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FOREWORD

INTRODUCTION

The Fire Control Series fornis part of
the Enginecring Design Handbook Series which
presents engineering information antl quanti-
tative data for the design and construction of
Army equipment. In particular, the hand-
books of the Fire Control Series have been
prepared to aid the designers of Army fire
control equipment and systems, and to serve
as a reference guide for all military and ci-
vilian personnel who may be interested in the
design aspects of such material.

The handbooks of the Fire Control Series
arc based on the fundamental parameters of
the fire control problem antl its solution. In
all problems of control over the accuracy of
weapon fire, some method or system of firc
control is employed that derives its intelli-
gence from the acquisition and tracking of a
target; evaluates this system-input intelli-
gence by computation: and, finally, applics
the output information to the positioning of a
weapon along the line of fire. Primary em-
phasisislaid on the systematic approach re-
quired in the design of present-day fire con-
trol equipment and systems. This approach
involves (1)thorough analysis of the particu-
larfire controlproblem at hand, (2)establish-
ment ofthe most suitable mathematical model,
and (3) mechanization of tliis mathematical
model.

ORGANIZATIONAL BREAKDOWN

To accomplish the aforenoted objectives,
the Fire ControlSerieswill'consistprimarily
of the following fourmain sections, each pub -
lished as a separate handbook:

a. Section 1, Fire Control Systems —
General (AMCP 706-327)

b. Section2, Target Acquisition, Location
and Tracking Systems (AMCP 706-
328)

c. Section 3, Fire Control Computing
Systems (AMCP 706-329)

d. Section 4, Weapon Pointing Systems
(AMCP 706-330)

xx1ii

An additional handbook of the Fire Control
Scries is AMC Pamphlet AMCP 706-331,
Compensating Elements. The following para-
graphs sumrnarize the content of each of
thcsce five handbooks.

Scction 1introduces the subject of fire
control systems, discloses the basic fire
control problem and its solution (in func-
tional tcrms), delineates system-design
philosophy, and discusses the application of
maintcnance antl human engineering princi-
plcs and standard design practices to fire
control system design.

Section2 is devoted tothe first aspect of
firc control, i.e., gathering intelligence on
targct position and motion.

Scction 3, because of the complexity of
thc subject of computing systems, is divided
into three parts that are preceded by an in-
troductory discussion of the roles of comput-
ing systems in Army fire control and by a
dcscription of specific roles played in parti-
cular firc-control applications. Part I dis-
cusscs the first step in system design, i.e.,
the cstablishment of a mathematical model
for thc solution of a fire control problem.
Emphasis is given to the basis, derivation,
and manipulation of mathematical models.
Part II discusses the various computing de-
viccs that perform useful functions in fire
control computing systems. The discussion
rangcs from simple mechanical linkages to
complcex digital computers. Typesof devices
in cach classification are briefly described;
cxtcrnal sources are referenced for detailed
information where practical. Part III dis-
cusscs the various ways in which the comput-
ing devices described in PartII can be applied
to thc mechanization of the mathematical
modcls described in Part I. It stresses that
a fire control computing system designer
nccds to apply his talents in three special
ways: (1)to improvise and innovate as needed
to mcct particular problems that may arise,
(2) to use ingenuity in obtaining the simplest
and mosteconomical devices for the particu-
lar rcquirement at hand, and (3) to master
thc¢ many problems that result from intra-
systcm interactions when individually satis-
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factory componcnts are combined in complex
computing systcms. Examples culled from
actual fire-control-system designworkillus-
trate the concepts given.

Section 4 of the I'ire Control Series dis-
cusscesweapon-pointing systems with respect
to (1) input intelligence and its derivation, (2)
the means of implementing weapon-pointing
forthe two basic types of weapon-pointing
systems from the standpoint of systcm stabil-
ity, (3) general design considerations, and
(4) the integration of components that form
a complete firc control system.

AMCP 706-331 presents information on:
(1) the effects of out-of-level conditions anti
a displacementbetween a weapon andits aim-
ing device, and (2)the instrumentation neces-
sary to correct the resulting errors. It also
presents general reference information on
compensating clements that pertains to ac-
curacy considerations,standard design prac-
ticcs: and considerations of genecral design,
manufacture, field use, maintenance, and
storage.

PREPARATION

The handbooks of the IMire Control Serics
have beenprepared under the direction of the
Engineering llandbook Office, Duke Univer-
sity, undcr contract to the Avrmy Research
Office- Durham. With the exception of the
handbook titled Compensating Elements, the
materiul for the Fire Control Seriecs -- Sce-
tions 1 and 3 -- was prepared by the Jackson
& Moreland Division of United Lnginecrs and
Constructors Inc., Boston, Massachusetts,
under subcontract to the lLinginecring Hand-
book Office. The Jackson & Moreland Divi-
sion was assisted in its work by consultants
who are recognized authorities
aspecets of fire control.  Specific authorship
15 indicated wbere appropriute.  Overall
technical puidance and assistaince were rend-
ered by Frankford Arsenal; coordination and
direction of this effort were provided by Mr.
Leon G. Pancoastof the 19ire Control Develop-
ment &Ingincering Laboratorics at 'rank{ord
Arsenal.

in various
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PREFACE

The Engineering Design Handbook Series
of the Army Materiel Commandis a coordi-
nated series of handbooks containing basic
informationand fundamental datausefulinthe
designand developmentof Armymateriel and
systems. The handbooks are authoritative
reference books of practical informationand
quantitative facts helpful in the design and
development of Army materiel so thatit will
meet the tactical and the technical needs of
the Armed Forces.

The Handbooks are readily available to
allelements of AMC, including personneland
contractors having a need and/or require-
ment. The Army Materiel Command policy
istoreleasethese Engineering Design Hand-
books toother DOD activities and their con-
tractors and to other Government agencies
in accordance with current Army Regulation
70-31, dated 9 September 1966. Procedures
for acquiring these Handbooks follow:

a. Activities within AMC and other DOD
agencies order direct on an official form
from:

Commanding Officer

Letterkenny Army Depot

ATTN: AMXLE-ATD
Chambersburg, Pennsylvania 17201

b. Contractors whohave Department of
Defense contracts should submit their re-
quests through their contracting officer with

XX1V

proper justification to the address listed in
par. a.

¢c. Governmentagencies otherthan DOD
having need for the Handbooks may submit
their request directly to the address listed
in par. a orto:

Commanding General

U. S. Army Materiel Command
ATTN: AMCAM-ABS

Washington, D. C. 20315

d. Industries not having Government
contracts (this includes colleges and univer-
sities) must forward their requests to:

Commanding General

U. S. Army Materiel Command
ATTN: AMCRD-TV
Washington, D. C. 20315

e. All foreign requests must be sub-
mitted through the Washington, D. C. Em-
bassy to:

Assistant Chief of Staff for
Intelligence

ATTN: Foreign Liaison Office

Department of the Army

Washington, D. C. 20310

All requests, other than those origina-
ting within DOD, must be accompanied by a
valid justification.

Comments and suggestions onthishand-
book are welcome and should be addressed
to Army Research Office-Durham,Box CM,
Duke Station, Durham, North Carolina 27706.
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INTRODUCTION”

As pointed out in Section 17 of the Fire
Control Series, computers play a very sig-
nificant role during the designphase for a fire
control system, and a computeris an integral
part of every complete modern fire control
system. The function of the computer in a
fire control system can be illustrated by con-
sidering for amoment the case of an individ-
ual attempting to hit a moving target with a
rifle. If he isto be successful, he must esti-
matetlie distancetothe target and the rate at
which the line-of-sightto the target is rota-
ting and must have aknowledge of the projec-
tile characteristics, such as velocityand gra-
vity drop. He must then compute the direction
in which to point the weapon to achieve a hit,
and so point the weapon. If a strong wind is
blowing, he must also take this into account
for long-range shots. Obviously, if the indi-
'vidual attempted to carry out detailed con-
scious calculations, his target would have
disappecared before he was ready to pull the
trigger. The expert marksman has, through
considerable experience, learned to include
each of these factors in a rapid mental ap-
praisal of the situationat hand. As the target
velocityis increased and the range extended,
however, the ability of the individual to apply
the required correction factors is exceeded
and successful shots can be achieved only if
rapid, accurate assistance is provided for
gathering the required data, carrying out the
necessary computations, and pointing the
weapon as required. In the provision of this
assistance, modern fire control systems have
evolved (seeChapter 10of Section 1of the Fire
Control Series). In each of these systems,
the computer serves as a vital element.

Until approximately 1950 to 1955, analog
computers were used almost exclusively in
fire control systemsbecause the digital-com-
puter art had not yet progressed to the stage
where tlie required operating speeds could be

* Prepared by W. W. Seifert, this Introduction incorporates information from various
"Historical Monograph, Electronic Computers Within the Ordnance Corps", by Karl Kempf,

Ground, Maryland; published by APG in November 1961.
T Fire Control Systems —General (AMCP 706-327).

achieved. Now, the demands of many fire con-
trol problems can be met by either an analog
or a digital computer, with the choice fre-
quentlybasedupon such considerations as the
desire to use the same computer design in
several different systems or tlic background
of the particular group of designers respon-
sible forthe fire control system. (Suchbasic
factors as cost, size, weight, power require-
ments, complexity,reliability, solution speed,
solution accuracy, and the nature of environ-
mental effects must, of course, always con-
tinue to receive careful attention in relation-
ship to the particular circumstances under
which a given computer is destined for use.)
Worthy of special note is the recognition
during recent years of the promising poten-
tial for fire-control-system applications of
the digital differential analyzer -- an incre-
mental computer consisting of a2 collection of
digital integrators interconnected in such a
wayasto solve integro-differentialequations.

In addition to the use of computers inthe
design phase of a fire control system and as
an integral part of every complete modern
fire control system, computers have come to
serve mankind increasingly in everyday tech-
nology. As a matter of fact, the development
of high-speed electronic digital-computing
equipment has created a revolution in tech-
nology. Because of the pioneer role played
by the US. Armyin the development of high-
speed electronic digital computers, it is par-
ticularly appropriate to briefly discuss this
development here.

Army activity in this field started after
the outbreak of World War II, when the need
for rapid computational equipment for use
in connection with the massive computing
problems involved in the preparation of firing
tables and related ballistic databecame in-
creasingly apparent. At that time, some of
the computations werebeing made by the Bush

U.S. Army documents--in particular,
Historical Officer, Aberdeen Proving
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Differential Amnalyzer.” With considerable
improvements inperformance resulting from
designmodifications provided during the early
1940's by the Moore School of Electrical
Engineering atthe University of Pennsylvania,
thismachine provedtobe of tremendous value
during World War 11. Used primarily to com-
pute trajectories forfiring tables and to pre-
pare trajectory chartsfor use with VT fuzes,
this machine could compute a 60-second tra-
jectory in about 15 minutes. In contrast, a
human operator using a desk calculator re-
quired about 20 hours to perform the same
computation.

As a result of the urgent need for some
means to provide accurate computation at
considerably higher speeds than those obtain-
able with the Bush Differential Analyzer,
niuch thought went into the solution of this
problem. It became apparent at the Univer-
sity of Pennsylvania that use could be made
of the fast reactiontime of electron tubes in an
extensive array to add or subtract impulses,
and thus make possible the design of a ma-
chine that would deal with numbers inamanner
that would far surpassthe speed and accuracy
ofthe Bushmachine. Accordingly, in 1943 the
US. Army awarded a research and develop-
ment contract to the University of Pennsyl-
vania forthe design and construction of ENIAC
(for Electronic Numerical integrator And
Computer). This contractwas based specifi-
tally ontechnical concepts underlying the de-
signof anelectronic computer that were con-
tained in an outline prepared by Dr. John
Mauchly and Dr. J. Presper Eckert, Jr. of
the Moore School of Electrical Engineering.

Completed in 1945, ENIAC was the
world's firstelectronic automatic computer. |
Its subsequentinstallation inthe Ballistic Re-
search Laboratories (BRL)atAberdeen Prov-
ing Ground marked the beginning of the wide-
spreaduse of electronic computing machines.
ENIAC was a decimal machine in which
ten decade ring counters == one per decimal

place -- and one PM (plus or minus) counter
formed the basic arithmetic and storage unit.
Itutilized 19,000 vacuum tubes (of 16 different
types), 1500relays, and hundreds of thousands
of resistors, capacitors, and inductors. It
consumed nearly 200 kilowatts of power. Its
thirty separate units weighed more than 30
tons. This huge collection of circuits could
calculate a 60-second trajectory in less than
the actualtime of flight of the projectile from
the gun to the target.

Even before the development of ENIAC
had been completed, however, it was realized
that a serial binary machine with delay-line
storage (an early type of memory device)
would have additional advantages. A binary
machine would utilize numbers to the base
two instead ofthe traditional base ten. Num-
berswould be translated intoa series of ONES
and ZEROS, values that could be easily
handled by electron tubes arranged either to
conduct a signal or block it -- a switching
function that could be handled at high speed.
Nonetheless, ENIAC remained a solid compu-
tational workhorse for the ten-year period of
1946-55, during which it was in constant
operation. It was the major instrument for
computation for all ballistic tables for the
US. Armyandthe US. Air Force -- domina-
ting the computer field during the period
1949-52. It was also used for calculations
relevant to other fields -- weather predic-
tion, atomic energy, cosmic-ray studies,
thermal ignition, random-number studies,
and wind-tunnel design problems, to mention
a few. (Electronic computers were not yet
available from commercial sources.)

ENTAC was the prototype from which
most other modern computers have evolved
(see the computer tree of Fig. I-1). It em-
bodiedalmost all of the components and con-
cepts of laterhigh-speed storage and control
devices. Although built primarily for inte-
gration of the equations of external ballistics
by a step-by-step process, it was sufficiently

This was an electromechanical analog device utilizing mechanical integrators of the wheel-and-disc type that was developed by
Dr. Vanncvar Bush and his associates at Massachusetts Institute of Technology in the late 1920's. IncCorporating improvements
made in the carly 1930's, a Bush Differential Analyzer was installed at Aberdeen Proving Ground in 1935.

T It should be noted that the Mark I Relay Computer (also called the Automatic Sequence-Controlled Calculator), completed in
1944 at Harvard University by Howard Aiken in cooperation with IBM engineers and Harvard graduate students, was the first

automatic computer ever completed.
machine was cfficient, fast,
tronic type of automatic computer.

The operation of this machine was based on electromechanical principles.
and capable of solving a wide variety of problems,

Although the
its speed could not approach that of the elec-
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flexible tobe applied toa wide range of large-
scale computations otherthan numerical inte-
gration of differential equations.

The urgent need for an operational com-
puter- had made it imperative to freeze the
engineering design of ENLACduring the early
stages of development. As work on LENIAC
permitted, however, the design and construc-
tion of animproved computer for RRL having
much smaller size, greater flexibility, and
bettermathematical performance were pushed
forward under U.S. Army sponsorship at the
Moore School of Electrical Engineering, Uni-
versity of Pennsylvania. The design for this
computer, named EDVAC (forElectronic Dis-
crete Variable Automatic Calculator), was
proposed in 1945 by Dr. John von Neumann,
one of the world's leading mathematicians,
who had been attracted by the problems of
computer design. The major features of this
computer were the use of the binary system
ratherthan the decimal system of numeration,
a serial arithmetic mode, a four-address
command structure, a total of 16 possible
operations that couldbe performed by the com-
puter, and duplicate circuitry for check pur-
poses.

EDVAC was also the first computer with
an internally-stored program and was thus a
major improvement over ENLAC, which re-
quired considerable human effort to change
the different programs. With ENTAC, the dif-
ferent sections ofthe computerwere connect-
ed together via plug-in cables that had to be
changed for each particular type of problem.
If the computationshad to be interrupted for a
few days, topermit some otherproblem ofhigh
priority to be run on the computer, the com-
plex tangle of plug-in cables had to be rear-
ranged manually. Also, whenthe runwas com-
pleted, the machine had to be "re-wired" for
the first problem. With an internally-stored
program device, the instructions are stored,
each storage location is queried, and ecach

SEAC - Standards Eastern Automatic Computer
FLAC - Florida Automatic Computer

DYSEAC - Second SEAC

MIDAC = Michigan Digital Automatic Computer

instruction is interpreted and executed as a
matter of formality until all the instructions
comprising a givenprogram are carried out.

Mork on EDVAC stimulated design and
constructionbyothergroupsof a large family
of similar computers, including SEAC, FLAC,
DYSEAC, MIDAC," and the later commercial
types, such as the UNIVAC's (see Fig. I-1).
Computer development was further en-
couraged by the Army via a research con-
tract with the Institute for Advanced Study,
Princeton, New Jerscy (later supported also
by the Air Force and Navy).

From this supportof computer research
came the ORDVAC (for Ordnaznce Variable
Computer), the BRL's third electronic com-
puting machine. This was a parallel binary
computer that belongs to the group of com-
puters whose basic logic was developed by
the Institute for Advanced Study at Princeton,
New Jersey. The ORDVAC family of com-
puters includes suchmachines as the AVIDAC,
MANIAC, ILLTAC, ORACLE, JOHNNIAC, and
CYCLONE. T

These different designs constituted little
if anything new in innate computer design,
but carried out existing design principles
using the fruits of the ever-advancing tech-
nology of electronics -- such things as im-
proved memory techniques, smallervacuum
tubes, improved diodes, and the like. During
the ecarly 1950's, a major part of the scien-
tific computational workload of the Western
world was accomplished on these machines.

The rapid, competitive evolution of com-
puters made itapparent at ancarlystage that
prospectiveusers and designers of computers
in industry and in government would benefit
from a comprehensive survey of designs in
being. BRL accordingly made a nation-wide
survey in 1955. This showed that at thattime
approximately 87 different types of commer-
cial and scientific digital computers were
operational in this country. A second

T AVIDAC - Argonne Version of the lustdtute's Digital Automatic Computer
MANIAC - Mathematical Analyzer Numerical Integrator and Computer

ILLIAC -Illinois Automatic Computer
ORACLE - Oak Ridge Automatic Computer and Logical Engine

JOHNNIAC - John (von Neumann) Integrator and Automatic Computer
CYCLONE - (an arbitrary name indicating high speed) Iowa State University
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survey by BRL, macle in 1957, showed that
this total had risen to 103. A third survey in
1961 indicated the existence of over 222 dif-
ferent types of electronic digital computing
systems, involving tens of thousands of units
throughout the United States. Fig. I- lindicates
there are approximately 500 differenttypes in
operation today.

These computers are committed to the
solution of almost every conceivable type of
computing and data-processingproblem -- in
defense, industry, science, commerce, ser-
vice operation, and manufacturing. A vital
element in almost every defense system, the
computer has become even more significant
in industry and commerce.

The overall discussion of electronic digi-
tal computers given thus far has covered the
historical development of serial computers
(representedby EDVAC)and of parallel com-
puters (represented by ORDVAC). Both of
these computers are shown in Fig. I-1 at the
lower ends of two separatelimbs of a compu-
tertree whose trunk represents the develop-
ment of ENLAC. As noted in Fig. I-1, this
separation tends to distinguish the business
computers on the left limb from the scien-
tific computers on the right limb.

The electronic digital computers that
have been developed specificallyto meet mili-
tary needs are identified on the center limb
of the computertree. Among those indicated
is FADAC (for Field Artillery Digital Auto-
matic Computer). This computer was de-
veloped underthe direction of Frankford Arse-
nal in the late 1950's as a sequel to Field
Artillery Fire Control System, M35, which
employved an electromechanical computer
whose accuracywas adequate forthe shorter-
range weapons -- such as the 105mm and
155 mm howitzers -=- but was not adequate

-4

for guns and free rockets. FADAC repre-
sents the latest development in connection
with the ever-present need to solve field-
artillery fire control problems with greater
accuracy and speed.

FADAC is a solid-state eclectronic digi-
tal computer whose background is discussed
in Chapter 1 of Section 1 of the Fire Control
Series and whose technical aspects are dis-
cussed in Chapter 4 of the present secction.
Its overall capabilities, however, merit sum-
mation here:

1. FADAC canprovide firing data for a
battery of weapons. On a one-battery-at-a-
time basis, it canprovide firing datafor mor-
tars, howitzers, guns, and free rockets -- with
complete applicability to any kind of ammuni-
tionthese weapons maybe using. In emergen-
cies, it canprovide data forupto five similar-
type batteries on a rotating basis. By using
the FADAC's memoryloading unit, authorized
field personnel can make program changes
that permit switching from the solution of one
type of fire control problem to another within
just a few minutes.

2. FADAC could be used with the PER-
SHING, SERGEANT, LACROSSE, and NIKE-
HERCULES weapon systems.

3. Inaddition to use in fire control sys-
tems and missile systems, FFADAC can also
be employved in fire planning, survey compu-
tations, counter-battery computation, reduc-
tion of meteorological data, and as universal
automatic check-out equipment

A universal computer capable of solving
all field-artillery fire control problems has
always seemed to lie in the future. However,
continuous study at Frankford Arsenal on in-
creasingthe application of FADAC has yielded
results that make this computer a candidate
for the title "Universal Artillery Computer".
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THIS TREE SHOWS THE ACCELERATES EVCLUTION OF ELECTRONIC DIGITAL COMPUTERS. THL AUTOMATIC COMPUTING AME DATA E 1945
PROCESSING INDUSTRY IS A DIRECT QUTGROWTH OF THE RESEARCH, SPONSQRED BY THE U.S. ARMY, THAT *RODUCED THE ENtAC,
THE WORLD'S FIRST ELECTRONIC DIGITAL COMPUTER. THIS INDUSTRY HAS GROWR TC A MULTI-BILLION DOLLAL ACTIVITY THAT HAS
PENETRATED EVERY PROFESSICN AND TRAJE IN GCOVERNMENT, BUSINESS 55, INDUSTRY , AND tDUCATION. THE TRUNK RESTS CN THE
ENIAC, THE SESIAL COMPUTERS , REPRESENTED &Y THE EDVAC, AND THE PARALLLL COMPUTERS, REPRESENTED 3Y THE CRIVAL, ARE
SHOWN AS SEPARATE LIMBS | THIS SEPARATION TENDS TO DISTINGUISH THE BUSINESS COMPUTERS QN THE LAFT LIMB FROM THA
SCIENTIFIC COMPUTERS ON THE RIGHT LIMB, THE COMPUTERS THAT WERE DEVELOPED SPECIFICALLY TC MLET MILITARY NEEDS ARE
SHOWN CN THE CENTER LIMB. MANUFACTURERS HAVE ENTERES THE 2LECTRONIC CCOMPUTIR FIELC AT DIFFESENT TIMES . AS SH
BY THE VARIOUS BRANCHES. CNLY UNIVERSITY AND GOVERNMENT SFCNSORED COMPLUTERS ARZ SHOWNR ALONG THE LIMBS. THE
RADIAL DISTANCE FROM THE ENLAC 1S AN APPPOXIMATE ENDICATION OF THE YEAx EAZH COMPUTEP wAS EITHER DEVELORED, CON-
STRUCTED, OR PLACED IN OPERATION. Figure I-1. The computer tree for electronic

Preparec oy Department of the Army |
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PART |
MATHEMATICAL MODELS FOR

FIRE CONTROL COMPUTING SYSTEMS

CHAPTER 1°

THE ROLE OF THE MATHEMATICAL, MODEL
IN THE DESIGN PROCESS

1-1 DEFINITION AND IMPORTANCE OF A
MATHEMATICAL MODEL

In Section 17 of the Fire Control Series, a
maithematical model is defined as any scheme
for the manipulation of ideas in a group
wherein the individual ideas are identified by
means of more orless abstract symbols and
wherein manipulations are conducted in ac-
cordance with precise rules of logic. Mathe-
matical models take on a variety of forms,
depending upon the particular systemtheyare
beingused to study. Such models provide the
system designer with a powerful tool that
enables him to develop a system not merely
by intuition and trial and error with the physi-
cal system but by bringing to bear on his
problem a considerable body of mathemat-
ical techniques, and thereby raises his de-
sign process from an art to a science.

The first requirement and advantage
that the system designer faces in using math-
ematical models is that of deriving an ac-
curate model for the physical system being
considered. If the designer is to carry out
this step in a satisfactory manner, he must
understand the system and the interrelation-
ships between its parts in considerablymore
detail than he might otherwise be forced to
employ. Formulationof the model is thus of
value in itself, but usually is taken as the
first step in a mathematical study aimed at
optimizing certain parameters inthe system.
This optimization may be carried out using
purely analytical techniques, graphical tech-
niques, or by studying the model on either an
analog or adigital computer. Chapter 2 out-
linesanumber of these techniques. As back-

*
By W. W. Secifert.

T Fire Control Systems-~General (AMCP 706-327).

ground forthis discussion, par. 1-2 summa-
rizes some of the more important mathe-
matical expressions used for describing
importantnatural laws that relate to physical
systems, and par. 1-3 summarizes the char-
acteristics and limitations of mathematical
models.

1-2 MATHEMATICAL MODELS FOR
PHYSICAL SYSTEMS

If one is to establish a mathematical
model or description for a physical system,
he must be able to express causes and ef-
fectsinmathematical terms for each indivi-
dual element of the system and be able to
describe mathematically the manner in which
these elements interact. Depending on the
purpose of the specific analysis, the indivi-
dual elements may be single components --
such as resistors, capacitors, and vacuum
tubes -- or complete amplifiers or even a
complete radar set. Insteadof electric-cir-
cuit elements, the system may be composed
of mechanical components -- suchas springs,
dampersand inertial elements -- or of fluid
elements -- such as valves, orifices, and fluid
pumps and motors. Some systems likewise
contain magnetic, acoustic, or thermal ele-
ments. Frequently, a complex system in-
cludes a mixture of elements of several of
these types.

Fortunately, the modern analyst is able
to draw on the work of Newton: Kirchoff,
d'Alembert, Coulomb, and many others who
were able to formulate mathematical re-
lationships to express their experimental
observations onparticular physical systems.



AMCP 706-329

Basic requirements for the analyst who de-
sires to formulate a mathematical descrip-
tion for a system are (1) that he understand
thoroughly the laws relating to the types of
elements from which his system is composed
and (2)that he understand the range of varia-
bles for which the elements of his physical
system behave as ideal elements by obeying
the ideal laws, and the manner in which their
performance departs from the ideal outside
this range. It isimpossible ina single chap-
ter to outline all the relationships that an
analyst would require in analyzingthe various
systems with which he might be confronted.
However, a brief discussion of several il-
lustrative mathematical descriptions for
physical systems is provided, and a number
of other relationships are tabulated.

In order to develop and utilize mathe-
matical descriptions for physical systems,
it is first necessary to define the symbols
that areto be used in writing these descrip-
tions. Although agreement on symbols is far
fromunanimous, the discussion which follows
uses symbolsthat have received wide usage.

As an illustration of a basic mathemat-
ical description of a physical phenomenon,
consider one of the fundamental laws of elec-
trostatics. Out of some of the earliest work
on static electricity grew the concept of elec-
tric charge, which gradually has come to be
represented symbolically by the letter q.
Early experimenters found that if two point
charges of electricity of opposite kind are in
the neighborhood of each other, they exert
attractive forces on each other. If they are
of the same kind, however, they exert repul-
sive forces on eachother. Furthermore, the
force that one exerts on the other is deter-
mined by the distance between the charges
and the magnitude of the charges. The work
of Cavendish and Coulomb in the late 1780's
established the inverse-square law of elec-
trostatic force, which states that the force
between two point charges of electricity is
directly proportional to the product of the
charges and inversely proportional to the
square of the distance between them. Mathe-
matically, this statement, which has come to
be called Coulomb's law, takes the form

qa9s

F:K l’2 <1'1)

where Frepresentsthe force between the two
point charges. g, and qp represent the two
charges, r represents the distance by which
the charges are separated, and K is the pro-
portionality constant. This constant depends
upon theunits usedto measure the force, the
distance, and the charges and also upon the
medium inwhich the experiment is conducted.
The force found when this experiment is per-
formedin ahigh-quality insulatingoil differs
fromthat found when the experiment is per-
formed in air. For such an experiment, the
pertinent parameter of the medium is its
dielectric constant k. In terms of this con-
stant, Eq. 1-1can be rewritten in the form

9498 —
FoKi = (1-2)

where K| depends only on the units in which
the quantities are measured.

As man's understanding of electricity
grew, he discovered ways to produce steady
flows of current I which he then associated
with the rate at which charge was moving

through a system, i.e.,

_dq (1-3)
I dt

He also discovered that when a battery (vol-
taic cell) was connected in a closed circuit
the current that flowed was determined by
the voltage E of the cell and a property of
the circuit determined by the length, cross-
sectional area, and composition of the con-
ductors. This property of the circuit came
to be known as its resistance R and Ohm
deduced the followingrelationship which now
bears his name:

7 -E (1-4)

Beginning with Oersted's discovery in 1820
that a magnetic needle tends to set itself at
right angles to awire through which an elec-
tric current is flowing, Faraday and others
began to experiment with, and attemptto dis-
cover the laws that govern, phenomena of
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clectromagnetic induction. Their efforts led
to the definition of such new quantities as
inductance L. and to new laws such as

o-LY (1-5)
dt

which relates the instantaneous voltage e
acrossaninductance to the rate at which the
instantaneous current i through the induct-
ance is changing.

As knowledge of the behavior of electri-
cal systems grew, so did the knowledge of
other types of systems, such as mechanical,
hydraulic, and thermal systems. Further-
more, certainsimilaritieswere foundto exist
between the ways in which entirely different
types of systems performed. For example,
the flow of current through a conductor was
likened to the flow of water through a pipe.
In each case, it was observed that the flow
increased as the forcing function (voltage or
pressure)increased.

Table 1-1 lists the principal elements
and parameters used to describe physical
systems, and gives symbols and units that are
comnionly used indescribing these systems.
it should be understood, of course, that other
systems of units also find wide usage. In
particular, the MKS (meter, kilogram, scc-
ond) system of units is rapidly becoming the
standard foralleducational systemsand gov-
ernments. Accordingly, pertinent informa-
tion concerning physical constants and con-
version factors in terms of the MKS system
is presented in the appendix to this chapter.

Table 1-2 furtherdevelopsthe similarity
between different physical systems by sum-
marizing the expressions for power dissipa-
tion and energy storage, and giving the dif-
ferential equation that describes a simple
system containingone of each of the types of
elements bhelonging to a particular family.
It shouldbe notedthat two rows of entries ap-
pear for each system and that the associated
differential equations are of the same torm.
The reuason for this similarity can be illus-
trated by examination of the two equivalent
clectrical networks shown in I'ig. 1-1. The
top network represents a parallel combina-
tion ofa conductance (reciprocalresistance),
an inductance, arid a capacitance driven by g
current generator. The lower network repre-

sentsaseries combinationofthese same ele-
ments (withresistance showninplace of con-
ductance) driven by a voltage generator. In
the first case, it is desired to set up an ex-
pression for the instantancous voltage e{t)
across the network, while in the second the
instantancous current i{t) flowing in the net-
work is desired.

For the first case, the differentialequa-
tion from which e(t) can be computed is found
by summing the currents through the three
elements, i.e.,

i) = i) righ) i (1) (1-6)

Substitutionof expressions for these element
currents in terms of voltage shows that

(1) =C 8 + Ge 15 fedt

ot L (1-7)

Forthe second case, the differential equation
is formed by equating the applied voltage to
the sum of the voltages across the individual
elements, i.e.,

(1-8)

When these element voltages are expressed
in terms of the loop current i(t), the result-
ant equation becomes

di

ey - LY R * fidr (1-9)

dt C
Comparison of ligs. 1-7 and 1-9 shows that
onc could bhe derived from the other if the

following substitutions were made:
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1-4

TABLE 1-1. SYMBOLS AND UNITS.
Parameter
or' Pictorial
System element Symbol Unit symbol
1. Electrical Voltage e volt
Current i ampere R
Charge q coulomb —ANN—-
Power power  waftt
Angular velocity o radians/scecond L
Energy w joule — N
Resistance R ohm c
fopdightnee & hedoay I
Capacitance ¢ farad
2. Mechanical Forcc i pounds
rectilineal Velocity v {cet/second R
Displacement z feet
Acccleration a feet/second? _—*}_
Accclcration of
gravity g 32.2 feet/second?
Power power  foot-pound/second .
Energy w foot-pound X
Viscous friction R pound-second/foot  — _rgyE—or
Mass m pound-second?/foot
Spring constant k pound /foot
3. Mechanical Torquc T pounds-feet
ratational Angular velocity  w, € radians/sccond B
Angular +
displacement ¢ radians
Power power foot-pound/second J
Energy W foot-pound _—@’—
Rotational friction B pound-foot-second
Inertia J poun d-foot-second? ,‘nc. .
Rotational spring
constant c pound-foot/radian
4. Hydraulic Pressure P pound/foot?
Flow rate g foot3/second
Volume vV foot3 R R
Power power foot-pound/seccond x=, =——=
Energy W foot-pound
Resistance R pound-second /foott
Incrtance M pound-second?/foots M E
Capacitance ¢ foots/pound
Bulk modulus B pound/foot?
Density p pound/foots
5. Prneumatic Pressure P pound /foot?
Flow rate q footd/second R R
Volume vV footd x, —/——
Powcer power foot-pound/second
Energy W foot-pound M=
Resistancc R pound-second /foot® | C l
Inertance M pound-sceond?/foot®
capacitance C foot’/pound
6. Thermodynamic Temperature e °F R
Heat flow q BTU/second —_— NN
Heat H BTU ¢
Resistance R degree-second/BTU
Capacitance C BTU/degree l(
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TABLE 1-2. SUMMARY OF ANAILOGIES.

Relations between Paramieters and Elenwents

Parameters Elements Response Function Alternate Response
| Energy Storage Energy Storage Energy Storage Equation of single-degred Fnergy Storage
Forcing Response j Alternate | of-freedom system contini- PPower .
System function function response Dissipative 1 2 Chaspative 1 2 Dissipative 1 Ing all types of clements dissipatior. System
voltage ¢ current ¢ charge ¢ | resistance R inductance L %gpncitnnce e = ItY - L (Q e = (],f 14l e = IR aq L zgtq . L((’Ti + Ri+ (] f Pt = power = iR SLe W= } Ce*
Electrical 4’»?’ = “ p ] Eleetraeat
itans ; de , . .
current 2 voltage e conductance G gapm:lmngc 1lrllductance i = Ge = (ZIE[ P _} fedt ¢ o + Ge ; f cdt = 1 power = €6 Lee W=
force f velocity v | B¥Pkce- | rectilineal mass m reciprocal dv Ie —J' du ) _
Ed resistance R of spring J=kr S=mg f =k f v dt f=nr% PRI J=dr | mog R4 1:f rdt = power = 158 et W=z
Mechanical constant 1/k “ d dr Mechmeal
Rectilincal velocit f i i 1 Reetitinead
y v orce f reciprocal of reciproca mass m 1d 1 Y
rectilineal of spring v =L v = lﬁ[ p= b fjd[ I:(djr + ;j; + - ffdf =r power = ’}f !jl W= 2
resistance 1/ | constant 1/k R k dt m " ¢ k
torque T' angular angular rotational moment of reciprocal of d . - ’ i
velocity w displace- | resistance B iicrtia J rotational v v pdwe . v o de & m dw dp = v o= ot L A
ment 0 spring 7 = Bo T _J»d—t 7 =cfwd[ 17 _BE[ th2 A Jdt + Bw + ¢ wdl =1 power = o'l o Jw? H —2—‘7
Mechanical constant l/e: o Merhanend
Rotational angular torque T reciprocal of | reciprocal of | moment of v m . N Rotatiare:
velocity w rotational wotational inertia J T _ dT 1 74 147 | T + 1 ’ Tdt = o power = 1° 1 e T
resistance 1/8 | spring “= B @ = Cdr w=7 i cdt ' B J, R ¢ i
constant 1/¢
pressure p | volumetric | volume V| hydraulic incrtance M | hydraulic | | . | 4 ~ - . dg 1 1., . Y
flow ¢ resistance K cCapacitance p =Ry p=4a %% » = —Cl—!f qdt p =R ad}t/ = hi (z;- . ar t Ry + é,f gdt = p power = ' 5 Mg Wo=_Cp
Hydraulic - - - - Hy drauhe
volumetric | pressure p reciprocal of hydraulic inertance M » d 1 dp | p 1 P 1 .
flow ¢ hydraulic capacitance g =5 g=C% g = f pdt C atetw f pdt =g power = 75 5 Cp? W=, M
resistance 1/ k dt M
pressure p volumetric volume V' | pneumatic inertance M pncun‘mtic , DV 1 dq 1 ] ) — - —k
flow ¢ resistance R glpamtancc p = Ry p= ar » = (lf g dl p= 13% - M :-d_[-? P=5 M o T Kt 'Cf gdt=p power = ¢*I2 5 M W=,
Pneumatic | - - Tor + 0 : 1 - B —4  Pnenmtic
volumetric | pressure p reciprocal o neumatic inertance d 1 dp , p, 1 »
: 14 ptis L = or = 4o » ot
flow ¢ osistmatec] /R | apacitance g = ,—’; ¢=Co g =5 ) pet Catrt Mf pdt=gq power =g Cp W =yrbt
temperaturel heat flow heat H' thermal thermal 1 dH 1 o
e q resistance £ ) 0=7fth g =R g=!! 1{q+(7fth=6
gnapacitance e =1l c at o
Thermodynamic heat fl | . . 4 Thrermodynare §
cat flow | temperature h 1 I 1 a8 9
9 | e E:o%r(irlll%tance G %a%ra{gftance g = Ge =C Gt C@ +G6 =g _-;
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| | 1
:(IJT 'cl:{:c‘cl G'L%L ef

Equivalent, or dual,

Figure 1-1.
clectrical networks.

I'he reciprocal quantities%andlt« are some-
timcs designated I" and S ~jespectively,
whercupon the last correspondence above
bcconies

r-S

When the differential equations describ-
ingtwonetworks composed of the same class
of physical elements (such as electrical or
mechanical) correspond in this manner, thc
networks are called duals. Foralargeclass
of nctworks, such duals exist and frequently
reprcsent alternative means for realizing a
giventype of dynamic system performance. ¥

Techniques for formulating the integro-
differential equations for electrical ne?4
works >*Ttand for more general systems
havc now been developed to a high degrec.
A sct of these equations sufficient to de-
scribe a given system that is under con-
sidcrationrepresents a mathematical model
for the system, and the development of such
amodcl constitutes the first step toward de-
termination of the performance character-
istics of this system. The fact that a varicty
of differenttypes of physical systems can bc
described by equations of the same form fa-
cilitates considerably the study of a variety
of systems.

The equations shown in Table 1-2 de-
scribe the restricted but veryimportant class
ofillincar systems. While any physical system
canbe driven into regions of nonlinecar oper-
ation, many systems do behave in an cssen-
tially linear fashion over a wide uscful opcr-
ating range. The reason why systems that
operatein anessentially linear manner are so
important is tliat the mathematical techniques
for analyzing suclisystems are highly devel-
oped and relatively easy to apply. Conse-
quently, although the analyst sliould always
keep before him a clear picture of the ways
in which tlie system he is studying dcparts
from linearity, he should, as a first step in
his analysis, determine whether ornot useful
results could be obtained from study of a
linecarized representation of the systcm. If,
under normal use,the system operates in an
cssentially linear fashion, very useful pre-
liminary estimates of system characteristics
canhe obtained at much less effori than if the
nonlincaritieswere included. Atalatcr stage
in the analysis, it may be desirable to in-
clude nonlinear terms in the niathcmatical
model, but their inclusion substantially in-
creases the difficulty of obtaining analytic
solutions and may force the analyst to rcsort
to computer methods of solutior.*# While a
computer solution can frequently serve in
sucha circumstance to provide a more faith-
ful representation of a system than might
otherwise be obtainable,a good general rule
to observe is the following: If one can obtain
a satisfactory solution without the use of a
computer, he should do so since he will then
be likely to better understand the problem.

1-3 CHARACTERISTICS AND LIMITATIONS
OF MATHEMATICAL MODELS

A mathematical model is merely a con-
venient way in which to describe a physical
system. If such a model is to be uscful, it
must (1) represent the physical systcm suf-
ficiently wellthat solutions obtained by study-
ing the model yield useful information about

*
1t should be noted that thesymbol S used here has no relationship to the symbol s used to represent the Laplace transform variable.

T For a considerably more extensive treatment of this subject, the reader is referred fo Chapter 3 of Reference 1.

*k
A general bibliography of references relating to the analysis of nonlinear systems appears at the end of Chapter 2.

tt Superscript numbers refer to References at the end of each chapter.
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the performance of the actual system and (2)
be amenable to analysis. Actually, neither
of these requirements is absolute. A crude
mathematical model may be easy to study
and may provide very useful information,
while amore sophisticatedmodel might yield
considerablymore accurate results but might
be very difficult to study. While misleading
results may be obtained if the model used
does not take into account all the significant
system characteristics, there is little point
in employing a model that is more complex
thanis required to obtain results that are of
sufficient accuracy fortlie particular purpose
at hand. The experienced analyst employs
simplemodels during the early stages of his
investigation as a means for examining a
broad range of possible systems and estab-
lishing preliminary bounds on system param-
eters. As the design proceeds, the model
may be eclaborated upon so as to represent
the system more accurately. E’urthermore,
in the latter stages of analysis, it may be
desirable to determine how the system per-
forms when subjected to inputs and distur-
bances that can be described only in a sta-
tistical manner or when certain system
parameters deviate in some randomly
described fashion from the design values.
While such effects can be included in the
mathematical model, the resulting equations
frequentlybecome socomplex as to preclude
analytic solution and require simulation on
an analog or a digital computer.

With more complex systems, the analyst
may initially be unable to formulate as pre-
cise a mathematical model as he may wish.
In fact, if the phenomena involved in some
portion of the system are not well understood,
the analyst may be forced to collect experi-
mental data on that portion of system and
then attempttodevelopamathematical model
that will correspond with the data. Thismay
require considerable effort and involve a
number of attempts at refining the model or
developing completely different ones as the
phenomena involved become better under-
stood.

Possibly the greatest danger tliat the
analystfaces in using a mathematical model
lies in his placing too much reliance on the
factthat he hasbeen ableby one means or an-
otherto formulate and obtain solutions from
a mathematical model, and then being misled

1-8

by tlie results obtained. The solutions may
be 100percent correctbut the model may not
represent the physical system, either asare-
sultof anactualerror introduced in formula-
ting it or because intentional simplifications
have been made for the purpose of reducing
the mathematical complexity and subsequent-
lythese simplifications have been forgotten.
This type of pitfallis best avoided by experi-
cnce and by comparison, at appropriate steps
in the design, of results obtained from the
modelor subportions of it with experimental
results obtained directly, using correspond-
ing portions of the actual system. At some
stages inthe development of acomplex device
or system, itis frequentlyappropriate to run
simulation studies in which portions of the
physical equipment from the actual system
are employed, while the remainder is simu-
lated on a computer or with special-purpose
devices. In fact, this technique is frequently
carried to the point where essentially the
whole system is tested by supplying it with
simulated inputs and possibly by substituting
dummy loads or synthetic disturbing torques
onthe output. In this manner, the system can
beexercised forextended periods under con-
ditions much more favorable for the experi-
menter and frequently at very great savings
in both time and money. For example, test
of a fire control system against real targets
is much more difficult and time consuming
than determination of its performance when
subjected to synthetic inputs. Model studies
do not remove the necessity for performing
a final evaluation of a system under actual
field conditions but, if themodel studies have
been well thought out and carried through, the
field tests should proceed very smoothly.

The analyst’s normal wishes are (1) to
refine hismodel sothat results obtained from
it correspond very closely to those obtained
from tests on the actual system and (2)to
study the model in sufficient detail to enable
him to arrive at paramecters that will give
optimum performance of the system. How-
ever, the optimum-parameter settings for
well-designed systems are usually rather
broad. Furthermore, a mathematical model
necessarily differs from the physical system
it is designed to describe and discrepancies
necessarilyexistbetween the performance of
the model and of the physical system. Deter-
mination of the time at which it is appropriate
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toterminate model studies and freeze the de-
sign of the actual system is one of the major
decisions facing a project engineer. Unfor-
tunately, aswith many decisions of this type,
little of general value can be said. Each situ-
ation must be examined in the light of the
applicable technical background for the de-
sign and the nontechnical pressures for com-
pletion ofthe project. Experience inthe tech-
nicalareas involved and basic good judgment

are the most important factorsin reaching an
appropriate decision.

The chapter which follows outlines the
principalmathematical tools used bythe sys-
tem designer and discussesthe use of mathe-
maticalmodels to determine system accura-
cy and dynamic performance. Thismaterial
represents information that is essential for
the man engaged in the design of systems
where dynamic effects are important.

1-9/1-10
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Physical Constants and Conversion Factors

The tables in this chapter supply some of tho
more commonly nceded physical constants and
conversion factors.

All scientific measurements are based upon four
internationnl arbitrarily adopted units, tlie magni-
tudes of which are fixed by four agreed on stand-
ards:

Length—the mctor— fixed by tho vacuum wave-
length of radiation corresponding to tho transition
20— 5D of krypton 86

(1 meter= 1650763.73)\)

Mass — the kilogram — fixed by the international
kilogram at Sévres, France.

Time—the sccond— fixed as, 1/31,556,925.9747
of the tropical ycar 1900 at 12® ephemeris time.

Temperature—the degree—fixed on a thermo-
dynamic basis by taking the temperature for the
triple point of natural water as 273.16 °K. (The
Celsius scalc is obtained by adding —273.15 to
the Kelvin scale.)

All other units are defined in terms of them by
assigning thc value unity to the proportionality
constant in ecach dcfining equation, the system so
derived being called the MKS system. Taking
the 1/100 part of the meter as the unit of length
and the 1/1000 part of tho kilogram as the unit of
mass similarly gives rise to the CGS system,
often used in physics and chemistry. The more
common named units arid their conversion factors
are given in Table A-L

Table A-1. Common Units and Conversion
Factors
MKS CGS MXKS unit/
Quantify name name CGS unut
Foree, F newton dyne 103
Energy, W joule erg 107
Power, P watt ... 107

The practical, or MKSA, clectrical units are
defined by the force per unit length between two
infinitely long parallel filamentary conductors
carrying current when unit distance apart in a
vacuum by the equation T,/ l/dr=2F. ¥ F
is in newtons and T, bas the numerical value
4xX1077 then J, and /; arc measured in terms of
the practical unit, the ampere. The cusiomary
equations o the rationalized MKSA system then
define the other electric and magnetic units.
The force between electric charges in a vacuum
in this systeni is given by Q,@Q,/4xT.r*=F, T,
having the numerical vuluo 10’/4x¢® where ¢ is
the speed of light in meters per sccond (I,=
8.854X1071).

The CGS unratiorialized system is obtained by
deleting 4= in the denominators in these cquations
and expressing F' in dynes nnd r in centimeters
Setting T', equal to unity defines the CGS unra-
tionalized electromagnetic system (emu), T,
taking the numerical value of 1/¢?. Sctting I\,
equal to unity defines the CGS unrationalized
electrostatic system (esu), I' tuking the numerical
vulue of 1/c%

The Lorentz-Heaviside system iuvolves a dif-
ferent process of rationalization.

Table A-11. Names and Conversion Factors for Electric and Magnetic Units

Quantity MKS emu esu MKS unit/ MKS unit/
name name name emu unit esu unit
Current ampere abampere statampere 10 ~3X 109
Charge coulomb abeoulomb statcoulomb 10! — 300
Potential volt abvolt stntvolt 100 ~(1/3) X 10~?
Resistance ohm abohm statohm 10° ~(1/9) X100
Inductance henry centimeter  |____________.. 10° ~(1/91 X101
Capagitance farad | _____________ centimeter 10— ~9 X101
Maguetizing foree amp. turns/ oersted |- __._. 4x X 10-3* ~3C 10°*
meter
Magnetomotive foree amp. turns gilbert 4aX10-t* —3/10+*
Magnetic flux weber maxwell  Jo_.___ e | 08 ~(1/3) X107
Magnetie flux density tesla gauss  loo_____ . 10¢ ~(1/3 X 10
Electrie displacement JE U (RN (U 108+ ~3X10%*
Example: If the value assigned to a eurrent is 100 amperes its value in abamperes is 100X 1071= 10,

*Divide this number by 4« if unrationalized MKS system is involved; other numbers nre unchanged.

1-12
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The adjusted valines of constants given inTable A-1lare those recommended by the National Academy of Sciences-National
T'he ercor limits are three times the atandard errors estimated

Rewcarch Comal Committee on Fuindamental Coostants i 1963,
from the experimental data inclnded in the adjnatment.

in which the atomic mass nnit (u) is defined at 1/12 of the mass of the atoin of the 2C nuelide.

Table A-111.

Adjusted Values of Constants

V aluea, where pertinent, are based on the unified scale of atomic manses

Eat. 1 Unit
Constant Symbol Valne error
limit | Syst&ine |International Centimrter-gram-second
(MKSA) ((1(§S)
Speed of light in vacuum.. ....... c 2.997925 3 [ X108 ma~t X10% | cm s
Flementary charge . ... ... ... .. e 1.00210 7 10-n | C 10-% | cmingin *
4.80298 20 ) . . L] e 10710 | cn?frgtig-t
Avogadroconstant. .. ... ... ... Na4 6.02252 28 102 mol-! 10» mol~1
Jlectrom rest mass. . ... L. m, 9.1091 4 10-¥ | kg e 102 | g
5. 485397 9 10-¢ | v 10-¢ | n
Proton rest mass . . L. m, 1.67252 8 107 | kg 10 | g
1. 00727663 24 100 n 100 u
Neutron rest mass me 1.67 182 8 1079 | kg 107 | g
1.0086654 13 loo u 109 n
Faraday constant . . ......... F 9. 61870 16 1o C mol-} 1® em! gt Aimpl-t *
2.89261 S| o e 101 cm? gl Ag~imol-t
Planck constant. . .............. h 6.6256 S 107% | 7 g 107 | erg s
.4 1.05450 7 10-% | 7 10°7 | erg s
Fine structure constant . ... ... ... o 7.29720 10 100 | ..o 10-1
1/ 1.370388 19 10 |.ooeieaan.. 10?
al2w 1. 161385 16 10~ | 10-3
o' 5.32492 14 10°% | oo 103
Churge to mas« ratio for electron ... | e/m, 1.758796 19 o Ckg! 107 cm!g-in ®
527274 6 ....... [ 10" | cm3f2g-1rg-) ¢}
Quantum-charge ratio. h/e 4. 13556 12 10-18% [ JeCt 1077 | em3Agiig—t ®
1.37947 S 1017 | em!Agin
Compton wavelength of electron. .. | e 2.42621 6 107 [ m 10710 | em
Nel2w 3.86144 9 10-% | m 10-1 | em
Compton wavelength of proton. ... Aep 1.32140 4 10-13 | m 10-% | em
Ae.of2r 2. 10307 6 10-% | m 10-%¢ | e¢m
Rydberg constant ... ............ R, 1.0973731 3 107 m-t 108 cm™—!
Bolrradima. ... . ... ag 5.29167 7 10-9 | m 0~ cm
Flectron radius. . .. ........... re 2.81777 11 10% | m 107" | em
r? 7.9398 6 10-% | m? 10-% | em!
Thomson cross section . . . . ... .. 8xri/3 6.6516 5 10-% | m? 10°% | em?
Gyromagnetic ratio of proton. . . . | ¥ 2.67519 2 10" rads™1T-! 1o rad s~1G1 *
| v/2w 4.25770 3 107 Hz Tt 10 s-\G1 *
(unrorrected  for diamagnetism. v’ 2.67512 2 104 rades It 104 rad s7'G1 *
11,0)) l v'2x 4.25759 3 107 Hz T—! 108 A 1G-
Bohr magneton . . . 0 00 [y 9.2732 6 10-% ] T_‘. 10°% | erg G *
Nuclear magneton ... L L 7Y 5. 0505 4 1o-7 | J T 10-% | erg G' *
Proton moment . . . . . .. Mo 1.41019 3 Lo-®= | J T 10782 | erg G! *
Holun 2.79276 ? 100 [ 100
{(incorrected for diamagnetism, 140)| u'p/un 2.79368 7 1w | 100
Anontalous electron moment corrn. (me/po) —1 1. 159615 15 10°3 | ... . 10-3
Zecwian xphiting constant unlhe 4. 60858 1 10 mT-! 1078 | em-IG-1*
Gas constant . R 8.3113 12 100 J °K~f mol~! 107 erg °K-1 mol-!
Nonnal volume perfect gas ... [ SN 2.21136 30 10-1 n? mol=t 104 cm?® mol-1
Boltzmann constant . k 1. 38051 18 10-8 [ JoK-t 10718 | erg °K-1
First radhiation constant (2rhe?) .. o 3. 7405 3 10°1" | W m? 10-3% erg cin? a~!
Necoml radiation constant Cy 1.43879 19 - m °K 100 em °K
Waen displacement constant. . b 2.8978 4 10 [ m °K 107 | e °K
Stefan-Bolizmann constant P 5. 6697 29 10-8 W m~? OK- ¢ 10-% erg cin~t a1 °K—*
Gravitutional constant. . . ... .. G 6.670 15 101 | N m® kg~? 10-* | dynecnt® g*

{Based on 3 atd. dev, applicd to lost digitr in preceding coluiinn.

C—<conlomh

J—joule

He—hertz

Woe—watt

*Electromagneotic system,
N — newton

T—tesla

tElectrostatic ryrtem.
G—gauss
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Standard gravity g,

Standard atmospheric pressure /,

1 Thermodynaniic caloric? cal,

1] 7 calorie? ¢cnl,
1 liter 1

1 Angstrom unit &
1 Bar

1 Gal

1 Astronomical unit a.u.

1 Light year
1 Pursec

1 Curie, the quantity of radioactive

Table A-1V.

Miscellaneous Conversion Factors

=0.80665 n1 sec™?

=1.013250X10%
108
=4.1840 joules
=4.1868 joules
=1.000028 X 10~
=10"" 1

newtons n~?
dynes cm~?

3 ma

=10° newtons m?

10¢ dyues em?
=10"2 n1 sec™?

1 ¢cm sec™?
=1.495X 10" m
=0.46>10" n
=3.08X10"% m

=3.26 light years

material undergoing 3.700X 10" disintegrations sec™.

1 Roentgen, the exposure of x- or gamma radiation which produces together with its secondaries
2.0823< 10° electron-ion pairs in 0.001293 gin dry air.
Formula for index of refraction of atimospliere for radio waves (f<{3X10") (n—1)10*=(77.6/T)(p i
4810¢/T), where n is refructive index; 7' temperature °K; p total pressure in millibars, ¢ water vapor
partial pressure in niillibars.

Factors for converting the customary United
Stntcs units to units of tlic metric system arc given

in Table A-V.

Table A-V. Factors for Converting Customary
U.S. Units to Metric Units

1 yard

1 foot

1 inch

1 statute mile

1 nautical mile (inter-
national)

0.0144 ineter
0.3048 meter
0.0254 meter
1609.344 meters

Geodetic constants for the international (Iay-
ford) spheroid are given in Table A-VL. The
gravity values are on tlic busis of tlic old Potsdam
value and have not been corrected for more
recent determinations. They are probably nboat
13 parts per million too great. They are caleu-
lated for the surface of the geoid by the inter-

national formula,
Table A-VI. Geodcetic Constants

a=6,37%,388 m; f=1/297; b=6,356,912 m

1852 meters

1 pound (avtlp.)
1 0% (avdp.)

1 pound force

1 slug

1 poundal

1 foot pound

0.45359237 kilogram
0.0283495 kilogram
4.44823 newtons
14.5939 kilograms
0.135255 newtons
1.35582 joules.

Temperature
(Fuhrenheit)
1 British thermal unit ¢

324 (9/5) (temperature

‘ r nethof 1o !
Latitude | of l’L()(;'n;itl?nllol L“xixiﬂotridoizfm ' ! msgc"
Melers Meters 1 Meters
0° | 1,855.398 | 1,842.925| 9 780490
15 1, 792, 580 1,544,170 | 9. 783940
30 1, GOS. 171 1,847 650 9. TWIITS
45 1, 314, 175 1, 852, 256 0. S062ad
60 030, 047 1,856, 951 9. Sto2iy
75 481, 7256 1, 860, 101 O, S2sT
90 0 1,861, LLL 9. 8322138

Celsiug)
1055 joules

2 Ured principally by chemists,
3 Ieedd principalty by engincers.

¢ Various definitions are given for the British thermal unit,

This represents a ronnded mean valne diffeng from

none of the more important definitions by more than 3 in 104,

1-14
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CHAPTER 2*

DETERMINATION OF THE ACCURACY AND DYNAMIC
RESPONSE OF A SYSTEM FROM STUDIES OF ITS
MATHEMATICAL MODEL

2-1 INTRODUCTION

As discussed inpar. 1-2, the first step
the analyst faces incarryingouta theoretical
study of the performance of a system is that
of establishing amathematical model for the
system. He doesthis based upon aknowledge
of the basic laws that describe mechanical,
electrical, hydraulic, and other systems (in-
cluding combinations of these systems) and
upon a thorough and detailed understanding
of the particular system with which he is con-
cerned. The result of this step usually takes
the form of a differential equation or, more
generally, a set of differential equations that,
in mathematical terms, describe the per-
formance of the system.

The next step is to solve these equations
by either analytic techniques or computer
simulationtechniques soas to obtainspecific
information showing how the system would
respond to differenttypes of inputs. This en-
ables the designer to select the adjustable
system parameters in suchaway asto optim-
ize system performance.

The first part of this chapter (see
par. 2-2) surveys analytic techniques. Spe-
cifically, the application of such mathemat-
ical techniques as linear- differential- equa-
tion theory, frequency-domain analysis, fre-
quency-response techniques, block diagrams
and signal-flow graphs, statistical theory, and
nonlinear analysisare described. The second
part of the chapter (see par. 2-3) provides a
brief discussion of the way in which analog
and digital simulationtechniques can be em-

ployed in studying mathematical models that
are too complex for analysis by direct ana-
lytic techniques. The thirdpart of this chap-
ter (see par. 2-4) describes the application
of digital computation tothe branch of math-
ematics known as numerical analysis and
summarizesthe main aspects of the numer-
ical techniques that can now be employed.
Since a thorough discussion of these topicsis
beyond the scope of this handbook, a number
of themore important referencesincacharca
are provided in order to enablethe reader to
obtain further information concerning those
topics he finds of particular interest,

2-2 MATHEMATICAL TECHNIQUES
2-2.1 GENERAL

This summary of mathematical tech-
niques deals with various methods of de-
termining.the dynamic response of physi-
cal systems from the differential equations
that describe them. The type of response
sought depends upon several factors: the
specifications of the system;the design pro-
cedure adopted; and'the limitations imposed
by test conditions encountered when seeking
experimental verification of the design per-
formance.

Differential equations can be classified
as follows:.
(a) Linecar differential equations with
constant coefficients.
(b) Linear differential equations with
time-varying cocfficients.
(c) Nonlinear differential equations.

" By W. W. Seifert (par. 2-1, 2-2and 2-3) and E. St. George, Jr. (par. 2-4).
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Of these three classes, constant-coefficient
linear differential equations are, by far, the
most widely used and the best understood.
The subject matter of par. 2-2.2 through
par. 2-2.6 is focusedexclusively on methods
of solving equationsin this class. For a dis-
cussionof nonlinear differential equations and
some of thetechniques employed for treating
them, see par. 2-2.7 through par. 2-2.7.3.4.
Linear differential equations with time-vary-
ing coefficients represent an intermediate
case and are discussed in par. 2-2.7 in con-
nection with nonlinear analysis.

2-2.2 LINEAR- DIFFERENTIAL-EQUATION
THEORY

The generalform of alinear differential
equation with constant coefficients is

m Aiv
-
b

iz 0 b

dix

2

1 =0

(2-1)

where the a's and b's are the constant coef-
ficients, x(t) is the response function, and y(t)
is the input function. The equation is linear
because the response to a sum of component
input functions equals the sum of the re-
sponses to each ofthe component input func-
tions. The highest-order derivative of the
response, x(t), that is present in the equation
is called the order of the equation. Thus,
Eq. 2- 1is an equation of the nth order. The
information necessary for a complete solu-
tion of the equation is astatement of the ini-
tial value of the response andthe initial values
of its firstn -1 derivatives, as wellas spec-
ification of the input, y(t). By changing the
initial conditions, one obtains a different so-
lution. In the classical method of solution,
the response can be separatedinto two parts:
(1) a general or homogeneous solution, and
(2) a particular solution. The complete so-
lution of the differential equation is the sum
of the general solution and theparticular so-
lution. The general solution always has the
form of a sum of exponentials with real and
complex arguments; the particular solution
has the same form as the input or a sum of
the input and its derivatives. The general
solutionis often called the force-frecor tran-
sient solution; the particular solutionis called
the forced or steady-state solution. FEach
term in thetransient solutionis called a nor-

2-2

mal response mode or characteristic of the
equation.

The complete solution of alinear differ-
ential equation can be represented in general
terms by the relationship

x(1) :xp(f) + Zn Akepk'

k=1

(2-2)

where x _(t) isthe particular solution, thep's
are the roots of the characteristic equation,
andthe A's arepolynomial functionsof t. If
there areno multiple roots, the Ay's are con-
stant- amplitude coefficients. The Ap's and
p,'s are, in general, complex numbers that
must occur in conjugate pairs if the coeffi-
cients a; (Eq. 2- 1} are real.

Theterm "root" is appliedto each of the
p,'s because these numbers canbe found from
the differential equation by treating the dif-
ferentiating operator d/dt as areal variable,
replacingit by the symbol p for convenience,
and setting y(t) equal to zero. The algebraic
equation that results from making such sub-
stitutions in Eq. 2-1is

i-0

(2-3)

This equation is known as the characteristic
equation. The roots of Eq. 2-3, when deter-
mined, give the p,'s of the normal response
modes of Eq. 2-2.

The classical procedure for solving con-
stant- coefficient linear differential equations
is covered in many textbooks, for example,
see Refs. 1, 2, 3, and 4 The use of more
powerful tools for treating differential equa-
tions, such as Laplace and Fourier trans-
forms, are discussed in par. 2-2.3 through
2-2.3.3. For situations where the input is
sinusoidal oris stochastic, additional special
techniques are used. These techniques are
discussed respectively in par. 2-2.4 and par.
2-2.5. Theuse of block diagrams and signal-
flow graphs is described in pars. 2-2.5.1
through 2-2.5.2.

2-2.3 FREQUENCY-DOMAIN ANALYSIS
2-2.3.1 Laplace and Fourier Transforms

Laplace and Fourier transforms5 are
typical aids for solving linear differential
equations that comeunderthe general classi-
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fication of frequency- domain analysis. They
introduce properties of system performance
that enhancethe designer's understanding and
simplify his task.

The bilateral Laplace transform of a
function is defined as follows:

RO 2 F(s) & fm e ~stf(t)di

[ Girect! (2-4)

where s is the complex frequency variable,
o +jw, and the symbolZd means "equal by
definition". The inverse bilateral Laplace
transform has the form

£ A ety
N N R = AR OLT
c”‘jm
[Inverse] (2-5)

where ¢ is a constantthat defines the path of
integration.

The single-sided Laplace transform is a
useful special case, applicable to time func-
tions that exist only fort 2 0. The transform
and its inverse are defined as follows:

A\

ey [t ] A F(s)= fme-“f(t) dt
0

[Direct] (2-6a)
A a1 I
eV [Fe) ] 7 fy = - f et F (s) ds
27TJ o
[Inverse] (2-6b)

where the subscript + signindicatesthat these
two transforms apply for positive time only.

The Laplace transform existsfora large
class of functions. For existence, it is nec-
essary onlythat the function f(t) be piecewise
differentiable (i.e., finite jumps ofthe function
f(t) are permissible) and be of exponential
order (i.e., the integral

v)

S lf(')

— 0

e~ Ctdt

is finite for any finite value of C)*%,

As already noted, the frequencyvariable
s in thebilateral Laplacetransformis a com-
plex variable. When attention is restricted
to the imaginary component jw, the bilateral
Laplacetransform becomes identical in form
withthe Fourier transform. Thus, the Fourier
transform can be considered to be a special
case of the Laplace transform.::: The Fourier
transform and its inverse are defined by the
relationships

b

FLem ] F(ju) = [ e-itf (1) di
[Direct] (2-73)

A

FTLFGOT 0 S g S e Pl ()

] [v¢)
T f e"'“'F(jw)dat
-0
(2-7b)

LInverse]

The Fouriertransform exists for a more re-
stricted class of functions than the Laplace
transform. The requirement forthe existence
of the Fouriertransform isthat f(t) be piece-
wise differentiable and that the integral

exist.

2-2.3.2 TUsetul Theorems

The following theorems are useful for
applying the Laplace and Fourier transforms
to the solution of differential equations:

Linearity Theorems

(a) ¢ [af ]
®  oletm e

cae [hn ] rse [Lm] e

=a F(s) (2-8)

x . : :
For reasons of historical development and relative complexity, the Laplace transform is sometimes introduced as a special case

of the Fourier transform.

2-3
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Real Differentiation Theorem

(C)£ [d:;it_)_] :S"F(S) - sn— 1
tn

| .

- s"m241(04) - ...

- sfln=2)(0 +)

~ ftn=m (0 %) (2-10)

. . Alim

in which f(0+) =t - 0f(t), where the
limit is approached from positive
values of t and

Real Integration Theorem

(d)

(n times) -
g[ I [;f 0 (dt)"J

ot o+

N L A R

— n ¥

Real Convolution Theorem

() ¢ [f'f, (t-T)g(?)dTJ

= F,(s) F,(s) (2-13)

where 7 1S a new time variable.

] e Tj®
@ e (0 0] -— [

277j c-j®©

(2-14)

where the notation * means that
F,(s) is convolved with F,(s).

() € [H (M1 # F (s)F,(s) (2-15)

if neither f(t) nor f,(t) is equal to
zero.

Real Translation Theorem

n—1

sn s" S
o+ ,(n-'l Hmes')
f [f L f(t)(dt)"_‘]dt
-~ — U —-C
...t s
(2-11)
Normalization Theorem
t
) o |4 <—-> (as)  (2-12)
a

This relationship is useful when it
is desired to change the time scale

of a problem.

(i) ©£[f(t-a) |=e-"sF(s) (2-16)

if ft-a) =0for0 <t <a

G) £[fttta ] -esF(s) (2-17)

if f(t+a) =0for —a<t <0

Final-Value Theorem

(k) fims F (s) =lim f(t) (2-18)

s~0 t-0

Initial- Value Theorem

lims F(s) =lim f (t)

s =0 t—0

L

Theorems (a), (b), (), (f), (g), (h), and

(k) also apply to the Fourier transform.

*Eq. 2-15 merely brings attention to a common error; Eq. 2-14 is the correct form of £ [f] (t) £, (1) ] .

2-4
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2-23.3 Solution Procedure

The solutionof ordinarylinear differen-
tial equations is accomplished by means of
theorems (a), (b), (¢), and (d)of par. 2-2.3.2.
Application of these theorems to Eq. 2-1
shows that

— n —

L';“aisi} X (s) —A(s)’t fbjsi} Y (s) + B(s)
é=0

]

(2-20)

where A(s) is a polynomial in s depending
upon the a's and the initial values of x and
its first (n-1) derivatives, and B(s) is a poly~-
nomial in s depending upon the b's and the
initial values of y and its first (m-1) deriva-
tives. The responsetransformcanbeobtained
by solving Eq. 2-20 for X(s), i.e.,

(2-21)

In words, this equation can be written
response \ _ ( system input \
transform function transform
. initial condition
function (2-22)

The ratio of the response transform to
the inputtransform whenall initial conditions
are zero (i.e., when theinitial condition func-
tion is zero) is called thesystem function or
the transfer function of the system. This
functiondepends only uponthe coefficients of
the differential equation and isindependent of
the input and the initial conditions. As will
be shown later, the transform of an impulse
function is unity. Therefore, a comparison
of Eq. 2-22 (with initial condition functionset
equal to zero) with Eq. 2-20 shows that the
transfer functionof asystem equalsthetrans-

form of the impulse response of the system
for a unit impulse.

Transforminga differentialequation en-
ablestheanalyst to replace the processes of
differentiation and integration by simple al-
gebraicprocesses. Then, the transform X(s)
can be found algebraically. Subsequently, the
system response x(t) corresponding to the
response transform X(s) canbe found by using
the inverse Laplace transform (see Eq. 2-7).
However, this inverse transform usually in-
volves contour integration in the complex s
plane. To avoid this integration, tables of
transform pairs have been constructed that
givethe time function correspondingto a given
transform directly. A brief listof commonly
used transform pairs is given in Table 2- 1.
More extensivetables canbe found inRefs. 5
and 6.

If tables of transformpairs areunavail-
able, or if the particular transform whose
inverse is sought is not listed in the tables,
the method of partial fractions may be used
to expand the transforminto a sumof terms,
cach of which is readily recognized as the
transform of a simple time function. If the
transform whose inverseis sought is a ratio
of rational polynomials, the roots of the nu-
merator polynomial are called the zeros of
the function and the rootsof the denominator
polynomial are called the poles::: of the func-
tion. If the poles of the function are not re-
peated, they are called simple poles. The
order of a pole is the number of times the
pole is repeated. For a function containing
only simplepoles, the partial-fractionexpan-
sion of the function is

A Nis) 7 K
F(s)T —=Y  —— (2-23)
Dis) 5 s-s,
where
A (s—sk)N(s)
K, = [ 1 { Nis) ] (2-24)
D(S) sy D(S) s=5

and sy isthekth root ofthe denominator poly-
nomial D(s).

* A function F(s) that can be represented by a ratio of polynomials is said to have a pole ats =sy of order n if lim  F(s) =coand if
S -» Sk

[(S_Sk)n F(s)] _ . Is finiteand not zero. The function F(s) is said to have a zero ats =5 if lim  F(s}) = 0.
s =5y S sk
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TABLE 2-1. COMMONLY USED LAPLACE TRANSFORM PAIRS.
No. F(s) fiH,t=0
1 1 8 (t), unit impulse
2 —; 6-, (t), unit step
1 .
3 ; 8., (t),unit ramp
1 1 e!'T
t Ts 1 T
w .
5 m sin tot
s
6 m cos of
S S— M 1<l — 2 e sinw, = GF
$* + 20w,8 + w,* ’ D1 = i K *
7 (2) L=1: temat
(3) t > 1: E—\/_‘Q}:- E“I;"'"r sin tu),, \/t_2 — 1t
1 1 .
8 _— = e gin fit
(s +a)? + p° B i
S+ a )
9 ——(S+a)’+ m es' cos fit
0 |+ e
s" (n—1)!
1 |
1L (Ts 4 1) n—1)! T

If the transform contains multiple- order
poles, the partial-fraction expansion of the
function is

F(s) 2

N(s n ™k i
Z JZ? - Skmk_“] (2-25)

where

¢ A 1 .‘ Ji—1 [(s—sk)"'uN(s)](_
M-t ] dsin? D(s)

-

(2-26)

and my is theorder of the pole of F(s) at s=s,.

From Eqgs. 2-23 and 2-25, it is obvious
that the expansion of a rational function that
is inverse transformed produces a sum of
exponentialterms forthe correspondingtime

2-6

function. Terms containing simple poles, as
in Eq. 2-23, may be inverse-transformed by
the use of transform 4 of Table2-1. For
multiple- order poles with real roots, trans-
form 11 is employed. More commonly, the
multiple- order poles appearin complex con-
jugatepairs; in this case, transforms 8 and 9
arc employed, and the time functions are com-
bined to form product terms (exponentials
multiplied by a sine or cosine function) rep-
resenting damped sinusoids.

Analternative tothe partial- fraction ex-
pansion methodis the method of residues. If
F(s) has a simple pole at s=s,, then the res-
idue ¢(s,) is given by the relationship

N (s)
) D(s)

#s,) = (2-26a)
(s-s,
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and theterm of f(t) corresponding tothatpole
is (p(sk)eskt . The complete time function is
the sum of the residues of F(s) multiplied by
eS' for all the poles. For multiple-order
poles, the residue formula ig??

1 2 : ) N{(s) '
ﬁ(s) - [ ———aeT e T - i }
T T Lase T D)

n—1

s—ﬂ

(2~26h)

where n is the order of the pole. Eq. 2-26b

reduces to Eq. 2-26a forn = 1.

Example. The system defined by the
equation
d4x d3x d2x dx
— t10.65 —t89.0 — ¢+ 1550 — +27 0x =27.0y
di4 dit3 dt2 dt

(2-27)

isinitially atrest. Att = 0, a unit ramp input
is applied. Find the difference between the
input y and theoutput x as a functionof time.

Solution. Since thesystem isinitially at

rest, all initial conditions are zero. Trans-
forming Eq. 2-27 results in
27.0
X(s) = Y (s)
s4 ¢ 10.65s% £89.0s2 1 15505 + 27.0
(2-28)
Let
e(th=y(t) - x(t) (2-29)

Then, transforming Eq. 2-29 and substituting
for X(s) from Eq. 2-28 gives

s[s® ¢ 10.65s2 + 89.0s + 15.501
E(s) = Y(s

s4 + 10.65s3 + 89.0s2 + 15.50s + 27.0

(2-30)

Determination of the solution of Eq. 2-30 re-
quires that the denominator of the equation
be put in factored form. Unfortunately, de-
termination of the roots of equations of order
higher than the third is difficult unless the
roots happen to be real. One of the methods
best suited to paper-and-pencil computations
is Lin'smethod”. Thisisadivisiontechnique
in which a trial divisor is assumed and re-

fined by repeated trials until a factoris found
to the accuracy desired.
Consider an equation of the form

sn—Z

s" B _s"'+ B
n— n—2

+...1tB;s?rB;stBy =0 (2-31)
The first stepwhennisevenisto selecta trial
divisor formed from the last three terms.
This divisor takes the form
B, B,

s?2+—s i —

B B,

2

(2-32)

This is divided into the original equation as
follows:

Cis?iCis - Gy

Dys?  Dys » Dy

Remuinder

If the remainder is negligible, then the
divisor selected is a quadratic factor of the
original equation. If the remainder is not
negligible, then a second trial divisor is
formed as follows:

2 C1 CO
s24—s +—

2-33
c c ( )

2 2

where the C's are determined from the pre-
ceding division. The second trial divisor is
divided into the original equation as was the
first. If the remainderis negligible, the sec-
ond trial divisor is a quadratic factor of the
original equation. If not, the processis again
repeated. After one factor is found, the
method is applied inthe same way to the re-
sulting polynomial, whichis now of ordern-2.
When the highest power of the original

equation is odd, a linear factor of the form
)

5 (2-34)

1

is taken as the trial divisor.
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This method maybe applied to find the
roots of the denominator of Eq. 2-30 as fol-
lows:

The first trial divisor is

15.50 27.0
s +—— =52 +0.174 s + 0.303
89.0 89.0
This is then divided into the original equation
to give

s? t

s+ 1048s 869

s? 101745+ 0303 s* 4+ 10.65s* " B9.0s? - 1550s + 270

s+ 0174s% 1 030357

1048s? +887s? + 1550s
1048s? + 18s? -+ 318s
869s2 12325270
86%s2 15125 + 263
280s - 07

The second trial divisor becomes

12.32 27.0
s+ ——=s52+0.142s + 0.311

86.9 86.9

st

Division then yields

524 10.51s + 872

s+ 01425+ 031 s4410.65s% 1 89.0s2 + 1550s 1 27.0
s* 4 0.14s%+ 03s?
1051s% - 88752 + 15508

1051s" 4+ 1582+ 327s

8725’ + 12235 - 270
872s% 4 1238s + 2712

- 015s - 012

The remainder is such that the greatest
error inany term is 1%. This is sufficiently
small for this example; so now the denomi-
nator may be written in factored form as

(s2 +0.1425 + 0.311) (s2 + 10.51s + 87.2)

The roots of each of these quadratics may now
be found by application of the quadraticform-
ula.

At this stage, it is possible to write Eq.
2-30 in the factored form

s [s* + 10.65s + 89.0s + 15.501

E = Y (s)
(s) (s2 +0.142s + 0.311) (s2 + 10.51s ¢ 87.2)

(2-35)

Since it i1s desiredto evaluate E(s) when y(t)
is a unit ramp applied at t = 0, the transform
of the unit ramp is found from Table2-1 and
substituted in Eq. 2-35. Since the transform
of a unit ramp is 1/s?, the result is

s¥ ¢ 10.65s" + 89.0s £ 15.50
s{s2+0.142s +0.311) (s2 ¢ 10.51s + 87.2)

E(s) =

(2-36)

The inverse transform of E(s) is found
by reducing the expression for E(s) into the
sum of a number of terms for each of which
the transform is known or can be obtained
from a table. This means that a partial-
fraction expansion of Eq. 2-36 must be made.
This expansion * takes the form:

KKK K

€ . ¥ ©(2-37)
S_S-I sS—Ss 5_52

s $75,

[ K, and K1* are complex conjugates:l

.
K.‘, and K.‘, are complex conjugates

since the roots of eachof the quadratic terms
are complex conjugates, i.e.,

$1T Tt oy ST Tt jay
. . . (2-38)
Sy - -a - jay 52*7-6124']“)2

The undriven or transient response of
any systemwhose characteristic equation is a
linear constant- coefficient differential equa-
tion with real coefficients takes the form:

-o.t —cot
c(t) =kee Vike Tro.. . + Keatiept

- — il -— +.
+ K.*e( qTiet, K.e' ™ fent
k(=0 Tt
tKye NN (2-39)

E3
It is important to note that a polynomial equation with real coefficients has pairs of conjugate zeros, but this is not the case for
polynomial equations in general. Example: 22+ (j~2)z-2j = 0. This polynomial equation has 2 and-j as the only possible zeros.

2-8
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where Kj and K.» are complex conjugates;
i=1,2, v, N.

The constants K; and K;* in Eq. 2-37
(i=1,2) are therefore complex conjugates
and may be written as

Ki:ui+jbi and Ki’:oi_Jbi (2-40)

Insertion of the expression of Eq. 2-38

and Eq. 2-40 into Eq. 2-37 yields

k a, + jb a, - jb
E(s) S, 1 1 1 1.
s (s +a) ~je, (s+a)tjo
o, * jb, a,~ ib,
(s a) ~je, (s*a)tje (2-41)

The terms with complex conjugate roots can
be combined to yield

k 20] (s + a.l) - 2b1w1 202(5 + {72) - 252,@2
+

E(s) =— +
s

2

(S + a1)2 + ca.lz (s + 02)2 T wy

(2-42)

The valuesof a,, by, a3, and b, are found in
the usualmanner following Eq. 2-24. The re-
sults, in general, are complex numbers and
the real part is associated with the a; terms
and the imaginary part with the b;terms in
accordance with Eq. 2-40.

In the example at hand, the quadratic
terms in the denominator may be factored
usingthe quadratic formula. The results are

=+ 0.071 o =+ 5.26
(2-43)
w, = 0.553 = 172
K, may then be found as
o)
K],u1 ¢ jb, (s - sy) ——
D (s}
{s* + 1065s - 89 0s + 15 50) (2-44)

s{s 1 0071 +;0553)(s? - 1051s + 87D

s =0071+405353

*
A phasor is a directed line segment in the complex plane.

Straightforward substitution of s = s, entails
considerable manipulation. This may be
simplified by reducing the expression forky
to its completely factored form and then em-
ploying an evaluation scheme 'based upon a
graphical approach. In factored form, after
substitution of s = s,

(s, £ 0178) (s, + 524 ~ |7 73) (s, 5 24 - |7 73)
s, (s, + 0071 4,0553) (s, + 526 - 772 (s, + 526+ ;772

K

1

(2-45)

The roots of Eq. 2-45 appear in the s-plane
as shown in Fig. 2-1.

It is now possibleto evaluate K yinterms
of the length and angle of the phasors* drawn
to the root s| from the other poles and zeros
of the function; i.e.,

) (056 /79.1°) (944 [61.3°) (849 /302 3")
(0557 /973°) (1 11 [30°) (885 /3059°) (976 /5797

0840 [-108 4" -0265-;0797 a, + b, (2-46)
Then
Ky =0840 /4 108.4' =-0.265 +j0.797 =a,-jb,
(2-47)

Similarly, K, and K, * can be found to be
K =229x1074 [111° =(-0.82 - j2.14) x 10”4
=a, + b, (2-48)

Ky =2.29%107¢ [=111° =(-0.82 ~j 2.14) x 107 ¢
(2-49)

=0, ~jb,

Substitutionof these values of a;, by, a,, and
b, and the value of k, into Eq. 2-42 yields

With the segment's point of origin given, the phasor is defined ecither by

a magnitude and an angle (the symbol £ denotes angle) or by the real and imaginary components of its terminal point.

2-9
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0572 2(-0265) (s + 0071) -2(-0 797) (0 553)
s {s 1 0071)7 + (0 553)2 a

2(-082x1074) (s + 526) -2(-2 14x10"4) (7 72)
(s + 52621 (772

4

0572 -0530(s + 0071) 0 881
0572 B
® (s +0071)2 - (0553)2 (s +0071)2 1 (0 553)2
164x1074 (s 1 5 26)

3304xp4
(s 1 526)2 + (172)2 '

+

(2-50)

(s + 5262 (1702

Figure 2-1. Locations of the roots of

Eq. 2-45 in the s-plane.

Each of these terms is now in a form that
appears directly in the tablc of transforms.
It is,therefore, nowpossible towrite directly

e(t) =0.572 - 0.530e %7 'c5s 0.553¢

0.881
0.553

+ e~ 99711 gin 0.553 ¢

—1.64x10 4e~5Btc057.721

33.04x107¢
7.72

e 52t gin 7.72¢

=0.572 + e 70071 [— 0.530 cos 0.553 ¢ 4

stan0%3{]+e4%'[—musm77m
- 4.28 cos 7.72t] x1074

=0.572 1 1.679e 097155 (0.5531 - 108.4")
t 4.584e~5%1 cos (7.72t - 249.0°) x 10~ 4

(2-51)

2-2.4 FREQUENCY-RESPONSE
TECHNIQUES

It is often important to find thc output
response x of a system to a sinuscidal input
y. For a sinusoidal input, A sin(wt * ¢y ), the
output of the systcm will also be sinusoidal,
after the transients have died out, i.e.,
A sin{wt+ ¢ ). The amplitude and phasc
angle of the output rclative to the input are
then dependent only upon W(s), thc transfer
functionofthe system, and can bc dctermined
by letting s = jw in thc transfer function,
where w is the frequency (in rad/sec) of the
input sinusoid. The ratio of outputamplitude
to input is then given by

(2-52)

where A, is the output amplitude, AY is the
input amplitude, and W(jw)is the transfer
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function of the system evaluated forreal fre-
quencies. The phase angle of the output ¢y
relative to the phase angle of the input ¢, is
given by

(2-53)

where / W{i«)is the argument (phase angle)
of the transfer function.

When the transfer function of a system
is evaluated as a function of frequency for a
sinusoidal input, the complex functionthat re-
sults is calledthe frequency response of the
system.

2-2.5 BLOCK DIAGRAMS AND SIGNAL-
FLOW GRAPIIS
2-2.5.1 Block Diagrams

Eqs. 2-20 and 2-22 demonstrate that,
with zero initial conditions, the transform of
the output of a system can be expressed in
terms of the input transform and the system
function. The system function can be thought
of as an opcrator, i.e., the system function
operates on the input transform to produce
the output transform. In a similar manner,
the system operates on the input to produce
the output in the time domain, the operation
being defined by the convolution integral and
depending only upon the impulse response of
the system. The concept of an operator is
presented pictorially by the technique shown
as operational block diagram algebra. The
block diagram of a system is the pictorial
representation of the mathematical opera-
tions involved in the differential equations
that describe the system.

Table 2-2 presents a list of symbols
used in the block-diagram representation of
a system and Fig. 2-2 summarizes some of
the reductions that enable one to simplify or
reducetheblock diagrams of a system. Since
the block diagram contains nomore informa-
tionthanthe differentialequations, the manip-
ulation of a block diagram is merely a pic-
torial process of manipulating the differential
equations. The advantage of ablock-diagram
representation is that the operational rela-
tions in a systemare emphasized ratherthan
the hardware. By becoming familiar with
common block arrangements, the designer

TABLE 2-2. BLOCK-DIAGRAM SYMBOLS.

Symbol I Description I Operation I
X vorioble —_—
———pe-

operator Y = AX

X Yy | summing point [ Y = X — W
+

-t W
X X -

splitting point | X = X

multiplier Y = XZ

caninterpretthe function of various elements
in a systemmuchmore rapidly than wouldbe
possible from aninspection of the differential
equations.

Example. A servomotorcrivesan iner-
tialload coupled to the motor through a flex-
ible shaft as shown schematicallyin Fig. 2-3.
The transformed equations of this system
are

T, U st +ts) g +K(E-4)  (2-54)
and
K{g-q)=J.s%q + T, (2-55)
where

T. = motor-generated torque
J, = motor moment of inertia
f, = motor damping
» = angular displacement of the motor

end of the shaft
K = shaft stiffness (spring constant)
= angular displacement of the load

end of the shaft
J =load moment of inertia
= externally applied load torque

and s is the complex frequencyvariable. The
damping of the flexible shaftisassumed to be
negligible. Drawtheblock diagram of the sys-
tem and reduce the diagram, keeping the

2-11
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RULE ORIGINAL DIAGRAM EQUIVALENT DIAGRAM
1 —_— A L ——l A f—
—F—'.' A
-
, — s.B —
+
B
+
A - -
+
- . A
3 v+ AB
B |
. +
‘ ﬁ
+
- A
A a——
5 —_— A
+
- 1
ry
Figure 2-2. Block-diagram manipulation and reduction "rules'. (Sheet 1 of 3)
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RULE ORIGINAL DIAGR AM EQUIVALENT DIAGRAM
"EA g g
6 - o A S ‘L
o )
A
. S A o
7 ——— A e - T
8 an -+ —
]
+
w + z
9 > /—2\ ¢\ b2
+
X
Y
W Y
0 (t) N
w
X
Figure 2-2.

Block-diagram

manipulation and reduction "rules".

(Sheet 2 of 3)
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— - e — ]
. RULE ORIGINAL DIAGRAM EQUIVALENT DIAGRAM :
w
11 o
X
y
12 o B
) !
+ —
r4 v z
A
< - 2i:
C - -4 - _ Y
WHERE A, = AC - BD
5 A
A=
& 52
B
13 D
z Y
—f— st =
2
WHERE A, = 1 - ABCD
Figure 2-2. Block-diagram manipulation and reduction "rules". (Sheet 3 of 3)
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SERVO-
MOTOR
m

Figure 2-3.

GLLLL ( D

Mechanical schematic diagram of a servomotor coupled to an inertial load

by means of a flexible shaft.

motor angle 8, and the load angle 6; in
evidence.

Solution. The block diagram of the sys-
tem is drawn in its "primitive" form in Fig.
2-4(A). The successive steps necessary to
reduce the "primitive" diagramtothe desired
form are showninFigs. 2-4(B) to 2-4(I), with
the rules used for cach step indicated below
each step.

. 8,9, 44
2-2.52 Signal-Flow Graphs

An alternative procedure for represent-
ing the differential equations of a system
pictorially is Mason's signal-flow graph

represented by points called nodes and
transfer functions are represented by direct-
ed lines or branches called transmittances.
The distinction between the summing points
and the splitting points of block-diagram al-
gebra is eliminated in the signal-flow graph,
The rules for drawing a signal-flow graph
are as follows:

(a) Signals travel along branches onlyin
the direction of the arrows.

(b) A signal traveling along any branch
is multiplied by the transmittance of that
branch.

(c) Thae value of the variable represented
by any node is the sum ofallsignals entering

method. In asignal-flow graph, variables are the node.
—~ +
W
+
J, 52
4
T, .
PR = =
+ fm® 6,
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1 o
Jmsz +is 0 + K
(C) Use of Rule 3 of Fig. 2-2
o r
ol 5
\\__/ Jm52+ fmS
+
(D) Use of Rule 11 of Fig. 2-2
. > 0
3 st t s K -
m ﬁm
K -

Figure 2-4. Block-diagram examples. (Shcet2 of 3)
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L™
5

-
L

Y

Y
=

Ls?

(F) Use of Rules 6 and 8 of Fig. 2-2

4.5 I —

Figure 2-4.

o 0 O O L
1 524k s 5 S W S
(H) Use of Rule 1 of Fig. 2-2
J\_sz =
1 K o
_ _ Kk L
JsT4 4 s Jes?eX

(1) Use of Rule 1 of Fig. 2-2

Block-diagram examples. (Sheet 3 of 3)
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(d) The value of the variable represented
by any nodc¢ is transmitted on all branches
leaving that node.

Examplc. As an example of this proce-
dure, the two equations

X, ='01X0+ t"x1 + 12])(2 (2-56)

Xz~ loa%e T Xy T taXy (2-57)
are represcnted by a signal-flow graph in
Fig. 2-5.

For convenience, the signal-flow graph is
usually drawn such that no branch enters an
input node or leaves an output node. This is
accomplished by introducing an additional
node connected by a unity-transmittance
branch to cach input and output node as shown
in Fig. 2-5, where the input node is assumcd
to be x_, and the output node is assumed to be
X

0

The order of a signal-flow graph is a
mecasure of the number of independent feed-
back loops and thus indicates the complexity of
the system. The order of the signal-flow
graph is th¢ minimum number of essential
nodes-- those nodes that must be removedto
climinate all feedback paths. A node is re-

moved cither by sctting the variable asso-"

ciated with thc node equalto zero or by delct-
ing all branchcs leavingthe node. Signal-flow

Signal-flow graph in threc
variables.

Figure 2-5.

2-18

graphs of orders one and two arc shown in
Figs, 2-6 and 2-7, respectively. The signal-
flow graph of Fig. 2-5 is of order two, the
essential nodeg being x; and x,.

The reduction of signal-flow graphs is
accomplished by application of the following
rules:

(a) Two parallel paths may be rcplaced
by a singlc path with a transmittance equalto
the sum of the two original transmittances
(sce Fig. 2-8).

(b) Two cascaded paths are equivalentto
a single path with a transmittance cqual to
the product of the two originaltransmittances
(seeFig. 2-9).

(¢c) The termination of a branch with
transmittance t can be shiftcd one node for-
ward by th? following steps (sec¢ Fig. 2-10):

(A) Original Graph

Xin X, (x,) X, Xout

(B) Essential Node Removed

Figure 2-6. Signal-flow graph of order one.
Xin Xy Xy X3 X, Xout
(A) Original Graph

L ]
Xin (xy) X3 X, xp Xout
(B) Essential Nodes Removed
Figure 2-7. Signal-flow graphof ordcr two.
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(A) Original Graph

(B) Equivalent Graph

Figure 2-8. Signal-(lowgraph showing addi-
tion of parallel branches.

(B) Equivalent Graph

Figure 2-9. Signal-flowgraph showing mul-
tiplication of cascaded branches.

(1) Determine all the branches leaving
the original terminating node x of branch t.

(2) Draw new branches fromthe starting
node x ; of branchttothe terminatingnodes of
all the branches leaving the terminatingnode

(3) To each of thc new branches thus
drawn assign a transmittance equal to the
product ofttimes the transmittance froinnode
x to the node on which the new branch termin-
ates.

(4) Eliminate the original branch t.

(5) Change the variable of the original

nodce X to x' =x - txo.

Xy
(A) Original Graph = t to be Moved From x to Xy
%
(8) Steps (1) and (2) - Introduction of New
Branches
X, -

X e X - 1%

(c) Steps (3),(4), and (5) = Elimination of Old Branch;
Labelling of New Branches, Change of Variable at
Terminating Node of Old Branch

Figure 2-10. Signal-flowgraphshowingter-
mination shifted one node forward.

(d) The starting point or origin of a
branch with transmittance t canbe shifted one
node backward by the following steps (seeFig.
2-11):

(1) Determine all the branches entering
the original starting node x of branch t.

(2) Draw new branches fromthe starting
nodes of all the branches entering starting
node x to the tcrininating node X ; of branch t.

2-19
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Xy

(A) Original Graph - t to be Moved From x to x

B Steps (1) and (2) = Introduction of New
Branches

(C) Steps (3) and (4) = Elimination of Old Branch and
Labelling of New Branches

Figure 2-11. Signal-flow graph showing ori-
gin shifted one node backward.

(3) To ecach of the new branches thus
drawn assign a transmittance cqual to the
product of t times the transmittancc from the
node at which the new branch startstonode x.

(4) Eliminate the original branch t.

2-20

(c) A self-loop with transmittance t of a
node x can be removed by dividing thetrans-
mittances of all branches entering node x by
(1 - t) and climinatingthc loop (seeFig. 2-12;
in this figure, t = t,,, where the first sub-
script denotes the nodc on which the branch
originates and the second subscript denotes
the node on which the branch terminates).
Note, in rule (c), thata sclf-loopis created at
node x, for a branch starting from the ter-
minating node x of branch t and ending on the
starting node xgofbrancht (Fig. 2-10 doesnot
happen to have such a branch). In rule (d), a
self-loop is created at node x; for a branch
starting from the terminating node x; of
branch t and ending on the starting node x
of branch t.

As an example of thereduction of signal-
flow graphs, the various stepsinvolvedinre-
ducing the second-order signal-flow graph of
Fig. 2-5 are shown in Fig. 2-13.

10, 11
2-2.6 STATISTICAL THEORY

The response r{t) of a linear systemtoa
stochastic input cannot be expressed as a
specific function of time. The only way to
describe system behavior in the presence of
stochastic inputs is in tcrms of the statistics
of the input and the response. Theoretically,
an infinite number of statistics isrequiredto
describe a stochastic process completely.
Practically,” however, only a few statistics

arc used.
22
X e X3 tys X3
(A) Original Graph
X, X,
X, _L ty3
1=ty
(B) Equivalent Graph
Figurc 2-12. Signal-flow graph  showing

elimination of a sclf-loop.
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As discussed in Chapter 4 of Ref. 49,
probability density functions are directmea-
sures of the chance of occurrence of certain
events in a stochastic process. The first
probability density function of the stochastic
variable r{t)* is denoted and defined as fol-

Xin 1 lows:
py (ry, 1) Al probability density func-
tion expressing the prob-
(A) Original Signal-Flow Graph (Second Order) ability that the variable
X, tyy has a valuc r at time t,
i =1,

Similarly, the second probability density
function is denoted and defined as follows:

L Xo o1 $ out A . .
— py (ry, 1y 1y By = probability density

function cxpressing
(B) .Reduction to First-Order Graph the probability that
by Eliminating Self-Loops the variable has a
value r, at time t,
and also a wvaluc r,
at timce t2

In practice, only these first two probability
density functions are used. For a stationary
stochastic process, the first probability den-
h;l%} . sity function is independent of the timet 54the
W= TylT = tg9) second probability density function is a func-
tion only of the time difference (t, - t;).
Two commonly used probability dcnsity
functions are the normal distribution and the
Poisson distribution. The normal distribution

1 Xour

t
(C) Movement of Branch (T——

2
)Termination From
22

Node X 2 to Node x 1

foatar + tor (! ~ 1z} is given by
(=t~ 1)
X,

X 1 X : 1 Xour 1/ -7\2

.- (2-58)
[(—1 i, )} plr) dr
- T2 L"V 27T
hes Combined . . -
(0) Gaseandiand Paraliel Branches Combine where p{r)dr is the probability of finding r be-
[ toatar * to1(1-tg2) ] tween r andr * dr, F is the mean valuc of ©
(T - G - t)) - tyaty (to be definedbelow), and ¢ is the standard
> - > - > deviation of r (tobe defined below}. The Pois-
Xin 1 Xo X, 1 Xpyt

son distribution is given by

(E} Reduction to Zero-Order Graph

by Elimination of Self-Loop A
(LAnN g =0

Figure 2-13. Signal-flow graph showing P (N, At) = NI

reduction of sccond-order graph.

(2-59)

*
The stochastic responsc variable r{t) should not be confused with the radial quantity r in the polar coordinate system (r, §,¢) cm-
ployed in Chapter 4 of Ref. 49.

2-21
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where p(N,At) is the probability of finding N
events in a time interval At, and v is the av-
erage frequency of occurrence of the events.
In general, the average or mean value of
a stochastic variable r is given by
+a

/\&
7 -‘f r p(r,1) dr

- &

(2-60)

For a stationary stochasticprocess, the mean
value is independent of time and can also be
found from

+r

P2 dim L f F(1) dt

i ) (2-61)

The mean-square value of a stochastic
variable or process is given by

(2-62)

For a stationary stochastic process, the
mean-square value is also given by
R
r? () dt (2-63)
TR 2T g @
The root-mean-square (rms) value is the
square root of the mean-squart value.
The variance v of a stochasticprocessis
given by
v & iy )T (2-64)
The standard deviation ¢ is the squarc root of
the variance. It can be expressedinterms of
the mean value and thc mean-squarevalue as
follows:
— 2
2=,z [7] (2-65)
In most applications, rms wvalues and
mean values are the most common statistics
used. To aid in the determination of these
guantities, statistics called corrclation func-
tions arc used. The autocorrelation function
(T) of a stationary stochasticprocess r(t)
1d'defined as the mean value of the product of
the function r at time t by the function r at
time t + 7, i.e.,

A —
¢ lT) = r@rti T (2-66)
fim ! al
Tw; f ririt + 7 dt
(2-67)

The crosscorrelation function gzﬁm (T) between
two stationary stochastic processes r(t) and
u(t) is defined as the mean value of the prod-
uct of the function r attimet by the function u
at time t 7 i.e.,

A

¢ o) S et o)

ru

(2-68)

lim

f r(Nult+)dt (9-69)

From the definition of the autocorreclation
function (Eq. 2~66), it is evident that the
mean-square value of a stochastic process
equals the value of the corresponding auto-
correlation function with zero argument, i.c.,

(2-70)

Useful properties of the correlation func-
tions arc as follows:

(a) o (7) = ¢, (=7) [even function] (2-71)

(b) Lot 1= 0 (2-72)

() im0 (2-73a)
im p ()= 12 () (2-73b)

Jﬂ% ¢, (7)> i (7)| for= 20 (2-73c)

li.e., the maximum aiways occurs at 7 - 0}

() o (3) =4, (-7) (2-74)

(e) |4, () } = \ ¢, 0 ¢, 0 (2-75)
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(f) .
Jme by, (1) =0 (2-76a)
lim g, () =0 (0 u () (2-76D)

A few examples illustrating the use of
autocorrelation functions follow. If r(t) is a
rectangular wave with values + 8 or - and
with zero crossings located at even points
that are Poisson-distributed in time with an
average frequency of vV, the autocorrelation
function of the process is given by*

-2 |7
eI

(2-77)

If r(t) is a rectangular wave with ampli-
tude values distributed in any fashion and with
ZEro crossings located at event points
Poisson-distributed in time with an average
frequency ¥, the autocorrclation function of
the process is given by

= 52 + 52

Goln) =otemvIT

(2-78)
where ¢ is the standard deviation of the amp-
litude distribution, and r is the meanvalue of
the amplitude distribution.

If r(i) is a train of identical finitepulsecs
whose starting points are Poisson-distributed
in time with average frequency V; the auto-
corrclation function of the process (knownas
‘‘shot noise™) is given by

-+HC

fyf(e+7)dt ¢r2 (2-79)
L
where f(t) is the time variation or waveform
of a single pulse and r is given by
+w
r :vf f(t) dt
—
If r(t) is pure or “white” noise, the auto-
correlation function is given by

(2-80)

113

(2-81)

# The derivation of Eq. 2-77 is too lengthy to repeat here.

where y is a constant that depends onhow the
process is generated and §,(T) is a delta
function whose value is unity at 7= 0 and is
zero for all other wvalues of 7. Thus, if
“white” noise is considered as a limiting
case of shot noise generated by exponential
pulses of amplitude A and time constant T
(where the amplitude approaches infinity and
the time constant approaches zero with the
arca S under the pulseheld constant), then the
constant y is given by

»S

y o= = (2-82)

2
where v is the average frequency of occur-
rence of the pulses.

Because the correlation functions are
completely defined as functions of a time
variable T, they are Fourier transformable.
By convention, 1/27timesthe Fouriertrans-
form of a correlation function is called a
power spectrum or a power density spectrum.
Thus, the power-density spectrum @rr (s) of
a stochastic process is defined as

-l T 0

N>

(2-83)

®_(s)

rr

2

The cross-power density spectrum between
two stochastic processes r(t) and u(t) is de-
fined as

-l + 0

N -
@ru (s) = [ e~s7 leru (r)d + (2-84)

24

Given the power spectra, the corresponding
correlation functions can be found by inverse
transformation, i.c.,

'I chw (2_85)
b lr) =— f ®,. (s) e*7ds
J c—j@
1 ety
J c—j®

See page 221 of Ref. 45 for a complete derivation.
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In terms of the power-density spectrum, the
mean-squarc value of a stochastic process
can be found by evaluating the following in-
tegral:

+ 00
f ®,, (s)ds
-@

Useful properties of the power spectra are

(2-87)

® (s) =

re ‘I’,, (-s) (even function)

(2-88)

(2-89)

With some of the statistics of stationary
stochastic processes havingbeen established,
the response of a linear system toa stochas-
tic input can now be described. I ¢, (T) is
the autocorrelation function of the input r(t)
of a linear system whoseimpulseresponseis
w(t), the autocorreclation function of the output
c(t) is given by*

bee (1) =

f dt, w (t,)[ dt, w(ty) &, (741, -t,)

(2-90)

The crosscorrelation function between the in-
put and the output is given by

REee]

¢ye (r) = f dt w (1) &, (71 (2-91)

which can be recognized as a convolution in-
tegral.

Extending the description of the stochas-
tic response of a linear system to the fre-
quency domain, if W(s)is the transfer function
of the system and® , (s) is the input power-
density spectrum, the output power-density
spectrum is given by

D (s) =W(s)W(-5) @, (s)

cc

(2-92)

The cross-power-density spectrum between
input r(t) and output c(t) is given by

' (s) = W(s) @ (s) (2-93)

or
S ,(s) = W(-s) @ (s) (2-94)
If 4(t) is another signal and . (s) is

the cross-power-density spectrum between
1(t) and the input r{t), the cross-power-
density spectrum between L(t) and the output
c(t) is given by

® (s) =

e Wis) @, (s) (2-95)

(s) (2-96)

(s) =W(-s)

cpl [F53

In summary, once the properties of a
stochastic process are expressed interms of
correclation functions, the analysis of system
behavior is a straightforward problem that
can be treated through the use of the defini-
tions and properties of the correlation func-
tions andtheir transforms, the power spectra.
In particular, where rms values are of in-
terest, Eqs. 2-70 and 2-87 are of great use.

2-2.7 NONLINEAR ANALYSIS 2-9

2-2.7.1 General

All of the techniques of system analysis
discussed in previous paragraphs of this
chapter are restricted in their application to
linear, time-invariant systems. This lin-
carity restriction imposes two limitations on
design. First, components must be of high
quality if they are to operatecinalinear man-
ner when amplitudes and frequencies of sig-
nals vary widely. Second, the linearity re-
striction limits the realizable system
characteristics, the types of systems, andthe
tasks that can be acomplished.

Whereas techniques for the analysis and
synthesis of linear time-invariant systcms

*
See pages 331 and 332 of Rel. 45 for the derivation of this relationship.
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arc well established and generally adequate
to handle most of the problems met in prac-
tice, this happy situation does not existinthe
casc of nonlinear or time-varying systems.
A number of techniques are available that
give more or less satisfactory results, but no
really unified general theory for nonlinear
systems exists -- anditis doubtful thatit will
for many years to come, if ever. Many quite
ordinary situations exist for which there are
no really satisfactory solution techniques.
These factors make the analysis of nonlinear
systems very interesting, but sometimesvery
frustrating.

Before proceeding further, it is inordcr
to define specifically what is mecant when a
system is termed nonlinear. Unfortunately,
this is not easily done. Infactit is necessary
to look first at the definition of a lincar sys-
tem and then proceed from there.

The most fundamental characteristic of
a linecar system is that it obeys the principle
of superposition. Thisprinciple canbe stated
in the followingterms: Thetotal responscof a
linecar system is the sumoftheresponses due
to all the applied inputs acting individually
because cach applied input produces a re-
sponse independent of the response to any
other applied input. This same criterion for
linearity applies whether or not the system
parameters are timce varying. Mathematic-
ally, a system is linear if the expressionre-
lating the input and output variables involves
only first powers of the input and output
variables and their derivatives.

This principle is usually stated as fol-
lows: If an excitation A, produces an effect
B, and an excitation A, produces an effect
B, when each is applied independently, then
the system is linear providing that for the
simultancous application of A, and A, in any
proportion the cffect is made up of B, plus
B, in the same proportion. Thus,

if kA, (1)~ k, B, (v

and  k, A, () = k,B, (1)

then kAL () + kA, () - k,B, (1

+k, B, (1)

At first glance, it might apptar thatthe output-
input relationship for the circuit of I'ig. 2-
14(A) violates this definition of a lincar cir-
cuit, whereas one certainly has the firm con-
viction that such a circuitmust be lincar since
it includes only lincarresistors and a battery.
Consideration of the output-vs-input curve of
Fig. 2-14(B) shows that a simple change in
variable would translate the curve to the
origin and that in terms of this new variable
the definition of superposition as given is
indeed valid. Itisnecessarytorecognize this
possibility as it is the basis for the study of
nonlinear systems by piccewise lincar tech-
niques.

Consider for a moment what the conse-
quences are of being fortunate enough to be
dealing withalinear system. In additionto the
fact that the mathematics associated withlin-
ear systems are relatively simple, it should
be noted that lincar systems allow great
freedom for the ecxperimentalist., A truly
linear system can be tested with any one of a
variety of convenient test signalssuchasim-
pulses, steps, or sinusoids. Furthermore,
the observed system characteristics are in-
dependent of the amplitude of the test signal
used. Unfortunately, no real physical system
is entirely linear and, asaresult, attempts to
increasc the lincar range of operation of a

(A) Simple Circuit

ezfﬂ,,’,//f/
E

-

(B) e, vsey for Simple Circuit

Figure 2-14. A simple circuit and its
associated input-output relationship.
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system usually lead to a requirement for
components with larger power ratings or
higher quality. Consequently, in spite of the
attractiveness of linear systems from the
analysis point of view, the designerisbecom-
ing increasingly interested in nonlinear sys-
tems -- first, because he is unable to build
systems that operate entirely in the linear
range, and second, because he can obtain a
more satisfactory solution to some problems
by the intentional introduction of nonlinear
components in a system. A contactor servo
might be thought of as a typical example.

Several additional characteristics pos-
sessed by a linear constant-coefficient sys-
tem should be noted. First, the output of a
linear constant-coefficient system cannot
contain components atfrequencies not present
in the input. Second, the question of stability
is clearly defined and the stability or insta-
bility of a system is not dependent on the
driving function or anyinitial conditions. For
the general nonlinear systems, however,
neither the principle of superposition nor
these other characteristics are valid.

Linear systems with time-varying coef-
ficients represent an intermediate case. The
principle of superposition can be extended to
include this type of system but, on the other
hand, it may notbe possible to obtain a simple
answer to system stability. Infact, the ques-
tion of stability may have no significance.

The analysis of constant-coefficient lin-
ear systems isrelatively simple and a variety
of techniques has been developed for handling
such systems. During the past ten years,
transform techniques (see par. 2-2.3.1) have
come into wide usage for analyzing constant-
coefficient linear systems. In fact, once a
correct mathematical representation has
been obtained for a constant-coefficient linear
system, the use of transform techniques re-
duces the problem of determining the re-
sponse of the system to a simple input to a
cookbook type of problem.

For time-varying systems, the concepts
of operational mathematics still arevalid, but
the details involved in obtaining answers to
specific problems usually become either very
involved or impossible to carry out. For
nonlinear systems, this whole concept mustbe
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discarded because here the principle of
superposition no longer applies and applica-
tion of operational techniques implies validity
of the principle of superposition.

One might ask at this point, “Why allthe
discussion of linear systems when what is
really of interest is the definition of a non-
linear system?” The answer is simply that
the definition of a nonlinear system is really
a negative one. A nonlinear systemis simply
defined as any system that does not obey the
principle of superposition.

As a practical matter, most systemsare
linear only by assumption, but this assump-
tion leads to a tremendous simplification in
the problem of analyzing or synthesizing a
system and thus is extremely important.
One should not jump to the conclusion, how-
ever, that linear systems are good and non-
linear systems arebad. Thebasiccharacter-
istics of many importantsystemsarerealized
only because some elementsinthese systems
are nonlinear.

In spite of the fact thatdetermination, or
even specification, of the performance of
nonlinear systems is apttoberather difficult,
control system engineers are becoming more
and more interested in this class of systems
either because they are confronted with sys-
tems that contain nonlinearities they cannot
(or cannot afford to) remove, or because they
feel that there is a good possibility that they
could devise a nonlinear system that would
achieve a desired end either more cheaply or
more reliably than a linear system.

Basically, the methods that have been
developed for analyzing nonlinear systems
can be divided into the following three main
categories:

1. Methods that can be carried out byan
analyst having at his disposal only the ordi-

nary analytic tools

2. Numerical techniques and methods
involving the use of modern computers

3. Methods based on extensive experi-
mentation with an actual system

The methods of Category 1canbe further
subdivided as follows:

1. Analytic and Quasi-Analytic Tech-
niques
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a. Direct solution of nonlinear differ-
cntial cquations
Variation-of -parameters tech-
nique
Piecewisc lincarization
Scries solution
Pcrturbation theory
Describing-function methods
(1) Applicd to systems with deter-
ministic inputs
(2) Applied to systems with ran-
dom inputs
2. Graphical Techniques
a. Graphical intcgration
b. Isocline mcthod
¢. Phasc-plane method
d. Phasc-spacc mcthod
In addition to thc foregoing, there are
various tcchniques that have been developed
for investigating thc stability of nonlinear
systems.
Refs. 12 through 36 should be consulted
for detailed information concerning these
various methods and tcchniques.

>3
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2-2.7.2 Nonlincaritiecs Foundin Many Control
Systems

The paragraphs which follow describe
scveral types of nonlinearities that are fre-
quently encountercd in control-systems work.
In addition, somc of the system performance
characteristics that are uniqucly attributable
to tlic precscnce of a nonlinearity are noted.

2-2.7.2.1 Limiting

The saturation or limiting type of non-
lincarity shown in Fig. 2-15isfrequently met
in control-systems work. For small signals,
the effect or output is proportional to the
cause or input, but for signals greater than a
critical valuc, the output ccasestobe propor-
tional to the input and finally remainsessen-
tially constant no mattcr how large tlie input.
The solid curve in Fig. 2- 15 rcpresents what
is sometimes referred to as soft limiting,
while tlie dotted curve represcnts sharp limit-
ing. In the firstcase, a smoothtransition oc-
curs between the linear and the saturated re-
gions, Wwhile in thc sccond this transition
occurs abruptly.

T

QUTPUT

I INPUT
Figure 2-15. Plotdepictingthe limiting type
of nonlinearity.

2-2.7.2.2 Dry Friction

Dry or Coulomb friction is a friction
force that is constant in magnitude, regard-
less of the relative velocity of the moving
parts, but reverses sign when the velocity
changes sign. This type of friction can be
represented as shown in Fig. 2-16. Some
Coulomb friction is present in any mechan-
ical system. In those systems that operate
with a high nonlinear-friction effect, accurate
analysis should include this nonlinear effect,
In a well-lubricated system, however, the
friction will be approximately proportional to
the velocity and thus will notintroduce a non-
linearity. This latter type of friction isgen-
erally referred to as viscous friction.
2-2.7.2.3 Hysteresis

Hysteresis is a complex type of non-
linearity in which the response of anelement
is determined by past history as well as by
the instantaneous value of the excitation.
Fig. 2-17 illustrates this effect, which occurs
in electromagnetic circuits and in mcchanical
devices (such as strain gages and prescure
transducecrs) that utilize materials for which

FRICTION
FORCE
- VELOCITY *+
Figure 2-16. Graphical representation of

Coulomb friction..
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RESPONSE

/

4 EXCITATION

Figure 2-17. Graphical representation of

hysteresis.

the stress-strain relationship is determined
by the history of strain. Backlash, such as
occurs in gearing and mechanical linkages, is
somewhat related to hysteresis. Analysis of
systems containing backlash is complicated
by the fact that changes in the inertia distri-
bution between the driving and driven mem-
bers lead to significant changes in the influ-
ence of the backlash.

2-2.7.2.4 Relays

Relays are used inmany control systems
because they provide a simple means for
realizing a very high amplification. However,
the relay is a discontinuous-type amplifier.
The simplest representation of such adevice
is shown in Fig. 2-18. For inputs of magni-
tude less than A, the output is zero. A posi-
tive input greater than A is transformed into
a fixed positive output, and a negative input
whose magnitude exceeds A is transformed
into a fixed negative output. Theregionfrom
-Ato+Ais termed “dead-space”.

OUTPUT

INPUT +

Figure 2-18. Graphical representation of a
relay with dead-space but no hysteresis
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A more complete representation of a
relay would include both dead-space and a
hysteresis effect to take into account the fact
that the voltage required to switch the relay
from the nonenergized position to the ener-
gized position is somewhat higher than that at
which the relay switches back fromthe ener-
gized to the nonenergized state.

An even more complete model of arelay
would include a time delay to account for (1)
the fact that the inductance of the relay coil
causes the control current to lag behind the
applied control voltage, and (2) the time re-
quired for the armature to move from one
position to the other.

2-2.7.2.5 Diodes

Diodes represent another type of non-
linear device that the control-systems de-
signer may wish to use in order to protect
equipment from excessive signals or to
achieve special effects. Anideal diodeoffers
zero resistance to the flow of current for one
polarity of applied voltage but infinite im-
pedance to the flow of current forthe opposite
polarity of applied voltage. For many pur-
poses, practical diodes can be treated as
though they are ideal.

2-2.7.2.6 Orifices

In one classof hydraulic control systems,
the flow of hydraulic fluid in the system is
controlled by a valve that consists of several
variable orifices. For the case of a sharp-
edged orifice, which can usually be assumed
in a spool or flapper type of valve, the rate of
fluid flow through the valve is proportionalto
the area of the orifice and to the square root
of the pressure drop across it. Because of
this basic characteristic, a complete hy-
draulic valve may insert a significant non-
linearity into a system.

2-2.7.2.7 Products and Transcendental Func-
tions

Control systems are made nonlinear not
only by the types of nonlinearities just
described but also by the presence of com-
ponents or of arrangements that introduce
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products or powers of the dependentvariables
or their derivatives. The presence of trans-
cendental functions of the dependent variable
also leads to a nonlinear equation because
such functions can be expanded as aseries of
terms of progressively higher powers.

A typical example of a system whose
mathematical description involves powers of
the dependent wvariable is that of a mass
attached to a nonlinear spring. As a first
approximation, this nonlinear springmight be
described by the relationship

FORCE = k(I # a?x?)x (2-97)
in which k and a are constants describingthe
spring and x is the deflection. A plus sign
would be used in Eq. 2-97 to represent a
spring that effectively becomes stiffer asitis
deflected while the minus sign would repre-
sent a spring that becomes weaker as it is
deflected. In this latter case, the mathemat-
ical model of Eq. 2-97 applies only for small
deflections since for | x| > 5§ the forcere-
verses sign.

The differential equation that describes
the motion of a constant mass Mattachedto a
spring described by Eq. 2-97 is given by the
equation

d?x
M — ¢+ k (1 £+a2x?) x = 0
dt?

(2-98)

where it is assumed that no friction exists.
For nonzero values of a, Eq. 2-98 involves the
cube of the dependent variable and is thus a
nonlinear differentialequation. However, this
particular type of differential equation has
been studied extensively and its solution can
be obtained in the form of elliptic functions.

2-2.7.3 Classification of Nonlinear Systems

The definition of anonlincar system given
in par. 2-2.7.1 was negative in that it did not
describe a nonlinear system but, instead,
relegated all systems that did not meet the
very specific test forlinearity tothe category
of nonlinear systems. This rather unsatis-
factory approach is taken because no really

good scheme has been devised for classifying
nonlinear systems. The present discussion
has followed the plan of merely cataloging
typical systems without trying to classify
them. Examination of the nonlincarities
described, however, indicates several
schemes of classification that might be em-
ployed.

2-2.7.3.1 Continuous and Discontinuous Non-
lincaritics

From a mathematical point of view, itis
sometimes desirable to distinguish between
nonlincarities that can be described by con-
tinuous curves and those in which the output-
vs-input relationship exhibits jumps. This
method, then, would distinguish between a
limiting type of nonlinearity and a relay.
2-2.7.3.2 Incidental and Essential Nonlin-
carities

A different scheme of classification
might distinguish between (1) those nonlin-
caritics that are introduced because the per-
formance of supposedly linear physical de-
vices deviates from the ideal as a result of
mechanical tolerances or the characteristics
of materials, and (2) thosenonlinearities that
the designer deliberately introduces into the
system. This scheme, for example, would
distinguish between (1) asystemthatis driven
into the saturation region for very large sig-
nals but that normally operates in the linear
region, and (2) a relay, which does not be-
have as a lincar clement for any amplitude
of input signal.

2-2.7.3.3 Zero-Memory and Nonzero-Mem-
ory Nonlinecarities

Another important characteristic of a
nonlinearity is whether its instantancous out-
put is determined uniquely by the instant-
aneous input, in which caseitwouldbetermed
a zero-memory or amnesic nonlinearity, or
whether its instantancous output is deter-
mined by the history of its inputs, in which
casc it would be called a nonzero-memory
or nonamriesic nonlinearity. A relay with
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hysteresis is a typical example of anonzero=~
memory nonlinearity since, over a region,
the output of the relay dependsnot only on the
instantancous value of the input but alsoupon
the manner in which the input arrived at its
present value.

2-2.7.3.4 Phenomena Peculiar to Nonlinear
Systems 37-40

Nonlinear systems lead to several spe-
cial problems because they may exhibit
phenomena that never occurinapurely linear
system. One of the mostfrequently observed
phenomena of this type is the limit cycle, an
oscillation of fixed amplitude and period but
arbitrary wave shape that may be excited
under certain conditions. The motion of the
escapement in a watch and the voltage in a
vacuum-tube oscillator are typical examples
of limit cycles. It is basicallythenonlinear-
ities in these systems that determine the
amplitude of oscillations for, if the systems
were actually linear in the ideal sense, the
oscillations would grow to unlimited ampli-
tude. Obviously, this would be physically im-
possible.

Another phenomenon observed in some
nonlinear systems is that of self-excitation.
This phenomenon cantake cither of two forms.
Systems thatbreak into oscillations when sub-
jected to a very smallinputsignal or disturb-
ance are said to exhibit softsclf-excitations.
Such systems may become stable when the
amplitude of the input signal is increased
sufficiently. Hard sclf-excitation, on the
other hand, is exhibited by asystemthatmust
be excited with signals of at least some min-
imum amplitude before it becomes unstable.
Systems with quantizers may exhibit cither of
these types of self-excitation.

Still another peculiarity of nonlinear sys-
tems is that the frequencies of the output sig-
nal and of intermediate signals in the system
arc not neccessarily the same as the fre-
quency of the input signal. Thus, some non-
linear control systems exhibit subharmonic
oscillations with the output oscillating at some
odd-order subharmonic of the input frequency.

Another phenomenon that cannotoccur in
a strictly linear system is the appearance of
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discontinuous jumps in amplitude as the sys-
tem cxcitation is continuously increased in
amplitude. When this effect occurs, it is
usually accompanied by ahysteresis, with the
result that the jump occurs at a different
amplitude for increasing signals than it does
for decrecasing signals.

2-3 SIMULATION TECHNIQUES
2-3.1 GENERAL

Later chapters of thishandbook describe
both digital and analog computing components,
and the combination of such components into
digital, analog, or hybrid computers. The
paragraphs which follow outline the applica-
tion of analog and digital simulation tech-
niques for determiningthe performance char-
acteristics of complex mathematical models.

2-3.2 ANALOG TECHNIQUES

In the process of arrivingatamathemat-
ical model for a system, the designer norm-
ally wutilizes block diagrams as discussed
earlier in this chapter (seepar. 2-2.5 through
par. 2-2.5.2) and again in Chapter 6. For-
tunately, the programming of an analogcom-
puter follows quite simply as a detailed ex-
pansion of the block-diagram representation
of a system. To make this expansion, the
analyst must represent all operations indi-
cated on the block diagram in terms of those
operations that can be performedby the com-
puter, namely: integration, addition, multi-
plication, and generation of arbitrary func-
tions. Each transfer function in the block
diagram must be expanded to showin detail its
recalization in terms of the basic analog cle-
ments. Fortunately, thisisa straightforward
task and represents no real problem.

After a completerepresentation has been
developed in terms of computing components,
appropriate scale factorsmustbe worked out.
Scaling involves two distinct problems. The
first is concerned with the magnitudes of the
variables in the problem and the second with
the time the computer takes to obtain a solu-
tion. The computer will produce accuratere-
sults only if the variables inthe computer are
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substantially larger than the variations rep-
rcsented by noise in the computing clements,
This noise may be broad-band thermal noise
generated in resistors, shot noise gencrated
in vacuum tubes, low-frequency noiserelated
to slowly varying offsets in the output of am-
plifiers, or noise that arises from moving
contacts--such as a potentiometer wiper mov-
ing over the resistance element of the polen-
tiomcter. Other sources of noise are ripple
from the power supplies and noise picked up
from disturbing sources completely external
to the computer. In a well-designed computer,
noise from these sources is usually small,
with varying amplifier offsets representing
tlie major limitation on accuracy.

At tlie other end of the scale, the accuracy
of the computation suffers if the magnitude
of any computer variable attempts to rise
above a maximum setby the design of the ele-
ment. For example, an amplifier may satu-
rate and thus cease to follow the linear rela-
tionship desired between the voltage at its
input and that at its output; or the input ap-
plied to a function generator may exceed the
maximum value for which it was set up, with
the result thatthe desired functional relation-
ship is lost.

The maximum operating voltage used in
the majority of the analog computers employ-
ing vacuum tube amplifiers is + 100 volts. In
order to achieve the maximum accuracy, the
voltages appearing at all points inthe compu-
ter should be as closeto 100volts as possible
without ever exceeding this value. However,
since the very nature of solutions usuallyin-
volves large changesinthe variables, some of
them will usually approach zero duringsome
parts of a solution. The value of very small
variables cannot be determined with high ac-
curacy and, if additional accuracyisrequired,
it may be necessary to rescale the problem
and rerun a portion of it.

The question of solution running time
must also be considered before the task of
programming the computer is completed.
Some problems to be studied onthe computer
may represent physical situationsin which the
actions of interest take place in microsec-
onds, while in others the time is measuredin
decades.

Depending onwhether the computer is de-
signed for so-called “rcal-time operation™’
or “high-speed repetitive operation”, the
most satisfactory solution time will be inthe
range of 10 seconds to ond minute for real-
time computers or 10 to — second forhigh-
speed computers. In an analog machine, all
elements operate in parallel, so the running
time does not increase with the complexity
of the problem being studied. The running
time depends solely on the gatn of the inte-
grators and may be changed by a factor such
as 10 merely by changing the gain of each and
every integrator employed by that factor.

Before one can obtain a solution on which
to base the sclection of scale factors in the
computer, he must arrive at some tentative
estimates and run a trialbaseduponthese. If
any of the signals exceedthe maximum allow-
able or appear to be too small, new scale
factors can be chosen and the solution rerun
until an acceptable result is achieved.

2-3.3 DIGITAL TECHNIQUES !

The effectiveness with which digital com-
puters can be utilized in the study of scien-
tific problems depends as much upon the case
with which the analyst can communicate with
the computer as upon the actual characteris-
tics of the computing components of which the
computer is made up. These two aspects of
a digital computer are generally referred to
as its software and its hardware.

In the early stages of digital computer
technology, the only programming method
available was what has now come to be re-
ferred to as machine-language programming.
Under this system, the programmer was
forced to keep a detailed bookkeeping record
of the contents of cachmemory location and of
cach transfer of data from a4 memory loca-
tion, to the arithmetic unit of the machine, and
finally back into another storage location for
later use if desired.

As more experience was gained with pro-
gramming and as appropriate machine hard-
ware changesbecame possible, symbolicpro-
gramming techniques were developed. Under
these, the programmer was required only to
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identify each operation to be performed and
each piece of data, but not to make detailed
assignments of data to specific storage loca-
tions. The first step in obtainingthe solution
for a problem written in such alanguageis to
have the machine analyze the symbolic pro-
gram and by means of a compiler program
translate the symbolic program into a ma-
chine language program.

The development of more and more so-
phisticated programming languages has re-
ceived a great deal of attention over the past
ten years andverypowerfullanguages suchas
the FORTRAN series are now available.
Nevertheless, the conventional approach to
the use of the general-purpose computer is
still to develop a library of programs, each
program solving a specific or standardprob-
lem type. Yet, the variety of problem types
and engineering situations is sogreatthatthe
freedom of the engineeris severelyrestricted
by the fixed program library. Ideally, one
would like the ease of communicationwith the
computer to be such that the engineer could
quickly and economically write a unique pro-
gram for each engineering situation as it oc-
curs. For this to be feasible, the language
for stating the solution mustbe very efficient,
allowing the engineer todescribe a solutionin
the same technical terms he would use inin-
structing a colleague of his own professional
competence.

The development of such problem-ori-
ented languages is now receiving a greatdeal
of attention. One example is COGO (forCO-
ordinate Geometry) a system for use incivil
engineering problems.

2-4 NUMERICAL TECHNIQUES

2-41 GENERAL

Digital computers deal with numbers and
are capable of performing simple arithmetic
operations at high speed and storing the re-
sults. Accordingly, the branch of mathemat-
ics known as numerical analysis, which is
concerned with the numerical evaluation of
mathematical functions and equations, has in
recent years seen a greatrevival of interest
and a considerable expansion of techniques.
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The methods used for evaluating func-
tions and solvingequations in a digital com-
puter may be generally classified as methods
of successive approximations, ormethods of
substitution of an approximate expression
for an exact expression. Such approximate
expressions may be either power series or
sets of tabular differences.

In the methods of successive approxima-
tions, or iteration, an approximate solution
is substituted in the equation so as to yield
a better approximation, and so on. Since the
computation involves a closed loop, the pos-
sibility of instability exists. Iteration, when
stable, is useful in the solution of equations
and sets of equations, and in the evaluation
of certain functions expressed as equations.

Theimpetus given to the field of numer-
ical analysis by the computational capacity
of the high- speed digital computer has led to
the investigation of mathematical fields for-
merly neglected because of the computational
difficulties involved. This, in turn, has led
to the application of mathematical tools in
new areas of engineering, science, and man-
agement. A typical example is the solution
of large sets of linear algebraic equations.
As is discussed in par. 2-4.6, such sets of
equations can frequently be solved by iter-
ative methods. Since such equation sets are
usually expressed in the shorthand matrix
notation, the method is commonly known as
"matrix inversion'. The inversion of very
large matrices is now practicable with the
aid of high-speed digital computers.

Certain logistics problems of the armed
services and of large corporations can be
expressed mathematically by an operations
research technique known as "linear pro-
gramming". Suchfactors as thesize and lo-
cation of warehouses, the production capacity
of suppliers, and the cost/time characteris-
tics of alternative transportation systems
are expressible in terms of sets of linear
algebraicequations. These sets of equations
can be manipulated by a digital computer so
as to achieve an optimum solution in terms
including cost or delivery time.

Similar methods applied to the solution
of sets of simultaneous linear differential
equations have proved equally powerful in the
investigation of engineering problems. The
problem of the flutter of an aircraft wing is
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a typical example. Here, the structural dy-
namics are expressible by a set of differen-
tial equations with many coupling terms and
with excitation atnumerous points of the set.

The ability of the digital computer to
store or compute rapidly the values of a
function provides a capability of particular
value to the fire control field. Except for
trigonometric functionswhere a geometrical
analog is available, generation of functions
in an analog computer has been principally
accomplished by such inflexible methods as
mechanical cams and function potentiome-
ters. Methods to be outlined in par. 2-4.2
offer means of generating analytical or em-
pirical functions, and can readily be extended
to functions of two or more variables.

The science of statistics has also been
abeneficiary of digital-computer techniques.
Onc of thebasicproblems of statisticsis that
of decidingbetweentwo (or more)hypotheses
on the basis of experimental data (decision
theory or tests of significance). Such deci-
sionsarebased on computations that involve
the consecutive multiplication of large num-
bers of probability distribution functions.
The digital computer has soenhanced the fa-
cility of performing such computations that
they are sometimes carried out "on line";
for example, the production output of a man-
ufacturing plant can be continuously moni-
tored and evaluated statistically to provide
decisions to adjust or shut downthe produc-
tionmachinery if the deviation of the product
from the set standard exceeds certain statis-
tical limits.

The following paragraphs of Chapter 2
discuss the main aspects of numerical tech-
niques in terms of (a) the representation of
mathematical functions, (b)numerical differ-
entation, {c) numerical integration, (d) meth-
ods forsolving differential equations, and (e)
methods for solving systems of linear alge-
braic equations. It should be observed that
numerical analysis ispartially a science and
partially an art. As a result, short of writ-
ing a textbookon the subject it would be im-
possible to indicate the particular circum-
stances in which even a selected sampling
from the vast stock of numerical interpola-
tion, differentation, andintegration formulas
available would be useful or accurate, or to
elucidate the numerical difficulties to which

one might be led by uncritical use. Accord-
ingly, the formulas associated withnumerical
analysis should never be applied blindly.

2-4.2 REPRESENTATION OF MATHEMAT-
ICAL FUNCTIONS

Onemight expect, intuitively, that math-
ematical functions would be represented in a
digital computer by the storage of tabular
data, inamanner analogous to the table-look-
up procedure employed inhand computations.
However, while the storage of functional
tablesin a digital computer is certainly pos-
sible, the high speed of computation and the
relatively limited memory capacity that are
typical of moderncomputers make the com-
putation of functions a very attractive pro-
cedure. Some functions may be computed
from their defining equations (which, in many
cases, are differential equations )by iterative
techniques. Certain functions, on the other
hand, may be readily computed by the use of
series approximations.

If a stored table is employed in a digi-
tal computer to represent a mathematical
function, the storage requirements can be
greatly reduced by storing only a few points
and using aninterpolation formula to approx-
imate the function between these points.
Interpolation is also used with input data to
reduce the number of points that must be
entered. A related process called curve fit-
ting is employed whenever it is known from
theoretical considerations that a set of data
points should approximate a chosen mathe-
matical function. The best fit between this
chosen function and the data can be deter-
mined, and the function then used in liecu of
the data points.

The paragraphs which followsummarize
thepertinent aspects of the aforenoted tech-
niques for representing mathematical func-
tions.
2-42.1 Tteration

Iterative or recursive processes are
fundamental to numerical methods of analy-
sis. Inthe applicationofiterationtothe eval-
uation of a function specified by its defining
equation (or equations), one starts with a
rough estimate of the value of the function

2-33
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and then computes successivelybetter appro-
ximations. In general, if it is desired to
evaluate a function

f(x) =0 (2-99)

and this equation canbe rewritten in the form

x = Fx) (2-100)
the procedure is as follows. Given an esti-
mate x ¥ where x® represents the kth ap-
proximationtothe value of the given function
F(x), compute F(x®). Set F(x®) equal to
x &t and repeat the process--computing

F(x %" ) and so on. The computationis ter—
minated whenthe difference betweentwo suc-
cessive approximations is equal to or less
than the allowable computational error. The
evaluation of VN presented in Example 2- 1
illustrates the iterative technique. This
example was chosen for its simplicity; it
should be noted, however, that most defining
equations are differential equations.

2-422 Series Approximation

The representation of functionsby series
approximations is particularly useful indig-
ital- computer calculations because the func-
tion can be generated by a relatively few
additions and multiplications. Example 2-2
showsthe ease of computing the sine function
from a power series.

The Taylor's series expansion isthe
gencral expression for a power-series €x-
pansion. If a function f(x) is differentiable
atapoint x = x,, then f(x) can be replaced in
the neighborhood of x, by the power series

(x - x)?
fra)=flx))+(x-x)flx)+——"—f"
21

or, in compact form,

x = x )" (2-102)

f(x) = ) (x)

2

n=20

where £®™ (x,) is the nth derivative of f(x),
evaluated at the point x = x,. For computa-

2-34

tion, the series is truncated after a number
of terms, say m terms. The sum of the re-
maining terms, the remainder, constitutes
the errorinthe approximation. For the spe-
cial case of a convergent Taylor's series
with decreasing terms and alternating signs,
the remainder cannot exceed the magnitude
of the (m+1)th term, i.e.,

(x —x)m
T fm) (k)

o

1A

m!
(2-103)

where R, is the truncation error after the
mth term. An expression that may be used
todetermine the truncation error in the gen-
eral case is

flmd (x =) tm "1 dt

(2-104)

Bydeterminingthe remainder or some bound
on the remainder, the maximum error for a
given number of terms is known. The com-
puter program may be written to determine
this error and to stop adding terms as soon
as the error decreases below a desired
amount.

2-4.2.3 Interpolation

The preceding paragraph discussed the
approximation of functionsby means of power
series. Another technique, useful when a
table of values of a function is available, is
interpolation. With this technique, the value
of the function at some point intermediate
between two known points is approximated
by a series of polynominals. In hand compu-
tation, only a first-order, or linear, inter-
polation is normally employed. The greater
computational capacity of the digital compu—
ter, however, permits the use of higher-
order polynomials. For the same accuracy,
the higher-orderinterpolation requires few-
er data points in storage.

If the tabular data are given for values
of x spaced atequalintervals h, various for-
mulas based on tabular differences can be
employed. Newton's formulas are given as
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Example 2-1. [Iterative procedure for the evaluation of 4/ N

An iterative procedure forthe evaluation of\/ﬁ can be obtained ifthe solution is con-
sidered to be the intersectionof the curve xy = N and the straightline x =y, as shown by
Fig. 1. Start at the point (x(®, yv(@) where x(® =N and y(® = 1. Successivevaluesofx
are taken as the arithmetic mean of the preceding values of x and v, i. e,

x () 4y (D)
X<i+1) R (1)
2
The corresponding value of y is
i N
y = —— (2)

x{i
It canbe readily seen that the solution follows the arrowed path shown in Fig. 1.
A sample calculation for N = 7 is shownin Table 1. For the sixplaces carried, \/ N
=2.64575. The erroris 7X 107
Table 1.

Sample Calculation of \/N for the Case When N = 7.

i < (1) y('1)
0 7.00000 1.00000
1 4,00000 1.75000
2 2.87500 2.434.78
3 2.65489 2.63664
4 2.64577 2.64573
5 2.64575 2.64575

x(Tn :‘X(i) Py

2
VIR o

x (i

where
i=0, 1,2, 3, ..., 1, i+1, ... for the number of computational steps required
to achieve the accuracy specified.
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Example 2-1 (Continued)

y axis

Samplc successive approximation

x(Z), y(z) is reached graphically from (x(l), y(l)) by moving initially along a per-
pendicular to the straight line x =y, and then dropping to the curve xy =N along aline
parallel to the y axis. Numerically,

(1) Y(l)

XV +

W@ T
NG

Figurc 1. Graphical representation of the path followed in the computation of \/ N.

Examplc 2-2.  Computationof sin x by means of a power series.

The power scrics for sin x is

'S x% x20 7!
sinx=x - F 4. e (-N" PV —m— 4+ .
3 s (2n - D! oy
n = 1, 2, 3,

If x = 0.5 radian, the approximations for sin X cmploying one, two, and three tcrms
of the scrics arc, respectively,

¢ = 0.500000 2
(2 = 0.479167 (2)
f(3) = 0.479427 s

Thce crror is alrcady quite small; inclusion of the fourth tcrm reduces the least sig-
nificant figurc by one unit.
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typical. Otherformulas of Stirling and Bessel
will be found in the literature 46, 47.

If a function f{x) is known at points x;,
evenly spaced by the interval h along the x-
axis, then

x =x 4ih (i=0,123, . ..) (27105
The values of the function at x; are denoted
.byf, =f(x.). The firstcentraldifference be-
tween [; and f_ is denoted 6f%, and is defined
by

PP R (2-106)
Similarly,

oty 7h -t (2-107)
and so on. The second, third, etc., central

differences are denoted 521‘, 631’, etc., re-
spectively. The second differences are the
differences between adjacent first differen-
ences, the third differences are the differ-
ences between adjacent second differences,
and so on. Table 2-3illustrates the method.

If a new wvariable m is introduced such
that x =x_+hm, Newton's forward-differ-
ence formula can be expressed as*

m(m - 1) R
f(m)*F°+mbfV2tT 8% f
mm -1 (m-2
" 83y,
mm-1)...(m-nt1)
¢ n! bnf(I/Z)n

(2-108)

It is also possible to work backwards from
f_, using Newton's backward- difference for—
mula; this procedure yields

m(m + 1)
flm)=f +mot_| , +—— 22f

2!

m(m+ 1) {m + 2

t R S
3| -3/2

m(m+ 1)
t &n
n!

f—( 1 2n

(2-109)

When the tabulated datapoints x; are not
equally spaced, Lagrangian interpolation by
polynomials of any desired degree canbe em-
ploved. The general form of the Lagrangian
interpolation is

n (x—xn)(x—x)...(x—x_)():—x‘_)...(x—x")

£ - E 1 -1 +1 ;
i e R O s T L TR Y. ,(’ﬁ—X)J
(2-110)

where f; = f(xj). See Example 2-3 for an

illustrative application of this relationship.
2-42.4 Curve Fitting

Where interpolation assumes no know-
ledge of a functional relationship between
data points, curve fitting is the process by
which a chosen function is adjusted to best
fit a set of data points. The function may be
chosen becauseitappearsto fit the data well
or, more commonly, because physical rea-
soning indicates that the data should fit some
particular function. While many methods of
curve fitting are used--some quite elabo-
rate--only the most commonly used tech-
nique, that of the least-squares fit, will be
described here.

It should be noted that, in place of the generalized difference symbol § used here, some references employ specific difference

operators [or particular usage, as follows:

Syfxy oy (x +.5x) -y (x) = forward-difference operator
Vyix) yix}-{y - Ax) = backward-difference operator
ax AX
5y (x) ~yf{x +—) -y(x - —) ~ central-difference operator
2 2

Sce Section 20.4-2 of Ref. SO for example.

2-37
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TABLE 2-3. ARRAY OF TABULAR DIFFERENCES
i x| f | o 5%, 53, 5%, 55fi 5,
0 Xi | to
1/2 £y - 1,
1o | g 85575~ 811/2
3/2 fo - 1y 5%, - 6%,
2 xo | 1o 8152 - biz)y 631"5/2 - 63f3/2
5/2 £5- £ 5215 - 521, o'ty - 6%,
3| x5 13 8775 - b1y 831775 - 835, 6%, /5 - 6%%5/
7/2 fg- £y 6284 - 621, 5, - 54y
4 | x, 015 by g~ Oty 838915 = 638775
9/2 f5 - fy 62, - 821,
5 | x5 1, Byq /5~ bfgyy
11/2 fg - 1y
6 xg | fg

Lety = g(x) be a curve fitted by a func-
tional relationship between x and y having
the gcncralized form

y -C'If'l (x) + szz (X) + 0001 Cnfn (X)
(2-111)

wherethe functions f(x), f,(x), ..., f (x) arc

known. Itis desiredtosatisfythe setof equa-
tions
y, = c]f] (x]) + c2f2 (xl) oL 4+ c“fn (Xl)
Y= of () tef, () + 0tk (k)
y, T oefix) o, (x ) + ... +cf {x)
(2-112)

forthe m setsof data points (x1,¥1) (X5,¥2)
seey (x_,y, ) However. in general, cach

2-38

value of y will differ from its functional rc-
presentation by the "residual” error 6;where

8‘ = yi - lel (Xi) - C2f2 (Xi) e _Cnfn (KI)

(-1,2 ....m (2-113)

In ordcrto minimize the sum of the squarcs
of the residuals, solutions of the following
set of "normal equations' are obtaincd.

& Z £2 () ] E hdGix)r o ve Z O, 0 = E i (=)

Sy Z ’2 ("|) fy ("l) te Z fzz (K‘I) ot E lz (K()fn ) - EYI(2 (x|)

G b ) te DR v D) = DOV (k)

(2-114)

where all summations are fromi=1to i = m.
Methods for the solution of these equations
are given in par. 2-4.6. An example show-
ing the application of these equations appcars
in Example 2-4.
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Example 2-3. Sample application of Lagrange's interpolation formula

Given: f

=13 | 678 =,
x, = 16 632 =f,
x, = 32 454 =,

x, 736 | 403 =1,

Find:
f(x) when x = 26 and f(x) when x = 27
Use the relationship
oo = (x = %)) {x = %)) (x = x,) (@ (x = xg) (x = x,) (x = x,) [
(xo— xl)(xo— xz)(x0 - x,) (x; = xg) {x; = %) {x; = X,)
. {x = %) (x = x;) (x = x,) - (x = xg) (x = x)) {x = x,) ;
(xy = %) {xy = x;) (x5 = %;) (x5 = %) (x5 = x}) (x5 = x,)
When x = 26,
(10) (- 6) (- 10) (13) (- 6) (- 10
fix) = (67.8) + Al ) (63.2)
(=3)(-19) (- 23) (3) (- 16) (- 20)
(13) (10) (- 10) (13) (10) (- 6)
+ (45.4) + ———————— (40.3)
(19) (16) (- 4) (23) (20) (4)
(600) (780)
i (67.8) + (63.2)
(- 1311) 960
100 gy T80 (40.3)
(- 1216) (1840)
- 31.02975 + 51.35 + 4853618 - 17.08370
= 51.77273
When x = 27,
» an(-5(-9 6 (14) (-9 (-9 632
- —_
g (= 3)(- 19)(-23) (67.8) (3) (- 16) (- 20) (63.2)
1491 (-9 -
. 149 an(-9 (45.4) + (14 (11) (= 9) (40.3)
(19) (16) (- 4) (23) (20) (4)
_ 495 630
- (67.8) - (63.2)
(- 1311) 0
RGREL) BT =770 (40.3)
(- 1216) 1840
- 25.59954 + 41.475 + 4853618 - 16.86467
- 47.54697

2-3E
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Example 2-4. Application of the least-squares curve-fitting technique to range-vs-
time- of-flight data.

2roblem:
Fit the following range-vs-time- of-flight source data by a relationship of the form

= 2
y =c, x* te,xt (1)
where

X =target range, in thousands of yards

y time of flight, in seconds

C1, Cp, C3 = constants

Range-vs-Time-of- Flight Source Data
Data-Point Target Range Time of
Designation X; Flight

i (yards) vi
(seconds)

1 0.8 0.70

2 0.8 0.96

3 1,0 1.24

4 1.2 1.50

5 1.4 1.82

6 1.6 2.12

7 1.8 2.46

8 2.0 2.80

9 2.2 3.16

10 2.4 3.52
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Example 2-4. (Continued)

Solution:
Equation 1 canbe rewritten in the form of the generalized functional relationship
between x and y that is given by Eq. 211; i.e.,

y =c, fi(x) 4 ¢, £,(x) 4 ¢ f, (x) (2)

where

hoo=x f00=x {01 (3)

The constants ¢, €¢,; and ¢3 can be determincd by the use of equations that correspond
to the generalized relationships expressed by Eq. 2-114, For the problem under con-
sideration, these equations are

i=10 i=10 i=10 i=10 h
S Z f12 (x) t ¢ fx) £ {x) + o Z f(x) £ (x) = Z v, £ (x)
i1 =1 i=1 i1
i~10 i=10 i=10 i=10
C] f2 (XI) fI (xl) + C2 f22 (xi) t C3 f2 (xl) f3 (xi) } yl f2 (Xi) (4)
=1 i=1 i1 i=1
i=10 i=10 i=10 i=10
¢ DR e D R k) g £2 (x) = y, fy ()

=1 i=1 -

T
it

Application of the relationships given by Eqs. 3 to Eq. 4 yields the following set of
equations:

i-10 =10 i=10 =10 >
G Z X! TG (x?) (x) * ¢ (x3m = (r) (%)
izl i=1 i=1 i=1
i=10 i=10 i=10 i=10
1 = X
5 Z ESECID VR I MRCTURE D DR 5)
i=10 i=10 i=10 i=10
o D>, (Mx3+e M) e Y, M = (y) (1)
iz i=1 i=1 i=1 /

The computations on the source data that arc required for substitution in Eqs. 5 are
summarized in the following tabulation.
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Example 2-4. (Continucd)

Summary of the Required Computations on the Source Data
i X, vi X %} %! (&) | ) )
1 0.6 0.70 0.36 0.216 0.1296 0.420 0.2520
2 0.8 0.96 0.64 0.512 0.4096 0.768 0.6144
3 1.0 1.24 1.00 1.000 1.0000 1.240 1.2400
4 1.2 1.50 1.44 1.728 2.0736 1.800 2.1600
5 1.4 1.82 1.96 2.744 3.8416 2.548 3.5672
6 1.6 2.12 2.56 4.096 6.5536 3.392 5.4272
7 6.8 2.46 3.24 5.832 10.4976 4.428 7.9704
8 2.0 2.80 4.00 8.000 16.0000 5.600 11.2000
9 2.2 3.16 4.84 10.648 23.42 56 6.952 15.2944
10 2.4 3.52 5.76 13.824 33.1776 8.448 20.2752
i=10
15.0 20.28 25.8 48.6 97.1088 35.596 68.0008
i=1

Thc substitution of these computations in Eqs. 5 yiclds the following system of linear
e¢quations that can be used to determinc C1s Cys and c3:

971088 c, + 486 c, + 258 c, - 68.0008

486 c, + 258 ¢, + 150 ¢, = 35.596

258 ¢, + 150 ¢, * 100 ¢, = 20.28

1

In matrix form, Eq. 6 becomes

971088 486 258 g 68.0008
48.6 258 150 ¢, | ~ | 3559 M
25.8 150 10.0 ¢, | =1 2028
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Example 2-4. (Continued)

The solution set of this matrix equation is
C

0.17803

1

, | | 1.03439
(8)

. 0.01709

The application to Eq. 1 of this solution setand thetabulated computations on the source
data establishes the following table of computed values for y; and the resulting residual
errors in these computed values. As defined by Eq. 2-113, a negative error means that
the computed value of y, is greater than the actual value of ¥,» L. e., the value givenin
the range-vs-time-of-flight source data.

c

Summary of Computed Values for y; and
the Resulting Residual Errors §;

Data-Point Computed Value of Error in y; . oouced
Designation Time of Flight o '
i Vi (cornputed) (seconds)

(seconds)
1 0.702 =-0.002
2 0.9 59 0.001
3 1.230 0.010
4 1.515 -0.015
5 1.814 0.006
6 2.128 -0.008
7 2.456 0.004
8 2.798 0.002
9 3.154 0.006
10 3.525 -0.005
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2-43 NUMERICAL DIFFERENTATION

Numerical differentiation is closcly re-
lated to the interpolation methods described
in par. 2-4.2.3. If a function is represented
by interpolating polynomials, the polynomial
expression can be differentiated.

Numerical differentiation is very dan-
gerousto use, however, becauseit is subject
to errors that are due to the approximating
polynomial of a given function, insufficient
data, and many other reasons. As an illus-
tration of this danger, consider the deter-
mination of the derivative of a relationship
y = f(x) that is given by a table%(xo,yo),
(K [5Y 1) oees (xn,yn)%at the point for which
x = ¢, where x,<{¢<x, The table is first
approximated by a polynomial P, (x). The
derivative 2, (x)of this approximating poly-
nomial is then evaluated at x = ™~.The re-
sulting number P} (£) is used as the deriva—
tive of f(x) atx = {. Although the approxi-
matingpolynomial P,({) maybe avery satis—
factory fit to y = f(x), the number PJ({) may
actuallybeaverypoorapproximationto f'({).
For example, consider the relationship y =
f(x) and its approximating polynomial P,(x)
that is depicted in Fig. 2-19. This figure
shows that P1(¢), the slope of the tangent to
P, (x) atx =&, is close to zero but that £'{¢)
is far from zero. (Obscrve, however, that
although the approximation to f'{x) at x = ¢
is very poor the approximation to f'(x) at
x = {4 is very good.)

The various difference formulas (ref.
par. 2-4.2.3) can be differentiated to provide
suitable numerical differentation formulas.
For example, in the case of a given func-
tion y = f(x), the differentiation of Newton's

(Gregory-Newton) forward-difference for-
mulayieldsthe numerical differentiation for-

mula:::
df N ‘I( 1
:—Ay -
dx | - R\ 2
1
+;A3yk—...

(2-115)

E3
See, for example, Eg. 20. 6-1 in Section 20. 6 of Ref. 50

2-44

where

% = x, *kh (2-115a)

h = equal intervals at which the tabular

values of x are spaced

AR N O (2-115b)
= standard first-order difference
and
n = ne —_ n— - 5
Ary, = A ]Yk+1 A IYk (2-115¢)
= nth-order difference
n-2,3,
k=0, t1, +2,
As an example of the application of Eq.
2-115, consider the tabular function des-

cribed by the following set of values for x
and y: { (2.0, 0.69315), (2.1, 0.74194), (2.2,
0.78846), (2.3, 0.83291), (2.4, 0.87547)} . Find
the derivative at x = 2.1, using Eq. 2-115and
the following forward-difference table.

Kk Xx ¥k Ayy alyy a¥y aty,
.
0 | 2.0 , 0.6931s
0.04879
[1 2.1 | 0.74194 -0.00227
0.04652 0.00020
2 | 2.2 | 078848 | vl -0.00207
0.04445 | ————_| 0.00018
3 | 2.3 | o.832m -0.00189
0.04256
4 | 2.4 | 087547

2
With h =01, k=1, Ay; = 0.04652, A'yy =
-0.00207, andA3y; =0.00018, Eq.2- 115shows
that

1 1 ]
freny — (0.04652 - — {— 0.00207} + —(0.00018 })
0.1 2 3
L
™ __ (0.04652 + 0.00104 + 0.00006)
0.1
o 1
S (0.04762)
0.1
= 04762
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Y
p! ((I) = slope of tangent to P (x) at x ={;
Pt ({) =slope of tangent to Pu(x) atx=1¢
f' (£) =slope of tangent to f (x) at x=
7, : y = F(x)
: GIVEN FUNCTION
: -
|
I P {x)
PLEY l a
] | 1 APPROXIMATING
1 | POLYNOMIAL
I
] |
I
| |
| !
c X = (] - C x

Figure 2-19.

The difference between the derivative of a given function and the derivative of

its approximating polynomial.

Thetabular function used inthis example was
takenfrom a natural log table, that is, f(x) =
fn x, which yields '(x) = 1/x for x>0. When
thenumber 2.1 is substituted for x, the result
is f'(2.1) =1/2.1 = 0.47619. Thus, the ap-
proximation obtained for £'(2.1) is excellent.
Sucha result cannotalwaysbe expected, how-
ever, as already observed.

It should be noted that Eq. 2-115 is only
one of many possible numerical differentia-
tion formulas.: Theparticular problem con-
cerned and one's personal experienceinusing
numerical differentiation formulas normally
determine which formula is to be used. The
choice of an appropriate formula is a sub-
jective process andhence is in the nature of
an art rather than a science.

2-4.4 NUMERICAL INTEGRATION

The process of evaluating a definite in-
tegral (sometimes known as ''quadrature'’)
is alaborioustask thathas been greatly ecased
by the availability of digital computers. The
basis of numerical integration is inherent in
the definition of integration: integration of a
function f(x) is accomplished by adding the
arcas of a series of strips of width Ax and
height f(x), as Ax—0. Since it would be nec-
essarytosum a largenumber of such incre-
mental areas in order to obtain an accurate
integration, various formulas have been de-
veloped to reduce the number of increments
required.

Of the many integration formulas that
have been developed, only one of the best

% For example, Egs. 20.6-3 and 20. 6-4 in Section 20. 6 of Ref. 50 give numerical differentiation formulas that result from the

differentiation of Stirling's and Bessel's interpolation formulas.

1 See Chapter IX of Ref. 48.

See also page 231 of Ref. 10.
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known, Simpson's rule, will be described.
In applying this rule, a parabola is passed
through threc consecutive equally-spaced
points located onthe functiontobe integrated.
It can be shown * that the area under the
curve is given by

h
A=y by, + ) (2-116)

where the quantities are defined in Fig. 2-20.
For an even number n values of x, the area
is

AT | Flg) + 4 0) # 280 1 4T () + 26 x)
to... v 4f(x f(xn)] (2-117)
where

h:x_" 0
n

Simpson's rule is exact for the integration
of polynomials up tothe third order. Example
2-5 gives an illustrative application of
Simpson's rule.

2-4.5 METHODS FOR SOLVING DIFFEREN-
TIAL EQUATIONS

Since a differential equation desecribes
the behavior of a function by considering in-
finitesimally small changes, the general
method of its solution on a digital computer
is intuitively obvious. However, the desire
to improve the accuracy of solution and to
reduce the amount of storage recquired has
led to the development of rather involved
methods of solution. A simple method orig-
inated by Euler, two more-complex methods
provided by Runge and Kutta, and a predictor-
corrector method due to Milne will be de-
scribed here. Other methods will be found
in the literature.

Consider, first, the simplefirst-order
differential cquation in the form

dy
— = fixy)
dx

(2-118)
both forits own great usefulness and because
higher-order equations canbe reduced to this
form, as will be explained in this paragraph.
If the independentvariable is divided into in-
crements (notnecessarily equal)by the points

¥ PARABOLIC APPROXIMATION

.._y:qx2+ bx+c

Figure 2-20.

See page 193 of Ref. 48.

2-46

Integration by means of Simpson's Rule.
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Example 2-5. Sample application of Simpson's rule.

20
Simpson's rulewill be used toevaluate fl ¢ f{x) dx when f(x) is given by the follo

ing tabulation for an initial value x, and n additional values of x:

n ] X, J] f(x,)
0 1.6 12.6894
1 1.7 12.8724
2 1.8 13.0352
3 1.9 13.1943
4 2.0 13.3654

For n = 4, Eq. 2-117 shows that

A

(h/3)[F (k) +4f(x) +210) +4fQ) +flx)]

where X¢ = X 20 - 1.6 0.4
h hest = = = 01
n 4 4

Substitution from the tabulation yields

. 0.1
A = —— [12.6894 + 4 (12.8724) + 2 (13.0352) + 4 (13.1943) + 13.36541
3

il

0.0333 [12.6894 +51.4896 + 26.0704 + 52.7772 ¢ ]3.3654]

= 00333 [156.39201 - 5.2078
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Xg X |s esey Xj, X+ g,--:5 the value of y atany
point, say, i T 1, may be approximated by
extrapolating the value of y at the previous
point (i), using the known value of the slope
at i; thus,

dy
Y :Ii— (Xi+1 —Xi)+yi

dx (2-119)

where y; is the value of y at x = x; and yi+1
is the value of y at x = x;4;. Substitution of
Eq. 2- 118 in Eq. 2- 119 yiclds

yi+] :(xi+1 - Xi) fi + yi (2_120)

where fj is the value of f(x,y) at x=x;, y=y,.

Eq. 2-120, known as Euler's formula, has a

truncation error with an order of magnitude

equivalenttothe square of the increment in x.
As an example, the equation

dx (2-121)
has been solved explicitly in Example 2-6
for values of x between 0 and 0.7, and also
by Euler's formula for the same range in x.
The evaluation of the Taylor's series for
Eq. 2-121atx = 0 is also shown in Example
2-6. The evaluation of the series expansion
isaccurate nearthe point at which the deriv-
atives are evaluated, but requires consider-
able computational labor.

Toapply the Runge-Kutta method, again
considerthe differential equation of the form

dy

— =ty

2-122
- ( )

If the solution at some point x = x; can be
determined by the Taylor's series

2

y (%, * h) =y (X.') 1 hfix, y) + 7 f,(X,-r )’,.)

(2-123)

where h =x%;4, - x;, then the Runge-Kutta
method determines an expression y(x;) + k
that is identical with Eq. 2-123, where

k=RktRk+Rkt. .. (124
and
k, =hf(x,vy)

1 i i

k, = hf(Xl. + ah, y, +/j|<]) L (2-125)
-125

ky =hf(x +ah oyt 8k + k)

efc.

The constantsR , R,, R,, «eey & 015 «eey By P15
etc., are determined by sctting
v(x;) Tk equalto a specificnumber of terms
of the expansion for y(x, +h). Exceptfor the
second-orderexpression (whichis formed by
discardingterms in Eq. 2-123 beyond the h?
term), the constants are not uniquely deter-
mined; moreover the derivations are quite
involved. The second- and fourth-order ex-
pressions are as follows:

vy Vs e

Second-Order

— h k]
k =hf{x+—,y +—
R 2 . (2-126)

ky = hilx, )
Fourth- Order
- 1 k
= g(k,+2|<2+2k tk,)

L (2-127)

?\—
w

|

>
-
/x\
+

~<

-
0o [N
SN

7\—
I

hf(xi +hy k3)
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d
Example 2-6. The numerical solution ofd—z;= y - X by the exact method and by four
approximate methods.

In order to show the application of the methods developed inpar. 2-2.3.2, the exact
solution of the differential equation

dy
dx
is determined for a starting point of x = 0, y = 4 and an interval in X of 0.1. The same

equationunderthese same conditionsisthensolved by Taylor's series,by Euler's method,
by the Runge-Kuttasecond-order method, and by the Runge-Kutta fourth-order method.

- x (1)

1. Exact Solution

y - ae+x+ 1 (2

Initial Conditions: x=0andy =4

The substitution into Eq. 2 of these initial conditions shows that a = 3.

For Xg = 0

When x, = 0, then e*0 = 1.00000

Therefore, y, = ae*0 + x5+ 1
=3(1)+ 0+ 1= 4.00000

For x; = 0.1
When x; = 0.1, then e*! = 1.10517

Therefore, v, = ae®l +x; t1
= 3(1.10517)+ 0.1+ 1= 4.41551

For Xq = 0.2

When x, = 0.2, then €2 = 1.22140
Therefore, y, = ae*2 + x, + 1
= 3(1.22140) + 0.2 + 1= 4.86420

Forx; =03

When x5 = 0.3, then e*3 = 1.34986
Therefore, y; = ae*: + x3 +1

= 3(1.34986) + 0.3 t 1 = 534958
For X4 = 0.4
When x, = 04, thene™® = 1.49182
Therefore, y; =ae*s +x, +1

= 3(1.49182) + 0.4 *+ 1= 587546

Forxq = 0.5

When x5 = 0.5, then e™5 = 1.64872
Therefore, y5 = ae*s +x, + 1
= 3(1.64872) *+ 0.5 + 1= 644616




AMCP 706-329

Example 2-6. (Continued)

L For x, = 0.6

For X5 = 0.7

When x; = 0.7, then e*
Therefore, y; =

The exact solution, to five decimal places,
x from 0 to 0.7 and an interval of 0.1.

When xg = 0.6, then ~*¢ = 182212
Therefore, yg =ae™t txg +1
=3(1.82212) + 0.6 t 1= 7.06636

* = 2.01375
ae*; +x, +1
3(2.01375) + 07 + 1= 7.74125

is summarized in Table 1 for values of

Table 1. Exact Solution
X ex yexact
0 1.00000 4.00000
0.1 1.10517 4.41551
0.2 1.22140 4.86420
0.3 1.34986 5.349 58
0.4 1.49182 5.87546
0.5 1.64872 6.44616
0.6 1.82212 7.06636
0.7 2.01375 7.74125
2. Taylor's Series Solution
The Taylor's series through the third-order term is:
~ 0 x* x3
y (%) y (@ + xy (O)f'éry () + Y (0) ¢
y(© =4 ym =y -1 y"(0) =3
yl (D) -4 ym - yu y’“ (0) = 3
Therefore,
y (x) 4+4x+——2+—'2—x31
For x4 = 0
When xg = 0,
then y,(x) = 4 +4x, +B/2x, +1/Dx,° +
=4+t0+0t0+, ..=4.00000
For x; = 0.1
When x; = 0.1,
then y;(x) =4 t4x, +U/2)x1 +(1/2)X1
=4+04 +0.015 00005 +. .. =4.41550
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Example 2-6. (Continued)

Forx,=0.2
When x, = 0.2,

then y,(x) = 4 + 4x, +3/2)x,2 +1/2x, +.

=4+08 *t006 *o0.004
For x5 = 0.3
When x = 0.3, ’ , .
then y,(x) = 4 +4x3 +(3/2)x7 +A/2x 3 +. .
=4+12 +0.135 +0.135 = 5.34850
Forx ;=04
When x = 0.4,

then y, (x) = 4 +4x; +(3/20x,” +(1/2)x

=4+%16 +024 +0.032

Forxs=10.35
When x = 0.5,
then ys(x) =4 +4

For XG = 0.6
When x = 0.6,

then y (x) = 4 + 4x¢ +(3/2) x4’ +1/2)x

=4+2.4+0.54 +0.108

Forx; =07
When x = 0.7,

then y.(x) = 4 +4x,5 +(3/2)x,? +1/2)x,?

=4+28 +0.735 +0.17

The Taylor’s Series Solutionis summarized in Table 2, together with the error between

it and the exact solution.

x. +(3/2x52 +1/2)x4?
=4 +2 '?0.375 +0.0625 = 6.43750

+. .. =4.86400

= 5.87200

= 7.04800

15 = 7.70650

Table 2. Taylor’s Series Solution

X Y ¥~¥ exact

0 4.00000 0.00000
0.1 4.41550 -0.00001
0.2 4.86400 -0.00020
0.3 5.34850 -0.00108
0.4 5.87200 -0.00346
0.5 6.43750 -0.00866
0.6 7.04800 -0.01836
0.7 7.70650 -0.03475

Note that the error magnitude increases rapidly as the deviation from the point ol

evaluation of the derivatives (x =

0) increases.
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Example 2-6. (Continued)

3. Solution by Euler's Method
Euler's method makes use of the formula

Yier = (xiJrI - xl) f‘ +Y, (4)
with =y, - % and initial values X = 0 and Yo © 4, and with Xi+1 - x, always equal to
0.1.

Forxo =0

Initial values: x; =0 and Yo = 4.00000

For X1 = 0.1
vy =Gy-xg)f, =0 - %) (v - xg) + vy
= (0.1 - 0.0) (4.00000 - 0.0) +4.00000
= 4.40000
Forx =0.2
Yy, =&y-x) (yp-x)+y,
= (0.2 - 0.1) (4.40000 - 0.1) + 4.40000
= 4.83000
For Xy = 0.3
— y%=(0.1) (yZ-X2)+y2
= 0.1 (4.83000 - 0.2) *+4.83000
= 5.29300
For Xy = 0.4
y4 = (0.1) (y3= x3) +y3
= (0.1) (5.29300 - 0.3) + 5.29300
= 5.79230
Forxg, = 0.5
v5=(0.1) (y; - x4) +vy4
= (0.1) (5.79230 - 0.4) *+ 5.79230
=6.33153
For x; = 0.6
— ys=(0.1)(ys- x5) +¥5s
= (0.1) (6.33153 - 0.5) + 6.33153
= 6.91468

For x, = 0.7
y7 = (0.1) (y() - XG) +y()
(0.1) (6.91468 - 0.6) +6.91468
7.54615

1!

The Euler's Method Solution is summarized in Table 3, together with the error between
it and the exact solution.
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Example 2- 6 (Continued)

Table 3. Solution by Euler's Method.
. Error

x Vi Yi~ Yexact

0 4.00000 0.00000
0.1 4.40000 -0.01551
0.2 4.83000 -0.03420
03 5.29300 -0.05658
0.4 5.79230 -0.08316
0.5 6.33153 -0.11463
0.6 6.91468 -0.15168
0.7 7.54615 -0.19510

4. Solution by the Runge-Kutta Second-Order Method

yi+'|

“y(x th) =y () 4k =y k (

_ h K
k=hf(x +—y *+—)

b2 2 \

k] =hf (Xi, YI) 1

where h = 0,1,

Forxpg=0
Initial values: x; = 0 and y; = 4.00000

k, = hf(xg, y,) = hly, - %,)= 0.1 (4.00000-0) = 0.4

_ h k)
k =h f{xy+3, yo+73)
=0.1f(0%0.05 4+0.2)
= 0.1 (4.20 - 0.05)
=0.1 X 415 = 0.41500
FFor x1 = 0.1 ~
ey oy, + R
=4.00000 * 0.415
= 4.41500

ky=h fGp, yy) = h (v - xy)
0.1 (4.41500 = 0.1) = 0.43150

h K
=h flx, +35°, ¥y +3)
(0.1) f(0.1 +0.05, 4.41500 +0.21575)
(0.1) (4.48075)
0.448075 = 0.44808

=
noil |
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Example 2-6. (Continued)

Forx, =02
Forx; =03
Forx, =04
Forxg =05

Y2

=y, +k = 4415 t 044808
= 4.86308

kl =h f(Xz, yz) = h (y2 - Xz)
0.1 (4.86308 - 0.2) = 0.1 (4.66308)
0.466308 = 0.46631

=1
I

=h f(x, +%, y2+%l-)

{0.1) £(0.2 +0.05, 4.86308 + 0.233155)
(0.1) 4.846235 = 0.4846235

0.48462

=y, +k = 4.86308 + 0.48462
5.34770

k, =h flxs, y3) = h (y;- X3)
0.1 (5.34770 - 0.3) = 0.1 (5.04770)

0.50477

k =h f(x +£ +E—1)
372 Y3 7Tg
= (0.1) £(0.3 + 0.05, 5.34770 + 0.252385)
(0.1) (5.250085)
0.52501

=ys +k = 534770 + 0.52501
5.87271

k, =h flxg, yg) = h (y, - x,)
0.1 (5.87271 - 0.4)
0.1 (5.47271)

l

= 0.54727

- h ki

k = h f(X4 +7, y/1 + -2-—)
= 0.1 (0.4 +0.05, 587271 * 0.273635)
= 0.1 (5.69635) = 0.56964

=y, +k = 587271 + 0.56964
6.44235
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Example 2-6. (Continued)

Forx,= 0.6

For x5 = 0.7

For x

8

0.8

Y8

o
|

1 =h f(Xj, y5) = h (ys - X5)
0.1 (6.44235 - 0.5)

0.1 (5.94235)

0.59424

K
=t s v+ b

0.1 (0.5 + 0.05, 6.44235 +0.29712)
0.1 (6.18947)

= 0.61895

ol
1l

= ys tk = 644235 + 0.61895
= 7.06130
ky=h f(x, ve) = h (yg- x4
= 0.1 (7.06130 - 0.6)
0.64613
k
- 1
k =h f(XG +%’ Y6 +—)'—)
= (0.1) £(0.6 +0.05, 7.06130 +0.323065)
= (0.1) (6.734365)
= 0.67344
=ys +k = 7.06130 + 0.67344

=7.73474

k;y =h [x;,¥y7) = h (y, - x3)
0.1 (7.73474 - 0.7)

0.1 (7.03474)

0.70347

h K
=h fx; 37 vo+75)
= (0.1) (0.7 + 0.05, 7.73474 + 0.351737)
(0.1) (7.336477)
0.73365

=~ |

=y, +k = 7.73474 + 0.73365
8.46839
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Example 2-6. (Continued)

The solution obtained by the Runge-Kutta sccond-order method issummarized in Table
4, together with the error between it and the cxact solution.

Table 4. Solution by the Runge-Kutta Second-Order Method.

X, y; k1 k Error
Yi7Y exact
0 4.00000 0.40000 0.41500 0.00000
0.1 4.41500 0.43150 0.448 08 0.00051
0.2 4.86308 0.46631 0.48462 0.00112
0.3 5.3477 0 0.5047 7 0.52501 0.00188
0.4 5.87271 0.54727 0.56964 0.00275
0.5 6.44235 0.59424 0.61895 0.00381
0.6 7.06130 0.64613 0.67 344 0.00506
0.7 7.73474 0.70347 0.7 3365 0.00651
0.8 8.46839

5. Solution by the Runge-Kutta Fourth- Order Method

p o v Tyl ek Ty o

.
ko= (ke 2k, e 2k 4 k)
k,= ht (x, y))
= hE(x +4r,y, o)

2

k =hf(x +4, v, + %)
2 2

ke=hflx b,y 4 k)
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Example 2-6. (Continued)

Forxp =0

Initial Values: Xp = 0 and y,; = 4.00000

ky = hf (xq, Yo) = 0.1 {yg = %¢) = 0.1 (4.0000 - 0)
0.40000

k
hf(xq + 3, ¥o +——21—) = 0.1£(0 + 0.05, 4.0 + 0.2)

ko =
= 0.1 (4.2 = 0.05) = 0.1 (4.15)
= 0.41500
k,
+h 2
kg =hf{xgtg, yp +5)=0.1f (0+0.05, 4.0 +0.2075)
= 0.1 (4.2075 = 0.05) = 0.1(4,1575)
= 0.41575
kg = bf (%, +-l2‘-, ¥o T k3) = 0.1£(0+ 0.1, 4.0 + 0.41575)
= 0.1 ( 4.41575 - 0.1) = 0.1 (4.31575)
= 0.43158
k =-£(k + 9k + 2k, + k)
6 "1 2 37 74
=-é- (0.4 +2(0.415) + 2(0.41575) + 0.43158)
= 31(0.4 + 0.830 + 0.83150 + 0.43158)
= 0.41551
For x, = 0.1
Yi=yo+ k=40 1041551
= 4.41551
K, = hf (xq, y1) = 0.1f(y; - x3) = 0.1 (4.41551 - 0.1)
= 0.1 (4.31551)
= 0.43155
h 1
kg = hi(xy ¥ 5, yp+—5 )= 0.1 £(0.1 + 0.05, 441551 + 0.215775)
= 0.1 (4.631285 - 0.15) = 0.1(4.481285)
= 0.44813
h Ky
k3 =hf (x1 t5,y; +7)=0.1£(0.1+0.05, 441551 + 0.224065)
= 0.1 (4.639575 - 0.15) = 0.1 (4.489575)
= 0.44896
ky = hf (x1+ h, y; tk3g)= (0.1+ 0.1, 441551 + 0.44896)

i

0.1 (4.86447 - 0.2) = 0.1 (4.66447)
0.46645
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Example 2-6. (Continued)

1
k ==k t 2k, + 2k3 + k4)

6
1
=2 (0.43155+ 2(.44813) + 2 (.11896) + 0.46645)
=l6(0.43155 + 0.89620 1 0.89792 + 0.46645)
1
= =(2.692218)
= 0.44870

For x, = 0.2

Yy IVt k= 441551 % 0.44870

4.86421

I

hf(xy, yy) = 0.1 (4.86421 - 0.2) = 0.1 (4.66421)

0.46642 ky

ky = Bf(xy + 5,59 % —5) = 0.1£(0.2+ 0.05, 4.86421 + 0.23321)
0.1 (5.09742 - 0.25) = 0.1(4.84742)

kl

I

= 0.48474
h ko .
RS = hf(x2 +§, ¥ + —,2) = 0.1£(0.2 + 0.05, 4.86421 + 0.24237)
= 0.1 (5.10658 - 0.25) = 0.1 (4.85658)
= 0.485606
ky = hf(x2 + h, yo + k3) = 0.1f(0.2+ 0.1, 4.86421+ 0.48566)
= 0.1 (5.34987 - 0.3) = 0.1 (5.04987)
= 0.50499
k =?(k1 + 2ky + 2k3 + k4)

%(0.46642 +2(0.48474)+ 2 (0.48566)+ 0.50499)

1 (0.46642+ 0.96948 + 0.97132 + 0.50499)
6

1
z (2.91221)
0.48537

For x, = 0.3

Y3 =¥y ¥ k = 4.86421 + 0.48537
= 5.34958
ky = hf(x,, y3) = 0.1{ys - x5) = 0.1(5.34958 = 0.3)

0.1(5.04958)
0.50496
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Example 2-6. (Continued)

For Xy = 0.4

k
= hf (% +.§,y3 + =L . 0.1£(0.3+ 0.05,5.34958+ 0.25248)
2

= 0.1(5.60206- 0.35)= 0.1(5.25206)
= 0.52521

h -
¢3 = hf (xg 5 vzt L§ﬁ= 0.1f (0.3+ 0.05,5.34958+ 0.262605)
= 0.1 (5.612185- 0.35)= 0.1(5.202185)
= 0.52622

= hf(x3+ h,_y‘3+ k )=0.11(0.3+ 0.1,5.34958 + 0.52622)
= 0.1(5.8758 - 0.4)= 0.1(5.4758)
= 0.54758
= —_-l(kl + 21{2 + 2k.3+ k)= iL(0.50496 + 2(0.52521)+ 2 (0.52622)+ 0.54758)
() : 4 )
= %(0.50498+ 1.05042+ 1.05244+ 0.54758) = l
i}
= 0.52590

(3.15918)

=y, + k
3O
= 5.34858 1+ 0.52590
= 5.,87548
= hf(x4, y4) = 0.1(5.87548- 0.4)
= 0.54755
b 5
= hf(X4+ E, )’4+ 2)O.l f(0.4+ 0.05,5.87548+ 0.273775)
= 0.1 (6.149255-0.45)= 0.1(5.699255)

= 0.56993

= hf(x4+g, y4+ lﬁ%) = 0.1f(0.4 0.05,5.87548+ 0.284965)
= 0.1 (6.160445- 0.45)= 0.1(5.710445)

= 0.57104

= hf (x4 + h, Y4 *tky) = 0.1f(0.4 0.1, 5.87548+ 0.57105)

= 0.1(6.44653 - 0.5)= 0.1 (5.94653)

= 0.594u5
1 1
= B(kl 1 2k2 + 2k3+ k4) =z (0.54755%+ 2 (0.56993)+ 2(0.57104) + 0.59465)
= %(0.54755+ 1.13986+ 1.14208t 0.5940L5) = %(3.42414)
= 0.57069
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Example 2-6. (Continued)

For Xg = 0.5
Y5 = Y, t k = 5.87548 + 0.57069
= 6.44617
kq =hf (xg, y5) = 0.1 (6.44617 - 0.5)
= 0.59462
h ky
kg =hf (x5 +3, y5+ 5 7 0.1 (0.5 +0.05, 6.44617 +0.29731)

= 0.1 (6.74348 - 0.55)

0.1 (6.19348)

= 0.61935

k
h 2
k3 = hf (x5 +3 Y5 + 2—) = 0.1f (0.5 +0.05, 6.44617 + 0.309675)

= 0.1 (6.755845 - 0.55) = 0.1 (6.205845)
= 0.62058

k =hf (x5 +h, s tk,)=0.1f (0.5 + 0.1, 6.44617 + 0.62058)

4 3)

= 0.1 (7.06675 - 0.6) = 0.1 (6.46675)

= 0.64668

= 0.62019
For Xp = 0.6
Y6 = V5 + k= 6.44617 + 0.62019

= 7.06636
ky = hf (xg, y ) = 0.1 (7.06636 - 0.6)

= 0.64664
h

27
0.1 (7.38968 - 0.65) = 0.1 (6.73968)

k
+‘2—1 )= 0.1f (0.6 + 0.05, 7.06636 *+ 0.32332)

~
1§

hf(x6+

= 0.67397
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Example 2-6. (Continued)

k

h ‘

= - 2y = : +

Ky =hf (xg+=, 5.+ 5 ) = 0.1f (0.6 + 0.05, 7.06636 + 0.336985)
= 0.1 (7.403345 - 0.65) = 0.1 (6.753345)
= 0.67533

k =hf (x +h, vy +k )=01 (0.6 +0.1, 7.06636 *0.67533)

4 6 6 3

= 0.1 (7.74169 - 0.7) = 0.1 (7.04169)
= 0.70417

- 1 1

k== 42k 2k, tk,) = n (0.64664 +2(0.67397) + 2(0.67533) +0.70417)

6 2

:% (0.64664 + 1.34794 + 1.35066 + 0.70417)
- L 4 0a04n)
= 3 ( )
= 0.67490

For X, = 0.7

Vo TVt k = 7.06636 * 0.67490
= 7.74126

k = hf = 0.1 (7.74126 - 0.7

. & y,) ( )

= 0.70413

h 1
k,=hf &, +=5 vy, +—

a S

) = 0.1f (0.7 +0.05, 7.74126 + 0.352065)

1l

0.1 (8.093325 - 0.75) = 0.1 (7.343325)

0.73433

k
k.=hf (x +& vy +-2)=0.1f (0.7 + 0.05, 7.74126 +0.367165)
3 S 2T,

0.1 (8.108425 - 0.75) = 0.1 (7.358425)

Il

0.73584

k =hf(x *h,y *+Kk )=0.1f (0.7 + 0.1, 7.74126 + 0.73584)
7 7 3

0.1 (8.47710 - 0.8) = 0.1 (7.6771)

0.76771




AMCP 706-329

Example 2-6, (Continued)

- 1 1
k =gy + 2k, + 2k3 + k4) = E( 0.70413 + 2(0.73433) + 2(0.73584) + 0.76771)
1
i (0.70413 + 1.46866 + 1.47168 + 0.76771)
1
=— (4.41218
6
= 0,73536
For = 0.
or X8 8
Vg =V, * k = 7.74126 + 0.73536

8.47662

The results are tabulated in Table 5, together with the error. Note the marked im-
provement in accuracy over the second-order solution (see Table 4).

Table 5. Solution by the Runge-Kutta Fourth-Order Method.
Error

! A, k1 Ky k3 Ky k ¥i™¥ exace

0 4.00000 ‘ 0.40000 041500 | 0.41575 0.43158 0.41531 0.00000

i

0.1 441951 ' 033155 0.8 1 0.44898 U.466:15 0.11870 0.0000
0.2 8642 U. 48642 04344 0.48066 0.50449 0. 48347 -0.00001
0.3 TPRRTNT ' 1.50446 0.52571 0.52622 0.54758 0.52590 0.00000
0.4 287 148 0.54755 0.56993 0.57104 0.59465 0.57069 -0.00002
0.5 6.41617 0.50462 0.61945 0.62058 0.64668 0.62019 -0.00001
0.6 706646 0.6466+4 0.67397 0.67533 0.70417 0.67490 0.00000
0.7 TU26 U.70413 0.73433 0.73584 0.76771 0.73536 -0.00001
0.4 4 47661
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In Example 2-6, second-order and fourth-
order Runge-Kutta solutions of Eq. 2-121
are included.

A number of "predictor-corrector'
methods have been developed. The best
known, that of Milne, requires a knowledge
of the values of y at four consecutive values
of x. These values may be determined by a
Runge-Kutta method or other self-starting
methods. By Milne's method, a value of y at
a new point y, _, is predicted by the formula

Yir Vies ! 3 &y -yt 2y)

(2-128)

where yi-35 ¥;-25 Yi-1» Y;4 4are successive
values of y at points on the x axis equally
spaced bythe interval h. and y', denotes the
derivative %—;é, evaluated at a point (x,,y,).
Fromthe predicted y;4; and y'j+; , a correct-
ed value for the new y, denoted ?i“ , is ob-
tained from the formula

~ h
Yier Ty, tly

RSN (2-129)

Ayl

Once the original four points have been ob-
tained, the computation by Milne's method
proceeds more rapidly than does a Runge-
Kutta computation of the same step size.

Anyofthemethods describedinthis par-
agraph can be expanded to solve systems of
first-orderlinear equations. Ahigher-order
equation can always be reduced to a system
of first-order equations, as follows. Con-
sider the nth-order equation in the general
form

dry dy d?% dn-ly
“flxy — —, ...,

dx dx  dx? dxn -1
(2-130)
d d2 dn—l
Letzl=a§, zz=—%,...,zn_1=-—_v—. Then the
dx dxn!

following set of first-order equations is
equivalent to Eq. 2-130:

L (2-131)

Thus, the numerical solution of higher-order
differential equations is straightforward.

2-4.6 METHODS FOR SOLVING SYSTEMS
OFLINEAR ALGEBRAIC EQUATIONS

The standard form of a systemof linear
algebraic equations, with n equations and
variables x, (i=1,2, ..., n) is

+ 4 5
Oy % T 02 %, toa,x <
Gy Xyt 0y %, F to,x, TG
(2-132)
-+ _
1% T0,% T ta.x T«

In matrix form, Eqgs. 2- 132 mavbhe express-
ed as

c
Gy Gy % % 1
X
9 Oy O2n 2 )
Gn] a 2 Gnn Xn Cn
n

(2-133)

2-63
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Theleft-hand matrixin Eq. 2- 133 is the ma-
trixof coefficients A and is a square matrix

withnrows andn columns. The column mat-
rices are represented by X and C, respec-
tively. Eq. 2-133 may then be expressed

AX = C (2-134)
The solutions of Eq. 2-134 are, by matrix
algebra,

X = A1C (2-135%)
where A™! is the inverse matrix of A.* The
inverse of a square matrix is defined by the
the relationship

A 2 (2-136)
100 ...0
010...0

where I A 001...0 is the unit, or
000 ...1

identity, matrix.

The solutions to a set of simultancous
linear algebraic equations can thus be ob-
tained by inversion of the matrix of coeffi-
cients, followed by multiplication of the in-
verted matrix by the column matrix of con-
stants. The major operation, that of matrix
inversion, canbe performed by severalmeth-
ods. The simplest is by the application of
Cramer's rule. In matrix form, Cramer's
rule states that

- _ - S
lAl, 1A, Al

Xy T . T <
[A] LA PA
A AL Al C

%, e 2
| A | Al | Al
- LA, A

X“ _ Cn
| Al [ A | Al

(2-137)

Not every square matrix has an inverse.

where |Al is the determinant of A and |Alj;
is the cofactorf of a.- in thedeterminant IAf.

Application of éramer's rule in digital
computation requires a large number of op-
erations. An alternative procedure is the
Gauss-Secideliterativemethod. The equation
set, Eqs. 2- 132, mayberewritten in the form

X, =d -byox,—b, x5 - L - b, x
X, Zdy _byxp B ox - _ by x,
)(" - dn_bnl X] _bn2x2 _bn, n—]xn—l
(2-138)
a, ¢,
where bii:i:— and di:éTi—'
By defining the matrices
0 b12 b13 oo by
b2| 0 b23 bZn
B |-
bn'| bn2 bn3 0
(2-139)
and
_ .
d2
D = (2-140)
dn

asimple iterative process may be employed,
represented bythe matrix iteration equation

The value of the matrix A —- considered as a determinant for this operation == cannot

equal zero since, in computing the inverse, division by the determinant is necessary.

1

T The. cofactor is the determinant obtained from ’A’ by dropping the row and column that contain a.j. The sign of the cofactor

1s given by (-1)1*].

2-64
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X(k+1) = D + BX(K) (2-141)
Eq. 2-141 states that an improved matrix
X & canbeobtained by multiplying the pre-
ceding matrix X(k)by B and adding the result
to D. Eq. 2-141 is the original method of
Gauss. The improved Gauss-Seidel method
divides the matrix B into upper and lower
triangular matrices U and L; thus,

_
0 b, by ... b
0 0 by, b,
U = T,
0 0 0 0
(2-142)
and
o 0 0 0
b,, 0 0 0
L = N
b b, b, 0
(2- 143)

The matrix iteration equation is

Xt = D4 UX®) 4 LXK (2-144)

Eq. 2-144 represents the following process:
In the first of Eqs. 2-138, the initial value of
all the x's except x; is taken as zero. Then
X mzdl. In the second equation, the im-
proved value of x; isused, but the remaining
x's on the right-handside arcset to zero, so
that x2“)=dz-b21x1 M, and sc on. Both the
Gauss and Gauss-Seidel methods converge if
the sum of the absolute values of the coeffi-
cients b;; is less than or equal to unity in
each equation, and is less than unity in at
least one equation. This condition canusually
beassuredby rearrangingthe equations such
that a,; is the largest coefficient.

The Gauss-Seidel method is best suited
to automatic computation. The widely-used
Crout method is best suited to hand compu-
tation.
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PART Il
COMPUTING DEVICES USEFUL IN

FIRE CONTROL SYSTEMS
CHAPTER 3

THE CLASSIFICATIONS OF COMPUTING DEVICES
USED IN FIRE CONTROL SYSTEMS"

3-1 INTRODUCTION

3-1.1 CHARACTERISTICS OF FIRE CON-
TROL COMPUTERS

The function of a fire control systcm is,
as discussed in Section1! of the Fire Control
Series, to so position a projcctile-launching
device, or projector, as to causc thc projec-
tile to hit the target. This purposc is accom-
plished by three subsystems: thc acquisition
and tracking systcm, thc computing systcm,
and the weapon-pointing system. Thc comput-
ing system (generally refcrrcd to as simply
the "computer" forthe sakc of convenicnce)
acceptsdata fromthe targettracker and from
atmosphcric and other mcasurcmcents, com-
putes the required orientation of thc projcc-
tor, and transmits these data to the wcapon-
pointing system.

The aforenotcd functions of a firc-control
computer determine its two gcncral basic
characteristics:

1. First, a fire-control computcr must
usually be fast. In many tactical situations,
it is important that the timc between the de-
tection of a targct and the firing of a projcc-
tile be minimized. For this rcason, it has
been found desirablc in many fire control
systems to incorporatc the computer in the
tracking loop. In this casc, thc computation
is performed on the same time basc as that
onwhich incomingtracking dataarcreccived.
Such a computer istermed a rcal-timc com-
puter. If, on the other hand, thc computcr is
not incorporated in a data loop, it may oper-
ate at speeds either faster or slowcr than
real time.

%< By E, St. George, Jr
T Fire Control Systems = General (AMCP 706-327).

2. Second, the fire control computer
must be extremely accurate. Errors incom-
ponents tend to accumulate, and usually cannot
bec reduced by feedback. The only effective
ovcrall fcedback is obtained from the obser-
vation of prior firings. While information ob-
taincd in this manner is valuable when the
targct is fixed or moving at low velocity, this
information-transfer process is too slow to
be of much help in reducing errors against
high-specdtargcts; in addition, firingsneces-
sarily disclose thc position of the weapon. By
way of contrast, a homing guided missile
is continually measuring the error in the
missilc-target linc of sight; thus, computers
forhoming guided missiles may have accuracy
rcquirements that are much Less stringent
than those for fire control systems.

Since the computer must be located in
proximity to the rest of the weapon system,
it must have qualities of portability, reliabil-
ity, casc of adjustment, and freedom from
disturbances caused by the environment which
arc commensurate with those of the rest of
thc system. These qualities are not easy to
combine with the requirements forhigh speed
and high accuracy.

3=1.2 CLASSIFICATION SCHEMES

The firc controlsystemdesigneris faced
withthe problem of designing a fast, accurate,
compact, and rugged computer which will
mechanize the mathematical model of the
computer portion of the weapon system. To
carry out this task, he has the choice of a
wide variety of computing devices and sys-
tcms: some very old, and others just out of
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the laboratory; some complex and some very
simple.

For the purpose of discussing the vast
field of fire-control computers, it is useful
to consider three classification schemes: (1)
from the viewpoint of the user, (2) from the
viewpoint of the systemdesigner, and (3) from
the viewpoint of the component designer. First
of all, however, it is desirable to identify the
essential features of any computer or comput-
ing device.

3-1.3 BASIC COMPUTER CONCEPTS

Excluding direct analogs, in which one
physical phenomenon is simulated by another
physical phenomenon that has an analogous
behavior, all computing processes == whether
they be manual or automatic, digital or ana-
log == comprise the elements of computation,
programming, memory, input, and output.
These elements are best illustrated by an
analysis of hand computation.

In solving a complex problem by hand
computation, the problem must be broken down
into simple computations which can be carried
out mentally. Unless the problem is quite
simple, it isnecessary to write downthe steps
to be followed -- the program. As the com-
putational steps are carried out under the in-
structions of the program, the results arere-
corded on paper for use inlater stages. This
sheet of paper constitutes the memory.

The process of computing may be sum-
marized as(1)transfer of data fromthe input
element to the computation element, (2) per-
formance of a series of computations, with
the transfer of intermediate results to and
from the memory", and (3)transfer of the
final result to the output. The sequence of
computations performed and the transfers of
data are allunderthe controlof the program,
as shown in Fig. 3-1.

For more complex calculations, various
aids to computation may be introduced, but
the basic concept is not changed. For exam-
ple, a slide rule, adding machine, ordesk cal-
culator may be employed as @& computer
instead of the human brain. Tables of mathe-
matical functions may augment the paper-and-
pencil memory.

* Additional input data may also be entered at various stages of the
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When automatic computers are con-
sidered, it is found that analog computers
perform all parts of a complex calculation
simultaneously, so that the memory element
disappears completely; also, the program-
ming functionis primarily concerned with the
interconnections between a large number of
computing elements and a largenumber of in-
puts and outputs. In a digital computer, on
the other hand, the computing elementis rela-
tively simple, whilethe memory may belarge
and complex, and divided into various cate-
gories, dependent primarilyupon speed of ac-
cess. Thus,the basic concept of the comput-
ing process applies, with some modification,
to allcomputers from the simplest hand com-
putation to the largestelectronicdigitalcom-
puter.

3-1.4 USER CLASSIFICATIONS

From the viewpoint of the user, or oper-
ator, it makes little difference whether the
computer is digital or analog, electronic or
mechanical, as long as it provides the requi-
site inputs and outputs, and has the required
speed and accuracy. The user, therefore,
will classify computers primarily by their
degree of automaticity. The first classifi-
cation schemesto be discussed (see pars. 3-2
through 3-4)consider both computing devices
that are primarily aids to a chiefly manual
computation and computers that are wholly
automatic, or almost so. A second classifi-
cation of importance to the user (see par.
3-7) divides computing devices into special-
purpose and general-purpose groups.

3-1.5 DESIGNER CLASSIFICATIONS

From the viewpoint of the system de-
signer, the decision as to the particular type
of computer to be employed (i.e., a digital
computer, a digital differential analyzer, or
an analog computer; see par. 3-5) rests upon
anumber of interacting factors. Although the
designer's own background should, ideally,
not influence the decision, it is, practically,
often one of the prime factors. However, the
decision is influenced, and possibly even
forced, by such purely technical considera-

computation.
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PROGRAM
INPUT o OUTPUT
DATA COMPUTATION MEMORY —_— DATA
Figure 3-1. The computing process.
tions as the number and form of the inputsto  titude are known -- s0 as to fire on a target

be fedinto the computer and of the outputsre-
quired, the accuracy required, the specific
computations to be performed, the speed at
which solutions must be obtained, etc. Also
involved, even in the choice of the basic com-
puter type, are suchquestions as the range of
variablesto be handled and the related scale-
factor questions, the reliability, and the ease
with which the computer could be adapted to
handle problems involving different operating
conditions or even different basic computa-
tions from those originally planned.

From theviewpoint of the component de-
signer, computers may best be classified ac-
cording to the physical means employed to
perform the computations (see par. 3-6).
While there has been a strong trend toward
electronic computers in recent years, elec-
tromechanical and fluid-operated computing
devices are of greatimportance, particularly
in the specialized fire-control field.

3-2 MANUAL COMPUTING DEVICES

A wide variety of useful aids exists for
use in manual computing. Of these, the most
useful consists of apencil and asheet of paper,
which provide the simplest possible auxiliary
to the human memory. A natural develop-
ment from this is the provision of tables of
commonly-used functions,

3-2.1 FIRING TABLES

The firing table (seeChapter 3 of Section
1,Fire Control Systems - General) is a basic
computing tool in field-artillery fire control.
Here,theproblem isto orienta gun=-located
at a point whose positional coordinates and al-

whose positional coordinates arid altitude have
beenmeasured by various observationaltech-
niques. The use of afiringtable is restricted,
of course, to circumstances in which suffi-
cient time is available for manual computa-
tions. The results of the computations are
three pertinent variables:
1. Azimuth of fire
2. Gun elevation angle
3. Time of flight (for fuze settings, and
time-on-target applications).
To compute these values, the following data
are required:
1. Muzzle velocity
2. Aerodynamic characteristics of the
projectile
3. Position of the target with respect
to the weapon, specified in terms of:
a. Range to target
b. Height of target with respect to
weapon
c. Azimuth to target.
4. Meteorological message, consisting
of:
Airpressureand/or air density
Air temperature
Wind velocity
. Latitude.
The firing table tabulates weapon elevation
angle as a function of range for a given type
of weapon and ammunition, under standard
atmospheric conditions. To provide correc-
tions for atmospheric variations from stand-
ard, unit corrections arelisted for each vari-
able. The meteorological message gives the
necessary data toacquire thenumber of units
variation from standard, from whichthe cor-
rectionis acquired by the product of unit cor-
rection and number of units variation. For

aooe
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the total procedure, the solution is a series
of lookups, multiplications and algebraic ad-
ditions of corrections.

3-2.2 NOMOGRAMS

Other aids to manual computation are
based on the nomogram, or alignment chart.
The simplest nomogram consists of three
parallel scales, A, B, and C in Fig. 3-2, on
which are marked any three functions, f(A),
f(B), and f(C), of the variables A, B, and C.
If A and B are the independent variables, a
straight linepassingthroughthe selected val-
ues of A and B will intersect C at apoint de-
termined by

flC) = RIB) + (1 -RI(A) (3-1)
where R = ¢/b, as defined in Fig. 3-2,

If logarithmic functions are chosen, the
nomogram may be used to compute products
or quotients. This type of nomogram is so
useful that the logarithmic scales and the in-
dex line are commonly engraved on slides to
form the familiar slide rule. A wide variety
of computations may be performed by means
of special slide rules and a variety of more
complex nomograms.

This brief discussionis intended to pro-
vide an introduction to topics which are not
covered in detail in this handbook. Further
information on the involved process of com-
puting firing tables, and details on the con-
struction of various types of nomograms will
be found in References 1through 5.

3-3 MANUALLY OPERATED AUTOMATIC
COMPUTERS

The extensionof the concept of aiding the
manual computation of fire-control dataleads
naturally to theuse of general-purposedigital
computers. Asimpleformofthistype of com-
puteris the mechanicaldesk calculator, which
is sometimes employed in fire-controlwork.
This calculator can perform addition, sub-
traction, multiplication, and division (and in
some cases can extract the square root), and

\ £(A)

f(8)

f(C)

A B C

_,.b_.' . |

Figure 3-2.

Basic nomogram.

can thus supply the arithmetic or computa-
tional element in a computing system. The
memory and programming are supplied man-
ually.

Any general-purpose digital computer
which has sufficient storage capacity for the
firing tables canbe programmed to solve the
field-artillery fire control problem. A port-
able computer, known as FADAC,'" has been
developed specifically for the solution of this
problem in the field. The FADAC is a typi-
cal general-purpose digital computer, and in-
deed can be readily programmed to perform
accounting operations, and other computa-
tions. It is distinguished from the fully auto-
matic computers used with fire control sys-
tems in two respects:

1. It has manual, rather than automatic,
inputs and outputs.

2. It need not operate in real time.
With these differences kept in mind, the de-
scriptions of automatic computers in later
chapters may be applied to any of the manu-
ally operated automatic computers.

3-4 AUTOMATIC COMPUTING DEVICES

Most of the computers with which one is
concerned in fire-control work are automatic

sk See Chapter 1of Section 1 of the Fire Control Series and Chapter 4 of the present section.

3-4




AMCP 706-329

Computers that operate with physical rather
than mathematicalvariables asinputs and out-
puts. Such computers operate in real time
and serve as a functional element of a fire
control system, Real-time computers are
characterized by the same elements (input,
program, computation, memory, and output)
that areuniversalto computers, and they may
be either digital or analog. Their distinguish-
ing characteristics are an ability to perform
computations at the same rate as that at which
the input data change, and the provision of
equipmentto convert theinput datainto aform
acceptable to the computer. Equipment is
also provided to convert the computer output
into a form suitable foruse in positioningthe
projector.

The requirementfor real-timeoperation
makes the fire-control computer a highly spe-
cialized design, (General-purpose digital
computers generally operate slowerthan real
time; their speed is usually limited by the
time of access to the magnetic tape memory
most commonly employed for large-volume
storage. On the other hand, some electronic
analog computers operate considerably faster
than real time, making unnecessary the use
of drift stabilization in the electronic ampli-
fiers, and makingpossible the use of cathode-
ray-tube output displays.) Real-time analog
computers require highly-stable electronic
amplifiers and electromechanical elements
which have good dynamic response. Real-
time digital computers must have high-speed
circuitry or redundant elements == generally
both are employed -- and must have rapid-
access storage.

Introduction of datato a real-timedigital
computeris accomplished by means of analog-
to-digital converters since the data are gen-
erally initially generated in analog form. Con-
version of theoutput data is accomplished by
the provision of digital-to-analog converters
on the adjustable axes of the projector. The
converter outputs are compared with the com-
puter outputs and the differencesare employed
as the error signals to the projector power
Servos.

Introduction of datato a real-time analog
computer involves only the conversion of the

% In the literature,

data to a form usable by the computer, gen-
erally a voltage or a shaft angle. Control of
the projector is usually obtained bymeans of
synchro data transmission.

3-5 DIGITAL, DIGITAL DIFFERENTIAL
ANALYZER, AND ANALOG
COMPUTING DEVICES

Themostbasic decision made by the fire-
control-system designer in the design of the
computing system is the choice of thetype of
computer to be used -- i.e., whether it will
be a digital computer, a digital differential
analyzer, or an analog computer. The fol-
lowingparagraphs define,and briefly describe
these three classes of computers,

A digital computer is one in which the
mathematical variables are represented nu-
merically by discrete physical quantities,and
all computations arecarried out innumerical
form, Typical examples of the discrete quan-
tities employed are the motion of a ratchet
actuated by a pawl, the magnetic state (whether
magnetized or demagnetized) of a core hav-
ing a pronounced square hysteresis loop, or
the electrical state (left-hand or right-hand
transistor conducting)of atransistor bistable
circuit commonly referred to as a flip-flop
circuit. A digital computer is rnade up of the
elements shown in Fig. 3-1, but the compu-
tational element is capable only of addition,
subtraction, and detection of the signof a quan-
tity. All other computations are made up of
combinations of these basic operations, with
the intermediate results transferred to stor-
age between steps.

A digitaldifferentialanalyzer (frequently
abbreviated DDA)is a special form of digital
computer in which the variables are repre-
sented by trains of electrical pulses (or other
discrete quantities). Each pulse represents
an increment of the variable and each has an
equal value, whereas in a standard* digital
computer only those pulses representing the
leastsignificant digit of the number areequiv-
alent to an increment in the variable. The
DDA is organized much like an analog com-
puter; i.e., particular elements of the machine
are designed to perform a particular mathe-

the two classes of digital computers are sometimes distinguished as DDA and general-purpose (GP) computers, but

the latter designation is a misnomer in this situation since the standard computer may be either general-purpose or special-purpose.

3-5
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matical computation (such as multiplication
or integration), and these elements areinter-
connected to perform the complete computa-
tion. Since similar basic components are
employed, it iS possible to look on the DDA
as a standard digital computer with uncon-
ventional programming, and depending onre-
dundant computing elements to achieve a high
solution speed.

Ananalog computer is onewhich employs
continuous physical quantities to represent
the variables. Analog computers are divided
into elements which are made up of electrical
and mechanical networks so arranged asto
produce particular mathematical functions.
A given equation is solved by theinterconnec-
tion of computing elements in the required
pattern. For example, an instrument servo
with tachometricfeedback can accurately re-
produce, as a shaft rotation, the timeintegral
of its input voltage. If a shaped potentiometer
is coupled to the output shaft, the sine (or
some other function) of the integral can be
generated.

A special type of analog computer, usu-
ally known as a network analyzer, employs
electricalnetworks whoseresponse is repre-
sented by the familiar second-orderdifferen-
tial equation

e:Li-RiT%—fidf 5-2)

with many variants, depending onthe way in
which the elements are combined. Assem-
blages of such analog networks have proved
usefulin the analysis of the vibration of com-
plex structures, the transient response of
electrical power networks, and the charac-
teristics of many systems with distributed
parameters.

In Part II of this section of the hand-
book, detailed descriptions of computer design
principles have been segregated into indi-
vidual chapters ondigital computers, digital-
differential-analyzers, and analog computers
since these classifications are of most con-
cern to the systems designer.

Achapter has also been devoted to com-
parisons between these classes of computers.
Obviously, a digital computer is more flexi-
ble in its application to different problems
than an analog computer or DDA since a new
program can be entered electrically without

3-6

the necessity of physically changing electri-
cal or mechanical connections. On the other
hand, when the inputs and outputs are in ana-
log form, a digital computer requires addi-
tional converter equipment. The reliability
of a digital computer is inherently greater
than that of an analog device since thedigital
computer is made up of components with dis-
crete or "yes-no" outputs.

The factors of accuracy., speed., cost,
size, weight, and power consumption are in-
terrelated in complex ways for all types of
computers. Any particular design is a com-
promise between these factors, which can
often be traded-off against one another. For
example, with a given design of digital com-
ponents, the sizeof a digital computeris pro-
portionalto the product of accuracy and speed.

Furtherdiscussion of computer compari-
sons is reserved for Chapter 8.

3-6 TYPES OF PHYSICAL EQUIPMENT
EMPLOYED IN COMPUTERS

A classification of computing devices by
the physical means employved tocarry out the
computation yields the four major classes of
electronic, mechanical, electromechanical,
and fluid computing devices. Both digital and
analog devices arefound in all these classes.

Electronic computing devices aredefined
as those having electrical inputs and outputs,
and performing computations by means of
electricalnetworks and electronic amplifiers.
Modern high-speed digitalcomputers are al-
most wholly electronic, with such devices as
transistor flip-flops and gates and magnetic-
core storage elements predominating. Elec-
tronic analog computing devices are employed
in computers intended for simulation and re-
lated operations, but the limited accuracy in
such functions as multiplication has limited
the application of purely electronic analog de-
vices in fire control computers.

Mechanical computing devices have me-
chanical inputs and outputs, and compute by
means of mechanical components suchaslink-
ages, gearing, springs, and cams. The origi-
nal digital computers of Pascal and Babbage
were all mechanical, and they persist in the
common desk calculator. Mechanical analog
devices were universally employed in early
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1. D. P. Adams,

2.

fire control computers, but now surviveprin-
cipally as components of electromechanical
systems.

Electromechanical computing devices
may have either electrical or mechanical in-
puts and outputs in any combination, but more
commonly both inputs and outputs areelectri-
cal. Indigital computation, electromechanical
devices of the punched-card variety are em-
ployed mainly in accounting machines, and
as input-output devices for general-purpose
computers. A variety of other electrome-
chanical devices are employed for digital-
computer input-output functions: punched
paper tape machines, magnetic tape record-
ers, electrictypewriters, and plottingboards,
for example.

Electromechanical analog computing de-
vices combine the accuracy of mechanical
elements with the flexibility of electrical in-
terconnection. A common technique is to
convert a signal voltage into a shaft rotation
by means of a position servo. Various com-
binations of linear and aonlinear potentiom-
eters and electromagnetic devices may be
coupled to the shaft in orderto multiply orto
generate functions. Most analog fire control
computers are of this type.

Fluid computing devices (i.e., hydraulic
and pneumatic computing devices) are actu-
ated by a fluid-pressure input and produce a
fluid-pressure as the output. Fluid devices
for use as digital computing componentshave
only recently been developed. They are fast,
reliable, and occupy little space, and will be-
come a more important factor in the future.
Fluid analog devices have been employved for
many years in process-control technology,
and more recently in. engine-fuel controls.
In general, they have been preferred to elec-

tronic systems in those applications where
electrical signals would create a firehazard.

The format of Section 3 is to describe
particular physical realizations of computing
devices within the chapter on the particular
class of computer involved.

3-7 SPECIAL-PUKPOSE AND MULTIPUR-
POSE COMPUTING DEVICES

Most of the literature on computers is
concerned with the design and operation of
general-purpose computers intended for a
variety of scientific and business computa-
tions. This handbook, on the contrary, is con-
cerned primarily with the design of special-
purpose computers.

A special-purpose computer is one de-
signed to solve a fixed set of equations, which
are preprogrammed into the machine, to a
fixed degree of accuracy. Many special ap-
plications also poserequirements as tosolu-
tion speed, type of input, computer size or
weight, and environmental conditions,

As previously stated, the requirements
of a specialapplication may lead the designer
to prefer one type of computer over another.
Once the type of computer has been chosen,
the design will usually eliminate the provi-
sions for flexibility in operation that account
for much of the cost and complexity of multi-
purpose computers. The design of a special-
purpose computer places great reliance on the
ability of thedesigner todevise ingenious de-
vices which simplify the equipment, He must
also overcome formidable problems associ-
ated with limitations on size or difficult en-
vironmental conditions. Problems of special-
purpose computers are covered in detail in
Chapter 11.
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CHAPTER 4
DIGITAL COMPUTERS*

4-1 INTRODUCTION

4-1.1 DEFINITION OF A DIGITAL
COMPUTER

A digital computer is a calculating ma-
chine that, when appropriately programmed,
is capable of performing extremely complex
numerical mathematics to any accuracy de-
sired. A computer belongs to the "digital"
class if it stores and operates upon discrete
rather than continuous (analog) quantities.
The precision of such a machine is princi-
pally determined by the number of digits it
is designed to handle,

The digital computer employs the basic
operations of addition, subtraction, and de-
tection of the algebraic sign of quantity, All
Other computations are made up of combina-
tions of these basic operations. Consequently,
in order to use the machine for performing
more general computations, these must first
be reduced to the basicoperations noted and
a program or set of instructions must be es-
tablished to enable the machine to carry out
the basic operations in the order required to
accomplish the more difficultdesired compu-
tation.

Some insight into the manner in which a
digital computer operates can be gained by
comparing the way in which it operates with
the way in which a human operator uses a
deskcalculator; see Fig. 4-1. In Fig. 4-1(A)
the arrowsto the human brain represent ex-
ternal input parameters and results from the
calculator that must be written down, while
the arrows from the brain represent com-
mands and actions. In Fig. 4- 1(B)the equiva-
lent flow diagram fora digital computer re-
flects essentially the same process, with ap-
propriate changes in nomenclature.

A programmed digital computer has cer-
tain finite times necessary to perform each
of its mathematical operations, and the over-
alltime required for the solution of a complex
series is the sum of timesused for each part
of the series. If the economics of the problem

E3
By E. St. George, Jr. and M. M. Miller.

justify added cost and size, very high cyclic
rates can be employed and parallel operation
(in which all the digits of a number are ac-
cepted simultaneously through individual
channels rather than seriallythrough a single
channel)canbe used to reduce the time factor,

HUMAN

INPUT BRAIN

OUTPUT

WORK |

SHEET

DESK

| CALCULATOR r‘

(A) Flow Diagram for Simple Computatiori Performed by a
Human Operator With the Aid of o Desk Calculator.

INPUT CONTROL OUTPUT
SECTION UNIT L— SECTION
STORAGE
UNIT
ARITHMETIC
o IRt
(B) Flow Diagram for Digital-

Computer Operation.

Figure 4- 1. Computation flow diagrams.
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The digital computer is thus not usually a
"real time" device; i.e., the solutions arenot
"in step' with the input parameters. How-
ever, modern technology has been developed
to the point where digital computers can be
used to solve real-time fire control prob-
lems,

Incremental digital computersrepresent
something of a cross between digital and an-
alog computers. They operate upon digital
values and have a high speed of operation,
whichstems from the fact that the computa-
tion continuously updates a previously cal-
culated solution, rather than starting each
calculation "from scratch'". This approach
makes use of the fact that calculations upon
smoothly varying inputs will have solutions
that are smoothly wvarying. Incremental
digital computers include digital differential
analyzers (see Chapter 5) and operational
digital computers.

4-1.2 NUMBER SYSTEMS

In the design of computing machinery,
three number systems are most often en-
countered. The decimal system, making fa-
miliar use of the 10 digits from 0 through 9,
is our standard medium for arithmetical cal-
culations and numericalrecords. Thebinary
system, using the base 2 and employing only
combinations of 0's and 1's to express any
desired guantity, is most common in digital
machines because it offers the most straight-
forward and economical approach to hard-
ware design. The octalsystem with thebase
8, digits 0 through 7, is closely related to the
base-2 system in the hardware necessary to
handle it, Furthermore, one using the com-
puter is able to convert numbers from base
2 to base 8 or vice versa merely by inspec-
tion. Consequently, the use of base 8 may
be encountered, for instance, in test print-
outs as a means of avoiding the difficulty of
handling the large number of 0's and 1's in
the pure binary notation.

The sexadecimalnumber systems, using
the radix 16,could be used by employing es-
sentiallythe same designs asbinary and octal
systems. Apart fromthis, the radices 3, 10,
and 12 are probably the only other ones that
have received serious consideration for com-
puting machinery.

4-2

Examples of the decimal, binary and oc-
tal number systems are included in Informa-
tion Summaries 4-1, 4-2, and 4-3. Informa-
tion Summaries 4-4, 4-5, and 4-6 provide
conversion rulesanddata that can be used to
go from the decimal system to the binary
system and vice versa.

4- 1.3 FUNCTIONAL PARTS OF A DIGITAL
MACHINE !-3

As indicated by the digital-computer flow
diagram of Fig. 4-1(B), a digital computer
must comprise the following five major
functional parts:

1. An input section
2. A storage unit

3. An arithmetic unit
4, A control unit

5. An output section

The following paragraphs summarize the
essential functions of these five principal
computer clements. (More detailed infor-
mation on these functions is provided in sub-
sequent parts of this chapter,)

Input Section: The input sectionreceives
the input data, converts this data into the in-
ternal language of the computer, and then
transmits the converted data to the appropri-
ateparts of the computer -- primarily to the
storage unit. Depending on the character-
istics of a particular computer, the input
section canreceive the input data in various
forms. For example, the data may be in
binary-coded decimal form from a type-
writer, in analogform, or coded in aspecial
way -- such as on punched cards.

Storage Unit: The storage unit (often
called the computer memory) receives data
from other elements of the computer, holds
it in readiness for subsequent use, andtrans-
mits it to appropriate points as directed by
the control unit.

Arithmetic Unit: The arithmetic unit
must be capable of performing the following
specific data-processing tasks:

1. Receive two numbers and be able to
distinguish between them.
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INFORMATION SUMMARY 4-1. THE DECIMAL NUMBER SYSTEM

Number Rase: 10

Permissible Integers: 0,1,2,3,4,5,6,7,8,9

Integer Multipliers:

107 = zero 109=1
10+ = 10
102 = 100
103 = 1000
1078 = 000007 104 = 10,000
10:2 =.00001 102 = 100,000
107 =.0001 108 = 1.,000.000
1073 = 001
-2
1072 = .01
-1
107! =1
100 =1 10” = Infinity

Example: Decimal Number 732.625

= 7X102 or 700
+3x 10l or 30
2x10Y or 2
6XxX101or o6
2X10°% or  0.02

+5x10"3 or  0.005
- 732625
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INFORMATION SUMMARY 4-2. TITE BINARY NUMBER SYSTEM

Number Base: 2
Permissible Integers: 0,1
Integer Multipliers:
2= = zero 20 = 1
2l - o
22 = 4
23 = 3
. zg = 16
_4 I
2 2 32
~ 16 6 -
29 = 64
273 - L 2; = 128
2% = 256
274 =} 27 = 512
210 = 1024
o~1 - —21— 211 = 2048
20 = 1 2% = Infinity
Example: Decimal 732.625 in Binary
= 1x2Y% 0r 1000000000 512
+1 %27 or 10000000 128
125 or 1000000 64
+1x2% or 10000 16
+1%X23 or 1000 8
i1 X 221 or 100 4
+1 X2 " or 0.1 0.5
11 %273 or 0.001 0.125
= 1011011100.101 732.625
Binary Decimal
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INFORMATION SUMMARY 4-3. ANY NUMBER SYSTEM

Number Base: N

Permissible Integers: 0, etc., up to but not including N

Integer Multipliers:

N"" = zero N0 =1
' ' NP
1 r N& N.l\
' ' Ni = NeN-N
' ' N¥ = N-N-N-N
1 1
-4 1
N"* =RN-N-N ' 'I
-3_ _1
N N-N-N : :
-2 _ _1
-1 L
N - N | ]
0 13() 1
NTo= 1 N = Infinity

Example: Decimal Number 732.625 in Number Base N=8

= 1X 83 or 1000 Decimal 512
+3X 8% or 300 192
+3xX 81 or 30 24
+axgd or 4 4
5% 8 1or 0.5 0.625
& 1334.5 = 732.62 5
In the octal (RaseN = 8) System In the decimal (Base N = 10) System
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INFORMATION SUMMARY 4-4. CONVERSION RULES — DECIMAL TO BINARY

To convert a decimal number to a binary number, successively divide the given
decimalnumber by 2 and record the remainders of each division. When zero is reached,
the remainders taken in reverse order express the binary equivalent of the decimal
number.

For example, this process for the decimal number 327 is as follows:

21321
2)163 1
2)81 1
2)40 1
2)20 0
2110 0
2)5 0

212 1

2)1 0

0 1

Therefore, the binary equivalent of 327 is 101000111.

INFORMATION SUMMARY 4-5. CONVERSION RULES — BINARY TO DECIMAL

To convert a binary number to a decimal number. use the formula

No=2lag w2 2g g+ 2% 3, 4. L. 200

where
N = the decimal equivalent of the given binary number
n = the number of digits in the binary number
di = the value (0 or 1)of the ith digit i = 1.2, ..., n)

dy = the least significant digit

For example, consider the binary number 11011001, which has eight digits.
Then,

7

N=271) + 2851 + 250 + 2% + 230+ 220 + 2V 4+ 2%0)

128 +64+ 16 +8 + 1
=217

See Information Summary 4-6 for values of the powers of 2.
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INFORMATION SUMMARY 4-6.

BINARY EQUIVALENT OF DECIMAL NUMBERS

Binary Equivalent 2% Form Decimal Number
1 20 L
10 21 2
11 21,20 3
100 22 4
101 22420 5
110 22421 6
111 22421420 7
1000 3
1001 23420 3
1010 2342 10
1011 93.21,20 11
1100 23422 12
1101 23422,20 13
1110 23,9251 14
1111 29492491,20 15
10000 24 16
100000 22 32
etc., with the :27 ?4
same number 38 1~’?8
of zeroes as in : 9 256
the exponent of 2" 512
the 2" form. 21O 1,024
213 2.048
2 ° 4.096
2%4 8.192
2 16.384
ald 32.768
213 65.536
2 131,072
212 262,144
2 524,288
220 1,048,576

2. Carry out such simple arithmetic
opecrations as addition and subtraction. (In
addition, a capability for multiplication and
division is usually required, and frequently
the capability of performing otheroperations
is provided.)

3. Carry out the logical operation of
determining which of twonumbers is larger.

4, Transmit theprocessed resultof its
operations to anappropriate point -- usually
the memory.

Control Unit: The control unitoversees
each individual operation in the sequence of
computer operations that is required to solve

a particular problem. In order to carry out
this function, the control unit must possess
the following capabilities:

1. Supply master timing signals.

2. Control switching between the vari-
ous computer elements.

3. Initiate cach computer operation and
sense its completion.

4. Transmit the result of a computer
operation to storage, but retain a knowledge
of how to find it again.

5. Decide upon the next operation to be
performed, based on the results of the pre-
ceding operation and any instructions that

4-7
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have been placed in the storage unit.

6. Receive and interpret storedinstruc-
tions so as to be able to appropriately apply
the foregoing capabilities,

Output Section: The output section re-
ceives computed datain the internallanguage
of the computer and then convertsthese data
to a useful output form.

It should be noted that it isin the nature
of the control circuitry that general-purpose
and special-purpose digital computers differ
from one another, A general-purpose com-
puter stores the sequence of required opera-
tions -- together with the datathat are to be
operated upon -- in its ownstorage unit, and
can perform many different operations. A
special-purpose computer, onthe other hand,
is designed for afar more limited capability.
Foraspecifiedprecision, itcanusuallycarry
out its specific functions much faster, and
with much less hardware, than a general-
purpose computer.

4-2 SYSTEM DESIGN

4-2.1 EQUATIONS TO 13E SOLVED

A digital computer can be used to find
solutions for linear equations, linear differ-
ential equations, matrices, partial differen-
tial equations, and the roots o fpolynomials.
It can also solve many other types of equa-
tions. In these applications, however, the
computer is only able to perform directly
the processes of arithmetic. Therefore, to
be acceptableto a digital computer, an equa-
tion or function must be converted into a
numerical approximation. In the case of a
trigonometric function, anarithmetic method
must be used to obtain an approximationif,
for example, the sine of anangle is required.
A computer with very large storage could
remember afull set oftrigonometric tables,
but to eliminate the need for storage, it is
possible touse the technique of expanding sin
x into arapidly converging series and substi-
tute the values of 'x into this expression. It
is possible to solve differential and integral
equations by numerical approximation as
well.

As afirst steptoward designing a digital
computer to carryout someparticular set of
computations, the original equations are
broken down into various subroutines, such
as finding the square root and taking the sine
of a number. Anexperienced computer pro-
grammer working with the designer will be
able to specify the way in which the various
steps must be interrelated. Eventually, the
number of words of input and output data can
be determined and a size of memory can be
established that will be adequate to contain
the problem data, the program, intermediate
results, and constants.

The basic layout of the program-com-
puter combination is a blend of system anal-
ysis, circuit design, and logical design. The
system analysis creates a mathematical
model and a set of requirements for its so-
lution. The circuit designcreates combina-
tions of reliable components to store infor-
mation and tooperate oninformation accord-
ing io fixed rules. Logical design produces
a set of wiring diagrams that connect the
components into a complete machine. Ac-
tually, the three functions overlap consider-
ably; in particular, thelogic design goes hand
in hand with systcm and circuit efforts.

4-2.2 USE OF NUMERICA L ANALYSIS
AND OTHER MATHEMATICAL
TECHNIQUES

In considering how a digital computer
solves an equation, or a set of equations, it
is instructive to look first at the so-called
"brute force''technique. This approach con-
sists of simply trying successively all pos-
sible values of the independent variable and
thereby determining whether or not there is
a solution.

As anexampleof the "brute force' tech-
nique, consider the following case::: -- in
which the technique might actuallyproveto be
apractical method of solution. Included inthis
example are some of the programmingtricks
by means of which the computation time and
the storage requirements of the computercan
be reduced.

*
Adapted from Chapter 16 of Ref. 1.
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Assume that it isdesired to find the roots

of the polynominal
yf—Ax“*Bx3+Cx2+Dx + E (4-1)
by means of a digital computer. (This rela-
tionship for a given set of real coefficients
would have four real roots; see sketch in

Fig. 4-2.) Assume that at the start of the
problem only the following knowledge exists:

1. All four roots of the polynomial are
real and lie in the region 0 <x < 10.

2. No two roots differ by as little as
0.001.

4 3
y = A+ B+ Cx?+ Dx tE

Figure 4-2. Fourth-degree polynomial, all

roots real and positive.

Application of the "brute force' tech-
niqueinthis case means evaluating the poly-
nomial on the right-hand side of Eq. 4- 1 for
successive values of x spaced atintervals of
0.001, starting with zero and continuing
until all four roots have been determined.
Since a change in the sign of y evidences the
presence of a root, the computing' procedure
to beused ateach of the successive values of
x will be as follows:

1. The computer evaluates y and exam-
ines its sign to see whether it has changed
from the preceding evaluation.

2. If the sign has not changed, the com-
puter evaluates y for the next incremental
value of x.

3. If the sign has changed, this means
that a root has been found -- to an accuracy
determined by the choice' ofinterval that was
made. Therefore, the computer prints out
the result.

4. Then, in orderto determine whether
the computation process should stop, the

computer asks itself whether it has yet lo-
cated all four roots. Iftheansweris affirm-
ative, computation ceases; ir negative, the
computer proceeds to evaluate y at the next
incremental value of x.

Bymeans of the "brute force" procedure
outlined, a typical digital computer could
evaluatethe specified polynomial- forthe req-
uisite values of x (10,000 values maximum)
injust a few seconds. Unless this evaluation
hasto berepeatedmanymore times than this,
one might well be willing tosacrifice the few
secondsof computingtime required, in order
to avoid the labor involved in coding a more
complex method of solution. Therefore,
while the brute-force technique would not
generallybeusedinpractice, it is not always
an unrealistic method,

It shouldbe noted thata verysimple re-
arrangementof the polynomial would consid-
erably simplify the calculations required of
the computer, even if it continued to use the
basic brute-forcetechniquethat has been out-
lined. Each evaluation of the polynomial of
Eq. 4-11in its present formrequires a mini-
mum of seven multiplications and four addi-
tions. (While it could be evaluated by deter-
mining x4, multiplying that result by A, and
then starting all over again by determining
x”, and so forth, this would be a wasteful
procedure involving a total of ten multipli-
cations and four additions. Itwould bemore
economicalof effortto startby evaluating x?
first, followed by x> and x%.) Inasmuchas a
multiplication takes much more computer
time than an addition, it is worthwhile to
attempt to reduce the number of multiplica-
tions required in order to evaluate the poly-
nomial. One means of achieving this objec-
tive is to divide both sides of Fy. 4-1 by A,
thereby yielding

= x4+%x3 + sz 4 ‘%x + %

x¥+ Px3 + Qx2+ Rx ' S (4-2)

Thus, in exchange for adding four divisions
that are each performed only once, it has
been possible to obviate the necessity for
performing one multiplication (A * x*) thou-
sands of times. Tq. 4-2 requires six multi-

4= 0
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plications and four additions. The number
of operations can be still furtherreduced by
rearranging Eq. 4-2 into the form

zTS+x{R+x[Q+X(P+X)]} (4-3)

This equation requires only three multipli-
cations and four additions. The correspond-
ing computer flowdiagram is depicted in Fig.
4- 3,

The brute-force technique would not nor-
mally be employed by a sophisticated pro-
grammer. Instead, some of the techniques
known as numerical analysis would be em-
ployed. Whilethesetechniquesareextreme-
ly powerful, they have been developed in a
pragmatic, rather thana theoretical, context.

Numerical analysis thus comprises abody of
individual approximation techniques, each
having application to a particular class of
equations. The choice of method is deter-
mined both by the form of the equations to be
solved and the capabilities of the computer;
this choice thus dependsheavily onthe expe-
rience and ingenuity of the programmer.

The application of numerical analysis to
the important problems of the representation
of functions, the fitting of empirical data, the
solution of linear simultaneous equations, the
solution of nonlinear equations, and the eval-
uation of integrals and differential equations
arebriefly examinedin the remainder of par.
4-2.2. For details of the methods noted, the
reader is referred to the bibliography at the
end of this chapter.

YEs
N DIVIDE CONSTANTY o | HAs sioN oF
READ IN PROGRA con | COMPUTE z |—a HAS SIGN OF PRINT OUT ROOT
NO
ADD ADD ONE TO
0.001 TO x ROOT COUNT
NO
Ves |HAVE FOUR ROOTS
HALT BEEIN FOUIND?

ORIGINAL FORM OF POLYNOMIAL

Y:AX4" BX3+CX2+DX+E

MODIFIED FORM EMPLOYED FOR EASE OF COMPUTATION

Z:%:S"’X{R"’X [Q+x(P+x)]}

Figure 4-3.

Flow diagram depicting the steps involved in computing the roots of a

polynomial,
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Functionsare usually computed if at all
possible. A typical example is the power
series €orsin x:

w

X

sin x X TR

(&%}

3
B S S
51

This series would be expanded to tlic extent
necessary to obtain the accuracy desired.
Whenthe function is not readily computable,
it rnust be stored as a table in the computer
memory. To minimize storage space, the
table contains a minimum number of values,
and intervening values are obtained by inter-
polation. Anumber of interpolation formulas
arc available, usuallybased on the use of a
power polynomial. One of themost useful is
the Langrangian interpolation formula:

R
= E (o x) b
J K

l~c

where the a symbols represent the tabulated
values of x. if equalintervals are employed.
the Langrangian coefficient £ (x) may be nor-
malized to permit tlie storage of tables of
standard values.

Il'or frequently emploved functions, it
maybe advantageousto minimize storage by
deriving abest- fit polynomial, i.e., one which
-- for a limited number of terms -- gives
the least error between the approximation
and the actual function ™.

W lien empirical points are given, a curve
may be fitted by the method ofleast squares.

While a number of methods for tlie solu-
tion of lincar simultanecous equalionsexist,
that dueto Crout * is the most applicable to
coniputer mechanization.

The solution of nonlinear equations is
accomplished by first finding trial solutions
that licon either side of the desired root and
then approximating the function in the inter-
val between these solutions by some simple
formula, such as a straight line, tu find thc
firstapproximation to the root. The proces=s
isthen repeated (iterated) to achieve ans de-

sired degrce of accuracy. Methods ave <

vailahle for increasing the rapidity of con-
vergence of interative processes.

Numerical integration has a noteworthy
simplicity: by dividing the arcea under the
curve to be integrated into rectangles, the
definition of integration can be emploved to
write

3ff(x)dx m X ).

i !
n- =4l !
i x[~o X,y © T ix,

The accuracy can be increased by use of a
trapezoidal or parabolic approximation. such
as Simpson's rule.

Differential equations car be solved by
difference techniques, in which one extrap-
olates by a linecar (or more complex) ap-
proximation from one point to ahother along
the curve. However, iterative methods of
successive substitutions, suchas the Runge-
Kuttamethod **7 arebetter suitedio com-
puter mechanization.

Since numerical analysis is both an art
and a science, the designer of fire control
systems willnotoflen be called uponto prac-
ticc it in person. A study of the references
noted, to the extentnecessary tointelligently
supervise the work of tlic professional pro-
grammer, is probably all that will ever bie
required of him.

4.2.3 ACCURACY AND RESPONST. TIMI

The accuracy of a fire control comput-
ing system is greatly influenced by the in-
evitable error at the input. (This is for the
cascof a dvnumic installation where certain
analog valucs aredigitived for nceeptance by
the computer.) The degrec of this error is
usuallyvknownto the designerbot s not under
his control. This e¢rror is the tirst elemont
in the chain of errors that cccer throughout
the computing systere. 111t 12 assumed that
the function approximation s a best choice,
the principal determinant of the acecuracy of
such a computing svstem is the round-off
error: the moest basic choice open to the de-
signer in sctting this accuracy is then the
word size specified for the computer. IFor
example, the effeet of word sive on accouracy
can be illusirated by the following tabulation:
it shows that the greater the wordlength, the
greater the accuracy.,
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Word Lengtih

In Decimal System In Binary System

256 100000000
512 1000000000
1024 10000000000

Corresponding Approximate
Inherent Error due to Round-off

0.4%
0.270

0.1%

Itis evident that anaccuracy of 1 part in 256
{i.c., an accuracy of approximately 0.4%)
can be achicved with ¢ 9-bit word, wherecas
,anaccuracy of 1part in 512 (approximately
0.2%) can be achieved with a 10-bit word.
Furthermore, to prescribe 0.1% accuracy
only in storing orreading out the coded value
of some quantity, at least 11 binary bits are
needed in the computer word. The addition
of a sign bit and the frequently used parity
orerror-checkingbit then establishes amin-
imum 13-bit word length.

However, if the demands of internal
arithmeticwillrequire using numbers larger
than 1000, each factorof 2 increasing the size
of the number will add another bit. Fortu-
nately, manipulative devices such as the in-
troduction of scale factors or the use of float-
ing-point arithmetic will avoid the condition
of overflow-. In scale factoring, the operands
are multiplied by appropriate scale factors
at eachjuncture and the prograni keepstrack

of these factors.

In floating-point arithmetic, the scheme
forthe decimal system is to express all quan-
tities asnumbers between 0.1 and 1multiplied
by someintegral power of 10. The equivalent
in floating-point binary is to express cach
number as being between 1/2 and 1 (0.1 and
1.0 binary) multiplied bythe appropriate in-
tegral power of 2.

4-12

Eventhough the word length may be suf-
ficient to express all input quantities to the
desired accuracy, the factthat a finitenumber
of digits is used leads to round-off errors
that maybecome significant if alargenumber
of operations must be performed. For ex-
ample, the product of two 11-bit numbers is
a 22-bit number, but the least-significant 11
bits must be dropped for further computation.
The resulting error is called round-off.

Once overflow has been avoided and as-
surance has been gained that the round-off
will not be serious, consideration must be
given to errors introduced in truncation.
Truncation errors result from the fact that
digital computations are carried outina step-
by-stepmanner with the result that a continu-
ous function is defined onlyata successionof
discrete points. An increase in the sampling
rate ol a continuous input function permits
a closer approximation of the true function
and thus areduction in this source of trunca-
tion .error. Likewise, any reduction in the
interval at which a variable is defined within
the computationreduces the truncationerror.
Ilowever, reduction in the interval requires
a larger number of steps to carry out the
computation for a specified range of the in-
dependent variable and therefore increases
the time required to carry out the computa-
tion.

The response time of the computer in a
fire control systemmust generallybe so rap-
id that the computer appears to beoperating
inrealtime. This mayrequire thatthe most
artful selection of routines be assignedto the
program, and may also require that some
compromise with accuracy requirements be
made.

$-2.4 USTH O SAMPLED-DATA THIORY

If continuous functions of time are to be
operatedupon mathematically orlogically by
a digital-computer program and be trans-
mitted from the source to a remote location
with minimum interference, or be recorded
in digital form, the original analog function
must be described interms of discrete sam-
ples.

Slated broadly, the sampled-data theo-
rem' says that if the amplitude of a contin-
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uous functionof time isperiodically sampled
at a uniform rate that is at least twice the
highest frequency of interest in the continu-
ous function, then the sample series will con-
tainessentially all of the information that was
in the original analog function. This state-
ment is made, however, on the assumption
thatthe samplingtime isinfinitely small, and
that the frequency spectrum of the analog
signal has afinitelimit. (If highfrequencies
are present in a function for which only the
low frequencies are of interest, thenthe high
frequencies must first be filtered out before
sampling.) The theory says further that the
analog function may berecovered by passing
the sample series through a suitable filter.

There are certain practical difficulties
that complicate the design of workable equip-
ment that takes advantage of the sampled-
data theorem. However, a good approxima-
tion to theoretical system performance can
be obtainedthrough the application of proper
design considerations.

Fromapractical engineering standpoint,
the 'following modifications to thetheoretical
data- sampling technique are required in the
design of workable equipnient:

1. The sampling rate must be at least
four times the highest frequency of interest
contained inthe analog functiontobe sampled.

2. Theanaloginput to the sampling cir-
cuit must be attenuated at frequencies above
the highest frequency of interest but, since
perfect filters do not exist, the attenuation
is determined by practical accuracy-toler-
ance requirements of the system.

3. Since sampling cannot he performed
instantaneously, a requirement arises for
some '"aperture correction" techniques in
systems where the ratio of shortest signal
period to tlie sampling aperture time is not
high enough to make the sampling-time error
negligib le.

4. Signal-conditioning equipment is of-
ten required between the signal source and
tlie sampling circuits. In addition to the fil-
tering usually required, there is frequently
a need for amplification of signals obtained
'rom transducers and other signal sources
to 1increase the signal to a level suitable for
sampling. The low-level end of such pre-

amplifiers usually requires soeccial design
toeliminate the effects of stray noise pickup
and induced common-mode voltage disturb-
ances. At the output, consideration must be
giventothe d-c level of the output composite
signal, as well as the amplitude of the signal
itself, in order to make the analog output of
the preamplifier compatible with the sam-
pling circuitry.

A discussion of the effects of the sampl-
ing process on the design of the system can
be found in Chapter 11.

4-3 THE GENERAL CONFIGURATION OF
A FIRE CONTROL DIGITAL COMPUTER

As a good start toward determining the
general configuration required for afire con-
trol digital computer, the computing-system
analyst should ask himself the following
series of questions:*

1. What is the source of the input data
that is to be processed by the fire control
computer?

2. What kind of input data will be pre-
sented to the computer ? (Numerical? alpha-
betical? other?)

3. llow can this input databest be trans-
lated into the internal language of the com-
puter ?

4, What is the rate of input-data flow
to the computer from the source?

5. What must be done in the way of pro-
cessing the input data? (Must it be altered?
Must it be sorted or combined in some way
with other data? If so, how?)

6. How much time is available for the
computer to process the input data?

v

7. Whataccuracy is required in the in-
put data and in the processing? Toes this
accuracy differ markedly in different parts
of the computation?

8, What must be the output rate of the
processed data?

9., What is the purpose of theoutputdata
and in what manner is it to be employed?

10. Into what form should the output data
be translated in order to accomrplishits pur-
pose most effectively?

FoAdyted wn part from Ref. 2, which discusses the questions concerning opcrations to be mechanized in terms of information {low
Lt any system analyst must inevitably asl himselt as he approaches an clectronic data-processing problem.
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11. What effect would a computer error
have on the flow of data, and how would it af-
fectthe particular operation being performed.

12. Can the computer operation be inter-
rupted for emergencies or for regular per-
iods of preventive maintenance ?

13. Tlow can manually entered data best
be entered from a human-engineering stand-
point? How can theoutpu! data be presented
so as to bereadily readable and understand-
able?

14. What provisions forinternally stored
programs should be made tofacilitate future
programming ?

Inorder toprovide an appropriate frame
of reference in considering the aforenoted
questions, the functional diagram of a hypo-
thetical fire control system given in Fig. 4-4
is re-introduced from Chapter 3 of Ref. 104.

This diagram showsthree classes of in-
put to the computer:

1. Command decisions

2, Target data

3. Variations frominitial conditions and
spotting corrections

Storedin the computer are standard tra-
jectory data. Generated within the computer,
prior to final correction, arefiring data. The
two basicultimate outputs of the computer are
time-of-flightinformation and corrected fir-
ing data.

Residing somewhat innocently at the
lower center of Fig. 4-4 is the group of data
transmitting elements "introduced between
functional elements as required". Such ele-
ments at the input andoutput of the computer
must be scheduled and controlled for the ef-
fective flow of information into and out of the
computing system,

4-3.1 INPUT AND OUTPUT CONSIDERA-

TIONS

By considering for a moment only the
overall organization of a digital computer,
as depicted in pictorial form by Fig. 4-5,
one canapproach the general computer prob-
lem of acceptingreal-time dataat fixed sam-
pling intervals--remembering that a digital
machine is not inherently a real-time device
and that the microscopic programmed tasks
involved are slaved to a clock. As indica-
ted in Fig. 4-5 (which corresponds to the
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conventional functional diagram of Fig. 4-1
(B), the computerinput data (1)are fed to the
input section(2)where they are converted into
the internal language of the computer. The
translated input data are stored in the input
buffer unit (3) until called for. at which time
they are transferred to the storage unit (4).
ITere they areavailable for processing at the
request of the arithmeticunit (5). Processed
data go to the storage unit, from which they
are transferred through the output buffer (6)
into the output section of the computer. The
output section then translates these data
(readsout the data) intoa suitable form (8)for
subsequent use. The intermediate buffer (9)
between the storage unit (whose memory
functionis representedby a humanbrain) and
the arithmetic unit (whose data-processing
functionis represented by an abacus) serves
to present information forprocessing,and to
retrieve processed information, at the vari-
ous rates imposed by the arithmetic proc-
esses. The control unit (10) coordinates the
activity of the computer in three ways:

1. Withregardto the computer's intern-
al operation.

2. Withregard to the reception of input
data.

3. With regard to the readout of output
data.

In carrying out these coordination functions,
the control unit schedules operations (as in-
dicated by the clock in Fig. 4-5)and com-
municates with the other units (as indicated
by the speaker horn). As the basis for
scheduling, it utilizes a computer program
that is either placed in the storage unit for
internally programmed computers or is
available externally, asindicated by the clip-
board (11).

A commonproblem exists for the mech-
anization of the input and output sections of
the computer. This problem -- referredtoas
the input/output problem -- stems from the
fact that whatever means are employed for
passing information into, and out of, the in-
ternal portions of the computer require the
control and synchronization of these opera-
tions with the internal-computer retrieval
and transfer operations. The nature of the
input/output problem is essentially the same
for both the input and output portions of the
computer. The complexity that this problem
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*AMCP 706-328, Engineering Design Handbook,
Fire Control Series, Section 2, Target Acquisition,
Location, and Tracking Systems.

TAMCP 706-330, Engineering Design Handbook,
Fire Control Series, Section 4, Weapon
Pointing Systems.

as required

Figure 4-4.
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~+——————— (to be covered in Section 2 of the Fire Control Series*)
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l
_

Functional diagram of a hypothetical fire control svstem

that contains all of the functional e¢lenients

associated with fire control equipment.
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Figure 4-6. Relation of the input/output to the computer,
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can attain under extreme conditions is indi-
cated by Fig. 4-6 which shows the functional
elementsthat might be involved for the input
and output sections of the computer,

In the case of fire control computation
that canbe performed in advance of the actual
firing of the weapon andthen terminated, the
input/output considerations arec essentially
as given in the preceding paragraphs. This
applies, forexample, to FADAC (Field Artil-
lery Digital Automatic Computer), which is
discussedin Part 111. Because of the required
portability of this equipment and the stan-
dardized nature of the computations, the in-
put/output equipment tends to be relatively
simple.

Some fire control digital computers, on
the other hand, must continuously compute
new weapon-positioning information during
the course of an engagement. Such computers
are commonly called real-time computers
and areused, for example, in connectionwith
a moving target. For such computers, the

input/output mechanism represented func-
tionally in Fig. 4-6 would typically be a shaft
encoder, The cumbersome registering and
buffering activity that is depicted dramatizes
the unfortunate situation that arises as the
difference in operating speeds between the
input/output equipment and the internal por-
tion of the computer -- thecomputer proper
-- becomes more disparate. (SeeSection15.3
of Kef. 3 for an excellent discussion of the
considerations involved when the greatest
disparity possible exists and the maximum
buffering is required.)

A further complication in a real-time
fire control computer arises fromtheneces-
sity of reading-in data frommultiple sources
(c.g., clevation, azimuth andrange datafrom
a radar tracker). As indicated in Fig. 4-7,
multiple inputs are usually fed to independ-
ent input/output registers for each source of
data. The computer then interrogates ecach
of these registers in turn, so that a single

TNPUT, |
OUTPUT .
MECHANISM[® — — — — — - _ 1
CONTROL |
OUTPUT ‘
DATA lOr\llJl?I'LlJ’TU/T 1 -; OUTPUT sii l—- OUTPUT |
#1 MECHANISM] | REGisTER | | REGISTER n——!
| II TO CONTROL BUFFER
| INPUT/
—_— " r " " s MULTIPLEXER OUTPUT
72 [ - BUFFER
e 1] l l I
- 19 1" ¥ N 1] i
N ..__I | :
= T —— = CONTROL LINE |
CONTROL TNPUT/
1/0 1/0 - —. gJUTPUT
ONIROL

Figure 4-7.

Computer input/output configuration for multiple inputs.
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dataword is entered into the input/output buf-
fer at any oneinstant, This process is per-
formed by the multiplexer under the control
of the input/output control. If one or more
data inputs changes more rapidly than the
others, provision can be made to interrogate
it (them)more frequently with the multiplex-
er,

It is now evident that the characteristics
of the problem and the input/output equipment
determine the speed and accuracy require-
ments for the computer. The range of fre-
quencies encountered inthe problem, as noted
inpar.4-2.4, determinesthe minimum sampl-
ingrate, Thisrate in turn defines the speci-
fications of the input/output equipment and
also the maximum allowable solution time of
the computer. Atthe sametime, the accuracy
required in the system determines the word
length and in some cases may put a constraint
on the sampling rate as well,

Having specified samplingrate and word
length, the computer designer must adjust a
number of parameters in order to achieve
his goal. The most important of these are
the clock rate, the capacity and access time
of the various storage elements available to
him, the choice of serial or parallel logic,
and the choice of programming schemes.
With this variety of choice, there is no unique-
ly best design; rather, thereis awide oppor-
tunity to exercise his judgment and ingenuity
to achieve a good design.

The moment the logic designer starts to
work with relays, switches, push buttons, and
similar devicesinorder to communicate with
a digital computer, he hasleft the neatly de-
fined area of decision and memory elements
whose outputs are defined atevery clock pulse
and synchronize perfectly with computer
functioning. The essentially slow, mechan-
ical pieces of equipment have output signals
that may change at any time with respect to
the principal computer timing signals, and
theytend to "bounce' and provide a more or
less random series of "zeros" and 'ones"
before stabilizing. Fig. 4-8 illustrates what
may happen with relay "bounce", which in-
troduces a period of uncertainty that the de-
signer must eliminate from the logic by in-
troducing a delay d,, to prevent the "noisy"
contact from affecting the desired signal Q.

4-3.2 COMPUTER SPEEDS

Because any complex calculation re-
quires a very large number of transfers of
informationinto andout of the rnemory units,
the access time of storage in the computer
is thelargest determinant of the speedof pro-
cessing and of performing arithmeticopera-
tions. In turn, the time toperform arithme-
tic is influenced most by thetimerequired to
do addition. Addition time depends on the
system of coding used and on the logic used
for addition. The choice of components will,
of course, influence the logic for addition.

Relay signal

Stock pu

Desired signa! @ f

Delay dm

Figure 4-8.

_____ ___JE m bits

Derivation of a smoothed signal from an asychronous signal device,
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It is alsonecessary to take into account
the time required to enter computer words
into, and to withdraw them from, the regis-
ters active during addition. Ingeneral, addi-
tiontime is independent of the numbers being
added. Time estimates for computations in-
volving multiplication and division can be ap-
proached by formulas relating all the factors
mentioned.

Therate at which individual bits will be
handled by the machine is the pulse repeti-
tion rate, or clock rate. The characters to
be handled by the computer, coded in elec-
tronic form, will be processed at the clock
rate set by the designer. The upper limit of
the clock rate is determined by the compon-
ent circuitry used in the computer, Gener-
allyspeaking, the cost of the basic circuitry
increaseswith anincrease in the clock rate.
Clock pulses, for example, must be supplied
to the circuits that read from and write into
memory, so thatinformationstored is oper-
ated on insynchronism withother data in the
memory and in other parts of the computer,

Substantial increases in speed can be
obtained by designing the computer to per-
form alloperations inparallel, For example,
if a 40-bitmachine with a serialrepresenta-
tion operated at a 1-mec rate, it would take a
minimum of 40 microseconds to so much as
transfer anumber fromone place to another
within the machine. If all operations were
parallel, thenumber could be transferred in
1 microsecond on 40 separate wires. In a
serial-parallel machine, the 40-bit number
could be divided into four groups of 10 bits
cachandinonly 10 microseconds the number
could be sentover four parallelwires. Ilere,
the reduction of 75% in transmission time
might represent a good engineering choice in
the light of slower limiting times in other
elements of the logic. There is no point in
having any circuitry in a computer design
that farout-races therest of the system and
then is idle most of the time.

Transistorized digital modules that have
operating speedsof up to 5, 10, and even 20-
mec are currently available from manufactur-
ers; in addition, 50-mc logic has been re-
ported in the laboratory, Operating speeds
of 5mc orless are more common, however,
since they fulfill most requirements and are
less costly. Integrated-circuit speeds of up
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to 10 mc are alsoavailable for certain types
of logic.

4-4 DETERMINATION OF COMPUTER
STORAGE CONFIGURATION

4-4.1 SIZE OF COMPUTER PROGRAM

Determination of the effect of program
size on the storage configuration can start
easily with the creation of a flow diagram.
The flow diagram, similar to the block dia-
gramused forpreliminary design andunder-
standing of many types of equipment, is a
means for visualizing the computer program
by breakingit down into functional units that
correspond to different sections of the
problem. Ultimately the programmer will
carry this fractionating process of the pro-
gram itself down through the routines, the
subroutines, the loops, and finally to the com-
mands, the smallest elements of the program.
A typical subroutine is the taking of asquare
root. Aloop (alsocalled a cycle oriteration)
consists of repetition of a group of instruc-
tions in a routine.

By starting with an example of a loop,
the general form of a flow chart or diagram
can be readily illustrated, Ref. 76, which
should be consulted for additional informa-
tion, describes a realistic example: that of
determining the position of a ballistic mis-
sile after each 10 seconds of flight along its
trajectory, neglecting the effects of air re-
sistance, etc. (see Chapter 2 of Ref. 104).
In this example, at time t, the x and y com-
ponents of position will be

X = ¥V, t

i Ox i
, 2
Yio o Vot - (172)gt;

it 12,3,

where Vg is the initial X component of the
velocity and Voy is the initial y component.
To be concrete, suppose that Vi, =2,000
fps, Vg, = 1,000 fps, and g =32 ft/sec’.
Then attimet, (= 10 sec), x ,= 20,000 ft and

y, = 10,000 - 1,600 = 8,400 ft

Attimety (= 20 sec), x5 =2,000 X 20 =40,000
ft and
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y, = 1.000 X 20 - 16 X 207 = 13,600 ft

Attimet; (= 30 sec),x3 =2,000 X 30 =60,000
ft and

= 1,000 X 30- 16X 3072
Y3

and so forth. During such a computation, it
is clearthat the same formulasarc used over
again, eachtime increasingtj byl0 sec. How-
ever, the computation should stop when the
missile hits the ground, i.e., when Y is zero.
Inthe present case, Table 4- 1shows that this
condition exists at apoint in thc intcrval be-
twecnt = 60 secand t = 70 sec. Computation
in this loop is therefore stopped when t = 70
sec, as shownby Fig. 4-9 -- the flow chart of
the process. This flow chart employs the i
notation, where t; t1 represcnts the next time
around and i t+ 1+ i mecans that for the next
itcrationthe old ith values arc replaccd with
the new (i + 1)th values.

15,600 ft

TABLE 4-1. COMPUTATION OF THE
TRAJECTORY OF A MISSILE.

i t;

1 10 20,000 8,400
2 20 40,000 13,600
3 30 60,000 15,600
4 40 80,000 14,400
5 50 100,000 10,000
6 60 120,000 2,400
7 70 140,000 -8.400

With this illustrationit is seen thatthere
are four basic ingrcdients to a recursion
code:

1. A sctofinstructions, called the iter-
ation instructions, that are to be reused.

2. Another sctofinstructions that modi-
fies thc original sct each time around.

READ IN THE INITIAL CONDITIONS

VO = 2,000
v =1,000
oy
t 10

i

—@ED——

LEI't‘ t. +10
i.e. INCREASE ¢ b
e MNigsec 177 STORE

COMPUTE x; = VO
Y, = Oy f - ng

X, ¥t

1771

f.

wl

2

PRINT OUT
toaRyy,

Figure 4-9.

Y.

:0

E COMPUTER

Flow chart for computation of missile trajectory.
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3. A set of instructions, often called a
tally, that determines when to exit, or break
out of the loop, and appropriately notifies
the computer.

4. A sct of instructionsthat sets up the

initial conditions and starts the loop.
In addition, a loop or recursion code often
contains a set of instructions that resets the
loop sothat it may beused again by the com-
puter at some future time, A generalized
loop can be indicated by the flow diagram of
Fig. 4-10.

Sometimesthe tally consists of instruc-
tions for determining whether or not the re-
sult of each iteration is smaller than some
given number, as occurs often in function
computations, At othertimes, the tally may
just count the number of iterations until the
desired number have been accomplished.

Fig. 4-11 showstheflow diagram forin-
structionmodification in aloop. Here along
column of numbers was previously placed
in consecutive memory addresses, the last
of which is address 077. The same add in-
struction is used for successive additions,
but it is modified before each addition so as
to add the contents of the next successive
address to the partial sum eachtime around.

Fig. 4-12 illustrates the use of loops
within loops, as in the computation of sin x
by means of the infinite series

x_._x._a_i_x_s._,,_)igig_-«ill+...
K 5! 71 91 [AL

at intervals of 1/ 0 radianfrom 0 to 7/2, to
eight decimal places. In the figure, loop A
forms x™/n! by multiplying a partial product
successively by x/Pij. Loop B adds or sub-
tracts this result to or from the partial sum
and increases n by 2 until the partial sum
becomes correct to eight significant figures.
Loop C increases x by 0.01 and continues to
compute the next value of sin x.

A subroutine is asubcode that iswritten
only once but may be used at different times
and places during the computation of a pro-
gram. Fig. 4-13 illustrates the simple case
of two points from which the program can
jump to the subroutine, through the A con-
nectors, and return through the appropriate
exit route via the B connectors.

Construction of the complete flow dia-
gram will identify the number of program
steps (including any advisable accuracy
checks) and willestablish the type of orders
required for the computations. Throughout
this process of refining the program there
may be constant compromise between speed
and accuracy, between serial and parallel op-
eration, and between short-term (register)
or intermediate (buffer)orlong-term (mem-
ory)storagerequirements, each affecting the
ultimate storage configuration,

sin x -

GmO——

Setup initial conditions  “*
(initiates the loop)

I

Modity the iteration
for round ¢« + 1

—

1o Proceed with
LAt ! L iteration 1

—a

—— - 4

/ Tally: shouid the -
iteration continue, \
or 1S Lhe process

over?
Continue Exit

tteration

Figure 4-10.
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Flow chart of generalized loop.
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START

INITIATE THE PROCESS:
PUT THE FIRST NUMBER IN
THE PARTIAL SUM CELL

Figure 4-11,

MODIFY THE ADD

INSTRUCTION FOR
THE NEXT NUMBER

ADD THE NEXT

NUMBER TO THE
PARTIAL SUM

JUST ADDE

L

077
ADDRESS OF NUMBER

D

RESET ADD
INSTRUCTION

STOP COMPUTER
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Flow chart for instruction modification,

CELL EQUAL TO 0

SET n=1 AND THE CONTENTS
OF "PARTIAL SUM TEMPORARY"
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P ——
r’i+| -—»P;
LOOP A IHP-
S
Y
n
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Figure 4-12.

Flow chart of loops within loops.
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MAIN PROGRAM

SET UP FIRST INITIAL CONDITION
IN SUBROUTINE

SET UP FIRST EXIT OF SUBROUTINE

i.E.,LErB=B1 I °
I |

|
J
| SUBROUTINE
|
|

—_— k3

|

MAIN PROGRAM CONTINUED

!

—
SET UP SECOND INITIAL CONDITION
IN SUBROUTINE

L

SET UP SECOND EXITBG:BSUBROUTINE,
1.e = 2

MAIN PROGRAM CONTINUED

I
|

Figure 4- 13. Flow chart for setting up initial conditions and
different exits of a subroutine.
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4-4.2 CODING SYSTEM AND WORD
LENGTH

The actual assignment of an order to the
computer for each step in the program is
called coding. The finished code is a coni-
pletelist of instructions, ororders, and their
equivalent numbers, since ultimately the
computer mechanism deals only with num-
bers, Instructionsand actual data quantities
areindistinguishable from each other except
by interpretation, The computer memorizes
instructions and quantities as the contents of
addresses in its memory. Instructions ex-
plicitly involve only addresses and tell the
computer what to do with the contents of these
addresses. Thestructure of the program set
up for the computer, the choice of a coding
system to comniunicate with the computer,
andthe size of the word -- the stringof binary
digits == thatrepresent the storage capacity
of cachmemory address are extensively in-
terrelated. Some of the basic factors are
briefly reviewed for their effecton computer
storage configuration.

In thedesign of a computer, the number
of bits reserved for an address places an
upper limit on the number of words in the
addressable memory of the computer, If an
address is denoted by n bits, no more than
2" words can be contained inthe addressable

memory, In the choice of a coding system,
a typical format for four types is as follows:

43 bit word: 4addresses of 9 bits, 1 in-
struction of 6 bits, and 1
sign bit, Memory S5I2
words, max.

43 bit word: 3 addressesof12bits, lin-
struction of 6 bits, and 1
sign bit. Memory 4096
words, max.

43 bit word: 2 addresses of 18 bits, 1

instructionof 6 bits, and 1
sign bit. Memory 262,144
words, max.

1 address of 36 bits, 1 in-
struction of 6 bits, and 1
sign bit. Memory 68,719,
476,736 words, max.

43 bit word:

Naturally, with two-address or one-address
systems, shorter word lengths are common,
with the lower limit largely determined by
the numericalaccuracy required in problem
solution.

In ordertodescribethe additional mem-
ory elements required beyond those used in
the computer memory for central storage
(see Fig. 4-14),the functions of the comput-
ing unit will be reviewed. This unit has two
functions (see Fig. 3-15):

COMPUTER
INPUT NUMBERS——ﬂ MEMORY |~ OUTPU1 NUMBERS

!

1

lcompurming umi]|

Figure 4- 14. Memory and computing unit.

INPUT NUMBERS
AND INSTRUCTIONS

COMPUTER
MEMORY

[ OUTPUT NUMBERS

ARITHMETIC
UNIT

CONTROL

Figure 4- 15. Arithmetic unit and control.
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1. To obtain instructions from thc mcm-
ory and interprct them (donc by the control
unit).

2. To perform thc actual opcrations
(done by the arithmetic unit).

The controlunit mustperform two func-
tions (ref. Fig. 4-16):

1. Interpret the instructions (donc by
the instruction dccoder).

2. Tell the arithmetic unit what to do

(done by the control gencrator).
After an instruction has becn cxccuted, the
control generator produces signals that en-
able the nextinstruction to go from the com-
puter memory to the instruction decodecr,

As shown in Fig. 4-17, the control gen-
crator also commands the input-output se-
lector, Through appropriate buffering mem-
ory, this unit fceds input and outputinforma-
tion to and from the main memory.

Fig. 4~18points out several other basic
mcmory elements. When an arithmetic op-
cration is performed, the result is formed
in the accumulator (high-speed register
memory) of the arithmeticunit. Inorder that
the instructiondecodcr may be able to refer
to the current instruction during the time that
control signals arcbeing set up, theinstruc-
tion (word)being cxecutced is storedin a spe-
cial memory cell, the instruction register.

INPUT NUMBERS ) I COMPUTER [ OUTPUT NUMBERS
AND INSTRUCTIONS MEMORY
ARITHMETIC CONTROL INSTRUCTION
UNIT GENERATOR DECODER

Figurc 4-16. Instruction decoder and control generator.
(Solid-hecaded arrows indicate information; hollow-
hecaded arrows indicate control signals.)

—_— e —_—
INPUT COMPUTER
OUTPUT
UNIT - MEMORY UNIT
! ;

INPUT OUTPUT
UNIT - UNIT
INPUT OUTPUT
UNIT UNIT
<3 o
IN-OUT ARITHMETIC | | CONTROL = INSTRUCTION

SELECTOR UNIT GENERATOR DECODER

b

I

Figurc 4- 17. Input and output functional units.

s
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INPUT COMPUTER OUTPUT
UNIT MEMORY UNIT
INPUT OUTPUT
N uNIT
uNIT -
INPUT ~] ouTPuT
UNIT UNIT
=+
ARITHMETIC INSTRUCTION
IN-OUT CONTROL
SELECTOR UNIT <+ GENERATOR r_?E_C.O_DER__ﬁ
""""" 0 | INSTRUCTION?!
!-ACCUMULATORI ' REG?S%E,? !
e e e = —J { N =
| -
! CURRENT- |
i ADDRESS 1
| REGISTER |
| S J

Figurc 4-18. Accumulator, instruction rcgistcr, and current-address registcr.

The currcnt-address register usually con-
tains thc memory address from which the
instructions being executed came. This
covcrs the situation where the address of the
prcscnt instruction was given as part of the
previous instruction, and the situationwhere-
in the ncxt instruction is the next highcr (or
otherwise rclated) address.

In designing a digital computer, the en-
ginccr's first task can be considered to bc
that of choosing the proper coding and pro-
gramming system for the purposc at hand.
Thce logical design of the computer circuitry
follows. Theelectronic design, which would
includc the design of the memory configura-
tion, constitutcs the third step. Various parts
of a largc program can be stored in a rela-
tively slowmemory system-- suchas a mag-
nctictapcordrum -- and then transmitted to
a high-spced (and high-cost) memory when

thc actual computations in this part of thc
programare to occur, Another factor tcnd-
ing tohold down the size of the main miemory
systcm cvolves fromthe skillof thc program-
mcr; for example, his ability to usc tempo-
rary storage for intermediate rcsults that,
oncc computed, are notused again in thc pro-
blem -- thus requiring the main memory to
storc only permanent or constant numbers.

Thcrclative speeds of common typcs of
digital mcmories are listed in Tablc 4-2.

Unfortunately, throughout thc digital
computcrliterature, the reader will be called
upon to distinguish between instruction codc
and machine language code, In the digital
machinc language codes, the yes-no bits can
be associatcd in many ways to represent
characters in machine language. Consider,
for cxample, the following five machine lan-
guagc codes:

4-27



AMCP 706-329

TABLE 4-2. ORDER OF MAGNITUDE OF MEMORY ACCESS TIME. ‘®

Memory System

Magnetic Tape
Magnetic Drum
Acoustic Delay Line
Magnetic Core
Diode Capacitor

Flip-flop Register

Access Time

5 msec, plus time to position tape

10 msec to 1 sec

50 psec to 50 msec
500ns™ to 50 usec

1 usec

10ns* to 10 usec

# ns = nanosecond = 10~Y sec

Machine Language Code

Binary Notation

Decimal Number

Natural Binary Code
Natural Binary Decimal Code

Excess Three Binary Decimal
Code (X53)

Odd Parity NBDC

Odd Parity X53

The naturalbinary decimal code 1S easier to
translate from human language, but sacri-
fices the efficiency of natural binary arith-
metic. The X53 code has the advantages of
simple translation plus easier arithmetic,
the fact that a digit and its 9's complement
are complementary, and the fact that no de-
cimal digit including zero is coded as 0000.
The two parity checking codes provide a
means ofprotecting againstthe loss of pick-
up of asinglebit, The extraparitybit is used
to adjust the totalnumber of 1's in each bin-
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101011011

0110 0111

10110 00111

(347)

0011 0100 O111 (347)
1010 (347)

10011 00100 00111 (347)
11010 (347)

arydecimal bit to be ~- in these cases - odd.
(Even, however, can be used.)

It should be noted that there are billions
of possible character codes. These'are re-
presentative samples only,

The choice of how many characters will
make up amachine word, or whether the com-
puter will handle only fixed word lengths or
variable wordlengths will be another multi-
plying factor indeterminingthe overall stor-
age configuration.
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4-4.3 SUBROUTINES, REQUIREMENTS

FOR TEMPORARY STORAGE

Once the number of words of input and
output data havebeen determined asrequired
by the program, and anecessary coding sys-
tem for the machine language has been sect,
an examination of the subroutines will do two
things:

1. Reduce the absolute size required of
storage capacity, by eliminating the memo-
rizing of tables whenever anumerical approx-
imation is more economical.

2. Achieve reduced but sufficient mem-
ory space to provide storage locations for
intermediate results and constants used in
calculations.

4-4.4 DATA STORAGE REQUIREMENTS

The necessity to store standard trajec-
tory data within the computer for reference
as required can be considered to be a nom-
inal requirement for the solution of a fire
control problem. Anexaminationofthe mag-
nitude of thistype of requirement will enable

the total computer storage configuration to
be determined.

4-4.5 EXAMPLE OF FADAC MEMORY

The FADAC® general-purpose transis-
torized digital computer operates serial by
bit, parallel by function, and allows 12,800
one-wordexecute (add, subtract, etc.)opera-
tions per second, Thewordlength is 33 bin-
arydigits, including parity bit, sign bit, and
31binarydigits forabsolutenumerical value.

The memory is arotating magneticdisc,
6000 rpm nominal, Storage totals 4096
words, 32 channels of 128 words cach. 28
channels are permanent storage (read only)
and 4 channels are for working storage,
There are two 16-word high-speed loops for
rapidaccess, five 1-wordregisters for arith-
meticoperations and control, andone 2-word
register foroutputdisplay-information stor-
age, The functional diagram of the FADAC
System appears in Fig. 4-19, in which the
memory elements are identified.

CONTROL UNIT

OUTPUT

PAPER TAPE

MAGNETIC TAPE

CONTROL PANEL DISPLAYS
EXTERNAL LINES

OTHER FADAC's

— —]
| INSTRUCTIO N
{ i | REGISTER
* ARITHMETIC UNIT
-
INPUT A: ACCUMULATOR
- L: LOWER ACCUMULATOR
PAPER TAPE N: NUMBER REGISTER
MAGNETIC TAPE
CONTROL PANEL
OTHER FADAC's
MEMORY
 —
MAIN MEMORY
R AND Q: RAPID ACCESS LOOPS
D DISPLAY REGISTER
Figure 4-19. Functional diagram of FADAC system.

* Abbreviation for Field Artillery Digital Automatic Computer: see par. 1-3.4 of Ref. 104 for background information relating to

FADAC.
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4-5 FLEXIBILITY REQUIREMENTS

4-5.1 SPECIAL-PURPOSE VERSUS
GENERAL-PURPOSE COMPUTERS

The general-purpose computer usually
has alarge number of input and output chan-
nels, and these channels may each consist
of a number of bits in parallel rather than a
single bit, Such a computer generally has a
storage capacity of many thousands of com-
puter words, and the vdrious input, output,
and memorydevices are allaccessible to the
programmer through instructions that enable
himto selectwhatever device he needs next.
In addition to the basic instructions — add,
subtract, multiply and divide _ many others
will be available, such as, for example:

Jump - Specifiesthelocation of the next
instructionand directs the com-
puter thereto.

Shift right - In the case of binary numbers,
(or left)
left) of the number of bit posi-
tions specified in the instruc-
tions and effectively multiplies
the number by 27", (or 27),
where n is the number of bit
positions shifted, Those bits
that run off the right-hand end
of theword arediscarded; those
added to the left are zeros.
To transmit, transport, ex-
change, read, record, store or
write data — whatever the com-
puter operation that is next re-
quired.
These instructions form the computer "re-
pertoire' andprovide the programming flex-
ibility required for different types of prob-
lems. As a rule, the larger the repertoire,
the easier the programming task. For ex-
ample, if a computing machine has a "multi-
ply" instruction, it can be stated directly.
Otherwise, successive additions must be pro-
grammed — generally by iteration,

Further, general-purpose machines may
have instructions with two, three,or four ad-
dresses, inturn requiring logic for as many
as four accesses tomemory for a single or-
der, A typical order forafour-addressma-
chinemight be "divide the operand from ad-
dress A by the operand from address B,
store the quotient in address C, leave there-

Transfer -

"
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this is a shift to the right (or

mainder in the accumulator, and obey next
the instruction in storage location E",
Special-purpose computers may have the
largerpart of their programs built-in, liter-
ally soldered in place, but the sacrifice in
flexibility will almost alwaysyield a substan-
tial increasein speed., Designed to solve only
one problem, or to perform relatively few
types of calculations, the special-purpose
computer needs very little capability for

"talking" with the operator, At the same
time, it may require laborious reconstruc-

tion when its mission changes. The general-
purpose machine, faced with a shift in duty,
would require only modification of the infor-

mation jn its MEMOTry. This would be a-
chieved by preparing anew setofinstructions

and rcading these into the memory,

4-52 CHOICE OF BUILT-IN COMPUTER
OPERATIONS

As mentioned previously, the basic op-
erations are only addition, subtraction, and
detection of the sign of a quantity, together
with operations of transfer to and fromstor-
age, input, and output. While it is conceivable
that problems could be programmed using
only these basic operations, such a computer
would be most inflexible and difficult to pro-
gram. At the veryleast, such operations as
multiplication, division, and decision as to
which of two quantities is the larger would
be programmed as built-inoperations. Fur-
ther elaboration is not generally wired in
place, but programmed as a permanent sub-
routine, Operations of this type commonly
include integration, interpolation, and func-
tion- generating equations.

A special-purpose computer, by defini-
tion, has all operations built in. Provision
for minor adaptations, however, is usually
necessary, and there is asequence of major
and subroutines as in the general-purpose
computer.

In anattempt to ease the burden of pro-
gramming, general-purpose computers have
been provided with elaborate programming
schemes that permit English-language in-
structions and in somecases, the entering of
equations in almosttheoriginalmathematical
form.
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4- 53 CHOICE OF PROGRAMMING
SYSTEMS

In the case of external programming,
each operation required of the computer is
under the control of some external device.
In the simple case of a punched card program,
the computer "senses' anew card for each
operation, Changing the program requires
only a new arrangement of punched cards.
However, the degree of sophistication avail-
able with an external program alone israther
narrow. For example, take the unattractive
case of punchingenough cards to allow an i-
terative process whose duration cannot be
predicted inadvance. Secondly, consider the
dilemma that exists when the program re-
quires one branching operation if a number
happens to be positive and another branching
operationif anumber happensto be negative.

A so-calledplugged-program can be in-
stituted through the use of a plugboard con-
trol panel. With aplugboard, the actual phy-
sical wiring of the computer is changed for
each new set of computations. To minimize
error and to speed the changeover, whole
plugboards can be interchanged. Ingeneral,
practical physical limitations place a maxi-
mum of about 100 steps that can be contained
before the mass of wires becomes unwieldy,
although there is no theoretical limit as to
how far the designer might go.

A fully stored-programcomputer stores
instructions and data interchangeably. There
is a list of instructions a given computer can
perform and these can be combined and se-
quenced by the programmer for a wide range
of operations. The computer may perform
arithmetic and other operations on instruc-
tions in the program as well as on items of
data.

In programming, it isoften desirable to
be able to prepare aprogramin a "problem-
oriented"or''user's" language instead of
directly in machine language. This can be
accomplished through the aid of a "compiler"
program, or translator program, designed
for a particular class of problems. For en-
gineering and scientific work, FORTRAN is
one of the most widely used compiler langu-
ages. FORTRAN stands for FORmula
TRANslation. ™%

The manner in which a compiler program
can be used to solve trajectory equations is

illustrated in Fig. 4-20. In this case, the
mathematical problem is set up in a special
form and then fed to an off-line support com-
puter that solves the problem and ultimately
produces ecither amagnetictape or aperfor-
ated Mylar tape that contains the required
coordinate data in fire control. computer lan-
guage, This output tape is loaded into the
memory of the fire control cornputer for sub-
sequent processing,

The basic stepsin the overall program-
mingprocess (seeFig. 4-20)canbe described
briefly as follows:

1. The programmer prepares a flow
chart that outlines the steps to be executed
in the solution of the given problem. As a
rule, the more complex the problem, the
more detailed the flow chart. Careful ana-
lysis of the flow chart afterit has been pre-
pared by the programmer can be undertaken
by the fire control computer designer to
check for conformance to system require-
ments.

2. Theprogram is thenwritten in com-
piler language on a standard coding sheet.
Each line on the coding sheet represents a
single compiler statement. The format on
the coding sheet varies with the type of com-
piler.

3. A punchedcard is prepared for cach
compiler statement. When all the cards are
punched, they areput together in sequence—
thereby comprising the basic "source" pro-
gram. (This assembly of cards is called the
"source deck".)

4. Control cards, peculiar to the sup-
port computer, are added to the source deck.
These cards tell the support computer what
operations to perform, where to store cer-
tain information, what type of output to gen-
crate, and other control information. Data
cards (e.g., constants) may be added to the
source deck, or may actually be entered as
part of the source deck.

5. The punched-card program is read
intothe support- computer memoryby means
of a high-speed card reader. The compiler
program and other computer routines are
usually stored on magnetic library tapes that
are mounted at different tape stations in the
computer room. When the support computer
is operated, the sourceprogram istranslated
and assembled into machine language to ob~
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Figure 4-20.

tainthe "object"program, whichisthen pro-
cessed to produce the desired output —gen-
erally in the form of either a magnetic tape
or a perforated Mylartape. An outputlisting
is provided on a high-speed printer so that
the designer can evaluate the program and
any compiler-generated error messages.

Fig. 4-21illustrates a simple program
that was written in FORTRAN compiler lan-
guage and processed on an RCA 301 support
computer. The prime objective is to solve
the equation

v =x 2+ 0.0008356

for different values of x under the following
conditions:

a. The values of x are pre-punched in
Columns 1to 10 on 80-column cardsand are
floating-point numbers.

b. The number of data cards is un-
known, but it is known that x will never be
greater than 9999.0. (A. special cardis pro-
videdthathas a value of x>9999.0 to indicate
the last card in the series.)

A secondary objective is to point out the
values of x and y and the card count on the

4-32

The basic programming process.

support-computer output listing. (See Table
4-3 for an explanation of the various FOR-
TRAN compiler statements that appear in
Fig. 4-21)

4-6 COMPUTER TYPES

4-6.1 SYNCHRONOUS AND

A SYNCHRONOUS

Most digital computersare synchronized
by means of clockpulses as abasicmeans of
timing all the activity in the system. Clock-
pulse signals delivered to every flip-flop i-
dentify bittimes and are used to keep infor-
mation being written into and read out of
memory in synchronism with other data in
the memory and in other parts of the com-
puter. In addition, appropriate pulses con-
trol all the transfer and exchange of infor-
mation throughout the machine. A computer
slaved to a clock is known as a synchronous
machine.

Clock frequencies may be generated by
a crystal oscillator, with subfrequencies
scaled down through frequency dividers, or
the basic pulses may be generated by a mul-
tivibrator. Otherrepetitive sources such as
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. tcOmPILE

KKz

0olnd FORMaT(Fp,p)

‘ D TRED IR Y T ——— PSR%%?CEM
SRA

KKakK ey QUTPUT

LISTING

AHYZEX##24RI5 AEmg

00inI FORMATIEYS, 8, 10X, FID Satox,Tiey T
PRINT 103,58, WHY, KK

LFtEX+9999,0)1n02,102,104

BT S o]
END
TNATA
M CARD
Y COUNT
— 0,40700000E~04 L 00249 1
0,23400000F~C? ,00084 3
0,91400000¢ 03 5396,00000 3
0.11006000F 02 12113288 4
0,12345678F 102 152, 41661 5
0,1200U0C0E N2 289, 000R4 - 6
0,9990U000F na 0100,00000 7
0.77000000F 02 5929,00080 8
0,30000000F~01 1 0N174 9
0,48600000F=01 0 10
6.99994000F N4 nonl:ﬂgg%g 11
. 0,99990001F 04 pan3.0n0on 12
L v - X%+ 0.0008356 PRINTOUT ON
2 OUTPUT LISTING,
= (0.407E-01)° + 0.0008356 SHOWING VALUES
1.2 OF X AND y, AS WELL AS
= (0.407X10 )® +0.0008356 THE CARD COUNT
= (0.1656X1O‘2)+ 0.0008356

= 0.0016565 + 0.0008356
= 0.0024921
= 0.00249

Figure 4-21. An illustrative FORTRAN program. (sheet 2 of 2)
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TABLE 4-3. INTERPRETATION OF THE FORTRAN
COMPILER STATEMENTS IN FIG. 4-21.

KK=0

This equation sets the card count equal to zero. Since the card count is a positive
integer (whole number), an integer variable was selected. In FORTRAN,a variable
may be written with up to six alphanumeric characters, the first character being a
letter. Integer variablenames must':: begin withan I,J,K, L., M, or N. Ked-variable
names can begin with any otherletter of the alphabet. There can be only one vari-
able on the left-hand side of the equation.

101 FORM AT (F10.0)

A F¢)RMAT statementis usedin conjunction with a card READ statement to specify
the type and arrangement of the data field to be entered as input. In this case, 101
is the statement address or number, and F10.0 states that the input is a floating-
point variable of 10 digits, with no digits to the right of the decimal point. (F
specifies floating point, 10 specifies a 10-digit width, and .0 specifies zero digits
to the right of the decimal point.) If an input card has a decimal point, it takes
precedence over the FORMAT statement. Capital "oh's" are slashed to distinguish
them from zeros. Also, parentheses are required around the variable identifier
F10,0.

102 READ 101,EX
This statement is used to read in a data card that contains a real variable labeled
EX. The 102 isthe address associated with the READ Statement, 101 is the address
of the associated FORMAT statement, and EX is the variable name arbitrarily
assigned to x.
KK=KK+1
This statement updates the card count by a unit of one.
WIIY=EX*+2+835.,6F.-6
This statement sets up the equation
y =xZ + 0.0008356
The variable y is represented by the symbolic WHY, xis represented by X, a

double asteriskdenotes anexponential, and E-6 is the sameas 10”5 sothat 0.0008356
can be represented as 835.6x10~6=835.6 -6,

*The word "must" as used here means that the statement is a rule of FORTRAN.
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TABLE 4-3. INTERPRETATION OF THE FORTRAN
COMPILER STATEMENTS IN FIG. 4-21. (cont.)

END

103 FORMAT (E15.8, 10X, F10.5, 10X, 110)

This FORMAT statement is uscd in conjunction with a PRINT statement to specify
the type and arrangement of the data ficld to be outputted. The 103 is the address
associated with the FORMAT statement; E15.8 specifics that the first output will
be an exponential of upto 15 characters, with eight digits to the right of the decimal
point; 10X mecans "to skip 10 spaces' on the same line; F10.5 means that the se-
cond output will be a floating-point numbecr, with five digits to theright of the deci-
mal point; 10X means "to skip 10 spaccs” on the same line; and, finally, 110 spec-
ifies that the third output will contain an integer with up to 10 digits.

PRINT 103, EX, WHY, KK

This statement results in the printing of the variables identified in the preceding
FORMAT statement (address 103). The first output to be printed is x; the second
output onthe same line is y; and thethird output on the sameline is the card count.

1F (EX-9999.0) 102, 102, 104

This is an arithmetic 1F statcment that states that "if x minus 9999.0 results in a
minus value, branch to addrcss 102; if x minus 9999.0 resultsin azero value, branch
to address 102; and, if x minus 9999.0 rcsults in apositive value, branch to address
104. In essencce, this mcans that "if X = 9999.0, read in another data card, if x>
9999.0, stop the program."

104 STOP

This statement is used to stop the machine for opcrator action,

Thc last statement in a FORTRAN sourcc program must be an END statement. It
signals the cempiler that the work of translation is completed. (Remember, the
entire sourcc program is rcad into the support-computer memory, compiled, and
then executed.)

*DATA

This statement identifics thc following cards as data cards.
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a timingtrack on amagnetic memory device
can be used. When a magnetic drum is em-
ployed as astorage element, the timingtrack
employed as the lock generator provides an
ideal means of synchronizing the mechanical
and electronic elements to cachother, Care
must be exercised that at the time of start-
up the basic frequencies throughout the ma-
chine are in phase or in synchronism.

A synchronous machine has the advan-
tage that registers may be cleared on a re-
petitive cycle, each operation takes a known
length of time, and random noise pulses are
discriminated against, As a consequence,
most computers are basically synchronous,
For an example of asynchronous operation,
consider such a simple device as a counter
fed by a shaft-driven pulse generator. Such
a device is asynchronous since pulses are
generated atrandom intervals, depending on
the rotation of the shaft.

Thereis alarger cycle in a synchronous
computer that encompasses thetime required
to complete an addition and transfer the re-
sult to storage, This add time is commonly
2 to 20 clock pulses, depending onthelogical
design,

Often, synchronous computers are re-
quired to operate with asynchronous data in-
puts. Toaccomplish this, the input data are
held in aregister until suchtime as the com-
puter cycle can accept them.

4-6.2 WHOLE-TKANSFER AND INCRE-
MENTAL COMPUTERS

While most digital computers operate on
whole numbers, extremely useful special-
purpose computers may employ the technique
of counting increments to obtain a rapid re-
presentationof an answer, Incremental com-
puters perform computations by a series of
updating operations, This approach isparti-
cularly useful for applications where a con-
tinuous output solution is required for con-
tinuously varying input parameters, and
where conventional electronic or electrome-
chanical means do not provide the requisite
zeroing precision. Incremental computers
have often been described as hybrid since
they operate like analog computing systems
with digital-computer accuracy. A substan-
tial saving in computer hardware can be a-

chieved by computing at speeds appropriate
to the dynamics of each stage of computation.

The logic at the inputs is made capable
of followingrapidly varying phenomena. The
logic involved in the majority of mixing and
output computations takes advantage of the
smoothinginherent in integrations at the in-
put.

4-6.3 OPERATIONAL COMPUTERS

Operational computers employ a separ-
ate computing element for each mathematical
operation in the problem. They are exceed-
ingly fast since equipment need not be time-
shared between operations, By the same
token, operational computers are wasteful of
equipment, and are thus used only for rela-
tively simple problems — forexample, simple
countersorintegrators. While whole-trans-
fer logic may be employed, incremental op-
eration is more often encountered,

An operational computer employing in-
cremental logic, and capable of being pro-
grammed for avariety of mathematical pro-
blems, is known as a digital differential an-
alyzer. This class of computer is sufficient-
lyimportant to the fire control field to form
the subject of aseparate chapter (see Chapter
5).

4-6.4 COMPUTERS AS SERVO ELEMENTS

Special-purpose computer logic can be
made to operate as the correction-comput-
ing element of aservoif the inputtotheservo
or the feedback element (or both) is digital,
In amanner comparable to conventional ana-
log servos, the computer subtracts the out-
put from the input to obtain the error, and
may also be programmed with the expres-
sions for the filter networks required tosta-
bilize the servo. At some point inthe circuit,
digital-to-analogconversionofthe error sig-
nal is provided. The converter may be quite
rudimentary — as, for example, athree-posi-
tion relay — but in order to reduce the ten-
dency to oscillate, several steps are usually
provided so as to form a quasi-proportional
system (see Fig. 4-22).
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Figurc 4-22.

4-7 TYPICAL DIGITAL COMPUTER

Thc description below of a typical com-
puter, which starts with the main storage
(memory unit) and works throughto the con-
trol unit = based on the functional block dia-
gram of Tig. 4-23, is a modified condensa-
tion of pertinent portions of Chaptcr 11 of Ref.
4. Foramore complcte discussion, the read-
er shouldconsult this referenced source. It
should be noted that thc terminology used is
mercly that employcd by the source and is
not universally acccpted in describing all
computers. Any specific machinc may have
morc or fewer registcrs than discussedhere,
but thebasic concepts discussed apply to all
ty pes.

As a rule, main storage deviccs are not
satisfactory for the temporary storage of
numbcrs undergoing arithmetic operations
or controlling thc scquence of opcrations.
Three storage registers, each adapted for
speed and capacity, arcused for storing num-
bers that enter into the computations.

The first storage register, the S-reg-
ister, serves the primary function of storing
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Typical digital servo.

themultiplicand (or divisor) so that it is not
nccessary torcferrepeatcdly to main storagc
during multiplication or division, Numbcrs
are transfcrrcd from the main storage to the
S-register over a set of parallel wires, onc
for each binary digit,

The second register, the accumulator,
is used for binary addition or subtraction,,
The third rcgistcer, called the multiplicr-
quotient or M-Q register, isused forstoring
the multiplicr during the multiplication or
thc quotient during division,

For addition and subtraction, numbcrs
arc taken from appropriatc locations in the
main storagc and sent to the accumulator,
They are sentthrough the S-registerbecause
this path isnccded anyway for other purposcs.
For multiplication, it isncccssary as afirst
step to causc the multiplierto betransmitted
from the main storage to thc M-Q registcr.
The accumulator and M-Q rcgister are both
capable of shifting the numbers in them to
right orleft. Then, at thc start of the actual
multiplication process, thc multiplicand is
obtained fromthc main storage and placcd in
thc S-registcr to be added in over-and-over
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Figurc 4-23. Typical arrangcment for a stored-program computer.

fashion in the accumulator, which shifts to
the right one step after cach addition. As the
product isbuiltup, it is shiftedinto M-Qreg-
ister, At the conclusion of the multiplication
process, the double-length product is stored
with itshigh-order digits in the accumulator
and its low-orderdigits in the M-Q register.
If it is desired to rctain the entire product,
two storage locations in the main storage arc
required and two program steps are used to
transfer itfrom the two registers. Division
is substantiallythe reversc of multiplication.
The dividend is placcd in the accumulator (or
the accumulator and the M-Q register if a
double-length dividend is required) and the
divisor is stored in the S-register. As the
division process procceds, the digits in the
accumulator arc shiftcd to the left, with the
resultthat thc final remainder appears in the
accumulator and the quoticnt inthe M-Q reg-
ister. In Fig. 4-23, all paths used forthe data
and results are indicatcd by solid lines,
The problem isnow to control thec trans-
mission of databetwcen the main storage and
the threeregisters in the arithmetic portion
of the machine. This function isto be accom-
plished through theusc of numbers represen-
ting program stcps, and thesenumbers are to

bc stored in the main storage along with the
numbers representing data. The instruction
counter, the operation-address register, and
the control circuits are the major units that
arecmployed for accomplishing this purpose.

The instruction counter has two func-
tions, First, it keeps track of the program
step that the computer is executing at any
given time, Normally, apulse is sent to the
instruction counter at the conclusion of each
arithmeticoperationto stcpitup by one count;
for alteringorrepcating aprogram, however,
the contentsof the address part of the oper-
ation-address register may betransferred to
the instruction counter to replace the number
there, The secondpurposc of the instruction
counter is to control the storage-selection
circuits when a number representing a pro-
gram step is being scnscd in the main stor-
age. The paths to and from the instruction
counter are indicated in Fig. 4-23 by dotted
lines, as are allof the paths thattransmit in-
formation pertaining to the control or pro-
gramming of thc computcr,

Before describing the function of the op-
cration-addressregister, the meaning of the
term "address" must bc explained, In its
narrowest sense, an "address'" is a number
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thatrepresents a storagelocationin the main
storage, Usually, each location is assigned
one of a series of consecutivenumbers from
zero to the storage capacity of machine.
Then, when anaddress is sent tothe storage-
selection circuits, access is gained to the
storagelocationrepresented by that address.
By this definition, thenumber in the instruc-
tion counter is morethan an abstractnumber
used for counting program steps; rather, it
is anaddress also, because itprescribes the
storagelocation fromwhich anumber repre-
senting the program step is to be taken. An
address can be used to designate other things.
For example, it is used to specify the desired
input or output mechanism when sending in-
formation to or from the computer, Also,
the address specifies the number of shifting
steps that are to takeplace in a shift opera-
tion.

The operation-address register is used
for storing the "instruction", which hasbeen
previously referred to as the number that
represents theprogramstep. Aninstruction
consists of two parts, known as the operation
part and the address part. Theoperationpart
specifies the operationto be performed,
which may be an arithmetic operation such
as add or multiply, or which may be any one

of a long listof other operations such as the-

transfer of a number from one place to an-
other or the causing of a magnetic tape unit
torewind, Thispartoftheinstructioncauses
the computer toperform the indicated oper-
ation by means of control circuits. As the
name implies, the address part of the instruc-
tion specifies the addresses of the operands
when the mainstorage is involved or the in-
put-outout device, the number of shifts, and
so on, as the case may be in other types of
operations. Incidentally, the address partof
the registeris acounter aswellas aregister
and is used for keeping track of the shifts in
a shiftinstruction, or during a multiplication
or a division,

During operation, the computer altern-
ately comesunder the control of theinstruc-
tion counter and the operation-address reg-
ister, To visualize the sequencing of the
computer functions, assume thattheprogram
is initially stored in the main storage with at
least the first few instructions in the lowest
numbered addresses, The various items of
data may be atany desired addresses. If the
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instruction counter is initially at zero, the
control circuits first cause the instruction at
address zeroto be takenfrom the main stor-
age and sent to the operation-address regis-
ter. (The factthat the path is through the S-
register is incidental.) Normally, the in-
struction isrewritten ataddress zero sothat
it may be used again. The computer then
performsthe operationindicated by the digits
in the operationpart of the address register,
Upon completion of the first operation, con-
trol is returned to the instruction counter,
which has in the meantime been stepped from
zero to one, The instruction at address one
is now causedto be sentfrom the main stor-
age to the operation-address register, after
which the second instruction is executed
under control of this register, and so on. In
other words, each program step consists of
two parts: (1) the securing of the instruc-
tion and (2) the execution ofthe instruction.
Reference to the main storage may be made
during each part; in (1) the storage-selection
circuits areunder the control of theinstruc-
tion counter, while in (2)they are under the
control of the address part of the operation-
address register,

Thebasic problem of altering aprogram
or repeating portions of it is solved in the
stored-program computer " by a "jump"
(sometimes given other terms such as
"branch" or "transfer'') instruction. The
jump instruction causes the address part of
the instruction, which is in the operation-
address register, to be sent to the program
counter to replace the number there. The
result is that theuniform sequence of addres-
ses from which instructions are obtained is
terminated, and ajump is madeto someother
address, Then, becausethe program counter
receivedone pulseto be counted for each pro-
gram step, the selection of instructions from
sequentiallynumberedaddresses is resumed
at the new address and is continued until an-
other jump instruction is encountered.

A second important feature of the in-
structions in a stored-program computer is
that they areindistinguishable from the data,
Theprogrammer must keeptrack of which is
which. Occasionally a certain amount of con-
fusion results, but it is useful to be able to
perform arithmetic operations on instruc-
tions. The addition or subtraction of a con-
stant from the address part of an instruction
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is an operation that is performed frequently
when using subprograms. Another example
of the usefulness of the featureis in the stor-
age oftables whenthe arguments form auni-
form sequence. To find the address of the
value corresponding to any given argument,
it is sufficient to perform a simple compu-
tation on the argument and then use the re-
sult as the address part of an appropriate
instruction. A time-consuming searching
process is thereby avoided,

The input and output devices are shown
connected through the M-Q register in Fig.
4-23. That the M-Q register is used in this
way is incidental; it just happens to be con-
venient, However, some temporary storage
of some sort is usually needed between the
input and output devices and the main storage
because the various units are not synchro-
nized with one another, When an instruction
calls for a numberto be sentfrommain stor-
age to anoutput device, for example, the out-
put device may not at that particular instant
be prepared to accept it, Thenwhen the out-
put deviceis ready to accept thenumber, the
timing in the arithmetic part of the computer
may not be atthe right point fortransmission.
Another factor, whichis probably even more
compelling is the fact that the form of the
number may be different in the two places,
Both thetiming and the change-of-form pro-
blems can be solvedthrough the use of "buf-
fer' storage, as it is sometimes called,

Theobjective to be accomplished by the
control circuits in a stored-program com-
puter is the causing of all the individual units
of the computer to perform in such amanner
that theinstructions in the main storage are
sensed in the proper sequence and executed.
Ingeneral, the units are controlled by send-
ing pulses to them over a set of wires that
may be called "command lines", Each com-
mand line is for a specific purpose, such as
transferring a number from one register to
another, shifting the number in a register,
resetting a flip-flop, or any one of a multi-
tude of other functions, Usually, it isneces-
sary to send pulses, appropriately sequenced
intime, over several different commandlines
to execute any one instruction, The circuit
arrangement to be used in any given case for
distributing the control pulses on the com-
mand lines depends in large measure on the
organizationof the computer as a whole, and

in existing machines greatvariations will be
found when comparingone computer with an-
other.

Forinformation on actual computer sys-
tem design using transfer equations, the
reader is referred to Ref. 100. For infor-
mation on the detailed design of control cir-
cuits, counters, and other types of computer
networks, the reader is referredto Ref. 101.

4-8 LOGICAL DESIGN

The logicaldesign of a digital computer
refers to the design of switching networks
that can performthe mathematical operations
desired. Theseoperations, reduced to their
essentials, are made up of a few basic logi-
cal propositions, Forthis reason, the alge-
bra of symbolic logic —termed Boolean al-
gebra— is the basic tool of the designer of
logical systems. The specific application of
Boolean algebra to switching networks is
known as switching algebra. For more com-
plete discussions of Boolean algebra and its
applications, see Refs. 3, 8, 9, 10, 11, 79, and

87.
One point should be clearly understood

with regard to the use of Boolean algebra;
namely, it leadsto aminimalnumber of logic
elements, but not necessarily to the "best"
circuit design in terms of operating perfor-
mance. What the algebra does provide is a
convenientmeans of representing a switching
circuit without drawingthe circuit. Also, and
probably more important, is the fact that it
provides ameans for quickly finding a multi-
tude of different circuits that will perform
any desired switching function, With a little
practice, the circuit designer can thereby
possess apowerful tool to aid him in finding
a ""good" circuit, even though it may not be

the "best" one.
The subject of logical design of digital

computers is much too complex a subject to
cover with any degree of thoroughness here,
For such coverage, the reader should con-
sult Refs, 4 and 77 through 86. Certain of
these references merit particular note, as
follows.

Ref. 79 is concerned primarily with re-
lay switching but gives a good treatment of
switching algebra and covers some electronic
switching applications. Ref. 80 is a more
recent book that gives a thorough coverage
of up-to-date switching theory applications.
This covers switching algebra, switching
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components, the various minimization meth-
ods, and many of the design criteria concern-
ing both contact networks and electronic
switching circuits. It also has a very good
treatment of the synthesis of sequential cir-
cuits, including pulsed sequential circuits.
Ref. 8lcovers switching algebra and the sim-
plification oflogical functions, but goes much
furtherinto the actuallogical design of digital
computers. It coversthe derivation and man-
ipulation of the logical equations for memory
elements, input-output equipment, arithmetic
units, and control units. Ref. 4 is concerned
more with actual circuitry than with the de-
rivation and manipulation of the logical al-
gebraic equations, Ref 86 goes into some
details of actual digital computer circuitry.

The paragraphs which follow cover very
briefly some of the concepts of switching al-
gebra and their application tological design.
Although the switching-theory applications
areillustrated interms of relay- contactnet-
works, it should be noted that switching al-
gebra can be applied to electronic switching
networks as well,

In a digital computer, an eclement of a
complete circuit of elements may have either
one of two values, For example, the output
of anelectronic circuitmay be avoltage that
is either high or low, Also, the output of a
relay contactnetwork may be the presenceor
absence of a connection toground. Thus, a
switching variable can represent either the
variationof aparticular element of a switch-
ing system,or it canrepresent the resultant
variation produced by a group of elements,
It is convenientto assign values to the switch-
ing variable, represented by the digits 0 and
1. The digit 0 couldrepresent either a closed
circuit or an open circuit, a high voltage or
a low voltage; and vice versa for the digit 1.
(It does not really matter which assignment
is made, as long as one is consistent,) A
prime indicates the inverse.

Table 4-4 is alist ofpostulates andthe~
orems of switching algebra. Most of the pos-
tulates and theorems have dual forms that
are statedtogether. Theprinciple of duality
is that anyexpression in switching logic can
be converted to its dual by interchanging both
the digits 0 and 1 and the operations add and
multiply.

Note that postulate 2' does not corres-
pond to the rules of ordinary algebra. One
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will notice that (x *x) is equal to x and that
(x) (x) is equal to x, both of which are unex-
pected results, It is obvious then that the
addition and multiplication symbols used in
switching algebra are not quite thosethat are
used in ordinary algebra.

Consider, for a moment, simple contact
networks such as those obtained when using
relay switching networks and let the digit 0
be the value of an open circuit and the digit
1be that of a closed circuit. Furthermore,
assign the contacts of each relay involved a
capital letter —denoting, for example, the
contacts of one relay by the capital letter A
for allcontacts on that relay that are norm-
ally open and A' for all contacts on that re-
lay that are normally closed. Then an ex-
pression can be written for the transmission
of a contact network in terms of the letters
representing the contacts on the various re-
lays involved in the network. This is illus-
tratedin Fig. 4-24which showsthe two types
of symbols that are often used to represent
the contacts of a relay. Fig. 4-24(A) shows
the normally open contacts, i.e., those con-
tacts that leave an open circuit until the re-
lay coilis energized and arethen closed, Fig.
4-24 (B)shows the symbolsused fornormally
closed contactsonarelay, i.e., those contacts
that are closed until the relay coil is ener-
gized and are then opened. The lower sym-
bols shown for both cases in Fig. 4-24 are

t

> Q

. .
L1

A

(A) Normally Open

A

V4
AT

A

(B} Normally Closed

Figure 4-24. Representation of
relay contacts.
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11
TABLE 4-4. POSTULATES AND THEOREMS OF SWITCHING ALGEBRA.

POSTULATES
(1) X=0ifX #1 ()1 .0=0+1=0
(1Y X =1ifX £ 0 (4"0+1=14+0=1
(2) 0-0=0 (5) 0'=1
2 1t+t1=1 (5'y1'= 0
3) 1-1=1
(3) 0+0=0

THEOREMS

(6) X +0=X (10) X+X'=1
(6') X .1=X (10") X -+ X' =0
(7)) 1 +X=1 (11) X+Y=Y +X
(7") 0+.X=0 (11") X « Y=Y X
8) X +X =X (12) X +XY =X
(8" X X=X (12") XX +v)=X
(9 Xy =x' (13) X +Y")Y = XY
(9 X" =X (13") Xv'+vy=X+vYy

(14) X +Y+Z=X +Y)+ 2
= X +(Y+2Z)
(14") XYZ = XY)7Z = X(YZ)

(15) XY +XZ =X(Y + Z)
(I X +Y) X +2)=X+YZ

(16) X+ VY)Y +2){Z +X")=X +Y)(Z +X")
(16'") XY +YZ + ZX' = XY + ZX!

(17) X +Y) X' +2)=XZ +X'Y

(18) X +Y +Z +..))=X"Y"Z"'...
(18") (XYZ ...)' =X'"+Y' + Z' + ...

(19)  (X1,X2,000,Xp1s + ) = 1K1 ,X5 000y X yeeet)

(20)  [(X{,X2,ee0,Xp) = X11(1,X2,000,Xp) + X1'1(0,Xg,...,X,)
(20") £(X1,X9,00,Xp) = [X1 + £(0,X2,..0,X0)] [X1' + £(1,Xg,...,Xp)]

(21) X1-£(X1,X2,...,Xp) = X1-£(1,X9,...,X,)
(21") Xq + £(X1,X9,00,Xp) = X1 + £ (0,X9,...,Xp)

@2)  Xq1"f(X1,X2,..0,X,) = Xq '£0,Xg,00, X))

(22') Xq' + £(X1,X2,000,X) = X1' + 1(1,X5,000,X )

n
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the ones most commonly used by logical de-
signers, Fig. 4-25shows threetypical sim-
ple networks. Fig. 4-25(A) shows a series
connection of normally open contacts of re-
lays denoted Aand B. Thetransmission func-
tion is

T=A+*B=AB

Fig. 4-25(B) shows the parallel connec-
tion in which the transmission function be-
comes

T=A+B

These two expressions may be checked
byreferenceto thelist of postulates and the-
orems ofswitching algebra given in Table 4-
4 and allowing the variable A and B to take
on all possible values. If both variables A
and B are zero, which would mean that the
contacts were open by our previous defini-
tion, then thetransmission of the network is
certainly open or 0. To check, one may use
postulate2, If A = 0 and B = 1,thetransmis-
sion is still 0 by inspection, as would also be
obtained from postulate 4. The same result
occurs if A=1and B =0. If both contacts

0———|F\—_—W"——°

(A) Series Connection

JIA
1

J18
m i

T=A+8

(B) Parallel Connection
A U
—
N
TEN

T=[Ap 4+ (C+D) EJF

(C) sSeries-parallel Connection

ETLED

-

Figure 4-25. Three simple contact
networks.

are closed, i.e., A =B = 1, then the trans-
mission is certainly 1,which is given by pos-
tulate 3,

Within this definition, it is seen that a
series connection of elements, or groups of
elements (a single letter such as A could
stand for a network of elements as well as
a single contact), results in the multiplica-
tion sign. A parallel connection results in
the addition sign. Fig. 4-25(C) shows the
result of a series-parallel connection, The
correctness of the transmission function can
be checked from Table 4-4.

The usefulness of switching algebra to
the simplification of switching networks can
be shown by asimpleexample, Consider the
network of Fig. 4-26(A). It is not entirely
obvious that this network can be simplified
further. However, by direct application of
theorem 16' thetransmission expressionim-
mediately becomes that of Fig. 4~26(B) and
results in the network shown, yielding a re-
duction in number of contacts by one-third.
The reader can verify the correctness of the
second networkby constructing a truth table
for both networks. A truth table is a table
in which there is a column for each of the
variables involved and the rows of the table
constitute all possible combinations of the
values of 0 and 1thatthe network of variables
canhave. Finally, a column istabulated that
gives the value, 0or 1, of the transmission
function for each row. Table 4-5 is a truth
table for the networks shown in Fig. 4-26.
The variable A' could have been included in
thetable also, but the information would have
been redundant since when A = 0, A'=1 and
vice versa.

The construction of a truth table from
the requirements for a switching network
stated inwords isusuallythe first stepin the
synthesis of thenetwork. For example, sup-
pose that the requirements for a particular
network were that the transmission is to be
1(i.e.,the circuit is to be closed)forthe fol-
lowing four conditions:

1. When C isenergizedbut A and B are
not energized,

2. When B and C areenergizedbut A is
not energized,

3, When A and B areenergizedbut C is
not energized.

4. When A, B, and C are all energized.
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Thc requirements for the nctwork as
stated would result in the truth table shown
in Table 4-5. From the truthtablc, the trans-
mission function could be written dircctly by
using the four rows in which the wvalue of T
appcars as 1, that is,

T=A'BC+A'"BC+ABC'+ABC

The next step inlogical design would be
to minimize the transmission function as
much aspossible. In asimple caselike this,
the postulates and theorcms prescnted in
Tablc 4-4 could be used to minimizc thc num-
bers of terms in the transmission function
directly, resulting in the expression

T=AB+A'C

The resulting network, of course, is that of
Fig. 4-26(B).

The preceding discussion pertains to
combinational circuits —i.e., circuits whose
outputs are determined at any timc by the
particular combination of inputs at that time.
Switching circuits can also be dcsigned so
that the outputs at any time arc dctermined
by thc past history of the inputs; such a cir-
cuit is termed sequential and has many uses
in digital computer design, In a combination-
al circuit, each input combination determincs

B C
11 ] I B
12 1
T=aABtA"C+BC
(A) Original Network

—iF

L

A C

T=AB+A'C
(B) Simplified Network

Figure 4-26. Simplification resulting from
application of theorems.

switching circuit, however, thc output condi-
tions are determined jointly by thc scquence
inwhich input signals occur as well as by their
combination. It is apparent,then, that onc of
the characteristics of the sequcntial switch-
ing circuit is the presence of memory cle-

a unique output condition. In a secquential ments.
TABLE 4-5. TRUTH TABLE FOR FIGURE 4-26.
A B C T
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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Two-terminal sequential switching cir-
cuits may be attacked by the use of time charts
and sequence diagrams as outlined in Ref. 79.
Thesetime charts and sequence diagrams are
a means for indicating graphically the action
taking place in a circuit and how these actions
are relatedto each other intime. By the use
of suchtechniques, the designer of relay cir-
cuits can synthesize acircuit by determining
the operate andreleasetimes of bothprimary
and secondary relays from inspection of the
time charts or sequence diagrams. The con-
ventional technique of combinational relay
circuitry canthen be used to develop the par-
ticular controlcircuit for the secondary re-
lays and eventually the output of the circuit.
Ref. 80 presents athoroughtreatment of se-
quential- circuit analysis and synthesis as
applied both to relay contact networks and
electronic switching systems.

Switching algebra can be used not only
for analysis of networks but also for synthe-
sis. The synthesis procedure is the more
difficult and more important part of logical
design. Thereis not spaceavailable here to
go into the various available minimization
methods with enough detailto be of any bene-
fit to the reader. Therefore, the reader is
referred to Refs. 79 through 90.

4-9 COMPUTER NUMBER SYSTEMS

4-9.1 BINARY SYSTEM

The binary system provides onereliable
method of representing numbers with elec-
tronic circuits that recognize only two volt-
age levels. There are many electronic de-
vices with two stable states that may repre-
sent 1and 0. Theperformance of arithmetic
in thebinary systemis simple, and this sys-
tem requires less equipment than does the
decimal,

Choosing a representation for a binary
digit in a computer involves relatively
straightforward choices, such as a signalor
no signal, a signal on one of two different
lines, or apositiveor anegative signalto re-
present a 0 or a l.

(A brief discussion of number systems
of various radices appears in par. 4-1.2,
Number Systems.)
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4-9.2 BINARY CODES

Many computers have been built to uti-
lize anumber system that constitutes a com-
promise betweenthe binaryand decimal clas-
sifications, Such asystem falls in the class
called binary- coded- decimal. It isbasically
decimal, but cach decimal digit isrepresent-
ed by, or encoded with, severalbinary digits.
There are many kinds of binary- coded- deci-
mal systems possible for representing a de-
cimal digit with a minimum of four binary
bits by using only 10 and ignoring the re-
maining 6 of the possible 16 different com-
binations. It should also be noted that, very
often, different codes arc used in the trans-
missionofdata thanarcused in the computer
itself, and often there_ are different codes
used inthe memory of the computer than are
used in the arithmetic unit.

4-9.2.1 Reflected Binary (Gray)Code

A Gray codeis frequentlyused in analog-
to-digital converters to minimize readout
ambiguity since only one digit changes at any
one time as the count progresses from zero
to full scale (see Chapter 7, Analog-digital
Conversion Techniques). In Gray codes, the
maximum ambiguity is plus or minus one
least significant bit, whereas in natural bin-
ary code it is possible for errors of many
digits to occur as the encoder hovers at the
boundarybetween two successivenaturalbin-
arynumbers. Table 4-6 illustrates four ex-
amples of binary Gray code systems.

4-9.2.2 Decimal Codes

Gray codes share the problem of diffi-
cultreading that areinherent in natural bin-
ary code, and hence some one of the more
than 29billion possible decimal codes is often
used in the input-output devices peripheral
to the computer itself. Almost all data per-
taining to problems the computer must solve
are best checked in decimal notation at the
time of design, atthe time of data and instruc-
tion entry, at the time of checking intermed-
iateresults, and at thetime of recordingfinal
solutions. Therefore, in those cases where
akeyboard machine isused as an input-output
device, where a quick-look digital display is
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TABLE 4-6. GRAY CODES.

Code 1 Code 2 Code 3 Code 4

0 00 000 0000 0000

1 01 001 0001 0010

2 11 011 0011 0110

3 10 010 0010 0111

4 110 0110 0011

5 111 0111 0001

6 101 0101 0101

7 100 0100 0100

8 1100 1100

9 1101 1110

10 1111 1111
11 1110 1101
12 1010 1001
13 1011 1011
14 1001 1010
15 1000 1000

desirable, or even where cards or tape are
used to feed stored data into the computer
memory, a form of decimal code may be
brought into play as a compromise between
machine-readable and human-readable lan-
guages.

Of the many possible 4-bit codes, rela-
tively few have the property that values or
weights can be assigned to the 4 bits with the
decimal digit being represented equal to the
sum of theweights; three of the more useful
4-bitweighted codes are shown in Table 4-7.

Of some 71 knownweighted 4-bit codes,
18 are self-complementing == such as the
2421 code in Table 4-7. The 8421 is one of

themoststraightforward 4-bit codesbecause
each decimal digit is represented in a con-
ventional binary system. A disadvantage of
the code is that it is not self-complementing.
A self-complementing decimal code is one in
which the 9's complement of each decimal
digit may be obtained by changing the 1's to
0's andthe 0'sto 1's in the coded -representa-
tion of the digit.

One nonweighted code that is often used
is the excess - 3 code — so-called because it
maybe generated by adding abinary 3 to each
digitrepresentation in the conventional 8, 4,
2, 1code, This code is shown in Table 4-8.
It is a self-complementing code and has the
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TABLE 4-7. LISTING OF THREE OF TIE 4-BIT
WEIGHTED BINARY-CODED-DECIMAL SYSTEMS.

Decimal 8421 2421= 5421
0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 0100 0100
5 0101 1011 1000
6 0110 1100 1001
7 0111 1101 1010
8 1000 1110 1011
9 1001 1111 1100

* A self-complementing code

TABLE 4-8. EXCESS -3 CODE

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

O 00~ N W - O

further advantagethat all decimal digits have
at leastone "1" in the representation so that
zero and the condition of no digit at all may
be distinguished. In many computers, a re-
dundancy bit is used for checking purposes
and when this is done the advantage of the ex-
cess - 3 code with regard to the representa-
tion for zero is largely nullified.

4-9.2.3 Error-detecting and Correcting

Codes

The brute-force method of assuring
greater computer accuracy is through dup-
lication of calculations and of transfers
throughout the machine. Rather than dupli-
cating transfer operations and equipment, it

4-48

is possible to attachextra bits to each block
of data being transferred in such a way that
these bits make it possible to detect and cor-
rect manyerrors. A common method is the
addition of a "parity " bit, whose value is made
lor 0 as requiredto makethe bittotal in the
character always odd or even, Errors can
be immediately detected by examining for.
parity as often as necessary. The choice of
odd or even for paritywill depend on the par-
ticular effectthe most probablekind of error
will have in a given machine.

The designer must thendecide what ac-
tion to take when an error is detected. Spec-
ial codes make it possible for the computer
to detect and correct certain errors automa-
tically.

In any code composed of binary bits, 1t
a single error in a bit combination can pro-
duce another bit combination that is also in
the code scheme then the error cannot, in
general, be detected. In order to detect the
presence of a single error in the bits of a
code, it is necessary that the code be such
that atleast two changes must be made in the
bits of the code when changing from the re-
presentation of one digit to the representa-
tion of any other digit. By addingevenmore
binary bits to the binary representation of a
decimal digit, a code can be made error-cor-
recting as well as error-detecting. Such a
code requires that at least three changes in
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the bit combination be made when changing
from therepresentation of one to the repre-
sentation of any other digit, In this case, a
single error will produce a bit combination
that can be recognized to contain an error.
Furthermore, the individual bit in error can
be determined. When twoerrors occur sim-
ultaneously, the resulting bit combination will
be recognized as not corresponding to any
digit, but the changing of onebit mayproduce
a bit combination that corresponds to one of
the digits that is not the desired'digit. Such
a code would detect two errors but correct
only one. Double-error correcting, triple-
errorcorrectingand more powerful schemes
maybe devised through the use of codes re-
quiringstill more changes in going from the
representation of one digit to another. For
the error-detecting, error-correcting, and
double-error-detectingcodes, aminimum of
5, 7 and 8 bits, respectively, is necessary,
It is obvious that more equipment is neces-
sary to implement error-detecting or cor-
responding codesinacomputer. The fact that
more equipment means a higher probability
of failure requires that a careful study be
made before deciding what particular code

should be used.
Detailed discussions of error-correct-

ing codes may be found in Ref. 79.

4-10 CLASSES OF COMPUTER LOGIC

The discussion of serial and parallel
logic that follows is based on information
given in Chapters 7 and 9 of Ref. 2 and Chap-
ter 15 of Kef. 76. For further information
on this subject, the reader should consult
these excellent sources.

The computer designer has a choice not
only of the code used to represent numbers
inhis computer, but also of whetherthe coded
numbers are tobe operated on in serial or
parallel form (see Fig. 4-27), or in some
combination thereof. If an arithnietic opera-
tion is performed serially, the necessary
equipmentmay be relatively simple, for the
logical equations are dependent on only a
few bits of each word at one time. The unit
of computation time is then one word-time,
or the the time it takes for a word to shift
serially through the arithmetic unit. If a
computation is performed in parallel, the

equipment necessary is more complicated,
for the most significant digits of a number
may be a function ofall of the less signifi-
cant ones. As a result, some memory-
element input equations will be very com-
plicated and may be functions of a great
many variables. In addition, there must be
an equation for each digit in the answer,
whereas in a serial unit one equation deter-
mines all the various digits of the answer,
one by one, over the word-time, The paral-
lelarithmetic unit, though itismore compli-
cated and therefore more expensive than its
serial counterpart, is alsofaster. A com-
plicatedoperation maybe carried out in one
bit-time or a few bit-times in @ parallel
machine, as compared with a word-time for
a serial unit. If a word contains forty bits,
this may mean an increase in speed by a
factor of ten to forty.

In a parallelcomputer, all the bits of a
word are operated upon and must be avail-
able simultaneously, in a serial computer,
they are operated on sequentially, one at a
time. A magnetic drum, on which bits and
words are scanned in sequence by a read-
write head, is inherently a good serialmem-
ory device. However, it may also be used
as a parallelmemorybyrecording all n bits
ofa word in n separate channels on the drum
and by reading them simultaneously. Note
that it may then be necessary to make every
other bit in each channel a space bit because
of the overlap that occurs in writing on the
drum. DBecause of this, and because the
speed inherent in parallel arithmetic opera-
tions may be lost as a result of the drum
access time, drum memories are usually
employed to store serial information.

Because a core memory is inherently
able to make anybit available in a few clock-
pulse times, at most, it is usually used in a
parallel computer where quick access to in-
formation is important. It is, however, also
possible toemploy a magnetic- core memory
to read out and write in words one bit at a
time so that they may be handled serially
by the computer. In such a memory, it is
verydesirablethat the computer clock-pulse
interval and the interval between bits in a
word read from or written into the memory
be the same. If they are not the same, for
example, if a bit comes from the memory
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Figure 4-27. Serial vs parallel computer.

every two clock-pulse times, the arithmetic
logic must be arranged accordingly. Even
if they are the same, there may be a delay
of several bit-times between the time an
address is presented tothe memory and the
time the least significant bit of the selected
word is available. Thelogical designer must
allow for this delay.

A magnetic tape generally contains sev-
cral channels, recorded side by side, cach
with ite own read-write head. One or two of
these channels arereserved for clock pulses
and word markers. The remaining channels
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are used for data. If there is but one more,
data can only be recorded serially. If there
are twenty or more, data may be recorded
in parallel. If there arc fewer than twenty,
some scries-parallel arrangement of data
is indicated. For example, with ten data
channels it will take two tape clock-pulse
times to read a complete twenty-bit binary
word; with four data channels in a decimal
digit, a word ten digits long would require
ten tape clock-pulse times.

The discussion of static and dynamic
logic that appears in the six paragraphs
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which follow is extracted from Chapter 13
of Ref. 3. For further information on this
subject matter, the reader should consult
this excellent source.

Information can be stored in two ways:

1. Using dynamic storage, an electrical
waveform, bearing information by virtue of
its shape, may be preserved intoto by en-
tering it into a delay of some sort. This de-
lay emits the original waveform some time
later without any significant change other
than attenuation and tolerable distortion.
Delay-line serial memories areone type of
dynamic storage.

2. Using static storage, digital informa-
tion in the form of one of a multiplicity of
choices of states may be stored in a multi-
stable device by setting such a device to one
of its alternate states. Thus, a four-position
switch may store one-out-of-four or qua-
ternary information by the way in which it
is set.

It should be noted that the intent of dy-
namic storage isto maintainthe information
initsoriginal form. The information-bearing
wave phenomenon is made to persist by in-
terposing a transmission path that hinders
its transit. It is the nature of such a device
to cause degradation of the wave form so
tliat it must be repeatedly amplified and re-
shaped to resemble its original form.

Static storage is a mapping of the infor-
mation into a number of devices tliat have
as many possible states as thereare possi-
bilities for each '"piece'" of information.
Ilence, for binary information, bistable de-
vices are appropriate.

Some elements have a tendency over a
period of time to lose the information stored
in them. This property is called volatility.
The Williams tube, an electrostatic storage
device, leaks the charge indicating a 1 from
one spot (storage element)to another in a
matter of fractions of a second. Frequent
regeneration cycles are required to main-
tain the information without loss. Histori-
cally, this was the first high-speed storage
device to find use in automatic computers.
Because of its volatility, however, itis no
longer popular as a memory device since
nonvolatile devices are now available.

Deviceswhose elements are not subject
to deterioration in the discrimination be-
tween two states over long periodsof time—

days, months,or years — are called nonvola-
tile storage elements.

If scanning the elements to retrieve the
information causes the inforrnation to be
removed from the elements, they are said
to have destructive read-out. Core memo-
ries, for instance, requirethat each core be
set to 0 to be read out. Destruc-ive read-out
elements can be used to construct a non-
destructive-remembering memory: in that
case, the remember cycle includes a read
phase and rewrite phase.

4-11 PREDOMINANT LOGICAL
COMBINATIONS

4-11.1 GATES

The logical block symbols for the basic
AND-OR gates used in computer logic are
shown in Fig. 4-28. An AND gate provides
a 1-state or 111GII output only when all inputs
are HIGII; an OR gate provides £ EIIGH output
when one or more of the inputs are HIGIL
With AND-OR gates, voltage levels for HIGHSs
(1 state) and LOWs (0 state)w 11 vary with
the type of circuitry used, typically from +3
to +12 vdc for HIGHs and ground to - 6 vdc
for LOWs. Assemblies of these primary
boxes or blocks canbemade so as to manip-
ulate voltages to perform arithmetic or the
editing functions of the computer program.

The recommended IRE symbols for
AND-OR logic gates are shown on line (a) of
Fig. 4-28; the various alternative symbols
shown in lines (b)through (e)are still com-
moninsomesystems. Thelogical truth table
for the AND-OR logic is given in Table 4-9.

By inserting an inverter inside a logic
element such as an ANDgate or an OR gate,
is is possible to obtain NOT AND and NOT
OR functions, which are referred to respec-
tively as NAND gates and NOR gates. The
logical block symbols for these basic ele-
ments are shown in Fig. 4-29. The corre-
spondinglogical truth table is given in Table
4-10. For the NAND gate, the output F is
LOW only when both inputs A and B are
HIGH. For the NOR gate, the output F is
IIIGH when A or B or both are LOW. A
"bubble" on an input or an ou:put line indi-
cates a LOW condition; the absence of a
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Figurc 4-2
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NOT GATE
(INVERTER)
_ AND NOT GATE
A A (INHIBITER)
A+B A AB
or 8 (a) IRE
A A

:D— (b)

AND (d)

NOT NOT —

8. Logical symbols for inverters, inhibiters, and
two-input AND-OR gates.

F- AB
B e—

F =OUTPUT OF THE NAND GATE AND |S LOW (INDICATED BY THE
BAR) FOR THE NAND CONDITION

(A)  NAND Gate

A

F-(A+B)+AB
B

F:= OUTPUT OF THE NOR GATE AND IS HIGH (INDICATED BY THE
ABSENCE OF A BAR) FOR THE NOR CONDITION

(E) NOR Gate

Figure 4-29. Logical symbols for two-input NAND-NOR gates.
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TABLE 4-9. LOGICAL TRUTH TABLES.
Input A Input B Output for
And Or And Not
0 0 0 0 0
0 1 0 1 0
1 0 0 1 1
1 1 1 1 0

TABLE 4-10. TRUTH TABLE FOR
NAND-NOR LOGIC.

A B F
0 0 1
0 1 1
1 0 1
1 1 0

"bubble" indicates a IIIGH condition. Nor-
mally., for diode~transistor micrologic. a
HIGH has a voltage ,level of +5 vdc and a
LOW is at ground level.

A complete description of Boolean al-
gebra and logic symbols, together with their
use and application, is giveninreferences 2
and 79.

4-11.2 FLIP-FLOPS

The flip-flop,or bistable multivibrator,
is a basic singlc-bit storage element, and is
characterizcd by two stable states, one of
which can represcnt a 1 and the other a 0.
Flip-flops are normally provided with two
inputs as shown in Fig. 4-30. An impressed
pulse orlevelon oncof theseinputs will pro-
duce the 1 state, while a similar pulse or
level impresscd on the others will produce
the 0 state. These inputs areoften desig-
nated "Set" and "Reset". A third "Comple-
ment" input may be provided. A pulse im-

pressed on the complemcnt input transfers
theflip-flopto the state opposite to its orig-
inal state. Two outputs arc provided from
the flip-flop, denoted "1" and "0". These
outputs can usually controlanurnber of other
circuits. (The number of circuits controlled
is known as the "fan-out" ratio.) A level
change appearing at the 1" output denotes
that the flip-flop is set, while a level change
appearing at the zero output indicatesthat it
has been reset.

Complementing flip-flops may be inter-
connected with AND gatcs to form a binary
counter. A typical examplc is shown in Fig.
4-31. With flip-flops, gatcs and delaylines,
a number of shift registcrs and other types
of digital circuits can bc constructed.

4-11.3 ADDERS AND SUBTRACTORS

The basic principlcs of binary addition
arc illustrated inInformation Summary 4-7.
Implementation can be accomplished in a
number of ways, depending on the type and
amount of logic used. Typical schemes are
described in the paragraphs which follow.

4-11.3.1 Half-adder

The half-adder adds two binary digits
andproduces a sum and a carry output. The
name "half-adder" derives from the fact that
it does notprovide for a carry from the pre-
vious set of digits added, i.e., it does only
half the jobneeded forbinary addition. Three
forms of half-adder logic are shown in Fig.
4-32 and the form of binary addition is given
in Table 4-11.

4-11.3.2 TFull-adder

A full-adder reccivcs as its input the
augend bit, the addend bit, and the carry bit
produced by the addition of the preceding
bits. A combination of two half-adders and
a mixer (or)asshown in Fig. 4-33 produces
"full addition".

4-11.3.3 Accumulator
An accumulator is a dcvice for adding
multiple-digit numbers. (See Information

Summary4-7 for the govcrning rules and an
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OUTPUT OUTPUT
1 0
0
VAVAVA
INPUT INPUT
1 o—4 2
(5ET) (RESET)
INPUT
COMPLEMENT
Figure 4-30. The basic flip-flop.
[r— e
0-1 1{}-0 0-1 T 0-0 0-1 ? 0-0
FF - 1| FF - 2 FF - 3
A c | Y  C
o i * S -
INPUT
Figure 4-31. A typical binary counter.

example of their application.) The mechan-
ics of the accumulator depend on the coding
used in the computer and whether serial
(digit-at-a-time) or parallel (all-at-once)
operation is used. A complete accumulator
consists of a register for the augend, a reg-
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ister for the addend, an adderto produce the
sum, a register to hold the sum (frequently
the initial register used for the augend), and
control logicto guidethe operation. A serial-
character natural binary accumulator is
shown in Figure 4-34.
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TABLE 4-11. BINARY ADDITION.

‘j])jl_
Augend X) 0O 1 1
s

XY+ XY 0
_ Addend (Y) 0 1 0 1
"—OD XY - - - -
Sum (S) 0 1110

X Y S C Note that the

Xy sum is 1when
0O 0 o0 o cither X or Y
is 1, but not
0 1 1 0 both.There is
acarry Conly
1 0 1 0 when both X
and Y are 1.
1 1 0 1
Xy
XY (X+Y) (X 1Y)
, Xy
j}» 4 S c
Figure 4-32. Forms of half-adder logic.
X 5
X=X H]Sl X2 $2 f———on-—5
Y i c v2H? s Y F
C L [
]
(A)  Full Adder Using Two Half-adders (b)  Full-adder
Block Symbol
X il e X2 52 s
C'—‘YIH‘ Ci Y Y2 c2
C

(C)  Anothe: Full-adder Using
Two Half-adders

Figure 4-33. Full-adder using two half-adders.
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INFORMATION SUMMARY 4-7.

AN EXAMPLE OF THEIR APPLICATION

The rules:
0+to=0
1+0 =1
0+1 =1
1+1 = Two
=0 +carry
=10
1+ 1+ 1 = Three
= 1 + carry
=11
Example:
\ The addition of carry 1
decimal numbers = \ 491 \
'491 and 118 Ll_S

] 609

The binary equivalents of the decimal numbers involved are as follows:

491 = 111101011
118 = 1110110
Therefore,
\ The corresponding ( carries 1111111
' binary addition = \ 111101011
\ ~ 1110110 \
? 1001100001 answer

which equals:

29 or 512
+926  or 64
+25 or 32
+20 or 1

609 as before.

TIIE RULES OF BINARY-ARITHMETIC ADDITION AND
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ADDEND REG.

L— SHIFT

Figure 4-34. Serial binary accumulator.

4-11.3.4 Serial and Parallel Adders

In serial operation, the binary digits of
the two numbers tobe added together are ap-
plied serially in time to the two input lines
of the adder, and itis usually necessary that
the two input numbers be applied "in phase',
i.e., with corresponding digits of the two
numbers appearing onthe two input lines si-
multaneously. Serial operation is almost
always conducted with the digits appearing
in ascending order of significanceto main-
tain the most simple and straightforward
mechanism. The speed of additionin a serial
computer is usually set by factors that have
little relationship to the adder: rather, it is
the clock rate in turn a function of the type
of storage— that establishesthe speed of se-
rial addition.

In parallel operation, the "in phase"
requirement of presenting the digits to be
added is met almost automatically. The in-
crease in speed through parallel operation
is not necessarily n times serial operation,
if n orders are involved, nor willa practical
parallel machine require n times the equip-
ment. Parallel operation does not necessar-
ily imply that addition of all orders of two
numbers is accomplished simultaneously.
Memories for both systems would be closely
comparable in size, and the total increase
in speed by paralleloperation would be lim-
ited by the dead time required to send num-
bers to and from memory and by other
housekeeping functions.

4-11.3.5 Simultaneous Carry Techniques

In the methods that have been mentioned
for handling the carries, either with adders
or with accumulators, the carry was '"prop-
agated" from one order to the next. It is
worthwhile in some applications to employ
simultaneous carry with the orders in groups
of three or four to increase carry propaga-
tion speed. The amount of equipment re-
quired for simultaneous carry in all orders
might be impractical. Standard discussions
of carry techniques appear in Ref. 4,

4-11.3.6 Subtractors

A subtractor may be designed in a man-
ner quite similar to that used for an adder,
except that the concept of "borrow' replaces
the "carry" concept. Logically, however,
the occurrence of distressing cases where
the subtrahend is larger than the minuend --
together with the fact that the rules for binary
subtraction are significantly more compli-
cated than those for addition--1eads to hav-
ing the computer perform subtraction by ad-
dition, either directly or by using comple-
ments. An adder-subtractor performs the
double function of creating a sumor differ-
ence and, in a separate channel, develops
the carry or borrow. Subtraction accumu-
lators count in reverse of addition accumu-
lators.

In some, perhaps most, computersithas
been found more conwvenient to perform sub-
traction through addition of the complement
representation of numbers instead of through
the use of a subtractor.

4-11.4 MULTIPLIERS AND DIVIDERS %%

Multiplication is in some ways the most
important operation to be mechanized, be-
cause of its complexity and because it must
often be carried out with such speed that it
greatly influences the design of the entire
arithmetic unit. The multiply-ing operation
(see Information Summary 4-8) usually in-
volves facilities for the simultaneous stor-
age, addition, and shifting of several num-
bers, and these facilities are also employed
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INFORMATION SUMMARY 4-3. THE RULES OF BINARY-ARITHMETIC MULTIPLICATION
AND AN EXAMPLE OF THEIR APPLICATION

The rules:
0X 0=0
ox1=o0
1x0=20
11X 1=1
Example:

\ The multiplication
ot decimalnumbers

124 and 3

Therefore,

\ the corresponding(

? binary. \

multiplication
which equals:

\\
)

P SR B
'X S*'+§4s

The binary equivalents of the decimal numbers involved are as follows:

24 = 11000
3 = 11

11000
11

11000
+11000

= 1001000 answer

72 as before.

in the mechanization of the other arithmetic
operations. The simplest serial, binary mul-
tiplier might consist of three storage reg-
isters: two of normal length for the multi-
plier and the multiplicand, and the third of
double length to store the finalproduct. One
of the principal problems indesigning a mul-
tiplier is that of controlling and sequencing
the various additions, multiplications, and
shifts necessary to obtain the product.
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The desired speed for multiplication
should be based on the speed of addition or
subtraction and upon the expected frequency
with which multiplication is to be encoun-
tered. As pointed out by Phister?, if it is
expected in the average problem that there
will be ten additions and subtractions for
every multiplication, a reduction in multi-
plication time from ten add times to one
add time may increase the complexity of
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the multiplication logic by a factor of ten,
but cannot even reduce total computing time
by a factor of two.

Division may be mechanized in at least
three distinct ways: by the common and
familiar trial-and error method, by using a
nonrestoring algorithm, or by making use of
an iterative procedure.

Although multiplication and division are
somewhatcomplicated tocarry out even with
penciland paper, multiplication and division
by ten in the decimal number system are
very easy; it is simply a matter of moving
the decimal point. Similarly, in the binary
number system, a movement of the binary
point to the right or to the left corresponds
fo a multiplication or division by some power
of two. In a parallel computer the mecha-
nism for this is, of course, very simple. In
a serial computer., the shifting of a number
in a register is somewhatmore complicated.
Shift registers arcdiscussedin considerable
detail by Phister?, Flores® and Richards®.
4-11.5 MATRIX MEMORIES

A major problem in the design of mem-
ory devices is the means of selection or
access to a particular storage eclement in
order to '"read" the state of the element or
to "write” into the element. This selection
canbe achieved entirely by means of matrix
switches using logical clements such as
diodes, or part of the selection can be built
into the memorv. As the capacity of the
memory increases, the complexity of the
selection equipment increases, a primary
cause of the development of a variety of
memory systems. Bistable magnetic cores
are capable of performing most of the log-
ical operations of digital computers (aswell
as most of the storage). Core circuits have
the advaniages of reliability, long life, com-
pactness, and light weight: some of the newer
cores are inexpensive and require rela-
tively low power consumption.

4-11.6 COUNTERS

Counters are most often used in com-
puters as indices or timers. In addition to
the basic clock pulses that establish syn-
chronism between parts of the computer, it
is necessary to have other timing signals

for use in organizing. sequencing, or iden-
tifyingdata or operations. Thesetiming sig-
nals may be obtainedas output:; of a counter
that changes state everyclock pulse or every
time some ecvent takes place that is to be
identified by the timing circuits.

Modern high-speed computers mainly
usec binary counters, consisting of a set of
bistable storage elements ecach of which
transfers back and forth between its two
stable states upon the reception of pulses.
With the decimal number system, clements
having ten stable states are used. and each
timea given element changes froni the state
representing 9 to the state representing O,
a pulse is sent to the next element.

Counters in both binary and decimal
systems have been adapted to counting only
forward, only backward, either forward or
backward, or to count up or down from a
preset value.

4-11.7 ARITEIMETIC LJINITS

For combinations of logical elements
into complete arithmetic units, the reader
is directed to Refs. 2, 3. 4, 13, and 34, plus
pertinent literature more recently listed in
professional society and trade bibliograph-
ies.

4-12 CIRCUIT COMPONENTS

4-12.1 VACUUM TUBES

In the period trom 1919, when Eccles
and Jordan invented the basic circuit used
as a flip-flop or trigger or multivibrator,
up through about 1945, when Eckert and
Mauchley built ENIAC (the first electronic
digital computer; ref.the Introduction to this
handbook) under the sponsorship of the Bal-
listic Kesearch Laboratories of the Ordnance
Corps. U.S. Army. vacuum-tube digital cir-
cuits were increasingly being perfected.
ENIAC used 19,000 tubes and consumed
nearly 200 kilowatts of power. The solid-
state circuits now almost universally used
are closely analogous to the tube circuits
of older computers. The generally greater
reliability, longer lite, smaller size, and
lower power requirements of solid-state
circuitry have virtually eliminated vacuum-
tube use in computers.
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4-12.2 SEMICONDUCTORS

The field of transistor and diode logic-
circuit design evolved with marked techno-
logical and economic changes. Refs. 13 and
14 constitute a good foundation in the field,
and Refs. 46 through 59 deal with transistor
computer circuitry. The availability, per-
formance, and cost of actual semiconductor
devices the designer might consider for the
solution of a particular problem are factors
that can require very close liaison between
engineering and procurement groups.

Ref. 60 describes a basic circuit using
one transistor, one capacitor, and three re-
sistors from which a complete digital com-
puting system may be economically con-
structed.

More recently, integrated circuits have
been used in computer design and provide
advantages not achievable with conventional

transistors and diodes, and relatively bulky
passive elements such as resistors and ca-
pacitors. Extremelylow power consumption,
low supply voltage, reduced size, and re-
duced cost make integrated circuits ex-
tremely feasible for certain applications
(see Refs. 91 through 96).

The manner in which basic logical ele-
ments are combined to form circuits, such
as identity comparators, is described in
Information Summary 4-9. Logical design
using basic AND-OR circuits is given first,
followed by logical design utilizing NAND-
NOR integrated circuits. Truth tables and
Karnaugh maps are provided to illustrate
the method of optimizingcircuitdesign. For
convenience, a4 Fairchild 930diode-transistor
micrologic (DTul,) gate and inverter was
selected as the basic logic element for the
comparator design. Other types of micro-
logic, however, could havebeen used as well.

INFORMATION SUMMARY 4-9. THE LOGICAL DESIGN OF
IDENTITY COMPARATORS

Identity comparators are used to com-
pare the contents of two or more stages or
registers and to provide an output onlywhen
all of the corresponding inputs are equal.
For example, in the case of the two-stage
comparator shown in Fig. IS 4-9.1 an output
F will be obtained only when the contents of
the A Register are equal to the contents of
the B Register. No output F will be obtained
if any one of the stagesA; is not equal to its
corresponding stage B;j. These conditions
areillustrated bythe truthtable and Karnaugh
map in Fig. IS 4-9.1 for each stage, where
a 1 1is alogical HIGH and a 0 is a logical
LOW. For an n-stage identity comparator,
the Boolean equation can thus be written as

+AB) (AB,+ AB) . .(AB,

(IS 4-9.1)

which states that the output F will be HIGH
only when Ay and By arc both HIGH or both
LOW, and concurrently Ay and By are both
HIGH or both LOW, and so forth.

DESIGNING WITH AND-OR LOGIC

With the use of inverters and passive
AND and OR gates, Eq. IS 4-9.1 could be
implemented as shown in Fig. IS 4-92. Sym-
bolically, a dot represents an AND gate, a
plus sign represents anOR gate, and an open
arrowhead represents an inverter for ob-
taining the complementof the input variable.
Other symbols could be used to represent
these gates and inverters, depending on the
particular drafting standards employed.

DESIGNING WITH NAND-NOR LOGIC

When designing with diode-transistor
micrologic, such as Fairchild flatpack inte-
grated circuits, the inverting action of the
circuit itself must be taken into considera-
tion. This, in effect, influences the manner
in which the Boolean equation is implemen-
ted. To illustrate this point, consider a typi-
cal DTpL 930 gate, similar to the one shown
in Fig. IS 4-9.3. This gate can be repre-
sented schematically as a 4-input diode net-
work and a pair of NPN transistors con-
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INFORMATION SUMMARY 4-9.

IDENTITY COMPARATORS (Cont)

THE LOGICAL DESIGN OF

SIMPLIFIED DIAGRAM

Figure IS 4-9.2. An n-stage identity comparator based on the use of AND-OR logic.

A
A A2 A3 4| OO0 |4,
L T 1
IDENTITY COMPARATOR
e, | By B3 B4, ooe | B8y
TRUTH KARNAUGH
TABLE MAP
B A
A, F \
1 1 1
B, 0 1
0| O 1 :
N O
1 0 0
|
1 1 1
Figure IS 4-9.1. Simplified diagram, truth table, and Karnaugh map
for an n-stage identity comparator.
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INFORMATION SUMMARY 4-9.

THE LOGICAL DESIGN OF

IDENTITY COMPARATORS (Cont)

DTul 933

i e
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|
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Figure IS 4-9.3.

R4
6K

DTl
930

Schematic representation of a single DTpL 930 gate

with a DTuL 933 extender.

nected in cascade. Two such gates are con-
tained in a single chip. The input network
is expandable to 8 diodes by the addition of
a diode cluster, such as a DTuL 933 (see
Fig. IS 4-9.3).

The circuit operation tor the gate itself
is as follows. When inputs A, B, C. and )
are all IIGH (45 vdc), diodes CR1 through
CR4 are back-biased so that aIliIGITappears
on the base and collector of Q1. Transistor
Q1 will then conduct to ground from +Vcc
through R2, Q1, CRS5, and R3. The voltage
drop across R3 will cause Q2 to conduct and
saturate, so that the output I'is LOW (ground
potential). If any input A, B, C, or 1D goes
LOW, its associated diode will be forward-
biased, thereby placing the base ot Q1 at
ground. This condition causes Q1 to cut off,
thereby cutting oft Q2, so that the output F
goes IIIGH (+V_..). In effect, the output is

LOW when all inputs are HIGH, and the out-
put is [IIGH when one or more inputs are
LOW.

The input loading (fan-in)for this par-
ticular gate is one unit load for each input.
The output loading (fan-out) is eight unit
loads. One unit load is defined as approxi-
mately 1.3 milliamperes. For large varia-
tions in temperature (-55°C to +125°C), the
fan-out should be reduced to approximately
six unit loads. At 25°C, the noise immunity
of the gate is approximately +1 vdc. As the
temperature increases. the noise immunity
decreases.

The physical structure ot the Fairchild
930 monolithic chip is shown in Fig. IS 4-9.4.
Internal diodes. resistors, and transistors
are all constructed of semiconductor mate-
rial, interconnected and tied through "traces"”
to spring terminals. These terminals are
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INFORMATION SUMMARY 4-9, THE LOGICAL DESIGN OF
IDENTITY COMPARATORS (Cont)
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(B) Logic Diagram cf the Dual Gate (narmally shown

as a NAND gate)

Figure IS 4-9.4,

Physical structure and actual pin connections

of the DTpL 930 monolithic chip.

usually tinned anti then impulse-soldered to
printed- circuit boards. Removal of a chip
is accomplished with the aid of a razor-type
penknife. As a rule, pin 7 is connected to
ground and pin 14 is connccted to a +5 vdc
source (Vo). If an input line is unconnected,
it will act the same way as if a +5 vdc level
were present (logical HIGIT).

In terms of logic, the DTpL 930 can be
used either as a positive NAND gate or a neg-
ative NOR gate, depending solely on the way
in which the input and output levels are in-
terpreted. When the DTpL is used as a NAND
gate, the circuit provides a LOW output only
when all the inputs are HIGH. Otherwise,
the output is IIIGH. These conditions can be
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INFORMATION SUMMARY 4-9. THE LOGICAL DESIGN OF
IDENTITY COMPARATORS (Cont)

expressed by the Boolean equations

F = ABCD
(IS 4-9.2
and
F =(A+B+C +D) +ABCD
=A+B+C+D
(IS 4-9.3)
=ABCD

Thelogic symbol for a 4-input NAND gate is
in Fig. 1S 4-9.5 (A). A" bubble" on the output
line indicates a logical LOW; the absence of
a "bubble"on an input line indicates a logical
HIGH.

When the DT pL. is used as a NOR gate,
the circuit provides a HIGH output whenever
onc or more inputs are LOW.  If all inputs
are HIGH, then and only then will the output
be LOW. These conditions can be repre-
sented by the same Boolean Eqgs.IS 4-9.3 and

A.____J

B_____J
—

NODE

F-ABCD

(A) NAND Gate

©

Figure IS 4-9.5.

Inverters

Logic symbols for the DTpL 930 gate.

IS 4-9.2 above, respectively. The logic sym -
bol for a 4-input NOR gate is shown in
Fig. IS 4~9.5(B). In this case, the "bubble"
on the input line indicates a logical LOW,
and absence of a "bubble"” on the output line
indicates a logical HIGH.

The use of a DTpL 930 gate as an in-
verterisillustrated in Fig. IS 4-9.5(C). The
output is LOW when the input is HIGH, and
vice versa. One input line is normally uti-
lized for this function.

Identity comparators with diode-trans-
istor micrologic can now be designed, as
shown in Figs. IS 4-9.6and IS 4-9.7, by using
the basic Boolean Eq. IS 4-9.1. For conve-
nience, only 2-bit and ti-bit identity compa-
rators are illustrated, but the design can be
applied to anynumber of bits orstages, pro-
videdloading requirements arenot exceeded.
Implementation that is achieved primarily
with a single type of gate, such as the Fair-
child 930, simplifies design and maintenance
objectives, and usually affords spare input
lines. The ultimate selection of the actual
chips,however, generally depends on the de-
signer and other factors.

N = >
hns]

NODE

B) NOR Gate

|
>
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INFORMATION SUMMARY 4-9. THE LOGICAL DESIGN OF
IDENTITY COMPARATORS (Cont)

oz

12 71

Note:

This identity comparator provides a logical HIGH output
when the two input bits are both HIGH or both LOW. For
example, when A and B are both HIGH, 22-6will be LOW
and 23-6will be HIGH. When A and B are both LOW,
22-8 will be LOW and 23-6 will again be HIGH.

INPUTS OuTPUT
A B F
0 0 1
0 1 0
1 0 0
1 1 1
(B) Truth Table

Figure IS 4-9.6.

(A} Logic Diagram

0
@
0

®

' F=pAB+AB

(C) Karnaugh Map

A two-bit identity comparator (A=B).
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INFORMATION SUMMARY 4-9. THE LOGICAL DESIGN OF
IDENTITY COMPARATORS (Cont)

A
B
172 71
1 6
9 D 8
12 71
A -
2 4
B, |
112 24
| | D 6
9 |D 8
172 24
A3 -
T
B, —#
112 26
| 6
9 8
12 76
INPUTS | OUTPUT
A. B. F,
] 1
0o 0 )
o 1 0
10 0
1 |

(8) Truth Table (for each stage)

Figure IS 4-9.7.

Mote:

This identity comparator provides a logical HIGH output
when the input bits are all HIGH or all LOW. For ex-
ample, when Aj and B{ are both HIGH, 22-6 will be
LOW. With a LOW input on Z3~1, Z3-6 will be HIGH.
To obtain a HIGH output at Z9-6, all the inputs to 28-9,
-10, and -12 must be HIGH. |If any input to 28-9, -10,
and ~12 is LOW, then Z9-6 will be LOW — stating that
an A bit is not equal to a B bit.

(A) Logic Diogram

F-(A| B+ K, B)) (Ag Byt A, Bo) (Ag By FAg B,
(C) Karnaugh Map

A six-bit identity comparator (A=B).
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4-12.3 MAGNETIC DEVICES

Refs. 62, 63, and 102 cover some of the
first work done in the use of magnetic-core
elements for logical switching. Ref.64 is an
excellent bibliography of literature pertain-
ing to magnetic circuits and materials,
covering magnetic cores and films, ferrites,
magnetic metals, multi- aperture magnetic
devices, twistors, the ferristor and the para-
metron. A survey of magnetic devices is
given in Ref. 17. In addition to the simple
toroidal magnetic core, there are magnetic
deviceshaving amore complicated geometry.
Atwo-aperture device, or transfluxor is de-
scribed in Kef. 70, three-aperture corelogic
is described in Kef. 72, and an 8-rung "lad-
die" is described in Ref. 71.

4-12.4 NEW DEVELOPMENTS

An interesting type of large-capacity
storage can be constructed using ferroelec-
tric materials such as barium titanate. These
materials can be polarized by a sufficiently
large potential difference and, since the di-
rection of polarization can be reversed by
reversingthe direction of the voltage, binary

information can be stored. The direction of
polarization can be sensed by applying a
voltage pulse of specified polarity because
a relatively large current is required to
change the polarization while little current
isrequired if the polarization is not changed.

The memory cells are constructed by
evaporating rectangular electrodes on a plate
that is a single crystal of fercoelectric ma-
terial. A sixteen-cell unit is shown in Fig.
4-35. Tor writing, a cell is selected by the
coincidence of two voltages E, each ot which
is half of thatnecessaryto changethe polar-
ization of the dielectric. When reading, the
full switching voltage 2E is applied to one
electrode and the otlier is grounded through
a load resistor. If the read signal causes a
reversal of the polarization, a voltage pulse
will appear across the load resistor indica-
tingthe initial state of the cell. An alternate

reading system uses the output wires as the
primaries of atransformer as shown in I'ig.
4-35(T).

Ferroelectric memories are easy to
manufacture sincethe clectrodes are evapo-
rated directly onto the dielectric and are
quite small. The electrodes can be 10 mils
wide and 10 mils apart. The ferroelectric

P P
o © INPUT
g iNpUT  VWRITE
de L READ
m o _L_I_l_\_
E E Re OUT- =1
PUT = M
| ] > OUTPUT ——
TINE
(A) (B) {a
SHEET OF

FERROELECTRIC MATERIAL

Figure 4-35.

T+ k
01
T 0“ TR ) e ¢
/77 !
Ll L]
§= ]
0 0 0-E

Ferroelectric storage.
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can be 10 mils or less thick. This corre-
sponds to a bit density of nearly 250,000 bits
per cubic inch.

At present, ferroelectrics have several
disadvantages. Therectangularity of the hys-
teresis loop is poor and the size and shape
of the loop depends on the frequency of the
applied voltage. Also, the ferroelectricprop-
erties of the material can be damaged by
repeated reversals of the polarization and
these properties are sensitive to tempera-
ture. Because of these difficulties, ferro-
electrics have not been used in any com-
puters; however, they are still the subject
of intensive development effort.

The tunnel diode 75.1is a solid-state de-
vice, with a negative-resistance region in
its characteristic curve, that can be used in
microwave digital circuits for amplification
and gating. By utilizing this device, repeti-
tion rates (i.e., 1 /unit time interval)of 1,000
t0 3,000 megacycles, or more, may be real-
izable. Thus its potential advantage is very
great speed in a comparativelyreliable solid-
state device. At present, there are disad-
vantages — associated with problems of re-
producibility and uniformity of characteris-
tics as well as with the many circuit-design
problems introduced by the high speed— that
must be overcome.

The tunnel diode consists of a junction
between extremely heavily doped (doped to
"degeneracy")n-type and p-type semicon-
ductors. It depends for its operation on the
quantum-mechanical phenomenon known as
tunneling, from which the diode derives its
name. Tunneling is an effect in which an
electroncan "tunnel" through a potential bar-
rier, even though it does not have sufficient
energy to "surmount" the barrier, provided
the barrier is "thin" enough.

4-13 STORAGE
4-13.1 SEQUENTIAL-ACCESS STORAGE

The addresses of a sequentialstore are
scanned continuously, with a particular ad-
dress becoming available once each cycle.
Thistype of storage generally provides large
amounts of inexpensive memory, but has a
relatively long access time.

4-68

4-13.1.1 Magnetic Sequential Storage

The most important types of sequential
access storage involve magnetic recording
on drums, discs, and tape. In order to keep
the reading (or writing)in synchronism with
other elements of the computer, the drums,
discs, or tapes usually have one channel re-
served for clocking or timing pulses. In
some cases—e.g., where a drum constitutes
the main memory of a computer— thetiming
pulse channel is the basic clock pulse gen-
erator for the computer.
4-13.1.1.1 Magnetic Drums

A magnetic drum is a metal cylinder
thatrevolves aboutits axis and has informa-
tion recorded on its surface, as shown in
Fig. 4-36. Information is written onto or
read off of the drum through heads mounted
close to the surface of the drum.

Extremes indrumcapacityarea small-
size 2 X 2 inch drum storing 20,000 binary
digits, contrasted with a4-foot drum storing
20,000,000 bits. A capacity of 100,000 bits
is common, and may be obtainedin a drum
6 X 6 inches, with a storage density of 50
bits per inch around the circumferance and
20 bits per inch along the axis.

4-13.1.1.2 Magnetic Discs

Storage on magnetic discs produces a
cross-breed between sequential storage (on
cach disc)with the random feature of select-
ing one disc from a continuously revolving
stack in a manner of a juke box. Conven-
tional disc storage ranges from4,000 words
of 40 bits to units storing severalmegabits.
4-13.1.1.3 Magnetic Tape

A magnetic tape is a flexible plastic or
metal strip from 0.001 to 0.010 inch thick,
from 0.25 to 4 inches wide, and may be up
to 2500 feet in length for atypical installa-
tion. Fig. 4-37 illustrates the method of feed,
read-write, drive, and take-up for handling
magnetic tape.

Tape storage has been used inthe form
of endlessloops, providingmany of the char-

acteristics of a magnetic drum, as shown in
Fig. 4-38.
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/ / / / SECTOR 1
A— SECTOR 2

SECTOR 3

CHANNEL  CHANNEL CHANNEL  CHANNEL

) 2 (10) 1(01) 0 (00)
SPACE
ar V7| 1 1011 0111 0011 | —SECTOR 3.11)
SPACE 1|/ 1110 1010 0110 0010 | —SECTOR 2 (i0)
SPACE }/ 1101 1001 0101 0001  |[— SECTOR 1 (o)
SPACE VI e 1000 0100 0000 | = SECTOR 0 (00)

Figure 4-36. Arrangement of a hypothetical, sixteen-word serial memory
on the surface of a drum.

READ-WRITE HEADS

DRIVING - " DRIVING

READ-WRITE  ROLLERS
/.\ -k ROLLERS
n B AN
Q e

*
iyl // /

SO AS TO MAINTAIN

TAPE

LOOPS OF TAPE HERE TAPE BOX
Figure 4-37. Typical reel system for Figure 4-38. Method of providing an
magnetic tape. endless tape.
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4-13.1.2 Delay-line Storage

Considerable use has been made in the
past ot acoustic (ultrasonic)delay lines to
provide reliable storage of information re-
peated-over and over, as shown in Fig. 4-39.

In the acoustic delay line, coded infor-
mationis introduced serially into a medium,
which may be mercury, by loud-speaker ac-
tion. A second transducer picks up the pul-
ses delayed by the transmission time through
the medium. These received pulses can be
reformed and sent again through the delay
line. In this way, the information store is
retained sometimesfor days at a time with-
out losing a pulse. A higher-speed variation
of the delay line uses a quartz crystal. By
having mechanical wvibrations transmitted
through a crystal polygon rebound from 15
or more sides, a reasonably long delay may
be packaged in a small volume.

Lumped- constant delay, lines, using a
number of inductors and capacitorsto create
a transmission line with a low propagation
velocity, represent a very special approach
that involv es resolution problems requiring
large numbers of different small compo-
nents. This type has inherent losses and
requires additional amplifiersto create long
delays.

Magnetostrictive delay lines find wide
application as serial memories. Their ad-
vantages arelight weight and low power con-
sumption. Special packaging is required €or
extreme environmental conditions, however.
These delaylines use the principles whereby
somematerials deform when a magnetic field
is applied, and conversely distort a surround-
ing magnetic field when the material is
strained. In this type of delay line, a mag-
nectostrictive wire is held between two damp-
ing elements to prevent reflections and is
magnetized by a transmitting coil at one end
to deform the wire. The deformation travels
down the wire, and the strain is transduced
into an electrical pulse at the other end.
Pulses are stored in the wire in the form of
strain waves.

Fig. 4-40 shows a typical serial mem-
ory that is available as a standard off-the-
shelfitem. A simplified schematic diagram
is also shown. Physically, a magnetostrict-
ive delay line is coiled and secured inside a
metallic case thatis then attached by stand-
offsto a printed- circuit board containing the
logic. The delay line illustrated has an
operating frequency range of 1 mc and will
store up to 2048 bits at that rate.. The max-
imum power dissipation of the whole unit
is 3.4 watts.

DIAPHRAGM ~|

MICROPHONE

-

e

MERCURY COLUMN
(SOUND WAVES)

U Y

PULSE ENTERS
MERCURY HERE

ELECTRICAL SIGNAL
ACTUATES DIAPHRAGM
TO PRODUCE

IT ARRIVES HERE

A FEW MILLIONTHS OF

A SECOND LATER AND
PRODUCES AN ELECTRICAL
SIGNAL V

ELECTRICAL PULSE

SOUND WAVES

L — AMPLIFIER

IS AMPLIFIED AND
RESHAPED

Figure 4-39. Acoustic delay line.

*At 1 mc, o 2048-microsecond delay will store 2048 bits of data, in accordance with the relationship

storage capacity (bits)
clock frequency (mc)

Total pulse delay (ysec) =
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PRINTED-CIRCUIT

CO[\BJ(T):F[\%NG METALLIC CASE
THE LOGIC WITH DELAY LINE

COILED INSIDE

(A) External view

i MEMORY RECIRCULATION CONNECTION B -1
]
|
I
I
DC I
NODE | woRr I
INPUT :
|
T . |
. LDRIVER (- — — AMPLIFIER !
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] SET
INPUTSﬁ NODE——— __D —I>1, :_‘{>—_ ouTPUT
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O— STRICTIVE O ouTPUT
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SHAPER FLIP=
NODE FLOP
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C o0——- ] INPUT
CLEAR
INPUT

(B) Simplified Schematic Diagram

Figure 4-40. A typical serial memory utilizing a magnetostrictive delay line.
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Logically, the serial memory may be
considered to be ashiftregister whose length
is equal to the specified number of digits of
delay and shifts at the clock rate. Continuous
storage is achieved by feeding the serial-
memory output back to the input and recir-
culating the stored data. Logical inputs are
provided for entering information into the
memory, removing information from the
memory, modifying memory contents, form-
ing circulating serial adders, etc.

An excellent presentation on magneto-
strictive delay lines appears in Ref. 102.
The application of these delay lines in air-
borne serialmemories is coveredin Ref. 93.

Serialmemories with a "zero-tempera-
ture-coefficient” glass delay line have been
built for operation with high-frequency logic
elements. Their use has not been as wide-
spread, however, as magnetostrictive delay
lines -- probably because of cost and fre-
quency restrictions, such as short lead
length.

4-13.1.3 Punched Paper Tape and Cards

Punched paper tape and cards are useful
for very-long-access-time storage, for in-
struction storage, and as an intermediate
input-output medium. The nature of their
use is summarized in Figs. 4-41, 4-42, and
4-43.

Both tape and cards provide a method
of holding files of information outside the
computer. Cardshavethe advantage of being
ecasily rearranged, added to, or deleted from
in order to vary programs and routines or
to up-date a data file conveniently. Tape can
be read atrates of a few hundred characters
(2,800 bits) per second. At the upper limit
of card handling — 1000 cards per minute —
an equivalent bit rate of 16,000bits per sec-
ond is obtainable.

4-13.1.4 Photoelectric Storage

By using photographic storage of opaque
and transluscent binary bits arranged not
unlike the punched-hole arrays on cards,
very high packing densities canbe achieved —
inthe orderof 50,000- 100,000 bits per square
inch. A number of physical configurations
'have been developed including reels of film
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~—— DIRECTION OF TAPE FEED
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1_4’ SLOT IN MASKING TAPE

MASKING PLATE

Figure 4-41.
paper tape.

Reading of punched

(usually 35mm in width),large disks, plates
a fewinches square, and film strips or chips.

A given photographic element is normally
scanned secquentially, but it is conceivable
that the photoelectric scan of information
would take place at several million bits per
second. Except for reels and disks, the
photographic elements may be stored in a
manner that permits mechanical selection —
giving a combined random-sequential access
to a very large memory bank.

4-13.2 RANDOM-ACCESS STORAGE
4-13.2.1

Magnetic Core and Other Coinci-
dent-current Devices

The very- common, very- high-speed
magnetic core memory forms a good exam-
ple of the class of random access storage
devices. Fig. 4-44 shows a "plane"of cores,
each typically between 0.1 and 0.4 inch in
diameter. Each core is of square-loop mag-
netic material (as described in par. 4-12.4),
and the coils indicated in the figure are
commonly of only a single turn so that the
complete matrix may be woven from wires
threading horizontally and vertically through
the cores.

A pair of the X- and Y-coordinates de-
termines a setof cores, and a carefully con-
trolled signal level is used to affect the Oor
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PUNCHED PAPER
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TAPE READER UNIT TAPE READER BUFFER

Figure 4-42, Typical arrangement for reading punched paper tape.
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Figure 4-44. Corner of a core matrix.

1level of one specific core where the coor-
dinates intersect. The addition ot many
planes and a Z-axis creates a core memory
stack, one module of which typically has a
word capacity between 1,000 and 4,000. Solid
slabs of ferrite material have been designed
to act like an array of cores, by creating
arrangements ot holes and printing conduc-
tive windings on the essentially nonconduc-
tive ferrite material. A matrix ot cores can
also be created through techniques of de-
positing tilms of magnetic- material, insula-
tion, and copper grids on glass. Such de-
posited circuits may have extremely high
speeds.

A recent development in magnetic mem-
ory components isfabricated of pressed fer-
rite materials and takes the form of small
rectangular solids, each nominally 0.085 X
0.050 X 0.050 inch. These blocks have two
nonintersecting orthogonal holes: one for
storage and one for interrogate. Magnetic
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domains in the common volume of material
between the holes are shared, and a change
in flux linkage around one hole will cause a
change in the flux linking the other hole.
Spacingbetween the holes is suchthat inter-
ference is reversible, producing a nonde-
structive memory element. The direction of
flux around the storagehole determines if a
1or a 0 was stored. Abipolar sense voltage
induced by the change in stored flux is ob-
served on the sense conductor inthe storage
hole. Very short access times are reported
for these elements.

4-13.2.2 Diode-capacitor Storage

A bank of capacitors with associated
diodes can store information of athousand
bits or so tfor periods of a few seconds. A
capacitor is charged to store a 1,and is dis-
charged tor a 0.
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4-13.2.3 Cathode-ray-tube Electrostatic-
mosaic Storage

In carlier digital machines. devices
such as the Williams tube, the barrier grid
tube., and the selectron were developed for
storing charges on plates that were scanned
for reading and writing by a cathode-ray
beam. Thesetypically would store 1,024 bits
with random access time as small as 10
seconds. They required particularly precise
and noise-free control circuitry.

4-13.2.4 Photoclectric Storage

Random-access photoelectric storage
has been developed in two forms. In one of
these. a cathode-ray tube is employed as a
light source. Data are recorded on photo-
graphic plates, each bit being recorded on a
separate plate. To permit parallel readout.
the light beam from the tube face is split by
an optical system so as to fall on corre-
sponding arcas ofall plates. The light pass-
ing through a plate is then focused in a
photo-cell. This memory system has been
employed in telephone central offices.

Amemory employing a photocellmatrix
excited by a matrix of eleetroluminescent
cells has been built experimentally. Electri-
cal feedback from cach photocell to its cor-
responding electroluminescent cell is used
to hold information in the memory.

4-13.2.5 Ferroeclectric Storage

Ferroelectiric crystals, such as barium
titanate, retain residual electrical polariza-
tion on application and release of a voltage.
This property is similar to the hysteresis-
loop characteristic of magnetic materials
used in core memories; therefore. ferro-
electric crystals may be adapted as high-
speed storage devices. The technique is,
however, still in the developmental stage.

4-14 CONSTRUCTION PRACTICES "1™

4-14.1 COMPONENT SELECTION

Because of the large number of compo-
nents used in a typical computer-, the highest
component reliability is demanded. Present-
dav computer techniques are primarily con-

cerned with transistors and integrated cir-
cuits. In each casec., care must be taken in
the mechanical design to ensure reliable
connections and strain relief. Extreme
cleanliness both in the elimination of dust
and in removing all traces of chemicals used
in processing is a necessity. Fortunately,
suchreliable components are now available.

In the case of transistors, manufactur-
ing tolerances are so broad that measure-
ment of critical parameters on all units is
usually necessary. For some critical appli-
cations, selection of units is necessary.
Complete inspection of other components,
such as resistors and capacitors, is not
practiced except in the case of military ap-
plications in which the highest reliability is
required.

Pulsed operation introduces
problems that are not encountered in con-
ventional circuits. In vacuum- tube circuits,
it was found that a cathode interface was
formedunder steady pulsed operation, which
materially reduced the emission. Special
cathodes have been developed ‘or this serv-
ice. Transistors for pulsed service are
usually required to operate in the saturated
region. For this type of operation, the sat-
urated collector-to-emitter yoltage should
be minimized since this voltage times the
collector current is the major part of the
power dissipated in the transistor. The de-
sign of the transistor must also minimize
the storage time, i.e., the time required to
dissipate the minority carriers collected at
the base- collector junction.

Resistors and capacitors are conven-
tional, but types that have minimum induc-
tance are employed. 1Pulse transformers,
when used., employ square-loop cores which
have low leakage reactance when saturated.

certain

4-14.2 PACKAGING TECHNIQUES (MIN -
TATURIZATION)

Techniques that employ ¢on.entional
clectronic. components, mounted and con-
nected by methodsthat minimize waste space,
are classified as miniaturization techniques.
The term also comprises efforts to reduce
the volume ot the components themselves.
Microminiaturization, on the other hand,.
describes techniquesthat eliminatethe cases
and’/or leads ofihe components. Carrying
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the concept further, the techniques of molec-
ular electronics eliminatethe separate com-
ponents as mechanical units.

The combination of miniaturizat iontech-
niques with the modular concept has become
standard practice in present-day computers.
Printed-circuit cards are used extensively,
usually fitted with a connector to facilitate
maintenance. Anumber of ingenious designs
have been worked out by the manufacturers
to prevent insertion of a card in a wrong
socket. to lock the cards in place, and to re-
move cards easily.

While circuit cards vary widely insize,
a standard O.l-inch grid system has been
adopted by the industry to facilitate layout
and mechanized production. Most modern
components conform to this system. Auto-
matic machinery is available for the bending
and insertion of component leads in pre-
punched holes. The card material is usually
a glass-fiber-base epoxy resin material in
military equipment that must withsiand a
humid environment. Occasionally glass or
ceramic areused. Incommercial equipment,
a paper-base phenolic resin is common.

Interconnections are sometimes made
by hand-wiring, but more-uniform and reli-
able results are obtained with photo- etched
wiring. Connections may be hand soldered,
but with close attention to details and care-
fulinspection good results are obtained with
dip soldering.

Connectors for module cards must be
rugged and reliable. The use ofprinted con-
nectors should be restricted to applications
where size and weight are paramount con-
siderations since ruggedness and life are
somewhat compromised.

The number of components per module
islimited by maintainability considerations.
About six transistors, with associated cir-
cuitry. is a practical limit. Thus, a flip-flop
or binary counter element is a viable mod-
ule, while a complete counter wouldbe dif-
ficult to maintain as a module. Conversely,

a single diode AND gate would be wasteful as
a modular element; the usual practice is to
combine several gates on a single card.

Considerable reduction in size has been
obtained with welded construction. In this
technique. componentsare interconnected by
spot welding of their leads, without support
of a board. The completed assembly is then
encapsulated. the final module usually having
the form of a rectangular block with the in-
terconnectingleads projecting from one face.
Suchwelded assemblies have shownhigh re-
liability in severe environments; however,
the production costs are much higher than
with the conventional technique.

4-143 MICROMINIATURIZATION

The Micromodule program, sponsored
by the U.S. Army.has been used extensively.
Individual ceramic wafers are employed as
a substrate for individual components (occa-
sionallymore than one componentis included
on a wafer). Since the size is standardized.
stacks of wafers may be readily intercon-
nected to form modules which are then
usually encapsulated. Micromodular con-
struction has tlie benefits of size reduction
(about 500,000 components per cubic foot)
and reliability improvement, yet is amen-
able to automatic production.

More recently, there has evolved the
technique of molecular e¢lectronics. particu-
larly integrated circuits. This technique
employs a semiconductor substrate on vari-
ous porilions of which resistors, capacitors,
diodes, and transistors may be formed. Re-
sistors, for example, are formed by apply-
ing two ohmic contacts to the substrate; di-
iodes and transistors are formed by forming
rectifying junctions. Unwanted conducting
paths are etchedaway, and desired paths are
vacuum deposited. The result may be either
a complete logic element in the space occu-
pied by asingle transistorora singlemicro-
module.
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CHAPTER 5
DIGITAL DIFFERENTIAL ANALYZERS

5-1 INTRODUCTION

As a general rule, the solution require-
ments for fire control computers (particu-
larly where prediction techniques are in-
volved)are very time limited. Accordingly,
fire-control solutions must be processed at
the highestpossible speed consistentwith the
necessary degree of both accuracy and pre-
cision. Thesolution of areasonablycomplex
set of differential equations can require an
unreasonably large number of iterations and
an inordinate amountof computational equip-
ment. Therefore, whenever there is a large
number of differential equationsto be solved,
it becomes desirabletoinvestigate the use of
other than a standard digital computer? (see
Chapter 4). Requirements forlong-term drift
stability, accuracy, and a wide range of var-
iables lead quite oftento the digital differen-
tial analyzer (DDA)as a likely candidate for
this portion of thc computational workload.

The use of digital differential analyzers
--bccause of their great speed advantage in
solving differential equations, coupled with
modern mechanization techniques--appears
to offer a promising altcrnative to the stan-
dard-digital-computer approach, An atirac-
tive application for a high-speed DDA is
as part of a hybrid system comprised of a
DDA sectionand a standard-digital-computer
section. In this system, the DDA section
wouldprocess high- speed differential-equa-
tion calculations and thereby alleviate the
load on the standard section.

Potentially, the DDA caniterate a differ-
ential equation faster- than a standard digital
computer since tlie latter wastes time doing
houseckeeping tasks, memory-transfer in-
structions, indexing, etc. In most DDA de-
signs, this potential has not been completely

realized for two reasons:

1. Most DDA's have been serial ma-
chines rather than parallel.

2. Most DDA designs use a fixed inde-
pendent variable increment for solving dif-
ferential equations rather than a variable
increment (whichis used by most sophisti-
cated standard digital computers).

The digital differential analyzer is an
incremental computer consisting of a collec-
tion of‘digital integrators interconnected in
such a way as to sol\-e integro-differential
equations. A DDA is permanently program-
mcd--insofar as a problem solutionis wired
into tlie configuration of computing units--
but the modular basis of tlic configuration
leads to simplicity of design, and ease of
maintenance and programming, It should be
pointed out that a DDA solves differential
equations; it does not derive thern. The basic
digital-intcgrator computing units can be
used not only as integrators but also as
switching devices, limiters, and generaors
of special functions, and can be programmed
for algebraic computations such as multipli-
cation and division. A DDA integrates by
means of a digital process involving the over—
flow of registers: the effect 13 similar to
solving a differential cquation stepwise by
f’inite differcnces.

The detail required n programming
DDA's can he greatly simplified over that for
other digital machines because the DDA is
particularly susceptible to a block-diagram
approach in programming. [t i- interesting
that scme commercinl general-purpose digi-
tal computers havce been provided with the
software to establish operation as a DDA,
This possibility is sometimes of interest

* By E St George, Jr. and A Kezer, based on the references given at the end of this chapter

T Sce pur. 3-5 of Chapter 3 for the background of this termanology.
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duringthe design phase of a special-purpose
computer.

The immediately following paragraphs
onthe concept of the digital differential ana-
lyzer are based on Kef. 3, which should be
consulted for further information. (Also in-
formativeinthis connection is Ref. 18, which
presents a relatively complete discussion of
DDA theory, operation, mechanization, and
programming.) This remarkably illustrative
description showshow a DDA computes suc-
cessive values of a function by means of suc-
cessive differential additions.

The problem chosenistocompute a table
of values fora function y=f(x). If one starts
with agiveninitialvalue of y. y, = y(x_), then

vix) = ovlx) o+ [vlx) —yv(x)] (5-1)

= y(x)) + (Ay), (5-2)
Similarly,
yxg) = ylxy) & (ay), (5-3)
and so forth. In other words,
vix, o = v(x;) 4+ (Ay)xi (5-4)
Now suppose that
y —e” (5-5)
Then
dy = e*dx = ydx (5-6)
or, approximately,
(A Y)xi=)’(x;) (o7 = x,) =yk) Ax (5-17)

Thus, one can compute successive approxi-
mate values of € by means of the relation-
ship

y(x.) + y(xi) Ax (5-8)

y(x, oy ) = i
For the above illustration, the smaller one
makes Ax, the more accuratethe results will
be. TTowcever, this is not always true; for ex-
ample, when y=¢ or because of the limitations
of calculating techniques, ectc.

By pausing for a moment before setting
up a computing unit to mechanize Eq. 5-8,
one can explore-- and then dismiss -- what
couldbe anobstacle inthe computations. Spe-
cifically, multiplication can produce a dou-
ble-length result, i. ¢., an n-digit number
multiplied by an m-digit number can result
in a number with m +n digits. In a digital
computer, the register to record the result
of a multiplication is usually of double-word
length (ortwo registers) wherein the first
word orregister recordsthemost significant
bits (major product) and the second word or
register records the least significant bits
(minor product). In the present problem,
where Ax is small,the majorpart of the mul-
tiplication y{x;}Ax will be zero. Thus, errors
will result when the minor product, which
contains very significant figuresinthis prob-
lem,is dropped. It would therefore be better
to work with the double-length extension of
v(x;). However, this is not particularly de-
sirable for what is supposed to be a small
special-purpose computer.

By examiningthe procedure more care-
fully, it is possible to ascertain how the use
of a double-length accumulator canbe avoid-
ed. As has been noted, each time y(xi)Ax is
formed the major product is zero; but cer-
tainly the major part of y(x;) must change
eventually. This must occur during the ad-
dition y{x;) t y{x;) &x and will be the result of
a carry from the minor part into the major
part. In other words, as one accumulates in
the minor part, one eventually propagates a
carry, or overflow, from the minor part into
the major part of y(x;). If one is working in
binary, the carry can only be a 1 and the
major part of y(x;) can change at most by 1
during any iteration. Ilence, one does not
need @ double-length accumulator at all;
rather, one needs a single-length accumula-
tor that simply accumulates successive
minor parts of y(x;)Ax; and a counter that
holds the major part of y(x;) and adds 1to
the majorpart of y(x;) each time there is an
overflow from the minor accumulator. The
accumulated minor parts are referred to
collectively as the residual. *

True multiplication is not essential in
finding y(x;)Ax, for one can always take Ax =
1/2%. Onethen need only shift y{(x;) by qposi-

* . . ;
See the subsequent discussion of errors in par. 5-5
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tions 1o the right {o form y ()AL Bul, since
therewitl not be o ngor part in the acenmu-
lator, one can alwitys choose Ax so (hat the
shiftmgol y(x Y neednothuve o occur aclundly
(althongh ol course, it does occeur virtually).

To ilustrate lhese points, consider n
4-Dbil binary word and lel Ax o 0.0001
5=10A) illnstrides the aceu-
mulador that i3 to hold the residual aml the
counter thal is to hold the major part ol the
The circle represents the

(sece
IMig. H- 1) I'igurce

fanction value y.
componenl wherein y is victuadly but not ac
tnally shifteds this is simply o gate that at
the proper fime passes y 1o be accumulated
with the previous residual to Tform the new
residunl. The dash-dot lines represcenl The
"true'” juxtaposition ol the double Tength val-
I'or this illusterative problem, start
with x 0, preloaded o
the counter, Then yix,) - 01,00 and y(x,)Ax

ue ol y.,
R . () 1
and v, - ¢

00.00 0100, where 0100 is {the residual,
Sinee
Y(xl) = Y(xo> 4 y(xo)Ax 01.00 0100

the 01,00 remains unchanged in the counter
and 07100 s pul into the accumulator (sce Mg,
H-1013)), With y(x)Ax = 00.00 0100 again, one
obfains 0100 « 0100 1000 us the residuat
(hy Dinary arithmetic)y, and 01,00 remaining
still unchanged inthe counteras y(x,). Then,
vix Ay = 00.00 0100, whencee 1000 1+ 0100 -
1100 is the new residunl and 01,00 remains
unchanged as y(x;) in the counter. Nexd,
ylx )& = 00.00 0100, whence 1100 + 0100 =
carry 1 +0000; now the counter is lncreasoed
by 1, putling 01,01 inthe counteras y{xs)atid
leaving 0000 as the new residual, One then
continues with y{x<)Ax = 00.00 0101, and so
forth. The result of each stepand the graph
ol the function so catculutedare shown in ig,
5-1(13).

The progress of the plottedoutput in Mg,
5-1 illustrates a problem to be kept in mind,
namely, That the slope of The fGunetion cannot.
be o steeper than 45 degrees. By suitabice
sealing (see par. H=4) the slope ofa funclion
can be adjusted so that it does not excecd
45 degrecs within the ramge of conpuiation.

5-2 LOGICAL CIRCUITRY

o

A gencralized form ot the basie integra-
tor circuil Tor DDA's (sce Mg, 5-2) may be

considered ns consisting ol a Y vepgrister, or
connter, o oacenmulitor regrster Ry and o
means for adding the contends ol YV 1o R. An
addilion occurs cach time a pulse is applicd
to the gate at the point marked Ax. ‘The con-
tenl y of the ¥ regisler is alicred by the Ay
ipul which may be cither o single pnlse (o
add unity to vy or a muceh heger nmber. As
the numberin Y is repeatedly added to R the
R register will overflow from time Lo Lime.
Fach time an overflow occeurs, o pulse will
appeatr on the Az oulpul line.
[Mow, or

The Az over-
from the accumulator 1s the
dilferential virlae that isavailable to be added
Lo some functional valuceand thus contfinue the
caleuladion,

carry,

lFor exiunple, in the confignra-
tion of the example in g, 51, the carey of
y Ax wuas fed back to the Y regisier of the
same compulingunit to creale the nex! point
- . hY
in the table of vy e
tween the number of Av pulsesiand Ax pulses
will bhe

The relationship he-

1
-y Ax
oy

Az - (5-1)

whoere
y o the number in vV

13 the radix (base) ol the number sys-
tem in use
n s thenumberofordersinthe registers

The problem of computing sin x and cos x
will iHustrate how two computing units canbe
combined. et y,y

cos xoand lef vy s
then the differentinl equations nre:
dy, = —sin xdx = —y dx (h-10)
and
dy, = cosxdx = ygdx {(h-11)

I the same manmer developed Tor the
exampleof par. H=-1, successive approximate
values can bhe computed from the relation-
ships

Valxy )= y(x) 1 Ay Ay oy, A x (5-12)

and
(H=-13)

yoix, ) =y,(x) 4 Ay, ; Ay, =y, Ax
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R REGISTER

- __AY

l Y REGISTLR
|

Ifrpure 5-2, The DDA computing unit.

Theareangement ol two DDA computing units
shown i I9g. H=3 can thenbe set up to cone-
pute ypoand y,.

A vartelyolhmathematical operations can
Le performed with combinations of integra-
fors. I forexample, it is desired to multiply
twonumbers, s, once cansolve for the ex-
; (I'hie
s bheen employed to emphasive the use of
the N

pression s YN yosubseript form

vegister in the basic computing unit.)

Qe
dyy = yydy, o yadng (5= 1)

then
vl ) k) 1 Ay (5-15)
vl ) = ylx) 4 Ay, (5-16)
v = y(x) v Ay (5-17)

and

( + Ax

Ay, vy By, ¢y, Ay, (H-18)
which can be computled by the conliguration
ol I"ig. =4, usingthree comput.ng units. Only
e counter, or N register, o the third unit
is used, and the two inputs to it must be elee-
tronically arranged so that they do not step
this counter at precisely the same fime,
Generading o square
units.  Again, only the counter

three
in the third
unit is uscd, as shown in1tig. -5, I'rom the
relationslip

also uses

y = & (5-19)
it follows that
dy = 2xdx (5-20)
y(x, ) = ylx) 1 Ay (5-21)
and
Ay *x Ax (5-22)

The first counter is loaded with tlic constant
2 and never changes.

The amount of hardware rrequired to put
together nrany integrators, or computing
units, particularly ifimany signt’icant figures
wcere incorporatedinthe computational accu-
racy, might appear to be very substantial.
However, modern 1,51 (large-scale integra-
ted) circuits have made allparallel machines
quite feasible. An alternative classical ap-
prouach is to use aserialsysteni in wliicli all
tlic arithmetic operations required in the
"pating" functions can be performed by a
single set ol arithmetic units. In a serial

—y.gdx \__
S

Figure 5-35.

An illustrative combination of two DDA computing units.
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g —
el o T SR
Pigure 5-4. The computation ol y, =y, v..
B ) 2x Ax 248x
Ax A
y xz e E—— 2x o 2

IMigure 5-5. The compulation ol y — x°.

system, the contents ol the 'Y registers and
R registers are merely held in storage locas
fions, the contents ol which are passed in
servial fashion through the control and arith-
metie elements of the computer. Magnetie-
drum and delwy-line types of sforage have
been used effectively in this application.
Also, LS shilt registers may he effectively
utilized. Jackson’ presents a simplified block
diagram ol a magnetic-drum system fo ithus-
trate the principle. As shown in Fig. 5-6,
five channels or tracks ol informution are
stored on the drum. The contents of the
Y, R, and &7 lines are processed in a com-
putational unit that is controlled by the ad-
dress line, T The operations are all syn-
chronized by a permanently recorded clock
line, . Consider the Y channel: the Y oreg-
isters ol wllintegrators are recorded in this
chamel in a seriad manner, One drum rev-
olution is called a major cycle, while the it-
eration or processing of cach integrador is

5-6

termeda minoreycele. 11 the machine containg
M integrators, then M minor cycles consti-
tute o miajor cycles Within cachminor evele,
the digits contained in the Y register bheing
processced are presented in serial, with the
Thus, in a ma-
chine of M integrators thal handles a maxi-
mum ol N digits, the YV chaunel consists of
MAN digits arvound the circumlerence ol the
druom, with the digits ol integrator 2 follow-
ing those of integrator 1, cte. The R regis-
ters of the integrators arce comlained i the
R line in o similar manner. The Rand ¥
registers are in parallel on the two lines;
. ¢., the R register of integraior 23 occu-
pics the same position on the R line as does
the YV oregister of integrator 23 on the YV line.

The computationunit opevates onthe dig=
its containedinthe Y and IR registers exactly
as the action of the integrator was delined:
i. c., it causes y; tobeadded (o or subtraciced
from 1, andit adds the summation of the Ay,

least-significant digit first.
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RECORD

RFCORD

RECORD

AZ STORE

L ADDRESSES B
OF Ax ANDAy

C. CLOCK—

Iignre 5-6.

inputs Lo y; to form vy, This isdone inu

and the digits of v, and

serial muanner
yio o areresrecorded on the drime as soon
The outpul of the inke-

gralorbeing processedis recocded on the &3

as they are formed.

line.

The use ofthe A line to make the oul-
puts of all integrators available to any pire=
ticuline integrator now must be considered,
Supposce thata machine uses 20 digits for the
Yand R registers and contains 20 integrators.
In other words, assume that there is a string
of integrators cach taking 20 pulse-times to
Also
assume that the A lineis very short where

pass through the reador record eirenit,

information remainsonthe drim for only 19
pulse-times and that it is then read ofl and
recorded again by the recording head that
Then, as the
its output--

originally recorvded the data.
first integritor is processod,
cotsisling of cither one pulse or no pulse--
is transferred to the AZ line and is recorded
on the drinm at that instant. Twenty pulse-
times later the secondintegrator s ready to
deposil its output on the A line. Since the
AZ linc represents a delay of only 19 pulsce-
times, the first integrator's output will have

REAL)D R

Y STORF

R STORE
READI i 1
RLADP™, | gl COMPUTATION

UNIT

i B )

CONTROL

_mmzt
RI.ADD

Simplificd representation of DDA operation.

come off the line, gone back on the Jine, and
moved over into the sccond position. This
causes the scecod integrator's output to be
recorded on the A7 Tine directly behind the
first integrator's oulputl. "The third inlegra-
tor coming 20 pulse-times Iater will, of
course, pliwee ils output on the AY line after
Aftoer
19 inkegrators have been processed, the AY

thosceolintegrmtors Tand 2, and so on.

Line will contain the most recent outputs of
all ol'them. Since the AZ line completely re-
cycles during the tinme that any inlegrator
ts passing hrough the computalion anit, it
makes the outputs of il the integralors avail-
able fo the integrator that is being processed.
This is obvionsly o simplificd example be-
canse, in general, DDA'S contain many more
infegrators than they carry digits per inte-
grator,  In this case, two or more A lines
or more thanone reading head on the AY fine
are required. tlowever, thts example does
ilhe:trale the processing scheme common 1o
atl systems.

To pick the dy inputs for an integrator,
A coincidence circeuit obscerves the A line
and the address channel 1. When a pulsce
appears on the address line, the coineidence

~-_
i

a7
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circuit causes the contents of the AY line at
that instant to be fed to snup-down counter
that sums the dy inputs. In DDA's 1o date,
provision has been made for summing from
710 as manyas 15 dy inpuistoa single inte-
grator. In most machines, the dy addresses
arce offset one integrator space so that they
are summed during the integrator period
prior to the one to which it applies.

I most machines, the dx input {o an in-
tegrator is restricted to o single input. 1f
the sum ol several variables is desiredas the
variable ol integration, some other mcans of
smnming the increments mustbe usced, Usu-
ally, however, the dx address consists of n
bimary numbaer denoting the pulse position in
the AZ line of the desired input. This binarvy
number is usced to seta counter fwo integra-
tor Limes abead ol the integrator to which it
applics.  Then, during the next integrator
period, the counter counts down and causes o
obscrve the AZ line at the
to pick up the desived dy -

dx register to
proper instant
put for the integrator to be provessed next.

In addition to improvements in machine
organization that can be elfected by the use
ol recentintegrated=cireuit technology, sev-
cral additional improvements c¢an be made

9 {5 the

over classical DDA's. One micthod
combination of several integrators that con-
tain the same variable and share the ¥
ister and adder elements with multiple R
registers.  Another umprovement is the usa
ol either quasi-{loating-point arithmetic or
pure-tloating-point arithmetic in which, in-
stead of scaling o fixed-point machine to
handle the worst-case range of variables,
the DDA is scaled to handlea nominal range.
When a variable exceceds this range, crit-
ical integrators are automatically rescaled
to modily the incrementsize ol the variable.
Since the iteration timeof a DDA i depend-
ent on the variable size, this technique also
allows the parallel DDA to run at the opti-
mum speed at cach region ol its solution.

reg-

As an example of the technique of inle-
grator sharing, consider the case ol the so-
lutionof 1/u. I'ig. bh=T(A) shows the conven-
tional interconuectionol two integrators that
wollld be uscd for this solution. Both inte-
grator 1 and integrator 2 store the variable
1/uin the ¥ registers,
responding shared-integrator

>

ol IMg. 5-7(13) has,two R rvegisters, where

Therelore, the cor=
arrangemaent

n-8

vegister Ry isidentical withthe R register of
integrator Tand register R, isidentical with
the 1 register ofintegrator 2. This shared-
integrator DDA arrangement requires one
adder, one Y register, and two R registers,
wheveas the conventional DDA arrangement
requires itwo adders, two Y registers, and
two 1 registers.

Integrator 1 Integratoi 2

(B) Shared-integratot Imple mentation

igurre 5-7. Conventional and shared-
mtegrator DDA implementations of 1/u .

5-3 SOLUTION OF DIFFERENTIAL EQUA -
TIONS

Par. 5- 2 has discussed how tlie output of
the R repisterofthe basic integrator circuit

(sce IMipg. 5-2) is consicletetl to be

Az yix (5-23)
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Usually the finite increments &x, Ay, and Az
are replaced by the differentials dx, dy, antl

dz. The characteristic equation of the device
then becomes

dz  ydx (5-24)

There is yet another way of looking at
this problem. If it is assumed that y is an
integerarid Ax is plus or minus one unit, then
the digits contained in the register R repre-
sent the fractional part of

%ZW\X (5-26)
where € is the radix of the number system
used and n equals the number of digits in the
registers. Considered in this way, the sum-
mation of the Az outputs is then the integral
part of the preceding expression. Thus, this
constant of proportionality canbe includedin
the characteristic equation of the device, so
that
X
z’ B f

X

o

(5-27)

ydx +z_

where z' is an integer. The fractional part
o expression 5-26, which remains in tlic
R register, is neglected and represents a
round-oft error. Note that this ercor is al-
ways less than Ax, which has been assumed
to be plus or minus one unit.

The step from finite increments to dif-
ferentials in a purely incremental devicemay
lar the mathematicians among the readers.
Admittedly, it 1s inaccurate but it seems to
be customary in discussing DDA's and 1is,
perhaps, a carry-over from the mechanical
integrators which were truly continuous de~
Tt is used here because it makes the
general explanation simpler and is fairly ac-
curate if second-ordereffects areneglected.
The reader is reminded, however, that al-
though the digital integrator can he consid-
ered to be functionally equivalent to the me-
chanical integrator,itsdiscrete nature intro-
duces errors;these are discussed in par. 5-5.

vices,

It hasbeen pointed out how, in DD\ oper-
ation, the increment mav bc macle a suffi-
cientlv smallpart of the variable so that the
incremental equation closely approximates
the integral ejuation

z { ydx (5-28)

or the differential equation
dz - ydx (5-29)

or the derivative equation

This establishes the individual integrator as
adevicethat solves a first-order differential
equation. Theuseful factisthat if the Y reg-
ister is loaded with a second- (order deriva-
tive antl the Ax input is the increment in the
independent variable, thenthe Az output gen-
erates the first-order derivative

(5-31)

It is generally possible to isolate the
highest-order derivative in a differential

equation. For example, in the case of the
equation
o d
=Y w D sinw o 0 (5-32)
dt? dt

one may solve for the highest-order deriv-
ative as

d?w dw

_ sin w _
T Yoat (5-33)
The differential of this quantity is
42y dw
d (——l> = od (w i disin w)  (5-34)
dt? dt

o=
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dw 4 d(sin w) (5-35)

dw) 4 dw

<dt ) dr
From a network of integrators, such as that
shownin Fig. 5-8, the first-order derivative
and the dependent variable can then be ob-
taincd from the second-order dcrivative--
which is itself a function of the first-order
dcrivative, as shown by Eq. 5-33.

dt
a d 2
42w e a7 df ¥
—_— Az dt / dfz-
dt? Ay — >
AX - ]
d_w Az
dt Ay dw
a &
X . dw
dt
d_w Az
dt AY la
W
Ax wd(;)
w Az
Ay [
AXx
sin w Az
Ay
Ax = d (sinw)
COs W Az
Ay
Figure 5-8. Connections employed for the

2
solution of —g;—-?f Dy w = 0.

dt

In this general approach, it is assumed
thatthe second-order derivative is available
to load the Y registerof the "first" integra-
tor. Thisisintegrated against t to obtain the
first-order derivative, which is integrated
inturntoobtain w. Note that the first-order
derivative is needed twice, and hcnce a du-
plicate countin another Y register is gener-
ated. Integrated against w, thiselement pro-
duccs the term g—tw dw. By using the d($)
output of the "first" integrator as the Ax in-
puttothe integrator containing the dcpendent
variable w, the first term on the right-hand
sidc of Eq. 5-35 isobtained. The gcneration
of d(sin w) uses the network alrcady shown

5-10

in Fig. 5-3.
dlw

— dcpends on the knowledge of w, and the
ggneralion of w dcpendson the knowledge of
gt?" The feedback connection makes this
arrangement of integrators a closed system
driven by the dt input. It might be said that
the feedback mechanizes the equal sign in
Eq. 5-35 since it applics the constraint that
forces the system to cqualize the two sides
of the equation. This represents an impor-
tant feature in thc DDA solution of differen-
tial equations.

Just as a sct of initial conditions is
needed to specify the starting point in solving
differential equations, the initial conditions
or starting point fora DDA mustalsobe spe-
cified. Initial values are placed in all the Y
registers. The cquation is solved once for
the machine at a spccific point, and then the
machine takes ovcr. The running solution
produced bythemachine is thenaccurate and
up-to-date within the limitations imposed by
the discrete naturc of the integrators.

Note that the generation of

2,22

5-4 SCALING’’

Scaling is rcquired to fit the variables
of a problem to the numerical range of the
DDA. Efficient scaling for a problem re-
quires that the maximum absolute value of
allvariablesbeknownor carcfully estimated
to prevent the inadvertent overflow of a Y
register during thc running of a problem. If
too-generous ancstimate of maximum values
isgiven, the solutionrequiresmore time than
is necessary. With well-established values,
it should be possible to scale the variables
so as to make thc most cfficient use of the
DDA's precision and yet keep the computing
time to a minimum.

Jackson? prcsentsasect of relationships
for scaling the DDA as follows. First, let
capital letters rcpresent actual or problem
values and let lower-case letters represent
machine values. Further, assume that for
ecach quantity thcrc is a scale factor S, so
that BS represents one unit of the quantity
to the machine, where B is the radix of the
number system used. In other words, the
following relations exist:

x

5
dx ~ B Tuh 5= 306)
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S, -
dz - B gz

in which x, y, and z represent machine val-
ues; X, Y,and Z represent actual values; and
B is the radix of the number system used in
the DDA. For each integrand Y of the inte-
grator, there is a positive integer m such
that R™"} islessthanthe maximum absolute
value of Y and this maximum absolute value
is less than or equal to B™. This relation-
ship can be stated in the form

(5-39)

Now it is preferable to have the output rela-
tionshipofanintegratorin the form dZ=YdX,
in terms of the actual values. However, it
was established earlierthatthe characteris-
tic equation of the integrator is dz=(1/B")ydx
in terms of the machine values, where all
quantities are integers and n represents the
number of digits in the Y register. If the
values from Egs. 5-36 through 5-38 are sub-
stituted inthe characteristic equation, it fol-
lows that

Sl

Bz = 5

? By - BS'dX (5-40)

and, if the relation dZ =YdX is to hold, then

S 4S -n-S,

B =1 (5-41)

or
(5-42)

This first scaling equation establishes a re-
lation between the number of digits used in
the Y register, the scale factors of the vari-
ables of integration, and the scale factor for
the outputvariable--as it should, since it was
derived from the characteristic equation.
As stated earlier, the Y register must
be capable of holding the integrand y of the
integrator at all times during the computa-
tion. From the definition of scaling factor
itis known that for each unit of Y, the Y reg-
isterwillhaveto hold the number B . Also,
itwas noted thatat sometime duringthe com-
putation the integration would be almost as

big as B™ . Therefore, ifitis riottooverflow,
the Y register mmst be capable of holding a
number as large as B™ + BY or B™* Sy,
In other words,

mi S, <n (5-43)

This is the second scaling relation, and
it determines the number of digits required
for an integrator in terms of' the maximum
value of the integrand and the scale of the
integrand input. It also is known, for any
particularmachine design, thatthereis some
maximum number of digits available, say N.
Therefore,this last relation can be expanded
to

miS <n <N (5-44)

Another useful but dependent scaling re-
lation canbeobtained from the two preceding
relations. From Eq. 5-42, S,=n + S, - Sy;
from Eq. 5-44, S, <n- m. Therefore, n+
S,-8,<n-m, or S,- S; £ -m, or finally

S =S < m

x z

(5-45)

In recapitulation, thethree scaling rela-
tionships are
S+S = nt S
Y X
m t Sy in<N

Sx - Sx:\

(5-46)

AV
3

where m is the smallest integer satisfying
B™" < Yl 0 £ B™, nis the number of digits
inthe Yregister, and Nis the maximum num-
ber of digits available in the Y register.
These equations define the scaling relations
necessary for scaling any single integrator.
The extension to a system of integrators is,
on the surface, simple and straightforward.
For compatible operation, all the variables
contributing to a particular input must be at
a common scale. For instance, all dy inputs
toaparticularintegratormust have the same
scale. Violation of this rule results in mul-
tiplicationbypowers of B (which can be used
to advantage at times). It is also clear that
if the dx output of one integrator is used as
an input to another integrator, then, in gen-
eral, the two must be of equal scale.
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All thismay seem axiomatic, and indeed
it is, but it must be stressed because, while
the scaling relations are straightforward,
scaling is the most difficult and important
phase of programming a DDA. Part of the
difficultyresults from the fact that the scal-
ing relations involve inequalities. Ingeneral,
a largenumberof setsof scaling factors ex-
ists that will satisfy any particular system
of integrators. The direct approach is to
scale the problem once and then adjust the
scaling factors until an efficient scaling is
found. Usually, there are two possible cri-
teria for fixing the scaling. Unfortunately,
they are incompatible. One may require a
particular variable to a certain precision,
thus fixing its scale and establishing all oth-
ers. On the other hand, one can fix the time
of computation--thereby fixing the scale of
the independent variable. This brings out an
important feature of the DDA: the ability to
trade time for accuracy,or vice versa. The
result of scaling a problem isthe determina-
tionofthe registerlengths for every integra-
tor in the machine. Then a correctly scaled
problem maybe stepped up in accuracy or in
speed of computationby readjusting all inte-
grator lengths by the same amount.

Once the scaling of the variables has
been determined, it is possible to determine
the initial conditions, i.e., the initial value
of ecach integrand, and to express these in
terms of the machine values from the scaling
relations.

It can be seenthat a major disadvantage
of a conventional DDA organization is the use
of fixed-point arithmetic, inwhich the scaling
is based upon the maximum value that each
variable canassume. If someofthe variables
vary over a large range, an extremely small
independent increment may be required to
maintaintheaccuracy. Asthe size of the in-
crement decreases,the number of iterations
increases. If a standard digital computer
were restricted to fixed-point arithmetic, it
would have the same type of scalingproblems
encountered by the DDA. There are several
possible techniques that can be employed to
overcomethe scalingproblems of fixed-point
arithmetic. One, of course, is to imple-
ment a fully-floating-point machine. An-
other, more practical, approach is to use a
quasi floating point (i.e., multiple scale)that
is a compromise between fixed-point and

5-12

floating-point arithmetic, If the complete
range of a variable is divided into several
sub-ranges and each sub-range is scaled to
fitthe fulllength (numberof bits)of the fixed-
point word, the DDA may compute with the
scale corresponding to the particular sub-
range in which the variable happens to lie.
When the variable changesto a different sub-
range, the DDA must then switch to the cor-
responding scale. Eachscaletherefore uses
fixed-pointarithmetic, butthe switching from
scale to scale as the variable changes mag-
nitude simulates the effect of a floating point.

5-5 ERRORS INTHE DDA

The operation of the digital integrator
has beencharacterized by the integral equa-
tion

X
z - f ydx [ Bg. 5-28]
X
Over a range from x = a to x =b, this inte-
gral can be approximated by a finite sum as
follows when the rangeinterval has been di-
vided into n equal parts; see Fig. 5-9(A):

b n
[ ydx - _Z] y, Ax (5-47)
a i

The error due to this approximation canbe
made as smallas desiredbymaking Ax small
enough or,by what is the samething, n large
enough. The errorincurred by using a finite
Ax is known as the truncation error. The
method of integration as outlined here is
known as Euler or rectangular integration
because theintegral isapproximated by sum-
mingthe rectangular areas yjAx. This is the
crudest form of integration and the truncation
error can be quite large unless Ax is made
very small. However, making Ax smaller
means that the machine must run longer to
cover a given range. Thus, there is a prac-
tical limit to the reduction possible in the
size of theincrements Ax and it is desirable
tobe ableto reducethetruncationerror with-
out having toreduce Ax further. This can be
done by refining the method of integration.
A large improvement, without compli-
cating the circuitry, can be made by using
what is commonly known as trapezoidal inte-
gration; see Fig. 5-%(13). In this method, the
integral is approximated by summing the
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(B) Trapezoidal integration

i denotes the truncation error.
2. A x is made large here for illustrative purposes.

Figure 5-9. Truncation crrors associated with rectangular arid trapezoidal integration.

it

1
—
[N



AMCP 706-329

Ay.
(v, +—2—l )Ax. A fur-
ther reduction of the truncationerror may
be made by going to forms of parabolic inte-
gration that approach Simpson's rule; how-
ever, the complexity of circuitry and the
number of storage registers required rises
rapidly.

An estimate of the errors incurred by
these two methods, determined by Courant,
is (1/2)Ml (b - a)Ax for rectangular integra-

areas of trapezoids

tion and TIEMZ (b-a)(Ax)” for trapezoidal inte-
gration, where M, is the upper bound of the
absolute value of the first derivative, M, is
the upper bound forthe second derivative,
and (b - a)is the range. The ratio of the two
errors is L<—1\££)Ax Since Ax is some small
6 \M,

fraction, the reduction in the truncation c¢r-
ror by the use of trapezoidal integration can
be considerable.

A second sourceoferror is encountered
in using a finite R register. Sincethe regis-
ter is broken off and Az pulses are trans-
mitted instead ofaccumulatingthe sum in an
infinite register, the quantity Az (when ac-
cumulated in another integrator) is always
in error by the remainder left in the R reg-
ister. Thiserrormakesuppartofthe round-
off error,

Another source contributingto round-off
error is the system of intercommunication
between integrators, In a system where the
communication consists of either one pulse
or no pulse, representing a +1 or -1 incre-
ment, respectively, what is known as binary
intercommunication exists. Here, since the
output must be either a plus one or a minus
one, an error E is introduced where

(5-48)

This canbe appreciated by consideringan in-
tegratorthat should have a zerooutput. Since
only +1 or -1 are available, the error at any
instant is a full unit of Az. To find the true
value, theaverage outputmustbe considered.
This sourceoferrorcan be reduced by a fac-
tor of two by usingwhat is known as ternary
intercommunication. Inthissystem, the out-
put of an integrator canbe +1, 0, or - 1and
the error is

5-14

(5-49)

Note that, now, two bits of information are
required for intercommunication, That is,
the amountofinformationto whichthere must
be random access has doubled or, in other
words, the Az lineof themachine is doubled.

It is alsoinstructive to consider the ef-
fect of a loss of higher-order terms in, for
example, the generation of sin 8. By taking
a Taylor's series expansion of Asin 8, it is
found that

1

A'sin U =cos £ AG 5 sin € (A#)?

5-50
cos ¢ (A& 4 ... ( )

L
6
Yet, with the arrangementshownin Fig. 5-3,
it can be seen that

Asin @ Zcos AL (5~51)
Thus, there is a first-order approximation
wherethe higher-orderterms havebeen neg-
lected. In many problems where the range
of 6 is not too great, the error encountered
here may be truly negligible. But in some
applications, say a controlapplication, where
the computer may be required to run contin-
vously for hours or even days, the drift in
sin 8 due tothese neglectedterms would soon
render the solution useless.

Also to be considered are the conse-
quences of the effectivetime delaysinherent
in the DDA computational process. Themost
important delay is that between an overflow
and the subsequent addition. The example
which follows (adapted from Ref. 20) should
serve to illustrate the point. Other more
complete analyses may be found in Ref. 21.

Figure 5-10(A)showsananalog feedback
loop used to generate the sine and cosine
waveforms thatarethe solution of Eqs. 5-10
and 5-11. The associated root locus of Fig.
5-10(B3) shows that the loop is conditionally
stable for all gains. Figure 5- 11(A) shows
the simplest DDA implementation of Egs.
5-10 and 5-11. The difference equations of
Fig. 5-11(13) can be related to the sampled-
data feedback system shown in Fig. 5- 11(A).
Evaluation by the Z-transform technique
yvields the Z-plane root locus shown in Fig.
5-11(B).
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(A) Functional Diagram

s241=0 A

s=hjw s PLANE

X
SIN(x):f COS7 d
(S
X

COSGx)=- [ SIN7d 7

o

(B) The s-plane Root Locus

Figure 5-10. The stability of a continuous
(analog)solution of the equations for sine
and cosine functions.

The root locus shows that the systemis
unstable (outsidethe unit circle)forall Ax > 0
values and is conditionally stable only for
Ax = 0. For finite Ax values, the amplitude
of the sinewave will grow exponentially with
increasing x. To offset this error, the inte-
grators must be continually initialized.

The configuration of Fig. 5-12 (A)has
onlyone delayin the loop, which corresponds
to aserialimplementation. Note the quantity
(n + 1) thatappears on the right-hand side of
the difference equations of Fig. 5-12(B), as
compared with the difference equations of
Fig, 5-11(B). This difference stems from
the additional time delay associated with the
additional zero-order hold shown in Fig.
5-11(A). Therootlocus of Fig. 5-12(B)shows
that the system depicted in Fig. 5-12(A) is
conditionally stable for T = 4, where T is the
period of the iteration.

.
z-1
14 3
—mtZOH 1/s }—T/—-—{p——’
- T
ZERO-
ORDER
HOLD
)
1/s ZOH
S
72 X
G (z) H(z)= 5 z-1
(z-1

(A) Functional Diagram

it LOCUS

DOUBLE POLE

* THIS IS CONDITIONALLY
STABLE CNLY WHEN T=0

SIN (nil) = SIN (n) + COS(n)Ax
COS (nil) = COS (n) - SIN (n)Ax

(B) The z-plane Root Locus

Figure 5-11. A DDA-integrator solution of
the sine and cosine equations;
parallel implementation.

5-6 DDA COMPONENTS, CIRCUITS,
AND HARDWARE

The conception of the DDA is generally
attributed to Steele, a mathematician. His
contribution was to showhow one could re-
alize digital accuracy in the time-honored
differential- analyzer method of machine
computation; how the process couldbe mech-
anized digitally: and how the time-sharing
capabilities of a digital computer could be
used to produce a machine that is smaller,
simpler, and cheaper than an analog type,
and yet have the inherentaccuracy of a dig-
ital machine.

The components, circuits, and input-
output peripheral equipment associated with
DDA designs are similar to those used in
standard digital computers, and are chosen
to provide the required logical characteris-

5-15
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—t——{ ZOH et

Tz T

(z-1) 2 (z-1)

SIN (n+1) = SIN (n) + COS (n) Ax
COS (n+]) =COS (n) - SIN (n+l) Ax

(B) The z-plane Root Locus

Figure 5-12. A DDA-integrator solution of
the sine and cosine equations; serial
implementation.

tics and operating speed for any particular
application. With the advent of the integrated
circuit, functional elements suchasarrays of
logic gates, flip-flops, etc. and the LSI (large-
scale integrated) circuits, many new mecha-
nization possibilities exist. For example,
Ref. 20 details a complete DDA adder-inte-
grator integrated circuitthat, when combined

with a single-chip shift register, is a com-
plete DDA element. Because of the extreme-
ly smallsize of these types of semiconductor
clements -- MOS (metal- oxide - silicon) as
well as bipolar--many new machine organi-
zations are feasiblefrom a hardware stand-

point, As an example of a parallel DDA for
the implementation of the equation.
y {n (5-52)
by means of the relationship
dy - difalx) - 3 (5-53)

using atypical arrangement of these new LSI
semiconductor elements, consider the sys-
tem shown in Fig. 5-13. This circuit uses
three DDA integratorelements (eachin a flat-
pack case approximately 0.5 in. X 0.3 in. X
0.1 in.) and five 20-bit shift-register ele-
ments (eachin a TO-78 transistor-type case
approximately 0.4 in. dia. X 0.2 in. high).
These eight circuit elements require approx-
imately the same sizeand number of inter-
connections that is required to construct a
simple flip-flop of discrete transistors and
diodes.

Because of theimproved characteristics
of glassandwire delaylines, the use of drum
memories has diminished rapidly, with the
great benefit of eliminating complex and
unreliable electromechanical components.
Similarly,the 16-,25-, 50-, and 100-bitshift-
register integrated-circuit chips that are
starting toappear commercially should rap-
idly replace the delay—line memories (par-
ticularly in parallel DDA's), thereby pro-
viding another significant decrease in size,
weight, and power -- and an increase in re-
liability.
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Interconnection diagram of DDA and shift-rcgister integrated- circuit
elements (MOS) to solve the equation y = fnfx).
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CHAPTER 6
ANALOG COMPUTERS

6-1 INTRODUCTION

The definition of "analog computer" is
not simple and clear-cut because the term
embraces several distinguishing characteris-
tics, abroad range of components, and various
methods of problem solution. First among
the characteristics is that problem variables
are generally represented as continuously
variable physical quantities that may take
the form of mechanical, electrical, hydraulic,
pneumatic, ormagnetic quantities. An analog
computer represents one physical form of
the mathematical model of the system under
consideration. The variables in the analog
model may take the same physical form as
in the original system, but more often thec
analogy is one of mathematical equivalence,
because, as is illustrated in Chapter 1 of this
handbook, many different physical systems
obey mathematical laws of identical form.

Analog-computer components perform
basic mathematical operations such as addi-
tion, multiplication, division, integration or
function generation, and may be of a me-
chanical, electrical, electromechanical or
electronic type. Certain general advantages
in speed, accuracy., or reliability accrue to
each type, and some types are better suited
toperforming specified mathematical opera-
tions. The most advantageous mathematical
modeling of a given physical system may
dictate the use of more than one type of ele-
ment -- electromechanical for one operation,
electronic for another, and so forth.

A classification of analog devices under
three headings of direct analogies, indirect
analogies, and simulators is shown in Fig.
6-1. The usefulness of a scaled replica or

*By W W. Seifert

Dircct Analog is apparent for obtaining valu-
able information in a study of the effective-
ness of control of water-shed runoff, or in
the collection of aerodynamic data. The
power-system network analyzer is aformof
direct analog consisting of both lumped-
parameter and distributed-parameter por-
tions. Voltages representing the generators
are impressed on the analyze-, and currents
and voltages are measured at distribution
points and load points in the system. The
network analyzer serves to emphasize a
general characteristic of the analog computer
-- the variables are customarily measured
rather than counted. The measuring instru-
ments typically used for recording variables
in an analog computer are ammecters, volt-
meters, oscillographs, magnetic and optical
recorders, and plotting boards.

The second heading in Fig. 6-1, Indirect
Analog, includes mechanical and electrical
types. The slide rule, devised in the seven-
teenth cenrtury, needs no amplification as a
basic engineering tool. Mechanical linkages
arediscussed inpar. 6-4 through par. 6-4.15.
The mechanical differential analyzer for
solving ordinary differential equations is
alsoreviewed inpar. 6-4 through par. 6-4.15.
Under Electrical Indirect Analogs, the items
are self-explanatory with one exception. An
example of the use of electrolytic tanks is in
the determination of the trajectories of elec-
trons in a cathode-ray tube.

One point that should be mentioned under
Simulators is that this class of analog com-
puter is usually constrained to operate in
"real time", whereas analog devices in them-
selves may often operate in extended. or
slow, time or in compressed, or fast, time.

Analog methods have two chief advan-
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ANALOG
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e

DIRECT INDIRECT
ANALOG ANALOG SIMULATORS DUALS
MODBEL DAMS i FLIGHT TRAINERS
WIND TUNNELS ,__L JET-ENGINE SIMULATORS
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ANALYZERS L
SLIDE RULES DIFFERENTIAL
LINKAGES ANALY ZERS
DIFFERENTIAL ALGEBRAIC
ANALYZERS EQUATION
oRALToERS SOLVERS
SPECIAL
TYPES
ELECTROLYTIC
TANKS
Figure 6-1. Classification of various analog devices.

.ages: (1)the time required to solve a4 prob-
lem is short, even for complex sets of dif-
ferential equations, and (2) once an analog
computerhasbeen set up to solve a problem,
it can generate solutions for a wide range of
system parameters in a very short time.

6-1.1 SOLUTION OF EQUATIONS BY ANA-
LOG MEANS

6-1.2 Common Mechanical and Electrical
Analogs

Each computing element in an analog de-
vice performs its mathematical operation on
a 'physical quantity (such as an electrical
voltage or a shaft rotation) where the physical
quantity is equivalent to a variable in the
mathematical model for the system. As is
discussed in Chapter 1 of this handbook,
knowledge of the equivalence on analogies
relating different types of physical systems
is a valuable asset in the solution of many
problems relatingto dynamic systems. Table
1-2summarizes some of the analogies exist-
ingbetweencelectrical, mechanical, hydraulic,
pnecumatic, and thermodynamic systems. It
isimmediately apparentthatthe same mathe-
matical form describes the dynamic perform-
ance of a single-degree-of-freedom system

6-2

whether it be composed of electrical, me-
chanical, or fluid eclements.

The concept of analogies is strengthened
further by comparison of the laws that form
thebasis for electrical network analysis with
the corresponding laws for mechanical sys-
tems. Kirchhoff's laws for electrical sys-
tems can be stated as:

(1) In any electrical network, the alge-
braic sum of all currents flowing
toward any point is zero at all times,
i.e.,

D0 (6-1)
The algebraic sum of all voltage
drops around any closed circuit is
zero at all times, i.e.,

Ze-o

whereone form or the other is employed de-
pending on the details of the particular sys-
tem. Analogously, Newton's Third Law for
mechanical systems takes one of the follow-

ing forms:
(1) In translational systems, the alge-
braic sum of the forces acting at a

(2)

(6-2)
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point on w body in eguilibrium is
Zero, Lo,

D F -0

In rotational systems, the algebraic
sum of tlie torques acting on a body
in equilibrium is zero, l.e.,

2,170
The analogous statements for steady-
state conditions in other systems follow:

{6-3)

(6-4)

(1) In magnetic circuits, all flux lines
must be continuous closed paths.

(2) In hydraulic systems, the law of
conservation of mass allows the
calculation of velocity distributions.

(3) In thermal systems, the law of con-

servation of energy permits the tal-
culation of temperature distribu-
tions.

The concept of direct-analog computation
can be illustrated by consideration of the
example depicted in Fig. 6-2. A spring-
supported mass m is constrained to move in
a vertical direction (see Fig., 6-2(A\)), A\t
time t = 0, the mass is at rest in an equilib-
rium position, where the displacement s = 0.
A force f(t) is applied between the frame of
reference and the mass. Viscous friction
exists between the mass and its guides. Tlic
differential cquation describing the sysiem is

(6-5)

i)

/771777777777

(A) Spring-supported mass.

e

oL}
T

(B} Parallel RILC circuit in which current is analagous to force in (A).

21

(C) series RIC circuit in which voltage is analogous to force in (A).

Figure 6-2. Analogous mechanical and electrical systems.
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where the subscriptsk andb identify the force
contributed by the spring and the friction in
the system, respectively. Substitution of the
appropriate expressions for these forces
yvields, forthe simple case of viscous friction
and a linear spring,

(6-6)

If Ey. 6-6 is rewritten in terms of velocity,
v = ds/dt, it takes the form

d
) - mdt wby ck / vdt (6-7)

Application of Kirchhoff's first law to an
electrical circuit consisting of a current
generator i(t) driving a resistance R, an in-
ductance L, and a capacitance C connected
in parallel (see Fig. 6-2(B)) yields, as dis-
cussed in Chapter 1,

i) = i) vip) +if) (6-8)
where the subscript G refers to reciprocal
resistance, or conductance, and the subscript
I" refers to reciprocal inductance. Substi-
tution of the appropriate expressions relating
currents to voltage drops shows that

i(t) =Cde + Ge t1 fedt (6-9)
dt

Comparison of Egs. 6-7 and 6-9 shows that
they are identical in form and, consequently,
will have identical mathematical solutions.
Therefore, if current is made analogous to
force, it follows that voltage is analogous to
velocity, capacitance is analogous to mass,
conductance is analogous to viscous friction,
and reciprocal inductance is analogous to
spring stiffness.

Examinationof the circuit of Fig. 6-2(C)
shows that it also is analogous to the me-
chanical system of Fig. 6-2(A) if, in this
case, voltage is made analogous to force.
Application of Kirchhoff's second law to this
circuit yields

e(t) = gft) + eft) +eft) (6-10)
Substitution of the expressions for the voltage
drops in terms of the current gives

6~4

di

e(t):LE-Ri 1S [ idt (6-11)

where the elastance S is the reciprocal of
capacitance. Eq. 6-11 is identical in form
with Egs.6-7 and 6-9. Consequently, if volt-
age is made analogous to force, current is
analogous to velocity, inductance is analogous
to mass, resistance is analogous to viscous
friction, and elastance (reciprocal capaci-
tance) is analogous to stiffness.

An awareness of these and other ana-
logies is important to the designer because
use of them may allow him to translate a
givenproblem in one physical system, where
modeling would be difficult, into terms of
anotherphysical system that is more readily
adaptable to the construction and testing of
low-cost models with variable parameters.
Thus, simple electrical networks often can
be used to reproduce the dynamic perform-
ance of mechanical, acoustical, hydraulic,
magnetic, and thermal systems, as well as
that of complex systems containing com-
ponents of several different types.

6-1.3 Block Diagrams

The first step in describing a physical
systemin a manner suitable for analog com-
putation consists of formulating a block dia-
gram for the system. Initially, the informa-
tion necessary to specify all the blocks in
precise mathematical form may not be avail-
able, but such specification must be achieved
before it is possible to carry out any type of
computer studies of system performance. In
ageneralblock-diagram model, mathematical
operations or operators are indicated by
appropriately labeled boxes or blocks, while
connecting lines denote quantities or signals
to be acted upon or produced by such opera-
tions. The block represents merely the fact
that the signal flowing into it is operated on
in some fashion to yield the output quantity.
The specific operation is indicated by the
symbols entered in the block. This method
of representation means, fundamentally, that
a functional relationship exists between the
output and the input quantities. The fact that
the operation may not be defined exactly does
not invalidate the block diagram as a very
powerful tool in system analysis.
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Block diagrams have become a very
widely used tool in both the analysis and
synthesis of engineering systems, Conse-
quently, a commonly agreed-upon symbolic
language for depicting block diagrams has
evolved as a means of assisting engineers in
using this tool as a precise and powerful
means of describing system performance'.

Abasic rule of block-diagram represen-
tation is that all signal flows are unidirec-
tional, as signified by the arrows. This rule
can be illustrated by the simple diagrams of
Fig. 6-3. Theleft-hand figure represents the
factthat the voltage across a resistance R is
equalto the current flowing into it multiplied
by the value of the resistance. An attempt to
interpret a diagram by considering the flow
inadirection oppositetothe arrows obwviously
leadstoincorrectresults since voltage times
resistance does not yvield current. While in
this simple case an obvious reciprocal rela-
tion exists, interpretation of diagrams in this
way can lead to incorrect results and in
general should be avoided.

Block diagrams can be formulated on the
basis of variables expressed in either the
time domain or the frequency domain. While
frequency-domain notationis somewhat more
convenient, it should be recognized that nor-
mallyusedinstruments enable one to observe
the variables as functions of time rather than
frequency. As a result, while it is not cor-
rect, it is not uncommon for one to see block
diagrams, especially if formulated for study
on an analog computer, in which transform
notation is employed within the blocks while
the signals are indicated as time functions.
kig. 6-4 illustrates both the time-domain and
tlic frequency-domain block-diagram notation
for several basic operations.

Summation is represented by a circle
with an inscribed "X" as shown in Fig. 6-5.
If one of the inputs to the summing point is
to be subtracted, this is indicated by a dark-
ening of the appropriatequadrant of the circle.

e=iR f=ma
| — R j—c g — m |—f
Figure 6-3. Block diagrams of Ohm's law

and Newton's second law.

Thus, Fig. 6-5 indicates that iz = i, - i,.
Some workers indicate that a signal is to be
subtracted by placing a minus sign beside
the arrowhead on that variable.

The electrical schematic of Fig. 6-6 and
the corresponding block diagram illustrate
the formulation of a block diagram for a
simple system. The block diagram can be
formulated in a step-by-step fashion from
the schematic. Note first that the voltage
e; is to be considered as the system input
and c, as the system output. Then note that
the voltage e3, which appears across the re-
sistor Ry, 1s the difference between e; and
e5. This fact is represented in the block
diagram by the summing circuit shown on
the left-hand side. Nextnote that the current
i is found by multiplying the voltage e3 by
1/R;. Then note that i, is given by i - i,
as indicated by the second summing circuit.
The output voltage e, is 1/C times the inte-
gral of the current flow into the capacitor C
and thus is found by operating on the current

12 by—&l‘— f dt. The next step is to find the

current i;, which combines in the second
summing circuit with the current i to yield
i,. Thecurrenti, can be found as the voltage
across the resistor R, multiplied by 1/R,.
This voltage, in turn, is given as the voltage
e. minus the voltage across the inductance L.
di,
This latter quantity is given by Ligz~ All of
the currents and voltages in the circuit are
now specified in the block diagram and it is
complete.

A simple change of the variables in Fig.
6-6 to functions in which time is replaced by
the Laplace transform variable s,and a cor-
responding change is made in the notation
emploved to indicate differentiation and in-
tegration, according to Fig. 6-4, enables one
to convert the block diagram of Fig. 6-6 to
the alternate form shown in Fig. 6-7.

While diagrams of these types permit
onctosee easily the interrelationships exist-
ingin a system and are useful as a first step
in developing an analog-computer set-up for
a system, it is desirable for mathematical
analysis to reduce a complex diagram of this
type into one containing only a single block.
This block then represents the transfer func-
tion for the system. Inverselv, a block dia-
grammay have been drawn initially in terms

6-5
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Time Domain Frequency (Laplace) Domain

1. Multiplication by a constant

i(t) e(t) I(s) E(s)

2. Differentiation

i(t) d e(t) I{s) E(s)
| a*r —_— 5
3. Integration t
i) fdf‘ ;‘:i(*)d* CRERES

©w

[e)

Figure 6-4. Block-diagram operations-

Figure 6-5. Symbol for a summing point.

R] e
1 1 i 2 ljd 2 €2
_—r r - t ——
R] s 1
[ .
T ’ e
4d
e c Ldf
[~ 2
i]
]’/RZ
_t -

Figure 6-6. Series-parallel circuit and its block diagram.
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=]

Ez(_s)

Ez(S)

EZ(,)

Ez(s)-slll(s)

Figure 6-7.

Block diagram of the system of Fig. 6-6 given in the

Laplace domain.

of complex transfer functions and it is de-
siredtorecastitin terms of the basic opera-
tions verformed by individual analog com-
puting clements in preparation for study of
the system on a computer. For these pur-
noses, a group of rules have been developed
tu1e manipulating block diagrams. Some of
t:e more important of these rules are illus-
trated in tlie paragraphs which follow.

Rule 1. Superposition.

The principle of superposition, which
applies only to linear systems, states that
the response of a system to scveral inputs
applied simultaneously is equal to the sum of
tlie responses to the inputs applied individu-
ally. (onsequently, the response of an ele-
ment to an individual forcing function can be
fountd by considering all otlier inputs zero.
On this basis, tlie two diagrams of [Mig., 6-8,
i which Iy is the part of E due to Iy anci L
is part of I due to 1,, are equivalent.

Rule 2. Cascaded elements.

The order of linear cascaded clemerits
mav be interchanged or they may be corn-
bined by multiplying tlie functions of tlie 1n-
dependent elenients, as indicated in Fig. 6-9,

Rule 3. Moving an element forward or
past a4 summation

backward
point.
An element may be moved forward past
a summation point if its reciprocal is in-
serted in cach leg of the other inputs to tlie
summation (sce Fig. 6-10)or backward past
a summation point, against the direction of
flow, provided it is inserted in every leg that
represents an input to the summation. (See
Fig. 6-11.)

Rule 4. Moving an element forward or
backward past a pickoff point.

An clement may he moved forward past
a pickoff point provided it is placed in each
branch leading away from tliec pickoff point
(see I'ig. 6-12). Conversely, an element maux
be moved backward past a pickoff point pro-
vided its reciprocal is inserted in all branchecs
other than the one in which it was originally
located (see Fig. 6-13).

Rule 3. Combination of parallel paths.

Parallel paths lying between a pickoff
point and a summation point m: y be combined
into a single clement, provided that tliere are
no additional pickoff or summation points in
cither path. The resulting single clement is
represented by tlic sum of tlie element-; 1n
the individual paths. (Sec Vig. 6-14))

Rule 6. Removal of a feedback loop.

A fecdbadk loop with o forward transfor
function I7)(s) and a feedback transfer func-

tion 7, {s) canbe replaced by a single element
cqual to Fy(s)/{1- I ()I"5(s3]. The ninus
sign 15 usecl when tlic (eedback 15 additive,
tlic plus sign when the feedback is subtractive.
(See Fig, 6-15.)

The application of these rules is illus-
tratcd bv a redoction of the block diagram of
Fig. 6-7 inlo one containing a s ngle element.
As a first step, the fecdback path containing
sL anti 1/R, 15 reduced to a single clament
by application of” Rule 6. ltlere, F(s) cor-
responds to 1/R, anci F5(s) to sL. As a next
step, the feedback path containing the new

ClementTTls_L m the feedback path and the

element 1/Cs in the forward path is reduced

6-7
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—e= F(s) |

— F(s)

Figure 6-8. Equivalent configurations based upon superposition.

E]——.-R‘ -—p:———SCR-———.-

Figure 6-9. Combination of cascaded elements.

Figure 6-10. Movement of an element forward past a summation point.

1, I
— il
- L. E
1, 1

Figure 6-11. Movement of an element backward past a summation point.

Z

" ]
l R2 | va R2

Figure 6-12. Movement of an element forward past a pickoff point.
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"R2 ) I
L = = sl
5 P\z
. E E
T 2 1 1 I
— i1 e o] W] Rz
[ IR,
: ] L
T <1
Figure 6-13. Movement of an ¢lement backward past a pickoff point.
L R
I £
'Y J——— R+sL
TA sb
Figure 6-14. Combination of parallel paths.
X Yoy X Fits) Y
F = L SR
1(5) —— ] ]-F] (S)Fz(s) -

Figure 6-15.

to a single element. The cascaded elements
in the forward path of Fig. 6-16(13) are then
combined according to Rule 2. Finally, the
feedback system of Fig. 6-16(C) is reduced
in accordance with Rule 6 to a system con-
taining a single element. The function in the
block of this final diagram is the transfer
function for the system.

6-1.4 Analog Computer Diagrams

Diagrams drawnto indicate how an analog
computer should be set up to solve a partic-
ular equationare closely related to the general
block diagrams discussed in the preceding
paragraph. TIlowever, a specialized set of
symbols has been developed to conform with
the operations performed by the actual cle~
ments of the computer. Although these sym-

Removal of a feedback loop.

bols are not completely standardized, those
shown in Table 6-1 are representative. It
should be noted that this listing does not con-
tain a symbol for differentiation. At first,
this might appear to be a serious omission
inasmuch as analog computers are used ex-
tensively in obtaining the solution to differen-
tial equations. In practice, however, for
rcasons that will be discussed later, it is
more feasible to employ the process of inte-
gration than the process of differentiation.
Although important applications of analog
computation have been made in the solution
ofalgebraic equations and partial differential
equations, the engineer concerned with the
design of fire control systems is intercsted
in analog techniques chiefly as they apply in
the study of svsterns that can be described in

6-9
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TADLE 6-1. SYMBOLS FOR ELECTRONIC ANALOG COMPUTING ELEMENTS.

Opecration and symbol

lemarks

High-gain inverting amplifier

x = = Ax, where |A|—--OG

o

The high~gain amplificr represents the basic
building block of the clcctronic differential
analyzer

Summing amplifier
Xy 0———---._1
Ky O—mmi |
Xy O—ml 4 °
X, 0—m={10

x = = (x, + %, + 4x_+ 10x.)
0 1 ) i s

The constants by which the various inputs
arec multiplied aretypical of those normally
provided in a summecr or integrator

Summing intcgrator

X
1
x\
X A
X
4
= N Z 7 - 1
X, f(x} t X, + -1x3 + ]_0);4) dt r i.c,

Each of these units providcs a sign reversal.
The initial condition is indicatedin the box
labeled i.c.

Coecfficient multiplier

(e
? O

The coefficient a is manually set before a
solution is run

X, = %%, /K

(o]

Xo=ax1wherc0<= a< 1
Gep =1 s teim 1t This unit providcs for multiplication of one
o dependent variable by anothcr
X
X, O ’
*)

Function generator

xlo—-— F.G. ——O0 X

The abbreviation F.G. may be replaced by
a simple graph of the function
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(A

s E E
1 Ry sl 2 2
Sz p—
2
CL: fCst‘*l
S E2
|
(B)
I Rz sk Ez EZ
e R, 2 T
voCLsT T CRQS 1
Ez
!
{@)]
E Ry 4 sL q

5 ‘
P,CLs 1(CR]R2 +L)s 4 Ry4R,

Figure 6-16.

terms of ordinary differential equations and
inthe mechanization of equations as an opecra-
tional part of the fire control computer. A
discussion of the basic technique for solving
ordinary differential equations by analog
means will serve to clarify further the use of
block diagrams and to introduce the elements
used in analog computers.
6-1.5 Analog Solution of Differential Equa-
tions

Inorderto introduce the techniques used
for solving ordinary differential eqUations,
considerasa simple example the differential
equation

(6-12)

(D)

Steps in the reduction of the block diagram of Fig. 6-7.

with the initial condition specified that x = 0
at t 0. If the possibility of integration is
presupposed, and if the derivative dx/dt is
assumed to be known, the function x can be
obtained. as indicated symbolically in Fig.
6-17(A)whercusehas been made of the sym-
bols defined in Table 6-1. In an attempt to
solve Eq. 6-12 the difficulty is encountered
thatthe function dx/dt is not given explicitly.
M'hat is given is a relation involving dx/dt
and x. If, for the moment, the assumption is
made that the function x is known, the differ-
ential equation can be solved for dx/dt to

yield
dx
—=-1 —d 6-13
it ( )
The operations on the right-hand side of

6-11



AMCP 706-329

Eq. 6-13 are indicated symbolically by Fig.
6-17(B). The two symbolic representations
given in Figs. 6-17(A) and 6-17(B) can be
combined to yield the diagram shown in Fig.
6-18. The -1 represents a fixed voltage ob-
tained from a reference source. The diagram
given in Fig. 6-18 represents a closed-loop
systemthatbyits nature is forced to produce
the desired solution, provided that the opera-
tions are performed in an ideal manner. In-
asmuch as an integrator also serves as a
summing unit, it is unnecessary to provide a
summing unit as an individual component in
the complete system. Fig. 6-18 incorporates
this simplification.

The technique for solving a first-order
equation is readily extended for the solution
of an nth-order, lincar, constant-coefficient
differential equation of the generalized form

n n-1

d"y d y
*G" -1 n =1

dt" dt

o}

n

“’1% ta.y = (1) (6-14)

First, the highest derivative is separated by
putting the equation in the form

dy 1 dnly dy
e St SRS SRR

(6-15)

INITIAL CONDITION

(A) Diagram representing the integration of dx/dt

. . 2
(B) Diagiam representing the operations in the cxpiession 1-x

Figure 6-17.

Jasic diagrams associated with the analog

solution of the differential equation {(dx/dt) +x? = 1.

Figure 6-18.

Diagram combining lMigs.

6-17{A) and 6-17(13)

to give the solution of the differential equation {dx/dt) + x? =1
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Figure 6-19. Simplification of Fig. 6-18.

Then, the availability of this highest deriva-
tive is assumed, and it is integrated n times
to yield y. The various derivatives are mul-
tiplied by the appropriate coefficients.
summed, added to f(t), and finally multiplied
by -1/a, to give the highest derivative
dty/dt". Because the signs of outputs of
successive integrators alternate, care must
be taken to see that each term is added with
the correct sign. This technique can be il-
lustrated by reference to the setup diagram
of Fig. 6-20for solving the third-order equa-
tion

d3y dzy i

I i 6-16
ORI =18

ul—d—Y—t ay - f(l‘)

dt

In this setup, the assumption has been made
that all the coefficients in the equation ave
positive and less tlian unit). The occurrence
of negative coefficients would require the ad-
ditionor removal of inverting amplifiers, anci
coefficients larger than unity would require
the insertion of amplifiers with gains greater
than unity.

6-1.6 TYPLES OF ANALOG COMPUTERS

[faphysical system is to be useful as an
analog. itsperformance must be analogous to
that of the mathematical equations it is to
simulate and it must be possible to measure
the performance of the physical system ac-
curately and conveniently. Although a great
variety of physical systems ranging from
rubber membranes to large assemblages of
sophisticated electronic units have found use
as analog computers, the types of most im-
portance as components of fire control sys-

tems or as design aids in the development of
fire control systems are cither mechanical,
electromechanical, or electronic computers.
Each type possesses certain general advan-
tages in speed. accuracy, or reliability. and
a specific type may be best suited to per-
forming a specified mathematical operation.
Conscquently, it is common to see more than
one type of computing clement in a single
complete computer. Although four- to five-
place resolution and three- to four-place
accuracy aretypical of analog-computer per-
formanceinmost simpleoperations of algebra
and the calculus. the error resulting in the
solution of an overall closed-loop system of
medium complexity may be closer to 1 per-
cent in a typical situation.

6-1.7 Electromechanical and Electronic Ana-

log Computers

Anyanalog computer employing voltages
and mechanical shaft angles as analog quan-
tities falls into the electromechanical cate-
gory. On this basis, nearly all computers,
except the high-speed repetitive electronic
type. fall into this category. In a somewhat
more restrictive sense, the term electro-
mechanical computer applies to computers
inwhich a relatively large numnoner of instru-
ment servos is used to perform such opera-
tions as multiplication and function genera-
tion. Althoughhigh accuracv can be achieved
with properly designed! electromechanical
computing clements, these units have a re-
stricted speedof responsce and require some-
what miore specinlized maintenance than
purely electionic clements. As a result, the
tendlency in the design of general-purpose
analog computers is away from the use ot
servos and other electromechanical units.
However, where a large number of nonlinear
functions musthe generated and a large num-
ber of multiplications performed, such as in
flight trainers. servos may offer the best
overall soluticn. Servomultiplicrs, dividers,
and function ¢encrators are discussed n par.
6-4 through par, 6-4.15.

The term electronic analog computer
generally refers to an analog computer for
solving ordinury differential equations in
which most, if not all, of the computation s
donce by purcly electronic nreans. Such corn-
puters offer the advantage of much greater

6~13
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Figure 6-20.

Sctup for the solution of a linecar third-order differential

equation.

speed than a mechanical or electromechanical
computer. In fact, all-electronic machines
are sometimes designed to permit repeating
the solution to a problem 10-60 times per
second. Specific computer components are
described under par. 6-3 through par. 6-3.9.

6-1.8 A-C Type

In an a-c computer a carrier voltage,
usually 400 cps, is used throughout the ma-
chine. Here, the amplitude of an analog quan-
tity is represented by the amplitude of the a-c
voltage and the sign of the quantity by whether
this voltage is in phase or 180 degrees out of
phase with a reference voltage. This a-c
suppressed-carrier technique is advanta-
geous when data are transmitted over great
distances and when vector transformations
are required. The a-c computer can make
use of some of the same components as used
in d-c computer, such as summing circuits
and coefficient potentiometers, provided
carcful attention is given to phase shift be-
tween computer components. For example,
the addition of two a-c voltages that are
slightlyout of phase can lead to considerable
error. However, integration cannot be per-
formed with a high-gain amplifier and an RC
feedback network. Instead, a velocity servo
is usually employed as an integrator in a-c
computers.

6-14

A-c signals can be used to drive two-
phase servomotors directly, to excite syn-
chros, and to excite induction resolvers em-
ployed to perform trigonometric functions.
The accuracy of an induction resolver is
limited by magnetic uniformity and residual
voltages, as well as by the difficulties of
residual noise components and the problems
of phase shiftthatare common to all inductive
components. Nonetheless, the accuracy
achieveable in a well-designed machine can
be comparable with that achieved in a d-c
computer.

In computers employing an alternating-
currentvoltage as the analog quantity, trans-
formers can be used for performing addition
(see Fig. 6-21). Ifaccurate results are to be
obtained, the transformers must be nearly

ideal.
l_l;[

!

Transformer summing
circuit.

Figure 6-21.
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6-1.0 D-C T'vpe

i oaod-c all calculations arc
carried out with direct currents or voltages
representing the analog quantities. Shiclding
is used extensively to help minimize noise
and interference troubles in the handling of’
low-level signals, with the shielding carefullsy
designedtoavoid circulating ground currents.
The amplifiers usedin a direct-current coni-
puter are perforce direct-coupled, leading
to tlie requirements for response from zero
cps to several thousand c¢ps for real-tinic
computers (Ref.par. 6-3.1) and to several
hundred thousand cps for compressed-time
applications. The drift cliaracteristics of
the amplifiers must also be carefully con-
trolled. Drift (change in the zero-signal-
relerence level of the output) arises in d-c¢
amplifiers because of changes in power-
supply voltages and heater voltages, changes
in tlic characteristics of vacuum tubes or
transistors, and changes in component values
resulting I'rom variations in temperature or
humidity. Idecally, the input impedance of a
computer amplifier should be infinite, its
output impedance zero, and its gain in{'initc.
I'or niost applications, these cliaracteristics
are essentially achieved in modern vacuum-
tube computer amplifiers and rapid strides
havc been made in recent years toward ob-
taining nearly as good characteristics from
transistorizedamplifiers. The strong appeal
of transistorized design is offset by the in-
ncerently low input impedance and high output
chavocteristics of fransistors,
plus their susceptibility totomperature varie-
tons. Porvtunatels for tlie designer, so much
work has been done in developing d-c ampli-
fleys that (in ample choice [rom existing de-
signs is avallable o military quality.

The d-c¢ analog computer is bagically o

computer,

vapedance

real-finme device, but can he uscd on a com-

pre=sscd op extended time scale,
6-1.10 Flecirical Analog Computers
Tieuse ol clecirical networks as analog
computers hns found wide application. Fre-
quentty, arter experience with the technigue
s been gained, it is possible to arrange thy
clectrmcal elements ol resistance, inductaree,
capacitonce  to mechanize complicate
without the

i

phyoicon? e stomis inrermedinge

step of formulating equation-, for tlie given
system. The flow of electricity in the net-
work is a useful analog in structural design
problems, in establishing fluid flox 1n pipes,
in predicting ncutron densities in a reactor,
and in a range of similar functional applica-
tions.

Configurations of an clecirolviic tank or
a conducting sheet have currents that satisfly,
under suitable conditions, various forms of
tliec Laplace and Poisson partial differential
equations. By these equations, it is possible
to describe a great number o physical phe-
nomena in the fields of electrodynamics, fluid
dynamics,thcrmodynamics,and relatedprob-
lems.

Voltages can lie summed clectrically in
the simple resistance network shown in 1%ig.
6-22. The output voltage v is given hy tlie
expres sion

R, R,
°7R17R2v' -iR] R2V2 (6-17)

v

Although this circult can be extended to
permit summing n voltages, it bas the dis-
advanlage that the resistance across which
the output voltage v, is developed influences
the result obtained.

To perform electrical differentiation,
a voltage proportional to the derivative of a
second voltage can be gencrated by a resist-
ance-capacitance (RC) circuil or o resist-
ance-inductance (R1) cireuit (see Fio, 6-235),
For many applications, a relatively aruade
approximation ol the devivative - sufTiciont
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and these simple circuits suffice. The ac-
curacy of the RC differentiator is improved
byusing small values of R and C (short tis. ¢
constant), but this leads to a small output
voltage. Likewise, the RL differentiator re-
quires a large R and a small L for high
accuracy.

output = RCde

input e R dt

(A) RC Differentiator

input e L

(B} RL Differentiator

Figure 6-23. Differentiating circuits.

6-1.11 Mechanical Analog Computers

Mechanical analog computers generate
problem solutions primarily by mechanical
means. Although they have been displaced
almost completely by electronic or electro-
mechanical computers for genecral-purpose
applications, they are still widely used as
special-purpose computers. The accuracy
achievable with the best mechanical com-
puting elements exceeds that obtainable with
electronic elements, and a mechanical com-
puter can be reliable even when operated in
an unfavorable environment.

Specific mechanical computing elements
-- based upon the use of cams, linkages, and
gears -- are described in par. 6-4 and in-
clude summation devices, integrators, mul-
tipliers and dividers, resolvers, and function
generators.

In mechanical computers, three types of
error contribute inaccuracies to the mecha-
ni zation of mathematical relationships:

(1) Theoretical errors due to the in-

herent approximations of the geom-
etry.

(2) Fabrication errors due to manu-
facturing tolerances and necessary
clearances.

(3) Sliperrors where friction drives or
belt-connected units are required.

6-2 ANALOG SOLUTION OF EQUATIONS

6-2.1 BASIC SOLUTION METHODS

6-2.2 Ordinary Differential Equations2

The analog technique for the solution of
a simple, first-order differential equation is
presented in par. 6-1.5. This technique is
thenextended to the solution of a generalized
nth-order, linear, constant-coefficient differ-
ential equation. Solution of such an equation
(Ref. Eq. 6-14) requires only integration,
generator of f(t), and the operations of sum-
mation and multiplication by constant coeffi-
cientsbecause the function defining the high-
est derivative of the dependent variable is a
linear function of f(t) and the derivatives of y.

Analog computersare of special import-
ance in solving ordinary differential equa-
tions. General-purpose computers of this
type are called differential analyzers. The
solution of*ordinary differential equations by
analog means is presented in the paragraphs
which follow. The solution of other types of
equations by analog methods is covered in
succeeding paragraphs. These include the
solution of simultanecous linear algebraic
equations, nonlinear algebraic equations, and
partial differential equations.

As a specific example of the solution of
an ordinary differential equation by analog
methods, consider the equation

d%y
69.4—F £9.174x +y -20 (6-18)
dt? dt
This leads to the analog-computer setup
shown in Fig. 6-24. However, such a setup
is not unique because kEqg. 6-18 can be re-
written in the form

&y 917 dy | 20

AR ARG P 6-19
57 697 dt ‘694 694 (©-1%)

Eq. 6-19 could be solved with the alternative
computer arrangement shown in Fig. 6-25.
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63.4

INTEGRATOR

dt 1 yit)
INTEGRATOR

i 2
20 _z\ m
L

-

-9.17

Figure 6-24. Analog-computer setup for a simple linear differential

equation.
20 4%y Sy "
2 [ y
§9.4 4 ml INTEGRATOR INTEGRATOR
_9847 |
69.4
i )

" 69.4

Figure 6-25. Alternative analog-computer setup for a simple linear
differential equation.

The solution of equations outside this
special class requires the use of nonlinear
operations. Of these operations, the most
important are the multiplication of two vari-
ables and the generation of functions of one
variable. Some problems may require gene-
ration of functions of two or more variables,
but often these are built up, at least approxi-
mately, from simpler operations. Fortu-
nately, most of the problems encountered in
practice can be handled in this way because,
as discussed in par. 6-2.17, generation of
functionsof two ormore variables is difficult.

llgquations that containtime-varying coef-
ficients may be considered one step more
complex tlian linear, constant-cocfficient,
ordina ry, diffecrential equations. Tlie equation

d’y _dy
Y th' 1 H{t)y -1

(6-20)

where C is a constant. is a simple example
of this type and can be solved with the analog-
computer setup illustrated in Fig. 6-26. Non-
lineal-. differential equations, of which the
following equation is a simple illustration,
represent a still more complex type.

¥ B (6-21)

Although the mathematical structure of Eqgs.
6-20 and B6-21 is quite different, essentially
the same computer operations are required
in both cases, as can be seen by comparison
of Fig. 6-26 with Fig. 6-27, which is an
analog-computer setup diagram for solution
of Tq. 6-21.

6-17
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INTEGRATOR

d y (1)
= w INTEGRATOR (——=——pw

-C
MULTIPLIER }4
|
-f(HT
FUNCTION GENERATOR

I

U

Figure 6-26. Analog-computer setup for a simple linear, time-varying

differential ¢

quation,

Y (1)

w| INTEGRATOR

FUNCTION GENERATOR

3
i 2
- 7 gt INTEGRATOR gt
[
y
]
MULTIPLIER
oy

Figure 6-27, Analog-computer setup for @ simple nonlinear
differential cquation,

6-2.3 Simultaneous l.inear Iguations?

The problem of finding the unknown x's
that salisfy a sct of simultaneous cquations
of the gencralized form

ap g s aggxg o ag X by o 0
. 0
Uy %4 TO32% OZan K b2
{(6-221
) . (
T L na’n .

where the a's and D's are known constants,
and the equivalent problem ol inveriing nia-
trices, arises frequently in engineering and
Svionee. i 1878, Lord Ielvin proposed a
machine for solving such equations, bul ap-
parently he never built ite . 8. Wilbuar, nt
the NMassachuscetis  Institute of Technoioo..
built sceveral improved versions ol Kelvin

nrachine in the 1030%s, With the tneren o in

infere=stinclectrical analog computers -+ e
10405, attention turncd to electrice: g

methods. Still more vecently, with i v

pread use of digital mnochines an o
st tor o techniques  capuble ol anditi
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scveral hundred equztions, most problems of
tliis class now are solved digitally. Incertain
applications. however, that involve a maxi-
mum of 12 to 15 simultaneous equations,
some convenience may be gained by use of’
analog techniques.

Twobasically different methods exist for
tlie analog solution of a sc¢t of linear simul-
taneous algebraic equations:

(1) lterative, orsuccessive-approxima-

tion, methods.

(2) Closcd-loop or direct-solution

methods.

In schemes employing the iterative
method, the a and b coefficients are repre-
sented on groups of potentiometers. With
the potentiometers representing the coef-

ficients a; through a;, and b, switched into
the circuit, the potentiometer representing
x; is adjusted to give a null on an indicator.
The second bank of potentiometers is then
switchedinto the circuit and the potentiometer
representing x, is adjusted to satisfy the
sccond equation. This process is continued
until each equation in turn has been switche«l
into tlie circuit ancl tlie corresponding X po-
tentiometer lias been adjusted for a null. The
process is then repeated until a setof x's is
obtained that yiclds a balance for each equua-
tion of tlic set. Tlie values of the x's are then
read directly from the potentiometers.

B

]

fixed supoly voitages
t] J

Figure 6-28.

Direct solution of a set of simultaneous
algebraic equations by analog methods can be
accomplished by employing feedback across
high-gain computing amplifiers. The ar-
rangement shown in Fig. 6-28 is for solving
only two equations, but may be extended di-
rectly for solving systems of more equations.
The desired a’s and b's are set into the ap-
propriate potentiometers. antl the b potenti-
ometers are excited from a fixed voltage E.
The output voltages e, and e, of the amplifiers
represent the values of the unknowns x; and
x,. Because the gain characteristic of the
amplifiers is a function of frequency, the use
of* feedback around the amplifiers may lead
to instability in circuits of the type shown.
Mowcever, straightforward means exist for
circumventing this difficulty.

6-2.4 Nonlinear Algebraic Equations k

A nonlinear algebraic equation that
occurs frequently in scientific work has the
generalized form
gz +a,_,z"" 1 « :a

2 . -
2% vz - ag 0

(6-23)
where a,, 2,25, . « ., 8,1, antl a, are con-
stants. General solutions to higher than
fourth-degree polynomial equations cannot
be obtained and considerable effort has been

A

Circuit for a closcd-loop solution of a pair of

simultaneous cauations.
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devoted to developing machine methods for
solving these equations. Mechanical, hydrau-
lic, and clectrical analog schemes have been
used to a limited extent. With the develop-
ment of digital techniques, however., the
workerdesiringto solve any number of poly-
nomial equations usually uses a digital com-
puter.

Basically, the solution of a polynomial
equation requires generation of the required
powers of the variable z, multiplication of
these quantities by coefficients, and summa-
tion of the resultant terms with the constant
a,. The variable z is swept through a range
of values, and a root occurs whenever the
sum is zero. Ifthe coefficients and the roots
are all real, potentiometers and simple sum-
ming circuits are sufficient to perform the
required operations. Complex roots can be
handledby converting the original equation in
zintoa pair of simultanecous equations by the
substitution of.z = x + iy or by conversion of
the equation into trigonometric form by the
substitution of z = r (cos @ *ti sin 8).

Numerous variations of these techniques
-- as well as anumber of other schemes --
have been proposed. but they have received
little attention since digital methods have be-
come widely available.

6-2.5 Partial Differential Equations%

The solution of partial difterential equa-
tions by analogmeans is based upon the same
concept as the solution of ordinary differen-
tial equations; namely, that the behavior of a
variety of physical systems can b¢ expressed
bymathematical equations of the same form.
Partial differential equations are generally
more complex and difficult to solve analyti-
cally than ordinary differential equations,
and a great deal of attention has been given
tothe developmentof analog methods of solu-
tion. However, generalized partial-differen-
tial-equation computers do not exist. Equip-
ment must be tailored to a specific problem
or narrow class of problems, and the ten-
dency has been for ecach group of analysts
to construct its own analogs.

Partial differential equations that are
encountered frequently in scientific work and
that have been investigated by analog tech-
niques include the following:

a. laplace's equation:

6-20

Vip -0 (6-24)
where
2 2 2
ﬁ2J 3 ¢ N o ¢ N a b (6-25)
Y G- = — -
X 2 ',%yz gz 2
b. Diffusion equation:
_ 3¢
v -k XL (6-26)
3t
c. Wave equation:
2
2 o ,f
VI e K —— (6-27)
2
d. Poisson's equation:
V2= Hx,y, 2) (6-28)
e. Wave equation with damping:
g 2‘ ()L(f ot
JoKy——- K. — K, (6-29)
f. Equations from theory of elasticity:
wig # 0 (6-30)
oKk — (6-31)
't
and
2
4 C i
v = KI 'Wz K, 5 (6-32)
where
4% 4( 4"
iy =42 ‘2“2«; (6-33)
854 2)( Yy Y
Conductive solids, conductive liquids.
resistance networks. resistance-reactance

networks. electronic analog computers of the
typeused to solve ordinary differential! equa-
tions, and noneclectric schemes. such as
hydrodynamic analogs, elastic-sheetanalogs,
and soap films, havebeen used for the analog
solution of partial differential equations.
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6-2.6 SCALE FACTORSANDTIMESCALIS g

After thc basic block diagram for the
representation of a physical system has been
determined, scale factors must be assigned
that relatc¢ (1) the amplitudes of voltages with-
in the computer to the magnitudes of the
corresponding mathematical variables in the
differential equation to be solved and (2) the
time required for an cvent to take place in
thc computcr (real time) to the time required
for it to occur in the problem being investi-
gated (problem time).

In an elcctronic computer, the relation-
ship bctween an cquation variable y and its
corresponding voltage vp can be written

V‘ = QIY] (8"34)
In general, the scalcfactora; is a dimensional
constantsincc y, and vy usually have different
dimensions. For example, if y; is a distance
measured in feet, and 5volts of v correspond
to 1 foot of y;, Eq. 6-34 bccomes

vi - (v iy (6-35)
Because a computer. contains more than one
variablc, the rclationships between scale
factors of different variables must be taken
into account in the operation of a computer.

Considcration of the block diagram for
the completely generalized analog-computing
component shown in Fig. 6-29 leads to a
method for handling scale factors that is
applicablc to any analog element the analyst
may encounter. The output v, of this compo-
nent, as a function of the inputs v; and mach~
ine time T, canbe expressed as

Ve =9V, vy, v, 7) (6-36)
T
Vl——- l
Vz———-
oy vy oo v, 7 P,
n e o &

v
Figurc 6-29. Block diagram for a
generalized computing component.

The corresponding relationship in the phy-
sical situation can be expressed as

yo 7 fly Yy e Yoo ) (6-37)

Computer variables and tle corresponding
problem variables can be related by a group
of equations ecach of which has the form of
Eq. 6-34, i.e.,

VO -QOYD
V1 0¥,
(6-38)
vn ~onyn
7=aqa.t

Substitution of the relationships of Eq.
6-38 into Eq. 6-36 yields
(6-39)

G°y° - g(o'ly'l’ 02y2’ e Gnyn’ Gft)

or

1
Yo =77
a

g(clyl’ Q2Y2’ ot Gnyn’ th) (6-40)

For any particular element, the scale factors
can be evaluated by comparison of Eq. 6-40
with Eq. 6-37. Multiplication of a variable
N by a dimiensionless constant k, as expresscd
by

vo =Ky, (6-41)
represents the simplest situation involved.
The analog equivalent of this process is
shown in Fig. 6-30, where the symbols above
the lines denote equation variables and thosc
below the lines denote computer variables.

The analog component introduces a fixed gain
¢ and gives an output

v, =cv, (6-42)

°

Substitution of the appropriate rclationships
of Eq. 6-38 into Ed. 6-42 yiclds

6-21
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A change in the time scale on which a
computer is operating can be effected by
changing only those components performing
opecrations inherently dependent on time.
For example, the solution time for a third-
order linear differential equation with the
setup described could be doubled merely by
halving the gains of each of the three inte-
grators. No change in the initial conditions,
the summing circuit, or the coefficient po-
tentiometers would be required.

As a practical matter, it is desirable to
arrange an analog computer (unless it is of
the high-speed repetitive type) for a solution
timein the range of 30 seconds to 2 minutes.
Alower limit is set by the speed of response
of mechanical elements, such as servo units
or recorders, while an upper limit is set by
integrator drift.

6-2.7 LINEAR OPERATIONS’

Pars. 6-1 and 6-2.2 show that ordinary
differential equations can be solved by the
instrumentation of various mathematical
operations. The present discussion sum-
marizes briefly techniques used to instru-
ment linear operations and provides appro-
priate references to the more detailed
discussions of specific devices that are given
later in the chapter.

6-2.8 Scale Changing

The simplest operation performed in an
electronic analog computeris scale changing,
l.e., multiplying by a fixed Coefficient. This
is accomplished by means of a high-gain
amplifier with resistive feedback, as shown
in Fig. 6-34.

If negligible current flows into the amp-
lifier, the error voltage can be written di-
rectly as

R R.

£ i
Vo = v; 1 v
¢ R+RT ORHR

(6-57)

Furthermore, the output of the amplifier is
related to its input by the relationship

v, = -Av,

(6-58)

Where the amplifier gain is very high, the
combination of Eqs. 6-57and 6-58 shows that

Vo=, (6-59)

Examination of Eq. 6-59 shows that the
gain of the circuit in Fig. 6-34 canbe adjusted
by a change in the value of cither the input
resistor or the feedback resistor. DBecause
practical difficulties associated with the
closed-loop stability of the amplifier may be
encountered if an attempt is made to vary
the feedback resistor over a wide range, the
usual practice is to employ one fixed value
of R (1 megohm is the usual value) and to
vary R, to change the overall gain. Although
continuous adjustment of the gain over a
range of 10to 1 is casily achieved by varia-
tion of R;, this method of setting arbitrary
gains is not the one most frequently employed
because, as shown by Ey. 6-59, the gain
varies inversely with R; and, consequently,
setting R, is somewhat inconvenient. The
more usual practice is to permit adjustment
of the overall gain in steps -- such as 1, 2,
4, and 10 -- by selection of the appropriate
input resistance, and to provide continuous
gain adjustment, when required, by the use
of a potentiometer connected as shown in
Fig. 6-35. In many applications, the error
caused by loading the potentiometer with the

resistance R; is necgligible, since typical

AN

5]

Figure 6-34. Amplifier with resistive feedback,
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Figure 6-35.

values for the total resistance of the poten-
tiometer range from 10,000 to 30,000 ohms,
whereas R; may range from 100,000 to
1.000,000 ohms. When inecreased aececuracy
is required, the potentiometer sctting can be
made with the aid of a digital voltmeter or a
preeision attenuator after the partieular re-
sistanee R; to be used is conneeted.

6-2.9 Summation

The cireuit used for seale ehanging, and
incidentally for providing sign reversals, is
readily extended, as shown in Fig. 6-36, for
a summation of voltages. Ifthe error voltage
in the eireuit of Fig. 6-36 is negligible (that
is, the amplifier gain is very large), the out-
put voltage can be shown by simple eircuit
theory to be given by the equation

Ry Ry Ry
ey e —— e — (6-60)
Yo <R] Vi R2V2 i +R Vn)

n

O

—O

Use of a potentiometer for eontinuous gain adjustment.

One summing-cireuitarrangementused com-
mereially provides seven inputs with re-
speetive gains of 1,1,1, 4, 4, 10, and 10. By
connecting an input signal to the proper com-
bination of input terminals, any integral value
of amplifier gainfrom 1to 31 may be obtained
with this arrangement.

Sinee subtraction is the same process
as addition, except that the sign is reversed,
subtraction is not treated separately.

Electronie techniques for addition are
discussed in par. 6-3.3, while meehanical
techniques are disecussed in par. 6-4.1.

6-2.10 Integration

The analog solution of ordinary differ-
ential equations is based on the use of in-
tegrators. Integration ean be performed
mechanically with ball-and-disk or disk-
disk meechanisms (sce par. 6-4.2), electro-
mechanically with a rate servomechanism
(see par. 6-4.2), or eleetrieally with an RC

-A b o

Vo
a

o

Figure 6-36. Representative cireuit for the summation of n voltages.
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feedback network around a high-gain ampli-
fiecr (sce par. 6-3.1). Pneumatic integrators,
in which a gas is passed through an orifice
into a tank, are also used.

Probably the firstmechanical integrating
device was the planimeter invented in 1814
by J. M. Ilermann. Over the next 40 years,
various planimeters were proposcd, but this
work did little to introduce integrating de-
vices into mathematical analysis. In the
carly 1860's, James Thomson proposed a
disk-sphere cylinder integrator, and about
10 years later Williarn Thomson (who later
became Lord Kelvin) conceived the basic
idea of interconnecting integrators to ob-
tain analog solutions to ordinary differential
equations. The use of electronic integrators
originated during World War 1L

The basic circuit for performing inte-
gration in electronic analog computers is
similar to that employed for scale changing
but, as shown in Fig. 6-37, employs capaci-
tive, ratlier than resistive, feedback. If, as
before. the ideal-amplifier situation is ana-
lyzed, the input current i; can be written as

(6-61)

Because the input circuit of the amplifier
draws negligible current, the feedback cur-
rent i, as defined in Fig. 6-37, is the nega-
tive of 1; or

1]
'

(6-62)

70[_.<

If the error voltage is negligible, the voltage
across the capacitor equals the output voltage
and. consequently, can be written as

t

o b [0 (6-63)
0

where 7 is computer time (realtime) and t;
is the time for which v is determined.

Substitution of Eqg. 6-62 into Ey. 6-63 yields

(6-64)

—C’ fO'V;d7’Vo(O>

Eq. 6-64 shows that the gain factor of the
integrator is determined by the product R,C
of the input resistor and the feedback capa-
citor. With the integrator, as with the scale
changer, the error resulting from noninfinite
amplifier gain is negligible in practical ap-
plications. However, the feedback capacitor
used in an electronic integrator must have a
very highleakage resistance or the perform-
ance of the integrator deteriorates. Again
for the case of an infinite-gain amplifier,
analysis of the circuit of Fig. 6-37 with the
addition ofaleakage resistance R in parallel
with the capacitance C yields the relationship

(6-65)

which has been transformed into the fre-
quency domain, with s as the complex-
frequency variable. Thus, a noninfinite RL
determines the frequency at which the opera-
tion of this circuit departs by a specified
amount from that of an ideal integrator de-
fined by the equivalent relationship

; (6-66)

The leakage resistance of a good 1-uf inte-
grator capacitor, whichusually employs poly-
styrene as the dielectric., may have a typical
value of 1,000,000 megohms. This value of
leakage resistance causes the performance
to depart from that of an ideal integrator by
the introduction of a phase error of 1 milli-
radian at a frequency of 1 millirad/sec.
Consequently, very long solution times must
be involved before leakage resistance intro-
duces appreciable errors. Grid current in
the input stage of the amplifier in Fig. 6-37
presents another limit on integrator per-
formance. Here. the extraneous output re-
sulting from grid current is given by

e, m[t‘d (6-67)
o i d -
C 4 °
where i, is the grid current. Grid current

produces an offset that increases with time
and thus sets alimit on the maximum solu-
tion time that can be used before a specified
error builds up.
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Figure 6-37.

In order.to use an integrator in an elec-
tronic differential analyzer, means must be
provided to set the initial value of the inte-
gralatany arbitrary value. Because the value
of tlie integral in the circuit of Fig. 6-37 is
proportional to the voltage across the capa-
citor, the direct way to set the initial value
is to place a charge on tlie capacitor prior
to the start of the solution. Fig. 6-38 illus-
trates a basic circuit often used. 1In the
INITTAL. CONDITION position, the amplifier
input is switched to a resistive network. The
potentiometer setting determines the voltage
to which the capacitor is charged. When the
switch is placed in the COMPUTE position,
the capacitor initially retains its charge, but
the rircuit begins to function as an integrator.
In tlic solution of a set of equations, anumber
of such integrator circuits must be switched

RBasic circuit for integration.

usually is accomplished wilh o number of
relays with their coils connected in parallel
and energized through a common switch.
C'losing a single switch then zctivates all {hc
relay coils simultaneously, and tlie solution
begins.
6-2.11 Synthesisof Rational Transfer Func-
tions

Analog- computer studies often involve
transfer functions of tlie form

where s is the complex-frequency variable
and the a's and b's are rcal constants. Such

simultancously. Consequently, the switching functions can be instrumented by an appro-
+
+ MM,
INITIAL L\'
CONDITION ]/
AN
" COMPUTE
:
(7]
o <
Figure 6-38. Electronic integrator with initial- condition circuit.
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priate combination of the basic operations of
integration, summation, and multiplication
by a constant coefficient, as shown in Fig.
6-33.

This method is particularly suitable for
realizing transfer functions having a small
number of poles, particularly if the coeffi-
cients inthe functionrequire frequent change.
Since the coefficients appear directly as the
gains of amplifiers, almost no calculations
are required in the synthesis. Ilowever, if
high-order functions are to be synthesized,
an excessively large number of active units
is required by this method, and the equipment
reduction effected by using the methods dis-
cussed in the remainderof this section may
assume practical significance.

The simplest generalization of the basic
integrator circuit is shown in Fig. 6-40. If
an ideal amplifier with infinite gain is as-
sumed, analysis of the circuit of Fig. 6-40 in
terms of admittances leads to the relationship

(6-69)

IfYp, and Yp are two-terminal RC networks,
alltheirpolesand zeros must alternate along

the negative realaxis of the complex frequency
plane and the lowest critical frequencies
must be zero. Consequently, the poles and
zeros of the transfer function also must lie
on this axis, but two poles or two zeros may
occur together, and the lowest critical fre-
quency may be a pole. Anytransfer functions
meecting these conditions can be written in
the form

Nes)

e, Gts)

e, ) (6-70)
Cis)

where N(s) and D(s) are polynomials having
the forms, respectively, of the numerator
and denominator of Eq. 6-68 and where G(s)
canbe selected sothat N(s)/G(s) and D(s)/G(s)
canbe realized astwo-terminal RC networks.

The synthesis of Ya canbe carried out
in several ways, one of the simplest being to
expand N(s)/((s) in the form

’

(6-71)

——
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Figure 6-39.

Integrator realization.
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4
COMPLEX
PLANE
WO~ O 0O~Cr
REAL
Figure 6-40.
terminal
where
Jiw |1 N(s)}
- — =27 6-72
Gy 5 > [s G(s) ( )
The sum
1
Q
Z Ri _ (6-73)
i
i=2 s +R.C.

is obtained by making a partial-fraction ex-

pansion of
1
NN

The resulting network is shown in Fig. 6-41,
where the values of Ry and C; are in ohms and
farads.

Substitution of three-terminal networks
inplace of the two-terminal networks of Fig.
6-40 yields a useful generalization of this
method of synthesis. The resulting circuit,
illustrated in Fig. 6-42, can be analyzed in
terms of the input, output, and transfer ad-
mittances of the network. Thesecadmittances
are defined forthe A network by the relation-

N(s)

6-74
G(s) ( :

ships

Ya

O

Block diagram for one-amplifier realization with two-

networks.
e Yae - Yan® (6-75)
and

i - . 6-76

'2 Yar281 " Y228 ( )
G
{
\
Cz Rz
C{3 Ry
W

= o e ]
C RL
fF—www,

Ya ¢
Figure 6-41. Resulting form of synthesis

network,
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2 8B !
NETWORK

A
?“" NETWORK 2
e|

e

2
=
Figure 6-42. Block diagram for one-

amplifier realization with three-
terminal networks.

where the currents and voltages are shown
in Fig. 6-43. A similar definition applies to
the B network. The voltages in the circuit of
Fig. 6-42 are related by the cquation

e(Yazo * Yool = &Yaya) t6(Yg,) (6-77)

Furthermore,
e = -Ac, (6-78)
Solution of Eq. 6-77 and Eq. 6-78 yiclds the

following relationship for the transfer func-
tion 80/8;5

As A becomes infinite, e, /Ci approaches the
negative of the ratio of the transfer admit-
tanccs, that is,

e (6-80)

The error caused by a finite value of A can
be evaluated from Eq. 6-79which is the exact
expression for the realized transfer funetion.
The errors can be determined cither as the
displacements of thc poles of the realized
transfer function from thc dcsired poles or
as the error in the amplitude and phase of
the realized transfer function at real fre-
quencies. To keep the crror small, it is

6-30

necessary that the following relationship hold
at all frequcncices:

Yaz2 *Yg22

Yoy, o0 — (6-81)

At high frequeneies, cither or both of the
output admittanees Y A22 and Yp22 may tend
to become infinite. If such is the case, the
B network should be so designed that Ygpjp
also gocs to infinity at high frequencies.

The transfer admittance of a three-
terminal network formed entirely of re-
sistances and capaeitances can have only
simple poles that must lic on the negative
recal axis of the eomplex-frequency plane,
but may have zeros that lie anywhere in the
complex-frcqueney plane except on the posi-
tive real axis and that neced not be simplc.
The poles of e, /c; in Eqg. 6-80 follow from
the polesin Y,;, or from the zeros of Ygii2,
wliilethe zeros ofe,/e; follow from the zeros
of Yar2 or from the poles of Yg;» . Conse-
quently, littlc theoretical restriction is placed
ontlie type of transfer impedance that can bc
formedbyusing a eireuit of the type shown in
Fig. 6-42.

Several general proeedures for synthe-
sizing three-tcrminal BC networks have been
given in tlie literature#>. These procedurcs.
are too lengthy to inelude here, but are rela-
tively straightforward.

The principal restrictions imposed on
this realization are the complexity of the
synthesis calculations, the large number of
clements, and the great range of element
values that may be required.

Although fecw theoretical limitations are
imposed on thc type of transfer function
realizable with the single-feedback-amplifier
method just dcseribed, tlie use of additional
amplifiers pcrmits inercased flexibility in
the realization of the transfer function. This

> A -
* NET,W.ORK2 3
e €y

1

}

||(—<.v—

Figure 6-43. Definition of admittances.
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flexibility can reduce the number of passive
clements required to obtain a given function,
decrease the spread of element values, and
simplify the synthesis calculations. Such
expedients are particularly important when
complicated functions with many poles must
be realized.

One synthesis metliod using three ampli-
fiers is developed to demonstrate that any
transfer function can be realized in this way.
Once the particular method is understood,
many possible variations become obvious.

The circuit for the three-amplifier re-
alization is shown in Fig. 6-44. This circuit
differs from the one-amplifier realization
shown in Fig. 6-42 only by the addition of the
Cand D networks and the inverting amplifiers
driving these networks. As is brought out in
the following discussion, two-terminal net-
works are sufficient to realize any transfer
function; hence, this case is considered.

The voltages in the system obey the re-
lationships

eY, * Yy T Y - Yp) ~elY, = Yo) te Yy =Y,)

(6-82)
and

e, - - he (6-83)
Solution of Eq. 6-82 and Ey. 6-83 yields the
following relationship forthe transfer function
from ¢; to e :

1<

—2

e Y Y

° A= C

Y-rY -Y_ +Y
Ys - Yp +<A B c ®

(6-84)
)

As A becomes large, Eg. 6-84 assumes the
limiting form

&, - Y _Yc

- - (6-85)
g; Ya —YD

If the desired transfer function is expressed
as a ratio of two polynomials N(s)/D(s}, the
admittances must satisfy the relationship

Y -Y
_aZ ¢ NG (6-86)
Yg - Y, Dis)

In order to realize the admittances as RC
networks, Fq. 6-86 is separated to give

Y, -Ye gg— (6-87)
and
D(s)
Vg ~ Yo (_7(—2) (6-88)

where G(s) is an arbitrary polynomial which
does not alter the realized transfer function.

4 D

NETWORK J

R
NETWORK !

;A 2
$ NETWORK 1

€2

! |

o
R
1

€™

=

Figure 6-44. Block diagram for three-amplifier realization.
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The realization follows the method used
to obtain YA and Yg in Fig. 6-40. The frac-
tion N(s)/G(s)is expanded in the series given
by Eq. 6-71, and the terms in the resulting
expansion are divided between the A and C
networks in such a way that all the elements
have positive values. The additional freedom
gained from allowing negative terms in the
expansion makes possible the realization of
any ratio N(s)/G(s) with two-terminal RC
networks, provided that the two following
conditions are met: (1)the zeros of G(s) lie
on the negative real axis; (2)the ratio N(s)/
G(s) goes to infinity no faster than s as s
becomes infinite. An identical procedure is
used to realize the ratio D(s)/G(s).

The error introduced by a finite gain A
can be evaluated from Eq. 6-84 which is the
exact expression for the realized transfer
function. The method is the same as the
method already described for evaluating the
errorsinthe one-amplifierrecalization, How-
ever, in lEg. 6-84, the possibility exists of
changing the synthesis procedure slightly to
recalize exactly the desired transfer function
with a finite value of A. Eq. 6-84 can be re-
written in the form

e Yo Ye

o

e T\ Ty T
i YB(]iK>*YD <]-X>1X<YA+YC>

(6-89)

Ifthe desired transfer functionis again desig-
nated by the ratio N(s)/D(s), itcanbe realized
by making

_y NG) 6-90
Y, Yc’G(s) ( )
and
1Y _1y.Bs) 1
Yo (“A> YDO A>‘G<s> AlTa Y
(6-91)

If A > 1, the ,A, B, C, and D networks can
always be realized as two-terminal RC net-
works by using expansions of the form given
in Eqg. 6-71. The exact realization, obtained
atthe expense of including additional elements
in the 13 and I networks, is justified only in

6-32

special instances because the errors caused
by a finite value of A in the approximate
realization are usually less than the errors
due to parasitic behavior of the eclements.

A major advantage of the three-amplifier
synthesis procedure is the simplicity of the
calculations required to obtain the eclement
values. The spread of element values is de-
termined by the spread of the terms in the
expansion of the ratio N(s)/G(s) that is given
in Eq. 6-71 and the corresponding expansion
of the ratio T(s)/G(s). The arbitrary zeros
of G(s) can be chosen by a trial-and-error
approach to control this spread.

6-2.12 NONLINEAR OPERATIONSZ:

In the solution of nonlinear ordinary
differential equations, the need often arises
for means that permit multiplication of two
computer variables and the introduction of
arbitrary functions of one or two variables.
Hecause these operations are more difficult
to perform than the linearoperations, agreat
deal of effort has been spent by workers in
the field of analog computation in the develop-
ment of multipliers and function generators.
The principal methods that have been devel-
oped €or performing these nonlinear opera-
tions are discussed brieflyin the immediately
following paragraph. Where applicable,
references are made to the descriptions of
various devices appearinglater inthe chapter.

6-2.13 Multiplication and Division

Two types of multiplication arise in
computer work: (1)multiplication of a com-
puter variable by a constant and (2) multipli-
cation of one computer variable by another.
The first type is simple: the second is diffi-
cult. Multiplication can be performed mech-
anically, eclectromechanically, or electron-
ically, as described in pars. 6-3.2 and 6-4.3.

The chief requirements for a multiplier
to be used in a general-purpose analog com-
puter are speed. accuracy, and relative
simplicity. Servomultipliers of the type
described in par. 6-4.3 can be built to meet
the last two requirements, but their speed of
responseisinherentlylimited. Many attempts
have been made to build all-electronic multi-
pliers (Ref. par. 6-3.2) that meet all three
requirements. Only since the late 1950's
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has it been possible to reduce the errors in
these multipliers to a degree comparable
with that achieved in the linear computing
components. However, the all-electronic
schemes for multiplication remain complex
in comparison with the means for performing
linear operations.

The high accuracy achieved in such
analog-computing components as integrators
and coefficient multipliers results from the
use of feedbackin such a way that the stability
and linearity of the units are determined by
the characteristics of passive elements rather
than those of vacuum tubes. A high-perform-
ance multiplier is difficult to design because
the product cannot be compared directly with
either of the input signals for the purpose of
obtaining an error signal to be used in the
feedback loop.

In the multipliers described, either one
orthe other of the two following schemes has
been used to achieve high accuracy:

(1) An indirect type of feedback control

(2) A circuit in which vacuum tubes act

merely as switches.

In a conventional servomultiplier, the
indirect control of the feedback loop employs
areference voltage and a feedback potentiom-
eter. The effectiveness of this method depends
uponthe constancy of the reference signal and
spon the similarity of the control and multi-
plying potentiometers.

In the time-division multipliers and
in the quarter-square multiplier® using a
segmented-straight-line representation of
the square-law function, vacuum tubes are
used merely as switches. The use of tubes
in 'this manner offers great possibilities in
the design of precision computing components,
as demonstrated by performance that ap-
proaches that achieved in linear computing
components.

Although division is inmany ways similar
to multiplication, some division schemes
utilize special techniques and introduce addi-
tional problems.

At first glance, it might appear possible
to perform mechanical division by inter-
changing the output and one of the inputs of a
multiplier, such as one of those that are dis-
cussed in par. 6-4.3. The practical difficulty
with this approach is that the quotient ap-
proaches infinity as the divisor approaches
zero. This requirement exceeds the capacity

.
6,7

of any physical device. Furthermore, even
within the capacity of the device, a high input
torque is required when the divisor is small
and friction may make the device completely
inoperative.

The circuitry of several electronic mul-
tipliers is discussed in par. 6-3.2, while
mechanical and electromeclianical multi-
pliers are described in par. 6-4.3.

6-2.14 Vector Resolution

Problems requiring the resolution of a
vector into components in a particular co-
ordinate system and the transformation of
vector quantities from one coordinate system
to another arise in the study of systems in-
volving the determination of trajectories
from component velocities and forces. The
problem of representing the trajectory of an
aircraft subject to forces of drag. thrust,
gravityv, etc., is typical of this class. These
forces and the resulting trajectory can be
described in terms of a set of axes fixed to
the aircraft, in terms of axes fixed with re-
spect to the earth, or in terms of a set of
axes one of which is aligned with respect to
the relative wind. Each of these axis sets
offers advantages for some calculations and
disadvantages for others. Consequently, in
the study of an overall system it is usually
advantageous to employ two or more coordi-
nate systems and make appropriate trans-
formations between them.

Vectors can be described in either a
rectangular or a polar coordinate system.
Figure 6-45 illustrates the representation,
for a simple two-dimensional case, of a
single vector quantity in both a rectangular
and a polar coordinate system. In the rec-
tangular X- Y system, the vector is described
in terms of its components along the ortho-
gonal X- and Y-axes. These two components
are designated x and y. In the polar system,
the vector is described by its magnitude and
by the angle it makes with respect to a fixed
reference axis. These are designated in the
figure as r and 8.

If the vector is expressed in polar co-
ordinates (r, 8), its components in a rectang-
ular system are given by the equations

x =rcos ¢ |

and (6-92)

y =rsin. |
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Y
AXIS
¥
3
8
o X X AXIS
Figurc 6-45. Representation of a vector in

a recctangular coordinate system and in a
polar coordinate system.

Thc alternate transformation, rectang-
ular to polar, or as it is usually termed,
simply the "polar" transformation, is ac-
complished in accordance with the relation-
ships

(6-93)

Fig. 6-461illustrates the related problem
of expressing a vector that is initially speci-
ficd in one rectangular coordinate system in
asecond rectangular system having its origin
common with the first but with the axes ro-
tated through the angle 8. The components
u and v in the second system are related to
the components x and y in the first system
and the angle of rotation 8 by the equations

U =xcos ¢ -ysint

and (6-94)

v =x sin 'tycos

The direction of a vector in a three-
dimcnsional coordinate system can be speci-
fied either in terms of the direction cosines
of the vector or in terms of a set of Euler
anglcs. The basic mathematical relation-
ships involved with each of these techniqucs
is discussed here and computer techniques
for pcrforming vector transformations by
the two schemes are discussed in par. 6-4.4
through par. 6-4.7.

6-2.15 Direction Cosines

In this discussion, it will be assumed
that the axis system under consideration is
a right-handed one having axes X, Y,and Z.
In such a system, a right-handed screw
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directed along the positive Z-axis will ad-
vance in the positive direction when it is ro-
tated from the positive X-axis toward the
positive Y-axis through the smaller (herc
90°) angle. -

Any vector A in such a system can bc
rcpresented uniquely in the form

A-ATHATIAK (6-95)
L. § =

where i, j, and k are unit vectors along thc
x-, y-, and z-axes respectively, and A,, A,
and A, are the eoordinates of the terminal
point of the vector A. The length of the vec-
tor A is then given by

A :\/Af 1A2 Al (6-96)

The direction of the vector can be specified
by a set of direction angles, i.e., the angles
that the vector makes with the three coordi.
nate axes. The angles between the vector A
and the positive X-, Y-, and Z-axes are dc-
noted symbolically by (A,x), (A,y) and (4A,z),
rcspectively. The components of the vector
are then given by the equation

A, =Acos (A, x

A, -Acos(A,y) (6-97)
A -Acos (A z)
Use of Eqs. 6-96 and 6-97 shows that
cos2(A, x) 4 cos? (A, y) +(A,z) =1 (6-98)
V AXIS
Y
AXIS &
\
\
Vol
\ \
A oaXls
\ : ’;,-f »
Y -— o3 A
N A
u U AXIS

Figure 6-46. Rotation of a rectangular
coordinate. system.
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Consequently, tlie direction angles are not
independent and. if anytwo of them are speci-
fied, the third must satisfy Ey. 6-98. The
cosines of these direction angles are called
the direction cosines.

In developing methods for specifying the
orientation of one coordinate system with re-
spect to another having its origin common
with the first, it is convenient to have an
application in mind. The problem of speci-
fying the orientation of a set of right-handed
orthogonal axes fixed in an aircraft with «
sccond axis system fixed in inertial space
arises frequently and. therefore. provides a
good example. Thefirstaxis system is called
the hody-axis system, and the second the
inertial system. The origin of the body-axis
system is fixed at the nominal center of
gravity of tlie aircraft and the three body
axes arec fixed with respect to the aircraft.
Unit vectors along the X-, " -, and Z-axes
in this system arc designated i, J_‘b and k..
The exact alignment of the X body-axis is
somewhat arbitrary but here it shallbe con-
sidered to be aligned with the principal axis
of tlie aircraft. The Y- and Z-axes then form
a right-handed system as shownin Fig. 6-47.

The inertial system is a right-handed
triad of mutually perpendicular axes fixed

AIRCRAFT
CENTER OF GRAVITY

AXLS

in inertial space. It is assumed that the
carth is an adequate local reference. Con-
sider the X-Y inertial plane as being taken
perpendicular to the gravity vector. The X
inertial axis is usually fixed in the direction
of true north. In this system, the unit vectors
are designated Ti, j; and k..

The orientation of the body-axis system
with respect to the inertial system is illus-
trated in Fig. 6-48. The direction of each of
the body axes can be specified with respect
to the inertial axes by three direction co-
sines as shown in Fig. 6-49. To locate the
three axes of a coordinate system, a total of
nine direction cosines is needed. but when
systems employing mutually perpendicular
axes arc used, six of these direction cosines
are actually redundant.

6-2.16 Euler Angles

It can readily be visualized that a set of
axes, such asthebody axes of I'ig. 6-47, could
be oriented in any arbitrary way- with respect
toa set of inertial axes having the same ori-
gin by three successive angular rotations as
defined in Fig. 6-50. It should be noted that
the final orientation of a body following sev-
eral rotations in space is dependent on the

plane of
symmetry

X AXIS

Figure 6—47. Example of a body-axis system,
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plane perpendicular

Reference
plane

Figure 6-48.
{ -
m =
n =
Figure 6-49.

to ib

ii north

Orientation of a body-axis system with respect to an
inertial system.

Direction cosines defining the orientation of an axis in

inertial space.

order in which the rotations are made. Con-
sequently, a convention in this regard must
be set up and followed or erroncous results
will be obtained. The convention indicated
below is widely used, but isnot the only one.
Assume that the two axis systems are
initially coincident and itis desired to specify
a series of three angular rotations that will
define the final orientation of an axis system,
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for example a body-axissystem, with respect
to the inertial system. First, the, azimuth
Y of the vertical plane containing ib:T‘i and
the intersection of this plane with a reference
plane defined by i, and j; is defined (see Fig.
6-48). This is achieved by a rotation about
the K axis. A new axis system designated by
thesubscript 1is then related to the original

set by the first set of equations in Fig. 6-50.

e A 5 1
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i i cos ¥ siny O

j] =@ ji =| -siny cosyy O Ji

ky k, 0 0 kK

.Tz -i“ cos @ 0 -sinf -T]

jz =5 g, |=l © 1 0 i3

‘l:z T<] sin @ 0 cosf 1:1

i Ll 0 o||"

Ib =C 32 =(0  cos ¢ sing :2

T‘b T<2 0 -sin ¢ cos¢ Ez

Figure 6-50. Euler-angle definitions.
The elevationangle 6 of Iy, above the reference 0
plane is tlien defined. This is achieved by x M My
rotation about tlie J; axis defined in the pre- » o m N
vious step anti leads to the s ccond axis sys- Y Y Y
tem specified in Fig. 6-50. The third and ¢ m n
final rotation defines the roll angle ¢ and is : z z
achieved by a votation about the i, axis de- Transformation from body axes to inertial
fined by the previous step. axes is given in matrix form by
In matrix notation, the axes arerelated =1 - R
as follows (sce the appendix to this chapter): I | ih ib-|
- - [ = D I R - =
{ib .J i Ji l-u BT | =0Ty (6-100)

’jb asal g0 (6-99)

where

i LI
where the notation @~ L,etc. refers to the in-

verse matrix (seethe appendix to this chapter)
and

4
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(6-101)

The nine direction cosines are ecquivalent
tothe three Euler angles and related to them
by the following expressions:
{ =cos i cos

x
m_=cos {sin
n_=-sinrc
f, 7 sin ¢ sin ¢ cos yr—cos ¢ sin
m_ =cos / cos .~ ! sin ¢ sin sin (6-102)
n, =sin ¢ cos ¢
I =sin ; siny + cos 4 sin :-

cos

m, = cos ¢/ sin i'siny —siny cos .

n_-cosq cos

Conversely, the three Euler angles can
be found from the following expressions:

sin + = -n (
, n

tan v -m_ b5 (6-103)

tan / =n 'n \

To transform a vector, v = \‘1' + y'J‘ + L'k'
from any axis system (1‘,j ,k')toareference
axis system (1 j- T{), the following equation
must be satisifed:

vexi oy t2'k —-x_ih+yj?'zl (6-104)

Interms of thenine direction cosines and
expressed in matrix form. the required
transformation is specified by the relation-

ship

¢ ¢ { X X

x Yy z
mx my m, 1y = Yy (6—105)
n n n z' z

x y z

In terms of Euler angles, the coordinate
transformations take the form
x -0 x 41y e 2
Y z

=x" cos :’cos !

+y'(sin / sin « cos y —cos ; sin 1) (6-106)
bz/(sin ¢ sin ¢ t cos ./ sin ' cos i)
!
y =mx tmy 4+mz’
- x' cos ¢'sin
(6-107)
+y'(cos / cos i t sin ./ sin ¢sin )
f ¢ . - .
+z'(cos / sin ¢’sin i —sin / cos ;)
1 ’ ’
Z=n,x Tny inz
x
R (6-108)

l

_—x"sin:'ty sin{ cos "1z’ cos{ cos.

Conversely, avector T=xit VJ + 7k given
interms of areference axis system (l’i’ k) can
be converted to an axis system (', J', k) by
means of the same family of direction cosines
using the inverse matrix transformation

(6-109)

The fact that the transpose (sece appendix) of
the direction-cosinematrixisalsotheinverse
of the matrix follows in this special case
where the axesof each axis system are ortho-
gonal or mutually perpendicular.

Written in terms of the Euler angles
describing the orientation of the given axis

system with respect to the reference axis
system, the transformation equations are
X f'ximytnz
x
=xcos 'cos. tycos 'sing ~zsin (6-110)
y' =f x Omyy +nyz
= x{sin ./ sin . cos ' -cos ./ sin )
(6-111)
y(cos  cos . *sin . sin sin )
~z(sin ; cos }



AMCP 706-329

Techniques for ilnstrumenting these trans-

z' -l x smy noz ) ; )
formations on an analog computer are de-
. . geribed in pore 8-404 throush poar, 6-1L7,
x(sin  sin - cos sin cos !
(6-112) : . : .
Iixample 6-1 is a numerical 1lJustration
1 vicos . SIn sIn ., T SIn C COS .

of the coordinate transformations expressod
by Ligs. 6-110 through 6-112,
T ZcCcoSs cos

Fosample 6-1, Numerical illusiration ol o coordinaie (ransformaiion

l.et the Fuler angles defining the coordinate m, - cos sin sin  -sin cos
svstem Y. v, ' oan terms of (tlic reference
il X vi'e Be tlie following: 0819 0087 0259 -0.574 0966- -0 53¢
15 n,-cos cos =0.819 089 081¢
5
- 35 Ifthe components of the vector. in the original

axis system arex = 1l,v = 2, 7=4(inany con-
venicrit setof units), tlic componentsinthe ney

'hen, Teom ygs. 6-102, _
axis system arc, from s, 6-110, S 11R o

6-112,
r, cos cos -0996 0966 0 962
m_ cos sin -0996 0259 -0258
x ~lfx my ngz
-si -0 087
T oS 0962 110258 2-0087 4
Sin sin cos -cos sin
-1.130
U574 0087 09%6-0819 0259 -0164 yoyx My Nz
n y COSs cos sin sin  sin 0164 1 0 804 2 0572 4
(819 09%:¢ 0574 0087 0259 0804
3732
n.  sin  cos 0574 09%6 0 572 .
2 Fox "my "n_z :
co T e 0218 1-053% -7 9816 4 |
2574 0252 -0.81% - 0.087  0.966 0.
7 218 2410

,.....M......_
|
|

\
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6-2.17 Generation of Arbitrary Nonlinear
Functions
Until recently, attention was directed

primarily on the development of techniques
forgenerating functions of a single arbitrary
variable. However, in the past 10 years, as
arresult of increasing interest in the study of
systems that canbe described adequately only
bythe use of functions of two or more arbitrary
variables, much more attention has been given
to this broader problem. The first portion
of this discussion deals with the problem of
generating functions of a single wvariable,
while the latter portion explores the more
general problem.

Two distinctly different methods are used
for representing arbitrary nonlinear func-
tions. Thefirstschemeapproximates the de-
sired function by a continuous function that,
depending on the purposes at hand, may be a
function such as a polynomial in the inde-
pendent variable or may be generated as a
continuous physical wvariable as is done in
mechanical-linkage computers. With the
second method, the desired function is stored
or otherwise represented at a finite number
ofdiscretevalues of the independent variable
andintermediatevaluesare obtained by inter-
polation.

As an example of the first technique, a
simple power series of the form

PCix rCox? 4 Cxd 4,

3% (6-113)

Yp = C, Cnx"

can be fitted to an arbitrary function by ap-
propriate selection of the Coefficients Cy,
Ci,Co . ..,C,. If a mathematical expres-
sion for the desired function is available, it
is possible, inprinciple at least, to derive an
expressionfor the error between the desired
function and the function generated by the
power series, in terms of the independent
variable and the coefficients Cy, Cy, ...,
Cp One basis on which these coefficients
cdn be evaluated entails minimization of the
square of this erroroverthe range of interest
of the independent variable.
If the desired function is designated

y - 103 (6-114)

and the approximation to y is given by k.

6-113, then the error is given by tlie ex-
prcssion
€Y Ty, T f(x) - (Cy 1 Cx 4 Cx? 1) (6-115)
Then
el S(y -y ) - IHx) ~(Cy 1 Cix 1 Cx? 1 ))2
(6-116)

It is desired to minimize the integral of e2
over the range of interest of the independent
variable, x3 to x . This integral will be
designated by the symbol J and is given by

X
J - A e?(x)dx

*o

Xm 2
VA [(x) ={Cqy + Cyx (CZX2 - L)1 dx
X
(6-117)

It is desired to minimize J by appropriate
selection of the coefficients. To do this, the
partial derivatives of J with respect to each
of the coefficients are set, in turn, equal to

zero. Thus,
o] B j(MQE(X) *"E(X)d -0 ~
‘)CO - ‘aco X =
----------------------------------------- (6-118)
J X de(x)
Tﬂ: { 2e(x) C dx -0

Simultancous solution of the resultant set of
equations yields the desired C's. Actually,
itis possible that these calculations will lead
to a maximum for J rather than a minimum.
Usually, it is not difficult to verify whether a
maximum or a minimum is involved. If any
doubt exists, the ultimate test for a minimum
isthat the second derivative of J he positive,
when the first derivative vanishes.

As an illustration of this technique, con-
sider the evaluation of the coefficients for a
power series to approximate the function e*
over the range of x from 0 to 1. For simpli-
city in this illustration, the series will be
terminated after tlie third term. Thus,
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- . The corresponding approximations for
o 2 -114 .
Yo - Co o Cox i Gy (6-119) cX are then
Then f,0x) - 0.872 1 1.692x (6-129)
3 . 2
Jo e (G Cx < G | T dx antl
6-120
( ) f(x) =0.979 i 1.048x 1 0.645x? (6-130)
antl These results and the function ¢* are plotted
J 1 in Iig. 6-51.
co /'2[eX ~(Cy 1 Cyx + Clxzﬂdx -0 Unfortunately, the problem of carrying
0 0

(6-121)

C, - {ZI:eX_(CU TC]x VCZXZ)]X(JX 0

(6-122)

(6-123)

Iivaluation of these integrals and sub-

stitution of tlie numerical value for e gives

- ¢, G
G 3318 (8-124)

2 3
Co G2 ong (6-125)

2 3 4

c C cC
0 1 2 .
- — +——=-0.718 (6-126)

3 4 5 0
Solution of these cguations vields

G, -0.979; C, - 1.048 C, -0.645 (6-127)

The corresponding coelfficients for the
case where only fwo terms are carried are

c, -0872, C, -1.692 (6-128)

out the integrations required to evaluate the
cocfficients by this means is frequently so
difficult, even for simple analytic functions,
as to necessitate the use of numerical
methods. Furthermore, tho problem of
solving the resultant set of simultaneous
equations, if many coefficients are to be
found, is also such as to require the use of
machine methods.

Fortunately. if the accuracy desired is
not extremely high, it is usuzlly possible to
arrive at a satisfactory set of coefficients by
trial-and-error plotting of the power series
in comparison with the desired function.
Furthermore, one is forced lo employ this
method if no analytic representaiion of the
desired function is available.

In addition to tlie power-series repre-
sentation just discussed. expansions based
upon trigonometric functions, L.egendre poly-
nomials, or Tchebycheff polynomials also
find use in representing arbitrary functions.

The alternative method of generating
arbitrary functions. whereby values of the
function are stored for a firite number of
discrete values of tlie independent variable
and intermediate wvalues are then found by
interpolation, also finds extensive use in
studies employing analog computers. For
convenience, function generators based on
this technique are here designated as inter-
polation-type, function generators.

Intlic simplestand most widely employed
sehemes, straight-line orlinear interpolation
1s employed to obtain approximate value of
the function for values intermaediate to those
stored.  Fig. 6-52 illustrates the method.
Here, it 1s readilv seen that for a given
arbitrary function, tlic crror of approxima-
tion depends upon the number of line seg-
ments usecd and their distribution. The seg-
ments could be selected on the basis of equal
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Figure 6-51. Plots of ¢¥ and its approximations, where ¢ is the error in
the function y = f(x).
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Figure 6-52, Straight-line approximation
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increments of the independent variable, or of’
the dependent variable, or on the basis of the
relative curvature of the function at different
points. Analytic determination of the optimum
scheme to employ is tedious at best antl the
usual approach is to utilize a sufficicntly
large number of segments that the errors
appear to be negligible for the purposes at
hand. In analog studies, the maximum prac-
tical number of discrete points utilized is
usually set by the design of the function
gencrator itself. Ilowever, from a theoreti-
cal standpoint, there is no point in utilizing
somany steps that tlic error in representing
the discrete values of the function exceeds
the errors of approximation between points.
This is the round-off problem that arises in
numcrical calculations.

The interpolation errors could be re-
duced ir a power-series method of approxi-
mating tlie desired function between the
stored valucs were to be employed. How-
ever, for analog purposes, the amount of
cquipment required under this approach is
usually so great as to preclude its use.

The representation of functions of two
independent variables is inherently much
more difficult than is the case of functions
ol a single variable. Wlien relatively simple
bivaritable functions are to bo represented,
it may be possible to approximate them in
terms of products or sums of single-variable
functions. llowever, for many physieal phe-
nomena, tliis is impossible arid a method de-
signed specifically for generating functions
of two Independent variables must be em-
ployed. 4 variecty of schemes, based on the
use of three-dimensional cams or on the
storage of values of thc dependent variable
for a number of values ofeach of the inde-
pendent variables antl use of interpolation
techniques to find intermediate values, have
been developed. Some of these are diseussed
later in tliis chapter (seepar. 6-3.5) in con-
nection with a description of the specific.
cquipmentutiliced togencerate such functions.

6-3 ELECTRONIC DIFFERENTIAL ANA -
LYZERS

Cenceral-purpose electronie differential
analyzers are now produced by a number of
companies. Computing errors of individual
clements in these maehines varv betweeti

0.02 and 3 percent of full scale, depending
upon tlie mathematical operation involved and
the quality of the component, but determina-
tion of the overall accuracy to be expected
in a specific solution is difficult. Solution
time is essentially independent of the problem
being solved, but the number of computing
elements used increases more or less di-
rectly with the complexity of the problem.

1Ifor many special-purpose applications,
such as ground-based fire control, commer-
cially available computer components can be
used. If the signals handled by the control
computer ever reach zero frequcncy, then
the ampliliers used must be direct-coupled
or d-c amplifiers. RC-coupled or a-c amp-
lifiers have been successfully used for repe-
titive differential analyzers and simulators,
but d-c amplifiers will be required for. most
real-time control systenis. I'or this reason,
the discussion on amplifiers is limited to
the d-c operational amplifier.

B-3.1 OPLERATIONAL AMPLIFIERS

The design of a d-c amplifier imposes a
numberof problems that are riot encountered
in the design of an ordinary a-c amplifier.
One problem is that of bias, since each am-
plifier stage is coupled by resistance networks
to the input of the following stage. The voltage
level at the output of each stage must either
be compatible with the grid voltage at the in-
put of the following stage or else it must be
introduced to the grid through an appropriate
resistance network fed from a bias voltage
supply.

A more serious problem is that of drift.
Variations in the supply voltage to the am-
plifier (including heater supply voltages)
cause the output level to change independently
of the signal at the input. C‘hanges in tube
charaeteristics resulting from temperature
changes or agelikewisc affect the level of the
output voltage. Changes in assive circuit
components as & result of temperature,
humidity, or age produce the same clfect.
Considerable attention must thercfore be
givento the selection of well-regulated power
supplies, high-quality vacuum tubes, including
an input tube that exhibits very low grid cur-
rent, antl passive circuit elements that are
stable in value over tlie temperature range
and humidity conditions under which the
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amplifier must operate. Burn-in of all
components, including vacuum tubes, is often
desirable. The use of differential-type cir-
cuits to reduce drift is a standard procedure
as discussed in Ref. 9. Another solution to
the problem of drift in the first stage of the
amplifier is to provide a high-gain, drift-
free circuit for the first stage by using a
modulator and an a-c¢ amplifier as discussed
later. Grid-currenteffects can be minimized
by operating the first-stage plate and screen
grid at a low potential and operating the
heaters at less than rated voltage, A diller-
ential input stage is usually used to compen-
sate for changes in cathode emission, aswell
as to provide a summing function for the
feed-forward loop. The amount of compen-
sation is correct when the transconductance
of the tube is equal to tlie reciprocal of the
common cathode resistor.

Most amplifier designs that make use of
the sampler-a-c amplifier-filtecr combina-
tion use a feedforward loop arouns tlie a-c¢
amplifiersectioninorder to bypass the high-
frequency components of tlic signal tand, in
most cases, tliec d-c¢ component of the signal
as well) to the d-c coupled section of the
amplifier. A partial schematic for surh an
amplifier is shown in Fig, 6-53, from which
the compeusating networlis have been onmited
for tlic sake of clarity. This 1g the geneeil
form of miost d-c opceational
having « gain of 10° or greater. In
6-537 it is secn that the grid voltuce 13
sampled  and amplified by tao saves o)
amplification in tlic a-c¢ section. The cubvut
of the demodulator hus the opoosite polorits
of the grid voltage and 15 subiractied Lram
the grid wvoltage itscl!
forward-loop casc) at tlie inpul of the first
stage of the section ol the amplilier
through the action of the diflc rentinl stugc.
Capacitance-diode  coupling
used in the feedfcrward loop, o-

i) e,
EEN

{in ‘he unitv-leed-
d-c

sSorneiimes

H 3 'y o
indicat G,

in order to roduce e et of sreid current.

The a-o =sccel.on coanaiais ol an electro-
mechanical vibrator or chopper, a two-stage
a-c amplifier,  demodulating circult, and
an RC filter newwork having o lavge tinre

The
dircat-coupled

constant. secotion consists ol inree
stages ol cireuitry. The
chopperis driven f'rom an a-¢ voltage source
of 60 to 400 cp=. The vollage ¢y 18 srounded
during a portion or cach cuele of tile driving

=t
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voltage of the chopper. If the voltage e, is
different from 0, the voltage at the grid of
the first tube Vi, is a series of pulses that
can be amplified by the a-c amplifier. The
output of the sccond stage of the a-c¢ ampli-
fier is coupled to a diode-type demodulating
circuit that is driven from the same voltage
sourcc that drives the chopper. The de-
modulated voltage is then filtered by the fil-
ter consisting of resistance R and capacitance
C, which results in a slowly varying d-c
voltage ¢, at the grid of V,,. This comprises
the entire a-c section and is quite similar in
most commercial designs. This section is
usually designed for a d-c¢ gain of 1,000 to
3,000, The output of Vi, is also used to
drive an overload circuit that provides a
warning when the voltage of the a-c amplifier
scction exceeds a fixed value. This provides
a convenient but not absolute indication of
overloading of the d-c section.

The input stage to the cl-c section con-
sists of a differential-type circuit that uses
two halves of a twin triode and 2 common
cathode resistor. This stage amplifies the
sum of three voltages: {1) the output voltage
o the a-c¢ section filter, (2) a bias voltage
obtained from 2 balanced potentionieter (both
beine summed at the grid of Vs, ), and (3)the
voltage ¢, from tlie fecdiorward loop. The
socord stage of the d-¢ section consists of a
cathode follower that drives an amplifier
stage. The cathode follower is often omitted
anda high-gainpentode used instead of a twin
triode for the second -<loage. The last stage
counsists of two tubes (usually two halves of
sepurate twin triodes) used in a cascade-type
circuit. [From Fig. 6-53, one might conclude
that tlie high-gain operational amplifier cir-
cuit is rather simple; two such circuits could
hebuiltona single chassis and would require
only eight vacuum iubes and one chopper be-
twoeen the two amplificrs. Sote that only one
pole of the chopper contactor is used for the
amplifier shown;tlie other pole could be used
for a sccond identical amplifier. on the same
chaseis. The cascade circuitrequires differ-
ent halves of two different tubes because the
filament supply of V; usually must be biased
wilh a negative voltage.

Table 6-2 gives specifications which are
typical of amplifiers such as the one indicated
in Fig. 6-53.
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Figure 6-53. A typical operational amplifier,

If an operational amplifier meets the
specifications of Table 6-2, the errors dis-
cussed earlier will usually be less than 0.1
percent over au operating range of 0 to 100
cps. This statement assumes, of course,
that the amplifier isnotmisused; for example.
the output load must be kept within the speci-
fied limits. The computing ¢lements that are

associated with the amplifiers in a high-
quality computer are usually matched to
tolerances of + 0.1 percent or better.

6-3.2 MULTIPLIERS

Althougha great many schemes have been
prepared for performing multiplication in
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TABLE 6-2,

TYPICAL OPERATIONATI-AMPLIFIER SPECIFICATIONS.

a-c section: 1,000 to 3,000

GAIN d-c section: 50,000 to 100,000

overall: greater than 10°

Referred to summing junction: < 0.25 mv/day
D-C DRIFT Integrator (with 1.0 puf capacitor)

Standby state --
Operate state ~-

< 100 mv/15 minutes
< 100 mv/90 minutes

Vs, GRID
CURRENT

maxinium: < 100 pua
average: < 30 pua

FREJQUENCY

open loop: flat to 0.005 cps, -6 db slope to 50 ke

unity inverter (with 1 M resistors): bandwidth 10 kc to

30 ke with little or no resonant peak

RESPONSIE max. phase shift at 100 ¢cps: 0.15°
unity inverter (with 0.1 M resistors): bandwidth 30 kc
to 100 ke
max. phase shift at 100 cps: 0.1°
Gain Resistors Capacitor Summer Integrator
1 1M 1.0 puf 10-15 ke 10 ke
BANDWIDTH 4 0.25M 1.0 uf 8-10 ke 10 ke
10 0.1 M 1.0 puf 8 ke 9 ke
0.1 1M 1.0 pf 100 ke 130 ke
OUTPUT
VOLTAGE +125 volts
RANGE
MASIMTIM
CURRENT 20 ma
OUTPUT
MINIMUM
LOAD 5.000 ohms
IMPEDANCE
to at
CPS Load Current
SATURATION 100 5 ma
0.01% 70 10ma
25 20 ma
OUTPUT open loop, 500-1,000 ohms
IMPEDANCE

NOISE LEVEL

referred to summing junction, 5.0 mv max., peak-to-peak
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electronic analog computers , only a few of
these have found any real application. Two of
these schemes are discussed here: namely:
(1) Time-division multiplier.
(2) “Quarter-square multiplier.

6-3.3 Time-division Multiplier

The time-division multiplier is a pulse-
width, pulse-amplitude multiplier, also called
time-division. It operates on the principle
that the average value E, of a train of rec-
tangular pulses (see Fig. 6-54) can be ex-
pressed as

(6-131)

where [, is the width of the positive portion
of each pulse cycle. t; is the width of the
negative portion of each pulse cycle, and
T = t, +t, (see Fig. 6-54). Through use of
appropriate circuitry, the times t; and t, are
controlled in such a manner that the average
voltage I, is given by the relationship

E =-—E (6-132)

where vy and v, are two voltage inputs to the
multiplier. If the pulse-train amplitude E
is made proportional to the multiplier input
v, and the multiplier output v, is made pro-
portional to E,, the operation of the multi-
plier can he expressed in the form

+E

(6-133)

where k 1s a design constant.

The principle of this type of multiplier
is relatively simple. and conventional pulse-
circuit techniques initially were utilized in
their design. However, the accuracy was
limited by difficultics associated with ac-
curate time divisionof the waveform and con-
trol of the amplitude. These difficulties are
minimized by the use of a feedback system,
to establish the proper timing: and a high-
precision feedback-type electronic switch,
to make the characteristics of the multiplier
essentially independent of the tube charac-
teristics.

To minimize the multiplier errors re-
sulting from afinite switching time, the wave-
forms must have extremely steep sides.
Lowering the basic repetition frequency al-
leviates thisproblem but increases the prob-
lem of filtering. Consequently, the choice of
repetition frequency 1S a compromise.

Forfavorable combinations of inputs, the
errors in a time-division multiplier can be
held below 0.1 percent of full scale. As a
result, time-division multipliers are used
widely in analog-computer work.

Actually. several types of electronic
multipliers develop an output of the form
vivy/vs (see Eq. 6-133), with Ihe result that
cither multiplication or division is possible
-- depending on which inputs are employed.
Because division by a small number yields a
large output, care must be exercised that the
divisor does not become too small.

P‘——‘fl_* f2 l'__l‘]__4 f‘2 —

Y

7

|

7/

’4—————1' ;i.. T——O‘

Figure 6-54. Basic waveform of a time-division multiplier.

*
See, for example. pages 302-306 o’ Ref. 10.
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6-3.4 Quarter-square Multiplier

Probably the most accurate and widely
used electronic multiplier is the electronic
quarter-square multiplier. Mathematically,
an eclectronic quarter-square multiplier is
the same as its mechanical equivalent (see
par. 6-4.3). The only real difficulty en-
countered in building an accurate electronic
multiplier is associated with the generation
of the squares. The approximate square-
law characteristics that can be generated
directlywith vacuum tubes or thyrite resist-
ance eclements give minimum errors that
exceed 2 percent. A resistance network and
a group of diodes can generate a straight-
line-segment representation of a square-
law function as described under function
generation in par. 6-3.3. The errors in
quarter-square multipliers of this design
can be held to 1percent or less.

NONLINEAR FUNCTION

€0
Eqlom o
f:i
- t?
(A) Limiter
i
— 1:‘ — C,
E
2
(B) Dead space
e
—‘—_ﬁ'*‘E

-t

(C) Coulomb friction

Figure 6-55.

6-3.5 FUNCTION GENERATORS

Currently, the most widely used means
for generating arbitrary functions electroni-
cally is the diode function generator. Func-
tions that are adequately represented by two
orthree straight-line segments can be gen-
erated using very simple diode-resistance
networks such as shown in Fig. 6-55. Fre-
quently, these networks are associated with
an operational amplifier, as shown in Fig.
6-55(C). These function generators utilize
the characteristic that an ideal diode offers
noresistanceto current flow in one direction
but offers infinite resistance to current flow
in the opposite direction.

Thisbasic scheme can be generalized to
permit generation of arbitrary functions as
shown in Fig. 6-56(A). For the generation of
functions of a single variable, the voltage v»
is fixed with the polarity and amplitude re-

DIODE NETVWORK

Diode networks used for generating three simple

nonlinear functions.
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yuired to give the desired output when the
independent variable v; is zero. With voltage
v, a negative constant, the circuit is suitable
for generation of functions of the type illus-
trated in IFig. 6-56(13). When v; = 0, no diode
conducts, and the function intercepts the f(vy)
axis at £(0) = -(R;/R,;) v, and has a slope of
my =- R/R,;. As the input v is increased
in the positive direction, one diode after
another begins to conduct in accordance with
the settings s, of the potentiometers P,
through P,. These break points occur at
Vg = -s./[(1-s)v,]. As cach diode con-
ducts, itconnects a new input to the summing
circuit ancl contributes a slope increment,
(R¢/RR;) (1-s.). The figures shown apply spe-
cifically to a function having a positive value
for f(0) and a necgative slope that increases
constantly as v, increases. Ilowever, by
proper selection of the polarities of the volt-
ages v, ancl v, and the diode connections, this
scheme can be extended for the generation of
functions lying in any of the four quadrants.
By suitable combination of several of these
basic circuits, it is possible to represent a
function whose slope changes sign.

Because a great variety of functions can
be setup in a straightforward manner on this
type of generator, it is being uscd widely.
The accuracy achieved depends on the partic-
ular function being generated, on the number-
of line segments used to represent the func-
tion, antl on the overall stability of the cir-
cuit. Commercially available generators
utilize 8 to 20 diodes, with the possibility of
coupling two units for the generation of a
single function antl thereby providing up to
40 segments. With such units, a very wide
variety of functions can be generated with
errors of less than one percent.

I'xamination of ihe equations presented
along with the discussion of the operation of
tlie generator of Fig. 6-56 shows that both
the point at which tlic generated function in-
tercepts the z-axis and the break points of
tlic function are directly proportional to the
bias voltagc v,. Consequently, a family of
curves of the class shown in Fig. 6-57 can
be generated directly by tliis method if the
bias v> 15 macle proportional to the second
variable. Otherbivariable functions in which
tlie intercepts onthe f(v) axis are not spaccd
uniformly with the variable v, can be gene-
ratedwith thisunit if the bias voltage is made

proportional to a function of v, rather than
to v, itself. However, the added restriction
is imposed that the breakpoints must follow
the same functional relationship in order that
theboundary curves £; remain straight lines.
For functions having break points distributed
in the same proportion on all the boundary
curves, a relatively simple extension of the
same method can be used. Inthe more gene-
ral cases where the boundary curves of the
functiondo not possess this simple property,
the method is still theoretically possible but
usually not practicable because an excessive
amount of equipment is required.

A function generator that is basically an
all-electronic curve follower employing a
cathode-ray tube, an opaque mask, and a
photocell received considerable attention ten
years ago but has now been largely replaced
by the diode function generator. In units of
this type, generally referred to as a photo-
former, amask, withits edge cut in the shape
of the desired function, is mounted close to
the face of a cathode-ray tube, and a photo-
cell is mounted in the front of the tube face
in such a way as to pick up light from the
{luorescent spot (sece Fig. 6-58). The out-
put of the cell is amplified and used to con-
trol the y position of the spotin such a way
that as the spot is moved in the x direction
itis made to ride along the edge of the curve
with approximately one-half its areca hidden
by the mask. The y deflection voltage re-
quired to maintain this condition is thus pro-
portionnlto the ordinate of the curve and can
be taken as the output of the Function gene-
rator.

Although photoform crs huve been used
extensively, theyhave several disadvantages.
In particular, precise initial calibration of
the unit 1 relatively difficuli, and operation
is highly subject to drift. Consequently, it
is difficult to hold the errors in such a func-
tion generator below 3 percent for periods
of more than a few hours. With the develop-
ment of other types of function generators,
the use of pliotoformers is decreasing.

6-3.6 DECISION UNITS

Frequentlyinthe simulationof a physical
system or in a computer uscd as part of a
complex system, the need ariscs to perform
logical operations based upon a timing se-
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o f(v ‘)

R (B) Typical approximation obtained

(A) circuit diagram

Figure 6-56.

INCREASING v,

Approximation of an arbitrary function by means of a
diode function generator.

BOUNDARY LINES

Figure 6-57. Simple bivariable function.
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d - c amplifier

cathode-ray ftube

mask

cel
padff) photocell

y output

Figurc 6-58. Basic form of the

quence or upon the amplitudes of prescribed
variables within the computer. A simple
example arises in connection with the es-
tablishment of a scquence for automatically
settinga computer into the "initial condition"”
state, turning on the recorders, running a
solution, turning off the recorders, resctting
the initial conditions and, if desired, re-
peating the sequence after the change of some
prescribed parameter. These operations
can be done with simple timers and relays.

Other decision elements now widely used
in analog computers arec "voltage compara-
tors" and ""sample-and-hold" units. A voltage
comparator is a unit that provides for the
opening or closing of a switch (this may be a
sctof relay contacts or an electronic switch)
when a computer voltage signal becomes just
greater than or just less than a reference
voltage, which itself may be fixed or may be
another computer variable.

This operation is performed by supply-
ing the two voltages to a summing circuit
that feeds a high-gain amplifier, the output of
which is arranged to drive the control coil
of a relay or to close an electronic switch.
Diodes are connected to the relay in such a
manner that the relay is actuated by voltages
of only a prescribed polarity. Additional
diodes inthe amplificr insure that it responds
very quickly after being saturated. The high
gain providedby the amplifier causes the re-
lay to pull in or drop out with a very small

d - ¢ amplifier

photoformer function generator.

change in the signal voltage above or below
the comparison voltage.

Sample-and-hold wunits are now being
used extensively in computations involving
datathatare available only at discrete points
in time, and in carrying out mathematical
operations that call for sampling a computer
variable and storingits value for a prescribed
time or until another variable has reached a
predetermined value. Samplingcanbe carried
out with a high-gain amplifier similar to that
used in a voltage comparator and driving a
high-speed relay or an electronic switch.
For a sampling operation, the input to this
amplifier takes the form of a short voltage
pulse that closecs the relay at the moment
the sample is to be taken. The closure of
the switch applies the voltage o be sampled
to a buffer amplifier having unity gain and a
very low output impedance. This amplifier
charges the capacitor of an integrator in a
manner similar to that used in establishing
initial conditions on an integrator. Af the
end of the sampling pulse, the capacitor is
disconnected fromthe charging (amplifierand
becomes the feedback capacitor of an inte-
grator. If the integrator input is zero and
the capacitor charge does not leak off, the
voltage output of the integrator will maintain
the sampled value until a new sample is
taken. A sample-and-hold circuit must be
designed in such a way that the sampling
pulse is of sufficientlv short duration that
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the voltage being sampled does not change
value appreciably during the sampling time,
but is sufficiently long that the holding ca-
pacitor can be charged very nearly to the
sampled value during the sampling interval.

6-3.7 INPUT-OUTPUT EQUIPMENT

6-3.8 Input Equipment

Inasmuchasnoinput, otherthantheinitial
conditions, is involved in obtainingthe homo-
geneous solutionto a differential equation, and
asimple switch-closure provides the forcing
function for obtaining the step response of a
system, a great deal of work is done on analog
computers without any requirement for gene-
rating complex input signals. For computers
utilized as part of an operating system, the
inputs may be derived from a tracking unit
(for example, a radar tracking antenna), or
from temperature, pressure, or mechanical-
position transducers. However, two types of
input equipment that deserve brief comment
are (1) the reference-voltage supplies used
in establishing the initial-condition voltages
on integrators and comparators, and (2) the
noise generators used in carrying out studies
of the performance of systems when subject
to random inputs orr random disturbances.

6-3.9 Reference Voltage Supplies

The normal practice is to provide both
positive and negative reference voltages equal
tothe maximum voltage at which the majority
of the computing components are designed to
operate; commonreference voltages are +100
and -100 volts. When computers are used to
study linear constant-coefficient differential
equations, the accuracy of the solution does
not depend* on the exact value of the reference
voltage or even on the constancy of the ref-
erence if all reference voltages used in the
computer are of equal amplitude and vary in
the same way. If, however, a computer is to
be employed to study differential equations
that contain variable coefficients or nonlinear
terms, appreciableerrors may be introduced
unless the reference voltages are well regu-
lated. Consequently, a reference supply that

is well regulated and has a low internal im-
pedance is generally essential. Furthermore,
the wiring system used to distribute the ref-
erence voltage should have a very low im-
pedance if the reference voltage is to be the
same in all parts of the computer.

The requirements for the reference-
voltage supply are very similar to those for
the regulated power supplies used elsewhere
in the computer (seepar. 6-5.1 through par.
6-5.6) except that the voltageis lower. Either
abattery or a special regulated power supply
may be used, but a regulated supply is gene-
rally preferable. However, several modifi-
cations of the usual regulator circuit are
found in reference-voltage supplies. First,
gas-discharge tubes make satisfactory volt-
age standards in regulated power supplies,
provided relatively slow variations in the
output voltage can be tolerated. If the out-
putistobe maintained at an absolute voltage,
however, some standard other than a gas
tube must be employed. In spite of its low
voltage. a standard cell has been one of the
most satisfactory voltage standards, but
Zener diodes are now being used extensively
for this purpose. Second, since the positive
and negative reference voltages should be of
exactly the same magnitude, both voltages
should be derived from the same reference
supply. This type of operationcanbe achieved
by regulating one supply from the voltage
standard and the second supply fromthe output
of the first.

6-3.10 Noise Generators

In computer studies, the usual require-
ment for a noise generator is that the ran-
dom-signal output have a Gaussian amplitude
probability distribution and that its power
spectrum extend from essentially zero fre-
quency to a maximum frequency of 30 to 40
cps. The schemegenerally used for the gene-
ration of such signals is shown in block-
diagram form in Fig. 6-59. The output of the
gas tube extends from zero frequency up to a
maximum determined by the bandwidth of the
circuitry used to amplify the signal. How-
ever,because the relative power in the very-
low-frequency components of the output

Provided the sensitivity of the unit on which the solution is recorded is also controlled by the reference voltage.
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GAS-TUBE BAND - PASS
NOISE ~——®| AMPLIFIER ~——
SOURCE FILTER
LOW -PASS RANDOM-SIGNAL
AMPLIFIER [  DEMODULATOR FILTER OUTPUT
Figure 6-59. Block diagram of a random-signal generator,

changes randomly with time and because a
d-c voltage exists acrossthe tube, the scheme
shown in Fig. 6-59 offers a better method for
developing the desired signal than if conven-
tional d-c amplification were employed. llere,
the output of the gas tube is amplified in an
a-ccoupled amplifier with a band pass some-
what wider than that of the filter that follows
it. The signal then is passed through the
filter, amplified some more, and finally de-
modulated in a keyed demodulator operating
atthe center frequencyof the filter and passed
through a low-pass filter to eliminate the
upper sideband of the demodulator output.
If an output signal with a power spectrum that
is flat in the range from O to 100 cps or less
is desired, the band-pass filter can be cen-
tered at 400 cps, and either a mechanical
chopperora vacuum-tube demodulator keyed
at 400 cps can be used for demodulation.

Unfortunately, the amplitude of the gas-
tube output changes erratically from time to
time by amounts of 10 percentormore. This
characteristic makes the generator repre-
sented in Fig. 6-59 unsuitable as a random-
signal source if accurate data on system per-
formance are to be collected. The difficulty
can be eliminated if the output of the second
amplifieris fed also to an averaging detector
whose output, after being passed through a
filter with a long time constant, is applied to
the first amplifier as an automatic-gain-
control voltage.

* See table of integrals in the Appendix of Ref. 10.

If random-signal generation equipment
is to be used in computer studies, means
mustbe provided for shaping the power spec-
trum of the random signal injected into tlie
setup, as required for the particular study
and for monitoring random signals in the
system.

Thebasic mathematical expression used
in malting random-signal calculations for
linear systems relates the power spectra at
the input and output of the system. If tlie
system function is specified as H(jw), the
power spectra of the input®. (w) and of the

mn
output P . (w) are related by the expression

2

@, () = HGe) o () (6-134)

Furthermore, if the mean-square value of
the output, whether it be a mechanical motion

or a voltage, is denoted by EZ,,, then

P u

Bovr= S0, (), (6-135)
Consequently,
o “ 2
Eou' = f \H(j"u)’ ‘Din(a)da (6-1386)

—

A proper choice of the function II(jw)
allows assignment of various meanings to
the quantity F,, - Once H(jw) and ¢;, (w) are
known, Egu[ can be calculated conveniently
with the aid of a table::: that allows evaluation
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of integrals of the form appearing in Eg. 6-135
by purely algebraic means.

Determination of the function Ii(jw) that
is required to produce a desirec shape of
power spectrum is simplest if$;, w) can be
considered a constant over the frequency
band of interest. This condition is equiva-
lent to the statement that the output of the
random-signal generator must be essen-
tially white noise for the frequencies in-
volved. consequently, the output filters
provided with noise generators are designed
togive an output spectrum that is essentially
flatuptoa frequency higher than will be used
in computer studies. Final shaping of the
power spectrum can then be accomplished
with filters employing standard computing
elements.

Theproblem of measuring or monitoring
random signals is basically one of determi-
ning the mean-square value of a random signal
whose power spectrum is confined to fre-
quencies of a few cycles per second. This
operation can be instrumented, as shown in
Fig. 6-60.by passing the signal first through
a full-wave rectifier; thenthrough a squaring
unit, whichmay be a diode function generator
of the type described in par. 6-3.5; then
through a filter with a long time constant;
and finally displaying the result on a d-c
meter. Because a statistical signal is being
measured, the meter reading will show vari-
ations about the true output F2u . The ampli-
tude of these variations depends upon the type
of filter inserted between the squaring unit
and the meter. An approximate value of the
expected error can be obtained if a signal

having a rectangular power spectrum flat in
the range from -w. to +&w., as shown in Fig.
6-61, is taken as the input to the monitor.
If a simple-lag, low-pass filter having a
transferfunction 1/(’.rF s+1) is used (in which
s is the complex frequency variable), then
the probable error in any observation of the
mean square of the applied signal is given by

7i
ETI’OT =\/
/ch

T T time constant of the filter

(6-137)

where

Consequently, if signals having a cutoff fre-
quencyaslowas 12rad/secaretobe observed
with an error of 5 percent or less, the filter
must have a time constant of at least 120
seconds. If greater accuracy is desired or if
a filter with a shorter time constant is to be
used, aseries of uncorrelated measurements
could be taken, and the results averaged.
Then, the error would be approximately
1/ v/ 0 times the error in a single observa-
tion.

The random-signal-generating equipment
discussed thus far provides signals with a
Gaussian amplitude probability distribution.
Two other types of signals used to alesser
degreeincontrol-systems studies are square

waves with a fixed 'amplitude but random
zero-crossing times, as shown in Fig.
6-62(A), and signals that change amplitude

at equal time intervals but assume any arbi-
trary amplitude, as shown in Fig. 6-62(R).

FULL-WAVE

RANDOM -SIGNAL >
INPUT

Y

RECTIFIER

Figure 6-60.

SOUARING
UNIT

P

FILTER

OUTPUT
METER

Block diagram of a noise monitor.
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Figure 6-62. Non-Gaussian random
signals.

6-3.11 Output Equipment

The output equipment used with analog
computers consist of stripchart recorders,
plotting boards. digital voltmeters, and os-
cilloscopes. These units are discussed in
pars. 6-5.10 through 6-5.14.

6-4 MECHANICAL AND ELECTROMECH-
ANICAL DIFFERENTIAL ANALYZERS ?

6-4.1 SUMMATION DEVICES

Addition can be performed mechanically
with differentials made up oflinkages, racks,
or gears as illustrated in Fig. 6-63. The
form of device used to perform mechanical

addition is dictated largely by whether trans-
lational o r rotational mechanical motions are
to be added. The linkage differential sums
two linear motions and gives a linear output,
as does the rack and gear unit also. Two
rotary motions are summed to give a linear
output in a screw differential, while two rota-
ry inputs yiecld a rotary output in a gear dif-
ferential. Each type of mechanical differen-
tial is subject to fabrication errors which
lead tobacklash. Therefore, larger elements
can be made with smaller errors. Instru-
ment gear differentials, using gcars approxi-
mately one inch in diamcter, are available
with backlashes as low as 5 minutes of arc.

6-4.2 INTEGRATORS

The geometry of a classical Kelvin disk-
disk mechanical integrator is shown in Fig.
6-64. Integrators of this type were used in
the early differential analyzers built at the
Massachusetts Institute of Technology by
Rush and in many fire-control computers
built during World War IL. Inthis integrator:

x = angular position of large input disk

v = radial position of small disk as

measurcd from center of large disk

r = radius of small disk

g = scale factor relating angular rota-
tion of the output shaft to that of
small disk

7. = angular position of output shaft

An expression relating a differential rotation
dz of the output shaft to a differential rota-
tion dx of thc¢ input shaft can be written di-
rectly from the geometry of the system as
fOllows:

271y dX = 2 gr dz (6-138)

1
z =;fv dx (6-139)

Mechanical integrators are also widely used
as continuously variable speed changers. In
commercially available units, the size of the
large disk ranges from 1.5to Sinches. These
units utilize hardened steel alloys. Thetypi-
calaccuracy specification for a 1.5-inch unit

is 0.5 percent for loads up to 1 inch-ounce.
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Figure 6-63. Typical mechanical differentials,

Accuracy improves as the disk size is in-
creased.

The primary deficiency of the disk-disk
integratoris that it can supply only a limited
load torque. Anincrease in the output-torque
capabilities requires an increase in the com-
pressive load between the disks, but this in
turn increases the force required for sliding
the small disk. If the solution of a problem
requires that the output of one integrator
drive the input of another, a difficult compro-
mise results. This limitation on the disk-
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diskintegrator is partly obviated in the ball-
and-disk integrator, where rolling friction
replaces sliding friction.

In the M.UIT. differential analyzers,
torque amplifiers were used to obtain in-
creased output torque. The original units
employed mechanical torque amplification;
the later machine used a servo followup sys-
tem.

A significant advantage offered by a me-
chanical integrator is that each of its inputs
can be a function of any arbitrary variable.
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splined shaft
and spur gear
for output take-off

/_—x input disk

Figure 6-64. Geometry of the disk-disk
integrator.

Consequently, a mechanical integrator is not
restrictedto performing integration with re-
spect to time as is an clectronic integrator.
Because of this feature along with their reli-
ability and relative simplicity., mechanical
integrators find considerable use in special
purpose coinputers.

Integration is accomplished electrome-
chanically with a rate servomechanism (see
Fig. 6-65). Servo action causes the voltage
developed by the tachometer v to equal the
input voltage vy. If k, is the gain of the ta-
chometerin volts/(radf(sec) for the particular
reference employed and if the tachometer
turns through an angle 0, the motor runs at
a speed such that

vy - vak,(d db (6-140)

input voltage v,

If tlie polentiometer is geared 1:G to the ta-
chometer arid supplied with a voltage v,, the
output voltage v, is given by tlic relationship

V.
Vo = Elr— [ v, at (6-141)
F

where 6 is the angular rotation of the po-
tentiometer. corresponding to tlie voltage v,.
A servo of this type employing a drag-cup
tachometer represents the most satisfactory
technique available forintegrating a signal in
the form of a suppressed-carrier a-c voltage.
Anaccuracy of better than 1part in 1000 can
be achieved., but the frequency response is
limited.

6-4.3 MULTIPLIERS AND DIVIDERS
6-4.4 Mechanical Multipliers

The operation of multiplying a computer
variablebya constant can be achieved mech-
anically by either a simple gear ratio ora
lever system.

Mukiplication of one computer variable
byanother can be performed by (1)intercon-
nection of a pair of integrators., (2) linkage
mechanisms based upon similartriangles, or
(3)square-laworlogarithmic gears or cams.

Mechanization of the mathematical rela-
tionship

v z
zoxy - fxdy s fydc (6-142)
v z

reference voltage

—— :
9_‘ seerampI|f|Er1--——--_ motor

} 6
:'—*0 ' tachometer © %
Vi n—t—

d@

v, = feedback signal = kg" :
g dt

E poatentjometer

=1
gearing !:G\} I

Figure 6-65. Block diagram of a rate-servo integrator
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indicates how multiplication canbe performed
with a pair of generalized integrators plus a
differential for summing their outputs. The
interconnections required are shown sche-
matically in Fig. 6-66.

Linkage multipliers based upon similar
triangles can take several forms; Fig. 6-67
shows the basic idea involved. The T-shaped
member is free to rotate about the axisO.
Provisionismade for positioning the member
B along the fixed slide C and for positioning
the pin P in slide A, which is parallel to C.
By similar triangles, it is evident that

(6-143)

Thus, the product is obtained as the distance
z of the pin P, from the slide C.

Amechanicalquarter-squares multiplier
based upon the identity

Xy 2 ((x 19)° =(x -y)?]

i (6~144)

can be mechanized with squaring cams or
square-law spiral-face gears, each of which
is discussed under function generation (see
par. 6-4.16). Fig. 6-681is a schematic repre-
sentation of such a multiplier.

z Xy
o + <
Sy dx Sxdy
4
s S S —
@ 4
x B

\ /

mechanical integrators

Figure 6-66. Schematic representation of
multiplication by means of a pair of
integrators plus a differential.

6-4.5 Servomultipliers

A servomultiplier includes a control po-
tentiometer and a multiplying potentiometer,
which are mechanically coupled and driven by
a servomotor (see Fig. 6-69). The control
potentiometer is excited from the multiplicand
voltage v,. The servo zeroes its error volt-
age by rotating the arm of the control poten-
tiometer to a position such that the voltage at

Figure 6-67.

Linkage multiplier.
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Schematic representation of a quarter-squares multiplier.
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Figure 6-69.

the potentiomceter slider equals some fixed
constant times vy;. The common position of
the two potentiometer sliders is, therefore,
proportional to vy. If the two potentiometers
are both linear and if they track exactly. the
voltage atthe slider of the multiplying poten-
tiometer can be expressed as
vo kv, (6-145)
wherek is the gain factor of the multiplier.
If both potentiometers are excited with
voltages that are balanced to ground. true
four-quadrant wmultiplication is achieved.
Several multiplying potentiometers can be
ganged with a single reference potentiometer,
so that one voltage v; can be multiplied by
several other voltages with a single servo
unit. Nonlinear multiplying potentiometers
can be used if a multiplication of the form

Schematic representation of a servomultiplier,

v, =k v flvy) (6-146)
is desired.

Accuracies of the order of 0.05 percent
can be achieved with servomultipliers. For
low-frequency applications, where theirlimi-
ted bandwidth and acceleration capabilities
are adequate, servomultipliers: find wide ap-
plication.

6-4.6 Mechanical Dividers

The practical difficulty of performing
division by interchanging the output and one
of the inputs of a multiplier is discussed in
par. 6-2.13. Specifically, the quotient ap-
proaches infinity as the divisor approaches
zero, which is an operation exceeding the
capacity of any physical device. Further-
more, even within the capacity of the device,
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when the divisor is small, a high input torque
is required and friction may make the device
completely inoperable. This latter difficulty
can be avoided by interconnecting a multi-
plier, a differential, and a motor in the form
of a servo loop, as shown in Fig. 6-70.
Ifthe assumptionis made that the quotient
z is within physical limitations, z canbe mul-
tiplied by the divisor y to give zy. Subtrac-
tion of zy from the dividend x yiclds an error
signal ethat can be transformed into an elec-
trical signal, amplified, and used to drive the
7z input of the multiplier. If the gain of the
servo loop is high, the servo will cause the
error to approach zero. Thus,
x-yz=0 or z-=-x'y (6-147)
In an alternate approach, the reciprocal
of the divisor is obtained from a function cam
(seepar. 6-4.16) and this result is multiplied
by the dividend in a conventional multiplier.

6-4.7 Electromechanical Dividers

Theposition-servo scheme used for mul-
tiplication canbe rearranged as shown in Fig.
6-71 to permit division. The assumptionmay
be made that the motor velocity is related to
the error voltage v, by the constant k. The
output of the control potentiometer is repre-
sented as its input voltage times the factor
8/6 ;;, where 6 is the anglethe slider has been
moved from the zero output position and 8y
is the full-scale rotation. The error voltage
can be written as

(6-148)

mechanical

In the steady state, 6 equals 8 :v,/vs, and the
output of the potentiometer excited from v, is
v18/6,, which equals v,v,/v;. Because the
loop gain (kvy/6 ) of this system varies di-
rectly with theinputvs, the system is sluggish
for small values of v3, but may oscillate for
large values of v3, This difficulty is over-
come by passing the error signal through a
third potentiometer, as shown in Fig. 6-72.

Division can also be performed with a
single, linear, tapped potentiometer, as shown
in Fig. 6-73, provided that the divisor is never
less than a prescribed wvalue. This scheme
is particularly useful in cases where the di-
visor is in the form of a shaft angle Q. If
operation is restricted to the section of the
potentiometer below the tap point, i.e., where
0 > 0, the ratio of output voltagc to input
voltage can be written as

A_‘?i-’_l(‘i) o e R

i / Y 2! o

(6-149)

wherep isthe resistance of the potentiometer
in ohms/rad and ¢ is defined such that

(6-150)

Thus, divisionis achieved with respect to the

variable ¢.

6-4.8 COORDINATE-SYSTEM CONVERTERS
A coordinate converter transforms a sct

of quantities ina Cartesian or rectangular co-

ordinate system into an equivalent set of
quantities in a polar coordinate system, or

Jy

Y Oty

multiplie:

Figure 6-70.

Block diagram of a divider employing a servo-driven

multiplier.
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FFigure 6-73. Division circuit based on a
single, tapped, linear potentiometer.

vice versa. Vector resolution is essentially
the same operation (see par. 6-2.14)., The
schemes discussed here canbe extended from
two to three dimensions by the use of addi-
tional components similarto those described.

6-4.9 Mechanical Converters

Coordinate conversion can be performed
mechanicallyby using the Scotch yoke mech-
anism. Fig. 6-74 indicates an arrangement
that would convert wind velocity and heading

Block diagram of a gain-compensated divider servo.

into north-south and east-west components of
wind velocity orperform any equivalent polar-
to-rectangular coordinate conversion. Both
the magnitude and direction of the wind are
variable and must enter the computation.
The crank of the Scotch yoke is positioned in
accordance with the wind direction, and the
angular motions derived by tliec gear picltoffs
represent the sine and cosine of the crank
angle or, in this case, the north-south east-
west components of a unit velocity wind.
Multiplication of actual wind velocity by these
components yields the desired components.
The utilization of this scheme for conversion
fromrectangular topolar coordinates is usu-
ally not practical unless servos are¢ added.

6-4.10 Electromechanical Converters

The induction resolver, ¢iscussedinpar.
6-4.14, under functiongenerators, is designed
specifically for coordinate conversion. If
conversion is to be made from polar to rec-
tangular coordinates, the rotor of the resolver
is positioned to the required angle and the
magnitude is introduced as a voltage applied
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Figure 6-74. Mechanical coordinatc

converter.

to one of the stator windings. The voltages
induced in the two rotor windings are then
the rectangular components of the input sig-
nal. Sinceone input of the resolver is mech-
anical and the other electrical, and the com-
ponents of the input vector may be available
only as electrical oras mechanical quantities,
a preliminary conversion must frequently bc
made.

The determination of the polar coordi-
nates of a vector from its rectangular com-
ponents can be performed using an induction
resolverdriven by a position servo (see Fig.
6-75). If the two input voltages to thc rc-
solver are x and y and the resolver shaft
angle is 6, the outputs of the resolver can be
expressed as

Yg) “ycos @ —xsinb (6-151)

and

Vgp =X C0s Gty sin & (6-152)

As shown in Fig. 6-76, the magnitude of the
vector in polar form is given by x cos 6 +
y sin 6 and is thus vp, . The resolver output
vr; is used as the error signal for a servo
that positions the resolver. When vy is zero.
thcresolveris positioned to the proper angle
#@soasto satisfy the geometric requirements
of the coordinate conversion. An electrical
signal corresponding to the shaft angle can
bc obtained from a potentiometer.

An cquivalent coordinate conversion sys-
tcm can be built by using sine-cosine poten-
tiomcters. Twopotentiometers must be used
and their output summed to obtain voltages
equivalcntto those derived from a single re-
solver. Insomeapplications, the sine-cosine
potentiometers can be replaced with linear
potcntiometers driven from a Scotch-yoke
mecchanism.

6-4.11 Three-dimensional Vector Resolution
by Computers

This paragraph shows the techniques for
utilizing a computerto carry out a full three-
dimcnsional vector resolution as discussed
in par. 6-2.14 through par. 6-2.16. Since it
is frequcently convenient to carry out this
computationinterms of the rotational velocity
of the coordinate system rather than merely
in tcrms of its angular orientation, several
additional concepts are introduced at this
point.

Y reference voltage

|

-

servo

’

resolver l

potentiometer

0]

y cos f) - xsing

Figure 6-75.

{ 0 ;

x cos  tysin 0 0

Simplified diagram of a rectangular-to-polar converter.
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The rotational velocity vector can be
written in terms of the body-axis system as

’:_"?b = o pip * “‘ybjb +""'zbkb (6-153)
where Wyp, Wy, andw . are the rates about
the three body axes oriented along iy, j,, and
ky, respectively.

The rate at which the body-axis set is
rotating is givent -

TS
df (:/b bt Ib
. (6-154)
iJ_b_ R % =
dt “b Ib
dk,, .
— an X
R

where (X denotes a vector cross-produet.
Insertion of Eq. 6-153 in Eq. 6-154 yields,
after slight rearrangement,

di | [ .

df 0 (’UZb ‘uyb lb

dj, . (6-155)
dt L] _CL)Zb 0 [Lbe Jb

diy, R

- [y — 0 I(

df B L yb xb |- b_

Differentiation of each side of Eq. 6- 100 yields
the following relationship after insertion of

Geometry of the eoordinate-conversion system.

Eq. 6-155. Here it is to be noted that the
inertial reference frame is fixed and there-
fore its derivative must be zero.

. X . ~ AL

b Ty fo -b-' [;‘, r, 0 b Teyb g

My m, Moy | my My My T b 0 ixb | Je) 0
‘ i w, o IIE
L Ny My, J\Lkb T My N, Pogh Tixp ) b

(6-156)

When all components of the veetor resulting
from Eq. 6-156 are individually equated to
zero, the following nine equations for the
derivatives of the direction cosines result:

V = O,‘szy -

X

C"ybrz

m_ = O)zbmy - (‘)ybmz

nX = a:zbny - wybﬂz

(7)’ = O:bez - Q'Zbyx

my = wxbmz - mzbmx

(6-157)

Ny = “xpNy T @ pNx

t, = "")yb[yx mxbpy

m_ = a,-ybmx - xbmy

Mz = %ybMx ~@xpNy
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Fig. 6-77 showshow the dircction cosines
can be generated from the thrcc body rates
Wgp, W,p, and w b+ The blocks identified by
the symbol 1/s represent integrator servos
having a voltage input and a shaft-angle out-
put, while the boxes identified by the symbol
p represent potentiometers. If this same
setup were to be instrumented on an all-
electronic computer, the electromechanical
integrators could be replaced by clectronic
integrators and the potentiometcrs by eclec-
tronic multipliers.

Once the direction cosines are available
as shaft angles, the resolution of a vector
from abody-axis coordinate systcm to an in-
ertial system is accomplished rcadily by the
arrangement shown in Fig. 6-78,

An equivalent computation based upon use
of Euler angles can also be instrumented.
The equations forthe derivatives of the Euler
angles can be derived from a combination of
the direction-cosinc definitions given in Eqs.
6-102andthe equations for the derivatives of
the direction cosines given by Egs. 6-157.
Differentiation of thc expression for the di-
rection cosine n, in Eqs. 6-102 yields

A, =(-cos() 0 (6-158)
while insertion of the expressions for ng and
n, from Eqs. 6-102 in the expression for ny
of Egs. 6-157 yields
(6-159)

n,=xa,, €cos . sin ,

x
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Block diagram of a system for converting from aircraft

coordinates to inertial coordinates,

When these, two expressions arc equated and
solved for 8, the result is

oz N
I « thOS /

L, sin o (6-160)
In a similar manner, differentiation of the
expression for n in Eqs. 6-102 yields

.

n =cos H(cos ) = (sin £}0sin ¢ (6-161)

while insertion of the expression of n, and
n,in the equation for n, of Eqs. 6-157 yiclds

.

n = . Sin

b &+ w, .y, cos €cos ¢

(6-162)
Insertion of the expression for ¢ from Eq.
6-160 and solution of Eqs. 6-161 and 6-162
for ¢ yields

¢ =@, ttan f:’(cﬂ\ybsin ¢ teo  cos i) (6-163)

In a similar fashion, it can be shown that

J-= sec f'ﬁ(a\yb sing +_,cos ) (6-164)
Fig. 6-79 shows a computer sctup for gene-
rating the Euler angles as shaft angles from
body rates Wy, Wyb, and Wy, while Fig.
6-80 shows how a vector can be resolved
from a body-axis system to an inertial-axis
systemorviceversausing these Euler angles
to position electromechanical resolvers of
the type described in par. 6-4.14. In an all-
electronic computer, diode function genera-
tors sect up to generate the necessary trigo-
nometric functions could be used in placc of
the resolvers.
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6-4.12 FUNCTION GENERATORS
6-4.13 Mechanical Trigonometric Generators

The double Scotch yoke mechanism (see
Fig. 6-81)is one of the most frequently used
mechanical devices for generating sines and
cosines. A crank pin C rotates about a pivot
P at a fixed distance r. The pin fits snugly
into a pair of slotted members that are
mountedatright angles to each other and are
free to slide in fixed supports. As the crank
is angularly positioned to an input angle 8,
the horizontal extension executes a motion
r cos Oand the vertical cxtension executes a
motion r sin 6.

The gear mechanism shown in Fig. 6-82
is another means for generating sine and
cosine functionsmechanically. Inthis device,
the diameter of the large internal gear is
twice that of the planet gear that is arranged
to roll inside it. As thc larger gear rotates
about its axis, the small gear rotates inside
and its center describes a circle. Because
of the geometry of the system, the pin P
moves along the line A-A’, and its distance
fromthe center of thelarge circleis 2r sin §
or2r cos 0, depending on the reference taken

for 8. Sincethese units involverolling rather
than sliding motion, they have low friction.

|

Pt

Figure 6-81. Double Scotch yoke
mechanism.

_.internal gear

- -~

Figure 6-82. Gear-type sine-cosine
generator,

:
:

A %
.'f'?""\‘l-f‘(‘

Gl output pinion

4

fixed distance

y=k tan g

Figure 6-83. Modification of the Scotch
vokc for generating a tangent function.

The modification of the Scotchyoke shown
in Fig. 6-83 can be used to generate a tangent
function over alimited range of the argument.
A somewhat similar mechanism can be em-
ployed for generating the secant function.

6-4.14 Electrical Trigonometiric Generators

Sines and cosines can be generated elec-
tromechanically with either a sine-cosine
potentiometer or an induction resolver. A
shaped-card potentiometer is shown pictori-
ally and schematically in Fig,, 6-84. The rc-
sistance is a complete 360" element with
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Figure 6-84. Shaped-card sine-cosine
potentiometer,

four taps spaced at 90". A balanced supply
voltage is applied to one pair of diametrically
opposite taps; theotherpair of taps is ground-
ed. Each quadrant of the resistance element
is tapered to give a sinusoidal output when a
specified load is connected between the slider
and ground. Voltages proportional to the
sine and cosine of the shaft angle are de-
veloped between ground and each of a pair of
sliders mounted 90" apart. Precision units
ofthis type are built with diameters of 10-20
inches. In these units, the maximum voltage
error can be held below 0.15 percent of the
maximum output, and a mechanical resolution
of approximately 0.02° can be attained. For
certain disadvantages associated with this
type of unit, see par. 6-4.18.

Special circuits employing linear po-
tentiometers can be used to generate tangent
and secant functions. For generation of the
tangent function (see Fig. 6-85), a linear po-
tentiometer with a total resistance 2R, is
supplied with voltages +v;/2 and -v;/2 through
the resistors R, and the potentiometer is
loaded between the slider and ground with a
resistance R,;. The transfer gain of this
circuit can be expressed in the form

VO 7L

A S

v,
i 1 - Y4 2

(6-165)

where the constants K and » depend on the
circuit parameters. With a proper choice of
these constants, this circuit approximates a
tangent function to within 1 percent over the
range of ¢ from 0° to 60°.

The transfer gain of the circuit for ap-
proximating the secant function (see Fig.
6-86) can be written as
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the tangent function.

2

Vo ZR‘QLO
sec @
v; R ¢

1 -]

2

(6-166)

where the parameters are adjusted to make

R
¢§<mﬁl+§?2

o

(6-167)

With this scheme, the approximation to the
secant is in error by approximately 04/24.

A second type of sine-cosine generator
is the induction resolver, which may be con-
sidered to be a particular type of synchro
generator. It consists of a cylindrical rotor,
carrying two distributed windings with their
axes in space quadrature, and a cylindrical
stator, alsowith two distributed windings with
axes in space quadrature. Each of the pri-
mary windings, which are normally on the
stator, develops in the annular air gap a flux
that ideally goes through one cycle of sinu-
soidal wvariation in the circumference of the
air gap. In turn, the voltage induced in each
output winding varies with the sine (or cosine)
of the rotor angle. .Connections to the rotor
are made through slip rings. Precision re-
solvers for operation in the frequency range
of 60-1000 cps are available from a number
of instrument manufacturers.

Fig. 6-87 is a basic schematic repre-
sentation of an induction resolver. Voltages
v¢y; and vsy of the same phase are applied to
the two stator windings, and the voltages vy,
and vy, are induced in the rotor windings.
These voltages arc related by the equations
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Figure 6-86. Circuit for approximating the secant function.
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Figure 6-87. Schematic diagram of an induction resolver

VRl = vg, Sin - vocos O (6-168) 6-4.15 Arbitrary Function Generators

and There are various mechanical and elec-
tromechanical devices capable of generating

Yz T Vgi€0s €+ voosin ¢ (6-169) more than one function. Mechanical devices
in this category are cams, noncircular gears,

where 6 is the angle defining the position of and linkage mechanisms. The principal
the rotor with respect to the stator. electroniechanical methods usec nonlinear or



AMCP 706-329

tappedpotentiometers and ¢lectromechanical
curve followers.

Mechanical function gencrators arc dif-
ficult to design and expensive to huild, but
they are more accurate and more reliable
than electronic and electromechanical units.
In addition, they can be used in environments
unsuited to electrical equipment.

6-4.16 Cams and Noncircular Gears

A cam is basically a physical replica of
the function to be generated. Theseunits are
designed in a variety of forms, the plane cam
with a spring-loaded follower [ sce I'ig.
6-88(A\) | being one of the simplest and easiest
to make. A more positive action than af-
forded by the spring-loaded follower can be
achieved by milling a groove of the desired
shape in a metal disk. as depicted in Fig.
6-88(B). A pin or roller inserted in the slot
serves as a follower and generates a linear
output motion. Cams are also made in the

(A) Plane cam with spring-loaded follower

(B) Cam with groove contact

Figure 6-88. Typical cams.

form of cylinders with a groove milled in the
surface and a roller arranged to slide along
a slot as the cylinder is rotated.

Fig. 6-89 shows a radial function gear
and a spiral-face function gear. The use of
function gears hasbeenlimited because of the
difficulty of design and fabrication. Ilowever,
with proper design and manufacture. high
precision can be achieved. and such gears
have found important uses in special-purpose
computers, such as in a mechanical quarter-
square multiplier.

6-4.17 Linkage Mechanisms

Linkage mechanisms consist of rigid
clementsmoving in a plane and pivoted to each
other, to a fixed base. or to slides. Linkage
computers can he designed to perform a
number of functions -- including addition,
multiplication, and squaring. Unfortunately.
few standard bar-linkage function generators
exist and one must usually design a linkage
suitable for a particular purpose. Although
linkage devices are reliable, economical to
construct, and frequently smaller than other

(A) Radial function gear

(B) Spiral-face function gear

Figure 6-89. Typical function gears.
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types of computers for the same purposes,
they have not been used widely because they
arerelatively difficult to design and the field
of mechanizable functions is somewhat re-
stricted.

6-4.18 Special Potentiometers

Several methods of generating nonlinear
functions with potentiometers are available.
In one type of nonlinear potentiometer, such
as the sine-cosine potentiometer of Ivig.
6-84, resistance wire is wound on a tapered
card. The shapc of the card determines the
functional relationship between mechanical
motion and resistance change. This method
has several disadvantages. Accurate ma-
chiningof the shaped card is difficult and the
ratio of maximum to minimum card width
should be lessthan 10to 1to avoid a fragile
card. High card slopes also must be avoided
because it is impossible to make the wire
stay in place in such regions of a card. A
combination of several wire sizes and a
tapered card can be used to accommodate a
greater range of slopes. Another method for
producing a nonlinear element is to wind the
resistance element with a wvariable wire
spacing. Ilowever, the resolution becomes
poorer as the wire spacing is increased.
Potentiometers that will generate nonlinear
functionsto accuracies of the order of one or
two percent are used (rejuently in spite of

these limitations.
An entirely different means for genera-

Jng nonlinear functions is to provide a num-
beroftaps along a lincar resistance element.
External resistors are used to make the
parallel combination match the desired re-
sistance-versus-shaft-angle curve at the tap
points and the resistance element in the po-
tentiometer provides ameans of interpolating
between points. The various function-gene-
ration schemes based upon this type of unit
differ principally in the manner in which the
voltages at the taps are established. For
monotonic functions, simpleresistive loading
of the type shown in Fig. 6-90(A) suffices.
However, if the derivative of the desired
function is not of the same sign over the
entire function, it becomes necessary to
inject currents at intermediate taps. This
canbe done with the type of generalization of
the simple loading scheme shown in Fig.

6-90(B). Alternatively, the wvoltage at ecach
tap can be established cither from a low-
impedance source or by an iterative-adjust-
mentprocedure if the source impedance can-
not be neglected.

With schemes of this type, the accuracy
of the approximation to the desired function
improves as the number of taps on the po-
tentiometer is increased, but the amount of
setup effort required also increases. For
many applications, a potentiorneter with 8-10
taps provides an adequate approximation, but
potentiometers with 25-30 taps are available
if amore accurate representation is required.
One major limitation on this system is that
the potentiometer must be driven mechani-
cally and, therefore, the speed of response is
severely limited.

6-4.19 Electromechanical Curve Readers

Inone of the most successful of the auto-
matic curve readers, the curve is drawn with
conducting paint on a flat piece of rectangu-
lar-coordinate graph paper. By means of a
pair of servo drives, a reading head is po-
sitioned along one axis in accordance with the
independent variable and along a perpendicu-
lar axis in accordance with thefunction. Po-
sitioning in the direction of the independent
variable is controlled with a linear potenti-
ometer. Aradio-frequency current is passed
through the conducting paint., and the field
produced by this current induces voltages in
an clectromagnetic pickup mounted on the
carriage. The pickup and its associated de-
tector give.a zero output signal when the head
is exactly centered over the curve. The sig-
nal increases, with a sign dependent on the
direction of motion, as the head is positioned
over the curve by a servo that uses the out-
put of the reading head as its error signal.
A linear potentiometer mounted parallel to
the axis of the function delivers an electrical
output proportionalto the position of the head
and, thus, to the desired function.

6-5 COMPLETE COMPUTERS

In previous chapters, the computing units
that are the principal building blocks in any
analog computer have been described. How-
ever, a complete computer must include a
large amouni of equipment that is not used

6-71



AMCP 706-329

loading tesistors

potentiom: ten

(A) Simple resistive loading

Figure 6-90.

directly in the computations, but without
which the computing elements are not usable.
Into this class fall power-supply equipment,
means for recadily interconnecting the com-
puting clements, sequencing and overload
equipment, recording equipment, and test
equipment. Some of the main features of these
equipments are described in this chapter.

6-5.1 POWER SUPPLIES

A complete analog computer, particu-
larly one of large scale, requires a variety
of power supplies for its operation. The
principal power supplies used are the follow-
ing:

(1) Filament power supplies, both a-c

and d-c.

(2) Unregulated high-voltage d-c sup-

plies, both positive and negative.

(8) Cutrent injection at taps

Function generation with a tapped potentiometer,

(3) Regulated high-voltage d-c sup-
plies, both positive and negative.
Reference-voltage supplies.

D-c supply for relays, clutches, and
associated equipment.

A-c supply for servomotors.

A-c supply to drive choppers for
d-c¢ amplifier stabilization.

The characteristics of the various sup-
plics, the features of the supplies that are
different from those required in other ap-
plications, and tlie means by which some of
these special characteristics are obtained
arediscussedinthe paragraphs which follow.

4
(3)

(6)
(7)

6-52 Filament Power Supplies

If sufficient forethought is given to the
problem of supplying filament power for the
vacuum tuhes in a computer', no particular
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difficulties arise in providing a satisfactory
supply. Tubes employing 6.3-volt heaters
are used most commonly, although 12.6-volt
versions of many of the common 6.3-volt
tubes are available. In a small or medium-
size computer, the current requirements for
6.3-volt tubes are not excessive. However,
in a large-scale computer., considerable
saving in copper can be rcalized by doubling
the supply voltage anti either running pairs of
6.3-volt tubes in series or using 12.6-volt
tubes. In at least onc commercial computer,
the heater in the first tube in each amplifier
is opcrated at one half tlic rated voltage in
order to reduce grid current. Practically all
the commercial electronic differcntial ana-
lyzcrs use a-c filament supplies, but d-c
supplies arc used in some of the large-scale
custom-built computers.

In the power-output stages of servo am-
plifiers and other high-level units, hum
pickup from tliec heater supply is no problem,
and an unregulated a-c supply is preferable
because of its simplicity. If an a-c filament
supply is to be used in a computer that does
not employ chopper-stabilized amplifiers,
drift can be reduced if tlie filament supply
is derived from an a-c constant-voltage
regulator. Commercial constant-voltage
transformers are available in a range of
volt-ampere capacities. One class of con-
stant-voltage a-c transformers depends on
the saturation of a magnetic material to pro-
duce the necessary nonlincar impedance.
Control is achieved by the use of a resonant
circuit in conjunction with the saturable cle-
ment. This type of regulator is economical
antl requires essentially no maintenance, but
tlie output waveform is necessarily distorted
by core saturation. This distortion may be
serious in tlie operation of some tvpes of
equipment. A slightly different iype of a-c
regulator  utilizes a temperature-limited
diode as one element in a bridge circuit. Aun
crrorvoltage is derived from tlie bridge and,
alter amplification, is used to control thc
direct current in a saturable reactor. Good
output waveform is achieved by a filter in-
serted between the saturable reactor antl the
load.

*See Chapter 16 of Ref. 11.

Electromechanical regulators alsocanbe
used and are very satisfactory if given ade-
quate periodic maintenance.

The use of a d-c filament supply in tlie
low-level stages of computer amplifiers
offers some advantage because the use of di-
rect current prevents hum pickup from the
filaments. In some installations, the difficulty
associated with the use of two types of heattr
supplies isavoided by supplying allthe vacuum
tubes with direct current. Several types of
d-c filament supplies are available as com-
mercial units. A selenium rectifier can be
used with an appropriate transformer and an
LC filterto reduce the ripple to less than one
volt. A simple supply of this type has poor
regulation and may lead to serious drift un-
less chopper-stabilized amplifiers are em-
ployed. Regulated. electronic d-c filament
supplies are commercially available with a
variety of current capacities. These units
include a degenerative control loop that em-
ploys a saturable reactor as a nonlinear im-
pedance in series with the primary of the
transformer that supplies tlie rectifier.

In an installation where hundreds of
amperes of hcater current are required, a
motor-generator set may prove to be the
most suitable type of supply.

The ripple in ttie voliage rom a gene-
rator is at a considecrably higher frequency
and a much lower amplitude than that in the
output of a full-wave rectifier driven from a
single-pliase 60-cps supply. The filter re-
quired to remove this higher frequency can
use a much smaller LLC combination tlian is
required with ttie rectifier. Decause in-
ductances of even a small fraction of'a henry
arelarge and expensive if they have a direct-
current-carrying capacity in the range of
hundreds of amperes, and because extremely
large values of capacitance may be required,
tlie filter is an expensive part of a rectificr-
type filanient supply.

6-5.3 liligh-voltage 1)>-C Supplies
Both positive and negative iiigti-voltage

d-c¢ supplies operating at sex-cral different
toltages are required in a complcte analog-
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computer installation. Although an unregu-
lated supply canbe used for high-power-level
stages, such as the output stage used to drive
a servomotor,regulated supplies are used to
supply the direct current for other portions
of almost all analog computers.

The practice commonly followed in com-
mercial analogcomputersis to provide sepa-
rate power supplies, eachincludingarectifier
and a regulator, foreach group of equipment.
For example, a power supply for the required
positive and negative voltages is assigned to
a group of computing amplifiers, another sup-
plyis assigned to a function- generator group,
and still another to a group of servomulti-
pliers. Power-supply voltages commonly
used in analog computers are +300 volts,
-300 volts, and +500 volts. The 300-volt
suppliesare designed with a current capacity
of 0.5 to 1.5 amperes. A supply may be used
to provide either a positive or a negative out-
put with respect to ground, depending on
which output terminalis grounded. The +500-
volt supply is used to provide bias voltages
and, consequently, is required to supply only
a few milliamperes of current. A-500-volt
supply is not necessary since the -500 volts
can be obtained by connecting a low-capacity
-200-volt supply in series with the -300-volt
supply.

A typical power-supply unit consists of
a transformer and a full-wave rectifier sec-
tion followed by an electronic voltage regu-
lator. Fig. 6-91 shows a schematic diagram
of the rectifier section of a typical power
supply.

The outputof the rectifier is not suitable,
for several reasons, foruse as the plate sup—
plyof the computing components of an analog
computer. First,the internal impedance of a
l-amperesupplyof this type may be 10to 20
ohms at zero frequency. Unless the internal
impedance of the power supplies feeding the
computingcornponents is held to a few tenths
of an ohm,undesirable cross coupling of sig-
nalsoccursbetween components connected to
a common supply. Second, changes in the
output voltage of the rectifier with changes
in the a-c line voltage and in the load result
in excessive drift in the output of Computing

————
See Part LII of Ref. 11.
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components. Even if chopper stabilization
is employed in the computing amplifiers, the
principal causes of drift should be reduced.
Third, unless a large amount of filtering is
provided following the rectifier, a large rip-
ple component (possibly 10 volts or more)
appears in the d-coutput voltage. Ifthe plate-
supply voltage to the computing amplifiers
contains an appreciable ripple voltage, some
of this ripple will appear at the output of the
amplifierand may increase the noise to such
an extent that the useful operating range of
the amplifier is seriously restricted.

By the use of an electronic voltage
regulator,:: each of these difficulties asso-
ciated with the basic rectifier can be eli-
minated. Fig. 6-92 shows the basic form of
the seriesregulators employed in most elec-
tronic voltage-regulator units. A VR tube is
frequently used as the voltage standard, and
a resistive voltage divider connected across
the regulator output is adjusted to give ap-
proximatelythe same voltage at the tap point
as that across the VR tube. In the simplest
regulators, a single tube serves as both the
voltage-comparison unit and the amplifier.
In this instance, the voltage at the cathode of
the tube is established by the VR tube, and
the tap point on the voltage divider is con-
nected to the grid of the tube.

The fact that the plate current from the
controlamplifier flows through the reference-
voltage source impairs the performance of
this simple circuit. Since the plate current
varies and the voltage across a VR tube is
not entirely independent of the current flow
through the tube, this circuit is not used in
high- quality voltage regulators. Instead, the
reference voltage is applied to one grid of a
differential amplifier, and the voltage from
the voltage divideris applied tothe other grid.
Increased gain, and consequentlybetter regu-
lation, is achieved by adding a separate stage
of amplification. The series-control element
consists of one tube or as many tubes in
parallel as are needed to carry the required
output current.

Fig. 6-93 shows the schematic diagram
of a complete electronic voltage regulator.
This unit is supplied with unregulated direct
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current at approximately 460 volts and sup-
plies 300 bolts regulated directcurrent. The
current capacity ‘is approximately 800 ma.
With a ripple component of 10 volts on the
input voltage, the ripple on the output is ap-
proximately 0.2 5 millivolt. The internal 1m-
pedance of tlie supply is less than 0.1 ohm.
Th this supply, the desired current capacity
way obtained by placing eight 6R4 tubes in
Several high-current-capacity
been developed for regulator
service., Tlie type B8AST, for example, is a
double triode each section of which is de-
signcd lo pass a current of 130 ma at a volt-
age dirop of 100 bolts. The newcr 6336 tube
has approximately double the rating of the
BART.

In a small- or medium-size coniputer
installation, as many as sixrectifier-regu-
lator. units of each polarity may be required
to supply the necessary high-voltage direct
current. The flexibility derived froin the use
of a few sniall supplies outweighs the saving
in space ancl maintenance that results if a
3ingle unit is used to supply +300 volts ancl
another 1o supplyv -300 volts. A large-scale
installation, on the other hand, may requive
Ziamperesormore of direct current at cach
polarity . This current could be obtained
cither from a2 number of supplies, each witn
nocapacity of approximalely 1 ampere., or
v centralized supply. 1fa high-current-

parallel.

tubes have

frons
capacily central rectifier is employed, some
adyvanioge can be gained from the use of’a
somewhat niore complex than tliat
snowri o in Fig. 6-91. The filtering problem
can e reduced considerably if a polyphase
rather tlian a single-phasc rectifier is used.
With a polvphase rectifier, the amplitude of
the ripple voltuge 15 reduced. and its fre-
quency s increased. Both of these factors
case tlie filtering probleni. Use of a halt-
wave, Ihree-phase rectifier offers considera-
ble adsantage over a full-nave, single-phase
unit at relativelyvlittle increase in complexity.
[i the curvernt required is of the order of 15
simperes or more, the further. reduction in
ripple that can be achieved with a full-wave,
three-phase unit may offset its increased

scheme

connlesity .

Lven il a centralized rectifier is used in
o larege insiallation, the use of individual regu-
lator unmits for different racks or groups ot
equipment is recommended. No particula-

advantage is gained by the use of a single
high-capacity regulator in place of a group
of smaller units. The latter essentially
climinate the problem of cross coupling be-
tween different computing units and, if cor-
rectly located, do not require long, low-
resistance feeders. Anumber of series-type
regulator units of the type represcnted in
frig. 6-92 canbe fed from a common rectifier
if a positive output voltage is desired. How-
ever. regulators of this type cannot be used
in parallel froni a common supply it a ncga-
tive output is desired. Ththis case, the posi-
tive output terminal wouldhe grounded. Since
the positive input terminals of all the units
would be fed froin thec same point, the control
elements of all the regulators would lie in
parallel and, consequently, could not operate
satisfactorily. This difficulty can be cir-
cumvented in several ways, but probably tlie
most satisfactoryis the use of a shunt rather
than a series regulator. The basic shunt
regulator is represented in Fig. 6-94. With
this type of rcgulator, the output voltage is
the difference betwecn the input voltage anda
the drop across the scrics resistor. This
drop, in turn, is determined by the sum of
ihhe culrent crawn by the load and that drawi:
bv the shunt regulator tubes. The current
drawn by the shunt element is conivolled in
sucli a way thal s fixed output volinge i-
niaintained, rvegardless of charges 1n load
current or wuiputr voltage. [Tig. 6-95
the complcte schematic diagram of o shunt
regulator designed lor negative operation,
Vo oregulator of this type dravs constant cur-
rent jrom the supply rectifier, regardless of
Ilie load current drayn from tha regulator.
Consequently, as a means o! reducine both
tlie currenl drainon the rectifier and the heat

show =

dissipated in the regulator, fron one io fhwve
shunt tube:: can be switched nto tlic ¢iroui
andthe series resistor can be changed =imul-
laneously for applications wnere oniv a frac-
tion of the full output is rcquired.

Tlie grids of the shunt tubes must oper-
ate at a voltage below that of their cathodes
and, in turn, must he driven by a tube that
operates with its cathode and grid at still
lower soltages. Consequently, in addition to
tlie -450-v01? unregulated inpul ‘rom which
this regulator operates, tno other \oltages,
-400 volts antl -475 volts, are supplicd to the
amplifier tubes in the reculalor. The regu-
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Figure b-v4.

lator of Fig. 6-95 has an internal impedance
of approximately 0.06 ohm and a ripple out-
put of approximately 0.3 millivolt.

Both the positive and the negative regu-
lators described have a very low internal
impedance and provide an output with a very
low ripple content. However, the voltage
across a gas tube, even when it is operated
al constant current, varies somewhat with
time and temperature; therefore, the output
of any regulator unit that utilizes a gas tube
as a voltage standard cannot be expected lo
maintain an absolute level of output voltage.
For most computer applications, variations
of a few volts in the supply voltages can be
tolerated, provided a fixed ratio between
supply voltages is maintained. Interregula-
tion of a positive and a negative supply can
be achievedbyusing one voltage standard and
by deriving the standard voltage for one of
the regulators from the unit with which it is
paired.

6-5.4 Relay Supplies

In a computer, the relays, stepping
switches, and clutches frequently are de-
signed 1o operate on 24 to 28 volts direct
current. Severaltypes of power supplies can
be used for this purpose. In an installation
wherethistype of load is fixed and relatively
small, a power supply consisting of a trans-
former, aselenium rectifier, and an RC filter
provides a simple yet satisfactory solution.

6-78

Block diagram of the basic shunt regulator.

If, however, this type of load varies widely
from problem to problem, the operation is
improved considerably if a supply with better
regulation than that provided by the simple
rectlifier is used. Either one of the elec-
tronically regulated d-c supplies described
for supplying filament voltage or a small
molor- generator set provides a satisfactory
supply. Inasmallinstallation, a relay supply
with a capacity of a few hundred milliamperes
may suffice. In a large installation, a supply
of 25 to 50 amperes may be required.

6-5.5 A-C Supplies

In the majority of the electronic differ-
ential analyzersnow available commercially,
no special a-c supplies are required. How-
ever, several generalized computers have
been built that employ a suppressed-carrier-
modulated signalasthe datacarrier. Further-
more, ana-c datacarrier is used in a number
of special-purpose computers.

The requirements for the a-c supply in
such applications are somewhat similar to
those for d-creference supplies, as discussed
in par. 6-3.9. The supply should be well
regulated and have a low internal impedance.
Furthermore, the harmonic content should
be kept very low. If appreciable phase shift
of the harmonics occurs as they are trans-
mitted through the computer, the harmonics
will not add in the same way as the funda-
mental components. As a result, excessive
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harmonic voltages may appear at summing
points and cause overloading of tlie servos
or other computing elements. Ior a fixed
computer that operates on a 60-cps carrier,
the required voltages could be supplied di-
rectly from the a-c mains. In the case of a
mobile computer or one that uses other tlian
a 60-cps carrier, the required a-c voltages
could be supplied either by a rotating machine
or by an electronic generator. Hecause a-c
computing equipment is sensitive to the fre-
quency of the voltage used as the data carrier,
both the frequency regulation and the ampli-
tude regulation of the reference supply should
be satisfactory.

If two-phase servomotors are employed
in the computer, a supply also is required
for the reference fields of the motors. Ttiis
supply must be of the same frequency as the
datacarrier and must maintain a fixed pliase
relationship (usually 90°) with respect to the
carrier. This requirement can be met if a
two-phase alternator is used or if the elec-
tronic generalor includes two power units
that derive their excitation from a common
oscillator through appropriate phase-shifting
networks. Ifverylittle 90° power is required
in a computer, a phase shifter could be pro-
vided at each motor and the 90° central sup-
ply could be omitted. Ilowcver, this solution
quickly loses its advantage as the size and
flexibility of the computer increase.

Another special a-c¢ supply that is found
in some computers cmploying chopper-
stabilized d-c amplifiers is a supply to pro-
vide chopper excitation. l'requencies in tlie
range from 20 to 200 ¢ps but usually bearing
no simple relationship to 60 cps are used to
drive choppers. Such frequencies cannot be
obtained directly from the power line. Since
the power requirements for chopper supplies
are relatively small, even in a large instal-
lation, a vacuum-tube oscillator followed by
apower amplifier usually proves satisfactory.

6-5.6 Grounding sSystems

Although tlie grounding system in any
computer should receive caretul considera-
tion, the problems associated with grounding
become morc pronounced as the size of the
computer installation increases. An ideal
grounding system would be one with infinite
conductivity, with the result that tlie potential
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drop between any two points in the ground
system would be zero. Ifatruly infinite con-
ductivity system were available, signal and
power grounds couldbe connected in any con-
venient way without causing extraneous ground
signals that might impair the accuracy of the
computer. The amount of copper required to
achieve this result is excessive. Conse-
quently, some fundamental rules should be
followed in planning the grounding system.
Tlie grounding system for handling signal
grounds should be independent of the system
used as thereturn path for power connections
in the computer, except €or a single inter-
connection at one point. If the cross coupling
through the grounding system is to be held to
a minimum in a large-scale installation em-
ploying a variety of power voltages, both
alternating and direct, separate ground Sys-

tems should be provided for each type of
power supply; for example, vacuum-tube
heater supplies, plate supplies., relay and

clutch supplies, anda-c servomotor supplies.
These separate ground systems should be
interconnected at a single point.

Edwards!? has indicated that a consider-
able savingin the size of conductor needed in
the signal ground system of a large computer
employing chopper-stabilized d-c amplifiers
can be achieved if the ground points against
which the choppers compare the error volt-
ages in the various amplifiers are connected
to a ground buss separate from that used for
grounding potentiometer and other signal-
carrying elements. By the use of this tech-
nique in an installation that includes ten
computing cabinets, the offset of the chopper
ground as measured between any two ampli-
fiers in the installation has been held to 0.1
milltivolt, and a large saving in copper over
tliat required by a brute-force method has
been achicved.
6-5.7 PATCHING PROGRAMMING
EQUIPMENT

ANU

In any computer, means must be provided
for interconnecting tlie computing elements
inthe form required to carry out the desired
computation and for placing the computer in
its various modes of operation, such as
"INITIAL CONDITIONS', "RUN", "1oLD",
and "RESET". These and related topics are
usually groupedunder the heading of patching
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anti programming. The range in complexity
ofthis type of equipment as found in different
computers is extremely wide. At one end of
tliec scale is the special-purpose coniputer
designed to solve only one specific set of
equations, sucli as a fire-control computer.
Tlie interconnections in such a computer
would be permaneni, and tlie programming
equipment might reduce merely to an Oh-
OFF switch. At the other end of tlie scale is
the large generalized computer that is capa-
ble of solving a great variety of problems,
such as a simulator. 7The feasibility of
patching and programming such a machine
entirely from punched tape was demonstrated
on the mechanical differential analyzer“
built at M.LLT. in the late 1930's. Between
these two extremes lies an enormous range
of possibilities. I'or any particular installa-
tion, the decision as to the degree to which
precabling, manual patching, and automatic
patching and control should be eniployecl is
basically one of economics rather than of
teclinical feasibility. llowever, in addition to
tlic initial cost of the installation, the compu-
tation of costs must include an appropriate
weighing of set-up time, checking time, run-
ning time, and maintenance over the expected
life of the computer.

Because patching and programming are
separate opecrations in most analog com-
puters, these functions are discussed scpa-
rately in the paragraphs which follow.

6- 513 Patching Equipment

In the simplest type of analog computer,
tile input and output terminals of each coni-
puting component are made available, andtihe
interconnections required for the solution of
a problem are made by means of cables run
directly between the components. Fig. 6-96
provides an example of a computer in which
patching is done in this manner. This corn-
puter consists of a collection of computing
clenients in small boxes. Tlie various boxes
provide the basic functions of summation,
cocfficient sctting, and integration, a few
commonly required simple linear functions
such as 1/(1 * as), and nonlinecar elements
such as limiters and dead-zone simulators.
The boxes containing these elements can be
arrangedon a table or in a rack in a way that
moreor less duplicates tlic block diagram of

tile systen: being studied. Patching, then,
consists primarily of providing connections
between tlie boxes. This set-up procedure
has considerable educational value in enubline
tliec operator to visualize the system being
studicd. Tlowever, it is effective only if tlic
number of clements involved is relatively
small; it becomes unmanageable for very
large problems.

Another computer utilizes a different
approach to the patching problem. In this
computer,twenty-four computing amplifiers,
cighteen potentiometers, twelve 1-uf capa-
citors, ten diodes, and threce limiters are
mounted in the computer cabinet. The termi-
nals of these clements are wired to a patch
bay into which may be plugged a removable
probleni hoard. The patch-bay terminals are
arranged in a 21-by-29 array. The wiring to
the patch bay is arranged anc the problem
boards inscribed to facilitate setting up the
basic operations commonly required in ana-
log- computer work. Groups of four resistors
are associated with the input terminal of a
number of the amplifiers. These resistors
provide for summation gains of 1 anti 10. In

Figure 6-96. Typical analog-computer in-
stallationinwhich patching is accomplished
by the use of cabling between components.
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addition to the resistors pernianently con-
nected to the patch bay. an assortment of
additional resistors is provided. Each of
these is arranged in a small housing pro-
vided with a plug and jack. The unit can be
plugged into the appropriate terminal on the
patch board. and in turn, a patch cable can be
plugged intothe jack. Decaderesistance units
that are direct-setting to within 1 percent
also areavailable as plug-inunits. A problem
set up on one of these removable boards can
be taken off, if desired. and returned to the
machine merely by replacing the board and
setting the coefficient potentiometers to the
required values. This system of patching
provides considerable flexibility in setup.
but if the problem utilizes most of the avail-
able equipment, the patch board becomes
somewhat cluttered and difficult to follow.
Because the board is large enough to allow
for the addition of external resistors. it is
rather difficult to plug into position.

Several other computer manufacturers
have evolved a slightly different approach to
the patching problem. In the computers
developed by these groups. all the computing
components are inside the machine, and the
patching is accomplished by making the ap-
propriate interconnections on the patch board
with simple cables. Setup of a problem also
requires adjustment of the coefficient poten-
tiometers. but this is a simple operation.
Because the patch board in these computers
is used solely for the purpose of making
interconnections, the terminals on the patch
board can be placed closer together. One of
thesecomputers uses a metal patch board as
shown in Fig. 6-97. A metal board is used in
order to confine all leakage currents to
ground paths and to prevent terminal-to-
terminal leakage. Fig. 6-98 shows a front
view of the computer with its metal patch
board in place.

Mistakesmade in patching represent one
of the principal sources of errors in the
solutions obtained from electronic differential
analyzers. In any complex problem. the oc-
currence of patching errors can be reduced
significantly if, after one operator sets up a
patch board. a second operator checks each
and every connection against the setup dia-
gram. A group in the Acronautical Hesearch
Laboratory at the Wright Air Development
Center has carriedthe process of patch-board

6-82

checking one step farther with a unit that they
have designated as a patch-board verifier.
Aprewired patch board is inserted in a stand-
ard receptacle in this device. The circuitry
of the patch-board verifier is arranged in
such a way that each terminal of the board
is examined in turn and a record is printed
in coded form of all the interconnections on
the board. In addition to automatic prepara-
tion of a list of interconnections in a form
that canbe checked readily, this unit provides
an clectrical check on cach patch cable and,
thus, indicatesopenor short-circuited cables.

At the present time, small problems can
be setuponacomputer withverylittle trouble.
but the difficulties associated with the initial
setup and checking of patch boards and co-
efficients increase rapidly with an increase
in the complexity of the problem studied.

6-5.9 Programming Equipment

In the simplest applications of differen-
tial analyzers, the programming equipment
takesthe form of a switch by means of which
the computer can be put into a "RESET",
"HOLD", or "OPERATE" condition. In the
RESET position, the desired initial conditions
are established in all the integrators and
servos in the computer. Some studies are
made merelyto learn how a system responds
as it comes to rest after being released with
a given set of initial conditions. In such
cases, a solution 1is obtained merely by
switching the computer from the RESET to
the OPERATE position. After steady-state
conditions have been reached. the computer
can be switched to the HOLD position, where
the solution is "frozen".

Instead of obtaining a transient solution
of this type, the analyst may wish to see how
the systemresponds to a prescribed continu-
ous forcing function, such as a sinusoid or a
random signal. Programming in this case is
only slightly more complicated than in the
situation just described. In a problem where
only tlie steady-state solutionis required, the
computer is placed in the OPERATE position,
the forcing function is connected, and the
response of the system is observed on a re-
corder until steady-state conditions are
reached.

Simple manual operation of the control
switches on tlie computer and recorder is
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