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FOREWORD

The underlying purpose of this report is to
l present an objective evaluation of several techniques for
adaptively controlling and guiding tactical missiles.
Because design trade-offs always exist between perform-
! ance and control system complexity, there is probably
no one control method that is preferable for all applica-
tions. Consequently, in this work no single method is
advocated as the panacea for all missile design problems,
Insteadthe discussion emphasizes distinguishing charac-
teristics of each technique so the reader can judge which
is most suitable for his own situation.

A by-product of this research effort is an
organized, unified discussion of many technical aspects
of adaptive control which have heretofore been available
only in isolated papers. New research result. produced

! by this investigation are also included. Therefore,
although this study has been performed primarily for
tactical missile applications, the material collected here
should alsobe of interest to those working in other areas
; where adaptive control methods are needed.
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ABSTRACT

The fields of adaptive control and guidance are
searched for techniques that can be beneficially applied
to the design of guidance systems for tactical missiles.

! A large number of existing adaptive control techniques
are investigated and new methods which are suited to the
needs of missile control systems, are proposed. The
feasibility of promising autopilot design procedures is
demonstrated through computer simulations, using real-
istic time-varying airframe dynamics. Guidance tech-
niques for tactical missiles are also reviewed and a
number of steering laws, derived from optimal control
theory, are evaluated. Quantitative comparisons are
made between different guidance laws on the basis of
intercept accuracy and control effort expended.

The report is published in two volumes con-
taining four basic parts -- Introduction (which includes
the summary and conclusions for the entire report),
Adaptive Control Theory, Adaptive Control Applications,
and Guidance. The first two parts constitute Volume I
and the remainder together with several appendices
compose Volume II,
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8. APPLICATIONS: PARAMETER ADAPTIVE CONTROL
SYSTEMS WITH IMPLICIT PLANT IDENTIFICATION

In this chapter two adaptive control techniques described in
Chapter 4 -- the accelerated gradient and Liapunov design methods -- are
considered for tactical missile autopilot design. Our primary goal is {o
demonstrate the feasibility of these methods in terms of resulting missile
performance. The accelerated gradient method is applied to both adaptive
pitch rate and normal acceleration autopilots and the Liapunov method is
used for pitch rate control.

8.1 DESIGN CONSIDERATIONS

In designing any control system, adaptive or not, one begins
with a mathematical model for the plant and specified performance cri-
teria. We first discuss these aspects of the problem formulation for tacti-

cal missiles.

8.1.1 Airframe Dynamics

The rotational motion of an airframe is generally described in
terms of 6 state variables -- three angles and three angular rates. The
exact differential equations of motion for these variables are nonlinear and
are also coupled to the translational motion of the airframe through such
quantities as air speed and altitude which describe the missile's flight con-
dition. As is mentioned in Section 2,1, the coupling between translation
and rotation is simplified if the former, being affected primarily by the

8-1
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relatively long response time of the guidance loop, is regarded as being
independent of the autopilot characteristics. Consequently, with respect
to the rotutional equations of motion, the variables which define the flight
condition can be regarded as time-varying quantities that are independent
of the missile airframe response characteristics. The dimensionality of
the rotational equations is usually reduced by considering them to be
separable into three uncoupled motions -- pitch, yaw, and roll -- each of
which is controlled separately. In a cruciform missile pitch and yaw
dynamics are identical, * both being used to respond to steering commands,
and the function of the roll control system is primarily one of stabilization.
After these simplifications there still remain nonlinearities in the depend-
ence of the equations of motion upon angle of attack and control surface
deflection angle; linearization is achieved by employing small angle
approximations.

In this report we are interested not only in autopilot design, but
also in the relationship of the autopilot to the overall performance of the
guidance system. The latter is investigated by assuming the missile's
translational motion is confined to a single plane, taken to be the pitch
plane. Consequently the autopilot governing pitch motion which receives
the steering commands is most relevant for this study.

The mathematical model used here to describe pitch motion is
for a missiie which develops control forces through aerodynamic lift pro-
vided by fixed wings or by the missile body, with the aid of tail-mounted
control surfaces. This is currently the most common configuration.

*In the discussion that follows the effects of gravity are neglected.
However, the text speaks of "pitch" dynamics in the "pitch" plane,
recognizing that in a strict sense it is the horizontal plane and
yaw dynamics that are described.

G i R D VR A N
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The model assumes second order airframe and first order actuator
dynamics with equations of motion given by

qt) = Mq q(t) + Ma alt) + M6 6(t)

a(t) = q(t) - Laa(t) - L6 6(t)

8(t) = -~ A 8(t) + 2 ult)

aft) = - v[a() - qt)] (8.1-1)

are stability derivatives and

where Mq’ Moz’ Mo, La’ and L6

q(t) = pitch rate aft) = angle of attack
a(t) = normal acceleration u(t) = control command
6(t) = control surface deflection - X = actuator pole

V = air speed

Refer to Fig. 8.1-1 for a geometrical definition of autopilot state variables.
The stability derivatives can be expressed analytically in terms of aero-
dynamic coefficients, airframe parameters, airspeed, and dynamic pres-

sure by the relations

-2 -
Sd aSd
M = g_— C M = ___C
9 _ V "M 1 M
4 vy q ¢ yy Y
_ qSd _aS
M., = &2==C L ===
6 Iyy M5 o my NU
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Figure 8.1-1 Geometrical Definitions of Pitch
Plane State Variables

where

= dynamic pressure
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moment of inertia about pitch axis
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lifting surface area
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The equations of motion can be expressed in the vector-matrix

form
TR mi 1 1 [ ]
. e _g - o
q(t) My v Myt q(t) 0
o o
ag) | = |vL -L -A\VL a(t)| + |AVLg | ult)
8(t) 0 0 -\ 6(t) Y
L i L 4 L U | -
(8.1-3)
or, in abbreviated notation,
x(t) = Ax(t) + bu(t)
2, 89 34 0] 0 ]
A .h 8 = |- -
A = 391 299 2ygl ; b b2 53 (8.1-4)
|0 0 ag P3| [ 233

To design an adaptive autopilot using the techniques suggested in
Chapter 4 we augment Eq. (8.1-4) with the equations of motion for a known
reference model that has desired output response characteristics. The
total system is illustrated in Fig. 8.1-2 and is described by the relations

T

x = Ax(t) + bu(t) yt) = ¢ x(t)
m(t) = Hx(t) ut) = v(t) - rt)
£ () = A x ®+b vl) y ()= c 5 (1
elt) = y(t) -y, (®) (8.1-5)
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Figure 8.1-2 Input-Output Relations for Autopilot
Design Problem

where _:gm(t) is the state of the refersnce model having time-invariant

dynamics described by A and p_m, y(t) is the output of the autopilot which
| is to be compared with the model output ym(t), e(t) is the output error sig-
¥ nal, m(l) is the set of measurements available for use by the controller,
v(t) is the steering command input, and r(t) is that portion of the control
command which can be specified by the designer. The overali objective
is to choose r(t) so that the output error signal remains small.

Another expression that is useful for describing the airframe
dynamics is the input-output transfer function relating y(t) and u(t), given by

by
Y(s) .

R VR (8.1-6)

*x
In Section 8.2.4 it is demonstrated that an adaptive (time-varying)
reference model has advantages for missile control.
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where Y(s) and U(s) are the Laplace transforms of y(t) and u(t) and it is
assumed that A and b are time invariant. For the applications being con-

sidered, specific expressions for c are

T
<

[1 0 0]=>yi) = aft)

T
¢

[0 1 0]= y(t) = a(t) (8.1-7)

Substitution of Eqs. (8.1-4) and (8.1-7) into Eq. (8.1-6) produces

a Adaa &,
13333292
‘(333 437 a12*‘23) <S - )

Qls) - o 233313 " 312%92.
U e (sz - (11* 29) 5+ 211295~ 2y a21)
Ag a5,
gy (62~ 2y s 2118 33)
A(s) _ 23

T6) 5 (8.1-8)
(8+3) (S - (g * 3gp) 5+211 899" 2y a21)

where Q(s) and A(s) denote the transforms of q(t) and a(t).

The above mathematical description of the missile airframe omits
contributions from structural bending modes and sensor dynamics. This
keeps the control system sufficiently simple to permit the scope of this study
to include several adaptive techniques, but retains enough detail to permit
realistic conclusions about control of the dominant response characteristics.
In a complete missile control system design, any high order effects
neglected in synthesizing the autcpilot should be included in simulation
evaluations of performance.

In order to evaluate various control schemes, a set of typical

missile dynamics is reguired for performing computer simulations; it

8-1
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should include the time-varying character of airframe parameters along
the flight path. Two sets of such data are given in Appendix H, repre-
senting air-to-surface and surface-to-air types of trajectories.

8.1.2 Performance Criteria

In designing an adaptive system care must be exercised in
choosing a set of reference model dynamics and @n output signal y(t). One's
first thought may be to designate any conveniently measured state variable
as the output variable and select a reference model having natural frequen-
cies such that the model output y m(t) has a desirable transient response.
Then the controller would be designed to make the error between the output
variables small, according to some adaptive procedure., However, if this
reasoning is applied too loosely the result can be an adaptive control sys-
tem with exactly the wrong performance characteristics. This point will
be elaborated as we discuss a proper design procedure for the missile
application.

From a functional point of view, the missile autopilot exists only
to serve the guidance objectives. Consequently performance criteria for
the control system should be based upon what is required by the steering
commands. In Chapter 11 it is demonstrated that most effective guidance
laws use a normal acceleration steering command so that the autopilot out-
put variable of interest is normal acceleration, a(t) in Eq. (8.1-3). Thus
the reference model specifications should be such that the model's normal
acceleration a m(t) has desired response characteristics to v(t) and the
adaptive controller should attempt to null the error

e(t) = a(t) - am(t)

N R T Wy Tl AE S S O WS Wt AR ame ey Gy

AN NS LI+ b LTy

kb Wi i

s 3

LSO UV SPRE WY

b T s e st S St T




THE ANALYTIC SCIENCES CORPORATION

That is to say, an adaptive normal acceleration autopilot is desired.

For reasons related to the adaptation properties of the system,
which are discussed more fully in the sequel, it is sometimes tempting to
try achieving acceleration control indirectly by using a state variable other
than normal acceleration to define the output of the autopilot. Specifically,
we know from Eq. (8.1-1) that constant values of pitch ratc, and accelera-
tion are related simply by

a = qVv (8.1-9)

This represents the steady state airframe response to a step input., If

an estimate of air speed is available, a constant pitch rate command
can be applied which yields the desired constant acceleration after the
transient has subsided. Consequently one might consider implementing
an adaptive pitch rate autopilot, even though acceleration is the quantity of

importance, in the expectation that the acceleration and pitch rate transient
responses would have similar response times. Unfortunately, this
approach can be incorrect, depending upon the type of missile being
employed.

To understand the potential fallacy of the technique described
above, one rust consider the dynamic relationship between pitch rate and
normal acceleration for the particular missile under consideration. If the
airframe depends upon aerodynamic forces for developing the lift required
to produce normal acceleration, the dependence between a(t) and q(t)
changes with flight condition (FC). To illustratie tLis fact consider an air-
frame modelled by Eq. (8.1-3) and suppose u(t) is given by

ut) = vit) - kya(t) - kpa(t) - kg 5(t)
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with the set of constant gains kl’ k2, and k3 chosen at different flight
conditions so that the resulting system poles have specified values. This
can always be done because the system is controllable (Ref. 30). In par-
ticular, choose two sets of gains so that the system poles are at -40,
-5+j5, -5 -j5 in both flight conditions 4(high altitude) and 6(low altitude)
of Tables H.1 and H.2 and apply a step pitch rate command v(t) which
yields a normal acceleration of 28.0 feet/ sec2 in the steady state. The
resulting step responses are shown in Fig. 8.1-3. Notice that the settling
times of the system are about the same for both flight conditions be cause
the system closed loop poles are the same for both cases. However, the
overshoot in pitch rate is considerably different in the two cases, that for
condition 4 being considerably larger. The physical reason for this be-
havior is that the missile, being aerodynamically controlled, must develop
a larger angle of attack at FC 4 than at FC 6 to achieve the same normal
acceleration, primarily because the dynamic pressure is lower. More
specifically, in the case illustrated here, the velocities are nearly the
same at both flight conditions but the altitudes are considerably different.
At the higher altitude (FC 4) the air density is lower so that the liftiag sur-
faces are less effective than at low altitudes; thus a larger angle of attack
is required to achieve the same lifting force. This reasoning implies that
the pitch rate must have a greater peak value if the settiing time is to be
the same at both flight conditions.

The above example illustrates that the physics of aerodynamic
missile control demands a wide variation in pitch rate transient response
as plant dyna-..cs change, if the settling time of the ncrmal accelesation
response is to ramain constant. Consequently if one should try to obtain
wniform pitch rate response, just the opposite result will be achieved;
1.e., the acceleration transient response will vary widely over different

flight conditions, This behavior is rather simply descriled analytically with
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Figure 8.1-3 Pitch Rate and Normal Acceleration Step
Responses for Two Flight Conditions

the aid of the diagram in Fig. 8.1-4. Suppose an adaptive autopilot can be
designed so that at all flight conditions the pitch rate response to a command
F input v(%) is described by a fixed reference model transfer function, Tm(s).
However, the dynamic relationship between pitch rate and normal accelera-
tion is deduced from Eq. (8.1-8),
- <sz Sas a211132‘33)
23

213%33%22 >

33%13 " 212223

(8) _
S

(s)

; (8.1-10)
(333“13 * a12"‘23)(S "2

i
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R-3565
Ten (s)
T ]
—
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|
| m(t)
|
e ]

Figure 8.1-4 Illustration of the Effect of a Pitch
Rate Adaptive Autopiloton Normal
Acceleration Response

Evidently the latter transfer function is unaffected by the adaptive con-
troller and is sensitive to variations in the elements of A and b in Eq.
(8.1-4). Consequently the acceleration response to the input, given by

%% = T_(s) 3% 8.1-11)

is also subject to changes in its parameters. The most important effect
is the single pole in Eq. (8.1-10) which tends to be smaller in magnitude
at high altitudes and/or low air speed (FC4 in Fig. 8.1-3) than it is at
low altitudes and/or high air speed (FC 6 in Fig, 8.1-3). The resulting
effect on normal acceleraticn response is a variation in settling time as
flight conditions change; this is demonstrated subsequently in simulation

results.
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The conclusion is that an adaptive normal acceleration autopilot

is required for aerodynamically controlled missiles. When other mech-

anisms which are independent of aerodynamic forces, such as thrust vec-
toring, are used for developing control force, it is possible that a pitch

rate autopilot will yield satisfactory performance. In any case, the designer
designer must keep in mind that normal acceleration is actually the output
variable of interest and ensure that its response characteristics are cor-
rect for whatever control scheme is devised.

Many adaptive techniques developed or proposed in the past have
been concerned with controlling aircraft airframe pitch rate or roll motion.
Little attenti-)n has been given to the problem of designing an adaptive
normal acceleration autopilot using the methkods described in Chapter 4.
Both pitch rate and acceleratioi control of missiles are investigated in
subsequent sections.

8.2 APPLICATION OF THE ACCELERATED GRADIENT METHOD

Having outlined requirements for autopilots in Section 8.1, we
now consider application of a particular adaptive technique, the acceierated
gradient method discussed in Section 4.3. In this section the design pro-
cedure is explained in detail and simulation results are presented for both
pitch rate and normal acceleration autepilots,

8.2.1 Design Procedure: General Considerations

The design procedure for an accelerated gradient controller con-
vists of three distinct steps:
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o Define the controller structure.
¢ Derive the simplified gradient adaptation algorithm.

¢ Introduce linear compensation in the adaptive loop.

The Controller Structure — The equations of motion are given

by Eq. (8.1-5) and measurements (or estimates) of the state variables are
assumed to be available, i.e.,

mt) = x(t)

The free control variable r(t) is defined to be

rt) = (1-k@®) vt) + he)T xt) (8.2-1)

so that the input to the plant, u(t), becomes

ult) = kt) v(t) - ht)" x(t) (8.2-2)

where k(t) and h(t) are adaptive gains. Thus we assume all three state vari-

ables -- pilcn rate, normal acceleration, and control surface deflection -~
are available for feedback control. This particular controller structure
is chosen so that any values of the closed loop poles, which are the eigen-
values of the matrix (A -QQT), can be selected by proper choice of h,
given A and b. The gain k(t) is introduced to provide independent control
over the d-c gain between input and output.

The error signal e(t) is given by

eft) = c¥ (x0 - x,, ) (8.2-3)
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i

where

[1 0 0]; pitch rate autopilot

(8.2-4)

|
Il

[0 1 0]; normal acceleration autopilot

The detailed simulation of each type of autopilot is considered separately
in Sections 8.2.2 and 8.2.3.

The Simplifiea Gradient Adaptation Algorithm — The adaptive
controller for the autopilot is designed by applying techniques suggested
in Sections 4.2.4, 4.2.6, and 4.3. The basic adaptation algorithm is
chosen using the gradient method described in Section 4.2.4; then linear
compensation is added as needed in the adaptive lcop to improve the adap-
tation speed. The relations for the simplified gradient adaptation algo-
rithm are given by Egs. (4.2-30) and (4.2-37) for the system with adaptive
feedback gains h(t). Thesc are repeated here for convenience in the form

|
™
-
o
3
TN
28
(=2
e
]
>
=
o
e
-
N

T ,N-1

it
™
2]
i<
| o |
(]
>
o
—
[
!
[y
=
—~—
[ o]
N
1
(3]
S’

B/

where ﬁi' is an adaptation gain whose magnitude Bi is chosen by the designer
and whose algebraic sign is specified by the quantity in brackets. The
quantity N is the smallest positive integer such that (gT AN'lb) is nonzero.

1 The autopilot equations of motion are the same form as Eq.

i (4.2-37) except for the additional adaptive gain k(t) in Eq. (8.2-2) for which
‘* an adjustment algorithm must be provided. This can be obtained from the
{ first expression in Eq. (4.2-27), which holds for any adaptive quantity
appearing in the differential equation for x(t). Thus

8-15
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T a§(t)(N)
c

3k (8.2-6)

kt) = -8 e(t)
where Bk is a positive gain to be chosen by the designer. Evaluating the
partial derivative in Eq. (8.2-6), one obtains

(N)

3 x(t)
= - ANi bv(t) (8.2-7)

3k

where N is the smallest integer greater than or equal to one such that

T .N-1

By analogy with the solutions obtained for the gains ﬁi’ , let

(8.2-8)

8, ¢ B sign [g_T AV 1y ]

Now, Eqs. (8.1-5), (8.2-1) through (8.2-3), and (8. 2-5) through (8.2-8)
are combined to yield the equations of motion of the gradient-adaptive

control system;

x(t) = (A - bat)T) x(t) + b k() vt)
k () = A_x ()+b_v(t)
h(t) = g/ e®) x(t); i=1,...,n
kt) = - 8 e(t) v(t)
et = ¢ [x)-2,0 ] (8.2-9)
8-16
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where c is given by one of the expressions in Eq. (8.2-4), according to
which type of autopilot is under consideration.

Adaptive Loop Compensation — Following the procedure sug-
gested in Eq. (4.2-39) of Section 4.2.6, we expand h(t), x(t), and k(t) about
nominal values

k() = k +0k(t) h(t) = h +oht) x(t) = x_()+0x(t)
(8.2-10)

and linearize Eq. (8.2-9). With the nonlinear and forcing terms neglected,
the result is

T - : 1T
Bl I e W il el
) | = |Bx e | [0 | o | |mom| 6.2-11)
) [Goed T e

where B’ is a diagonal matrix whose diagonal elements are the gains Bi"
Proceeding in exactly the same way used to derive the error expression in
Eq. (4.2-48), one obtains

E(s) = - Bkv +21 Bi¥m Go(s)E(s)g (8.2-12)
i= i
where
T T,
G,(s) = ¢ (s-A+bh ) b (8.2-13)
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and v(t) and §m(t) are considered constants., Recall that Go(s) is just the
transfer function between the oviput y(t) and the modified command input
k(t) v(t) with the nominal feedback gains [10 implemented in the controller,

Equation (8.2-12) provides a means for analyzing the stability
properties of the gradient-adaptive ccutroller. To improve its converg-
ence properties, we apply the method of Section 4.3 which introduces
linear compensation, Gcl(s) and Gcg(s), into the adaptive loop to obtain an
accelerated gradient algorithm, This algorithm is the same as Eq. (4. 3-5)
with the additions

pt) = eflt) v(t) W, (s) = Gcz(s) P, (8)
k(t) = -Bi W, (t) (8.2-14)

where Pk(s) and Wk(s) denote Laplace transforms of pk(t) and wk(t). The
new error equation has the form

Go(s) G cl(a) Gcz(s)

E(s) = -k, . — | E(s)
n
k, * B v+ °Z18{x‘ii (8.2-15)
1:

The above discussion is largely a brief review of material dis-
cussed in Chapter 4 and provides the framework for the particular appli-
catior described in the next three sections.

8-18
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8.2.2 A Pitch Rate Autopilot

The first application we consider is that of a pitch rate autopilot
for the missile dynamics given in Appendix H, Section H.1. For this case

we have

¢f = {10 0] (8.2-16)

in Eq. (8.2-9).

Before specifying the detailed construction of the controller, the
value of N in Eq. (8.2-5) must first be determined. Referring to Egs.
(8.1-3), (8.1-4), and (8.2-16) it is evident that

N = 1: T

o
ic

i
o

N = 2: ¢f

(Ke

Ab = bya, +baa (8.2-17)

Consequently N = 2 and from the data in Table H. 3 it follows that

gTAl_) <0

for all flight conditions. Therefore Egs. (8.2-5) and (8.2~8) imply that

B = “Bs B >0 (8.2-18)

Combining these results with Eqs. (8.2-9), (4.3-5), (8.2-14), and
(8.2-16) one obtains the following set of expressions for a pitch rate

autopilot:
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Accelerated Gradient Adaptive Controller
for a Pitch Rate Autopilot

i) = (A - bht)T) x) + k() vit)

x,®) = A x () +b v(t)

wherei =1,...,n and we have made the definitioas

"~ 8/e>0

Yk

The positive quantity g is introduced to provide convenient control over the
adaptive loop gain ke derived from Eqgs. (8.2-15), (8.2-18), and (8. 2-20);

e i=1

At this stage, the designer's task is divided into four well defined phases:

¢ Determine the required adaptive loop compensation.

¢ Select appropriate specifications for the reference
model.

¢ Determine the adaptation gains )31 and Bk’ i=1,..,n.
¢ Evaluate performance with simulations.

8-20

m
o) = xt) =%y ©  Efs) = G ()

B = et %) B = et) vlt)

w.(s) = Gcz(S) P.(s) W (s) = Gcz(s) P, (s)

i) = -gv, W) KO = gy wm® | 6.2-19)

B /e > 0 (8.2-20)

n
k = -g [ykvz + Z 2] Xrii] <0 (8.2-21)
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These steps are completed below, for the specific example represented
by the air-to-surface trajectory data in Section H.1.

Adaptive-Loop Compensation — To determine Gcl(s) and GcZ(S),

examine the root locus of the denominator in the transfer function

. G,(s) 2 G, ()G, (s)  (8.2-22)
e o ¢ 1 2

associated with Eq. (8.2-15). Recall that Go(s) as given by Eq. (8.2-13)

is assumed to have poles identical with those of the model (see Eq. (4. 2-43)).
Its zeros are determined by evaluating the numerator in Eq. (8.2-13).
Defining the elements of A and b as in Eq. (8.1-4), Go(s) is obtained in the

form

G (s) =

i (S-pm1> (S -pm2> <S—pm3>

g = ~(2g32137252) 7, = ajgag azz/go (8.2-23)

where p X Pmys and pm3 are the specified reference model poles.

Evidently the gain g o and zero Z, of Go(s) both depend upon the
variable plant parameters and are independent of the feedback gains h o
Reference to Table H. 3 indicates that g, and z o re negative for all flight
conditions. Substitution of Eq. (8.2-23) into Eq. (8.2-22) produces

1
T (s) = -
e K g, (52,1 G [5)

) )

8-21
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where the product (kego) is always positive if 2] and Yk in Eq. (8.2-21) are
positive.

The reference model poles are chosen so that desirable response
characteristics are achieved; for this investigation

P, = -40.0 P, = -5.0 +j5.0 Py = -5.0 -j 5.0 (8.2-25)
1 2 3
roviding a time constant on the order of 0.2 sec. Evaluation of Z, and g,

for representative flight conditions indicates that their ranges are
approximately

IA

300 = |g | = 15,000

IA

0.04 = |z 1.25 (8.2-26)
Taking Gc(s) =1 -~ corresponding to the gradient controller derived in

Eq. (8.2-9) -~ the lociis of poles of Te(s) is shown qualitatively in Fig.
8.2-1. As ke increases in magnitude, the complex poies move toward the
jw axis, eventually crossing into the right-half-plane causing the system

to become unstable. The pole at the origin moves toward the zero of G,(s).

To improve the adaptation speed of the system, compensation
should be introduced so that the real parts of the complex poles become
more negative as the loop gain is increased. This can be most easily
accomplished by specifying

Gc(s) = 8-z, z, < 0 (8.2-27)

For this example, we take z ¢ -6.0 :sec'1 and compare the resulting root

locus in Fig. 8.2-2 with that in Fig. 8,2-~1. Evidently much better
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Figure 8,.2-1 Locus of the Closed Loop Poles for the
Adaptive Control System With No
Adaptive Loop Compensation(G(s)=1)
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Figure 8.2-2 Locus of the Closed Loop Poles for the
Acaptive Control System With Adaptive
Loop Compensation (G,(s) = s +6.0)
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damping of the complex poles can be achieved as the adaptive locs gain is

increased.
In mechanizing Eq. (8.2-27) note that Gc(s) is not realizable. -
This difficulty is circumvented by taking Gc1(s) in Eq. (8.2-22) equal to -
one and =
T
Gc (s) = s -2, -

2

Thus from Eq. (8.2-19) we obtai. ]
| Gcz(s) Pi(s) 4
H(s) = -gv; 5 I
Gcz(s) Pk(s) T
K(s) = g7, 5 (8.2-28) -

where Hi(s) and K(s) are the Laplace transforms of hi(t) and k(t). In this
manner one is required only to mechanize a realizable transfer function

L e T e T

G, (s) . !
Cy i 8-2,
8 )
Recall that the same technique is employed in Example 4. 3-1. i i!
]
!

From the above discussion we now know the structure of the
adaptive control system to within specific values for the adaptation gains
and some additional parameters which define the reference madel. A
_ block diagram of the system is shown in Fig. 8.2-3. For simulation
4 purposes switches S are inciuded in the adaptive loop which can be opened
: to eliminate the integrator by-pass associated with the accelerated

8-24
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Figure 8.2-3 An Accelerated Gradient Controller
for a Pitch Rate Autopiint

gradient algorithm. This permits us to simulate the system behavior both
with and without adaptive loop compensation to provide a comparison be-
tween conventional gradient and accelerated gradient designs. Of course
the switches would not be present in an actual system mechanization.

Reference Model Specifications — The fixed parameters for the
reference model are chosen to be identical to those in the actual autopilot
at flight condition 6 (see Section H.1) when feedback gains, h , are
selected so that the system poles match those specified in Eq. (8.2-25) and
km is chosen so that the d-c gain between input and output is unity. The
rationale for this selection is that the mnde] should be one which not only
has satisfactory response characteristics but also is compatible with the
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e

actual airframe.  Thus the elements of A and b  are determined by

requiring
- - T
Am - A6 EGEm
Em = km_lz6 (8.2-29)

where A6 and p—6 are the values of A and b at flight condition 6 (see Table

H.3). The quantities h  andk are determined from the relations

T H
Det [Is-A6 +969m] = (8-40) (s+5+j5) (s+5-j5)
o 1
k, = lim (8.2-30)
® 520 Tl a st |7 I
- 6 —6—m -6
! The result of carrying out the above calculations is l
1.63 -1.42x1072  -2.93 x 10 ]
A = |s.s1xi0®  -1.26 -3.18 x 10 I
m
-4 |
0.929  -3.45x 10 -47.1 i
b - *
br = [0.0 -4.47x103 -6.61] (8.2-31)

n addition some method is required for specifying the initial
values of the adaptive gains, h(to) and k(ty). This is accomplished for cach
simulation by assuming the initial flight condition (i.e., the initial values,

L e et e

Ap and b, of the airframe parameters) is known, matching the closed loop
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system poles to those of the model and requiring the d-c gain to be unity.
Following Eq. (8.2-30), h(t;) and k(t,) are obtained from

Det [Is-AO +P_ob_(to)T ] = (s+40) (s+5+j5) (s+5-j5)

k(ty) = lim 1 (8.2-32)

1
520 T [Is-Ao+gog(to)T] b

Determine Adaptation Gains -- The adaptation gains Bi = 875 and
Bk = &) must be selected to obtain satisfactory adaptation properties.
Recall the discussion in Section 4. 2.6 suggesting that they be chosen to

contribute equally to the adaptive loop gain ke' Another important con-
sideration is that the resulting variations in the gains hv.i(t) and k(t) as adap-
tation proceeds should be ‘ reasonable." A certain amount of personal
judgement is involved in this part of the design process and some trial and
error experimentation seems unavoidable. For this example suitable values
of the quantities 2 and Yk are

4

1.0x 10 = 1.0

"1 4
5.0 x 10 6

il
i

2,0x10 (8.2-33)

3 Yk
which size the adaptation gains relative to one another. Simulation results
are presented for various values of the parameter g which adjusts the level

of the adaptive loop gain.

Simulation Results and Evaluation — The first thing to be demon-
strated is the improvement in adaptation time achieved through the use of
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linear compensation in the adaptive loop. To obtain a system configuration
equivalent to the gradient-adaptive controller described by Eq. (8.2-9)
which has no adaptive loop compensation, the switches S in Fig. 8.2-3 are
opcned and z, is set equal to -1.0. A set of system simulations is per-
formed begirning at flight condition 4, t = 23.0 secs., letiing the system
parameters vary linearly as prescribed in Eq. (H-2). The system output
to a step input command, v, of .026 rad/sec. is observed for an interval
of one second. The outputs of both the model and system are shown in
Fig. 8.2-4 for three different values of g. Notice that increasing the gain
does little to reduce the error over the one second interval but the oscilla-
tion frequency of the adaptive loop noticeably increases. The latter be-
havior is qualitatively predicted by the root locus in Fig, 8,2-1.

Now we assess the effect of closing the switch S in Fig. 8.2-3,
which mechanizes the accelerated gradient controller. For this case three
one-second runs were performed for various values of g under the same
conditions described in tl.e preceding paragraph except that the compensa-
tion zero is located at -6.0. The corresponding pitch rate curves arc
shown in Fig. 8.2-5, Evidently considerable improvement is obtained in
adaptatinn speed when the adaptive loop gain is increased, as predicted in
Fig. 8.2-2. There is a slight tendency toward high frequency oscillations
as g gets larger because the complex poles in Fig. 8.2-2 asymptotically
approach a line parallel to the jw axis. The accelerated gradient controller
performince is evidently superior to that exhibited in Fig, 8.2-4 and seems
to be well suited for missile applications where rapidly changing missile
parameters require a rapidly adapting autopilot.

Next we demonstrate the effect of variations in input signal level
upon adaptation characteristics. From Eq. (8.2-21) one expects the adap-
tation time to increase as v(t) is reduced in magnitude because the adaptive

am
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loop gain ke also decreases. This behavior is shown in Fig. 8.2-6. First
a simulation is made with

|v(t)] = 3.4><1o'6 radian/sec z, = -6.0

g = 1.5x10°

PRy 4
v v—— . e A A oo

The corresponding pitch rates for the reference model and the system are
shown in Fig. 8.2-6(a) over a two second period beginning at flight con-
dition 4. The algebraic sign of v(t) is switched at t = 24.0 to represent

JR-DAROREA A

changing input commands at one second intervals. Note that almost no
adaptation takes place. When the input command level is increased to
10-2 rad/sec the adaptive loop gain in Eq. (8.2-21) increases and much
better adaptation is observed in Fig. 8.2-6(b). In tactical missiles it is
expected that a steering command will be present most of the time whiie a

target is being pursued but its amplitude may fluctuate. To counteract this
effect, the gain g could be adjusted in response to the measured average
value of the steering command. For example, let

glt) = — £ (8.2-34)

where 7 is an interval somewhat longer than the mode! settling time and
kg is a proportionality constant. The mechanization of Eq. (8.2-34) is

known as a signal-adaptive technique because it adapts to changes in input

signal characteristics. Thus there can be a need to make adaptive changes
in the adaptive loop gain.

Another important fact to be illustrated about adaptive systems
is that good adaptation characteristics for one state variable (e.g., pitch
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Figure 8.2-6 Pitch Rate Responses for an Adaptive Pitch Rate
Autopilot With Different Levels of Input Commands

rate) do not necessarily imply good adaptation for other state variables
(e.g., normal acceleration). This point has been emphasized in Section
8.1.2. Suppose the designer is actually interested in the missile's nor-
mal acceleration response and desires that the latter should follow the
reference model acceleration output for the parameters in Eq. (8.2-31),

If he tries to accomplish this goal by designing an adaptive pitch rate auto-
pilot, the resulting normal acceleration response may exhibit exactly the
wrong behavior. This claim is verified by examining time histories of

normal acceleration corresponding to the simulations performed for
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Fig. 8.2-6. In Fig. 8.2-"1(a) curves of normal acceleration for both the
reference model and the system are shown which are taken from the simu-
lation performed for Fig. 8.2-6(a). Recall that very little adaptation is
achieved for pitch rate in this case. However, the acceleration responses
are reasonably close together, indicating good autopilot performance with
respect to normal acceleration. Figure 8.2-7(b) shows acceleration
response curves for the case given in Fig, 8.2-6(b). Now good adaptation
is obtained in pitch rate but the system's acceleration response relative to
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the model's is poor. The physical reasons for this behavior are discussed
in Section 8.1.2; it is charac’ aristic of aerodynamically controlled mis-
siles.

The performance of any adaptive system using implicit plant
identification should also be evaluated by simulating a trajectory which
passes through several different flight conditions. This will test the ability
of the adaptation algorithm to adjust the adaptive gains so that the system
output follows the model output as the plant parameters vary with time,

For this purpose the air-to-surface missile trajectory was simulated from
flight condition 2 at t = 6 seconds through flight condition 4 to t = 26 seconds
with linearly varving plant parameters. Because the missile is thrusting
during the first part of this segment of the trajectory, plant rarameters
vary over a wide range, as indicated in Tables H.1 to H.4, and the air-
frame is actually exposed to a continuum of changing flight conditions. Note
particularly that dynamic pressure changes by a factor of four in the first
two seconds. Pitch rate responses are exhibited in Fig. 8.2-8 for two
representative sets of three second intervals, one at the beginning and the
other at the end of the time period considered. The input command v(t) is
a piecewise constant signal which changes its level at one second intervals,
as indicated. These results indicate the ability of the acceleraied gradient
technique to rapidly adapt to the reference model and maintain a small o~
put error for a wide variation in the missile dynamic characteristics.

Finally, it is impcrtant to point out potential disadvantages of
this method. The principal defect of the accelerated gradient technique
(and any gradient method) is that satisfactory behavior cannot be gmaran-
teed. The root lccus in Fig. 8.2-2 is an indication of local stability
properties only; nothing can be said about global behavior. Indeed, if plant
parameters vary too rapidly and over too great a range, the valility of the
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Figure 8.2-8 Pitch Rate Response With Time-Varying
Airframe Parameters

gradient arguments used in desigaing the controller becomes questionable
and system ins%ability may result. To illustrate this fact an autopilot
simulation was conducted with the autopilot in Fig. 8.2-3 over the first six
seconds of the trajectory summarized in Table H.1. From zéro to five
seconds the airframe parameters are constant with a relatively low
dynamic pressure. At time t = 5.0 secs., the engine ignites and delivers a
thrust of about 25 g's, causing rapid parameter variations. The resulting
behavior of the adaptive control system is illustrated in Fig. 8.2-9, For
the first 5 seconds satisfactory adaptive operation is observed, but shortly
after the engine ignites the system becomes unstable. This simply em-
phasizes the fact that the full operating regime and different controller
designs (e.g., different forms of Gc(s) in Eq. (8.2-22)) i.ust be considered
when testing an adaptive technique of this type. For example, a
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Figure 8.2-9 Pitch Rate Responses With Rapid Airframe
Parameter Variations That Lead to
Autopilot Instability

modification to the design in Fig. 8.2-3 that might improve the system
stability characteristics is the addition of an adaptive filter in the control
loop having a set of adaptive gains g. The filter configuration would be
chosen such that for each possible set of values of the airframe parameters
the autopilot input-output transfer function can be made identical to that of
the model for some choice of gains g, h, and k. Recall that the set of
gains -- h and k -- provide control over the autopilot closed loop poles and
the steady-state gain but not over the closed locp zeros. The investigation
of this pessibility should be the subject of future study.
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The pitch rate autopilot described here serves mainly to demon-
strate capabilities and limitations of the accelerated gradient adaptive con-
trol technique, especially its improvement over conventional gradient
methods. With respect to missile pitch rate control we make the following

conclusions on the basis of these simulation results:

R

¢ The accelerated gradient technique has the potential
to achieve rapid adaptation in the presence of a
time-varying plant.

¢ [Extremely rapid parameter variations, such as are ,
encountered while thrusting, can cause instability |
of gradient-type methods. !

¢ Adaptive pitch rate control does not provide good b
normal acceleration response for an aerodynamically
controlled missile because the dynamic relationship .
between pitch rate and normal acceleration varies
with flight condition. ?

Evidently the autopilot design in Fig. 8.2-3, based on
forcing missile pitch rate to follow that of a fixed reference model,

is not practical for adaptively controlling the normal acceleration of

missile airframes which depend upon aerodynamic lift to develop
control forces. We shall see in Section 8.2.4 that this conclusion

can be reversed if an adaptive (time-varying) reference model is

permitted. {

8.2.3 A Normal Acceleration Autopilot

in this section we apply the accelerated gradient method to the
; problem of designing a normal acceleration autopilot for the airframe da’»
given in Appendix H. The rationale for this objective is that the adaptatiin
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algorithm should be based upon an error signal which directly reflects
the difference between the actual and the desired autopilot perform-

ance,
Proceeding in the same manner used in Section 8.2.2 we first
determine the value of N in Eq. (8.2-5), noting that - g
¢t = (01 0] (8.2-35)

Referring to Eqs. (8.1-3), (8.1-4), and (8.2-35) it is determined that
when N is one,

i

¢'b = b
Consequently N = 1 and from Table H.3 it follows that b2 > 0 for ) i
all flight conditions. Therefore from Eqs. (8.2-5) and (8.2~8) it
follows that o
Y - -
ﬂi Bi g7 B, >0 , ﬂ
r= g 2 >0 (8.2-36)
B = AT ey K '

Combining these results with Egs. (8.2-9), (4.3-5), (8.2-15), and (8. 2-35)
one obtains the following equations:

L A oo
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Accelerated Gradient Adaptive Controller
for a Normal Acceleration Autopilot

i(t) = (A-bh@®)") x(t) + bk(t) v
x () =A x (t)+b v(t)
et) = xz(t) - xmz(t)

Ef(s) = Gcl(s) E(s)

pi_(t) ef(t) xi(t); i=1,..,n

P ) = elt) vit)

Wi(s) = Gcz(s) Pi(s); i=1,..,n

Wk(s) = Gcz(s) Pk(s)
h(t) = gywt) i=1,..,n
| k) = - grw () (8.2-31)

The quantity g is defined as in Eq. (8.2-21) to provide control
over the adaptive loop gain, ke, given by Egs. (8.2-15) and (8.2-36) as

2 & 2
k, = g | vy +i;1.yixmi >0 (8.2-38)

where g, Yy and yi are all positive constants. Now we proceed to complete
the four design steps described in Sectiun 8.2.2 -- determine the adaptive
loop compensation, select the reference model, determine adaptation gains,
and evaluate performance --using the airframe data given in Section H, 1.
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Adaptive Loop Compensation — Tc determine GCI(s) and Gcz(s),
examine the root locus of th2 denominator in the transfer function

- 1
Te(s) T s+ ke Go@ Gc(s)

1>

Gc(S) Gc (s) Gc (s) (8.2-39)

1 2

associated with the error equation in Eq. (8.2-15). Recall that Go(s) as
given by Eq. (8.2-13) is assumed to have poles identical with those of the
model (see Eq. (4.2-43)); its zeros are determined by evaluating the
numerator in Eq. (8.2-13). Using A and b as defined in Eq. (8.1-4), Go(s)
is obtzined in the form

2
<) = Bo <S T3o° +b0) _ 29123233
G (s) p = S- =2
(¢] (0] 3.23
s-p |ls-p, Ji&e-p,
1 2 3
B, = " 293 a, = -ay, (8.2-40)

where Pm;> pmz, and Pmg are the specified reference model poles. The
gain g o and polynomial coefficients, a, and bo’ all depend upon the variable
plant parameters, and are independent of the feedback gains 110 Table H.3
indicates that

and furthermore
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Consequently the numerator of Go(s) has two zeros, ’ Z4 and Zgs with values
given approximately by

p %9 =3 J v | (8.2-41)

and Te(s) in Eq. (8.2-39) becomes

T (s) = ) (8.2-42)

s+ G (s)

The reference model poles are assigned the same numerical
values as in Eq. (8.2-25), i.e.,

= -40,0 P, = -5.0 +j5.0 P, = -5.0 -j5.0

p
my 9 3

Evaluation of g, and b0 for representative flight conditions indicates that
the ranges of the transfer function gain and zeros are approximately

1000 < 8, < 41000

2.7 < !zll, |z,| < 120

N
Taking Gc(s) = 1 -- corresponding to the gradient controller

derived in Eq. (8.2-9) -- the first difficulty with the gradient method is
encountered. Because of the right-hali-plane zero in the nrumerator of
Go(s) (i.e., Go(s) is a nonminimum phase transfer function), the locus of
poles of Te(s) in Eq. (8.2-42) for ke positive and g, fixed has one branch
entirely in the right-half-plane, as indicated in Fig. 8.2-10., Because the
algebraic sign of ke is specified to be positive in Eq. (8.2-38) as a result
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Figure 8.2-10 Root Locus of the Closed Loop Adaptive Control
System for Positive k, With No Adaptive Loop
Compensation (Ga(s) = 1)

of the design procedure, the gradient-adaptive controller is locally unstable

for this application, This is clearly an unacceptable operating condition and
is evidence of the fact that the gradient concept for controller design i not
always valid. * The above stability problem can be eliminated by assigning

*This behavior is attributable to the fact that the expansion in Eq. (4.2-24)
used to derive the simplified gradient algorithm provides a poor approxi-
mation to the index J for the purpose of controlling normal acceleravion.
An analysis reveals that the M.I.T. rule described in Section 4.2.1 is
also locally unstable because, in this particular application, the con-
tinuous adaptation algorithm is a relatively poor approximation to the ideal
gradient technique expressed by Eq.(4.2-10). The possibility of the latter
effectis discussedin Appendix C. The conclusion is that neither analog gain
adjustment ruie described in Section 4.2 behaves as desired for this appli-
cation, The discrete gain adjustment rule discussed in Section 4.2.2 does
not suffer from either of the ahove noted difficulties; therefore it may be

a better method for this application. This point is cisc mentioned at the
end of Section 4. 3.
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a negative gain to the compensating transfer function, e.g., take Gc(s) = -1.
However, a new complication arises; the root locus shown in Fig. 8.2-11
indicates that the adaptive system becomes unstable for sufficiently high
gain, Consequently in order to improve system adaptation time as we did

for the pitch rate autopilct, more thought must go into selecting an appro-
priate form for Gc(s).

®-2089

s-PLANE A o

Figure 8.2-11 Root Locus of the Closed Loop Adaptive System
for Positive kg With Negative Gain Compensation

(Gels) = -1)

The fact is that in situations like that described above no form of
linear adaptive loop compensation can function to permit a stable system
for all positive values of ke‘ The right-half-plane zero will always
"attract" one branch of the locus of poles of T e(s). After some experi-
mentation Gc(s) was chosen to have the form

ey ) ey i)
<S-p°1) (S-p"z)
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which is divided between Gcl(s) and Gcz(s) in Eq. (8.2-32) as follows:

)

(e e,
G, () = 2 3 (8.2-44)

)

The structure of the resulting system is illustrated in Fig. 8.2-12,
Specific values for the parameters in Gc(s) are:

Gcz(s) - (s -2z

fy

z = -0.5 p. =-15,0+j 8.7
4 ¢4

z = -6.0+j6,0 p. =-15.0-§8.7

Cy s

z = -6.0-j6.0 (8.2-45)
C3

The root locus diagram as a function of ke for this choice of compensation
is shown qualitativély in Fig. 8.2-13. The simulation results discussed
below indicate that the restriction on the range of variation of the adaptive
loop gain and its sensitivity to airframe parameter variations prevents
achieving adaptation characteristics that are as good as those obtained for
pitch rate in the preceding section.

Reference Model Specific.tions — The fixed parameters for the
reference model are the same as those used for the pitch rate autopilot.
The elements of Am and p_m are given by Eq. (8.2-31). The initial values
of the adaptive gains are the solutions to Eq. (8.2-32) perturbed by 10% to
provide a significant error signal.
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Figure 8.2-12 An Accelerated Gradient Controller
for a Normal Acceleraticn Autopilot

Selections for Adaptation Gains — The adaptation gains ﬁi =8
and Bk = g7 are selected by the same procedure described for the pitch
rate aatopilot, The specific values used in this example are

- 4 =
Yy F 7.5 %10 Yo 1.0

vy = 5.0 x 10* ¥ = 0.5 (8.2-16)

Simulation results are presented for various values of the parameter g
which provides control of the adaptive loop gain.

Simulation Results — Graphs of normal acceleration output for

both the plant and the reference model are shown in Fig. 8.2-14 for dif-

ferent values of the gain factor g. The airframe dynamics are constant
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Figure 8.2-13 Root Locus of T,(s) for Positive kg
With G.(s) given by Eq. (8.2-43)

and correspond to flight condition < in Table H.1. It is observed that a
moderate improvement in adaptation properties over a one-second interval
is obtained as g varies from 0 (no adaptation) to 3.0 x 10'8. However the
results are not so dramatic as those in Fig. 8.2-5 for the pitch rate auto-
pilot, When g becomes as large as 1.0 x 1077 (Fig. 8.2-14(d)) the system
is unstable, as predicted qualitatively from Fig. 8.2-13. It is also found
that the best value of the gain g for flight condition 4 causes the system to
be unstable when the plant dynamics are changed to flight condition 6 in
Table H.1, implying that careful tuning of the adaptive loop gain is required
as flight conditions vary in order that the system operates satisfactorily.
The need to know the flight condition in order to make on-line adjustments
to the adaptation algorithm tends to negate the purpose of an adaptive
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controller having implicit plant identification; namely, it is desired that

- R N T e e it -

explicit identification be avoided.

8.2.4 An Adaptive Reference Model

In Sections 8.2.2 and 8.2.3 it is observed that satisfactory adap-
tive normal acceleration response is difficuit to achieve with the accelerated
gradient method for the particular missile application we are considering.
Good pitch rate adaptation characteristics are obtained in Section 8.2. 2
with the pitch rate autopilot; however the corresponding normal accelera-
tion response is sensitive to the missile's flight condition. The latter be-
havior is explained by the fact that the relationship between the transient
dynamics of q(t) and a(t) is dependent upon the values of the airframe

parameters. Consequently if q(t) is forced to follow the output of a fixed
reference model at ail flight conditions, the transient characteristics of
a(t) must necessarily vary. Alternatively in Section 8. 2.3 an adaptive
normal acceleration autopilot is studied. However, the nonminimum phase
character of the airframe input-output transfer function causes the stability
properties of the control system to be quite sensitive to flight condition.

To achieve better normal acceleration response /rom the pitch
rate autopilot, one can consider using an adaptive reference model; here-
tofore the model dynamics have begn time-invariant. This suggestion is
motivated by the fact that at each flight condition the adaptive controller
ideally should have the capability to make the compensated airframe
input -output dynamics identical with those of the reference model for some
choice of the adaptive gains h and k.. We have already noted that h and k
alone do not provide enough freedom to accomplish this. Therefore an

alternative reference model is advocated which is obtained by coatinuously
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identifying enough plant parameters and simultancously changing the
corresponding elements in A m and Pm so that the associated transfer
functions satisfy

¢’ (IS-Am(é)>-19m(é) = ! (Is —A+§§T)-lpk (8.2-47)

for some values of k and h at each flight condition. The quantity é in
Eq. (8.2-47) is the measurement or estimate ¢ tne plant parameters re-
quired to specify the reference model.

In the applications we have been considering, where full state
feedback and control over the d-c gain is assumed, the above procedure
is equivalent to requiring the reference model and missile airframe input-
output transfer functions to have the same zeros. 1t is evident from
Eqgs. (8.1-10) and (8.1-11) that such a procedure applied to a pitch rate

autopilot should improve normal acceleration response; the zero of Tm(s)
will be adjusted so that it always approximately cancels the objectionable
pole in A(s)/Q(s).

System Design — To apply the above idea to a pitch rate auto-

pilot, recall that the input-output transfer function for the airframe has
the form (see Eq. (8.1-8))

Q(s) - cls-z) (8.2-48)

U(S) S3 + als3 + aZS +a

3

Accordingly, require that the reference model input-output transfer func-
tion be

Qm(S) c_(s-2)
V(s) 3 3 (8.2-49)
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where z is an estimate of z and ¢, satisfies

amg
Cy = - z (8.2-50)

The coefficients in the denominator of Eq. (8.2-49) are specified by the
designer; e.g.,

Frap, (o0 ), JE P )
s'+a_ s +a_ s+a_ =|s-p S-p s-p
my m, Mg m. my mg

and Eq. (8.2-50) provides wnity d-c gain between V(s) and Qm(s).

The adaptive controller is configured almost the same as in
Fig. 8.2-3. One exception is that the reference model dynamics are now
given by Eq. (8.2-49) which requires an estimate of z. Also, since we
are interested in commanding pitch rate to produce a desired normal
acceleration, a c(t), the latter must be scaled using the steady state rela-
tion given in Eq. (8.1-9); i.e.,

vit) = ac(t)/‘"/

where V is an estimate of the missile's airspeed. This implies that air
speed must also be identified. Both of these alterations to Fig. 8.2-3 are
indicated in Fig. 8.2-15.

Comparing Egs. (8.2-48) and (8.1-8) it follows that

A, pnad
g - —18%33%22 (8.2-51)

213%33 T21993
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Figure 8.2-15 An Accelerated Gradient Controller for a Pitch
Rate Autopilot With an Adaptive Reference Model

The data in Table H.3 indicate that the denominator in Eq. (8.2-50) is
dominated by the term (a13a33) ; therefore z = 299¢ In other words, z can

be approximately identified by estimating only the element a9 in Egs.
(8.1-3) and (8.1-4).

The subject of parameter estimation is discussed in Chapters 5
and 6 where it is postulated that all the parameters of A and b in Eq. (8.1~4)
are to be identified. When that capability is available, the control methods
described in Chapter 5 are better suited for autopilot design. However,

here we are suggesting that partial plant identification can be beneficially
applied to the accelerated gradient method; this technique may offer advan-

tages in situations where it is easier to obtain a few parameter estimates
5 (z and V) than it is to identify all the elements of A and b.
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Simulation Results — The adaptive reference model prescribed
by Egs. (8.2-49) and (8.2-50) was simulated for the accelerated gradient
controller described in Section 8.2.2. The estimate of the airframe zero

was updated continuously according to
z(t) = a22(t)

All other model parameter values are identical to those used for the simu-
lation associated with Figs. 8.2-6(b) and 8.2-7(b). Recall that the latter
demonstrate how good adaptation in pitch rate leads to poor adaptation in

normal acceleration when the reference model dynamics are fixed.

Initial values for the adaptive gains are obtained by multiplying
the solutions to Eq. (8.2-32) with a scaling factor of 0.70. This is neces-
sary to develop a significant error signal when the adaptive loop is dis-
connected (g = 0 in Fig. 8.2-15). All other system parameter values are
the same as those used for Figs. 8.2-€(b) and 8.2-7(b), Two simulations
were performed; one with g = 0 (no adaptation) and one with g = 1.5 x 10'3,
the latter being the same valiie used for the above referenced f{igures.
From the response curves displayed in Figs. 8.2~16 and 8.2-17, it is
observed that the adaptive reference model enables the accelerated gra-
dient technique to produce the desired adaptive response characteristics

in both pitch rate and normal acceleration.

Conclusions — The distinguishing characteristic of the method
using an adaptive reference model is that it requires identification of both
99 in Eq. (8.1-4) and the missile airspeed, V. It is a useful technique
for modifying the structure of the accelerated gradient contioller described
in previous sections so that desired normal acceleration: response charac-
teristics can be obtained for the tail-controlled missile in Fig, 8.1-2,
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Although estimates of only two parameters are required, it may be argued
that it is almost as easy to identify all the parameters in Eqs. (8.1-4). If
so, then one of the adaptive control methods suggested in Chapter 5 may be
more appropriate. Further investigation of this question should be pursued
to determine whether partial plant identification of the type advocated above
has any distinct advantages over complete identification.

8.3 APPLICATION OF LIAPUNOV DESIGN TECHNIQUES

In Section 4.4.3 a Liapunov synthesis procedure is described
which is suitable for adaptive coatrol of tactical missiles provided the
input-output transfer function is minimum phase. The reason for this
restriction is discussed in Section 4.4.4. In this section, the method is
used for pitch control of a second order airframe with the dynamics of the
contrcl surface actuator neglected. The sequential development closely
follows Section 4.4, 3 to provide a specific illustration of the steps involved.

The discussion evolves in three steps -- design procedure, selection of
parameters, and performance evaluation. Then a brief discussion is given
describing how the adaptive reference model concept introduced in Section
8.2.4 can be used to achieve adaptive control of normal acceleration.

8.3.1 Design Procedure

Let the input-output relations for the autopilot design problem be
represented by Fig. 8.3-1, by analogy with Fig, 4.4-3. In Laplace trans-
form notation the equations for the airframe and the reference model are

<s2 +bs + a) Y(s) = k(s-z) U(s)

(sz + bms + am) Ym(s) = km(s - zm> V(s) (8.3-1)
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Figure 8.3-1 Airframe and Reference Model Input-Output
Relations for an Adaptive Control System

Subtracting these expressions and adding the quantity
(sz+b s+, )Y(c)
m- "m )
to both sides of the result produces the error equation
(§2+b s+a_|E(s) = (b -b)s +a -a) Y(s)+k(s ~z)U(s) -~k <s -z_ |V(s)
\ m- m m n m m

(8.3-2)
which has a form similar to Eq. (4.4-31).

Now divide both sides of £q. (8.3-2) by the polynomial

p,(8) = s-p

'’

where Py is a negative number whose allowed range of values is to be deter-
mined presently. The result after carrying out the required number of
steps in dividing by pc(s) is
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<s "’bm+pl>E(S) = vy

, am—a+p1<bm- b>
+ T,

pl-z

+ U(s) -

) [um+p1<bm+P1)] B(s)

bm-b Y(s)

}Y(s)+kU(s)

km(pl } Zm) V(s)

7Py 5°Py

of the error signal we require that

bm+p1 >0

on the left-hand-side of Eq. (8.3-3), or
Py > by
This provides the condition needed on p c(s).

Referring to the right-hand side of Eq.
variables

Yele) = o E,(s)
U (s) = gf;_i v, (5)

8-57

-km V(s) (8.3-3)

which has the same form as Eqs. (4.4-32) and (4.4-33). Now for stability

(8.3-4)

(8.3-3) define new

E(s)
S-'pl

V(s)
S -pl

(8.3-5)
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2N AT

and vector quantities

- b -b - [yt il
a, -a+p,(by-b; ¥t
o = py-2 ; 1) = |u @) (6.3-6)
km(zm -p1) v, (t)
| “%m " p1(bm, +p1) ] _ e, (t) J

Rewriting Eq. (8.3-3) in the time domain,with the aid of Eqs. (8.3-5) and
(8.3-6), produces a differential equation for the error in the form of
Eq. (4.4-42),

8(t) = ~(bp*py) et) + o7 1) +ku(t) -k _ 7(t) (8.3-1)

The adaptive controller is derived directly from Eq. (4.4-43).
Because Eq. (8.3-7) is a scalar error equation, Q and q in Eq. (4.4-43)
are also scalars to which we can assign the value one, Also, since A is
an arbitrary positive definite matrix and k is wnknown, choose the former
to be diagonal and replace the latter by its algebraic sign. The application
we are considering is the same as in Section 8.2.2 so that k is the same as
g in Eq. (8.2-23), which is a negative quantity for all flight conditions.
With these assumptions, the adaptation algorith:n becomes

T
f(t) f{t)
ut) = (- b 0T +oe® [‘ ] ,;1)[-" l
v(t) v(t) |

NCRC b
= - A “

8-58

Sk Sy SN Wk ANE G wut BN Awy Smg ANG PR GEE N S SWs ey ey e

P L R I T I Y




THE ANALYTIC SCIENCES CORPORATION

where the six diagonal elements of A and the positive scalar o remain to
be selected.

The implementation of this adaptive system is illustrated in
Fig. 8.3-2. To provide a means for exercising control over the total
adaptive loop gain, define the ith element of A to be Mi where the quanti-
ties Ai are chosen to achieve the proper relative weighting on the elements
of f(t) and v(t) in Eq.(8.3-8) and X is a scaling factor. The adaptation al-
gorithm is computationally more complex than the accelerated gradient
method described in Szction 8.2; it requires two additional adaptive gains
and mechanization of the filters with transfer function 1/p c(s).

To set initial values for the feedback gains l_xc (t), Eq.(4.4-47)
is solved for the initial flight condition with the modification,

_n | P

h (8.3-9)
c k l_ “kp

The quantity 7 is a positive factor which permits the adaptive gains
to be initially "detuned"” from their optimum values. It represents
whatever inaccuracy may exist in knowledge of the initial values of the
plant parameters.

8.3.2 Selection of Parameters

For simulation purposes the airframe dynamics are taken from
the trajectory data in Section H,1 with the actuator dynamics neglected. The
dynamics of the reference model are taken from flight condition 6 in Table

H.3. The controller gains -- >‘i’ o and Py i=1,..,6 -- are assigned
values
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1/ = 9.0x10°  1/a, = 3.0x10°

1/ag = 3.0x10°  1/a, = 2.34x10"

1/h5 = 1.8x10°  1/a; = 6.0x10*
p, = 3.0 o = 0.167

The quantity A is a parameter used to adjust the total effective loop gain.

8.3.3 Performance Evaluation

To demonstrate the operation of the system illustrated in Fig.
8.3-2, a simulation was conducted with the plant parameters fixed at the
values specified by flight condition 2 in Table H.1 and an adaptive loop gain
A"! = 5.5. The initial values of the adaptive gains h(t) were computed
from Eq. (8.3-9) with n = C. 6 and a step pitch rate command, v =0.01
radians/second was applied. In Fig. 8.3-3 the reference model response,
the airframe response, and the associated Liapunov function are plotted
as a function of time. The airframe response without adaptation (x'l =0)
is also shown for comparison, Evidently significant improvement is pro-
vided by the adaptive design. Observe that the Liapunov function decreases
most rapidly initially, when the error is largest, as expected from Eq.
(4.4-45). 1t should be noted that the large overshoot in the reference model
response is required in order to rapidly develop normal acceleration. Thus

a pitch rate model is chosen on the basis of the desired normal acceleration
response, just as we did in simulations for the accelerated gradient method.

To demonstrate the performance of this system design in the
presence of time-varying system dynamics, the trajectory in Section H.1
was simulated over a three second interval beginning at t = 7 seconds,
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Figure 8. 3-2 Liapunov Design Technique Applied
to a Second Order Airframe

"half-way'’ between flight conditions 2 and 3 in Table H.1. This includes
a portion of the missile's thrusting period. The initial values of the adap-

tive gains were calcula‘*ed according to Eq. (8.3-9) with the detuning factor
1 equal to 0.75. The response curves are shown in Figs. 8.3-4(a) and (b).
The error between the reference model output and the airframe pitch rate
is plotted explicitly in Fig. 8.3-4(b) because of its small magnitude rela-
tive to the pitch rate. Evidently the control system is able to maintain a
very small error level relative to the model response; the performance is
somewhat better than that achieved with the accelerated gradient method
over the same trajectory (see Fig. 8.2-8 for comparison).
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Figure 8,3-4 Pitch Rate Response of Reference Model and Pitch
Rate Drror Signal for the Liapunov Design in
Fig. 8.3-2

In Fig. 8.3-5 the effect of setting the gain ¢ to zero in Eq.
(8.3-8) is demonstrated; this is similar to opening the switch S in Fig.
8.2-3 for the accelerated gradient method. Recall that the term in the ex-
pression for the feedback control associated with this gain is designed to
improve the adaptation rate of the system. When the simulation of Fig.
8. 3-4 was rerua with ¢ = 0, the resulting error signal shown in Fig. 8.3-5
was significantly larger than that in Fig, 8. 3-4(b) indicating that ¢ # 0
does improve the system adaptatior characteristics.
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The controller described above is designed for a second order
airframe, neglecting actuator dynamics. To determine the effect of the
actuator, a simulation was performed using the same controller as in
Fig. 8.3-2 with a first order lag inserted between the input u(t) and the
airframe, The time constant of the lag is 0.02 seconds, taken from the
data in Section H.1. The trajectory is the same as for Figs. 8.3-4 and
8. 3-5 and the resulting error signal is shown in Fig. 8.3-6. As contrasted
with Fig. 8.3-4(b) a relatively large transient error is incurred each time
the input signal v(t) changes sign. However its.duration is short -~ on the
order of 0.2 seconds which is comparable to the reference model response

time.

Finally, we wish to deronstrate that the Liapunov technique is
capable of providing good adaptive performance over the entire thrusting
period of the trajectory in Section H.1. The simulation was pefformed
for a three second interval beginning at 5 seconds with the gain detuning
factor n set at 0.9 in Eq. (8.3-9). The pitch rate responses of both ihe
reference model and the airframe are given in Fig. 8.3-7. Again the adap-
tive controller succeeds in tracking the reference modei output very well,
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Parameter Variations

even thouch plant parameters are varying rapidly. This behavior contrasts
favorably with the operation of the accelerated gradient technioue in Fig,
8.2-9, However it may be simply a fortuitous circumstance because the

theory predicts good operation only when plant parameters are constant,
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8.3.4 An Adaptive Reference Modei

When a partial plant identification capability is available, good
adaptive normal acceleration response can probably be achieved if the
Liapunov design technique is modified to inblude an adaptive reference
model, just as described for the accelerated gradient method in Section
8.2.4. The use of an adaptive reference model forces the system to
respond fo input commands in such a fashion that the airframe acceleration
output has the desired characteristics. The implementation of this idea is
illustrated by the conceptually simply modifications to Fig. 8.3-2 indicated
in Fig. 8.3-8. Only estimeaics of airspeed and the actual airframe zero, z,
are required. No sim.'a‘iuns were performed for this design.
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The same comments made for the accelerated gradient technique
concerning the practicality of an adaptive reference model apply to the
Liapunov procedure. If it is deemed easier to identify only a few airframe
parameters (z and V) instead of the entire plant, the procedure described
above may offer computational advantages over the methods described in
Chapter 5 which require complete plant identification. Further investiga-
tion of the adaptive reference model concept is needed to determine its

merits vis a vis complete identification.

8.4 SUMMARY AND CONCLUSIONS

8.4.1 Summary

The Accelerated Gradient Method — The accelerated gradient
method is applied to pitch rate and normal acceleration autopilots in

Sections 8.2.2 and 8.2.3. The technique is characterized by a time-

invariant reference model and no plant identification capability. The prin-

cipal observations are that relatively good adaptive pitch rate control can
be achieved whereas the normal acceleration autopilet adapts slowly and
its stability characteristics are sensitive to flight conditions. The latter
behavior is caused by the fact that the airframe input-output transfer
function has a right-half-plane zero whose location is a function of flight
cendition. When a partial plant identification capabilily is feasible, it is

demonstrated in Section 8.2.4 that an adaptive reference model used in

conjunction with a pitch rate autopilot can yield good adaptive normal

acceleration response.

A specific disadvantage of gradient type methods is that their
global stability properties are generally unknown and situations where the
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system becomes unstable can occur. A large amount of simulation with
some trial and error design may be required to arrive at a satisfactory
system configuration

Liapunov Design Method — The Liapunov design technique is

applied to a missile pitch rate autopilot in Section 8. 3; as already noted in
Sectiocii 4.4.4, this method is suited only for controlling minimum
phase plants. The controller configuration is characterized by a time-
invariant reference model and no plant identification capability. Rapid
adaptation characieristics are observed in all simulations performed.
However, it should be emphasized that the theory ensures the desired
global stability properties only when plant parameters are constant. During
periods of rapidly changing flight conditions, there is no guarantee that the
system will remain stable. Just as with gradient methods, considerable
simulation is required to definitively establish its usefulness for a par-
ticular set of circumstances. The results presented here indicate that
Liapunov synthesis procedures are feasible and promising for controlling
the output of a minimum phase airframe transfer funttion, i.e., one which
has no right-half-plaue zeros.

In order to circumvent the restriction to minimum phase
plants when an adaptive normal acceleration autopilot is needed for tail-
controlled missile, the adaptive reference model concept is suggested in

Section 8.3.4. The latter is implemented in the same fashion as described
in Section 8.2.4 for the accelerated gradient method.

8.4.2 Conclusions

The simulation results presented in this chapter indicate that
both the accelerated gradient and Liapunov design methods are feasibie for
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adaptive control of a missile airframe, subject to wide parameter varia-
tions whose input-output transfer function is minimum phase. The
Liapunov design technique achieves somewhat better adaptation charac-
teristics because of the inherent stability properties of the resulting adap-

tive controller.

Both of the above techniques, as developed in Chapter 4, are not
well-suited for controlling normal acceleration in the tail-controlled mis-
sile illustrated in Fig, 8.1-1 because of the associated nonminimum phase
transfer function. We have pointed out that one way of overcoming this
problem is to utilize an adaptive reference model with a pitch rate autopilot;

the net effect is to control both pitch rate and normal acceleration. Another

possible solution is a change in the airframe design that will eliminate the
nonminimum phase characteristic, Some possible methods of accomplish-

ing the intter are outlined below.

The right-half-plane zero in the transfer function between control
surface deflection and no: mal acceleration for the missile in Fig. 8.1-1
occurs because the control surfaces are mounted on the tail, behind the cen-
ter of gravity. To produce an acceleration in one direction the control sur-
face must deflect at an angle which initially produces an acceleration--i.e.,
a force on the control surface --in the opposite direction.” The right-half-
plane zero can be removed by putting the control surface forward of the
missile's center of gravity in a canard configuration (Refs. 129, 130).

Although this airframe structure sometimes has certain aerodynamic dis-
advantages -- e.g., the drag may be excessive and the flow of air over the
primary lifting surfaces (wings) can be distorted by the wake of the canard

*See the curves in Fig. 8.2-14 where the acceleration just after t =0
is in the direction opposite to that commanded.
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structure -- it is worthwhile considering for alleviating the problems
encountered in normal acceleration control.

Another possible airframe configuration is a form of direct lift
control (Refs. 129, 131, 132) provided by a rotatable wing near the center
of gravity, in conjunction with tail controls. Many of the problems asso-
ciated with missile autopilot design are a result of the fact that the air-
frame must pitch to increase angle of attack to produce aerodynamic lift,

The ability tf the control surfaces to generate pitching moments varies
with flight condition, also causing the airframe response characteristics
to vary. This difficulty is largely eliminated if the airframe wings can be
rotated with respect to the fuselage in the same fashion as the tail control
surface. This provides the capability for rapidly changing the angle of
attack (with respect to the wings) so that the missile can quickly develop a
lifting force at any flight condition. In this configuration the tail control
surface may still be needed to maintain airframe stability.

Finally we note that the need for adaptive control in missile
applications arises largely through variations in airframe aerodynamic
properties. Therefore the need for an adaptive autopilot may be reduced if
a method of control -- such as thrust vectoring* -- is employed which does

not depend on aerodynamic forces for developing control moments and
maneuvering accelerations.

This chapter has treated a variety of methods associated with
implicit plant identification for adaptively controlling a missile airframe. In
the next chapter techniques are considered which depend .upon explicit
plant identification.

TThrust vectoring refers to a concept where a variabie component of the
main engine thrust veetor normal to the migsile's Jongitudinal axis is used
to control airframe pitch motion, and the primary maneuvering force is
supplied by the longitudinal component of thrust combined with a large
angle of attack,
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9. APPLICATIONS: PARAMETER ADAPTIVE CONTROL
SYSTEMS WITH EXPLICIT PLANT IDENTIFICATION

In Chapter 5 a number of adaptive techniques depending upon
explicit identification of plant parameters are reviewed. Three of these --
using pole assignment, optimal regulator, and optimal model following con-
cepts -- are examined here for possible application to tactical missiles. In
applying each of these methods, the actuator and airframe are considered
to comprise a third order linear system with dynamics as specified in
Egs. (8.1-3) and (8.1-4). A functional block diagram of the adaptive con-
troller is shown in Fig., 9.1-1. The airframe equations of motion are known
to within a set of varying parameters, a, that can be accurately estimated
by one of the methods discussed in Chapter 6. All state variables -- control
surface deflection, normal acceleration, and pitch rate -- are considered
available for use in the controller and for providing parameter estimates, é_.

In z1l the applications examined here the controller structure is
linear, with adaptive gains whose values depend upon the parameter esti-
mates, as indicated in Fig, 9.1-2, The equations of motion have the form

I3
[

o
1

A@) x(t) + b(a) (-h@) " x®) + k@) v(t)

alt) = cTx(t); ¢t =[01 0] 9.1-1)

=

o+

~—
il

There is one gain associated with each state variable and a fourth is applied
at the input o give the proper steadv state (d-c) gain between v(t) and the
airframe output. In this chapter we shall think of the output as being nor-
mal acceleration, consistent with the steering commands expected from: the
guidance loop. The only functional difference between each type of adaptive
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Figure 9.1-2 Adaptive Linear Feedback Controller

system discussed in this chapter is the algorithm used to define the feedback
gains in terms of é. The methods are described individually in Sections 9.1,
9.2, and 9.3 and their associated responses to input commands are com-
pared in Section 9.4. Section 9.5 discusses the application of the most
promising method, the pole assignment technique, to a missile with rapidly
varying parameters such as exist in a dogfight engagement.
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9.1 POLE ASSIGNMENT

An adaptive procedure for selecting feedback gains to position the
closed loop poles for a controllable linear system is described in Section
5.3. The gains are obtained as functions of the parameter estimates é

by solving Eq. (5.3-7), rewritten here in the form
Det |Is - Afa) + b(ﬁ)hT = °3+a s2 +b_s+¢ 9.1-2)
S - m m m °

For the missile application A and b are defined in Eq. (8.1-4) and are
regarded here as functions of the estimated parameters. The quantities --
a bm and ¢, ~-are the coefficients of the expanded polynomial on the
right hand side of Eq. (5.3-7); i.e.,

3 2 ‘ “
8" +a s +bms+cm (s -pml)(s P \(s -pm:)

2/ /
m - 'pml —pmz —pms
by TP mlpm2 ¥ pmlpm3 P mzpm3
c_ = (9.1-3)

= Py, Py P
m m, “m,"mg

where the quantities, Pm;, are the desired closed loop poles. Equation
(9.1-2) is solved by expanding the determinant and equating like powers
of s. The result is a linear set of equations having a solution given by

h@) = P(si)'1 d(a) (9.1-4)

¥ where
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0 by by
A A ~ a A N ) a "
P@) = - | -a;4bg -a;pby  ayyb (811 *2g,) Py
2137205 313P3%1 (@112 “391319)P3]
311 "% 333 A
d@) = | -2 @y +agg) *a158y) “aggdsy by 9.1-5)

| 23303y 3y8pp) Oy

The carat superscript denotes those elements of A and b which must be
estimated; a33 and b3 describe the actuator dynamics which are assumed
to be known. The gains h can be updated from Eqs. (9.1-4) and (9.1-5)
whenever new parameter estimates are generated.

The d-c gain k(?.“_) is Jetermined so that the acceleration output
equals the input in the steady state when v(t) is constant. In other words,
setting x(t) equal to zero in Eq. (9.1-1) and solving for a(t), we require

-1
at) = -¢' (A-bh") kv = v 9.1-6)
Thus the solution for k becomes
Ay 1
k(a) - = _1 (9.1'7)

T (a@) 2@ h@T) p@

Equations (9.1-4) and (9.1-"7) together completely specify the adaptive con-

troller.

Application — Using the air-to-surface trajectory data given in
Section H. 2 of Appendix H, an autopilot control system was simulated. The
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airframe dynamics along the trajectory were made time-varying bythe linear

interpolation procedure describe” - Section H.1. The values of the assigned

poles, Pm; in Eq. (9.1-3), are

-60.0

i=
B
n

-23,0 £ 17.6 (9.1-8)

These particular choices provide a comparison with the adaptive optimal
controllers discussed later in this chapter.

If the adaptive gains are continuously computed from Eqs.(9.1-3)
and (9.1-6), the instantareous systen: poles will always be at the values
specified by Eq. (9.1-7). However, praciically speaking it takes time to

obtain parameter estimates and to carry out the calculations needed to
determine h and k. In addition, the computation equipment must generally
perform other tasks related to guidance and navigation. Consequently it is

possible to up-datc the adaptive gains only at discrete times separated by

. intervals of some specified length., During each interval the plant param-

‘ eters continue to vary and the closed loop system poles depart from the

i desired values. Therefore one measure of the performance of the sysiem
and an indication of how often the gains should be recomputed is provided
by a graph showing variations in pole location as a function of time. For-
tunately not all of the poles need be examined, only those nearest the
imaginary axis contribute significantly to the system response. It is the

E real part of the latter which is of most interest because it is closely related

to the system settling time.

The variation of the real part, o, of the dominant complex poles
of the missile autopilot along the trajectory is shown in Fig. 9.1-3. The
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Figure 9.1-3 Value of the Real Part of the Most
Significant Closed Loop Pole:
Pole Assignment Technique

adaptive gains k and h were recomputed every second, resulting in dis-
continuous changes in ¢ as indicated by the dashed lines in the figure.
Notice tne especially rapid changes near the beginning of the trajectory.
This behavior is partially caused by the fact that the missile airframe
parameters vary most rapidly during the boost phase of the trajectory;

also the closed loop poles are most sensitive to changes in plant param-
cters when the dynamic pressure is low. The latter effect is caused by the
fact ina: the vector b in Eq. (9.1-2) varies with flight condition. Conse-
quently during those periods of time when the feedback gains h are constant,
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the sensitivity of the closed loop poles to changes in b is partially deter-
mined by h. When dynamic pressure is low the magnitude of b tends to be

small, requiringlarge feedback gainsto achieve specified closed loop poles;
hence the sensitivity to parameter variations tends to be greatest at low
dynamic pressure. This is one illustration of a case where feedback can
increase system sencitivity to changes in plant dynzmics (see the related
discussion in Section 7.1). From the trend indicated during the first
second of flight it is seen that the autopilot would become temporarily un-
stable if the gains were updated less frequently. The above observations
indicate that the pole assignment technique should yield a satisfactory
response time over most of the trajectory provided plant identification is

rapidly accomplished. A more definitive judgement about the system's
performance can be made from viewing sample autopilot response curves.
These are provided in Section 9.4 and are compared with the other adap-
tive methods being evaluated.

The implementation of the adaptive pole assignment controller
is relatively easy to accomplish and is therefore quite competitive with
other techniques which require plant identification. The mechanization of
Egs. (9.1-4) and (9.1-5) with a digital computer provides the capability to
rapidly update feedback gains.

In this application only one set of closed loop poles is assigned
in solving for the feedback gains from Eq. (9.1-4). However different sets
of closed loop poles -- Bmi’ i=1,..M -~ could be specified for different
ranges of flight conditions. For example, if the autopilot closed loop poles
are required to have smaller magnitudes near the beginning of the trajec-
tory than those specified in Eq. (9.1-8), then less frequent gain calculations
are needed. This effect is also a result of the fact that the sensitivity of the
closed loop poles to changes in parameters is partially determined by the
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gains h. The larger are the magnitudes of the elements of h, the greater
is the effect of parameter variations. Reducing the magnitude of the
desired closed loop poles tends to reduce the level of the gains and thus
reduce sensitivity, With this modification to the pole assignment methed,
Eg. (9.1-4) symbolically becomes

E(é;, P_ml) = P(é_)-l Q(é, Bm> 9.1-9)
1

where both g and Pm; change adaptively, the former as new estimates are
generated and the latter as flight cor.ditions change. The dependence of
the gains on the assigned poles is explicitly provided by Eq. (9.1-3).

The above proposal is another type of adaptive reference model
(see Section 8.2-4) where the model specifications (i.e., assigned poles)
are adjusted with changes in flight condition so that acceptable system
behavior is obtained. It is consistent with the idea that the designer should
not expect the control system to produce fixed response characteristics

that are unreasonable for some operating conditions.

9.2 THE ADAPTIVE OPTIMAL REGULATOR

In contrast with the pole assignment method discussed previously,
optimal control techniques achieve a compromise between the objectives of
obtaining good response characteristics and maintaining acceptable con-
trol levels. In this section the adaptive cptimal regulator described in
Section 5.4.1 and Appendix B is implemented using trajectory data provided
in Section H.2. The term "adaptive' denotes the fact that a method is pro-
vided for recomputing optimal feedback gains on-line as new estimates of
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plant parameters are obtained. Both optimal and suboptimal designs are
considered.

9.2.1 Design of a Third Order Adaptive Optimal Regulator

In this section we apply optimal control techniques to design an
adaptive autopilot fer a tactical missile having a first order actuator and
a second order airframe with dynamics specified in Eqs. (8.1-3) and
(8.1-4). The problem as outlined in Section 5.4.1 is to assume v(t) is
zero in Eq. (9.1-1) and determine u(t) in the equations of motion,

i(t) = Ax(t) +bult);  x(to) = x (9.2-1)

such that the performance index
_ T 2
J —S [§(t) Qx(t) + ru(t) ]dt (9.2-2)
t

is minimized. This problem formulation Jeads to solutions for the gains

h and k in Eq. (9.1-1) which are given in Egs. (5.4-4), (5.4-5) and (5.4-8)
in terms of the parameter estimates. These expressions are repeated here
with 2 substituted for 4 :

h@" =1b@" s@) 9.2-3)

-SA@) - A@)'s +Lsp@ p@Ts - Q = o, (9.2-4)
Ay 1

k(3) = - - 9.2-5)
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Recall that each calculation for the gains h(a) in Eq. (9.2-3) requires the
matrix S(a), which is the solution to the nonlinear steady state Riccati
eauation in Eq. (9.2-4). This generally must be accomplished by an itera-
tive procedure. One efficient method that is suitable for low order systems
is the Newton-Raphson technique discussed in Appendix F. Applied to this
problem, an approximate solution for S(é_) is obtained by iteratively solving
the linear matrix equations

(a-LsT T 1 1

T T -
A-7bbS) 8, +8, (A-TbbTS, )+ 18, bbISQ = 0

(9.2-6)

In order that the sequence --S,, S -=-converges to the proper value, the

0, 1, LA N J
starting value S0 is choser. such that the eigenvalues of the matrix

1,.. T, )
(a-2bb sp) 9.2-7)
all have hegative real parts. Enough iterations are performed so that
acceptable accuracy in S is achieved; typically five to ten are required for

the simulations described here.

The problem of determining how often to calculate y_(é_). is more
important here than in the pole assignment method because of the increased
computational load imposed by the need to determine S(é). One method for
deciding this ques*ion is to evaluate the performance index J for the repre-
sentative trajectory as a function of the number, N, of gain 1ecalculations,
Presumably, if g(é) is updated too infrequently, it will differ widely from
¥ _ _pudinum value along significant portions of the trajectory because of
airframe parameter variations. This fact should be reflected in an increase
in J as N decreases. Hopefully a computation interval can be found that is
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short enough to yield an acceptably small value of J and yet is long enough
with respect to the system response time so the infinite upper limit in the
integral of Eq. (9.2-2) remains valid. If this cannot be done, it implies
that system parameters are varying too rapidly for adaptive steady state
regulator gains to yield an adequate controller design.

The performance evaluation described above was carried out

over the same 50 second trajectory used in Section 9.1 by calculating

t

s = 3§ - (x6) Qxtt) + ruy0 ) et

i=1 %

where the times ti are equally spaced points at which h is recalculated
according to Eq. (9.2-3), using parameter estimates é i The parameters
were assumed to be perfectly estimated in this simulation. The elements
of A and b in Eq. (9.2-1) were taken from Table H.6 with linear interpola-
tion between the given flight conditions. At times ti’ the following opera-
tions were performed: A and b were updated in Eqs. (9.2-6) and (9.2-7),
an approximate solution was obtained for S(éi) by Newton-Raphson iteration,
and the adaptive gains were recomputed. Two different values of the

weighting matrix Q were chosen,

1.0x10° 0 0 1.0x10°2 0 0
Q= 0 20x108 05 Q= o 20x1080
0 0 1 0 0 1

9.2-8)

with a fixed value of r, r = 1.0, The equations of motion were "driven' by
taking the input v(t) as zero and setting the state of the autopilot to a speci-
fied value, +x , at one second intervals, with the sign alternating at
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successive intervals. This simulates a situation where the system has
been allowed to reach steady state in response to a constant input
command and then v(t) is suddently changed to zero.

The variation in J as a function of N is plotted in Fig. ©.2-1 for
both weighting matrices Q1 and Qz. Only integer values of N have meaning
but points are connected by straight lines to indicate trends. The value
N = 0 corresponds to no feedback compensation at all, i.e., h=0. The
points where J has the value "o’ occur when the system becomes unstable,
resulting in an essentially "infinite" cost. One conclusion is that too few
recalculations, which can result in large departures of the gains from their
optimum values as parameters vary, are worse than no feedback (h = 0).
This sensitivity problem is the same type encountered in the pole assign-
ment technique in the preceding section. With weighting Q2 the system
becomes unstable when N is too small; the same behavior is observed with
the pole assignment technique if the feedback gains are recalculated too
infrequently. However, it is clear that the minimum of J is achieved for
all practical purposes when N 2 10 for both choices of Q; this is to be con-
trasted with the 50 recalculations required to maintain stability in the case
illustratéd by Fig. 9.1-3.

To compare the pole assignment method and the optimal regulator
on the same basis, graphs of the real part of the closed loop airframe poles
are shown in Fig. 9.2-2 for the optimal regulator design with Q = Q2 and
N =10. This value of the weighting matrix is used throughout our subse-
quent discussion. The discontinuities in the curve at 5 second intervals cre
the points at which a new set of optimal gains is computed. In the same
figure the curve corresponding to the uncompensated airframe (N =0) is also
shown. The horizontal dotted line at the value -23 represants the design
value for the adaptive pole assignment system,

9-12
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Figure 9.2-1 Performance Index as a Function of the
Number of Optimal Gain Recalculations:
Adaptive Optimal Regulator

The weighting matrix for the performance index is chosen so that
the optimal regulator feedback gains make the closed loop system poles at
25 seconds equzl to those specified for the pole assignment method in
Eq. (9.1-8). In other words the missile autopilot using the optimal regu-
lator gains has the same dynamics as the adaptive pole assignment system
at one instant of time along the missile's trajectory. This provides a basis
of comparison for the performance of the two systems. We can suppose
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Figure 9.2-2 Value of the Real Part of the Most
Significant Closed Loop Pole:
Optimal Regulator Method

s S

that ideally the instantaneous system closed loop poles should always have
the values specified in Eq. (9.1-8). This can be assured using adaptive
pole assignment by recomputing the gains sufficiently often. On the other

hand the optimal regulator provides the desired response characteristics
at only one instant. At other points on the trajectory, Fig. 9.2-2 indicates

a shorter or longer settling time (larger or smaller ¢) depending upon the
compromise between response speed and control level dictated by the
minimization of the performance index in Eq. (9.2-2). This is exactly the
gort of comparison one expects because the pole assignment technique
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places no penalty on the control magnitude required to give the desired out-
put performance. These comparisons are also supported by the output
response curves presented in Section 9. 4.

\ The main objection to using the optimal regulator design is that
one has no direct control over how much the closed loop response charac-
teristics vary as plant parameters change. The designer may be willing to
accept some deviation from criteria such as those specified in Eq. (9.1-8),
but variations of the kind indicated in Fig. 9.2-2 may be too large --
especially near the beginning of the trajectory. ' More detailed discussion
of this point is given in Section 5.4.1 aad Appendix B. Possible alterna-

tive methods are provided by the optimal model following systems described
in Sections 5.4.2 and 5.4.3 which have the capability for obtaining more
uniform output perfermance characteristics over a range of flight conditions.
One of these is examined in Section 9. 3.

9.2.2 Design of a Third Order Adaptive Suboptimal Regulator

Many linear optimal control problems suffer from the "'curse of
dimensionality'' in that a large number of variables are required to des-
ciibe the plant dynamics and considerabie computation is required to obtain
optimum feedback gains, This is a very important consideration in adap-
tive systems when the feedback gains must be updated on-line by solving the
matrix Riccati equation. To accomplish this task using the Newton-Raphson
iteration (Eq.(9.2-6)), the computation time required is proportional to n®
where n is the dimension of the state. Hence even a small reduction in the
number of state variables can substantially reduce the computational load.
Consequently it is desirable to consider suboptimal contro. laws which
neglect some of the state variables. This is often justified in linear systems
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when certain open loop poles do not contribute significantly to the open loop
response. Such is the case in missiles if dynamics introduced by the
flexibie airframe, actuator and sensors are negligible compared with those
of the airframe’s rigid body motion. In this section we evaluate the sys-
tem design obtained by solving the optimal control problem with the actuator
dynamics in Eq. (8.1-3) neglected, and then implementing the resulting
feedback gains with the actuator included.

The equations of motion for the second order system correspond-

ingto Eq. (8.1-3) with 6(t) regarded as the control variable are

a) M, M7 [a® [Mﬁ
= + ﬁ(t) (9 . 2-9)
a(t) 1 -L, oft) [—L 5

where «(t) is the angle to attack. Comparing the third order and second
order systems, make the identifications

u(t) = &(t)

oft) v—é—— (a(t:)»VL6 6(t)> (9.2-10)
o \

Denoting the diagonal elements of Q in Eq. (9.2-2) by 41> 999 and Ugg with
off-diagonal terms equal to zero and suistituting for a(t) from Eq. (9.2-10),
the performance index J in Eq. (9.2-2) becomes

@

J = S [qnq(t)

%

2 + qzzvz (Ladt) + ]_,Gu,(t))2 +(q33 +r> U(t)z ] dt

(9.2-11)
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If the optimal feedback gains for minimizing J in Eq. (9.2-11) for the

second order system are hl' and h2', the corresponding values of the gains
for the third order system illustrated in Fig. 9.1-2 are obtained by setting

hl'q(t) + héa(’r) = hlq(t) + hza(t) + h36(t)

Substitution for o(t) from Eq. (9.2-10) into the above expression and equat-
ing coefficients of like state variables on each side of ti.c equation produces

hl
2
- ’ - ——
hy = Iy hy = T
o
h/L
h3 S - 2]_-‘6 (9.2'12)
o

Plots of the real part of the dominant pole for both the suboptimal
and optimal adaptive systems are shown in Fig. 9.2-3 for two different
values of the actuator pole, -A. In both cases the feedback gains are recal-
culated at one second intervals (N = 50) and with Q = on Observe that for

X as large as 200 (actuator time constant = 5 x 1073

sec.) there is appre-
ciable deviation in the optimal and suboptimal curves during the later por-
tion of the trajectory, as the system closed loop poles move further into
the left-half-plane. The conclusion is that in order for the second order
design to be a good approximation to the third order design, the actuator

poles must not only be far removed from those of the uncompensated mis-

sile airframe, but they should also be some distance from those of the
compensated airframe, This condition does not hold fer all flight con-
ditions in the system we are considering (A = 50); consequently actuator
dynamics are not neglected in subsequent sections.
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“ Figure 9.2-3 Comparison of the Vaiues of the Real Part of the
Most Significant Closed Loop Pole for the Optimal
and Suboptimal Regulator Designs

9.3 ADAPTIVE OPTIMAL MODEL FOLLOWING SYSTEMS

In this section we apply the "model-in-the-performance-index"
model following control technique described in Section 5,4.2 to a missile
autopilot. This method permits adaptive regulation of control system
response characteristics along a trajectory by defining a performance cri-
terion in terms of the error between the actual (measured) and the desired
airframe dyn- mic properties. The error signal is given by
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&) = (A@) - A_)x() +b@) utt), 9.3-1)

as in Eq. (5.4-13), where the matrix A represents the dynamics of a
reference model,

The objective is to determine u(t) so that

©

J =S [“é(t)T QElt) + ru(t)z]dt 9.3-2)

Y%

is minimized. Again the notation A(_é;) and 9@1) is used to emphasize the

' dependence of the control upon parameter estimates. This problem formu-
lation leads to solutions for the gains h and k in Eq. (9.1-1) which are given
in Eqs. (5.4-14), (5.4-15) and (5.4-8). These expressions are repeated
here with a substituted for éo:

up

>
np

k@) = - (9.3-3)
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where §(§_) satisfies

-§A@) - A@)" §+ 5@ b@ " §-HE) QA HE) =0
T(a)
A@ 2 A@) - —= b@) b@)T QHE)
r(a)
3@ 2 Q-+ @ vE @ (9.3-4)
r(a)

Equation (9. 3-4) is solved iteratively for §(§_) using the same Newton-
Raphson method described in the preceding section. The response of the
airframe tends to be similar to that of the model to the extent that the dif-
ference, AA, between the dynamics of the reference model and the closed
loop control system, as expressed by

up

aA % (A@ -p@1r@T-A_), (9.3-5)

is made small by the resulting value of h.

Simulations of this technique were performed with Am given by

A_ = (A-bal) (9.3-6)

where A and b have the values for the trajectory used in Sections 9.1 and
9.2 at time t = 25 seconds and gm is the solution to the optimal regulator
problem at the same instant with Q = Qz. In this way a consistent compari-
son is made between the model following system and the other control tech-
niques evaluaied in this chapter. Numerical values for the model param-

eters are
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7. 64 0.041  -454.0 ]
A = |-tsixa0 353 s.a7x0’ 9.3-7)
; 431  4.47x107%  -95.8

Appropriate weighting constants for the performance index are

[REOR AR AN

0.3 0 0
1 Q=Q =q| 0 2.0x107" 0 [; r=1.0 9.3-8)
1 0o 0 1.0

where ( is an adjustable parameter to provide comparative simulation

results.

The real part of the most significant pole along the missile tra-
jectory is displayed in Fig. 9.3-1 forthree different values of q and with the
feedback gains calculated at one second intervals. The dashed horizontal
line at ¢ = -23.0 represents the specifications in Eq. (9.1-8) on which the
pole assignment technique was based. Observe that as q increases, at

s n __ -
o - _ B - o S
e et Sm e arartshn £ sy R £ AL TR . i . AR L AN L 8

t = 25 seconds the value of o for the model following system appears to
approach a limit that coincides with both the curve for the optimal regulator
and the horizontal dashed line. This behavior is a consequence of the fact
that as q is increased (or alternatively as r is decreased) the optima: feed-

back gains h also approach a limit, as discussed in Section 5.4.2. When
t = 25 seconds this limit is identical with the feedback gains in the optim=al
regulator and the pole assignment system because the reference model
dynamics defined by Egs. (9.3-6) and (9.3-7) are identical to those of the
optimal regulator at 25 seconds. That is to say,

3 lim AA] =0
q-e t=25
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Figure 9. 3-1 Values of the Keal Part of the Most
Significant Closed Loop Pole:
Optimal Model Following System

where AA is defined in Eq. (9.3-5). Consequently the model in the per-
formance index (with large q), the optimal regulator, and the pole assign-
ment methods all yield the same controller at one point on the trajectory.
This property permits a meaningful comparison of the three techniques at
other points along the trajectory.

As indicated in Fig. 9.3-1, for a large value of q the tendency of
this contro. system to conform to the model (in terms of the location of the
most significant closed loop pole) is moderately better than the optimal regu-
lator for t > 25 sec and is about the sanie as the regulator for t <25 sec,
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Deviations from the model are a result of our inability to choose h(t)to make

AA identically zero everywhere on the trajectory. Consequently a com-
promise between control level and response characteristics is exerted Ly

the optimization criterion, just as in the regulator method.

The primary advantage offered by the model following scheme for
this application, relative to the optimal regulator, is a conceptual one. If
one deliberately specifies a set of model dynamics Am that the compensa-
ted airframe can duplicate at one particular flight condition, then an optimal
control law which minimizes J in Eq. (9.3-2) closely approximates the
model at that flight condition if the performance index weighting constant q
in Eq. (9.3-8) is sufficiently large. By contrast, it is more difficult to
determine what choices of Q and r in Eq. (9.2-2) realize specified dynamics

at any flight condition. However, this distinction may be somewhat academic
from the designer's point of view because the performance indices are chosen
"off-line" where there is sufficient time to evaluate different values of Q
andr,

The computational requirements for this model followiag system
are somewhat greatexr than for the optimal regulator as indicated by com-
paring Eqs. (9.3-3) and (9.3-4) with Eqs. (9.2-3) and (9.2-4). This dis-

| advantage weighed against the small improvemenlt obtained in Fig. 9.3-1
indicates that the model-in-the-performance-~index technique investigated

here is relatively unattractive for controlling longitudinal airframe motion.

For other applications where there is more than one plant input variable
(e.g., lateral motion control) a better match between system and model
dynamics might be achieved over the entire trajectory using the model
following method discussed above.

It is noted in Section 5.4.3 that the model-in-the-performance-

index method discussed above can be made to yield more uniform
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performance by transforming state variables to phase variable canonical
form. The resulting adaptive control law requires some additional com-
putation to derive the requiréd transformation matrix. This possibility is
not pursued here.

Another type of model following technique considered in Section
5.4 is the "model-in-the-system' approach having the structure indicated
in Fig. 5.4-2. It is capable of making the airframe and reference model
dynamics approximately identical for a v-ide range of flight conditions, at
the expense of requiring a high gain type feedback structure and more com-
plex computations (see Egs. (5.4-19) and (5.4-20)). This method is not
evaluated here because nearly the same performance characteristics, with-
out the above stated disadvantages, are achievable using the pole assign-
ment mcthod.

9.4 RESPONSE COMPARISONS

From the designer's point of view, the best comparison among
different control methods is provided by simulation of the time histories
of the control variables and important state variables. This permits one
to examine the actual transient characteristics of the system in response
to representative input commands, thus obtaining empirical knowledge of
such parameters as rise time, overshoot, and settling time.

To perform this type of study, the operation of the three adaptive

controllers -- pole assignment, optimal regulator, and model following --
described in the preceding sections was simulated along the surface-to-air
trajectory described in Section H.2. Airframe dynamics were varied with
time according to the linear interpolatior technique described in Section H.1,
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The commanded accelaration v(t) is a piecewise constant function which

changes level and alternates its sign at one second intervals according to

-f(n+1) sign [v(n)]; n=1,2,...

i

v(in+1)

v(0) = £(0)

where f(t) is specified graphically in Fig. 9.4-1. The use of acceleration
commands that gradually increase in magnitude is reasonable if the missile
is launched some distance irom a target. The adaptive gains are also up-
dated at one second intervals along the trajectory. Graphs of the corre-
sponding control surface deflection 6(t) and normal acceleration a(t) are
shown in Figs. 9.4-2(a) through (e) over selected one second intervals along
the trajectory. The magnitude of the control surface deflection is of
interest because in practice it usually has an upper bound that cannot be
exceeded; furthermore it is an indication of the control level required at
the actuator input.

R-2103
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Figure 9.4-1 Magnitude Profile of Commanded Acceleration
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Recall that all three control methods are designed to give
identical performance for the flight condition corresponding to t = 25
seconds along the trajectory. Therefore on the interval 25 st < 26, the
sets of time histories for a(t) and 6(t) are identical as shown in Fig.
9.4-2(a), having negligible overshoot and a settling time of about 0.15
seconds. In Figs. 9.4-2(b) through (e), a/t) and 6(t) are plotted at the
beginning of several different one second intervals. Att =0 (Fig. (b))
when dynamic pressure and :mmach number are lowest, the greatest dif-
ferences in response are observed among the three systems. The pole
assignment nmiethod, which maintains constant closed loop pole locations
throughout the trajectory, exhibits relatively large amplitude transient
oscillations immediately after the command v(t) is applied. This be-
havior is caused by the fact that a relatively large change in angle of attack
is required to produce a prescribed change in normal acceleration at this
flight condition. Consequently in response to v(t) the control surface de-
flection must be relatively large, compared with its steady state value, to
produce the required pitching moment and to compensate for the reduced
control suriace effectiveness. By contrast both optimal systems permit a
much slower speed of response at this flight condition and consequently have
smaller transient fluctuations. However, at the other times shown
(Figs. (c) through (e)) the behavior of the pole assignment systen: is quite
uniform without calling for excessive control surface deflection. As
'ex,)ected, the optimal system responses vary along the trajectory, generally
becoming faster as dynamic pressure and mach number increase. Also they
tend to exhibit some overshoot in acceleration, particularly in Fig. (c).

The conclusion from this demonstration is that the pole assign-
ment method yields acceptable behavior over a wide range of flight condi-
tions, excepting those where both mach number and dynamic pressure are

lowest. The latter condition typically occurs just after launch, before the
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missile has accelerated to its operating velocity. If one insists on a rapid
response during the initial acceleration phase, the large transient pulse of
acceleration in the wrong direction shown in Fig. 9.4-2(b) is physically
unavoidable because of the required control surface deflection. To avoid
excessive* control surface deflections with the pole assignment technique
the command input signal level must be kept low during this period. If
nonuniform response characteristics can be tolerated during periods of low
dynamic pressure and mach number, the adaptive optimal control techniques
can be used to limit control surface deflections. However, as suggested in
Section 9.1, the latter can also be accomplished by the pole assignment
method, using different sets of poles (i.e., adaptive closed loop poles) for

different ranges of flight conditions. This seems to be the preferred pro-
cedure in view of the fact that the optimal methods require more computer
memory and more on-line computation for each recalculation of the adap-
tive gains,

The above observations are summarized in Table 9.4.1. Because
the pole assignment technique has relatively low computational requirements
it is considered to be the most promising. As suggested above, any require-
ment for variations in autopilot response characteristics can be accommodated
by determining a few sets of closed loop poles, Bmi’ i=1,..,M, which are
suitable for different flight regimes. The feedback gains are calculated
adaptively according to Eq. (8.1-9). It is anticipated that only a few dif-
ferent sets of poles will be required in view of the generally good perform-
ance exhibited by the pole assignment method in Fig, 9.4-1.

*

In a practical situation there are limits on the allowable coatrol suriace
deflection which the linear control system design techniques considered
here do not take into account.
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TABLE 9.4-1

COMPARISON OF ADAPTIVE CONTROL TECHNIQUES
REQUIRING EXPLICIT PLANT IDENTIFICATION

. MOST LEAST
PLRFORMANCE CRITERIA SATISFACTORY | SATISFACTORY _
Programming Instructions, .
Storage, Amount of Computation Assipg(:lﬁx ent l?o Iﬁgsﬂ ng(;iiém
Computational per Gain Updating
Complexity -
Nuzbgr Sf dA;(:?.ptxve Both Optimal Pole ‘
ain ings - .
Per Urf)it Tifle Systems Assignment E
Uniform Response Characteristics 'Pole Optimal
Assignment Regulator

Pole Assignment

e T WLy R T WO LN } oy - N
N R e e AT i A 5 = s e A e At | A & ettt St ot e & ot e .

Control Level Required Both Optimal (Low Dynamic
Systems Pressure and Low p
Mach Number)

Optimal control techniques may be useful as an off-line design
aid to determine suitable values for the closed loop poles., However,
because the closed loop dynamics of adaptive optimal systems vary ian an
unknown fashion as plant parameters change, they are not as suitable for
obtaining particular response characteristics as the pole assignment
] method. The added computational capability required to implement adaptive
optimal methods is better devoted to estimating plant parameters as
accurately as possible via the methods discussed in Chapter 6.
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5.5 RAPIDLY VARYING PLANT PARAME TERS I

In the preceding sections of this chapter, adaptive control i
techniques have been applied to a situation where plant parameters vary i
relatively slowly with respect to the response time of the closed loop con- {
trol system. When missile flight conditions are changing very rap:dly, as
in dogfight applications, there is little theoretical justification for updating f

feedback gains by successively colving for the optimal control which mini-
mizes the performance index in Eq. (5.2-2) or by determining those gains
which maintain constant instantaneous closed loop poles as in Eq. (9.1-4).
Nevertheless, these mnethods may scili give satisfactory performance if the
feedback gains are recomputed sufficiently often. In this section we
demonstrate the autopilot acceleration response achieved by the poic assign-
ment technique for the three second thrusting period of the trajectory given
in Section H.1, during which time the missile's dynamic pressure changes
by a factor of almost twenty.

Two sets of closed-loop poles are selected for the airframe:

W ampn wn—p [ § S Am—— ~nawgn el

-50.0 -50. 0 1
B " |- 2.8 +j4.3] ; Py, |- 5.3 rj 5.1
- 2.8-j4.3 - 5.3-j5.1

The set 1) is used in the interval 4 <t < 6 and Py in the interval
6 <t <9. This design permits controlled variation in the response charac-
teristics to allow for the changing effectiveness of aerodynamic control sur-

Sl

faces. The feedback gains h and the d-c gain k are computed forty times per
second* from Eqs. (9.1-9), (9.1-5), and(9.1-7) with a bm and Cn deter-

mined by equating coefficients in the expression

[ *Satisfactory behavior was also observed with twenty gain recompu {ations
per second; however ten per second led to instability.
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2 2 -
s tays tbyste, = (S -pi1)<s -pi2><s IRy )
where p.. is the jth element of p,,,.. A piecewise constant input command
ij =mj

vt) = +16.0 ft/sec’
was applied, with the sign switched at one second incervals.

The acceleration response and the control surface deflection for
the airframc control system are displayed in Fig. 9.5-1. Control surface
deflection is plotted in terms of the normalized quantity*

1/2

§ = |6]"“ sign (8)

The curves indicate that the acceleration settles close to the commanded
value in an interval equal to about three of the time constants associated
with the dominant complex poles of Pmy and Pms- During the first part of
the trajectory, a large transient acceleration having an algebraic sign
opposite to that of v(t) is produced by the control surface. This is another
example of the behavior observed in Figs. 9.4-2(b) and (c). For this
simulation the peak deflection required in Fig. 9.5-1(b) far exceeds the
linear range of any missile control surface. Therefore in order to actually
achieve the acceleration response time shown in the interval 4.0 <t <6.0,
a much lower level of v(t) is required. Thus one concludes that this par-
ticular missile has little capability for following steering commands during
the first part of its thrusting phase.

*
This normalization is defined to provide a convenient scale
in Fig, 9.5-1,
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Figure 9.5-1 Response Characteristics While Airframe

Parameters are Varying Rapidly: Autopilot
Degigned Using Pole Assignment Technique
With Adaptive Closed Loop Poles

A more positive conclusion about the above simulation is that the
airframe is successfully stabilized by the pole assignment method if the
feedback gains are computed sufficiently rapidly and if the called for con-

trol levels are within the missile's capability. In other words, the
instantaneous autopilot closed loop poles provide a good indication of the
response characteristics, even though the airframe parameters vary a
large amount in a period that is short with respect to the desired autopilot

taca

response time, Furthermore, these results have a strong bearing on the
parameter identification procedure used to obtain é. In this particular
thrusting missile, parameter estimates must be obtained at a rapid rate --
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on the order of twenty times per second. Further investigation is needed
to determine which identification technique is best stited to meet this
requirement. We have pointed out that the basic parameter identification
technique described in Section 6.3 has the potential for generating esti-
mates very rapidly.

9.6 SUMMARY AND CONCLUSIONS

Three methods of adaptive control which utilize explicit esti-
mates of plant parameters have been evaluated for a missile autopilot.
Each one operates on the principle of updating a set of feedback gains,
assuming that the plant parameters remain constant at their estimated
values for all future time, so that the instantaneous system closed loop
poles provide an indication of the airframe response characteristics. The
most promising method -~ both in terms of mechanization and ability to
provide uniform response characteristics -~ is the pole assignment

technique.

Each adaptive method is theoretically justifiable so long as plant
parameters vary slowly compared with the desired airframe response. In
a dogfight application this condition does not hold; however, the simulation
results in Section 9.5 indicate that the pole assignment technique can still
provide a stable autopilot, within the capability of the control surfaces. At
low velocities, moderate acceleration steering commands and a rapid
autopilot response can require control levels that exceed the bounds im-
posed by constraints on aerodynamic control surface deflections. To
improve the contrel capability at low velocities, one of the alternative mis-
sile designs discussed in Section 8.4.2 may be attractive.
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An important topic for additional study is an evaluation of
parameter identification techniques for missile applications including the
effects of noisy measurements. There is & special need to determine
which methods can accomplish the extremely rapid parameter estimation
required for thrusting missiles. In addition, it is worthwhile considering
how to effectively utilize a priori information that may be available -- such
as a known thrust level, a known launch altitude, etc. -- to determine air-
frame parameters. These topics are beyond the scope of this report but
they should be the subject of future investigation.
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10. APPLICATIONS: LOW SENSITIVITY CONTROL SYSTEMS

In Chapter 7 a number of techniques useful for designiig control

systems that are insensitive to plant operating conditions have been des-
cribed. Those methods which have the capability to desensitize the system
to wide ranges of parameter variations are best suited for tactical missiles,

M

In this chapter one such design procedure -- the Liapunov synthesis tech-
nique described in Section 7.4 -- is evaluated for a pitch rate autopilot hav -

PR

ing time-varying airframe dynamics. It is demonstrated that this method
has the capability to null the difference between the outputs of the autopilot
and a reference model.

10.1 DESIGN PROCEDURE

As described in Section 7.4, the Liapunov synthesis technique for
designing an insensitive control system is similar to the Liapunov synthesis
technique for an adaptive controller developed in Section 4.4.3. In fact the
design steps are identical up to the point of defining a Liapunov function and
selecting the control law. Consequently this discussion of an insensitive
pitch rate autopilot parallels the first portion cf Section 8. 3.1; the latter
material is repeated here for completeness.

Let the input-outout relations for the design problem be repre-
sented by Fig. 10.1-1 in analogy with Fig, 8.3-1, To design an insensi-
tive nonadaptive controller we proceed as in Eqs. (8.3-1) through (8.3-17).
In Laplace transform notation the equations of motion for the plant and the
model are

10~-1
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R-1987

AIRFRAME
kis-z)

V(s) U (s)
e

s2+bs+n

Figure 10.1-1 Plant-Reference Model Input -Output Reiations

for a Low Sensitivity Control System

(82 +bs+ a)Y(s) = k(s -2) U(s)
(s2 +b_ s+ am> Y (8) = k <s - zm> V(s)
E(s) = Y(s)- Y (s)

Subtracting these expressions and adding the quantity
(sz +b_8s +a )Y(s)
m m

to both sides of the resnult produces the error equation

(10.1-1)

(sz+bms +am)E(s) = ((bm- b) s+a - a) Y(s) +k(s -z) U(s) - km(s - zm> V(s)

which is identified with Eq. (7.4-4).

10-2
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Now we divide both sides of Eq. (10.1-2) by the polynomial
P.(8) = s -p;

where 1 is a negative number whose allowed range of vaiues is to be
determined presently. The result, after carrying out the required number
of steps in dividing by pc(s), is

[~ /
20 Py Py ”’1)
S "pl

(s +b_ +p1> E(s) = - E(s) + (bm -b)Y(s)

b

a -a+p1£b -b)
+ | B m Y(s) + kUis)
5-py

L

+

Py -2 Uie) - km@l -zm>V(s)

5-7, = -k V(s) (16.1-2;

which has the same form as Eq. (7.4-5). Now for stability of the error
signal we require that

b >0

m P1
on the left-hand-side of Eq. (10.1-3), or
Py > -bm (10.1-4)
This provides the condition needed on p, ().
Referring to the right-hand side of Eq. (10.1-3) define new

variables
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- Y(s) . _E(s)
Yo(s) = 5= P, Ec(s) S-Py
_ _U(s) - V(s) -
Uc(s) 5-p, Vc(s) 5-p, (10.1-5)
and vector quantities
bm -b y(t)
an~27Py (bm-b) ¥o(t)
o2 Py -2 s f(t) & u (t) (10.1-6)
K <zm B p1> Vo)
i “2m P (bm +p1> i e.(®)

Rewriting Eq. (10.1-3; in the time domain with the aid of Eqs. (10.1-5) and
(10.1-6), produces a differential equation for the error in the form of
Eq. (7.4-15),

&) = - (b +p;) et)+ p T £) + kult) -k_v(t) (10.1-7)

At this point the design procedure departs from that developed
in Section 8.3 and continues as in Section 7.4, beginning with Eq. (7.4-16).
A Liapunov function,

A 2

Vie) = %—e (10,1-8)

is defined. Differentiating V and substituting for e(t) from Eq. (10.1-7)

produces

10-4
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V) = -(bm+p1)e<t)2+[gTz(tnku(t)-kmva)]e(t) (19.1-9)

To design a controller that is insensitive to variations in p and k, chaose
the control u(t) in the form of Eq. (7.4-24),

5 0y k
a) = T |5 kO |2]| || |senwsaten) |
=1 max max ;
3
1 ; e>c¢ 3
sat(e(t)) = {e/e¢; |e| < ¢
-1; e<ce

(10.1-10)

where | Imax denotes the maximum value of the argument over the range of
allowable parameter variations. Observe that in addition to the ranges of
parameter values, the sign of k must also be known in order to mechanize
Eq. (10.1-10). Substitution for u(t) from Eq. (10,1-10) into Eq. (10.1-9)
yields the following inequality for Vi{t):

Vi) s - (bm+p_,L)e(t)2; let)] > e (10.1-11)

Using the definition ¢f V in Eq. (i0.1-8), the above inequality can be
rewritten as

V(it) <-2 (bm+p1>V(t); let)] > e
Therefore it is inferred that

V({t) < V(0) exp [—2 (bm+p1)t]; elt) > ¢ (10.1-12)
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X e ;. il taaad U, & 53

o

THE ANALYTIC SCIENCES CORPORAT:ON

or, equivalently

-

e(t)2 < e(O)zexp [—2 (bm+p1)tJ; let)] > ¢ (10.1-13)

Consequently, by choosing P, in Eq. (16.1-3) s0 that tie quantity
(bm +p1) is positive (as already required by Eq. (10.1-4)) and with know-
ledge of t:= ranges of plant parameter variations and the algebraic sign of
the plant gain k, a controller can be designed which forces e(t) to the set
of values,

let)] = e (10.1-14)

exponentially. Furthermore if the output error is initially "2ss than e,

Eq. (10 i-14) is always satisfied; that is, the error always remains below
the saturation level. A block diagram of the control system is shown in
Fig. 10.1-2. The choice of ¢ which specifies the saturation character-
istics defined in Eq. (10.1-10), is determined by jointly considering the
effects of system bendwidth and the error bound previded by Eq. (10.1-14).
The former increases and the latter decreases as ¢ decreases. In
practice it is found that the error remains significantly less than ¢ because
the nonlinear gain term (in brackets) i Eq. (10.1-10) is usually conserva-

tively large. This behavior is subsequently demonstrated in simulation

results,

Before presenting simulation results it is worthwhile interpreting
Eq. (10.1-10) in a way that leads to a less complicated, more familiar type

of control law. The expression for u(t) can be viewed simply as a nonlinear
gain multiplying a nonlinear function cf the error, viz.,
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Figure 10.1-2 Mechanization of Insensitive Controller
Based on Liapunov Design Procedure

u(t) = -D ({(t), v(t)) sat(e(t))

)
DB, V) = | 3 |v)| | signt) (10.1-15)

max

i m
E 1%

Disregarding the fact that D is a nonlinear functi n of the input and various
system state variables, ¥ig, 10.1-2 can be redrawn much more simply as
shown in ¥ig., 10.1-3. That is, the plant input u(t) is generated by passing
the output error through a large saturating gain with drive (saturation) level

10-17
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f2-2587

~ MODEL AIRFRAME T
v(t) kmis-zm) D [/ u(t) k(s-z) YE*_)P k
siebns+ay /. -6 tbs+a }

Figure 10.1-3 Alternative Representation for Fig. 10.1-2

D(f(t), v(t)). Now the purpose of D in Eq. (10.1-15) is to make the

second term on the right side of Eq. (10.1-9) sufficiently negative f
so that Eq. (10.1-11) holds. If it is conjectured that ;'fi(t)l and |v(t)]
always remain within known bounds, then it is possible to choose D
conatant and still obtain the desired stabiiity properties. Such a con-
trol law is considerably simpler to mechanize than that given'in Eq.

(10.1-10). The performance of the system with a fixed value of D is
compared with the control law in Eq. (19.1-15) in the simulation results
reported below.

10.2 SELECTION CF PARAMETERS -

For simulation purposes the airframe dynamics are taken from

the trajectory data in Section .1 with the actuator dynamics neglected.

The dynamics of the reference model are taken from flight condition 6 in
Table H.3. To implement the control law in Eq. {10.1-10), values for the
quantities | pi/klmax are required. Referring to Eq. (10.1-6) and the
flight data in Table H. 3 it follows that
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Py _ bm"b -
% = |5 = 1.5
max max
_p_z ) am—a+p1<bm-b) - 3.0
k k - *
max max
p3 pl"z
—l(_ - k = 3-0
max max
Py _ K \Zm ~Pq
k Kk = 17.0
max max
E - -am-p1<bm+p1) =~ 3.0
k k - *
max max
km
< = 9,0
max

In addition, the saturation parameter ¢ in Eq. (10.1-10) is assigned the
value 0,01.

10.3 PERFORMANCE EVALUATION

To demonstrate the operation of the pitch rate control system
illustrated in Fig. 10.1-2, a simulation of the autopilot was conducted with
the airframe parameters fixed at values sipecified by flight condition 2 in
Table H.1. In Fig, 10, 3-1 the reference model response and the output
error are plotted for a step input command. Except for the initial
transient, the error is less than 2 percent of the model output, Further-
more the magnitude of the error is always considerably less than the
theoretical upper bound of 0.01 specified by Eq. (10.1-14). This is to be

10-9
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Figure 16.3-1 Step Response for the Pitch Rate Autopilot
With a Time-Invariant Plant

expected because the nonlinear gain D in Eq. (10. 1-15) is conservatively
large most of the time,

The behavior of this autopilot when parameters are time varying
is illustrated in Fig. 10.3-2 for the first two seconds of thrusting flight
(Table H.1), beginning in flight condition 1 at t = 5.0 seconds. Both the
pitch rate response of the reference model and the output error are shown.
The latter is on the order of 1% of the former afer an initial transient.
Evidently the control system is quite capable of keeping the error small
along such a trajectory.

]
I
\
S S S m— g -y L] g ] ] ey  aEg g haagl oy

The above performance compares favorably with that shown in
Fig. 8. 3-7 for the Liapunov adaptive design. However, against this ad-
vantage must be weighed the fact that Fig. 10.1-2 is basically a high gain
design, as indicated in Fig. 10.1-3, Consequently higher order modes such
as airfrare structural vibrations may be excited and greater control levels
are genzrally required.
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To compare the system in Fig. 10.1-2 with the case where the
drive level of the nonlinearity in Fig. 10.1-3 is fixed, simulations were
performed with D in Eq. (10.1-15) set equal to a constant. The results for
twc levels of D are presented in Fig. 10.3-3 for flight condition 2 in
Table H.1; the airframe parameters and the input command have the same
values as those used to generate Fig. 10.3-1. Evidently the use of a suf-
ficiently large constant value of D gives performance which is comparable
to the control law in Eq. (10.1-10). In these simulations the error never
exceeds the linear range of the function sat (e(t)) sc the system operation
remains linear. This controller configuration is much simpler to imple-
ment than that in Fig. 10.1-2; however the latter may have some opera-
tional advantage in that the nonlinear gain, D/¢, becomes small when the
signals in the system are small {see Eq. (10,1-15)), requiring a smaller
control level.
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Figure 10. 3-3 Autopilot Response for the Pitch Rate Autopilot
With a Time-Invariant Plant and Constant
Drive Level D
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10.4 SUMMARY AND CONCLUSIONS

The essential feature of the insensitive controller described in
this chapter is that the system output error is passed through a saturating
high gain element having a saturation level D that is a nonlinear function of
variables generated by the plant and by various compensation networks.
The system can be represented by Fig. 10.1-3 where D varies as pre-
scribed in Eq. (10.1-15). Consequently, for an error signal that satisfies
Eqg. (10.1-14), the compensation operates essentially as a high gain with
value D/e.

The use of high gain controllers is common practice for desen-
sitizing a system to plant parameter variations, particularly for pitch rate
and roll rate autopilots in aircraft and missile applications. As noted in
Section 4.5, such techniques applied to autopilot design may be excessively
sensitive to noise and may excite structural bending modes. The main con-
tribution of the design approach evaluated here is that it generates the gain
factor D as a nonlinear function of system variables such that the system
has desired stability properties. Furthermore, if the signal levels are
kncwn to be bounded, the theory extends to the case where D is a suffi-
ciently large constant.

As noted in Section 7.4 this design method is not suitable for
nonminimum phase plants, for essentially the same reason given in
Section 4.4.4. To make the output error small, the piant input u(t) must
cancel the effect of any right-half-plane zeros, tending to make the system
unstable. Consequently this technique is not directly applicable for
achieving good normal acceleration response in tail-controlled missiles
having fixed wings., However, using the artifice of an adaptive reference

model in the same fashion described in Section 8.2.4, the system in
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Figure 10.1-3 can be modified to provide adaptive normal acceleration
response. This technique requires that enough plant parameters be iden-
tified so that the corresponding parameters in the reference model can be
adjusted adaptively to yield a model pitch rate transfer function that cor-
responds to the desired normal acceleration response. For the applica-
tion considered in this chapter, only a single plant zero, z, and the mis-
sile airspeed V need to be identified; the modification required to the con-
trol system in Fig. 10.1-3 is shown in Fig, 10.4-1. No simulation of
this method is presented here.

R-2735
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Figure 10.4-1 Adaptive Reference Model Configuration
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11. GUIDANCE SYSTEMS FOR TACTICAL MISSILES

The objective of guidance is to prescribe a steering law for the
missile that wili transfer it from the launcher to a target. To accomplish
this task, different guidance laws may be used along different portions of
the missile's trajectory, depending upon the information available, the
maneuvers required, and the control mechanisms in use. For this dis-
cussion it i3 convenient to think of three distinctive guidance stages which
can exist in a tactical mission; these are the post-launch, midcourse, and

homing phases.

Post-launch guidance is concerned with the missile trajectory

immediately after separation from the launcher. This stage includes any
gpecial maneuvers required (such as a 180 degree turn) to hiead the mis-
sile in the general direction of the target or to orient sensors so that they
can acquire the target. For example, steering commands can be pro-

grammed in open loop fashion or provided by the launch vehicle during this
phase of the trajectory.

Midcourse guidance is usually employed in a relatively long

range mission, A midccurse guidance law is used to direct the missile to
a region near the target, within which a homing sensor can provide accu-
rate target information. An important requirement of this phase is a
means for providing knowledg2 of missile position (e.g., inertial navigator,
radio traciing, etc.) enroute to the target area. Midcourse guidance must
be sufficiently accurate to enable the homing sensor tc acquire the target.

Homing guidance is usually used during the final phase of mis~

siie flight., In a sense, this is the most critical period because steering
actions taken during the last few seconds of flight have the most effect on

11-1
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terminal miss distance. Overall mission success strongly depends unon
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having a homing sensor which provides accurate information about the
target's iocation relative to the missile, and a steering law that is capable
of achieving intercept in the presence of target maneuvers and measure-
ment errors. Only the homing phase is treated in this chapter.

The chapter begins with a review of classical homi- 3 guidance
techn.ques. The remainder concentrates on analyzing the accuracy of
several homing guidance laws derived using techniques of optimal control
theory to account for constant target maneuvers and autopilot dynamics,
Graphs relating sensitivity of terminal accuracy and control effort expended

to initial condition and measurement bias errors are presented. These

curves aid in judging the relative performance capability of various designs;

L |

in particular they provide a quantitative comparison between optimal and
suboptimal control techniques. The analysis presented here is essentially
deterministic; it does not include measurement ncise and randomly varying
target maneuvers in the mathematical model of the guidance problem, As
such, it provides a basis for making preliminary decisions about which
guidance law is most appropriate. For a specific application further refine-
ment of the conclusions obtained here should be make by investigating these
random effects,

11.1 GUIDANCE EQUATICNS

For the purpose of guidance, the missile equations of motion are
thosz which represent a point mass moving in three dimensions, zcted upon
by aercdynamic, gravitational, and thrust forces. To take the effect of the
missile's rotational dynamic.s into account assuming the autopilot has
already been designed, the airframe response is represented by some type

11-2
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of transfer function. In addition to missile motion, the guidance equations ]
must include the fact that the target is maneuvering (accelerating) in three
dimensions. If accurate mathematical descriptions of all these factors are
employed in formulating the guidance problem, the performance analysis
for various steering laws is a difficult task. However, many of the essen-
tial features of the guidance problem can be studied by considering only
planar motion of missile and target and by neglecting gravity and aero-
dynamic drag, as illustrated in Fig. i1.1-1. Furthermore it is assumed
that both missile and target velocities, v ~andv,, are constant in mag-
nitude with variable directions that are controlled by lateral vehicle
acceleration approximately normal to the velocity; losses of missile and D
target airspeed and/or altitude caused by maneuvers are neglected. For
an aerodynamically controlled missile the above conditions imply the
vehicle is in coasting flight with control forces provided b; its lifting sur-
faces,

|

/-INERTIAL COORDINATE FRAME

\r' ' 0 _ -
\ By e
\ -
" \ TARGET
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Figure 11.1-1 Definitions of Guidance Variables




THE ANALYTIC SCIENCES CORPORATION

With reference to Fig, 11,1-1 the missile equations of motion

are
80 = - a_ (t) sin B )
S;m(t) = am(t) cos ﬁm(t)
i () = -ca_()+oa )
a )= v 8 () (11.1-1)

where o represents the pitch autopilol time constant associated with
achieving a particular commanded normal acceleration and a c(t) is the
steering command. Similar expressions hold for the target:

X ) = a(t)sin B(t)
§, @) = a,(t) cos B(t)
a,(t) = v,A,(t) (11.1-2)

To derive a feedback steering command some assumptions are
required about target acceleration, and measurements cf important state
variables must be available., In addition the problem can be simplified if
the nonlinear terms in Eqs. (11.1-1) and (11.1-2) are removed by appro-
priate linearizations. These tasks are accomplished in various ways,
depending upon the particular guidance method used; specific details

are given in subsequent sections for swveral homing guidance tech-
niques.

11-4
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11.2 HOMING GUIDANCE TECHNIQUES

A review of possible homing guidance methods naturally divides
the subject into two categories -- those techniques which may be thought of
as "classical", in the sense that they predate the development of modern
control theory and those referred to as "optimal" which utilize more re-
cently developed techniques for system design. In this section, a sum-
mary of the important features of these rnethods is presented.

11.2.1 Classical Homing Guidance Techniques

Three v/21l known concepts for directing a missile during its
homing phase are pursuit, beam rider, and proportional guidance (Refs.
133, 134, 135). The principles of each of these techniques are described
here within the framework of Eqs. (11.1-1) and (11.1-2).

Pursuit Guidance — One of the first ideas for guiding an inter-
ceptor vehicle was to point its velocity vector directly at the target. The

implementation of this concept is the essential characteristic of pursuit
guidance. In terms of the variables defined in Fig., 11.1-1, the objective
is to turn the missile's velocity vector v m SO that it lies along the line of
sight -- i.e., achieve the condition, Bm = X. The method of steering used
to accomplish this task is to require that the commanded missile accelera-
tion be given by

a(t) = -k <s (t) - x(t)) (11.2-1)

where k is an appropriate constant gain (Ref. 19).

11-5
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An indication of the effectiveness of this steering command is
obtained by assuming that the angles Bm(t) and A(t) do not change very
much during the homing phase and that their difference is small in mag-
nitude. This allows the x-y coordinate axes in Fig. 11.1-1 to be chosen
so that both angles remain small; e.g., define the x axis to be along the
initial iine of sight. Making the additional approximation that the effect
of autopilot lag is negligible in Eq. (11.1-1) and using Eq. (11.2-1), one
has

a_(t) =at) = -k (b’m(t) - x(t)) (11.2-2)

The above assumptions permit our writing Eq. (11.1-1) as

X €)= -a(t) 8 ()

14

¥, =at (11.2-3)

To relate Eqs. (11.2-2) and (11.2-3), the small angle approxi-
mation is used in Fig, 11.1-1 to write

Yt ,
Bm(t) = I M g
m N
{
7,0 - ¥ i
M) = =y s (11.2-4)
t m E
We now make the definitions .
i
yt) B {t) = At) r gO(t) 2 x,(t)-x_(t) v 2. igo(t) ¥ constant 1 I
(11,2-5) g

PR
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where r_ (t) is the range-to-go and Ve is the closing velocity. Remember
that che objective of the guidance system is to drive y(t) to zero. Differ-
entiation of y(t) in Eq. (11.2-5) with substitution from Eq. (11.2-2) through
(11.2-5) and some algebraic manipulation produces a differential equation

A" v %)
y(t) = -r—gza-;r—n’ y(t) - rgo(tj + rgo(ﬂ Aft) (11,2-6)

where the approximation
Vi xm(t)
is used, consistent with the small angle assumption.
If the target is stationary, xt(t) = jrt(t) = 0. The range-to-go
is given by

= - 4
rgo(t) = r (0) vct vt

where t __ is the time-to-go until intercept. Consequentiy Eq. (11.2-6)

becomes

t
Ve'go m

Vm k
yt) = -] y(t) (11.2-7)

In this expression the coefficient of /(t) contains a positive term which
approaches infinity as t _ approaches 0. Therefore the differential equa-
tion for y(t) becomes unstable just before intercept and y(t) cannot be
nulled. However, in practice it is possible to choose k sufficiently large

so that the coefficient of y(t) in Bq. (11.2-7) is negative until very near

11-7
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intercept, yielding an acceptable terminal miss. This accounts for the
satisfactory performance of pursuit guidance against surface targets
(Ref. 19).

Againzt high velocity moving targets, the terms involving )'ct(t)
and )‘rt(t) in Eq. (11.2-7) are detrimental to the objective of driving y(t) to

ey PR ooy

zero. In addition, the path followed by the missile is not very efficient,

as indicated in Fig, 11.2-1. For this reason pursuit guidance is not
usually considered feasible against air targets (Ref. 23).

Beam Rider Guidance — The fundamental idea behind beam rider
guidance systenis is that the target is tracked by some type of active trans-

mitter (e.g., a radar) external to the missile, often located in the launch
vehicle (Ref. 133). The situation is depicted in Fig. 11.2-2. The missile
is equipped with a sensor that provides a measure of the deviation of the
missile from the beam centerline, e.g., the distance x in Fig. 11.2-2.

In order that the miesile be directed toward the center of the
beam, its lateral (commanded) inértial* acceleration, z(t), can be a linear
function of x(t) and x{t), i.e.,

Bt) = -klx(t) -kzi(t) (11.2-8)

T g W ew TwW I WS e

In terms of the lateral acceleration, ¥(t), of the heam we have

Z(t) = X(@t) +§@) (11.2-9)

*Inertial acceleration (exclusive o1 the effects of gravity) is the guantity
ineasured by the missile's sensors. Consequently the acceleration
applied to control the missile is thought of as inertial although the

; quantity of interest is acceleration with respect to the beam.
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Figure 11.2-1 Pursuit Guidance Trajectory

As the missile approaches the target, the beam's acceleration is approxi-
mately equat to the component of target acceleration normal to the beam.
I the latter is zero, then

yt) = o

and Eqgs. (11.2-8) and (11.2-9) combine to yield

11.9
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Figure 11.2-2 Beam Rider Guidance Trajectory

X(t) + sz'{(t) + klx(t) = 0 (11.2-10)

Evidently both x(t) and %(t) must be measured in order to have a damped
response. Furthermore the damping must be sufficient so that x(t) is suf-
‘ ficiently close to zero by the time of intercept. As in the case of pursuit
guidance, the missile does not foilow the most efficient trajectory for a
moving target.
11-10
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The beam rider concept has the advantage that the missile need
not have its own automatic target tracking mechanism. If it is launched
within the radar beam, it is relatively easy to design a receiver for the
missile that will tend to maintain a small distance x in Fig. 11.2-2, On
the other hand, an objection for some applications is the dependence upon
an external source fo provide the beam. It is often desirable to have a
self-contained system which frees the launcher vehicle from further guid-
ance responsibility after firing the missile.

Proportional Guidance is an application of the principle that a

collision course between two moving objects is one for which they approach
each other at a'constant relative bearing. In terms of Fig, 11.1-1 this
means that the angular rate of the line of sight (L.OS) is to be held at zero,

At) =0

With reference to Fig, 11.2-3, this condition becomes
At) +6(t) = 0

The actual values of ¢(t) and 6(t) can be measured with sensors to provide
a measure of the deviation of line-of-sight rate from zero.

Assuming that this guidance scheme works well, the line-of-
sight should not rotate very much along the intercept trajectory; hence for
analysis purposes it is useful to define the relative coordinate system in
Fig. 11.2-4, The x-axis of this coordinate frame is the LOS at the initial
time, t = 0, aad the rotation rate of the LOS is given by A(t). Distance
along the x axis is referred to as range-to-go, rg o The steering law for
proportional guidance dictates that an acceleration be applied normal to
the LOS and proportional to A(t) in such a way as to reduce |A(t)|; the con-
ventional form of this relation is (Ref. 25)

11-11
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Figure 11.2-3 Proportional Guidance

§t) = -nvA® (11,2-11)
The quantity 7 is a constant of proportionality and Ve is the closing velonity
(assumed constant in our analysis),

rgo(t) = -,

The performance of this guidance law is ascertained by noting
that for small A(t),
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Figure 11.2-4 Relative Coordinate System in
Proportional Guidance

= _z(t) -1¢
A(t) 0] (11.2-12).
go
Repeated differentiation of this expression with substitution from Eq.

(11,2-11) yields

e [ /T’- 2
At) = -A(t) \# (11.2-13)
kgo
where
r_(0) r (0
t =By 0<t<——g0(—~)-
go Ve o = =TV,

The solution to Eq. (11.2-13) is

11-13
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n-2

Evidently A(t) approaches zero with tg0 if

n>2

The conclusion is that if the constant of proportionality in Eq.
(11.2-11) is large enough, this steering law does succeed in reducing the
LOS rate (and hence also the terminal miss distance) to zero for a con-
stant velocity target. Moreover, the missile's path in inertial space is
nearly a straight line, which is the most efficient (minimum-time) tra-
jectory against a nonmaneuvering target. Because of its ability to actually
null the terminal miss and the simplicity of the acceleration command in
Eq. (11.2-11), proportional guidance has been favored for use in most
missile systems, Under the assumptions used in the foregoing analysis --
i.e., a constant velocity target with no autopilot lag ~- good performance
is achieved. However, as discussed in Chapter 3, the ability of a target
to maneuver and the presence of autopilot dynamics do recluce terminal
accuracy. This raises the question of whether such effects can be taken
into account to derive a better steering law. In the next section, it is
demonstrated that optimal control theory offers one means to this end.

11,2.2 Adaptive Optimal Guidance

To apply optimal control techniques to the design of missile
guidance systems, the problem is mathematically described in terms of
a set of first order diffc.eiitial equations. When the latter are linear and

11-14
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a steering policy is sought which minimizes a quadratic performance index,
one obtains a feedback steering law that is a linear function of the system
state variables. In this manner desired performance characteristics can
often be achieved by a design that is practical to implement in actual appli-
cations. Several optimal linear steering laws are described and evaluated
in this and subsequent sections. The problem formulation is taken from
Ref. (7).

The equations of motion for the guidance problem are obtained
by consideration of Fig. 11.2-4, Just as in proportional guidance, it is
assumed that the line-of-sight does not rotate very much from its initial
position during the homing phase. The x-axis is the initial LOS. Because
the range i3 decreasing at a relatively uncontrollable” rate (i.e., Ve is
nearly constant), the principal variables of interest in Fig., 11,2-4 are y{;
and its time derivatives.

Problem: Statement — We assume that the result of a positive

command to the missile autopilot is acceleration along the negative y axis.
Actually, the autopilot creates an acceleration yector that is approximately
normal to the missile's velocity vector; any resulting acceleration ~om-
ponent along the line-of-sight is being neglected. The autopilot dynamics
are approximated by a first order lug, ** as in Eg. (11.1-1). In addition,
we allow the possibility of the target's having a constant acceleration 2,
normal to the LOS along the positive y-axis, With these specifications, a

set of state variables can be defined as

*It is tacticly assumed that the missile has no capability for
controlling its longitudinal thrust.

%k
In Section 11.4 a higher order model is investigated which includes
the right-half-plane zero associated with a tail-controlled missile.

11-15
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[ x,(t) ] [ y(t) ]
(t) y(t)
x(t) & "2 4 (11.2-15)
Xq(t) 3
| %0 a_()

and the differential equations of motion become

"le(t)T [0 1 0 0] (xl(t)’ [0 ]
Xy (t) 0 0 1 -1| |xy(t) 0
= + t
1713(t) 0 0 0 O X3(t) 0 ac() (11.2-16)
_:‘:4(t)_ _o 0 9 o | Lx4(t)- o

Because the autopilot dynamics are included in formulating the guidance

problem -- i, e., the autopilot is predesigned -- we refer to this as a
partially coupled set of guidance-autopilot equations. A completely coupled

guidance-autopilct steering law, which incorporates missile airframe
dynamics within the mathematical model, is investigated in Section 11.4.

For the purpose 6f guidance, it is desired that the terminal miss
distance X1 (T)be made small within the capability of alimited amount of con-
trol a c(t:). If unlimited acceleration were available, a zero miss distance

could always be achieved in the absence of measurement errcrs. These con-
siderations motivate the following choice for a quadratic performance index;

T
% J = xl(T)2 +r S ac(t)2 dt (11,2-17)

0

St e

where 1 is a positive weighting constant. The steering law is to be chcsen
such that J is minimized for a given value of T. The latter is assumed

known from the relat.onship

é 11-16
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T = (11.2-18)

As we shall see, this problem formulation requires the existence of a

capability for measuring range and range rate for implementing the result-
ing steering command.

The first term in J penalizes large values of terminal miss. The
inclusion of the integral term,

in the performance index has several objectives for a missile guidance ap-
plication. First it tends to limit the peak normal acceleration output; this
feature is required to prevent structiral failure of the airframe. In addition,
there are physical constraints on the maximum magnitude of the missile's
control surface deflection. The latter saturates if the steering command
is too large and the linear character of the autopilot dynamics is destroyed.
Consequently the limitation on ac(t) provided by minimizing J tends to keep
the control suriace deflection within required bounds. Missile maneuvers
also require some expenditure of energy which ultimateily results either in
a loss of altitude or a loss of airspeed. These 1osses increase as the size
of the integral terra in J increases. Other erergy consumption influenced
by Ju is that required to drive the control surfacesi, For a iong trajectory,
the continued presence of changing steering commands at the autopilot
input can result in an appreciable drain on the actuator power supply; this
effect is also limited by limiting the magnitude of ac(t). For all of the
above reasons the integral term in Eq. (11.2-17) at least qualitatively
regulates the actual control signals and control forces employed to reduce

11-17
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the terminal miss distance. However it is emphasized that J, is only an
indirect measure of control surface deflection, actual normal acceleration,
and energy losses.

Having specified a performance index, all of the remaining sub- "”
jectivity in the design problem is contained in the parameter r. The lar-
ger its value, the heavier the penalty on the control relative to xl(T); con- T
sequently the larger is the terminal miss, It should be chosen to provide

. an acceptable tradeoif between guidance accuracy and control effort.

The solution to the optimal contro: problem is derived analytically -
in Ref. 7. The optimal feedback steering law is given by:

1]
]
=2
L
+)7]
e _
]
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N
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1
3
ey
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a, (t)
1 tgo .
n,it
_ 1< go) -
hz(tgo> TR 20 h3<tgo> 0'5"1(\tgo>
\ Utgo otgo
L) - e P )
4 go 2( O’tgo tz )
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-ot v
80 2t (ct 1+e g")
n(t ) = 0\ 80
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go go .
{
"o i
tgo = T-t = 5 (11.2-19)
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where hi is the ith element of h. The feedback gains are written as func-
tions of time-to-go rather than time. Becaus the range does not decrezse
exactly linearly with time, the value of tgo is not accurately predictable

along the trajectory. However, given a capability for measuring range

rgo and range rate (-v c), tgo can be measured continuously and adaptively
adjusted in the steering law, making this is an adaptive optimal guidance

policy.

Aside from requiring some computational capability to imple-
ment the steering law, the above guidance policy assumes knowiedge of
all the system state variables; this is typical of feedback solutions to opti-

RPN

mal control problems. At first sight, this requiroment appears imprac-

tical because some of the states, defined in Eq. (11.2-15) are not readily :
available. In particular, Xy (t) and xz(t) are position and velocity normal ‘
tc on initial line-of-sight reference axis; neither of these quantities is
gasily measured. This situation can be improved if we differentiate Eq.
(11.2-12) to obtain

yt) r_ (t) - r_ (t) y(t)
fgo™ " T Y (11.2-20)
(t)2

Alt) =
r
go

Substitution for rgo(t) and i-go(t) from Eqgs. (11.2-5) and (11. 2-19) produces

() = -‘}: }ti(zt)—+%il (11.2-21)
go

Substitution of this expression into Eq. {11.2-19) to eliminate xl(t) and xz(t)
yields a simpler, approximate steering law

11-19
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acl(t) = nl(tgo) vci(t) - h3 (tgo) x3(t) - h4(tgo)x4(t) (11.2-22)

The resemblence between the term dependent upon A and the steering law
for provertional guidance, Eq. (11.2-11), is noteworthy. Iis significance

will be more evident presently.

Equation (11.2-22) is more easily mechanized than Eq.(11. 2-19)
because y(t) and y(t) have been replaced by a more readily measured

Mt S ann il

variable, the line-of-sight rate. The quantity x 4(t) is the missile's normal

acceleration which can be measured by an accelerometer. The target's
normal acceleration x3(t) can be inferred by differentiating Eq. (11.2-20)

7o

to obtain |
. 2v 3
Xt = {4 < 50 |

go go

Using the fact that

V(t) = at = am(t)

one obtains

iyl emE e  EEy AW

a, =T mX(t)-ZVCX(t) +a_(t) (11.2-23)

We have already postulated the capability to measure all quantities in Eq.
(11.2-23) with the exception of A(t). The latter can be obtained by differ-

a

entiating Xt). The need to obtain angular acceleration of the line-of-sight

11-20
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and tc implement Eq. (i1.2-23) makes a, the most difficult state variable
to estimate.

From Eq. (11.2-19) wae can infer other optimal steering laws
which neglect some of the dynamics in Eq. (11.2-16). In the limit of no
autopilot lag (¢ approaches infinity) the optimal control is

~ |
- ‘{l‘t)
) 2y = — —
a_ ) ’2<tgo> ; 0.5 || xy(t)
2 t2 t
go 'go Xq(t)
) 3%
noft )= -—8%2— (11.2-24)
2( go 3r +t3
and use of Eq. (11.2-21) produces
= sty 4 L -
SCE tyltge) VIO+ 37, (t0) %0 (11.2-25)

If both target acceleration and autopilot lag are neglected, the
optimal steering law is

xl(t)
xy(t) (11.2-26)

Again, substituting from Eq. (11.2-21), a c (t) can be approximated as
3
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3,0 = 7 (to) vEA) (11.2-27)

It is interesting to see what happens to Eq. (11.2-27) as the weighting r in
the performance index goes to zero; i.e., from Eq. (11.2-24) it follows that

lima_ () = 3v_A(t) (11,2-28)
C C
r-0 73

The right hand side of Eq. (11.2-28) is identical with the form” of the pro-
portional steering law, Eq. (11.2-11) with n=3. In words Eq. (11.2-28)
states that the classical proportional steering law with n = 3 is the limit of
the optimal law in Eq. (11,2-27) as the weighting on the control in the
performance index approaches zero.

Steering law a, (t) is optimal for minimizing J in Eq. (11.2-17)
subject to Eq. (11.2-i6); a, 2(t) and a, 3(t) are optimal when the equations
of motion are modified to sliminate first autopilot lag and then both auto-
pilot lag and target acceleration, However, we are concerned with the
behavior of the state when ali dynamics are prescnt (¢ <=, 2, #0) and
either acq(t) or ac3(t) is used in place of the optimal control because the
sensors or computation equipment required to implement ac1(t) may not be
available. Consequently acz(t) and a¢ 3(t) are referred to as suboptimal
steering laws.,

Before making a decision to implement any of the steering laws
derived above, one needs to know what sort of performance can be expected
from each in the presence of all the effects included in Eq. (11,2~16) and

*The minus sign is missing from Lq. (11.2-28) because of the
definition of positive a,(t) in Eq. (11.2-16).
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also the influence of measurement errors. The purpose of the next section
is to present a sensitivity analysis which determines the terminal miss
caused by state variable initial conditions and measurement error biases
for a range of values of the weighting parameter r. In addition, the
measure of control effort

T
SO 2,0)° at,

is calculated for each case to provide an indication of the trade-off between

terminal miss achieved and effort expended for a particular steering strategy.

11,3 STEERING LAW PERFORMANCE ANALYSIS

In this section we are interested in quantitatively evaluating the
terms which define J in Eq. (11.2-17) for different linear steering laws
applied to Eq. (11.2-16). In particular, the equations of motion have the
form

%) = Ax() +ba_(); i=1,2,3 (11.3-1)
i

where

_ T
aci(t) = -h()" x(t) (11.3-2)

and Q_i(t) is defined as follows -- using Eqgs. (11.2-19), (11.2-24), and
(11.2-26) and noting that tmo =T - t:
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I
hy(t) 2 h(T-t)
‘—‘2(t)T 2 - mp{T-9) [(Tft)Z Tit % 01 i
hy(®) £ - ny(T-1) [:(T-l-t)z L o: (11.3-3) r

Therefore, for each steering law we can write Eq. (11.3-1) as

§(t) = Ai(t) _(t) ; i= 13 2’ 3 . fy
A 2 A-bh®)T
i ——i
0 1 0 0] (0] ‘
0 0 1 -1 0 ;
A=10 0 0 ol 2= 1o (11.3-4)
0 0 0 -of Lo ]
Associated with any steering law a(t) there is a value of

the performance index for each missile trajectory, determined by

the particular set of initial conditions and any state variable measure-
ment errors that enter into the implementation of Eq. (11.3-2), We
define

T
(T)° ; Ju S St ac(r)2 dr (11. 3-5)

where Ju is referred to as the control effor! expended or simply the
"effort.” Referring to Eq. (11.2-17), note that
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J = Jf+rJu

where the lower limit of integration is changed from 0 to t, signifying that
guidance canbegin anytime prior tothe intercept time T. Remember that the
optimal value of J associated with Eq.(11.3-4)is achieved only when aCI(t)
is ured as the steering command. Our purpose here is to compute xl(T)
and Ju for different trajectories using all three steering laws defined in

Egs. (11.3-2)and (11. 3-3) and for different values of the weighting constant r.

i1.3.1 Terminal Miss Sensitivity to Initial Conditions

Nonzero initial conditions on the state x contribute to terminal
miss and to the control effort expended; if x were ever zero and the feed-
back steering command were perfectly implemented, a c(t) would remain
identically zero along the trajectory and both J ¢ and J_ in Eq. (11.2-5)
would be zero. To economically determine the miss xl (T) for a wide
variety of trajectories, the adjoint techniques described in Section G.1 are
helpful. There it is proved that the miss associated with Eq. (11.3-4)
caused by initial conditions x(t) for t < T is given by

% (T) = ¢(T,9" x®) (11.3-6)

where the sensitivity function, gi(T,t), satisfies

. _ T
1
) 0
(T,T)= |:] ; =123
% 0 (11.3-17)
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The sensitivity function is evaluated by integrating Eq. (11.3-7) (generally
using a numerical method) backward in time. Once gi(T,t) is obtained and
tabulated for any steering law aci(t), the effects of initial conditions at

any initial time on terminal miss can be calculated.

The value of any element of Qi(T,t) is the miss produced at time
T by a unit initial condition at time t on the corresponding state and zero
initial conditions on all the other state variables. For example, the ter-
minal error produced by a unit velocity normal to the line of sight
7(0) = 1.0 ft/sec) is equal to <p12(T,O)feet, where ’OiZ(T’O) is the second
element of gi(T, 0) with units of ft/ft/sec. To introduce notation more sug-
gestive of this property of the sensitivity function, we denote the normalized

miss distance associated with the jth element of gi(T,t) by fﬁij(T,t) where
i refers to the particular steering law aci(t) being employed. It is normal-
ized by the units of x(t), as indicated by the over-bar notation.

Recall that the equations of motion for the optimal guidance prob-
iem are linearized about the initial line-of-sight. Therefore we can regard
the initial value of y in Fig. 11.2-4 (hence also of X in Eq. (11.3-4)) as
being zero. In addition, the initial value of the autopilot state x 4(t) repre-
sents an initial lateral acceleration of the missile at launch. I one exists,
it is likely to be small und have relatively littie effect upon terminal miss;
therefore we consider x4(0) = 0 also. Consequently, the quantitative prop-

erties of r'ﬁi T, t) and Eii 4(T,\'t) will not be displayed here.

1
At this point no sensitivity function has been defined for the line-
of-sight rate At) in wqs. (11.2-22), (11.2-25), and (11.2-27), If this state
variable, rather than y(t) and y(t), is to be used in implementing the steer-
ing 1 - . are more interested in its associated normalized miss rather
than that corresponding to an initial position and velocity normal to the
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line of sight. To obtain this quantity, refer to Eq. (11.2-21) from which
one can derive y(t) in terms of A(t) and y(t), :

yt) = tgo<v ctgox(t) - y(t)> (11.3-8)
and define the normalized miss associated with A(t) to be Hiis(T, t).

Because Eqs. (11.2-19) and (11.2-22) are approximately equivalent mech-
anizations of the optimal steering command acl(t), it follows that the ter-
minal miss m caused by A(t), y(t), and y(t) satisfies

g o

m = @,,(T,8) yO) + (T, t) 5t

B
I

fflls(T,t) Alt) (11.3-9)

Substitute for y(t) from Eq. (11.3-8) into the right hand side of the first

expression in Eq. (11.3-9) and eliminate the variabie m to obtain

By T, U0A0) = By (T,0) 0 (vt AO-0) 47y, (T,O50)  (11.3-10

This relation must hold for arbitrary values of y(t) and A(t); consequently,
equating the coefficients of A(t) in Eq. (11.3-10), it follows that

fﬁls(T,t) = x?ln('r,t) vc('r-t)2 (11.3-11)

This gives us an expression for the normalized miss caused by A(t) in terms 3
of that caused by y(t) for optimal steering law acl(t). However, the

same relation between poegition, velocity, and line-of-sight rate (Eq.11.2-21))

is used for all the steering policies under investigation. Therefore Eq.

(11.3-11) holds for all values of the first subscript index;
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- — 2 .
mis(T,t) = mil(T’t) Vo (T-t)" ; i=1,2,3 (11.3-12)

Graphs of the functions Exij('r,t) -~i=1,2,3; j=2.8,5, -- have
been computed for different values of the control weighting r and autopilot

natural frequency o. Curves for ﬁi are normalized by g (one

3

g=32.2 ft/secz) and those for fﬁi are normalized by Ve Values of 1 and

10 are chosen for o to represent rSeSpectively slow and rapid autopilot
responses. The results are plotted in Fig, 11,3-1 through 11.3-7. The
time dependence of each normalized miss is in terms of the quantity (T-t);
therefore the abscissa of each graph represents time-to-go in seconds.
Recall from the defisition of ﬁij(T,t) that the time (T-t) is the instant at
which an initial condition on one of the state variables is assumed to exist;
physically this can represent the time-to-go at launch or a point at which

the target begins a constant maneuver.

Notice that the sensitivity curves caused by initial conditions on
velocity ({ﬁiz in Fig. 11,3-2) and line-of-sight rate (iﬁi5 in Fig. 11.3-7)
are identical for both of the suboptimal steering laws. This is due to the
fact that the only difference between acz(t) and a, 3(t) is the term dependent
upon the constant target acceleration in Eq. (11.2-24), which is zero for
all time along the trajectories represented by these figures.

Vigures 11. 3-1(a) through 11.3-7(a) correspond to an autopilot
time constan. of 1 second; Figs. 11.3-1(b) through 11, 3-7(b) present
similar infor:nation for a time constant of 0.1 second. The principal com-
parison one can make from these curves is that.miss distances for the
guidance systems having the more rapid autopilot response are uniformly
lower. Of course, nothing is said yet about the relative amounts of con-
trol effort expended, but it is not expected that this contribution to the
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Figure 11,3-7 Normalized Miss Distance Caused by Initial
Line-of-Sight Rate: Suboptimal Steering
Laws a, 2(t) and acs(t)
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performance index in Eq. (11.2-17) will reverse the judgement that a faster
autupilot is preferable. After all, given a system with no auvtopilot lag, the
associated optimal steering law a c2(t) does not call for one to be added.
Also it is clear from inspection of individual figures that increasing the
weighting on the control effort always increases the terminal miss for the
optimal steering law, and aimost alw:iys does so for the suboptimal steer-
ing laws. The maximum miss results when initial conditions occur at a
time -to-go on the order of one autopilot time constant. Physically the
latter is true because enough time remains for the initial condition to cause
appreciable miss if no guidance action is taken while insufficient time re-
mains for the autopilot to closely follow corrective steering commarnds.
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Consequently, it is advantageous, from the target's point of view (Figs.
11.3-3 through 11.3-5), for the target to begin its constant acceleration

maneuver at this most sensitive time.

Most of the above observations are qualitative judgements which
are readily predictable on the basis of what is already known about tra-
jectory sensitivity, e.g,, see Figs. 3.1-1 through 3.1-4 of Section 3. To
establish whether the optimal steering law a, (t) has significant advantages
over the other, suboptimal controis we must determine the control effort

LN M LR MBI A iy

expended for representative sets of initial conditions. This is the subject

e i i

of the next section.

11.3.2 Control Effort Sensitivity to Initial Conditions

The controél effort Ju expended by the guidance system to nuil
initial conditions, using any onz of the steering laws under investigation,
can be determined by the method described in Section G.4. Denote the

values of J corresponding to a (t) =a, (t) by J,, ,
u c Ci ot

T 9
a, (M7dr;  1=1,2,3 (11.3-13)

where, as before, t denotes the time at which the guidance problem begins.
With application of Eq. (G-31) J;,, is given by
i

)T e ) x(t); i=1,2,3 (11.3-14)
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where Ci(t) satisfies the linear matrix differential equation

¢,

, T T

C,(T)

il
(=

i=1,2,3 (11.3-15)

with Ai(t) defined by Eq. (11.3-4). Equation (11.3-15) is evaluated by
integrating backwards in time from the known terminal value of Ci(T)'

For the purpose of evaluating separately the effort caused by
initial conditions on each state variable, we need to know only the diagonal
elements of Ci(t) to perform the calculation in Eq. (11.3-14); i.e.,

Juij = ci].(t) xj(t)

(11.3-16)

where xj(t) is the initial condition on the jth state variable at time t with all
other initial conditions zero, cij(t) is the jth diagonal element of Ci’ and
J“ij denotes the value of Jui produced by xj(t). Thus the control effort
expended depends upon which steering law is in use and the magnitude of
the nonzero initial condition. To facilitate the discussion it is convenient

to define a root normalized control effort, 'T“ij’ according to

>

T

. e b2 (11.3-17)

i

For any particular values of i and j the effort is given by

_ 2
Juij = <Juijxj(t) g> (11,3-18)

S R
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Physically (j'uij)z is the integral of the square of commanded normal
acceleration (in g's) caused by a unit initial condition. Plots of the func-
tions fuij(tgo) -i=1,2,3; j=2,3,5, -- corresponding to the miss sens:-
tivity curves in the preceding section are given in Figs. 11. 3-8 through
11.3-12,

As indicated in Figs. 11.3-8 and 11.3-9, J‘u].l5 can be expressed
in terms of ‘Tuiz' To derive this relationship, refer to Eq. (11.2-21) and
assume that y(t) = 0 at the initial time t; therefore

O IR AL (11.3-19)

Defining the root normalized effort produced by the initial line-oi-sight

rate as

= A 2 2,2
Jui5 - ﬁiZ(t) tgo"c/g

it follows from Eq. (11.3-17) that

J =73 t v (11.3-20)
Yi5 Wy €9 c-]

The curves corresponding to an initial cross-track velocity

(Figs. 11, 3-8 and 11.3-9) exhibit increasing maximum values as the
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Figure 11.3-10 Root Normalized Eifort Caused by Target
Acceleration: Uptimal Steering Law acl(t)
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Figure i1.3-11 Root Normalized Effort Caused by Target
Acceleration: Suboptimal Steering Law acZ(t)
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Figure 11.3-12 Root Normalized Effort Caused by Target
Acceleration: for Suboptimal Steering Law

ar(': 3(t)

control weight r is decreased. As expected, this {rend is opposite to that {

observed for the normalized terminal miss (Figs. 11.3-1) and 11.3-2). The
sets of values of r for the cases, ¢=1 and 0 =10, are different simply to ’

scale the performance index so that each case exhibits about the same

range of variation for :fuiZ' In each figure for J uj9 the curves converge
toward zero as tgo increases because there is more time to reduce the
terminal miss produced by the initial cross-track velocity and therefore
less effort need be expended. Similar effects are observed for target
acceleration (Figs. 11,3-10 through 11, 3-12), except that the curves for
Jui3 do not converge to zero with increasing t go"
As suggested when justifying the choice of performance index in
Eq. (11.2-17), besides energy expenditure the value of Ju provides an
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indication of the magnitude of the airframe normal acceleration and con-
trol surface deflection. To provide an estimate of the latter a normalized

E root mean square commanded acceleration, 511’ can be calculated from

: s &7 / ' i -
! ai]. Juij/ tgo (g s/unit state) (11.3-21)

If it happened that the steering command were constant over the trajectory,

it would have the value éij' Consequently the latter provides an idea of the

order of magnitude of the coinmand; in fact it is a lower bound on its maxi-
mum magnitude.

To illustrate how the normalized rms steering command can be

i used to estimate the demands on control surface deflection, recall that the
commanded normal acceleration is an input to the autopilot loop, as indi-
cated in Fig. 11, 3-13. Throughout the above discussion we have modeled
the overall transfer function T(s) as a simple first order lag but in actual
practice it consists of several components and can have more than one

% dominant pole., The control surface deflection A(s) is related to commanded
! acceleration Ac(s} by the transfer function

As) G,(8) G,(s) & 1)
A6 T TTG,6) G,6) G,E Bl 6

neglecting the sensor dynamics. If Ac(s) is known the control surface
response can be calculated. In particular, if we assume that

a,t) ¥ éij xj(O)

for a control law a. (t) and a specified guidance initial condition xJ.(O),
i
then
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Figure 11.3-13 Autopilot Block Diagram

AG) = ai].xi(O)TG(s)

S

In this manner one can obtain some idea of the character of the response,
recognizing that the assumption of a constant input command is a very
rough approximation. Such information is useful for estimating whether
the control surface deflection called for by the steering command exceeds

the bounds imposed by mechanical constraints.

If one is interestedin knowing the response of important autopilot
variables to steering commands in more detail than outlined above, two pos-
sible courses of action can be taken. First, if detailed time behavior is de-
sired, the actual autopilot eguations of motion can be simulated. Alterna-
tively. if the integral square values of various quantities are desired, they
can be obtained using the adjoint techniques of Appendix G; this procedure
is briefly outlined below for the application ilustrated in Fig. 11.3-~13,

The problem is to determine the integral square values of auto-
pilot state or output variables for the steering commands aCi(t) given in

Eq.(11.3-2). These quartities can be determined in a manner similar to
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that used for the performance index, Ju. In particular, let the
autopilot equations of motion be written as

3t) = Fz(t) +ga ()

RE0

a(t)

dar z(t) (11.3-22)

y(t)

where z(t) is the state of the autopilot, a(t) is normal acceleration, and y(t)
is any variable (e.g., normal acceleration, control surface deflection, etc.)

whose integral square value, Jy, is desired,
T 2
5= v ar
y o

(Recall that in Eq. (11, 3-4)the autopilot dynamics are assumed to be a
first order iag.) To derive the actual equations of motion for the guidance
system with the autopilot modeled by Eq. (11.3-22}, replace x4(t) in Eq.
(11.3-4) by z(t) and combine the result with Eq. (11. 3-22) to obtain

. o
%, (t) x, (t)
%, (t) X,(t)
.2 = F®) 2
1t 2t
0 10 0] [o]n®wT 1 00 of]
s oo T o 010 o
F.(t) & |- ol (11.3-23)
! 000 0 0 0010
000 F | |g 000 ¢
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Equation (11. 3-23) represents the actual dynamics of the guidance and con-
trol system with steering laws specified by Eq. (11.3-2). Defining

\g(t)T £ [xl(t) Xy(t) x4(t) g(t)T]

the equations of motion for the guidance system can be written compactly as

w(t) = Fi(t) wit) (11.3-24)
and J_as
y

T

Jy = St “_I(T)(T)QW(T)dT
[o] [o]

Q = (11.3-25)
o] adT

Equations (11.3-24) and (11. 3~25) have the same form as Eqs. (G-1) and
(G-4); consequently Eq. (G-30) can be used {0 calculate Jy in terms of an
initial condition on wit),

3= wit)T

y - W D(T,t) w(t)

D(T,t) = - Fi(t)TD(T,t)-D(T,t) F.(t)-Q; D(T,T) = 0 (11.3-26)

The solution of Eq. (11.3-26) for D(T, t) provides a means for

calculating the integral square value of any autopilot output variable defined
by d in Eq. (11.3-22). This type of analysis permits a more realistic
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evaluation of the effect of a given steering law on the autopilot than does

the value of integral square commanded acceleration.

11.3.3 Steering Law Evaluation

To make a judgement about the efiectiveness of one steering law
as opposed to another, we need to compare the values of control effort
expended to produce a given level of normsalized terminal miss. In making
such a comnarison the time-to-go, i.e., the time of missile launch or the
time a target maneuver occurs, must be considered. One procedure for I
doing this is to compare miss distances and effort expended for different | ‘
control weightings r at values of t o which are related to the autopilot lag; ‘-
e.g., take tgO =1/0, 2/g,..,n/o. Figure 11.3-14(a) is a grapk of the
normalized effort Ju’ definéed in the preceding section, versus the magnitude
of the normalized miss for a one secondautopilot time constant, using both op-
timal and suboptimal concrol laws, required to remove an initial cross-track
velocity. The data for these curves is read from Figs. 11.3-1(a), 11.3-2(¢},
11.3-8(a) and 11.3-9(a) at the point tg0 =1.0. The significance of this plot
is that if the missile is launched at a point one second away from the target
with a unit cross-track relative velocity, then the curves give the resulting
terminal miss and control effort expended ueing various steering laws. The
value of the weighting constant r required to calculate each steering com-
mand is read as a parameter along the individual curves. This plot also
indicates the degree of improvement obtained from the optimal steering law
relative to the suboptimal methcds. For example, if one can tolerate a

normalized terminal miss no greater* than 0. 25, the superiority of the

*A specification on normalized terminal miss can be arrived at through
knowledge of the missile's velocity, likely target velocities, and likely
launch heading angles., An illustration of how this can be done is given
below in Example 11, 3-1.
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optimal steering law in terms of control effort expended is measured by the

difference Jugo(‘ 25) -Julz(. 25) in Fig. 11.3-14(a), which has a value 0f0.290.

A significant observation is that an arbitrarily small miss-
distance cannot be achieved using either suboptimal steering law. Recall
from Eq. (11.2-28) that in the limit of zero control weighting, ac3(t)
becomes proportional steering with n=3. The normalized miss achieved
with the latter for a unit initial cross track relative velocity can be read
from Fig. 3.1-4, using the fact that

i0) = I
Tgo

9 and m32 obtained

with the suboptimal steering laws, and it is achieved only in the limit as

It provides a lower bound for the normalized misses 1?12

r approaches 0. With tgo =1 sec and ¢ = 1.0, the bound has the value 0. 18
as indicated in Fig. 11.3-14(a).

if no steering at all is used (a.(t) = 0), the normalized terminal
miss is numerically equal to tgo'* Consequently the curves in Fig,
12° 1.0. An appreciable
advantage is gained from optimal steering only when the desired normal-

11.3-14(z) all terminate on the abscissa at m

ized miss is significantly smaller than the "no-steering' vaiune.

In a given application, graphs like Fig. 11.3-14(a) should be
derived for several possible values of tgo at which the missile might be
launched. As tgo increases relative to the autopilot fime constant, the
absolute values of control effort required to achieve a given miss distance
become smaller, as illustrated by Fig. 11.3-14(b) for tgo = 4,0, This

-ey DN ot SR D ENF P W BN G BN EEEC  DE S ey )

%
I{ a.(t) = 0, the normalized miss is equal to the product
(1 ft/sec) {tgo)-
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behavior is simply evidence of the fact that the longer the time until inter-

cept, the more easily the guidance system can reduce the effects of initial
condition errors.

Diagrams similar to Figs. 11.3-14(a) and (b) are displayed for
the faster autopilot having a natural frequency of 10 rad/sec in Figs.
11.3-14(c) and (d). The data for the curves are obtained from Figs.
11.3-1(b), 11.3-2(b), 11.3-8(b), and 11.3-9(b). As one expects, the mag-
nitudes of the effort and normalized miss are generally less than when
o = 1.0,

In addition to looking at the various terms contributing to the
performance index in Eq. (11.2-17) one should insure that the absolute
control magnitude is not excessive. This can be done exactly only by
plotting the control as a function of time. However, an indication of con-
trol level can be obtained from the normalized root mean square com-
manded acceleration level defined in Eq. (11.3-21). Values of this quantity
are simply obtained by scaling the ordinate in Fig. 11, 3~14 by the factor
(t )-1/ 2.

g0

To summarize the evaluation of the guidance system response
to relative cross-track velocity initial conditions, we shall illustrate the
use of the graphs in Fig. 11.3-14 with an example:

Example 11.3-1 — Consider the situation in Fig, 3.1-5 when the
target has a velocity of 1000 feet/second. The relative cross-track velocity
at launch is about 700 feet/second. To achieve a miss of seven feet, a
normalized miss of about 0.01 is required. To see whether the various
steering laws can achieve this level of accuracy, values of root normalized
effort and normalized rms commanded acceleration for the various cases
represented in Fig. 11.3-14 are tabulated in Table 11.3-1. The symbol *
denotes the fact that the desired miss is not achievable, When the cross-
track velocity is 700 feet per second, the rms commanded acceleration
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TABLE 11.3-1

STEERING LAW PERFORMANCE REQUIRED TO ACHIE VE
A NORMALIZED TERMINAL MISS OF .01 FOR A
CROSS-TRACK VELOCITY INITIAL CONDITION

Normalized rms
Root Normalized commanded
Optimal Steering Effort, J,, acceleration,a
i2 (g's/ft/sez)
c=1.0, tgc=1.0 0.18 0.18
¢=1.0, tgo=4‘0 0.04 0.02
o =10, tgo =¢.1 0.525 1.66
o =10, tgo=0.6 0.10 0.13
Suboptimal Steerin :fu ’ :fu Aon, A
ptima g 22 Y32 92’ 233
= = % x
o=1.0, tgo 1.0
= = * *
o=1,0, tgo 4,0
= = * %*
g = 10, tgo 0.1
= = . 0.142
o =10, tgo 0.6 0.112

*
denotes ''not achievable'.

required is given by product (aj9 x 700). In all cases except one (optimal
steering, o = 1.0, tyo = 4.0) this quantity is greater than 90 g's. This
information together with an autopilot analysis of the sort suggested at

the end of Section 11.3.2 enables one to make a decision about which steer-
ing law to use when a range of possible launch conditions is known.
Furthermore one can determine whetiicr a given specification is reason-
able; it may be physically impossible to destroy some targets with a given
autopilot.

The effecis of initial cross-track velocity are most relevant to dogfight
applications where the pilot of a launch aircraft may be cluse to the target.
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An analysis, such as that presented in the above example, aids one in
obtaining the range of launch conditions, i.e., the ""launch envelope,' within

which the launch Fircraft must remain to make a successful attack.

We emphasize that throughout this chapter perfeci knowiedge of
state variables in mechanizing the steering laws is assumed. In practice,
appreciable measurement noise usually exists in the steering loop which
should be included in a complete performance evaluation. The deter-
ministic system analysis chiefly provides qualitative information about the

ultimate performance that can be expected from a steering law.

Turning now to the etfect of target maneuvers, a different cri-
terion frem that used above is suggested for comparing normalized miss
and normalized effort associated with different steering laws. For a given
value of the weighting constant r we choose that value of tgo which maxi-
mizes the terminal miss. Thus each steering law is being evaluated at
those points where sudden application of a target maneuver has the maxi-
mum adverse effect upon guidance accuracy. These curves are relevant
for any tactical situation because the target maneuver can begin anytime
after the missile is launched.

Referring to Figs. 11.3-3(a) and 11.3-10(a) which illustrate the
effects of a target maneuver, we want to tabulate or graph pairs of values
of the maximum fﬁi. and its associated normalized effort. To illustiate
the procedure, in Fig. 11.3-3(a) note that for r = 0.2, m, is 0.9 at

tgo = 0.3. Entering the graph in Fig. 11.3-10(a) at tgo = 0.3, read out

Juyg = 1.6. This "point", (x‘n‘ls, Juyg) = (0.9, 1.6), and the two others
that can be obtained from these figures for r = 5.0 and r = 50 are plotted
and joined by a smooth curve labeled i = 1 in Fig. 11.3-15(a). A similar

plot is made in the same figure for the suboptimal control laws aCZ(t) and
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Figure 11.3-15 Root Normalized Effort Versus Peak Normalized
Miss Produced by Target Acceleration

ac3(t) from the data in Figs. 11.3-4(a), 11.3-11(a), 11.3-5(a), and
11.3-12(a). The process is repeated in Fig. 11.3-15(b) for the case when
the autopilot time constaunt is 0.1 sec.

In each of these grapns, the performance of the suboptimal
steering law ac3(t) approaches that of proportional guidance as the control
weighting r approaches zero. Evidently the greatest relative improve-
ment to guidance system performance is achieved by using acz(t) which
includes compensation for the target maneuver, The additional sdvantage
achieved by using the optimal steering law acl(t) is proportionately not so
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.

large until relatively small values of normalized miss are desired. The

i

following example illustrates the use of Fig. 11.3-15.

Example 11.3-2 — Suppocsc that one expects to encounter targets
which can develop a normal acceleration up to 10 g's and insists upon a
steering law that yields a peak terminal miss of 5 feet. The resulting
required peak normalized miss in feet/g is 0.5. The corresponding values
of normalized effort and normalized rms control level are read from Fig.
11.3-15 and tabulated in Table 11.3-2. For the slower autopilot the
optimal steering law is significantly superior; it requires an rms com-
manded acceler:ition of 34 g's with a target maneuver of 10 g's. For the
faster autopilot, there is little performaiice improvement in using ac1(t)
instead of a(,2(t),, However, ac2(t) is distinctly preferable to ac3(t).

TABLE 11.3-2

NN el ENE RN el ey ey el S

STEERING LAW PERFORMANCE REQUIRED TO ACHIEVE A
PEAK NORMALIZED TERMINAL MISS OF 0.5 IN THE

PRESENCE OF TARGET ACCELERATION !
. Normalized rms
Optimal Steering RO hormalized *ommanded, ‘
' Ya 3 acceleration,a; g
1 (g's/g)
o= 1.0 1.7 3.4 '
o =10.0 0.4 0.8
Subcptimal Steering ( (t)) ‘Tu a '
P acy 23 23
o= L0 very high; >20 very high; >20 '
o = 10.0 0.44 0.88 ,
t - .
. . | J -
Suboptiiaal Steering (%3(t>) Ugq ag4
o= 1,0 * : *
o =10.0 1.44 1,2

*
denotes "not achievable'".
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11.3.4 Terminal Miss Sensitivity to Measurement Bias Errors

The effects of measurement bias errors upon terminal miss
distance can also be determined using adjoint techniques, as described in
Section G-3. If a constant error ¢ is made in the measurement of the

state x(t) beginning at time t, the resulting terminal miss x(T) is given by
= T . -
xl(T) - _‘P_i(Ty t) A3 1= 1’2y3

where the subscript i still refers to the steering law being used.  The
differential equation for @i(T,t) is obtained by comparing Eq. (G-18) with
Egs. (11.3-1) and (11. 3-2),

. _ T . _

where gi(t) is defined in Eq. (11.3-3) and gi(T,t) is defined by Eq. (11.3-~17).

The value of any element of Qi(T,t) at time t is the miss produced
by a unit bias error in the corresponding measurement of the state and zero
error in all other state measurements. All state initial conditions at time
t are also assumed to be zero. In other words, the jth element of § i('I‘,t)
is the normalized miss Bij(T’t) produced by a single bias error in the
measurement of state xj.

Values of the normalized miss versus time-to-go for a target
acceleration measurement error are plotted in Figs. 11.3-16 and 11.3-17
for the same values of autopilot time constant and control weighting used
in the preceding graphs. Qualitatively it is seen that the miss becomes
smaller as the control weighting r decreases. This is true because the
decrease in r increases the feedback gains in the steering law, causing

more rapid guidance system response to the error in line-of-sight rate
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Suboptimal Steering Law, acz(t)
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induced by the bias error, thus improving terminal accuracy. An increase

in o also improves accuracy because the autopilot lag decreases.

One useful comparison of the effects of bias errors on the
accuracy of the steering laws is obtained by plotting the peak normalized
miss from Figs. 11.3-16 and 11.3-17" versus peak normalized miss
caused by constant target acceleration in Figs. 11.3-3 and 11.3-4 for
various values of the weighting r. The cases, o =1 and ¢ = 10, are dis-
played separately in Figs. 11.3-18(a) and (b). Based on the comparison
between the curves for these values of ¢ there is little difference in sen-
sitivity to bias measurement errors between optimal and suboptimal steer-
ing laws. In the case ¢ = 10 the curves are nearly superimposed on one
another. This is to be expected because the optimal steering law a (t)
approaches the suboptimal law a02(t) as the autopilot time constant gets

smaller,

An alternative comparison is afforded between the steering laws
by the steady state values of 513 incurred as time-to-go becomes large.
Figures 11.3-15 and 11.3-17 indicate that the optimal steering law is more
sensitive to measurement bias errors in terms of the steady state values
of normalized terminal miss, This fact can have design implications for
missiles which are launched at a time-to-go equal to several autopilot
time constants. Because acl(t) has no built-in criterion for insuring an
optimal response in the presence of bias errors, theie is no reason to
expect it to yield the best performance when such errors occur,

X
In Fig. 11.3-16 the peak normalized miss is taken to k. the
extrapolated steady state values of the curves.
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Figure 11.3-18 Peak Normalized Miss, Produced by Target
Acceleration Measurement Bias Error, Versus
Peak Normalized Miss Caused by Target
Acceleration

11.3.5 Summary

This concludes our sensitivity analysis of the optimal and sub-

optimal steering lawe derived in Section 11.2., Its main purpose is to in-

dicate an approach to evaluating different control policies in terms of the
design objectives of an optimal control problem., Graphs of normalized
miss and control effort of the type depicted in Figs. 11.3-14, 11.3-15 and
11.3-18 are the principal tools for making the performanc# analysis.
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These curves can be used to determine actual values of miss distance and

. i aa

control effort if multiplied by an assumed value of the corresponding initial
error --e.g., cross-track velocity, target acceleration or bias error.

Beyond this quantitative comparison of the specific steering laws, ;
some general quaiitative conclusions are: 5

&  The faster the autopilot response, the smaller the
absolute gain in terminal accuracy using optimal
steering, acl(t), as compared with acz(t).

o In the presence of target maneuvers, suboptimal 5
steering ac,(t) offers a significant improvement |3
over ac 3(t) cause the latter has no provision 3
for measuring target acceleration.

¢ In the presence of measurement bias errors the
optimal steering law can exhibit worse perform-
ance than a suboptimal policy, depending upon
the criteria used for evaluation. In particular,
the terminal miss caused by a bias error for a
missiie launched at a time-to-go equal to several
autopilot time constants away from the target is
larger when optimal steering is used.

For a given autopilot lag, a definitive judgement about which
steering law to use can be made only after considering a spectrum of pos-
sible initial values of time-to-go which are characteristic of the particu-
lar application, For a dogfight mission, sets of curves of the type shown
in Figs. 11.3-14 and 11. 3-18 should be obtained for values of tgo ranging
over those values expected at launch. In missions where launch takes
place at relatively long ranges from the target, initial cross-track velocity
(Fig. 11.3-14) is not so important but the steady state effects of measure-
ment errors (e.g.,Fig. 11.3-18) must be evaluated. In addition to the bias
errors treated above, the efferts of continuously varying rendom measure-

ment errors ("noise') should be analyzed as outlined in Section G. 3.
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Similarly, graphs like those in Fig. 11.3-15 can be obtained for a set of
values of t 20 over the range in which target maneuvers are expected to
occur, usually within a few seconds before intercept. Performance data
displayed in this fashion yield enough quantitative information to permit a
rational choice of steering law.

The performance criteria throughout the above discussion are
integral square control and the squared terminu:i miss. The former is
somewhat inappropriate because excessiv: peak control magnitudes can be
required., The normalized root mean sruare zcceleration defined in Eq.
(11.3-21) gives an optimistic bound on the commanded acceleration level.
For any application it should be checked by actually computing the steer-
ing command as a function of time for representative cases.

i1.4 A COUPLED GUIDANCE-AUTOPILOT STEERING LAW

The statement is made in Section 2.1 that the steering and auto-
pilot control loops for a tactical missile are usually treated as separate
entities because their associated response times are considerably different.
This is a valid procedure when time-~to-go until intercept is large with
respect to the autopilot response time; however, when the latter condition
does not hold, performance can be improved by considering guidance and
control as coupled functions.

The effect of including autopilot dynamics (assumed to be a first
order lag) in designing an optimal steering law is demonstrated in
Sections 11.2 and 11.3. Oniy a partially coupled design is considered
there in that the autopilot characteristics are taken into account by the
guidance law but the guidance dynamics are not taken into account when
designing the zutopilot. It is shown that an optimal steering law which
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accounts for the autopilot lag is significantly better than a suboptimal law
that neglects autopilot dynamics if the initial time -to-go* is of the same
order of magnitude as the autopilot time constant. In this section we
determine what further performance benefits can be gained by treating the

autopilot and steering law design tasks as completely coupled problems.

11.4.1 Problem Formulation

In this section we formulate the optimal guidance-control prob-
lem in a manner similar to that used in Section 11.2.2. Both optimal and
suboptimal control laws are derived for compariscn purposes.

Our first task is to develop a set of state equations which des-
cribe the dynamics of the overall system. The missile airframe dynamics
are taken to be second order, as in Egs. (9.2-9) and (9.2-10) (the actuator
dynamics are neglected). To obtain the equations of motion it is conven-

ient to define a new state variable

alt)’ @ VL, oft) (11.4-1)

Combining Eqgs. (9.2-9), (9.2-10) and (11.4-1) with the missile transla-
tional dynamics from Eq. (11.2-16) produces

%

The initial time-to-go is regarded as the point when the target begins
a constant maneuver or, in the case of an initial cross-track velocity,
the time at which the missile is launched.
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Z(t) = Fz(t) + g 6(t)
2t 2 [y®) 5 2, at) aty] & [z,0) 2,00 2,0 2,) 20)]
0 10 O 0 [0 ]
001 0 -1 -VLg
F&looo o o ;g2 o (11.4-2)
0 0 0 My My/VL, M
000 VL -Ly -VLoL

Thus Eq. (11.2-16) is altered by replacing x4(t) with two airframe state
variabies and the control variable becomes control surface deflection, 8(t),
instead of commanded acceleration. By analogy with Eq. (11.2-17) the
design objective is to choose a feedback control law that minimizes the
quadratic performance index

T
9 9
I = o er, So 5t)? at (11.4-3)

As before, z 1(T) is the terminal miss. However the integral
expression in Eq. (11.4-3) is not stated in terms of commanded accelera-

tion; instead it is the integral of the square of the control surface deflec-
tion. Consequently the contribution of the control effort to the perform-
ance index has a different physical significance here than it does in Eq.
(11.2-17). If the control surface actuator is driven electromagnetically,
the effort in Eq. (11.4-3) is proportional to the energy consumed. If the

actuators are hydraulically driven, the quantity

T .
S §(t)2 dt
0
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is a better measure of energy expenditure; however, it is usually observed

that increasing r, in Eq. (11.4-3) aiso tends to reduce the value of the
irlagral-square control surface rate. Therefore the above expression for
J has useful properties for most actuator systems. With the above qualifi-
cations in mind, we shall speak of the control penalty term in Eq. (11.4-3)
as a measure of actuation energy.

Because the above optimal control problem has the same struc-
ture as that discussed in Section 11.2, analytical solutions for the optimal,
time-varying feedback gairs can be obtained using the procedures des-
cribed in Refs. 7 and 136. However, we are primarily interested in
evaluating the performance of the gnidance system, a task that must Le

accomplished numerically. Closed form expressions for the feedback
gains offer no particular advantage for this purpose; therefore they are
not presented here. From the known properties of the optimal regulator
problem (see Appendix B) the solution for control surface deflection that
minimizes J in Eq, (11.4-3) is given by

5,0) = -k ®F z(t)
24 z
T_1 T
k () = e S(t) (11.4-4)
where the matrix S(t) is the solution to

2y o T 1 T

Sit) = -S¢)F-F S(t)+rc S(t) gg™ S(t)
i « 0]

sty = (00 ° 0 (11.4-5)
-0 [ ] * 0‘
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K is desirable to compare the optimal control law given above
with the steering law, acl(t), derived in Section 11.2 under the assumption
that the autopilot is already designed with dynamics given approximately by
a first order lag. Recall that the latter is an optimal steering policy for
minimizing J in Eq. (11.2-17); however it is not optimal for the problem
posed in this section. Because a, 1(t) is a commanded acceleration and 4(t)
is a control surface deflection, some algebraic manipulation is required to
obtain the associated suboptimal control Gz(t). This is accomplished oy
defining the s<hoptimal control law according to

62(12) 4. clq(t) - cza(t)' + c3acl(t) (11.4-6)

The fixed gains ¢4 and c9 are chosen to provide a stabilized airframe hav-
ing specified response characteristics and cg is selected so that the d-c
gain hetween acl(t) and the normal acceleration of the airframe, a(t), is
unity. The implementation of Eq. (11.4-6) is illustrated in Fig, 11.4-1,
Equation (11.4-6) simulates the application of the steering law acl(t),
derived assuming a first order autopilot, to the actual second order auto-
pilot.

Recall that acl(t) is derived assuming the transfer function G(s)
in Fig. 11.4-1 is of the form

o
S+o

representing a first order lag. The value of ¢ is required for mechanizing
the steering law. However, in the case treated here the autopilot is actually
second order. Consequently the first order lag can be considered only as

an approximation, With the fixed gain compensation provided by ¢ and Cq
in Fig. 11.4-1 the autopilot closed loop poles are ohtained by substituting
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A( ) R-2238
Gls) = ==L
“f ts) Ac,‘ )
3 T T T T T T .
ac ol s 5ylt) 2nd ORDER —oltl,.
—> <3 _’C_P“‘ AIRFRAME
A

Figure 11.4-1 A Second Order Autopilot Design
for a Suboptimal Steering Law

62(t) from Eq. (11.4-6) for 6{t) in Eq. (11.4-2) and considering only the

dynamics of z 4(t) and z 5(t) ; these poles are the eigervalues ); of the matrix

43
1
i

1

3
3
|
,.
‘§

| )
M, |
Mq-M6c1 -V—I:;-Macz
{ _— (11.4-7)
af a

VL,(1+01Lp) - L+ VL Lycy

We defira -0 to be the real part of that eigenvalue of F, which has the
smallest magnitude; i.e.,

Re()) l; i=1,2 (11.4-8)

o = - sign [Re(ki)] min
i

This is certainly not the only rational choice possible for o. If the closed
loop poles are close together a smalier value than that given by Eq.(11.4-8)
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may be better. However it seems to be a reascnable seiection when the

poles have sizeable imaginary parts.

To express the suboptimal control 62(t) in terms of the state
variables z{t) defined in Ea. (11,4-2), a relation is needed for the air-
frame acceleration a(t) which is required to generate ag 1(t). From the
airframe equations of motion -- Eq. (8.1-3) and (11.4-1) -- with actuator
dynamics neglected, it can be showa that

a(t) aft)’ + VL, 6(t) (11,4-9)

5

Combining Eqgs. (11.2-19), (11.4-6), and (11.4-9), 62(t) can be written as

,t) = - ky(®) z(t)

[ ¢ hl(t) i

3

) 8

Iyt

/ 1
¢, h,(t) ( ' ) (11.4-10)
373 1+c3h4(55VLa

where the gains hi(t), i=1, 2,3, 4, are calculated from Eq. (11.2-19).

Equations (11.4-4) and (11.4~10) provide respectively ontimal
and suboptimal control laws for the system in Eq. (11.4-2). The former
is a result of considering the tasks of autopilot and steering law design as

a coupled control problem, By comparison the suboptimal control law
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does not take the guidance function into account when designing the autopilot,
and it approximates the autopilot second order dynamics as a first order
lag in deriving the steering law. In the next section the relative perform-
ance of these two control policies is compared and evaluated, using the
same sensitivity analysis techniques applied in Section 11.3.

11.4.2 Performance Analysis

By analogy with Eq. (11.3-4), the closed loop form of Eq.
(110 4-2) iS

3t) = Fy©)z)

T .
F(t) € F-gk(t)” ; 1=1,2 (11.4-11)

The terminal miss zl(T) caused by a nonzero initial value of z(t) is cal-
culated from the equations,

2,(T) = o (0,07 2(t)

(T8 = - KO o,(T,Y

(T, T) = 1,2 (11.4-12)

I

QO O O O =
b
]
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As in Section 11.3.1 we define r_xii].(T,t) to be the normalized miss caused
hy a wnit initial value for the jth element of z; i.e., rTli.(T,t) is the jtb
element of gi(T, t). Only the characteristics of the serisitiviiy to cross-
track velocity, miz(T,t), are displayed here to illusirat: the type of
performance achieved with this optimal guidance law. It is expected that
conclusions for this case will aiso hold qualitatively for other sensitivities
of interest.

Figure 11.4-2(a) shows curves of the normalized miss m, . for

the optimal control law bl(t) given in Eq. (11.4-4). Curves for 5221 %:or-
responding to the suboptimal control luw in Eq. (11.4-10) are given in
Figs. 11.4-1(b) and (c) for two different séts of parameter values given in
Table 11.4-1 below. The first set (case #1) has values of fixed feedback
gains ¢ and cg which produce a relatively slowly responding autopilot
having atime constant of 0.83 sec; the second set (case #2) yields a faster
response with a time constant of 0.13 sec. The values of the airframe
parameters -- Mq, Ma’ Mb’ L o L6’ and V -- are taken from Appendix H,
Table H-2, fiight condition 4. The curves for m,, correspond to different
values of the performance index weighting r, in Eq. (11.4-3) and those for
m,, to values of the weighting r in Eq. (11.2-17),

Qualitatively, the curves in Fig. 11.4-2 are much the same as
those in Figs, 11.3-1 and 11, 3-2 with respect to their dependence on T
r, and tgo' However, the oscillations in the curves corresponding to the
suboptimal control law (Figs. 11.4-2(b) and (c)) are much more persistent
tlian we have encountered previously. This behavior results from the fact
that 62(t) ie derived assuming first order autopilot dynamics; however, the
actual dynamics prescribed by Eq. (11.4-7) are second order and their
associated closed lcop poles have significant imaginary parts. The situa~-
tion is quantitatively pictured in Fig. 11.4-3 where the actual autopilot
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TABLE 11.4-1

PARAMETER VALUES FOR SUBOPTIMAL
CONTROL LAW 55(t)

Parameter #1 #2
, 2.31x10°2 | o0.198
c2 1.91x10° | 1.42x10°°
g .61x107 | -1.65x107
1/o(sec) 0.83 0.13

poles and the assumed first order pole, -0, are displayed for both sets

of control parameters in Table 11.4-1, Evidently there is reason to expect
that the first order lag is ::ot always a good approximation, especially for
case #1 where the autopilct dynamics are more nearly those of a harmonic
oscillator. The significance of these observations is that an "optimal"
guidance law based on an inaccurate description of autopilot dynamics may
not perform nearly so well as expected from the analysis.

In addition to terminal accuracy, another quantity of interest in

evaluating performance is the control effort

T
5 ?S 6i(‘r)2 dr (rad? sec) (11.4-13)
i %

which is a measure of the control surface defiection required for controlling
the missile. This is determined by a set of expressions similar to Eas.
(11.3-14) and (11, 3-15); i.e.,
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Figure 11.4-3 Closed Loop Pole Locations for the Second Order
Autcpilot and its First Order Approximation

5, =207 6t z0)
1
T T
Cit) = -Ct) Fy(t) - F,)” C,(0) - K ¢t) k()
Ci(T) =0 (11.4-14)
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where gi(t) and Fi(t) are obtained from Egs. (11.4-4), (11.4-10) and
(11.4-11). As in preceeding sections we define a root normalized effort

= 1/2, .
Juij = / s (rad-sec™’ “/unit state) (11.4-15)
where cij is the jth diagonal element of Ci so that the effort produced by

an initial condition zj(t) is calculated from

2
g 7 [J“ij zi(t)]

Note that the units of juij are different here than in Eq. (11.3-21) be-
cause of the different definitions in Eqs. (11.3-13) and (11.4-13). Plots
of 3u12 corresponding to Fig. 11.4-2 are given in Fig. 11.4-4,

To effectively compare the optimal and subuptimal control laws,

we crossplot values of I-ﬁiz and jui from Figs. 11.4-2 and 11.4-4 for given

values of time-to-go, in the same fzashion as Fig. 11.8-14 is derived. The
curves are given in Fig. 11.4-5 for tgo =0.4 sec and 1.0 sec.® These
data can be used to analyze the efiects of various initial values of cross
track velocity on guidance accuracy and control effort, as is done in Table
11.3-1. The only difference is that the effort is now integral square control

surface deflection rather than integral square commanded acceleraticn.

*Note that the number of data points is too small to draw a smooth con-~
necting curve in some cases. Tiis is because the oscillatory nature of the
curves for the suboptimal laws in Fig. 11.4-2 causes wide fluctuations

in the values of lm22| .
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Figure 11.4-5 Root Normzlized Effort Versus Normalized Terminal
Miss Caused by an Initial Cross-Track Velocity

Recall that there are two aspects of the suboptimal law 62(t) tlat
make it inferior to the optimal control law when judged on the basis of the
index J, in Eq. (11.4-3). First it is derived wiith commanded acceleration
considered as the control variable rather than control surface deflection
and the autopilot feedback gains are preselected constants c¢q and cs.
Second, it is derived «ssuming the autopilot is a first order lag, but the
actua) autopilot dynamics are second order. Both of these assumptions
are responsible for the devistions of the suboptimal performance curves
from those for the optimal control law in Fig. 11.4-5; the reasons for this
are outlined below,

First of all, the fixed feedback gains cq and Cy in the suboptimal
design tend to make the autopilot response faster than it needs to be when
the missile is some distance from the target. Consequently ar i itial
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cross-track velocity causes more control surface defilection (in the integral
square sense) than is necessary to achieve the desired terminal accuracy.

This effect is most significant in suboptimal case #2 and contributes to the
deviations from optimum of the corresponding performance curves in
Fig. 11.4-5.

In the second place, as the weighting constant r decreases, the
feecvack gains h;(t) in the suboptimal steering law 62(t)increase and the
overall system response becomes more sensitive to the use of a wrong
(first order) model for the autopilot. This effect is observed through the
oscillatory beavior of the curves in Fig. 11.4-2, particularly case #1
where it has already been noted that the first order lag approximation is
especially poor. The resulting contribution to terminal miss distance
depends upon tg o Thus a value of r = 2,0 x 10'4, which gives good per-
formance at t g0 = 0.4 sec in Fig. 11.4-5, gives poor performunce at
tgo = 1.0 sec, relative to the optimal control, If the weighting constant r
gets very low, the suboptimal guidance system actually becomes unstable
because the denominator of the factor

1

7 T
1+ c3h4\t) | La

in Eq. (11.4-10) becomes negative as h4(t) increases in magnitude, making
all the gains in _lgz(t) have the wrong sign. The conclusion is that optimal
contrci theory can be helpful in designing laws that account for missile
dynamics, provided these dynamics are reasonably accurately modeled.
Otherwise the trve system performance may be substantially poorer than
that prescribed by the theory.

Heretofore nothing has been said about the behavior of the feed-
back gains in optimal guidance systems, It has been possible to ascertain
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their effect on system performance using adjoint theory, without knowing
their specific time history. However the optimal gains associated with
61(t) are of special interest. Figure 11.4-6(a) is a plot of the first ele-
ment of Ei(t) corresponding to the simulation data in Figs. 11.4-2(a) and
11.4-4(a). For comparison purposes the first element of the set of gains
Ez(t) for suboptimal case 2 is shown in Fig. 11.4-6(b). Only one ¢ in from
each set is required because they all behave qualitatively in the same
fashion.

The point of interest is the fact that the optimal gains become
slightly negative just before intercept; this happens for all the elements
of 1_(1 (t). Consequently the guidance system is driven into what can be
considered an unstable condition for a short period of time. The reason
for this behavior is that the guidance law takes advantage of the fact that
the particular missile represented by these simulations can achieve a
limited amomnt of lift from its tail control surfaces as well as from its
fixed wings. Normally the principal lift force is supplied by the wings;
the tail controls provide the pitching moment required to change angle of
attack, thereby varying the magnitude of the lift, However very near
intercept there is insufficient time to change the lift force on the wings,
since this requires rotating the entire missile; therefore steering com-
mands can best be realized using the faster responding control surfaces.
No such behavior is observed for the suboptimal gains because the action
of the control suriace is not included in the model dynamics. * Typically
this gain reversal is small in magnitude and it occurs just before inter-
cept; ennsequently it has little net effect on guidance accuracy. However,

*Analytically speaking, the behavior of the optimal gains is a
reflection of the fact that the airframe transfer function between
control surface deflection and normal acceleration has a right-
hali-plane zero.
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it suggests that if the vehicle had rapidly responding rotatable wings
mounted near the cenier of gravity in addition to tail control surfaces, then
an optimal control law would make use of the wing controls to generate the
primary lift force,using the tail controls only to balance the resulting lift-

induced moments. That is, the entire missile airframe would not have to
rotate to develop an angle of attack; instead the wings would rotate with
respect to the muissile body, presumably resulting in more rapid control
system response characteristics. Such a design seems attractive for lifting
vehicles in those flight regimes where tail controls alone zre incapable of

- providii g yﬁufﬁciently rapid response. Of course against this petential

3 advantAg,e, fthe weapons designer must weigh the need for two sets of con-
troi surfac%;s and must consider whether the resuiting configuration has
desirable aerodynamic properties.
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Another point of interest about the set of optimal feedback gains
(see Fig. 11.4-6(a)) is that they are generally increasing as time-to-go
decreases (except very close to the end of the trajectory). Physically
this is reasonable behavior because rapid system response near the end of
the trajectory is required to achieve a low value of terminal miss. The
gains decrease at the end because the lag associated with the guidance sys-
tem dynamics reduces the sensitivity of the terminal miss distance to the
control level. If the optimal gains associated with the airframe state
variables -- k__(t) and k

13 14
with the airframe dynamics it is found that the primary effect of the gains

(t) in Eq. (11.4-4)-- are conaidered together

is to produce a time-varying autopilot whose instantaneous pole locations

13 and k14 increase

(decrease) is magnitude. Consequently, the optimal coupied guidance-

move to the left (right) in the complex plane as k

autopilot steering law effectively produces an autopilot whose response
characteristicr. vary along the trajectory. The advantage of this over the
control methods discussed in Section 11.2 is that less control energy is
consumed along the trajectory. However, if energy consumption is not
important, good terminal accuracy can also be achieved by predesigning
the autopilot to have as good response characteristics as possible every-
where along the trajectory and then formulating the guidance problem with
the autopilot dynamics neglected, as in deriving acz(t) and a, 3(t) in Egs.
(11.2-24) and (11.2-26). The conclusion is that it is useful to include air-
frame dynamics in the formulation of the guidance problem only if expen-
diture of control actuation energy is an important consideration®; other-
wise the usual convention of separating the design of the autopilot and
guidance loop is valid.

The purpose of this section has been to demoustrate the effects
on performance of simultaneously designing the autopilot and guidance

*See the discussion immediately following Eq. (11.4-3) regarding the
significance of Ju as a measure of control energy.
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lonps for a tactical missile. Threeimportant conclusions are drawn from
the aho-2 discussion.

o If autopilot dynamics are included in the problem
formulation for an optimal steering law, they must
be accurately modeled; otherwise the guidance
accuracy may be adversely affected. In pariicular,
the assumption that the autopilot is a first order lag
when it actually is second order with lightly damped
complex poles is a relatively poor approximation.

e If control actuation energy expenditure is not an
important consideration, the usual convention of
separating the design of the autopilot and guidance
loops is valid.

¢ Guidance loop performance may be significantly
improved if a faster responding control technique,
such as rotatable wings in conjunction with tail
controls is used.

- . - J ) B . . s,
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The need for adaptive control or identification of missile airframe dynamics
is implied throughout this discussion. If the autopilot is to be predesigned

to achieve as good response as possiblc everywhere along a trajectory
that has variable flight conditions, then adaptive control techniques are

needed. Alternatively, if airframe dynamics are to be incorporated in the
guidance problem formulation, as in Eq. (11,4-2), then the parameters
Ma’ M 5 etc. must be identified. These tasks can be accomplished by any
of the methods described in previous chapters.

11,5 SUMMARY AND CCNCLUSIONS

This chapter begins with a review of classical homing guidance
techniques -- pursuit, beam rider, and proportional guidance. Proportional
guidance is generally considered the best of the classical methods because
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it is a self contained system that is theoretically able to null the terminal
miss when attacking a moving target. However the presence of target
maneuvers, autopilot lag, control effort constraints, and control mag-
nitude limitations suggests that steering laws designed with optimal con-
trol techniques may offer improvement in performance.

Several optimal steering laws are investigated in Sections 11.2,
11.3, and 11.4, each taking into account a number of different effects.
These are summarized in Table 11.5-1. The steering laws are evaluated
with respect to one another by applying them to a common set of equations
of motion. The principal conclusions are:

e In the presence of target maneuvers, optimal steering
laws that include a term proportional to measured
target acceleration offer substantial improvement in
guidance accuracy over those that do not, as indicated
in Fig. 11.3-15.

¢ Optimal steering laws that correctly include the effects
of autopilot dynamics offer significantly improved
guidance accuracy for steering commands that are
initiated at a value of time-to-go having the same order
of magnitude as the effettive autopilot lag. This is
illustrated by Figs, 11.3-14 and 11.3-15.

e If autopilot dynamics are imperfectly known (e.g., ifa
second order autopilot having a low damping factor is
approximated by a firet order lag) the performance of
the optimal steering law may be significantly degraded
from that predicted by analysis.

¢ From the standpoint of implementation, the improvement
in performance obtained by measuring target accelera-
tion may justify the added computation required in the
guidance laws as compared with conventional propor=
tional gnidance, However, the additional complexity
required to include awopilot or uncompensated airframe
dynamics in the guidance law, even if accurately known,
is probably not worthwhile unless control actuation
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TABLE 11.5-1

SUMMARY OF OPTIMAL STEERING LAWS

Conditions fer Optimality
Minimize Mmimize
Steering || Maneuvering Neglect First/Order | Second/Order
Laws* | Target | Autopilot |, iopilot | Airframe 2 2 (F. 2
g Dynamics P r xl('I‘) +rS ac(r? dr 71(T) B rcS &(r)" dr
t t
a_ (t) X X X
(
1
a_ (t) X X X
c
2
a_ () X X
‘3
él(t) X X X
8y(t) X X X
]
ac(t) = commanded normal acceleration
8(t) = commanded control surface deflection

Xl(f), 21(1) = termina) miss distance

I, T, weighting constants

*see Egs. (11.2-18), (11,2-24), (11.2-26), (11.4-4) and (11.4-6).

11-71




THE ANALYTIC SCIENCES CORPORATION

effort is a critical consideration; a more practical
method for improving guidance accuracy is to pre-
design the best possible autopilot.

¢ Given a set of candidate steering laws, it is possible
to generate graphical displays of performance data
using linear sensitivity analysis. The plots permit
rational comparisons of the techniques, based cn
guidance accuracy and contre! effort expended. This
information, considered together with the compu-
tational complexity of each steering law, will aid
in making a specific selection.

The above conclusions should be regarded as tentative, subject to further
refinement in arparticular application, after considering effects of random
measuremefit noise, control level and normal acceleration limiting, and
time-varying, random or intelligent target maneuvers.

The above observations have a direct bearing on missile guidance
system design. First of all, the optimal steering laws use time-varying
feedback gains which may require more computer storage than is available
for a particular application, Therefore a designer might choose to use
constant feedback gains inetead: if so, the optimal design can be used as a
standard of comparison to evaluate the suboptimal system,

If the effort expended by the missile control actuators is an
important consideration, there i some advantage in including the
dynamics of autopilot (acl(t) in Section 11.2-19) or the uncompensated air-
frame (Gl(t) in Section 11.4) in the guidance problem formulation. The
resulting optimal guidance law cffectively provides an autopilot having
time-varying feedback gains that tend to increase as the range-to-go
decreases. Thus over a long trajectory, some saving in control effort is
achieved because the autopilot bandwidth is large only near tlie end of the
trajectory. However, if the actuator power supply is more than sufficient
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for the mission under consideration, it is reasonable to predesign the

autopilot to have as good a response as possible at all flight conditions
(using any of the methods discussed elsewhere in this report) and then to

utilize a linear guidance law that neglects the resulting autopilot dynamics.

Another important consideration is the conclusion that autopilot
or airframe dynamics should be accurately modeled if they are to be
included in an optimal steering law; otherwise the performance benefit
expected from the more complex steering law (e.g., compare the com-
plexity of Eqs. (11.2-19) and (11.2-24)) may not be realized. Therefore
when flight conditions are time-varying an adaptive capability -- either
for identifying airframe parameters or for producing an adaptive autopilot
that has predictable dynamics -- is desirable.

Finally, it may be feasible to soive the problem of achieving
good guidance accuracy, as it is related to the autopilot response time, by
using rapidly acting missile control mechanisms such as rotatable wings.
The latter would ovarcome the inherently slower response characteristics
of the conventional tail-controlled, fixed-wing vehicle.
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APPENDIX A

LINEAR DYNAMICAL SYSTEMS

A.1 STATE SPACE NOTATION

Almost all of the recent advances in control theory -- work by
Pontryagin, Bellman, Liapunov, Kalman and others -- are formulated in
state space notation. In addition, this manner of stating a problem keeps

it closer to physical reality than the classical transform techniques.

A Dynamic System — The dynamics of a linear system can be

represented by a first order vector-matrix differential equation in which
x(t) is the system state vector and u(t) is a forcing function, viz:

i(t) = F(t) x(0) + G() ut) (4-1)

This is the continuous form employed in most modern control theory.
Figure A-1 illustrates the equation. The state vector of a dynamic sys-

tem is composed of any set of quantities sufficient to completely describe
the unforced motion of that system; given the state vector at a particular
point in time and a history of the system forcing function, the state at any
other time can be computed. The state vector is not necessarily a wique
set of variables; several sets may be able to fulfill the above requirement.

Given a high-order linear differential equation,

(D" +a, ;®© D" 4. +a,®)D+a 1)) = f)

where D’ 2 dj/dtj, we can define a set of state variables Xy (t), .. ,xn(t)
by

A-1
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These variables can be used to write the high order differential equation
as a set of first order linear differential equations:

x,E) = xy(t)
X,(t) = x3(t)
x € = -a ) x,(t) -a,(t) x,@4) -. . . -2 () x () + 1)

Or, in the form of Eq. (A-1);

-
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i %, 1 T 0 .. 17 x, 7 [o0]
x2 0 1 . Xy
S S R : N (A-2)
xn__1 0 n 0o ... 0 1 xn_1 0
| % ] _‘ao "3y T2 ) -an—l_j I *n ] ]

Equation (A-2) is illuatrated in block diagram for:n in Fig. A-2. lotice

that the state variables are in each case the outputs of integraticrs,

#-223

o

Figure A-2 Block Diagram Representation of £q.(A-2)

In many linear systems of interest the forcing znction is multi-
variable; that is, u(t) in Eq. (1) is composed of several nonzero functions.
Also, the individual elements of u(t) may drive several state variables
simultaneously, causing G(t) to be a matrix with significant elements at
locations not on its diagonal, In these cases the system dynamics may be
determined directly from the physical description of the problem.
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For example, a block diagram of the physical system may be sketched and
the first order vector-matrix differential equation determined by inspec-
tion. Figure A-3 illustrates a hypothetical linear dynamic system forced
by several inputs. The outputs of all the integrators constitute a conven-
ient set of state variables. The system dynamic equations can be written
in the form of Eq. (A-1);

- - - 1 T 1 - 1 1. A
i‘:l allcl..., Xy gl...hl uy
Xq 2, b1 1 X, g + h2 u,
* = [ ] L] + - (']
-xn- f‘n b Ch ot ‘| an- L.gn o hn_ hur_

Reference 34 demonstrates the steps required to convert a higher order
differential equation into a set of state variables driven by a multi-
variable forcing function.
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Figure A-3 Block Diagram of a Hypothetical
Linear Dynamic System
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A.2 THE TRANSITION MATRIX

The homogeneous unforced matrix differential equation corres-
ponding to Eq. (A-1) is

x(t) = F(t) x(t) (A-3)
Suppose that at some time, r, all but one of the outputs of the integrators

in Fig. A-3 were set to zero and no inputs, u;, are present. Also assume

that the nonzero integrator output was given the value, one. The
behavior of the state vector for all times after r could be expressed in

terms of a time-varying "solution vector, " _(gj(t,r), where the subscript

refers to the integrator whose output is nonzero.

rxl(t, 'r)j1
! Xz(t, T)j

_(,Qj t,r) = (A-4)
-xn(t, T)jd

If the initial condition on the jth integrator is something other

than unity, c for example, then from the linear nature of the system

Qj(t,‘r,C) = C_@j(t,'r)

Also, if irtegrators i and j both have nonzero outputs c, and ¢ at time 7,
the response for the system is just the sum of the individual response

vectors

:’Pi,j(t’T’ci’cj) = ci@i(t"r) + cj_‘ej(t"r)

But this can be written as a product of the matrix

?‘g [Qii 52]']

A-5
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and the vector

H

In general every integrator can have a nonzero value at r and the time
history of the state becomes the sum of the individual effects

x®) = gyt nlgtn} . fo,tn]x0)
which is written for compactness as
x(t) = oft,7) x(r)

The matrix &/t,r) is cailed the transition matrix for the system of
Eq. (A-3). The transition matrix allows calculation of the state vector

at some time, t, given the state vector at r.

Returning to Eq. (A-4), it can be seen that the solution vectors
obey the differential equation

(t,7)
e ML F(t) g, (t,)

dt
where
gj(f,'r) = &

1] 0]

0 1

0 0

_(_1 = : ’ 5_2 - : ’ etCo

: uo. Lo.
E
¢ A-6
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Therefore, the transition matrix, composed of the vectors 9]., obeys the

equation

5 alt,m)
®(r,)

F(t) ¢, 7)
I

The transition matrix &(t;,t,) relates x(t1) to x(ty) in Eq. (A-3);

x(ty) = &(ty,to) x(t,)
Sin:ilarly,
x(tg) = &(tg,tq) x(tqy)

Therefore,

®(t2,t)) = &(tg,ty) &(ty,t,)

This principle is illustrated in Fig. A-4 for a first order system having a
scalar transition matrix, ¢t,r). It is a general property of the state
transition matrix, independent of the order of t, t1 and tg in time. In
addition,

a(t,t) = &, 1) &(r,t) = I

Premultiplying this expression by ¢'1(t, 7) provides the useful relation

s lt,1) = &(r,t)

Transition Matrix for Stationary Sysiems — For a stationary

system, the F matrix is time-invariant and the transition matrix depends

only on the time interval considered:

oit,7) = &t-7
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R-225
X(ty) = 0(ta, ty) xty)

A
= ‘P(tzytl) (P(tls to) x{to)
X
x(ty) = olty, ty) x(ty)
X(ty)
e >t
ot t t
0 1 2

o

~
Figure A-4 Illustration of the Behavior of the State for
/ a First Order Homogeneous System

Equation (A-3) can be used to expand x(t) in a Taylor's series about some

time, to,

, t-to)?
X(t) = xlt) + Ato)t-to) + Kltg) ~57—+ . . .

&(t,) = Falto)

%(t,) = Fxlto) = F2x(to)

etc.

Substituting, the expansion becomes

Fz(t-to)z
x(t) = x(ty) + F(t-to) x(to) + 57— x(to) +. . .

[1 +Flt-to) + o7 Fo(b-to) . ] x(t,) (A-5)
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By analogy to the scalar case the matrix exponential is defined by

3
JF2 F

F a
¢ - 21737

I+F +. .. (A-6)

Consequently, the transition matrix for the stationary system can be
identified from Eq. (A-5) as

F(t-to)
@(t'to) = e

which depends only on the stationary system dynamics (F) and the interval
ia"toc

In stationary systems, t, may often be assigned the value zero.
A useful expression for the transition matrix &(t, 0) can be obtained by
taking Laplace transforms in Eq. (A-3). Defining X(s) as the transform
of x(t), one obtains

sX(s) = FX(s) +x(0)
or alternatively

X(s) = (15-F) " x(0) (A-7)

Comparison of Eq. (A-T7) with the expression
x(t) = &(t,0) x(0)
implies that
ot,0 = L} {as - F)"l}
5
where 1”1 { 1 denotes “he inverse Laplace transform. Defining &(s) to

be the Laplace transfors: of &(t, 0), one has

-1

&(s) = (Is-F) (A-8)
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A.3 THE MATRIX SUPERPOSITION INTEGRAL

Censider now the general linear system of Eq. (A-1), including

the forcing function u(t);
x = Fx+Gu (A-9)

Referring to Fig. A-5 we can see that the effect of the input to the ith inte-
grator of Fig. A-3 over a small interval (r - A, 7) caix be represented as an
impulse whose area isthe value of the ith element of the vector G(r)u(r)times
the interval Ar. Temporarily assuming that the initial conditions on all the
integrators are zero, this impulse wili cause a small change .Axi in the

integrator output;

Axi('r) = (G('r) u(r ))i Ar

The change ia the entire state vector can be expressed as

Ax(t) = | . | = Glr)ul) Ar

The effect of this small chanye on the state at some subsequent point in
time can be expressed by

Ax(t), given an impulse input G(r) u(r) At = &(t, 7) G(r) u(r) Ar

Because the system is linear the response to the complete input history
can be viewed as the sum of the responses to individual impulses. In the
limit as Ar - 0 the effect of the input on the state at some time, t, can Le
represented by

t
x(t) = S &(t,7) Glr) ulr) dr

A-10
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R-226

(G(n)u(r).= input to i™M integrator

\_

v-Ar T

Figure A-5 Representation of the Input to
the ith Integrator as an Impuice

Now because the system is linear, the effects of initial conditions at
time t, and the presence of a forcing function after time t, can be com-
bined to yield

t

x(t) = &(t, ty) x(to) +§t &(t,7) G(r) ulr) dr (A-16)
(0]

The integral in Fq. (A-10)is often called the matrix superposition integral.

Of possible use in solving Eq. (A-10) is the relation

Liatt, ) = -ot,7) Flo)

which can be derived from
o, r-A7) = o, 7) &(7, T-A7)

i , 2 \2
, - 3t (Lo Pan) s R )

A-11
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The derivative is given by

lim &(t,r)- o, 7-Ar)
At -0 Ar

d -
& at,r) =

lim -&(t,7) F(r) (AD) +O(Ar2)
Ar-0 At

1}

- &(t,7) F(r)

A.4 CONTROLLABILITY AND OBSERVABILITY

Consider a linear dynamical system for which a set of linear
measurements y(t) is defined by

x(t)

yt)

F(t) x(t) + G(t) u(t)

H(t) x(t) (A-11)

The measurements are those quantities which can be directly observed at
various system output "lerminals"*. For this system of equations, u(t)
is the control and X(t) is the observation. Two fundamental properties of

the system, related to these sets of variables are defined as follows:

A system is controllable at time tq > t( if it is possible
to choose u(t) in the interval tg st st to "drive" any
state x(tg)= £ to any point x(t1) = 7.

A system is observable at time tj >t if it is possible
to determine the state x(tp) by observing y(t) in the
interval tg st < 4.

Controllability determines whether one can achieve any desired state by
manipulating u(t) and observability determines whether one can cetermine
the value of the state at any time by measuring y(t).

*This terminology is suggested by the input and output terminals of
electric networks.

A-12
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Conditions which determine whether the linear system in
Eq. (A-11) has these properties are determined by the algebraic preper-
ties of the matrices F(t), G(t), and H(t) (Ref. 30). For constant systems,

necessary and sufficient conditions are:

A constant, nth order, linear, dynamical system is
controllable if, and only if, the matrix

e = [GIFGIF G'-- 'F“' ] (A-12)

has rank® n

A constant nth order linear dynamical system is
observable if, and ornly if, the matrix

9 -1
A= [HT'FTFT LET) KT T HT] i
has rankn,

Note that because the system is time invariant, the time t v
does not appear in Eqs. (A-12) and (A-13), implying that t; is arbitrary

so long as

>

This concludes a brief summary of the important properties of
linear systems used in this report. The reader is referred to Refs. 30
and 34 for more details on the subject.

%
That is, at least one set of n columns of © form a set of linearly
independent vectors.
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APPENDIX B

OPTIMAL CONTROL OF LINEAR SYSTEMS

B.1 INTRODUCTION

The basic task faced by a control system designer can often be
expressed in terms of the solution x(t) to a set of first order differential

equations

xt) = f[x@t), ut), tl; x(t,) = x, (B-1)

The vector x(t) is called the state of the system and u(t) is a vector set of
control variables which can be specified by the designer. The objective is

to determine u(t) such that x(t) achieves some desired behavior subject to
the cause-effect relationship provided by E. (B-1). For example, it may
be required that certain elements of the state vector take on specified
values at a given terminal time t¢, or that the solution fo Eq. (B-1) (also
referred 1o as the trajectory of the state) should possess certain stabiiity
properties,

Generally speaking, design criteria that are related only to the
behavior of x(t), are not sufficient to determine a unique control u(t).
Clearly if one's purpose is to transfer the state from one point x(ty) = x,
in ""state space' to another x(tg) = X¢ without any specification on the path
taken by x(t) or limits upon the control, then there are likely to be an
infinite number of paths and control functions that can be employed. Con-
sequently additional design requirements can ;e acccmmodated.

Usually it is true that the implementation of different controllers,
all of which satisfy the desired criteria on the state, costs different amounts

B-1
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of some important measure of acceptability, --e.g., system complexity,
weight, and/or volume. For example, a controller for a self-contained
tactical missile guidance system that requires a large computer to
mechanize p_(t) would be unacceptable with respect to all of these charac-
teristics. Often this "cost," although quite recognizable in the resulting
system design, is difficult to describe mathematically. Therefore it may
not be possible to include it in the design criteria in any systematic
fashion. In such circumstances a satisfactory mechanization is achieved
using a combimation of intuition, experience, and trial and error. In
cther situations the coct can be expressecd as a mathematical quantity; a
common example is a time integral, such as

'.

“t
S lut)| dt
tO

or

t

S u®) u(t) at
to
Expressions of this type mav represent the toial amount of fuel or energy
consumed, in which case it is desired to keep their values small. For
this case a reasonable design procedure is to determine the control so
that the associated cost is minimized, subject to any constraints on the
behavior of x(t) or u(t). The solution to a problem posed in this fashion,
called an optimal contrcl problem, is referred to as an optimal c-ntrol

law; it is the best control to use for the particular design criteria
selecte? .. generaliy, an optimal control law is one which minimizes

a specified performance index defined as a functional of the state

B-2
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and the control, while satisfying the specific design constraints, Thus an
optimal control problem provides a means for selecting one control law

from the many which are permissible when there is no performance index.

Another property one desires to have in any controller design
is feedback; that is, the optimal control should be explicitly a function of
the state x(t). When it has this form, u(t) is referred to as a closed loop
or feedback control. This arrangement is needed because there are

always forces or disturbances acting upon a physical system which are not
accounted for in the mathematical model given by Eq. (B-1). These cause
the state to deviate from the path which is predicted by integrating

Eq. (B-1) with a specified u(t). If the latter is explicitly a function of time

only (i.e. it is an open loop control) the controller never senses the effect

of disturbances on the state, and the latter may drift away from its
desired path, possibly in an unstable fashion.

The ahove-mentioned considerations are important in any con-
trol system design problem. This appendix presents analytical details for

formulating and obtaining a feedback solution for a special kind of optimal
control problem associated with linear dynamical systems. Basic text-~
book references for this subject are Athans and Falb (Ref. 97) and
Bryson and Ho (Ref. 137).

B.2 THE LINEAR OPTIMAL REGULATOR

A linear dynami~al system is described by a differential equa-
tion of the form

i) = A®) xt) +BO ut);  x(t) = x (B-2)

B-3
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where x(t) is a set of state variables which describe the response of the
system to a set of control inputs u(t). An important optimal control
problem associated with this system requires the selection of u(t) such
that the "quadratic" performance index

t
st ut)] = st Fxtg+ | [x0)" Q)20+ 9" RO g(t)] dt (8-3)
tO

is minimized for a given terminal time t;. The weighting matrices F,
Q(t), and R(t) are to be specified by the designer where F and Q(t) are

positive semidefinite and R(t) is positive definite. *

Physically speaking, the terms in J involving the state provide
a measure of the magnitude of x(t) both at the termination time and during
the interval (ty,t;). The term involving u(t) is a measure of the control
effort expended. The objective is to make x(t) small in the sense defined
by the magnitudes of the individval indices

5. 2 x(ts)" Fx (k)

i
S x(t)T Qt) x(t) at (B-4)

%

>

I
up

*A positive semidefinite matrix F is one for which the condition

x' Fx = 0

holds for all vectors x. If this condition holds with strict inequality for
all x # 0, F is said to be positive definite, The quantity gTFg is known
as a quadratic form,

B-4
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This is to be accomplished with the competing requirement that excessive

control leveis not be vsed, as measured by

t

I Sg(t)T R(t) u(t) &t (B-5)
ot

o

>

The total performance index is the sum of J £ Jx and Ju; therefore mini-

o b
———am— -

mization of J prevents any one of the individual indices from being too

large at the expense of the others.

The significai ce of using quadratic forms to measure the size

% men ® Ay

of the centrol and the state is that they heavily penalize large values of

x(t) and u(t). In addition, the squares of staie and contrcl variables are

v
. PRt e e

often identified as power and their integral square values are interpreted
as energy; e.g., Ju in Eq. (B-5) can be a measure of energy expended.

An additional nonincidental reason for the popularity of quadratic perform-
ance indices is that the solution for the optimal feedback control is readily

" e T
¢ e e 2 e TR AR

derived and it is a linear function of the state; hence it is relatively easy

to mechanize. Other types of optimal design criteria often permit a so'u-
tion for the open-loop optimal control hut the corresponding feedback corn.-
¥ trol is usually not readily obtained,

The solution to the optimal control problem described above is
given by

ut) = - Rt BT S(t) x(t) (B-6)

where S(t) is the solution to a matrix Riccati differential equation,

T st)+st) ) R®) 1 BE) T St) - Qt)

e
—~
(=
S
i

= - S(t) A(t) - A(t)

S(tf) = F (B-T)

B-5
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The matrix S(t) can be determined by integrating Eq. (B-7) backwards
from the terminal time. Then a set of time-varying gains,

k) 2 R M) BT sw), (B-8)

can be calculated and stored in a controller to implement the feedback
control law

ult) = - K(t) x(t); t stst (B-9)

f

In this form the control is cptimal for all time in the interval (t,, t;)
with x(t) regarded as the initial state. The value of the peiformance
index for any initial condition x(t) at time t = t; evaluated over the interval

(t, tg) is given by
3 = x®7 8 xt)

From the standpoint of implementation, observe that Eq. (B-9)
assumes all the elements in the state vector are avaiiable to generate
u(t). Often in a practical situation some state variables cannot be mea-
sured directly; instead there may be a set of measurements m(t) related
to x(t) by a linear transformation

m(t) = H(t) x(t) (B-10)

To implement the optimal control law, x(i) must be obtained frdm
m(t) as accurately as possible. Methods far accomplishing this

task when the system of equations, Eqs. (B-2) and (B-10), is observable
{(see Appendix A) are discussed in Refs, 138, 139, and 140. The result is
that an estimate X(t) of the state can be obtained by implementing a multi-
dimensional "filter" defined by differential equations of the form

x(t) = F(t) X(t) + G(t) mt) (B-11)

B-6
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where F(t) and G(t) are derived either from the principles of estimation
theory (Ref. 138) or from linear observer theory (Refs. 139 and 140).
Consequently when all state variables are not directly measurable (H(t)
in Eq. (B-10) cannot be inverted), the need to implement an expression
such as Eq. (B-11), as well as Eq. (B-9) with x (t) substituted for x(t),

complicates the structure of the controller.

B.3 CHOICE OF PERFORMANCE WEIGHTING MATRICES

A critical step in defining the optimal control problem is the
selection by the designer of the weighting matrices F, Q(t) and R(t) in
Eq. (B-3). There is no direct procedure for accomplishing this task; it
embodies all of the subjectivity remaining in the design problem. The
elements in any one matrix can be selected with respect to each other on
the basis of the relative importance of various products of state vari-
ables, as indicated in Ref. 137. Often none of the cross products --
Xi(t) xj(t) or ui(t) u].(t), i #j -- in the quadratic forms are of interest so
that the off-diagonal terms in the weighting matrices are taken as zero.
The diagonal elements of each matrix can be sized according to the de-
sired relative magnitudes of the elements in x(t} and u(t). For instance
if the desired magnitudes of xj(tf) and xi(tf) are known relative to each
other, say

3 = r,, (B-12)

then require thai the diagonal elements fii and fjj of F satisfy

1. 3 7 Ty (B-13)
i ox(t)

B-7
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This determines f;; relative to fjj; hopefully the resulting optimal control
will operate to yield values of the terminal state which approximately
satisfy Eq. (B-12). Relative values of the elements in two different weight-
ing matrices can be chosen from rough, a priori knowledge of the mag-
nitudes of the penalty terms Jj, Jyx and Iy which might result in a reason-
able case. For example, suppose it is known that the level of control

ul(t) required to yield a desired value of x{(t¢) has a magnitude on the oraer

of Mj. Then let

2
q x, (t,)

f11 - 1Yt (B-14)
1 Mt

Using some heuristic method of this type, one arrives at trial values of
F, Q(t) and R(t). If the resulting optimal control yields trajectories for
%(t) and u(t) which appear unsatisfactory, adjustments can be made to the
weighting matrices to change the system behavior.

The fact that trial and error are required to determine appro-
priate weighting matrices for the performance index tends to contradict
the basic philosophy of optimal control. The latter implicitly contains the
idea that, given required constraints upon the state and control variables
of a dynamical system, a performance index which accurately represents
the cost of designing and implementing the system can be devised. It is
desired that this index, and no other, be minimized; however, in prac-
tical applications considerations often arise which modify this design
concept. In particuiar, frequently one has certain performance criteria
in mind which cannot be easily incorporated into the mather:atical formu-
lation of an optimal control problem. As an illustration ncte that the per-
formance index in Eq. (B-3) is a weighted sum of severa! different cost

B-8

S e e e




THE ANALYTIC SCIERCES CORPORATION

factors which compete with one another. The designer may be primarily

interested in the values of individual ierms, such as

Each term of this type is, for the optimal control situation, dependent
upon the weighting matrices used to define the performance index and it
cannot be evaluated without actually solving the control problem for speci-
fic choices of F, Q(t) and R(t). Thus several trial designs may be needed

before the designer is satisfied with the collective behavior of the state
and control variables and some compromise in his "true' objectives may
be required. Other examples of design criteria that are difficult to treat
mathematically are ranges of allowable settling time and overshoot in
response to step commands. In these cases quadratic performance indices
can also be used as an artifice to generate a family of trajectories from
which one, having the additional desired features, is selected. In view of
these contingencies, optimal control theory for linear systems using qua-
dratic performance indices can be a useful design aid but it is no panacea.

£ B.4 THE TIME-INVARIANT LINEAR REGULATOR

An important special case of the linear optimal regulator des-
cribed in Section B.2 occurs when Eq. (B-2)and the weighting matrices
are time invariant -- A(t) and B(t) are constant matrices, A and B -- and

F=0 Qft)=Q Rt =R
For this application interest is focused on the form of the optimal control

law as t; approaches infinity. Under the added restriction that the linear
constant system

B-9
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Xt) = Ax(t) + But); =x(t) = x/ (B-15)
is controllable* it has been shown (Ref. 141) that the feedback control
which minimizes

J = S [_}g(t)T Qx(t) + g(t)T Rp_(t)] dt (B-16)

%

is given by

utt) = - R"IBT s x(t) (B-17)
The constant matrix S is the unique positive semidefinite solution to the
"steady state" matrix Riccati equation™*

T 1

SA+ATs -SBRIBTs+Q = 0 (B-18)

The feedback gain matrix

1.,T

K=R"BS,

is also constant, requiring much less storage than the time-dependent

controller,

Pesrhaps the most important property of the above control law
is that the closed loop system

x(t) = (A - BR_IBTS> x(t) (B-19)

*See Appendix A for a definition of controllability.

**When any eiger alues of A have nonnegative real parts, some additional

restrictions on the weighting matrix Q are required (Ref. 147) in order
that there be a unique positive semidefinite solution to Eq. (B-117).

B-10
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is asymptotically stable in the large (Ref. 141). Hence even though there

is some subjectivity in the choice of Q and R, various trial values of the
latter always lead to a set of feedback gains for which the system has
desirable stability properties. When the dimensions of the state and con-
trol are large, solving Eq. (B-18) is a convenient method for selecting
various values of K which have this property.

B.5 VARIATIONS ON THE LINEAR OPTIMAL REGULATOR

One objection to the optimal regulator problem as posed in

Sections B.2 and B. 4 is that the control law requires knowledge of all
state variables. If a filtering operation as suggested in Eq. (B-11) must
be performed on the available measurements to accomplish this task, the
system complexity increases. To avoid this difficulty it may be desir-
able to formulate an optimal control problem which requires only par-
tial state feedback. This is done simply by requiring that a control u(t)
having the restricted form

ut) = - [k ® ] [0]] =0 (8-20)
be determined such that a performance index J (either Eq. (B-3) or (B~16)
is minimized subject to the equations of motion; e.g.,

x(t) = Ax(t) + Bult) (B-21)

The zeros in the gain matrix defined in Eq. (B-206) multiply those ele-
ments of x(t) which are not available for feedback. This 1s a seemingly
minor modification tothe optimal regulator problem; howeverit consider-
ably complicates the procedure for determining the feedback control law.
A numerical method for determining the gains K.(t) is given in Ref, 142,

B-11
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Another technique for determining a restricted set of feedback
gains is given in Ref. 143. Here the condition on u(t) is the same as
Eq. (B-20) but the quadratic performance index includes cross product
terms in the state and control. This leads to a simpler solution for Kr(t)
but the physical significance of the cost functional becomes obscurred by
the special techniques used to select certain of its weighting matrices.

In Section B.3 it is mentioned that trial and error are often
required to design the optimal regulator because the performance index
is really a weighted sum of several competing indices. To eliminate the
need to select weighting constants, it can be required that each separate
term of J take on specified values, except the one which is to be mini-
mized. This resuits in an optimal control problem with integral con-
straints. To iliustrate this idea, consider the problem of choosing a
control u(t) for the system

X(t) = Ax()+But); xt,) = %, (B-~22)

such that the performance index

t

5, = S ut)” Ruft) at (B-23)

Y

in minimized subject to the constraint

i = | x0T ax - (B-20)
- t
0

where ¢ is a specified constant. For this illustration we take F = 0 in
Eq. (B-4). The motivation for this problem formulation is the desire to

B-12
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insure that x(t) is "small enough” in the interval (t,,t;). Therefore a

specific value is assigned to Jy rather than including it in the perform-
ance index, as is done for the T)ptimal regulator in Eq. (B-3). Conse-
quently there is no need to consider what the '""'size" of Q should be rela-
tive to R.

To solve the above problem it is convenient to proceed as if we
want to minimize the quantity

t

J= 3+ S x(t)T Q x(t) dt (B-25)

t

where ) is a weighting constant to be specified presently; for the moment

we ignore Eq. (B-24). The solution to this problem is obtained directly
from Section B.2; the optimal control is given by

i

ut) = - R BT s xa) (B-26)

where S(t) satisfies

1. T

_st)A-ATs@) +st) BRI BTs) - 2@ (B-27)

S(t)

i
o

S(tf)

This ecuation can be solved once ) is known. If ) can be chosen so that
Eq. (B~24) is satisfied, the solution to the problem with J x constrained

is determined.

Appealing to the adjoint theory for linear systems* we know
that for any feedback control law

—
See Appendix G.
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ut) = -K(t) x(t) (B-28)

applied to Eq. (B-21), the value of JX caused by initial conditions x(t) at
any time t is determined by the relation

I, = 50 CO) x®) (B-29)

where C(t) is the solution to
T
é) = - (A- B K(t)) C(t) - C(t) <A- B K(t)) - Q(t)

Cltg)= 0 (B-30)
If an optimal control law is used we know from Eq. (B-26) that
Kt) = R-1 BT s(t) (B-31)

Substituting from Eq. (B-31) into Eq. {B-30) and combining with Eq, (B-26)
yields the following control law for minimizing the performance index J o’
subject to the constraint on J_ in Eq. (B-24): -

ut) = - R BTsw) x(t)

§t) = S) A-ATS(t) + S¢) BR™'BTS®) - AQ

&) = - (A- BR‘IBTS(t)>T c(t) - C(t) (A-BR'IBTS(t)) -Q

Sty) = Clty) = 0

x(to) Clto) X(ty) = (B-32)

Because )\ is unknown, Eq. (B-32) is a set of coupled non-
linear differential equations with boundary conditions at both end points.

B-14
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Consequently they must generally be solved by some numerical method.

An iterative type procedure can be used as follows:

¢ Guess a value of ).

e Integrate the differential equations for S(t)
and C(t) backward from tf to to.

¢ Check to see whether the expression
T, . -
X (to) Cltg) x(tg) = ¢

is satisfied. If so, S(t) yields the desired
feedback gains; if not,choose a new value
of )\ and repeat the above steps.

Successive choices of \ can be made by any convenient finite-difference
type method.

Because the last expression in Ilq. (B-32) depends upon the

initial value of the state, the solutions for S(t) and K(t) also depend
upon x(tp), making the control law pariially open loop in character. To
avoid this situation it is desirable to modify the condition on Jx by
normalizing the integral in Eq. (B-24). Thus require instead that

[ tf ¥
g x(t)” Qx(t)
- A t0
Jx = max T = cC (B-33)
= xty) | xlty) x(to)

Referring to Eg. (B-29) it follows that

B-15
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T
— X(to)" Cltg) x(to)
T, = max |[——p—— | 2]Clo)| = ¢ (B-34
= Xt x(ty) " x(to)

The scalar quantity |C(t,)| is referred to as the norm of the matrix C(to);
it can be evaluated from the relation (Ref. 144)

|L(to) | = max p, (Clty)) = c (B-35)
1

where p, is the ith eigenvalue of C(tg).

Replacement of the fifth expression in Eq. (B-32) by Eq. (B-35)
eliminates the dependence of the optimal control law upon the initial state;
however it still depends upon the initial time. The ]ast objection is elimi-
nated in the steady state situation where t; approaches infinity, Just as in
the optimal regulator, the corresponding feedback gains become constants
which satisfy

ult) = -Kx(t)

k =R BTs

1.,T

sa+ATs-sBR I BTsQ =0

(a-Br” BT8)" C+C (a-Br1BTS) +Q=0

max pi(C)= c (B-36)

The relations in Eq. (B-36) provide a method for choosing con-
stant feedback gains so that Eq. (B-34) is satisfied as t; approaches
infinity., The numerical effort required to determine K is consider-
ably greater than for the optimal regulator; however there is less sub-
jectivity in defining a performance index. The extension to more than one
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quadratic integral constraint can be made quite readily by introducing

more "multipliers’" \». However each new constraint requires an addi-
¥ tional matrix equation similar to that for C in Eq. (B-36) and an addi-
tional eigenvalue condition. It is possible that the conditions leading to
the matrix norm in Eq. (B-34) can be changed to permit a simpler com-
putation than determining the maximum eigenvalue of C. This procedure
for selecting a set of constant feedback gains is largely experimental at

present and little experience with the resulting system performance or

o g e b
e S .

the feasibility of possible modifications in the problem formulation is
currently available.*

This concludes a summary of several important features of

modern optimal control theory. It is intended only as a review of the
material considered in this report; for additional information the reader
is referred to the aforementioned textbooks (Refs. 97, 137) and the
literature.

R e

%
There are apparently some unanswered questions about existence of
| solutions to this type of probiem formulation.
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APPENDIX C

AN ANALYSIS OF THE M.I.T. GRADIENT METHOD

This appendix is concerned with an examination of the M.1.T.
parameter adjustment rule (Ref. 40), to determine the extent to which it
achieves the gradient algorithm described in Section 4.2 and given in
Eq. (4.2-10). Recall that the objective is to change a parameter value
hi by an amount Ah;, given by

/ 1:j+1
Ahi\tj> -y S Le(t) e (t) & (C-1)
4 1 h.<t.>
i\'j
where
tj+1 -tj =T

and subscripts e and hi denote partial differentiation with respect to e and
hi(t]-) (see Eq. (4.2-11)). The quantity L[ e(t)] is a positive function of the
error signal. As an alternative to Eq. (C-1) the M.I.T. rule uses the

analog gain adjustment algoriithm

hy(t) = -o; Ly () ey () (C-2)

The actual total change in hj(t) is not completed until time tj 1 and is given by

t
i+
Aﬁi(tjﬂ) 2 e S L) e, ® d (C-3)

t. i
]

with continuous updating of hi(t). In order that this procedure be justified

3 on the basis of gradient arguments, it is required that

C-1
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Abt.q) % Ahi(tj) (C-4)

The first observation is that in general strict equality does not
hold in Eq. (C-4) because hi is held constant in Eq. (C-1) at the value hi(tj),
whereas in Egs. (C-2)and (C~3)hi(t) is continuously updated. Because e(t) is
a functional of h(t) through Eq. (4.2-6), the integrands of the two expressions
differ. This fact can be detrimental to system performance if Eq. (C-2)
adjusts the adaptive gains in the wrong direction near the beginning of the
interval, thereby causing significant variations in Le(t) and ehi(t) later in
the interval. It is possible that the resulting closed loop adaptive system
coulc be made unstable by this behavior. This potential difficulty can be
avoided by updating hi only at discrete times tj, as suggested in Section
4.2.2.

Another comparison between Eqs. (C-1) and (C-3) is afforded
by the M.I.T. procedure for computing ehi(t) fort = tj given in Eq. (4. 2-18),
and repeated here as

e

e (t)
1

CT zhi(t)

%, ©
1

Amghi(t) - b X (t); _:ghi(to) =0 (C-5)

In order that Eq. (C-4) hold for successive integration intervals, the quan-
tity g‘hi(t) should be reinitialized to zero in the adaptive controller at times
tj, j =0,1,... This corresponds to beginning the integration in Eq. (C-1)
over successive intervals, with

e (t) =0

B ™ Iny(t;)

However, in the M.1. T. method Eq. (C-5) is implemented continuously
from t = t without ever resetting Xp, to zero. Presumably this is a

C-2
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matter of convenience to avoid the digital logic associated with reinitiali-
zation, Thus at first glance, the M.I. T. adaptation rule looks like a
gradient procedure only over the first T seconds; for subsequent inter-
vals, the integral in Eq. (C-3) might be substantially different from that
in Eq. (C-1).

To analyze this aspect of the M.1. T. method, suppose the

adaptive system is in equilibrium at time t P > to with

hit) = 0; eft) =0

At this instant let a change in some system parameter occur so that an
error begins to develop., Fort =t e t0 the sclution of Eq. (C-5) is

t
T
0 = - ¢ | entnb, xm ar (Cc-6)
Y%
where @m(t, 7) is the transition matrix* for the system model, On the
other hand, if ghi('c) is set to zero at t v then

where the superscript + means that the differential equations for gi(t) are
reinitializedatt =t 4 The error incurred in using the solution of (C-6)
rather than (C-7) in the parameter adjustment algorithm of Eq. (C-2) is

related to the quantity

f *See Appendix A for a definition of transition matrix.
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A t
Aeh.(t) 2 eh.(t) - eh.(t)
i 1 1
tJL
= . cT S Qm(t,'r) hm Xi(T) dr (C"8)
t
0

Assuming the linear time-invariant reference model is chosen to be
asymptotically stable, the elements of the transition matrix approach
zero exponentially at a rate determined by the dominant time constant
associaied with model pole locations; i.e.,the magnitudes of the elements
of &y (t,7) in Eq. (C-8) regarded as functions oi ¢ approach zero 2s
ce-e{t-7) for some positive values of ¢ and 5. Consequently lAehi(t)l as
given by Eq. (C-8) is small if

alt-7) > 0; to STt < tz {C-9)

The condition expressed by Eq. (C-9) holds for most vaiues of t within
the gain adjustment interval, t P stst ' +7T, if

T > 1, (C-10)

wlicre T is the model settling time. If Eq. (C-10) is satisfied, the
resulting integrated effect of Aehi(t) upon h; also tends to be small.,

The conclusion is that the analog adaptive algorithm reliably pro-

duces the weighting function ehi(t) required in Eq.(C-1)only for an integra-
tion interval which is significantly longer than the model settling time.

Therefore if the gain o i3 assigned a value much greater than is justified for

such a long interval, or if the system parameters and command input vary

C-4

Sp

e

e ymey g et PR Symesl Mg

Bl




THE ANALYTIC SCIENCES CORPORATION

considerably, the real-time parameter adjustment rule expressed by

Eq. (C-2) does not necessarily correspond to a gradient method.

The object here is to provide a qualitative measure of the con-
ditions under which an analogy between the M. I.T. method and gradient
techniques can be made. It may be observed in particular applications
that the adaptive system of Fig. 4.2-1 behaves satisfactorily even when
the design assumptions do not hold; such characteristics are fortuitous
but they cannot be predicted from the theory. A by-product of this dis-
cussion is recognition that by discretely updating the adaptive geins and
reinitializing §hi in Eq. (C-5) at times tj, i=0,1,..., the analogy be-
tween M.I. T. and gradient methods can be made for any value of T in
Eq. (C-1). A short integration interval is desirable to achieve a rapid
convergence rate because many adjustments of the type given in Eq.
(C-1) are required to achieve the minimum of J in Eq. (4.2-1), for
fixed values of the plant parameters. Because the increments, Ahi, are
to be computed in real time over successive intervals of length T, suf-
ficient total timne is required to provide enough steps for adequate con-
vergence. Assuming that the allowable change in h which satisfies con-
dition (C-4} with adequate accuracy is independent of the length of the
interval and assuming the cost function is invariant with time, the con-
vergence rate of the gradient technique is inversely proportional to T.
Typicaliy then, recalling the condition given by Eq. (4.2-4), T should
be specified by

T = T (C-11)

provided that zhi(t) is reset to zero at the beginning of each adjustment
interval. This reasoning leads to the discrete form of the M.I. T. method

described in Section 4.2, 2.
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3 APPENDIX D

STABILITY THEORY

In this appendix definitions and theorems related to stability
theory which are helpful in analyzing and designing adaptive control sys-
tems are given. An extensive body of literature exists on this subject,

j some of which is provided in Refs. 64-T71. Excellent basic treatments
are provided in Refs. 64, 67, 68 and 71. No attempt is made to give a
complete survey of the subject here; only material required in this

report is presented.

D.1 DEFINITIONS

We begin by introducing definitions of various types of stability
which apply to the asymptotic behavior of solutions of a set of time-
invariant, first order differential equations beginning at time to

x = f(x); x(ty) = x4 (D-1)

We are interested in the properties of x(t) for t > t, near the equilibrium
point, X e’ which satisfies

f(xe) = 0 (D-2)

p £ -

one can always make the equilibrium solution for z(t) equal to zero.
Therefore without loss of generality, assume x e 0

D-1
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The solution to Eq. {D-1) near the origin ran be qualitatively

described in terms of the following defiuitions (Refs. 64 and 67):

The origin is a stable equiiibrium point of Eq. (D-1)
if for every real number § > 0, there exists a real
number, ¢(5) (depending upon 8), such that the
cordition

1x,] s e
implies

|x@t)| < & t = t
In other words, x(t) is bounded in magnitude by an
arbitrarily small number if the initial conditions
are sufficiently small.

The origin is an asymptotically stable equilibrium
point of Eq. (D-1) whenever it is stable and, in
addition,

lim |x(t)| = 0

{-c

More precisely, there is some real number y >0
such that for every 6 > 0 there is also a number
T(6, 3:_0) for which

x| =
implies

|x(t)] < dforallt >t +T

These definitions provide only local descriptions of system

behavior. That is, the number €(5) might have a finite uppér bound over
all values of 6. This would mean that for some value of the initial state
whose magnitude is larger than the bound, the convergence properties
expressed in the definitions would not hold. In many cases one

ez Gl
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desires a stronger condition on system behavior such as that pro-
vided by:

3. The solution to Eq. (D-1) is globally asymptotically
stable if it is stable (in the sense of definition 1

above) and

lim [x(t)] = 0

tow

forall x ..

Definition 3 guarantees a well behaved system no matter how large is

‘Z{,o‘-

The above definitions can be applied to an adaptive missile
autopilot having constant, possibly unknown, plant parameters and a
constant input. Ideally, global asymptotic stability of the equations of
motion (e.g., Eq. (4.4-15)) for the plant and adaptive gains about their
equilibrium solution is desired. Some theorems which are helpful in
achieving this condition are provided in the following sections.

D.2 LINEAR TIME-INVARIANT SYSTEMS

Conditions for achieving stability and global asymptotic stabilily
of solutions to the time-~invzriant linear equations,

xt) = Ax(t) (D-3)

are readily stated. Because the solution to Eq. (D-3) can be obtained
analytically as a linear combination of terms like

A (E-ty)
Ko b ;0 sksj-1

D-3
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where N is an eigenvalue of A having multiplicity* i) a neceésary and
sufficient condition for stability is:

ke . sy

¥ syl

Re(;) < 0 for all i; if Rg();) = O then there exist jj
linearly independent eigenvectors & --k=1,..,
j; -~ which satisfy *
Afy = N &y
For global asymptotic stability it is necessary and sufficient that
Rq(r) <0 for all values of i,

D.3 LINEAR PERIODIC SYSTEMS (Floquet Theory)

7y~ special type of time-varying linear system

x(t) = At) x(t (D-4)

whick can be treated in terms of the definitions stated in Section D.1 is
the case when A(t) is periodic with period T,

At +T) = A(t)

It can be shown (Ref. T1) that the transition matrix™* associated with A(t)
is of the form
R(t -t,)
o(t,t,) = P(t,to)e (D-5)
where P(t,t;) is periodic in T and R is a constant matrix; eR ig defined
in Eq. (A-6). The solution x(t) to Eq. (D-4) at times t,+nT --n =0,1

yLyee ™~

. . * %
is given by

x(t, +nT) = &(t, +nT, ty) X, (D-6)

*That is, there are jj eigenvalues of A which have the value );.
X
See Section A.2.

3 ) D"'4 s

IS PETT




THE ANALYTIC SCIENCES CORPORATION

Substitution of fq. (D-5) into Eq. (D-€) and using the fact --
P(t,+nT,t.) = P(t,,t,) = I -- produces

RnT n
§(to+nT) = e X, = &ty +T,ts) X,

Thus the behavior of x(t) at integral periods can be described by a dif-

ference equation,
X(to+nT) = & (to+T, to) x(to +(n-1)T) (D-7)

where & is independent of n. In terms of the eigenvalues ); of &(to+T,to),
each having multiplicity j;, a necessary and sufficient condition for
stabilig* of solutions to this difference equation is (Ref. 68):

Ixjl < 1foralli;if |x;]| =1 then there exist j;
linearly independent eigenvectors £y --k=1,..,
Jj == whickh satisfy

B(to+T, tO)-‘”:k = Ay

For global asymptotic stability it is necessary and sufficient that

These conditions togr:ther with Eq. (D-5) imply the respective stability
and asymptotic stability of x(t) for all time,

The above discussion demonstrates that the stability proper-

ties of Eq. (D-4) depend upon the eigenvalues of the matrix

Bty +T,t,) = et (D-8)

*Stability and asymptotic stability of difference equations are defined in
the same manner as in Section D, 1 except that t is replaced by nT.

F D-5
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In general the matrix R on the right side of Eq. (D-8) cannot be determined
analytically; however, it may be practical to obtain <!5(t0 +T,ty) by
numerically integrating its differential equation

d(t,to) = Alt) &lt,tg) ; Hto,to) = I

over the intervalt, < t < t, + T, especially if T is relatively small., In
this manner the stability of pariodic systems can often be ascertained.

D.4 NONLINEAR SYSTEMS (Linearization)

When presented with a nonlinear system to analyze, as in
Eq. (D-1), commonly one's first approach is to linearize the equations
about an equilibrium point and study their behavior with higher order.
terms neglected. To this end suppose Eq. (D-1) can be written as

x(t) = f[x@®)] = Ax()+g[x(t)] (D-9)
where

" lg(x)| .
m —1
|x|-0 [x]

and A is a constant matrix. Typically A is determined by calculating

31(x)

»
¥

3
v
i

(o 7

Z{. ?-(_:0

The behavior of x(t) about the origin can be expressed in terms
of properties of the mairix A, Recall that local stability properties are

e
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expressed by Definitions 1 and 2 in Section D.1. In particular, it has
been proved (Ref. 7T1) that the solution to Eq. (D-9) is (locally)
asymptotically stable if the eigenvalues ) ; of A satisfy

Re()j) < 0; foralli

and that the crigin in unstable (i.e., it is not stable in the sense defined
in Section D. 1) if

Re();) > 0 ; foranyi

In a similar manner the Floquet theory described in Section D. 3 can be
applied to determine local stability properties when A is periodic.

An important observation is the fact that nothing general can
be said when

Re(yj) = 0 ; alli
Re(xj) =0 ; somej

For this case tne effect of the nonlinear terms must be investigated; this
fact is effectively demonstrated in Eq. (4.2-44). One special case where

some eigenvalues of A have nonzero real parts is treated in Appendix E.

D.5 NONLINEAR SYSTEMS (Liapunov Theory)
For the nonlinear system,
x(t) = f[x()] (D-10)

global stability properties can often be determined by methods associated

D-7
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principally with Liapunov (Refs. 65, 67, 68). The relevant theorems are
stated without proof in this section.

Theorem 1 (Ref. 67)

Let there exist a scalar function V(x) associated with
the state of Eq. (D-10) and having the following
properties:

()

(b)
(c)

V(x) and its first order partial derivatives are
continuous in a certain open region R about the
origin in n-dimensional Euclidean space.
V(x)>0; x #0, xin R

V() = 0

Then the following statements are true with respect
to solutions x(t) of Eq. (D-10):

1(a)

1(b)

1(c)

1(d)

If V(x(t)) < 0 along solutions of Eq. (D-10) in

R, the origin is stable. A V(x) with this
property and which satisfies conditions (a),

(b) and (c) above is called a Liapunov function.

If V(x(t)) < O along solutions of Eq. (D-10) in
R, the origin is asymptotically stabie.

If 1(b) holds and R is the whole Euclidean
space, denoted by the symbol ER, with

lim V(x) =
!x'—om

then the origin is globally asymptotically
stable.

If 1(a) holds, if R = EB, if V(x(t)) does not
vanish ident1call,r int 2 tq for any ty and
any x, #0, and if

lim V(x) = o
| x|~

then the origin is globally asymptoticaily
stable.

D-8
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The details of the above theorem can be motivated by Fig. D-1 which
illustrates possible trajectories for x(t). The contours of constant V()
are closed in the vicinity of the origin. If the contour

V() = Viz,)

is contained in R as indicated and if condition 1(a) of the theorem holds,
V(x(t)) is never increasing and the trajectory, denoted by x la(t)’ must
remain within the contour. On the other hand if condition 1(b) holds,
V(x(t) is constantly decreasing and the trajectory, denoted by _)glb(t),
must eventually app.oach the origin. Similar arguments apply to the
other conditions of the theorem.

Notice that the conditions of the theorem require one to find
an appropriate V(x), i.e., a Liapunov function; however there is no
general systematic method for doing this. This matter receives a great
deal of attention in the literature; suitable functions have been found for

R -2724

Figure D-1 Illustration of Theorem 1

D-9
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various special types of nonlinear systems. The failure to find a form

of V(x) which has the desired properties for a specific case does not mean
that one doesn't exist. Consequently proving stability with Liapunov
techniques is an ad hoc procedure.

The next tih.eorem treats the case where \'I(g(t)) = 0 along some
solution to Eq. (D-10).

Theorem 2: (Ref. 65)

Let there be a scalar function V() satisfying conditions
(a) and {b) of Theorem 1 with R = ED and V(x(t)) < 0
along solutions of Eq. (D-1C) and

lim V() = o
|x|~e

Let T be tae set of values of x such that
V) =0; xeT
and let S be the largest subset of T such that
X(t,)in S=> x(t)in 8; t=zt,

Then all solutions convergeto Sagt ~ =,

Theorem 2 says that under suitable conditions, x(t) must
approach a set of values S such that V(g) = 0 for all x contained in the
set. This result is particularly useful when Eq. (D-10) does not have

a unique equilibrium point, In such a situaiion, S may be the set of aii
solutions to the equation

f(x) = 0

and one can establish the convergence of x(t) to S.

D-10
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All of our discussion thus far has been related to time-

invariant systems. Some remarks about the time-varying case are given
in the next section.

D.6 TIME-VARYING SYSTEMS

The equations under consideration in this section are of the
form

x(t)

fxt), t];  xty) = x

(0]
10,) =0 (D-11)

Most of the definitions and theorems of the preceding sections can be

modified to give general stabulity conditions for solutions to Eq. (D-11);
the essential difference is that conditions which are uniform with time
must be imposed. One useful resuit applicable to Eq. (D-11) is a simple
extension of the theorems in Section D. 5 given by the following:

Theorem 3

Suppose we are given a function V{(x) which satisfies

the conditinns on V(g) in respectively Theorems 1 and/or
2 of Section D.5 and also a continuous function Vo (x)
satisfying both

V2(O) =0

and the set of conditions on V(x) in Theorems 1 and/or 2
respectively. Then if

Vi&x(t),t) < Va(x(t)
along solutions of Eq. (D-11), the solution of Eq. (D-11)

has the stability properties described in Theorems 1
and/or 2 respectively.

D-11
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This can be viewed as a special case of the general theorems for time-
varying systems; that is, Vy(x) has all the properties required of a
time-varying Liapmov function for Eq. (D-11) (Refs. 65, 67).

Thus far conditions have been given for convergence of x(t) to
a set where the Liapunov function satisfies the condition

Vix(t) = 0
It has been assumed that motion is restricted to a region where

V() = 0 (D-12)
However, acceptable operation can sometimes be attained even though
V(g(t) ) 2 0 inside a small region about an equilibrium point; one might

expect convergence of x(t) to some type of oscillatory condition within
the region. Limit cycling, steady state solutions achieved in some non-
Iinear control systems are examples of this type of behavior. These
considerations motivate a discussion of a somewhat different type of
stability than that defined in Section D. 1.

D.'7T PRACTICAL STABILITY

Practical stability deals with the behaior of the solution x(t)
to a set of differential equations

x(t) = £[x(t), t] (D-13)

when a positive scalar function V(x) exists such that V[x(t),t] does not
satisfy the condition in Eq. (D-12) everywhere in the vicinity of the
equilibrium point. In this case a different type of stability from that
associated with Liapunov theory can sometimes be established (Refs. 65
and 67). A useful result of this type is the following:

D-12
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Theorem 4

Let a function V4(x) be given vhich satisfies the
following:

(@) Vy(x) and its first partial derivatives are
continuous in ER,

(b) Vyx)>0;, x#0

(e) lim V{x) = o

Also let taere be a continuous function Vy(x)
satisfying:

@ Vax)>0; x#0

() Vy(0) = 0

Now detine a set of S by the condition
Vo(®) < M <> xin§

Then if

V (x),t) <= Vy(x(t) + M

along solutions of Eq. (D-13), it follows that x(t)-T
as t-», where T is a set defined by

V1(§) ctL < xeT

L = ;ﬁxs vy}

The content of the theorem: is illustrated by Fig. D-2. Any solution x
which starts outside T must converge to T since

G

V‘l < 0; for all X outside T

D-13
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X1

Figure D-2 Illustration of Motion that
Exhib.is Practical Stability

Furthermore, any solution Ez(t) which begins within T must reinain in
T since

Vl < 0; xin the boundary of T

This concludes our summary of ceveral methods for deter-
mining stability properties of differential equations. These techniques
are important for achieving satisfactory designs for adaptive controllers
because they provide a qualitative description of the behavior of non-

{inear and linear time-varying systems.

D-14
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APPENDIX E

A LOCAL STABILITY THEOREM FOR ADAPTIVE SYSTEMS

In this appendix, conditions are established for local stability of
a nonlinear systcm having equations of motion similar to Eq. (4.2-40). The
need for this arises because conventional stability theorems cannot be
applied to a linearized system when it has some closed loop poles at the
origin of the complex plane.

Consider the nonlinear, time-invariant system described by
xt) = Ax(t) + f[x)]; x0) = x (E-1)

with the partitioned form

%, (t) A A (507 [H[xo), xp(t)]
e [ St ! I RO ) RPN (E-2)

where gl(t) is an n-dimensional vector, §2(t) an m-dimensional vector,
A11 an n x n matrix, A12 an n x m matrix, and A21 an m xn matrix, Let
the total dimension of x(t) be £ =n+m. Equation (E-2) has a special
uncoupled nature in that 3{_2(t) is driven by only ) (t). It has the same
structure as Eq. (4.2-40) without the forcing terms; *he effects of the

iatter will be investigated subsequently.

Our purpose is to establish conditions for which stability of the
equations

yt) = Ay(t)
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implies lccal stability of Eq. (E-1); in particular we are interested in tte

case where A has some eigenvalues at the origin of the complex plase,

The results of this investigation are summarized in the foilowing theorem:

Theorem

Suppose the system described by Eq. (E-2) satisfies
the conditions:

(a) The eigenvalues s;, i=1,2,..,4, 2t A satisfy*

Re(s;)<0; i=1,..,r

r

si= 0; i=r+1,..,1¢

That is to say, the nonzero eigenvalues of A
have pegative real parts and there are
£-r = q eigenvaluecs with the value zero,

(b) Rank (A12)=m-q=1

(c) If |§2| = o, then there exists a y > 0 such that

R EST T2 R
EARUII 1
(@ I(xy)

lim —[— =0
|§1| - 0 51
Then it follows that the solution to Eq. (E-1) is locally

stable, and furthermore locally we have

lim I_:_(_l(t)l = Q (E-3)

tow

*Re(s) denotes the real part of the complex number s.

E-2
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The proof of this theorem is similar to that given by Coddington
and Levinson (Ref. 71) for the case when the eigenvalues of A are strictly
in the left-half complex plane. The hypotheses of the theorem are moti-
vated by the various steps required to verify Eq. (E-3). It is clear that
in general Eq. (E-3) must hold for stability because the state gz(t) in
Eq. (E-2) is given by

t

gz(t) = §2(0)+j [A21§1('r) +_fz(§1('r)>:'d'r (E-4)
0

If X (t) does not approach zero sufficiently rapidly, _}gz(t) will tend to
become arbitrarily large for some functions f,(x;). The main task is
to demonstrate that the zero eigenvalues of A :lo not contribute to the
solution for x 1(t).

From Appendix A we know the solution to Eq. (E-1) satisfies

t
x(t) = @(t,0)§(0)+s &(t,7) £[x(r)] dr (E-5)
0

where &(t2,t1) is the transition matrix associated with A. Write &(t,0) in
partitioned form

8t,0) = |-----d- - (E-6)

with the same partition dimensions as A and expand Eq. (E-5) to obtain an
an expression for gl(t),

Sl
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x, () = @, (t,0)%,(0) + &,,(t,0)2,(0)

t
* S {éll(t, T)fl [2‘_1(7),_’52(7)] + 4’12(1:, ‘r)_iz [51(7)]} dr
’ (E-T)

From Eq. (E-T7) it is clear that in order for Eq. (E-3) to be satisfied, it
should be true that

lim !¢u(t,0)| = lim |¢12(t,0)| =0 (E-8)

to L)

where |®| is the matrix norm.* Otherwise the contributions of the initial
conditions to gl(t) may not approach zero. Eq. (E-8) is verified below
by examining the detailed construction of &(t,0) under the hypotheses of
the theorem.

The Laplace irzasform &(s) of &(t,0) is given in Section A.2 as
a(s) = (1s-2)" (E-9)

Denote Fij(s) as the element in the it" row and jth column of &(s) and
define the cofactor (Ref. 145) associated with the i-jth element of the
matrix (Is - A) as pij(s)' Recall that

pij(S) = (1" pet [Mij(S)] (E-10)

*The appropriate definition of a matfix norm |A| for this application is
(the maximum eigenvalue of ATA)1/2 This definition is "%mpatible"
(Ref. 144) with the euclidean norm of a vector |x| = (§T§)1 , in the
sense that

|ax| < |A]|x]

E-4
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where M,.(s) is the minor (submatrix) obtained by deleting the ith row and

jth column of (Is -A). From the definition of the inverse of a matrix
(Ref. 145) it follows that

p.i(S)
F,.(s) = —L—nu (E-11)

1 Det (Is - A)

Because A has q eigenvalues at the origin (hypothesis (a))
Det (Is - X) = s%p(s) (E-12)

where p(s) is a polynomial with strictly left-half plane zeros (i.e., none
have zero real parts). Conditions (a) and (b) of the theorem imply that the
first n columns of A are linearly independent, both of each other and of
the last m columns in T&, and also the rank of A is equal to r. Therefore,

Rank <Mij(0)> = r-1; (E-13)

Det (Mij> 2 scqij(s) ; .
Zj =1,..,n

c 2(4-1)-(r-1) = g-r = g (E-14)

where qij(s) is a polynomial. Substitution of Eqs. (E-12) and (E-14) into
Eq. (E-11) produces

Py = (-9 0 (&-15)

E-5
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where ¢ - q 2 0. Referring to Eqs. (E-6) and (E-9), each element of
En(s) and élz(s) is given by Fij(s) in Eq. (E-15) which has its poles --
i.e.,the zeros of p(s) -~ strictly in the left-half complex plane. This
implies that the elements of cbll(t, 0) ana @lz(t, 0) decay exponentially and
therefore the associated matrix norms have exponential bounds (Ref. 34),

-ot
|q>u(t,0)| < kle
c>0 (E-16)
|8560)| < kne

where k1 and k2 are some positive constants. This establishes Eq. (E-8);
now we can proceed directly to the proof of the theorem, following Ref. 71.

For convenience take k1 = k2 =k in Eq. (E-16). Taking norms
of both sides of Eq. (E-7) and substituting Eq. (E-16), one obtains

-_lil(t)l < ke_ct(|§1(0)|+|§2(o)!)
t
+ks e'o(t-r)(l_fl(ﬁl(r),zsz(r)) |+|_§2(§1(r)> I) dr (E-17)
0

Hypotheses (c) and (d) of the theorem imply that for any ¢ > 0, there
exists an ¢ and a 6 such that if

7_:1(‘t)l <6
|§2(t)! S a (E-18)
then
¢|x, (t)
| 41(5,®), %,(0)| < = l
(t)
53 0)] < El—gélk_l (E-19)

E-6
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The first condition in Eq. {(E-19) follows from condition (c) of the theorem;
in particular take
o s € (E-20)
2ky
The second condition in Eq. (E-19) follows from condition (d) of the
- 0 faster than x,. Substitution of Eq. (E-19) into

1) %

theorem; i.e., f,[x
Eq. (E-17) and transposing e ot produces

t
ect|?51(t)| s k <i§1(0)|+|§_2(0)|)+ 68 e’ |§1('r)| dr (E-21)
0

subject to Eq. (E-18). This inequality yields (Ref. 71, p315)

x, 0] = k (|5, 0|50 )7 (-2
Now if we require
€ <0
%, (0)|+[%,(0)] = 2 (E-23)

Eq. (E-22) becomes

|x1(t)| < ¢5e'("'€)t < 6 (E-24)

The conclusion is that for sufficiently small initial conditions on
| the state, gl(t) is indeed less than or equal to § as required by Eq. (E-18),
| but stili subject to the requirement,

i§2(t)| < o

E-7
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To check the latter ccoadition, “ve calculate a bound on gz(t). Substitution
into Eq. (E-4) irem Egs. (E-18), (E-19) and (E-24) produces

@©

%) = %000+ (|A21'+§€i£> 0 s O Nar @29
G
which reduces to

%0 < [% (°)|+<|A21|+ 2512> e (E-26)

Given the quantities o, €, Kk, |A21 |, and ¢ as specified by Egs. (E-20),
(E-23), (E-16), (E-2), and (E-16) respectively, one can choose § and
|x9(0)| sufficiently small so that by Eq. (E-26)

5] < o5 €20

Therefore the assumptions in Eq. (E-18) made in deriving Eq. (E-24) are
consistent and §1(t) - 0 exponentially, thus proving the theorem.

To apply the theorem to Eq. (4.2-40) neglecting the forcing
terms, make the identifications

x,(t) = 8x(t); X,(t) = 8h(t)
_ T, N
Ay =A-bhys Ay =-bxy,
Fﬁl' - 0]
0 B - -
Ay =Bz’ B'=| | ]

0O . - ﬁn'
£, (x,6), %y(t) = -b sh(t)" ox(t)
11Z s Xy 2000 X

1,(x,(t) = B 62 ™ ox(t) (E-27)
E-8
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The conditions of the theorem are checked as follows:

(@) The eigenvalues of A are determined by expanding
Det (Is- A). Using the Schur identities for the
determinant of a partitioned matrix (Ref. 146) it
follows that

v B 1
Det(Is-A) = s Det(ls “A17s A1:>.A21)

Substitution for Aq, Ajg, and Agy with some
algebraic manipulation produces

~ _ n-1
Det(ls - &) = s" 1 pet <Is - An)'r(s)

where kg and G,(s) are defined as in Eqgs. (4.2-47)
and (4.2-50). Note that the zeros of Det(Is-Ayy)
are cancelled by the poles of T(s). Now we assume
that the adaptation gains . and the quantity h in
Aqq can be chosen so that lI‘(s) has n+1 zeros
located strictly in the left half complex plane, as
discussed in Section 4.2.6. Therefore

n+1

i

r
q =n-1

(b) From the structure of Ajg in Eq. (E-27) it follows
that

Rank(A19) = 1
Using the results from (a) above,

m-q=n-(n-1)=1= Rank(Ay9)

Therefore condition (b) is satisfied.

E-9
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(c) Condition (c) is satisfied because

11 (2%5) | = o] 151] |%] = o7 |

where we identify
|Z®)] = «

v = ||
(d) Condition (d) of the theorem is satisfied because
15(xy) is quadratic in x,

Therefore Eq. (4.2-40) is locally stable in the sense defined in the theorem,
subject to the condition that the zeros of T(s) have negative real parts.

The above development provides sufficient conditions on the
matrix A and the nonlinearities 1, and £, in order that the solution to
Eqg. (4.2-40) be locally stable, neglecting forcing terms. To assess the
effect of the latter, modify Eq. (E-2) as follows

x(t) = Ax(t) +d + f(x(t)) (E-28)

where d is a constant forcing term added to account for the corresponding
quantity in Eq. (4.2-40).

Assume Eq. (E-28) has a steady state solution x g which satisfies
Ax +d+ f(xg) = 0 (E-29)

Define a new variable z(t) by

z(t) = x(t)- (E -30)

up
|
it
| — |

E-10
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wnere the partitions correspond to those for x(t) in Eq. (E-2). Substitution

from Egs. (E-29;and (E-30) into Eq. (E-28) and expandingthe nonlinear term
about x s produces

of
a(t) = Az(t) + 3% ‘ z(t) + higher order terms (E-31)
Tx

-8

where 3 £/3x is the matrix with its i-jth element equal to f; / oXj. Now
define the partitioned matrix |

’E 3f, ]
21 % % T Fiz),
'5; = = =F (E-32)
—l%g |20y oy Fa1 Fap

| B %

X
—S
The result of combining terms in Eq. (E-31) and using Eq. (E-32) is
z(t) = (A +F) z(t) + higher order terms (F.-33)

Using Eq. (E-27) we can evaluate the partial derivatives in Eq. (E~32) as
follows:

Foy

= B'(E.T ox I+ 8% gT); F,,=0

22

The higher order terms in Eq. (E-33) are quadratic funciions similar to f

1
and {

9 in Eq.(E-2). Ther=zfcre from the above relations it follows that the

E-11
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unforced nonlinear equations of motion for z(t) have the same structure

as Eq. (E-2) and the stability theorem can be applied to the matrix
(A + F).

This concludes the investigation of conditions for the stability
of Eq. (E-2). The results obtained enable one to make some qualitative
statements about the behavior of Eq. (4.2-40) as described in Section
4,2.6.

ey
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APPENDIX F

THE STEADY-STATE MATRIX RICCATI EQUATION

In determining the optimal control u(t) for a linear time invariant

system which minimizes a quadratic performance index

t
f
7= S [gc_(t)T Qxt) +u(t) Rg(-t)] at (F-1)
t
0
subject to the equations of motion,
x(t) = Ax(t)+Bu(t); x(ty) = % (F-2)
the matrix Riccati equation
St) = - S{t) A-ATS(t) +S¢) BRBIS(H) - Q
S(ty) = 0 (F-3)

has an important role.* Its solution enables one to mechanize the optimal
linear feedback control law

alt) = - R BTS®) x(t) (F-4)

An important special case of the above is when the terminal time is infinite,
tg = », so that S(t! becomes a constant S which is the solution to the steady

state equation

SA +AYs -sBRIBTs+Q = o (F-5)

FSee Appendix B

F-1
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This is an important result because the linear control law requires only
constant feedback gains; therefore techniques for determining S are of
interest. The latter are the subject of this appendix. Our emphasis will
be upon methods that are feasible for solving Eq. (F-5) cn-line in an adap-
tive control system as described in Section 5.4. To guarantee that there
is a unique positive semidefinite solution for S, it is assumed throughout
this discussion that Q is positive semidefinite, R is positive definite,
the system represented by Eq. (F-2) is controllable,* and all the eigen-
values of A have nonnegative real parts. If the last of these conditions
does not hold, Q must be further restricted, as discussed in Ref. 147.

Because Eq. (F-5) is a nonlinear matrix equation, it usually has
no closed form solution and consequently some numerical technique must
be used to obtain a close approximation to S. Three methods described in
the literature are

e Numerical Integration

¢ Newton's Method

¢ Eigenvector Method

The essential features of each are summarized and then comparisons of
their relative computational complexity are made.

Numerical Integration — Perhaps the most obvious technique for

solving Eq. (F-5) is to integrate E¢.(F-~3) to a nearly steady state condition.

It has been established (Ref. 147) that beginning with any positive semi-
definite value of S(t;) and integrating Eq. (F-3) backwards in time, the
solution for S(t) satisfies

*See Appendix A for a definition of controllability

F-2

dnwy

-

e

LA

I

T WIS e e S




THE ANALYTIC SCIENCES CORPORATION

lim S(t) = S,

to-o

converging exponentially, That is,

1S-St)| s ae™ (F-6)
for some positive constants, o and o, where | | denotes the matrix norm.
The significance of Eq. (F-6) is that over an interval of time having

length A, the bound on the error in the solution is reduced by the
factor e A

max |S-S@A)| < e 2 max |S-S(@-1)4)] (F-7)

In the terminology of numerical analysis (Ref. 148) the method has first
order convergence properties.

Newion's Method — Newton's method is an important recursive
technique for solving nonlinear algebraic equations (Ref. 148). Several
authors have described its use for the matrix Riccati equation

(e.g., Refs. 147 and 149) in Eq. (F-5). Applied to this probiem it results
in the expression

A-BRIp": >T +s, (a-Br!BTs >+s BrR18Ts + Q=0
Sk Sk+1*8k+1 k)" Sk K

7

(F-8)

Given a value for Sk’ Eq. (F-8) is a solvable linear relation in Sk ‘1 under
our assumptions on Q, R, and A. Because Sk +1 is symmetric, the total

number of unknowns to be determined is

n(n+1)
2

If the recursion begins with any positive semidefinite matrix SO such that
the eigenvalues of the matrix

F-3
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A-BRBTs,
all have negative real parts, then the sequence {Sk} generated by Eq. (F-8)

converges to the solution of Eq. (F-5) (Ref. 147).

With respect to the convergence rate of this technique, it is
known (Ref. 148) that as Sk approaches the solution S, the error behavesas

55« 55 =5

where 7 is a positive constant less than one. Compared with Eq. (F-17)
Eq. (F-8) indicates a much more rapid convergence rate as Sy approaches S
because the factor nzk decreases rapidly with k whereas e'“A is constant.

Therefore Newton's method exhibits second order convergence properties.

Eigenvector Method — The third technique is found to be most
efficient when the dimension of S is large. It is based upon the fact that
S(t) in Eq. (F-3) can also be determined from the relations (Ref. )

A 1-Br!BT
* '
ag) = |---t-------) Q)
Q 1 -AT
Q@) =1
Q(T,t) = |-=- ===~ : ......
|
0y (T,t) | Bye(T, 1)
S¢,T) = -Ozz(T,t)'l 0y, (T, 1) (F-9)

F-4
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where Q is a 2n ¥ 2n matrix (A being of dimension n), Qij(T,t) --
i,j, =1,2 -- isann x n matrix and S is regarded as both a function of t
and T. The solution to Eq. (F-5) is obtained from

S = lim S(T,t) = lim %—S’ZZZ(T,t)—1

Q,,(T, t)‘ (F-10)
To T 21

or alternatively

-1

S = lim §-022(T,t) 021(T,t)§ (F-11)

t— =

Because the differential equation for Q (t) is time independent, we can take
T =0 in Eq. (F-11) so that S can be determined by

S = lim §-922(o,t)‘1 921(o,t)% (F-12)

fo-o

The details of the method involve determining the eigenvalues
and eigenvectors of the matrix

which permit the limit in Eq., (F-12) to be easily calculated. Several
algebraic steps must be completed and they are described in Refs. 150 and
151, For large values of n (n = the dimepsion of S), less computation time
is required for this procedure than for Newton's method. Newton's method
requires inversion of a matrix whose dimension is (1/2)(n)(n +1) and the
associated computation time is proportional to n® ; furthermore when n is
large or if the matrix to be inverted is ill-conditioned (Ref. 144),

F-5
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excessive numerical errors may be incurred. By contrast, the computation
time required for the eigenvalue method is proportional to n3.

For tactical missile applications, Newton's method seems to be
a feasible procedure for solving Eq. (F-5). The order of the system is
sufficiently low so that the required matrix inversion can be accurately
accomplished and the associated programming instructions are less com-
plicated than those required by the eigenvalue method. The total compu-
tation time required to obtain a solution in the cases considered in Chapter 9
is roughly 1/100th of that required by the numerical integration technique.
The integration technique has also been compared with the eigenvector
method (Ref. 151); for the cases reported the former typically requires a
computation time 100 times longer than the latter to obtain a solution for S.

F-6
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APPENDIX G

ADJOINT THEORY FOR LINEAR SYSTEMS

When designing a control law u(t) for any known system of

equations,
x(t) = f(x(t), uft))

it is desirable to be able to analyze the system performance for various
choices of u(t). This can always be done numerically simply by integrat-
ing the equations of motion. Different sets of initial conditions and types
of measurement errors can be tried to obtain representative simuiations
of actual system operation. In general, a great deal of computational
labor is involved in examining a satisfactory number of cases t2 obtain a
measure of ""average' system behavior. However, if the equations of
motion are linear, the task of performance evaluation can be greatly sim-
plified by the use of sensitivity functions which analytically determine the
effects of initial conditions and measurement errors. These functions are

derived here using so-called "adjoint theory' for linear systems,

G.1 PROBLEM FORMULATION
Consider the linear dynamical system
x(t) = AR X(D) +BO ) xto) = X (G-1)

where u(t) is a linear feedback controller given by

ut) = K@) x(t) (G-2)

G-1
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and K(t) is a specified matrix. Define three performance measures for
the system as follows:

T, 2 xte)’ Fxity) (G-3)

t
a (L .1

12| x0T e xe @ G-4)

T
0
&

5, %) " roue @ (G-5)
‘0

where F, Q(t), and R(t) are assumed to be symmetric, positive semi-
definite matrices. The quantity J; is a measure of the magnitude of the
terminal state at time tg, J indicates the size of the state along a solu-

tion to Eq. (G-1) and J,, rep_resents the amount of control 'effort' expended.

These are all familiar -(iuadrat'ic performance indices used in optimal con-
trol theory. Our purpose here is to indicate how Jss Jx, and Ju can be
evaluated, given any linear feedback control law, in terms of initial con-

ditions x(ty) on the state and measurement errors incurred in implement-
ing qu (G-Z)c

G.2 TERMINAL STATE SENSITIVITY TO INITIAL CONDITIONS

To determine the sensitivity of the terminal state to initial cen-
ditions, rewrite Egs. (G-1) and (G-2) as

xt) = A®) xtt);  x(t,) = x¢

A(t) + B(t) K(t) (G-6)

1p

Alt)

1(See Appendix B.

G-2
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We know from linear system theory* that the transition matrix @(t,tG)
associated with A(t) satisfies

d(t,t,) = Alt) olt,to);  Slto,te) = I (G-1)

Knowledge of & obtained by integrating Eq. (G-7) permits us to write
x(t) = &(t,ty) X

That is x(t) can be determmed for any values of t and x o» given the soiution
to Eq. (G-7) for a particular initial time t,. Consequently we can regard

the state as a function of both t; and t, written as x(t,t,). However, in

many applications it is desirable to know the terminal state resulting from
initial conditions imposed on the system at different initial times. For

example, this is the case in the missile guidance problem discussed in
Chapter 11 where the effects of launching the missile at different ranges
relative to the target are to be evaluated. In other words, if x(t) is the
state at any initial time t < t;, one is interested in evaluating

x(ts,t) £ @iy, t) x(t) (G-8)

Accomplishing this for a range of values of t requires knowledge of &(tg,t)
where the initial time is regarded as an independent variable. Notice that
x(tg, t) is obtained from x(t,ty) by making the change of variables -- t-tf
and t - t.

To obtain ab(tf, t) from Eq. (G-T) requires that a complete inte-
gration of the matrix differential equation be performed over the interval
(t,tp) for each initial time t of interest. Often this must be done numeri-

: cally and a great deal of computational labor is entailed. However, the

%
See Appendix A.
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procedure can be greatly simplified if a differential equation for &(tg,t)
itself can be determined with t as the independent variable. To derive an
equation for &(t;,t), we begin with the property

dltgty) = ltg,t) @(t,t) = I

Differentiate both sides of this expression to obtain
d(ts,t) B(t, t;) + B(ts,t) it,t;) = 0

and therefore, using the fact that &(t, te)™! = &(t;, t),

bty t) = -0(tg,t) B(t,tg) B(ts,t) (G-9)

Now observe that the differential equation for &(t,ty), Eq. (G~T), can be
written as

dit,t;) = Alt) o(t,tg) (G-10)

because Eq. (G-17) holds for any t, -- in particular t, = t;. Substitution
from Eq. (G-10) into Eq. (G-9) produces the desired equation for &(tg,t):

d(ts,t)
Bltpty) = 1 (G-11)

- &(tg, t) Alt)

Equation (G-11) is said to be adjoint to Eq. (G-7) and &(t;, t) is referred to
as a sensitivity function,

In the missile guidance application, only one element of the
terminal state vector is of interest, the miss distance. This can be ob-
tained from knowledge of only one row of the transition matrix, taken with-
out loss of generality to be the first row. Denoting the first row of &(tg, t)

G-4
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by the column vector ¢, it follows from Eq, (G-11) that

[ 1 h
0
dtpt) = K0T ot V) olte,ty) = | - (G-12)
0
L. o

To calculate &(tg,t) and i, t), Egs. (G-11) and (G-12) are
integrated backwards in time from t = t;. Once evaluated these sensitivity
functions determine the terminal state resulting from any given initial
condition x(t), according to Eq. (G-8). The performance index in Eq.
(G-3) is then determined by

I = ()" 8(ts,t)T F(ts,t) x(t) (G-13)

G.3 TERMINAL STATE SENSITIVITY TO MEASUREMENT ERRORS

Another important contribution to the terminal state can be
produced by errors in implementing the linear control law in Eq. (G-2).
These errors may result from imperfect observations provided by sensors;
they can ofter. be represented as random fluctuations or as (possibly time-
varying) bias errors. To examine such effects, suppose that the control iaw
for Eq. (G-1) is given by

ult) = K@) (x(t)+ €(t) (G-14)

where ¢(t) is an error vector. The resulting equations of motion for the
Jinear system are

x(t) = A(t) x(t) + B(t) K() e(t)

G-5
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where A(t) is defined in Eq. (G-6). According to linear system theory, *
the terminal state at time t; caused by the action of ¢(t) on the interval
(t,t;), with zero initial conditions on the state at time t, is given by

4

x(tg,t) = St 3(ts, 7) Bl(r) K(r) e(r) dr (G-15)

where x(tg, t) is regarded as a function of both t; and t, just as in Eq.(G-8).
A differential equation for the terminal staie is obtained simply by dif-
ferentiating Eq. (G-15) to obtain

X(tp,t) = - @ltg,t) B(t) K(t) e(t)
X(tets) = 0 (G-16)

In the special case when the measurements contains only bias
errors, i.e., €(t) is a constant ¢, the terminal state is given by

X(t,t) = Witgt) €
Bitg,t) = - ditg,t) B(t) Kt)
Witgts) = 0 (G-17)

If one is interested in only a single element of g{_(tf), then only one row
(which can be taken as the first) of ¥(tg, t) -~ denoted by y(tg, t) -~ need be
determined; that is,

7ty ) = Bt t)T €
$tpt) = - Kb BO)T oftg,t)
g, tg) = 0 (G-18)
*See Appendix A.
G-6
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where ¢(tg, t) is the first row of &(ts,t), defined by Eq. (G-12).

All of the integrations in Eqs. (G-16), (G-17) and (G-18) are
performed backward in time and requive knowledge of the transition
matrix &(t,t); the latter is evaluated from Eqgs. (G-11) or (G-12) which
are also integrated backward in time. Therefore the sensitivity functions
for initial conditions and measurement errors can be generated simul-
taneously.

Another form the measurement errors ¢(t) can take is that of a

random process (noise) having zero mean and second moments

E{elty) ett)™} = Wity) 6(t ~ty); for all t; and ty (G-19)

where W(t1) is a known positive definite matrix and 8(ty - t9) is the unit
Dirac delta (impulse) function. The mean value of the terminal state pro-
duced by this noise is also zero. If we denote the second mument charac-

teristics of the state by
, T
P(tg,t) = E { x(tg, t) x(tg, t) }
where E { } denotes mathematical expectation, then it can be shown that

Bty t) = -&{ts, t) BA) K W) K®) T BE)” o(ts,t) 5 Pltg,t) = 0 (G-20)
This equation is also integrated backward in time. *

With the terminal miss (or its statistics) caused by measure-
ment errors calculated from either Fq. (G-17), (G-18), or (G-20), the
value of the performance index Jg ic readily calculated. For example, if

*
P(tf,t) is called the state covariance matrix.

G-1
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€(t) is a constant bias error,
Jp = € witg, T Fultg) - (G-21)

If ¢(t) is a random process, the expected value of J; is given by

{5} = B{xtts,t" Fxtty, )} = Trace (Pt t)F) (G-22)

where Trace (PF) denotes the sum of the diagonal elements of the matrix
product, PF,

G.4 INTEGRAL-TYPE PERFORMANCE INDE X SENSITIVITY
TO INITIAL CONDITIONS

In this section we want to determine an efficient method for cal-
culating the values of the performance indices in Egs. (G-4) and (G-5) pro-
duced by initial ~onditions x(t). Beginning with Eq. (G-5), J;, can be

written explicitly as a function of t; and t by substituting for i(t) from
Eq. (G-2) and regarding t, as a variable, t. Thus

t

f
Ju(tf,t) = S _JE(T)T K(T)T R(r) K(r) x(r) dr (G-23)

t

Equation (G-23) can be expressed in terms of the initial conditions x(t) by
substituting the relation (see Eq. {G-8)

A

x(r) = x(r,t) = ®(r,t) x(t) (G-24)
to obtain
t
1yt = x0T | o, 0 kT RO K 0, ar(xt)  (G-25)
- t

G-8
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where x(t), being independent of 7, is factored outside the integration.

Evidently the control effort in Eq. (G-23) can be expressed as
T, (t0) = xt Te CDEC (G-26)

where Cu(tf,t) is a sensitivity function identified as

t
f

c 0 2 | ot kT RO K 06, ar (62
= ¥ t

A differential equation can be obtained for this quantity by differentiating
both sides of Eq. (G-27) with respect to t producing

t

. (7
JCTRS) [ e

T T

K(r)" R(r) K(r) &(r,t)

+ o(r,t)T K(r) R(r) K(r) &(r, 1) } r

- ot,t)T Kt)T RE) K(t) &(t,t) (G-28)

Noting that &(t,t) = I and substituting from Eqs. (G-11) and (G-27) into
Bg. (G-28) yields

tf, Y CRre (tf,) (tf,t) At) - KO TREKR)  (G-29)

This differential equation can he integrated backward in time from the

terminal condition

Cﬁ(tf’ tg) =0

G-9
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to determine the solution for the sensitivity function in Eq. (G-26). Once

known, it can be used to evaluate Ju for any desired initial conditions.

In an exactly analogous fashion, a sensitivity function Cx(tf, t)
can be derived for evaluating J_ in Eq. (G-4). The appropriate equations
are listed below without proof:

J
X

x®)" C_(tg,t) x(t)

éz(tf, H = -Eo' Cyltn,t) - Cylty,t) A®) - Q(t); Cylty,tf) = 0 (G-30)

Finally, in some cases it is desirable to evaluate a composite
performance index

J = Jf+J§+J_‘l

in terms of initial conditions x(t) on the state. This can be accomplished
from the relations

3 = xT gt x0)
Etpt) = - ADT Cltg,t) - Cltg,t) AG)-Q(t) - KT ROK(®)

Cltp,ty) = F (G-31)

Using the sensitivity functions developed in this appendix, one can

evaluate various linear control laws for a linear dynamical system. The
importance of these functions is that they provide an efficient method of
evaluating quadratic performance indices and determining the terminal
state at 2 fixed terminal {ime caused by initial conditions or measurement

errors which are applied to the system at a variable initial time.

G-10
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APPENDIX H

TRAJECTOR™Y _ATA

In this appendix numerical values for the parameters which
define equations of motion for a missile airframe are presented. The

reader is referred to Section 8.1 for definitions of terms.

H.1 AIR-TO-SURFACE TRAJECTORY DATA

One set of data applies to an air-to-surface trajectory for an
aerodynamically controlled missile and is summarized in Tables H.1,
H.2, H.3, and H.4. The aerodynamic coefficients defined in Eq. (8.1-2)
are given for several difierent flight conditions in Table H.1. included
are values of time at which the particular flight condition occurs along a
sgmple trajectory. The corresponding stability derivatives M ¢ Ma’ etc.
which appear in Eq. (8.1-3) are listed in Table H. 2.

The elements of A and b in Eq. (8.1-4),

211 219 93 0
A= 391 29y 29a |; b = b1 (H-1)
| 0 0 ags | | Dy

are calculated from the data in Tables H.1 and H.2; their values are tabu-
lated in Table H.3. When simulationg with continuously varying param-
eters are performed, values of A and b at times between those listed in
Table H.3 are obtained by linear interpolation, i.e.,
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TABLE H.1

MISSILE AIRFRAME DATA ALONG AN
AIR-TG-SURFACE TRAJECTORY

Flight Condition 1 2 3 4 5 6 7
Time (seconds) 0-5 6 8 23 62 71 80
Altitude (feet) 35,000 | 35,000 | 35,000 | 35,000 0 0 0
Velocity (ft/sec) 683 1459 2620 2920 2791 2791 2791

Dynamic Pressure (psf) 11 786 3146 3146 9258 9258 9258

Mass (slugs) 47.2 | 42.6 | 28.6 | 34.2 | 33.8 | 33.1 | 27.4
Iy (slug-ft?) 75 | 664 | 497 | 506 | 482 | 441 | 432
CNy 7.28 | 9.22 | 8.24 | 8.14 | 8.31 | 8.31 | 8.31
CNg 453 | 4.18 | 1.49 | 1.49 | 1.95 | 1.95 | 1.95
CMy -86 | -205 | -222 | -222 | -225 | -225 | -225
Cm, -5.82 |-4.24 | -.597 | -.879 | -.515 |-1.27 | -.665
Cmy -17.8 |-18.1 | -7.40 |-7.45 | -9.21 |-9.39 |-9.25

Constants: S = 1.23 ft%  d=1.25f.

TABLE H.2
STABILITY DERIVATIVES ALONG AIR-TO-SURFACE TRAJECTORY

B 2 3 4 5 6 7
M, |0.029 |- 0.230 |- 0.462 |- 0.455 |- 1.49 |- 163 |- 1.6
Mo |214 l-7m2 |-se1 -840 o152 |-4n0 |- 219
M, |-6.56 |-83.0 |-12.0 |72 |-272.0 |-303.0 |-305.0
L, [0.04%| 0.144 | 0.37 | 0.3% | 1o | 1.03 | 1.24
L, | 0.0208] 0.0652| 0.0699| 0.0699| 0.237| 0.242| 0.292

H-2
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TABLE H.3

ENTRIES IN A AND b (Eq. (H-1))

where t; is the time that the ith flight condition occurs.

H-3

Cauit 1 2 3 4 5 6 7
aj; {- 0.020 |- 0.280 |- 0.462 |- 0.455 |- 1.49 |- 1.83 |-  1.66
aj, (- 0.065 - 0.0367|-  0.00526(- 0.0054{-  0.0054|-  0.0142(-  0.0063
a3 - 5.28 |- 205 |- 7.9 |- 6.7 |- 268.0 |- 203.0 |- 300.0
2y 32.7 210.0 1100.0 926.0 2817.0 2880.0 3470.0
2y, |- 0.0478|- 0.144 |- 0.3 |- 0.317 |- 1.0 |- 1.08 |- 1.24
2,3 [-1015.0 |-4760.0  |-10200.0  |-8486.0  [-33100.0  |-33900.0  |-40800.0
ag, (- 50.0 [- 0.0 |- 0.0 |- 500 |- 50.0 |- 50.0 |- 50.0
b, |1015.0 |476c.0 | 10200.0 8486.0 | 33100.0 | 33900.0 | 40800.0
by 50.0 50,0 50.0 50,0 50,0 50,0 50.0

TABLE H.4
AIRFRAME UNDAMPED NATURAL FREQUENCY
AND DAMPING RATIO )

Flight Condition 1. 2 3 4 5 6 7 B
L 0.026 | 0,067 |0.172 | 0.132 |0.305 | 0.203 | 0.296
W, 1.46 |2.78 [2.44 |2.92 |4.09 |6.54 |4.89

i 1. 1
At) = | Alt) (b +1-) +Als + 1) (- 8) | ——
L 4Mi+1 i
- 11
b(t) = | blt;) (£ +1 -t) +9(ti+1)(t-ti)d L (H-2)
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Additional important quantities are the three open loop poles
of the airframe and actuator. One pole is produced by the actuator and
has a fixed value

p; = -1 = -50.0 sec”!

The other two, Py and pg, are complex conjugate airframe poles which are
the roots of the second order polynomial

2 2
s+ ZCwnS *

where

W= aa,,-a.a, = byl = |pal?
n 11%22 ~ 212291 Py P3

2y = -2y4 -399 = Py Py

The quantities W, and ¢ are referred to as the undamped natural fre-
quancy and the damping ratio reSpectively;* w, is the magnitude of Py
and { is the cosine of the angle Py makes with the negative real axis
in the compiex plane. The values of these quantities are given in
Table H.4.

H.2 SURFACE-TO-AIR TRAJECTORY DATA

A s=cond sct of airframe data used for simulations described in
this report is for a surface-to-air trajectory. Airframe dynamics are
specified in terms of the transfer function T(s) relating commanded con-
trol surface defiection to normal acceleration,

*See Ref. 21 for definitions of these terms.

H-4
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s = k<s - z1><s - zz>
é ) pa>(52 t2luy st “’121)

The pole p a is associatea with the actuator and the remaining terms re-
present the airframe rotational dynamics. Values of these quantities
together with the time, velocity, altitude, and dynamic pressure profiles
are given in Table H.5. In order to convert this data to the form shown
in Table H.2, relationships must be found betwe~n the quantities Ma’
MG’ etc., and the variables in Eq. (H-3). This can be done using

Eqs. (8.1-3), (6.1-4) and (8. 1-8) with the result,

(H-3)

k
L T e
0 paV
La = z1 +z2 +2cwn
Mq = z1 + z2
- 2
Ma Lan wn
L
. 0 _
Ms =L (M, +22)) (H-4)

Substitution of these quantities into Eq. (8.1-3) permits the calculation of
the elements defined in Eq. (H-1); their values are entered in
Table H.6.

The data supplied for these two trajectories has been obtained
by fitting sets of parameters for actual missile airframes to hypothetical
trajectories. Consequently, although the behavior of the airframe param-
eters is qualitatively representative of actual flight conditions and is
adequate to test feasibility of various control methods, the specific
numerical valuee are not real flight data.
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TABLE H.5

MISSILE AIRFRAME TRANSFER FUNCTION

PARAMETERS FOR SURFACE-TO-AIR TRAJECTORY

Flight Condition 1 2 3 4 5 6 7
k 6750.0 27900.0 39600.0 48800.0 51300.0 41600.0 33750.0
zy - 10.9 - 45,0 {- 68,4 - 90.9 |- 99.2 |~ 90.2 |- 82.7
zg 9.98 40.4 61.7 82.3 90,1 82.5 6.2
wy 8.50 17.2 20.5 22.9 23.4 21.4 19.3
4 0.0471 0.095 0.139 0.131 0.138 0.128 0.121
Py - 50.0 - 50,0 |- 50,0 |- 50.0 |- 50.0 50.0 50.0
Velocity (ft/sec) 500.0 2059.0 3124.0 4031.0 4470.0 4330.0 4220.0
Dynamic Pressure (psf) 297.0 4482.0 6180.0 4755.0 3618.0 1415.0 640,0
Altitude (thous. ft.) 0 4.0 20,0 40.0 50.0 68.4 83.6
time (secs) 0 10.0 20.0 30.0 35.0 45,0 55.0
TABLE H. 6
ENTRIES IN A AND b (Eq. (H-1)) FOR
SURFACE-TO-AIR TRAJECTORY
Flight
Condition 1 2 3 4 5 6 7
au - 1.0 (- 4,60 |- 6.70 |- 8.59 I~ 9.10 |- 7.7 |- 6. 50
P - 0.24]- 0.0728 - 0.0463 |- 0.0357]- 0,038 - 0.0307- 0.0296
313 - 49.4 |- 256.0 - 382.0 - 526,0 - 544,0 (- 443.0 - 352,0
321 300,0 3970.0 8770.0 13900.0 16900.0 14000.0 12500,0
Ry |I” 0.€0]- 1.93 |- 2.81 |- 3.46 |- 3.79 |- 3.25 |- 2.85
a23 -6750.0 {-27900.0 -39700.0 -48800.0 -57350,0 |-41640.0 -33700.0
333 - 50.0 {- 50,0 50.0 - 50.0 - 50,0 - 50.0 - 50,0
b2 6750.0 | 27900.0 39700.0 488G0.0 57350.0 41640.0 33700.0
b3 50.0 50.0 £0.0 50.0 50.0 50.0 50.0
H-6
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