements are 
scalar. 

4. HD  - x (1) + K(l)[z(l) - Hx (1)]    . 
P /      P   i-   N 

0 ' o' 
+ 

'.91 

960_ 0 

'960 - [1 0] 
L960j 

880 

960 

5. P(l) = P (1) - K(1)HP(1) = 
P P 

Return to step 1 for the next stage. 

'i  o' f91" 
0 

"i   o" .09    0 
[1    0] ■ 

0    1 0    1 , 0 .09 
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VI. DERIVATION OF THE KALMAN FILTERING EQUATIONS. 

A. Predicted state x (k) and Best Estimate £(k) 

Suppose the dynamics are described by the homogeneous, linear 
difference equation 

(1) x(k) - *(k,k-l) x(k-l) 

and the measurements are given by 

(2) 2(k) - H x(k) + v(k) 

where: x(k) Is the state to be estimated at t 

$(k,k-l) is the transition matrix 

x(k-l) is the state at t. - 

The initial state x    is a vector random variable with the known statistics: o 

E x    - 0 o 
T 

E x x  Is a known quantity 

z(k) is the measurement at t, 

H is the observation matrix 

v(k) is the measurement noise 

The statistical characteristics for the observation are: 

E v(k) - 0,  E v(k)vT(k) - R(k), E v(k)xT(k) = 0 for all k. 

E[AxAx] - 0 for all k. 

Given the model defined by equations (1) and (2), the recursive estimation 
problem is to determine best estimate £(k) which is a linear combination of 
x(k-l) and the measurement z(k). The estimate is best in the sense that the 
expected value of the sum of the squares of the error in the estimate Is a 
minimum, that is, 

E[(ft(k) - x(k)]T [ft(k) - x(k)] - a minimum 

x (k) =• predicted state before the data is processed 

ä(k) - best estimate of x(k) using data. 

x(k) = the state of a given linear dyaamic system at t, 

x(k) -    *(k) - x(k) 
267 
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The state is given according to (1) so that, given-an estimate 4(k - 1) 
at time t. ., it is reasonable to predict the estimate at time t, as 

xp(k) - ♦(k.k-DlKk-l), 

or 

(3) xÄ(k+l) " *(k) il(k) 
P    

x (k+1) is the predicted linear estimate at t, before the data is processed, 
p K 

Based on (2) and (3), one would expect the measurement z(k) at time t. 
to be 

(4) z (k) - Hx (k). 
P      P 

But an error in the estimate is reflected by a corresponding error in the 
expected measurement so that 

(5) 

(6) 

Error(k) - z(k) - z (k) - z(k) - Hx (k) 
P P 

- z(k) -- H(k)(Kk,k-l)ft(k-l). 

Now define the gain matrix K(k) such that the estimatej Ä(k) is given by 

ft(k) - (t.(k,k-l)ft(k-l) + K(k)[z(k) - zp(k)] 

«(k) - ^(k,k-l)«(k-l) + K(k)[z(k) - H*(k,k-l)«(k-l)] 

xp(k) xp(k) 

Therefore 

(6-1) ft(k) - x (k) + K(k)[z(k) - Hx (k)] 
P P 

(7) 

B. The gain matrix K(k). 

Let «(k) be the error in the estimate at time t, , that Is, 

*(k) - *(k) - x(k) 

Then. E[x(k) x(k)] • E[i(k)-x(k)]i[*(k) - x(k)], and define P(k) as 

P(k) - E[«(k) * T(k)]. 

.. 
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By 6,  6-1, and 7, 

*(k)  - ft(k) - x(k) - (Kk,k-l)*(k-l) + K(k)[z(k)  - H(l)(k,k-X)«(k-1)]  - Mk,k-l)x(k-l) 

- (t)(k,k-l)ft(k) + K(k)z(k) - K(k)H^(k,k-l)«Cfc-l) - ()i(k,k-l)x(k-l) x(k) 

- (ti(k,k-l)[ft(k-l) - x(k-l)] - K(k)H<Kk,k-l)ft(k-l) + K(k)z(k), 

Note that *<k-l) - x(k-l) = x(k-l),    z(k) = Hx(k) + v(k)4 

Therefore 

(8) X(k) - (Kk,k-l)«(k-l) - K(k)H(t.(k,k-l)*(k-l) + K(k)[Hx(k) + v(k)] 

Performing the multiplication In (8), we get 

(9) X(k) - <Kk,k-l)it(k-l) - K(k)H(Kk,k-l)ft(k-l) + K(k)Hx(k) + K(k)v(k) 

Slice x(k) - ())(k,k-l)x(k-l) by (1) 

i(k) - (Kk,k-l)X(k-l)  - K(k)H(|)(kik-l)*(k-l) + K(k)H<Kk,k-l)x(k-l) + K(k)v(k) 

X(k) - *(k,k-l)«(k-l)  - [«(k-l) - x(k-l)](Kk,k-l)K(k)H + K(k)v(k). 

«(k-1) - x(k-l) - ft(k-l) by definition; so that, 

«(k) - (Kk,k-l)X(k-l) - *(k,k-l)K(k)HX(k-l) + K(k)v(k). 

Therefore 

(10) X(k) - [l-K(k)H]t(k,k-l>*(k-l) + K(k)v(k). 

Since P(k) - E x(k)xT(k), 

P(k) -E[{[l-K(k)H]*(k,k-l)«(k-l) +K(k)v(k)} 

{[l-K(k)H](Kk,k-l)«(k-l) + K(k)v(k)}T] 

Pp(k) 

(11) P(k) - E{[l-K(k)H]i(k,k-l)[X(k-l)*(k-])V(k,k-l)][l-K(k)H]T 

+ K(k)v(k)*(k-l)[l-K(k)H]V(k,k-l) 

+ [l-K(k)H](Kk,k-l)«(k-l)vT(k)K(k) +K(k)KT(k)v(k)v(k)T }. 

R(k) 

Ev(k)X(k-l) - 0,      EJt(k-l)v1(k) - 0. 
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Since P(k) - E x(k)xT(k), E X(k-l)ÄT(k-l) = P(k-l), 

E v(k)v(k)T = R(k), E v(k)vT(k) = 0 

(11-1) Pp(k) - (t.(k,k-l)P(k-l)(t.
T(k,k-l) 

The expression In (11) can be rewritten as 

P(k) =  [l-K(k)H]P (k)Il-K(k)H]T + K(k)R(k)KT(k) 
P 

P(k) - P  (k)[l-K(k)H - HTKT(k) + K(k)HHTKT(k)] + K(k)R(k)KT(k). 

P(k)  = P  (k)  - P (k)K(k)H - P (k)HTKT(k) + P (k)K(k)HHTKT(k) + K(k)R(k)KT(k). 
P P P P ' 

or 

(12) P(k) - P  (k)  - P (k)K(k)H - P (k)HTKT(k)  + K(k)[HP  (k)HT + R(k)]KT(k) 
 E E E L 

P(k) is the covariance of the error.    EÄ(k)«T(k) - E t*(k) - x(k)][ft(k) - x(k)].T 

T 
The term [HP (k)H   + R(k)]  in (12)  is symmetric and nonnegative since the 

product of any matrix and its tranpose is symmetric. 

T Define the symmetric matrix S(k)  and S(k)    such that 

(13) I   S(k)S(k)T - H(k)Pp(k)HT + R(k). 

The last three terms in (12) are a quadratic matrix polynomial in K(k). 
Substitute (13)  into (12) and hypothesize the existence of a matrix A(k) 
such that 

(14) P(k)  - Pp(k) + [K(k)S(k) - A(k)][K(k)S(k) - A(k)]T - A<k)A(k)T 

We proceed to check the validity of this assumption as follows: 

(15) 

P(k) - P  (k) + K(k)KT(k)S(k)ST(k)  - A(k)KT(k)ST(k) - K(k)S(k)AT(k) 

+ A(k)ACk)T   - A(k)AT(k) 

(15-1) A.(k)  - Pp(k)HT[S(k)"1]T 
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(15-2) 

A(k)KT(k)S(k)T = {P  (k)HT[S(k)"1]T}KT(k)S(k)T 

P 
K(k)s(k)AT(k) = KC^sCkXPpC^^ECsCk))"1]1}1. 

Therefore 

P(k)  = P  (k)  + K(k)KT(k)S(k)ST(k)  -  [P   (k)HT(S(k)"1)T]KT(k)ST(k) 
P P 

- K(k)S(k)[Pp(k)HT(S(k)"1)T]T 

Now making use of formula  (13) we obtain 

P(k)  = P   (k)  + K(k)[HP  (k)HT +R(k)]KT(k)   - P  (k)HTKT(k)  - K(k)S(k) [S(k) HP  (k)T] 
P P P P 

P(k) = P  (k)  + K(k)[HP  (k)HT + R(k)]KT(k)   - P  (k)KT(k)HT - K(k)HP T(k), 
P P P P 

From formula   (12) we have 

P(k)  = P   (k)   + K(k)[H(k)P  (k)HT + R(k)]KT(k)  - P  (k)KT(k)HT - K(k)HP   (k), 
P P P P 

T We shall now show that P  (k)  = P    (k),  so  that the above representations of 
P P 

P(k)are equal.    By definition, 

P  (k)  = (t)(k,k-l)P(k-lHT(k,k-l) 
P 

P T(k)  = [1|)(k,k-l)P(k-l)*T(k-l)]T = (|)(k-l)PT(k-l)<(>T(k,k-l) 
P T 

But P T(k-1)  =Elx(k-l)x(k-l)T]     =   tx(k-l)x(k-l)T]  = P  (k-1), 
P P 

Therefore 

P„T(k)  = <(.(k,k-i)PT(k-l)*T(k,k-l)  = Pn(k) 
P P 

Hence the expression in  (15)   is identical with the expression in  (12).    We 
now minimize the trace of P(k) = E[x(k)  - x(k)]T[&(k)  - x(k)] by choosing 
K(k) such that 

K(k)S(k)  = Pp(k)HT[S(k)~:L]y (15-2) 

We solve for K(k), 

K(k)  = P  (k)HT[S(k)'1]   S(k)"1; but   tS(k)"1]TS(k)"1 «  [S(k)TS(k)]"1 

P 

Since S(k)TS(k)  = HP (k)HT + R(k) by  (13), 

[S(k)TS(k)]"1 = [HPp(k)HT + R(k)]~,1 
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Therefore 

(16) K(k) - Pp(k)HT[HPp(k)HT + R(k)]"1 

The gain K(k)  can be derived by Wiener's notations: 

1. x and v are random vectors 

2. The arbitrary estimate i of  the state x is a linear combination of 
the measurement of y 

T 
3. Best estimate St minimized the quantity E(x-iO (x-Ä) 

4. The linear estimate & can be expressed as it = Ky 

5. The statistical characteristics are: 

T 
a) Ex = 0, Ev = 0, Ex v =■ 0 

T       T 
b) Exx = P, Ew = R. 

PROBLEM:     TO DETERMINE THE OPTIMAL GAIN K(k) 

E(x-Ä)   (x-ft)  = E(x-Ky)   (x-Ky) => E{x x-xK y -x Ky + K Ky y} 

ST T »T  T   . "T  T T 
-4- E(x-ft)1(x-Ä) = 0 -»■ EC-xy + K y y} = 0 -»■ EK y y = Ex y 
3K 

T v-l,-1 !,.„ -I, T.-l, KEyy = Ex y -»■ K = {Ex y(Ey y)"-1}       - Exy^Ey^Cy1)"1]  = Exy E(yy ) 

T T     —1 
K= Exy'CECyy1))  1 

y = Hx + v. 

Therefore 

fH =   [x(Hx + v)1]  {E(Hx + v)(Hx + v)Tl 

K = E[xvT + x(Hx;T]  E[HxxTHT + (Hx)Tv + HxvT + wT] 

E(Hx)  x = ITP,  Rx v = 0, HH xx1  - HH P 

T T EHxv    » 0,  Ew    = R, 

Therefore 

T^-l 

-1 

« T T .-1 
K = H1?  [HH P    + R] 

P P 
Note that K has the same form as the expression in (16). 
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C.    The Error Covarlance P(k) 

With K(k) = P (k)HT[HP  (k)HT + R(k)]"1  , 
P P 

(15-1) A(k) = P  (kjH^SCk)"1]   ,    AT(k)  = S(k)"1HPn(k)y 
P P 

Hypothesizing the existence of  the matrix A(k)  such that P(k)   Is  expressed 
as  In  (14), 

(14) P(k)  " F  (k) + [K(k)S(k)  - A(k)]   [K(k)S(k)  - A(k)]T - A(k)A(k)T 

P 
P(k)  = P   (k) + {[P (k)HT(HP  (k)HT + R(k)"1]S(k)  - P  (^^^(k)"1]   } 

P P P P 
X T 

{[P (k)HT(HP  (k)HT + R(k)"1]S(k)  - P  (k)HT[S(k)"1]   } 
P P P 

P(k)   = P  (k)  + [K(k)S(k) - Pw(k)HT(S(k)"1)T]   [K(k)S(k)  - Pn(k)HT(S(k)"1)   ] 
P P P 

- A(k)A(k)T 

= P  (k)  + K(k)S(k)s'r(k)KT(k)  - P  (k)HT(S(k)"1)TS(k)K(k)   - K(k)S(k)S(k)"1HPB
T(k) 

P P p 

+ Pn(k)HT(S(k)"1)T     (S(k)":LHPn(k)T)  - A(k)A(k)T 

AKT A^k) 

P(k)   - P  (k)  + K(k)S(k)S(k)TK(k)T - Pn(k)HTKT(k)(S(k)"1)TS(k)T 

P P 

- Kfk)s(k)S(k)"1HP  (k)T 

P 

(16-1) P(k) - P (k) + K(k)S(k)S(k)TK(k)T - P (k)HTKT(k)  - K(k)HP (k), 
P P P 

Recall from  (15-2), 

E[*(k) - x(k)]T[«(k)  - x(k)]   Is minimized by choosing K(k)  such that 

K(k)S(k)  = Pp(k)HT(S(k)"1)T 

Making use of the above relation In the second term of (16-1/, we obtain 
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K(k)S(k)S(k)TK(k)T = P (k)HT(S(k)"1)TST(k)KT(k) = P (k)HT(S(k)T)"1(S<k)T)KT(k) 
P P 

= Pp(k)H
TKT(k). 

The expression in (16-1) becomes: 

P(k) = P (k) + P (k)HTKT(k) - P (k)HTKT(k) - K(k)HP (k) 
P     P P P 

or 
i 

(17) P(k) = ?lk)  - K(k)HPn(k) 
   P P 

We now have the Kaiman Filtering equations as follows: 

1. Predicted covarlance before the data from (11-1) 

Pp(k + 1) = *(k)P(k)<|>
T(k) 

2. Predicted estimate of the state from (3) 

xp(k + 1) = (Kk)*(k) 

3. The gain K(k) such that E[ft(k) - x(k)]T[ft(k) - x(k)] 
is a minimum from (16) 

K(k) = P (k)HT[HP (k)^ + R(k)]~1 , R(k) = Ev(k)vT(k) 
P      P 

A.  Best estimate £(k) using data from (6-1) 

«(k) = x (k) + K(k)[z(k) - H(k)x (k)] 
P P 

5.  The covarlance error matrix to check accuracy of £(k) from (17) 

P(k) = ?(k) -  K(k)HPw(k). 
P P 

REFERENCES 

1. R. E. Kaiman, A New Approach to Linear Filtering and Prediction Problems, 
J. Basic Eng. 82D (1960). 

2. R. E. Kaiman, New Results in Linear Filtering and Prediction Theory, 
J. Basic Eng. 83D (1961). 

3. H.W. Sorenson, Kaiman Filtering Techniques, Advances In Control Systems, 
Vol. 3, 1966. 

4. Ralph Deutsch, Estimation Theory, Prentice Hall, 1965. 

274 

fmm I^MMMM 



■ "^ ■■■ -"'■l '     ll"1     .       i\ iimmmmmrmmmm^mrm.m..iiii    IIIUMI .       i iiiiiin.i ..       .iiiii.m .m—^^^^^www—W^W^IWHII—iwn^^««—*^— 

,,.-.-.... . „- . 

I 
i 

CLASSIFICATION TECHNIQUES FOR STRIP CHART RECORDINGS 

Barry Rodin, Theodore Hllbka and William Sacco 
Ballistic Research Laboratories 

U.S. Army Aberdeen Research and Development Center 
Aberdeen Proving Ground, Maryland 

ABSTRACT. Many chemical and physical devices such as chromato- 
graphs and spectrometers record their results on a strip chart. 
Such devices are often used to classify a sample as belonging to 
one of several possible classes. Quite often, however, it is not 
known in advance which parts of the record are significant for 
discriminating between the given classes. The paper presents 
classification techniques for such recordings.  Several typical 
recordings from each class will be used as a training set. We 
assume that the equipment is properly calibrated; however, no 
a priori knowledge of the physical or chemical composition of the 
classes is assumed. 

Current approaches to this problem divide the parts of the chart 
deemed to be significant Into n non-overlapping segments. Some func- 
tion of each segment such as average intensity, maximum intensity, 
or total area under the curve is obtained. The pattern is thereby 
characterized as an n-dimenslonal vector to which standard pattern 
recognition techniques are applied. Inaccuracies due to characterizing 
the recording as an n-dimenslonal vector are discussed. New 
approaches are given which eliminate these objections. For example, 
a record may be characterized as a set of peaks und areas under each 
peak. Distance measures for this characterization are proposed and 
clustering and classification techniques are presented. Preliminary 
computational experience is discussed. 

INTRODUCTION. Strip-chart recorders are widely used in many 
scientific fields. For example, infra-red spectrometers record 
absorbence or transmlttance vs wavelength, and gas chromatographs 
record elution rate vs retention time or the normalized retention 
time given In Korats Index units. This paper presents methods for 
classifying a strip chart recording as belonging to one of several 
given classes. Throughout this paper we shall speak in terms of gas 
chromatography for the sake of concreteness and since that Instrument 
is the source of most of our data although our methods are quite 
general for all types of strip-chart recorders. 
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Important Characterlatlcs of the Graph 

Several different characteristics of the graph may be considered 
to be Important: the value of the dependent variable, such as time, 
at which the peaks occur, the height of the peak, or the area of the 
peak. Relative heights or areas of two or more peaks may also be 
considered; however, this requires an a priori knowledge of what to 
look for since there are too many combinations to »ear' ' them all to 
see which are significant. 

Pources of Error and Variability 

Two strip-chart recordings representing the same class of 
objects may differ from each other considerably. This Is due to 
many sources of error and variability such as: 

1. Peaks may be only partially resolved so that for one run of 
the experiment we might find one large peak whereas for another run 
we might resolve this peak Into two smaller peaks. 

2. There Is a problem In determining the base-line which represents 
the absence of a peak and from which the height or area of the peak 
would be measured. This problem may sometimes only Involve the proper 
calibration of the equipment. However, for temperature programmed 
chromatography k. termination of the base line Is more complex since 
the base line rises as heating takes place. Identification of this 
base line Is an art at which the chromatographer Is quite capable 
and so we envision that this part of the analysis will be done 
manually before the data Is prepared for the automatic pattern analysis. 

3. The pen may go off scale making an estimate of the correct value 
necessary. 

4. The attenuation of the Instrument might be changed during the 
course of the experiment and this fact must be properly taken Into 
account. 

5. The Instrument Itself has only a certain amount of accuracy 
and so variability due to the equipment contributes to the variability 
observed In the strip-chart recording. 

6. Different scientists have somewhat different experimental 
techniques. For example, some people will round off their numbers 
more than others or measure heights or areas differently. Even the 
same person may record slightly different numbers for the same 
measurements If done on two different days. 
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7.  The most Important contributing factor to the variability of 
the strip-chart recording for Items of the same class Is the variability 
of the Item Itself. For example, In the Chromatographie analysis 
of humans different people give off different set of effluents and 
even the same person may give off widely different effluents on 
different days. 

Normalization 

Since different samples may have different concentrations, it 
Is often necessary to normalize the recorded values so as to be 
able to compare them. Several different types of normalizations 
might be tried, such as the following: 

1. If a peak Is larger than a certain threshold value, we consider 
It to be present, otherwise we consider It to be absent. For this 
normalization approach, we do not consider differences In the size 
of the peaks. 

2. We might normalize with respect to the largest peak; that Is, 
set the largest peak equal to one unit and let each of the other 
peaks be the appropriate fraction. 

3. Some specific peak or a set of peaks might be found to be 
present In most or all of the samples and thus could be chosen for 
normalization. 

' V 

4. The average size of a peak may be used for normalization. That 
Is, we add the areas of all the peaks of a given recording and 
divide by the number of peaks to find the average area of a peak. We 
then divide the area of each peak of that recording by the average 
value to find Its normalized value. 

5. If It Is known which peaks are chemically significant, that Is, 
which peaks are likely to be present In one of the classes but absent 
from the other class then these peaks may be chosen as the standard 
for normalization. However, In this paper we shall not assume any 
a priori knowledge of the chemical composition of the different 
classes. 

6. We may normalize by the total area. That Is, we divide the 
area of each peak by the total area and thus obtain, as the normalized 
value, the percentage of the total area contained In the given peak. 
This Is the form of normalization which will be used throughout 
the rest of this paper. 
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7. We might normalize in several steps. That is, first we normalize, 
using one of the methods mentioned above, considering all values of the 
independent variables to be equally important. Using this normalization 
on the training sets we may find some values to be relatively unimportant 
for classification purposes because there is considerable overlap among 
the recordings for the different classes. We may then normalize only 
with respect to the values of the independent variable which are found to 
be significant. We may do this process over again; that is, we may use \ 
this new normalization to find additional values of the independent 
variable which are relatively unimportant and then normalize only with 
respect to the values which are still considered to be important. 

8. Finally, we might use several different types of normalizations such 
as discussed above. We may use a classification scheme separately or 
each set of normalized data and then take some kind of average to 
determine the class to which we will assign the test recording. Alterna- 
tively, we might employ a classification scheme that simultaneously utilizes 
the data of the various normalizations. 

ChromatQRraphy Data 

For the last three years Dr. A. Dravnieks and associates of Ulinols 
Institute of Technology Research Institute (IITRI), under contract to the 
Ballistic Research Laboratories, have been working on the detection of 
human effluents. During this time they have designed and built an 
apparatus to collect effluents from humans in a specially designed trap. 
They have also devised methods of collecting air samples from various 
environments and analyzing them by means of gas chromatography. 

As the gas Chromatographie data on chemical signatures of humans 
began to accumulate, it became evident that the composition of the organic 
vapors from humans varied significantly from individual to individual. 
Visual inspection of the chromatograais did not indicate obvious common 
patterns. At that stage of the research each chromatogram consisted of 
32 to 48 peaks. The sizes of the peaks in the same gas Chromatographie 
locations varied considerably from individual to Individual. 

Because of the large number of peaks Involved it became necessary 
to develop criteria for the selection of those peaks that would be most 
significant for identification and classification of human chemical 
signatures.  To this end a histogram study was conducted to find Intervals 
of elution times in which peaks most frequently occurred. Using this 
procedure 34 Intervals along the time axis were selected. Only peaks 
occurring in these Intervals were considered. Therefore each chromatogram 
was made to correspond with a 34-dimensional vector whose 1th component «e 
was the normalized peak area appearing in the 1th interval. Hence each 
chromatogram is expressed in the same number of variables. For three 
statistical experiments a procedure, called Stepwise Discriminant Analysis, 
was then used to obtain the significant discriminating variables from 
among the 65 variables. 
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Then various discriminant analyses were conducted Including 
human versus non-human signatures, Caucasian male versus Caucasian 
female versus Indian males. 

Discriminant functions were obtained using the stepwise 
discriminant analysis program. This procedure selects important 
variables in a stepwise manner.  It extracts variables (peaks) one by 
one in order of their decreasing statistical significance (down to 
a certain statistical noise level) for the purpose of separating 
the pattern classes. Then the procedure computes linear discriminant 
functions based on the variables selected. 

In the first study, 36 human chemical signatures, randomly 
selected from the total of 65 available, and all 10 environment 
(non-human) signatures were used to derive the discriminant function. 
Then the same discriminant function was applied to classify the 
remaining 29 human signatures. Only 4 out of 29 were misclassl- 
fied for a discriminant function based on 15 variables. 

A number of other class separations were tried e.g. Caucasian 
males versus Caucasian females versus Indian males with some success. 

New Studies 

Because of the promising results obtained by IITRI, we exposed 
the 5 and 15 dimensional data to cluster analysis using a procedure 
called ISODATA.   The principal objective of cluster analysis is 
to gain more information about the structure of a data set.  Isodata 
is an iterative process which attempts to find clusters in the data 
set.  Indeed, in each iteration, we begin with a set of cluster 
centers and apply the following procedure one or more times: 
partition the data set by placing each pattern in the subset associated 
with that cluster to which it is closest as measured by Euclidean 
distance. We then calculate the average of this subset and use this 
point as a cluster center and reiterate the procedure. 

We discovered that the good results obtained using stepwise 
discriminant analysis were not reflected in the cluster analysis. 
Contrary to expectation the clusters generally were neither tight 
nor homogeneous (i.e. the clusters consisted of samples from both of 
the classes we were trying to separate). Although the data was 
multlmodal the stepwise discriminant procedure managed to find a 
separating hyperplane. This is not always possible and led us to 
believe that the findings were rather fortuitlous. 

6. H. Ball and D. J. Hall, "ISODATA, A Novel Method of Data Analysis 
and Pattern Classification," Stanford Research Institute, Menlo Park, 
California, (Apr. 1965). 

279 

., 



PIWII.Ä^WJJWtHU'T"—■■■^■"™^--™«™ 
*l^F''m''W-*r'm:'mi*»Mm'm**m>mm*ni*mm IJ^W^ wwwro 

jj.i.l.ii um iiinii.,.,.!»!...... . 

These Isodata findings as well as our reservations regarding 
the "Interval approach" for selection of peaks led us to consider 
a non-Euclidean measurement of distance between two chromatograms 
which we shall now describe. 

Distance Between Chromatograms 

Each chromatogram Is characterized as a set of ordered pairs 
of numbers—the first number of the pair Is the time (or Kovats Index) 
at which a peak occurred, while the second number represents the 
area (perhaps normalized) under the peak. Now suppose we have two 
chromatograms 

C^ = {(x^y^}; :" - 1.2,...,n and C2 - {(a. ,6^)}; j - 1,2 m. 

Let X • {x.} , A ■ {a } , and T be a given number 

Then we define the distance , pCC^C.), to be 

where 

and 

where 

pCc^cp^IP^S.cp +p2(c1.c2)] 

P2(C1,C2) - Pjttj.C^) 

J (2(7,  - b ) 
p/C-.C.) .d(Y,f3) - I    —i ~ 

'1 "i 

s 

Y 
n (y,,...^, ...•.y„.o,o,...,o ), 

l    1     n 

6 " ^i bj'"'''Wl b»rt) 

q ■ n + s 

JEA 
i = 1,2,...,n 

^  - {<» : min |xr - o.| = ^ - o | and ^  - a^ | < T} 
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and 

n+1       j. 

i 
bn+2 " ß

j. 

n4s      ^8 

ß      Is the peak area associated with an a.    wbld; is/aot within 

T units of any x.. 
1 

This distance measure Is used later together with a Fix-Hodges 
procedure for classification studies. 

Fix-Hodges Technique 

The Fix-Hodges technique is a non-parameteric classification 
procedure whose use Implies only that probability density functions 
exist for samples from each pattern class and that they are continuous. 
The objective of the technique Is to determine discriminant functions, 
say g.fa), g2(x),...,g, (x) where x is a pattern vector. Discriminant 
functions are defined as follows: Suppose we have k pattern classes 
R ,R , ...IL and k single-valued, scalar functions g,(x),g2(x),...,g. (x) 
having the property that for all x in R , 

gj/x) > gjCx)  for i,j = 1,...,R, j ft 1. 

The g.(x) are called discriminant functions. 

In the Fix-Hodges procedure, the discriminant functions are 
determined by selecting a positive Integer k, which is small compared 
to N, the total number of patterns in the training sets. A training 
set, T , is a set of sample vectors from class R .  In order to 
classify an unknown pattern X, the patterns in the K training sets 
T-jT-,...^. are pooled. We then find those k patterns from 

k 
T = UT. which are "closest" to X. Suppose that of the k closest 

I1 

patterns, n. patterns belong to T., n- patterns belong to T»,..., 
and n, patterns belong to T where n:.+n2+.. .4IL = k. We 
then define 

gjW - ^ 

g2U) ■ n2 

and we assign X to class R If n > n, for k ^ j. 
J J K i 
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The nearest neighbor procedure is the special case (k-1) of 
the Fix-Hodge procedure. For example let K - 2, ^ - lA^...,*,/. 

T2 - {Xm+1 X2m}f R - ^ U R2, T - ^ U T2. Then If we wish to 

assign X e Z \ T to either R1 or R2 we compute 

men p(X.,X) = p(Xa,X) 

XjeT   ' 

and assign X to 

R1 If Xa e T1 

R2 If Xo e T2 . 

where p Is the metric of our choice. 

The Fix-Hodges technique was used where the non-Euclidean 
distance (described earlier) for p to conduct various discrimination 
studies. The results are summarized in the following tables. 

CONFUSION MATRICES USING FIX-HODGE DISCRIMINATION 

New "Distance" Euclidean Diffn" 
34 Dimensional "Bin" Data 

White Male Vs. White Female 

S^allec 

L5 \ WM WF 

WM 19 6 

WF 8 15 

Whit 

>S>calle< 

15     X^ WM IM 

ttf 18 6 

IM 1 11 

•scalled 

L5\ 
WM WF 

WM 7 18 

WF 7 16 

White Male Vs. Indian Male 

1 No Decision 

<^alled 

L5      N^ 

 1 

WM IM 

WM 15 10 

IM 6 6 

' 
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White Male Vs.  Non-Humans 

15     v^ 

New "Distance" 
Vqalledl 

WM 

m 

20 

34 Dimensional  "Bin" Data 

NH 

LJL 

P- callec 
15 \   WM NH 

WM 2A 1 

NH 4 6 

1 No Decision 

White Female Vs.   Non-Humans 

Xcalle 

15 X WF NH 

WF 19 6 

NH 5 5 

Xalled 

15 X^ WF NH 

WF 19 6 

f 

NH 7 3 

Indian Male Vs.  White Female 
New "Distance" Euclidean Distance 

34 Dimensional  "Bi1i"Data 

:alle i 

IM 

IM 

11 

22 21 
2 No Decision 

Tcai > 

15 

IM 

IM 

Indian Male Vs. Non-Humans 

22 

I 

Stalled 
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The Isodata program,  as now constituted, could not be used with 
the non-Euclidean distance mensure.     So we were unable to obtain 
cluster results. 

Criteria For A Good Classification Technique 

We will present a new classification scheme which may be applied 
to strip chart recordings.    We first list some properties which we 
desire our classification scheme to have. 

1. It should emphasize some regions of the chart more than others 
based on the probability distributions of the training sets.    That Is, 
regions of time for which the values of the different classes overlap 
very little should be considered more Important for classification 
purposes  than regions of  time for which there Is considerable overlap 
In the values on the strip chart for the different classes. 

2. On the other hand, we do not want to make our entire decision 
from just one part of the graph.     By making our decision from several 
parts of the graph we will be able to minimize efforts at camouflage. 

3. Our scheme should give an indication of our confidence in 
the decision; that is, sometimes the values of the item to be classi- 
fied will be very close to typical values of one of the classes  so that 
we can be    very confident in our decision, however,  at other times we 
will make a decision to put the test recording into one of the classes 
but it will be quite dissimilar from the training set of either class 
and so our confidence in that decision will be rather small. 

4. We want the scheme to be sufficiently simple so that  it may 
be Implemented on a computer without requiring too much computer time 
or storage and without any human intervention. 

5. We desire that the scheme should not require the use of any 
"chemical logic;" in other words,  that the scheme require no a priori 
knowledge of which peaks are likely to appear in which classes. 

6. The method should not be too sensitive to assumptions of the 
form of underlying probability distributions; that is, from the training 
sets we may infer on underlying probability distribution associated 
with each class.    Since we make this inference from a small finite set 
of data it will be Inaccurate.    Our classification scheme, therefore, 
must not be too sensitive to such inaccuracies. 
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7.     The most Important criterion for judging the effectlvenasa of 
a classification technique must,  in the final analysis, be the question: 
Does  it work?    That Is, how successful Is It In correctly classifying 
the data. 

Classification Technique 

We now propose a classification scheme which uses the training 
sets of each class to infer a probability distribution for  that class. 
Any item to be classified is assigned to the class receiving  the 
largest note based on the probabilities. 

For this classification technique we characterize each recording 
as a vector  (r. ,r_,... ,r ) whose components are the value of  the recording 
at successive small Increments of  time t^.t.,...^  .    For any given 
time we will assume the recorded value for elements of each class to 
be normally distributed.    We shall use the data from the training set 
to estimate the unknown parameters;   in this case the mean and variance. 
The normal distribution is by no means the only distribution which 
could be chosen for this purpose.     As experience is gained with a 
specific problem a different family of probability distributions might 
be chosen. 

We use the values from the training set for a given time t.  to 
estimate the mean M      and standard deviation S      for the 1th time and 
the Jth class.    We thus characterize each class j as an ordered set 
of ordered pairs: 

((M^Sy),   (M2j,S2j) (Mnj,Snj)). 

Xn order to classify the recording characterized by the vector 
(r1,r2 r ) we Investigate how significantly it differs from the 
average value of each class.    Let o      be the value of the probability 
density function associated with time t. and class J   (in this  case the 
normal distribution with mean M      and standard deviation S    )   evaluated 
at r..    We may then classify the^recording as belonging to the class j 
whicn maximizes: 

Another approach is to choose the class j for which 

i fZ 
is a maximum.    If the correlations are taken into account,    other 
procedures may be devised. 
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A Computer Model of the Initial Stages 
of Mammalian Pattern Processing^ 

Otto Zinser 
Night Vision Laboratory,   Ft.   Belvoir,  Va. 

Shelby H.  Evans 
Texas Christian University,  Ft. Worth, Texas 

Two forms  of behavioral research suggest that the human visual 

system is sensitive to features.    It has been reported  that when patterns 

are presented in such a way as  to compensate  for involuntary eye move- 

ments  (producing a stabilized  image)   features  of patterns   such as short 

straight lines,  fade and reappear (Pritchard,   1961; Evans,   1967). 

Visual masking procedures   (Kahneman,   1968; Welsstein,   1969)   have shown 

that a masking stimulus  (e.g.   a short line of a particular orientation) 

will raise the threshold of recognition of a test stimulus  of similar 

orientation, when presented shortly after the masking stimulus.    The 

masking research suggests  that  line sensitive detectors  in the brain 

become adapted to the masking stimulus and hence are slower to react to 

the test stimulus. 

Physiologists and physiological psychologists  have  for the most part 

not been able to contribute much information concerning human pattern 

rThis research was  supported by Grant No.  NB7460-01  from the National 
Institute of Neurological Diseases and Blindness and by the Department of 
Defense, Project THEMIS Contract  (DAAD05-68-C-O176), under the Department 
of the Army to the Institute  for the Study of Cognitive Systems  through the 
TCU Research Foundation.    Further reproduction is authorized to satisfy 
needs of the U.S.  Government. 
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processing.    They have,  however,  provided somewhat more  information on 

how infrahuman organisms  respond to patterns; most research of this order 

has been conducted with cats and monkeys.    Hubel and Wiesel1 s  (1963) 

research with these organisms  is now well known. 

Briefly, Hubel and Wiesel found that nerve cells at the retinal 

(ganglion)  and geniculate  levels are most sensitive to spots and that cells 

at the cortical level are most sensitive to lines and edges of particular 

orientations.    Responses  from these cells were obtained by implanting 

electrodes  in those regions  of the visual system that were of interest and 

scanning the retina with spots,  lines or edges.    Those receptor cells of 

the retina which, when stimulated, affected the rate of firing of a cell, 

comprised the receptor field of that cell. 

To Hubel and Wiesel these findings, and those of other researchers, 

suggested that the initial stages of the mammalian visual system are organized 

in a hierarchical manner,   i.e.,  the output of retinal cells serves as input 

to geniculate cells and the output of geniculate cells  serves as input to 

cortical cells. 

The purpose of the research to be described was  to model some of the 

hypothesized functions of  the mammalian visual system.    Hubel and Wiesel's 

data and their theorizing served as primary guidelines.    When theory or data 

were lacking.  Invention,   supported by empirical findings obtained from the 

computer,  served as a basis  for further model development.    The model to be 

described is not a model of pattern recognition,   i.e.,   it does not possess 

the ability to discriminate and classify patterns.     It may be designated as 

a model of the initial stages of mammalian pattern processing. 
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A Model of Pattern Processing 

Several principles of mammalian pattern processing are indicated in 

Hubel and Wiesel's research:  antagonism between excitatory and inhibitory 

areas of receptor fields, the sensitivity of the levels of processing to 

specific pattern features (spots, lines and edges) and the hierarchical 

processing of pattern information.  It has not been clearly established that 

the above principles of processing have validity; however, despite the 

tentativeness of the present conception of the visual system, it was con- 

sidered desirable to study the results obtained from executing the total 

system on the computer. 

Implementation of the above principles will now be discussed. Numerical 

analogs (5x5 matrices of digits) were designed to function in a manner 

similar to the receptor fields described by Hubel and Wiesel. A 5 x 5 random 

walk matrix (Fig. 1) was used as an analog of receptor fields of retinal 

and geniculate cells, to be sensitive to spots; each digit defines the number 

of unique ways one can move , in a specific number of steps, from the center 

cell of the matrix to the cell containing the digit. 

A set of eight 5x5 matrices of digits (Fig. 2) was prepared to serve 

as analogs of receptor fields of edge-sensitive cortical cells. Positive and 

negative digits correspond, respectively, to excitatory and inhibitory areas 

of the receptor fields; it will be noted that the values in each matrix sum 

to zero. A different matrix was designed for each of four orientations; 

vertical, horizontal, slanted 45° positive, and slanted 45° negative. Two 

versions of each orientation were required because the matrices are not 

symmetrical; one matrix is necessary for the detection of one edge and the 

other for the detection of the opposing edge. 
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Fig.   1 - A 5x5 random walk matrix employed as a spot detector. 
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(i) 

Horizontal 

(2) 

2       2       2      2      2 -3-3-3-3-3 
2       2       2      2      2 -3-3-3-3-3 
22222 22222 
3-3-3-3-3 2       2       2       2      2 
3-3-3-3-3 2       2       2      2      2 

Slanted 45° Negative 

(1) (2) 

2 3       3      0      0 2-3-3-3-3 
3 2 3 2 0 3 2-3-3-3 
3-3233 332.-3-3 
3-3-323 0232-3 
3-3-3-3       2 0       0       3       3      2 

Pig. 12 Edge operators (vertical, horizontal, slanted 45° 
positive and slanted 45° negative). 
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The analogs were designed within 5x3 matrices because It was 

Judged that at that size they would be maximally sensitive to both small and 

large features of the patterns that were to be detected. Also, they were 

sufficiently large to include analogs of both excitatory and inhibitory 

areas. It will be noted, however, that a 5 x 5 matrix was not sufficiently 

large to include analogs of Inhibitory areas within the spot detector. To 

compensate for the absence of the effect of negative values, a threshold 

value (described later) , employed at a later stage of processing, was raised. 

The effect of the increase in the threshold value amounted to assigning a 

constant value to the inhibitory surround for all positions of the spot 

analog within the pattern. 

The model took two forms with respect to the order of application of 

the analogs to the pattern. For one form (hierarchical method) , the edge 

analogs were applied to the output of the spot analogs. The final version 

was formed by combining the spot detected version and the edge detected 

version.  For the second form (nonhierarchlcal method), the edge analogs 

were applied directly to the patterns. The final version was formed again 

by combining the spot detected version and the edge detected version. 

/ 
\ n 

Pattern Generation 

A computer program (VARGUS 10) was written which generated closed 

nonmeaningful patterns by randomly selecting segments of lines and then 

joining them end to end. Three of these patterns (Fig. 3) were selected 

for processing in this investigation. 

Two other programs were prepared which Introduced levels of two forms 

of degradation to  the patterns. One program introduced random noise by 
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reversing the  states  of the celJ.s   (from black to white or white  to black) 

in the pattern matrix at a specified probability level  (Evans, Arnoult and 

Hoffman,   1966) .    At  .50 the patterns would be completely lost and at 1.00 

they would be  left nondegraded;   intermediate probability levels,   appropriate 

to the degree of degradation desired, were selected by the programmer and 

given to  the  computer. 

A second program degraded the patterns by blurring them.    The blurring 

procedure  involved the application of  a  9 x 9 random walk matrix   (Fig.  4). 

Progressively greater levels of blur were produced by successively reapplying 

the  random walk matrix.    Examples  of random noise and blur may be  found at 

the  top of Fig.   7. 

Pattern Processing of the Model 

Both nondegraded and degraded versions were processed by applying the 

spot and edge  detecting analogs.    Each  pattern was  processed by  two  programs. 

All patterns were coded in terms  of ones  (black)  and zeros   (white)   to 

make them interpretable to the computer.    The first program translated an 

appropriate analog over the pattern,  beginning in the upper left hand corner 

and moving within rows, one cell at a time, until the analog matrix had 

occupied every possible position of the pattern matrix.    At each position, 

the elements of the analog matrix were multiplied by the corresponding ele- 

ments of the  input pattern.    All of the resulting products were  then added 

and the sum of the products entered in the output matrix, in the  position 

corresponding to the position over which the analog was centered.    The spot 

analog and each of the edge analogs  produced a separate output matrix.    A 

schematic  representation of the analog application procedure appears  In 

Fig.  5, 
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1 4 10 16 19 16 10 4 1 

4 12 28 40 48 40 28 12 4 

10 28 70 100 124 100 70 28 10 

16 40 100 132 168 132 100 40 16 

19 48 124 168 216 168 124 48 19 

16 40 100 132 168 132 100 40 16 

10 28 70 100 124 100 70 28 10 

4 12 28 40 48 40 28 12 4 

1 4 10 16 19 16 10 4 1 

Fig.  4 - A 9x9 random walk matrix employed to produce blurred  patterns. 

295 

... ...... ,. 



-' ■ " '   .      " mimmmmHmmmmmmmmmi* mmm 

J3 
en o 
i-i id 

0) 
U 
0 u 
4J 0 
<8 M-l 
l-i 
<U 01 
a 0 
0 Ü 

•rl 
rH K «) 4J 

i •u 
u u 
(U V > a 

i5 

0)  «tj 
l-l « 
3 H 

•O fit 
«I CO 
U o u a 

c 
u 

00 

o id 
i-i a 

id <u 
O J3 

I-I 
a<4-i 
a o 
id 

C   4J 
u o ji 
O   iH 
4.'    !0 
id n n 
u a) 
0) > v a JS 
O  T»   4J 

at 
a) ■a 4J 
xi id « 
u u 

oo c 
4)   3 

o -o o J 
C   <U  w 
O JS 

■^   U   lit 
u u 
id  O id 
4J   4J 
C       a 
«J TJ M 
« 4) O 
W  i-l   4J 
M FH id 
a a ^ 
«I a «I 
u id o. 

o 

IM 

o op 

at 

u 
ID 

..4 
4) 

( 

J3 
«J 

m 

296 
5? 

    j '—^J^J»J»_ . ■^J.__^ -,-J_.M^_  



•**^^****^~*^mmmi^^m*mmr*^* ' "m •■«••   .        ■"■"■"'■■■■''■  •—       '■'"■'■   i   .um mmmmmmm    » ■niiiinipiiim i    n   *•„<• .immmmmmm 

? 

C 

Thereafter,  each output matrix produced by either a spot or edge 

analog was  processed by another  program.    The program employed a threshold 

value which was used to determine whether a cell would be designated black 

(with a one)   or white  (with a zero) ;   those cells whose values  exceeded the 

threshold value were designated black and those whose values were less  than 

or equal to the threshold value were designated white.    The  threshold values 

were selected by the progranmer;   in each case that value was  selected which 

according to his Judgment maximized acceptance of detected  pattern features 

and minimized acceptance of degradation. 

For the case of the edge analog output matrices,  after  the thresholding 

procedure,  the corresponding values  of each of the eight matrices were added 

by a third program;  those values  of cells  that were one or  larger were replaced 

by a one,  those which were zero remained zero.    All spot analog and combined 

edge analog matrices were transformed by still another program which replaced 

cells with ones by an overstrike of an asterisk (*)  and the   letter 0 and  left 

cells with zeros blank. 
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METHOD 

Experimental Design 

The nondegraded patterns and the processed nondegraded and degraded 

versions produced by the hierarchical processing method completed a three - 

factorial design (Fig. 6). Three Instances of VARGUS 10 patterns varied 

factorially with seven levels of pattern degradation and three levels of 

pattern processing. The seven levels of pattern degradation consisted of 

three levels of random noise (at the .70, .75 and .80 probability levels of 

retaining a cell in its  original state), three levels of blur (one and two 

or three successive applications of a 9 x 9 random walk matrix), and the 

nondegraded version. The above levels were selected on the basis of ratings 

provided by J3s whose task was to compare a wide range of degradation levels 

of each form of degradation with the nondegraded version; the levels of each 

form of degradation selected for the study, from lowest to highest, received 

respectively comparable ratings.  Pattern processing included three conditions: 

one, a control. In which the patterns were left nondegraded, a second, for 

which a spot analog was applied, and a third, for which edge analogs were 

applied to the spot operator output, and the result added to the spot operator 

output. 

Subjects were asked to rate the patterns according to how they compared 

to the original verson. Each of three groups (eight Ss per group) was given 

versions of one of the three patterns shown in Fig. 3. Each S, rated all of 

the degraded versions of his assigned pattern as well as the versions prepared 

by the model; repeated measures were, therefore, taken over levels of pattern 

degradation and pattern processing. The Ss were Introductory psychology 

students from Texas Christian University. 
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NON- 
EEGRAEED 

CIN-80 

BLUK-1 

CIN-75 

BLUR-2 

CIN-70 

BTUR-3 

EE- .. SPOT & 
GRATED      SPOT EDGE 

Pia.  17.    A display of the three factorial design of this 
investigation  (Pattern Degradation x Pattern 
Processing x Pattern Instances). 
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The design was not completed with the nonhierarchlcal procedure; only 

ehe nondegraded version and versions at the highest levels of each form of 

degradation were processed.  Cnrnparison made with the corresponding versions 

produced by the hierarchical method Indicated that the nonhierarchlcal method 

led to poorer results.  No ratings were obtained from versions produced by 

the nonhierarchlcal method. 

-, 

Pattern Assessment Procedure 

Subjects were instructed to rate the patterns according to how they 

compared to the nondegraded version; they were to assume that each version was 

a product of a hypothetical transmission system.  Ss In each of the three 

groups rated 21 versions of the particular VARGUS 10 pattern that had been 

assigned to their group; all combinations of the levels of pattern degradation 

and pattern processing were represented in each set of 21 patterns. The 

patterns were reduced in size from the computer printout to the size of a 

matrix of about 3 in. long and 2 In. wide and were presented attached to 

5 x 8 in. index cards. 

All subjects were first seated at a table and given the following in- 

struction:  "First, I would like you to make yourself generally familiar with 

the set of patterns you see In front of you. They are probably not like any 

patterns you have seen before.  I'll give you about one minute to study 

them." A set of eight VARGUS 10 patterns was displayed on the table, for the 

purpose of providing Ss with the opportunity to become acquainted with their 

properties. They were Instances other than those selected for processing, 

and were In their computer printout form, of the size of about a 5 in. square. 

Thereafter, all of the subjects were seated at another table and given 

a second set of Instructions: 
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Let us assume that somebody has taken a pattern like those you've 
seen and attempted to transmit It, using a transmission system which 
may be described to be somewhat cruder than television. This is 
the pattern the person trasmltted. Now, I am going to give you a 
number of pictures, produced by the transmission system, which show 
the pattern being transmitted in varying degrees of clarity. I would 
like you to look at these pictures, paying particular attention to 

f the range of quality of pattern transmission. I'll give you about 
15 sec. for each picture and will remove each one at the end of that 
time period. 

This phase of the procedure was intended to acquaint Ss with the type 

* and range of pattern degradation Inherent in the set of patterns they would 

subsequently be asked to rate. The patterns were presented in a stack, 

placed adjacent to the original nondegraded version. Each pattern was re- 

moved by the E at the end of its 15 sec. time period. 

Finally, a third set of instructions was redd to the Ss: 

Next, I would like you to look at this set of pictures, but this time, 
after studying each, I would like you to indicate on a scale how well 
you think each pattern has been transmitted.Imagine that the clear 
pattern in front of you is located at one end of the scale and a 
picture where the pattern is not distinguishable at all is located at 
the other end. A scale for each of the patterns is drawn on this 
sheet. If you judge that the transmission is very good, place a 
checkmark on the scale toward the left;  if you think that the trans- 
mission is of intermediate quality; place a checkmark somewhere within 
the noddle region; and if you judge that the transmission is very 
poor, place a checkmark toward the right end of the scale. You may 
place your checkmarks anywhere on the line. Ignore any differences 
in the darkness of the dots. I will give you about 15 sees, for each 
judgment.  Do you have any questions? 

This phase of the procedure differed from the previous pretralning 

phase only in that Ss were asked to provide ratings. The subjects rated the 

patterns eight times: a different set of the same patterns with a different 

random order was provided on each trial. The scales were graduated in 

Increments of 10 from zero to 100. For the initial trials a time interval 

of 15 sec. was observed between ratings. On later trials Ss were allowed to 

'        work at their own speed. 
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RESULTS 

The nondegraded and degraded versions and their processed versions 

are displayed in Fig. 7. The nondegraded version appears at the top left 

followed by (moving to the right) the three levels of random noise (increas- 

ing according to degree of degradation) and the three levels of blur. The 

processed versions are displayed directly underneath the nondegraded and 

degraded versions, appearing from top to bottom: the spot detected version, 

the edge detected version, and the combined version, resulting from combining 

the spot detected and edge detected versions. The versions produced by the 

nonhierarchical method of processing are displayed in Fig. 8; the results 

clearly indicate the inferiority of this method of processing over the 

hierarchical method. The other two patterns processed in this investigation 

are shown in Figs. 9 & 10. The results from the three patterns are generally 

similar. 

The spot detected version of the nondegraded pattern exhibits the loss of 

some detail, such as the sharpness of corners. The edge detected version 

appears to have summarized the spot detected version quite adequately; however, 

nc improvement of detail over the spot detected output is evident. This con- 

clusion is supported by the result obtained from combining the edge and spot 

detected versions; the combined result does not appear to be perceptably 

superior to the spot detect« 1 output. 

The spot detected version of the pattern degraded at the .80 level shows 

that the pattern has been detected quite adequately; the background degradation 

has been removed and appropriate pattern cells have been filled in. The edge 

detected version shows the contour reproduced, but the combined version does 

not seem to show that the edge detected version contributed to the restoration 
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Fig. 8 - Pattern 5 shown nondegraded.^top-" left) followed by  versions with the 
highest level of random noise and the highest level of blur. Directly 

beneath each of the top row versions, in descending order, are the spot 
detected version, the edge detected version (nonhierarchicai metaodj and 
the version resulting from combinine the edge and spot dei-ected versi:ns. 
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of the original.    The spot detected outputs of the pattern at  .75 and   .70 

display progressively poorer pattern detection.    Gaps  In the patterns  become 

more frequent and increasing amounts of background degradation are retained. 

The contributions of the edge detected versions continued to be negligible 

for both levels  of degradation. 

The spot detected version of the pattern degraded at the lowest level 

of blur shows  that gaps have been filled  in and some of the blur has  been 

reduced.    The edge detected version, again appears to be making a negligible 

contribution to the restoration of the pattern.    The spot detected versions of 

the higher  levels of blur show that poorer pattern detection has been achieved, 

and the edge detected versions continue to be making little contribution to 

the detection of the original. 

The mean ratings over the three patterns processed,  shown plotted in 

Fig.   11,  provide support to the above observations.    In addition,  it will be 

noted that the spot detected versions of the random noise  levels show, 

generally,  considerable more improvement  than those of the blur levels. 

A 7x3x3 three factor analysis of variance with repeated measures  on two 

factors   (Pattern Processing and Patterns Degradation) was conducted.    The pat- 

tern processing factor (F(2,42)  = 22.98;   p < .01)  and the pattern degradation 

factor (F(6,186)  = 272.09;  p < .01) were  found to be significant.    The Newman - 

Keuls analysis  for repeated measures was used to make comparisons among  levels 

of pattern processing; the spot detected and the combined versions were each 

found to be significantly higher than the degraded versions, but the spot 

detected and combined versions were not significantly different.    A significant 

interaction was  obtained between the pattern degradation and pattern processing 

factors   (F(12,168)  = 4,89;  p< .01).    In addition, a significant Interaction 

was  obtained between the pattern degradation and pattern factors   (F(12,168) = 

4.89;   p <.01). 
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DISCUSSION 

(' 

The purpose of this  investigation was  to develop and to assess  the 

performance of a computer model of pattern processing.    Hubel and Wiesel's 

data and  theorizing served as  the major basis  for  the model's  development. 

Numerical analogs  of receptor fields were designed; excitatory and 

inhibitory areas were represented,   respectively, by positive and negative 

values.    Two types of analogs were  prepared:    an analog sensitive  to spots 

and analogs  sensitive to edges of four orientations.    Finally,   two procedures 

for applying the analogs were investigated:    a hierarchical method and a non- 

hierarchical method. 

The analogs were applied to nondegraded patterns and a variety of degraded 

versions.    Three levels of each of two forms of degradation were  introduced 

to the patterns:   three  levels of random noise and three  levels of blur. 

A pattern assessment methodology was developed to provide  information 

concerning the effectiveness of the model in detecting degraded and non- 

degraded  patterns.    Subjects were asked to rate all pattern versions by com- 

paring them to the original. 

The results revealed that the hierarchical method was superior to the 

nonhierarchical method,  in terms of the quality of  the versions  produced by 

the edge analogs.    The edge detected versions produced by the hierarchical, 

method did not contribute to the detection of the patterns nor did they degrade 

the spot detected version;   they merely exhibit the contour of  the edge detected 

version being summarized.    The edge detected versions  produced by the non- 

hierarchical method when added to the spot analog versions did degrade the 

spot detected versions. 
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It was expected that the edge analogs would show some effectiveness  In 

detecting the contour of patterns degraded with blur, when applied directly 

to the blur versions  (nonhlerarchical method) .    This expectation was not 

realized.    It remains  possible that some measure of effectiveness may be 

demonstrable at  lower levels  of blur and with Images which retain a gray 

scale. 

The results  further Indicated that the spot analogs were considerably 

more effective  in detecting patterns from random noise than from blur.    The 

difference in the manner in which the random noise and blur procedures 

degraded patterns  probably determined the disparity in the effectiveness of 

the spot analog to detect patterns from random noise and blur.    Random noise 

destroyed both detail and the overall characteristics  of patterns, whereas 

blur destroyed,  at  least at  its   lower levels,  only detail  (the contour).    The 

spot analog appears  to be particularly suited to detect the overall character- 

istics of patterns.    Hence,  there was greater opportunity  for the spot analog 

to be effective  in the random noise case. 

The edge analogs were generally Ineffective in contributing to the 

detection of the  patterns   from degraded conditions.    This   does not imply that 

the edge analogs would not be  useful  in other contexts.     Their ability  to 

summarize or detect detail would be particularly useful under circumstances 

in which detail was   to be detected from nondegraded patterns.    The avail- 

ability of detail wuuld be useful to a pattern recognition model,   for example, 

which was given the  task of discriminating between or among nondegraded 

patterns  that were  quite similar. 

Human Ss were   Included   in  the  procedure because of   the belief  that  the 

human would  in this  context  be  the most appropriate pattern evaluation system. 
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Assuming the model is an adequate analog of the visual system, the model 

would be expected to be sensitive to the same features to which the human 

is sensitive. At the same time, the model would be expected to be in- 

sensitive to the same features to which the human is insensitive. Hence, 
) 

^       it is conceivable that Ss would base their evaluations only upon those 

features to which they are sensitive and to which the model is sensitive. 

Another measurement system probably would not have operated on the same 

«• 
basis.     It would probably not have  placed similar weighting  to those 

features the human regards as  critical for pattern processing.    It was 

argued that since human pattern detection was being modeled,   it would be 

desirable to incorporate into the evaluation process  the human abilities 

to process  patterns. 

In general,  the results suggest that the spot analogs  are effective  in 

detecting degraded patterns whereas  the edge analogs are not.    The edge 

analogs are, however,  effective  in summarizing the contour.    One may wish to 

speculate that the counterparts  of the spot and edge analogs  in the mammalian 

visual  system function in a similar manner.    The spot detectors,  at the 

retinal and geniculate  levels, may function as preprocessors,  detecting 

patterns from whatever form of degradation that may exist.    The edge 

detectors, at the cortical level,  may function as  feature analyzers for 

some higher level process. 

Several matters may be gainfully explored  in subsequent research. 

, It would be of interest  to determine  the model's   performance with photo- 

graphs which include a full range of gray levels.    Also,  research which 

compared the performance of the modal with that of humans would be of value. 

The development of a methodology would be required which would restrict Ss 

311 

-  -   - • ■ 



I mil I i, I. WT-™ 

to using only those capabilities being modeled.  In addition, a means for 

comparing the performance of the model with that of humans would need 

development. 

The present model may be viewed as contributing to several forms of 

research. First, the model may serve as the basis for the development of an 

automated pattern processing procedure; its function would be to enhance 

degraded photographs. Second, models of its type may potentially offer some 

clues to the functioning of the visual system, which physiologists could 

pursue in their research.  An exchange between physiologists and researchers 

interested in computer modeling may contribute to the understanding of the 

functioning of the visual system. Third, the present model may serve as the 

preprocessing phase of a general model of pattern recognition. Higher phases 

of processing would perform property selection operations, with increasing 

orders of abstraction, and the highest phases would perform the requisite 

decision operations. 

k. 

« 
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RESOLUTION AND NOISE LIMITATIONS OF NIGHT VISION DEVICES 

■    V 

» 

Gerturde H.  Kornfeld and Walter R.  Lawson 
Night Vision Laboratory 

Vlsionics Technical Area 
Fort Belvoir, Virginia 

In preceding talks  the detrimental effect of noise and degradation 
on pattern recognition was elaborated; we now show how reduction in 
picture quality is considered in the prediction of the performance 
of our night vision devices. 

Theoretleally it is possible to intensify the very weak signal 
from the night landscape to such an extent  that  it is projected 
with daylight intensity on the screen of our night vision devices. 
Is such strong intensification wise?    This question is not simple to 
answer.     If It is possible tc keep noise and degradation on an 
acceptable level we. have a better chance of detecting a target on the 
screen of daylight brightness than on a dimmer one.  On the other hand, 
if the picture has inferior quality a compromise light level might be 
advantageous,  even when the problem of weight and cost caused by 
additional intensification does not enter. 

In this  talk we outline a decision theoretical model used to 
predict the performance of our night vision equipment; with slight 
amendments it  is based on a model we perfected for the prediction of 
the light level dependent performance of  the human eye; we Intend to 
Illustrate the difference between high and low light level unaided 
vision first. 

<.>"e-<«> 
H! 

S, = <N> 

fiVMW 
9   9   9  9 

INTENSITY DISTRIBUTION ON THE ftl-TINA 
FIG.1 
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Figure 1 Is a schematic drawing of the intensity distribution that 
reaches the retina, ^he thin line shows the ideal distribution having 
a step discontinuity between a background area of irradiance <N_> 
and a target area of irradiance <N > photons per unit area. Th' actual 
distribution is, however, degraded by the eye's optics; the heavy line 
shows this distribution in the absence of any noise. 

The irradiance reaching the retina is noisy, i.e. the irradiance at 
a point fluctuates randomly about some mean value. Noise is caused by 
the particle nature of light; the probability that N Instead of the 
average value <N> photons reach a unit area per second from a Poisson 
distribution.  The spatial and temperal characteristics of noise, as 
well as its magnitude, can be characterized by its power spectrum which 
is the Fourier Transform of the autocorrelation function of the Irradiance 
fluctuations.  Noise is characterized as white. I.e. frequency independent, 
when intensity fluctuations at two arbitrarily close points are uncor- 
related. The photon noise incident upon the retina is white with power 
spectrum <N>.  Evidently the noise in the pseudo image that reaches the 
brain is no longer white; the retinal image forms the pseudo image through 
signals transmitted by retinal receptors and neural fibers shown by the 
very thin lines in Figure 1; two points in the pseudo image corresponding 
to points within the same retinal receptor are perfectly correlated; 
even if we could approximate the retinal receptors as a point detector 
the flux fluctuations in the pseudo image would not be uncorrelated 
because the complicated neural connections between the detectors 
introduce image degradations similar to optical degradations, causing 
the flux distribution at neighboring points to be correlated. The 
power spectrum of the noise processed by retinal receptors and reaching 

2 
the brain is <N>H ' where H is the effective transfer function (i.e. 
the Fourier transform of tne effective spread function) of the retinal 
receptors and neural interconnections. 

At very low light levels considerably less than one photon per 
second reaches a retinal receptor, but we are still able to see because 
neural connections are used for extensive summation; the low light 
level spread function, illustrated on the right side of Figure 2, is 
wide and borders are very degraded, but large areas can still be 
recognized as patches of light or darkness. 

v.» 

A photon is a particle of light. We used the quantum mechanical 
notation for expectation value, the square brackets rather than a 
conventional notation for average because it is very clear on the 
slide; it does not imply a quantum mechanical treatment. 
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At high light levels the neural connections are used to ensure maximal 
acuity; this Is achieved by a positive excitation arid negative Inhi- 
bition spread function; the performance of the Inhibition Is to minimize 
the effect of the low frequency content of the Image and can be compared 
to the contrast enhancement by filtering of low frequencies discussed In 
a different paper; inhibition is real and was experimentally demonstreated 
by the monitoring of electrical Impulses from retinas; inhibition effects 
are noticeable in negative afterimages and some optical illusions and 
are extensively used by artists for border enhancement effects. 

( 

6    8    10    12    M    16   U 
SPATIHL FREUUtHCY IN LINE PAIRS PER DEGREE 

MODULATION TRANSFER FUNCTIONS OF THE EYE-BRAIN 
SYSTEM [GAUSSIAN APPROXIMATION I 

FIG. 3 
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Figure 3 shows low, medium and high light level effective modulation 
transfer functions of the combined optical-neural system at three light 
levels. With an Infinite field of view and a homogeneous retina the 
excitation part of the modulation transfer functions would be Illustrated 
by the heavy lines in the high, but the dashed line approaching unity in 
the low frequency limit. The low frequency, high light level, discrepancy 
between a physiologically established transfer function shown by the dashed 
line (approaching .2) and the effective one shown by the solid lines 
(approaching 0) is due to the limited spatial sensitivity of the retina; 
the high light level inhibition spread function is illustrated by the 
dashed Gaussian curve with maximal amplitude of 0.8. 

Experimentally the modulation transfer functions can be established 
from our contrast sensitivity as the inverse of the contrast necessary for 
a 50% detection probability of a target; in case the target is a sinusoidal 
wave pattern of infinite extent our contrast sensitivity would be propor- 
tional to our modulation transfer function of the combined optical-neural 
visual system, if our field of view were infinite and our retina of homo- 
geneous sensitivity.  In reality our limited field of view prevents us 
from observing extremely low spatial frequency sinusoidal wave patterns 
even if their contrast is very high. We define a phenomenological modu- 
lation transfer function that is proportional to our actual contrast 
sensitivity to sinusoidal wave patterns; it approaches zero in the zero 
spatial frequency limit. 

1_ -x2/2 . 
e     dx 

L-d 

AND P fa 
1 

/57 
-x2/2 . 

e    dx 

WHERE 

D2 = 
Sir 

du du do» 
I (u,u ,(l) ) 

x y 
y  S(b),u) ,u ) 

x y 

We now give an outline of our binary decision theoretical crlterium 
for the prediction of the detection probability P- of a simple target, 
provided a false alarm probability P, is acceptable. The positive con- 
stant L establishes the acceptable   false alarm probaLility; if L Is 
zero or less, "wild guessing" is allowed while if L is of the order of 3 
or more, false alarms are nearly eliminated. The quantity I (u,w ,u ) 

x y 
is the square magnitude of the Fourier Transform of the degraded noise free 
signal irradlance distribution (target irradiance minus background irradiance) 
and S(Iü,U »u ) is the power spectrum of the noise. The quantity D, is a 

x y 
type of signal to noise ratio which yields the probability of detection 
for the given false alarm probability,according to binary decision theory, 
when the noise is Gaussian and additive and when some mild mathematical 
restrictions are Imposed. For any reasonably large number <N> the noise 
closely approaches a Gaussian distribution so that the first condition applies. 

s. 

9 
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Additive noise means that Intensity fluctuations are assumed uniform 
over the Image plane,  this condition Is never fully justified,  but 
targets  that are large and/or contrasty enough for the additive approxi- 
mation to cause a serious error will be detected by a "half blind" man. 
No sophisticated decision theoretical model is necessary to predict the 
detection probability of targets when the additive noise approximation 
is Invalid. 

So we now elaborate the terms  in the quantity D. 

D   = TT1   J   dwx 
<N 2Q

2
(U),ü) )H2  (W ,U) )Hr2L  ,a) " 

B ^   ^   '  yJ  op1» x    y1 ■'-<■'  o 

y 
—00 

N '  \  K'uy)  + N
D 

where N' = ß <ND>    + <NT.> 
D D 

and      C   =  [<NT> - <NB>)   / <NB> 

In case the targets are stationary integration over the temporal fre- 
quency u    results in the glance time t  .    The term Q  (u ,a) }   is  the square 

magnitude of the Fourier transform of a target shape function, which for 
targets of uniform intensity if unity inside and zero outside the target 
boundaries.    The terms H~    (u ,ü) Jand lS?-[^ .u Jare the square magnitudes 
of the Fourier transforms of the^optlcal and retinal spread  functions 
respectively.    The power spectrum of  the noise consists of dark noise 
term N  ,  and the photon induced noise N'.    The constant ß is very 
small;   therefore,  the term proportional to the square of the background 
intensity is only important at high llgut levels, where it describes 
saturation effects.    At such light levels the signal to noise ratio 
approaches a limit which is independent of    <NB>.    At medium light levels 
the signal to noise ratio is proportional to the well known shot noise 

1/2 result <NB>      .    At very low light levels the dark noise term which 
describes random electrical impulses in our retinal receptors dominates 
and the signal to noise ratio is proportional to <N >.    The contrast, 
C, has the definition that is most advantageous  to describe targets that 
are smal1  with respect to the background area. 
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WITH ASYMPTOTES 

f C2t  [-^-) ^4   I1 + 4 - 4-)    WHEN a « a b « o 
6 N'  + N,,    4iTa m        m +1 

<  c2       r    <r> ,    a-b ,2 2V 

6    N' + ND    2/Ta 
[l + - -   y   -=2-)    WHEN a « o b » ma 

m +1 

I jC^    (.^L_) (a+b)aVm2 - 1 
e    N' + N, 

WHEN a » o b » a 

v.. 

These are asymptotic results for values of D of rectangular targets 
assuming white noise.    The white noise approximation is consistent when 
phenomenological transfer functions are used.    Closed form solutions are 
possible with Gaussian excitation and inhibition transfer functions; 
auch an approximation was used by Shade^-;  it is a good one for high light 
levels; we elaborate on other spread functions for medium and low light 
levels elsewhere.2    For the rectangle,  Q2(U .u )  is a sine function,   that 
can be expanded into Its Taylor series 

«D 

^sine^/^al^ll-cosl^alh? 2 Ml* 
•».a » 

2K! 

Term by term Integration gives an absolutely convergent result;  for 
very small rectangles the leading term is sufficient and the experimentally 
well established   result that the detection probability is proportional 
to the target area emerges.    Here a and mo are half the resolution A 

lengths of the excitation and inhibition spread functions respectively; 
the factor m is of the order of eight. For large rectangles ehe series 
converges very slowly and a different expansion is advantageous 

(expU«'2l<-,2t«,S|]-MP[^mJ»2l'-,2+'ö/l]) 
- 1 

2exp[-Mm2+ll a2!",7-1^ 
2        ««jN/«-4'' 

l]||0l-11K+>»V-l]l   12K-2el!2e! 

There are terms in the double expansion where e=k or e=0.    These 
multiply  the product of an exponential and a sine function;  for large 
targets  the sine function Is so narrow that is multiplicative exponential 
can be approximated to unity in the main region of integration and a 
detection threshold that is proportional to the square root of the target 
circumference emerges.    All terms where 0 < e < k are independent of the 

* At a distance equal to the resolution length the Gaussaln spread 
function is reduced to e~ '2 its maximal value. ♦ 
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target size, or inversely proportional to target dimensions;  they can be 
neglected for very large targets.    The term E means the result of an 
infinite sum whose exact value depends on m but which is never far from 
unity. 

Figure 4 shows the excellent agreement of our model with Blackwell's 
short observation time thresholds for circular targets.     Equally good 
results were achieved for rectangular targets also. 
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BLACKWELL'S 0.01 SEC. DETECTION TIME DATA. 
FIG. 4 

Having established that we can calculate detection thresholds in 
the absence of optical equipment, we now briefly examine the image 
intensifler case. Figure 5 is a schematic drawing of the intensifier 
tube. An objective lens of focal length f projects an image on a 
photocathode; under the impact of the photons the photocathode emits 
electrons with quantum efficiency n. The electron beam is focused onto 
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SCHEMATIC DRAWING OF INTENSIFIER TUBE 
FIG. 5 

a phosphor which under the electron bombardment emits G photons. The 
picture on the phosphor Is then viewed with an eyepiece of focal length 
f  .  The main degradation takes place In the photoelectric stage. In 

other words, H (u ,ü) ) Is narrow with respect to the objective lens and 
eye piece transfer functions.  The quantities S.-.S^.S-, and S. are the 

power spectra of the noise at the different stages. Unfortunately, the 
leading terms of the power spectra are proportional to 6 , therefore, the 
gain Itself cannot lower the signal to noise ratio. 

The detection criteria presented previously are directly applicable 
to Image intenslflers. The noise Introduced by the intensifler la 
added to that of the eye alone while the square magnitude of the transfer 
function of the device forms an additional factor in the numerator of 
the integrand used to determine D.  Figure 6 chows a Gaussian approxima- 
tion to the transfer function of an Intensifler and the effect it has on 
target shapes functions of different size rectangle sides. Of course, in 
determining D, the eyeball noise and transfer function characteristics 
for output brightness of the intensifler must be used, and the magnifi- 
cation of the intensifler must be accounted for by appropriate "rescaling" 
of the spatial frequency of the signal and the various transfer functions. 
It is evident that the magnification of the intensifler is rather critical. 

i 
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If this magnification is too small, the eye cannot detect much of the 
high frequency information contained in the signal.  If the magnifica- 
tion is too great, those frequencies which are not seriously degraded 
by the intensifier might be presented to the eye in the region where the 
eye's frequency response is reduced due to inhibition effects. 
(Obviously, magnification will affect the search characteristics of 
intensifiers but this phenomena is not discubaed in this paper.) 

HJI«X1 exp K"''] 
Q2|WX1 = i1 sin2l'/2wxal / l'/2Wj(al2 

Hj|wxl Q2|(i»xl 

02|<iiyl = b'sinVjWybl / I'/jfei^l2 

Hj |Wyl Q2|wyl 

e s 10 
SPATIAL FREQUENCY 

14 

TARGET DEGRADATION BY INTENSIFIER TUBE 
FIG. 6 

Figure 7 is a sharp picture of a soldier holding a rifle to which 
an intensifier tube is mounted, and also shows a magnified detail. 
Our superior response to the high spatial frequency content of the 
image after its magnification can be noticed by observing the hair on 
the soldier's arms. Figure 8 shows the same entire scene and its 
detail, after equipment degradation was simulated on the negative. The 
degradation is much more objectionable In the presence of magnification. 

As shown in Figure 5, the noise from image intensifiers is not 
white.  Since the variance of the noise is given by 

2 

dw du> du S(ü)  ,0)  ,u) 
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it  is evident from the form of the equations for D, that noise having a 
frequency content much greater than the signal is less troublesome than 
a noise of equal variance having a frequency content roughly equal to 
that of the signal. Noise of high spatial frequency content is a common 
experience; It is not bothersome that TV pictures are made of dots 
provided these dots are not too large.  The TV screen "snow" is most 
objectionable when its spatial content is lowest. 

Figure 9 shows the result of a simple maximation.  If the magnifica- 
tion of the intensifler is changed while all other significant variables 
are maintained constant (gain, transfer function referred to object space, 
signal to noise ratio) then range at which a man can be detected under 
starlight conditions varies as indicated in Figure 9. A maximum detec- 
tion range occurs for a magnification of approximately 4.  It is grati- 
fying to point out that the actual magnification of the analyzed equipment 
Is A. 

UJ 3 
CD 

10 

MAGNIFICATION 

PREDICTION OF OPTIIVlUPil MAGNIFICATION 
FIG. 9 
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Most optimizations are difficult to perform because many parameters 
affect each other and It Is not realistic to vary them Individually. 
An Important optimization Is the gain; If cannot be altered without 
affecting transfer functions.  An Interesting property of our eye Is 
Its ability to observe the low frequency content of low light level 
Images; high light levels are important for the detection of high 
spatial frequency content.  If the high frequency content of the image 
is filtered out by the equipment, the advantage of high light levels 
disappears. 
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