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FORE WORD

The underlying purpose of this report is to
present an objective evaluation of several techniques for
adaptively controlling and guiding tactical missiles.
Because design trade-offs always exist between perform-
ance and control system complexity, there is probably
no one control method that is preferable for all applica-
tions. Consequently, in this work no single method is
advocated as the panacea for all missile design problems.
Insteadthe discussion emphasizes distinguishing charac-
teristics of each technique so the reader can judge which
is most suitable for his own situation.

A by-product of this research effort is an
organized, unified discussion of many technical aspects
of adaptive control which have heretofore been available
only in isolated papers. New research result. produced
by this investigation are also included. Therefore,
although this study has been performed primarily for
tactical missile applications, the material collected here
should also be of interest to those working in other areas
where adaptive control methods are needed.

The authors are grateful for the encourage-

ment and support provided by Mr. David Siegel of the
Office of Naval Research and Mr. Paul Blatt of the Air
Force Flight Dynamics Laboratory. Acknowledgement
is also made to Professor Richard V. Monopoli of the
University of Massachusetts for his contributions rela-
tive to Liapunov design techniques. Helpful assistance
was provided in several technical areas by Professor
John J. Deyst, Jr. of the Massachusetts Institute of
Technology and by Dr. Joseph J. Budelis. Appreciation
is also expressed to Professor Wallace E. VanderVelde
of the Massachusetts Institute of Technology for his help-
ful review of portions of the document.
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I

ABSTRACT

The fields of adaptive control and guidance are
searched for techniques that can be beneficially applied
to the design of guidance systems for tactical missiles.
A large number of existing adaptive control techniques
are investigated and new methods which are suited to the
needs of missile control systems, are proposed. The
feasibility of promising autopilot design procedures is
demonstrated through computer simulations, using real-
istic time-varying airframe dynamics. Guidance tech-
niques for tactical missiles are also reviewed and a
number of steering laws, derived from optimal control
theory, are evaluated. Quantitative comparisons are
made between different guidance laws on the basis of
intercept accuracy and control effort expended.

The report is published in two volumes con-
taining four basic parts -- Introduction (which includes
the summary and conclusions for the entire report),
Adaptive Control Theory, Adaptive Control Applications,
and Guidance. The first two parts constitute Volume I
and the remainder together with several appendices
compose Volume II.
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8. APPLICATIONS- PARAMETER ADAPTIVE CONTROL

SYSTEMS WITH IMPLICIT PLANT IDENTIFICATION

In this chapter two adaptive control techniques described in

Chapter 4 -- the accelerated gradient and Liapunov design methods -- are
considered for tactical missile autopilot design. Our primary goal is W

demonstrate the feasibility of these methods in terms of resulting missile

performance. The accelerated gradient method is applied to both adaptive

pitch rate and normal acceleration autopilots and the Liapunov method is

used for pitch rate control.

8.1 DESIGN CONSIDERATIONS

In designing any control system, adaptive or not, one begins

with a mathematical model for the plant and specified performance cri-
teria. We first discuss these aspects of the problem formulation for tacti-

cal missiles.

8.1.1 Airframe Dynamics

The rotational motion of an airframe is generally described in

terms of 6 state variables -- three angles and three angular rates. The

exact differential equations of motion for these variables are nonlinear and

are also coupled to the translational motion of the airframe through such

quantities as air speed and altitude which describe the missile's flight con-

dition. As is mentioned in Section 2.1, the coupling between translation

and rotation is simplified if the ftrmer, being affected primarily by the

8-1
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relatively long response time of the guidance loop, is regarded as being-- I

independent of the autopilot characteristics. Consequently, with respect

to the rotational equations of motion, the variables which define the flight

condition can be regarded as time-varying quantities that are independent

of the missile airframe response characteristics. The dimensionality of 3
the rotational equations is usually reduced by considering them to be

separable into three uncoupled motions -- pitch, yaw, and roll -- each of

which is controlled separately. In a cruciform missile pitch and yaw

dynamics are identical, * both being used to respond to steering commands, 3
and the function of the roll control system is primarily one of stabilization.

After these simplifications there still remain nonlinearities in the depend-

ence of the equations of motion upon angle of attack and control surface

deflection angle; linearization is achieved by employing small angle

approximations.

In this report we are interested not only in autopilot design, but

also in the relationship of the autopilot to the overall performance of the I
guidance system. The latter is investigated by assuming the missile's

translational motion is confined to a single plane, taken to be the pitch

plane. Consequently the autopilot governing pitch motion which receives I
the steering commands is most relevant for this study.

The mathematical model used here to describe pitch motion is

for a missile which develops control forces through aerodynamic lift pro-

vided by fixed wings or by the missile body, with the aid of tail-mounted

control surfaces. This is currently the most common configuration.

In the discussion that follows the effects of gravity are neglected.
However, the text speaks of "pitch" dynamics in the "pitch" plane,
recognizing that in a strict sense it is the horizontal plane and 5
yaw dynamics that are described.

8-
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The model assumes second order airframe and first order actuator

dynamics with equations of motion given by

4(t) = M q(t) + M a(t) + M6 6(t)

1(t) = q(t)- L a(t)- L56 (t)
a6

X(t) = -X8(t) + X u(t)

a(t) = - V[ (t) - q(t)] (8.1-1)

where M M M6, L. and L, are stability derivatives and
q'

q(t) = pitch rate a(t) = angle of attack

a(t) = normal acceleration u(t) = control command

6(t) = control surface deflection - = actuator pole

V = airspeed

Refer to Fig. 8. 1-1 for a geometrical definition of autopilot state variables.

The stability derivatives can be expressed analytically in terms of aero-

dynamic coefficients, airframe parameters, airspeed, and dynamic pres-

sure by the relations

-2M = 2- V CM  M -qSd

q 21 V M a I M
yy q yy a

M acd C L qs C
6 I M a mVN

yy 6

L6 =-'VCN (8..1-2)

mV N6,

8-3
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* -209 6

q

INERTIAL AXISC9:

BODY LCNGITUDAL AXIS I

Figure 8.1-1 Geometrical Definitions of Pitch J
Plane State Variables

'1
where II

S= dynamic pressure

I = moment of inertia about pitch axis
yy

S = lifting surface area £1
d = characteristic length

, P 8 = moment coefficients

C , = normal force coefficients

N = mass 

8-4
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The equations of motion can be expressed in the vector-matrix

form

1" MaLg
M L

(t) Mq V L M6  L q(t) 0

La -La -XVL 6  a(t) + XVL u(t)

(t) 0 0 1X 6(t)_

(8.1-3)

or, in abbreviated notation,

i(t) = Ax(t)+ bu(t)

al a 12 a1 3  0 0
A A = 2 - 2

A a21 a a2  b = a (81-4)

0 0 a33 b3 -a 3 3

To design an adaptive autopilot using the techniques suggested in

Chapter 4 we augment Eq. (8.1-4) with the equations of motion for a known

reference model that has desired output response characteristics. The

total system is illustrated in Fig. 8.1-2 and is described by the relations

T
_ = Ax(t) + bu(t) y(t) = c x(t)

m(t) = Hx(t) u(t) = v(t) - r(t)

Xm(t) = Amxm(t) + bmv(t) Ym(t) = c T m(t)

e(t) = y(t) - ym(t) (8.1-5)

8-5
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9t-t ;'#

-A x+ bu xlt 
= cTx  "

r(t)"

m) SENSORS "

+6

f4'

V(t) M O EL j

Figure 8.1-2 Input-Output Relations for Autopilot
Design Problem

where x m(t) is the state of the refer.-nce model having time-invariant*

dynamics described by Am and bm y(t) is the output of the autopilot which

is to be compared with the model output ym (t), e(t) is the output error sig-

nal, m() is the set of measurements available for use by the controller,

v(t) is the steering command input, and r(t) is that portion of the control

command which can be specified by the designer. The overall objective

is to choose r(t) so that the output error signal remains small.

Another expression that is useful for describing the airframe 1
dynamics is the input-output transfer function relating y(t) and u(t), given by

by
Y(s) = cT (Is-A)-I b (8.1-6)

- _-

In Section 8.2.4 it is demonstrated that an adaptive (time-varying)
reference model has advantages for missile control.

8-6 1
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where Y(s) and U(s) are the Laplace transforms of y(t) and u(t) and it is

assumed that A and b are time invariant. For the applications being con-

sidered, specific expressions for c are

eT [1 0 0]=:O y(t) = q(t)

c = [0 1 0] y(t) = a(t) (8.1-7)

Substitution of Eqs. (8.1-4) and (8.1-7) into Eq. (8.1-6) produces

(a a a
-(a a + a a' s 13 33 22
s33 13 12 23/ a a +a aQs) 33 13 1 41

U(s) (s x)(s 2  (a,,1+ a22 s+al1a2 -a12 a2

'~' s~x s ~a 1+ 22 ) s~ 1 a22- 12 21)

where Q(s) and A(s) denote the transforms of q(t) and a(t).

The above mathematical description of the missile airframe omits

contributions from structural bending modes and sensor dynamics. This

keeps the control system sufficiently simple to permit the scope of this study

to include several adaptive techniques, but retains enough detail to permit

realistic conclusions about control of the dominant response characteristics.
In a complete missile control system design, any high order effects
neglected in synthesizing the autopilot should be included in simulation

evaluations of performance.

In order to evaluate various control schemes, a set of typical

missile dynamics is required for performing computer simulations; it

8-7
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should include the time-varying character of airframe parameters along I
the flight path. Two sets of such data are given in Appendix H, repre-

senting air-to-surface and surface-to-air types of trajectories. II

8.1.2 Performance Criteria

In designing an adaptive system care must be exercised in

choosing a set of reference model dynamics and an output signal y(t). One's

first thought may be to designate any conveniently measured state variable

as the output variable and select a reference model having natural frequen-

cies such that the model output ym(t) has a desirable transient response.

Then the controller would be designed to make the error between the output

variables small, according to some adaptive procedure. However, if this

reasoning is applied too losely the result can be an adaptive control sys-

tem with exactly the wrong performance characteristics. This point will

be elaborated as we discuss a proper design procedure for the missile

application.

From a functional point of view, the missile autopilot exists only I
to serve the guidance objectives. Consequently performance criteria for

the control system should be based upon what is required by the steering

commands. In Chapter 11 it is demonstrated that most effective guidance

laws use a normal acceleration stvering command so that the autopilot out-

put variable of interest is normal acceleration, a(t) in Eq. (8.1-3). Thus

the reference model specifications should be such that the model's normal I
acceleration am(t) has desired response characteristics to v(t) and the A

adaptive controller should attempt to null the error

e(t) a(t)- am(t)

8-8
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That is to say, an adaptive normal acceleration autopilot is desired.

For reasons related to the adaptation properties of the system,

which are discussed more fully in the sequel, it is sometimes tempting to

try achieving acceleration control indirectly by using a state variable other

than normal acceleration to define the output of the autopilot. Specifically,

we know from Eq. (8.1-1) that constant values of pitch rato, and accelera-

tion are related simply by

a = qV (8.1-9)

This represents the steady state airframe response to a step input. if

an estimate of air speed is available, a constant pitch rate command

can be applied which yields the desired constant acceleration after the

transient has subsided. Consequently one might consider implementing

an adaptive pitch rate autopilot even though acceleration is the quantity of
importance, .n the expectation that the acceleration and pitch rate transient

responses would have similar response times. Unfortunately, this

approach can be incorrect, depending upon the type of missile being

employed.

To understand the potential fallacy of the technique described

above, one must consider the dynamic relationship between pitch rate and

normal acceleration for the particular missile under consideration. If the

airframe depends upon aerodynamic forces for developing the lift required

to produce normal acceleration, the dependence between a(t) and q(t)

changes with flight condition (FC). To illustrate this fact consider an air-

frame modelled by Eq. (8.1-3) and suppose u(t) is given by

u(t) = v(t) - klq(t) - k2 a(t) - k3 5(t)

8-9
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with the set of constant gains kl, k2, and k3 choten at different flight

conditions so that the resulting system poles have specified values. This

can always be done because the system is controllable (Ref. 30). In par-

ticular, choose two sets of gains so that the system poles are at -40,

-5 +j5, -5 -j5 in both flight conditions 4(high altitude) and 6(low altitude)

of Tables H. 1 and H. 2 and apply a step pitch rate command v(t) which

yields a normal acceleration of 28.0 feet/sec2 in the steady state. The

resulting step responses are shown in Fig. 8. 1-3. Notice that the settling

times of the system are about the same for both flight conditions bE cause

the system closed loop poles are the same for both cases. However, the

overshoot in pitch rate is considerably different in the two cases, that for

condition 4 being considerably larger. The physical reason for this be-

havior is that the missile, being aerodynamically controlled, must develop

a larger angle of attack at FC 4 than at FC 6 to achieve the same normal

acceleration, primarily because the dynamic pressure is lower. More

specifically, in the case illustrated here, the velocities are nearly the

same at both flight conditions but the altitudes are considerably different.

At the higher altitude (FC 4) the air density is lower so that the liftig sur-

faces are less effective than at low altitudes; thus a larger angle of attack 4,

is required to achieve the same lifting force. This reasoning implies that

the pitch rate must have a greater peak value if the settling time is to be

the same at both flight conditions.

The above example illustrates that the physics of aerodynamic

missile control demands a wide variation in pitch rate transient response

as plant dyna-..cs change, if the settling time of the normal acceletiktion

response is to remain constant. Consequently if one should try to obtain

unifnrm pitch rate response, just the opposite result will be achieved;

. e., the acceleration transient response will vary widely over different

flight conditions. This behavior is rather simply descriLed analytically with
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Figure 8. 1-3 Pitch Rate and Normal Acceleration Step
Responses for Two Flight Conditions

the aid of the diagram in Fig. 8.1-4. Suppose an adaptive autopilot can be

designed so that at 2l1 flight conditions the pitch rate response to a command

input v(t) is described by a fixed reference model transfer function, Tm(S) .

However, the dynamic relationship between pitch rate and normal accelera-

tion is deduced from Eq. (8. 1-8),

a as a 21 a13 a33)

A(s) - a23  11 23/
A/, (a= , 3  a - 132" (8.1-10)

a3 a12 2  a33a13 +a12a23
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Figure 8.1-4 Illustration of the Effect of a Pitch T
Rate Adaptive Autopiloton Normal
Acceleration Response

Evidently the latter transfer function is unaffected by the adaptive con-

troller and is sensitive to variations in the elements of A and b in Eq.

(8.1-4). Consequently the acceleration response to the input, given by

A(s) = T A(s) (81-11)Vs) =  ins (8.1-11

is also subject to changes In its parameters. The most important effect j
is the single pole in Eq. (8.1-10) which tends to be smaller in magnitude

at high altitudes and/or low air speed (FC 4 In Fig. 8.1-3) than it is at I
low altitudes and/or high air speed (FC 6 in Fig. 8.1-3). The resulting

effect on normal acceleration response is a variation in settling time as

flight conditions change; this is demonstrated subsequently in simulation

results.
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The ccnclusion is that an adaptive normal acceleration autopilot

is required for aerodynamically controlled missiles. When other mech-

anisms which are independent of aerodynamic forces, such as thrust vec-

toring, are used for developing control force, it is possible that a pitch

rate autopilot will yield satisfactory performance. In any case, the designer

designer must keep in mind that normal acceleration is actually the output

variable of interest and ensure that its response characteristics are cor-

rect for whatever control scheme is devised.

Many adaptive techniques developed or proposed in the past have

been concerned with controlling aircraft airframe pitch rate or roll motion.

Little attentin has been given to the problem of designing an adaptive

normal acceleration autopilot using the methods described in Chapter 4.

Both pitch rate and acceleratioii control of missiles are investigated in

subseqient sections.

8.2 APPLICATION OF THE ACCELERATED GRADIENT METHOD

Having outlined requirements for autopilots in Section 8.1, we

now consider application of a particular adaptive technique, the accelerated

gradient method discussed in Section 4.3. In this section the design pro-

cedure is explained in detail and simulation results are presented for both

pitch rate and normal acceleration autopilots.

8.2.1 Design Procedure: General Considerations

The design procedure for an accelerated gradient controller con-

aists of three distinct steps:

8-13
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0 Define the controller structure.

0 Derive the simplified gradient adaptation algorithm.

0 Introduce linear compensation in the adaptive loop.

The Controller Structure - The equations of motion are given

by Eq. (8.1-5) and measurements (or estimates) of the state variables are1

assumed to be available, i.e., I

m(t) = x(t) I

The free control variable r(t) is defined to be j

r(t) = (1- k(t)) v(t) + h(t)T x(t) (8.2-1) 1
so that the input to the plant, u(t), becomes I

u(t) = k(t) v(t) - h(t)T x(t) (8.2-2)

where k(t) and h(t) are adaptive gains. Thus we assume all three state vari-

ables -- pich rate, normal acceleration, and control surface deflection -- I
are available for feedback control. This particular controller structure

is chosen so that any values of the closed loop poles, which are the eigen-

values of the matrix (A-bhT), can be selected by proper choice ofh,,

given A and b. The gain k(t) is introduced to provide independent control I
over the d-c gain between input and output.

The error signal e(t) is given by

e(t)= cT(x(t) -Xm(t)) (8.2-3)
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where

T [ 1 0 0 ]; pitch rate autopilot
c = (8.2-4)

- [0 1 0]; normal acceleration autopilot

The detailed simulation of each type of autopilot is considered separately

in Sections 8.2.2 and 8.2.3.

The Simplifiea Gradient Adaptation Algorithm - The adaptive

controller for the autopilot is designed by applying techniques suggested

in Sections 4.2.4, 4.2.6, and 4.3. The basic adaptation algorithm is

chosen using the gradient method described in Section 4.2.4; then linear

compensation is added as needed in the adaptive loop to improve the adap-

tation speed. The relations for the simplified gradient adaptation algo-

rithm are given by Eqs. (4.2-30) and (4.2-37) for the system with adaptive

feedback gains h(t). These are repeated here for convenience in the form

cT
x

FT N-1 '
si ; A b,, (8.2-5)

where is an adaptatin gain whose magnitude i is chosen by the designer

and whose algebraic sign is specified by the quantity in brackets. The

quantity N is the smallest positive integer such that (cT A1b) is nonzero.

The autopilot equations of motion are the same form as Eq.

(4.2-37) except for the additional adaptive gain k(t) in Eq. (8. 2-2) for which

an adjustment algorithm must be provided. This can be obtained from the

first expression in Eq. (4.2-27), which holds for any adaptive quantity

appearing in the differential equation for x(t). Thus

81;15
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1e(t) = T ae(t)c (N) (8.2-6) I
where sk is a positive gain to be chosen by the designer. Evaluating the

partial derivative in Eq. (8.2-6), one obtains j

x(t)N) AN-I bv(t) (8.2-7)

where N is the smallest integer greater than or equal to one such that

cTAN' b / 0

By analogy with the solutions obtained for the gains /, let I

k =  sign [b AN-' b (8.2-8)

Now, Eqs. (8.1-5), (8.2-1) through (8.2-3), and (8.2-5) through (8.2-8)

are combined to yield the equatione of motion of the gradient-adaptive I
control system;

*(t) = (A - bh(t)T) x(t) + b k(t) v(t)

-m (t) = Amx m(t) + b v(t)

hi(t) = pil e(t) xi(t); i= 1,...nI

t e(t) v(t) j
e(t)= cT [x(t)- xm(t)] (8.2-9) 1
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where c is given by one of the expressions in Eq. (8.2-4), according to

which type of autopilot is under consideration.

Adaptive Loop Compensation - Following the procedure sug-

gested in Eq. (4.2-39) of Section 4.2. 6, we expand h(t), x(t), and k(t) about

nominal values

k(t) = k + 6k(t) h(t) = h + 6h(t) x(t) = X (t) + 6x(t)
0 -0 -m

(8.2-10)

and linearize Eq. (8.2-9). With the nonlinear and forcing terms neglected,

the result is

Wi(t) A-bh 0 -bxm(t)T bv(t) 6x(t)- --o I - -i - - -

TI6fi(t) B x(t) c [0] 0 6h(t) (8.2-11)

- Lv(t)c
T  , 0 5k(t)

where B * is a diagonal matrix whose diagonal elements are the gains i"'.

Proceeding in exactly the same way used to derive the error expressior in

Eq. (4.2-48), one obtains

E (s) - v2 + x 2 Go(s) E(s) (8.2-12)

where

T T -1

Go(s) = c (Is A+bho) b (8.2-13)
08-
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and v(t) and x m(t) are considered constants. Recall that G (s) is just the

transfer function between the output y(t) and the modified command input

k(t) v(t) with the nominal feedback gains h implemented in the controller.

Equation (8. 2-12) provides a means for analyzing the stability I
properties of the gradient-adaptive controller. To improve its converg-

ence properties, we apply the method of Section 403 which introduces I
linear compensation, Gcl(s) and Gc 2 (S), into the adaptive loop to obtain an

accelerated gradient algorithm. This algorithm is the same as Eq. (4. 3-5)

with the additions

pk(t) ef(t) v(t) Wk(s) = Gc2(s) Pk(S)I

Ik(t) = - (wkt) (8.2-14)

where Pk(s) and Wk(s) denote Laplace transforms of Pk(t) and wk(t). The j
new error equation has the form

E(s) -k "1 , E(S)

v2 n 2
k v+ x1 21 (8.2-15) 1

The above discussion is largely a brief review of material dis- I
cussed in Chapter 4 and provides the framework for the particular appli-

catior described in the nest three sections. 1
!

8-18 1



THE ANALYTIC SCIENCES CORPORATION

8. 2.2 A Pitch Rate Autopilot

The first application we consider is that of a pitch rate autopilot

for the missile dynamics given in Appendix H, Section H. 1. For this case

we have

c = [1 0 0] (8.2-16)

in Eq. (8.2-9).

Before specifying the detailed construction of the controller, the

value of N in Eq. (8.2-5) must first be determined. Referring to Eqs.

(8.1-3), (8.1-4), and (8.2-16) it is evident that

T1 N = 1: c b = 0

N =2: cT Ab = b2 a1 2 +b 3 a1 3  (8.2-17)

Consequently N = 2 and from the data in Table Ho 3 it follows that

T

c Ab <0

for all flight conditions. Therefore Eqs. (8.2-5) and (8.2-8) imply that

=i "a.; i> 0

'- -; > 0 (8.2-18)

Combining these results with Eqs. (8.2-9), (4.3-5), (8.2-14), and

(8o2-16) one obtains the following set of expressions for a pitch rate

autopilot:
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Accelerated Gradient Adaptive Controller I
for a Pitch Rate Autopilot

i(t) = (A - bh(t)T) x(t) + b k(t) v(t) I'.

Sm(t) =A m x m(t) +b m v(t)
e(t) = x(t) - xml(t) Ef(S) = G (s) E(s)

pi(t) = ef(t) xi(t) Pk(t) - ef(t) v(t)

Wi(s) = G (s) Pi(s) Wk(S) (s) Pk(S)I•Ws)=G2 =kGc2

ii(t) = -gyi wi(t) k(t) =g kwk(t) (8.2-19) I

where i 1,...,n and we have made the definitions I

Y 8i /g > 01

Yk =  A > 0 (8.2-20) 1
The positive quantity g is introduced to provide convenient control over the

adaptive loop gain ke derived from Eqs. (8.2-15), (8.2-18), and (8.2-20); 5

-iv + 1ix m0 (8.2-21)

I
At this stage, the designer's task is divided into four well defined phases:

* Determine the required adaptive loop compensation.

0 Select appropriate specifications for the reference I
model.

• Determine the adaptation gains Pi and Ak, i = 1,.. ,n. I
* Evaluate performance with simulations. I
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These steps are completed below, for the specific example represented

by the air-to-surface trajectory data in Section H. 1.

Adaptive-Loop Compensation - To determine Gc 1 (s) and Gc 2 (S),

examine the root locus of the denominator in the transfer function

1T (s) 1 G (s) G (s) G (s) (8.2-22)
Te s+k G (s) Gc(S) c c1

associated with Eq. (8.2-15). RecallthatG 0(s) as given by Eq. (8.2-13)
is assumed to have poles identical with those of the model (see Eq. (4.2-43)).

Its zeros are determined by evaluating the numerator in Eq. (8.2-13).

Defining the elements of A and b as in Eq. (8.1-4), Go(s) is obtained in the

form

go0 (S-Zot

ii~ G0 (s)= 0 (-no (S p =p2(-m)

a a +a az -a 3 a3 a (8.2-23)go =  (33 a13 + 12 a23) 0o =  13 a33 a22/go (.-3

where Pml, pm2 , and pm 3 are the specified reference model poles.

Evidently the gain go and zero z of Go(s) both depend upon the
o 0

variable plant parameters and are independent of the feedback gains h
-0

Reference to Table H. 3 indicates that g0 and z ° are negative for all flight

conditions. Substitution of Eq. (8.2-23) into Eq. (8.2-22) produces

Te(S) = kg (SZ Gc(S) (8.2-24)
e o~ c

s+ SPml) (SPm 2) (S.Pm3)
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where the product (keg o) is always positive if yi and yk in Eq. (8.2-21) are

positive.

The reference model poles are chosen so that desirable response

characteristics are achieved; for this investigation j

= -40.0 = -5.0 +j 5.0 = -5.0 -j 5.0 (8.2-25)
m Pm2 Pm3I

providing a time constant on the order of 0.2 sec. Evaluation of z and g 0

for representative flight conditions indicates that their ranges are

approximately

300 < g , 000

0. 04 - Zo -0 1.25 (8.2-26)

Taking Gc (s) = 1 -- corresponding to the gradient controller derived in

Eq. (8.2-9) -- the locus of poles of Te (s) is shown qualitatively in Fig.

8.2-1. As ke increases in magnitude, the complex poles move toward the

jw axis, eventually crossing into the right-half-plane causing the system

to become unstable. The pole at the origin moves toward the zero of Go(s).

To improve the adaptation speed of the system, compensation

should be introduced so that the real parts of the complex poles become

more negative as the loop gain is increased. This can be most easily

accomplished by specifying

Gc(s)=SzZ < 0 (8.2-27)
sc-1

For this example, we take zc = -6.0 sec and compare the resulting root
locus in Fig. 8.2-2 with that in Fig. 8.2-1. Evidently much better
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Figure 8.2-1 Locus of the Closed Loop Poles for the
Adaptive Control System With No
Adaptive Loop Compensation (Gc (s) -1)
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Figure 8.2-2 Locus of the Closed Loop Poles for the
Adaptive Control System With Adaptive
Loop Compensation (Gc(s) = s + 6.0)

8-23



THE ANALYTIC SCIENCES CORPORATION

damping of the complex poles can Oe achieved as the adaptive loo-, gain is

increased.

In mechanizing Eq. (8.2-27) note that Gc (s) is not realizable.

This difficulty is circumvented by taking Gcl(s) in Eq. (8.2-22) equal to

one and

Gc(s) S-Z T

Thus from Eq. (8.2-19) we obtaL

G c2(s) Pi(s) T
Hi(s) = -gyi c2 s

Gc2(s) Pk(s) '

K(s) = , k s (8.2-28)

where Hi(s) and K(s) are the Laplace transforms of hi(t) and k(t). In this

manner one is required only to mechanize a realizable transfer function

Gc2(s) s-z

S S

Recall that the same technique is employed in Example 4. 3-1. j

From the above discussion we now know the structure of the

adaptive control system to within specific values for the adaptatinn gains
and some additional parameters which define the reference moJdel. A

block diagram of the system is shown in Fig. 8.2-3. For simulation II
purposes switches S are included in the adaptive loop which can be opened j 2
to eliminate the integrator by-pas associated with the accelerated

8-24
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Figure 8.2-3 An Accelerated Gradient Controller
for a Pitch Rate Autopiiot

gradient algorithm. This permits us to simulate the system behavior both

with and without adaptive loop compensation to provide a comparison be-

tween conventional gradient and accelerated gradient designs. Of course

the switches would not be present in an actual system mechanization.

Reference Model Specifications - The fixed parameters for the

reference model are chosen to be identical to those in the actual autopilot

at flight condition 6 (see Section H. 1) when feedback gains, hm, are

selected so that the system poles match those specified in Eq. (8.2-25) and

k is chosen so that the d-c gain between input and output is unity. Them
rationale for this selection is that the mndpl should be one which not only

has satisfactory response characteristics but also is compatible with the
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actual airframe. Thus the elements of Am and b are determined by

requiring

Am = 6 - 6 mT-m |

b - km b (8.2-29)

where A 6 and are the values of A and b at flight condition 6 (see Table

H. 3). The quantities h and k are determined from the relations

Det [Is-A 6 +b h M= (s-+40) (s+5+j5) (s+5-j5) I

k6 = m (8.2-30)
s-.0 cT[Is.A6+b hT] ]- 6

The result of carrying out the above calculations is

-1.63 -1.42 x 10 2  -2.93 x 102  I

Am = 3.51 x1 0 3  -1.26 -3.18 x 104  j

0.929 -3.45 x 10- 4  -47.1 I

hT = [0.0 -4.47x103  -6.61] (8.2-31) 1

Tn addition some method is required for specifying the initial

values of the adaptive gains, h(to) and k(to). This is accomplished for eiach

simulation by assuming the initial flight condition (i.e., the initial values,

Ao and bo, of the airframe parameters) is known, matching the closed loop

8-2!
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system poles to those of the model and requiring the d-c gain to be unity.

Following Eq. (8.2-30), h(to) and k(to) are obtained from

Det Is -A +b h(t)I= (s+40) (s+5+j5) (s+5-j5)]J

k(to) = lr T1(8.2-32)
- c Is -A +b h(tT b

Determine Adaptation Gains - The adaptation gains i =gyi and

= must be selected to obtain satisfactory adaptation properties.

Recall the discussion in Section 4.2.6 suggesting that they be chosen to

contribute equally to the adaptive loop gain k . Another important con-

sideration is that the resulting variations in the gains hi(t) and k(t) as adap-

tation proceeds should be reasonable." A certain amount of personal

judgement is involved in this part of the design process and some trial and

error experimentation seems unavoidable. For this example suitable values

of the quantities yi and yk are

4
Y1 1.0x 104 Y2  1.0

= 5.0 x 10 2 = 2.0 x 106  (8.2-33)

which size the adaptation gains relative to one another. Simulation results

are presented for various values of the parameter g which adjusts the level

of the adaptive loop gain.

Simulation Results and Evaluation - The first thing to be demon-

strated is the improvement in adaptation time achieved through the use of
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linear compensation in the adaptive loop. To obtain a system configuration

equivalent to the gradient-adaptive controller described by Eq. (8.2-9)

which 'as no adaptive loop compensation, the switches S in Fig. 8.2-3 are

opened and z is set equal to -1.0. A set of system simulations is per-

formed begirning at flight condition 4, t = 23.0 secs. , letting the system

parameters vary linearly as prescribed in Eq. (H-2). The system output

to a tep input command, v, of .026 rad/seo is observed for an interval

of one second. The outputs of both the model and system are shown in

Fig. 8. 2-4 for three different values of g. Notice that increasing the gain

does little to reduce the error over the one second interval but the oscilla-

tion frequency of the adaptive loop noticeably increases. The latter be-

havior is qualitatively predicted by the root locus in Fig. 8.2-1.

Now we assess the effect of closing the switch S in Fig. 8.2-3,

which mechanizes the accelerated gradient controller. For this case three

one-second runs were performed for various values of g under the same

conditions described in the preceding paragraph except that the compensa-

tion zero is located at -6.0. The corresponding pitch rate curves ar,

shown in Fig. 8.2-5. Evidently considerable improvement is obtained in

adaptatlnn speed when the adaptive loop gain is increased, as predicted in

Fig. 8.2-2. There is a slight tendency toward high frequency oscillations

as g gets larger because the complex poles in Fig. 8.2-2 asymptotically

approach a line parallel to the j w axis. The accelerated gradient controller

performance is evidently superior to that exhibited in Fig. 8.2-4 and seems

to be well s ated for missile applications where rapidly changing missile

parameters require a rapidly adapting autopilot.

Next we demonstrate the effect of variations in input signal level

upon adaptation characteristics. From Eq. (8.2-21) one expects the adap-

tatioi time to increase as v(t) is reduced in magnitude because the adaptive
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loop gain k also decreases. This behavior is shown in Fig. 8.2-6. First

a simulation is made with

Iv(t)I = 3.4x10 6 radian/sec z = -6.0

g = 1.5X10 - 3

The corresponding pitch rates for the reference model and the system are

shown in Fig. 8.2-6(a) over a two second period beginning at flight con-

dition 4. The algebraic sign of v(t) is switched at t = 24. 0 to represent

changing input commands at one second intervals. Note that almost no

adaptation takes place. When the input command level is increased to

10 rad/sec the adaptive loop gain in Eq. (8.2-21) increases and much

better adaptation is observed in Fig. 8.2-6(b). In tactical missiles it is

expected that a steering command will be present most of the time while a

target is being pursued but its amplitude may fluctuate. To counteract this

effect, the gain g could be adjusted in response to the measured average

value of the steering command. For example, let

k
g(t) = (8.2-34)

it v(X)2 dX
T t-r

where r is an interval somewhat longer than the model settling time and

k is a proportionality constant. The mechanization of Eq. (8.2-34) isg
known as a signal-adaptive technique because it adapts to changes in input

signal characteristics. Thus there can be a need to make adaptive changes

in the adaptive loop gain.

Another important fact to be illustrated about adaptive systems

is that good adaptation characteristics for one state variable (e. g., pitch
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Figure 8.2-6 Pitch Rate Responses for an Adaptive Pitch Rate
Autopilot With Different Levels of Input Commands i

rate) do not necessarily imply good adaptation for other state variables

(e. g., normal acceleration). This point has been emphasized in Section

8.1.2. Suppose the designer is actually interested In the missile's nor-

mal acceleration response and desires that the latter should follow the

reference model acceleration output for the parameters in Eq. (8.2-31).

If he tries to accomplish this goal by designing an adaptive pitch rate auto-

pilot, the resulting normal acceleration response may exhibit exactly the

wrong behavior. This claim is verified by examining time histories of

normal acceleration corresponding to the simulations performed for
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Fig. 8.2-6. In Fig. 8.2-7(a) curves of normal acceleration for both the

reference model and the system are shown which are taken from the simu-

lation performed for Fig. 8.2-6(a). Recall that very little adaptation is

achieved for pitch rate in this case. However, the acceleration responses

are reasonably close together, indicating good autopilot performance with

respect to normal acceleration. Figure 8.2-7(b) shows acceleration

response curves for the case given in Fig. 8.2-6(b). Now good adaptation

is obtained in pitch rate but the system's acceleration response relative to

I,

001 1 ''IT

4 qq

0 0.0!

23.0 73.5 24.0 24.5 25.0
TIME ( sec )

(0) Iv (0 1-: 3 4 , rO6od/sec
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Figure 8.2-7 Normal Acceleration Responses for an Adaptive Pitch
Rate Autopilot Wth Different Levels of Input Commands
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the model's is poor. The physical reasons for this behavior are discussed

in Section 8.1.2; it is charac'.ristic of afrodynamically controlled mis-

siles. I
The performance of any adaptive system using implicit plant 3

identification should also be evaluated by simulating a trajectory which

passes through several different flight conditions. This will test the ability 5
of the adaptation algorithm to adjust the adaptive gains so that the system

output follows the model output as the plant parameters vary with time.

For this purpose the air-to-surface missile trajectory was simulated from

flight condition 2 at t = 6 seconds through flight condition 4 to t = 26 seconds I
with linearly varyfing plant parameters. Because the missile is thrusting

during the first part of this segment of the trajectory, plant parameters I
vary over a wide range, as indicated in Tables H. 1 to H. 4, and the air-

frame is actually exposed to a continuum of changing flight conditions. Note 3
particularly that dynamic pressure changes by a factor of four in the first

two seconds. Pitch rate responses are exhibitei in Fig. 8.2-8 for two i
representative sets of three second intervals, one at the beginning and the

other at the end of the time period considered. The input command v(t) is 3
a piecewise constant signal which changes its level at one second intervals,

as indicated. These results indicate the ability of the acceleratd gradient 3
technique to rapidly adapt to the reference model and maintain a small owt-

put error for a wide variation in the missile dynamic characteristics. 3
Finally, it is impcrtant to point out potential disadvantages of

this method. The principal defect of the accelerated gradient technique

(and any gradient method) is that satisfactory behavior cannot be guaran- g
teed. The root lccus in Fig. 8.2-2 is an indication of local stability

properties only; nothing can be said about global behavior. Indeed, if plant I
parameters vary too rapidly and over too great a range, the vali.ity of the

8
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Figure 8.2-8 Pitch Rate Response With Time-Varying
Airframe Parameters

gradient arguments used in desi-ng the controller becomes questionable

and system inst ability may result. To illustrate this fact an autopilot

simulation was conducted with the autopilot in Fig. 8.2-3 over the first six

seconds of the trajectory summarized in Table H. 1. From zero to five

seconds the airframe parameters are constant with a relatively low

dynamic pressure. At time t = 5.0 secs., the engine ignites and delivers a

thrust of about 25 g's, causing rapid parameter variations. The resulting

behavior of the adaptive control system is illustrated in Fig. 8. 2-9. For

the first 5 seconds satisfactory adaptive operation is observed, but shortly

after the engine ignites the system becomes unstable. This simply em-

phasizes the fact that the full operating regime and different controller

designs (e.g., different forms of Gc (s) in Eq. (8.2-22)) Liast be considered

when testing an adaptive technique of this type. For example, a
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Figure 8.2-9 Pitch Rate Responses With Rapid Airframe
Parameter Variations That Lead to
Autopilot Instability

modification to the design in Fig. 8.2-3 that might improve the system

stability characteristics is the addition of an adaptive filter in the control

loop having a set of adaptive gains g. The filter configuration would be

chosen such that for each possible set of vaklues of the airframe parameters

the autopilot input-output transfer function can be made identical to that of

the model for some choice of gains ,hand k. Recall that the set of

gains -- h and k -- provide control over the autopilot closed loop poles and

the steady-state gain but not over the closed loop zeros. The investigation

of this possibility should be the subject of future study.
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The pitch rate autopilot described here serves mainly to demon-

strate capabilities and limitations of the accelerated gradient adaptive con-

trol technique, especially its improvement over conventional gradient

methods. With respect to missile pitch rate control we make the following

conclusions on the basis of these simulation results:

* The accelerated gradient technique has the potential
to achieve rapid adaptation in the presence of a
time-varying plant.

* Extremely rapid parameter variations, such as are
encountered while thrusting, can cause instability
of gradient-type methods.

* Adaptive pitch rate control does not provide good
normal acceleration response for an aerodynamically
controlled missile because the dynamic relationship
between pitch rate and normal acceleration varies
with flight condition.

Evidently the autopilot design in Fig. 8.2-3, based on

forcing missile pitch rate to follow that of a fixed reference model,

is not practical for adaptively controlling the normal acceleration of

missile airframes which depend upon aerodynamic lift to develop

control forces. We shall see in Section 8.2.4 that this conclusion

can be reversed if an adaptive (time-varying) reference model is

permitted.

8. 2.3 A Normal Acceleration Autopilot

In this section we apply the accelerated gradient method to the

problem of designing a normal acceleration autopilot for the airframe da1.i

given in Appendix H. The rationale for this objective is that the adaptati an
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algorithm should be based upon an error signal which directly reflects

the difference between the actual and the desired autopilot perform-

znce.

P-oceeding in the same manner used in Sectim 8.2.2 we first

determine the value of N in Eq. (8.2-5), noting that

cT = [0 1 0]. (8.2-35)

Referring to Eqs. (8.1-3), (8.1-4), and (8.2-35) it is determined that

when N is one,

cTb = b2

Consequently N = 1 and from Table H. 3 it follows that b2 > 0 for

all flight conditions. Therefore from Eqs. (8.2-5) and (8.28) it

follows that

S= gy. >

~'i ~ ~'k(8.2-36)= =k gyk Ok > 0 (.-6

Combining these results with Eqs. (8.2-9), (4.3-5), (8.2-15), and (8.2-35)

one obtains the following equations:
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Accelerated Gradient Adaptive Controller
for a Normal Acceleration Autopilot

i(t) (A-bh(t)T ) x(t) + bk(t) v(t)

_m(t) =AmXm (t) + bmv(t)

e(t) = x2 (t) -Xm2(t)

Ef(s) Gcl(s) E(s)

pi(t) = ef(t) xi(t); i 1,..,n

Pk(t) ef(t) v(t)

W i(s ) = Gc 2(s) P i(s); i = 1,..,n

Wk(S) = Gc2S kS
-I Was) G(s) Pk~s)

hg(t) giwi(t); i=1,..,n

](t) = - gykwk(t) (8.2-37)

The quantity g is defined as in Eq. (8.2-21) to provide control

over the adaptive loop gain, k, given by Eqs. (8.2-15) and (8.2-36) as

kel x2 >0 (8.2-38)

where g, yk and y are all positive constants. Now we proceed to complete

the four design steps described in Section 8.2.2 -- determine the adaptive

loop compensation, select the reference model, determine adaptation gains,

and evaluate performance -- using the airframe data given in Section H. 1.
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Adaptive Loop Compensation - To determine Gcl(s) and Gc 2 (S),

examine the root locus of th3 denominator in the transfer function

Te(s) -s + k GO(s) G (s)

+e o cf

G c(s) G c(s) Gc2 (s) (8.2-39)

associated with the error equation i Eq. (8.2-15). Recall that Go(s) as [
given by Eq. (8.2-13) is assumed to have poles identical with those of the

model (see Eq. (4.2-43)); its zeros are determined by evaluating the

numerator in Eq. (8.2-13). Using A and b as defined in Eq. (8.1-4), Go(s)

is obtained in the form

gos) ( 2 +a0s+b0) b = a21a13a33

0 (s- m)(s- )( - m 3) a a23

go -a 2 3  ao= 11 (8.2-40)

where Pml, Pm2 , and Pm 3 are the specified reference model poles. The

gain g and polynomial coefficients, a and bo, all depend upon the variable
0 0 0

plant parameters, and are independent of the feedback gains ho. Table H. 3 I

indicates that

9a > 0, bo  0 I

and furthermore

$0o1 >> laol
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Consequently the numerator of G (s) has two zeros, z1 and z with values
0 2

given approximately by

Z1, z 2  + 0J_+ (8.2-41)

and Te (s) in Eq. (8.2-39) becomes

Te(s) = 1 (8.2-42)e keg o ('-z 1 )(s-z 2 )

s+ sp m )(SPm2)(P3 ) GcS

The reference model poles are assi gned the same numerical

values as in Eq. (8.2-25), i.e.,

p =-40.0 pm =-5.0 +j5.0 pr =-5.0 -j5.0

Evaluation of g and b for representative flight conditions indicates that
00

the ranges of the transfer function gain and zeros are approximately

1000 < go < 41000

2.7 < zl11, 1z21 < 120

Taking Gc (s) = 1 -- corresponding to the gradient controller

derived in Eq. (8.2-9) -- the first difficulty with the gradient method is

encountered. Because of the right-half-plane zero in the numerator of

G (s) (i.e., G (s) is a nonminimum phase transfer function), the locus of

poles of Te (s) in Eq. (8.2-42) for ke positive and g fixed has one branch

entirely in the right-half-plane, as indicated in Fig. 8.2-10. Because the

algebraic sign of ke is specified to be positive in Eq. (8.2-38) as a result
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Figure 8.2-10 Root Locus of the Closed Loop Adaptive Control
System for Positive ke With No Adaptive Loop
Compensation (Gc(s) = 1)

of the design procedure, the gradient-adaptive controller is locally unstable

for this application. This is clearly an unacceptable operating condition and

is evidence of the fact that the gradient concept for controller design is not

always valid. * The above stability problem can be eliminated by assigning i

This behavior is attributable to the fact that the expansion in Eq. (4.2-24)

used to derive the simplified gradient algorithm provides a poor approxi-
mation to the index J for the purpose of controlling normal acceleration.
An analysis reveals that the M. I.T. rule described in Section 4.2.1 is1
also locally unstable because, in this particular application, the con-
tinuous adaptation algorithm is a relatively poor approximation to the ideal
gradient technique expressed by Eq. (4.2-10). The possibility of the latter !
effect is discussed in Appendix C. The conclusion is that neither analog gain

adjustment ruie described in Section 4.2 behaves as desired for this appli-
cation. The discrete gain adjustment rule discussed in Section 4.2.2 does J
not suffer from either of the above noted difficulties; therefore it may be
a better method for this application. This point is alsc mentioned at the
end of Section 4. 3.
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a negative gain to the compensating transfer function, e.g., take G (s) = -1.
C

However, a new complication arises; the root locus shown in Fig. 8.2-11

indicates that the adaptive system becomes unstable for sufficiently high

gain. Consequently in order to improve system adaptation time as we did

for the pitch rate autopilot, more thought must go into selecting an appro-

priate form for G (s).c

P-20"

s-PLANE

ke

8

-40 -8 -4 4 8

-40

Figure 8.2-11 Root Locus of the Closed Loop Adaptive System
for Positive ke With Negative Gain Compensation
(Ge(s) = -1)

The fact is that in situations like that described above no form of

linear adaptive loop compensation can function to permit a stable system

for all positive values of k . The right-half-plane zero will alwayse
"attract" one branch of the locus of poles of Te(s). After some experi-

mentaticm Gc (s) was chosen to have the form

"(s'z c)( S'c2) (s' c3)

Gc) C ((s)(z)(~) (8.2-43)

(So) =
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which is divided between Gc (s) and Gc2(s) in Eq. (8.2-39) as follows:

C2  \C )

G s -s - .

Gc (s)= sz)s ) (8.2-44)

(s-pc 1  -pc2)

The structure of the resulting system is illustrated in Fig. 8.2-12.

Specific values for the parameters in Gc (s) are:

z = -0. 5 P =-15.0 + j 8.7=cPc

Zc2 -6.0 +j6.0 P = -15.0 - j 8.7

z = -6.0 - j 6.0 (8.2-45)c3

The root locus diagram as a function of ke for this choice of compensation

is shown qualitatively in Fig. 8.2-13. The simulation results discussed

below indicate that the restriction on the range of variation of the adaptive

loop gain and its sensitivity to airframe parameter variations prevents

achieving adaptation characteristics that are as good as those obtained for

pitch rate in the preceding section.

Reference Model Specifications - The fixed parameters for the

reference model are the same as those used for the pitch rate autopilot.
The elements of A and b are given by Eq. (8.2-31). The initial values

m -m
of the adaptive gains are the solutions to Eq. (8.2-32) perturbed by 10% to

provide a significant error signal.
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Figure 8.2-13 Root Locus of Te(s) for Positive ke
With Gc(S) given by Eq. (8.2-43)

and correspond to flight condition 4 in Table H. 1. It is observed that a
moderate improvement in adaptation properties over a one-second interval

-8is obtained as g varies from 0 (no adaptation) to 3.0 x 10" . However the
results are not so dramatic as those in Fig. 8.2-5 for the pitch rate auto-

-7pilot. When g becomes as large as 1.0 x 10 (Fig. 8.2-14(d)) the system
is unstable, as predicted qualitatively from Fig. 8.2-13. It is also found
that the best value of the gain g for flight condition 4 causes the system to

be unstable when the plant dynamics are changed to flight condition 6 in
Table H. 1, implying that careful tuning of the adaptive loop gain is required

as flight conditions vary in order that the system operates satisfactorily.
The need to know the flight condition in order to make on-line adjustments

to the adaptation algorithm tends to negate the purpose of an adaptive
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Figure 8.2-14 Step Response of Adaptive Normal Acceleration
Autopilot Using the Accelerated Gradient Method
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controller having implicit plant identification; namely, it is de:sired that 1

explicit identification be avoided.

8.2.4 An Adaptive Reference Model J
In Sections 8. 2. 2 and 8. 2. 3 it is observed that satisfactory adap-

tive normal acceleration response is cifficuit to achieve with the accelerated

gradient method for the particular missile application we are considering. J
Good pitch rate adaptation characteristics are obtained in Section 8.2.2

with the pitch rate autopilot; however the corresponding normal accelera- -
tion response is sensitive to the missile's flight condition. The latter be-

havior is explained by the fact that the relationship between the transient j
dynamics of q(t) and a(t) is dependent upon the values of the airframe

parameters. Consequently if q(t) is forced to follow the output of a fixed

reference model at all flight conditions, the transient characteristics of

a(t) must necessarily vary. Alternatively in Section 8.2.3 an adaptive

normal acceleration autopilot is studied. However, the nonminimum phase

character of the airframe input-output transfer function causes the stability

properties of the control system to be quite sensitive to flight condition.

To achieve better normal acceleration response !rom the pitch

rate autopilot, one can consider using an adaptive reference model; here- I
tofore the model dynamics have besn time-invariant. This suggestion is

motivated by the fact that at each flight condition the adaptive controller

ideally should have the capability to make the compensated airframe

input-output dynamics identical with those of the reference model for some

choice of the adaptive gains h and k.. We have already noted that h and k

alone do not provide enough freedom to accomplish this. Therefore an I
alternative reference model is advocated which is obtained by continuously
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identifying enough plant parameters and simultaneously changing the

corresponding elements in Am and b so that the associated transfer- m
functions satisfy

c = cT C(Is -A+bhT-l bk (8.2-47)

for some values of k aiid h at each flight condition. The quantity a in

Eq. (8.2-47) is the measurement or estimate cf tne plant parameters re-

quired to specify the reference model.

In the applications we have been considering, where full state

feedback and control over the d-c gain is assumed, the above procedure

is equivalent to requiring the reference model and missile airframe input-

output transfer functions to have the same zeros. It is evident from

Eqs. (8.1-10) and (8.1-11) that such a procedure applied to a pitch rate

autopilot should improve normal acceleration reoponse; the zero of T m(s)

will be adjusted so that it always approximately cancels the objectionable

pole in A(s)/Q(s).

System Design - To apply the above idea to a pitch rate auto-

pilot, recall that the input-output transfer function for the airframe has

the form (see Eq. (8.1-8))

Q(s) = c(s-z) (8o2-48)
s 3 + a1s3 + a2s +a3

Accordingly, require that the reference model input-output transfer func-

tion be

Qm(s) Cm(s-Z)

Vs) s3 +a s2 +a s+a (8.2-49)

m 1  m 2  m 3
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T

where 4 is an estimate of z and cm satisfies

am3  (8.2-50) 1
m I

The coefficients in the denominator of Eq. (8. 2-49) are specified by the

designer; e.g., I

s +aSm s m2  m 3 (s-pm)(s-pm)(s-Pm) T

and Eq. (8.2-50) provides unity d-c gain between V(s) and Qm(S).

The adaptive controller is ccnfigured almost the same as in

Fig. 8.2-3. One exception is that the reference model dynamics are now

given by Eq. (8.2-49) which requires an estimate of z. Also, since we

are interested in commanding pitch rate to produce a desired normal

acceleration, a c(t), the latter must be scaled using the steady state rela-

tion given in Eq. (8.1-9); i.e.,

v(t) = a c(t)/V

where V is an estimate of the missile's airspeed. This implies that air

speed must also be identified. Both of these alterations to Fig. 8.2-3 are

indicated in Fig. 8.2-15.

Comparing Eqs. (8.2-48) and (8.1-8) it follows that J

a. 3a33a22

z a 3 +a a (8.2-51)a 13 a33 +a 12 a231

I
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Figure 8. 2-15 An Accelerated Gradient Controller for a Pitch
Rate Autopilot With an Adaptive Reference Model

The data in Table H.3 indicate that the denominator in Eq. (8.2-50) is

dominated by the term (a1 3 a3 3 ); therefore z - a2 2 . In other words, z can

be approximately identified by estimating only the element a2 2 in Eqs.

(8.1-3) and (8.1-4).

The subject of parameter estimation is discussed in Chapters 5

and 6 where it is postulated that al the parameters of A and b in Eq. (8. 1-4)

are to be identified° When that capability is available, the control methods

described in Chapter 5 are better suited for autopilot design. However,

here we are suggesti-ig that partial plant identification can be beneficially

applied to the accelerated gradient method; this technique may offer advan-

tages in situations where it is easier to obtain a few parameter estimates
(z and V) than it is to identify all the elements of A and b.
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Simulation Results - The adaptive reference model prescribed

by Eqs. (8.2-49) and (8 2-50) was simulated for the accelerated gradient -.

controller described in Section 8.2.2. The estimate of the airframe zero

was updated continuously according to

z(t) = a 2 2 (t)

All other model parameter values are identical to those used for the simu-

lation associated with Figs. 8.2-6(b) and 8.2-7(b). Recall that the latter

demonstrate how good adaptation in pitch rate leads to poor adaptation in

normal acceleration when the reference model dynamics are fixed.

Initial values for the adaptive gains are obtained by multiplying

the solutions to Eq. (8.2-32) with a scaling factor of 0. 70. This is neces-

sary to develop a significant error signal when the adaptive loop is dis-

connected (g = 0 in Fig. 8.2-15). All other system parameter values are

the same as those used for Figs. 8.2-6(b) and 8.2-7(b). Two simulations

were performed; one with g = 0 (no adaptation) and one with g = 1.5 x 10 3 ,

the latter being the same val-xe used for the above referenced figures.

From the response curves displayed in Figs. 8.2-16 and 8.2-17, it is

observed that the adaptive reference model enables the accelerated gra-

dient technique to produce the desired adaptive response characteristics

in both pitch rate and normal acceleration. t

Conclusions - The distinguishing characteristic of the method

using an adaptive reference model is that it requires identification of both

a22 in Eq. (8.1-4) and the missile airspeed, V. It is a useful technique

for modifying the structure of the accelerated gradient controller described

in previous sections so that desired normal acceleratioi' response charac-

teristics can be obtained for the tail-controlled missile in Fig. 8.1-2.

8
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Although estimates of only two parameters are required, it may be argued

that it is almost as easy to identify all the parameters in Eqs. (8.1-4). If

so, then one of the adaptive control methods suggested in Chapter 5 may be

more appropriate. Further investigation of this question should be pursued

to determine whether partial plant identification of the type advocated above

has any distinct advantages over complete identification.

8.3 APPLIC T1ON OF LIAPUNOV DESIGN TECHNIQUES

In Section 4. 4. 3 a Liapunov synthesis procedure is described

which is suitable for adaptive cotrol of tactical missiles provided the

input-output transfer function is minimum phase, The reason for this

restriction is discussed in Section 4.4.4. In this section, the method is

used for pitch control of a second order airframe with the dynamics of the

,ontrcl surface actuator neglected. The sequential development closely

follows Section 4.4, 3 to provide a specific illustration of the steps involved.

The discussion evolves in three steps -- design procedure, selection of

parameters, and performance evaluation. Then a brief discussion is given

describing how the adaptive reference model concert introduced in Section

8.2.4 can be used to achieve adaptive control of normal acceleration.

8.3.1 Design Procedure

Let the input-output. relations for the autopilot design problem be

represented by Fig. 8.3-1, by analogy with Fig. 4.4-3. In Laplace trans-

form notation the equations for the airframe and the reference model are

(s2 + bs + a) Y(s) = k(s- z) U(s)

(s2 +bms + aM)Ym(s) = kM(s - Zm) V(s) (8.3-1)
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V(s ) U (s) AIRFRAME Y(s) I

MODEL 6j

km (s-Zm) . .

s+rs + -am Ymi(s)

Figure 8.3-1 Airframe and Reference Model Input-Output I
Relations for an Adaptive Control System

Subtracting these expressions and adding the quantity

(s 2+bms+a In) Y()I I
to both sides of the result produces the error equation

(s 2+bms+a)E(s)= (bm- b) s +a,. a)Y(s) + k(s z) U(s) - km(S zm)V(s) I
(8.3-2)

which has a form similar to Eq. (4.4-31).

Now divide both sides of Eq. (8.3-2) by the polynomial j
PC(s) = s-p 1

where p1 is a negative number ;hose allowed range of values is to be deter- i

mined presently. The result after carrying out the required number of

steps in dividing by pc(s) is

cl
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(si-b 1E)sEi s =-[m+P ~ E (s)+ b-b Y (s)
(s bb 1 I

[+ -+ib Y(s) + kU(s)

+rns - - k V(s) (8.3-3)
s-p 1  s-p 1  m

Iwhich has the same form as Eqs. (4.4-32) and (4.4-33). Now for stability

of the error signal we require that

b b+p I > 0

on the left-hand-side of Eq. (8. 3-3), or

i> -b M(8.3-4)

This provides the condition needed on p (s).

Referring to the right-hand side of Eq. (8. 3-3) define new

variables

Yy s) E (s) E(s)
c s-p1  C s-p1

Uc (s) =U(s) V (s) V(s)
c s-p1  c s-p 1

(8. 3-5)
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and vector quantities j

b -b y(t)

am-a +pl(bm-b) Yc(t)

p_-z ; f(t) U (t) (8.3-6)

(zm -Pl) v (t)

"am-pl(bm +pl) ec(t) I

Rewriting Eq. (8.3-3) in the time domain,with the aid of Eqs. (8.3-5) and I
(8.3-6), produces a differential equation for the error in the form of

Eq. (4.4-42),

6(t) = -(bm+Pi) e(t) + p f(t)+ ku(t) - k 7(t) (8.3-7)

The adaptive controller is derived directly from Eq. (4.4-43).

Because Eq. (8. 3-7) is a scalar error equation, Q and q in Eq. (4.4-43) 5
are also scalars to which we can assign the value one. Also, since A is

an arbitrary positive definite matrix and k is unknown, choose the former 5
to be diagonal and replace the latter by its algebraic sign. The application

we are considering is the same as in Section 8.2.2 so that k is the same as 3
g in Eq. (8.2-23), which is a negative quantity for all flight conditions.

With these assumptions, the adaptation algorith.n becomes

u(t) h (- h(t) T  +ae(t) . (t),T Af )

JV) Lv(t) ]

c(t)= A- e(t) (8.3-8) 1Lv(t)J
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where the six diagonal elements of A and the positive scalar a remain to

be selected.

The implementation of this adaptive system is illustrated in

Fig. 8. 3-2. To provide a means for exercising control over the total

adaptive loop gain, define the ith element of A to be XXi where the quanti-

ties Xi are chosen to achieve the proper relative weighting on the elements
1

of f(t) and v(t) in Eq. (8.3-8) and X is a scaling factor. The adaptation al-

gorithm is computationally more complex than the accelerated gradient

method described in Section 8.2; it requires two additional adaptive gains

and mechanization of the filters with transfer function 1/pc(s).

To set initial values for the feedback gains hc(t), Eq. (4.4-47)

is solved for the initial flight condition with the modification,

P

hk (8.3-9)

The quantity 77 is a positive factor which permits the adaptive gains

to be initially "detuned" from their optimum values. It represents

whatever inaccuracy may exist in knowledge of the initial values of the

plant parameters.

8.3.2 Selection of Parameters

For simulation purposes the airframe dynamics are taken from

the trajectory data in Section H. 1 with the actuator dynamics neglected. The

dynamics of the reference model are taken from flight condition 6 in Table

H. 3. The controller gains -- X, i, and p,, i = 1, ., 6 -- are assigned

values
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1/ 1 = 9.0x10 2  1/) 2 = 3.0x103  I
3 .= x10' = 2.34x104

1/ 5 = 1.8x10 3  1/X6 = 6.0x10 45 6
p1 = 3.0 a = 0.167

The quantity X is a parameter used to adjust the total effective loop gain.

8.3.3 Performance Evaluation I

To demonstrate the operation of the system illustrated in Fig.

8.3-2, a simulation was conducted with the plant parameters fixed at the I
values specified by flight condition 2 in Table H. I and an adaptive loop gain

X- = 5.5. The initial values of the adaptive gains hi(t) were computed

from Eq. (8.3-9) with 17 = 0.6 and a step pitch rate command, v = 0.01

radians/second was applied. In Fig. 8.3-3 the reference model response,

the airframe response, 1nd the associated Liapunov function are plotted

as a function of time. The airframe response wit1out adaptation - 0) I
is also shown for comparison. Evidently significant improvement is pro-

vided by the adaptive design. Observe that the Liapunov function decreases I
most rapidly initially, when the error is largest, as expected from Eq.

(4.4-45). It should be rioted that the large overshoot in the reference model I _

response is required in order to rapidly develop normal acceleration. Thus

a pitch rate model is chosen on the basis of the desired normal acceleration

response, just as we did in simulations for the accelerated gradient method.

To demonstrate the performance of this system design in the

presence of time-varying system dynamics, the trajectory in Section H. 1

was simulated over a three second interval beginning at t= 7 seconds,
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+~ VW q (t

3, 

9(0| 
o~

Figure 8.3-2 Liapunov Design Technique Applied
to a Second Order Airframe

"half-way" between flight conditions 2 and 3 in Table H. 1. This includes

a portion of the missile's thrusting period. The initial values of the adap-

tive gains were calculated according to Eq. (8. 3-9) with the detuning factor

t) equal to 0. 75. The response curves are shown in Figs. 8.3-4(a) and (b).

The error between the reference model output and the airframe pitch rate

is plotted explicitly in Fig. 8.3-4(b) because of its small magnitude rela-

tive to the pitch rate. Evidently the control system is able to maintain a

very s mall error level relative to the model response; the performance is

somewhat better than that achieved with the accelerated gradient method

over the same trajectory (see Fig. 8.2-8 for comparison).
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Figure 8.3-4 Pitch Rate Response of Reference Model and Pitch
Rate Error Signal for the Liapunov Design in
Fig. 8.3-2

In Fig. 8.3-5 the effect of setting the gain a to zero in Eq.

(8. 3-8) is demonstrated; this is similar to opening the switch S in Fig.

8.2-3 for the accelerated gradient method. Recall that the term in the ex-

pression for the feedback control associated with this gain is designed to

improve the adaptation rate of the system. When the simulation of Fig.

8.3-4 was rerun with a = 0, the resulting error signal shown in Fig. 8.3-5

was significantly larger than that in Fig. 8. 3-4(b) indicating that aT X 0

does improve the system adaptation characteristics.
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Figure 8.3-5 Pitch Rate Error Signal With a = 0 T

The controller described above is designed for a second order T

airframe, neglecting actuator dynamics. To determine the effect of the 4

actuator, a simulation was performed using the same controller as in

Fig. 8.3-2 with a first order lag inserted between the input u(t) and the

airframe. The time constant of the lag is 0.02 seconds, taken from the

data in Section H. 1. The trajectory is the same as for Figs. 8.3-4 and

8. 3-5 and the resulting error signal is shown in Fig. 8.3-6. As contrasted

with Fig. 8.3-4(b) a relatively large transient error is incurred each time
the input signal v(t) changes sign. However itsduration is shnrt -- on the
order of 0.2 seconds which is comparable to the reference model response

time.

Finally, we wish to demonstrate that the Liapunov technique is

capable of providing good adaptive performance over the entire thrusting j
period of the trajectory in Section H. 1. The simulation was pefformed

for a three second interval beginning at 5 seconds with the gain dettuning J
factor 71 set at 0.9 in Eq. (8. 3-9). The pitch rate responses of both the

reference model and the airframe are given in Fig. 8.3-7. Again the adap- I
tive controller succeeds in tracking the reference niodei output very well,

I
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Figure 8. 3-6 Pitch Rate Error Signal With Actuator Lag
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Figure 8.3-7 Pitch Rate Response for Rapid Airframe

Parameter Variations

even thou,:h Plant parameters are varying rapidly. This behavior contrasts

favorably with the operation of the accelerated gradient technique in Fig.

8.2-9. However it may be simply a fortuitous circumstance because the

theory predicts good operation only when plant parameters are constant.
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8. 3.4 An Adaptive Reference Modei j
When a partial plant identification capability is available, good

adaptive normal acceleration response can probably be achieved if the I
Liapunov design technique is modified to inblude an adaptive reference
model, just as described for the accelerated gradient method in Section i
8.2.4. The use of an adaptive reference model forces the system to

respond to input commands in such a fashion that the airframe acceleration I
output has the desired characteristics. The implementation of this idea is
illustrated by the conceptually simply modifications to Fig. 8.3-2 indicated I
in Fig. 8.3-8. Only estima.Ls of airspeed and the actual airframe zero, z,
are required. No simil'.Vicris were performed for this design.

1
, IRFRIAMEk (I-l} lt-lIDt

ol)d(l l

L i

I;

8-(0 I
_ IW

Figure 8.3-8 Uapunov Design Technique Applied to a Second Order

Airframe With an Adaptive Reference Model-
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The same comments made for the accelerated gradient technique

concerning the practicality of an adaptive reference model apply to the

Liapunov procedure. If it is deemed easier to identify only a few airframe

parameters (z and V) instead of the entire plant, the procedure described

above may offer computational advantages over the methods described in

Chapter 5 which require complete plant identification. Further investiga-

tion of the adaptive reference model concept is needed to determine its

merits vis a vis complete identification.

8.4 SUMMARY AND CONCLUSIONS

8.4,1 Summary

The Accelerated Gradient Method - The accelerated gradient

method is applied to pitch rate and normal acceleration autopilots in

Sections 8.2.2 and 8.2.3. The technique is characterized by a time-

invariant reference modcl and no plant identification capability. The prin-

cipal observations are that relatively good adaptive pitch rate control can

be achieved whereas the normal acceleration autopilot adapts slowly and

its stability characteristics are sensitive to flight conditions. The latter

behavior is caused by the fact that the airframe input-output transfer

function has a right-half-plane zero whose location is a function of flight

condition. When a partial plant identification c!pability is feasible, it is

demonstrated in Section 8.2.4 that an adaptive reference model used in

conjunction with a pitch rate autopilot can yield good adaptive normal

acceleration response,

A specific disadvantage of gradient type methods is that their

global stability properties are generally unknown and situations where the
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system becomes unstable can occur. A large amount of simulation with

some trial and error design may be required to arrive at a satisfactory

system configuration

Liapunov Desip' Method - The Liapunov design technique is I
applied to a missile pitch rate autopilot in Section 8. 3; as already noted in

Sectioii 4.4.4, this method is suited only for controlling minimum j
phase plants. The controller configuration is characterized by a time-

invariant reference model and no plant identification capability. Rapid

adaptation characteristics are observed in all simulations performed.

However, it should be emphasized that the theory ensures the desired

global stability properties only when plant parameters are constant. During

periods of rapidly changing flight conditions, there is no guarantee that the

system will remain stable. Just as with gradient methods, considerable

simulation is required to definitively establish its usefulness for a par-

ticular set of circumstances. The results presented here indicate that

Liapunov synthesis procedures are feasible and promising for controlling [

the output of a minimum phase airframe transfer funttion, i. e., one which

has no right-half-pl~ie zeros.

In order to circumvent the restriction to minimum phase

plants when an adaptive normal acceleration autopilot is needed for tail-

controlled missile, the adaptive reference model concept is suggested in

Section 8.3.4. The latter is impl,mented in the same fashion as described I
in Section 8.2.4 for the accelerated gradient method.

8.4.2 Conclusions

The simulation results presented in this chapter indicate that

both the accelerated gradient and Liapunov design methods are feasible for
8
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adaptive control of a missile airframe, subject to wide parameter varia-

tions whose input-output transfer function is minimum phase. The

Liapunov design technique achieves somewhat better adaptation charac-

teristics because of the inherent stability properties of the resulting adap-

tive controller.

Both of the above techniques, as developed in Chapter 4, are not

well-suited for controlling normal acceleration in the tail-controlled mis-

sile illustrated in Fig. 8. 1-1 because of the associated nonminimum phase

transfer function. We have pointed out that one way of overcoming this

problem is to utilize an adaptive reference model with a pitch rate autopilot;

the net effect is to control both pitch rate and normal acceleration. Another

possible solution is a change in the airframe design that will eliminate the

nonminimum phase characteristic. Some possible methods of accomplish-

ing the latter are outlined below.

The right-half-plane zero in the transfer function between control

surface deflection and noi mal acceleration for the missile in Fig. 8.1-1

occurs because the control surfaces are mounted on the tail, behind the cen-

ter of gravity. To produce an acceleration in one direction the control sur-

face must deflect at an angle which initially produces an acceleration--i.e.,

a force on the control surface -- ip the opposite direction. The right-half-

plane zero can be removed by putting the control surface forward of the

missile's center of gravity in a canard configuration (lefs. 129, 130).

Although this airframe structure sometimes has certain aerodynamic dis-

advantages -- e. g., the drag may be excessive and the flow of air over the

primary lifting surfaces (wings) can be distorted by the wake of the canard

, See the curves in Fig. 8.2-14 where the acceleration just after t = 0
is in the direction opposite to that commanded.
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structure -- it is worthwhile considering for alleviating the problems

encountered in normal acceleration control.

Another possible airframe configuration is a form of direct lift

control (Riefs. 129, 131, 132) provided by a rotatable wing near the center j
of gravity, in conjunction with tail controls. Many of the problems asso-

ciated with missile autopilot design are a result of the fact that the air- I
frame must pitch to increase angle of attack to produce aerodynamic lift.

The ability bf the control surfaces to generate pitching moments varies I
with flight condition, also causing the airframe response characteristics

to vary. This difficulty is largely eliminated if the airframe wings can be I
rotated with respect to the fuselage in the same fashion as the tail control

surface. This provides the capability for rapidly changing the angle of

attack (with respect to the wings) so that the missile can quickly develop a

lifting force at any flight condition. In this configuration the tail control I
surface may still be needed to maintain airframe stability. I

Finally we note that the need for adaptive control in missile

applications arises largely through variations in airframe aerodynamic

properties. Therefore the need for an adaptive autopilot may be reduced if

a method of control -- such as thrust vectoring* -- is employed which does I i

not depend on aerodynamic forces for developing control moments and j

maneuvering accelerations.

This chapter has treated a variety of methods associated with

implicit plant identification for adaptively controlling a missile airframe. In

the next chapter techniques are considered which depend upon explicit

plant identification.

*Thrust vectoring refers to a concept where a variable component of the j
main engine thrust vector normal to the missile's longitudinal axis is used
to control itirframe pitch motion, and the primary maneuvering force is
supplied by the longitudinal component of thrust combined with a large
angle of attack.

8-70 1



THE ANALYTIC SCIENCES CORPORATION

9. APPLICATIONS: PARAMETER ADAPTIVE CONTROL

SYSTEMS WITH EXPLICIT PLANT IDENTIFICATION

In Chapter 5 a number of adaptive techniques depending upon

explicit identification of plant parameters are reviewed. Three of these --

using pole assignment, optimal regulator, and optimal model following con-

cepts -- are examined here for possible application to tactical missiles. In

applying each of these methods, the actuator and airframe are considered

to comprise a third order linear system with dynamics as specified in

Eqs. (8.1-3) and (8.1-4). A functional block diagram of the adaptive con-

troller is shown in Fig. 9. 1-1. The airframe equations of motion are known

to within a set of varying parameters, a, that can be accurately estimated

by one of the methods discussed in Chapter 6. All state variables -- control

surface deflection, normal acceleration, and pitch rate -- are considered

available for use in the controller and for providing parameter estimates, a.

In all the applications examined here the controller structure is
linear, with aaptive gains whose values depend upon the parameter esti-

mates, as indicated in Fig. 9.1-2. The equations of motion have the form

_(t) - A(a) x(t) + b(a) (-h x(t) + k(a')v(t))

y(t) = a(t) - cTx(t); cT = [0 1 0] (9o1-1)

There is one gain associated with each state variable and a fourth is applied

at the input to give the proper steady state (d-c) gain between v(t) and the
airframe output. ki this chapter we shall think of the output as being nor-

mal acceleration, consistent with the steering commands expected from the

guidance loop. T he only functional difference between each type of adaptive
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Figure 9. 1-1 Structure of a Missile Adaptive Controller
With Explicit Plant Identification
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Figure 9.1-2 Adaptive Linear Feedback Controller

system discussed in this chapter is the algorithm used to define the feedback I
gains n terms of a. The methods are described individually in Sections 9.1,

9.2, and 9.3 and their associated responses to input commands are com-

pared in Section 9.4. Section 9. 5 discusses the application of the most

promising method, the pole assignment technique, to a missile with rapidly

varying parameters such as exist in a dogfight engagement.
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9.1 POLE ASSIGNMENT

An adaptive procedure for selecting feedback gains to position the

closed loop poles for a controllable linear system is described in Section

5. 3. The gains are obtained as functions of the parameter estimates a

by solving Eq. (5.3-7), rewritten here in the form

Det _Is- A(_ T S3 +as 4b S+C (9.1-2)

For the missile application A and b are defined in Eq. (8.1-4) and are
regarded here as functions of the estimated parameters. The quantities --

am, bm and cm -- are the coefficients of the expanded polynomial on the

right hand side of Eq. (5.3-7); i.e.,

s3 +a s 2 +bis+c ss P

bt= Pml)2 Pm23 PmPma m -pm -p P
1 m2  3

b p p +p p +p pa m m 2 m 1m 3 m 2m3

cm -ml~m2m (9.1-3)

where the quantities, Pmi, are the desired closed loop poles. Equation

(9.1-2) is solved by expanding the determinant and equating like powers

of s. The result is a linear set of equations having a solution given by

h(a) P(a') d(a) (9.1-4)

where
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o b2 b3

p(A A A +A

-a 132b 3 a1 b b 2 (a a22 )b 3

-a 1 a22 a33 am

=~^ -al(22 +a 33) +a 12 a21 -a 33 a22 +b m (915

A A

a33 (a21a12 12 c2m

The carat superscript denotes those elements of A and b which must beI

mI

estimated; a3 and b3 describe the actuator dynamics which are assumedI
to be known. The gains h can be updated from Eqs. (9.1-4) and (9.1-5)

whenever new parameter estimates are generated.

The d-c gain k(a) is Ietermined so that the acceleration output

equals the input in the steady state when v(t) is constant. In other words, 3
setting x(t) equal to zero in Eq. (9.1-1) and solving for a(t), we require

a(t) = _T(A-bh) bkv = v (9.1-6)

Thus the solution for k becoines

k(a) = - 1 (9.1-7)
ST (A( a) h(a)T) h (a)

Equations (9.1-4) and (9.1-7)together completely specify the adaptive con- i
troller.

Application - Using the air-to-surface trajectory data given in I
Section H. 2 of Appendix H, an autopilot control system was simulated. The

9
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airframe dynamics along the trajectory were made time-varying bythe linear

interpolation procedure describe" Section H, 1. The values of the assigned

poles, pm, in Eq. (9.1-3), are

pm1 = -60.0

Pr 2) PM = -23.0 +j 17.6 (9.1-8)

These particular choices provide a comparison with the adaptive optimal

controllers discussed later in this chapter.

If the adaptive gains are continuously computed from Eqs. (9.1-3)

and (9.1-6), the instantaneous systen poles will always be at the values

specified by Eq. (9.1-7). However, practically speaking it takes time to

obtain parameter estimates and to carry out the calculations needed to

determine h and k. In addition, the computation equipment must generally

perform other tasks related to guidance and navigation. Consequently it is

possible to up-date the adaptive gains only at discrete times separated by

intervals of some specified length. During each interval the plant param-

eters continue to vary and the closed loop system poles depart from the

desired values. Therefore one measure of the performance of the system

and an indication of how often the gains should be recomputed is provided

by a graph showing variations in pole location as a function of time. For-

tunately not all of the poles need be examined, only those nearest the

imaginary axis contribute significantly to the system response. It is the

real part of the latter which is of most interest because it is closely related

to the system settling time.

The variation of the real part, a, of the dominant complex poles

of the missile autopilot along the trajectory is shown in Fig. 9.1-3. The'
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Figure 9.1-3 Value of the Real Part of the Most
Significant Closed Loop Pole:
Pole Assignment Technique

adaptive gains k and h were recomputed every second, resulting in dis-

continuous changes in a as indicated by the dashed lines in the figure.

Notice the especially rapid changes near the beginning of the trajectory.

This behavior is partially caused by the fact that the missile airframe

parameters vary most rapidly during the boost phase of the trajectory;

also the closed loop poles are most sensitive to changes in plant para-

dtrb when the dynamiz pressure is low. The latter effect is caused by the

fact Lha the vector b in Eq. (9.1-2) varies with flight condition. Conse-

quently during those periods of time when the feedback gains h are constant,

9-6
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the sensitivity of the closed loop poles to changes in b is partially deter-

mined by h. When dynamic pressure is low the magnitude of b tends to be

small, requiringlarge feedback gainsto achieve specifiedclosed loop poles;

hence the sensitivity to parameter variations tends to be greatest at low

dynamic pressure. This is one illustration of a case where feedback can

increase system sen.'itivity to changes in plant dyn.-mics (see the related

discussion in Section 7. 1). From the trend indicated during the first

second of flight it is seen that the autopilot would become temporarily un-

stable if the gains were updated less frequently. The above observations

indicate that the pole assignment technique should yield a satisfactory

response time over most of the trajectory provided plant identification is

rapidly accomplished. A more definitive judgement about the system's

performance can be made from viewing sample autopilot response curves.

These are provided in Section 9.4 and are compared with the other adap-

tive methods being evaluated.

The implementation of the adaptive pole assignment controller

is relatively easy to accomplish and is therefore quite competitive with

other techniques which require plant identification. The mechanization of

Eqs. (9.1-4) and (9.1-5) with a digial computer provides the capability to

rapidly update feedback gains.

In this application only one set of closed loop poles is assigned

in solving for the feedback gains from Eq. (9. 1-4). However different sets

of closed loop poles -- pmi, i = 1, . ,M -- could be specified for different

ranges of flight conditions. For example, if the autopilot closed loop poles

are required to have smaller magnitudes near the beginning of the trajec-

tory than those specified in Eq. (9.1-8), then less frequent gain calculations

are needed. This effect is also a result of the fact that the sensitivity of the

closed loop poles to changes in parameters is partially determined by the

9-7
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gains h. The larger are the magnitudes of the elements of h, the greater r
is the effect of parameter variations. Reducing the magnitude of the

desired closed loop poles tends to reduce the level of the gains and thus I
reduce sensitivity. With this modification to the pole assignment method,

Eq. (9.1-4) symbolically becomes 1

h m)= P(&)d&,m (9-9 1m! I
where both a and Pmi change adaptively, the former as new estimates are

generated and the latter as flight cor.ditions change. The dependence of I
the gains on the assigned poles is explicitly provided by Eq. (9.1-3).

The above proposal is another type of adaptive reference model I
(see Section 8.2-4) where the model specifications (i.e., assigned poles)

are adjusted with changes in fBight condition so that acceptable system

behavior is obtained. It is consistent with the idea that the designer should

not expect the control system to produce fixed response characteristics

that are unreasonable for some operating conditions.

9.2 THE ADAPTIVE OPTIMAL REGULATOR

In contrast with the pole assignment method discussed previously, I
optimal control techniques achieve a compromise between the objectives of

obtaining good response characteristics and maintaining acceptable con- -
trol levels. In this section the adaptive optimal regulator described in

Section 5.4.1 and Appendix B is implemented using trajectory data provided -

i. Section H. 2. The term "adaltive" denotes the fact that a method is pro-

vided for recomputing optimal feedback gains on-line as new estimates of I

9-8 7
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plant parameters are obtained. Both optimal and suboptimal designs are

considered.

9.2.1 Design of a Third Order Adaptive Optimal Regulator

In this section we apply optimal control techniques to design an

adaptive autopilot fer a tactical missile having a first order actuator and

a second order airframe with dynamics specified in Eqs. (8.1-3) and

(8.1-4). The problem as outlined in Section 5.4.1 is to assume v(t) is

zero in Eq. (9.1-1) and determine u(t) in the equations of motion,

i(t) = Ax(t) +bu(t); x(to ) x (9.2-1)

such that the performance index

0

is minimized. This problem formulation leads to solutions for the gains

h and k in Eq. (9.1-1) which are given in Eqs. (5.4-4), (5.4-5) and (5.4-8)

in terms of the parameter estimates. These expressions are repeated here

with a substituted for :
-O

h(a)T = b(a) S(a) (9.2-3)

T 1 A A)T SQ
-SA(a) - A(a)TS + - Sb(a) b(a) S-Q = 0. (9.2-4)

r

k(&) = - 1 (9.2-5)
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Recall that each calculation for the gains h(s) in Eq. (9.2-3) requires the

matrix S(i), which is the solution to the nonlinear steady state Riccati

eauation in Eq. (9.2-4). This generally must be accomplished by an itera-

tive procedure. One efficient method that is suitable for low order systems

is the Newton-Raphson technique discussed in Appendix F. Applied to this

problem, an approximate solution for S(a) is obtained by iteratively solving

the linear matrix equations

(1bb T T /A lb 1bSk T4
A -- k) Sk+l +Sk+l r-- S )+-Skbb Sk+Q = 0

(9.2-6)

In order that the sequence -- SOSl'"" -- converges to the proper value, the

starting value S. is chosen such that the eigenvalues of the matrix

(A - rbbT Sol (9.2-7)

all have tegative real parts. Enough iterations are performed so that

acceptable accuracy in S is achieved; typically five to ten are required for

the simulations described here.

The problem of determining how often to calculate h(s) is morre

important here than in the pole assignment method because of the increased

computational load imposed by the need to determine S(a). One method for

deciding this quest"rn is to evaluate the performance index J for the repre-

sentative trajectory as a function of the number, N, of gain i scalculations.

Presumably, if h(a) is updated too infrequently, it will differ widely from

-0 ywnum value along significant portions of the trajectory because of

airframe parameter variations. This fact should be reflected in an increase

in J as N decreases. Hopefully a computation interval can be found that is
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short enough to yield an acceptably small value of J and yet is long enough

with respect to the system response time so the infinite upper limit in the

integral of Eq. (9.2-2) remains valid. If this cannot be done, it implies

that system parameters are varying too rapidly for adaptive steady state

regulator gains to yield an adequate controller design.

The performance evaluation described above was carried out

over the same 50 second trajectory used in Section 9.1 by calculating

N ti+(((t)T Qx(t) + rui(t)2 ) dt

i=l ti

where the times t i are equally spaced points at which h is recalculated

according to Eq. (9.2-3), using parameter estimates a.. The parameters

were assumed to be perfectly estimated in this simulation. The elements

of A and b in Eq. (9.2-1) were iaken from Table H.6 with linear interpola-

tion between the given flight conditions. At times t. the following opera-

tions were performed: A and b were updated in Eqs. (9.2-6) and (9.2-7),

an approximate solution was obtained for S(_a) by Newton-Raphson iteration,

and the adaptive gains were recomputed. Two different values of the

weighting matrix Q were chosen,

1.0 X10- "  0 0 1.0 X 10- 2  0 0

Q1 0 2.0x10 .8 0 Q2 0 2.0 x10 - 8 0
0 0 1J 0 0 1

(9.2-8)

with a fixed value of r, r = 1.0. The equations of motion were "driven" by

taking the input v(t) as zero and setting the state of the adtopilot to a speci-

fied value, _ Xo, at one second intervals, with the sign alternating at
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successive intervals. This simulates a situation where the system has

been allowed to reach steady state in response to a constant input

command and then v(t) is suddently changed to zero. I

The variation in J as a function of N is plotted in Fig. 9.2-1 for j
both weighting matrices Q and Q2 " Only integer values of N have meaning

but points are connected by straight lines to indicate trends. The value

N = 0 corresponds to no feedback compensation at all, i.e., h = 0. The

points where J has the value "al' occur when the system becomes unstable,

resulting in an essentially "infinite" cost. One conclusion is that too few

recalculations, which can result in large departures of the gains from their

optimum values as parameters vary, are worse than no feedback (h = 0).

This sensitivity problem is the same type encountered in the pole assign-

ment technique in the preceding section. With weighting Q2 the system

becomes unstable when N is too small; the same behavior is observed with I
the pole assignment technique if the feedback gains are recalculated too

infrequently. However, it is clear that the minimum of J is achieved for I
all practical purposes when N 2 10 for both choices of Q; this is to be con-

trasted with the 50 recalculations required to maintain stability in the case r

illustrated by Fig. 9.1-3. F
To compare the pole assignment method and the optimal regulator

on the same basis, graphs of the real part of the closed loop airframe poles

are shown in F4g. 9.2-2 for the optimal regulator design with Q = Q and

N = 10. This value of the weighting matrix is used throughout our subse- I
quent discussion. The discontinuities in the curve at 5 second intervals are

the points at which a new set of optimal gains is computed. In the same

figure the curve corresponding to the uncompensated airframe (N = 0) is also

shown. The horizontal dotted line at the value -23 repuresonts the design [

value for the adaptive pole assignment system.
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Figure 9.2-1 Performance Index as a Function of the
Number of Optimal Gain Recalculations:
Adaptive Optimal Regulator

The weighting matrix for the performance index is chosen so that

the optimal regulator feedback gains make the closed loop system poles at

25 seconds equal to those specified for the pole assignment method in

Eq. (9.1-8). In other words the missile autopilot using the optimal regu-

lator gains has the same dynamics as the adaptive pole assignment system

at one instant of time along the missile's trajectory. This provides a basis

of comparison for the performance of the two systems. We can suppose
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that ideally the instantaneous system closed loop poles should always have

the values specified in Eq. (9.1-8). This can be assured using adaptive

pole assignment by recomputing the gains sufficiently often. On the other

hand the optimal regulator provides the desired response characteristics

at only one instant. At other points on the trajectory, Fig. 9.2-2 indicates

a shorter or longer settling time (larger or smaller a) depending upon the

compromise between response speed and control level dictated by the

minimization of the performance index in Eq. (9.2-2). This is exactly the 3
sort of comparison one expects because the pole assignment technique

9i
9-14



THE ANALYTIC SCIENCES CORPORATION

places no penalty on the control magnitude required to give the desired out-

put performance. These comparisons are also supported by the output

response curves presented in Section 9.4.

The main objection to using the optimal regulator design is that

one has no direct control over how much the closed loop response charac-

teristics vary as plant parameters change. The designer may be willing to

accept some deviation from criteria such as those specified in Eq. (9.1-8),

but variations ofthe kind indicated in Fig. 9.2-2 may be too large --

especially near the beginning of the trajectory. More detailed discussion

of this point is given in Section 5.4.1 a;d Appendix B. Possible alterna-

tive methods are provided by the optimal model following systems described

in Sections 5.4.2 and 5.4.3 which have the capability for obtaining more

uniform output performance characteristics over a range of flight conditions.

One of these is examined in Section 9.3.

9.2.2 Design of a Third Order Adaptive Suboptimal Regulator

Many linear optimal control problems suffer from the "curse of

dimensionality" in that a large number of variables are required to des-

cribe the plant dyna'.mics kind considerable computation is required to obtain

optimum feedback gains. This is a very importait consideration in adap-

tive systems when the feedback gains must be updated on-line by solving the

matrix Riccati equation. To accomplish this task using the Newton-Raphson

iteration (Eq. (9.2-6)), the computation time required is proportional to n 6

where n is the dimension of the state. Hence even a small reduction in the

number of state variables can substantially reduce the computational load.

Consequently it is desirable to consider suboptimal contro. laws which

neglect some of the state variables. This is often justified in linear systems
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when certain open loop poles do not contribute significantly to the open loop Ej

response. Such is the case in missiles if dynamics introduced by the

flexible airframe, actuator and sensors are negligible compared with those

of the airframe's rigid body motion. In this section we evaluate the sys-

tem design obtained by solving the optimal control problem with the actuator

dynamics in Eq. (8.1-3) neglected, and then implementing the resulting

feedback gains with the actuator included. I

The equations of motion for the second order system correspond-

ing to Eq. (8. 1-3) with 6(t) regarded as the control variable are

L~t) - q ~ J+ [ 6 (t) (9.2-9)1
LF

L~ *>J6

where a (t) is the angle to attack. Comparing the third order and second

order systems, make the identifications

u(t) = 8(t) J
aft) VL-(a~) - L66(t(9.2-10)

Denoting the diagonal elements of Q in Eq. (9.2-2) by q1 1 , q2 2 and q3 3 with

off-diagonal terms equal to zero and suibtitutng for a(t) from Eq. (9.2-10),

the perforniance index J in Eq. (9.2-2) becomes I

j = [q 11 q(t) 2 q22 v2 (L at) + L~u(t ))2 + (q33 +r) u(t)2] d

to

(9.2-11)
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If the optimal feedback gains for minimizing J in Eq. (9.2-11) for the

second order system are h and h', the corresponding values of the gains

for the third order system illustrated in Fig. 9.1-2 are obtained by setting

hq(t) + h'(t) = h1q(t) + h2a(t) + h36(t)

Substitution for a(t) from Eq. (9.2-10) into the above expression and equat-

ing coefficients of like state variables on each side of tl. equation produces

h hh
S 1 h2 VL

h'L
h - 2 (9.2-12)3L

Plots of the real part of the dominant pole for both the suboptimal

and optimal adaptive systems are shovn in Fig. 9.2-3 for two different

values of the actuator pole, -X. In both cases the feedback gains are recal-

culated at one second intervals (N = 50) and with Q = Q2 o Observe that for

X as large as 200 (actuator time constant = 5 x 10- sec.) there is appre-

ciable deviation in the optimal and suboptimal curves during the later por-

tion of the trajectory, as the system closed loop poles move further into

the left-half-plane. The conclusion is that in order for the second order

design to be a good approximation to the third order design, the actuator

poles must not only be far removed from those of the uncompensated mis-

sile airframe, but they should also be some distance from those of the

compensated airframe. This condition does not hold for all flight con-

ditions in the system we are considering (X = 50); consequently actuator

dynamics are not neglected in subsequent sections.
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9.3 ADAPTIVE OPTIMAL MODEL FOLLOWING SYSTEMS

In this section we apply the "model-in-the-performance-index"

model following control technique described in Section 5.4. 2 to a missile I
autopilot. This method permits adaptive regulation of control system

response characteristics along a trajectory by defining a performance cri-

terion in terms of the error between the actual (measured) and the desired

airframe dyn, mic properties. The error signal is given by 5

I
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(t) = (A(:)- Am)x(t) + b(a)u(t), (9.3-1)

as in Eq. (5.4-13), where the matrix A. represents the dynamics of a

reference model,

_m(t) Am Xm(t)

The objective is to determine u(t) so that

co

J = F[ ,tT 21J = ) [e(t) T Qe(t)+ ru(t)2 dt (9.3-2)

t 0

is minimized. Again the notation A(a) and b(a) is used to emphasize the

dependence of the control upon parameter estimates. This problem formu-

lation leads to solutions for the gains h and k in Eq. (9.1-1) which are given

in Eqs. (5.4-14), (5.4-15) and (5.4-8). These expressions are repeated

here with a substituted for ao:

h(a)T b()T [() + QH(a)]

AT)

r(a) b(a)T Qb(a) + r

H(s) = A(a) - Am

k() = - 1 (9.3-3)

aA(.) -b() a)
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where S(a) satisfies 1
_ * i- +(A)T -+ _1 Sb A baTs-H aT I_)( _ I

A(a) S+A- (a) b(a) S-H(a)T Q(a)H(a) =0

_ -bAa) -= A (a)- b(a) b (a) Qa) i
Q(a_) - Qb(a) b(a)T Q (9.3-4)

1}

Equation (9.3-4) is solved iteratively for S(a) using the same Newton-

Raphson method described in the preceding section. The response of the I
airframe tends to be similar to that of the model to the extent that the dif-

ference, AA, between the dynamics of the reference model and the closed i
loop control system, as expressed by

&A 0 (A(a) - b(a) AT -A M )  (9.3-5) 1
is made small by the resulting value of h.

Simulations of this technique were performed with Am given by

Am=(A-b T~) (9.3-6)1

where A and b have the values for the trajectory used in Sections 9.1 and

9.2 at time t = 25 seconds and h is the solution to the optimal regulator-M

problem at the same instant with Q = Q2 . In this way a consistent compari- i

son is made between the model following system and the other control tech-

niques evaluated in this chapter. Numerical values for the model param-

eters are
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-.4 0.041 -454.01

A = 51x104  3.53 8.47 04 (9.3-7)
-24.31 4.47 x 10 -95.

Appropriate weighting constants for the performance index are

0.3 O 0
Q =Q3 = q| 0 2.0x10 -7  0 ;r= 1.0 (9.3-8)

w0 0 1.0 r

where q is an adjustable parameter to provide comparative simulation

results.

The real part of the most significant pole along the missile tra-

jectory is displayed in Fig. 9.3-1 for three different values of q and with the

feedback gains calculated at one second intervals. The dashed horizontal

line at a = -23.0 represents the specifications in Eq. (9.1-8) on which the

pole assignment technique was based. Observe that as q increases, at

t = 25 seconds the value of a for the model following system appears to

approach a limit that coincides with both the curve for the optimal regulator

and the horizontal dashed line. This behavior is a consequence of the fact

that as q is increased (or alternatively as r is decreased) the optimal feed-

back gains h also approach a limit, as discussed in Section 5.4.2. When

t = 25 seconds this limit is identical with the feedback gains in the optirnal

regulator and the pole assignment system because the reference model

dynamics defined by Eqs. (9.3-6) and (9.3-7) are identical to those of the

optimal regulator at 25 seconds. That is to say,

lim AA] = 0
q-+o It=25
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where AA is defined in Eq. (9.3-5). Consequently the model in the per-

formance index (with large q), the optimal regulator, and the pole assign-

ment methods all yield the same controller at one point on the trajectory.

This property permits a meaningful comparison of the three techniques at 3
other points along the trajectory.

As indicated in Fig. 9.3-1, for a large value of q the tendency of

this contro, system to conform to the model (in terms of the location of the I
most significant closed loop pole) is moderately better than the optimal regu-

lator for t > 25 sec and is about the same as the regulator for t < 25 sec. I
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Deviations from the model are a result of our inability to choose h(t) to make

AA identically zero everywhere on the trajectory. Consequently a com-

promise between control level and response characteristics is exerted by

the optimization criterion, just as in the regulator method.

The primary advantage offered by the model following scheme for

this application, relative to the optimal regulator, is a conceptual one. If

one deliberately specifies a set of model dynamics Am that the compensa-

ted airframe can duplicate at one particular flight condition, then an optimal

control law which minimizes J in Eq. (9.3-2) closely approximates the

model at that flight condition if the performance index weighting constant q

in Eq. (9.3-8) is sufficiently large. By contrast, it is more difficult to

determine what choices of Q and r in Eq. (9.2-2) realize specified dynamics

at any flight condition. However, this distinction may be somewhat academic

from the designer's point of view because the performance indices are chosen

"off-line" where there is sufficient time to evaluate different values of Q

and r.

The computational requirements for this model followinig system

are somewhat greater than for the optimal regulator as indicated by com-

paring Eqs. (9.3-3) and (9.3-4) with Eqs. (9.2-3) and (9.2-4). This dis-

advantage weighed against the small improvement obtained in Fig. 903-1

indicates that the model-in-the-performance-index technique investigated

here is relatively unattractive for controlling longitudinal airframe motion.

For other applications where there is more than one plant input variable

(eo g., lateral motion control) a better match between system and model

dynamics might be achieved over the entire trajectory using the model

following method discussed above.

It is noted in Section 5.4.3 that the model-in-the-performance-

index method discussed above can be made to yield more uniform
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performance by transforming state variables to phase variable canonicalI i
form. The resulting adaptive control law requires some additional corn- 1 I
putation to derive the required transformation matrix. This possibility is

not pursued here.

Another type of model following technique considered in Section

5.4 is the "model-in-the-system" approach having the structure indicated I
in Fig. 5.o1-2. It is capable of making the airframe and reference model

dynamics approximately identical for a v-ide range of flight conditions, at i

the expense of requiring a high gain type feedback structure and more com-

plex computations (see Eqs. (5.4-19) and (5.4-20)). This method is not "
evaluated here because nearly the same performance characteristics, with-

out the above stated disadvantages, are achievable using the pole assign- 3
ment method.

9.4 RESPONSE COMPARISONS

From the designer's point of view, the best comparison among |

differeiit control methods is provided by simulation of the time histories

of the control variables and important state variables. This permits one

to examine the actual transient characteristics of the system in response

to representative input commands, thus obtaining empirical knowledge of [

such parameters as rise time, overshoot, and settling time.

To perform this type of study, the operation of the three adaptive ist
controllers -- pole assignment, optimal regulator, and model following --

described in the preceding sections was simulated along the surface-to-air

trajectory described in Section H. 2. Airframe dynamics were varied with

time according to the linear interpolation technique described in Section H. 1. 1
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The commanded acceleration v(t) is a piecewise constant function which

changes level and alternates its sign at one second intervals according to

v(n + 1) = -f(n + 1) sign [v(n)]; n =1,2,...

v(0) = f(0)

where f(t) is specified graphically in Fig. 9.4-1. The use of acceleration

commands that gradually increase in magnitude is reasonable if the missile

is launched some distance from a target. The adaptive gains are also up-

dated at one second intervals along the trajectory. Graphs of the corre-

sponding control surface deflection 6(t) and normal acceleration a(t) are

shown in Figs. 9.4-2(a) through (e) over selected one second intervals along

the trajectory. The magnitude of the control surface deflection is of

interest because in practice it usually has an upper bound that cannot be

exceeded; furthermore it is an indication of the control level required at

the actuator input.

R-2103

400

300N
- 200-
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0
0 10 20 30 40 50
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Figure 9.4-1 Magnitude Profile of Commanded Acceleration
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Recall that all three control methods are designed to give

identical performance for the flight condition corresponding to t = 25

seconds along the trajectory. Therefore on the interval 25 : t < 26, the

sets of time histories for a(t) and 6(t) are identical as shown in Fig.

9.4-2(a), having negligible overshoot and a settling time of about 0.15

seconds. In Figs. 9.4-2(b) through (e), a(t) and 6(t) are plotted at the

beginning of several different one second intervals. At t = 0 (Fig. (b))

when dynamic pressure and roach number are lowest, the greatest dif-

ferences in response are observed among the three systems. The pole

assignment method, which maintains constant closed loop pole locations

throughout the trajectory, exhibits relatively large amplitude transient

oscillations immediately after the command v(t) is applied. This be-

havior is caused by the fact that a relatively large change in angle of attack

is required to produce a prescribed change in normal acceleration at this

flight condition. Consequently in response to v(t) the control surface de-

flection must be relatively large, compared with its steady state value, to

produce the required pitching moment and to compensate for the reduced

control surface effectiveness. By contrast both optimal systems permit a

much slower speed of response at this flight condition and consequently have

smaller transient fluctuations. However, at the other times shown

(Figs. (c) through (e)) the behavior of the pole assignment system is quite

uniform without calling for excessive control surface deflection. As

exected, the optimal system responses vary along the trajectory, generally

becoming faster as dynamic pressure and mach number increase. Also they

tend to exhibit some overshoot in acceleration, particularly in Fig. (c).

The conclusion from this demonstration is that the pole assign-

ment method yields acceptable behavior over a wide range of flight condi-

tions, excepting those where both mach number and dynamic pressure are

lowest. The latter condition typically occurs just after launch, before the
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missile has accelerated to its operating velocity. If one insists on a rapid F ]
response during the initial acceleration phase, the large transient pulse of

acceleration in the wrong direction shown in Fig. 9.4-2(b) is physically

unavoidable because of the required control surface deflection. To avoid

excessive* control surface deflections with the pole assignment technique I

the command input signal level must be kept low during this period. If

nonuniform response characteristics can be tolerated during periods of low f
dynamic pressure and mach number, the adaptive optimal control techniques

can be used to limit control surface deflections. However, as suggested in

Section 9.1, the latter can also be accomplished by the pole assignment

method, using different sets of poles (i.e., adaptive closed loop poles) for

different ranges of flight conditions. This seems to be the preferred pro-

cedure in view of the fact that the optimal methods require more computer

memory and more on-line computation for each recalculation of the adap-

tive gains. 'I

The above observations are summarized in Table 9.4.1. Becauset

the pole assignment technique has relatively low computational requirements

it is considered to be the most promising. As suggested above, any require- i
ment for variations in autopilot response characteristics can be accommodated

by determining a few sets of closed loop poles, p_mi, i = 1,.., M, which are [
suitable for different flight regimes. The feedback gains are calculated

adaptively according to Eq. (9.1-9). It is anticipated that only a few dif- i F"
ferent sets of poles will be required in view of the generally good perform-

ance exhibited by the pole assignment method in Fig. 9.4-1. j

*l

In a practical situation there are limits on the allowable control surface
deflection which the linear control system design techniques considered 5
here do not take into account.
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TABLE 9.4-1

COMPARISON OF ADAPTIVE CONTROL TECHNIQUES

REQUIRING EXPLICIT PLANT IDENTIFICATION

MOST LE ASTPE RFORMANCE CRITERIA
SATISFACTORY SATISFACTORY

Programming Instructions,
Storage, Amount of Computation Pole Optimal Model

Computational per Gain Updating Assignment Following System
Complexity ....

Number of Adaptive
Gain Updatings Both Optimal Pole

Per Unit Time Systems Assignment

Uniform Response Characteristics Pole OptimalAssignment Regulator

Pole Assignment
Control Level Required Both Optimal (Low Dynamic

Systems Pressure and Low
Mach Number)

Optimal control techniques may be useful as an off-line design

aid to determine suitable values for the closed loop poles. However,

because the closed loop dynamics of adaptive optimal systems vary i, an

unknown fashion as plant parameters change, they are not as suitable for

obtaining particular response characteristics as the pole assignment

method. The added computational capability required to implement adaptive

optimal methods is better devoted to estimating plant parameters as

accurately as possible via the methods discussed in Chapter 6.
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9.5 RAPIDLY VARYING PLANT PARAMETERS

In the preceding sections of this chapter, adaptive control

techniques have been applied to a situation where plant parameters vary

relatively slowly with respect to the response time of the closed loop con- i
trol system. When missile flight conditions are changing very rapidly, as

in dogfight applications, there is little theoretical justification for updating F
feedback gains by successively solving for the optimal control which mini-

mizes the performance index in Eq. (9.2-2) or by determining those gains I
which maintain constant instantaneous closed loop poles as in Eq. (9.1-4).

Nevertheless, these methods may scill give satisfactory performance if the

feedback gains are recomputed sufficiently often. In this section we

demonstrate the autopilot acceleration response achieved by the roi assign- I
ment technique for the three second thrusting period of the trajectory given

in Section H.l, during which time the missile's dynamic pressure changes

by a factor of almost twenty.

Two sets of closed-loop poles are selected for the airframe:

-50.0 -5.
Linl = -2.8+j4. ; m 5.3 j5.1

S-2.8 - j 4.3 5. 3 -j 5. 1

The set p, is used in the interval 4 r t < 6 and P2 in the interval

6 ! t : 9. This design permits controlled variation in the response charac-I

teristics to allow for the changing effectiveness of aerodynamic control sur-

faces. The feedback gains h and the d-c gain k are computed forty times per

second from Eqs. (9. 1-9), (9.1-5), and(9.1-7) with am b m ard c deter-

mined by equating coefficients in the expression I

Satisfactory behavior was also observed with twenty gain recomputiations
per second; however ten per second led to instability. I
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s +aes +bms +C
m2 +a 2 +mm M (s-pil)(s-pi2)(s-Pi3) I

where pi is the jth element of Pmi. A piecewise constant input command

v(t) = + 16.0 ft/sec2

was applied, with the sign switched at one second intervals.

The acceleration response and the control surface deflection for

the airframe onntrol system are displayed in Fig. 9.5-1. Control surface
deflection is plotted in terms of the normalized quantity*

S1611/2 sig (6)

The curves indicate that the acceleration settles close to the commanded

value in an interval equal to about three of the time constants associated

with the dominant complex poles of Pnl and PrM2 . During the first part of

the tr$Ljectory, a large transient acceleration having an algebraic sign

opposite to that of v(t) is produced by the control surface. This is another

example of the belavior observed in Figs. 9.4-2(b) and (c). For this

simulation the peak deflection required in Fig. 9. 5-1(b) far exceeds the

linear range of any missile control surface. Therefore in order to actually

achieve the acceleration response time shown in the interval 4.0 < t ! 6.0,

a much lower level of v(t) is required. Thus one concludes that this par-

ticular missile has little capability for following steering commands during

the first part of its thrusting phase.

This normalization is defined to provide a convenient scale
in Fig. 9.5-1.
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Figure 9. 5-1 Response Characteristics While Airframe
Parameters are Varying Rapidly: Autopilot
IDesi-Ped Using Pole Assignment Technique
With Adaptive Closed Loop Poles

A more positive conclusion about the above simulation is that the

airframe is successfully stabilized by the pole assignment method if the

feedback gains are computed sufficiently rapidly and if the called for con-

trol levels are within the missile's capability. In other words, the

instantaneous autopilot closed loop poles provide a- good indication of the

response characteristics, even though the airframe parameters vary a

large amount in a period that is short with respect to the desired autopilot

response time. Furthermore, these results have a strong bearing on the

parameter identification procedure used to obtain a. In this particular

thrusting missile, parameter estimates must be obtained at a rapid rate -
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on the order of twenty times per second. Further investigation is needed

to determine which identification technique is best suited to meet this

requirement. We have pointed out that the basic parameter identification

technique described in Section 6.3 has the potential for generating esti-

mates very rapidly.

9.6 SUMMARY AND CONCLUSIONS

Three methods of adaptive control which utilize explicit esti-

mates of plant parameters have been evaluated for a missile autopilot.

Each one operates on the principle of updating a set of feedback gains,

assuming that the plant parameters remain constant at their estimated

values for all future time, so that the instantaneous system closed loop

poles provide an indication of the airframe response characteristics. The

most promising method -- both in terms of mechanization and ability to

provide uniform response characteristics -- is the pole assignment

technique.

Each adaptive method is theoretically justifiable so long as plant

parameters vary slowly compared with the desired airframe response. In

a dogfight application this condition does not hold; however, the simulation

results in Section 9.5 indicate that the pole assignment technique can still

provide a stable autopilot, within the capability of the control surfaces. At

low velocities, moderate acceleration steering commands and a rapid

autopilot response can require control levels that exceed the bounds im-

posed by constraints on aerodynamic control surface deflections. To

improve the control capability at low velocities, one of the alternative mis-

sile designs discussed in Section 8.4.2 may be attractive.
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An important topic for additional study is an evaluation of

parameter identification techniques for missile applications including the

effects of noisy measurements. There is a special need to determine 1
which methods can accomplish the extremely rapid parameter estimation

required for thrusting missiles. In addition, it is worthwhile considering

how to effectively utilize a priori information that may be available -- such

as a known thrust level, a known launch altitude, etc. -- to determine air- !

frame parameters. These topics are beyond the scope of this report but

they should be the subject of future investigation. I

9I
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10. APPLICATIONS: LOW SENSITIVITY CONTROL SYSTEMS

In Chapter 7 a number of techniques useful for designing control

systems that are insensitive to plant operating conditions have been des-

cribed. Those methods which have the capability to desensitize the system

to wide ranges of parameter variations are best suited for tactical missiles.

In this chapter one such design procedure -- the Liapunov synthesis tech-
nique described in Section 7.4 -- is evaluated for a pitch rate autopilot hai -

ing time-varying airframe dynamics. It is demonstrated that this method

has the capability to null the difference between the outputs of the autopilot

and a reference model.

10.1 DESIGN PROCEDURE

As described in Section 7.4, the Liapunov synthesis technique for

designing an insensitive control system is similar to the Liapunov synthesis

technique for an adaptive controller developed in Section 4.4.3. In fact the

design steps are identical up to the point of defining a Liapunov function and

selecting the control law. Consequently this discussion of an insensitive

pitch rate autopilot parallels the first portion of Section 8.3. 1; the latter

material is repeated here for completeness.

Let the input-output relations for the design problem be repre-

sented by Fig. 100 1-1 in analogy with Fig. 8.3-1. To design an insensi-

tive nonadaptive controller we proceed as in Eqs. (8.3-1) through (8.3-7).

In Laplace transform notation the equations of motion for the plant and the

model are

10-i
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V(S) U (S) AIRFRAME Y (S)

S2+ bs + e

E(s) +

MODEL
km (s- z,)

for a Low Sensitivity Control System

( s2 + bs +a) Y(s) = kWs -z) U(s)f

(s 2 + bs + a) Y (s) = km(s- z ) V(s)j

E(s) = Y(s) - Y (S) (011

Subtracting these expressions and adding the quantityI

(s 2 + bs+a) Y(s)

to both sides of the result produces the error equation

(s 2 + bs + am) E(s) = ((bm- b) s + am- a) Y(s) +kWs - z) U(s) - km (s- -z4)V(s)

(10.1-2)

which is identified with Eq. (7.4-4).
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IjI

Now we divide both sides of Eq. (10. 1-2) by the polynomial

Pc(s) = -P1

where p, is a negative number whose allowed range of va,-.-es is to be

determined presently. The result, after carrying out the required number
of steps in dividing by pa(s), is

(s +b [Inp bp E s)I E (S) +(bm-b) Y(s)aI a ++ -- )

am- m-

+ Y(s) + kU(s)

pl-z kP 1 -Z V(s)
+ -U (s)- -k V(s)(1O.1-3)s-"P1  s -Pl m

which has the same form as Eq. (7.4-5). Now for stability of the error
signal we require that

b M+p 1 > 0

on the left-hand-side of Eq. (10.1-3), or

p, > -bin (10.1-4)

This provides the condition needed on pc(S).

Referring to the right-hand side of Eq. (10.1-3) define new

variables
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Y ) y(s() = E(s) .[ycs = s -P E c(S) = s- P,

Uc(S) = U(s) V(s) (10.1-5)Ucs = s - Pl V c(S) = s - Pl (1.15

and vector quantities

bm-b y(t)
am-a +p,(bm -b)  yc(t)

pl-z ; f(t) u= u(t) (10.1-6)'

k (m Pl) v (t) II C

Rewriting Eq. (10.1-3) in the time domain with the aid of Eqs. (10.1-5) and I

(10.1-6), produces a differential equation for the error in the form of

Eq. (7.4-15), 

-(t)=- .(bi +pl) e(t)+ PTf(t)+ ku(t) -kmv(t) (10.1-7)

At this point the design procedure departs from that developed J
in Section 8.3 and continues as in Section 7.4, beginning with Eq. (7.4-16).

A LAapunov function,

1 2
V(e) l e (10.1-8)

is defined. Differentiating V and substituting for e(t) from Eq. (10.1-7)

produces
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'~~)=-(b +p,)e( t)2 + [pTf(t)+ku(t) -kmv(t)]e(t) (10. 1-9h

To design a controller that is insensitive to variations in p and k, choose

the control u(t) in the form of Eq. (7.4-24),

5 Ii~)I ) sign (k) sat(e (t))

sat(e(t)) = e/iE; lel ! c

where II denotas the maximum value of the argument over the range of
max

allowable parameter variations. Observe that in addition to the ranges of

parameter values, the sign of k must also be known in order to mechanize

E Eq. (10. 1- 10). Substitutiou for u(t) f rom, E q. (10. 1 -10) into E q. (10. 1-9)

yields the following inequality for 4(It'.

4'(t) -(bm+ Pi e (t); Ie(t)I > c (10.1-11)

Using the definition of V in Eq. (Mfl 1-8), the above inequality can be

rewritten as

Therefore it is inferred that

V(t) r. V(0) exp [-2 (bm + p)tl; e (t) > c (10. 1-12)
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or, equivalently

e(t) e ee(t)J > C (10.1-13)

Consequently, by choosing p1 in Eq. (10. 1-3) so that t.e quantity ! h
(bm +PI) is positive (as already required by Eq. (10.1-4)) and with know-

ledge of tl-, ranges of plant parameter variations and the algebraic sign of if
the plant gain k, a controller can be designed which forces e(t) to the set

of values,

Ie(t) E C (10.1-14)

exponentially. Furthermore if the output error is initially 'ess than c,
Eq. (10 1-14) is always satisfied; that is, the error always remains below I

the saturation level. A block diagram of the control system is shown in

Fig. 10.1-2. The choice of c, which specifies the saturation character-

istics defined in Eq. (10.1-10), is determined by jointly considering the I

effects of system bendwidth and the error bound provided by Eq. (10.1-14).

The former increases and the latter decreases as c decreases. In

practice it is found that the error remains significantly less than c because

the nonlinear gain term (in brackets) iri Eq. (10.1-10) is usually conserva-

tively large. This behavior is subsequently demonstrated in simulation

results.

Before presenting simulation results it is worthwhile interpreting

Eq. (10.1-10) in a way that leads to a less complicated, more familiar type I
of control law. The expression for u(t) can be viewed simply as a nonlinear

gain multiplying a nonlinear function of the error, viz.,

10-
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: vt)AIRFRAME yIt) Qlt

b s. b Jo

_ _ I

Figure 10.1-2 Mechanization of Insensitive Controller
Based on Liapunov Design Procedure

u(t) = -D (f(t), v(t)) sat(e(t))

t ) o kJ (10.1-

Disregarding the fact that D is a nonlinear functirn of the input and various
system state variables, Fig. 10.1-2 can be redrawn much more simply as
shown in Fig. 10.1-3. That is, the plant input u(t) is generated by passing
the output error through a large saturating gain with drive (saturation) level

10-7
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1-252/ 1

MODEL AIRFRAME

__ _ __ _ .... ___"'_| I

Figure 10.1-3 Alternative Representation for Fig. 10.1-2 f

D(f(t), v(t)). Now the purpose of D in Eq. (10.1-15) is to make the

second term on the right side of Eq. (10.1-9) sufficiently negative r
so that Eq. (10.1-11) holds. If it is conjectured that ifi(t)I and I(t) I
always remain within known bounds, then it is possible to choose D

constant and still obtain the desired stability properties. Such a con-

trol law is considerably simpler to mechanize than that given in Eq.

(10.1-10). The performance of the system with a fixed value of D is

compared with the control law in E'q. (10.1-15) in the simulation results

reported below.

10.2 SELECTIONOF PARAMETERS

For simulation purposes the airframe dynamics are taken from

the trajectory data in Section H. 1 with the actuator dynamics neglected.

The drnamics of the reference model are taken from flight condition 6 in

Table H. 3. To implement the control law in Eq. (0. 1-10), values for the

quantities IPi/kim are required. Referring to Eq. (10.1-6) and the

flight data in Table H. 3 it follows that

10-8



TH2 ANALYTIC SCIENCES CORPORATION

b -bj

k k
max max

£~a+pi(bm-b)
P21k 3.0

max max

kT k a!3.0
max max

I P1 k -O 17.0
max max

P5  a -p (bm+p 1 )

k k 3.0
max max

kma 9.0I
k max

: In addition, the saturation parameter in Eq. (10.1-10) is assigned the

value 0.01.

10.3 PERFORMANCE EVALUATION

To demonstrate the operation of the pitch rate control system

illustrated in Fig. 10.1-2, a simulation of the autopilot was conducted with

the airframe parameters fixed at values specified by flight condition 2 in

Table H. 1. In Fig. 10.3-1 the reference model response and the output

error are plotted for a step input command. Except for the initial

transient, the error is less than 2 percent of the model output,. Further-

more the magnitude of the error is always considerably less than the

theoretical upper bound of 0.01 specified by Eq. (10.1-14). This is to be
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Figure 10.3-1 Step Response for the Pitch Rate Autopilot I
With a Time-Invariant Plant

expected because the nonlinear gain D in Eq. (10. 1-15) is conservatively

large most of the time. I
The behavior of this autopilot when parameters are time varying

is illustrated in Fig. 10.3-2 for the first two seconds of thrusting flight i

(Table H. 1), beginning in flight condition 1 at t = 5.0 second. Both the

pitch rate response of the reference model and the output error are shown.

The latter is on the order of 1% of the former after an initial transient.

Evidently the control system is quite capable of keeping the error small

along such a trajectory.

The above performance compares favorably with that shown in

Fig. 8.3-7 for the Liapunov adaptive design. However, against this ad- j
vantage must be weigh.d the fact that Fig. 10.1-2 is basically a high gain

design, as indicated in Fig. 10.1-3. Consequently higher order modes such J
as airfrarme structural vibrations may be excited and greater control levels

are generally required. B
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Figure 10. 3-2 Step Response for the Pitch Rate Autopilot
With a Time-Varying Plant
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To compare the system in Fig. 10.1-2 with the case where the 4
drive level of the nonlinearity in Fig. 10.1-3 is fixed, simulations were

performed with D in Eq. (10.1-15) set equal to a constant. The results for

two levels of D are presented in Fig. 10.3-3 for flight condition 2 in

Table H. 1; the airframe parameters and the input command have the same 1
values as those used to generate Fig. 10.3-1. Evidently the use of a suf-

ficiently large constant value of D gives performance which is comparable 1

to the control law in Eq. (10.1-10). In these simulations the error never

exceeds the linear range of the function sat (e(t)) so the system operation 1
remains !Lnear. This controller configuration is much simpler to imple-

ment than that in Fig. 10.1-2; however the latter may have some opera- 1

tional advantage in that the nonlinear gain, D/, becomes small when the

signals in the system are small (see Eq. (10.1-15)), requiring a smaller

control level. I

4003 0.0003

11oo 0 -- 0.000

I i
A *- - - +1

OL01-1 I> h~<l

~4fi -

0 02 04 06 asooo 0 02 04 06 08 10
TIM111sec) TIME (sec)

"W )0005 1b) D05

Figure 10. 3-3 Autopilot Response for the Pitch Rate Autopilot I j
With a Time-Invariant Plant and Constant
Drive Level D
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10.4 SUMMARY AND CONCLUSIONS

The essential feature of the insensitive controller described in

this chapter is that the system output error is passed through a saturating

high gain element having a saturation level D that is a nonlinear function of

variables generated by the plant and by various compensation networks.

The system can be represented by Fig. 10. 1-3 where D varies as pre-

scribed in Eq. (10. 1-15). Consequently, for an error signal that satisfies

Eq. (10.1-14), the compensation operates essentially as a high gain with

value D/o

The use of high gain controllers is common practice for desen-

sitizing a system to plant parameter variations, particularly for pitch rate

and roll rate autopilots in aircraft and missile applications. As noted in

Section 4.5, such techniques applied to autopilot design may be excessively

sensitive to noise and may excite structural bending modes. The main con-

tribution of the design approach evaluated here is that it generates the gain

factor D as a nonlinear function of system variables such that the system

has desired stability properties. Furthermore, if the signal levels are

known to be bounded, the theory extends to the case where D is a suffi-

ciently large constant.

As noted in Section 7.4 this design method is not suitable for

nonminimum phase plants, for essentially the same reason given in

Section 4.4.4. To make the output error small, the plant input u(t) must

cancel the effect of any right-half-plane zeros, tending to make the system

unstable. Consequently this technique is not directly applicable for

achieving good normal acceleration response in tail-controlled missiles

having fixed wings. However, using the artifice of an adaptive reference

model in the same fashion described in Section 8.2.4, the system in
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Figure 10. 1-3 can be modified to provide adaptive normal acceleration

response. This technique requires that enough plant parameters be iden-

tified so that the corresponding parameters in the reference model can be I[
adjusted adaptively to yield a model pitch rate transfer function that cor-

responds to the desired normal acceleration response. For the applica- i
tion considered in this chapter, only a single plant zero, z, and the mis-

sile airspeed V need to be identified; the modification required to the con- I
trol system in Fig. 10. 1-3 is shown in Fig. 10.4-1. No simulation of

this method is presented here.

A-273$

AVAILABLE
MEASUREMENTS

~ESTIMATOR

MODEL PLANT

a- ) + .4 ~t k(s-z) A~t)

1IV

Figure 10.4-1 Adaptive Reference Model Configuration
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11. GUIDANCE SYSTEMS FOR TACTICAL MISSILES

The objective of guidance is to prescribe a steering law for the

missile that will transfer it from the launcher to a target. To accomplish

this task, different guidance laws may be used along different portions of

the missile's trajectory, depending upon the information available, the

maneuvers required, and the control mechanisms in use. For this dis-

cussion it i convenient to think of three distinctive guidance stages which

can exist in a tactical mission; these are the post-launch, midcourse, and

homing phases.

Post-lautlch guidance is concerned with the missile trajectory

immediately after separation from the launcher. This stage includes any

special maneuvers required (such as a 180 degree turn) to head the mis-

sile in the general direction of the target or to orient sensors so that they

can acquire the target. For example, steering commands can be pro-

grammed in open loop fashion or provided by the launch vehicle during this

phase of the trajectory.

Midcourse guidance is usually employed in a relatively long

range mission. A midcourse guidance law is used to direct the missile to

a region near the target, within which a homing sensor can provide accu-

rate target information. An important requirement of this phase is a

means for providing knowledga of missile position (e. g., inertial navigator,

radio tracking, etc.) enroute to the target area. Midcourse guidance must

be sufficiently accurate to enable the homing sensor to acquire the target.

Homing guidance is usually used during the final phase of mis-

sile flight. In a sense, this is the most critical period because steering

actions taken during the last few seconds of flight have the most effect on

11-1
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terminal miss distance. Overall mission success strongly depends upon

having a homing sensor which provides accurate information about the

target's iocation relative to the missile, and a steering law that is capable

of achieving intercept in the presence of target maneuvers and measure-

ment errors. Only the homing phase is treated in this chapter.

The chapter begins with a review of classical homir , guidance

tecbn~ques. The remainder concentrates on analyzing the accuracy of

several homing guidance laws derived using techniques of optimal control I
theory to account for constant target maneuvers and autopilot dynamics.

Graphs relating sensitivity of terminal accuracy and control effort expended

to initial condition and measurement bias errors are presented. These

curves aid in judging the relative performance capability of various designs;

in particular they provide a quantitative comparison between optimal and

suboptimal control techniques. The analysis presented here is essentially

deterministic; it does not include measurement ncise and randomly varying

target maneuvers in the mathematical model of the guidance problem. As

such, it provides a basis for making preliminary decisions about which

guidance law is most appropriate. For a specific application further refine-

ment of the conclusions obtained here should be make by investigating these

random effects. j

11. 1 GUIDANCE EQUATIONS

For the purpose of guidance, the missile equations of motion are

those which represent a point mass moving in three dimensions, acted upon J
by aerodynamic, gravitational, and thrust forces. To take the effect of the

missile's rotational dynami s into account assuming the autopilot has

already been designed, the airframe response is represented by some type
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of transfer function. In addition to missile motion, the guidance equations

must include the fact that the target is maneuvering (accelerating) in three

dimensions. If accurate mathematical descriptions of all these factors are
employed in formulating the guidance problem, the performance analysis

for various steering laws is a difficult task. However, many of the essen-

tial features of the guidance problem can be studied by considering only

planar motion of missile .nd target and by neglecting gravity and aero-

dynamic drag, as illustrated in Fig. I1. 1-1. Furthermore it is assumed

that both missile and target velocities, vm and vt, are constant in mag-

nitude with variable directions that are controlled by lateral vehicle

acceleration approximately normal to the velocity; losses of missile and

target airspeed and/or altitude caused by maneuvers are neglected. For

an aerodynamically controlled missile the above conditions imply the

vehicle is in coasting flight with control forces provided b; its lifting sur-

faces.

AY

INERTIAL COORDINATE FRAME

Y~ T ARGET

T MISSILE

Figure 11.1-1 Definitions of Guidance Variables
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With reference to Fig, 11. 1-1 the missile equations of motion

are

x (t) = - a M sin om(t)

ym(t) = am(t) cos m (t)
m I'

Am(t) = - a (t)+oa (t)
m m c

a m(t) = Vmmt) (11.1-1)

where a represents the pitch autopilot time constant associated with

achieving a particular commanded normal acceleration and ac (t) is the

steering command. Similar expressions hold for the target:

Xt(t) = at(t) sin ft(t)

yt(t) = at(t) cos ot(t)

at(t) = vtot(t) (11.1-2)

To derive a feedback steering command some assumptions are

required about target acceleration, and measurements of important state

variables must be available. In addition the problem can be simplified if

the nonlinear terms in Eqs. (11. 1-1) and (11. 1-2) are removed by appro-

priate linearizations. These tasks are accomplished in various ways,

depending upon the particular guidance method used; specific details

are given in subsequent sections for several homing guidance tech-

niques.
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11.2 HOMING GUIDANCE TECHNIQUES

A review of possible homing guidance methods naturally divides

the subject into two categories -- those techniques which may be thought of

as "classical", in the sense that they predate the development of modern

I! control theory and those referred to as "optimal" which utilize more re-

cently developed techniques for system design. In this section, a sum-

mary of the important features of these methods is presented.

11.2. 1 Classical Homing Guidance Techniques

Three well known concepts for directing a missile during its

homing phase are pursuit, beam rider, and proportional guidance (Refs.

133, 134, 135). The principles of each of these techniques are described

here within the framework of Eqs. (11.1--1) and (11.1-2).

Pursuit Guidance - One of the first ideas for guiding an inter-

ceptor vehicle was to point its velocity vector directly at the target. The

implementation of this concept is the essential characteristic of pursuit

guidance. In terms of the xariables defined in Fig. 11. 1-1, the objective

is to turn the missile's velocity vector v so that it lies along the line of-m
sight -- i.e., achieve the condition, Pm = X. The method of steering used

to accomplish this task is to reqaire that the commanded missile accelera-

tion be given by

ac(t) = -k (Bn(t) - X(t)) (11.2-i)

where k is an appropriate constant gain (Ref. 19).

11-5



THE ANALYTIC SCIENC2S CORPORATION

An indication of the effectiveness of this steering command is

obtained by assuming that the angles m(t) and X(t) do not change very

much during the homing phase and that their difference is small in mag- I
nitude. This allows the x-y coordinate axes in Fig. 11. 1-1 to be chosen

so that both angles remain small; e. g., define the x axis to be along the

initial iine of sight. Making the additional approximation that the effect

of autopilot lag is negligible in Eq. (11. 1-1) and using Eq. (11.2-1), one

has

am(t) - ac(t) = - k it) - )(t (11.2-2)

The above assumptions permit our writing Eq. (11.1-1) as
x m(t ) _ a .c(t ) Am(t )

Ym(t) - ac(t) (11.2-3)

To relate Eqs. (11.2-2) and (11.2-3), the small angle approxi-

mation is used in Fig. 11. 1-1 to write

:km(t)

Yt(t ) " Ym(t)

) t(t) -Ym(t) (11.2-4)

We now make the definitions

A(t) P m(t)_ -,(t) rgo(t) xt(t) - Xm(t) c = -g (t ) = cntn

90m' c go

(11.2-5)
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where r (t) is the range-to-go and vc is the closing velocity. Remember

that che objective of the guidance system is to drive y(t) to zero. Differ-

entiation of y(t) in Eq. (11.2-5) with substitution from Eq. (11.2-2) through

(11.2-5) and some algebraic manipulation produces a differential equation

V~r- o k )  t(t) *t (t)
(t) r -tmm Tt) g +r- X(t) (11.2-6)

go( m r (t) r ).1 go go

where the approximation

vm m(t)

is used, consistent with the small angle assumption.

If the target is stationary, At(t) = t(t) = 0. The range-to-go

is given by

r (t) = (0) - v tgo go c c go

where t is the time-to-go until intercept. Consequentiy Eq. (11.2-6)go
becomes

(_ g y(t) (11.2-7)
c o M

In this expression the coefficient of )t) contains a positive term which

approaches infinity as t approaches 0. Therefore the differential equa-go
tion for y(t) becomes unstable just before intercept and y(t) cannot be

nulled. However, in practice it is possible to choose k sufficiently large

so that the coefficient of y(t) in Eq. (11.2-7) is negative until very near
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intercept, yielding an acceptable terminal miss. This accounts for the

satisfactory performance of pursuit guidance against surface targets

(Ref. 19).

Againot high velocity moving targets, the terms involving *t(t)

and kt(t) in Eq. (11. 2-11) are detrimental to the objective of driving y(t) to

zero. In addition, the path followed by the missile is not very efficient,

as indicated in Fig. 11.2-1. For this reason pursuit guidance is not '1
usually considered feasible against air targets (Ref. 23). f

Beam Rider Guidance - The fundamental idea behind beam rider 5
guidance systems is that the target is tracked by some type of active trans-

mitter (e. g., a radar) external to the missile, often located in the launch

vehicle (Ref. 133). The situation is depicted in Fig. 11.2-2. The missile

is equipped with a sensor that provides a measure of the deviation of the

missile from the beam centerline, e.g., the distance x in Fig. 11.2-2.

In order that the missile be directed toward the center of the I
beam, its lateral (commanded) inbrtial* acceleration, z(t), can be a linear

function of x(t) and i(t), i.e.,

2(t) = -klx(t) -k 2 k(t) (11.2-8) 1

In terms of the lateral acceleration, Y(t), of the beam we have

z W) = M(t) + y W) (11.2-9)

Inertial acceleration (exclusive oi the effects of gravity) is the quantity

measured by the missile's sensors. Consequently the acceleration
applied to control the missile is thought of as inertial although the
quantity of interest is acceleration with respect to the beam.
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POINT

TARGET /

' -MISDLE
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\ / TRAJECTORY
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MISSILE / VELOCITY TARGET

LINE-OF-SIGHT \ /

RAYS

LAUNCH POINT

Figure 11. 2-1 Pursuit Guidance Trajectory

As the missile approaches the target, the beam's acceleration is approxi-
mately equal to the component of target acceleration normal to the beam.
If the latter is zero, then

\ () /

and Eqs. (11. 2-8) and (11. 2-9) combine to yield
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1-2052l

TARGET _ i
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\ ! // r / /REFERENCE AXIS

ELECTRONIC
BEAM RAYS

LAUNCHER

Figure 11.2-2 Beam Rider Guidance TrajectoryI

X*(t k2*(t) + k1x(t) = 0(11.2-10) 1

Evidently both x(t) and i(t) must be measured in order to have a dampedf

response. Furthermore the damping must be sufficient so that x(t) is suf-

ficiently close to zero by the time of intercept. As in the case of pursuit

guidance, the missile does not follow the most efficient trajectory for a

moving targetI
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The beam rider concept has the advantage that the missile need

not have its own automatic target tracking mechanism. If it is launched

within the radar beam, it is relatively easy to design a receiver for the

missile that will tend to maintain a small distance x in Fig. 11.2-2. On

the other hand, an objection for some applications is the dependence upon

an external source to provide the beam. It is often desirable to have a
self-contained system which frees the launcher vehicle from further guid-

ance responsibility after firing the missile.

Proportional Guidance is an application of the principle that a

collision course between two moving objects is one for which they approach

each other at a-constant relative bearing. In terms of Fig. 11. 1-1 this

means that the angular rate of the line of sight (LOS) is to be held at zero,

j(t) = 0

With reference to Fig. 11.2-3, this condition becomes

I + 6t)= 0

The actual values of 0(t) and 6(t) can be measured with sensors to provide

a measure of the deviation of line-of-sight rate from zero.

Assuming that this guidance scheme works well, the lhrie-of-

sight should not rotate very much along the intercept trajectory; hence for

analysis purposes it is useful to define the relative coordinate system in

Fig. 11.2-4. The x-axis of this coordinate frame is the LOS at the initial

time, t = 0, and the rotation rate of the LOS is given by i(t). Distance

along the x axis is referred to as range-to-go, rgo. The steering law for

proportional guidance dictates that an acceleration be applied normal to

the LOS and proportional to i(t) in such a way as to reduce i(t) I; the con-

ventional form of this relation is (Ref. 25)
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Figure 11.2-3 Proportional Guidance

*Y(t) -1 -Vci,(t) (]o-1

The quantity 77 is a constant of proportionality and vc is the closing veln'Ay

(assumed constant in our analysis),

.go(t) -v

go c

The performance of this guidance law is ascertained by noting

that for small X(t),

11-12
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MISSUL POSITION
4A

TARGET

y t- MISSILE .rA -JECTORY

Figure 11.2-4 Relative Coordinate System in
Proportional Guidance

Repeated differentiation of this expression with substitution from Eq.

(11. 2-11) yielIds

where

r 9 (0) r(0)
go -;<t< - .

The solution to Eq. (11. 2-13) is
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17 - 2

i(t) =() ( t (11.2-14)

Evidently X(t) approaches zero with t ifgo

The conclusion is that if the constant of proportionality in Eq.
(11.2-11) is large enough, this steering law does succeed in reducing the

LOS rate (and hence also the terminal miss distance) to zero for a con-

stant velocity target. Moreover, the missile's path in inertial space is 1
nearly a straight line, which is the most efficient (minimum-time) tra-

jectory against a nonmaneuvering target. Because of its ability to actually f
null the terminal miss and the simplicity of the acceleration command in

Eq. (11.2-11), proportional guidance has been favored for use in most

missile systems. Under the assumptions used in the foregoing analysis -- I
i. e., a constant velocity target with no autopilot lag -- good performance J
is achieved. However, as discussed in Chapter 3, the ability of a target

to maneuver and the presence of autopilot dynamics do reduce terminal

accuracy. This raises the question of whether such effects can be taken

into account to derive a better steering law. In the next section, it is

demonstrated that optimal control theory offers one means to this end.

11.2.2 Adaptive Optimal Guidance 5
To apply optimal control techniques to the design of missile

guidance systems, the problem is mathematically described in terms of

a set of first order diffce-i etiai equations. When the latter are linear and
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a steering policy is sought which minimizes a quadratic performance index,

one obtains a feedback steering law that is a linear function of the system

state variables. In this manner desired performance characteristics can

often be achieved by a design that is practical to implement in actual appli-

cations. Several optimal linear steering laws are described and evaluated

in this and subsequent sections. The problem formulation is taken from

Ref. (7).

The equations of motion for the guidance problem are obtained

by consideration of Fig. 11.2-4. Just as in proportional guidance, it is

assumed that the line-of-sight does not rotate very much from its initial

position during the homing phase. The x-axis is the initial LOS. Because

the range is decreasing at a relatively uncontrollable* rate (i.e., vc is

nearly constant), the principal variables of interest in Fig. 11.2-4 are y(t)

and its time derivatives.

Problem Statement - We assume that the result of a positive

command to the missile autopilot is acceleration along the negative y axis.

Actually, the autopilot creates an acceleration yector that is approximately

normal to the missile's velocity vector; any resulting acceleration ':om-

ponent along the line-of-sight is being neglected. The autopilot dynamics

are approximated by a first order lag, ** as in Eq. (11. 1-1). In addition,

we allow the possibility of the target's having a constant acceleration at

normal to the LOS along the positive y-axis. With these specifications, a

set of state variables ewn be defined as

*

It is tacticly assumed that the missile has no capability for
controlling its longitudinal thrust.
**

In Section 11.4 a higher order model is investigated which includes
the right-half-plane zero associated with a tail-controlled missile.
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x1 (t) [ y(t)

x(t) A (11.2-15) 1
3xot M at

x4 (t) I am(t)

and the differential equations of motion become

(t) 0 1 0 0 x (t)" 0

2(t)] 0 0 1 -1 x2 (t) 0 a1

3t) 0 0 0 0 x3 (t) 0 (11.2-16)

4 (t) 0 0 0 -a x4 (t) "a

Because the autopilot dynamics are included in formulating the guidance

problem -- i. e., the autopilot is predesigned -- we refer to this as a

partially coupled set of guidance-autopilot equations. A completely coupled J
guidance-autopilot steering law, which incorporates missile airframe

dynamics within the mathematical model, is investigated in Section 11.4. 1
For the purpose of guidance, it is desired that the terminal miss

distance xI(T)be made small within the capability of a limited amount of con-

trol ac(t). If unlimited acceleration were available, a zero miss distance

could always be achieved in the absence of measurement errers. These con-

siderations motivate the following choice for a quadratic performance index; I

2 a (t)2d I
l = XI(T) + r T ac2 dt (11.2-17) !

where r is a positive weighting constant. The steering law is to be chosen

such that J is minimized for a given value of T. The latter is assumed .
known from the relationship

11-16
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r (0)T= rg()(11.2-18)

C

As we shall see, this problem formulation requires the existence of a

capability for measuring range and range rate for implementing the result-

ing steering command.

The first term in J penalizes large values of terminal miss. The
inclusion of the integral term,

J u ac (t)2 d,

0

in the performance index has several objectives for a missile guidance ap-

plication. First it tends to limit the peak normal acceleration output; this

feature is required to prevent struct-ral failure of the airframe, In addition,

there are physical constraints on the maximum magnitude of the missile's

control surface deflection. The latter saturates if the steering command

is too large and the linear character of the autopilot dynamics is destroyed.

Consequently the limitation on a (t) provided by minimizing J tends to keepc
the control surface deflection within required bounds. Missile maneuvers

also require some expenditure of energy which ultimately results either in

a loss of altitude or a loss of airspeed. These losses increase as the size

of the integral term in J increases. Other energy consumption influenced

by Ju is that required to drive the control surfaces;. For a long trajectory,

the continued presence of changing steering commands at the autopilot

input can result in an appreciable drain on the actuator power supply; this

effect is also limited by limiting the magnitude of a (t). For all of the

above reasons the integral term in Eq. (11.2-17) at least qualitatively

regulates the actual control signals and control forces enployed to reduce
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the terminal miss distance. However it is emphasized that Ju is only an

indirect measure of control surface deflection, actual normal acceleration,

and energy losses.

Having specified a performance index, all of the remaining sub-

jectivity in the design problem is contained in the parameter r. The lar-

ger its value, the heavier the penalty on the control relative to xl(T); con- I
sequently the larger is the terminal miss. It should be chosen to provide

an acceptable tradeoff between guidance accuracy and control effort.

The solution to the optimal control problem is derived analytically 1:
in Ref. 7. The optimal feedback steering law is given by: -

acl(t) =- h (tgo) x(t) hl(tgo) 2- l (t) I
ogo

h2(tgo) - 't°t h03(tgo) = -0 \ ltgo)

eat at
11(to \(,te go -e go+

h4\tgo/ 90 2p(eat go t2 )

go).

22-at go60t " (at - 1 +e " go

go) tt o(

r

tg°  - t (11.2-19)

11-18



THE ANALYTIC SCIENCES CORPORATION

where h. is the ith element of h. The feedback gains are written as func-
1

tions of time-to-go rather than time. Becaus the range does not decrease

exactly linearly with time, the value of t is not accurately predictablego
along the trajectory. However, given a capability for measuring range

r o and range rate (-v c), t can be measured continuously and adaptively

adjusted in the steering law, making this is an adaptive optimal guidance

policy.

Aside from requiring some computational capability to imple-

ment the steering law, the above guidance policy assumes knowledge of

all the system state variables; this is typical of feedback solutions to opti-

mal control problems. At first sight, this requirement appears imprac-

tical because some of the states, defined in Eq. (11. 2-1b) are not readily

available. In particular, x1 (t) and x2 (t) are position and velocity normal

to -n initial line-of-sight reference axis; neither of these quantities is

easily measured. This situation can be improved if we differentiate Eq.

(11.2-12) to obtain

r(t r(t)- g(t) y(t)
,() - (11.2-20)

ro(t)go

Substitution for r (t) and i (t) from Eqs. (11.2-5) and (11. 2-19) produces

X(t) - . -'7 (11.2-21)
go gog

tgo

Substitution of this expression into Eq. (11. 2-19) to eliminate xl(t) and x2 (t)

yields a simpler, approximate steering law
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The resemblence between the term dependent upon and the steering lawi

for pro ortional guidance, Eq. (11.2-11), is noteworthy. Its significance

will be more evident presently. 1

Equation (11.2-22) is more easily mechanized than Eq. (11. 2-19)

because y(t) and k(t) have been replaced by a more readily measured

variable, the line-of-sight rate. The quantity x4 (t) is the missile's normal j
acceleration which can be measured by an accelerometer. The target's

normal acceleration x3 (t) can be inferred by differentiating Eq. (11.2-20) I

to obtain

( (t) + 2vc (t)
r r,rrgo i

Using the fact that H
y(t) = at - am(t)

one obtains

at = rX( vc(t)+ ami(t) (11.2-23)1

We have already postulated the capability to measure all quantities in Eq.

(11.2-23) with the exception of .(t), The latter can be obtained by differ-

entiating t). The need to obtain angular acceleration of the line-of-sight I

I12
11-20 1



THE ANALYTIC SCIENCES CORPORATION

and to implement Eq. (11. 2-23) makes at the most difficult state variable

to estimate.

From Eq. (11.2-19) tL-e can infer other optimal steering laws

which neglect some of the dynamics in Eq. (11.2-16). In the limit of no

autopilot lag (a approaches infinity) the optimal control is

1
12 x2 (t)

2 t2  t

o go x3 (t)

3

ngo - (11.2-24)
3r +t

go

and use of Eq. (11.2-21) produces

a 172 t (t)(11.2-25)co (t g( o) v.) 277 (tgo)X x3

If both target acceleration and autopilot lag are neglected, the

optimal steering law is

ac3 (t) = 72(tg)[t2t]x 2 (t)] (11.2-26)

go go

Again, substituting from Eq. (11.2-21), a (t) can be approximated as
1 3
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4

,aMt 772(go v~kt (11.2-27) r
It is interesting to see what happens to Eq. (11.2-27) as the weighting r in

the performance index goes to zero; i.e., from Eq. (11.2-24) it follows that

rim a 3 (t) = 3v i (t) (11.2-28) 2

The right hand side of Eq. (11. 2-28) is identical with the form* of the pro- I
portional steering law, Eq. (11.2-11) with 7 = 3. In words Eq. (11.2-28)

states that the classical proportional steering law with 7 = 3 is the limit of

the optimal law in Eq. (11.2-27) as the weighting on the control in the

performance index approaches zero.

Steering law a (t) is optimal for minimizing J in Eq. (11.2-17)

subject to Eq. (11.2-1 ; ac2(t) and ac3(t) are optimal when the equations

of motion are modified to eliminate first autopilot lag and then both auto-

pilot lag and target acceleration. However, we are concerned with the

behavior of the state when all dynamics are present (a < -, at / 0) and

either ac 2(t) or ac3 (t) is used in place of the optimal control because the

sensors or computation equipment required to implement acl(t) may not be

available. Consequently ac2 (t) and ac3(t) are referred to as suboptimal

steering laws. i

Before making a decision to implement any of the steering laws

derived above, one needs to know what sort of performance can be expected

from each in the presence of all the effects included in Eq. (11.2-16) and

The minus sign is missing from Lq. (11.2-28) because of the
definition of positive ac(t) in Eq. (11.2-16). 1
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also the influence of measurement errors. The purpose of the next section

is to present a sensitivity analysis which determines the terminal miss

caused by state variable initial conditions and measurement error biases

for a range of values of the weighting parameter r. In addition, the

measure of control effort

jTa2ac(t), dt,
0

is calculated for epch case to provide an indication of the trade-off between

terminal miss achieved and effort expended for a particular steering strategy.

110 3 STEERING LAW PERFORMANCE ANALYSIS

In this section we are interested in quantitatively evaluating the

terms which define J in Eq. (11.2-17) for different linear steering laws

applied to Eq. (11.2-16). In particular, the equations of motion have the

form

i(t) Ax(t) 4 ba c(t); i =1,2,3 (11.3-1)
i

where

aci(t) = hi(t)T x(t) (11.3-2)

and hi(t) is defined as follows -- using Eqs. (11.2-19), (11.2-24), and

(11.2-26) and noting that ti = T - t:='o
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h (t) A _ 1
(T -t) 

0

h3 (t)T t _ (T-t) T t 0 (11.3-3)
I T-t) -t 0

Therefore, for each steering law we can write Eq. (11.3-1) as

~(t (t) x(t); i=1,2,3_ A~i  _

A. A-_bhi(t) T

1 1 0 0 0

0 0 1 -I 0 '
0 0 ; b= 0(11.3-4)

0 0 0 -U" L [2]

Associated with any steering law ac(t) there is a value of

the performance index for each missile trajectory, determined by

the particular set of initial conditions and any state variable measure-

ment errors that enter into the implementation of Eq. (11.3-2). We

define

JfA x(T)2 ; ac(r)2 dr (11.3-5)

where J is referred to as the control efforl expended or simply the

"effort." Referring to Eq. (11.2-17), note that
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J = J + rJ

where the lower limit of integration is changed from 0 to t, signifying that

guidance can begin anytime prior tothe intercept time T. Remember that the

optimal value of .J associated with Eq. (11.3-4) is achieved only when acl(t)

is u,'ed as the steering command. Our purpose here is to compute xl(T)
and J for different trajectories using all three steering laws defined in

uEqs. (11.3-2)and (11.3-3)and for different values of the weighting constant r.

11. 3. 1 Terminal Miss Sensitivity to Initial Conditions

Nonzero initial conditions on the state x contribute to terminal

miss and to the control effort expended; if x were ever zero and the feed-

back steering command were perfectly implemented, ac(t) would remain

identically zero along the trajectory and both Jf and J in Eq. (11. 3-5)

would be zero. To economically determine the miss x1 (T) for a wide

variety of trajectories, the adjoint techniques described in Section G. 1 are

helpful. There it is proved that the miss associated with Eq. (11.3-4)

caused by initial conditioms x(t) for t ' T is given by

XI (T ) = -ei(T't)T x(t)I (11.3-6)

where the sensitivity function, _i(T,t), satisfies

(T,= . Ai(t)T Ti(T,t)

11 1

; (TT) 1, 2, 3 (11.3-7)
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The sensitivity function is evaluated by integrating Eq. (11.3-7) (generally
using a numerical method) backward in time. Once 52i(T,t) is obtained and

tabulated for any steering law aci(t), the effects of initial conditions at

any initial time on terminal miss can be calculated.

The value of any element of _,i(T, t) is the miss produced at time

T by a unit initial condition at time t on the corresponding state and zero

initial conditions on all the other state variablcso For example, the ter- I
minal error produced by a unit velocity normal to the line of sight

(j,(0) = 1.0 ft/sec) is equal to i 2(T,0)feet, where q.2 (T, 0) is the second

element of _ (T, 0) with units of ft/ft/sec. To introduce notation more sug-

gestive of this property of the sensitivity function, we denote the normalized

miss distance associated with the jth element of -. (Tt) by i (T,t) where

i refers to the particular steering law aci(t) being employed. It is normal-

ized by the units of x(t), as indicated by the over-bar notation.

Recall that the equations of motion for the optimal guidance prob-

lem are linearized about the initial line-of-sight. Therefore we can regard

the initial value of y in Fig. 11.2-4 (hence also of x1 in Eq. (11.3-4)) as

being zero. In addition, the initial value of the autopilot state x4 (t) repre-

sents an initial lateral acceleration of the missile at launch. If one exists,

it is likely to be small ind have relatively little effect upon terminal miss;

therefore we consider x4 (0) = 0 also. Consequently, the quantitative prop-

erties of nil (Tt) and mi (T,t) will not be displayed here.

At this point no sensitivity fmction has been defined for the line-

of-sight rate i(t) in ,qs. (11.2-22), (11.2-25), and (11.2-27). If this state

variable, rather than y(t) and (t), is to be used in implementing the steer- I
ing 1- - are more interested in its associated normalized miss rather

than that corresponding to an initial position and velocity normal to the

I
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line of sight. To obtain this quantity, refer to Eq. (11. 2-21) from which

one can derive y(t) in terms of i(t) and y(t),

y(t) tgo(vctgoi.(t) - k(t)) (11.3-8)

and define the normalized miss associated with X(t) to be i5(T, t).
i5

Because Eqs. (11.2-19) and (11.2-22) are approximately equivalent mech-

anizations of the optimal steering command ac1 (t), it follows that the ter-

minal miss m caused by X(t), y(t), and (t) satisfies

m M 1ll(T,t) y(t:) + m12(Tt) k(t)

m = m1 5(Tt)X(t) (11.3-9)

Substitute for y(t) from Eq. (11.3-8) into the right hand side of the first

expression in Eq. (11.3-9) and eliminate the variable m to obtain

mls(T,t)(t)- mll(Tt) tg° VtgW-(0) +Mi 2(T,t)(t) (11.3-10)

This relation must hold for arbitrary values of y(t) and k(t); consequently,

[ equating the coefficients of i(t) in Eq. (11.3-10), it follows that

m 1 5(T,t) = f 1 (Tt) vc(T-t) 2  (11.3-11)

This gives us an expression for the normalized miss caused by i(t) in terms

of that caused by y(t) for optimal steering law acl(t). However, the

same relation between position, velocity, and line-of-sight rate (Eq. 11.2-21))

is used for all the steering policies under investigation. Therefore Eq.

(11.3-11) holds for all values of the first subscript index;

11-27
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2!
m i5 (T t) -- Mil (TJt) v c (T -t) i- 1, 2, 3 (11.3-12)

Graphs of the functions mi.(Tt) -- i = 1,2,3; j =23, 5, -- have

been computed for different values of the control weighting r and autopilot

natural frequency a. Curves for m3 are normalized by g (one 4
i3

g = 32.2 ft/sec2 ) and those for mi 5 are normalized by vc. Values of 1 and

10 are chosen for a to represent respectively slow and rapid autopilot

responses. The results are plotted in Fig. 11.3-1 through 11.3-7. The

time dependence of each normalized miss is in terms of the quantity (T-t);

therefore the abscissa of each graph represents time-to-go in seconds.
Recall from the definition of m ij(T,t) that the time (T-t) is the instant at

which an initial condition on one of the state variables is assumed to exist;

physically this can represent the time-to-go at launch or a point at which

the target begins a constant maneuver.

Notice that the sensitivity curves caused by initial conditions on
velocity (ii2 in Fig. 11.3-2) and line-of-sight rate (mi5 in Fig. 11.3-7) p

are identical for both of the suboptimal steering laws. This is due to the

fact that the only difference between ac 2(t) and ac 3(t) is the term dependent

upon the constant target acceleration in Eq. (11.2-24), which is zero for

all time along the trajectories represented by these figures.

F'igures 11.3-1(a) through 11. 3-7(a) correspond to an autopilot

time constiL, of 1 second; Figs. 11.3-1(b) through 11.3-7(b) present

similar infoination for a time constant of 0.1 second. The principal com-

parison one can make from these curves is Lhat.miss distances for the

guidance systems having the more rapid autopilot response are uniformly

lower. Of course, nothing is said yet about the relative amounts of con-

trol effort expended, but it is not expected that this contribution to the
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performance index in Eq. (11.2-17) will reverse the judgement that a faster I ,

associated optimal steering law ac2 (t) does not call for one to be added.I

Also it is clear from inspection of individual figures that increasing the

Q01

weighting on the control effort always increases the terminal miss for the I
optimal steering law, and almost always does so for the suboptimal steer-

ing laws. The maximum miss results when initial conditions occur at a I
time-to-go on the order of one autopilot time constant. Physically the
latter is true because enoug time remains for the initial condition to cause I
appreciable miss if no guidance action is taken while insufficient time re-
mains for the autopilot to closely follow corrective steering commanids. I'I
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Consequently, it is advantageous, from the target's point of view (Figs.

11.3-3 through 11.3-5), for the target to begin its constant acceleration

maneuver at this most sensitive time.

Most of the above observations are qualitative judgements which

are readily predictable on the basis of what is already known about tra-

jectory sensitivity, e.g., see Figs. 3. 1-1 through 3. 1-4 of Section 3. To

establish whether the optimal steering law a. (t) has significant advantages

over the other, suboptimal controls we must determine the control effort

expended for representative sets of initial conditions. This is the subject

of the next section.

11.3.2 Control Effort Sensitivity to Initial Conditions

The contrbl effort Ju expended by the guidance system to null

initial conditions, using any one of the steering laws under investigation,

can be determined by the method described in Section G. 4. Denote the

values of J corresponding to a = a (t) by Ju
U c ci i

T 2
J a r)i dT; i 1,2,3 (11.3-13)

1 t c

where, as before, t denotes the time at which the guidance problem begins.

With application of Eq. (G-31) Jui is given by

JU. = x(t)w Ci(t) x(t); i= 1,2,3 (11.3-14)
1
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where C (t) satisfies the linear matrix differential equation J
Ci(t) = - Ci(t) Ai(t) - Ai(t)T Ci(t) - hi(t) hi(t)T 

Ci(T) = 0 i 1,2,3 (11.3-15) I

with Ai(t) defined by Eq. (11.3-4). Equation (11.3-15) is evaluated by I
integrating backwards in time from the known terminal value of Ci(T).

For the purpose of evaluating separately the effort caused by

initial conditions on each state variable, we need to know only the diagonal

elements of Ci(t) to perform the calculation in Eq. (11.3-14); i. e.,

J c (t) x.(t)2  (11.3-16) 1
where x (t) is the initial condition on the jth state variable at time t with all

other initial conditions zero, c (t) is the jth diagonal element of Ci, andI,

Juij denotes the value of Jui produced by xj(t). Thus the control effort I
expended depends upon which ,teering law is in use and the magnitude of

the nonzero initial condition. To facilitate the discussion it is convenient

to define a root normalized control effort, Jui j , according to I

Y A/ij (t/2 (1.-17)

ij

For any particular values of i and j the effort is given by

2
u (t) g (11.3-18) J
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Physically (Jui) is the integral of the square of commanded normal

acceleration (in g's) caused by a unit initial condition. Plots of the func-

tions Juj(tgo) -- i = 1, 2, 3; j = 2, 3, 5, -- corresponding to the miss sens'-

tivity curves in the preceding section are given in Figs. 11.3-8 through

11.3-12.

As indicated in Figs. 11.3-8 and 11.3-9, J can be expressed

in terms of Jui2 . To derive this relationship, refer to Eq. (11.2-21) and

assume that y(t) 0 at the initial time t; therefore

k~t) v t(11.3-19)

c go

Substitution for y(t) from Eq. (11.3-19) into Eq. (11.3-16) produces

2~22
ju~9 = c 2 (t)g vc X(t)u i 2 go c

Defining the root normalized effort produced by the initial line-of-sight

rate as
y = /c 2 (t)t t2 2

u i5 go c /g

it follows from Eq. (11.3-17) that

t v (11.3-20)
ui 5  u1i2 go c

The curves corresponding to an initial cross-track velocity

(Figs. 11.3-8 and 11.3-9) exhibit increasing maximum values as the
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control weight r is decreased. As expected, this trend is opposite to that

observed for the normalized terminal miss (Figs. 11. 3-1) and 11.3-2). The

sets of values of r for the cases, a =1I and a =10, are different simply to
scale the performance index so that each case exhibits about the same

range of variation for Jui2" in each figure for Jui2 , the curves converge I
toward zero as t increases because there is more time to reduce the

terminal miss produced by the initial cross-track velocity and therefore

less effort need be expended. Similar effects are observed for target

acceleration (Figs. 11.3-10 through 11.3-12), except that the curves for j
Ju3 do not converge to zero with increasing tgo *

As suggested when justifying the choice of performance index in

Eq. (11.2-17), besides energy expenditure the value of J provides an

ur11-38 i
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indication of the magnitude of the airframe normal acceleration and con-

trol surface deflection. To provide an estimate of the latter a normalized

root mean square commanded acceleration, aij, can be calculated from

ai = Ju., (g's/unit state) (11.3-21)
iJ

If it happened that the steering command were constant over the trajectory,

it would have the value a... Consequently the latter provides an idea of the
1i

order of magnitude of the command; in fact it is a lower bound on its maxi-

mum magnitude.

To illustrate how the normalized rms steering command can be

used to estimate the demands on control surface deflection, recall that the

commanded normal acceleration is an input to the autopilot loop, as indi-

cated in Fig. 11. 3-13. Throughout the above discussion we have modeled

the overall transfer function T(s) as a simple first order lag but in actual

practice it consists of several components and can have more than one

dominant pole. The control surface deflection A(s) is related to commanded

acceleration Ac(s) by the transfer function

A(s) G I(s) G 1 (s)
17 + Gc (s)G (S) (s) H(s) T s)

neglecting the sensor dynamics. If Ac(s) is known the control surface

response can be calculated. In particular, if we assume that

ac (t) ai. x.(0)

for a control law aci(t) and a specified guidance initial condition x.(0),

then
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In this manner one can obtain some idea of the character of the response,
recognizing that the assumption of a constant input command is a very

rough approximation. Such information is useful for estimating whether

L._.

the control surface deflection called for by the steering command exceeds

the bounds imposed by mechanical constraints.

If one is interestedin knowing the response of important autopilot

variables to steering commands in more detail than outlined above, two pos-

sible courses of action can be taken. First, if detailed time behavior is de-

sired, the actual autopilot equations of motion can be simulated. Alterna-

tively, if the integral square values of various quantities are desired, they

can be obtained using the adjoint techniques of Appendt G; this procedure

is briefly outlined below for the application ilustrated in Fig. 11.3-13.

The problem is to determine the integral square values of auto-

pilot state or output variables for the steering commands ai(t) given in os

Eq. (11. 3-2). These quatities can be determined in a manner similar to

11-40
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that used for the performance index, Ju" In particular, let the

autopilot equations of motion be written as

_(t) - Fz(t) + gac (t)

a(t) = cT z(t)

y(t) = dT z(t) (11.3-22)

where z(t) is the state of the autopilot, a(t) is normal acceleration, and y(t)

is any variable (e. g., normal acceleration, control surface deflection, etc.)

whose integral square value, J, is desired,

Ty(r) dr
y t

(Recall that in Eq. (11. 3-4)the autopilot dynamics are assumed to be a

first order iag0 ) To derive the actual equations of motion for the guidance

system with the autopilot modeled by Eq. (11.3-22), replace x4 (t) in Eq.

(11.3-4) by z(t) and combine the result with Eq. (11.3-22) to obtain

:k Wt x1 (t)

2- t 2 (t)
3 (t) [ =((t )
(t) x3(t)

0 1 0 0T  0 hi(t)T 1 0 0 0T

F t) 0 0 1 -c T  0 [0 1 0 0_T  (1.-3

Fi) 0 0 0 0T  0 0 OT (113-23)

000 F oLo c0 _
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Equation (11. 3-23) represents the actual dynamics of the guidance and con-

trol system with steering laws specified by Eq. (11. 3-2). Defining

w(t)T x= 1x t x 2(t) x 3(t) z(t)T

the equations of motion for the guidance system can be written compactly as j
(t) = Fi(t) w(t) (11.3-24)

and J as
y

I:
T

J ( w(T) (T) Qw(T)d7,
y itu

r10i [0]]I I 111.3-25)
Q Fo1 ddTJ

Equations (11. 3-24) and (11.3-25) have the same form as Eqs. (G-1) and

(G-4); consequently Eq. (G-30) can be used to calculate J in terms of an

initial condition on w(t), I
J = w(t)T D(T,t) w(t) I

y-

f)(T,t) - Fi(t) D(T,t) - D(Tt) F.(t) - Q D(TT) = 0 (11.3-26) 1
i1

The solution of Eq. (11. 3-26) for D(T, t) provides a means for I
calculating the integral square value of any autopilot output variable defined

by d in Eq. (11.3-22). This type of analysis permits a more realistic I
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evaluation of the effect of a given steering law on the autopilot than does

the value of integral square commanded acceleration.

11.3.3 Steering Law Evaluation

To make a judgement about the effectiveness of one steering law

as opposed to another, we need to compare the values of control effort

expended to produce a given level of normalized terminal miss. In making

such a comparison the time-to-go, i.e., the time of missile launch or the

time a target maneuver occurs, must be considered. One procedure for

doing this is to compare miss distances and effort expended for different

control weightings r at values of t which are related to the autopilot lag;
go

e. g., take t = 1/a, 2/g,.., n/a. Figure 11. 3-14(a) is a graph of thego
normalized effort Ju, defined in the preceding section, versus the magnitude

of the normalized miss for a one second autopilot time constant, using both op-

timal and suboptimal control laws, required to remove an initial cross-track

velocity. The data for these curves is read from Figs. 11.3-1(a), 11. 3-2(e),

11.3-8(a) and 11.3-9(a) at the point t 1.0. The significance of this plotgo
is that if the missile is launched at a point one second away from the target

with a unit cross-track relative velocity, then the curves give the resulting

terminal miss and control effort expended using various steering laws. The

value of the weighting constant r required to calculate each steering com-

mwid is read as a parameter along the individual curves. This plot also

indicates the degree of improvement obtained from the optimal steering law

relative to the suboptimal methods. For example, if one can tolerate a

normalized terminal miss no greater* than 0.25, the superiority of the

A specification on normalized terminal miss can be arrived at through
knowledge of the missile's velocity, likely target velocities, and likely
launch heading angles. An illustration of how this can be done is given
below in Example 11.3-1.
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optimal steering law in terms of control effort expended is measured by the I
difference Ju2225) -Jul 2 ( . 25) in Fig. 11. 3-14(a), which has a value of 0.290.

A significant observation is that an arbitrarily small miss-

distance cannot be achieved using either suboptimal steering law. Recall i
from Eq. (11. 2-28) that in the limit of zero control weighting, ac3 (t) V
becomes proportional steering with 77= 3. The normalized miss achieved j
with the latter for a unit initial cross track relative velocity can be read

from Fig. 3.1-4, using the fact that

r go

It provides a lower bound for the normalized misses m2 2 and m3 2 obtained

with the suboptimal steering laws, and it is achieved only in the limit as

r approaches 0. With t = 1 sec and a = 1.0, the bound has the value 0o 18go
as indicated in Fig. 11.3-14(a).

If no steering at all is used (ac(t) = 0), the normalized terminal

miss is numerically equal to tgo.* Consequently the curves in Fig. I
11.3-14(a) all terminate on the abscssa at m12 = 1.0. An appreciable

advantage is gained from optimal steering only when the desired normal- I
ized miss is significantly smaller than the "no-steering" value.

In a given application, graphs like Fig. 11.3-14(a) should be

derived for several possib!e values of t at which the missile might be j
launched. As t increases relative to the autopilot time constwnt, the

go
absolute values of control effort required to achieve a given miss distance I
become smaller, as illustrated by Fig. 11.3-14(b) for t = 4.0. This

go

Ii a (t) =: n, the normalized miss is equal to the product
(1 ft!se() (tgo).
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Figure 11.3-14 Root Normalized Effort Versus Normalized Terminal
Miss Caused by an Initial Cross-Track Velocity
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behavior is simply evidence of the fact that the longer the time until inter-

cept, the more easily the guidance system can reduce the effects of initial

condition errors.

Diagrams similar to Figs. 11.3-14(a) and (b) are displayed for I
the faster autopilot having a natural frequency of 10 rad/sec in Figs.

11.3-14(c) and (d). The data for the curves are obtained from Figs. I
11.3-1(b), 11.3-2(b), 11. 3-8(b), and 11. 3-9(b). As one expects, the mag-

nitudes of the effort and normalized miss are generally less than when

or = 1.0.

In addition to looking at the various terms contributing to the

performance index in Eq. (11.2-17) one should insure that the absolute I
control magnitude is not excessive. This can be done exactly only by

plotting the control as a function of time. However, an indication of con-

trol level can be obtained from the normalized root mean square com-

manded acceleration level defined in Eq. (11.3-21). Values of this quantity I P I
are simply obtained by scaling the ordinate in Fig. 11.3-14 by the factor(t-)1/2 I i

(tg) -/2*To stummarize the evaluation of the guidance system response

to relative cross-track velocity initial conditions, we shall illustrate the

use of the graphs in Fig. 11.3-14 with an example: 3
Example 11. 3-1 - Consider the situation in Fig. 3.1-5 when the aI i

target has a velocity of 1000 feet/second. The relative cross-track velocity
at launch is about 700 feet/second. To achieve a miss of seven feet, a
normalized miss of about 0.01 is required. To see whether the various
steering laws can achieve this level of accuracy, values of root normalized 3
effort and normalized rms commanded acceleration for the various cases
represented in Fig. 11.3-14 are tabulated in Table 11.3-1. The symbol * i
denotes the fact that the desired miss is not achievable. When the cross-
track velocity is 700 feet per second, the rms commanded acceleration

1 -
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TABLE 11.3-1

STEERLNG LAW PERFORMANCE REQUIRED TO ACHIEVE
A NORMALIZED TERMINAL MISS OF . 01 FOR A
CROSS-TRACK VELOCITY INITIAL CONDITION

Normalized rms
Root Normalized commanded

Optimal Steering Effort, J, acceleration, a1 2
i2 (g's/ft/se)--

a O., tgo = 1.0 0.18 0.18

a1.0, t =4.0 0.04 0.020 go

a 0, t = .1 0.525 1.66
go

a 10, tgo 0.6 0.10 0.13

Suboptimal Steering "u 2 2 ' ju 3 2  a2 2, a3 2

a = 1.0, t = 1.0 * *

a = 1.0, t = 4.0 * *

=10, tgo =0.1 * *

go
a 10) t go=0.6 0.112 0.142

denotes "not achievable".

requi ^ed is given by product (ai2 x 700). In all cases except one (optimal
steering, a = 1.0, tg = 4.0) this quantity is greater than 90 g's. This
information together with an autopilot analysis of the sort suggested at
the end of Section 11.3.2 enables one to make a decision about which steer-
ing law to use when a range of possible launch conditions is known.
Furthermore one can determine whether a given specification is reason-
able; it may be physically impossible to destroy some targets with a given
autopilot.

The effects of initial cross-track velocity are most relevant to dogfight

applications where the pilot of a launch aircraft may be cluse to the target.
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An analysis, such as that presented in the above example, aids one in o
obtaining the range of launch conditions, i. e., the "launch envelope," within

which the launch aircraft must remain to make a successful attack. j

We emphasize that throughout this chapter perfect knowledge of j
state variables in mechanizing the steering laws is assumed. In practice,

appreciable measurement noise usually exists in the steering loop which J
should be included in a complete performance evaluation. The deter-

ministic system analysis chiefly provides qualitative information about the

ultimate performance that can be expected from a steering law.

Turning now to the effect of target maneuvers, a different cri-

terion from that used above is suggested for comparing normalized miss

and normalized effort associated with different steering laws. For a given

value of the weighting constant r we choose that value of t which maxi-

mizes the terminal miss. Thus each steering law is being evaluated at

those points where sudden application of a target maneuver has the maxi-

mum adverse effect upon guidance accuracy. These curves are relevant

for any tactical situation because the target maneuver can begin anytime t

after the missile is launched.

Referring to Figs. 11.3-3(a) and 11.3-10(a) which illustrate the

effects of a target maneuver, we want to tabulate or graph pairs of values

of the maximum -n.. and its associated normalized effort. To illustiate I
the procedure, in Fig. 11.3-3(a) note that for r = 0.2, m1 is 0.9 at

t =0.3. Entering the graph in Fig. 11.3-10(a) at t 0.3, read outgo go
J 1. 6. This "point" J'ul3) = (0.9, 1.6), and the two others

that can be obtained from these figures for r = 5.0 and r = 50 are plotted

and joined by a smooth curve labeled i = 1 in Fig. 11. 3-15(a). A similar 1
plot is made in the same figure for the suboptimal control laws ac (t and 1

c2
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Figure 11. 3-15 Root Normalized Effort Versus Peak Normalized
Miss Produced by Target Acceleration

ac 3 (t) from the data in Figs. 11.3-4(a), 11.3-11(a), 11.3-5(a), and

11.3-12(a). The process is repeated in Fig. 11.3-15(b) for the case when

the autopilot time constant is 0. 1 sec.

in each of these grapns, the performance of the suboptimal

steering law ac 3 (t) approaches that of proportional guidance as the control

weighting r approaches zero. Evidently the greatest relative improve-

ment to guidance system performance is achieved by using ac 2 (t) which

includes compensation for the target maneuver. The additional Pdvantage

achieved by using the optimal steering law acl(t) is proportionately not so
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large until relatively small values of normalized miss are desired. The I
following example illustrates the use of Fig. 11.3-15.

Example 11. 3-2 - Suppose that one expects to encounter targets
which can develop a normal acceleration up to 10 g's and insists upon a I
steering law that yields a peak terminal miss of 5 feet. The resulting
required peak normalized miss in feet/g is 0. 5. The corresponding values
of normalized effort and normalized rms control level are read from Fig.
11.3-15 and tabulated in Table 11.3-2. For the slower autopilot the
optimal steering law is significantly superior; it requires an rms com-
manded accelera:tion of 34 g's with a target maneuver of 10 g's. For the I
faster autopilot, there is little performance improvement in using ac1 (t)instead of ac2 (t). However, ac2 (t) is distinctly preferable to ac 3 (t).

TABLE 11.3-2

STEERING LAW PERFORMANCE REQUIRED TO ACHIEVE A I
PEAK NORMALIZED TERMINAL MISS OF 0.5 IN THE

PRESENCE OF TARGET ACCE LERATION i f
Normalized rms

Optimal Steering Root Normalized :ommanded Ii
Efot U ac 'eleration,a1 ;

u13 (g's/g)

a =  1.0 1.7 3.4 j
a =10.0 0.4 0.8

Suboptimal Steering (ac 2 (t)) U2 3  a2 3

* = 1.0 very high; >20 very high; >20

= 10.0 0.44 0.88

Suboptimal Steering (ac 3 (t)) U33  a33

c= 1.0 * *

o = 10.0 1.44 1.2 1
denotes "not achievable".
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11. 3.4 Terminal Miss Sensitivity to Measurement Bias Errors

The effects of measurement bias errors upon terminal miss

distance can also be determined using adjoint techniques, as described in

Section G-3. If a constant error E is made in the measurement of the

state x(t) beginning at time t, the resulting terminal miss xl(T) is given by

xl(T) = li(T,t)T ; i 1,2,3

where the subscript i still refers to the steering law being used. The

differential equation for _p(T,t) is obtained by comparing Eq. (G-18) with

Eqs. (11.3-1) and (11.3-2),

ji(Tt) = hi(t) b i(T,t); 0l(T, T) = 0

where h.(t) is defined in Eq. (11.3-3) and ci(T,t) is defined by Eq. (11.3-7).

The value of any element of _.(T, t) at time t is the miss produced

by a unit bias error in the corresponding measurement of the state and zero

error in all other state measurements. All state initial conditions at time

t are also assumed to be zero. In other words, the jth element of _¢i(Tt)

is the normalized miss b..(Tt) produced by a single bias error in the

measurement of state xi.

Values of the normalized miss versus time-to-go for a target

acceleration measurement error are plotted in Figs. 11.3-16 and 11.3-17

for the same values of autopilot time constant and control weighting used

in the preceding graphs. Qualitatively it is seen that the miss becomes

smaller as the control weighting r decreases. This is true because the

decrease in r increases the feedback gains in the steering law, causing

more rapid guidance system response to the error in line-of-sight rate
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induced by the bias error, thus improving terminal accuracy. An increase

in a also improves accuracy because the autopilot lag decreases.

One useful comparison of the effects of bias errors on the

accuracy of the steering laws is obtained by plotting the peak normalized

miss from Figs. 11.3-16 and 11.3-17* versus peak normalized miss

caused by constant target acceleration in Figs. 11.3-3 and 11.3-4 for

various values of the weighting r. The cases, a = 1 and a = 10, are dis-

played separately in Figs. 11.3-18(a) and (b). Based on the comparison

between the curves for these values of a there is little difference in sen-

sitivity to bias measurement errors between optimal and suboptimal steer-

ing laws. In the case a = 10 the curves are nearly superimposed on one

another. This is to be expected because the optimal steering law ac (t)
1

approaches the suboptimal law ac2 (t) as the autopilot time constant gets

smaller.

An alternative comparison is afforded between the steering laws

by the steady state values of b incurred as time-to-go becomes large.
i3

Figures 11.3-13 and 11. 3-17 indicate that the optimal steering law is more

seihsitive to measurement bias errors in terms of the steady state values

of normalized terminal miss. This fact can have design implications for

missiles which are launched at a time-to-go equal to several autopilot

time constants. Because acl(t) has no built-in criterion for insuring an

optimal response in the presence of bias errors, theie is no reason to

expect it to yield the best performance when such errors occur.

In Fig. 11.3-16 the peak normalized miss is taken to t the
extrapolated steady state values of the curves.
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Figure 11.3-18 Peak Normalized Miss, Produced by Target
Acceleration Measurement Bias Error, Versus
Peak Normalized Miss Caused by Target
Acceleration

11.3.5 Summar

This concludes our sensitivity analysis of the optimal and sub- I
optimal steering laws derived in Section 11.2. Its main purpose is to in-

dicate an approach to evaluating different control policies in terms of the I
design objectives of an optimal control problem. Graphs of normalized

miss and control effort of the type depicted in Figs. 11.3-14, 11.3-15 and I
11. 3-18 are the principal tools for making the performance' analysis.
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These curves can be used to determine actual values of miss distance and

control effort if multiplied by an assumed value of the corresponding initial

error -- e. g., cross-track velocity, target acceleration or bias error.

Beyond this quantitative comparison of the specific steering laws,

some general quaiitative conclusions are:

0 The faster the autopilot response, the smaller the
absolute gain in terminal accuracy using optimal
steering, acl(t), as compared with ac2 (t).

In the presence of target maneuvers, suboptimal
steering ac (t) offers a significant improvement
over ac3 (t) "ecause the latter has no provision
for measuring target acceleration.

In the presence of measurement bias errors the
optimal steering law can exhibit worse perform-
ance than a suboptimal policy, depending upon
the criteria used for evaluation. In particular,
the terminal miss caused by a bias error for a
missile launched at a time-to-go equal to several
autopilot time constants away from the target is
larger when optimal steering is used.

For a given autopilot lag, a definitive judgement about which

steering law to use can be made only after considering a spectrum of pos-

sible initial values of time-to-go which are characteristic of the particu-

lar application. For a dogfight mission, sets of curves of the type shown

in Figs. 11. 3-14 and 11. 3-18 should be obtained for values of tg o ranging

over those values expected at launch. In missions where launch takes

place at relatively long ranges from the target, initial cross-track velocity

(Fig. 11. 3-14) is not so important but the steady state effects of measure-

ment errors (e. g., Fig. 11. 3-18) must be evaluated. In addition to the bias

errors treated above, the effents of continuously varying rondom measure-

ment errors ("noise") should be analyzed as outlined in Section G. 3.
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Similarly, graphs like those in Fig. 11.3-15 can be obtained for a set of

values of t over the range in which target maneuvers are expected to
go

occur, usually within a few seconds before intercept. Performance data

displayed in this fashion yield enough quantitative information to permit a

rational choice of steering law.

The performance criteria throughout the above discussion are

integral square control and the squared terminal miss. The former is

somewhat inappropriate because excessiv- peak control magnitudes can be

required. The normalized root mean square acceleration defined in Eq.

(11.3-21) gives an optimistic bound on the commanded acceleration level.

For any application it should be checked by actually computing the steer-

ing command as a function of time for representative cases.

11.4 A COUPLED GUIDANCE-AUTOPILOT STEERING LAW

The statement is made in Section 2. 1 that the steering and auto-
pilot control loops for a tactical missile are usually treated as separate

entities because their associated response times are considerably different.

This is a valid procedure when time-to-go until intercept is large with

respect to the autopilot response time; however, when the latter condition

does not hold, performance can be improved by considering guidance and

control as coupled functions.

The effect of including autopilot dynamics (assumed to be a first

order lag) in designing an optimal steering law is demonstrated in

Sections 11.2 and 11.3. Only a partially coupled design is considered

there in that the autopilot characteristics are taken into account by the

guidance law but the guidance dynamics are not taken into account when

designing the autopilot. It is shown that an optimal steering law which
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accounts for the autopilot lag is significantly better than a suboptimal law

that neglects autopilot dynamics if the initial time-to-go* is of the same

order of magnitude as the autopilot time constant. In this section we

determine what further performance benefits can be gained by treating the

autopilot and steering law design tasks as completely coupled problems.

11.4.1 Problem Formulation

In this section we formulate the optimal guidance-control prob-

lem in a manner similar to that used in Section 11.2.2. Both optimal and

suboptimal control laws are derived for comparison purposes.

Our first task is to develop a set of state equations which des-

cribe the dynamics of the overall system. The missile airframe dynamics

are taken to be second order, as in Eqs. (9.2-9) and (9.2-10) (the actuator

dynamics are neglected). To obtain the equations of motion it is conven-

ient to define a new state variable

a(t)' 4- VL aa(t) (11.4-1)

Combining Eqs. (9.2-9), (9.2-10) and (11.4-1) with the missile transla-

tional dynamics from Eq. (11.2-16) produces

,
The initial time-to-go is regarded as the point when the target begins

a constant maneuver or, in the case of an initial cross-track velocity,
the time at which the missile is launched.
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i(t) = Fz(t) + g 6(t)

z(t)T  [y(t) (t) at(t) q(t) aft)i] =- [zl(t) z2(t ) z3(t ) z4(t ) z5(t)]

-0 1 0 0 0 0

0 0 1 0 -1 -VL 6

S 00 0 0 g= 0 (11.4-2)

0 0 0 Mq Ma/VLO( M6

0 0 0 VL -La  -VL5L-

Thus Eq. (11.2-16) is altered by replacing x4 (t) with two airframe state

variables and the control variable becomes control surface deflection, 6(t),

instead of commanded acceleration. By analogy with Eq. (11.2-17) the

design objective is to choose a feedback control law that minimizes the

quadratic performance index

J = Zl(T)2 + r 6(t)2 dt (11.4-3)
10 

"

As before, zl(T) is the terminal miss. However the integral

expression in Eq. (11.4-3) is not stated in terms of commanded accelera-

tion; instead it is the integral of the square of the control surface deflec-

tion. Consequently the contribution of the control effort to the perform-

ance index has a different physical sigificance here than it does in Eq.

(11.2-17). If the control surface actuator is driven electromagnetically,

the effort in Eq. (11.4-3) is proportional to the energy consumed. If the

actuators are hydraulically driven, the quantity
T

T6(t) 2 dt
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is a better measure of energy expenditure; however, it is usually observed

that increasing r in Eq. (11. 4-3) also tends to reduce the value of the

integral-square control surface rate. Therefore the above expression for

J has useful properties for most actuator systems. With the above qualifi-

cations in mind, we shall speak of the control penalty term in Eq. (11.4-3)

as a measure of actuation energy.

Because the above optimal control problem has the same struc-

ture as that discussed in Section 11.2, analytical solutions for the optimal,

time-varying feedback gairs can be obtained using the procedures des-

cribed in Refs. 7 and 136. However, we are primarily interested in

evaluating the performance of the guidance system, a task that must be

accomplished numerically. Closed form expressions for the feedback
gains offer no particular advantage for this purpose; therefore they are

not presentea here. From the known properties of the optimal regulator

problem (see Appendix B) the solution for control surface deflection that
minimizes J in Eq. (11.4-3) is given by

61(t) = .. k(t)T z(t)1 g

ktT 1 Tk-1 - Y-- S(t) (11.4-4)
c

where the matrix S(t) is the solution to

= St)~ T 1 TS(t) = -S(t) F - F S(t) + r SMt S(t)

rc

'1 0 • 0"

S(T) 0 0 0 (11.4-5)
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It is desirable to compare the optimal control law given above
with the steering law, acl(t) , derived in Section 11.2 under the assumption

that the autopilot is already designed with dynamics given approximately by

a first order lag. Recall that the latter is an optimal steering policy for

minimizing J in Eq. (11.2-17); however it is not optimal for the problem

posed in this section. Because acl(t) is a commanded acceleration and 6(t)

is a control surface deflection, some algebraic manipulation is required to

obtain the associated suboptimal control 62 (t). This is accomplished by

defining the tlboptimal control law according to

62 (t) = - c1 q(t) - c 2 a(t)' + c3 ac(t) (11.4-6)

The fixed gains c1 and c2 are chosen to provide a stabilized airframe hav-

ing specified response characteristics and c3 is selected so that the d-c

gain between acl(t) and the normal acceleration of the airframe, a(t), is

unity. The implementation of Eq. (11.4-6) is illustrated in Fig. 11.4-1.

Equation (11.4-6) simulates the application of the steering law acl(t),

derived assuming a first order autopilot, to the actual second order auto-

pilot.

Recall that acl(t) is derived assuming the transfer function G(s)

in Fig. 11.4-1 is of the form

a
S+Uy

representing a first order lag. The value of a is required for mechanizing

the steering law. Howevwc r, in the case treated here the autopilot is actually

second order. Consequently the first order lag can be considered only as

an approximation. With the fixed gain compensation provided by c i and c 2

in Fig. 11.4-1 the autopilot closed loop poles are obtained by substituting
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Figure 11.4-1 A Second Order Autopilot Design
for a Suboptimal Steering Law

82 (t) from Eq. (11.4-6) for 8(t) in Eq. (11.4-2) and considering only the

dynamics of z 4 (t) and z5 (t); these poles are the eigervalues Xi of the matrix
4 5

M
-M c -- Mc

q M 1 VL 8 2
a

F = (11.4-7)
a

1VL(I+clL6) +VL L c

We defire -a to be the real part of that eigenvalue of Fa which has the

smallest magnitude; i.e.,

a =-sign []Re(i)] mm inIRe (Xi) ~ i = 1, 2 (11.4-8)

This is certainly not the only rational choice possible for a. If the closed

loop poles are close together a smaller value than that given by Eq.(11.4-8)
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t.

may be better. However it seems to be a reasonable selection when the

poles have sizeable imaginary parts. t
To express the suboptimal control 62 (t) in terms of the state

variables z(t) defined in E. (11. 4-2), a relation is needed for the air-

frame acceleration a(t) which i6 rvqaiired to generate a (t). From the

airframe equations of motion -- Eq. (8.1-3) and (11.4-1 -- with actuator t
dynamics neglected, it can be shown tPhat

a(t) = a(t)' - VL 6(t) (11.4-9) 1
Combining Eqs. (11.2-19), (11.4-6), and (11.4-9), 62 (t) can be written as

2I
T

62 (t) - k2 (t) z(t) r
c 3 h1 (t)

ch 2(t)

k 2( C c3 h 3(t) (1+c 3 h 4(t) VL) (1.410

c 2 + c 3 %4 (t)

where the gains hi(t), i 1, 2, 3, 4, are calculated from Eq. (11.2-19).

Equations (11.4-4) and (11.4-10) provide respectively optimal

and suboptimal control laws for the system in Eq. (11.4-2). The former

is a result of considering the tasxs of autopilot and steering law design as

a coupled control problem. By comparison the suboptimal control law

1
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does not take the guidance function into account when designing the autopilot,

and it approximates the autopilot second order dynamics as a first order

lag in deriving the steering law. In the next section the relative perform-

ance of these two control policies is compared and evaluated, using the

same sensitivity analysis techniques applied in Section 11. 3.

11.4.2 Performance Analysis

By analogy with Eq. (11.3-4), the closed loop form of Eq.

(11.4-2) is

.(t) F i(t) z (t)

.1 TFi(t)  F-ffki(t)T ; i1,2 (11.4-11)

The terminal miss z1 (T) caused by a nonzero initial value of z(t) is cal-

culated from the equations,

Z1 (T) = _i(T,t)T z(t)

_ i(Tt) - Fi(t)T i(T~t)

1

0

=i(TT) 0 i= 1,2 (11.4-12)

0

0
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r

As in Section 11.3.1 we define i..(T,t) to be the normalized miss caused
t" 1]

by a unit initial value for the j element of z; i.e., m..(T,t) is the jth

etement of p (T, t). Only the characteristics of the sensitiW4:ty to cross-

track velocity, mi2 (T t), are displayed here to illustratE: the type of

pe rformance achieved with this optimal guidance law. It is expected that

conclusions for this case will also hold qualitatively for other sensitivities

of interest.

Figure 11.4-2(a) shows curves of the normalized miss m12 for

the optimal control law 81 (t) given in Eq. (11.4-4). Curves for m2 2 cor-

responding to the suboptimal control law in Eq. (11.4-10) are given in

Figs. 11.4-4(b) and (c) for two different sbts of parameter values given in

Table 11.4-1 below. The first set (case #1) has values of fixed feedback

gains c1 and c 2 which produce a relatively slowly responding autopilot

having atime constant of 0.83 sec; the second set (case #2) yields a faster J
response with a time constant of 0.13 sec. The values of the airframe

parameters -- Mq, M, MS, L, L,, and V -- are taken from Appendix H,

Table H-2, flight condition 4. The curves for m1 2 correspond to different

values of the performance index weighting r in Eq. (11.4-3) and those for

m22 to values of the weighting r in Eq. (11.2-17).

Qualitatively, the curves in Fig. 11.4-2 are much the same as

those in Figs. 11.3-1 and 11.3-2 with respect to their dependence on rc,

r, and t go . However, the oscillations in the curves corresponding to the

suboptimal control law (Figs. 11.4-2(b) and (c)) are much more persistent

than we have encountered previously. This behavior results from the fact

that 62 (t) is derived assuming first order autopilot dynamics; however, the

actual dynamics prescribed by Eq. (11.4-7) are second order and their

associated closed loop poles have significant imaginary parts. The situa-

tion is quantitatively pictured in Fig. 11.4-3 where the actual autopilot
1
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Figure 11.4-2 Noalized Terminal Miss Distance
Produced by an initial Cross-Track
Velocity
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TABLE 11.4-1 1
PARAMETER VALUES FOR SUBOPTIMAL

CONTROL LAW 62 (t) I

Suboptimal Case No.

Control Law
Parameter #1 #2

c 12.31 x 10- 2  0.198

C2  1.91 x 10- 5  1.42 x 10- 3

c3  -1.61 x 10- 4  -1.65 x 10 3

1/a(sec) 0.83 0.13

poles and the assumed first order pole, -a, are displayed for both sets

of ccntrol parameters in Table 11.4-1. Evidently there is reason to expect

that the first order lag is ;,ot always a good approximation, especially for

case #1 where the autopilot dynamics are more nearly those of a harmonic

oscillator. The significance of these observations is that an "optimal"

guidance law based on an inaccurate description of autopilot dynamics may I
not perform nearly so well as expected from the analysis.

In addition to terminal accuracy, another quantity of interest in

evaluating performance is the control effort

=u a() d (rad2 sec) (11.4-13) U

which is a measure of the control surface deflection required for controlling

the missile. This is determined by a set of expressions similar to Eqs,

(11,3-14) and (11. 3-15); i.e., j
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x x -3
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x2

Xi: ACTUAL AUTOPILOT POLES
FOR t-h SUBOPTIMAL CASE

Oi: AUTOPILOT POLE FOR FIRST ORDER

APPROXIMATION FOR ; t SUBOPTIMAL CASE

Figure 11.4-3 Closed Loop Pole Locations for the Second Order
Autopilot and its First Order Approximation

u = z(t)T Ci(t) z(t)

i(t) C . (t) Fi(t) - Fi(t)T Ci(t) - ki(t) k i(t)T

C.(T) 0 (11.4-14)
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where k.(t) and Fi(t) are obtained from Eqs. (11.4-4), (11.4-10) and I
(11.4-11). As in preceeding sections we define a root normalized effort

Ju. i (rad-secl/2/unit state) (11.4-15)

where ci is the jth diagonal element of Ci so that the effort produced by

an initial condition z.(t) is calculated from

jU.. =  [uij Zi(t) ] 
2

Note that the units of Juj are different here than in Eq. (11.3-21) be-

cause of the different definitions in Eqs. (11.3-13) and (11.4-13). Plots

of Ju 1 2 corresponding to Fig. 11.4-2 are given in Fig. 11.4-4.

To effectively compare the optimal and suboptimal control laws,

we crossplot values of mi2 and Jui2 from Figs. 11.4-2 and 11.4-4 for given

values of time-to-go, in the same fashion as Fig. 11.3-14 is derived. The

curves are given in Fig. 11.4-5 for t = 0.4 sec and 1.0 sec.* These

data can be used to analyze the effects of various initial values of cross

track velocity on guidance accuracy and control effort, as is done in Table

11.3-1. The only difference is that the effort is now integral square control

surface deflection rather than integral square commanded acceleration.

I

Note that the number of data points is too small to draw a smooth con-
necting curve in some cases. Thils is because the oscillatory nature of the
curves for the suboptimal laws in F17. 11.4-2 cause wide fluctuations
in the vaues of ln 2 2 1.
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Figure 11.4-5 Root Normalized Effort Versus Normalized Terminal
Miss Caused by an Initial Cross-Track Velocity

Recall that there are two aspects of the suboptimal law 62 (t) tLat

make it inferior to the optimal control law when judged on the basis of the

index J, In Eq. (11.4-3). First it is derived with commanded acceleration

considered as the control variable rather than control surface deflection

and the autopilot feedback gains are preselected constants c 1 and c 2 .

Second, it is derived tssuming the autopilot is a first order lag, but the

actual autopilot dynamics are second order. Both of these assumptions

are responsible for the devirtions of the suboptima) performance curves

from those for the optimal control law in Fig. 11.4-5; the reasons for this

are outlined below.

First of all, the fixed feedback gains c1 and c 2 in the suboptimal

design tend to make the autopilot response faster than it needs to be wheni

the missile is some distance from the target. Consequently ar, iit ial
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cross-track velocity causes more control surface deflection (in the integral

square sense) than is necessary to achieve the desired terminal accuracy.

This effect is most significant in suboptimal case #2 and contributes to the

deviations from optimum of the corresponding performance curves in

Fig. 11.4-5.

In the second place, as the weighting constant r decreases, the

feedkaack gains hi(t) in the suboptimal steering law 2 (t)increase and the

overall system response becomes more sensitive to the use of a wrong

(first order) model for the autopilot. This effect is observed through the

oscillatory behavior of the curves in Fig. 11.4-2, particularly case #1

where it has already been noted that the first order lag approximation is

especially poor. The resulting contribution to terminal miss distance
-4

depends upon tg. Thus a value of r = 2.0 x 10' , which gives good per-

formance at t = 0.4 sec in Fig. 11.4-5, gives poor performance atgo
t = 1.0 sec, relative to the optimal control. If the weighting constant rgo
gets very low, the suboptimal guidance system actually becomes unstable

because the denominator of the factor

11 + c 3 h4 (t) VLa

in Eq. (11.4-10) becomes negative as h4 (t) increases in magnitude, making

all the gains in k2 (t) have the wrong sign. The conclusion is that optimal

contr(i theory can be helpful in designing laws that account for missile

dynamics, provided these dynamics are reasonably accurately modeled.

Otherise the true system performance may be substantially poorer than

that prescribed by the theory.

Heretofore nothing has been said about the behavior of the feed-

back gains in optimal guidance systems. It has been possible to ascertain
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their effect on system performance using adjoint theory, without knowing i
their specific time history. However the optimal gains associated with

61 (t) are of special interest. Figure 11.4-6(a) is a plot of the first ele-

ment of (t) corresponding to the simulation data in Figs. 11.4-2(a) and

11.4-4(a). For comparison purposes the first element of the set of gains

_k2 (t) for suboptimal case 2 is shown in Fig. 11.4-6(b). Only one f In from

each set is required because they all behave qualitatively in the same

fashion.

The point of interest is the fact that the optimal gains become

slightly negative just before intercept; this happens for all the elements j
of kl (t). Consequently the guidance system is driven into what can be

considered an unstable condition for a short period of time. The reason 5
for this behavior is that the guidance law takes advantage of the fact that

the particular missile represented by these simulations can achieve a 3
limited amount of lift from its tail control surfaces as well as from its

fixed wings. Normally the principal lift force is supplied by the wings; 3
the tail controls provide the pitching moment required to change angle of

attack, thereby varying the magnitude of the lift. However very near

intercept there is insufficient time to change the lift force on the wings,

since this requires rotating the entire missile; therefore steering com-

mands can best be realized using the faster responding control surfaces.

No such behavior is observed for the suboptimal gains because the action 3
of the control surface is not included in the model dynamics. Typically

this gain reversal is small in magnitude and it occurs just before inter- 3
cept; consequently it has little net effect on guidance accuracy. However,

* Analytically speaking, the behavior of the optimal gains is a
reflection of the fact that the airframe transfer function between
control surface deflection and normal acceleration has a right-

half-plane zero. 1
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Figure 11.4-6 Comparison of Representative Time Histories
for Optimal and Suboptimal Gains

it suggests that if the vehicle had rapidly responding rotatable wings

mounted near the center of gravity in addition to tail control surfaces, then

an optimal control law would make use of the wing controls to generate the

primary lift force,using the tail controls only to balance the resulting lift-

induced moments. That is, the entire missile airframe would not have to

i rctzte to develop an angle of attack; instead the wings would rotate with

respect to Vwe missile body, presumably resulting in more rapid control

system response characteristics. Such a design seems attractive for lifting

vehicles in those flight regimes where tail controls alone are incapable of

providii- g sufficiently rapid response. Of course against this potential

advantge,.tbe weapons designer must weigh the need for two sets of con-

trol surfaces and must consider whether the resulting configuration has

desirable aerodynamic properties.
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Another point of interest about the set of optimal feedback gains

(see Fig. 11.4-6(a)) is that they are generally increasing as time-to-go

decreases (except very close to the end of the trajectory). Physically

this is reasonable behavior because rapid system response near the end of

the trajectory is required to achieve a low value of terminal miss. The

gains decrease at the end because the lag associated with the guidance sys-

tem dynamics reduces the sensitivity of the terminal miss distance to the I
control level. If the optimal gains associated with the airframe state

variables -- k1 3 (t) and k1 4 (t) in Eq. (11.4-4)-- are conidered together

with the airframe dynamics it is found that the primary effect of the gains

is to produce a time-varying autopilot whose instantaneous pole locations A

move to the left (right) in the complex plane as k13 and k14 increase
(decrease) is magnitude. Consequently, the optimal coupied guidance-

autopilot steering law effectively produces an autopilot whose response

characteristict vary along the trajectory. The advantage of this over the

control methods discussed in Section 11. 2 is that less control energy is

consumed along the trajectory. However, if energy consumption is not j
important, good terminal accuracy can also be achieved by predesigning

the autopilot to have as good response characteristics as possible every-

where along the trajectory and then formulating the guidance problem with

the autopilot dynamics neglected, as in deriving ac2 (t) and ac 3 (t) in Eqs.

(11.2-24) and (11.2-26). The conclusion is that it is useful to include air-

frame dynamics in the formulation of the guidance problem only if expen-

diture of control actuation energy is an important consideration*; other-

wise the usual convention of separating the design of the autopilot and

guidance loop is valid.

The purpose of this section has been to demonstrate the effects

on performance of simultaneously designing the autopilot and guidance 1
See the discussion immediately following Eq. (11.4-3) regarding the

significance of Ju as a measure of control energy.
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loops for a tactical missile. Three important conclusions are drawn from

the abo--z discussion.

If autopilot dynamics are included in the problem
formulation for an optimal steering law, they must
be accurately modeled; otherwise the guidance
accuracy may be adversely affected. In particular,
the assumption that the autopilot is a first order lag
when it actually is second order with lightly damped
complex poles is a relatively poor approximation.

0 If control actuation energy expenditure is not an

important consideration, the usual convention of
separating the design of the autopilot and guidance
loops is valid.

* Guidance loop performance may be significantly
improved if a faster responding control technique,
such as rotatable wings in conjunction with tail
controls is used.

The need for adaptive control or identification of missile airframe dynamics

is implied throughout this discussion. If the autopilot is to be predesigned

Ii to achieve as good response as possible everywhere along a trajectory

that has variable flight conditions, then adaptive control techniques are

needed. Alternatively, if airframe dynamics are to be incorporated in the

guidance problem formulation, as in Eq. (11.4-2), then the parameters

Ma, M,, etc. must be identified. These tasks can be accomplished by any

of the methods described in previous chapters.

11.5 SUMMARY AND CONCLUSIONS

This chapter begins with a review of classical homing guidance

techniques -- pursuit, beam rider, and proportional guidance. Proportional

guidance is generally considered the best of the classical mthods because
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it is a self contained system that is theoretically able to null the terminal
miss when attacking a moving target. However the presence of target
maneuvers, autopilot lag, control effort constraints, and control mag-

nitude limitations suggests that steering laws designed with optimal con-

trol techniques may offer improvement in performance.

Several optimal steering laws are investigated in Sections 11.2, 1
11.3, and 11.4, each taking into account a number of different effects.

These are summarized in Table 11.5-1. The steering laws are evaluated

with respect to one another by applying them to a common set of equations

of motion. The principal conclusions are: I
* In the presence of target maneuvers, optimal steering I

laws that include a term proportional to measured
target acceleration offer substantial improvement in
guidance accuracy over those that do not, as indicated
in Fig. 11.3-15.

0 Optimal steering laws that correctly include the effects
of autopilot dynamics offer significantly improved I
guidance accuracy for steering commands that are
initiated at a value of time-to-go having the same order
of magnitude as the effettive autopilot lag. This is
illustrated by Figs. 11.3-14 and 11.3-15.

* If autopilot dynamics are imperfectly known (e.g., if a I
second order autopilot having a low damping factor is
approximated by a first order lag) the performance of
the optimal steering law may be significantly degraded
from that predicted by analysis.

* From the standpoint of implementation, the improvement I
in performance obtained bY measuring target accelera-
tion may justify the added computation required in the
guidance laws, as compared with conventional propor-
tional gpidance. However, the additional complexity
required to include autopilot or uncompensated airframe
dynamics in the guidance law, even if accurately known, 4
is probably not worthwhile unless control actuation
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TABLE 11.5-1

SUMMARY OF OPTIMAL STEERING LAWS

Conditions frr Optlmality

Neglect Minimize Minimize
Steering Maneuvering Autopilot irst/Order Second/Order T

Laws* Target Dynamics Autopilot Airframe X 2(T) + ac(T? d, (T)2, r 2 (T)2 d,

acl(t) x

ac2(t) X

ac3(t) X x

3 1(t) X X

c2(pd x x

ac(t) = commided normal acceleration

6(t) = commanded control surface deflection

xl(-), Zl(T) = terminal miss distance

r, rc  weighting constants

See Eqs. (11.2-19), (11.2-24), (11.2-26), (11.4-4) and (11.4-6).
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effort is a critical consideration; a more practical I
method for improving guidance accuracy is to pre-
design the best possible autopilot.

0 Given a set of candidate steering laws, it is possible
to generate graphical displays of performance data
using linear sensitivity analysis. The plots permit 1
rational comparisons of the techniques, based on
guidance accuracy and control effort expended. This
information, considered together with the compu- I
tational complexity of each steering law, will aid
in making a specific selection.

The above conclusions should be regarded as tentative, subject to further

refinement in a-particular application, after considering effects of random I
mimsuremeftit noise, control level and normal acceleration limiting, and

time-varying, random or intelligent target maneuvers.

The above observations have a direct bearing on missile guidance J
system design. First of all, the optimal steering laws use time-varying

feedback gains which may require more computer storage than is available

for a particular application. Therefore a designer might choose to use

constant feedback gains instead; if so, the optimal design can be used as a f
standard of comparison to evaluate the suboptimal system.

If the effokt expended by the missile control actuators is an

important consideration, there is some advantage in including the

dynamics of autopilot (ac1 (t) in Section 11.2-19) or the uncompensated air-

frame (61(t) in Section 11.4) in the guidance problem formulation. The

resulting optimal guidance law effectively provides an autopilot having

time-varying feedback gains that tend to increase as the range-to-go

decreases. Thus over a long trajectory, some saving in control efort is

achieved because the autopilot bandwidth is large only near the end of the

trajectory. However, if the actuator power supply is more than sufficient

11-78



THE ANALYTIC SCIENCES CORPCRATION

for the mission under consideration, it is reasonable to predesign the

autopilot to have as good a response as possible at all flight conditions

(using any of the methods discussed elsewhere in this report) and then to

utilize a linear guidance law that neglects the resulting autopilot dynamics.

Another important consideration is the conclusion that autopilot

or airframe dynamics should be accurately modeled if they are to be

included in an optimal steering law; otherwise the performance benefit

expected from the more complex steering law (e. g., compare the com-

plexity of Eqs. (11.2-19) and (11.2-24)) may not be realized. Therefore

when flight conditions are time-varying an adaptive capability -- either

for identifying airframe parameters or for producing an adaptive autopilot

that has predictable dynamics -- is desirable.

Finally, it may be feasible to solve the problem of achievng

good guidance accuracy, as it is related to the autopilot response time, by

using rapidly acting missile control mechanisms such as rotatable wings.

The latter would overcome the inherently slower response characteristics

of the conventional tail-controlled, fixed-wing vehicle.
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APPENDIX A

LINEAR DYNAMICAL SYSTEMS

A. 1 STATE SPACE NOTATION

Almost all of the recent advances in control theory -- work by

Pontryagin, Bellman, Liapunov, Kalman and others -- are formulated in

state space notation. In addition, this manner of stating a problem keeps

it closer to physical reality than the classical transform techniques.

A Dynamic Syctem - The dynamics of a linear system can be

represented by a first order vector-matrix differential equation in which

x(t) is the system state vector and u(t) is a forcing function, viz:

i(t) = F(t) x(t) + G(t) u(t) (A-i)

This is the continuous form employed in most modem control theory.

Figure A-1 illustrates the equation. The state vector of a dynamic sys-

tem is composed of any set of quantities sufficient to om te decribe

rthe unforced motion of that system; given the state vector at a particular

point in time and a history of the system forcing function, the state at any

other time can be computed. The state vector is not necessarily a uiique

set of variables; several sets may be able to fulfill the above requirement.

Given a high-order linear differential equation,

(Dn + a (t) Dn - i + . . + al(t) D + ao(t)) y(t) = f(t)

where Di 4dJ/dtJ, we can define a set of state variables xl(t),.. ,xn(t)

by
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R-230

Figure A-i ill1ustration of Continuous
Representation of Linear
Dynamic Equations

x (t) = y(t)

x2 (t) = '(1 (t)

xn (t) =nlt

These variables can be used to write the high order differential equation

as a set of first order -'near differential equations:

()= x2 (t)

i ()= X3 (t)

k ~t) =-a 0 ~t) xi(t) -alt) x2 (t) -a* n- (t) xn (t) + f (t)

Or, bi the form of Eq. (A-i);
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1 0 1 0 ... 0 0 x 1 0

*20 0 1 ... 0 0 x2  0

=* . . .. . .. + . (A-2)

k 0 0 . . . 0 1
n-1 1 x 0

1 2" -a 2 -a-
I.

Equation (A-2) is illuatrated in block diagram forln in Fig. A-2. Notice

that the state variables are in each case the outputs of integrations.

2-223

+

Figure A-2 Block Diagram Representation of Eq. (A-2)

in many linear systems of interest the forcing ,' nction is multi-

variable; that is, u(t) in Eq. (1) is composed of several nonzero functions.

Also, the individual elements of u(t) may drive several state variables

simultaneously, causing G(t) to be a matrix with significant elements at

locations not on its diagonal. In these cases the system dynamics may be

determined directly from the physical description of the problem.
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I
For example, a block diagram of the physical system may be sketched and

the first order vector-matrix differential equation determined by inspec-

tion. Figure A-3 illustrates a hypothetical linear dynamic system forced

by several inputs. The outputs of all the integrators constitute a conven-

ient set of state variables. The system dynamic equations can be written

in the form of Eq. (A-I); I

1 1c 1 . .. x1 "  . . . h u1

i2 a2 b 1  x2  g 2 ... h 2  u 2

h bn
xn  an bn ' . xn gn " hn Ur I

Reference 34 demonstrates the steps required to convert a higher order

differential equation into a set of state variables driven by a multi-

variable forcing function.

Ul

CCl

-&- I

Figure A-3 Bloc!. Diagram of a Hypothetical
Linear Dynamic System 3
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A. 2 THE TRANSITION MATRIX

The homogeneous unforced matrix differential equation corres-

ponding to Eq. (A-1) is

"(t) = F(t) x(t) (A-3)

I Suppose that at some time, T, all but one of the outputs of the integrators

in Fig. A-3 were set to zero and no inputs, ui, are present. Also assume

that the nonzero integrator output was given the value, one. The

behavior of the state vector for all times after r could be expressed in

terms of a time-varying "solution vector," pj(t, T), where the subscript

refers to the integrator whose output is nonzero.

[x 1 (t, r)j
, x2 (t, T)j

_j(t, T) = • (A-4)

Xn(t, T)j

If the initial condition on the jth integrator is something other

than unity, c for example, then from the linear nature of the system

Pj(t,r,c) = c (t, r)

Also, if irtegrators i and j both have nonzero outputs c. and cj at time ,

the response for the system is just the sum of the individual response

vectors

1. .(t,r, ci , C)) Cjj(t,)

But this can be written as a product of the matrix

A-5
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and the vector I[::]
In general every integrator can have a nonzero value at r and the time I
history of the state becomes the sum of the individual effects

I x~rI
ix(t) = Ilt ) (,), =.lv~,' ('

which is written for compactness as

x(t) = 0(t,T) x(r)

The matrix 0(t, ,r) is called the transition matrix for the system of 1
Eq. (A-3). The transition matrix allows calculation of the state vector

at some time, t, given the state vector at r. |

Returning to Eq. (A-4), it can be seen that the solution vectors j
obey the differential equation

t = - F(t) (t, T)

= Iwhere d.( , ) -t

0 1 1

0 0
= - = .2 etc. J

0 .0 I

I
A-6
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Therefore, the transition matrix, composed of the vectors _o., obeys the

equation

d
dt =(t, T) F (t) (t, r)

The transition matrix 4(tl, to) relates x(t 1 ) to x(to ) in Eq. (A-3);

x(tl) = (t,to) x(t0)

Similarly,

x(t2 ) = T4(t 2 ,t 1) x(t1 )

= (t2 ,tl) (tl,to) X(to)

Therefore,

4(t2,to) = Ct2,tl) ((tl, to )

This principle is illustrated in Fig. A-4 for a first order system having a

scalar transition matrix, (P(t, T). It is a general property of the state

transition matrix, independent of the order of to, t1 and t 2 in time. In

addition,

C(t,t) = 4)(t, T) I(T,t) = I

Premultiplying this expression by 40-(t, -) provides the useful relation

-1'(t, T) = 4 (r,t0

Transition Matrix for Stationary Systems - For a stationary

system, the F matrix is time-invariant and the transition matrix depends

only on the time interval considered:

0 (t, T) = 4(t -r)

A-7
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x(t2) = P(t2 , ti) x(tl) 1'125

= 0°(t2'tl) (P(tl'to) 2 Io
x x(tq ) (t,t 1o) X(to) x, 0

x

I

t _ t2 0. t

Figure A-4 Illustration of the Behavior of the State for

a First Order Homogeneous System

Equation (A-3) can be used to expand x(t) in a Taylor's series about some

time, to, I
(tt 0)2

x(t) = x(to) +*(to)(t-to) + '(t0) - - + " 

*(to)= Fx %,)

=to) Fx(to)= F2 x(to) I

etc. J
Substituting, the expansion becomes

F2 (t_t0 )2
x(t) = x(to) + F(t-t o ) x(to ) + - x(to) ,...

2 ! I
= [I+F(t-to)+ .F )...]x(to) (A-S)
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By analogy to the scalar case the matrix exponential is defined by

F A F2  F3
e I+F -4- 3! . (A-6)

Consequently, the transition matrix for the stationary system can be

identified from Eq. (A-5) as

F(t-to)

cD(t-to) 
= e

which depends only on the stationary system dynamics (F) and the interval

t-too

In stationary systems, to may often be assigned the value zero.

A useful expression for the transition matrix j)(t, 0) can be obtained by

taking Laplace transforms in Eq. (A-3). Defining X(s) as the transform
of x(t), one obtains

sX(s) = FX(s) + x(O)

or alternatively

X(s) = (Is- F)-1 x(0) (A-7)

Comparison of Eq. (A-7) with the expression

x(t) = 0(t, O) x(O)

implies that

4(t,,O) L 1 {(Is -

where L - 1 denotes "he inverse Laplace transform. Defining i(s) to

be the Laplace transfor7Zf 4(t, 0), one has

'(s) = (Is- F) -  (A-8)
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I

A. 3 THE MATRIX SUPERPOSITION INTEGRAL

Consider now the general linear system of Eq. (A-i), including

the forcing function u(t);

i Fx +Gu (A-9)
Referring to Fig. A-5 we can see that the effect of the input to the ith inte-

grator of Fig. A-3 over a small interval (T - AT, T) can be represented as an

impulse whose area is the value of the ith element of the vector G(T)u(T)times

the interval AT. Temporarily assuming that the initial conditions on all the 3
integrators are zero, this impulse wili cause a small change Ax i in the

integrator output; I

The change in the entire state vector can be expressed as

Ax2
AX(T) ==G(7) u(r) AT

The effect of this small change on the state at some subsequent point in

time can be expressed by

A x(t), given an impulse input G(T) U(T) AT = 04,T) G() U(T) AT

Because the system is linear the response to the complete input history I
can be viewed as the sum of the responses to individual impulses. In the

limit as Ar -- 0 the effect of the input on the state at some time, t. car. be

represented by

x(t) *C (t, r) G(T) U(T) dr

A-10 I
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(Gu Input to th integrator R2

Figure A-5 Representation of the Input to
the ith Integrator as mn ImpuicR

Now because the system is linear, the effects of initial conditions at

time to and the presence of a forcing function after -time to can be ccm--

bined to yield

It
xWt p ~(t, to) X(to) + 4)(t, T) G('r) U (T) dT A-C

to

The integral in E~q. (A-to) is often called the matrix superposition integral.

Of possible use in solving Eq. (A-10) is the relation

d

which can be derived from

4s(t,,r-AT) 0 (t, T) 4(T, T-A')

'XtT) (I +F (T) (A-) + F(T)(A
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The derivative is given by j
d C T) lir $(t, T)- (t, T-AT)

AT -'0 AT

im -4s(t, i") F(T) (AT) +O(AT2 )

AT -0 AT
= - 0(t,T) F(T)

A.4 CONTROLLABILITY AND OBSERVABILITY i

Consider a linear dynamical system for which a set of linear I
measurements y(t) is defined by

:_(t) = F(t) x(t) + G(t) u(t) I
y(t) = H(t) x(t) (A-11)

T he measurements are those quantities which can be directly observed at

various system output "terminals"l*. For this system of equations, u(t)

is the control and y(t) is the observation. Two fundamental properties of

the system, related to these sets of variables are defined as follows:

A system is controllable at time t1 > to if it is possible
to choose u(t) in the interval t0 :t st 1 to "drive" any
state x(to)= to any point x(t) = . I

A system is observable at time t1 > to if it is possible
to determine the state x(to) by observing y(t) in the
interval to zt r t1 .

Controllability determines whether one can achieve any desired state byI

manipulating u(t) and observability determines whether one can determine

the value of the state at any time by measuring y(t). I
This terminology is suggested by the input and output terminals of

electric networks.I

A-12
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Conditions which determine whether the linear system in

Eq. (A-11) has these properties are determined by the algebraic proper-

ties of the matrices F(t), G(t), and H(t) (Ref. 30). For constant systems,

necessary and sufficient conditions are:

A constant, nt h order, linear, dynamical system is
controllable if, and only if, the matrix

8 = [G IFGI F2G, . . . ''  G (A- 12)

has rank* n.

A constant nth order linear dynamical system is
observable if, and only if, the matrix

T= [HTF (FT)2 h H (A-13)

has rank n.

Note that because the system is time invariant, the time t1,

does not appear in Eqs. (A-12) and (A-13), implying that t, is arbitrary

so long as

ti > tO

This eoncludes a brief summary of the important properties of

linear systems used in this report. The reader is referred to Refs. 30

and 34 for more details on the subject.

*

That is, at least one set of n columns of e form a set of linearly
independent vectors.
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I APPENDIX B

OPTIMAL CONTROL OF LINEAR SYSTEMS

B. I INTRODUCTION

The basic task faced by a control system designer can often be

expressed in terms of the solution x(t) to a set of first order differential

equations

_(t) f (t), t), t ]; x(t o ) x (B-i)

The vector x(t) is called the state of the system and u(t) is a vector set of

control variables which can be specified by the designer. The objective is

to determine u(t) such that x(t) achieves some desired behavior subject to

the cause-effect relationship provided by Eq. (B-i). For example, it may

be required that certain elements of the state vector take on specified

values at a given terminal time tf, or that the solution to Eq. (B-i) (also

referred io as the trajectory of the state) should possess certain stability

properties.

Generally speaking, design criteria that are related only to the

behavior of x(t), are not sufficient to determine a unique control u(t).

Clearly if one's purpose is to transfer the state from one point x(to) = x o

in "state space" to another x(tf) = xf without any specification on the path

taken by x(t) or limits upon the control, then there are likely to be an

infinite number of paths and control functions that can be employed. Con-

sequently additional design requirements can be accemmodated.

Usually it is true that the implementation of different controllers,

all of which satisfy the desired criteria on the state, costs different amounts

B-i
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of some important measure of acceptability, -- e.g., system complexity, I
weight, and/or volume. For example, a controller for a self-contained

tactical missile guidance system that requires a large computer to I
mechanize u(t) would be unacceptable with respect to all of these charac-

teristics. Often this "cost," although quite recognizable in the resulting J

system design, is difficult to describe mathematically. Therefore it may

not be possible to include it in the design criteria in any systematic

fashion. In such circumstances a satisfactory mechanization is achieved

using a combination of intuition, experience, and trial and error. In

other situations the cost can be expressed as a mathematical quantity; a

common example is a time integral, such as

tf

) u(t) dt
t
0

or

tf

u(t)T u(t) dt

t 0
0r

Expressions of this type may represent the total amount of fuel or energy r
consumed, in which case it is desired to keep their values small. For

this case a reasonable design procedure is to determine the control so

that the associated cost is minimized, subject to any constraints on the

behavior of x(t) or u(t). The solution to a problem posed in this fashion,

called an optimal control problem, is referred to as an optimal c,-,vtrol

law; it is the best control to use for the particular design criteria

selecteA '.. generaliy, an optimal control law is one which minimizes

a specified performance ndex, defined as a functional of the state I

B-2 .1
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and the control, while satisfying the specific design constraints. Thus an

optimal control problem provides a means for selecting one control law

from the many which are permissible when there is no performance index.

Another property one desires to have in any controller design

is feedback; that is, the optimal control should be explicitly a function of

the state x(t). When it has this form, u(t) is referred to as a closed loop

or feedback control. This arrangement is needed because there are

always forces or disturbances acting upon a physical system which are not

accounted for in the mathematical model given by Eq. (B-1). These cause

the state to deviate from the path which is predicted by integrating

Eq. (B-I) with a specified u(t). If the latter is explicitly a function of time

only (i.e. it is an open loop control) the controller never senses the effect

of disturbances on the state, and the latter may drift away from its

desired path, possibly in an unstable fashion.

The above-mentioned considerations are important in any con-

trol system design problem. This appendix presents analytical details for

formulating and obtaining a feedback solution for a special kind of optimal

control problem associated with linear dynamical systems. Bsgic text-

book references for this subject are Athans and Falb (Ref. 97) and

Bryson and Ho (Ref. 137).

B. 2 THE LINEAR OPTIMAL REGULATOR

A linear dynamital system is described by a differential equa-

tion of the form

* (t) = A(t) x(t) + B(t) u(t); X(to) - x (B-2)

B-3
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+ -I

where x(t) is a set of state variables which describe the response of the

system to a set of control inputs u(t). An important optimal control 4

problem associated with this system requires the selection of u(t) such

that the "quadratic" performance index

Jrx(t), u(t)] = x(tf)T Fx(tf) + [x(t)T Q(t) x(t) + u(t)T R(t)u(t)] dt (B-3)

to

is minimized for a given terminal time tf. The weighting matrices F,

Q(t), and R(t) are to be specified by the designer where F and Q(t) are

positive semidefinite and R(t) is positive definite.*

Physically speaking, the terms in J involving the state provide

a measure of the magnitude of x(t) both at the termination time and during

the interval (to,tf). The term involving u(t) is a measure of the control

effort expended. The objective is to make x(t) small in the sense defined

by the magnitudes of the individual indices

Sx(t)T Fx(tf

t

Jx x(t)T Q(t) x(t) dt (B-4)x
t 0

A positive semidefinite matrix F is one for which the condition
T

x Fx : 0

holds for all vectors x. If this condition holds with strict inequality for
all x / 0, F is said to-be positive definite. The quantity xTF x is known

as a q~adratic form.

B-4
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This is to be accomplished with the competing requirement that excessive

control levels not be used, as measured by

tf
Ju = _() R(t) u(t) dt (B- 5)

t 0

The total performance index is the sum of Jf, J and J therefore mini-

mization of J prevents any one of the individual indices-from being too

large at the expense of the others.

The significa , ce of using quadratic forms to measure the size

of the control and the state is that they heavily penalize large values of

x(t) and u(t). In addition, the squares of state and control variables are

often identified as power and their integral square values are interpreted

as energy; e.g., Ju in Eq. (B-5) can be a measure of energy expended.

An additional nonincidental reason for the popularity of quadratic perform-

ance indices is that the solution for the optimal feedback control is readily

derived and it is a linear function of the state; hence it is relatively easy

to mechanize. Other types of optimal design criteria often permit a solu-

tion for the open-loop optimal control but the corresponding feedback con-

trol is usually not readily obtained.

The solution to the optimal control problem described above is

given by

-1 )TSt)x)
u(t) = - R(t) B(t) S(t)x(t) (B-6)

where S(t) is the solution to a matrix Riccati differential equation,

-S(t)A(t)- A(t) T S(t)+S(t) B(t)R(t)-lB(t) T S(t) - Q(t)

S(tf) = F (B-7)
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The matrix S(t) can be determined by integrating Eq. (B-71 backwards i
from the terminal time. Then a set of time-varying gains,

K(t) _ R- (t) B(t)T S(t), (B-8)

can be calculated and stored in a controller to implement the feedback I
control law

u(t) K -K(t)x(t); to < t < tf (B-9)

In this form the control is optimal for all time in the interval (to, tf)

with x(t) regarded as the initial state. The value of the performance f
index for any initial condition x(t) at time t t to evaluated over the interval

(t, tf) is given by J

J = x(t)T S(t) x(t) f
From the standpoint of implementation, observe that Eq. (B-9)

assumes all the elements in the state vector are available to generate i
u(t). Often in a practical situation some state variables cannot be mea-

sured directly; instead there may be a set of measurements m(t) related

to x(t) by a linear transformation

re(t) = H(t) x(t) (B-10) I
To implement the optimal control law, x(t) must be obtained from

m(t) as accurately as possible. Methods fdr accomplishing this I
task when the system of equations, Eqs. (B-2) and (B-10), is observable

(see Appendix A) are discussed in Refs. 138, 139, and 140. The result is

that an estimate x(t) of the state can be obtained by implementing a multi-

dimensional "filter" defined by differential equations of the form j
_x(t) = F(t) _i(t) + G(t) n"t) (B-11)
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where F(t) and G(t) are derived either from the principles of estimation

theory (Ref. 138) or from linear observer theory (Refs. 139 and 140).

Consequently when all state variables are not directly measurable (H(t)

in Eq. (B-10) cannot be inverted), the need to implement on expression

such as Eq. (B-11), as well as Eq. (B-9) with x (t) substituted for x(t),

complicates the structure of the controller.

B. 3 CHOICE OF PERFORMANCE WEIGHTING MATRICES

A critical step in defining the optimal control problem is the

selection by the designer of the weighting matrices F, Q(t) and R(t) in

Eq. (B-3). There is no direct procedure for accomplishing this task; it

embodies all of the subjectivity remaining in the design problem. The

elements in any one matrix can be selected with respect to each other on

the basis of the relative importance of various products of state vari-

ables, as indicated in Ref. 137. Often none of the cross products --

x (t) xj(t) or ui(t) u.(t), i / j -- in the quadratic forms are of interest so

that the off-diagonal terms in the weighting matrices are taken as zero.

The diagonal elements of each matrix can be sized according to the de-

sired relative magnitudes of the elements in x(t) and u(t). For instance

if the desired magnitudes of xj(tf) and xi(tf) are known relative to each

other, say

xj(tf)2  (B-12)
xi(tf)2  ]

then require that the diagonal elements f and fjD of F satisfy

_ ~2

~ (B(t3)
f jj x i(tf) 2  ri( -

B-7
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This determines fii relative to f D; hopefully the resulting optimal control

will operate to yield values of the terminal state which approximately

satisfy Eq. (B-12). Relative values of the elements in two different weight-

ing matrices can be chosen from rough, a priori knowledge of the mag-

nitudes of the penalty terms Jf, Jx and Ju which might result in a reason-

able case. For example, suppose it is kInown that the level of control

ul(t) required to yield a desired value of xl(tf) has a magnitude on the oroer

of M1 . Then let

2

11 x1 tf) (B-14)

Using some heuristic method of this type, one arrives at trial values of

F, Q(t) and R(t). If the resulting optimal control yields trajectories for

x(t) and u(t) which appear unsatisfactory, adjustments can be made to the

weighting matrices to change the system behavior.

The fact that trial and error are required to determine appro-

priate weighting matrices -or the performance index tends to contradict

the basic philosophy of optimal control. The latter implicitly contains the

idea that, given required constraints upon the state and control variables

of a dynamical system, a performance index which accurately represents

the cost of designing and implementing the system can be devised. It is

desired that this index, and no other, be minimized; however, in prac-

tical applications considerations often arise which modify this design

ioncept. In particular, frequently one has certain performance criteria

in mind which cannot be easily incorporated into the mathematical formu-

lation of an optimal control problem. As an illustration ncte that the per-

formance index in Eq. (B-3) is a weighted sum of several different cost

B-8
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factors which compete with one another. The designer may be primarily

interested in the values of individual tirms, such as

tf

23 ui(t) dt

t

Each term of this type is, for the optimal control situation, dependent

upon the weighting matrices used to define the performance index and it

cannot be evaluated without actually solving the control problem for speci-

fic choices of F, Q(t) and R(t). Thus several trial designs may be needed

before the designer is satisfied with the collective behavior of the state

and control variables and some compromise in his "true" objective, may

be required. Other examples of design criteria that are difficult to treat

mathematically are ranges of allowable settling time and overshoot in
response to step commands. In these cases quadratic performance indices

can also be used as an artifice to generate a family of trajectories from

which one, having the additional desired features, is selected. In view of

these contingencies, optimal control theory for linear systems using qua-

dratic performance indices can be a useful design aid but it is no panacea.

B. 4 THE TIME-INVARIANT LINEAR REGULATOR

An important special case of the linear optimal regulator des-

cribed in Section B.2 occurs when Eq. (B-2) and the weighting matrices

are time invariant -- A(t) and B(t) are constant matrices, A and B -- and

F =0; Q(t) = Q; R(t) = R

For this application interest is focused on the form of the optimal control

law as tf approaches infinity. Under the added restriction that the linear

constant system

B-9
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:_(t) = Ax(t) + Bu(t); x(t) = x (B-15) I

is controllable* it has been shown (Ref. 141) that the feedback control I
which minimizes

j f [x(t)T Qx(t) + u(t)T Ru(t)] dt (B-16)

to

is given by

u(t) = I- B T S x(t) (B-17) 5
The constant matrix S is the unique positive semidefinite solution to the 5
"steady state" matrix Riccati equation**

SA+ATS-SBR I B T S+Q = 0 (B-18)

The feedback gain matrix

K = R' 1BTs,

is also constant, requiring much less storage than the time-dependent

controller.

Perhaps the most important property of the above control law

is that the closed loop system

( (A - BR 1 BTS) x(t) (B-19)!

See Appendix A for a definition of controllability.

**|
When any eiger alues of A have nonnegative real parts, some additional.

restrictions on the weighting matrix Q are required (Ref. 147) in order
that there be a unique positive semidefinite solution to Eq. (B-17).
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is asymptotically stable in the large (Ref. 141). Hence even though there

is some subjectivity in the ch3ice of Q and R, various trial values of the

latter always lead to a set of feedback gains for which the system has

desirable stability properties. When the dimensions of the state and con-

trol are large, solving Eq. (B-18) is a convenient method for selecting

various values of K which have this property.

B. 5 VARIATIONS ON THE LINEAR OPTIMAL REGULATOR

One objection to the optimal regulator problem as posed in

Sections B. 2 and B. 4 is that the control law requires knowledge of all

state variables. If a filtering operation as suggested in Eq. (B-11) must

be performed on the available measurements to accomplish this task, the

system complexity increases. To avoid this difficulty it may be desir-

able to formulate an optimal control problem which requires only par-

tial state feedback. This is done simply by requiring that a control u(t)

having the restricted form

u(t) = - [t [0] x(t) (B-20)

be determined such that a performance index J (either Eq. (B-3) or (B-16)

is minimized subject to the equations of motion; e. g.,

'(t) = Ax(t) + Bu(t) (B-21)

The zeros in the gain matrix defined in Eq. (B-20) multiply those ele-

ments of x(t) which are not available for feedback. This is a seemingly

minor modificationto the optimal regulator problem; however it consider-

ably complicates the procedure for determining the feedback control law.

A numerical method for determining the gains Kr(t) is given in Ref. 142.

B-11
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Another technique for determining a restricted set of feedback

gains is given in Ref. 143. Here the condition on u(t) is the same as

Eq. (B-20) but the quadratic performance index includes cross product

terms in the state and control. This leads to a simpler solution for Kr(t)

but the physical significance of the cost functional becomes obscurred by

the special techniques used to select certain of its weighting matrices.

In Section B. 3 it is mentioned that trial and error are often

required to design the optimal regulator because the performance index

is really a weighted sum of several competing indices. To eliminate the

need to select weighting constants, it Can be required that each separate

term of J take on specified values, except the one which is to be mini-

mized. This results in an optimal control problem with integral con-

straints. To illustrate this idea, consider the problem of choosing a

control u(t) for the system

_(t) = Ax(t) + Bu(t) ; x(to ) = 2x (B-22)

such that the performance index

tf

j u(t)T Ru(t) dt (B-23)
U

t 0

in minimized subject to the constraint

tf

J = x(t)T Qx(t) = c (B-24)

o
t

4 0

where c is a specified constant. For this illustration we take F = 0 in

Eq. (B-4). The motivation for this problem formulation is the desire to

BI
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insure that x(t) is "small enough" in the interval (to, tf). Therefore a

specific value is assigned to Jx rather than including it in the perform-

ance index, as is done for the optimal regulator in Eq. (B-3). Conse-

quently there is no need to consider what the "size" of Q should be rela-

tive to R.

To solve the above problem it is convenient to proceed as if we

want to minimize the quantity

tf
At

Ju + X x(t)T Q x(t) dt (B-25)

to

where X is a weighting constant to be specified presently; for the moment

we ignore Eq. (B-24). The solution to this problem is obtained directly

from Section B. 2; the optimal control is given by

u(t) R B S(t) x(t) (B-26)

where S(t) satisfies

(t) S(t) A - ATs(t) + S(t) B R - S1(t) - XQ (B-27)

S(tf) = 0

This equation can be solved once X is known. If X can be chosen so that

Eq. (B-24) is satisfied, the solution to the problem with Jx constrained

is determined.

Appealing to the adjoint theory for linear systems* we know

that for any feedback control law

See Appendix G.
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u(t) = -K(t) x(t) (B-28)

applied to Eq. (B-21), the value of Jx caused by initial conditions x(t) at .
any time t is determined by the relation

Jx = x(t)T C(t) x(t) (B-29)

where C(t) is the solution to

(C(t) = - (A- B K(t)) C(t) C(t)(A- BK(t)) -Q(t)

C(tf) = 0 (B-30) II
If an optimal control law is used we know from Eq. (B-26) that

K(t) = R-1 BTS(t) (B-31) J

Substituting from Eq. (B-31) into Eq. (B-30) and combining with Eq. (B-26)

yields the following control law for minimizing the performance index Ju1

subject to the constraint on Jx in Eq. (B-24): 1

u(t) = - R 1 BT S(t) x(t)

S(t) = S(t) A-ATS(t) + S(t) BR IBTS(t) - XQ

t(t) = -(A-BR'IBTS(t))T C(t) - C(t) (A-BR'1BTS(t)) - Q

S(tf) = C(tf) = 0 1
X(to ) C(to) x(to ) = c (B-32) j

Because X is unknown, Eq. (B-32) is a set of coupled non- -
linear differential equations with boundary conditions at both end points.

B|1I
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Consequently they must generally be solved by some numerical method.

An iterative type procedure can be used as follows:

0 Guess a value of X.

* Integrate the differential equations for S(t)
and C(t) backward from tf to to .

* Check to see whether the expression

x T(to) C(to) x(to) = c

is satisfied. If so, S(t) yields the desired
feedback gains; if not, choose a new value
of X and repeat the above steps.

Successive choices of X can be made by any convenient finite-difference

type method.

Because the last expression in Eq. (B-32) depends upon the

initial value of the state, the solutions for S(t) and K(t) also depend

upon x(to), making the control law par'ially open loop in character. To

avoid this situation it is desirable to modify the condition on Jx by

normalizing the integral in Eq. (B-24). Thus require instead that

tf 1

it x(t)T Qx(t)

T max Tc (B-33)Jx X(to )  X(to)T X(to)

Referring to Eq. (B-29) it follows that
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= x (t o )T C(to) X(to)] IC(to)i _ c (B-34)

The scalar quantity IC(to)I is referred to as the norm of the matrix C(to);

it can be evaluated from the relation (Ref. 144) 1
K(to)i = max pi (C(to)) = c (B-35)

where Pi is the ith eigenvalue of C(to).

Replacement of the fifth expression in Eq. (B-32) by Eq. (B-35)

eliminates the dependence of the optimal control law upon the initial state; I
however it still depends upon the initial time. The last objection is elimi-

nated in the steady state situation where tf approaches infinity. Just as in I
the optimal regulator, the corresponding feedback gains become constants

which satisfy J
u(t) = - Kx(t)

K = R- 1 BTS
SA+ATS-SBR - I BTS+Q =0 

(A -BR- 1 B TS)C +C(A -BR IB TS) +Q=

max pi(C)= c (B-36)

The relations in Eq. (B-36) provide a method for choosing con-

stant feedback gains so that Eq. (B-34) is sstisfied as tf approaches

infinity. The numerical effort required to determine K is consider-

ably greater than for the optimal regulator; however there is less sub-

jectivity in defining a performance index. The extension to more than one
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quadratic integral constraint can be made quite readily by introducing

more "multipliers" X. However each new constraint requires an addi-

tional matrix equation similar to that for C in Eq. (B-36) and an addi-

tional eigenvalue condition. It is possible that the conditions leading to

the matrix norm in Eq. (B-34) can be changed to permit a simpler com-

putation than determining the maximum eigenvalue of C. This procedure

for selecting a set of constant feedback gains is largely experimental at

present and little experience with the resulting system performance or

the feasibility of possible modifications in the problem formulation is

currently available.

This concludes a summary of several important features of

modern optimal control theory. It is intended only as a review of the

material considered in this report; for additional information the reader

is referred to the aforementioned textbooks (Refs. 97, 137) and the

literature.

There are apparently some unanswered questions about existence of
solutions to this type of problem formulation.
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APPENDIX C

AN ANALYSIS OF THE M.I.T. GRADIENT METHOD

This appendix is concerned with an examination of the M.I.T.

parameter adjustment rule (Ref. 40), to determine the extent to which it

achieves the gradient algorithm described in Section 4.2 and given in

Eq. (4.2-10). Recall that the objective is to change a parameter value

hi by an amount Ahi, given by

htt~

where

tj+1-ti = T

and subscripts e and h. denote partial differentiation with respect to e and1 1

hi(tj) (see Eq. (4.2-11)). The quantity L[ e(t)] is a positive function of the

error signal. As an alternativw to Eq. (C-i) the M.I.T. rule uses the

analog gain adjustment algorithm

W= a Le(t) eh(t) (C-2)

The actual total change in hi(t) is not completed until time tj and is given by

/ (tj+l

Sij+(t) eh dt (C-3)

with continuous updating of hi(t). In order that this procedure be justified

on the basis of gradient arguments, it is required that
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The firsjt observation is that in general strict equality does not

hold in Eq. (C-4) because hi is held constant in Eq. (C-I) at the value hi(tj),

whereas in Eqs. (C-2)and (C-3)hi(t) is continuously updated. Because e(t) is

a functional of h(t) through Eq. (4.2-6), the integrands of the two expressions

differ. This fact can be detrimental to system performance if Eq. (C-2)

adjusts the adaptive gains in the wrong direction near the beginning of the

interval, thereby causing significant variations in L e (t) and ehi(t) later in

the interval. It is possible that the resulting closed loop adaptive system

coulc" be made unstable by this behavior. This potential difficulty can be

avoided by updating hi only at discrete times tj, as suggested in Section

4.2.2.

Another comparison between Eqs. (C-I) and (C-3) is afforded

by the M.I.T. procedure for computing eh i(t) for t ' t given in Eq. (4. 2-18),

and repeated here as

e eh.t W e -h (t)

1 i

h(t) = Am-(t) - b xi(t); _h (t0 ) = 0 (C-5)

In order that Eq. (C-4) hold for successive integration intervals, the quan-

tity -_hi(t) should be reinitialized to zero in the adaptive controller at times

tj, j = 0, 1,... This corresponds to beginning the integration in Eq. (C-1)

over successive intervals, with

ehi (t) hi(tj)

However, in the M. I.T. method Eq. (C-5) is implemented continuously

from t = to without ever resetting ni to zero. Presumably this is a
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matter of convenience to avoid the digital logic associated with reinitiali-

zation. Thus at first glance, the M. I T. adaptation rule looks like a

gradient procedure only over the first T seconds; for subsequent inter-

vals, the integral in Eq. (C-3) might be substantially different from that

in Eq. (C-1).

To analyze this aspect of the M.I.T. method, suppose the

adaptive system is in equilibrium at time t > t with
.~0

fi(t) = 0; e(t) = 0

At this instant let a change in some system parameter occur so that an

error begins to develop. For t 2 t > tO the sclution of Eq. (C-5) is

t

eh.(t) - - _ m(t,r) -ib x(r) dr (C-6)
to

where 45 (t, T) is the transition matrix* for the system model. On the

other hand, if Whi( ) is set to zero at t, then

te _ h (t t % (t,,r b X TT(C -7)
1 t2

where the superscript t means that the differential equations for . (t) are

reinitialized at t = t . The error incurred in using the solution of (C-6)

rather than (C-7) in the parameter adjustment algorithm of Eq. (C-2) is

related to the quantity

See Appendix A for a definition of transition matrix.
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eh(t) = eh.(t) eh.(t)t 
1 1

S T 4 m(tT) b m xi(T) dT (C-8)
to

Assuming the linear time-invariant reference model is chosen to be

asymptotically stable, the elements of the transition matrix approach

zero exponentially at a rate determined by the dominant time constant

associated with model pole locations; i.e.,the magnitudes of the elements I
of Om(tT) in Eq. (C-8) regarded as functions oi ' approach zero Ps

ce-6(tr) for some positive values of c and a. Consequently j Aehi(t) I as

given by Eq. (C-8) is small if

a(t-T) >> 0; t0 ! T t (C-9) J
The condition expressed by Eq. (C-9) holds for most values of t within

the gain adjustment interval, t ' t c t + T, if

T >> rm (C-lO)
S

where rm is the model settling time. If Eq. (C-10) is satisfied, the

resulting integrated effect of Aehi(t) upon hi also tends to be small.

The conclusion is that the analog adaptive algoriihm reliably pro- I
duces the weighting function eli(t) required in Eq. (C-1) only for an integra-

tion interval which is significantly longer than the model settling time. j
Therefore if the gain ai is assigned a value much greater than is justified for

such a long interval, or if the -system parameters and command input vary
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considerably, the real-time parameter adjustment rule expressed by

Eq. (C-2) does not necessarily correspond to a gradient method.

The object here is to provide a qualitative measure of the con-

ditions under which an analogy between the M. I. T. method and gradient

techniques can be made. It may be observed in particular applications

that the adaptive system of Fig. 4.2-1 behaves satisfactorily even when

the design assumptions do not hold; such characteristics are fortuitous

but they cannot be predicted from the theory. A by-product of this dis-

cussion is recognition that by discretely updating the adaptive gains and

reinitializing Xh. in Eq. (C-5) at times ti, j = 0, 1,..., the analogy be-

tween M.I.T. and gradient methods can be made for any value of T in

Eq. (C-I). A short integration interval is desirable to achieve a rapid

convergence rate because many adjustments of the type given in Eq.

(C-i) are required to achieve the minimum of J in Eq. (4.2-1), for

fixed values of the plant parameters. Because the increments, Ahi, are

to be computed in real time over successive intervals of length T, suf-

ficient total time is required to provide enough steps for adequate con-

vergence. Assuming that the allowable change in h which satisfies con-

dition (C-4') with adequate accuracy is independent of the length of the

interval and assuming the cost function is invariant with time, the con-

vergence rate of the gradient technique is inversely proportional to T.

Typical)y then, recalling the condition given by Eq. (4.2-4), T should

be specified by

T T m (C-I1)
m

provided that N(t) is reset to zero at the beginning of each adjustment

interval, This reasoning leads to the discrete form of the M. I. T. method

described in Section 4.2.2,
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APPENDIX D

STABILITY THEORY

In this appendix definitions and theorems related to stability

theory which are helpful in analyzing and designing adaptive control sys-

tems are given. An extensive body of literature exists on this subject,

some of which is provided in Refs. 64-71. Excellent basic treatments

are provided ii Refs. 64., 67, 68 and 71. No attempt is made to give a

complete survey of he subject here; only material required in this

report is presented.

D.A DEFINITIONS

We begin by introducing definitions of various types of stability

which apply to the asymptotic behavior of solutions of a set of time-

invariant, first order differential equations beginning at time to;

= f(x); x(t o ) = x (D-1)

We are interested in the properties of x(t) for t > to near the equilibrium

point, Xe' which satisfies

f(xe) = 0 (D-2)

By redefining the state with a shift of origin,

x(t) 4 - z(t)

one can always make the equilibrium solution for (t) equal to zero.

Therefore without loss of generality, assume x = 0.
De 1
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The solution to Eq. (D-1) near the origin "an be qualitatively

described in terms of the following definitions (Refs. 64 and 67):

1. The origin is a stable equilibrium point of Eq. (D-1)
if for every real number 6 > 0, there exists a real
number, ((6) (depending upon 6), such that the
condition

implies

Ix(t)I s 6; t > to

In other words, x(t) is bounded in magnitude by an
arbitrarily small number if the initial conditions
are sufficiently small.

2. The origin is an asymptotically stable equilibrium
point of Eq. (D-1) whenever it is stable and, in
addition,

lim Ix(t)I = 0
t -4t

More precisely, there is some real number y > 0
such that for every 6 > 0 there is also a number
T(6; x o ) for which

implies

Ix(t) s 6forallt >t o +T

These definitions provide only local descriptions of system

behavior. That is, the number c(6) might have a finite upper bound over

all values of 6. This would mean that for some value of the initial state

whose magnitude is larger than the bound, the convergence properties

expressed in the definitions would not hold. In many cases one
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desires a stronger condition on system behavior such as that pro-

vided by:

3. The solution to Eq. (D-1) is globally asymptotically

stable if it is stable (in the sense of definition 1

above) and

linm x(t)I - 0

for all x 0.

Definition 3 guarantees a well behaved system no matter how large is

2XoI.

The above definitions can be applied to an adaptive missile

autopilot having constant, possibly unknown, plant parameters and a

constant input. Ideally, global asymptotic stability of the equations of

motion (e. g., Eq. (4.4-15)) for the plant and adaptive gains about their

V equilibrium solution is desired. Some theorems which are helpful in

achieving this condition are provided in the following sections.

D. 2 LINEAR TIME-INVARIANT SYSTEMS

Conditions for achieving stability and global asymptotic stability

of solutions to the time-invariant linear equations,

k(t) = A x(t) (D-3)

are readily stated. Because the solution to Eq. (D-3) can be obtained

analytically as a linear combination of terms like

k xi(t- to)
tke 0 : k 5 Ji-1

D-3
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where X is an eigenvalue of A having multiplicity* ji, a necessary and

sufficient condition for stability is:

Re(x i ) c 0 for all i; if Re(Xi) = 0 then there exist ji
linearly independent eigenvectors - k -- k = 1,..,
Ji - which satisfy

Ak : i. k

For global asymptotic stability, it is necessary and sufficient that

Re(Xi) < 0 for all values of i.

D. 3 LINEAR PERIODIC SYSTEMS (Floquet Theory)

:, special type of time-varying linear system

_(t) = A(t) x(t) (D-4)

which can be treated in terms of the definitions stated in Section D. 1 is

the case when A(t) is periodic with period T,

A(t + T) = A(t)

It can be shown (Ref. 71) that the transition matrix** associated with A(t)

is of the form

*(t,t o ) = P(tt o ) e  (D-5)

where P(t, to ) is periodic in T and R is a constant matrix; eR is defined

in Eq. (A-6). The solution x(t) to Eq. (D-4) at times to+nT -- n = 0,1,.. --

is given by**

x(to +nT) = O(to +nT,t o )x o  (D-6)

That is, there are ii eigenvalues of A which have the value i.
**

See Section A. 2.

D-4
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Substitution of Fq. (D-5) into Eq. (D-6) and using the fact --

P(to +nT, t,) = P(to, to) = I -- produces

x(to +nT) = eRnTx o = 4(to Tto)nx o

Thus the behavior of x(t) at integral periods can be described by a dif-

ference equation,

x(to+nT) = 4(to+T, to ) x(to+(n-1)T) (D-7)

where Ab is independent of n. In terms of the eigenvalues Xi of 0(to + T, to),

each having multiplicity ji, a necessary and sufficient condition for

stability* of solutions to this difference equation is (Ref. 68):

l l1 for all i; if 1xii =1then there exist ji
linearly independent eigenvectors _k -- k = 1,

i " which satisfy

to+T, to)k Xi

For global asymptotic stability it is necessary and sufficient that

lxii < 1; alli

These conditions togther with Eq. (D-5) imply the respective stabil ;y

and asymptotic stability of x(t) for all time.

The above discussion demonstrates that the stability proper-

ties of Eq. (D-4) depend upon the eigenvalues of the matrix

I(t o +T, to) = eRT (D-8)

Stability and asymptotic stability of difference equations are defined in
the same manner as in Section D. 1 except that t is replaced by nT.
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t

In general the matrix R on the right side of Eq. (D-8) cannot be determined

analytically; however, it may be practical to obtain 0(t 0 +T,to) by

numerically integrating its differential equation

$(t,to) = A(t) 0(t,t o ) ; (to, to) = I

over the interval to : t r to + T, especially if T is relatively small. In

this manner the stability of periodic systems can often be ascertained.

D.4 NONLINEAR SYSTEMS (Linearization)

When presented with a nonlinear system to analyze, as in

Eq. (D-1), commonly one's first approach is to linearize the equations

about an equilibrium point and study their behavior with higher order.

terms neglected. To this end suppose Eq. (D-1) can be written as

'(t) = f[x(t)] = Ax(t) + g [x(t)] (D-9)

where

lim -0
lxlo "x77---

and A is a constant matrix. Typically A is determined by calculating

a x0 

The behavior of x(t) about the origin can be expres3ed in terms

of properties of the matrix A. Recall that local stability properties are
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expressed by Definitions 1 and 2 in Section D. 1. In particular, it has

been proved (Ref. 71) that the solution to Eq. (D-9) is (locally)

asymptotically stable if the eigenvalues X i of A satisfy

Re(Xi ) < 0; for alli

and that the origin in unstable (i. e., it is not stable in the sense defined

in Section D. 1) if

Re(Xi) > 0 ; for any i

In a similar manner the Floquet theory described in Section D. 3 can be

applied to determine local stability properties when A is periodic.

An important observation is the fact that nothing general can

be said when

Re(Xi) 0 • all i

Re(Xj) = 0 ; some j

For this case tne effect of the nonlinear terms must be investigated; this

fact is effectively demonstrated in Eq. (4. 2-44). One special case where

some eigenvalues of A have nonzero real parts is treated in Appendix E.

D. 5 NONLINEAR SYSTEMS (Liapunov Theory)

For the nonlinear system,

*(t) = f[ x(t)] (D-10)

global stability properties can often be determined by methods associated

D-7

I



THE ANALYTIC SCIENCES CORPORATION

principally with Liapunov (Refs. 65, 67, 68). The relevant theorems are

stated without proof in this section.

Theorem 1 (Ref. 67)

Let there exist a scalar function V(x) associated with
the state of Eq. (D-10) and having the following
properties:

(a) V(x) and its first order partial derivatives are
continuous in a certain open region R about the
origin in n-dimensional Euclidean space.

(b) V(x)>0; x / 0, xiR

(c) V(o) = 0

Then the following statements are true with respect
to solutions x(t) of Eq. (D-10):

1(a) If V(x(t)) 0 along solutions of Eq. (D-10) in
R, the origin is stable. A V(x) with this
property and which satisfies conditions (a),
(b) and (c) above is called a Liapuov function.

1(b) If V(x(t)) < 0 along solutions of Eq. (D-10) in
R, the origin is asymptotically stable.

1(c) If 1(b) holds and R is the whole Euclidean
space, denoted by the symbol En, with

Jim V(x)
IXI co

then the origin is globally asymptotically
stable.

1(d) If 1(a) holds, if R = En, if VF(x(t)) does not
vanish identically in t • to for any to and
any XE 0 0, and if

lim V(x)

then the origin is globally asymptotically
stable.
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The details of the above theorem can be motivated by Fig. D-1 which

illustratcs possible trajectories for x(t). The contours of constant V(x)

are closed in the vicinity of the origin. If the contour

V(x) = V(x o )

is contained in R as indicated and if condition 1(a) of the theorem holds,

V(x(t)) is never increasing and the trajectory, denoted by x la(t), must

remain within the contour. On the other hand if condition 1(b) holds,

V(x(t)) is constantly decreasing and the trajectory, denoted by xlb(t),

must eventually app:oach the origin. Similar arguments apply to the

other conditions of the theorem.

Notice that the conditions of the theorem require one to find

an appropriate V(x), i.e., a Liapunov function; however there is no

general systematic method for doing this. This matter receives a great

deal of attention in the literature; suitable functions have been found for

R -2724

x2

0 10

V V(x')

Figure D-1 Illustration of Theorem 1
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"S,
I.

various special types of nonlinear systems. The failure to find a form 4.

of V(x) which has the desired properties for a secffic case does not mean

that one doesn't exist. Consequently proving stability with Liapunov t"

techniques is an ad hoc procedure. T

The next thLeorem treats the case where (xt)) = 0 along some

solution to Eq. (D-10).

Theorem 2: (Ref. 65) 1

Let there be a scalar function V(x) satisfying conditions
(a) and (b) of Theorem 1 with R =-En and g(x(t)) 0 I
along solutions of Eq. (D-10) and

lim V(x)= I
_ I-0

Let T be the set of values of x such that

4(x(t)) =0 ; x c T

and let S be the largest subset of T such that

x(to , in S => x(t) in S; t 2: to

Then all solutions converge to S as. t -.

Theorem 2 says that under suitable conditions, x(t) must

approach a set of values S such that " (x) = 0 for all x contained in the

set. This result is particularly useful when Eq. (D-10) does not have

a unique equilibrium point. In such a situation, S may be the set of all

solutions to the equation

f(x) =0

and one can establish the convergence of x(L) to S.

D1
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AU of our discussion thus far has been related to time-

invariant systems. Some remarks about the time-varying case are given

]i the next section.

D. 6 TIME-VARYINCG SYSTEMS

The equations under consideration in this section are of the

form

= [xt), t]; x(t o ) =X

f(0,t) = 0 (D-11)

Most of the definitions and theorems of the preceding sections can be

modified to give general stability conditions for solutions to Eq. (D-11);

the essential difference is that conditions whipch are uniform with time

must be imposed. One useful result applicable to Eq. (D-11) is a simple

extension of the theorems in Section D. 5 given by the following:

Theorem 3

Suppose we are given a function Vl(x) which satisfies
the conditions on V(x_) in respectively Theorems 1 and/or
2 of Section D. 5 and also a continuous function V2 (x)
satisfying both

V2 (0) = 0

and the set of conditions on VT(x) in Theorems 1 and/or 2
respectively. Then if

" l~x(t),t) V2 (x(t))

along solutions of Eq. (D-11), the solution of Eq. (D-11)
has the stability properties described in Theorems 1
and/or 2 respectively.
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This can be viewed as a special case of the general theorems for time-
varying systems; that is, VI(x) has all the properties required of a
time-varying Liapunov function for Eq. (D-11) (Refs. 65, 67). J

Thus far conditions have been given for convergence of x(t) to

a set where the Liapunov function satisfies the condition

It has been assumed that motion is restricted to a region where

(xt) a 0 (D-12)

However, acceptable operation can sometimes be attained even though

(x(t)) 0 inside a small region about an equilibrium point; one might

expect convergence of x(t) to some type of oscillatory condition within

the region. Limit cycling, steady state solutions achieved in some non-

linear control systems are examples of this type of behavior. These

considerations motivate a discussion of a somewhat different type of

stability than thst defined in Section D.1. i

D. 7 PRACTICAL STABILITY

Practical stability deals with the beha-ior of the solution x(t)

to a set of differential equations

_(t) = f[x(t), t] (D-13)

when a positive scalar function V(x) exists such that "[x(t), t] does not

satisfy the condition in Eq. (D-12) everywhere in the vicinity of the I
equilibrium point. In this case a different type of stability from that

associated with Liapunov theory can sometimes be established (Refs. 65 1
and 67). A useful result of this type is the following:

!
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Theorem 4

Let a function Vl(x) be given - hich satisfies the
following:

(a) Vl(x) and its first partial derivatives are
continuous in En.

(b) Vl(X)> 0; x 0

(c) lir V) -
,xjl-.=.

Also let tAiere be a continuous function V2 (x)
satisfying:

(d) V2(x) > o; x / 0

(e) V2 (O) = 0

Now define a set of S by the condition

V2_< xinS

Then if

"t),t) <- V2 (x(t)) + M

along solutions of Eq. (D-13), it follows that x(t)-.T
as t-.=, where T is a set defined by

Vl(x) <! L *.=> x ET

L= Max VlW
xinS

The content of the theorem is illustrated by Fig. D-2. Any solution xl(t)

which starts outside T must converge to T since

< 0; for all x outside T

D-13
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xM

Figure D-2 Illustration of Motion that
Exhib'ts Practical Stability I

Furthermore, any solution x2 (t) which begins within T must remain in I
T since

1 < 0; x in the boundary ofT I

Tds concludes our summary of several methods for deter- I
mining stability properties of differential equations. These techniques

are important for achieving satisfactory designs for adaptive controllers

because they provide a qualitative description of the behavior of non-

linear and linear time-varying systems,,

H
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APPENDIX E

A LOCAL STABILITY THEOREM FOR ADAPTIVE SYSTEMS

In this appendix, conditions are established for local stability of

a nonlinear system, having equations of motion similar to Eq. (4.2-40). The

need for this arises because conventional stability theorems cannot be

applied to a linearized system when it has some closed loop poles at the

origin of the complex plane.

Consider the nonlinear, time-invariant system described by

k(t) = A x(t) + f[x(t) ; x(O) = X (E-1)

with the partitioned form

- (t )  All A 1 2  I -t)1 Ff 1 (t) S(t]

- , +

where xl(t) is an n-dimensional vector, x2 (t) an m-dimensional vector,

All an nxn matrix, A1 2 an nxm matrix, and A1 an mxn matrix. Let

the total dimension of x(t) be i = n + m. Equation (E-2) has a special

uncoupled nature in that x2 (t) is driven by only xl(t). It has the same

structure as Eq. (4.2-40) without the forcing terms; the effects of the

latter will be investigated subsequently.

Our purpose is to establish conditions fox- which stability of the

equations

(t) K(t)

E-1



THE ANALYTIC SCIENCES CORPORATION

implies local stability of Eq. (E-1); in particular we are interested in the

case where A has some eigenvalues at the origin of the complex plaze. -

The results of this investigation are summarized in the following theorem:

Theorem

Suppose the system described by Eq. (E -2) satisfies .
the conditions:

(a) Tie eigenvalues si, i = 1, 2,.. , 1, oi A satisfy*

Re(s i ) < 0 ; =,.r

s.= 0; ir+1,..,4

That is to say, the nonzero eigenvalues of A
have sue gaive real parts and there are

-r -q eigenvaluc with the value zero.

(b) Rank (A12) = m-q 1

(c) If = a, then there exists a > 0 such that

lim 1(El'E2) ya= ""

I0Lo -1

limV

Then it follows that the solution to Eq. (E -1) is locally
stable, and furthermore locally we have

Ur ,(t)I = 0 (E-3)

Re(s) denotes the real part of the complex number s.

E-2



THE ANALYTIC SCIENCES CORPORATION

The proof of this theorem is similar to that given by Coddington

and Levinson (Ref. 71) for the case when the eigenvalues of A are strictly

in the left-half complex plane. The hypotheses of the theorem are moti-

vated by the various steps required to verify Eq. (E-3). It is clear that

in general Eq. (E-3) must hold for stability because the state x2 (t) in

Eq. (E- 2) is given by

t

x2 (t) = X2 (0) + [A2 1 xI(T)+f 2(2Xl(T))]d (E-4)

0

If (t) does not approach zero sufficient!y rapidly, x2 (t) will tend tobecome arbitrarily large for some futions _f2(xl). The main task is

to demonstrate that the zero eigenvalues of X do not contribute to the

solution for x (t).

From Appendix A we know the solution to Eq. (E-1) satisfies

t

x(t) = t,0) x(0) + 4(t,r) f[x()] dr (E-5)

0

where 0(t2,t 1 ) is the transition matrix associated with A. Write O(t, 0) in

partitioned form

11(t0 I12(t 0F I
04t,0) =(E -6)

SL 1 (t ' ° )  022(t, ° )

with the same partition dimensions as A and expand Eq. (E -5) to obtain an

an expression for xl(t)

E-3
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From )=11t,0 0+ 12(t,0)_20 )

I

+ (t, ) (' (E-9)) + I(:d

0 (E -7)

From Eq. (E-7) it is clear that in order for Eq. (E-3) to be satisfied, it

should be true that

p. .((t,0)l ii D 1e2(t,0) - 0 (E-8)

where 1 iis the matrix norm.* Otherwise the contributions of the initial

conditions to xn(t) may not approach zero. Eq. (Eo8) is verified below

by examining the detailed construction of (t, O) under the hypotheses of

the theorem.

The Laplace tralsformi 6(s) of 0(t, 0) is given in Section A. 2 as

0 (S) = (IS-A)- (E-9)

Denote Fi4(s) as the element in the ith row and jth column of [(s) and
define the cofactor (Ref. 145) associated with the i-jth element of the

matrix (Is - X) as Pij(s). Recall that

Pij (s) = (-I)i +j Set I (s) (E-10)

The appropriate definition of a matrix norm I AI for this application is
(the maximum eigenvalue of ATA)I/2. This definition is "$gmpatible"
(Ref. 144) with the euclidpan norm of a vector Jxl = (xTIx)zl , in the
sense that .

JAx.I :c JAI Jxj

E-4
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where Mi (s) is the minor (submatrix) obtained by deleting the ith row and
jth column of (Is -4. From the definition of the inverse of a matrix

(Ref. 145) it follows that

P. .kS
Fs Js (E-11)

Det (Is - A)

Because A has q eigenvalues at the origin (hypothesis (a))

Det (Is - s) = sqp(s) (E-12)

where p(s) is a polynomial with strictly left-hall plane zeros (i. e., none

have zero real parts). Conditions (a) and (b) of the theorem imply that the

first n columns of A are linearly independent, both of each other and of

the last m columns in A, and also the rank of A is equal to r. Therefore,

Rank (Mij(0)) = r -1; (E-13)I j = 1, .. ,

Consequently, because the dimension of M. (s) is i - 1,

e (Mi = 1, .. ,

Dt i

c (L-1)-(r-1) = -r = q (E-14)

where q..(s) is a polynomial. Substitution of Eqs. (E-12) and (E-14) into

Eq. (E-11) produces

F..s) 1 ~+j (c -q) i =
F1(s) s ')+ s(=' s (E-15)
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where c - q z 0. Referring to Eqs. (E-6) and (E-9), each element of I
ill(s) and j12(s) is given by F i(s) in Eq. (E-15) which has its poles --

i. e. , the zeros of p(s) -- strictly in the left-half complex plane. This

implies that the elements of 4 11 (t, 0) and 0 12(t, 0) decay exponentially and

therefore the associated matrix norms have exponential bounds (Ref. 34),

a> 0 (E-16) 1
I 012(t,0) I  k2

- t )
where k1 and k2 are some positive constants. This establishes Eq. (E-8);

now we can proceed directly to the proof of the theorem, following Ref. 71.

For convenience take k, = k2 = k in Eq. (E -16). Taking norms

of both sides of Eq. (E-7) and substituting Eq. (E-16), one obtains

Ix_ 0t lc k e't(IxS1o0l + Ix2(o>))'
+k e'(tT)IIfjl( ),x2(r)) 1+112(x1(r) 1) dT (E-17) ]

t

Hypotheses (c) and (d) of the theorem imply that for any C > 0, there

exists an a and a 6 such that if

1i2(t) a (E-18)

then

i-1(1t) x2Vt))I : 2k

11 x--1(t)2 (E-19)

E-6
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The first condition in Eq. (E -19) follows from condition (c) of the theorem;

in particular take

E (E-20)
C2ky

The second condition in Eq. (E-19) follows from condition (d) of the

theorem; I.e., f2 ixl] -. 0 faster than x1 . Substitution of Eq. (E -19) into

Eq. (E-17) and transposing e - a t produces

t

e~~~ Ieit) x ((r)+xoI+~ a di- (E-21)
0

subject to Eq. (E-18). This inequality yields (Ref. 71, p315)

JE(l k (I(El (E~t 0-22)

Now if we require

E < ar

x (0J+1S2'01 ! k(E-23)

Eq. (E-22) becomes

Ixl(t) t  8e(a-)t < 6 (E-24)

The conclusion is that for sufficiently small initial conditions on

the state, x1 (t) is indeed less than or equal to 8 as required by Eq. (E-18),

but still subject to the requirement,

ix2 (t)I

E-7
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To check the latter condition, we calculate a bound on x2(t). Substitution

into Eq. (E-4) i on, Eqs. (E-18), (E-19) and (E-24) produces

A dt (E-25)°~~ !-k2!1 121 k
which reduces to

x? Ix(o+(5A21 k)0)17, 11

Given the quantities a, E, k, I A21 , and a as specified by Eqs. (E -20), 1
(E-23), (E-16), (E-2), and (E-16) respectively, one can choose 8 and

Ix2(0)1 sufficiently small so that by Eq. (E-26) I

I x2(t)I 5 (; t 2 0

Therefore the assumptions in Eq. (E-18) made in deriving Eq. (E-24) are

consistent and x1(t) -- 0 exponentially, thus proving the theorem.

To apply the theorem to Eq. (4.2-40) neglecting the forcing

terms, make the identifications

x1(t) = 8x(t); x2(t) = 6h(t)

A 1 1 =A-bh; A 12 bT

i 0 o

A2 1  Bx m mT; B' -

0 " ' t
T

(t -b 8h(t) 6x(t)

12 (x2S2 (t)) = b 8x(t)T 8x(t) (E-27)

E-8
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The conditions of the theorem are checked as follows:

(a) The eigenvalues of A are determined by expanding
Det (Is -A.). Using the Schur identities for the
determinant of a partitioned matrix (Ref. 146) it
follows that

Det(Is - A) = snDet(Is - A 1 - -41 2A21 )

Substitution for All, A1 2 , and A2 1 with some
algebraic manipulation produces

Det(Is - A) = n-lDet (Is - AI.1) T(s)

T(s) = s + ke Go(s)

e oi' mi

G o(S)  (i-A, b

where ke and Go(s) are defined as in Eqs. (4.2-47)
and (4.2-50). Note that the zeros of Det(Is - A1 1 )
are cancelled by the poles of T(s). Now we assume
that the adaptation gains f." and the quantity h o in
All can be chosen so that T(s) has n + 1 zeros
located strictly in the left half complex plane, as
discussed in Section 4.2. 6. Therefore

r = n+1

q =n-i

(b) From the structure of A1 2 in Eq. (E-27) it follows
that

Rank(A1 2 ) = 1

Using the results from (a) above,

m -q = n - (n -1) = 1 = Rank(A1 2 )

Therefore condition (b) is satisfied.

E-9
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~I

(c) Condition (c) is satisfied because 1

where we identify

IE2 (t)I a

(d) Condition (d) of the theorem is satisfied because
f2 (Xl) is quadratic in x1

Therefore Eq. (4.2-40) is locally stable in the sense defined in the theorem, I
subject to the condition that the zeros of T(s) have negative real parts.

The above development provides sufficient conditions on the
matrix A' and the nonlinearities 1 and f 2 in order that the solution to

Eq. (4.2-40) be locally stable, neglecting forcing terms. To assess the

effect of the latter, modify Eq. (E-2) as follows I
k(t) = Ax(t) + d + f(x(t)) (E-28) j

where d is a constant forcing term added to account for the corresponding

quantity in Eq. (4.2-40).

Assume Eq. (E -28) has a steady state solution x which satisfies

Ax +d+ f(xs) = 0 (E-29) I

Define a new variable z(t) by

z(t) = x(t)-x (E-30)

E-10
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where the partitions correspond to those for x(t) in Eq. (E -2). Substitution

from Eqs. (E-29,and (E-30)into Eq. (E-28)and expandingthe nonlinear term

about x produces

~f
i_(t) - i z(t) + _x- z(t) + higher order terms (E-31)

bx
-S

where a f/ax is the matrix with its i-jth element equal to fi/bxj. Now

define the partitioned matrix

ff  6 f1=1-1 -

1:i -2 F11 F12
ax 1 b! bi2 Fz F22

i2 --!2 [F 2 1 F2 2]JE-2

"-

The result of combining terms in Eq. (E-31) and using Eq. (E-32) is

z(t) = (A + F) z(t) + higher order terms (E-35)

Using Eq. (E-27) we can evaluate the partial derivatives in Eq. (E-32) as

follows:

Fl bNhT; F 1 2 = -b 6x T

F21 =BI(cT x5sI+ xs cT ); F 2 2 = 0

The higher order terms in Eq. (E-33) are quadratic fur.t.,ions similar to f

and f2 in Eq. (E-2). Thei efore from the above relations it follows that the

E-Al
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unforced nonlinear equations of motion for z(t) have the same structure I
as Eq. (E-2) and the stability theorem can be applied to the matrix

(A + F).

This concludes the investigation of conditions for the stability

of Eq. (E-2). The results obtained enable one to make some qualitative

statements about the behavior of Eq. (4.2-40) as described in Section

4.2.6.

I

I

I

i
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APPENDIX F

THE STEADY-STATE MATRIX RICCATI EQUATION

In determining the optimal control u(t) for a linear time invariant

system which minimizes a quadratic performance index

tf

j = x(t)T Qx(t) + u(t)TR u(t dt (F-i)

subject to the equations of motion,

k(t) = Ax(t)+Bu(t); x(to ) = x (F-2)

-O

the matrix Riccati equation

T -ITS(t) = -S(t)A-A S(t) +S(t) BR B S(t) -Q

S(tf) = 0 (F-3)

has an important role.* Its solution enables one to mechanize the optimal

linear feedback control law

u(t) - I BT S(t) x(t) (F-4)

An important special case of the above is when the terminal time is infinite,

tf = , so that S(t' becomes a constant S which is the solution to the steady

state equation

SA+AT S-SBR BT S+Q = 0 (F-5)

See Appendix B

F-1



THE ANALYTIC SCIENCES CORPORATION

This is an important result because the linear control law requires only I
constant feedback gains; therefore techniques for determining S are of

interest. The latter are the subject of this appendix. Our emphasis will !

be upon methods that are feasible for solving Eq. (F-5) on-line in an adap-

tive control system as described in Section 5.4. To guarantee that there i
is a unique positive semidefinite solution for S, it is assumed throughout

this discussion that Q is positive semidefinite, R is positive definite, j
the system represented by Eq. (F-2) is controllable,* and all the eigen-

values of A have nonnegative real parts. If the last of these conditions I
does not hold, Q must be further restricted, as discussed in Ref. 147.

Because Eq. (F-5) is a nonlinear matrix equation, it usually has

no closed form solution and consequently some numerical technique mustt

be used to obtain a close approximation to S. Three methods described in

the literature are

Numerical Integration I
Newton's Method

Eigenvector Method 1t

The essential features of each are summarized ana then comparisons of

their relative computational complexity are made.

Numerical IntegMtion - Perhaps the most obvious technique for

sol ing Eq. (F-5) is to integrate Eq. (F-3) to a nearly steady state condition.•

It has been established (Ref. 147) that beginning with any positive semi-

definite value of S(tf) and integrating Eq. (F-3) backwards in time, the I

solution for S(t) satisfies f.
*I

See Appendix A for a definition of controllability
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Ii

lir S(t) S,
t -4 _C0

converging exponentially. That is,

Is-S(t)l ae - t (F-6)

for some positive constants, a and a, where I I denotes the matrix norm.

The significance of Eq. (F-6) is that over an interval of time having

length A, the bound on the error in the solution is reduced by the

factor e

max IS-S(nA)I r e-7 max IS-S((n-1)A)l (F-7)

In the terminology of numerical analysis (Ref. 148) the method has first

order convergence properties.

Newton's Method - Newton's method is an important recursive

technique for solving nonlinear algebraic equations (Ref. 148). Several

authors have described its use for the matrix Riccati equation

(e.g., Refs. 147 and 149) in Eq. (F-5). Applied to this problem it results

in the expression

(A -BRIBAS-) Sk+l+Sk+( A-BR+BTs kBR- Q 0
E Sk)skSBR+ B) SkQ

(F-8)

Given a value for Sk, Eq. (F-8) is a solvable linear relation in Sk+1 under

our assumptions on Q, R, and A. Because k + 1 is symmetric, the total

number of unknowns to be determined is

n(n + 1)

2

If the recursion begins with any positive semidefinite matrix SO such that

the eigenvalues of the matrix

F-3
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A-BR BTSo I

all have negative real parts, then the sequence fSkI generated by Eq. (F-8) I
converges to the solution of Eq. (F-5) (Ref. 147).

With respect to the convergence rate of this technique, it is

known (Ref. 148) that as Sk approaches the solution S, the error behaves as I

S-Ski£ 2  (F-8)j
l _ l 5 ' IS_ _ll- I

where t is a positive constant less than one. Compared with Eq. (F-7) 1
Eq. (F-8) indicates a much more rapid convergence rate as Sk approaches S

because the factor , decreases rapidly with k whereas e is constant. I
Therefore Newton's method exhibits second order convergence properties.

Eigenvector Method - The third technique is found to be most

efficient when the dimension of S is large. It is based upon the fact that

S(t) in Eq. (F-3) can also be determined from the relations (Ref. 97)

--BR B

~(t) Wt)

Q (0) = 14E 1n
- 1(T't) T1 2 Tt)

r 1

O(Tt) _ _

02 (Tt) 0 0 2 2(Tt)L 2
S(tT) - - 022 (T,t) n 2 1(Tt) (F-9)
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where Q is a 2n x 2n matrix (A being of dimension n), Qlij(T, t) --
1J

i, j, = 1,2 -- is an n x n matrix and S is regarded as both a function of t

and T. The solution to Eq. (F-5) is obtained from

S - im S(T, t) ,lim 1% (T)' 1 (T t)t (F-10)
T -co T-222

or alternatively

S - lim - 22(Tt) fl2 1(Tt)1  (F-i1)

Because the differential equation for n (t) is time independent, we can take

T = 0 in Eq. (F-11) so that S can be determined by

S = lim n-f 22(O,t 0 2 1 (0,t) (F-12)

The details of the method involve determining the eigenvalues

and eigenvectors of the matrix

[A -BR B

whic pemitthelimt i LW "AT

which permit the limit in Eq. (F-12) to be easily calculated. Several

algebraic steps must be completed and they are described in Refs. 150 and

151. For large values of n (n = the dimepsion of S), less computation time

is required for this procedure than for Newton's method. Newton's method

requires inversion of a matrix whose dimension is (l/2)(n)(n - 1) and the

associated computation time is proportional to n6 ; furthermore when n is

large or if the matrix to be inverted is ill-conditioned (Ref. 144),

F-5
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excessive numerical errors may be incurred. By contrast, the computation

time required for the eigenvalue method is proportional to n3

For tactical missile applications, Newton's method seems to be

a feasible procedure for solving Eq. (F-5). The order of the system is

sufficiently low so that the required matrix inversion can be accurately

accomplished and the associated programming instructions are less com-

plicated than those required by the eigenvalue method. The total compu-

tation time required to obtain a solution in the cases considered in Chapter 9

is roughly 1/100th of that required by the numerical integration technique.

The integration technique has also been compared with the eigenvector

method (Ref. 151); for the cases reported the former typically requires a

computation time 100 times longer than the latter to obtain a solution for S.
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APPENDIX G

ADJOINT THEORY FOR LINEAR SYSTEMS

When designing a control law u(t) for any known system of

equations,

'(t) -- f(x(t), u(t))

it is desirable to be able to analyze the system performance for various

choices of u(t). This can always be done numerically simply by integrat-

ing the equations of motion. Different sets of initial conditions and types

of measurement errors can be tried to obtain representative simulations

of actual system operation. In general, a great deal of computational

labor is involved in examining a satisfactory number of cases to obtain a

measure of "average" system behavior. However, if the equations of

motion are linear, the task of performance evaluation can be greatly sim-

plified by the use of sensitivity functions which analytically determine the

effects of initial conditions and measurement errors. These functions are

derived here using so-called "adjoint theory" for linear systems.

G. I PROBLEM FORMULATION

Consider the linear dynamical system

"(t) = A(t)x(t)+ B(t)u(t): x(to) = x (G-1)

where u(t) is a linear feedback controller given by

u(t) = K(t) x(t) (G-2)
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and K(t) is a specified matrix. Define three performance measures for

the system as follows:

Jf x(tf)T F x(tf) (G-3)

tf x(t)T Q(t) x(t) dt (G-4)

t0

Ju tf u(t)T R(t) u(t) dt (G-5)

'0

where F, Q(t), and R(t) are assumed to be symmetric, positive semi-

definite matrices. The quantity Jf is a measure of the magnitude of the

terminal state at time tf, Jx indicates the size of the state along a solu-

tion to Eq. (G-1) and Ju represents the amount of control "effort" expended.

These are all familiar quadratic performance indices used in optimal con-*
trol theory. Our purpose he:re is to indicate how Jf, Jx, and Ju can be

evaluated, given any linear feedback control law, in terms of initial con-

ditions x(to ) on the state and measurement errors incurred in implement-

ing Eq. (G-2). j

G.2 TERMINAL STATE SENSITIVITY TO INITIAL CONDITIONS

To determine the sensitivity of the terminal state to initial con -

ditions, rewrite Eqs. (G-1) and (G-2) as

k(t) = X(t) x(t); X(to) = xo

A(t) = A(t) + B(t) K(t) (G-6)I
See Appendix B.
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We know from linear system theory* that the transition matrix 0(t, t o )

associated with A(t) satisfies

$(t,to) = A(t)- (t,to); C(to, to ) = I (G-7)

Knowledge of $ obtained by integrating Eq. (G-7) permits us to write

x(t) = (t, to) x

That is x(t) can be determined for any values of t and x 0 , given the soiution

to Eq. (G-7) for a particular initial time to. Consequently we can regard

the state as a function of both to and t, written as x(t, to). However, in

many applications it is desirable to know the terminal state resulting from

initial conditions imposed on the system at different initial times. For

example, this is the case in the missile guidance problem discussed in

Chapter 11 where the effects of launching the missile at different ranges

relative to the target are to be evaluated. In other words, if x(t) is the

state at any initial time t < tf, one is interested in evaluating

x(tf, t0 0 (tf , t0 x(t) (G-8)

Accomplishing this for a range of values of t requires knowledge of 4(tf, t)

where the initial time is regarded as an independent variable. Notice that

x(tf,t) is obtained from x(t,to) by making the change of variables -- t-tf

and t o -. t.

To obtain 45(tf, t) from Eq. (G-7) requires that a complete inte-

gration of the matrix differential equation be performed over the interval

(tytf) for each initial time t of interest. Often this must be done numeri-

cally and a great deal of computational labor is entailed. However, the

See Appendix A.
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procedure can be greatly simplified if a differential equation for 4(tf, t)

itself can be determined with t as the independent variable. To derive an

equation for 0(tf,t), we begin with the property

C(tftf) = 0)(tf, t)(ttf) = I

Differentiate both sides of this expression to obtain

(tf, t)0(t, tf) + 0(tf, t) 6(t, tf) = 0

and therefore, using the fact that 0(t, tf)"1 = 0(tf, t),

$(tft) = -6(tft) 6(ttf) *(tft) (G-9)

Now observe that the differential equation for 0(t,to), Eq. (G-7), can be

written as

4 (ttf) = A(t) $(t,tf) (G-10)

because Eq. (G-7) holds for any to -- in particular to = tf. Substitution

from Eq. (G-10) into Eq. (G-9) produces the desired equation for 0(tf,t):

(tf,t) = - (tf,t) f(t)

0(tftf) = I (G-11)

Equation (G-11) is said to be adjoint to Eq. (G-7) and 0(tf,t) is referred to

as a sensitivity fumction.

In the missile guidance application, only one element of the

terminal state vector is of interest, the miss distance. This can be ob-

tained from knowledge of only one row of the transition matrix, taken with-
out loss of generality to be the first row. Denoting the first row of 0(tf, fl,
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by the column vector , it follows from Eq. (G-11) that

0

Tt~t =-A^-(t)TOtft); T tff) •(G-12)

o

0

To calculate i(tf,t) and Stf,t), Eqs. (G-11) and (G-12) are

integrated backwards in time from t = tf. Once evaluated these sensitivity

functions determine the terminal state resulting from any given initial

condition x(t), according to Eq. (G-8). The performance index in Eq.

(G-3) is then determined by

IT TJf = x(t) C(tf,t) F 4(tf, t) x(t) (G-13)

G. 3 TERMINAL STATE SENSITIVITY TO MEASUREMENT ERRORS

Another important contribution to the terminal state can be

produced by errors in implementing the linear control law in Eq. (G-2).

These errors may result from imperfect observations provided by sensors;

they can ofter be represented as random fluctuations or as (possibly time-

varying) bias errors. To examine such effects, suppose that the control law

for Eq. (G-1) is given by

u(t) - K(t) (x(t)+ _(t)) (G-14)

where c(t) is an error vector. The resulting equations of motion for the

linear system are

i(t) X(t) x(t) + B(t) K(t) _(t)
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where X(t) is defined in Eq. (G-6). According to linear system theory,

the terminal state at time tf caused by the action of E(t) on the interval

(t,tf), with zero initial conditions on the state at time t, is given by

tff
x~tft) (tf, r) B(T) K(T) E(T) dT" (G-15)

where x(tf, t) is regarded as a function of both tf and t, just as in Eq. (G-8).

A differential equation for the terminal staLe is obtained simply by dif-

ferentiating Eq. (G-"15) to obtain

• (tf, t) = - 0(tf,t) B(t) K(t) _c(t)

X(tftf) = 0 (G-16)

In the special case when the measurements contains only bias

errors, i.e., _(t) is a constant E, the terminal state is given by

x(tft) = '(tf,t)__
4i(tf, t) = - 0(tf, t) B(t) K(t)

*(tf tf) = 0 (G-17)

If one is interested in only a single element of x(tf), then only ore row
(which can be taken as the first) of iP(tf, t) - - denoted by (tf, t) - - need be

determined; that is,

X(tf,t) = i(tPt)

_(tf,t) = - K(t)T B(t)T T(tf, t)

_(tftf) = 0 (G-18)

See Appendix A.
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where p(tf, t) is the first row of 0(tf,t), defined by Eq. (G-12).

All of the integrations in Eqs. (G-16), (G-17) and (G-18) are

performed backward in time and requ1re knowledge of the transition

matrix $(tf,t); the latter is evaluated from Eqs. (G-11) or (G-12) which

are also integrated backward in time. Therefore the sensitivity functions

for initial conditions and measurement errors can be generated simul-

taneously.

Another form the measurement errors E(t) can take is that of a

random process (noise) having zero mean and second moments

E {_E(t 1 ) E(t2 )T} = W(t 1 ) 6(tl-t 2 ); for all t1 and t 2  (G-19)

where W(tl) is a known positive definite matrix and 6(t 1 -t 2 ) is the unit

Dirac delta (impulse) function. The mean value of the terminal state pro-

duced by this noise is also zero. If we denote the second moment charac-

teristics of the state by

P(tf, t) = E x(tf t) x(tft)T}

where E [ denotes mathematical expectation, then it can be shown that

T )T,0ttTP(tf, t) = -4(tf,t) B(t) K(t) W(t) K(t) B(t)T ¢ (tf,t)w ; P(tf, tf) = 0 (G-20)

This equation is also integrated backward in time.

With the terminal miss (or its statistics) caused by measure-

ment errors calculated from either Eq. (G-17), (G-18), or (G-20), the

value of the performance index Jf is readily calculated. For example, if

P(tf t) is called the state covariance matrix.
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4E(t) is a constant bias error, 
-

Tf = E (tf,t) T F I(tf~t (G-21)

If E(t) is a random process, the expected value of Jf is given byJ

{Jf} E E-(tf t) Fx(tt4 = Trace (P(tf,t)F) (G-22) J I

where Trace (PF) denotes the sunm of the diagonal elements of the matrix I
product, PF.

G. 4 INTEGRAL-TYPE PERFORMANCE INDEX SENSITIVITY
TO INITIAL CONDITIONS .

In this section we want to determine an efficient method for cal-
culating the values of the performance indices in Eqs. (G-4) and (G-5) pro-
duced by initial " onditions x(t). Beginning with Eq. (G-5), Ju can bej
written explicitly as a function of tf and t by substitut~ing for u(t) from
Eq. (G-.2) and regarding to as a variable, t. Thusj 1

t tf T TI h
Ju(tf t) = X(Tr) K(T) R(T) K(T) X(Tr) dr (G-23)

Equation (G-23) can be expressed in terms of the Initial conditions x(t) by I

substituting the relation (see Eq. (G-8)

X(Tr) 4- X&,t) = '?(T,t) X(t) (G-24)

to obtain

_ (tf
Ju(qf't) =x(t)T Ct (r (r)()(~~TXt (G-25)
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I where x(t), being independent Of T-, is factored outside the integration.

Evidently the control effort in Eq. (G-25) can be expressed as

J (tf,t) = x(t) TC (tf, t) x(t) (G-26)Iu
where C (tr ,t) is a .zensitivity function identified as

ICu tf It) t V'r,t)~ K(r)T R(T) K(T~) (',t) d'r (G-27)

A differential equation can be obtained for this quantity by differentiating

both sides of Eq. (G-27) with respect to t producing

I ~It(tf t) f (rt)T K()T K)~rt

+ $(, KR(r) KR) K(T (, t)dr

T T
-4 (tj t)T K(t)T R(t) K(t) iD(t,t) (G-28)

Noting that 4s(t, t) I and substituting from Eqs. (G-11) and (G-27) into

Eq. (G-28) yields

ItU(tf It) = - (t)T C u(tf~t) - C u (tft) AX(t) - K(t)T R(t)K(t) (G-29)

This differential equation can be integrated backward in time from the

terminal condition

C U tf,tf) = 0
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to determine the solution for the sensitivity function in Eq. (G-26). Once

known, it can be used to evaluate Ju for any desired initial conditions.

In an exactly analogous fashion, a sensitivity function Cx(tf, t)

can be derived for evaluating J in Eq. (G-4). The appropriate equations

are listed below without proof:

Jx = x(t)T C x(tf, t) x(t) lT
6x(tf, t) = - A(t) Cx(tf,t) - Cx(tf, t) A(t) - Q(t); Cx(tf, tf) = 0 (G-30)

Finally, in some cases it is desirable to evaluate a composite

performance index

J = Jf+x + +

in terms of initial conditions x(t) on the state. This can be accomplished

from t ne relations f
J = x(t)T C(tf,t) x(t)

A(tf, t) = - A(t) C(tf, t) - C(tf, t) A(t)-Q(t)- K(t)T R(t)K(t)

C(tftf) = F (G-31)

Using the sensitivity functions developed in this appendix, one can

evaluate various linear control laws for a linear dynamical system. The

importance of these functions is that they provide an efficient method of

evaluating quadratic performance indices and determining the terminal

state at a fixed terminal time caused by initial conditions or measurement

errors which are applied to the system at a variable initial time.
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APPENDIX H

TRAJECTOR " ,ATA

In this appendix numerical values for the parameters which
define equations of motion for a missile airframe are presented. The

reader is referred to Section 8. 1 for definitions of terms.

H. 1 AIR-TO-SURFACE TRAJECTORY DATA

One set of data applies to an air-to-surface trajectory for an

aerodynamically controlled missile and is summarized in Tables H. 1,

H. 2, H. 3, and H. 4. The aerodynamic coefficients defined in Eq. (8.1-2)

are given for several different flight conditions in Table H. 1. included

are values of time at which the particular flight condition occurs along a

sample trajectory. The corresponding stability derivatives Mq, M etc.

which appear in Eq. (8.1-3) are listed in Table H. 2.

The elements of A and b in Eq. (8.1-4),

[a1 1 a 12 a] 0)

A= 1a21 a 22 a 23  b Ibol
0 0 a 33J b2 J

are calculated from the data in Tables 11.1 and H. 2; their values are tabu-

lAaed - T bl H. 3. fhenn simulation3 7,h contn,,usly varying param-

eters are performed, values of A and b at times between those listed in

Table H. 3 are obtained by linear interpolation, i.e.,
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TABLE H. 1

MISSILE AIRFRAME DATA ALONG AN
AIR-TO-SURFACE TRAJECTORY

F Flight Codition 1 2 3 4 5 6 7

Time (seconds) 0-5 6 8 23 62 71 80

Altitude (feet) 35,000 35,000 35,000 35,000 0 0 0

Velocity (ft/sec) 683 1459 2920 2920 2791 2791 2791

Dynamic Pressure (psf) 171 786 3146 3146 9258 9258 9258

Mass (slugs) 47.2 42.6 28.6 34.2 33.8 33.1 27.4

Iyy (slug-ft2) 715 664 497 506 482 441 432

CNo 7.28 9.22 8.14 8.14 8.31 8.31 8.31

CN_ 4.53 4.18 1.49'19: 1 .95 1.95 1.95

CMq -86 -295 -222 -222 -225 -225 -225

CM o -5.82 -4.24 -. 597 -. 879 -. 515 -1.27 -. 665 "

CMO -17.8 -18.1 -7.40 -7.45 -9.21 -9.39 -9.25

Constants: S= 1.23 ft 2 ; d = 1.25 ft.

TABLE H. 2

STABILITY DERIVATIVES ALONG AIR-TO-SURFACE TRAJECTORY

Flight 1 2 _____

Condition 1 2 3 4 5 6 7

Mq -0.029 - 0.230 - 0.462 - 0.455 - 1.49 - 1.63 - 1.66

M -2.14 - 7.72 - 5.81 - 8.40 - 15.2 - 41.0 - 21.9

M 1 6 -6.56 -33.0 -72.0 -71.2 -272.0 -303.0 -305.0

L 0.0478 0.144 0.379 0.379 1.01 1.03 1.24

L 6  0.0298 0.0652 0.0699 0.0699 0.237 0.242 0.292
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TABLE H. 3

ENTRIES IN A AND b (Eq. (H-i))

Flight 1 2 3 4 5 6 7
Condition

al1  0.029 - 0.230 - 0.462 - 0.455 - 1.49 - 1.63 - 1.66

a12  - 0.065 - 0.0367 - 0.00526 - 0.0054 - 0.0054 - 0.0142 - 0.0063

a13  - 5.23 - 29.5 - 70.9 - 69.7 - 268.0 - 293.0 - 300.0

a2 1  32.7 210.0 1100.0 926.0 2817.0 2880.0 3470.0

a2 2  0.0478 - 0.144 - 0.378 - 0.317 - 1.0 - 1.03 - 1.24

a23  -1015.0 -4760.0 -10200.0 -8486.0 -33100.0 -33900.0 -40800.0

a33  - 50.0 - 50.0 - 50.0 - 50.0 - 50.0 - 50.0 - 50.0

b2  1015.0 476C.0 10200.0 8486.0 33100.0 33900.0 40800.0

b3  50.0 50.0 50.0 50.0 50.0 50.0 50.0

TABLE H. 4

AIRFRAME UNDAMPED NATURAL FREQUENCY
AND DAMPING RATIO

!

Flight Condition 1. 2 I 3 4 5 6 7

0.026 0.06710.172 0.132 0.305 0.203 0.296

w n  1 .4 6 2 .78 .. .... ...tfl44 2 .9 2 4 .09 6.54 4 .89

A(t)= A(ti)(ti+l-t)+A(t-+l)(t-ti) tIl.t

I}; ~~~b(t) = [b(i) (ti + 1 t) +b(ti +1) (t -ti)l ti+1_ ti (H -2 )

i where t i is the time that the it h flight condition occurs.
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Additional important quantities are the three open loop poles i
of the airframe and actuator. One pole is produced by the actuator and

has a fixed value I
p1 = -X = -50.0 sec

The other two, P2 and P3 , are complex conjugate airframe poles which are

the roots of the second order polynomial

s2 + 2C Sn 2

where I

n= aa22 -a12 21 = IP21 IP32

2C = -a, 1 -a 2 2 = -p 2 -P 3

The quantities w n and C are referred to as the undamped natural fre- i.
quancy and the damping ratio respectively;* wn is the magnitude of P2
and C is the cosine of the angle P2 makes with the negative real axis

in the complex plane. The values of these quantities are given in

Table H. 4.

H.2 SURFACE-TO-AIR TRAJECTORY DATA

A scond set of airframe data used for simulations described in I
this report is for a surface-to-air trajectory. Airframe dynamics are

specified in terms of the transfer function T(s) relating commanded con- I
trol surface deflection to normal acceleration,

See Ref. 21 for definitions of these terms.
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k -z

T(s) = - )\2) (H-3)

The pole pa is associatea with the actuator and the remaining terms re-

present the airframe rotational dynamics. Values of these quantities

together with the time, velocity, altitude, and dynamic pressure profiles

are given in Table H. 5. In order to convert this data to the form shown

in Table H. 2, relationships must be found betwenn the quantities M,

M etc., and the variables in Eq. (H-3). This can be done using

Eqs. (8.1-3), (8.1-4) and (8. 1-8) with the result,

k
L6 kL5 -

a

L = z1 +z 2 + 2 wna 1

Mq z1 +z 2

M =-L M w
a a q n

L 5

M6  - L (Ma +Z 2) (H-4)

a

Substitution of these quantities into Eq. (8. 1-3) permits the calculation of

the elements defined in Eq. (H-I); their values are entered in

'Table H. 6.

The data supplied for these two trajectories has been obtained

by fitting sets of parameters for actual missile airframes to hypothetical

trajectories. Consequently, although the behavior of the airframe param-

eters is qualitatively representative of actual flight conditions and is

adequate to test feasibility of various control methods, the specific

numerical values are not real flight data.
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TABLE H.5 

MISSILE AIRFRAME TRANSFER FUNCTION
PARAMETERS FOR SURFACE-TO-AIR TRAJECTORY

Flight Condition 1 2 4 5 6 7

k 6750.0 27900.0 39600.0 48800.0 51300.0 41600.0 33750.0

z1 - 10.9 - 45.0 - 68.4 - 90.9 99.2 90.2 - 82.7

z2 9.98 40.4 61.7 82.3 90.1 82.5 76.2

8.50 17.2 20.5 22.9 23.4 21.4 19.3

0.0471 0.095 0.139 0.131 0.138 0.128 0.121

Pa - 50.0 - 50.0 - 50.0 50.0 50.0 50.0 50.0 1
Velocity (ft/sec) 500.0 2059.0 3124.0 4031.0 4470.0 4330.0 4220.0

Dynamic Pressure (psf) 297.0 4482.0 6180.0 4755.0 2618.0 1415.0 640.0

Altitude (thous. ft.) 0 4.0 20.0 40.0 50.0 68,4 83.6

time (secs) 0 10.0 20.0 30.0 35.0 45.0 55.0

TABLE H. 6 ,

ENTRIES IN A AND b (Eq. (H-1)) FOR
SURFAC E-TO-AIR TRAJECTORY

Flight 1 2 4 6 7
Condition 1 _ 2_3_4_5 6I7

a11  - 1.0 - 4.60 - 6.70 - 8.59 I- 9.10 - 7.70 - 6.50

a 1 2  - 0.24 - 0.0729 - 0.0463 - 0.0357 - 0.038 - 0.0307 - 0.0296 1
a13  - 49.4 - 256.0 - 382.0 - 526.0 544.0 - 443.0 - 352.0

a21  300.0 3970.0 8770.0 13900.0 16900.0 14000.0 12500.0

a2 2  - 0.O - 1.93 - 2.81 - 3.46 - 3.79 - 3.25 - 2.85

a2 3  -6750.0 -27900.0 -39700.0 -48800.0 -57350.0 -41640.0 -33700.0

a3 3  - 50.0 - 50.0 50.0 - 50.0 - 50.0 - 50.0 - 50.0

b2  6750.0 27900.0 39700.0 48800.0 57350.0 41640.0 33700.0

b3  50.0 50.0 50.0 50.0 50 0 50.0 50.0

I
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