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FOREWORD

The underlying purpose of this report is to
present an objective evaluation of several techniques for
adaptively controlling and guiding tactical missiles.
Because design trade-offs always exist between perform-
aace and control system complexity, there is probably
no one control method that is preferable for all applica-
tions. Consequently, in this work no single method is
advocated as the panacea for all missile design problems.
Insteadthe discussion emphasizes distinguishing charac-
teristics of each technique so the reader can judge which
is most suitable for his own situation.

A by-product of this research effort is an
organized, unified discussion of many technical aspects
of adaptive control which have heretofore been available
only in isolated papers. New research results preduced
by this investigation are also included. Therefore,
although this study has been performed primarily for
tactical missile applications, the material collected here
should alsobe of interest to those working in other areas
where adaptive control methods are needed.

The authors are grateful for the encourage-
ment and support provided by Mr, David Siegel of the
Office of Naval Research and Mr. Paul Blatt of the Air
Force Flight Dynamics Laboratory. Acknowledgement
is also made to Professor Richard V. Monopoli of the
University of Massachusetts for his contributions rela-
tive to Liapunov design techniques. Helpful assistance
was provided in several technical areas by Professor
John J. Deyst, Jr. of the Massachusetts Institute of
Technology and by Dr. Joseph J. Budelis. Appreciation
is also expressed to Professor Wallace E. VanderVelde
of the Massachusetts Institute of Technology for his help-
ful review of portions of the document.
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ABSTRACT

The fields of adaptive control and guidance are
searched for techniques that can be beneficially applied
to the design of guidance systems for tactical missiles,
A large number of existing adaptive control techniques
are investigated and new methods which are suited to the
needs of missile control systems, are proposed. The
feasibility of promising autopilot design procedures is
demonstrated through computer simulations, using real-
istic time-varying airirame dynamics. Guidance tech-
niques for tactical missiles are also reviewed and a
number of steering laws, derived from optimal control
theory, are evaluated. Quantitative comparisons are
made between different guidance laws on the basis of
intercept accuracy and control effort expended.

The report is published in two volumes con-
taining four basic parts -- Introduction (which includes
the summary and conclusions for the entire report),
Adaptive Control Theory, Adaptive Control Applications,
and Guidance. The first two parts constitute Volume I
and the remainder together with several appendices
compose Volume II.
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1. OVERVIEW

1.1 BACKGROUND AND OBJECTIVES

The high performance requirements for some tactical missiles
necessitate careful design of missile guidance and control systems. This
task is made difficult because certain quantities (e.g., mass, dynamic
pressure, etc.) related to the missile's dynamic characteristics and the
target's motion vary in an unscheduied manner. In the autopilot, fixed con-
troller configurations employing either constant gains or time-varying
prescheduled gains for compensation may not be sufficiently flexible to
provide good response characteristics over a wide range of parameter
variations. With respect to the guidance function, fixed-gain steering laws
may not be sufficient to overcome the adverse effects of target maneuvers
and autopilot lag on terminal accuracy. The purpose of this effort is to
determine whether these problems can be surmounted by the application of
adaptive guidance and control methods which provide a capability for chang-

ing the system design as the missile proceeds toward its target.

Adaptive techniques have led to improved aircraft control sys-
tems in numerouas cases. A few adaptive autopilots exist in operating
aircraft and missiles or have been flight tested (Refs. 1-§). Many others
have been proposed and subjected to various amounts of analysis and
simulation. However, most studies of adaptive autopilots have been for
aircraft applications. Missiles have certain characteristics distinct from
aircraft that influence control system design; e.g., pilot safety is not a
factor, faster control system response is generally required, and changes
in airframe dynamics can be mo:e pronounced. Consequently, it is
possible that different objectives will be required of adaptive missile

1-1
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control systems (e.g., achieving a desired speed of response may be

more important than matching a specified model).

Many varicties of guidance laws have been investigated for
tactical missiles. The most popular of these is proportional guidance,
so-named because the missile normal acceleration cominznd is propor-
tional to the angular rate of the line-of-sight to the target. However, in
situations where target maneuvers and missile autopilot time lags cause
excessive miss distances with this technique, alternative guidance pro-
cedures may be beneficial. The analytical tools of modern control
theory are helpful in developing such methods.

This report discusses those missile applications where adap-
tive techniques are needed to provide improved performance, reviews
the adaptive methods currently available, and delineates those which seem
appropriate for missile applications. Improved methods of adaptive con-
trol are suggested and the relationship between missile guidance and
autopilot response is investigated.

1.2 SUMMARY

The research effort described in this report can be divided

into three broad categories: tactical missile operational requirements,

adaptive control, and guidance. Operational requirements are reviewed

to determine those characteristics which influence the design of mis-
sile guidance and control systems and to point out particular classes
of missions where adaptive control technology can be useful. Adap-
tive control theory is reviewed to determine those methods which. are
most promising for missile autopilot design. In several instances the

prior state-of-the-art is extended by developing techniques which satisfy

1-2
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some of the particular demands made by the missile application. Simu-
lations of specific techniques are performed using realistic models of air-
frame dynamics. Finally, guidance laws for tactical missiles are investi-
gated to determine which are most capable of yielding the desired level of
guidance accuracy. A summary of the results and conclusions obtained
from this study, including a list of topics requiring zdditional research,

is given below and in Section 1.3,

1.2.1 Tactical Missile Operational Requirements

Tactical missile operational requirements are discussed at length
in Chapter 3. The objective is to indicate those aspects of a mission
which influence missile guidance znd controi system design in general,
and, in particular, those whici wndicate that adaptive techniques will be
beneficial. To this end, tne iollowing categories of design considerations

are established:

e Target Dependent Design Considerations
¢ Weapon System Depencient Design Considerations

¢ Adaptive System Design Considerations

These factors a1~ examined with respect to the performance of a conven-
tional proportional guidance system. In this case the presence of target
maneuvers and iaitial condition vrrors at launch, together with nonnegligible
autopilot dynamics, contribute to the terminal miss distance. This suggests
4 need for a missile autopilot that has rapid response characteristics in all
situations where a target may be encountered and for improved guidance
laws thet explicitly include the effests of target maneuvers and autopilot

dynamics in their design criteria.

1-3




THE ANALYTIC SCIENCES CORPORATION

In order to obtain satisfactory missile autopilot response
characteristics under all operating conditions, adaptive control tech-
niques are needed when unpredictable changes in flight conditions along
the missile trajectory -- e.g., change's in altitude and airspeed --
cause variations in the equaticns of mrtion for the airframe. The type
of tactical missile considered most extensively in this report utilizes
aerodynamic lift to provide the force required to turn the missile's velo-
city vector. The vehicle's lifting surfices are assumed to be fixed, with
tail-mounted control surfaces providing the necessary pitching moments.
This missile canfiguration is most common in currently operational
weapons. It has the greatest need for adaptive control techniques because
the equations of motion are strongly dependent upon the airframe aerody-
namic characteristics, and hence upon the missile flight condition. In
some cases alternative airframe control arrangements, for which it may
be easier to incorporate a particular type of adaptive control system, are
suggested.

From an examination of the various design considerations in the
context described above, it is concluded that adaptive techniques are most
applicable for weapons used against air targets, particularly in "dog-fight"
situations, and for long~-range ground attack missiles that fly a widely-
varying altitude and velocity profile,

Air targets require that the missile autopilot achieve rapid re-
sponse to guidance commands in order to overcome target inaneuvers and
errors existing at launch. The latter are especially important in dog-
fight applications where the missile may be launched reclatively close to the
target. The desired response characteristics must be achieved under a
wide variety of flight conditions defined by the overall altitude-airspeed
profile for all possible engagement situations. The dog-fight application

1-4
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also has the most severe requirements in that the missile may thrust

along its entire trajectory, causing rapid changes in airspeed and mass

distribution. Variations in airspeed, altitude and mass distribution are
reflected as changes in thie parameters describing the airframe equations
of motion. These parameter variations must be compensated by the auto-
pilot to maintain the desired response characteristics; adaptive control

techniques are potentially suited for this purpose.

A standoff missile launched azgainst a surface target may also
undergo large changes in flight condition because of altitude and airspeed
variations along its trajectory. In this application a long flexible airframe
may be needed to carry a large warhead. Consequently maintenance of
control system stability at all flight conditions in the presence of significant
structural bending can be the most important consideration favoring the use

. of adaptive control techniques in this type of mission.

The above qualitative considerations motivated the direction of

ihe research reported herein. Adaptive control techniques that have a
capability for adapting rapidly to changes in airframe parameters are
emphasized. Guidance laws that can compensate for target motion and
autopilot dynamics are also investigated. 'Throughout this work it is tacitly
recognized that for a given weapons system the question of whether missile
parameter variations should be treated as unknown or whether they are
really known as functions of some measured vaiiable -- such as time or
range -- can be a matter for debate. Often impiementation considera-

] tions -- e.g., available computer storage -- can mitigate in favor of one
design philosophy or the other., However, it is conceivable that either
approach or a combination of both can yield acceptable systom designs for
3 the same application. This document makes no attemnt to settle the issue
of when adaptive methods are necessary or prefesranle as opposed to mak-

ing use of a priori information. Our purpos= is to present an evaluation
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of adaptive methods that will be helpful for deciding which adaptive tech-
nique to use when insuff'cient information is available to design a com-

pletely preprogrammed control system.

1.2.2 Adaptive Control

An extensive literature search for adaptive control technigues
applicable to missile autopilot design was performed, leading to the classi-

fication of adaptive systems into the following categories:

¢ Parameter Adaptive Contrcl Systems (PACS)
¢ Learning Systems

¢  Adaptive Insensitive Control Systems (AICS)

These classifications are defined in Chapter 2 and they largely account for
control systems which have adaptive properties (within the context of the
definition of "adaptive control' used in this report) and exclude those which
do not. The study concentrates on systems of the PACS and AICS types;
these tend to make the most use of a priori information about missile dy-
namics and lead to relatively simple controller designs. Within these
categories a number of different types of adaptive systems are censidered
in this report, as summarized in Table 1.2-1. Those which are investigated

most extensively are discussed below.

Parameter adaptive conirol systems are divided into two cate-
gories according to whether they utilize implicit plant identification or
explicit piant identification procedures Implicit identification relies upon
an indirect measure of system operating condition such as en output error

signal, to provide an indication of variations in missile dynamics and to
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TABLE 1.2-1

SUMMARY OF ADAPTIVE CONTROL TECHNIQUES*

R-2o5¢

- CGRADIENT METHODS {4 2)

$IXED REFERENCE
MODEL|822,823)

L~ ACCELERATED GRADIENT METHOD{43,82) ~—
ADASTIVE REFERENCE

METROUS USNG NOUEC(824)
- SMPUICHT PLANT —
LENTIFICATION (48] FINED REFERENCE

MODEL (8133)
- UAPUNCY DESIGN TECHNIQUES (44 83) ~—.

. ADAPTIVE REFERENCE
MODEL {834)

__PARAMFICR ADAPTIVE | L. DITHER ADAPTIVE SYSTEMS (45)
COMTROL SYSIEMS

_ ADAPTIVE POLE ASSICNMENT
METHOO (5391914,95

O e )L ADPIVE OPTIMAL HEGULATOR

IDENTIFICATION(S 9) METHOD{5 41,9 29 4

3
o ey =R tearninG svstems (232)

_AC&PTIVE OPTIMAL MCOEL FOLLOWING
SYSTEMS (542,543,9394)

- ADARTIVE OUTER LOOP

(— COMPLEX PLANE METHODS (7.1)

|__ ADAPTIVE 'NSEWSTWVE |
CONTROL S7uTEMS

b= TIME DOMAIN SENSITIVITY FUM STIONSEZ2)

L FIXED CONFIGURATION

- €916 WOS(7
PIENSTIVE INNER O MINIMAX DESIGN METHC DS (73}

FIXED REFERENCE
MODEL (103}

=~ LIAPUNOY DESIGN METHODS 74,10} '-"—-'[

ADAPTIVE REFERENCE
MODEL (104)

—=BISTAR C CONTROULERS (7 5)

*
Relevant chapter and section numbers are indicated in parentheses.
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obtain adaptive signals for adjusting autopilot feedback gains. By contrast,
explicit identification directly estimates airframe parameters by process-
ing measurement data and utilizes the parameter estimates to adjust auto-
pilot gains. Implicit identification methods are appropriate when the cri-
teria for system performance are independent of plant parameters --

e.g., when uniform response characteristics are required at all operating
conditions. Explicit identification is needed when the desired performance

is dependent upon operating condition.

Szveral adaptive methods employing implicit plant identification

are selected for detailed investigation in Chapters 4 and 8. These are:
gradient adaptation algorithms, procedures analogous to gradient methods
but which exhibit a faster convergence speed, and Liapunov design tech-
niques. Gradient methods lead to adjustment rules for adaptive parameters
which tend to reduce a measure of the difference between the actual system
output and the desired output; the desired output is generated by a reference
model. Each parameter is adjusted in a direction that is the negative of the
gradient of the performance measure with respect to that parameter. 1t is
characteristic of these procedures that they adapt relatively slowly with
respect to the desired system response and methods for improving their
convergence rate are needed.

A new, rapidly adapting gradient-type procedure (called an accel-
erated gradient method) is devised. Simulations of a pitch rate command
autopilot for a tail-controlied missile designed by this method indicate
a marked improvement in adaptation speed over conventional gradient
methods., This algorithm 1s tested for several fixed missile {light con-
diticns, using the same model of desired performance, and also for time-
varying airframe dynamics. The adaptation time achieved is shorter than

the transient response time of the autopilot to command inputs,
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Liapunov design techniques can be used to select adaptive
parametei adjustment riiles that are asymptotically stable for a wide range
cf system operating conditions. These methods compare favorably with
gradient techniques for which only specialized local stability properties
are known. However, somewhat more computational complexity is re-
quired to implement the Liapunov adaptive autopilot than is needed for the
accelerated gradient technique. A new Liapunov technique is developed
which exhibits good adaptation properties when applied to a missile pitch

rate autopilot.

From the standpoint of guidance, it is most important for a tacti-
cal missile autopilot to have a consistently good normal acceleration re-
sponse to steering commands, For an aerodynamically controlled missile
with tail-mounted control surfaces, the transfer function relating normal
acceleration to control deflection is nonminimum phase; i.e., it has a
right-half-plane zero. This characteristic tends to inhibit the application of
adaptive methods utilizing implicit plant identification techniques. In partic-
ular the accelerated gradient technijque depends upon a high gain adaptive
loop to achieve rapid adaptation characteristics. In the normal acceleration
autopilot described above, high loop gain together with the right-half-plane
zero tends to make the adaptive loop unstable. In addition, Liapunov design
techniques are theoretically restricted to minimum phase plants for reasons
discussed in Section 4.4.4. To circumvent these difficulties a method is
devised for using either the accelerated gradient method or the Liapunov
design technique with an adaptive reference model to provide adaptive
control of missile pitch rate and normal acceleration simultaneously.

The design is based upon a concept of partial plant identification which

involves the estimation of a few key airframe parameters. Simulations
of this type of autopilot indicate a good capability to achieve satisfactory

normal acceleration response.
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Three adaptive control methods requiring explicit plant identifi-

cation are investigated in Chapters 5, 6, and 9. The coutrol system is
separated into two parts -- a parameter ideutifier and an adaptive control
law. The subject of identification is treated briefly in Chapier 6; a num-
ber of parameter estimation techziques are reviewed which are potentially
applicable to tactical micsiles. In studying adaptive control laws it is
assumed that accurate parameter estimates can be rapidly obtained; one
method, referred to as basic parameter estimation, does have this capa-
bility. However, in a particular weapon system, the question of whether
rapid identification is possible depends upon the data processing technique
to be applied, the noise level in sensor outputs, and the types of sensors
available. Adaptive control laws which are investigated use pole assign-
ment, optimal model following, and optimal regulator control techniques.
Each has a well-defined method for computing fcedback gains, given know-
ledge of plant dynamics; in an adaptive system, the gains must be com-

puted ""on-line' as estimates of plant parameters become available.

Adaptive pole assignment is generally the simplest explicit

method for choosing feedback gains. If the identification of airframe
parameters is accurately accomplished and if all the important airframe
state variables can be accurately measured, the auopilot gains can be
seleclted so that the dominant poles of the compensated system always have
specified values simply by solving a set of linear algebraic equations. Con-
sequently, a uniform normal acceleration response can be achieved regard-
less of the missile's flight condition, provided sufficient control capability
is available. Alternatively, different autopilot response characteristics
may be desired at different flight conditions to allow for changes in control
capability caused by variations in the missile airframe dynamics. This
requirement can be accommodated in the pole assignment method by speci-

fying different sets of closed loop poles based on flight condition.
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By comparison with the pole assignment technique, adaptive
optimal control methods provide a somewhat more systematic procedure
for achieving a cormpromise between desired autopilot response charac-
teristics at each flight condition and the control levels required to achieve
them. The control law is more difficult to implement in the adaptive
optimal methods than in the pole assignment technique because the feed-
back gains for the former are determined by solving nonlinear matrix
Riccati equations, on-line as airframe parameters are identified. Several
iterative numerical search procedures for solving these equations are
reviewed. For missile applications, the classical Newton-Raphson method
seems tc be most efficient and conditions can easily be established for
which the iterations converge to the proper solution. However, the amount
of computation required probably resiricts the use of adaptive optimal con-
trol methods to those situaiions where a fairly large data-processing capa-

bility is available.

Because the pole assignment method is more easily implemented
than the optimal control techniques and because it provides the most direct
control over system response characteristics, it is judged to be the most
suitable adaptive procedure requiring explicit plant identification. Any
additional computational capability available to a designer might bene-
ficially be devoted to the task of obtaining accurate estimates of the air-

frame parameters and important state variables.

The other broad category of adaptive systems defined in this

3 repert -- Adaptive Insensitive Control Systems -- is characterized by a

fized configuration, nonadaptive controller designed to make the system
{ as insensitive as possible to plant parameter variations. Then if an adap-
tive capability is still required, it can be added as a parallel control loop;

any of the adaptive techniques described above can be used for this purpose.
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Our investigation here is confined to fixed configuration controllers,
particularly those which do not require an auxiliary adaptive capability.

An investigation ¢f insensitive nonadaptive design techniques is performed
in Chapters 7 and 10. The most successful methods for designing insensitive
controllers for linear systems depend upon some type of high gain feedback
control law, One such technique, described in Section 7.4, utilizss a sat-
urating high gain amplifier in the feedback path to provide a control
signal that reduces the error between the autopilot and the output of &
specified reference model. By varying the saturation level of the ampli-~
fier as a prescrived nonlinear function of certain measured system state
variables, it is shown theoretically that this control system is well-
behaved when the airframe parameters are unknown. The method is applied
to the design of a pitch rate autopilot for a tail-controlled missile to demon-
strate its capability for maintaining a small output error. However this
type of system design is not well suited for controlling the output of transfer
functions having domninant nonminimum phase characteristics because the
associated right-half-plane zeros tend to aggravate the stability problems

always associated with highloop gain. The situation is made even more cif-

ficult when the right-half-plane zeros vary with plant operating condition,
Consequently high gain methods are not directly applicable for controlling
the normal acceleration response of a tail~controlled missile. In Chapter 10
it is suggested that this problem can be circumvented through use of the
adaptive reference model concept described previously for the accelerated

gradient and Lizpunov types of adaptive systems.

In addition to the various aduptive control techniques described
above, methods of obtaining maneuver forces which are possible alterna-
tives to using aercdynamic lift with tail control surfaces are considered.
These may be especially lLelpful in overcoming the problem of ohtain-

ing adaptive control of normal acceleration. For example, if control
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surfaces are mounted forward of the missile's center of gravity in a
canard configuration, the nonminimum phase character of the normal
acceleration transfer function is eliminated. Another possible configura-
tion is rotatabie wings in conjunction with tail controls, the former
being used to quickly develop lift while the tail controls maintain stability.
The possibility of employing the missile's own thrust vector, rather than
lift forces, to turn its flight path also has favorable implications for auto-
pilot design in that there is less dependence upon highly variable aero-

dynamic characteristics to achieve control action.

1.2.3 Guidance

A review and analysis of some homing guidance techniques
applicable for tactical missiles is presented in Chapter 11; a summary of
the methods considered is shown in Table 1.2-2. The classical methods --
pursuit, beamrider, and proportional guidance laws -- often work well
against stationary or nonaccelerating targets. However more sophisticated
techniques that can account for potential target acceleratior: and for missile
autopilot dynamics are desirabie in encounters with highly maneuverable

air targets.

Several guidance laws formulated using optimal control theory
are evaluated. These include the effects of target acceleration and auto-
pilot dynamics (or airframe dynamics in the completely coupled case where
the autopilot and guidance law are designed simultaneously). They require
y the minimization of a performance index composed of quadratic penalties on
‘ the terminal miss and the applied steering (or controi).command. ‘The
resulting optimal steering and control laws are compared using adjoint

sensitivity techniques.
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TABLE 1.2-2

SUMMARY OF GUIDANCE TECHNIQUES®

R-Jso6?

- FURSUIT
CLASSICAL
GUIDANCE METHODS ————}— BEAMRIDER
(1.2.1)
— PROPORTIONAL
GUIDANCE
(m
PARTIALLY COUPLED
AUTOPILOT-GUIDANCE
LOCPS (11.2.2,11.3)
OPTIMAL
GUIDANCE LAWS ——-——n
(11.2.2,11.3,11.4)

CON.PLETELY COUFLED
- AUTOPILOT - GUIDANCE
LOOPS (ii.4)

1.3 CONCLUSIONS

1.3.1 Control

The primary conclusions derived from this study are summarized
below witii respect to the categories of minimum phase** and nonminimum
phase plants, This classification is motivated by the practical application
discussed throughout this woirk -- namely the task of achieving uniform
normal acceleration response from a tactical missile autopilot over a wide

variety of flight conditions., The suitability of various adaptive control

Relevant chapter and section numbers are indicated in parenthesss.

*xk
A minimum phase plant is one whose transfer function has only

left-half-plane zeros.
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methods for achieving this gaal strongly depends upon whether the airframe
input-output transfer function is nonminimum phase, as with a tail controllec
lifting vehicle, or is minimum phase as with a canard control surface con-

figuration.

Control of Minimum Phase Plants — When the plant is mini-

mum phase, ali of the control methods discussed in this report have
merit. However, individual techniques differ in the theoretical principles
upon which they are founded, their assnciated computational complexity,

and their ability to yield desired response characteristics.

With respect to complexity, adaptive techniques requiring ex-
plicit plant identification tend to require the most computational capability
because they invoive estimation of plant parameters as well as adaptive
adjustment of feedback gains. Next in order of complexity are those adap-
tive methods which implicitly identify the plant; these procedures are
somewhat simpler because they require no estimates of plant parameters.
Finally, the least ccmplex methods are those which are not adaptive --
i.e., fixed configuration controllers that are insensitive to plant parameter

variations.

The best adaptive contrcl over output performance characteristics

is potentially provided by those adaptive methods that explicitly identify the
plant, particularly the poie assignment technique. If accurate paramecer
estimates can be quickly obtained, a gain adjustment algorithm can be
specified that rapidiy changes feedback gains to their desired values.
Furthermore, the pole assignment method allows precise control over the
output transient settling time to a step irput command. The methods using
implicit plant identification also exhibit good adaptive properties, but they

have an associated nonnegligible adaptation time required to achieve the
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—.

desired controller characteristics. By contrast with adaptive techniques,
adaptation fime i3 not a consideration with fixed configuration insensitive
controllers. Tae particular nonadaptive (Liapunov) design examined in
this work ex.:ibits the capability for maintaining a small oufput response
error to an input step command provided the saiuration level of the com-
pensating high gain amplifier is sufficiently large. From the simulation
results obtained in this study, all of the above techniques appear suitable
to compensate for rapid airframe parameter variations such as are en-

countered in dogfight missile applications.

Another important aspect of these control techniques is the con-

troller gain level required to achieve good performance characteristics,

or equivalently, the contrgl system bandwidth. Excessive bandwidth (gain) is

undesirable because of the resulting sensitivify to measurement noise and
the danger of exciting kigh order structural or sensor modes. The insen-
sitive controller designs employ the highest control loop gain. The adap-
tive techniques which utilize implicit plant identification also have certain
high gain properties because high gain compensation is added to their
adaptive loops to improve adaptation speed. Control methods which explic-
itly identify the airframe dynamics hzve the jowest gain level requirements
because controller gains can be adjustec directly to their proper values,

which are known as functions of the airframe parameters.

Control of Nonminimura Phase Plants — Throughout this

report the problems associated with obtaining desired response charac-

teristics for a plant whose input-output transfer function is nonminimum

phase have been emphasized. Of all the techniques described above for
controlling minimum phase plants, the only methods that can achieve good
control of noiiminimum phase plants are those nsing explicit plant identifica-

! tion. If all airframe parameters can be identified on-line, then a good gain
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adjustment algorithm can be designed. For the other methods the high

gain character of the &daptive loop or the main control leop together with
the variable plant right-half-plane zeros tends to nroduce variable stability
properties. However, adaptive control methods using implicit plant identi-
fication and insensitive mcdel following control techniques can be modified
to yield good output response characteristics for a nonminimum phase plant

if the concept of an adaptive reference model is introduced, as suggested

in Sections 8.2.4, 8.3.4, and 10.4. The latter depends upon having the
capability to obtain estimates of a few plant parameters (two are found to
be sufficient for the missile application considered here) which are used

to adjust the reference model dynamics in a prescribed fashion as piant
dynamics vary. Applied to an autopilot for a tail-controlled missile, this
design principle utilizes a pitch rate reference model whose parameters
are adjusted on the basis of estimates of two airframe parameters in such
a way that the resulting normal acceleration response has the desired
properties. Consequently the adaptive reference model combines the con-
cepts of implicit and explicit plant identification, utilizing the basic control

techniques of the former with the aid of partial plant identification.

The methods of adaptive control are ranked relative to each other
in Table 1.3-1 according to the various properties mentioned above. The
number one in each column is assigned to those techniques which are con-
sidered to be most favorable with respect to the particular attribute.
Progressively higher numbers indicate decreasing favorability. It is
emphasized that this evaluation is very qualitative and should be used only

as a general guide for selecting a particular method.

1.3.2 Guidance

Using graphical displays of performance data for various optimal
missile guidance laws, a number of comparisons based upon guidance
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TABLE 1.3-1

SUMMARY OF CONCLUSIONS REGARDING
ADAPTIVE CONTROL TECHNIQUES

T . . eyt
! Catint e e WAVt AU e
Helative Contr. O Metaeer e linel Mmmcaty
Type of Adaptave Control Technique Retative Complewty G2 Livids Adpa on § ara, ter st PN e i oun
(1 Leest Complcx: 1 Mt hapig Adaptatuv Noam pisum
A Lowest Laval N it TN ap ot
A NEApph bl Tonerar Phass Plante
. e i AT e e e 3 = 2 S
£ Tived O .1
Reference 3 3 2 > 2 '\(v\
Accelerated :  Mode) Ny
Gradient e T 4 —— \
. - S
Adagive Concrol | Method | AEPOME 5 3 ) y ¢
Methods Requiring| “ N
Model
Implest Plant o 2l 20 L _ S S, — - . [———
Identificat on |  Fixed 4 ' . ) Yoos
' { Reference 4 3 2 > = i .
[ Laapamov Model NO
Desyn : ~+ s - - T
Moethod Adapt v2 ! | y 3 \(‘\
Reference | 6 3 2 3 = Now
Model r [P e . v ]
F.xed Yoo
Closec ( 7 2 1 ] ..) Y/(x
| Pole Loop Polus \ _ I _ohves
; Variable T T T Yo
Method ' [
Adaptive Control € Closed 8 ' 1 ‘ ] 1 Yes)
Methods Requiring Loop Poles ! o _ . I S
Exphiast Plant ! Yes
ent . . p : -
Ientifienation | Optumal Regalator ne!hodE () I i i ] ' ? I 1\’(’\)
+ ——— e e TTTTTTTTT L T
Optimial Model | | 1 ; I i 4 i ey
Following Method 0 { ‘ ‘ ! (yes)
S — i i e —_—— =
Fixed | Yo s
| ) > ! Lo
Insensitive Controlle -s Reference 1 4 ! NA “ -~ | (No
Model I : U
(Liapunov Design Fixed " —_— N T
Saturation Level) Adaptive N 1 . | . N CYes
Reference - g NA | L . - | AYES
Model | | (S8

accuracy and control effort expended are made. 7The principal conclusions

obtained are summarized below.

In the presence of constant target maneuvers, optimal steering

laws that account for measured target acceleration offer substantial im-
provement in guidence accuracy (for a given amount of control effort
expended) over those that do not. Optimal steering iaw:s that correctly
include the effects of airframe dynamics offer significantly improved
accuracy for steering commands that are initiated when the time reinaining
until intercept is of the sume crder of magnitude as the effective autopilot
lag. In the completely coupled design where the autopilot and guidance
loops are designed simultaneously, additional improvement in guidance
efficiency is obtained because the autopilst feedback gains «re fime-
varying. On the other hand, if the missile dynamics are imperfectly known

and an inaccurate mathematical model is used to derive the oplimal steering
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law, the resulting guidance performance can be significantly degraded from
that predicted by analysis.  This observation reinforces the need for
adaptive techniques which can identify airframe parameters or can main-

tain predictable autopilot dynomic characteristics as flight conditions vary.

The degree of computational complexi:;, required to mechanize
optimal guidance techniques generally increases as more effects are
included in the mathematical model of the guidance problem. A qualitative
conclusion of this study is that the greatest relative improvement in guid-
ance accuracy over conventional propertional guidance is achlieved from
those steering laws that account for target maneuvers; the effect of mis-
sile autopilot dvnamics is somewhat less significant, particularly if con-
trol actuation effort expenditure is not too important. These conclusions
should be regarded as a preliminary evaluation, subject to further refine-
ment in a particular application after censidering effects of random mea-
surement anise, time-varying random or intelligent target maneuvers,

and control level limiting.

1. 3.3 Areas for Additional Research

The conclusions of this study suggest several topics in missile
autopilot and guidance law design which merit additional investigation. A

brief outline of these areas is given below,

With respect to the autopilot, we have noted that adaptive control
methods requiring explicit plant identification (parameter estimation) are
well suited for tail-controlled missiles having fixed lifting surfaces. A
summary of parameter estimation techniques that are notentially applic-
able to tactical missiles is provided in Chapter 6; however no comparative

evaluation of the perfoermance of such methods has been carried out. A
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detziled investigation of parameter identification techniques should be
performed to determine their capability for tracking time-varying missile

parameters in the presence of sensor measurement errors.

Adaptive control methods requiring implicit plant identification
are also promising for use in missile autopilots. Some additional inves-
tigation of those hybrid (using partial explicit identification) methods that
use an adaptive reference model (see Sections 8.2.4, 8.3.4, and 10.4) is
needed. The goal of that research is to determine whether the limited

amount of plant identification required can be accomplished with signifi-
cant savings in computational requirements over complete plant identifica-

tion.

It has been observed that some of the problems associated with
designing autopilots for tail-controlled missiles having fixed lifting sur-
faces can be alleviated if alternative control arrangements are used -~
i.e., canard control surfaces, rotatable wings in conjunction with tail or
canard controls, and thrust vector control. I is suggested that further
studies of autopilot design for these configurations be made using realistic

models for missile dynamics.

The investigation of missile guidance laws described in this

report does not consider the effects of measurement noise and random or
* intelligent target maneuvers. In addition, practical limitations on the
amount of control surface deflection available and the allowable magnitude
of the airframe normal acceleration are not treated. It is recommended
that guidance law criteria that include these effects be investigated, to
provide a more accurate evaluation of the missile's ultimate capability to

achieve a small terminal miss distance.
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1.4 READING GUIDE

This report is divided into four basic parts ~- Introduction
(Chapters 1 through 3), Adaptive Control Theory (Chapters 4 through 7),
Adaptive Control Applications (Chapters 8 through 10), and Guidance
(Chapter 11). The first two parts constitute Volume 1 and the remainder
together with the appendices compose Volume II. A brief reading guide is
presented here to indicate those portions that are largely self-contained in

their subject matter.

Chapter 2 establishes a few technical definitions for describing
the separate functions in a missile guidance and control system and for
classifying different adaptive control methods. This material is introduc-
tory in nature and is helpful for understanding the organization of the
report and the terminology used throughout. Chapter 3 is a qualitative
discussion of factors that influence the design of tactical missile guidance
and control systems and documents the need for adaptive control technology
in certain types of missions. This material can be omitted by the reader

who is interested in other applications.

Specific control methods are discussed in Chapters 4, 5, and 7
according to the definitions provided in Chapter 2, and corresponding appli-
cations to missile autopilot design are described in Chapters 8, 9, and 10.
Largely self-contained pairs of chapters are: 4 and 8, 5 and 9, and 7 and
10. The material in Chapter 6 on parameter identification methods is also
a separate unit. Chapter 11 discusses missile guidance, occasionally
referring to material in Chapter 3. The appendices provide analytical
details and technical background which are referenced in the main body
of the report. To assist the reader, each chapter begins with a brief out-

line of its contents and ends with detailed summaries and conclusions.
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2. DEFINITIONS AND CONCEPTS

In this chapter some definitions are established which describe
the guidance and control functions in a tactical missile and which dis-
tinguish between different methods of adaptive control. This is a neces-
sary preliminary task in this report because no standard terminology
exists in the literature for these topics. An effort is made to introduce
only enocugh terms to delineate the most significant features of the sub-
ject.

2.1 GUIDANCE AND CONTROL: DEFINITIONS

The task of directing a missile to impact with a target can be
viewed as one complex control problem which requires both force and
torque commands to a vehicle having twelve state variables describing
its motion -- six translational (position and velocity) and six rotational
(angular position and angular velocity). However, in most applications
it is found that the vehicle responds much more quickly to rotational
commands than to instructions to change its translational state. Hence
it is possible, and conventional, to divide the overall control problem

into two simpler subproblems referred to as guidance and control. To

facilitate the subsequent discussion of these tasks, we need to establish
a descriptive vocabulary.

The guidance law refers to conditions imposed upon the missile's

translational state to achieve impact with the target.  For example, the

objective of proportional guidance* is to null the angular velocity of the

%
See Chapter 11 for a detailed description of proportional guidance,
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line of sight (LOS) to the target with respect to inertial space; this
ensures a collision course. The guidance law is the specification that
this angular velocity be zero.

The steering law refers to the manner in which vehicle accel-
eration is prescribed so as to satisfy the guidance objectives. In the
example of proportional guidance with planar motion, the steering law
requires that the component of vehicle acceleration normal to the LOS
be proportional to the angular rate of the LOS.

“—

The control law refers to the procedure used for realizing the J
steering objectives; it is implemented by the autopilot. The control law
prescribes the signals applied to those missile components -~ e.g., a

gimballed engine, an aerodynamic control surface, or torquing jets --

which operate to accelerate the missile in the proper direction, j i

Often we shall omit the word "law," especially when referring . i

to its mechanization. The term "command]' i.e., steering command, is

used to denote the time history of the signal which is applied to imple-
ment the associated law. The terms guidance and steering are ofien
used interchangeably in the literature; however there are different steer-
ing laws which can achieve the same guidance objective. Consequently
they are treated here as separate, albeit closely related, concepts.

The three functions -- guidance, steering, and control -- are
illustrated in Fig. 2.1-1, The overall system is characterized by the
guidance and control loops. It is usually assumed that these can be de-
signed independently of each other because the autopilot response is

typically much faster. However an analysis of overall system perform-

o

ance, i.e., determination of the ultimate miss distance achieved, must

pos PrreRe
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Figure 2.1-1 Function Diagram of Guidance,
Steering, and Control

include their combined effects. Typically the major coupling effect
between the two loops is the autopilot lag in responding to guidance

*
commands.

Most of the technical discussion in this report is concerned with
adaptive control techniques which are applicable to autopilot design; these
are discussed in Chapters 4 through 10. Chapter 11 is devoted to the
subject of guidance and treats some of the aspecis of coupled designs,i.e.,
those where the guidance and control loops are considered simultanecusly
rather than separately.

*The assumption that guidance and control loops can be designed
independently may lead to excessively large termiral miss
distances. Recent work (Ref. 7) indicates that steering com-
mands generated by optimal guidance can be somewhat im-
proved over those associated with proportional guidance if auto-
pilot dvnamics are taken into account in the decign.  More is said
about this topic in Chapter 11.

iy




THE ANALYTIC SCIENCES CORPORATION

2.7 LADAPTIVE CONTROL SYSTEM: A DEFINITION

The words "'adaptive control" have been used to describe a
wide variety of controi system designs. Because of this general usage,

there is little agreement upon a standard definition for an f4daptive control

system; indeed, a very broad class of systems is often implied.  For
example, any controller designed io produce acceptable system behavior
in the presence of a time-varying or partially unknown environment*
could justifiably be called adaptive based upon the many definitions im-
plied in the literature. In this work, adaptive control has a more limited
meaning that embodies the essential ideas about adaptation so that oue can
ascertain which systems fit the classification and which do not. For this
purpose, the following definition is established:

An adaptive control system (ACS) consists of a plant and
a controller having both of the following characteristics:

1. The controller design is based on a nominal
but inexact mathematical model of the plant
dynamic environment.

2. A rmaethod is provided for altering the controller
structure™* as information is gathered about
the plant environment.

An ACS is illustrated by the functional block diagram in
Fig. 2.2-1. In general the important variables in the system can be
expressed as vectors, denoted by underscored lower case letters and
thick signal flow lines. The objective is to achieve satisfactory response
of the plant state x(t) to a command input v(t); the input often can be

E'S
Here environment means both the plant dynamics to be controlled and

disturbaiices acti- ¢ upon the plant.

**This includes the possibility of simple gain changing.
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Figure 2. 2-1 Adaptive Control System (ACS)

measured but it is usually not known in advance. In a missile autopilot v(t)
is the set of steering commands generated by the guidance loop. The most
distinctive feature of the system is the controller, whose structure is
varied by means of the adaptation commands, w(t). The latter are
generated from information gathered about the system performance,
summarized by the vector, p(t). A more specific description of various
types of controll¢rs and performance assessment units that are used in

adaptive systems will be given presently.

The above defirition is suggested in part by Jacob's remarks
(Ref. 8) regarding the different meanings of adaptive control. Condition
(1) of the definition exists in mos: physical situations, either because the
complete mathematical description of the plant is unknown or because
approximations are made intentionally to limit complexity; it provides
a means for beginning the system operation with a nominal controller

2-5
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design. Condition {2) is the essence of the definition in that the controller

adapts its structure to the real-time behavior of the environment. The
adaptation signals, w(t), are generated by an algorithm that seeks to
improve system performance. Examples of control systems which are

not adaptive within this context are:

o Systems designed using optimal deterministic
or stochastic control theory, based upon an a
priori mathematical model that is assumed to
be complete in every detail; these are called
optimal control systems.

¢ Fixed configuration linear controllers, charac-
terized by fixed gains, which are designed to
be relatively insensitive to plant parameter
variations but which do not satisfy condition (2)
of the definition; these are called low sensitivity
control systems. *

The definition is procedural in nature in that it emphasizes the appreach
used for synthesizing the control. r; the resulting system configuraticn
does not determine whether the system is adaptive so much as does the

"point of view'" of the designer (see Truxal, Ref. 9).

2.3 TYPES OF ADAPTIVE CONTROL SYSTEMS

The configuration illustrated in Fig., 2.2-1 is very general.
To treat the subject in more specific terms, three types of adaptive

control systems are defined in this section.

*While not adaptive in the sense defined here, these systems are
important in combating the effects of parameter variations and are
discussed further in Section 2. 3.3 and Chapters  and 10.

2-6
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2.3.1 Parameter Adaptive Control Systems (PACS)

In designing an adaptive system, a frequently used assumption
is that for some period of time the nlant environment can be described
by linear, time-invariant. deterministic or stochastic differential equa-
iions. Associated with this type of mathematical model, there are many
frequency domain and time domain synthesis techniques for designing a
linear controller whose gains are constant over the period for which the
plant description is valid. A system designed by one of these methods
is made adaptive by specifying an algorithm for changing the values of
the controller gains as the plant dynamics vary; the gain changes are
based upon a suitable performance criterion. This type of ACS is discussed
extensively in the literature and accounts for all of the operational adap-
tive systems referenced in this report (Refs. 1 - 6); it suggests the fol-

lowing definition:

A Parameter Adaptive Control System (PACS) is an adap~
tive system in which the controller structure is fixed to
within a set of adaptive gains that are adjusted according
to a specified adaptation algorithm.

Thus the configuration ot Fig. 2.2-1 is specialized. A simple example
of a PACS is illustrated in Fig. 2.3-1, where the va:iable structure con-
troller consists of a single adjustable gain, k.

The above definition says nothing about the plant, whether it is
specified to within a set of unknown variable parameters or not., How-
ever, in order to design a workable adaptation algorithm, one must
generally start with some a priori knowledge about the plant's structure.
Typically the form of the equations of motion is required to within some
unspecified, possibly time-varying, coefficients. This requirement
becomes apparent in the discussion of specific parameter adaptive

2-1
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Figure 2.3-1 Example of a Parameter Adaptive 1
Control System (PACS) }

systems in later chapters. It is mentioned here to permit distinguishing, i

in a qualitative way, those situations where a PACS is likely to be

appropriate from those for which a different type of adaptive design is
desirable, We shall return to this point in Section 2. 3. 2.

The major vortion of this report is devoted to parameter adap-
tive systems because they seem to offer a reasonabie compromise be-
tween the amount of a priori knowledge assumed about the plant (missile
airframe dynamics) and the required complexity of the adaptive con-
troller. As such the PACS is still a very general category that covers a
wide variety of proposed designs, Mgost of these fall into one of two cate- :

gories, referred to as explicit or implicit plant identification systems.

Explicit Plant Identification Systems — In a PACS with explicit
plant identification, adaptation is achieved by attempting to completely

determine the plant equations of motion while the system is operating and
by adjusting controller gains on the basis of the information so obtained.
To illustrate, consider the following example:

2-8
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Example 2.3-1 — The plant is a first order system whose
equation of motion is

x(t) = a(t) x(t) + u(t)

where a(t) is unknown (but is usually assumec to be slowly varying)and u(t)
is the plant input. The latter is to be given by

u(t) = bv(t) - k(t) x(t)
where b is a fixed gain, k(t) is an adaptive feedback gain, and v(t) is the

command input,

Explicit plant identification is obtained by operating on the plant
output x(t) to determine a(t) or an estimate, a(t). The latier is used to
adjust the feedback gain according to some design criterion; e.g.,

alt) -k(t) = b
with b assigned a value which provides desirable closed loop behavior.

Solving for k(t) and substituting into u(t), one obtains the following equation
for the closed loop system

x(t) = [a(t) - a(t) + b) x(t) + bv(t)

If the difference between a(t) and its estimate is small, the adaptive sys-
tem is approximately described by

x(t) = bx(t) + bv(t)

Presumably the designer would assign a value to b which provides satis-
factory response characteristics for some assumed form of v(t), such as
a unit step function. A diagram illustrating the controller fuactions is

given in Fig. 2.3-2. :

Explicit plaut identification has the advantage that the system
potentially can adapt rapidly to plant variations. In Fig, 2.3-2, if the
known input v(t) is nonzero and if error-free measurements of x(t) are
available, an accurate estimale of the plant parameter can be quickly
obtained and k(t) is immediately adjusted to the proper value.  This
property is important from the standpoint of analyzing the resulting design,

Suppose one asks whether the system configuration is asymptotically

2-9
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stable.™ To avoid the analytical difficulties impl‘ed by the fact that the
plant operating condition is time-varying, stability in adaptive systems is
often investigated by assuming the unknown parameters are held constant.
For the example in Fig. 2.3-2, it is clear that if a(t) is constant and if g
identification is perfect, the differential equation for the adaptive system i
is simply i
%x(t) = bx(t) + bv(t) _
For asymptctic stability all that is required is b < ¢, a condition which is ,
completely under the control of the designer. In more general situations
it is also true that the controiler gains are immediately adjusted to the
desired values if the piant parameters are assumed constant and if they

can be rapidly identified. * Under these conditions the system stability

i
characteristics are determined a priori. With the operation of the explicit 1
i

plant identification system viewed in this manner stability is not an im- )

portant theoretical problem.*** It will be demonstrated that such may not
be the case for the second category of parameter adaptive systems. 2

. :
Qualitatively, asymptotic stability means that x(t)-0 as t -« if v(t) = 0, 3
A more detailed discussion of stability is given in Appendix D. :

*K
Identification can be accomplished if enough output variables are mea-

sured so that information about all the unknown parameters is available;

i.e., the parameters are ""observable." See Chapter 6 for more details

on this subject.
Xk %k
Clearly, parameter identification cannot be perfect because measure- -

ment errors always exist to scine degree. However, if the plant param-
eters are considered fixed for all future time, the estimation procedure
should vield parameter estimates whose errors asymptotically approach
zero. Consequently the controller parameters asymptotically approach
those values which satisfy the design criteria, usually ensurirg asymptotic
stability. Of course, the speed of convergence of the controlier param- i
eters is affected by the rate at which plant identification errors go to zero. )
Furthermore, if there is a lag in adjusting the control gains caused by
slow identification, a real practical problem of ""temporary instability" : i
may exist.

T it ki T

Col o
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Figure 2, 3-2 An Example of Adaptive Control With
Explicit Plant Identification

Implicit Plant Identification Systems — In a system employing

implicit plant identification, no attempt is made to identify the plant com-
pletely. Instead, output variables of interest are examined and their
behavior compared with desired performance criteria, This comparison
produces an error signal and controller gains are adjusted so as to force
the error to be small in some sense. The goal for the implicit type of
system can be the same as if explicit identification were used; however
the means of achieving this goal are different. A PACS that fits this
classification is illustrated by the following example.

Example 2.3-2 — The control system for this example is illus-
trated in Fig, 2.3-3. The desired output is provided by passing the com-
mand input v(t) through a model which is specified and constructed by the
designer. The plant is compensated by a single, variable feedback gain
k(t). The error signal, defined as
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Figure 2.3-3 An Adaptive Control System With
Implicit Plant Identification

is measured and used to generate an adjustment in k(t). The gradient
method illustrated here adjusts the controller gain according to

k(t) = -a%(e-?(t)) 2.3-1)

where o is a proportionality constant to be chosen. This technique is dis-
cussed extensively in Chapter 4. Intuitively, k(t) changes in a manner
which tends to reduce the squared error. In fact it will be shown thet this
adjustment rule is a direct result of the desire to minimize the integral
square error, J;

t+T
J={ e‘la (2.3-2)

for some interval of length T.
This PACS is significantly different from that in Example 2.3-1,

The plant is never explicitly identified; satisfactory adjustment of k(t)
proceeds indirectly be generating the quantity

2-12
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Techniques for accomplishing this are discusszd in Section 4.2.

Observe that the basic objective is to make ti.e s3stein and the
modei identical, or nearly so in the sense of minimizing J. If the plant
parameters were explicitly identified, the contreller could be adjusted
immediately to yield the best approximation to the model. However, in
this system the adaptive gain is adjusted relatively slowly in the general
direction of its best value. To the extent that it ultimately achieves the
same goal as does explicit plant identification, albeit by different means,
it is called an implicit identification system.

Because the plant is never explicitly identified in this type of
PACS, it is not known at any time what the ideal values of the adaptive
gains should be; at best only the direction in which they should move can
be ascertained. Consequently, many implicit identification methods, such
as that illustrated in the above example, drive the controller gains quite
slowly to their best values; i.e., they adapt slowly to plant changes.
Therefore the control system must be analyzed foi stability to insure con-
vergence of the adaptive gains to their optimum values. As suggested for
explicit identification methods, this can be done by assuming the variable
plant parameters have some nominal constant valvies, However, one is

often frustrated in the analysis by the fact that the adavotive control portion

of the system is nonlinear. An additicnal difficuity is that the perform-
ance index J in Eq. (2.3-2) is a function of time because of fluctuations
in the input, v(t); hence, the optimium choices of the fecdback gains vary,
even if the plant parameteis are constant. 7Tv=se characteristics make
the stability of implicit plant identificaticn vvstems more difficult to pre-
dict than that of explicit systems.

2-13
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2.3.2 Learning Control System (LCS)

To provide motivation for defining a learning control system, it
is useful to consider some things that a parameter adaptive control sys-
tem, as defined in Section 2. 3-1, does not do. It has been pointed out that
a PACS using implicit plant identification is characterized by a controller
which is completely specified to within a set of adaptive gains that are
varied on the basis of some performance measure. Although it was not
specifically mentioned, the gain adjustment also proceeds without
"perfcrmance verification, punishinent and reward, or memory," (Refs.10
and 11). The implementation »nf these additional functions provides the

basis for the definition of a learning system.

Recall that in Example 2. 3-2, the adaptive gain k(t) is adjusted
according to Eq. (2.3-1) in an effort to reduce the magnitude of the integral
square error, J, in Eq. (2.3-2). Now in order to mechanize k(t), the
quantity 3(e2(t))/ak must be generated; usually this can be done only
approximately. Furthermore an appropriate value of o must be selected;
it should not be so large that k(t) changes too rapidly and "overshoots" its
optimum value,* nor so smalil that it converges too slowly. These con-
siderations imply that one has no way of being certain that the change in
adaptive gain always reduces the error. The difficulty is illustrated in
Fig. 2.3-4 for a parameter optimization problem where the objective is to
minimize F(k), starting from a trial value kl' Corcectly applied, the
gradient adjustment rule should yield a new value k2 such that F(kq) < F(kl);
however, too large a ciiange in k may yield the opposite result. Fearing
unsatis{zctory behavior of this sort, one might control k(t) by Eq. (2.3-1)

*This possibility is common to gradient methods employed to find
the minimum value of a functior.,
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Figure 2.3-4 The Effect of an Excessively Large Gradient
Step in a Parameter Optimization Problem

for a while, concurrently evaluating the actual integral square error and
comparing it with the predicted value J would have if the gain had remained
constant. By this m~thod one could verify that the adaptive action taken
actually improves the performance. H improvement is observed the
adaptive controller can be rewarded by increasing the adjustment factor, a.
If worse performance is observed, punishment is applied by decreasing a.
Finally, one might store in a memory the required changes in & that im-
prove system performance, as a function of the observed states of the plant.
The objective is to "remember" what actions were favorable o; unfavorable
for various cases so that the correct adaptive action can be anticipated when
those situations recur. In other words, the adaptation algorithm is itself
adaptively adjusted.

The above digression into the conceplual deficiencies ot a PACS
motivates the following definition:

2-15
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A Learning Control Systen.*(LCS) is an adaptive
system whose structure conforms to that of Fig, 2,2-1,
without restriction on the form of the controller, which
can ir:corporate the added functions of

o Performance Verification
¢ Punishment and Reward

e Memory

The definition is generally consistent with the literature on the subject;
two survey articles which discuss the functions defined above in some
detail are Refs. 10 and 11.

The term "learning' appears to be almost synonymous with
"adaptive', as the latter is used in Section 2.2. It is difficult to imagine
a more general definition of adaptive controller than the one for a Jearning
system; certainly the PACS seems to be a special case of an LCS. The
terminology used here is chosen as a reasonable compromise between
historical precedent, the need for distinctions which confuse as few readers
as possible, and current conventions. Usually "learning" is reserved for
a controller that possesses in some degree the functions - memory, ete, -
defined above; if the latter are absent, another term -- e.g., parameter
adaptive -- is used (Ref. 11). The general system structure depicted in
Fig, 2.2-1 is called "adaptive" in this report because it seems to be the
first name given to controllers having a variable structure and it has a

meaning at least as broad as any other.

The added capability of an LCS, as compared with a PACS,
implies more complexity in implementing the adaptive contrcller. To
identify circumstances in which an LCS may be preferable, recognize that
the existence of the three functions irncluded in the definition potentially

*Sometimes called a Self-Organizing Control System.
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enables an LCS to achieve satisfactory control of a plant about which littie
or nothing is known. By {rying various input control signals and observ-
ing the resulting behavior of the system, the learning controller in effect
constructs a catalog of empirically determined input-output relationships.
Thus the LCS really accomplishes system identification of a much more
general sort than that described in Section 2. 3.1 for a PACS. This implies
that a learning system is best suited for those situations in which there is

very little a priori information available about the system structure.

For the applications considered in this report, many of the
identification capabilities of an LCS appear to be unnecessary. The form
of the equations of motion for a missile airframe and the range of varia-
tion of its parameters are generally known. With this information avail-
able, paraineier adaptive design techniques can often be employed. The
considerable complexity inherent in implementing most learning methods

tends to favor use of a parameter adaptive system where possible.

An investigation by Adaptronics Corporation (Ref. 12) has led
to the development of equipment which possesses a limited learning capa-
bility and has received favorable ratings in aircraft flight tests. This
device, called a Self-Organizing Controller (SOC), has a mode of operation
that can also be interpreted as a particular form of parameter adaptive
-ystem which is described in Section 4,2.5. A feasibility study for use of
learning systems in aircraft has been reported (Ref. 13); this work
indicates that considerably more must be accomplished in the way of per-

formance analysis and controller simplification before such techniques are
practical on a large scale,
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2.3.3 Adaptive Insensitive Control Systems (AICS)

This section defines a third type of ACS which incorporates
design principles related to system sensitivity. The most familiar method
of reducing the effects of plant parameter variations is through feedback.
For a single-input single-~output plant, the act of coupling the output to the
input through a high gain reduces the sensitivity of the compensated system
to fluctuations in the plant. For ¢xample, in Fig. 2.3-5, the transfer
function T(s) is given by

_ Y(s; _ _KG(s)
~ Vis) 1+KG(s)

For a given value of the gain, K, T(s) = 1 when
|KG(s)| >> 1

Consequently, perturbations in the plant transfer function do not substan-
tially affect T(s) at values of s for which the inequality holds. The larger

K is, the wider the frequency range over which these conditions are valid.

From this basic principle have sprung many methods for reduc-

ing or minimizing sensitivity to plant variations. A generally common

characteristic of these techniques is that the resulting controller has fixed
, elements. The design is accomplished by assuming particular ranges of

3 variation for unknown parameters and selecting a fixed configuration con-
troller which gives the most insensitive overall control system, within the

required performance specifications.

WNE EE SEE SR S SUDE R N SRR URRT OWeS: SR ENG MBI eeG

This approach is useful, even in those situations where a fixed

controlier isn't adequate. For instance, in open loop adaptive systems*

o

*
See Section 5.2 for a brief discussion of open lcop adaptive systems.
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Figure 2.3-5 A High-Gain, Low Sensitivity Feedback
Control System

where different sets of fixed control gains are used for different measured

plant operating conditions one wishes to minimize the number of required gain

levels. This can be accomplished by creating a low sensitivity design for
each gain setting, It is the view of some authors (Refs. 14, 15, and 16) that
adaptive systems are often proposed without careful consideration of alter-
native, fixed-configuration designs which are less complex and more
reliable.

With these considerations in mind, we make the following

definition:

An Adaptive Insensitive Control System (AICS)
is one which has a low sensitivity, fixed configuration
controller and possibly includes a separate adaptive con-
troller in a parallei feedback loop.

An AICS is illustrated in Fig, 2.3-6. One first designs a fixed controller
to make the system as insensitive as possible to plant variations. Then if
adaptation is still required, it can be added in a second control loop. If

the latter should fail, reasonably good performance may be maintained

with the inherently more reliable fixed controller. This is a pl.ilosophically
pleasing approach in that one attempts to get the most out of tiine-tested
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Figure 2.3-6 An Adaptive Insensitive Control System (AICS)

linear feedback techniques before turning to adaptive systems. A review

of some methods for designing inscnsitive controllers is given in Chapters
7 and 10.

2.3.4 Summary

In this section the following types of adaptive systems are defined:

¢ Parameter Adaptive Control Systems (PACS)
Explicit Plant Identification
Implicit Plant Identification

¢ Learning Control Systems (LCS)

e Adaptive Insensitive Control Systems (AICS)

2-20
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Most of the adaptive methods discussed in this report fall under the PACS
category which seems to use a priori information given about plant dynamic
characteristics to best advantage. Learning Control Systems for the most
part are not yet practical for missiie applications. (A possible excep-
tion to this judgment is the Adaptronics device, discussed in Sections

2.3.2 and 4.2.5, which has a limited learning capability.) However, it is
not apparent that an LCS is needed for tactical missiles since a reasonable
amount of a pricri knowledge about airframe parameters is vsually avail-
able. The third category is also important. Techniques for designing
fixed configuration controllers yielding low sensitivity are investigated in

Chapters T and 10, the adaptive portion of an AICS can be designed by any
of several methods discussed in this report.
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3. APPLICATION OF ADAPTIVE METHODS TO
GUIDANCE AND CONTROL OF TACTICAL MISSILES

Adaptive control techniques have been successfully applied to high
performance aircraft, and the need for such methods in designing missile
control systems has been well documented (Refs. 4, 17, 18, 19). I any
situntion for which there may be large variations or uncertainties in the
mathematical description of the plant together with s:rict performance re-
quirements, adaptive methods are desirable. These conditions potentially
exist as much, or more, for missiles as for aircraft. In this section, con-
siderations affecting the design of guidance and control systems for tactical
missiles are reviewed and situations where adaptive systems may be bene-

ficial are delineated.

3.1 FACTORS AFFECTING DESIGN OF GUIDANCE
AND CONTROL SYSTEMS

This section considers some important factors which influence
the design of a missile guidance and control system for a tactical mission.
For the purpose of this discussion the following categories are established:

e Target dependent design considerations

¢  Weapon system dependent design considerations

o Adaptive design considerations
The first two of these are fundamental to the design problem, regardless

of the method of control to be used. The third classifies particular
mission requirements that impose a need for an adaptive system.
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3.1.1 Target Dependent Design Considerations

Four target-related factors that influence guidance and control
system design are:

o Target vulnerability
¢ Target maneuverability
¢ Target defenses

¢ Target environment
These are discussed qualitatively in the following paragraphs.

Target Vulnerability — For a given type of missile warhead and

fuse, the target vulnerability places requirements on the maximum allow-
able miss distance in order to inflict an acceptable levei of damage upon
(i.e., “'destroy’) the target. The necessary accuracy specifications are
usually expressed in terms of a figure-cf-merit called the Circular Error,
Probable (CEP). This is the radius of the circle, centered at the target,
through which the warhead must pass with a prokability of 0. 50 in order to
achieve an acceptable probability cf kill. Ii is quantitatively determined by
simultaneous consideration of target characteristics, warhead type, and
fusing method. Typical values of CEP's for surface iargets are given in
Ref. 20.

The guidance function of a tactical missile is to bring a warhead
sufficiently close to a target. Usually a CEP of oniv a few feet or few tens
of feet, depending upon the type of target and the warhead capability, can
be tolerated. Because the raissile travels at high speed, this task can be
accomplished only if steering commands {see Fig. 2.1-1) are promptly
executed, especially near the end of the trajectory, Consequently,

3-2

- gy

[N

vy

- Lo~

-

AR

-

[PLPY Ry

paryterey

AR i e bl




THE ANALYTIC SCiENCES CORPGRATION

specifications for the autopilot include requirements on such performance

measures as delay time, rise time, settling time, and overshoot. *

rarget Maneuverability — The maneuverability of the target aizo
affects the missile guidance and control system design. In an encounter with

an accelerating target, missile steering commands usually vary more
rapidly than those needed to follow a nonmaneuvering target; hence the
former usually imposes the requirement for a more rapid missile autopilot
response. This need has been documented for air targets (Refs. 22, 23).

The choice of guidance method is also influenced by target maneuvers. For
example, the concept of proportional guidance is motivated by assuming a
constant velocity (nonmaneuverincz) target. When maneuvers are included
in the mathematical model of target behavior, a so-called biased proportional
guidance law (Ref. 7) achieves better accuracy. Some quantitative informa-

tion about aircraft evasive factics is available in Ref. 24.

The influence of target acceleration and autopilot lag on miss dis-
tance for a proportional guidance system is illustrated in ¥ig. 3.1-1. The
missile's steering command for this technique is given by

a, = nv ci
where a, is the missile acceleration normal to the line of sight, nis a
proportionality constant called the navigation ratio, Ve is the relative clos-
ing velocity between missile and target, and X is the angular turning rate of
the line-of-sight (LOS) to the target in radians per second. In delermining
the curves of Fig. 3.1-1 it is assumed that the autopilot dynamics are first-
order with a time constant of r seconds. Target acceleration is taken to be

*
See Ref. 21, p. 79, for definitions of these terms.
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Figure 3.1-1 Normalized Miss Distance Caused by
Constant Target Acceleration aj

a constant value, 2. The ordinate of the graph is the normalized

miss, m,
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where m is the distance by which the missile misses the target, in feet.

The abscissa is tirae~to-go until intercept, tgo’ normalized by the auto- !
pilot time constant. ' !
! ¥
To interpret Fig. 3.1-1, assume the missile and target are on F
a collision course (i = 0) with tgo = 2r and n = 3. At that instant the target , ]
i begins a constant acceleration maneuver normal to the LOS; the resulting :
normalized miss 2r seconds later is indicated by 1711 on the graph. Obhserve ‘ g

that the unnormalized miss distance is proportional to 72,
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m = iﬁarz
t

Consequently a large autopilot lag is highly detrimental tc guidance accuracy.

From the standpoint of the target, the curves indicate that a2 con-
stant acceleraiion maneuver is mosi successful in causing the interceptor to
miss if begun within a few missile autopilot time constants before intercept.
Gtherwise the interceptor has time to react to the target's behavior, as
indicated by the relatively small values of m for £ - >6. The practical
importance of a target's timing its evasive maneuvers has been pointed out
in Ref. 26.

The - : is another aspect to the fact that a target maneuver can
cause appre .-le miss distances if begun only one missile autopilot time
constant before intercept. When tgo > 7, the time remaining within which
the guidance system must act to null the ter:ainal miss is about the same as
the autopilot response time. Consequently the guidance accuracy for this
case may be improved more eificiently if the complete system is designed
treating the equations of motion for the autopiiot and guidance loops in
Fig. 2.1-1 simultaneously, rather than separately.* (Sce Section 4.5.2 of
Ref. 25.) The formulation of a coupled guidance and contrcl design problem

and so.ne of its implications are discussed in Chapter 11.

Target Defenses - Any offensive system can expect to encounter

target defenses. These may be classed either as evasive or destructive.

*
That is, a coupled puidance-control design problem formulation may
produce a more efficient steering law than would be achieved simply by

building a faster autopilot or by raising the steering law gains.
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Evasive defenses include electronic countermeasures, evasion maneuvers,
decoys, and any acticn {aken to 'fool" the offensive system. The target
attempts to hide itself in a "high noise" background. Consequently the
guidance system must be capable of "seeing through" the defenses; this
may require sophisticated data processing techniques and judicious choice
of unjammable sensors. Desiric*ive defenses are those with which the
enemy attempts to destroy the offensive system. PYotentially these can be
antimissile-missiles and high density antizircraft fire, etc. Thus the
offensive missile itself becomes a target which may have to take evasive

action prescribed by its guvidance system in order to fulfill its mission.

Target Environment — Noeise induced within the missile guidance

system by the target environment* and its relationship to the missile homing
sensor contributes tc the terminal miss distance. The effects of this noise

source are best described by discussing air and surface targets separately.

For an air target, the adverse effects of noise produced by the
target environment generally increase as the range tc the target decreases.
To understand this behavior, consider a proportional guidance system in
which the measured LOS angular rate is determined by apparent changes in
the relative direction of the target. If the latter is an aircraft, a radar
homing sensor may receive separate signals from various parts of the
fuselage, wings, or tail. The angular dispersion in the received reflections
(known as scintillation noise) causes the radar receiver's estimate of LOS
angular rate to be inaccurate. The measurement error increases as the

ratio of range to target dimensions decreases with decreasing tgo (Ref.25).

X
The target environment includes the target itself and any other objects
which are within the field of view of the homing sensor.
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The magnitude of the scintillation noise for an air target is deter-

mined primarily by the target's dimensions, for a given tm., ite effect upon
gc
the guidance system is most important when the range is quite short. It is

observed in proportional guidance systems (Ref. 25) that an increase

TR LR

in the autopilot lag reduces the terminal miss caused by this particular

error source if there is no filtering of measurement data. This is one

pr g

situation in which an autopilot with a relativelv slow response gives better
system performance than a fast response, the reason being that the mis-

sile's airframe effectively filters the high frequency noise on the steering

iy’ skl S

ccommand caused by measurement errors. It is probably more efficient in
terms of autonilot actuator fuel consumption to incorporate a filtering
capability in the guidance loop design. However, in either case, the pres-

ence of scintillation noise tends to favor a limit on the autopilot bandwidth,

For a surface target, a homing sensor may receivc refiections

or emissions from many different objects, as well as from *ne target.

Consequently, compared with air targets scintillation nois : is a greater
source oi difficulty in this application; in fact, it is the chief cause of

terminal miss and greater filtering of guidance commands is necessary.

The above discussion uses a radar homing sensor to illustrate
the effects of scintillation noise on the guidance system; the same source
of measurement errors exists with optical and infrared seekers. When

the presence of seeker noise requires some type of filtering in the guidancaz

loop, the bandwidth of the steering commands is restricted and the required

response time oi the autopilot is limited. This effect is most pronounced

L o

in systems designed for surface targets which have an inherently noisy
background.

Wi b

All oi the factors discussed in Section 3.1.1 influence the mis-

sile system design. In addition to considering the properties of any one
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target, the system designer may have to provide a capability against tsv-
gets with different characteristics. Such will be the case if a mulii-

3= wiptatiegs

LY

purpose weapon system is desired for use against both surface and air
targets, or against a wide variety of surface targets having diiferent CEP

requirements and environmenta! characteristics,

———r e el

3.1.2 Weapon System Depe:indent Design Considerations

Five factors related to the missile weapon system which influ-
ence missile guidance and countrol are: !
¢ Missile dynamic environment
e Allowable system complexity
¢ Required system reliability
e Sensor and navigation equipment

e Launch conditions
Each of these is discussed in this secticn.

Missile Dynamic Environment — The missile dynamic environ-

ment reifers to the quantitative description of the equations of motion, ran-
dom forces (wind gusts) acting upon the missile, and limitations on both the
controls ang plant state. It is conventional to assume that the equations of
rotational motion are linear differential equations with coefficients whose
values depend upon the tirne-varying flight condition, the latter being defined

by the missile's altitude, speed, and mass distribution at any particular instant
of time. One simple mathematical model for missile airframe dynamics is
given in Section 8.1-1, In a typical mission the flight condition can vary

3-8
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in a generally unscheduled manner. This is the sort of behavicr which has
motivated use of adaptive control in aircraft. In missiles the variations
tend to be more rapid and more extreme because of proportionately larger

mass and velocity changes

Wind gusts are undesirable external forces acting upon the mis-
sile which can contribute to target miss. The transfer function between the
gusts and the missile states of interast should have as sma!l magnitude as

possible over the gust frequency range.

Autopilot coatrol limitations also affect the missile guidance
capabilities. Not only are control surface deflections limited, but the total
energy available to drive the actuators is restricted. For example, if the
actuator is battery driven, it may be advisable to have ''sluggish' control
and steering commands during the initial part of the trajectory to avoid
excessive energy consumption, permitting use of a smaller battery. Usually
a "tight' guidance loop is desired when close to the target; hence over the
entire mission, a variable response may be desired. Other possible mis-

sile characteristics that influence guidance and control system design are:
o Throttleable vs constant thrust engine
e  Multiple engine burn periods vs single burns

¢ Continuously variable controls vs bang-bang controls

¢ Techniques used to generate contrcl moments -~
canards, direct lift devices, thrust vectoring

e Acceleration constraints imposed by structural
limitations

e Missile speed constraints caused by aerodynamic
heating of various components -- radomes,
propellants, avionics

o ar A gell g kD Qe b
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Allowable System Complexitv — The allowable weapon system

complexity refers to the amount of equipment which can be devoted to guid-
ance and control tasks. If all such functions are to be performed entirely

on board the missile, constraints on missile volume and weight place obvious
limitations upon the system. On the other hand, if control of the trajectory
is to be shared with another vehicle -- e.g., launch aircraft, ship, or
ground spotter -- more sophisticated guidarce and contro! techniques can

be implemoented.

Required System Reliability -~ Reliability is an important con~

sideration in any missile design. The effects of poor reliability are all too
evident at the operating level (Refs. 23, 26-28). Various guidance and con-
trol techniques require different amounts of computation and associated
hardware. Those techniques which promise the most in terms of flexibility
and performance often are also the most complicated to instrument: there-
fore, their reliability may be quesiioned. An effort is made in this report
to indicate trade-offs between system complexity, reliability, flexibility and
performance for several adaptive techniques.

Sensors and Navigation Equipment - The sensors and navigation

equipment available to the weapon system determine the accuracy with
which im=ortant state variables can be determined from physical measure-
ments., Having good estimates of the states is essential to mechanizing
feedback guidance and control systems. Some types of sensors which may
be available to provide guidance and control information are as follows:

Radar range and doppler measurements

Inertial navigation system

: Radio navigation (Loran, Omega, etc.)
E Satellites
3 Lasers

f 3-10
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Individual gyroscopes and accelerometers
Infrared detectors

Radar and optical correlation techniques

Sensor characteristics which affect guidance and control sys-
tems design are

¢ Measurement noise

Sensor dynamic characteristics

Physical quantities measured

¢ Homing sensor acquisition range

A brief discussion of these factors follows.

Measurement noise inherent in missile sensors influences overall

guidance accuracy. An illustration of this effect is given in Figs. 3.1-2 and
3.1-3 for a proportional guidance system with a semiactive radar homing
sensor (radar transmitter at launching site, radar receiver in missile),

having both random and bias measurement errors.

The normalized root mean square (rms) miss, o m’ caused by
receiver noise is plotted in Fig. 3.1-2 as a function of normalized time-to-

go. The rms terminal miss, O’ is given by

1'1°5 vg Jo

m C

m -
r

where r is the range from missile to target at which the receiver signal to
noise ratio (S/N) is equal to one (S/N increases with decreasing range to
the target). The quantity ¢ is the receiver noise power spectral density in
radé/rad/sec (Ref, 25) required to yield S/N = 1 at the specified value
of r. To calculate the error caused by receiver noise, assume that the
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missile and target are on a collision course at the instant the radar receiver
is activated. As in Fig. 3.1-1, the corresponding value of igo yields the
resulting normalized rms miss. The actual terminal miss in feet for fixed
r and ¢ is proportional to 71' 5 and vg. Thus both autopilot lag and closing
velocity have significant effects on this source of error. The longer the
receiver noise acts upon the guidance system, the larger is its effect on

o. , asymptotically approaching a limit with increasing flight time.

m’
The fact that the curves in Fig. 3.1-2 approach zero with Ego
is a result of an increasing S/N as the range to the target decreases and a
decreasing amount of time remaining for the noise to affect the guidance sys-
tem output. Consequently from the standpoint of reducing seeker noise effccts,
the missile should be as close as possibie to the target before the homing
sensor is activated. However, this is obviously impractical because the
seeker is needed to sense the effects of initial condition errors and target
maneuvers (see Figs. 3.1-1 and 3.1-4); several autopilot time constants
are required to reduce the terrinal miss distance from these sources to an
acceptable level. Therefore the steady state errors in Fig, 3.1-2 are most
applicable to an error analysis of the guidance system, except possibly for
some "dogfight' situations where {he missile is launched in close proximity
to the target.

The effects of measurement bias errors are illustrated in Fig.
3.1-3 for a proportional guidance system. The miss distance in feet is ex~

ressed in terms of the normalized miss m aceording to
p g

.= 2
m = Abvc'r

where ib is a bias error in the LOS angular rate, This contribution to ter-
minal miss tends to approach a small constant value as tgo increases beyond

about 107. Again autopilot lag and closing velocity have a significant effect.
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Sensor dynamic characteristics which are part of the autopilot

and guidance loops zometimes affect overalil system design. The situa- X
tion often arises where the sensor dynamics,* although insignificant in

themselves, cause undesirable behavior in a high gain autopilot loop.

Hence they may lirit the amount of compensation which can be applied for

stabilizing the missile airframe. Guidance sensors can also have response ¢
’% characteristics that cannot be ignored (Refs. 25, 29).** In addition, con- j

straints on sensor motior relative to the missile's airframe (most sensors .
é have a very limited search angle) can cause the missile to "fly blind" over f
A

some portion of its trajectory or require it to follow a particular trajec- !
tory in order to keep the target in view.

*
For example, gyroscopes and accelerometers have dynamics which

may affect performance of a high gain loop. f
**For example, ¢imballed target sensors may have associated dynamics

which are significantly coupled with those of the airframe, even for low
control loop gain.
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The physical gugntities measured by the sensors determine
which state variables are observed directly or can be extracted with

various data processing techniques. For example, if airframe structural
bending modes are important in a given application, special sensors may
be required to measure the bending states for the purpose of generating
appropriate control signals.

Finally, the acquisition range of the homing sensor specifies
the minimum distance the missile must be from the target in order to

begin homing guidance. Wher the acquisition range is larger, less accuracy
is required of inidcourse guidance or, when there is no midcourse phase,
the allowable "launch window' is larger.

Launch Conditions — Several aspects of missile launch conditions

influence guidance and control system design. These can be broadly cate-
gorized as:

e Launch range and launcher orientation relative
to the target

¢ Missile configuration and orientation on the
launcher.

Launcher range and launcher orientation help determine whether
a single homing guidance phase is sufficient to reach the target or mid-

course guidance is also required. The latter is necessary when the launch

range is so great that the homing sensor cannot track the target. Midcourse

.. . . . : . kK .
guidance may use either self-contained inertial, electronic’, celestial, or

launcher-aided navigation, or some combination of these, to put the missile in
position for the homing phase of the trajectory.

*E lectronic refers to earth or satellite based navigation nets such as
Loran, Omega, etc.
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For launches quite close to the target, initial condition errors are
important, especially in air combat situations (Ref. 22). This is illustrated
in Fig. 3.1-4 for the case of proportional guidance with an initial line of sight
angular rate, A (0). In this graph, the terminal miss is given by

m = mx(0) I’gO‘T

where rgo is the range to go,

r = v t
go ¢ go

Again, autopilot lag, modeled as a first order system with time constant 7,
has a large influence on terminal accuracy, and a value of tgo at launch
considerably larger than + may be required to achieve acceptably smail

miss.

There are certain situations where initial conditions are pre-
dominant in determining the terminal miss. For example, if a dogfight mis-
ile using proportional guidance is launched in an attack 45° off the beam of an
enemy aircraft, as indicated in Fig. 3.1-5, the initial LOS rate is given by

. |!t|
x0) = T c¢os 45°

go

where v is the target's velocity. Counsequently m in feet is calculated from

m = 0.707Tm |v,j7
For a target traveling at Mach 1.5 (about 1500 feet/sec) and a missile auto-
pilot time constant of 0.2 second, a value of Ego as large as 3.5 with n = 3,
results in a terminal miss of about 15 fecet. For a faster target or larger
time conztant the mi: s is proportionately greater. Depending upon the type
of fusing in the missile warhead, this level of accuracy may be unacceptable.
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Figure 3.1-5 An Off-Beam Shot in a Dogfight Encounter

The missile configuration and orientation in its launcher deter-

mine whether the missile's sensor can initially view the target. If it cannot,
a programmed turn may be required to properly orient the missile, This
condition sometiines exists in dogfight actions or in attacks against surface
targets where the missile seeker is unable to track the target from its
mounting on the launch aircraff. More indirect effects of the launcher on
guidance and coatrol system design are size and weight restrictions which
can be imposed by the design of the launching mechanism (Sce Ref. 23 for
an example where system design has been inhibited by such considerations).
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3.1.3 Adaptive Design Considerations

Sections 3.1.1 and 3.1.2 are concerned with characteristics of
tactical missiles and missions that influence the design of any missile
guidance and contiol system. This section treats those which determine

whether an adaptive system is appropriate. The following factors are
considered:

¢ Parameter variations within the descriptions
of target and plant characteristics

o Desired missile performance

o Restrictions on the controller

Parameter Variations — It is clear that variations of missile plant

parameters with changes in flight conditions indicate that an adagtive auto-
p'lot may be beneficizl. The causes of this behavior have already been

enumerated in Section 3.1.2 under the heading '"'missile dynamic charac-
teristics''.

With respect to the guidance portion of the missile system, the
motion of the target is often not well known; consequently adaptive steering
laws may be needed. An example of this type of application is the feedback
steering law proposed in Ref. 7 which contains the time-to-go as a param~
eter,™ T:.:e-to-go is not accurately known for a maneuvering target; hence
it must be continually estimated and readjusted in the steering equations,
resulting in an adaptive guidance function.

Desired Missile Characteristics — The existence of parameter

variations is not in itself sufficient justification for acvocating adaptive

*
This steering law is also described in Chapter 17,
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techniques for a missile autopilot. The degree of restriction upon desired
airframe respense is also important in determining whether an adaptive sys-
tem is required. To illustrate this point, consider the problem of designing
compensation for the time-mvariant linear piant in Fig. 3.1-6(a) according
to two possible criterin represented in Fig. 3.1-6(b) and (c). In both cases
the plant is to be compensated so that its closed loop poles lie anywhere in
the indicated region, for any of the possible locations of the open loop poles.
It is clear that the design requirements imposed by Fig. 3.1-6(c) are more
restrictive than those of Fig. 3.1-6(b). Conceivably one might be able to
choose fixed compensation to achieve the conditions in (b) whereas an adap-
{ive coniroller couid be necessary in (c). The implication here is that wide
latitude in the desired response characteristics may peri.it a nonadaptive

system design, even though parameter variations do exist.

In an aircraft, the required autopilot response to stick commands
is primarily determined by the pilot's desire for the airplane to exhibit
certain handling qualities. Often these objectives are stated so that

a desired transfer functich can be approximately specified for the auto-
pilot. In this case, the task of the control system over the entire flight

regime is to ""'map'" the variable plant characteristics into those of a relatively
fixed model, as illustrated by Fig. 3.1-6(c). It is unlikely that a fixed con-
figuration controller will produce the desired performance and use of an
adaptive control system is indicated. On the other hand, in the presence of
varying airframe dynamic characteristics, the pilot's behavior can change
with flight conditions. For example, if the aircraft responds too quickly to
his commands, the pilot can compensata by using siower stick mcvements,

In this sense, the pilot is capable of beitig an adaptive element within the con-
trol loop and thereby can supply his own adapiive characteristics to the

sy stem.,
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a Linear Plant with Unknown
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Because there is no human in a missile, there appears to be no
reason why its autopilot response characteristics should closely approxi-
mate those of a fixed model. In addition to requiring that the airframe be
stable, ihe system specification is more likely to be in terms of a minimum
settling time, delay time or damping ratio, giving rise to design require-
ments exemplified by Fig. 3.2-6(b). To the extent that there is more latitude
in the specification of response characteristics, there is less need for adap-~
tation than in an aircraft. However, as compared with an aircraft, the mis-
sile's parameter variations are proportionately greater. Also, because the
missile is required to hit a target while flying at high speed, the autopilot
response time is generally shorter than for an aircraft. The absence of a
human in the autopilot loop implies thatthe missile has less inherent adaptive
capability. All of these considerations tend to reinforce the need for adapta-

tion.

Missile autopilot response characteristics are restricted by band-
width considerations (Ref. 6). Allowable bandwidth is limited by the need
to

e  Avoid excitation of bending modes

® Avoid driving poles associated with sensor
dynamics into instability

o Minimize the effects of sensor noise
On the other hand, large bandwidth is desirable to:

¢ Achieve rapicd airframe response to steering
commands

e Minimize the effects of wind gusts

These are conflicting sets of objectives. Consequently, at each flight
condition one may desire only enough banawidth to achieve the required
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settling time. This objective in the presence of changing missile dynamics

tends to favor use of an adaptive syster.

Restrictions on the Controller — Some controller characteristics

related to the need for adaptive systems are:

e Available control actuation energy

e  State variable measurement limitations

e Controller structure constraints

The existence of a limitation on the control actuation energy

available in a missiie can impose a restrictior on the allowable system

bandwidth. The restriction is needed to prevent the missile controls from

expending excessive amounts of fuel in responding to noise from the autopilot

and guidance sensors and in following steering commands (Ref. 25). This
observation reinforces the previous suggestion that no more bandwidth is
desired than necessary to satisfy the command and gust response require-

ments along the trajectory.

State variable measurement limitations restrict a controller's
ability to achieve certain closed-loop pole configurations, For a con-
trollable*, linear, time-invariant system, whose state variables are all
availabie for use in feedback compensation, it is possible to put the closed
loop poles anywherz in the complex plane (Ref. 30) by properly choosing
feedback gains. Thus the design criteria shown in Fig. 3.1-6(b) might
readily be met for all flight conditions by choosing constant nonadaptive
controller gains so thzt the closed loop poles are sufficiently far in the left-
half complex plane for any values of the plant parameters. If the states are
not all available for direct measurement (as in a multistate single-output

*See Appendix A for a definition of controllability.
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system), they must be effectively derived by passing the measursment
through appropriate filters, assuming the system is observable.” The ability
to accomplish this can be restricted by hardware limitations, measurement
noise, and stability considerations. Thus even though the desired region for
the system closed ioop poles may be as large as in Fig. 3.1-6(b), the attain-
able region, for any given ilight condition, can be considerably smaller with
the available measurements and constraints on compensation complexity.

In this situation a different controller may be required for several ranges

of flight conditions in order that the closed loop poles are always in the
desired region; consequently an adaptive autopilot may be helpful.

In addition to constraints on the measurements, theie may be
contrcller hardware limitations. For example, in a digital system the
minimum attainable response time is influenced by thz sampling rate, U
the latter is much faster than the desired response, the digital system has
essentiaily the same capability as a continuous system. As the response
time approaches the sampling period, distortions are introduced by "loss
of information" incurred in ihe sampling process. Other types of hardware
restrictions are a lack of equipment required tc perform the computations™**
necessary for a proposed system design or limitations on control magnitude
and variability. All of these restrict the control flexibility available for
any one flight condition; consequently a different controller structure may
be needed for each of several different flight conditions to achieve accept-
able system performance. This leads one to consider use of an ACS, For

example, control surface deflection constraints for a missile can motivate an

*See Appendix A for a definition of observability.
**For example it may be easier to mechanize a simple open loop (see

Section 5.2) adaptive system than it is to provide the filtering capahility
for estimating unmeasured state variables in a high gain fixed config-
uration system of the type described in Section 7.1.2.
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adaptive design where the maximum deflection tends to be used at all flight
conditions in response to steering commands (Ref. 31). In this way the
autopilot always utilizes its full control capability, tending to make the air-

frame response as fast as possible.

3.1.4 Summary

In this section a number of factors which should be considered for
designing guidance and control systems in general, and adaptive systems in
particular, are delineated. A quaatitative evaluation of all factors for a
particular class of targets and type of weapon- system leads to specifications
on the guidance and control system. For the purpose of this report, the
material in Sections 3.1.1 through 3.1.3 is used to suggest two rather
general tactical missions -~ those against air targets and those against
ground targets using a stand-off missile -- which impose different perform-
ance requirements on both the guidance and control functions and for which
adaptive techniques are probably needed. These are described in the next

section and are summarized in Table 3.1-1.

TABLE 3.1-1

SUMMARY OF ADAPTIVE APPLICATIONS FOR
TACTICAL MISSILES

R-3660
LONG-RANGE LAUNCH
AR
TARGETS
DOGFIGHT ENCOUNTERS
TACTICAL
MISSION
GROUND
TARGETS STAND-OFF LAUNCH
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3.2 TACTICAL MISSIONS REQUIRING AN ADAPTIVE
GUIDANCE AND CONTROL SYSTEM

Two types of tactical missions are considered here for which an
adaptive system design should prove beneficial: those against air targets
and those against ground targets using a stand-off missile.” In both cases

emphasis is placed upon weapons having aerodynamic control surfaces ;

because they experience the widest airframe parameter variations.

3.2.1 Air Targets

Cad i

This section discusses two classes of missions against air targets 3
which present different levels of difficulty to an autopilot designer. These
are: the long-range launch and the dogfight engagement. A long-range
1aunch against sn air target is essentially one for whick. the missile booster

ceases thrusting prior to intercept and the homing guidance is activated
sufficiently far from the target so that initial condition errors are not im-
portant. A dogfight engagement is one in which the missile is launched
re.atively close to the target; thrusting usuaily continues over its entire
trajeciory and large initial conditions errors can be experienced by the
homing guidance system, These distinctions are not intended fo be all-
inclusive, Certainly one can envision a situation where a missile is launched

a long distance from tho target and possesses a terminal thrust capability,

4 as well as a boosting phase. Our intent here is to discuss the long-range
and dogfight situations as being represenfative types of tactical missions
that require different degrees of adaptivity in the system design.

‘ *

k A stand-off missile is one which is launched a considerable distance
from its target, usually for the purpose of keeping the launcher
vehicle out of the reach of enemy defenses, !
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The most important requirement for an autopilot in use against
an air target is rapid response to guidance commands. This is necessary
largely because of the target's potential maneuvering cepability (see Fig.
3.1-1) and because of initial condition errors, the latier being most im-
portant in dogfight type encounters (e.g., see Figs. 3.1-4 and 3.1-5). In
addition to these sources of terminal error, contributions to miss dis-
tance caused by certain types of raeasurement errors are accentuated by
the presence of autopilot lag (e.g., see Figs. 3.1-2 and 3.1-3). All of
these adverse effects on guidance accuracy can be held to an acceptable
level by an autopilot having a sufficiently high speed of response.

The autopilot designer's task is made difficult by the requirement
to achieve good performance characteristics over wide ranges of missile
airframe parameter variations. An attack capzbility is needed at different
altitudes, and the missile's mass distribution and velocity are time-varying,
Velocity variations are most pronounced in the dogfight application when the
missile accelerates over its entire trajectory. To the extent that a missile
relies upon aerodynamic lift for the force needed to change its direction of
motion, these changes in flight condilions impose changing requirements
upon the control system. At high altitudes and low velocities where dynamic
pressure is low, much larger angles of atfack are required to achieve a
specified acceleration than are needed at low altitudes and high velocities.
Consequently these two extremes oi operating conditions require different
amounts of control surface deflection to achieve a given response. In
addition, the effectiveness of an aerodynamic control surface is dependent
upon dynamic pressure so that a given surface deflection produces different
contro! moments at different flight conditions. A third eifect of mis-
sile parameter variations is that the natural damping characteristics of
the airframe's rotational motion change with flight condition; consequently
varying amounts of stabilizing control must be supplied by the autopilot.
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These considerations imply that for air targets the autopilot compensation
must be highly responsive to changes in flight condition, especially in dog-

fight weapons; adaptive techniques provide-an effective means for accom-
plishing this task.

from the standpoint of guidance, the cz abiiity of the target to
maneuver ana the effects of autopilot dynamics imply that a steering law
which differs from that used in conventional guidance techniques (Ref. 7)
may beneficial, Consideration of these factors introduces state variables
(e.g., target and missile acceleration) into the model for the guidance
problem which can be used advantageously in a steering command, provided
they can be measured or estimated. In Chapter 11 an adaptive, optimal
steering law is described which potentially minimizes the terminal miss
distance caused by these error sources.

3.2.2 Ground Target: Stand-off Missile

Missions against ground targets that seem most

EYTAN IS ]

likely to benefit
from an adaptive control system are those for stand-off missiles having
varying altitude-velocity profiles enroute to the target. Along such a trajcc-
tory, the same types of plant parameter variations exist 2s in attacks on air
targets except that the missile's dynamics in the vicinity of a ground target
are more likely to be known a priori. In addition, the missiie often has a
long flexible airframe to carry a large warhead. Therefore the effects of
bending modes may have to be considered in the autopilot design.  The
combination of airframe parameter variations and bending modes often causes
difficulty in obtaining a stable autopilot with a fixed configuration controller.
In some cases it has been founc (Ref. 19) that several sets of scheduled gains

are required to maintain the proper autopilot characteristics over the entire
trajectory.
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Just as for air targets, there is alsc need to maintain a desired
speed of airframe response to guidance commands. However by way of
comparison, this requirement is not so strict when attacking ground targets.
Because the latter are generally not maneuvering the primary source of
error in tt - guidance systein is uncertainty in knowledge of target location,
caused by noise on sensor nieasurements. The major noise source is the
target's environment, as desicribed in Section 3.1.1. In order to obtain a
good estimate of the target's position, filtering of guidance measurements
may be required; consequently the autopilot bandwidth may not be so large
as for air targets,

3.2.3 Summary

In this section some aspects of missions for tactical missiles are
described to indicate that adaptive guidance and control techniques may be
quite beneficial. An important design objective for a missile to be usecd
against air targets is to achieve a rapidly responding autopilot in the pre-
sence of airframe parameter variations. This requirement is most severe
in a dogfight mission which must cope with significant launch initial condition
errors, target maneuvers, and a missile airframe undergoing rapid changes
in dynamic pressure and mass distribution. In addition it is desirable {0 have
a steering law that includes the effects of target maneuvers, For a stand-off
missile to be employed against surface targets, the main design probhlem is
likely to be maintaining airframe stability along a trajectory having large

altitude variations,

In subsequent chapters a variety of adaptive guidance and control
techniques are described which are potentially capable of meeting the
demands cf the above types of missions, Air targets, especially those in
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dogfight engagements, constitute the more difficult class of missions
because the missile requires faster response to control and steering com-
mands and missile airframe parameter variations are rmore rapid and less
predictable in these applications. Therefore in this report considerable

emphasis is placed upon adaptive techniques that can rapidly compensate
for changes in missile dynamics.

D s R

{ax 2

In this next section we begin a study and evaluation of specific
types of parameter adaptive control systems, the main purpose being to E

demonstrate which recently developed adaptive technigues are feasible
for use in missile design.
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4, PARAMETER ADAPTIVE CONTROL SYSTE MS
WITH IMPLICIT PLANT IDENTIFICATION

The literature contains a wide variety of proposals for parameter
adaptive control systems. This chapter gives an annotated review of sev- i
eral methods, pointing out distinguishing features, advantages, and disad- %
vantages of each with special reference to missile design. Analytical details
are presented to justify the use of various adaptive techniques and to describe
their characteristics; some of the analysis is new in that it generalizes re- 1
sults and concepts in existing literature and presents new techniques that ;

appear suitable for missile applications.

4.1 ERROR SIGNALS IN ADAPTIVE SYSTEMS

A fundamental ouantity associated with any control system is its
"responsa", or output y(t) to an input v(t). In relation to quantities defined
in Fig. 2.2-1, y(t) is some function of the state x(t); it consists of only
those variables upon which judgments about the quality of system perform-~
ance are based. To provide a standard for evaluating system behavior, a
desired output Xd(t) is defined with which y(t) is to be compared. Typically
Xd(t) may be specified as the result of a known operation upon v(t), i.e., it
is the output of a model. * These output quantities permit one to define an

error function which measures the deviation between actual and decired
response. The primary objective of any control system design is to make

the error small in some sense.

>.‘Hence, the term model reference system is often used where y 4(t)
is the output of some traasfer function operating upon v(t). More
generally, in the sense that yq4(t) always can be defined, all control
systems are model reiercnce systems.
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The definition of an error signal is really the first step in
designing a conirol system and it nften plays an impbrtant role in deter-
mining the structure of the controller. For this reason, we suggest some
specific types of errors that can be used to measure the deviation between

y(t) and y d(t ) and outline some of their implications upon system design.

4,1.i The Output Error

The cutput error has the cbvious definition

et £ y® -y 0 (4.1-1)
This is the most natural measure of performance to define in many applica-
tions. An example of its use for generating adaptive control signals has
been given in Fig, 2,3-3. To illustrate the definizion more clearly, con-
sider a single-input, single-output system described by the equations”

X(t) = Ax(t) +but); x(0) = 0**

ut) = v(t) - r(t)

yt) = T x(t)

m(t) = Hx(t) (4.1-2)

*Capitals (e.g., A) denote matrices; underscored lower case letters(e.g., x)
denote vectors. It is assumed that the reader is familiar with the vector-
matrix notation for linear differential equations. For completeness, a sum-
mary of the essential properties of their solution is given in Appendix A.
**The presence of unknown initial conditions and random forcing functions
are neglected in this report. We are interested in applications where the
known input v(t) generally dominates the error signal. However, the

reader should recognize that significant unknown inputs can adversely

affect the behavior of some adaptive systems,
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where v(t) is a command input, r(t) is a free control variable and m(t) is
a set of linear measurements of the state variables that are available for
specifying r(t). Let the model be described by the time invariant linear

system,

—_—

ot

ha
I

/{
Am§m(t) + pm V\t)

yd(t) = cTz (t) (4.1-3)

with

b st g

e t) = y(t) - y4t),

as illustrated in Fig, 4.1-1.

In designing an optimal control sys’tem* to minimize a quadratic
function of eo{’c), with a priori knowledge of A and b (assuming for the
moment that the plant parameters are constant), it is found (Refs. 32
and 33) that both x(t) and _>gm(t) are required to determine r(t). As a con-

sequence, a nonlinear matrix Riccati equation having dimension 2n must
be soived for the optimal feedback control gains, which are also 2n in
number. When elements of A and b are unknown and one uses adaptive
model following optimal control based upon plant identification methods, as
in Chapter 5, a similar situation exists. On the other hand, dimensiounality

ikt i i st e

considerations of this type are not inherent with the implicit identification ;
adaptive systems described in subsequent sections of this chapter. ;

*
‘ A summary of the important facts abou! optimal control of
3 linear systems with quadratic performance indices is given
in Appendix B.
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vii) oo ult) | PLANT y(1)
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1 y(1): ¢ xlt)

r(t)

CONJROLLER

| v(t)

MODEL
nlt) = Apx, (t)+bovll)
yalth=¢" x (1)

vglt)

Y

Figure 4.1-1 Output Error Signal for a Single~Input,
Single~Output Adaptive System

4,1.2 Reference Model State Independent Error Signals

An alternative error definition (Refs. 32 and 33) which does not
require knowledge of both the plant and reference model state variables is
an cutput derivative error signal designated by the symbol Eo(t). It is ob-
tained by substituting the plant state x(t) for x_(t) in *ne equations of

motion for the reference model. In terms of Eqs. (4.1-2) and (4,1-3) Eo(t)
is a scalar given by

% (t) & A_x(t)+b_vit)

=m m= —-m

5 & T

vt = c % ®

a
5,0 2 9 -, (4.1-4)
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Substitution for y(t) from Eq. (4.1-2) yields

Eo(t) = gT [(A-Am>§(t)+ (g-gm) v(t)-gr(t):l (4 1-5)

The significance of Eq. (4.1-5) as compared with the expression for eo(t)
is that Eo(t) is independent of g(_m(t). When a linear feedback control law

r(t) = h' me)
is applied, the error becomes
~ _ T T
8,0 = ¢ [(A-pn'H-A_)x®) +<9-§m)v(t):|

and it is an indication of the difference between the reference model and
compensated plant dynamics, as measured by the quantities, (A -Q_QTH -Apg)
and (b - by, ).

A somewhat different error signal can be defined by operating on
the system ocutput, y(t), with the "inverse model"™ to produce 2 pseudo-
input signal E(t)o The input error signal, e i(t), is then defined by

gt) £ vit) - V) (4.1-6)

A single-input, single-output adaptive system illustrating the generation of
e,(t) is shown in Fig. 4.1-2. The quantity v(t) is interpreted as being the in-
put command to the model required to produce y(t) at the model output. (As
noted previously, there is the question of existence of the inverse model. For
instance, if v(t) is of higher dimension than y(t), there is in general no unique

model input which will produce y(t); that is, the inverse model does not exist.)

£
When the inverse exists.
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R-1298

vit) R uft) PLANT y(t) >
i r{t) m

e, {t)

10 MODEL b y(t)
INVERSE <

Figure 4.1-2 An Adaptive System Based Upon
an Input Error Signal

To analytically demonstrate the method of generating the input
error, consider the system represented by Eqs. (4.1-2) and (4.1-3). The
operation of the reference model with an input v(t) is described by

~

Xm Am Em(t) * hm v(t)
T~

c X

= “m

t
——
ﬁ
v
]

(t) (4.1-7)

<
——
-+
g
n

In the context of Fig. 4.1-2, y(t) is given at the output and v(t) is to be
determined. Denoting the Laplace transforms of v(t) and y(t) by {‘f(s) and
Y(s) respectively, one sees from Eq. (4.1-7) that

V(g) = —r—LB)l_ (4.1-8)
ET (IS'Am) Ijl-)-m

An equivalent set of state equations for the inverse model with y(t) as an
input and v(t) an output can be obtained (Ref. 34) upon determination of the

4-6

- ——




THE ANALYTIC SCIENCES CORPORATION

transfer function G(s)/ V(s)in Eq. (4.1-8). An additional practical restric-
tion on realizability is that thi- transfer function have no more zeros than
poles; also the inverse model must be stoble. These requirements imply
that the transfer function for the model itself must be minimum phase and

have at least as many zeros as poles.

The implementation of Eqs. (4.1-2), (4.1-7) and (4.1-8) is
illustrated in Fig. 4.1-3. One controller of this type has beer proposed
for lateral control of a manned lifting reentry vehicle (Ref. 35).

In designing an optimal control system based upon a priori
knowledge of A and b in Eq. (4.1-2), assuming x(t) has dimension n, it is
observed (Refs. 32 and 33) that minimization of a functional of Eo(t) or
g_i(t) leads to a feedback controller consisting of culy n feedback gains,

This requires the solution of an n-dimensional rcatrix Riccati equation. A
similar situation exists for the adaptive optimal systems discussed in
Chapter 5. Recall that for the output error signal defined in Section 4.1.1
the corresponding optimal controller requires 2n feedback gains obtained
from a 2n-dimensional Riccati equation. Consequently a comparison of

the various error signals favors go and g.l(t) for designing optimal control-
lers on the basis of computational complexity. With respect to performance,
qualitative comparisons (Ref. 32) indicate that design techniques using an
output error signal have more potential for achieving a satisfactory system.
For adaptive systems which do not employ the techniques of optimal controi,
there is no apparent dimensionality advantage connected with one of the
above error signals and the choice of error signal should be made on the
basis of reference model flexibility and performance capability,

For the reasons outlined above the output error signai is used in

this report to design controllers for those adaptive systems which do not
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R-1292
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x(1)=Ax(t) +bo(t) — >
y(t)= ¢ x(t)

INVERSE MODEL
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V(s)_ ] v(t)

<
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g T—— e W W A~

Figure 4.1-3 Method of Generating the Input Error
Signal for a Single~-Input, Single-
Output Adaptive System

require the optimal control techniques discussed in Appendix B and

E L B B ]

Chapter 5. This is the most natural selection from a physical point of
view and it permits complete flexibility in the choice of reference model.
The use of both output derivative error and output error signals is inves-
tigated for the adaptive optimal model following methods discussed in
Chapter 5.

Jyse— uRaaNy

ot

4,2 GRADIENT METHODS FOR ADAPTIVE CONTROL

The gradient search technique or method of steepest descent is
a common nunerical procedure for finding the values of a set of n param-

eters, a, which collectively minimize a scalar function ¢(a) (Refs. 36 and

37). This procedure generates a sequence {30, Qyseee } according to the

iterative relationship, }
'
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Ja

aal aan

so(a) " [Bso(g_) 30(a) J

where « is a step size control. At each stage, a is changed in the direction
of the negative gradient of o(a) with respsct to a, tending to reduce the
value of . If a condition is reached such that

dp(a)

with sufficient accuracy, a is an approximate solution for the value of a
that (locally) minimizes ¢. Convergence of the method depends upon the

properties of the function to be minimized.

Several applications of the above technique for use in adaptive
control systems have been proposed in the last ten years (Refs. 38 -47).
These procedures are rotivated by the objective of minimizing a func-
tional® J (e(t)) of the error e(t) between the system output and some desired

(reference model) response (recall the discussion of error signals in

Section 4.1). The usual form of J is

J =S Lie(x)] dx (4.2-1)

x*

A functional depends upon a time history of its argument whereas a func-
ziou depends upon only a single value of its argument. J is also referred
io n5 a performance index or cost functional, or simply the cost.
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where L(e) is a known, scalar, positive, differentiable function having the
following properties:

L(e) > 0; e #

|

(4.2-2)

=
=
<
WMy o WERD  NGR — -_—

The differentability condition is not strictly necessary from the
standpoint of weighting the error (e.g., L(e) = |e| is a useful performance
measure although it is not differentiable at the origin); however, it is a
convenient assumption for deriving the adaptation algorithm. Often the
error signal is a scalar and L(e) is chosen as (Refs. 40, 41)

Lie) = 1 ¢° (4.2-3)

because it places a heavy penalty on large response errors. For most of

this discussion we also adopt Eq. (4.2-3).

The integration interval --t < )\ < t+T -- should be long e¢nongh
te include most of the significant time history of e(t); otherwise J may not
be representative of system performance. For example, in Fig. 4.2-1 an
error signal is shown beginning at time t o The interval to sts T1 clearly
contains much less information about e(t) than does the interval t, st < T,

It is possible that any action taken to minimize the integral square error
over the smaller interval would have an adverse affect on J evaluated for the
the longer interval. However, if the input v(t) and plant dynamics vary in

a completely unpredictable fashion, the error will behave likewise and one
cannot know a priori whether & given value of T is sufficiently large cr not.

% Consequently, to justify this approach it is assumed that v(t) and the

' plant operating conditions are relatively constant over ths integration

SameE AWM WM 0 R R O MRER Ml A MR el e e
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Figure 4.2-1 Possible Litegration Intervals, t, <t < Ty #

andt, st s To, for Evaluating the
Integral Squar: Error

i

interval.* We also assume the adaptive controller will succeed in forc-
ing the compensated system to follow the reference medel fairly closely

so that most of the significant variation in e(t) occurs in a pzriod of time
whose lzigth is approximately eyual to the settling time, 7 m’ of the
reference model. These considerations lead to the conclusion that T should

satisfy

T>r, (4.2-4)

Because the dependence of J upon controller gains is oov known
exactly at any time t, it cannot be minimized directly. Instead, an iterative
real time procedure, analogous to the classical gradient method described
above, is used to find the optimum controller. The rationale for this
technique is that small adjustments in the adaptive gains can Le calculated
to reduce the value of the performance index at successive steps, even

*Another possible assumption is that the input and plant dynamics vary
randomly within the interval t < A< t+T so that J is a good performance
measure in an average sense (Ref. 47). This is not very characteristic
of missile behavior, however,
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though its exact minimum cannot be determined. For example, consider
a desired adjustment, Ak, in a controller parameter k, calcviated accord-
ingto

Ak = -5 ‘4, 2-5)

where « is a positive constant whicn controls the size of the step in the
negative gradient direction. (For purposes of exposition, only one adap-
tive gain is considered.) If o is sufficiently small and (3J/3k) is known

approximately, a change in k, given by
k - k+ Ak

should procduce a lower value of the performance index. The distinctions
among various gradient parameter adaptive control techniques are pri-
marily in the ruzthods used to caiculate Ak and to increment k,

Before discussing specific methods, something more should be
said about the value of T in Eq. (4.2-1) and of ¢ in £q. (4.2-5). The
question arises, 'Is there any practical - vwer bound upon T?" The an-
swer partially lies in the convergence properties of steepest descent
methods; their convergence rate is usually c¢efined by the number of gra-
dient steps required to get acceptably close to the minimum of J. In the
gain adjustment algorithms described in subsequent sections, each step
requires a period of time equal to T to determine the value of Ak, If n
steps are necessary for convergence, the total time requires is nT seconds.
In addition, the integration interval should be short so that plant parameters
and input signals do not change appreciably within an integration interval.
Hence, given that an increment Ak is to be =:.iculated over an interval of
length T, the latter should be as small as possible consistent with condition

(4.2-4); consequently one tries to achieve the condition, T = Tm

4-12
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The choice of a in Eq. (4.2~5) is always a matter of judgement
in a gradient method. Too large a value can lead to divergence from the
minimum of J and instability of the adaptive control system (see Fig. 2.3-4);
too small a vaiue leads to slow convergence. As we shall see subsequently,
the methods used to instrument Eq. (4.2-5) can place additional restrictions
upon Ak and hence also upon ¢. Typically ¢ is large enough so that several
intervals of length T are required to achieve the desired change in the adap-
tive gain. Consequently, the adaptation time, Ta’ (time required for the
controller gains to settle close to their terminal values) is significantly
longer than T and Tm' More will be said in Section 4.2, 6 about the con-

vergence properties of gradient methods.

4,2.1 The M,1.T. Gvadient Rule

Gradient trchniques of adaptive control (Refs. 40-44) are exem-
plified by the method developed at M.I.T. by Osburn, et al. (Refs, 40,41)
in the early 1960's. In this type of PACS, adaptation is achieved by
adjusting feedback gains in a controller to reduce some measure of error
between the system and modei cutputs. A fairly general situation™ can be

described in terms of the system equations for Fig. 4.1-1,

x(t) = Ax(t) + bu(t)

u(t) = vit) - r(t)

y&) = T x(t)

r®) = ht)" xt) (4.2-6)

*This is not intended to represent all possible controller structures. One
could add filters with their own dynamics and adjustabje parameters in the
various feedback paths. These equations are sufficinntly representative to
illustrate the control techriques described in the foliowing sections.

4-13
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where v(t) is a command input, h(t) is a set of feedback gains to be adjusted
adaptively,* and A and b contain unknown system parameters. In designing
the adaptive controller, A and b are assumed constant., It is also im-
plicitly assumed that the entire state g(t) can be readily measured or esti-
mated; if this is not the case, those gains corresponding to the unknown
variables are set equal to zero. The reference model for desired system

behavior is linear and time-invariant, described by

£, = A x (©) +b v(t) |

Yot = gT_:gm(t) (4.2-7) ‘

and the scalar output error signal is f
et) = yt) - y,(t) (4.2-8)

For convenience of exposition the model and plant are chosen to have the

same dimension; this is not a necessary restriction.

The adaptation procedure is motivated by the desire to assign
a fixed value to ihe feedback gains, h, so that a performance index having
the form of Eq. (4.2-1) is made as small as possible. Now the exact
dependence of J upon a fixed h is not known because some of the system
pararaeters are unknown, Therefore, starting with an initial value,
h(tg) at t = to, a change Ah(ty) is to be calculated so that

J [g(to)+Ag] < J[g(to)] (4.2-9)

TMore generally, it is desirable to multiply v(t) by an a2daptive gain kit)
in order to nuil the steady state output error to a constant input. This is
done in Chapter 8 dealing with applications but is omitted here to
simplify the discussion.

4-14
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As suggested by Eq. (4.2-5), it is desired tha: each component, A’ni, of 2
Ah be given by a gradient algorithm, :
t +T 3
Y 3
3 _ S ) A
ah(t ) =-a e = -, [Le(t) ep, (t ]h(t ) at  (4.2-10) g
h(to) to =0 «
where

8 2L[e(r"
Le(t) de L
& delt) 4 o ;

ehi(t) W (4.4 11)
3

The quantity o is a positive constant,* hereafter referred to as an adapta-

tion gain (distinct from the adaptive gains,h), which determines the size of

the gradient step. If Ah.(t ) can be calculated, presumably gain incre-
41 of length T
seconds can also be determined, permitting a sequence of gradient steps

ments corresponding to successive intervals -- t] sts<t,

tj 1

OE -aistj et ehj_<t>]hi(tj)dt; P=1,2,...

In order that the gain adjustment be accomplished in analog

fashion, Osburn (Ref. 40) suggests that hi(t) be continuously corrected
according to™**

For a true vector gradient algormu.., all the o 's are equal; here
we allow for the possibilify oi different values,

) Alternative methods which have some conceptual advaniages are
saggested in Appendix C and Section 4.2.2.

4-15




THE ANALYTIC SCIENCES CORPORATION

ﬁi(t) = -q L (t) ehi(t) (4.2-12)

Consequently it follows that if we define

t +T
0
~ A )
ah, = -a S Le(t) ehi(t) dt (4.2-13)
t
then, by Osburn's method,
h(t +T) = b (t,) +ah, (4.2-14)

The above procedure for calculating the change in gain is dif-
ferent from that prescribed in Eq. (4.2-10) where hi(t) is held constant
over the integration interval. It is desired that Ah; = Ahi. To the extent
that this condition holds, the adjustment rule given by Eq. (4.2-12) for
each adaptive gain approximates a gradient procedure. Restrictions on its
validity will be described presently, after outlining a mechanization pro-
cedure for Eq. (4.2-12).

To implement the adaptive controller the quantities, Le(t) and
eh.(t), are required. For the purpose of the ensuing discussion choose L(e)
as'in Eq. (4.2-3) so that

Le(t) = e(t) (4.2-15)

To derive the weighting function, e}, (t), refer to Eqs. (4.2-6), (4.2-7) and
i
(4.2-8). By direct differentiation of e(t) with respect to h;, it follows that

ehi(t) =

|
ie]
1

up
-

¢ (0 (4.2-16)
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because the model dynamics are independent of the adaptive gains. A differen-
tial equation for the vector partial derivative in Eq. (4. 2-16) is obtained by
differentiating the first expression in Eq. (4.2- 6) with respect to hi’ producing

X = T . s =
3, © - [A-p};(t) ]ghm- bx,(t); i=1,..,n

i

1o

) = (4.2-17)
|

t=t
0

The initia’ conditions are zero because x(t,) is unaffected by a change in
h; at time t,.

Equations (4.2-16) and (4.2-17) determine ehi(t) in terms of the
system parameters, A and b, which are unknown. Of course the whole
point of this discussion is to derive a control law that is independent of
these quantities. In the M.I.T. method the assumption is made that the
compensated system closely follows the model. This may e reasonable if
the unknown parameters are slowly varying with respect tc the adaptation
time, Therefore, substitute A andb  for Aandb in Eq. (4.2-17) to
obtain an approximation to ghi(t), denoted by ghi(t)o Combining the result
with Eq. (4.2-16) produces

2el) o T3 (1)
3h, = ®h,
% © = A% (©)-box) F () = 0. (4.2-18)
1 1 1
and
x ®) = x (4.2-19)
1 1
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Equations (4.2-12), (4.2-15) and (4.2-18) together describe the M.I.T.

adaptive controller:

The synthesis of the ACS for the system described by Egs. (4.2-6), (4.2-17),

M.I.T. Gradient Adaptive Controller Equations

T~

ﬁi(t)=-aie(t)g % (); i=1,...,n

h
i

_:ghi(t) = Amzi_hi(t) - b x(t); §hi(to) =0; i=1,...

,

(4.2-20)

and (4.2-8) is illustrated in Fig. 4.2-2. A more specific example of this

method is as follows:

vit)
—

vit)

.cu(t)‘ PLANT xalt)

WEIGHTING FUNCTION
GENERATORS

e o e e o e e e

, 1495

Y

i:A!(!)'bU“) X, (t)

e(t)

vit)

MODEL Yo lt)

¥

Figure 4,2-2

A

% ()2 A Xt} +pvlt)

Adjustment Rule
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§Xstem

Example 4,2-1: M.1.T. Adaptive Controller for a First Order

Plant Equation

x(t)

ax(t) + u(t)

i

u(t) ~h(t) x(t) + v(t)

Reference Model Equation

Error Equation

e(t) = x(t) - xm(t)

Adaptive Controller

h{t)

~ae(t) “x’h(t)

L SRR CRLC

% (t)

a_ X (t) - x(t)

A functional block diagram of this system is given in Fig. 4.2-3. Note
especially the dynamics reauired to generate xh(t).

In Section 4. 2. 6 the performance of gradient adaptive systems

is discussed in some detail. At this point we can make a few general
observations about the M.I.T. technique, based upon the structure of the

controller in Eq. (4.2-20) and some analysis provided in Appendix C.

The principal advantage of the M.I. T. method is that it is a sys-

tematic procedure for designing an adaptive control system that does not

4-19
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Figure 4.2-3 Illustration of Example 4.2-1

require explicit identification of plant parameters. Equation (4.2-20) pro-
vides a complete prescription for the controller to within choices for values
of the adaptation gains o Some suggestions for choosing these quantiiies
are given in Section 4.2.6. In addition, the design procedure is physically

reasonable, being based upon the minimization of a performance index that

measures the deviation of the plant output from a desired response.

With respect to disadvantages, first recall the remarks made in
connection with the condition ATli = Ahi. This relation should hold in order
that the M.I.T. gain adjustment rule approximates a gradient method. In
Appendix C it is established that this condition may not be satisfied for two
reasons: first, the use of analog adaptation rule can sometimes cause the

adaptive gains io be sdjusted in the wrong direction at the beginning of the
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integration interval in Eq. (4.2-10), thereby initially increasing the
performance index and possibly causing instability.* Second, the method
used to generate the weighting function ehi(t) in Eq. (4.2-12) may be
inaccurate unless the integration interval satisfies the condition, T >> Tm*
Consequently plant parameters must be even more slowly varying than
pr.:viously assumed and the adaptation gains o must be further restricted
in magniiede. If the system is constructed without consideration of these
factors --e.g., if the ai's are made very large and plant parameters are
known to vary widely over an interval of time comparable with the adapta-
tion time -- the system may still perform acceptably; however, its opera-
tion cannot then be justified on the basis of its likeness to a gradient
method. These observations imply that the sdaptation time, being larger
than T, satisfies

Ta > T > T (4, 2-21)

Hence the M,I.T. rule adapts slowly; i.e., the gains hi converge slowly

toward their best values, relative to the model response time,

To implement the M.I.T. method, it is observed from Fig, 4.2-2
that a set of signals, gh-(t)’ must be derived for each adaptive parameter,
hi‘ To generate each '5{_’l:i(t), the controller must perform n integrations,
Consequently the order**of the adaptive controller increases by the
dimension o of the model state for every adaptive gain, thus adding to the
overall system complexity. For example, in an autopilot having three
measured state variables -- pitch rate, normal acceleration and control
surface deflection -~ with three adaptive feedback gains, the order of the
controller is 12, 3 for the model itself and 9 for the adaptive gains.

*See the footnote in Section 8. 2. 3.

*k
Order refers to the number of independent states required to
describe the entire acaptive controller.
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With respect to the validity of Eq. (4.2-20), recall that it is ‘
assumed the compensated system is always similar to the model. In any
situation where this assumption does not hold, the signals Z{hi(t) in Eqs, |
(4.2-18) and (4.2-19) may ke inadequate approxin:ations to Ehi(t)' The
requirement that the system always be near the optimum configuration
tends to negate the basic philosophy of gradient methods (at least in
classical function minimization applications) which are historically useful

in heading toward the minimum of a function from a point far away.

Another property of the controller which may discourage its use

in applications is its nonlinear structure (see Egs. (4.2-6) and (4.2-20)).

This characteristic, which is common to all of the methods discussed in
Chapter 4, makes analysis of svatem behavior difficult. The effect of !
nonlinearities is discussed more fully in Section 4.2.6.

In some situations tke fact that the absence of a command input v(t)
prevents adaptation from occurring can be objectionable. When v(t) is identi-
cally zero, the output error is also generally zero and Eq. {4.2-20) indicates
that no adjustment is made to the adaptive gains in response to piznt param-
ater variations. During such @ peiri--ithe iatter might dri’k su'iciently so
that the adaptive system iz ¢ “stantwlly different irom tt.~ mocz2!l. Another
harmful effect of this nort can be caused by the presence of noise at the
inputs to analog integrators used to implement the equations for h(t). With
no error signal, the adaptive gains could be driven in a random fashion to
the wrong values. Most of the adaptive techniques described in this chapter

are subject to these problems.,

The variation of the adaptive gains produced by noise can be pre-
vented by using digital integration techniques (Re?. 48). However, the

inability of the controller to compensate for changes in plant parameters

4-22
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when v(t) is small cannot be corrected without explicit identification of the

plant's operating condition (see Section 6.3) or introduction of a "signal
adaptive technique’’ which adjusts the gains a, in Eq. (4.2-20) in response
to changes in the level of v(t).* However, neither of these problems may
be important in tactical missiles where the command input, being a steer-

ing command, probably will not be zero for long periods of time.

i el Gl i o

The long adaptation time and hardware requirements associated
with the M.I. T. method seem to be its greatest disadvantages for purposes
of missile control. In a missile, parameters vary quite rapidly, especially
while thrusting, and required response times are short, making it desirable i
that the adaptive controller respond quickly. Volume and weight constraints :
imposed on missile subsystems also inhibit the allowable complexity of the

control system. However, the gradient concept presented by Osburn has

motivated the discovery of related techniques which may be more suitable.

These are discussed in subsequent sections.

4,2,2 A Discrete Form of the M.I.T. Rule

It is noted in Appendix C that the restrictions on adaptation time
imposed by the analog im;lementation of the M.I. T, rule may be alleviated
by discretely updating the adaptive gains and resetting the quantity 'ghi(t) in
Eq. (4.2-20) to zerc a. \°< beginning of each integration interval associated

with the performance index, ™ " his procedure yields a more accurate mea-

sure of the gradient of the perfor: .. nce index and it is mechanized by the
following set of equations:

*A signal adaptive method for adjusting an adaptation algorithm is
suggested in Eq. (8.2-34).

>MSee also the footnote discussion in Section 8.2. 3.
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Discrete Parameter Adjustment Algorithm
h.(t) = ~t t ; by=o0; O b
Ai()_—ai e()eh.() ’ Ah'i(])— ’ i=1..n
1 t.) ) b
byt
h(t)=h(t  )+ah(t); tost< ti
e, ®)=c %
. = —h.
i i
zh.(t) - Am§h.(t) B me'(t)’ Z(‘h.(t.) =0
i i i
(4.2-22)

The implementation of the above equations is illustrated in
Fig. 4.2-4 for the system and model dynamics of Example 4.2-1, From
a practical point of view, the requirement for peric.sfic sampling and up-
dating increases the computational requirements beyc-d those of the con-

tinuous rule.

The adaptation time Ta still tends to be large, satisfying

Ta >T = Tm’ although improvement is indicated over the condition ex-

pressed in Eq. (4.2-21). However, one must keep in mind that such im-
provement is related to the question "under what circumstances is the
M.I.T. rule approximately equivalent to a gradient procedure?' The
digital form of the algorithm implements the gradient step in Eq. (4.2-10)
exactly, to within the approximation made by substituting the model dynam-
ics intv Eq. (4.2-17). However, it still does not have rapid convergence
characteristics. Thus one is led to seek simpler, more rapidly adapting

techniques.
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Figure 4.2-4 Dicerete Form of Example 4,2-1

Discrete gain updating procedures have a'so been advocated for
the purpose of systematically determining the best ci: :~e of the gains o4
in Eq. (4.2-22) at each time tj (Refs. 45 and 46).* Thi.: enables one to be
more certain that a specific change in the adaptive gain v ill improve the
performance over the next integration interval. Heretofore only heuristic

specifications have been given for these gains

In choosing each a the question to be answered 15, '"How far
should the set of gains h be adjusted in the gradient di -ectivn of the per-
formance index to achieve an intermediate minimum?'" To illustrate,

suppose that J is a function of two adaptive parameters h] and h2‘ The

F
Such a system actuaily falis under the classification "Learning
System' defined in Ch-pnter 2,

AT
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function can be pictured as a surface in three dimensions as shown in

Fig. 4.2-5 with contours of constant values of J projected onto the param-
eter plane as illustrated in Fig. 4.2-€. Starting at the point (hy(ty), .
ha(tg)) in Fig. 4.2-6 and moving in the vector gradient direction (normal to
the constant cost contours) it is clear that a minimum in that direction is '
achieved at the point (hq(t1), hg(t{)). This determines the size of the first

gradient step. One continues in this manner o the points (hyits), ha(ts)),

etc., until sufficiently close te the minimum, Although the cost is reduced é
at vach step, convergeuce may still be slow, depending upon the shape of
the cost surface and the initial values of the adaptive gains. Moreover, the

gradient directions are only approximately known. f

From the standpoint of implementation, the step size calculations
to determine the successive minima in the gradient direction described
above require more computation than previously described methods.
Limited published simulation results (Ref. 46) do not indicate substantial

improvement in adaptation rate by the use of such a technique; its principal
value compared with conventional gradient aigorithms is that it more surely

adjusts the adap*ive gains toward their best values.

4.2.3 A Relay Form of the M.I.T. Rule

An alternative adaptation algorithm (Refs. 41, 42) suggested by
the form of Eqs. (4.2-12) and (4.2-15) is

1
ﬁi(t) = -aie(t) sign <%%(i—tl>a- -aie(t) sign(ihi(t)>
7 x>0
] sign(x) = 0 ; x=0 (4.2-23)
; -1; x<90
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-~ -

This gain adjustment rule is mutiviiea vy the fact that the primary objec-

tive is to adjust h, in a direction whick iimnroves performan - This cae

be accomplished t;y making hi proportional ‘v &f¢) witn an zigel . iv siem );»
determined by the weighting function, de(t)/oh,. A starility analysis of

one specific application of this design to a thirﬁ order system has heen 4
reported (Ref. 49).

The use of the relay form of the M.1.T. rule s illusirated in
Fig. 4.2-7 for the problem stated in Example 4.2-1. There i3 scine com- f
putational advantage in taking the sign of the weighting function befe s
multiplying it by the error signal, as opposed to performing the analog
multiplication e(t) ehi(t) in Eq. (4.2-12). However, the weighting function

must still be generated.

4,2.4 A Simplified Gradient Technique

The methods described in preceding sections, all of which are !
variations on the M.I. T. parameter adjustment rule, require that the
quartities ﬁli(t) be generated for the adaptation algorithms given by
Eqs. (4.2-20), (4.2-22), and (4.2-23). It is desirable to have a procedure
that does not require these signals, because they are not gznerally avail-
able directly from the system plant or model. Such a technique can be ‘
obtained by interpreting the performance index, J, (Eq. (4.2-1)) somewhat
differently. The approach used Zere is motivated by the work of Barron |
(Ref. 12). The results obtained are similar to those given by Dressler

(Refs. 44, 51); however the derivation is considerably simpler. The {

technique can also be viewed as a specific case of the methods proposed by

Donalson (Ref. 43). ‘
{
i
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Figure 4.2-7 Relay Form of M.I.T. Method Applied

to Example 4.2-1

Assume the integration interval T in Eq. (4.2-1) is

sufficiently

short so that the integrand of J can be expanded as a power series in time,

tO+T
sto) = § {Ltto) + o) -t
tO
+ooot ﬁl—,- L(to)(N) ('r-to)N g dr

where L(e(t)) is now regarded as a function of time, and

N) & d L)

dtN

|
L(t) ;L™ 2 L(t)‘N)‘

t=t0
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Because L depends explicitly upon e(t) which in turn depends explicitly ,[1
upon the state x(t) through Eq. (4.2-8), it follows that L(t)(N) contains
terms involving g(t)(N). Assume an N exists which is just large enough

so that L)) explicitly contains the adjustable gain h,. That s, LWV

is a function of hi' This is always possible because the differential equa-
tions for the state -~ Eq. (4.2-6) -- contain hi’ unless the plant parameters

ey

assume values such that the error and all its derivatives are indepencient
of the adaptive gain. We tacitly assume the latter situation does not occur.
By the definition of N, no other terms in the expansion contain hi explicitly.
Now define .Ahi as in Eq. (4.2-10), and substitute the expansion in Eq.
(4.2-24) for J, producing

G W e Dulke Re 0 saeE WeE

S sLit)) ™ (r -ty ]
Ahi(to) = -0 ™ N dr (4.2-25) if
t, ] ;
Y
Evaluation of the integral leads to *\
ALt N+ I
(o) = -a, 4.2-26 {
Ahl( o) A Sy (D! ( ) i

This result implies that the change Ahi(to) can be calculated at the begin-
ning of the integration interval, to the extent that the power series in

il

Eq. (4.2-24) is a good approximation. This is not possible in the pre-
p: viously described gradient methods and permits 2 more convenient

parameter adjustment algorithm,

To obtain an analog adaptive control law, compute h; continously

according to

[ " Sty
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> L) ™
i ~3h,

I
o

ﬁl(t) = -

”’z

(4.2-27

i ai N+

and update hi(t) continuously. If

ant)™

ahi >~ constant

over the integration interval, it follows from Eqs. 4.2-26) and (4.2-27) that

t0+T
H)
~ 8 S aL)"™
Ahl = "Bi —-gﬁ—-“' G ,,':',lli\?a)l (4.2-28)
t 1
0

To recognize the advantages of Eq (4 2-27) for computing h. (t)
over Eq. (4.2-12), we need to compute 3L( ) /ah for the system in
Eqs. (4.2-6), (4.2-7), and (4.2-8). For the case

Lie) = %ez(t)
it follows that
sfe®]™  sem)®
R (4.2-29)

because from our definiticn of N in Eq. (4,2~24} all derivatives of e(t) of
order less than N do not depend upcn h; exp,icitly., Substitrt:x. of
Eq. (4.2-6) into Eqs. (4.2-27) and (4.2-%5, produces:

AT RN TIPSR S
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: T aE(t)(N) \ 1
hi(t) = -Bie(t) c ™
' i=1,..,n
ax()™ N-1
— = -A bx.(t)
Bhi -1
T ,N-1

where N is the smallest positive integer* such that¢™ A~ ~b#0. The
implementation of the above eguation requires kncwledge of the scalar
quantity ET AN-1 b which depends upon the unknown system parameters.
However in nmany casec its algebraic sign is known a priori ic be constant
over the expected range cf parameter variations. Therefore it is con-

venient to define a new gain /Si' by the relztion

—— ey, k. e, GGG DGR MRS weeR s DNE

B/ = B sign (gT AN'lp_\)

and to redefine the adaptation algorithm as:

[,

-

Simplified Gradient Adaptive Controller Equations

-

ﬁi(t) = g e x,t); i=1,..,n (4. 2-30)

—

The synthesis of this controller is illustrated in Fig. 4.2-8. g

Compare the form of Eq. (4.2-30) with that for the M.I.T.
method in Eq. (4.2-20). The primary analytical distinction between the

two methods is that the weighting function 'ghi(t) in Eq. (4.2-20) is replaced
by xi(t) in Eq. (4.2-30). With »espect to the details of the derivation, the

F parameter variations. This condition holds for the applications treated in
this report.

: *It is assumed that N exists and has the same value over the entire range of g
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Figure 4.2-~8 Application of Simplified Gradient
Parameter Adjustment Rule

requirement for knowledge of the algebraic sign of gT AN_1 b is less

burdensome than the need to approximate the dynamics in Eq. (4.2-17)
for the M.I.T. rule by those of the system model in Eq. (4.2-18). The
differences in hardware requirements between the two systems are evi-
dent from comparison »f Figs, 4.2-2 and 4.2-8. The simplified gradient
method has the advantage that hi(t) is determined by signals, e(t) and xi(t),
which are available from measurements upon the plant and the mode!.

The application of Eq. (4.2-30) to the first order system of
Examaple =.2-1 is as follows:

Example 4.2-2: Adaptive Contro of a First Order System

Piant Equation

e
—
-t
~—
1}

ax(t) + u(t)

u(t) = -h{t) x(t) + v(t) ;
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Mode! Equation

im(t) a xm(t) + v(t)

Error Equation

e(t) x(t) - xm(t)

Adaptive Controller

h(t) = Bel(t) x{t)

A functional block diagram of this system is pravidzd in Tag. . 2-9; <he
reader should compare this with Fig. 4.2-3, aciing the absence of the
signal X (t) and its associated weighting function generaicr.

Just as with the M.I.T. rule described in Section 4.2-1, certain
resirictions apply te the simplified gradient niethod in order that it approxi-
wate the gradient step defined in Eq. (4.2-10). First of all, the length T
of the integration interval must be short enough so that the expansion of the
performance index in Eq. (4.2-24) is valid. This condition is analngous to
the requirement that the M.1.T. analog adjustment rule in Eq. (4.2-12)
adjust the adaptive gains in the right direction at the beginning of the inte-
gration interval associated with the performance index. On the other hand,
the integration interval must also be sufficiently large so that the perform-
ance index is a good measure of system performance; i.e. condition (4,.2-4)
should be satisfied. If there is no value of T which satisfies both of these
requirements, the system may or may not respond acceptably; however its
behavior cannot be predicted from analogy with gradient methods.

The wbvious conflict between the above competing specifications
on the size of the integration interval can be important in some

4-34
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Figure 4.2-9 Example 4.2-2: Application of Simplified
Gradient Method to First Order System

applications. In designing a normal acceleration guiopilot for a tactical
missile in Chapter 8, the use of this particular gradient method is initially
frustrated because the value of T required to satisfy condition (4.2-24) is
too short. ' The resulting performance index is not a representative

measure of the error and the adaptation algorithm is unstable.

There are several advantages of the adaptation algorithm pro-
posed in this section relative to those gradient methods previously des~
cribed; these are:

*
See the footnote discussion in Section 8.2. 3.
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e The adaptive controller requires only the signals
e(t) and x(t) which are assumed available by
direct measurement upon the system plant and
model.

e The parameter adjustment rule in Eq. (4.2-30)
requires a priori knowledge only about the sign
of the scalar quantity

A b.

This can often be inferred from the expected
range of parameter variations within the system.

T ,N-1
<

® The adaptive gain, hy(t), responds somewhat
faste: t. .apiation commands than it does in the
M.1.T. mezthod. This occurs because hj(t) is not
equal to zero at the start of an integration interval,
as it is in Eq. (4.2-20).

The most significant advantage is the ease of implementation. The response
characteristics of the simplified gradient method are analyzed in Section
4.2.6, and a method is suggested in Section 4.3 for improving its adapta-

tion speed.

4.2.5 Parameter-Perturbation Gradient Techniques

For all of the gradient methods described so far, the parameter
adjustment rule prescribing hi(t) has been !mplemented using variables
either available in the plant and model or generated within the controller
by use of additional dynamics. Implicit in these techniques is the assump-
tion that some a priori quantitative information is available about the plant.
For the M.1.T. method, Eq. (4.2-17) is approximated by Eq. (4.2-18),
assuming the compensated system closely follows the model. In the

simpler method of Section 4.2.4, the sign of the quantity gT aN-1 b must
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be known for all operating conditions. Therefore in both cases implemen-
tation of the adaptation algorithm depends upon knowledge of system operat-

ing characteristics.

Alternatively, it is possible to mechanize a gradient gain adjust-

ment rule by "interrogating" the plant using a parameter-perturbation

technique to experimentally determine the signals required for the adaptive
controller. To outline the features of this approach, recall the

expressions

)
. _ 3L(t)
hy(t) = -8 = —

i

(N) (N)
OL(t) ' _ de(t)
._____ahi - = eft) —_ahi (4.2-31)

given in Egs. (4.2-27) and (4.2-29) for the simplified gradient method in
Section 4.2.4. It is stipulated that e(t)(N) is known to be explicitly a func-
tion: of the adaptive gains. Thus, conceptually one can determine

ae(t)(N)/ ahi experimentally by time-differentiating the error signal as often
as necessary, répidly perturbing hi with a known increment fwhi, and cal-
culating the finite difference approximation,

{
M) et b+ ohy) ™ et n) ™

ae(t)(
= (4.2-32)

Bhi Ghi

(N). These differentiation

from measurements of e(t,hi)(N) and e(t, h; + 6hy)
operations should be relatively distortionless in that their associated time
lag (incurred in any physical mechanization of a differentiator) should be

much smaller than the system response time, At first, such 4 proposition

il Sl

4-~31
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may be alarming to anyone familiar with the evils of "perfect" differentia-
tion, especially in the case of many cascaded differentiations., However,
because this operation occurs in the adaptive loop, Eq. (4.2-32) can be

mechanized with little disturbing effect on the overall system,

To illustrate in simplified terms how such a system might be
designed consider the following example, using a first order system with
its plant described by a differential equation whose functional form is

essentially unknown.

Example 4.2.3 — Let the equations defining the plant, reference

model and error signal be given as foilows:

Plant Equation

x(t)

]
-n
pr—
o
—_—
(g
S
-
[ =
—_—
(ag
~—
—_—

u(t) = v(t) - hit) x(t)

Model Equation

Error

The objective is to implement a gradient adaptation algorithm,
having the form of Eq. (4.2-31), for the single adaptive gain h(t). This is
to be accomplished assuming nothing is kiown about f(x,u) except that it
depends explicitly upon the control u(t), and hence also upon the adaptive
parameter, h.*). Suppose h(t) is of the form

hit) = ho(t) + 6h(t)

4-38
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where h,¢) and 6h{t) are respectively low frequency and high frequency
components of the adaptive gain and 6h(t) is a known perturbation signal.
If the latter has a small amplitude, at any instant of time the plant dif-
ferential equation is approximately given by

(t) = f [x(t); v(t) ~h(t) x(t)] L sh(t) 4. 2-33)

3h
ho(t)

gty kb "
s e

The quantity Be(t)(N)/ 3h required for this exampie is given by

(N) * .
de(t) _ dé(t) _ ax(t) & .
3@h ~ ~dh  “dh xh(t),

S i

reflecting the facts that xm(t) is independent of h and é(t) is the lowest
order derivative which is'explicitly a function of h. Regarding hy(t) as
approximately fixed, it is clear that )‘ch(t) is approximately the coefficient
of the high frequency term 6h(t) in Eq. (4.2-33);

() = 3 [x, v-hx] l
% oh o (6)

Now suppose one derives an estimate of x(t;, denoted x(t) and j
processes it to obtain a quantity x} (t), 3

t

S £0) t) dr ;
Lo 2= (4.2-34)
oy

S,

ZaAs,

"b

where 7 is a short interval whose value is to be specified presently. With
the assumption that %(t) = x(t) to first order in 6h, Eqs. (4.2-33) and
(4.2-34) yield

t r of
X,v-h x] 6h()) » 6h()\) dx
St- {[ O eh }

f'ch(t) o S : X (4.2-35)
6h(x)” dx
t-r
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If 7 is sufficiently small so that all quantities in Eq. (4.2-35) except 6h are
nearly constant over the integration interval and if 5h is periodic with zero
mean and a funda:nental frequency much greater than 1/7, e.g.

)
sh(t) = esin w; w>> -“;’1

then Eq. (4.2-35) reduces to

. of
() = 3

13

| =50
b,

Hence % (t) is the desired estimate of % (t). This procedure is a cor-
relation processing technigue. It is characterized by the fact that ihe
numerator in Eq. (4.2-34) is a measure of the dependence of x(t) :apon
6h(t). The multiplication and integration of these two variables divided
(mormalized) by the integral square value of 6h(t) constitutes a correlation
operation; it is one technique that can be used to realize Eq. (4. 2-32).

Having an estimate, §h(t), of & (t) as required by Eq. (4.2-31),
we can design an adaptive controller described by the equations

:E(t) =S %tx-
t
S (1) 6h(x) dx
S sh(\)“ dx
t-r
h () = -Be(t) %, (t)
h{t) = ho(t) + §h(t)

where 8 is small enough in magnitude so that |hy(t)| is small with
respect to | 6h(t)].
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In summary, the adaptive gain contains a low frequency com-
ponent hgit) as its principal part. A small amplitude, high frequency
unbiased signal 6h(t) is superimposed upon hg(t) to provide a means for
measuring (3é(t)/3h) via Eq. (4.2-34). The higher lis frequency, the less
disturbing effect the perturbation signal has upon the system's operation.
A block diagram iilustrating the mechanization of the controlier is given
in Fig. 4.2-10. The net resuit 1s an approximate realization of the gra-
dient algorithm in Eq. (4.2-31), the only prior knowledge required being
that f [x, u] in the plant equation depends explicitly upon the adaptive gain;
i.e., the system is known to be first order.

The differentiation operation required to obtzin x(t) must have
sufficient bandwidth to recover the contribution of 5h(t) to X(t) in Eq.
(4.2-33); this will also tend to amplify any noise contained in the measure-
ment of x(t). However, the integration of xj(t) to obtain hy(t) in the adap-
tive controller achieves considerable smoothing; also extremely high
amplitude noise can be "clipped' with saturating devices. For example,
as noted previously in Section 4.2-3, one may obtain satisfactory control
if h(t) is given by

Eo(t) = ~ge(t) sign [;'Kh(t):l

This form of control law can be effectively implemented by addition of
appropriate relays in the diagram of Fig. 4.2-10.

With respect to the above example, special notice should be
taken of the following features that have general implications for parameter-
perturbation techniques.

¢ Considerable auxiliary circuitry is required to
determine %y (t); in particular, this includes the
introduction of a test signal 6h(t), accurate dif-
ferentiation, and a correlation processing unit.

¢ Where there is more than one adaptive parameter,
the associated perturbation signals must be
independent or "orthogonal' in some sense so
their effects on the error signal can be separated.

¢ The system design requires knowledge only of the
order of the system, i.e. the value of N in Eq. (4.2-31).
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Figure 4. 2-10 Example 4.2-3: Parameter Perturbation
Gradient Method

An examy le of a device using a parameter perturbation technique
is the Adaptronics ""Self-Organizing; Contrciler (SOC)." (Refs. 12, 52-59),
This apprcach can bhe used in varicus system configurations, one of which
(Ref. 59, Fig. 3.3, Configuration B and also Ref. 57, Fig. 3) has a design
philosophy analogous to that described in this section. * The instrumenta-
tion used in the Adapironics unit to accomplish the tasks suggested by
Eq. (4.2-32) is considerably difierent than that illustrated in Fig. 4.2-10;

owever the functional operations required are similar, Specifi :
h the functional operatio ired are similar. Specificall

*The so-called series mode of the SOT (Ref. 52, p.57 and Ref. 59,
Configuration A, Fig. 3.3) is better described as a learning system
(See Section 2. 3. 2) in the tevminology used in this report.
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¢ Independent high frequency noise sources are used
to perturb the adaptive parameters (Barron reports
this method is better than using deterministic sig-
nals such as sinusoids (Ref. 57)).

¢ Accurate diiferentiation of the error signal is re-
quired with associated correlation detection cir-
cuitry to determine the effects of the parameter
perturbations on the performance.

¢ Only knowledge of the order of the system is re-
quired to design the controller.

With respect to control of missiles, an important question seemns
to be whether so little is known about the airframe dynamics that the capa-
bility of a parameter perturbation method is necessary, in view of the
relatively extensive circuitry requirements. If an important sensitivity
factor, e, g., the control moment effectiveness, should switch sign during
flight because of a shift in the center of gravity, such a method may be
quite beneficial. On the other hand, if the key quantities such as ET AN-IQ
in Eq. (4.2-30) have known constant sign throughout the fiight (as is the
case with the trajectory data used for the applications in Chapters 8, 9, and
10), a parameter perturbation technique may not be required. In general
it seems desirable to use a design procedure that effectively utilizes all of

the a priori information available about the missile airframe.

Another perturbation signal method (Ref. 60¢) which has been
advocated for use with gradient adaptation algorithms in stochastic adap-~
tive control -systems* employs only a single external signal to determine all
the weighting functions, ae/ahi, i=1,..,n, used in the M.I.T, gain adjustment
rule. This technique could no doubt be adapted for deterministic systems.
However, in order to work well, the perturbation signal must be at a low

%
See Ref, 61 for a general discussion of stochastic adaptive systems.
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srequency with respe:t to the system bandwidth anc the resulting adapta-
tion time is longer thru for applicacions where the weighting functicns are
immediately available.

In this report, emphasis is placed upon those aspects of gra-
dient methods which are independent of whether a parameter perturba-
tion capability is required in the adaptive control system. In particular,
for the methods discussed in Chapter 4, we are interested in improving
the convergence rate at which adaptive gains approach optimum values;
various means for accompiishing this goal are described subsequently.
If it is determined in some particular application that a parameter per-
turbation approach is best, techniques for reducing adaptation time can
still be applied.

4,2.6 Performance of Gradient Methods

All »f the gradient methods discussed in preceding szctions are
hased upon the objective of adjusting a set of parameters h to minimize a
performance irdex,

J = S Lle(r)] dr (4. 2-36)

subject to the equations of motion, e.g., Eqs. (4.2-6), (4.2-7), and(4.2-8).

Consequently, for a given command input v(t), J is a function of ¢ and h.
Various algorithms have been proposed for adjusting the adaptive gains
(e.g., Egs. (4.2-20) and (4. 2-30)) based upon the concept of continaously
changing them in a directicn that reduces the cost, i.e., in the direction of
the negative gradient of J. However, this rather heuristic design
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procedure does not permit one to predict, with any degree cf certainty,
how well the resulting adaptive control system wiil actually pericrm.
Qualitative statements can be made about various response measures,

such as adaptation time, which may hold if the system works well. How-

ever the equations of motion for the closed loop adaptive system might be
basically unstable, in which case convergence of the adaptive gains will
not be attained. Ccnsequently, it is natural to ask: "How well does a

sy >cific adaptation algorithm perform? Do the varying parameters h(t)
actually achieve optimum values? Is the adaptive system stable ?"
Considerable effort has been made to answer thes< crestions, but all
attempts have fallen short of complete success (Refs. 36, 43-47, 49, 50,
62, 64). It is useful to point out why the determination of convergence

properties for gradient methods is a difficult task.

If the performance index in Eq. (4.2-36) is time-invariant and
if the various so-called gradient adaptive algorithms closely approximate
a true gradient procedure, conditions for their convergence can he esta-

blished based upon certain a.'sumptions about the shape of the surface,
J(h) = constant

This is the context of material presented in Refs. 36, 46, and 63. However,
e(t) in Eq. (4.2-36) is a functional of the changing command input v{t) and
the time varying system parameters; furthermore time appears in the
limits of integration for J. Thus J depends upon time as well as the adap-~
tive gains. Furthermore, in Sections 4.2.1 and 4.2.4 we have noted that
the analog adjustment algorithms bave certain theoretical defects vis-a-vis
true gradient methods. Consequently rost of the mathematical properties
of gradient methods applied to minimizing functions of parameters are only

heuristically applicable to gradient-adaptive systems,
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Cne suggestion for avoiding a time-varying performance index
has been offered by Chang (Ref. 47). This approach is to treat the input
v(t) 2nd the plant variations as random processes and to minimize the
expected value of J over the ensemble of their possible time histories.
However, the associated renuisite statistical properties - stationarity

and randomness -~ are not typical of the missile application.

By using a discrete parameter adjustment rule (see Section
4,2-2), Pearson (Ref. 45) establishes conditions for which an improve-
ment in performance is obtained at each stage, although convergence
canrot always be guaranteed. A similar method is proposed by Winsor
(Ref. 47).

James and Hagen (Refs. 49 and 62) attack the question of con-
vergence directly by linearizing the nonlinear gradient ACS equations
about some operating condition and studying local stability properties of
the linearized equations of motion, This technique bypasses questions
about improvement in the perfcrmance index. It directly analyzes the
adantive controller, represented by expressions such as Eq. (4.2-30),
without considering the gradient arguments used to justify its design.

Because the system is nonlinear only local behavior (behavior in the vicinity
of an assumed operating point) can be studied. Ideally one would prefer to

have information about siability in the large or global stahility, especially
when large departures from an equilibrium condition are likely as in an
accelerating missile.

Liapunov methods (Refs. 44 and 50) have been used to determine
stability properties that do not depend upon linearization of the equations of
motion. Eowever these results also apply only for a restricted region of

system operation.

gk s
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Because of the limitations noted in the above methods for ana-
lyzing gradient-adaptive systems, the characteristics of various ACS
designs described in preceding scctions cannot be completely predicted
analytically in the presence of realistic variaticns in command input and
system parameters. Nevertheless, valuable insight may be gained about
system operation by assuming some particular set of operating conditions
and investigating local behavior. A stability analysis using linearization
methods appears to be the most systematic procedure for this purpose.
Furthermore, such an apprecach suggests compensation techniques for
improving the convergonce rate of the parameter adjustment mechanism
(Ref. 62). This point of view is developed here for analyzing the perform-

ance of gradient-adaptive systems.

The concept of convergence most appropriate for describing a
PACS is that of stability. Using stability theory, one can sometimes
determine conditions for which the state variables in a given control
system remain bounded or converge to an equilibrium solution. In an
adaptive system, the state includes the adaptive gains with any associated
dynamics plus the state rariables of both the system reference model
and plant.

Various definitions of stability and related theorems, especially
those attributed to Liapunov, have been extensively documented and applied
to control system design problems for several years (see Refs, 64-"70 for
a representative sample of this literature). This theory is specifically con-
cerned with the asymptotic behavior of the solution of a set of differential
equations (i.e., the siate of a dynamical system) as time approaches in-
finity. To make our discussion reasonably self-contained, a brief sum-
mary of the results used in this and subsequent sections is provided in
Appendix D.
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To investigate the stability properties of a gradient type,
parameter adaptive system, a convenient sequence of steps is:

o Design the PACS.

¢ Determine an approximate solution for the
states of the system, assuming the plant
parameters and command input are constant
or vary in a regular (e.g., periodic) manncr.

¢  Analyze the systein stability properties about
the approximate solution.

To illustrate the application of this procedure, we consider the equations
associated with the parameter adjustment rule in Section 4.2.4.

Design the PACS — The equations of motion associated with the
simplified gradient method for our multiparameter example (Eqs. (4.2-6)
and (4.2-30)) are repeated here for convenience,

x(t) =<A- b g(t)T> x(t) + be(t)

% (t) = Apx (t)+b v(t)

hy(t) = B ct [;g(t)-g_m(t)] xt), 1=1,2,..,n (4.2-37)

where A and b are takep as constants and the 8 ; , indexed cn i, are a set of
n fixed adaptation gains selected by the designer. The latter are to be dis-
tinguished fro.u the adaptive gains, h(t). The algebraic signs of the B; are

identical with the sign of the quantity ET AN"1 b. The output error signal

is defined by

elt) = c’ (x(6) - x,,(0) (4.2-38)
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Determine an Approximate Solution — Eq. (4.2-37) is nonlinear;

it may be conveniently simplified if we make the identifications

h(t) = h_ -+ 6ht)

x(t) §m(t) + 6x{t) (4.2-39)

and linearize about 1_10 and §m(t)° For the linearizations to be valid, 6x(f)

and 6h(t) should be small. At this stage }_{m(t) is known from Eq. (4.2-37)
but yﬂ is not; we shall make some quantitative assumptions about the iatter
presently. Substitution of Eq.(4.2-39) into Eq. (4.2-37) with the definitions

) T , . .
AA = A-Dbh -A ; Ab=b-b_

-3{ 0o - - 0]
C By
B’/ =
. 0
0 0 B’
produces*
linear terms forcing terms nonlinear terms

I e Y i P

6x(t)| | A-bh. g-bgm(t)T] ex(t)|  [aalab||x_®] |-bon)’ oxt)

e [ Lo e I R Lt I R N

i) B 0¢ | {0} |lentw)] [0

*
The notation [0] denotes a matrix with all its elements zero; 0 denotes
a column vector with all elements zero.
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Equation (4.2-40) is st1ll exact; now we shall neglect the forcing; terms™ and
analyze the local stability properties of the unforced nonlinear equations
about the equilibrium point -- 6x(t) = 0, 6h(t) = 0. This can be accom-

plished by considering only the linear dynamics,

5 X(t) o x(t) ]
A R G (4.2-41)
s ht) L8ht)
where A has the partitioned form
P e
A= |ooaimen-
Agy i Bag
_ T, _ LT,
A T A-bhys Ajg = bxn)
A.. = B'x_(®)c: A, = [0] (4.2-42)
21 e 22 = ! :

From a theoretical point of view it is desirable that AA and Ab can be
made zero at each plant operating condition, for some choice of the adap-
tive sains. Otherwise the equilibrium point of Eq. (4.2-40) is nonzero

and is input dspendent.

No quantitative invcstigation can proceed until a representative
form of v(t) is specified and values are assumed for A, b and _130 Conditions

o o

on the constant values of A, b, and l_mo can be selected in various ways,
depending upon the particular application at hand. For this discussion, we
shall suppose that all plant states can be estimated sc that h can be chosen

*’1"he effect of the forcing terms in Eq. (4.2-40) is discussed in
Appendix E.
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arbitrarily, and we assume the plant is controllable (see Appendix A) so
that the compensated system can be assigned any desired set of closed loop
poles by proper choice of Eo’ given A and b (Ref. 30). With this amount of
freedom in the controller, it is natural to choose Eo so that the closed loop
poles of the reference model and the compensated plant are equal. The
rationale is that the closed loop poles of the ACS and the reference model

should be close together, if not necessarily coincident, when the adaptive
mechanism is working satisfactorily. This condition can be stated more
compactly as

- .
Det l-Is - Am] = Det [Is - A+ gp_i_l (4.2-43)

where s is the independent variable of the Laplace transform. Note, how-
ever, that the gains cannot generally be selected to make the matrices Am
and A-bh_ identical. (We are explicitly neglecting this fact by omitting
consideration of the forcing terms in Eq. (4.2-40).)

Analyze the Local Stability Properties — If the input v(t) is
periodic; e.g.,

v(t) = V cos wt

with constant amplitude and frequency then A(t) is also periodic in the
steady state. For periodic linearized equations, Floquet theory can be
applied to determine the global stability properties of Eq. (4.2-41) and
thereby often deduce the local stability properties of the corresponding
nonlinear system (see Sections D. 3 and D.4). The simplest such form of
v(t), v(t) = constant, is the one we shall consider here; the corresponding
equilibrium states of _}gm(t) and A(t) are also constants. In this case local
stability properties of Eq. (4.2-40) are conventionally determined by the
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eigenvalues of A; however, the nature of this particular nonlinear system

prevents our using classical stability theorems.

The principal technical difficulty in applying the results of
Section D. 4 to the matrix A is that it has eigenvalues equal to zero, This
is evident because the columns of the matrix A12 are all equal to a scalar

multiple of b and A,, is identically zero. Therefore the columns of the

matrix
U T
A2 “BXn
A22 [0]

are all scalar mutliples of each other. If there is more than one such
column, i.e., if there is more than one adaptive gain, A has at least one
zero eigenvalue and the results of Section D.4 are not applicable. To infer
local asymptotic stability for tre nonlinear system, the eigenvalues of A
must all have strictly negative real parts (Ref. 71). When some of them
have zero real parts, the system may be either asymptotically stable,
stabie, or unstable, and its stability properties can be determined only by

investigating the nonlinear terms in the equations of motion.

Apparently no one has worried, heretofore, about the above
mentioned problem in applying linearization techniques to Eq. (4.2-40);
however, it is an important mathematical question. One can easily find
different sets of nonlinear differential equations, whose linearized por-
tions save somc eigenvalues on the imaginary axis of the complex plane
and whose stabiliiy properties are quite different, viz.,

%) = x(t)3 (4. 2-44a)

x(t) = -x(t)3 (4. 2-44b)
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r Considering both equations as linearized about x = 0 each has its asso-
ciated eigenvalue at the origin. However, the solution to Eq. (4.2-44a)
[ is unstable and that for Eq. (4.2-44b) is asymptotically stable. Hence

the nonlineax terms entirely determine the local system behavior.

Equation (4.2-40) can be shown to be locally stable, assuming
the nonzero eigenvalues of A have strictly negative real parts; the details
of the proof are supplied in Appendix E. Furthermore, the incremental
plant states, 6x(t), exponentially approach zero at a rate determined by
the real parts of the nonzero eigenvalues of A. The incremental adaptive
gains, 6h(t), approach a set of possitile constant values because there is
generally no unique value of h that renders the steady state value of 6x(t)
equal to zero for a constant v(t).

The above lengthy preliminary remarks provide justification for
our performing a classical frequency domain analysis of Eq. /4.2-41),
The equations are stable, and the values of the left-half-plane closed loop
poles give an indication of system adaptation time, i.e., the time re-
quired for 6x(t) to become sufficiently small. The main quantity of interest

is the error, e(t), given by

e(t) = cT sx(t) (4. 2-45)

Using the partitioned notation for A and denoting Laplace transforms of
6x(t) and e(t) by AX(s) and E(s), respectively, one obtains

E(s) = _c_T<xs - Au>‘1 A12A21A_)g(s)<-;-> (4.2-46)

through manipulation of Kgs. (4.2-41) and (4.2-45). Substituting into
Eq. (1.2-46) for A12 and A21 from Eq. (4.2-42) and using the definition
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4 T -1
GO(S) =c <IS -A11> b (4.2-47)

the error equation becomes

E(s) = (% 31' xm) G (s) E(s) ( > (4.2-48)

i=1

where Xmy is the ith component of X

Equation (4.2-48) is a frequency domain representation of a
linear, time-invariant, homogeneous differential equation for the error.
Recall that each Xm; is considered constant and each adaptation gain ﬁi’
is specified by the designer for the gradient adaptation algorithm. The

quantity Go(s) is just the transfer function between the command input v(t)
and the plant output y(t), including the fixed feedback gains Eo in the con-
troller. The poles of G 0(s) are assumed to be those of the model (see
Eq. (4.2-43)). A block diagram illustrating Eq. (4.2-48) as a feedback
control system is given in Fig, 4.2-11.

T (S) R-1513
e

[—————— -

INPUT=0
———— ——]

w|—

Figure 4.2-11 Block Diagram of Error
Equation, Eq. (4.2-48)
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The local stability properties of e(t) are determined by the

poles of the transfer function Te(s) in Fig. 4.2-11;

n
T (5) = ——— ; ¥k = Y 8'x (4 9_4Q)
e\ ) S+kG(SS’ “e .4:_-1'-1 m]_ &.2-22)

(¢]
(=]
o

These resulis are similar to those obtained by Hagen (Ref. 62) for specific
examples using the M.1.T. gradient algorithm. The only influence one
has over system stability characteristics, given the controller structure in
Eq. (4.2-37), is through the gains Bi' (i=1,..,n) which contribute to the
adaptive loop gain k x

An examination of the root locus for the denominator of Te(s) as
a function of ke provides an indication of the net effect of changes in any
B; . First of all, the locus is a function of plant operating conditions. The
poles of Go(s) are assumed to be made equal to the poles of tho reference

model by the steady state adaptive gains, -130; however its zeros generally
depend upon plant parameter values. This is a consequance of the fact

that AA and Ab in Eq. (4.2-40) are usually not zero.  Also, the steady
state value of each Xm; is affected by changes in the input signal v(t),
resulting in a changing loop gain. Both of these effects may arise in mis-~
sile autopilots (see Chapter 8). It is interesting t{o note the effects of
sensitivity to plant variations are not totally eliminated in this adaptive
tec.nique; they are simply transferred to the adaptivz loop. In designing
the system, values for the gains ﬁ; shouid be selected which provide satis-
factory adapiution characteristics for ail operating conditions, if possible.

A second point about Te(s) is that fornonzero values of the
xmi's, each B{ has the same qualitative effect on ke as does any other

because ke depends linearly upon these quantities, The full range of
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variation in ke can be achieved by setting each adaptation gain to zero
except one, B; whose coefficient xrzn, is nonzero. In other words, the ﬂi”s
are not independent in their effect upon local stability. The fact that the
adaptation gains are dependent in relation to ke might suggest setting all

VS Lrriam 3w

-y ~ v £ 3 e + mandiern ~
or purposes of simiplilying the adaptive con-

cxcept one equal o zers for pur
troller. Indeed, the local stability characteristics near a steady state
solution of Eq. (4.2-40) would be the same, for a specified value of ke’ as
with any other choice of the B ; 's. However, we must also consider the
response of the adaptive system to large variations in plant parameters.
In order that the system follow the model closely for large departures
from steady state, all the adaptation gains should be nonzero to provide
control over each hi"

No complete prescription is available for choosing appropriate
values of the B; 's relative to one another. As a first try, they might be
selected so that each contributes equally to ke; i.e, require

[ _ -
Bixm. =g (4. 2 50)
i
where g is a specified constant and Xmy -~ i=1,,..,n -- are the expected
steady state levels of the reference model state variables. The result is

’ - . = -

B/ = 5 k =ng (4.2-51)

Xm,

i

where n is the number of adaptive gains. The value of g can be chosen to
specify the location of the poles c: Te(s) by a root locus analysis. From
kmmowledge of the system closed loop poles, the adapta:tion time can be
inferred. It is roughly two or three times longer than the inverse of

the magnitude of the real part of the dominant pole (or pole pair),
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The procedure outlined above for choosing adaptation gains in
the adaptive controller and analyzing its local stability properties is rea-
sonably systematiic, peing partially determined by a conventional root-
locus design methou. To illustrate its application, consider the following
example.

Example 4.2-4 — TFor this example we use the first order sys-
tem in Example 4.2-2 (Fig. 4.2-9) whose plant, model, and adaptive gain
equations of motion are given by

x(t) = [a-h(t)] x(t) + v(t)
Scm(t) = amxm(t) + v(t)

h(t) = Be(t) x(t)

elt) = x(t) -x_(t)

The local dynamics of the error are readily obtained from Egs. {4.2-47)
and (4.2-48) by making the identifications

c=1; b=1

A

|
(%)
]
=2
1
)

11 0 m

N=1 B8 =8
Thus

Es) = -pxd, —2&

The root locus for the error equation as a function of g8 > 0 is given in
Fig. 4.2-12. Observe that as the gain increases the system passes from
an overdamped condition to a more oscillatory one with the maximum
amount of dampirg being obtained at
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Figure 4,.2-12 Root Locus for Example 4.2-4

Consequently, with respect to overall system performance, this high gain
adaptive loop suffers from the same tendencies toward instability as does
ap ordir:: v, nonadaptive, high gain control system.

It is also evident that the adaptation time T a is always greater

than the model time constant, L

T = ———1—_
m
£
Roughly speaking,

2 .
Ta —m = 4Tm.
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This agrees with the qualitative statements about gradient methods made
in Section 4.2.

For the gradient method analyzed in this section, the locus of
closed loop poles for the adaptive loop in Fig. 4.2-11 behaves as in any
high gain control system, when the adaptation gains g 1’ are increased. In
many applications the system can become unstable. From the standpoint
of local stability, the designer effectively has control over only one
variabie, namely ke’ with which he can adjust the dynamics of the adaptive
loop. Perhaps if a more general adaptation algorithm could be devised,
more influence could be exerted over system adaptation time. In Section
4.3 a method for designing such a controller with the aid of techniques
described ir this section is developed.

All of the discussion in this section has applied to adaptive sys-
tems with a single input and a single error signal. Systems having nrultiple
inputs and error signals can be treated by the same analysis technique.

4,2.7 Decoupled Gradient Adaptation Algorithms

In a parameter adaptive control system with more than one adap-
tive gain, control systems designers frequently try to achieve a decoupled
condition among various adaptive loops (Refs. 35, 57). Qualitatively speak-
ing, the concept of decoupling arises when there are several adaptive gains
hl’ . .,hn and se -eral significant error signals, €500 € In such a situa-
tion it may happen that an individual error signal is primarily affected by a
particular subset of the gains. A concrete example is the lateral control of
an airframe (Ref. 35). Inthisapplication, the roll and yaw autopilot channels
have counled dynamics but feedback gains h1 and h2 can be selected such

that h, has primary control over roll rate and i1, has primary control over

1
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lateral acceleraticit. In making adaptive adjustments to h1 and h2, it is
desirable to change h1 only if an error in the roll channel behavior is

detected and to change h2 only in response to an error in the yaw channel.

Decoupling of this nature has been extensively described by
Barron (Refs. 57, 59) in association with the Adaptronics Self-Organizing
Controller. This device is described in Section 4.2-5 as being somewhat
representative of a parameter perturbation type of gradient adaptation
technique. Our purpose is to indicate that the decoupling principle can be
aoplied just as well to any gradient method.

Consider the same multidimensional system and model as in
Section 4.2.2 but with a vector error signal e(t) defined by*

x(t) = [A-QET(t)] x(t) + bu(t)
k) = A_x_(t)+b_v()
elt) = x(t) -z (t) (4.2-52)

where h(t) is a sev >f adaptive gains. Observe that

et) = g'l;[gc_(t)-x (t)] (4.2-53)

where 6 i is a vector containing all zeros except for the ith

which is one. Define a set of performance indices {J;} by the

element

relations

*The decoupling principle is more useful for systems having multiple
inputs; the development here is primarily for illusirative purposes.
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t+T
_ 2 . iz _r
Ji —S ei(r)dT, i=1,..,n (4.2-54)
t

and require that hi be adjusted to effect a reduction in Ji according to

,
Ahy = A 3,

i=1,..,n (4.2-55)
Applying the same techniques used in Section 4.2-4 to obtain an analog
gain adjustment rule, one obtains the following decoupled gradient adapta-
tion algorithm from Eqs. (4.2-52) through (4.2-55):

ﬁi(t) = By e.t) x,(t) (4.2-56)

The quantity B ;’ is a design parameter specified by
T Nj-1
"o - s .
ﬁi Bi51gn _giA bj; Bi>0

The integer Ni is the minimum order required of the Taylor Series
expaﬁsion for Ji’ analogous to that given in Eq. (4.2-24), to insure that
T

-1
'5;A7" b #0. The resulting ACS is illustrated in Fig. 4.2-13.

Notice that hi(t) varies only in response to the error ei(t); i.e.,

e.t) = 0= ﬁi(t) =0

1

Crmsequently the adaptive gains are ''decoupled,' each being associated
with only one error signal., In systems where it is known from the form of
A and b that hi(t) primarily governs the behavior of xi(t) and has little
effect upon other stales, such a gain adjustment rule may be desirable.
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Figure 4.2-i3 Implementation of a Decoupled Gradient
Adaptation Algorithm

4,3 ACCELERATED GRADIENT PARAMETER
ADJUSTMENT METHODS

In Section 4.2. 6 a lirear analysis of a nonlinear, gradient adap-
tation algorithm indicates a need for more control over the linearized
adaptive loop poles than is provided by the gains ,ei’ in Eq. (4.2-50). This
is necessary to improve the response characteristics of the error signal.
Our purpose here is to suggest a linear compensation technique which can
achieve this end using an approach motivated by Ref. 6..

In Eq. (4.2-37) the adaptation algorithm is given by

ﬁ;n = Ble) x,(t); 1=1,..,n (4.3-1)

To obtain better adaptation properties, consider possible modifications to
this parameter adjustment rule. Perhaps the most natural approach is to

use linear compensation, such as:
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Accelerated Gradient Controller 1

Ef(s) = Gc(s) E(s)

e
pode
=
S
it

Biet) x,(t); i=1,..,n (4.3-2)

where E f(S) and E(s) denote the Laplace transforms of ef(t) and e(t). Thus
Eq. (4. 3-1) is altered by passing the error signal through a linear time-
invariant filter having a transfer function Gc(s) which is to be specified.
The implementation of the controller is illustrated in Fig. 4. 3-1 which
can be compared with £ig., 4.2-8,

The parameters which define Gc(s) can be selected by analyzing
their effect upon local system stability using the method described in
Section 4.2-6. To begin the stability analysis, the plant and model from
Eq. (4.2-37) and the new controller in Eq. (4.3-2) are linearized. The
details are omitted here because they are identical to those given pre-

viously; the resulting error equation is

G (s) G _(s)
E(s) = -ke l:—-‘-)—-éc——] E(s)
n
- r 2
k, = 2 B Xin, (4.3-3)
i=1

Comparison with Eqs. (4.2-48) and (4.2-49) shows that the adaptive loop
in Fig. 4.2-11 is modified by the addition of G c(s~) in the feedback path, as
indicated in Fig. 4.3-2. One expects that the added flexibility provided by
the compensation parametrrs permits the stability characteristics of the
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Figure 4. 3-1 Implementation of Accelerated Gradient Coniroller 1
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Figure 4. 3-2 Block Diagram of Error Equation for
the Accelerated Gradient Controller

system to be improved over those obtained in Section 4.2.6. Con-
ventional root locus, complex plane methods are used to determine

Gc(s).

Before illustrating the use of the above technique with an exaiu-
ple, it is worth noting that other forms of the controller are possible. For

instance,
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Accelerated Gradient Controlier I

p(t) £ eft) x,(t
Wi(s) = Gc(s) Pi(s); i=1,..,n
ﬁi(w = B/w.(t) (4.3-4)

where Pi(s) and Wi(s) denote Laplace transforms of pi(t) and wi(t), In this
case the product function, pi(t), is passed through the linear filter. The
linearized error equation associated with Eq. (4.3-4) is identical with

Eq. (4.3-3); however the compensation is implemented differently as indi-
cated in Fig. 4.3-3. Observe that one filter Gc(s) is required for each
adaptive gain; therefore on> might expect the mechanization in Fig. 4. 3-1to
be preferable. However, there may be exceptions to this conclusion. For
instance, if one decides that Gc(s) should have one zero and no poles, the
configuration in Fig. 4.3-1 is not realizable but that in Fig, 4.3-3 is, if
the zero is combined with the integrator in the adaptive loop. Consequently
it may be desirable fo use either controller I or II, or a combination of the
two, depending upon the application. The latter is a more general structure
which we include here for use in Chapter 8;

Accelerated Gradient Controller II
Ef(s) = Gcl(s) E(s)
A .
pi(t) = ef(t) xi(t) i=1,..,n
Wi(s) = Gc‘z(s) Pi(s)
hi(t) = B%wi(t) (4. 3-5)
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Figure 4. 3-3 Implementation of Accelerated Gradient Algorithm II

where different linear filters G, 1(s) and G, 2(s) may be employed. If
Gcg(s) =1, Eq. (4.3-5) reduces to Eq. (4.3-2); if Gcl(s) =1, Eq. (4.3-4)
is obtained. The error equation corresponding to Eq. (4.3-5) is

G (s) Gc (s) Gc (s)

(0]
E(s) = -k, ! 2 E(s) (4.3-6)

| s

It is emphasized that Eqs. (4.3-2) and (4. 3-4) are equivalent
only in the sense of their associated linearized, time-invariant systems.
If either time variations in gc_m(t) or nonlinearities are considered, the con-

trollers are not the same.

Now we illustrate the linear compensation techniqne with a

simple example:

Exampie 4.3-1 — The first order system of Examples 4.2-2
(Fig. 4.2-8) and 4.2-4 is modified by inserting compensation G(s) just
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before the integrator in the adaptive loop, as suggested in Fig. 4.3-3.
The resulting error equation is

G (s)
E(s) = —ﬁxfn ['STS%—EI;T] E(s)

which shouid be compared with that in example 4. 2-4; the only difference
is the term G c(s). If G.(5) takes the form

Gc(s) = 8-z,

where

7z <a_ <20
[ m

the locus of roots for the error equation as a function of loop gain, ke= Bxfn,
is qualitatively illustrated in Fig. 4.3~4. By properly positioning z¢ in

the left-half-plane, a reasonably small system settling time can be achieved
for a moderate level of k,. The magnitude of the loop gain is controlled by 8.
This behavior of the closed loop poles should be compared with Fig, 4.2-12
where only the gain is adjustable.

For this exainple the use of lead compensation in the adaptive
loop considerably improves the system's local stability properties. The
equations of motion for the complete ACS are

X(t) = (a-h(t)) x(t) + v(t)
(1) = a_x (t)+v(t)
ht) = B {e(t) x(t) + w(t)]
w(t) = -e(t) x(t) z

e(t) = x@k) - x_(*),

m

and its mechanization is illustrated in Fig. 4.3-5. The compensation zero
is combined with the adaptive loop integrator to achieve realizability.
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Figure 4.3-5 Implementation of Accelerated Gradient

Controller I for a First Order System
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In applications where rapid adaptation :s desirable, it appears
likely that the techniques described in this section can be applied with
better results than conventional gradient-adaptive systems. There are
some additional computational requirements imposed by the linear com-
pensator Gc(s). The latter is usually most economically located as indi-
cated in Fig. 4.3-1. Additional evaluation of the accelerated gradient
adaptive system is made in Chapter 8.

There is some question about whether an accelerated gradient
controller based upon a different gradient method than that described in
Section 4.2.4 might be more suitable than the technique described in this
section. In particular, this type of stability augmentation can just as well
be applied to the M.1.T. algorithm discussed in Section 4.2-1. This has
not been done here because of the greater computational complexity asso-
ciated with the M.I. T. method. However, the missile application con-
sidered in Section 8.2. 3 indicates that better control of a normal accelera-
tion autopilot may be achieved if a discrete gain updating procedure of the
type described in Section 4.2-2 is used, rather than an analog gain adjust-
ment rule, The reason for this conjecture is that the discrete method
more closely approximates the gradient of the parformance index with
respect to the plant parameters. The task of designing and evaluating a
discrete type of accelerated gradient algorithm is potentially a subject or

future investigation.

4.4 LIAPUNOV Dg£SIUN ME THODS

This section describes methods for designing adaptive control
systems which guarantee certain global stability properties by "building
f them into" the controller. Section 4.4.1 presents the background and
fundamental theory of the technique. An investigation of adaptation time,
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similar to that in Section 4.2.6, is provided in Section 4.4.2. In Section
4. 4. 3 existing techniques are generalized to make them suitable for mis-
sile applications. A theoretical limitation that prevents use of this
approach to compensate nonminimum phase systems, and the associated
implications for direct adaptive control of missile normal acceleration,

are discussed in Section 4.4.4.

4.4.1 Design Principles

All of the adaptive control techniques considered in the preceding
sections suffer from the fact that nothing general can be said about their
global stability properties, even with the simplifying assumption that plant
parameters and input variables are all constant. The reason for this dif-
ficulty is that the adaptive systems are nonlinear and no general conditions
for stability in nonlinear systems are known. The linearization techniques
described in Sections 4.2.6 and 4. 3 can be applied to determine stability
properties in the vicinity of an equilibrium soviution. However this is not
completely satisfactory for sysiems in which plant parameters are likely
to undergo large deviations from equilibrium conditions.

An alternative approach to the use of gradient methods for model
reference adaptive systems that can be applied in certain situations
(Refs. 73-1T17), is to design a nonlinear adaptive controller for adjusting
feedback gains with the direct objective of making the differential equation
for the output error e(t) globally asymptotically stable. In this case the
adaptive loop design is nct based upon the objective of minimizing a per-
formance index. Instead, a controller is synthesized by imposing the con-
dition

lime(t) = O

t-x
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at the beginning of the design procedure. The technique used to accomplish
this task is derived from the stability theorems associated with the second

method of Liapunov; these are summarized in Appendix D.

The synthesis procedure for adaptive systems using Liapunov
design techniques can be described qualitatively by the following steps:
Choose a reference model and controller configuration, define a Liapunov
function, and determine the adaptation algorithm. These procedures are
most easily explained by considering an illustrative example. The one

chosen here has also been discussed by Winsor (Ref. 72).

Choose a Reference Model and Controller Configuration — Let

the plant and controlier structure be described by

x(t) = A x(t) + buit)

u(t)

v(t) - h(H) T xt) (4.4-1)

where g(t)T is a set of adaptive feedback gains. The equations of motion

for the reference model are
t) = A_x_(t) +bv(t) (4.4-2)
and a vector error signal is definec by

et) = x(t) - x_(t)

Assume that A and b are constant and have the phase variable canonical

form (see Eq. (A-2) and Section 7.1.2)
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0 0 ] "0 ]
0 10 0
A = ' ' ) : ) * 5 '9 = ) (4. 4"3)
. ° . . ° 0 -
0 0 0 0
| -2, -2, -a | | 1]

with all elements, a;, i=1,..,n, being unknown. The dynamical matrix
for the reference model is "stable" (all its eigenvalues have negative real
parts) and is given by

0
0 1 0
A = . ib_ =D (4.4-4)
m -m -
L] 0
0 0 0
-a 2 -a
! my 2 n |

These definitions represent a multidimensional system having the same
form as Eqs. (4.2-7) and (4. 2-8) with a special structure assigned to A,
Am’ b, and gm.

The design objective is to null the error signal regardless of the

behavior of the commani input, v(t). To this end, we obtain a differential
equation for e(t) by subtracting Eqs. (4.4-1) and (4.4-2). The result after
some manipulation i3

ét) = A_ e(t)+ [A- A -;gg«)'r] x(t) (4. 4-5)
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In order to drive g(t) to zero for arbitrary v(t) there must exist a set of
constant values !'I_e for the feedback gains so that

lim [A-Am-gl_x(t)T} =0 (4.4-6)
bt~ b,

Otherwise, for some input signal the state x(t) in Eq. (4.4-5) could "force"
the error to be nonzerc. In other words, the controller should have the
capability to make the equations of motion for the system output variables
(+(t) in this case) identical with those for the reference model. This
characteristic is generally true of systems designed by Liapunov synthesis
techniques.

Define a Liapunov Function — Associated with Eq. (4.4-5) are

two sets of state variables -- the elements of e(t) and the quantities

zi(t) = ami --ai-hi(t); i=1, ..., n (4.4-7)

which are obtained by expanding the bracketed term in Eq. (4.4-6) and
substituting from Eqs. (4.4 '3) and (4.4-4), Note that a value of hi exists
for each i such that Eq. (4.4-6) is satisfied. An adaptation algorithm is
desired which nulls botb e(t) and the vector

For this purpose choose a positive function of the state variables,
Vielt), zt)]>0; x,z #0

to serve as a candidate for a Liapunov function. If we can find an adjust-
ment rule for the adaptive gains such that
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Vi) < 0 (4.4-8)

for all e(t) and z(t) along solutions of Eq. (4.4-5), then the stability
theorems of Appendix D can be used to infer the asymptotic behavior of
e(t) and z(t).

Our selection for V is

n

vie®), z0] & et Qe + T 2, z®)
i=1

2 (4.4-9)

where Q is a positive definite symmetric matrix, unspecified for the pre-
sent, and each constant, xi, is greater than zero. The choice of V is ad hoc
in nature because there is no general systematic method for picking a
suitable Liapunov function. In any given application it may be chosen from
the designer's experience or by trial and error. Usually one first thinks
of using a function that depends quadratically upon the state variable- this
form is associated with the concepts of "power' and "energy'. However,
the principal justification for the structure of Eq. (4.4-9) is that it leads to
a satisfactory controller design for the particular dynamical system under

investigation.

Recognizing that the elements of A and b are assumed censtant
but the feedback gains are time-varying, we differentiate Eq. (4.4-9) and
substitute from Eqs. (4.4-5) and (4.4-7) to obtain

Vlett), z(t) =[_e_<t>TA§1+§(t) (- agh )}Qe()
el (UQ [A e(t)+<A -A_-bh(t) > ’t] -2 sz(t
L i

vpmay —— —

Macriunal st Sherppef
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r This expression can be put into a more convenient form by making the
definitions
a 8 .|
a Byeee e ]
T
: |: ]
=la_ . a
—m m m
1 n
M, 0 0 G
4
0 Ag
A
A =
0
0 0
h *n |
A
q = Qb (4.4-10)

and regrouping terms; the result is

V(et)2) = et (A7.0+QA ) o)+ 2267t " et) - 22 A 0
(4.4-11)
Note that the vector q is the nth column of Q.

Determine the Adaptation Algorithm — The next step in the design

procedure is to seek conditions on ﬁ(t) and Q which force V to satisfy

Eq. (4.4-8); i.e.,cause V to be a Liapunov function. For the problem at

hand, this is accomplished if

AQ+QA_ = -P (4.4-12)
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and

) = Alxt) gt elt) (4.4-13)

where P is any positive definite matrix chosen by the designer. It is known
(Ref. 65) that if Am is stable, as we have assumed, Eq. (4.4-12) yields a
positive definite matrix Q, as required by the definition of V. Substitution
of Eq. (4.4-12) and (4.4-13) into Eq. (4.4-11) produces

T

V(el), z(t) = - e(t)” Pe(t) <0; e(t) # 0 (4.4-14)

Therefore V is in fact a Liapunov function for the system of differential

equations consisting of Eqs. (4.4-5) and (4.4-13).

By application of Theorem 3 in Section D. 6 to the equations of
motion and the Liapunov function defined above, it follows that

lim e(t) = 0;

t-oco

Furthermore, this result is independent of the form of v(t). Thisisa
considerably more powerful stability condition than is currently available
for gradient-adaptive systems. I v(t) is bounded, a condition which cer-
tainly holds for any physical application, it follows that x(t) is also bounded
and hence by Eq. (4.4-13)

Lim h(t) = constant

t~®

However, note that there is no guarantee that the adaptive gains actually
appcoach values such that the model and system dynamics become identical,
although we have stated in Eq. (4.4-6) that such a set of gains must exist.
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For example, if v(t) is unity the state x(t) asymptotically approaches a
constant value

T
lim x(t) = 51_0""0
t o 1

Consequently the only requirement on the asymptotic behavior of h(t) in
Eq. (4.4-5) in order that the vector e(t) approach zero is
lim zl(t) = lim <am1 -a,- hl(t)> = 0

to )

The steady state values of the other elements of h(t) are arbitrary. The
explanation of this behavior is that the controller is primarily driving the
error to zero, as evidenced by the conditions in Eq. (4.4-14). For some
special input signals, it is possible to accompiish this task without making
the model and system dyna:nics identical. On the other hand, if v(t) is
sufficiently ""rich" in frequency content, one can ezpect h(t) to approach
the value -lle defined in Xq. (4.4-6). Loosely speaking one may say that
the error is asymptotically stable and the state z(t) is stable. This is a
typical characieristic of adaptive systems designed using Liapunov theory
because V in Eq. (4.4-14) is only negative semidefinite with respect to
the total state of the adaptive system, i.e., it is independent of z(t).

Therefore the vector z(t) can approach any vaiue which allows e(t) to

approach 0 (see Theorem 2, Section D.5).

The complete set of equations of motion for the error signal is

summarized as follows:

m-— m ==
%(t) = Ax(t)+b<v(t)—ll(t)T_§(t)>
ht) = Alx()q” eft) (4.4-15)
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Note that the adaptation algorithm for h(t) does not depend upon any unknown
system parameters, in contrast to the "exact' realizations of the gradient
methods described in the preceding sections (e.g., see Eq. (4.2-17)). A
block diagram illustrating the mechanization of the controller is given in
Fig. 4.4-1. The configuration is similar to that in Fig. 4.2-8 for the
gradient-adaptive system, the principal difference being that a weighted
sum of the elements of a vector error signal multiplies each component of
the state vector. However, recall that a particular structure is assumed
for A, Am, b and 1_)m in the Liapunov design; no such restriction exists for

gradient techniques. Furthermore, all the states x(t) must be measured;
gradient methods permit partial state feedback.

The quantity q is specified through the choice of P in Eq. (4.4-12)
and A is a diagonal matrix of positive, but otherwise arbitrary, elements.
Hence one has considerable variety in the choices of adaptation gains in the
equation for h(t), all of which yield the desired stability properties. One
might conjecture that this provices some control over the convergence rate,
or adaptation time, of the system. This question is treated in more detail
in Section 4.4.2. At the present it is worthwhile summarizing and dis-
cussing the steps taken in deriving Eq. (4.4-15) in the context of a qualita-
tive design technique.

Summary — The essential features of the design procedure
illustrated above are qualitatively stated as follows:

Design Procedure

(1) Choose a reference model for the system to be
controlled and define an er.;¢ signal e(t).

(2) Select a controller con:iguration with enough adaptive

gains to provide the vapability for making the system
ouiput dynamics identica] ic those of the model.
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Figure 4.4-1 An Adaptive Controller Designed by
a Liapunov Synthesis Technique

(3) Detfine the set of state variables, z(t), which des-
cribe the difference between system and model
dynamics as a function of the adaptive gains,

(4) Define a positive definite function V(e(t), z(t))
(5) Pick an adaptation algorithm such that

Vs o0; elt) #0

along solutions to the equations of motion.

With the assumption that system parameters are constant, this procedure
leads to a controller design that drives the error to zero. The advantages
of having global stability properties that are independent of the system
input, v(t), have already been cited. However, a few words of caution are
in order; there are some unsatisfactory aspects of this design technique
which may not be evident from the ease with which the particular control
law in Fy. (4.4-15) was derived.
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First of all, the applicability of Liapunov techniques depends
upon the form of the equations of motion. For the case treated in this
section, the quantities A, Am’ b, and Em have special structures which
readily permit choice of compensation that can match the reference model
to the system. In general, the dynamics associated with the state
variables of interest do not have such a representation; a case in point is
the airframe for a missile or aircraft. Many more than n elements in the
matrix A may be unknown. In such cases it is not always clear how to
complete step (2) of the design procedure. For similar reasons steps (4)
and (5) are also ad hoc in pature; there is no .general systematic procedure

for choosing a Liapunov function and adaptation algorithm,

Another potential disadvantage is that one cannot directly specify
which state variables must be estimated or measured for use in the adap-
tive controller. In some cases all of the state variables are required.
There is more flexibility in this respect with gradient techniques.

Cne more consideration is that although a controllex cu: te Ge-
signed which theoretically succeeds in reducing the output error asymp-
totically to zero, there is little quantitative informaticr c'out how rapidly
the process proceeds. Convergence of the adaptive zains may be too slow
for a particular application. Some discussion of this question is given in

the next section.

From these reflections it is concluded that Liapunov synthesis
techniques are desirable for controlling systems with unknown parameters
if a good adaptation rate can be achieved. However, there exists no sys-
tematic recipe for synthesizing a controller in a wide variety of practical
applications. This observation is supported by the variety of specialized
results, relevant to Liapunov design techniques,that have been reported in
the literatire. One of the first to use the method was Parks (Ref. 73) who
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designed stable nonlinear controllers for several different plants with one
or two unknown parameters. Phillipson (Ref. 74) suggests a means for
improving the stability (i. e., adaptation rate) of a pariicular controller
design for a first order system; the idea has recently been extended to high
order systems having many unknown parameters but also having many in-
dependent control variables (Ref. 75). The improvement is obtained by
augmenting the equations for h(t) in Eq. (4.4-15) in such a way that V tends
to be more negative. Some success has been reported (Ref. 76) in extend-
ing the use of Liapunov techniques by relaxing the assumption that ali un-
known system parameters are constant. The result obtained is a type of
"practical stability" (see Section D.7) where the error is held to within
some known beund. The latter currently applies only to systems having a
single time varying plant parameter. Another recent study demonstrates
certain practic~.. advantages in using a nonquadratic Liapunov function
(Ref. 7).

In subsequent sections more attention is given to the question of
convergence rate; i.e., how rapidly does the error approach zero, and also
the problem of applying Liapunov synthesis methods to adaptive control of

airframe dynamics.

4,4,2 Adaptation Rate for Liapunov Methods

Having demonstrated a method of adaptive control which can
insure that the error approaches zero asymptotically, it is desirable to
know how rspidly convergence proceeds. Recall that in Section 4.2.6 a
linearized analysis of the nonlinear gradient controller equations yields
information about both local stability and adaptation time from the closed
loop poles associated with the linearized error equation (Eq. (4.2-48)).
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Stability is guaranteed for a controller synthesized by Liapunov methods;
however, linearization is still useful for providing informatio:. "tout speed

of adaptation.

Following the procedure of Section 4.2.6, we define

>

h(t) lle+ 8h(t)

x(t) = x (t)+elt)

and linearize Eq. (4.4-15) about Ee and g_m(t), (Recall that l_xe is the set
of values for the adaptive gains which satisfies Eq. (4.4-6).) The result is

e ] [ oA, opx 7] [ew
smmeq = e e o bommmmmm] o= e + nonline2r terms
sh) | |ATx ®a" 1 o] | |en®)

(4.4-16)

Denoting the Zaplace transform of e(t) by E(s), neglecting nonlinear terms,
and assuming that §m(t) has a constant value X (corresponding to the
steady state solution to a constant input), one can eliminate the variables
6h(t) from Eq. (4.4-16) to obtain

'x _d"E@E) (4.4-17)

-1
=1 (s T -
E(s) = - 3 <IS Am) p_gm A
In order to determine the closed loop poles associated with the
linearized system it is more convenient to have a scalar measure of the
aerror. For this purpose define

e,® £ a' et E) ¢ qTr()
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and multiply both sides of Eq. (4.4-17) by g_T. The result is a scalar

error equation,

- 1.2 \1 )
Eq(s) = =X 1S Gq(s) Eq(s) (4.4-18)
i=1 11
where
G(s) £ qF (1 A >-1b (4. 4-19)
Cls =4q \Is-A ] b .

The quantity Gq(s) is interpreted as the transfer function between the model
input and the scalar "output'" signal

yq(t) 2 gT x(t)

The closed loop poles associated with the dagnamics of eq(t) are
the same as for any elzwment of e(t); i.e., they are eigenvalues of the par-
titioned matrix in Eq. (4.4-16). Consequently Eq. (4.4-18) qualitatively
determines the transient behavior of all the error signals. Recall that g
is calculated from Eqs.(4.4-10) and (4.4-12); once it is determined the
poles and zeros of Gq(s) can be calculated and a conventional root locus
analysis performed of the quantity

k G (s)
e g
S

1+

where

n
1
k, = 2, 5 X (4.4-20)
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This approach is quite similar to that used to treat the gradient
method, as is evident from comparison of the above expressions with
Eqgs. (4.2-47) through (4.2-50). The quantities xi have a fuiction analo-
gous to the adaptation gains B ; in Eq. (4.2-50); they affect only the total
adaptive loop gain. The vector ¢ provides additional control of the adap-
tive loop response in that it determines the zeros of Gq(s); no such design
capability is available in the gradient method. However q can be manipu-
lated only indirectly; it is one column of the matrix Q which satisfies
Eq.(4.4-12) for some positive definite matrix P, Given P, it is easy to
determine Q and hence q; on the other hand, given a desired value of q,
there is no direct method of finding associated positive definite matrices
Q and P.

In order to improve the adaptation properties of Eq. {4.4-15) one
might try the methods of Section 4.3. That is, insert linear compensation
2% appropriate points in Fig. 4.4-1 to modify the linearized error equation.
For example if the signal i%l qiei(t) is passed through a filter having trans-

fer function Gc(s), Eq. (4.4-18) is modified as follows:

G _(s) Gc(s)
E(s) = -k 1 —L _E (s)
q e s q
which is analogous to Eq. (4.3-3). However introduction of the filter may
improve the local stability characteristics at the expense of the global con-
vergence properties. The condition that V < G for the nonlinear system
is not generally satisfied when arbitrary compensation is added in this

fashion.

To improve the adaptation speed and retain the global stability
properties of Eq. (4.4-16), the controller must be modified in such a way
that V remains nonpositive. A method for accomplishing this in the
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multidimensional example of the preceding section has been suggested
4 (Refs. 74, 78). The procedure is to redefine the plant input u(t) in
; Eq. (4.4-1) according to

u(t) = vit) - [g(t)T + cg(t)T g§(t)T A-l] x(t)

B) = A 20" et) (4.4-21)

where the algorithm for h(t) is the same as before and ¢ is a positive con-
stant, Implementation of the modified cortroller is illustrated in Fig.
4,4-2, The only change from Fig. 4.4-1 is that a feed-forward path is
inserted around each integrator. If is interesting to recall that the same
type of lead compensation is found useful in Example 4. 3-1 for the

accelerated gradient method.

With substitution for u(t) from Eq. (4.4-21) into the plant

enuations of motion, Eq. (4.4-1), the error dynamics become
0= A_e(t)+ ’—A—Am- b g(t)T} x(t) -obe®) qx)F A lxit) (4.4-22)
L

and the time derivative of the Liapunov function in Eq. (4.4-9) be.:omes

o

2 0
V() = - et)T Pelt)-20 [g(t)T g_] YLk @)
i=1 !

Therefore, for the same initial values of e and x, the new form of controller
in Eq. (4.4-21) vields a lower (more negative) initial value of V than that
given by Eq. (4.4-14). Its magnitude is regulated by the size «f 5. There-
fore the initial adaptation rate for the system is faster as ¢ increases.
However a higher convergence rate is not necessarily obtained for all time

4-85




THE ANALYTIC SCIENCES CORPORATION

R-1042
x(t) ~

1) e ult) PLANT
?_ FrAxelu ! v
“(')l
[ ] ® [ ]
h | < 1t}
b
10
._(t)‘ L.
n S
E,I a,elt) o
vit) MODEL l

. AmAmEmebv .I

Figure 4.4-2 A Method for Improving the Adaptation
Time of the System in Fig. 4.4-1

because the solutions for e(t) resulting from Eq. (4.4-1) and (4. 4-2) are
not the same. Furthermore the second term on the right hand side of
Eq. (4.4-23) is not a positive definite function of the error; consequently
as o is raised, instead of decreasing more rapidly, the error may tend

toward values such that

The effect of the c-dependent term in Eq. (4.4-21) upon the adapta-
tion time is more explicitly displayed by analyzing the linearized time
invariant equations of motion, analogous to Eq. (4.4-16).

" h r \ ‘1
é(t) Am-okegg'r - _lgg'fn e(t)

______ = |emes=-=c--q-~=~-- l-=---4+nonlinear terms (4, 4-24)
|

sA(t) A'lgmgT E [0] Shit)

e - -

tre—ars we—— ] "l A—
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Using the same procedure as for deriving Eq. (4.4-18), one obtains

Es) = - keoé Gq(s)<s+%> E/(s)
Eq(s) A (_lTE(S) (4.4-25)

Comparison with the error equation (Eq. (4.4-18) for the original system
design indicates that the effect on local stability of modifying the plant
input as in Eq. (4.4-21) is to add an open loop zero at s = - 1/¢ in the root
locus analysis, tending to improve stability by putting the closed loop poles
further in the left half complex plane. This result is similar to that ob-
tained in Example 4. 3-1 for the accelerated gradient method.

The discussion cof this section illustrates how the convergence
rate of an adaptive system design by Liapunov methods can be determined.
It assumes that the input to the plant is constant so that the partitioned
matrix in Eqs. (4.4-16)and(4.4-24) is time-invariant and that the transient
behavior of the error signal is determined largely by the matrix eigen-
values. The latter are determined by a conventional root locus for a scalar
error equation. This analysis enables one to judge the effect of free

parameters in A, g, and ¢ on the system adaptation rate.

4.4.3 A Synthesis Procedure Applicable for Missile Control

The principal hinderaiice to using the Liapunov synthesis methods
aescribed in the preceding sections is that they do not provide a design pro-
cedure appl cable to aii iinear dynamical systems. In each known successful
application, a special structure for the mathematical description of the plant
and the reference model is dictated, e.g., Eqs. (4.4-1) through (4. 4-4),
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The equations of motion for a missile do not conform to any of the cases

previously treated in the literature; consequentlv 2 more general design

technique is required. The development of such a method (Ref. 79) is the

purpose of this section.

Specifically we are interested in the case where the quantities

A, Am’ b, and Em in Eqs. (4.4-3) and (4.4-4) bave a more general struc-

ture and furthermore b and Em need not be ide:atical. Thus suppose the

equations of motion are

x(t) = Ax(t) +bu(t)
(1) = A_x_(t)+b_vi)

with outputs

ylt) = ¢ x(t)
_ T
Ym® = CnZm
and error signal
e(t) = y(t) -y,

(t)

(4.4-26)

(4.4-27)

(4. 4-28)

The objective is to design an adaptive feedback coniroller so that e(t) is
nulled. The approach is to manipulate Eqs. (4.4-28) and (4. 4-27) to obtain
an error equation having the same forin as Eq. (4.4-15). Then the con-

troller can be derived by the reasoning used in Sections 4.4.1 und 4.4.2,

First it is convenient to introduce Laplace transform notation --
U(s), V(s), Y(s), Ym(ss), and E(s) for u(t), v(t), yit), ym(t) and e(t)
respectively. In these terms input and output variables are related by
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5(3 %66 = cfas-a)"p
Ym(s) A T -1
O Gm(s) = e (Is-Am> b (4. 4-29)

as indicated in Fig. 4.4-3. Assume that both the plant and the model have

£ zeros and n poles with £ < n; somewhat more generality is possible by
allowing the model to have fewer zeros but the above restriction is sufficient
for our purpose. Thus q(s) and q,,(s) in Fig. 4.4-3 are zth order poly-
nomials and p(s) and pm(s) are nth order polynomials. In addition the

model poles are chosen to have strictiy negative real parts.

In Laplace notation the equations of motion for the plant and the

model (neglecting initial conditions™) are

p(s)Y(s) = q(s) U(s)

1]

pm(s)Ym(s) qm(s) V(s) (4.4-30)

Subtracting these expressions and adding the term (p,,(s) Y(s)) to both
sides of the result produces

p,(S)E(s) = Ap(s) Y(s) + a(s) Us) - q_(s) V(s) (4.4-31)

where

>"Inii:ial conditions are treated in Ref. 79; they do not significantly
alter the system behavior.
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Figure 4, 4-3 Input-Output Relations for Adaptive
Control System Design Problem

It is assumed that the coefficients of s" in pm(s) and p(s) are both equal to
one so that Ap(s) has order n-1. Now certain manipulations are per-
formed which convert Eq. (4.4-31) into the desired form.

Divide both sides of Eq. (4.4-31) by an zth order polynomial
pc(s) defined by

- -1
p,(s) = s"+a, ;s too . taS oy

which has all its zeros in the left half complex plane, producing

YO R A N O
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————y

where
p, (s) r,(s) Ap(s) A , . Ar(s)
ifﬁyé PV iki p® AP Tp G
as) & 12 s LI s
p,6) k+pc(SS p,(s) Em p,(8) ( )

The quantities pm(s) " and Ap(s)’ are quotient polynomials of order n-2
and n - £ -1 respectively, generated by perforiming enough steps of the
polynomial division operations indicated on the left hand side of the expres-
sions in Eq. (4.4-33) until the order of the remainders, rl(s) and Ar(s), is
2-1. The purpose of the above operation is simply to obtain rational
terms on the right-hand side of F.q. (4.4-32) whose numerators are of
lower order than their denominators. @i addition, pc(s) must be such that
pm(s) ’ has all its zeros in the left-half complex plane. A polynomial that
has these properties always exists, A general procedure for finding one
is given in Ref. 79; it is not described here because the applications con-
sidered in this report are sufficiently simple so that a suitable choice

for p c(s) is readily obtained.

Still referring to Eq. (4.4-32), the gains k and km are the
quotients after a single step in the division operations q(s)/p c(s) and
qm(s)/pc(s) respectively. That is, k and k  are the gains associated with

the plant and reference model transfer functions,

#1, +q>
L] L] (] O

Sn+ Sn + . . 0 +
Phai Py
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Therefore the remainders r2(s) and r.;(s) have order £-1 or less. Now to
make the notation in Eq. (4.4-32) more suitable for this discussion define
the following quantities:

Polynomial functions:

n-2-1 -1
as)’ & 2 as,  ars) ¢ 2. bs'
i=0 i=0
-1 2-1
A i - A i
ro(s) 2 2 es, ros) £ 2 ds
i=0 i=0
£-1 -2-1
6 & T g, P & 2 gst+s™t (4.439)
i=9 1=0
Constant Vector:
T f f 4.4-35
e a@ B -1 ) * dz-—l 0 -1 (4.4-35)
New variaties:
a Y(s) A E(s)
Y (s) ——mcs , E (s) b (&)
4 U(s) 4 V(s)
= , V (s) = 4,4-36
Uc(S) i);(s-; c( ) p,(5 ( )
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707 2 [r 05,0« v, 0]

e 2 [e)6 0. . X

) £ :uc(t) 8,0 - - ]

v o7 2 [r 09,0 v 0@
Vector output variables:

w0" = [ose . . .y
Forcing vector:

FONE [X(t)T zc(t)T w®) v ®)T gc(t)T]

Krror state variables:

Lo

T
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Vector sets of state variables associated with Eq. (4.4-36):

(4.4-37)

(4.4-38)

(4.4-39)

(4.4-40)
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Dynamical quantities:

Using the above definitions we can rewrite Eq. (4.4-32) in the

: 1 0

« 0 1

% c ¢

; 0 0 0o 1

"% "B “Bn-g-1]

] g Sloo0..... 0 1] (4.4-41)

time-domain, state variable form

&t) = Gelt) +g <QT;(t)+ku(t) -kmv(t)> (4. 4-42)

where G is a stable™ matrix by our assumptions on pm(s)' in Eq. (4.4-33).
It is evident that this expression has the same form as Eq. (4.4-5) if we

) make the identifications

G ~ A
m

( g(g’ri(t) - ka(t)) ~ <A B Am) x(t)

T

ku(t) ~ - ht)" x(¢)

g Consequently we can employ the synthesis techniques for u(t) used in
| Sections 4.4.1 and 4.4.2. First augment p and {(t) as indicated by the

definitions

*
All the eigenvalues of G have negative real parts.
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= ; f(t) =
fa -k —a v(t)

Then, following the procedure indicated in Eq. (4.4-21) let

u) = - ®TL® -2 e q5,07 A1 1,0
A =+ A L0 q e
q % Qs (4.4-43)

where b_c(t) is the set of adaptive gains, Q and A are positive definite
matrices to be determined, and o is a positive constant. Define a posi-

tive definite function

i

Vielt), z0) = et)” Qeft) +z)T Az(t)

up

z(t) = p, - kb (t) (4.4-44)

Differentiation of this expression and substitution from Eqgs. (4.4-42) and
(4.4-43) produces

2

-l

e, = e (c7a+ag) el - 201,07 &7 1,0)(¢"e)
(4.4-45)
If we select Q such that

GIQ+QG = -P
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where P is any positive definite matrix, then V is nonpositive. A positive
definite Q exists that satisfies this condition because G is a stable matrix.

In particular,

Viet),t) < -ett)’ Pe(t)

which according to theorems 2 and 3 in Appendix D implies

lim |e(t)| = 0 (4.4-46)

t o

The only knowledge about the plant required to implement Eq. (4.4-43) is
the sign of k in Eq. (4.4-32) which is often the same for all plant operat-
ing conditions. Since A is arbitrary, the magnitude of k can be set to one.

One final point of interest is a method for picking initial values
of Ec(t), To do this refer to Eq. (4.4-43) and note that if the error e(t) is

identically zero,

ut) = -h ©) L)

Substituting this expression into Eq. (4.4-42) and setting e(t) = 0 implies
that

g (g - kb 07) 4,0 = 0

or

(4.4~47)

In other words the feedback gains have just the right values so that
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ﬁ Y(s) _ Ym(s)
V(s) V(s)

The elements of p, are specified by Eq. (4.4-34) and (4.4-35) and they
depend upon the unknown plant parameters. Thus if approximate values of
the latter are known at the time operation of the system begins, the initial
gains can be computed from Eq. (4.4-47).

The practical difference between Eqs. (4.4-43) and (4.4-21}) is
dimensionality. The vector —fa (t) defined in Eg. (4.4-39) has 34+n -1
elements and the same number of adaptive gains are required. Further-
more all of the signals in _fa (t) and e(t) must be generated; in particuiar
(n - £ -1) derivatives of the output y(t) must be obtained and these may not
be directly available from measurements on the system. The quantities
defined in Eq. (4.4-37) are obtained by mechanizing th: operations indi-
cated in Eq. (4.4-36). For a high order system the resulting controller
is quite complex, as illustrated by the block diagram in Fig. 4.4-4.

This Liapunov design technique can be applied to pitch rate auto-
pilots. In Chapter 8 it is used to design a pitch rate adaptive controller
for a representative set of missile airframe dynamics. Unfortunately,
Liapunov methods in their present form have a theoretical limitation which
prevents their use with plants having a nonminimum phase input-output trans-
fer function. The reason for this restriction and its implications for mis-

sile design are disciussed in the nexi section.

4.4.4 Theoretical Limitations of Liapunov Techniques

The objective of the Liapuncv synthesis method described in
Section 4.4.3 is to find a controller which nulls the error signal e(t)
regardless of the input v(t). We shall show here that the ability to achieve
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Figure 4.4-4 An Adaptive Control System Designed
by a Liapunov Method

this goal is necessarily limited to plants whose transfer functions have no

zeros in the right-half complex plane (i.e., they are minimum phase).

Refer to the diagram in Fig. 4.4-3, and the equations of motion,
Egs. (4.4-42) and (4.4-43). Suppose that the system is at rest with no
initial conditions, v(t) = 0, and

®
_—
Ll
-
1]
(o]

(4.4-48)

! 2
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Let an arbitrary v(t) suddently be applied. The theory developed in the
previous section states that the Liapunov function V(e(t), Ly” kl_10(t))

cannot increase and therefore must remain at its initial value, zero,
Consequently Eq. (4.4-48) continues to hold. This implies that

Y(s) = Ym(s)
in Fig. 4.4-3 or, equivalently,
U(s) G(s) = Gm(s) V(s)
Solving for U(s) one obtains
G_(s)
Us) = Gi(srws) (4.4-49)

If G(s) has right-half-plane zeros they appear as poles in the
transfer function Gm(s)/G(s). Consequently the response of u(t) to v(t),
given by Eq. (4.4-49), is in general unbounded. Thus although the output
error remains zero, an internal signal which is not observed in the output
is growing very large. This type of performance is intolerable within a
physical system and consequently some other design technique must be
used. Such behavior is a consequence of the fact that the Liapunov func-
tion defined in Eq. (4.4-44) ignores several state variables incorporated
in the controller design. Tie quantity f(t) in Eq. (4.4-42) is coupled to
=(t) through the equations of motion and the compensating transfer function
(1/p,(s)); however V is a function only of z(t) and e(t). Consequently one
cannot be sure that all of the intermal signals remain well behaved.
Another interpretiation is that the adaptive controller effectively cancels
the plant zeros with corresponding poles; it is well-known that the use of
such compensation should alwnys be avoided when dealing with nonminimum

phase plants.
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As discussed in Chapter 8 the transfer function relating control
surface deflection to normal acceleration for an aerodynamically controlled
missile with tail mounted control surfaces typically has a right-half-plane
zero. Consequently the limitation described above applies to that important
application. Some possible methods for circumventing this restriction with
alternative missile configurations and an adaptive reference model are dis-

cussed in Section 8. 3. 4.

4.5 DITHER-ADAPTIVE SYSTEMS

4,5.1 Background

In previous sections, adaptive methods are described which do
not explicitly identify the plant; that is, no attempt is made to determine
any unknown parameters in the plant's equations of motion. In these cases
adaptive control is achieved by adjusiing controller gains to null the error
between the desired plant response and its actual output for a command
nput. The type of PACS considered in this section is characterized by an
adaptive controller which operates to null the plant output error to a very

special type of input, namely, a high frequency oscillation, or "dither"

signal.

There is some subjectivity in the choice of the title, "Dither-
Adaptive Systems." Another point of view is that these techniques accom-
3 plish partial system identification. They effectively determine certain
quantities that depend upon, bui do not completely specify, plant dynamics.
Typically, some parameter related to the impulse or frequency response
is estimated from measurement data and an adaptive gain is adjusted to

? maintain it at a constant, desired value as operating conditions vary. Both
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interpretations -- output error control and parameter identification --

seem to be appropriate for this category of adaptive systems.

Dither-adaptive systems are important, both historically and in
terms of current applications. They were among the first types of adaptive
systems to be developed and have found the widest usage in flight tests and
operational aircraft and missiles (Refs. 1,2,4,5,6). Their advantages are
that the adaptive mechanism is usually quite simple, involving no more than
one or two controller gains and they rely heavily on complex plane synthesis
techniques. Hence the system's operation is reliable and relatively easy to
analyze. On the other hand, there is little experience available for apply-
ing these techniques to situations where several adaptive parameters are

necessary to compensate for changes in plant dynamic characteristics.

The particular examples of dither-adaptive systems discussed
below have been extensively described in the literature and appear in
several textbooks (e.g., Refs. 9, 36, 80). For this reason only a brief
treatment of each is given here to provide comparisons with other tech-

niques.

4.5.2 Principles of Operation

All of the adaptive systems discussed in this section basically
operate upon tae principal that the control loop gain should be maintained
at a proper level. This is an important parameter in most control sys-
tems because it is related to the properties of stability and bandwidth.
Recall from the discussion of Section 3. 1.3 that a large autopilot bandwidth
is necessary in a tactical missile to achieve satisfactory transient response
for the dominant system dynamics. However its maximum allowable fre-

quency range is often limited by higher order dynamic effects associated
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with sensors and flexible airframe bending mcdes and by the effects of
sensor noise. The former can cause the system to become unstable or
exhibit undesirable flexure oscillations; sensor noise tends to introduce
undesirable high frequency signals into the control system. Consequently
it is reasonable to design an adaptive controller with the rrimary function
of maintaining constant bandwidth over all plant operating conditions. In
many cases this condition can be achieved by adaptively controlling the
loop gain.

To illustrate how the concept of loop gain control arises, con-
sider a plant whose two dominant open loop poles and single zero lie within
the regions indicated in Fig, 4.5-1, This is one simple model for the
"stick free' pitch motion of an aircraft or missile. In addition there are
two open loop poles associated with control actuator dynamics which are
relatively far from the origin. It is desired that compensation be designed
so that for any locatic.a of the open loop poles and zeros, the dominant
closed loop poles are close to the particular locations shown.

A conventional control system design to meet the above specifi-

cations is indicated in Fig. 4.5-2. The compensation consists of feedback
elements H(s), defined by

His) - kh<s-zc)<s-z:>

(s 'p°1><s “Pey)

/

whose zeros are at the positions of the desired closed loop poles in Fig.
4.5-1 and with real poles, Pcy and p,, o) for realizability. In addition, a

cornpensating gain kc is placed in the forward path to provide control over
the total loop gain.
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Figure 4.5-1 Design Criteria for Fourth Order
Airframe-Actuator Dynamics
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Figure 4,5-2 Block Diagram for System in Fig. 4,5-1
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Defining the transfer function of the actuator and the plant
together to be G(sj, the overall transfer functicn, Ti{s), for the compen-

sated system is

k G(s)
T « Mo o o s
V(s + s) H(s
C

T(s) = H “(s) (4.5-1)

over the frequency range of interest. The zeros of H(s) are the poles of
H—l(s) and they have been selected to meet the requirements specified in
**:,.. 4.5-1, Note that H(s) is a time invariant compensator so Eq. (4. 5-1)
implies T(s) is independent of plant variations for large kc.

In terms of the root locus plot shown i Fig. 4.5-3 the interpre-
tation of this compensation technique is that the loop gain is made sufficiently
large so that the dominant poles of G(s) move to the zeros of H(s) and one
pole of }{(5) becomes cancelled by the plant zero. The maximum allowable
value or kc is limited by the motion of the actuator poles which move into

the unstable region for excessively high loop gain.

To demonstrate the relationship of the above design to the system
bandwidth, consider the transfer function F(s) relating a measurement dis-
turbance inpur at H(s) in Fig. 4.5-2 to the system output;

k G(s) H(s)
& Y(s) _
F(s) = N() 1+(1:<c G(s) H(s)

(4.5~2)

This relation is of interest in assessing the effect of measurement noise in
the feedback loop upon the system output. The bandwidth of F(s) is defined
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Figure 4.5-3 Locus of Closed Loop Polzs for the
System in Fig, 4.5-2

here as the range (assumed to be continuous) of frequencies 0 <|w|< W
such that

|FGw)| =2 E/(%)L (4.5-3)

For this particular example, if the actuator poles are sufficiently distant
from the open loop airframe poles, the loci that originate at the former
always cross the jw axis at about the same frequency w x In addition we
assume that the loop gain in Fig. 4.5-2 has a value such that the closed

*
A

loop poles are approximately at the positions zp, Zys T O

. *jwy, and p,
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-

where o, is a small negative number and P, is far out on the negative real
axis with |p,| >> w . With these conditions, the form of F(s) is approxi-
mately

2
“ lpo‘

(s) =
N <s~°o-jwo><s-°o+jwo>(s_p

); lcol < W
0
and for those frequencies s = jw such that | w| << Ipol’

2
“o

[Fjw)| =7 (4.5-4)

77077 (0 0)] o *3 (e ) |

The bandwidth W of this function is indicated qualitatively in Fig. 4.5-4;
it is a function of Wy which is approximately constant, and o, which varies

with the loop gain. Therefore we can regard w

p 35 being controlled by the

loop gain.

In order that the closed loop poles be as close as possible to the
desired values for all plant operating conditions, the loop gain should be
held at its maximum permissable value, consistent with stabilily require-
ments. For example, the closed loop poles produced by the actuator can
be required to have a constant, slightly negative real part, g, The value
of kc required to achieve this condition varies with changes in plant gain,
kp. This consideration motivates the use of an adaptive technique for

adjusting the compensation to maintain the required degree of damping,
Dither-adaptive systems perform this type of task by maintaining a small
amplitude high frequency oscillation within the system and evaluating the
resulting response relative tu the desired design criteria. At least three

F distinct methods for adaptively controlling the loop gain have been advocated.
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Figure 4.5-4 Magnitude of the Transfer Function
in Eq. (4.5-4)

We categorize them nere according to the particular technique used to

generate the perturbation signal,

o [I"igh gain
¢ Limit cycle

o External test signals

High Gain — Aircraft autop:iot designs which employ an adaptive
controller to maintain a high loop gain have been developed by both General
Electric Co. (Refs. 1, 2, 6, 9, 36) and Sperry Gyroscope Co. (Ref. 1).
Successful applications to control of roll and pitch motion have been re-
ported. The example in Figs. 4.5-2 and 4. 5-3 illustrates the manner in
which this type of system operates with a loop gain k . defined by
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k, =k wz k k) (4.5-5) :
where kp varies with plant operating conditions and kc is adjusted adap-

tively. For a given value of kp, as kc is increased the actuator pole i1ocus ‘
in Fig, 4.5-3 moves toward the imaginary axis. When the damping be- .
comes sufficiently small, disturbances in the control system produce ’
oscillations at frequencies near W, which can be detected by means of a '
bandpass filter. As the amplitude of the detected oscillation becomes too X | 4
large, kc is reduced; when the oscillation is too low kc is increased. This f
adjustment procedure tends to maintain constant closed loop actuator pole ¥
locations at all flight conditions and the total loop gain is always large

enough so that the dominant airframe poles are near the desired values.

|
!
It is evident that this design technique is very much influenced §
i
|

by the type of system to be compensated. The method works well when it

is possible to adapt satisfactorily to all plant operating conditions with a ;
single adaptive gain. Because it relies upon conventional complex plane

synthesis techniques to provide most of the compensation (e.g., H(s) in

Fig. 4.5-2) and uses a relatively simple adaptation algorithm, the opera- i

tion of the system is easily predicted. Two disadvantages associated with

high gain systems are sensitivity to sensor noise and possible excitation of

unwanted bending oscillations in a flexible airframe. In any given applica-

tion the possible effects of these factors on guidance accuracy and the mis-

sile structure must be considered.

This approach to system design has proven feasible for control of

pitch rate in aircraft and may also be suitable for missiles. However, as i
discussed in Chapter 8, many missile applications need an adaptive normal
acceleration autopilot to achieve the desired response to steering commands; ‘

1 in this case the plant transfer function for certain types of missiles has

4-108

vy




THE ANALYTIC SCIENCES CORPORATION

nonminimum phase characteristics that vary with flight condition. Under
such circumstances, achieving good normal acceleration response has
often required an open loop (Section 5, 2) adaptive system (see Refs. 17
and 19) having several sets of gains to be switched in at various flight con-
ditions. Adaptive high loop gain methods do not appear to be appropriate
for this type of application. Some of the factors to be considered in high
gain control of nonminimum phase plants are discussed in more detail in
Chapters 7 and 10.

An Adaptive Limit Cycling System has been designed by
Minneapolis Honeywell and applied to the autopilots of several aircraft

(Refs. 1, 6,9, 36). Its distinguishing feature is the presence of a non-
linear saturating element (e. g., a relay) in the forward path as indicated in
Fig. 4.5-5. The fixed linear compensation and the saturation limits =D
are selected so that the control system sustains a low amplitude, high
frequency linit cycle (oscillation). Variations in the total effective loop
gain, which is dependent upon the relay drive level D and the plant param-
eters, cause changes in limit cycle amplitude which cz1 be detected and
corrected by adaptively adjusting the value of D.

Methods for analyzing and syathesizing control systems using
nonlinear compensation with specific applications to adaptive systems are
given in Refs. 80 and §1. If the compensation is chosen to make the limit
cycle frequency approximately independent of plant parameter variations
and its amplitude dependent on the total effective loop gain, measurements
of the amplitude afford a means for adaptively adjusting the saturation level
of the nonlinear element to maintain invariant limit cycle characteristics.
The net result, as demonstrated by a linear analysis of the control loop in
Fig. 4.5-5, is a system which has approximately constant loop gain,
implying constant bandwidth.
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Figure 4.5-5 An Illustration of the Control Loop in an
Adaptive Limit Cycling System

As in the case of the high gain method, the design of the adapta-
tion algorithm is influenced by the system to be controlied. Plant and
sensor dynamics play a role in determining limit cycle properties. In
addition, the effective loop gain is usually large -- a fact that tends to miti-
gate against its use for missile applications having nonminimum phase trans-

fer functions. If a relay is used, its switching action may excite unwanted
high order modes. Therefore the limit cycle method is most appropriate
for those missile applications (e.g., roll autopiicts) where the above objec-

tions do not arise.

: The use of external test signals to control locp gain has been
E proposed by Smyth (Ref. 82) and Stallard (Ref. 83). This method relies
] upon a high frejuency signal, A sin wot, introduced into the control sys-

¥ tem from an external source to identify gain characteristics, as illustrated
in Fig. 4.5-6. The test signal permits the actual forward loop gain to be
identified and the compensation kc is adjusted adaptively to maintain it at a

constant value.
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Figure 4.5-6 A Dither-Acaptive System Using
2 Perturbation Signal

The gain identification method is based upon the fact that most
realizable closed loop transfer functions T(s) satisfy the condition

il
lim |T(w)| = g 947 0

w-e w

where kf is the forward loop gain. For our example in Fig. 4.5-2,

1
kchk
lim [T(e)| = =52
W= w

Consequently, the gain ko’ measured at any particular high frequency
Wy is approximately given by
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and it determines the shape of the high frequency response;

w0, 3
lim |T(w)] = k (—)
o\ w
-
If kc is always adjusted so that k0 is constant over the range of plant operat-
ing conditions, the forward loop gain (and the total loop gain as welil) is also

essentially constant.

The system output is monitored by a bandpass fiiter to provide a
direct measurement of the system gain at the frequency, Wy of the per-
turbation signal. The adaptive loop changes kc so as to maintain |T(j wo)|
constant for all plant operating conditions. In addition, phase information
can be obtained by compaiing the time shift between input perturbation
signal and output of the handpass filter. This permits use of two adaptive
adaptive gains -- one to control magnitudz of T(jw,) and the other te con-
trol its phase. Evidently more than two adaptive gains can be accommo-
dated by inserting several different test signals to provide control of T(jw)
at additional frequencies. An evaluation of the relative merits of this type
of dither-adaptive system as compared with limit cycling systems is pro-
vided in Ref. 84,

The significant difference between this method and the two dis-
cussed previcusiy in this chapter is that the basic control loop is designed
independently o’ the adaptation algorithm. It is unnecessary to choose any

of the compensation parameters to sustain 2 seli-induced oscillation.
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Consequently it is a more flexible technique; many adaptive gains can be
implemented and a high gain system is not necessarily required. However,
the need for external dither signal generators and processing equipment

for each additionul adaptive gain impose greater hardware requirements.

In situations where several adaptive gains may be needed, as in a high
performance missile, the usefulness of such a technique remains to be
investigated. In those applications where only the loop gain need be
adjusted, the simpler limit cycling and high gain systems seem adequate,

in view of current applicaticas.

4,6 SUMMARY AND CONCLUSIONS

4,6,1 Summary

Gradient-Type Techniques — In Section 4.2 we have reviewed

the state-of-the-art in parameter adaptive control system designs which
use gradient adaptation algorithms and indicated ithose which may be use-
ful for missile applications. One of the earliest such methods, the M.I. T.
gain adjustment rule, is discussed in Sections 4. 2.1 through 4.2. 3 to pro-
vide an explanation of gradient methods and their general convergence
properties. It is noted that the M.I.T. rule usually requires considerable
computational capability for mechanization and it has an adaptation time
significantly greater than the model response time. A simplified gradient
technique is described in Section 4.2.4; it has the primary advantage over
other gradient methods of requiring no additional system dynamics (filters)
to generate the necessary adaptation signals,

! Parameter perturbation gradient methods are discussed in
Section 4.2.5. These require the least amount of a pricri knowledge about
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the piant (only its order need be known). However, test signals and logic
circuitry are needed to process measurements made of the system

response.

In Section 4.2. 6 it is demonstrated that the performance of a
gradient method can be analyzed by linearization techniques. The concept
of ""decoupling" for systems having several important error signals is
explained in Section 4.2.7 and is shown to be compatible with any gradient

technique.

Finally, the gradient methdds summarized above are utilized
to develop an accelerated gradient algorithm in Section 4.3. The latter is

based upon the simplified gradient method and introduces linear com-

pensation in such a way as to improve convergence characieristics.

Liapunov Design Techniques —In Sections 4.4.1 through 4.4.3 the

state-of-the-art in Liapunov design te:hniques for adaptive controllers has
been reviewed and extended to systems whese dynamics are representa-
tive of missile applications. These methods havethe important characteristic
that they reduce the system output error to zero regardless of the type of
input sisnal, so long as the latter is nonzero. The greatest limitation of
Liapunov methods is their incompatibility with plant input-output transfer
functions having right-half-plane zeros, as described in Section 4.4.4.
The latter problem prevents these synthesis techniques from being used to
design adaptive normal acceleration autopilots in certain applications.
Additional discussion of this problem is presented in Chapter 8 where its
significance for airframe design is considered in more detail.

Dither-Adaptive Systems — Of the three types of dither-adaptive
systems described in Section 4.5, the high gain and limit cycling methods
have given good performance in a number of applications to aircraft and
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missile roll and pitch autopilots. Current versions of these techniques

Jo—,

rely upon a single adaptive gain to achieve uniform response characteristics,
Methods using external test signals are more flexible but are also more

ccmplicated to implement, requiring addilional signal generators.

Both the limit cycling system and the use of test signals have the
relative advantage that adaptation can proceed without a command input sig-
nal because the oscillations required to identify the loop gain are always
present. The high gain system depends upen natural oscillations induced
by an input signal to the system; if the latter is nct nresent for some period
of time, the loop gain may drift away from its desired value.

To the extent that all of these methods have an identification
capability -- i.e., they effectively measure the loop gain ~- and the desired
value of the identified quantity is known, the speed of adaptation can be quite
rapid. The loop gain can be rapidly adjusted to its known desired v¢lue. In
this respect dither-adaptive systems potentially exhibit behavior which is
characteristic of techniques employing explicit plant identification.

The design procedures for dither systems are ad hoc in nature,
Consequently, the backlog of experience available with current specific
applications does not immediately provide synthesis techniques for a normal
acceleration autopilot. As discussed in Chapter 8, the latter is important
for missile guidance systems. Insofar as dither-adaptive methods maintain
large loop ga’n to achieve uniform output response, they appear to be in-
appropriate for those missile applications where the airframe input-output
transfer function has nonminimum phase characteristics that vary with flight

condition --e. g., for tail-controlled missiles with fixed wings.

4.6.2 Conclusions

Chapter 4 has been concerned with methods for adaptive control

without explicit identification of unknown plant parameters. The salient
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features of each are summarized in Table 4,6-1. Two types have been
selected for additional investigatioi: in missile applications discussed in
Chapter § -~ these are the accelerated gradient and Liapunov design tech-
niques described in Sections 4.3 and 4.4. The former is attractive be-

cause it is a quite general design procedure whose local convergence
properties are expected to be superior to conventional gradient techniques.
Its main disadvantage is that its globa: - tubility properties are unknewn.
To find a method which does not suffer from the latter difficulty one turns
to Liapunov design methods. The latter are somewhat ad hoc in nature
and are not suitable for controlling nonminimum phase plants ¥ For those
situations where they can be applied, the response error between the
adaptive system and its reference mode! is driven to zero, regardless of

initial conditions and plant input.

A chara~teristic common to all of the adaptive methods discussed
in Chapter 4 is that adaptation cannot be achieved unless the system is
excited by input signals of one sort or another. In the case of gradient and
Liapunov design techniques the command input v(t), representative of a
missile steering command, must be nonzero to generate an error signal.
Otherwise the adaptation algorithm is not active. In dither-adaptive sys-
tems, special test inpuis or self-induced oscillations provide the signal
required for adaptation. If there are applications where adaptation does
not take place for long time intervals bzcause of the absence of the required
excitation signals. the sysiem's operation will be erratic if plant param-
eters change substantiaily during such "quiet" periods. An input signal
adaptive technique for alleviating this problem is suggested in Eq. (8.2-34)
cf Chapter 8.

*A inethod for circumventing this difficulty is suggested in
Section 8.3.4.
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TABLE 4.6-1

SUMMARY OF ADAPTIVE METHODS USING

IMPLICIT PLANT IDENTIFICATION

are to be puited

Computationa, Adaptation Oper:t onal
Metho Requirements Time ! At anta cos ! Jperational Disadvantaces
Extensive con.putational Sxmllxcmtlm;gcr than .Systematic desimn pro- | Saticd 1oy bebavior iv predicat«d un
cagabihty s required to reference model set {cedure apphicable to the assun ptions that the adaptive sys-
generate adaptation. sig- settling time. wide variety of sys- tem ¢irse y follows the reference
nals. Rcquired high order tems mode’ and olint parameters vary
adaptive controller. slowlv setative to adaptation time.
Require non-zero tnput signal to
Analog activate adaptat,on algor.thm,
Global < 1niity properties are
generally unknown,
The gain adjustment rule can sorae-
times be a poor approximation to a
true z:-adient method.
M.I.T. Gradient . : -
Same as {or Analog. Theoreticn'ly some- Systematic design Same ag for Analeg.
what shorter than for procedure
Analog. Can control size and
D.screte direction of gain ad-
justments more accu-
rately than the analog
method.
Same a8 for Analc ex- Not directly predict~ Systematic design 'Sime as for Analog.
cept that use of relays able in terms of an pr?cedure
Relay simplhifies the required analogy with a con-
multiplication operations. tventional gradient !
search procedure. ’
All adaptation signals Same as for other Systematic design Global stability properties are
obtained directly from gradient-1ike r ethods, |procedure generally unkncwn,
plu‘x! :{:\: m;de‘ll sla:el . Applicable to a wide Derivation Jf the adaptation ateorithm
va;ea da. v Tclt;etro?l\ r variety of systems, requires 2 .runc2*ed Taylor series
Simpatfied Gradient order acapliv er. expansion for the perfor mancs index
that may 1 ot always be valid,
Requires non-2¢,0 input siznal to
activate adapt, lon algorithm,
Same a3 for Simplified Potentially much faster | Same as for Simplhified | Same as for amphfied Gradient
Gradient except for added |than for conventinnal Gradient, '
Accelerated Gradient adapive loop compensa~  |gradient methods, May have of h gain aduptive lonp,
tin,
Same as for any of the Same as for anv of the | Permits decoupling of |Same as ! r any of the above
above, above, adaptive inops when
Decoupled Gradient several error signals |

Liapunov Design Method

Low order controller
relative to M.L.T.
Gradi thod

+

Can be controlled by
use of stabilizing

Global stability prop-
ertics are kown for
arbitrary system inputs
and fixed plant
parametors.,

Ad-boc design procedure

Requires non-zero input signal vo
activate adaptation algorithm

Not gaited for controiling nonminimum
phase plants,

High Gain

Adaptive controller has
only ore adaptive gain;
requires bandpass
filter.

Potentially extremely
small if loop gain is
identified and main-
tained at 1 constant
level by instantaneous
adjustment,

Simple, reliable
adaptive laop,

Only one adaptive gain permitted,
May excite airframe bending moges.
May be sensitive to noise.

No systematic design procedure for
several adiptive gawns,

Ad hoc desin procedure requiring com-
pensation such that the svstem suppost
& high f squency oscillation,

Requires non zero input c.gnal to
Activate adaptation algorithm,

Same as for High Gain.

Same as for High Gain,

Same as for High Gain.

Same as for High Gun except that
adaptation can proceed in (¢ shsence
of an input signal,

Dither-Adaptive
Systems r___
Limit Cycle
External
Test Signals

Adaptive controller can
Accommodate many adap-
tive gains; requires band-
pass {ilters and external
test signats,

Polentially extremely
small if transfer funce
tion parameters are
identified and mar-
tained at a constan?
level by inrtantaneots
adaptive gain adjust-
meat.

Adaptive cantroller
can accemmodate
several adaptive gaing

No systemuatic desiyn procecduss for
«vstom reaulir.ng several auaplive
gaing,
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Although severali types of adaptive systems have been consicered
in this chapter, others can be created by combining some of the properiio:
of the separate categories established in this report. For example, w~=
have classified parameter adaptive systems according to those which ex-
plicitly identify plant parameters or those which do not. However, it is
certainly feasible to consider techniques that combine both philosophies,
e.g., a system that uses partiul plant identification. One "hybrid" syswem

of this type employing an adaptive reference model is suggested in Sections

8.2.4 anc 8.3.4 as a means of achieving satisfactory control of missile
normal acceleration. There is no express intent to exclude other suct
possibilities from: this investigation. We have concentrated on those basic
principles that lead to reasonably general, systematic design procedures
for adaptive system:s, recognizing that many variations and combinations of

these ideas can be desirable in specific situations.
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5. PARAMETER ADAPTIVE CONTROL SYSTEMS
WITH EXPLICIT PLANT IDENTIFIC ATION

5.1 INTRODUCTION

Chapter 4 is concerned with methods of adaptive control which
do not identify the mathematical description of the plant. In fact, for the
parameter perturbation methods discussed in Section 4.2.5, the form of
the plant's equations of motion need not be known. Now we consider an
alternative approach which presumes a capability for identifying all im-
portant unknown system parameters.

In this section it is assumed the plant dynamics are completely
described by linear differential equations with coefficients thav can be
accurately estimated. For the purpose of control it is assumed that the
parameters are approximately constant over an interval sufficiently long
so that the system can be considered time-invariant. With the latter
assumption and using the parameter estimates, an adaptive controller
can be designed employing any of the numerous synthesis techniques
available for deterministic, linear, constant systems. This approach
effectively divides the adaptive control problem into two parts:

e Identification (estimation) of plant parameters.

¢ Controller design based upon parameter esti-
mates,

A possible configuration of the resulting adaptive .;ystem is illustrated in
Fig. 5.1-1 for a system having a set of unknown parameters a(t). Recall
Example 2.3-1 as a specific illustration of this technique.
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1964

STATE x(t)

m(t)

| PARAMETER
ESTIMATOR

SENSORS

Figure 5.1-1 Adaptive Control with Explicit
Plant Identification

Division of the adaptive control problem into two distinct sub-
problems -- identification and control -- is justified when accurate esti-
mates of parameters can be extracted rapidly. These can be achieved
when observations of the system ouviput are relatively noise-free or when
identification is based upon direct measurements of flight condition ~-
i.e., velocity, dynamic pressure, etc. (see the discussion of 'basic
parameter identification" in Section 6.3). If this condition is not met, i.e.,
if the identification process proceeds slowly because of inaccurate mea-
suremenis, the separation of identification and control may not be the best
desigi method. Then the problem can be treated with the aid of stochastic
control theory, a subject which is beyond the scope of this report. We
shall discuss only the case when rapid plant identification can be accom-

plished.

The diagram in Fig. 5.1-~1 indicates that the system requires
mechanization of not only an adaptive controller but also a parameter esti-
mator. Each of these units can require quite a bit of computational
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capability -- either analog or digital. Consequently hardware requirements
are generzally greater than for systems which do not require identification.
However the additional equipment does yield some operational advantages.
If system parameters vary sufficiently slowly so that the instantaneous
plant transfer function accurately determines its transient response, the
performarce of the control system can be completely specified by the
designer, as discussed in Section 2.3.1. He will choose an adaptive con-
troller that adjusts itself to provide the proper stability, response time,
etc., for each estimate of the plant's operating condition. The adaptation
time is effectively zero because the controller adapts almost instantaneously
to changes in system parameters, assuming that identification proceeds

rapidly.

Of the two problem areas described above, most of our effort is
directed toward designing the adaptive controller, proceeding with the
assumption that some identification method is used to obtain accurate know-
ledge of plant parameters. This is a logical first step in investigaiing the
feasibility of various control techniques. If good performance is achieved
by means of adaptive control when plant dynamics are perfectly identified
as they vary during system operation, a more detailed investigation of the
effects of estimation errors and the mechanics of various identification
techniques is warranted. To give the reader some familiarity with param-
eter estimation methods, a qualitative review of the subject is provided in
Chapter 6.

In this chapter we consider various methods of designing a param-
eter adaptive control system for a linear plant whose parameters are
23sumed known (via estimation) at each instant of time. To be specific, the

equations of motion are
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%(t) = Ax(t) + buft)

ut) = - rit) + vit)

m(t) = Hx(t)

) = ¢’ x®) (5.1-1)

where y(t), r(t), v(t), and m(t) are respectively the output signal, the con-
trol to be chosen by the designer, the input command (e.g., the steering
command for a missile autopilot), and the observations provided by the
sensors. The dynamics represented by A and b are assumed sufficiently
slowly-varying so that at any instant Eq. (5.1-1) can be considered time-
invariant for the purpose of prescribing the control signal r(t). The con-
stant quantities, H and ¢, are assumed to be known a priori.

The fact that a scalar input appears in Eqs. (5.1-1) is not in-
tended to be restrictive, Specific comment will be made concerning any
results mentioned in succeeding sections that are not applicable for mul-

tiple input plants,

5.2 OPEN LOOP ADAPTIVE METHODS

Open loop adaptive methods were amorng the first techniques
advocated for adaptive autopilot design. They are applicable in a situa-
tion where the range of variation in plant dynamics is known a priori as
a function of ceriain measurable variables that constitute the plant operat-
ing condition. Their principal feature is & feedback controller having gains
that can be changed as operating conditions vary to maintain the proper
system input-output dynamics.* The term "open loop' describes the fact

*They are also referred to as gain-scheduled systems (Ref, 1).
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that control gain adjustments are made from measurements of quantities

that are only indirectly related to the desired system performance.

For exaraple, a missile airframe will have dynamics which are
a function of dyramic pressure (we neglect airspeed and mass distribution
for illustrative purposes only). For various pressures, 9 <dg <. - <q,,
preflight analysis may show that feedback gains, kl’ kZ’ cos kn, provide
adequate compensation leading to an open loop adaptive system illustrated
in Fig. 5.2-1. The particular gain, k(q), used at any dynamic pressure
is given by a quantized relation such as

%.1-Y

49
bR

klg) = k;; ¢ -

Open loop adaptive systems have been designed for helicopters
(Ref. 85), aircraft (Ref. 3! and missiles (Refs. 17, 19). In the past some objec-

tions to their use for aircraft and missile applications (Ref. 1) have been:

¢ A large number of gains must be stored when all vari-
ables defining the flight condition vary widely and when
there are several feedback paths; or, if only a few
gains are used, poor performance is experienced near
the points where gains are switched.

o The parameters of the airirame equations of motion are
assumed known a priori as a function of flight condition,

¢ The flight condition must be measured.

[ 'he reliability characteristics of a large number of
gain switchings may be unsatisfactory.

e The dependence of the particular gain setting upon the
flight condition can be quite complicated, especially
because the flight condition is a function of three vari-
ables -~ dynamic pressure, airspeed, and mass
distribution.
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Figure 5,2-1 Example of an

QUANTIZER

Open Loop Parameter

Adaptive Control System

However, many of these disadvantages predate the capabilities of modern

digital computers. In the remainder of this chapter we consider adaptive

methods that are improved versions of the first open loop adaptive tech-

niques, made possible by modern control and computer technology.

5.3 MODEL FOLLOWING ADAPTIVE CONTROL

Model following adaptive control is conceptually related to sev-

eral types of parameter adaptive techniques discussed in Chapter 4. The

design goal is that the compensated system duplicate the performance of
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a reference model. From current knowledge of plant parameters, con-
troller gains are set to achieve the desired characteristics. In comparison
with adaptive systems using implicit plant identification, the adaptation time
is potentially very short -~no greater than that required to accomplish the
identification and update the controller gains. Example 2. 3-1 illustrates this
design principle. There the objective is that the first order system behave
according to the model

xit) = bx(t) + bv(t)
while its actual equation of motion is
x(t) = ax(t) + bv(t) - k(t) x(t)

with "a'" unknown and k(t) being an adaptive gain. An estimate a of the
parameter provides the means to define k(t),

kt) = 2a-b
so that the resulting system closely follows the model.

More generally, one attempts to design the system so that its
closed loop transfer function T(s) between input and output is close to that
for a reference model, T m(s). Several approaches to this task can be
suggested:

o Transfer Functior Matching Design Procedure

¢ Minimum Integral Square Error Design Procedure

e Pole Assignment Design Procedure

To illustrate the transfer function matching design procedure for

obtaining desired response characteristics with a plant transfer function
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G(s, a) having a set of unknown parameters a, we consider the addition of
adaptive feedback and forward loop compensation H(s, k) and Gc(s,l_c) having
adjustable gains h and k, as illustrated in Fig. 5. 3-1.% To see the cor-
respondence between this system configuration and Eq. (5.1-1), denote
Laplace transforms by capital letters. Then it follows that

G(s,a) = ¢t (IS-A)'IQ
m(t) = y(t)
R(s) = - (G,(s,K)-1)V(s)+G (5, k) H(s, ) Y(s)  (5.3-1)

The requirement that T(s) be appro:imately identical to a specified trans-
fer function Tm(s) for a reference model is expressed by

G (s,K) Gis, a)

T®) = 1566 Do EED © Tn'®

(5.3-2)

With a substituted for a in Eq. (5.3-2), h and k are to be chosen so that the
equation is satisfied for all values of s. When the measurements consist of
more than a single output variable, several feedback paths can be used to
provide greater flexibility in the controller design. In any case, the design
problem is an algebraic one; i.e., determine values of the adaptive gains as
functions of  such that coefficients of the polynom:als in T(s) and Tm(s) are
equal to within terms contributed by negligible poles and zeros. In carrying
out this design procedure one must insure that H(s,h} and Ge(s, k) are
realizable and that no instability is introduced by attempting to cancel right-
half-plane poles and “eros.

*The notation G(s,g) emphasizes that the transfer function is dependent
upon the parameters as well as the independent variable, s.
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Figure 5.3~1 Adaptive Linear Compensatior:

The minimum integral square error design procedure advocated

by Newton, et al., (Ref.86) may be preferred when practical design con-
straints provide insufficient freedom in choosing the compensation in
Eq. (5.3-2) to systematically derive an adaptation algorithm for the ad-
justable gains. In this methcd one specifies Gc(s,g) and H(s, h) to within a
number of adaptive gains which are chosen at each value of é to yield

T(s) = T (s) (5.5-3)
in a precisely defined sense. The procedure is to assume a particular
functional form for v(t) in Eq. (5.1-1) -~ a step, ramp, etc., -- beginning
at a time t0 and determine values of the adaptive gains which minimize the
index
S e&(t) dt

to

J

et) = yit) -y_(t) (5.3-4)

m
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where ym(t) denotes the reference model output produced by applying vit)
to the input of Tm( s). The quantity to is regarded as the instant when the
plant parameters hzve a particular measured value é o and e(t) is calcu-
lated for t0 < t as though the parameters remain constant for all future
time. If the particular values, 11_0 and 50, of the compensation gains which
minimize the index can be obtained explicitly as functions of a o’ adaptive

adjustments can be made as the parameter estimates are updated by
the identification procedure.

For a known input having Laplace transform V(s), the error is
given by

E (S, h, k, éo) = [T (S’ h, k, éo\) - Tm(S)i' V(s)

where it is recognized that T(s) is a function of the adaptive gains and plant
parameters. The index J can be evaluated by applying Parseval's theorem
(Ref. 86)to Eq. (5.3-4), producing

Cu
=
o
0>

(o]
S
H]
DN
2|

‘-"‘.

=
‘Ui
1=
T
10>
|=

0) E (-s, ,l_c,é())ds (5.3-5)

Analytical expressions for integrals of this type axre tabulated in Ref. 86.
The values of ihe adaptive gains that minimize J are the solutions of the
set of equations

aJ _

od _ .. - .
S'E'—O, i=1, .., 2 (5.3-6)
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where m and 4 are respectively the dimensions of h and _lg.*

The above design procedure provides a rational basis for approx-~
imating a model when it is not feasible to duplicate its behavior exactly.
The similarity between the performance indices in Eqgs. (4.2-1) and (5.3-4)
is obvious; however, explicit plant identification has the advantage over the
gradient method that the opiimum controller gains for minimizing the cost
can be computed from Eq. (5.3-6) as soon as é o is known, at least in
principle. The fact that the latter expressions are generally nonlinear
algebraic relations among the elements of h and k may pose practical dif-
ficulties in designing the adaptive controller. However for a low order
plant, such as that associated with the dominant motion of an airframe, this
type of design technique is probably feasible.

A third form ¢f model following adaptive control is provided by the

pole assignment design prccedure. The compensation is chosen so that the

dominant poles of T(s) in Fig. 5.3-1 have specified values for all plant oper-
ating conditions. This design uvriterion is justified on the basis that the
poles of a linear system are the inost important quantities in determining

its response characteristics. It is most readily applied when the measure-
meuts in Eq. (5.1-1) are the full (dormunant) state -- i.e., m(t) = x(t); this
condition can be representative of a missile autopilot. For example a third
order airfiame-actuator combination has pitch rate, normal acceleration,
and conirol surface deflection as dominant state variables, all of which can
be measured by existing types of sensors.” Tn cases where X(t) cannot be
measuved directly, it may be possible to estimate it from the available data

*
Also see Rekasius (Ref. 127) for a similar problem formulation.

*

*Of course, any mathematical model of airfraine dynamics neglects
certain high order effects which can become imporiant if the auto-
pilot gains are made sufficiently large.
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RO S

(see Section B.2). The pole assignment technique has been suggested for
tactical missile applications (Refs. 18 and 87).

To obtain the desired values for the closed loop poles, the con-
troller is given by

where h is the set of adaptive gains. The resulting equations of motion are

it) = [A@-b@h"] 50 +pvi)

where A and b are both fuactions of the unknown parameters a. Having an
estimate éo of the parameters, the poles of the transfer function between
input and output are approximately equal to the eigenvalues of the matrix

A(d,) - bE,) *

For a controllable system,* h can be selected to provide any desired eigen-
values (see Ref. 30). The appropriate feedback gains are determined by

. X %
requiring

Det [Is - A(é0> +b (é()) ET] = lTri'l (s-pmi> (5.3-7)

i[‘See Appendix A for a discussion of controllability.

n
**Det [ ] denotes the determinant; T denotes the product of
i=1
n terms.
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where the Pmj» i=1,..,n, are the desired closed loop poles. If coeffi-
cients of like powers of s on each side of Eq. (5.3-7) are equated, n alge-
braic equations that are linear in the elements of h are obtained.* Their
solution is readily obtained as a iunction of the estimated parameters in
the form

- p(a \ dla i
L P(ao,; Q(&O, Py -pmp> (5.3-8)

|

where P is a known matrix and d is a known vector. This design procedure

is usually the simplest to implement of the three methods described here.

All of the model following design methods discussed in this sec-
tion have appeal for adaptive systems in situations where specific, uniform
response characteristics are desired over a wide range of operating ccndi-
tions. From this point of view, the minimum integral square error design
procedure identified with Eq. (5.3-6) for obtaining approximate equality
between the system and model output behavior is the most general approach.
It allows one to optimize any given controller configuration with adjustable
gains, in the sense of minimizing the integral square error between the

reference model and system output responses.

From the standpoint of implementation, all of the above techni-
ques seem promising for any missile which has some computational capa-
bility. The latter is likely to be available ir any situation where explicit plant
identification can be performed. The g.-eatest computer burden will likely
arise from the minimum integral square error design method because the

expressions (Eq. (5.3-6)) that determine the adaptive gains are nonlinear,

m—

*
The equations are linear because the plant input u(t) in Eq. (5.1-1)
is a scalar.
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The simplest control technique when all the important plant state variables
can be observed, is the pole assignmert method; this approach is investi-

gated further in Chapter 9 for a specific application.

One characteristic common to all of the design criteria described
here is that no consideration is explicitly given to the "effort" required, in
terms of control capability, to follow a given model. It usually costs some-
thing in the way of fuel or power consumption to force a plant to improve its
response characteristics and it may be desirzble t¢ incorporate a penalty on
excessive control levels into the problem formulation. Furthermore, any
practical control device has saturation !limits; consequently it is desir-
able to avoid a design that cails for control magnitudes that cannot be

achieved.

The minimum integral square error design method discussed in
this section can be modified to inciude a penalty on the use of too much
controi. For example, J in Eq. (5.3-4) can be redefined to include a term
involving the plant input u{t). In subsequent sections we shall consider this
possibility in the context of optimal control theory.

5.4 ADAPTIVE OPTIMAL CONTROL

Some fundamental ideas about optimal control of linear systems
are summarized in Appendix B. The analytical toois of this subject are
used here to define methods of adaptive control which can compensate for

changes in plant dynamics.

The possibility of adaptive optimal control was proposed by
Ho (Ref. 83). It has been generalized to include adaptive computations for
time-varying feedback gaine (Refs. 89-92) and also for adaptive estimation

5-14
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of system parameters (Refs. 90-92). A survey of some additional literature
on this subject is given in Ref. 93. Only the deterministic adaptive optimal
control problem is considered here to indicate benefits likely to be achieved

by such methods and to assess the amount of adaptation required.

9.4.1 Adaptive Optimal Reguiator

The optimal linear regulator is explained in Appendix B. Recall
that it is concerned with finding a contrel u(t) such that the state of a
dynamical system,

&(t) = A®) z) +b(t) ut) (5.4-1)

is driven to the origin of state space (x = 0) from an initial condition X,
The type of systemn we have been considering in this chapter has the form
of Eq. (5.4-1) but u(t) is given by

u(t) = -r(t) +v(t)

where r(t) is a control variable that can be chosen by the designer and v(t)
is a prescribed input that represents steering commands applied to a mis-
sile autopilot. To vat tais situation into the context of a regulator problem,
assume A aud b are constant and v(t) is a constant up until some time to.
At to the system is szt a steady state equilibrium X, and v(t) is suddenly
changed to zero and held there. Now, the objective that the system follow
v{t) is attained by requiring that the states ail be driven 1o zero, Conse-
quently, temporarily suppressing v(t),it is meaningful in our application to
coasider the problem of selecting a function u(t) = -r(t) such that states of

the system

&t) = Al@) x(t) +b@)u);  xft) = x

o (5.4-2)

(0]
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approach the origin in an optimum fashion. Because both the system and
the control law are linear, the design will also be optimal for driving the
state to any desired steady state value with a constant input. In this sec-
tion we assume that il fae elements of x(t) can be determined from the
measurement data.

As discussed in Appendix B, the criterion for an optimum design
which seems to be most useful for linear systems is the minimization of a

quadratic performance index. For this discussion the index is defined to be

@

&

J e S [E(t)T Qx(t) + ru(t)z] at (5.4-3)
to

where Q is a positive semidefinite constant matrix and r is a positive con-

stant scalar., The upper limit of infinity is justified because the control

system response is to be made much faster than the significant variations

in v{t), A, and b. We know that the minimuin value of J is finite from the

discussion of Section B.4.

To obtain a solution for u(t), set the parameters a in Eq. (5.4-2)
equal to their estimated values z_'i_ o and use the results given in Appendix B
specialized to the above forms for the performance index and equations of
motion; the result is a control law

n(d,)= 10@E,)T S@,); =t (5.4-4)

where S(é o) i8 the positive definite solution to the steady state Riccati
equation (see Section B.4 for conditions under which the solution exists),

5-16




THE ANALYTIC SCIENCES CORPORATION

a1 A6, L sne)afe)Ts-a - 0 e

If the parameters a were really constant, u(t) given by Eq.(5.4-4)
would be the optimal control for all time; however, we are interested in
situations where the narameters can change in some unknown fashion. Con-
sequently, at a later time tl, having new parameter estimates é 1’ it is
desirable to solve the optimal control problem again, minimizing

=]

J = s [_}g(t)T Qx(t) + ru(t)?'] dt
Y
subject to

0 = A(d;)50) +b(E,) wo

The solution is
— l A T -~ A . _
ut) = -2 9(;_1) S(gl) Xttt (5.4-6)
where S(a;) is obtained from Eq. (5.4-5) with 3, substituted for a,.

Evidently the adaptive updating procedure can be continued in the
above fashion; discrete changes in the adaptive gains are necessary at times
tl’ t2, .+, rather than continuous adjustments, because the solution of Eq.
(5.4-5) generally requires digital computation. This task together with the
parameter estimation algorithm imposes a large computational burden upon
the adaptive controller. Various techniques for solving Eq. (5.4-5) are des-

cribed in Appendix F.

A diagram illustrating the adaptive optimal regulator configura-
tion, modified to include the input command, is given in Fig. 5.4-1. Observe

that v(t) is multiplied by a gain k (@), the purpose of which is to ensure that

dc(
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Figure 5.4-1 Adaptive Optimal Regulator

the output variable of interest --e. g., pitch rate or normal acceleration --
has the proper steady state (d-c) level for a constant v(t). This modifica-
tion is necessary because nothing is included in the optimization problem
which regulates the steady state response to an input command. The equa-
tion of motion for the compensated system is

(t) = ’A-§§T> x(t) + ky b vit)
yt) = gT x(t) (5.4-7)

wherr the carats are shorthand notation denoting quartities that are func-
tions of the given parameter estimate é_. To easure that the ouiput y(t) =v(t)

in the steady state, the d-c gain must satisfy
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k, @) = - 1

1@ (5.4-8)

T (3-57) b

This calculation can be made in the adaptive controller, given A(é), g(é_)
and h(a).

With respect to performance, one must consider what relevance
the solution of a regulator problem has to the desired missile response
characteristics. In Section 3.1-3 it is suggested that control system
specifications are likely to be expressed in terms of rise time, overshoot,
settling time, etc. It is observed that optimal regulator controllers often
exhibit satisfactory properties of this sort provided the weighting con-
stants, Q and r, in Eq. (5.4-3) are properly chosen. Consequently a

fundamental design problem is selecting appropriate values of Q and r.

As indicated in Appendix B, the choice of weighting matrices in
a performance index is a subjective matter. If the matrices have the re-
quired mathematical properties, the optimal design is always asymptotically
stable. Beyond that, specific values generally must be selected by trial and
error., Although certain qualitative effects of changes in Q and r can be
deduced from the form of J (e.g., increasing the weighting on the control
tends to increase system response time and decrease the control magni-
tude), few general analytical results relatiang the weighting constants to

. . *
classical response measures are available,

With respect to the idea of an adaptive control system based on

optimal regulator theory another question arises. Suppose values of Q

*Reference 128 gives relations between Q and r and the closed loop
system poles; however if closed l2op pole specifications are to be the
design criteria, the pole assignment method described in Section 5.3
is preferable.
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and r are obtained which provide satisfactory response characteristics at
some particular operating condition. What happens when plant parameters
change? The answer is that the response characteristics also generally
change, even though the optimal gains are recomputed, because for con-
stant values of Q and r the optimal system design is dependent upon the
plant parameters. I one desires an invariant response time, say as mea-
sured by the real part of the dominant system ciosed loop poles, a means
for adaptively adjusting Q and r with changes in operating condition must
be provided. Tec accomplish this there is again a need to relate Q and r to
the desired response measure to determine the required adjustments in the
adaptive feedback gains. It may be possible to obtain a set of equations
which provide such a relationship (e.g., see Section B.5); however exten-
sive numerical calculation -- i.e., an iterative procedure -- is likely to
be required to obtain a solution. The associated computation would be in
addition to that required to solve Eq. (5.4-5). For first and second order
plants, it is sometimes possible to derive the desired expressions in ana-
lytical form; this fact may be useful in designing autopilots for tactical mis-
siles when the combined airframe and control actuator dynamics can be
treated as second order. In this report no attempt is made to adaptively
adjust the performance index weighting constants.

Variation in the adaptive optimal system's response with changing
plant dynamics is not inconsistent with the design philosophy of optimal con-
trol techniques. In Section 5.3 control methods for duplicating reference
model characteristics exactly without regard for the required control levels
are presented. In the presence of changing plant dynamics, varying amounts
ot control effort are required to accomplish this task. By comparison, any
design criterion which penalizes the control, as the optimal regulator does,
is bound to use less control than a model following technique at some operat-

ing conditions and use more control at others. Consequently the respoise
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characteristics of the adaptive optimal regulator design must also vary,
Rather than to try preventing this behavior by adaptively changing Q and r,
it is more logical to use a method which guarantees uniform response

characteristics if the latter are desired.

Experience obtained with optimal regulator designs in Chapter 9 for
missile applicatisns indicates that fixed values of Q and r can probably be
selected which provide good, although variable, response characteristics over
the range of flight conditions that are typical of a missile approaching a tar-
get. During portions of the trajectory (e.g., during boost) where missile air
speed is significantly different than it is near the intercept point, consider-
ably different performance will be observed. However, if the optimal con-
trol law is recomputed sufficiently often, all flight conditions are stable and
the autopilot vields better performance than the uncompensated airframe.

As pointed out in Chapter 3, a uniform autopilot :-esponse may not
be required for a tactical missile when the effects of noise have to be filtered
out of the guidance system. That is to say, the required system bandwidth
may vary along the trajectory. This situation is likely to occur in long range
launches against air targets. At relatively long ranges where the signal to
noise ratic of the guidance measurements tends to be low, more filtering is
required than at close ranges when better target information is available.
Consequently an autopilot design whose speed of response improves as the
missile approaches the target may be acceptable; this characteristic is in-
herently provided by the adaptive optimal regulator technique when applied
to a thrusting missiie (sec Chapter 9).

5.4.2 Adaptive Optimal Modei Following Syst2ms

The preceding section discusses an optimal regulator design for
an adaptive system in which the resulting control system response time
can vary with plant operating conditions. This occurs because no adaptive
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mechanism is provided to adjust the weighting constants in Eq. {5.4-3) to
maintain direct control over performance characteristics as plant param-
eters change. To obtain more uniform behavior, one can introduce the
concept of an optimal model following system. The latter is another ver-
sion of the design philosophy used in Chapter 4 and Section 5.3, with the
difference that optimal control theory is applied to achieve a compromise
between the system behavior and the control effort expended. The techni-
ques described here are also discussed in Refs. 94, 95, and 96.

Let the plant be defined by Eq. (5.4-2), repeated here for con-

venience,
xt) = A(d )xt) +b(d, ) ul® (5.4-9)

"he reference model is specified by the equation

(1) = A_X () (5.4-10)

m
For this discussion x(t} and §m(t) are each assumed to be of dimension n,
although in general a model of different dimension than the plant can be
accommodated. The command input v(t) is initially eliminated from con-
sideration by the same linearity argument used in Section 5.4.1.

Recall that a variety of error signals are defined in Section 4.1
which are appropriate for measuring the difference between the system re-
sponse and that of the reference model. Let us assume that x(t) can be ob-

served and define an output derivntive error by the expression
s B _¥
et) = x{t)-x (t)

X () 2 A_xt) (5.4-11)
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The quantity X is obtained by substituting x(t) for x _(*) into Eq. (5.4-10).
This definition for the error hes the advantage that it depends only upon
the state of the system and not that of the model. Notice that if A = Am,
u(t) = 0, and x(t,) = x (t,), then &(t) is iden.ically zero.

Having defined the error signal, we seek a control u{t) such that
the index

J = s [‘g”(t)T Qelt)+ ru(t)z] dt (5.4-12)
to
is minimized, where Q is positive semideiinite anu r > 0, subject to
Egs. (5.4-9) and (5.4-11). To obtain a sclution, expand €(t) using Eqgs.
(5.4~9) and (5.4-11) obtaining,

gt) = (A(éo)-Am>§(t) -*é(éo) u(t) (5.4-13)

One can see that substitution for the error in Eq. (5.4-12) makes the inte-
grand dependent only upon x(t) and u(t), but it also contains cross-products
of these terms. The presence cf cross-products of the state and control
variables yields somewhat different (xpressions for the optimal control law
than in the case discussed in Appendix B. The solution is given in Ref. 94

as follows:

¥(&,)
f6) ® o ab(e)
i) ¢ A(d,) -4, | (5.4-14)
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where S(a ) satisfies
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Aside from some additional algebra, the form of the expression for u(t) is
the same as Eq. (5.4-4). The solution of an nth order matrix Riccati
equation is required, just as in Eq. (5.4-5).

The above synthesis technique is called (Ref. 94) the model-
in-the-performance-index method. The control law is made adapti+s by

successively recomputing its feedback gains as new parameter estimates
become available; the structure of the controller is exactly the same as
shown in Fig. 5.4-1. One expects to achieve response characteristics that
better approximate those of the model as operating canditions vary than can
be achieved by the optimal regulator design previously described. How-
ever, this control technique generally does nct have the capability to make
the reference model and the control system identical. The reason for this
is evident from an examination of the quantities which define 2(t) in Eq.
(5.4-13). The control law is of the form

u(t) = -h" x(t)

which together with Eq. (5.4-13) implies that

W) = <A -A_ - th> x(t)
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If A, Am’ and b have values at a particular operating condition such that
<A “A_ - th) # 0
m ———

for all choices of n, then the plant and reference model dynamics cannot
be made the vame.

Under suitable conditions the feedback gains approach a limit-

ing value as r vanishes in Eq. (5.4-12). In the special case where a value
of h=h  exists such that™

T

- - = =113
A Am _lgl_lm 0 (5.4-15)
it foilows thai
lim h = h
r-0- ™

Otherwise the limit has a value dictated by the solution to Eqs. (5.4-14)
and (5.4-15) with r set equzl to zero.

A comparison hetween the model-in-the-performance-index
method and the optimal regulator is provided in Chapter 9 for a specific
tactical missile application. The conclusion is that little advantage is
gained in obtaining desired system response characteristics using the
former when Eq. (5.4-16) does not hold for some valze of h. (One sug-

gestion for insuring that Eq. (5.4- 16) always does hold for some value of

*A matrix of gaius will always exist such that Eq. (5.4-16) holds when
the nwiner of independent inputs is equal to the dimension of x and
when the associated input parameter matrix Eq. (B-2), B, is
nonsinguiar.
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h is offered in Section 5.4.3.) Consequently the added controller complex-
ity required by Egs. (5.4-14) and (5.4-15) is probably not justified.

Another aporoach to the model following philosophy, called the
model-in-the-system technique (Ref. 94), utilizes an output error signal
(cee Section 4.1.1) defined by

elt) = xt) -x ()

The performance index to be minimized is

@©

J = g [g(t)T Qe(t) +ru(t)2:| dt

t
0

subject again to Eqgs. (5.4-9) and (5.4-10). Now J is a function of both
mode!l and system states; this again leads to a linear controller but one
which depends upon 2n state variables if x(t) and _ng(t) each have dimen-
sion n, The optimal controil is given by

ut) = -2 n(a,)" [521@0) 2, (8)+ 55 (85) -’f(t)] (5.4-11,

where 821 éo ) and SZ‘) éo) are solutions of a 2n by 2n matrix Riccati equation,
. -
a_ (0] [aT o]fs,, sp,!

A o\T
[0l A .[01 A% | |82 Sg

[Su S;p 10 © [Sn 512 [Q ‘Q]
+ =0 (5.4-18)

|-

Sp1 Spp [0 bb tsm So2 | l‘Q QJ
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where the carats denote functions of éo .

Equation (5.4-18) can be solved in two steps because only Sz1
and 822 are required. By performing the indicated matrix multiplications

and considering each partitioned portion separately, one obtains

a AT" _ l 'S AT -0 _
Syph * AT S,y = T8 BB Sy, + Q =0 (5.4-19)
ST, 1o aoT i} -
Sy A_+A'S, - 18,,66's, - Q@ = 0 (5.4-20)

The first expression can be solved for 822 which is then substituted into
Eq. (5.4-20) to determine 821‘
of gains associated with the plant state x(t), is independent of the reference

Observe that the former, whick is the set

mocel dynamics.,

The computational burden associated with solving Eqs. (5.4-19)
and (5.4-20) is greater than for either the optimal regulator or the model-
in-the-performance-index techniques. Consequently an adaptive system,
requiring successive solutions for the adaptive gains as new parameter

estimates become available, is more difficult to implement.

A functional diagram for the model~in-~the-system method is
presented in Fig. 5.4-2. When an input command v(t) is included, there
are two points at which it can be applied -- at the model input and at the
plant input. In Fig. 5.4-2, v(t) is applied at both inputs, using two adap-

tive d-c gains, k and k Their purpose is to scale the system so

dcl dc2’
that a single output variable
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Figure 5.4-2 Block Diagram nf an Adaptive '""Model-in-the-
System'' Optimal Controller

matches the input in the steady state when v(t) is a constant. From the
standpoint of optimality, there is nothing in the theory developed above that
suggests how the two gains should be chosen. The only condition which
they must satisfy to achieve the desired output level is

i +1pTs aly & = - 1
Kyde™ T 2 S124m Bm Kiac ————7—  (5.4-21)
T(; 14T
cT(A-28575,, ) B

Consequently k g 2nd k Jcg 2re linearly dependent. Either gain can be
selected arbitrarily, the other is then determined by Eq. (5.4-21i). The

question is, what are their optimai values.

To resolve the above guestion we assume v(t) is a constant input

and reformulate the optimization problem in terms of incremental control
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and state variables measured about their steady state values. The result

is that the optimal control ’aw is

at) = - 267 [Byyx 0+ Sx)] 2Ry v G422

A

The matrices S, and ézz are determined by Egs. (5.4-19) and (5. 4-20)

and kdc2 is given by Eq. (5.<-21) with

kdcl =1 (5.4-23)

That is to say, v(t) is fed into the model through a unit gain and k dc2 makes

up the "'deficit" in d-c gain between input and output.

A configuration which uses k = 0 is appealing conceptually in

that Fig. 5.4-2 becomes analogous to adngerence moedel followed by a high
gain feedback system, which is a classical design for making a control sys-
tem insensitive to plant variations (Ref. 6). By the latter procedure, an
arbitrarily good approximation to the model can be achieved if the plant's
loop gain is sufficiently large. The model-in-the-system approach also
has a high gain structure; however, the forward gains §12 and multiple
feedback paths permit only a qualitative analogy with the classical design
concept. The level of feedback gains, as determined by §22, required to
achieve a desired response time is generally greater than in either the
optimal regulator or the mode'-in-the-performance-index approaches. High
gains can have a relatively adverse effect on performance if there are high
order modes which have been neglected in the plant dynamics or if the

autopilot sensor noise level is large.

As pointed out by Tyler (Ref. 94) the raodel-in-the-system method
is a somewhat more gereral design procedure than that achieved by the
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model-in-the-performance-index approach. The latter cannot always
provide compensation such that the system dynamics differ from those of
the reference model by only an arbitrarily small amount. By comparison,
the model-in-the-system technique generally does have this capability when
the performance weighting Q is made arbitrarily large. This greater
flexibility may justify the additional computation required to solve Eq.
(5.4-20) in some applications. However, our conclusion with respect to
missile autopilots is that their response characteristics are more easily
regulated with the pole assignment technique described in Section 5. 3.
Further elaboration upon this point is provided in Chapter 9.

5.4.3 Transformation of Variables

In the preceding sections we have discussed adaptive optimal
control techniques that can be appiied to a system described by equations
having the form

x(t) = Ax(t) + bu(t)
ut) = -rt) +v(t)
m(t) = x(t) (5.4-24)

where the dynamics are assumed to be accurately known through use of
some parameter identification method. All of the design criteria des-
cribed for adaptive optimal systems have been expressed in terms of the
behavior of x{t) and the structure of A and b. Alternatively it may be con-
venient to design a control law in terms of a different set of state variables
z(t) which are related to x(t) by the linear nonsingular* transformation

*A nonsingular (singular) linear transformation is one where the
associated matrix M is invertible (not invertable).
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x(t) = Maz(t) (5.4-25)

The matrix M is assumed known; it can be specified arbitrarily, except
that it must not be singular. The equations of motion for z(i}) in be
derived by substituting from Eq. (5.4-25) into Eq. (5.4-2:); the result is

5t) = ML AMz(t) + ML bu(t)
ut) = -r(t) + v(t)
m(t) = Mz(t) (5.4-26)

Because A, b, and M are assumed known, the behavior of z(t) is completely
described by Eq. (5.4-26) and all of the control problems treated in pre-
vious sections in terms of tiie state xit) can be reformulated in terms of

the new variables z(t). Any feedback control law expressed in terms of

z(t) can be mechanized in terms of x(t) according to

-1

rit) = f(z(t) = (M x(t))

The use of the above type of transformation can have some advan-
tages for the purpose of control svstem design. First of all, in some cases
the state z(t) has more physical significance than does x(t) so that more
intelligent performance criteria can be selected using Eqs. (5.4-26). This
possibility is not o likely in tactical missiles if the measurements m(t)
are identical to the state x(t); bowever, it may be an important considera-
tion in other apglications. Another advantage of Eq. (5.4-26) -- and the
more important one for our purpose -- is that the structure of the dynamics
in Eq. (5.4-26) may be preferred. For example, it is true (Ref. 30) that
every controllable linear system can be described by a set of equations hav-
ing the phase variable canocnical form:
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z(t) = A z({t) +b u(t)

[ -0 o0 ] [0 ]
0 0
4 e e .. . & |, -
A, = - ;b (5.4-21)
0 0 - 0 1 0
% % 7 %2 %1 ¢

Therefore, referring to Eq. (5.4-26), for every set of values of A and b
it must be true that there exists a. matrix M such that

-1 _
Mlam = A
M=y (5.4-28)
st -0 .

provided Eq. (5.4-24) is controllable. One advantage of the form of Eq.
(5.4-27) is that the control law derived using the model-in-the-performance-
index method of Section 5.4.2 has the capability for making the dynamics of
the reference model and the closed loop system identical for all values of
the plant parameters, provided the reference model dynamics are also in
phase variable canonical form. I other words, if Am in Eq. (5.4-10) has

the form
~ -
1
o
A —_ . [ ] . ° .

o o0 - 0 1

Po A1 Fa2 Poar]

and if we make the identifications-- A=A, b-b --in Eq. (5.4-16), then
for each set of values for the elements in Ao there exists a set of feedback
gains i}lm which defires a control law
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((t) =l zt)

su.:» that

A -A _-bhl =0
0 m -o—m

It is pointed out in Section 5. 4-2 that the above condition is desirable in

order to have the capability for achieving nearly uniform system response
characteristics at all plant operating conditions (i.e., at ail values of A,)
using the model-in-the-performance~index method. If M can be determined g
from Eq. (5.4-28), then the optimal control law derived in terms of z(t)

can be mechanized in terms of the observed variables x(t) according to
(see Eq. (5.4-14) with the identifications u(t) - -r(t), x(t) ~ z(t) = M Lx(t))

——b(a )T-S(‘~ ) +QH(3,) M lxt) (5.4-29)
) | |

—o
A convenient method for obtaining the matrix M defined by Eq.
(5.4-28) is derived in Ref. 125 and is summarized in Ref. 126. It is stated
here without proof, ['irst note that

rit) =

Detls - A) = Det (M) Det(ls - Ay) Det (M)

n n-1
= _ - - 4.
s -o 48 A (5.4-30)

Therefore expand the determinant on the left side of Eq. (5.4-30) and equate
coefficients of like powers of s on both sides of the equation to obtain the

eiements of A0 in terms of the estimated parameters in A. Then obtain the

Lo

set of n vectors m,, i=0,.., n~1, from the recursion
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NS
m, = -g b+Am i i=0,..,n-2 (5.4-31)

and define M according to
M £ [30_131 .o En-l] (5.4-32)

Note that M depends upon the elements of A and b through Egs. (5.4-30) and
(5.4-31); therefore in an adaptive system the above calculations mist be

repeated whenever new parameter estimates are obtained.

In summary, any controllable system described by Eq. (5.4-24)
can alsc be represented by Eqs. (5.4-25) and (5.4-26). Any feedback con-
trol law defined in terms of the variables z(t) can be implemented if the
transformation matrix M is known. Therefore any of the contro! methods
described in previous sections can be applied to the state variables z(t);
the only computational difference consists of the additional calculstions
needed to determine M and M'l. An important specizl case of Eq. (5.4-26)
is the phase variabie canonical form defined by Egs. (5.4-27) and (5.4-28)
with M given by Eqs. (5.4-30) through (5.4~32). Phase variables offer
design advantages in adaptive control systems that are based upon the model-
in-the-performance-index concept; the feedback gains can always be selected
for any particular set of parameter values so that the reference model and
plant dynamics are identical. In adaptive systems M and M"1 must be
recomputed whenever new feedback gains are calculated on the basis of new

estimates of the parameters in A and b.
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5.4.4 Other Optimization Methods

The questior arises whether performance indices different from
the quadratic type ~.sed throughout Section 5.4 may be more suited to de-
signing missile autopilots using optimal control techniques, For instance,
control surface deflections are limited by hard constraints; i.e., they

saturate. Why not impose the condition,
lu@)! < M (5.4-33)

where M is a bound on the control, rather than use the time integral of
u(t)2 as a performance measure which provides only an indirect limitation
on the control level? Moreover, because response time is a prime con-
sideration, why not seek a control law that brings the state to a desired
condition in minimum time?

The main answer to these questions is that i# is difficult to obtain
feedback laws for most such optimization problems. For low order linear
systems, minimum time feedbz22!z controllers have been derived (Ref. 97).
The control law is usually '""bang-bang'' with its switching points determined
by the time at which the state passes through a specified switching surface
in state space. The equations for this switching surface and the associated

logic are reasonably complex; for systems higher than second order with

arbitrary dynamics, analytical expressions for the fzedback control may
not be available. Furthermore, because of the saturaticn constraint on the
control, the optimal policy for driving the system state to any point in state
space is not linearly related to the solution for driving the state to the
origin. Therefore, the switching surface equations are also dependent upon
the desircd terminai state, In addition, bang-bang controllers tend to be
quite sensitive to noise, always calling for the maximum control level

regardless of the signal magnitude.
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An adaptive, minimum time controller has been investigated for
a second order autopilot (Ref. 98). The result is a rather complicated de-
sign procedure that considers only the case where plant initial conditions
are driven to zero. As an alternative to analytically computing time-
optimal control laws, predictive adaptive systems have been advocated
(Ref. 152)., The latter empirically calculate the control signal switching
points for the minimum time controller by on-line plant parameter identi-
fication and fast-time analog predictive simulation of the plant response
characteristics, This is a practical method if the plant dynamics can be
modeled as a first or second order plant having real open loop poles. How-
ever more complicated plant models are likely to be needed to accurately
describe missile airframe dynamics whose open loop poles are dominated
by their imaginary parts; consequeatly for a missile autopilot the amount
of on-line computation required for the predictive simulation raethod may
be excessive. More development is required in order to obtain a practical
adaptive cutopilot with the copabiilty for achieving miniwwu time response

tc input commands.

Optimal control problems for linear systems with quadratic per-

formance indices and bounded control constraints of the form in Eq.(5.4-33)

have also been considered (Ref. 99). Near-optimal feedback controls have
been derived which are characterized by linear-type behavior during those
periods of time when the control is unsaiurated. As in the time-optimal
control law mentioned above, the points where control saturation occurs
are determined by a nonlinear function of the state whici depends both upon
the plant dynamics and any inputs to the system. Consequently an adaptive
controller based upon this method would also require a relatively large

computational capability.

A method is suggested in Section B.5 for determining a control

law for a linear system which minimizes a quadratic performancs: index

5-36

e omeec S RSNL SN ———

e am oy e

T,

- - 2’;:.;‘: -

L Sl g o s

S

i oaiaVe

o o YRS 2

ik,

R




THE ANALYTIC SCIENCES CORPORATION

subject to quadratic integral constraints. This ic a technique for relating
the weighting constants Q and r in the performance index to specific desired
response characteristics. The method produces a linear control law but
requires much more computation to determine the feedback gains than the

optimal design techniques described in this chapter.

5.5 SUMMARY AND CONCLUSIONS

In this chapter adaptive control technirues which can take advan-
tage of accurate real-time estimates of unknown plant parameters are dis-
cussed. Section 5.3 describes design methods which achieve a desired
degree of similarity between the input-output transfer functions for a re-
ference model and the compensated plant, The most promising of these
when all the important plant state variables can be measured is the pole
assignment scheme, which determines the required feedback gains by
solution of a linear set of algebraic equations. It is the simplest technique
to implement in an adaptive controller. Simulation results obtained with
this method are discussed in Chapter 9. Section 5.4 treats optimal control
methods that afford a systematic compromise between the control effort
expended and the output response characteristics; however, they require
considerably more on-line computation than the pole assignment technique
when used in an adaptive configuration. The optimal regulator and medel-
in-the performance-index designs are evaluated for sample missile tra-

jectories in Chapter 9.
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6. PARAMETER ESTIMATION

In Chapter 5 adaptive control techniques are considered for

linear plants having equations of motion
%(t) = Ax(t) + buit)

which depend upon parameters that are slowly varying, relative to the
desired aatopilot transient response, in an unknown fashion. It is assumed
there that a capability exists for identifying or estimating the elements of
A and b and adzpiive control is accomplished by regularly updating a linear
controller, using synthesis techniques for time-invariant linear systems.
This type of adaptive system is desirable for use in tactical missile auto-
pilots because it can provide desired steering command response charac-
teristics over a wide range of flight conditions, as demonstrated in

Chapter 9.

An impertant assumption in Chapter 5 is that the unknown system
parameters can be accurately identified. Furthermore this must be accom-
plished quickly with respect to the dominant response time of the guidance
and control system and with respect to the rate at which tho parameters
vary. The purpose of this chapter is to briefly review identification tech-
niques which potentially cen perform this task and to indicate those which
are most suitable for use in tactical missile guidance and control systems.

6.1 PROBLEM FORMULATION

For consistency with the applications treated elsewhere in this
report, we consider a plant having a single input, u(t). The equations of

mction are
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() = Ax(t) +bu(t)

m(t) = Hx(t) (6.1-1)
where m(t) is a set of measurements used to derive parameter esti-
mates. We shall assume that the measurement matrix H is known;
this is realistic for the missile application where m(t) is likely to
consist of some or all of the elements in the state vector x(t) --

e.g., pitch rate, normal acceleration, and control surface deflection. In
this mathematical model both u(t) and m(t) in Eq. (6.1-1) are deter-
ministic; i.e., they are known exactly. Identification of the param-
eters of a system undcr the above assumptions is referred to as

deterministic identification.

It is generally true that random errors caused by inaccurate
sensors are present in the measurements. Also, knowledge of the
system input is imperfect because of extraneous influences such as
wind gusts or random errors and noise inherent in system components.
These effects can be described by modifying Eq. (6.1-1) according
to

X(t) = Ax(t) + bu(t) + Gv(t)

m(t) = Hx(t) + w(t) (6.1-2)
where v(t) and w(t) are vector random (stochastic) processes. Identifica-
tion of parameters in a system modeled by Eq. (6.1~2) is known as

stochastic identification.
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There is no unique set of parameters which defines the airframe
dynamics. For example, in addition to the elements of A and b, the poly-

nomial coefficients in various plant input-output transfer functions --e.g.,

Mis) q 1
W-ST = Lli(IS-A) h (6.1-3)

where Mi(s} is the Laplace transform of the ith element of m(t), U(s) is the
transform of u(t) and gf is the it row of H -- can also provide a complete
mathematical system model. Because such sets of parameters are coef-
ficients in a set of linear differential equations it is convenient to define

one class of parameter identification techniques as equation coefficient

identification.

Another category of identificatior methods is motivated by par-
ticular characteristics of a missile's equations 5f motion. Referring to
Eqgs. (8.1-2) through (8.1-4) it is clear that the elements iz A and b for
the missile are functions of several aerodynamic variables. Often the
latter can be described as functions of a relatively small number of funda-
mental physical quantities. In particular, all of the variables that vary
with flight condition -- aerodynamic coefficients, dynamic pressure,
moreent of inertia, and airspeed -- can be expressed in terms of altitude,
airspeed, and mass distribution. The last of these is assumed to be a sin-
gle parameter determined by the amount of fuel consumed. Thus the
number of parameters which are required to specify the system dynamics
is reduced from a set of six -~ Mq, Ma’ M&’ Loz’ LG’ and V -- (see
Eq. (8.1-1)) to a set of three, provided the necessary functional relation-
ships between the two sets can be mechanized on board the missile. These

6-3
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considerations lead to another class of identification methods called basic

parameter identification, referring to those which estimate the aerodynamic

and inertia variables that constitute the missile flight condition.

The above definitions provide us with the following categories
of identification methods:
¢ Equation Coefficient Identification
Deterministic

Stochastic
¢ Basic Parameter Identification
Deterministic

Stochastic

Both equation coefficient identification and basic parameter identification
are discussed in the sequel with emphasis on the tactical missile applica-
tion, examining particular advantages with disadvantages of each.

6.2 EQUATION COEFFICIENT IDENTIFICATION

Most identification methods discussed in the literature are of the

equation coefficient type. This is a more general category than basic
parameter identification because the unknown parameters, i.e., the ele-
ments of A and b in Eq. (6.1-1), are structurally common to many
applications. Several techniques using either deterministic or stochastic

systein models are outlined here,

6-4
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6.2.1 Deterministic Equation Coefficient Identification

Deterministic equation coefficient identification methods typi-
cally rely upon comparison of the actual plant with an adjustable plant
model (e.g., see Refs. 38, 39, 100). Figure 6.2-1 illustrates one con-
venient system configuration (Ref. 100) for this identification method. It
uses so-called "state variable filters' that, in effect, differentiate the
system output and input variables a sufficient number of times to deter-
mine all plant state variables, * simultaneous!y suppressing (filtering)
high frequency noise inherently associated with differentiation. In addi-
tion an appropriate error signal is generated, representing the difierence
between the actual plant parameters and their estimated vaines. An error
measure defined as a positive scalar function of the error signal is then
used to adjust the parameters of the model in some systematic way to

reduce the value of the error measure.

With a proper definition of the identification error measure,
L(e(t)), its gradient with respect to the set of unknown plant parameters,
a, is well defined. Gradient parameter adjustment methods similar to
those used in "Gradient Adaptive Control" (see Chapter 4) can then be used
to adjust the model parameters to reduce the error measure. Identifica- \
tion is accomplished when the parameters of the plant model match the sys- f
tem parameters and the error measure is minimized, If this procedure is
to be successful for missile applications, the model parameters must
converge quite rapidly. To give a specific illustration of this technique,
consider the following example of a first order system.

*
It is tacitly assumed that the system is observable, as defined in
Appendix A,
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Figure 6.2-1 Deterministic Equation Coefficient Identification

Example 6.2-1 — The equations of motion are

x(t) = ax(t) + bu(t) (6.2-1)

where x(t) and u(t) are the output and input variables respectively and the
constant coefficients, a and b, are to be identified. Writing the Laplace
transforms of x(t) and u(t) as X(s) and U(s), three filtering operations of
the form

1

X(s) = 5o X(s)
X(s) & 22— X(s)
is) & -1 uGe) (6.2-2)

are performed to obtain estimates of the output, the output derivative and
the input, denoted by the .orresponding time functions x(t), %(t), and u(t)
respectively. The filter pole at - w is chosen to suppress high frequency
noise that may be present in the measured data.
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With the estimates obtained above it is useful to define an
"equation error' as

et) £ %(t) - ax(t) - put) (6.2-3)
where o and B8 are "model parameters' to be chosen as estimates of a and
b, respectively, by the identification algorithm. Equation (6.2-3) is moti-
vated by the desire to obtain parameter estimates such that (see Eq.(6.2-1))

e(t) = x(t) - ax(t) - bu(t) = 0

Transforming Eq. (6.2-3) and applying Eq. (6.2-2) produces

sX(s) _ aX(s) _ BU{s)

E(s) = S+tw S+tw stw

(6.2-4)

The goal of the identification scheme is to choose « and B so e(t) approaches
zero. If this can be done, E(s) = 0 in Eq. (6.2-4) and consequently

sX(s) - aOX(s) - BOU(S) =0 (6.2-5)

where oy and §, are the values of ¢ and g8 which make the error zero. Com-
parison of Eq. (6.2-5) and Eq. (6.2-1) yields the identities

a = a B = b (6. 2"6)
Therefore knowledge of a and R, identifies the system.

For this example the error measure is chosen as e(t)2. The
coefficients a (t)and B(t) are then driven along a steepest descent path
(negative gradient direction) of the error measure as follows:

a[e(t)?]
ou

dt) -k

= 2kz(t) e(t)

.o de(t)?]
i) = k5

= 2ka(t) e(t) (6.2-17)
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where k is a positive multiplier -- the "identification loop gain." If the
identification loop is asymptotically stable and if there is no measurement
noise, e(t) will approach zero as t grows large and the system will be
identified. A block diagram of the above processing technique is given in

Fig. 6.2-2,
r-2193
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Figure 6.2-2 An Illustration of Deterministic Equation
Coefficient Identification for a First
Order Plant

Application of Liapunov stability theory to the above class of
problems results in a set of conditions under which the identification
algorithm is asymptotically stable (Ref. 100). If the plant has p unknown
constant coefficients, the identification loop can be made asymptotically
stable if the input u(t) contains harmonic¢ components having at least
p/2 separate frequencies, none of which is shifted in phase Ly ai: .agle of
exactly kr radians (k is any integer) as it passes through the plant. In
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other words, the input must contain enough independent signals so that each

unknown parameter has an independent eifect on the observed output sig-

nals. Furthermore if p linearly independent error measures are constructed

and a gradient method is used to reduce all these error measures, identifi-
cation can be made to converge at an arbitrarily rapid rate, assuming there
is no noise in the system (see Ref. 100 for details). In effect the identifi-
cation algorithm is asymptotically stabie no matter how large the identifi-

cation loop gain is made.

The above identification method can potentially be applied to tacti-
cal missile sutopilots. When autopilot sensor outputs are relatively noise
free quite rapid identification should be possible because of the high con-
vergence rate that can be achieved. In the presence of nonnegligible noise
it has been shown (Ref. 104) that the equation coefficient error remains
bounded under certain conditions. The size of the bound and the converg-
ence rate of the error to a steady state root-mean-square value are deter-
mined by the noise level.

A possible disadvantage of the equation coefficient technique is
that the identification properties are largely determined by the type of input
signal. In particular, complete identification requires that u(t) contain a
sufficient variety of harmonic components, In tactical missiles the mput is
provided by the guidance law and is therefore not normally under the direct

control of the designer,*

It is possible to apply externai low level signals
additively to u(t) for identification purposes, but these would tend to be
masked by measurement noise, The extent to which the input signal affects

identification can only be ascertained from investigating the properties of

*
Recall that a similar problem is encountered in the adaptive control
methods described in Chapter 4.
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u(t) as determined by the guidance loop. Qualitatively we kuow u{t) will
contain random noise from the homing sensor measurements and low
frequency signals resulting from target maneuvers and launch initial con-
dition errors. Thus enough different frequencies will probably be present

to provide an adequate identification capability.

The dependence of identificatior performance upon input signal
properties is a characteristic of all equation coefficient methods. Only
basic parameter identification described in Section €. 3 is independent of

the autopilot input signal.

6.2.2 Stochastic Equation Coefficient Identification

The deterministic method described in the previous section does
not explicitly account for random errors in measurements of the plant input
and output variabies. In fact random errors will prevent complete con-
vergence of the identification loop. A number of methods have been devel-
oped for handling the stochastic identification problem (Refs. 101, 102, 103,
104) and some encouraging simulation results have been obtained. Two
representative approaches to this problem are examined here with the em-
phasis being piaced on those techniques which can be implemented in real
time by some type of recursive aigorithm. A more comprehensive review

of identification methods is provided in Ref. 101.

Linearization and Filtering — The most straightforward approach

to identification in the presencz of random noise is to assume that therz are
«ood initial or nominal estimates of the unknown coefficients, The system
state vector is enlarged by adding states representing the perturbations of
the coefficients from the nominal values (Ref. 192}, and a lincarized vec-

tor differential equation is developed for the augmented system. Because

6-10
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the resulting equations of motion are now iinear, a recursive minimum
variance estimator (Kalman filter) can be developed to obtain estimates of
both the system state variables and the equation coefficients, thus identi-

fying the plant. This technique is illustrated by the following example:

Exaraple 6.2-2 — Consider the first order system

x(t) = ax(t) +u(t) + v(t) (6.2-8)

where x(t) is the state, "a'" is the unknown parameter, u(t) is a known input
variable and v(t) is a random process. Equation (6.2-8) is rewritten as

X = x0+Ax
a = a0+Aa
5c0+Ax = (a0+Aa><xo+Ax>+u+v
éO+Aa =0 (6.2-9)

where Xg and ag are known ncminal values for the state aud parameter with
Ax and Aa being small perturbations. The explicit dependence on time has
been omitted from the notation. If we define x, and a, by the differential
equations

}'{o(t) aoxo(t) + u(t)

4, =0 (6.2-10)

then the linearized equations for the perturbations are cbtained by com-
bining Eqgs. (6.2-9) and (6.2-10) and neglecting second order terms:

~

Ax(t) a, Ax + xo(t) Aa + v(t)

I

Ad =0 (6.2-11)

6-11
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Equation (6.2-11) is subsequently regarded as the equations of motion of
the system, including Aa as a state variable.

The measurements available for identification purposes are
m(t) = x(t) + w(t) (6.2-12)

where w(t) is random measurement noise. Introducing the definitions
g

m(t) mo(t) + Amft)

1]~

x_(t) (6.2-13)

m (t)
) ()

into Eq. (6.2-12) produces the incremental measurements

Am(t) = Ax(t) + w(t) (€6.2-14)

Equations (6.2-11) and (6. 2-14) comprise the linearized system
with state variabies Ax(t) and Aa; the measurement Am(t) is obtained by
calculating

Amit) = mit) - xo(t) (6.2-15)

The time-varying coefticient x,(t) in Eq. (6.2-11) is obtained by integrating
the deterministic nominzl trajectory provided by Eg. (6.2-10), With this
mathematical framework a Kalman filter can be designed to estimate Ax(t)
and Aa from the incremental measurements, The compiete estimated
state and parametey variables are then given by

X(t) = x@(?} + AX(t)

]

at) = a_ + A(t) (.2-16)
where AX(t) and Aa/t) are the Kalman filter estimates. If 4 yields an accurate
estimate of a, the system is identified., Furthermore an estimate of the state
is also available for use in controlling the system. It is also coinmon prac-
tice to continually update xy(t) and a, with the estimated incremental values,
resulting in the so-called "extended Kalman filter" (Ref, 138).

€-12
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Compared with the deterministic equation coefficient identifica-
tion method, the stochastic identification technique described above re-
quires significanily more computation. This is to be expected because
the objective of the latter is to optimally suppress the effects of noise;
furthermore this method can also handle the case when the unknown param-

eters are time-varying.

Although it cannot be claimed that the above identification method
is optimal, it is clear that if the nominal values of the parameters are
fairly accurate the system is nearly linear and the linearized filter should
be close to optimal. No proof of convergence is available for this proce-
dure so if the nominal values of plant parameters are inaccurate the
method may not yield satisfactory estimates of x(t) and Aa. The latter
question 1aust be carefully investigated in any specific application. Again

! it should be noted that the performance of the filter is dependent upon both
the deterministic input u(t) and the noise input v(t). The speed and accu-
racy of identification will depend upon the properties cf these input signals

as well as upon the level of the measurement noise,

A number of simulations of linear filters applied to the above
identification problem formulation have been performed which demonstrate
good performance (Ref., 102). Also, many successful applications of
Kalman filtering to other types of linearized nonlinear problems are re-
ported in the literature (especially orbit determination for space vehicles
(Ref. 138)). Consequently this identification technique is promising for

missile applications.

Least Squares Identification — A second approach to stochastic

identification (Ref. 103) resembles the deterministic method of

TV F
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Section 6.2.1 above. In this method a set of filters, designed with the
statistical characteristics of the random noises in the system taken into
account, are used to obtain estimates of the plant state variables. The
error defined represents the difference between the actual and assumed
values of the model parameters and a positive scalar function of the error
is used as an error measure. The latter is inaccurate, however, because
of random noise in the available plant input and output data. To account
for randomness, the identifier applies a least squares estimation method
to the error measure to identify the plant parameters, effectively filter-
ing the data to yield the best estimates of the coefficients, in the least
squares sense. Figure 6,2-3 illustrates the identification method in
block diagram form and a specific illustration of the technique is given

in the following example.

R-2174
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NOI%E
KNOWN STATE R
X PARAME TER

iNPUT OUTPUT STATE ESTIMATES LEAST ESTIMATES
——T-—> PLANT VARIABLE F——=—"% SQUARES

I FILTERS ESTIMATOR

] A

Figure 6.2-3 Least Squares Parameter Identification

Example 6.2-3 — Consider the same first order system treated
in Example 6.2-2,

x(t) = ax(t) +ut) + v(t)
m(t) = x(t) + wt) (6.2-17)
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where x(t) is the state, "a'" is the unknown parameter, u(t) is a known input,
v(t) is a random process, and m(t) is a measurement of the state corrupted
by noise, w(t). Just as in Example 6.2-1, x(t) is passed through appro-
priate filters to obtain the filtered estimztes -- x(t) and %x(t). Then an
equation error

et) = x(t) - ax(t) - u(t) (6.2-18)

is formed where a is an estimate of the unknown parameter to be determined.
The error measure is again defined to be e(t)4.

The least squares estimation procedure determines a to mini- :
mize the integrai, J, of e(t)2 over an interval of system operation having

length T;
t +T
° 2
J = S e(t)” dt (6.2- 19)
t0

Substituting from Eq. (6.2-18) into Eq. (6.2-19), setting aJ/3a = 0, and
solving for a, one obtains the familiar least squares estimate

a = - (6.2-20)

{ A block diagram for this example is shown in Fig. 6.2-4. The effect of

the integration in Eq. (6.2-20) is to suppress the random noise by averaging.
E‘ The entire processing technique can be automated recursively so that a
1

continuous estimate ii(t) is obtained. Furthermore, in the event that "a" is
actually time-varying, the recursive scheme can weight the measurement
data in a manner which effectively discards old measurzments.

A significant difiiculty with the least squares idertification tech- 1
nique is the presence of bias errors in the parameter estimates. The latter

are caused by the noise in the system input and in the measurements of the
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Figure 6.2-4 An Iilustration of Least Squares
Parameter Identification

system output. Identification error bias can be removed if knowledge of
the statistics of the raadom disturbances is available. However, the
latter are often not accurately known so that some other correction method

is desirable,

Using the so-called instrumental variable method (Ref. 103)

bias errors can be removed without requiring known noise statistics. This
technique consists of deriving so-called instrumental variables that are
kighly correlated with the system states, but totally uncorrelated with ran-
dom errors in the system. Reformulating the least squares estimator to
utilize these variables can e'iminate the biasing effect of the random dis-
turbances. The resulting identification procedure yields nnbiased esti-
mates at somewhat decreased efficiency in statistical estimation; i.e., it
does not provide optimal statistical weightin_ : to the data. Consequently
the parameter estimates may converge more slowly to the true parameter
values than with the loast squares estimation procedure. An illustration

of this method is given in the next example.
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Example 6.2.4 — To illustrate the instrumental variable method
we continue with Example (6.2-3). Recail the parameter estimate was
given by

t0+T
| o-ue io o
t
A= 2 (6.2-21)
© L2
S x(t)” dt
t

0

The estimate a contains a bias error whose magnitude is a function of "a™
because the denominator in Eq. (6.2-21) contains the square of the random
errors in %(t). Furthermore the numerator contains products of quantities
(x(t) and X(t)) whose errors are correlated; these also contribute to the
bias error.

The principle of the instrumental variable technique is to modify
Eq. (6.2-21) so that products of highly correlated random errors do not
appear. One way of doing this is to generate another estimate of x(t) by
implementing the deterministic equation

X(t) = éo %(t) +u(t) (6.2-22)

where u(t) is the known sysiem input, ag is a nominal, a priori estimate of a,
and X(t) isthe so-called instrumental variable. Because there are no unkvown
random processes in Eq. (6.2-22) and no errors are incurred in measuxr-
ing X(t), X(t) is statistically independent of x(t). However, if a, is rea-
sonably close to the actual value of "a", X(t) is close to x(t). The above
arguments provide a rationale for modifying Eq. (6.2-21) to obtain

t0+T
St (%(t) - ut)) %(t) dat
78—y (6.2-23)
0
S X(t) R(t) dt
£,
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The random errors in i now tend to be unbiased at the expense of
some reduction in estimation accuracy. The modification to the least

squares estimator is illustrated in Fig, 6.2-5.

MODIFIED r-2198
LEAST SQUARES ESTIMATOR

x(t)

FILTER

I

o>

FILTER §
e—

INSTRUMENT2L VARIABLE
GENERATOR

| !
[ f ! ()

; |

|

!

I

I

Figure 6.2-5 An Example of Least Squares Identification
With Instrumental Variables

As in the linearized filtering method of Section 6.%.2, no ana-
lytical means are available for guaranteeing convergence of the instru-
mental variable method. However, it does remove biases from estimates
of the plant parameters and a priori statistics of the parameters are not
required. In addition, experimental evidence (Ref. 103) indicates that the
method works quite well, even in the presence of large random errors in

system input and output data.
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The instrumental variable technique can be cast in the form of a
recursive estimation scheme (Ref. 103), similar in form to a Kalman fil-
ter. It is also possible to alter the estimator so that as time passes, old
data are gradually ignored in favor of new information. The process of
eliminating old data allows tracking of time-varying parameters and thus

provides a potentially usefulidentification method for missile applications.

6.3 BASIC PARAMETER ESTIMATION
AND FUNCTION GENERATION

Equation coefficients defining the dynamics of a tactical missile
are functionally related to basic parameters of the flight condition --
vehicle altitude, air speed, mass distribution. Knowledge of these quan-
tities allows computation of the equation coefficients if the functions relat-
ing the basic parameters to the equation coefficients are well known. Thus
the system is identified if a complete set of basic parameters can be esti-
mated. To indicate specifically what is meant by this tecknique, we include
here one of the airframe equations of motion for an aerodynamically con-
trolled missile, taken from Egs. (8.1-2) and (8.1-3),
at) = Loy av-2cy a2 Lc ) 6.31)

o a )
where q(t), alt), and 6(t) are respectively pitch rate, normal acceleration
and control surface deflection. The definitions of the symbols in the
coefficients of these variables are given in Section 8.1 1; each ore is
determined by the flight condition and the physical geométey of the air-
frame. Asswning the geometry is known a priori, estimates of flight
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condition enable one to calculate the coefficients in Eq. (6.3-1) if the
required functional relationships (e.g., between CNa and mach 1-umber)
are known. This identification philosophy is also associated with "open
loop adaptive control" (see Section 5.2).

An important advantage of the approach outlined above is that
estimation of the basic parameters and subsequent calculation of the equa-
tion coefficients can be accomplished independently of the missile's rota-
tional motion if the required sensors 2 .e available. For example, the
natural -esponse of the airframe to steering commands usually changes
missile altitude by only a few feet whereas altitude must change by
hundreds of feet before the airframe parameters are altered to any appre-
ciable degree. Consequently direct altitude measurements are relatively
unaffected by airframe dynamics. This is a significant distinction from
those identification methods described previously where the determination
of airframe state variabies -- e.g., pitch rate and normal acceleration --
is required to identify the plant parameters. Furthermore identification
can proceed without requiring an autopilot input signal having special
characteristics to excite the airframe dynamics; indeed, the autopilot input
can be zero.

Estimation of the basic parameters is readily accomplished if
they can be measured directly. * The missile's velocity, which is approxi-
mately equal to airspeed, may be available from an inertial unit; in a dog-

fight application where thrust is applied continually along the trajectory, a

*In the absence of such a capability, the basic parameters can be
determined from the measurements of airframe state variables;
however considerably more computational capability would be re-
quired and the identification would be dependent upon the autopiiot
input signal characteristics.
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single integrating accelerometer mounted along the longitudinal axis may
provide adequate velocity information. A barometric altimeter will pro-
vide adequate altitude measurements. The measurements from these sen-
sors contain random errors as well as the low frequency basic parameter
variations of interest. It seems probable that in many applications the
random errors weculd be sufficiently small relative to the quantities of
interest so that no processing of the measurement data would be required.
However, if the error level is unacceptabie, an estimation technique can
be employed. Usually the basic parameters can ke modeled as constants
or as outputs of 1uw order linear dynamical systems and a low order
Kalman filter can be designed to provide the appropriate estimates. Care-
ful design will produce an estimation algorithm that is stable and relatively
insensitive to er~ors in knowledge of the statistics of the signal and noise
random processes. Redundant data from multiple sensors can be readily
incorporated to enhani:e accuracy and reliability, Furthermore, the fil-
tering operations for different basic parameters such as velocity and alti-
tude can be effectively decoupled, thereby minimizing the complexity of
the total filter configuration. As a result of these considerations it is
reasonable to infer that filtering appropriate sensor data can yield esti-
mates of basic parameter values with sufficient accuracy to identify the
system,

Since the equation coefficients are the ultimate goal in identifying
the system, the identifier must be capabie of generating them from the
basic parameter estimates. In genesal the ecuation coefficients are func-
tions of dynamic pressure, vehicle inertia properties and the vehicle sta-
bility derivatives. Dynam.c pressure is a well lmown function of airspeed
and air density; the latter is in turn a function of altitude. The moments
of inertia for & tactical missile are usually known as functione of engir~

thrusting time. The stability derivatives are functions of Mach number,

6-21

kST LA el i

A Skt st .3 L RN A

PP D)

ey




THE ANALYVIC SCIENCES CORPORATION

which is a function of airspeed and altitude. Of all the above relationships

e

probably the most difficult to determine are the stability derivatives as
functions of Mach number. The latter must be obtained from extensive
wind tunnel and ilight tests over the entire flight regime of the vehicle.

The dependence of the stability derivatives on Mach number can be stored

ety Dy

in a computer either as tables or as approximating functions -- e.g., ,3

polynomials. ‘ i

With sufficiently accurate determination of dynamic pressure,

inertia properties, air speed, and stability derivatives the vehicle guid-
ance system can generate equation coefficients for the equations of motion

of the vehicle. Analog compwation methods for evaluating these functions

i .

would require extensive on board equipment capability. A digital guidance

";‘i ii -i-‘ i .

computer however can calculate the equation coefficients using polynomial
approximations tu the experimental data; it can perform this identification |
task along with basic parameter estimation, autopilot control and guidance, ,

on a time shared basis.

For the missile application, basic parameter estimation requires

the most computer capability and the most a priori knowledge about air-
frame dynamics as functions of air speed, etc., of all the identification

methods described in this chapter. On the other hand, it is the best suited !
for rapidly identifying the airframe parameters in the presence of random
inputs and measurement noise, provided adequate airframe aerodynamic
data are available. Basic parameter identification has a significant ad-
vantage over equation coefficient methods in that it does not depend upon
measurements of airframe state variables and is therefore independent of
the autopilot input signal characteristics. Consequently this is a promising

technique for missile applications.
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6.4 COMBINED IDENTIFICATION AND ADAPTIVE CONTROL

As explained in Chapter 5 the purpose of idencificaticn is to
provide accurate estimates of plant parameters for use by the control sys-
tem, When the identification and control functions are performed simul-
taneously in the system, the controlier closes a loop around the plant, as
indicated in Fig. 6.4-1. Consequently the estimates of the plant param-
eters affect the control action taken and the control action in turn influences
the operation of the identification procedure. Thus the identifier and adap-
tive controller may be closely coupled. Although it is possible in some
circumstances to guarantee convergence of the identifier operating by itself
with the open loop plant (e.g., see Fig. 6.2-1), the convergence criteriza
described in previous sections are no longer applicable when the control
loop is closed as ii« Fig. 6.4-1. In particular, interaction effects may de-

grade the performance of the identifier which would in turn affect the con-
trol loop.

R-2237

Y

PARAMETER
vt o oLan outeuT, | 1DENTIFICATION § ESTIMATES
CONJROLLER iNPUT UNIT -
i
Figure 6.4-1 Combined Identification and Control

The possibility of significant control-identification coupling
effects is greatest in the equation coefficient methods described in Section
6.2 where the controlled variables (pitch rate, normal acceleration, etc.)

are an integral part of the identification process. In basic parameter
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identification described in Section 6,3, the quantities to be estimated --
velocity and altitude -- are largely independent of the autopilot; conse-
quently the identification process is not significantly affected by contro!
actions,

In equation coefficient identification, it appears likely that if
identification can be accomplished rapidly, relative to changes in the dynam-~
ics of the controlied plant, the total system behavior should be satisfactory.
However, the question of interaction effects cannot always be ignored and
it presents an area for further research.

6.5 SUMMARY AND CONCLUSIONS

Two distinct approaches are taken in this chapter to the identifi-
cation of tactical missile parameters. These are defined as equation
coefficient identification and basic parameter identification. In addition,

both deterministic and stochastic identification methods have been examined.

All of the equation coefficient identification techniques have the
property that they depend upon measurements of airframe state variables
to identify airframe parameters. Consequently the speed and accuracy of
identification will be adversely affected by measurement noise and random
forces acting on the airframe. In addition the performance of these tech-
niques depends upon the properties of the input (steering command) to the
airframe which excites the airframe state variables. In some tactical
missile applications -- e.g., dogfight situations -- parameters vary ex-
tremely rapidly and it is not clear whether equation coefficient identifica-
tion can be accomplished well enough to provide adequate adaptive control.
This is an important topic for future investigation.
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The basic parameter estimation method is an especially straight-
forward technique for identifying the system if direct measurements of the
pertinent basic parameters are available. In particular, the parameter
estimation problem can be effectively decoupled from the missile short
period dynamics, thereby yielding rapid identification. Furthermore, only
three basic parameters -- airspeed, altitude, and mass distribution --
need be estimated. However, this scheme assumes that the stability
derivatives are known functions of Mach number. The conceptual simplicity
of basic parameter identification is appealing and it will be quite practical
if the necessary aerodynamic data and computational capability are
available.
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7. LOW SENSITIVITY CONTROL SYSTEMS

In previous chapters methods are discussed for designing adap-
tive feedback controliers to compensate for plant paramcter variations,
Their salient feature is that controller gains are adjusted adaptively to
maintain uniform ovtput response characteristics a plant dynamics vary.
As a possible alternative to adaptive methods, this chapter considers fixed
configuration controllers which are designed sc¢ that the compensated sys-
tem is relatively insensitive to changes in plant parameters. If such a sys-
tem yields satisfactory response characteristics, it is usually preferable
to an adaptive system which tends to be more complex and less reliable. In
the event that adaptation is still needed, it can be supplied by an auxiliary
control loop as suggested in Section 2.3. 3.

To design an insensitive controller it is necessary to determine
the manner in which variations in plant parameters affect performance
(sensitivity analysis) and then establish procedures to compensate for un-
desirable effects (sensitivity control). A quantitative measure of the effect
of parameter variations calied a sensitivity function is usually defined. If

a given system is subject to small parameter deviations, the methods of
first order differential sensitivity analysis™ are usually sufficient to
assess the changes in system performance. However, when parameter
deviations can be large within some known range, as is typically the case
in tactical missile applications, a first order sensitivity analysis is not

adequate.

*That is, the first order partial derivatives of various quantities
with respect to the parameters are used to define seasitivity.
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In this report, it is as'sumed that the structure of the plant
dynamics is givea, that its equations of motion are linear, and that the
range of variations in plant parameters is knowsn. While the literature
abounds with techniques for designing insensitive controllers for this class
of systems when parameter variations are small, few methods have been
developed which treat large variations., The latter case is of most interest
in designing a control system for a tactical missile because of the wide
variety of aerodynamic conditions to which its airframe is subjected. The
following sections review some of the approaches taken in designing feed-
back controllers to produce low sensitivity systems, with emphasis on

those which apply for large changes in plant operating conditions.

7.1 COMPLEX PLANE METHODS

7.1.1 Frequency Domain Compensation Techniques

It is pointed out in Section 2. 3. 3 that one of the earliest methods
for reducing the effects of parameter variations in a control system was
through feedback. An example is given in Fig. 2.3-5 which illustrates that
coupling the output of a plant to its input through a high gain amplifier can
reduce the sengitivity of the compensated system to changes in the plant
dynamics, More generally, various compensation networks ~an be added
in the system control loop to obtain desired response behavior. This
approach is characteristic of several design procedures described by
Horowitz (Refs. 16, 106). Often, the design is based on the assumption that
the closed loop transfer function for the control system should possess only
a small number of dominant poles. To achieve this goal, high loop gain and
appropriately specified compensation networks are chosen with the aid of
complex plane analysis -- root loci, Bode plots, Nyquist diagrams, etc,

7-2

GuEE MY O MeRYE O Geasl O WNGME BB DU cRuNg Jea,  wewel

Mgy WGman SRS e Sy

My g s




THE ANALYTIC SCIENCES CORPORATION

The selection of compensation network parameters is based on knowliedge

of the expected ranges of plant parameter variations and on desired toler-
ances on the input-output transfer function.

The need for cormpensation networks in the design procedure des-
cribec : .bove arises because not all the plant state variables are directly
available for feedback controi. (As will be demonstrated in subsequent
sections, the system design is accomplished more simply when all the
plant states can be measured or estimated.! The compensating filters in
the single output system can be loosely regarded as ''state estimators' or
"observers' which generate signals that are closely related to plant state
variables.

To aid the design procedure outlined above the sensitivity of feed-
back systems is often described by frequency domain sensitivity functions.
Consider the single-input, single-output, time-invariant linear feedback
syistem illustrated in Fig, 7.1-1. The transfer function G(s, o) represents
the plant and H(s) is some fixed comp2nsation network. Assume that the
parameter ¢, associated with the plant dynamics, is known to be within a
certain range of values. The closed loop transfer function T(s) relating
the output to the input is given by

Y(s)
V(s)

T(s)

= G(s, @)
1+G(s, &) H(s)

(7.1-1)

It is clear that if |G(s, a) H(s)| >> 1 (i.e., if the loop gain is large) then the
transfer function can be approximated by

T(s) -ﬁ%s) (7.1-2)

1-3




THE ANALYTIC SCIENCES CORPORATION
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Figure 7.1-1 Feedback System With One Input
and One Observed Output

indicating that the closed loop system is approximately independent of the
characteristics of the plant, G(s,a). The sensitivity function SL‘(S) of the
closed loop transfer function with respect to an incremental parameter
change Aa« is defined by (see Ref. 107)

Sza(s) 4 AT—%%‘;L) _A&'E (7.1-3)

The numerical value of ISza(s)E at a particular value of s is approximately the
percentage change in | T(s, )| caused by a one percent change in the
parameter, a. For differential perturbations, Eq. (7.1-3) becomes

c T g 8 _ _a_?3T(s,0) _—
Al;rfo sAa(») Sa(s) Ts,0)  oa (7.1-4)

It is often desirable to define i sensitivite £ .tion Sg(s) re o-
senting changes in the closed loop transfer function caused by variations in
the entire plant transfer function, not ju:i 2 single pa . “~eter. This can
be done using arguments similar to nose above, leadit.p to the relations
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>

T A AT(s,% [/ AG
Spal® * T(b,o:; / G

D
]

- G{s,0) 3T(s,0)
T(s,q) 3G(s,a)

. T
im 8§ (s) =
AG-0 4G
1

~ 1+G(s, o) H(S) (T.1-5)

The quantity |SE(S)| is the percentage change in |T(s, a)| caused by a one

|
percent change in the magnitude of the plant transfer fur.ction. Consequently
it is reasonable to say that the system sensitivity is improved by the feed-

back compensation (as¢ compared with no feedback) if
T,.
ISG(]w)l <1 (7.1-6)

for all frequencies, w, of interest. This condition will hold if the so-calied
return difference, 1 +G(jw, a) H(jw), in the denominator of Eq. (7. *-5) has mag-

nitude greater than one. The design criterion expressed by Eq. (7.1-6)
may be employed to specify the parameters characterizing H(s) in order to
achieve a low sensitivity design. The basic design approach, which often
relies on a trial and error precess, is to shape the frequency response of
the loop trausmission G(s, o) H(s) so that Eq. (7.1-6) is satisfied in the fre-

quency range of interest.

The above first order analysis of sensitivity to plant parameters
has been extended (see Ref. 108) to the multi-input, multi-output case. The
extension incorporates a sensitivity matrix which relates output errors due
to parameter variations in a feedback system to those due to parameter
variations in a corresponding open loop system. The design criterion
analogous to Eq. (7.1-6) for multivariable low sensitivity systems is that
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over the frequency range of interest a sensitivity matrix, S(jw), must
satisfy the condition

ST(-jw) SGw) -1 s 0 (7.1-7)

where I is the identity matrix. In other words the matrix [ST(-jw)S(jw) -1
should be negative semidefinite. It is demonstrated in Ref. 108 how

Eq. (7.1-7) can be satisfied for a two-input, two-output turbine control
system. In that example, it is shown that the feedback compensation can
consist of pure gains (no additional dynamics). However, in general, it is
necessary to arrive at a satisfactory compensation via trial and error
methods.

The frequency domain compensation techniques described above
have proven successful in several applications (Refs. 14, 11) involving both
small and iarge parameter variations. In addition to designing fixed con-
figuration controllers, these methods are also helpful in designing open
loop adaptive systems of the type described in Section 5.2 where plant
parameter variations are extremely large and it is desired to have as few
sets of gains as possible. In most cases the high gain character of the
feedback loop is the chief reason the system is insensitive to plant disturb-
ances., Therefor¢ the missile autopilot designer must also consider possi-
ble adverse effects causzd by noise and structural bending modes. Further-
more in plants with varying dominant right-half-plane zeros, high loop gain
tends to make the system stability properties quite sensitive to parameter
changes. As mentioned previously, the latter problem exists in normal
acceieration autopilots for missiles having fixed wings an¢ tail-mounted

control surfaces.
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7.1,2 State Variable Feedback

The preceding section briefly describes complex plane synthesis
procedures which can sometimes be used to make the behavior of specific
system output variables insensitive to parameter variations. When all the
system state variables can be measured, somewhat more flexibie methods
are available for designing the controller; such techniques are the subject

of this section,

In Ref. 109 it is shown that fixed gain feedback controllers can
be used to desensitize plants whose equations of motion possess a certain

form -- phase-variable canonical form. The equations of motion for this

type of plant are given by

7 ‘ .}:{_(t) = AZ{_(t)"'_l_)_u(t)

_ - -
0 1 0 < 0 r 0
0 1
A= . . o . . ,1_)_ = o (701-8)
0 1
_-a1 -a2 -a, | i 1 ]
u(t) = -r(t) + v(t)

r(t) = hT x(t)

I

' = [hl hy by . . th (7.1-9)

The quantity u(t) is the plant input and r(t) is the feedback control signal.
Since each state variabie of the plant is independently measured and

7-1




THE £ <XALYTIC SCIENCES CORPORATION

weighted by an elemer: of h, this form of control is referred to as all-
state feedback. The characteristic polynomial of A is defined as

Do(s) = Det(sl - A) (7.1-10)

The roots of Do(s) are the poles of the open loop system and they determine
the time history of x(t) in response to v(t), in the absence of feedback.
The polynomial nay be expresced in the form
P s} = N n-1 .
_,o\s) s +as oo ta s ta, (7.1-11)
Clearly if the plant parameters a;, .+ . . 3 vary, changes in the behavior
of the open loop system are deterriined by the manner in which the roots of

the characteristic equation (Eq. (7.1-11)) shift in the complex plane.

To compare the open and closed loop systems, Eqs. (7.1-8) and
(7.1-9) are combined to obtain the characteristic polyncmial of the closed
loop system, Dc(s), given by

D,(s) = Det(sI- A +bh") (7.1-12)

or, in expanded ferm

_n n-1 ) _—
Dc(s) = g + (hn+an)s +. . .+(h2+a2)s+ (h1+a1) {7.1-13)
It is well known that the roots of an nth order polynomial car be assigned
any desired values provided n of its coefficients can be arbitrarily speci-

fied*. Therefore, assuming the feedback gains are unconstrained, one can

*The only exception is that a polynomial of od order must have
one real root.
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choose hl’ o oy hn for known fixed values of a -, 2 SO0 that all the

1, * [ ]
closed loop poles (zeros of Dc(s)) lie at arbitrary locations in the complex

plane. Now suppose that a y & in Eq. (7.1-13) are unknown but are

yo o
constrained to lie within kn%)wn bounds. In this case the desensitizing capa-
bility of feedback in the presence of plant parameter variations becomes
readily apparent. All the fixed feedback gains can be chosen such that each
""dominates" its associated plani varameter in Dc (s); the concept of the
feedback controller dominating the closed loop system response is of pri-

mary importance in obtaining an insensitive design.

In the above design procedure it should be clear that the greater
is the range over which the plant parameters vary, the larger the feedback
gains must be in order to suppress the effects of those variations. Conse-
quently the resulting control system has a high gain character. In mech-
anizing such a system care must be exercised to insure that excessively
large geedback signals do not produce unac«eptable saturation of physical

control devices.

Because the equations of motion of most physical systems do not
appear in phase variable canonical form when written in terms of the state
variables of interest*, it may not be possible to apply the above design
technique directly. The fact that the differential equations of motion of a
linear system can often be transformed to exhibit this canonical structure
is of no assistance because the transformation itself requires knowledge of
the very parameters which are not precisely known.

A linear feeduack control law written in terms of an arbiirary
set of state variables defined by the equations

*The state variables of interest are those that can be measured or
estimated without knowledge of the plant parameters.
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24t

Fz{i) + gu(t)

b7 zt) + vit) (7.1-14)

il

u(t)

does not necessarily reduce the sensitivity of the system to parameter
variations, particularly if the elements of g as well as those of F alsc vary.
To descrihe more generally what conditions are required to obtain an in-
sensitive system design with all-state feedback, let us introduce a scalar
gain h_ into the expression for the control law in Eq. (7.1-14) so that the

equations of motion become

z(t)

1
=
N

G
+
jog
c
=

"
§
o
o
N
=
e
+
=
(a
o

u(t) (7.1-15)
A block diagram for the system is shown in Fig., 7.1-2. The character-
istic polynomial Dc(s) for the closed loop system is given by

D,(s) = Det(sI- F +h_gh') (7.1-16)

Insofar as the behavior of the system is governed by the roots of Dc(s), it
can be made insensitive to parameter variations if h  and h are chosen so
that they dominate the effects of variations in F and g in Eq. (7.1-16).
However this cannot be accomplished unless F and g have special proper-
ties -- such as the phiase variable canonical form defined in Eq. (7.1-8).
In particular, if any elements in g vary with plant operating conditions the
use of feedback can make the roots of D c(s) more sensitive to parameter
variations than those of the open loop characteristic polynomial. This
effect is observed in the applications investigated in Chapter 9.
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R-Z575

Figure 7.1-2 A Control System Employing State Feedback

Another way of looking at the effects of feedback in the general

case is to define a new variable

T

wit) £ b z(t) (7.1-17)

The Laplace transforms ¢i w(t) and u(t) in Fig, 7.1-2 are related by the

transfer function

W) -, T -1 &

6 - h(sI- F) " g = G(s) (7.1-18)

Equation (7.1-18) and Fig. 7.1 -2 suggest that the block diagrain be redrawn
as in Fig. 7.1-3, which is simply a single output system compensated by a
feedback gain ho. Consequently the system closed loop poles as a function
of h o are describad by the locus of the zeros of the quantity P(s) defined by

P(s) = 1 +h0 G(s) (7.1-19)

If the dimension of z(t) in Eq. (7.1-15) is n, then the denominator of G(s)
is the nth order polynomial,
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R-2574

V(S) +
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Figure 7.1-3 Single Output Feedback System
Dynamically Equivalent to
Fig, 7.1-2

Do(s) = Det (sI - F)

and its numerator is an (n-1)th order polynomial having coefficients that
depend upon h, F, and g.* I the feedback gains h can be chosen so that n-1
zeros of G(s)are insensitive to variations in F and g,** then (n-1)closed

loop poles of the system shown in Fig, 7.1-3 can also be made insensitive
by placing them close to the zeros of (i{s) using a large value of h.o in

Eq. (7.1-19). The remaining closed loop pole will have a large negative
real part. Therefore, to the extent that the response characteristics of
interest are determined by values of the dominant closed loop poles, the sys-
tem behavior is insensitive to parameter variations. However, one should
keep in mind that this compensation technique does not provide direct con-
trol over the zeros in the transfer functions between the input v(t) and other
output variables {different from w(t) that may be of interest. Consequently
there :may be some noticeable changes in the time histories of important output

™
The fact that the numerator of G(8) is an (n - 1) order polimomial
can be verified from the mathematical definition of (sI - F)~*,

* %k
That is, h must dominate the coefficients in the numerator of G(s).
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variables as plant parameters vary; the fact that the closed loop poles are
relatively invariant implies primarily that the settling time of the system
transient response is approximately constant. The above design technique
is illustrated in Fig. 7.1-4 where the block diagram for a second order
system is depicted along with the corresponding root locus. As ho becomes
large, the closed loop noles approach the open loop zero at -c and another
zero at -», If the gains h in Eq. (7.1-18) can be chosen to make c insensi-

tive to the plant parameters, the dominant closed loop pole will also be
insensitive.

For some special system configurations, such as the phase vari-
abie canonical form in Egs.(7.1-8) and (7.1-9), it is readily demonstrated
using either of the arguments described in the above paragraphs than an
insensitive control system can be designed., However, in general, the
details of the specific application to be considered must be examined to
determine whether the proper conditions exist for all-state feedback to yield

‘an insensitive design, as has been noted in Ref. 109. Typically the equa-

tions of motion for an aervdynamically controiled tactical missile written in
terms of directly measurable state variables (normal acceleration, pitch
rate, and control surface deflection) have at least one element of the vector
g with a wi fe range of variation along a trajectory. I these variables are
used for feedback control the elements of h, being multiplied by the ele-
ments of g in Eq. (7.1-16), cannot dominate the parameter variations in

F and g and an insensitive design cannot be obtained.

Besides designing insensitive linear feedback systems, the
methods treated in this section are also useful in explaining the qualitative
behavior of certain fixed configuration nonlinear controllers. The latter
are discussed in Section 7.5,
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Figure 7.1-4 Illustration of the High-Gain State Feedback
Technique for Desensitizing the Dominant
Closed Loop Poles of a Second Order System

7.1.3 Closed Loop Pole Sensitivity

The sensitivity reduction methods discussed in the preceding
sections -~ employing classical frequency domain techniques such as Bode
plots, root locus plots, etc,, -- are referred to in this chapter as complex
plane methods. Several analysis and design procedures that are specifically
concerned with determining the influence of plant parameter variations upon
the locations of the system closed loop poles are also included in this class,
Since the cloced loop poles largely dictate the manner in which the system
behaves, it is desirable to learn in what direction and by how much they
shift in the complex plane when the plant parameters are changed. In
Ref. 110 deterioration of system performance due to plant parameter varia-
tions is measured by detecting whether the closed loop system poles move
out of specific circle: in the complex plane which define regions of allow-
able pole variation. I the desired locations of these circles are specified
in terms of the positivns of their centers and the size of their radii

1-14
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(sensitivity tolerance radii), the controller feedback gains can be deter-
mined by the designer according to the following procedure: Given the
sensitivity tolerance radii, circle centers, and specified controller struc-
ture, the feedback gains of the controller are chosen in such a manner
that the ranges of plant parameter variations for which the closed loop
poles remain within the circles are as large as possible. In the literature
on sensitivity reduction, this approzch is referred to as the inverse sensi-
tivity problem. This design procedure is quite complex in that it requires
optimization (maximizing the allowable ranges of parameter variations)
subject to inequality constraints on the pole locations.

The problem of sensitivity analysis -~ i.e., that of determining
the manner in which closed loop poles shift because nf changes in plant
parameters, -- can be approached by employing several methods from the
theory of matrices. Often these procedures require little computational
effort, but they seldom yield precise results. For example, Ref. 111
describes an analytical method for determining the bounded areas in the
complex plane within which all of the system closed loop poles lie for a
known set of feedback gains and a fixed set of plant parameters. By allow-
ing the plant parameters to vary, "composite' bounds on the pole locations
for the specified ranges of variation can be determined. However, these
are usnally too conservative to be helpful in designing a system wich
reasonably restrictive performance criteria.

7.i.4 Summary of Complex Plane Methods

From the discussion in Section 7.1 it can be concluded that com-
plex plane methods offer a limited potential for designing insensitive con-
trol systems for tactical missiles by means of fixed gain feedback
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controllers. Except for the special case when the plant equations are given
in phase variable canonical form (a condition that usually does not hold for
tactical missiles), little can be said a priori about the zbility of feedback
coatrollers to reduce the sensitivity to wide variations in plant parameters.
Nevertheless, these techniques can be useful for designing open loop adap-
tive controllers (see Section 5.2) in which it is desired to minimize the
number of gain settings required over the range of plant operating condi-
tions. In addition complex plane methods provide insight for analyzing the
behavior of nonlinear controllers, as will be demonstrated in Section 7.5.

7.2 TIME DOMAIN SENSITIVITY FUNCTIONS

It is often desirable to predict the manner in which the time
response of a dynamical system changes when its parameters deviate from
their nominal values. Tomovic (Ref. 112) discusses several time domain
methods for establishing the degree of sensitivity that a dynamic system
possesses with respect to first order (small) changes in nlant parimeters.

Consider a linear dynamical syster: described by
%(t) = Alg) x(t) (7.2-1)

where q is a single. variabie parzmeter. Given initial conditions X, and to’
the solution of Eq. (7.2-1) can be regarded as a function of both t and q.

If x(t,q) is known for a particular value q, of the variable parame‘er and if
q, is perturbed by a "small"” amount, Aq, the new solution can be approxi-
mated by the relation

ax(t, q)
g | A4 (7.2-2)

x(t,a,+Aq) = x(t,q )+
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Equation (7.2-2) is a Taylor Series expansion about the point d, where
higher order terms have been ignored. A measure of sensitivity of the
solution to Eq. (7.2-1) to the perturbation Aq is the term

which is known as the sensitivity function™. By differentiating Eq. (7.2-1)
with respect to q, it is easily shown that x q satisfies the linear diiferential

equation
5,0 = Ao x®) + 52| 5)
‘ %
x,to) = 0 (7.2-3)

The initial condition )—{q (to) is zero because a change in the parameter value
at time t, does not have an instantarcous effect on the state. Equation
("7.2-3) can be solved (integrated) by c¢hoosing q, to be a nominal value
within the expected range of parameter variations.

In general, a set of differential equations in the form of Eq. (7.2-3)
must be solved to determine the sensitivity junction associated with each
variable plant parameter. Consequently a coraplete sensitivity analysis of
the system may be quite tedious, For linear systems whose dynamics are
nomwinally time invariant, one sensitivity function x q can be determined in
terms of any other, gp , corresponding to a parameter p, by means of a

*

In certain types of adaptive control systems (see Eq. {4.2-17)) x_(t)
is a weighting function in the adaptation algorithm, The iaitter is
a different usage of this function than is discussed in this section.

T-11




THE ANALYTIC SCIENCES CORPORATION

linear transformation, x =T x , where T _ is a known matrix, thus
P PAq

requiring the solution of only one set of differential equations (Ref. 113).

The type of sensitivity function describzd above is a first order
measure of the effect of parameter variations which is useful only for small
changes in parameter values. In tactical missile applications, large varia-
tions in parameter values are often encountered s¢ that a higher order sen-
sitivity analysis is needed. Sensitivity functions describing second, third,
etc. order effects can be derived in the same manner as x q; however many
more differential equations must be solved to obtain them.

Several workers (Refs. 114, 115, 116) have incorporated the
concept of first order sensitivity functions in techniques for designing low
sensitivity feedback controllers. A nominal set of plant parameters is
usually assumed and methods are presented which allow a designer to choose
feedback gains in a manner that causes the sensitivity functions to be small
in a sense specified by the design criterion. In situations where plant
parameters undergo large variations, such as the tactical missile appli-
cation, this design concept may be useful for specifying different sets of
controller gains which are scheduled on the basis of measurements of flight

conditions.

Another time domain approach to the large parameter variation
problem has been put forth in Ref. 117. In that reference, the authors
present a measure of sensitivity of linear systems based upon a quadratic
performance index of the type discussed in Appendix B. After specifying
the performance index of a system for which nominal plant parameters are
assumed, the optimal control law that minimizes the index and the resulting
value of the index are obtained. Then, applying the nominal optimal control

to the system, the class and range of plant parameter variations which in-
crease the values of the performance index by no more than a specified

7-18
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amount, AJ, is established. That is, an upper bound on the change in the
performance index is specified and a search in parameter space is carried
out to determine the ranges of permissible variation in plant parameters.
While this is a useful concept for sensitivity analysis, it has been practi-
cally limited to plants having no more than 3 parameters because of the

computation involved.

7.3 MINIMAX DESIGN

Several authors have treated the problem of devising constant
gain feedback controllers for variable parameter linear systems by em-
ploying minimax techniques (Refs. 118, 119). The concept is perhaps best
illustrated by means of an example. Assume that it is desired to minimize
an index of performance, J, for a given dynamical system whcse behavior
depends on two quantities, -- a compensating gain k and an unknown param-
eter o that lies within known bounds. To determine the '"best' value oi k
in the minimax sense, the performance index J(k, @) is first maximized
with respect to a, regarding k as fixed; then it is minimized with respect
to k over all possible values of «. Loosely stated, the best choice of k is
the value that minimizes J for the worst possible value of the unknown
parameter.

The ahove discussion is made clearer by depicting the procedure
in a graphical manner in Fig. 7.3-1 where a family of curves for J is piotted
as a function of « for several values of the gain k. The objective is to find
the valve of k that minimizes the peak value cf J subject to the constraint

asacshbh
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Figure 7.3-1 Illustration of the Solution to a
Minimax Design Problem

The dashed curve in the figure joins the maximum values of J, mgx J(k, @),
over all values of k. The minimum of this curve has the value
mkin ntxxax J(k, a) and the corresponding value of k = k3 is the desired gain.

Essentially, the above design approach is one which provides the
best system design in the event that the unknown plant parameters assuxhe
the worst possible values. If the best performance attainable with this
technique is adequate and if the parameters assume any other set of values --
e. g, fa= a with k = k3 in Fig, 7.3-1 -~ then the index will have a lower
value, J o’ and presumably the performance will be better.

The design philosophy here is different from that used in adaptive
systems or in the design techniques discussed previously in this chapter. A
control system designed by the minimax procedure may not be especially
insensitive to plant parameter variations; instead, the system performance
characteristics are guaranteed to be at least as good as those associated
with the minimax value of the index J. This characteristic gives rise to the
objection that the minimax design technique tends to be pessimistic. By
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designing for the worst possible values of the unknown parameters, it
fails to take advantage of the fact that the worst case may occur only rarely.
This observation has implications for dogfight missile autopilot design
where the worst set of flight conditions is typically encountered at the be-
ginning ¢’ boost. A minimax control law that considers the full range of
parameter variations may fail to take advantaze of the increased control
surface effectiveness at higher velocity flight conditions in order to design
an autopilot that operates well during the first part of the boost phase.
Consequently the system performance might be better ""on the average" if
some other design technique were used. For example, if o = , in

Fig. 7.3-1, thenk = k4 yields a lower value of J than does k = k3‘

Salmon (Ref.118) has considered dynamic systems subject to
parameter variations and has designed fixed gain feedback controllers
according to a minimax criterion in the manner outlined above. The ob-
jective is to choose a gain vector k in a feedback control iaw

for the system

The vector k is to be selected so that a quadratic performance index is
optimized in the minimax sense over k and a, where a is a vector of un-
known parameters which comprise the variable elements of Aandb. A
numerical algorithm is developed which is guaranteed to converge to a
solution for the se¢t of feedback gains, The method can handle any number
of unknown parameters but the computational load increases accordingly.
The essence of tiie system design process is summarized in the following
steps:
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¢ Choose a quadratic performance index
¢ Choose a time-invariant linear controller structure

¢ Determine the minimax controller

Using a minimax design technique in the context of the theory of
differential games Michae} and Merriam (Ref. 119) derive time-invariant
feedback gains and establish bounds on the variations in plant parameters
which insure that the control system remains asymptotically stable. This
technique may also be a useful design aid but it yields rather loose per-
formance specifications. The criterion of asymptotic stability alone may

not be sufficient for the design of certain systems, particularly those which

must exhibit a "tight" closed loop response under a wide range of operating
conditions as required for tactical missile spplications.

The minimax techniques described in this section can be used to
design control systems for plants whose parameters vary widely. However,
the resulting controller may not give acceptable performance because of
the conservative nature of the minimax criterion. The methods outlined
provide another set of design tools which can aid in developing the final
configuration of a feedback control system.

7.4 LIAPUNOV DESIGN METHODS

In ricent years several techniques (Reis. 120 - 124) for designing
insensitive cont»ollers have been developed which are based upon the
"gecond method" of Liapunov. Monopoli (Ref. 124) has devised such a
technique which also incorporates a reference model. In this particular
method the controller is designed to force the output of a plant to follow the
output of a model having desirabie response characteristics, This is
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accomplished in a manner that keeps the output error smn:all in the presence

of unknown plant parameters and a time-varying input signal v(t).

The design procedure is similar to that presented in Section 4.4.3
for an adaptive controller. Let the plant and reference model be described

by the equations of motion

£ _(t) = A_X () + b_v() (7.4-1)
with outputs
yt) = ¢ x®)
Tp® = cr x ) (1.4-2)

and an output error signal

Follovwing the development in Section 4.4.3, we write the input-output
relations for Eqs. (7.4-1) and (7.4-2) in Laplace transform notation:

P8, (8) = g (s)V(s)

& 2 e

q.(8) o T -1

“‘sz 5 = % (sI-A) "B (7.4-3)
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It is assumed that both the plant and the model have £ zeros and n poles
with £ <n. The system configuration is pictured in Fig. 7.4-1. The
design objective is to select U(s) so that the transient response of Y(s) is
insensitive to plant parameter variations.

R-1968

v(s) uls)
—— ———]

Figure 7.4-1 Input-Output Relations for Insensitive
Control Systein Design Problem

Using exactly the steps indicated in Eq. (4.4-31) through (4.4-41)
we manipulate Eqs. (7.4-3) to obtain the error differential equation given
in Eq. (4.4-42). For the reader's convenience this development is repeated

here.

Subtracting the expressions for Y(s) and Ym(s) in Eq. (7.4-3) and
adding the term pm(s) Y(3) to both sides of the result produces

p,,(8) E(8) = Ap(s)Y(s) + q(s)U(s) - q_(s) V(s) (7.4-4)
where
ap(s) £ p_(s) - q(s)
7-24
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It is assumed that the coefficients of s" in pm(s) and p(s) are both equal to
one so that Ap(s) has order n-1.

Now further manipulations are performed which convert Eq.
(7.4-4) into the desired form. Divide both sides of Eq. (7.4-4) by an zth
order polynomial pc(s) defined by

2 1-1
c 2_18 + . 0 o . +als+ob

which has all its zeros in the left half complex plane, producing

r,(s) E(s)
p (s)' E(s) = - 1 XN + Ap(s)’ Y(s) + ——-(—V—Ar(:c) zfs) +k Uls)
ro(s) Us) r4(s) V(s)
+ —Trpc < -ka(S)- ———-(—y—pc S (7.4-5)
where
pm(S) & ¢ rl(S) A (S) 4 } Ar(S)
—mc Sy Pm(s) +I_)-c—(57 p,(5) = Ap(s)’ + ‘mc S
(s) & ro(8) q,(s) a ro(s)
E%Z_s-; = k+ pj—yc S ——-(—)—pc s = km + 5;?}:5 (7.4"6)

The quantities pm(s) and Ap(s)’ are guotient polynomials of order n-4 and
n-4-1 respectively, generated by performing enough steps of the polynomial
division operations indicated on the left hand side of the expressions in

Eq. (7.4-6) until the order of remainders, rl(s) and Ar(s), is £2-1. The
purpose of the above operation is simply to obtain rational terms on the
right-hand-side of Eq. (7.4-5) whose numerators are of lower order than
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their denominaters. In addition, pc(s) must be such that pm(s)' has all its
zeros in the left-half complex plane. A polynomial that has these properties
always exists. A general procedure for finding one is given in Ref. (79);

it is not described here because the applications considered in this report
are sufficiently simple so that a suitable selection for pc(s) is obvious,

Still referring to Eq. (7.4-5), the gains k and km are the quotients
after a single step in the division operations q(s)/pc(s) and qm(s)/pc(s)
respectively. That is, k and km are the gains associated with the plant and
reference model transfer functions,

2 2-1
Gle) = q(s) & k(s tq, 487 H. . +qo)
7 pls) n n-1
s +p 48 +. o o +D
L -1
. (S)=qm(s)g km (s +qm£_ls +. .. +qm0)
m P8 = o1, +
P SIS
n-1 0

Therefore the respective remainders ry(s) and rg(s) have order £-1 or less.
To make the notation in Eq. (7.4-5) more suitable for this discussion we
define the following quantities:

Polynomial functions:

n-g-1 4-1
A
ao(s) = L as ar(s) & T s’
i=0 i=
t-1 , 2-1
A i a i
ro(8) = ) ¢ -r,(s) = a.s
2 =0 1 3 =0 1
-1 n-g-1
-rl(s) 2 Z%) flsi1 pm(s)' = gis1+ n-4 (7.4-7)
. i= 1=

plsal s
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Constant vector:

8 Y(s) A E(s)
Yc(s) ) pcisi Ec(s) - pcisi
A U A V(s)
08 £ 5o Vel = 36

Vector sets of state variables associated with Eq. (7.4-9):

-

RZCIZO PR A i

o

)T

np

Lt

T

e
=3

e ()6 (). .. ec(t)(“) 1
L o

e (t)

T

np

(t) u ®)d ). .. u Y

u
- C

-l

np

el ACRRC I vc(t)“'”

v (t
—C L R

Vector output variables:
w07 2 [y050 ..y ]

Forcing Vector:

)T 8

10T 2 [XmT 7,07 0,07 v 07 e 07|
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Error State Variables:

g(t)T 4 [e(t) et). .. e(t)(n'z-l)] (7.4-13)
Dynainical Quantities
- -
1 .
0 .
G & . .
0 0 1
I TS T By S
2800 - 0 1] (7.4-14)

Using the above definitions we can rewrite Eq. (7.4-5) in'the time-domain
state variable form

&t) = Gelt) +g (ET 1) +Ialt) - k_ v(t)) (1.4-15)

where G is a stable” matrix by our assumptions on pm(s)’ in Eq. (7.4-5),
which is identical to Eq. (4.4-42).

To derive a feedback control law that yields an insensitive control
system a Liapunov approach is used which is somewhat different from that
described in Section 4.4 for adaptive systems. We postulate the existence
of a Liapunov function in e(t) having the form

*All the eigenvalues of G have negative real parts.
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V(e) = e’ Qe (7.4-16)

where Q is some symmetric positive definite matrix that is to be deter-
mined. The time derivative of Vis given by

Vie) = ¢ Qe + e'Qé (7.4-17)

Substituting for é(t) from Eq. (7.4-15) into Eq. (7.4-17) and collecting
terms prcduces the relation

V(g,t) = _e_T <GTQ+QG) g+23T Qe [Q iT(t)+ku(t)-kmv(t)] (7.4-18)

It is desired to make Y(e) negative, in order to guarantee
asymptotic stability for the system error. Therefore, choose Q so that

clQ+QG = -P (7.4-19)

where P is any positive definite matrix. So long as G is a stable matrix
it is known (Ref. 65) that the solution to Eq. (7.4-19) is an appropriate
positive definite symmetric matrix Q, as required in Eq. (7.4-i6). All
that remains is to choose u(t) so that the term

£ Qe [ o1) + kut) - kvt |

in Eq. (7.4-18)'is negative. This can be done by making v(t) assume the
sign opposite to that of the quantity (kgTQg) and have a magnitude suffi-
ciently large to dominate the terms dependent on f(t) and v(t). Therefore
let
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3i+n Ps km 7
uft) = - . £ 0]+ & v(t)| | sign(k) sign(q"e(t)
i=1 max max
q=Qg
+1 ; x>0
sign(x)= {0 ; x=0 (7.4-20)

where | lmax denotes the maximum value of the argument. Substituting
from Eqs. (7.4-19) and (7.4-20) into Eq. (7.4-18) produces the inequality

Vie),t) < -e®  Pet) < 0; e # 0 (7.4-21)

which implies (see Theorems 2 and 3 in Appendix D) that

lim |e(t)] = 0 (7.4-22)

t o

Thus we have constructed a control law that is capable of driving the output
error to zerc as long as the parameter values remain within their specified

ranges. In this sense the system is insensitive to plant parameter variations.

There may be some difficulty in implementing the nonlinear func-
tion (relay), sign (_qT e(t)). When the error signal is small, the relay output
will 'chatter" if the error frequently passes through zero; this tends to be
undesirable when translated into motion of mechanical parts such as missile
control surfaces. Consequently a modification to the control laws is desir-

wable, If we define
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S%f(t) ;] < e
sat (e, f(t)) = 1 fit) > € (7.4-23)

l -1 ft) < -¢

as illustrated in Fig. 7.4-2, and define a new control law

3. | p. k
uft) = - [ ;L:jl T %fi(t) ¥ Tm‘ v(t) :|sig1(k) sat(c, 9" e(t))
max max

(7.4~24)

then the time derivative of the Liapunov function satisfies

Ve®,t) < -e'®pet) <0 ;  |aTe®| > ¢ (7.4-25)

Because V is not strictly negative for all nonzero values of e(t), condition
Eq. (7.4-22) is not generally satisfied; however it can be shown that e(t)
remains bounded by a procedure described in Ref. 120, making use of
Theorem 4 in Appendix D. The implementation of the above control law is
illustrated in Fig. 7.4-3.

To mechanize the control law specified by Eq. (7.4-24) the
designer must have a priori knowledge of the sign of the gain k and he must
know the ranges of variations of the elements in p. Both k and p are deter-
mined by the plant parameters; hence the ranges of parameter variations
must be known. Furthermore k must have constant algebraic sign or the
times that it changes sign during plant operation must be either known or
measurable; otherwise stability will not be maintained. These conditions
are cfien satisfied for missile applications where sufficient test data is
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Figure 7.4-2
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available at different flight conditions to provide the expected ranges of
airframe parameter variations.

The system illustrated in Fig, 7.4-3 is quite complex, requiring
additionai dynamics to generate f(t) and 3 4 +n +1 feedback gains. However,
the form of Eq. (7.4-24) suggssts a simpler type of control law. Although
the bracketed term in Eq. (7.4-24)is dependent upon f(t)and v(t), it can be con-
sidered as a variable gain, D(f(t), v(t)). Using this notation Fig. 7.4-3
can be redrawn much more compactly as in Fig, 7.4-4 where f(t) and v(t)
are inputs to the "drive level” of the nonlinear element. The purpose of D
is primarily to keep both the gain and the saturation level high enough so
that the system has desired stability properties. Assuming that the ele-
ments of f(t) and v(t) remain bounded, it is possible to choose a constant

value of D so that the system behaves satisfaciorily, viz.,

344 p; k
D =| ) " £,(t) + Ym' v(t) sign (k)
1:
t max max max max -
This provides a much simplexr control law.
f(g) vit) #2721
ey B
o) [ rererence § %t em-ott (1o e cRORE . I ot =4
> MODEL 3 DIFFERENTIATCR = AL 4
Figure 7,4-4 Alternative Representation of Fig, 7.4-3
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Notice that Fig. 7.4-4 is quite similar in structure to the limit
cycling adaptive controller discussed in Section 4.5-2 and illustrated in
Fig. 4.5-5. However, the analogy is not complete because the objective
of the latter is to maintain a limit cycle with constant amplitude in the
presence of plant variations by adaptively controlling the drive level. The
Liapunov design described here can have a limit cycie under the conditions
of Eq. (7.4-25), but its amplitude is made arhitrarily small by choosing ¢
small. Furthermore the insensitive character of the Liapunov controller
is more a consequence of having a sufficiently large value of D and not so
much that D is time varying.

It is necessary to point out that the above design technique gen-
erally works well only for nonminimum phase plants, just as is found to be
true for the adaptive systems discussed ir Section 4.4, The plant input
u(t) tends to grow without bound when the plant has a right-half-plane zero
for the same reasons given in Section 4.4.4. Another interpretation of this
behavior can be gained from Fig. 7.4-4, Regarding the drive level as con-
stant and the nonlinear element as a linear gain having the vaiue D/¢ for a
small error signal, the control loop is essentially high gain, Therefore,
in the linearized sense, there are closed loop pcles close to the right-half-
plane zeros of the nonminimum phase transfer function, rendering the sys-

tem unstable.

In summary, the Liapunov synthesis technique leads to basically
a high gain nonlinear control loop chosen to keep the system stable in the
presence of unknown plant parameters and a changing input. Therefore the
operating characteristics of the system should be similar to any high-gain
design; it may be sensitive to sensor noise in the feedback loop and higher
order modes neglected in the design may be excited. Furthermore it is not
suitable for use with nonminimum phase plants. A simulation evaluation of
this technique is presented in Chapter 10.
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7.5 BISTABLE CONTROLLEKS

Research in the design of feedback controllers which contain a
relay (bistable element) indicates that they can exhibit a high degree of
insensitivity in system behavior for a wide range of plant parameter varia-
tions in some applications (Refs. 121, 122, 123). A special case of such a
controller, but one whic also incorporates a reference model, has been
discussed in Section 7.4. The insensitive character of these systems has
often been observed empirically (Refs. 121, 123) with little analytical
explanation of their behavior, except for the method discussed in Section
7.4 which has a firm theoreiical basis. This prompts one te search for
some fundamental properties of certain classes of relay controllers to
determine conditions for which they will exhibit desirable characteristics.

The general structure of the type of relay control system con-
sidered here is shown in Fig. 7.5~1. The dynamics of the plant are char-
acterized by the nth order system of equations

i) = Ax(t)+bu(t)
ut) = v(t) - »(t)
r(t) = sign (hT x(t)) (7.5-1)

where A and b represent the unknown plant dynamics.

In order to utilize linear frequency domain analysis techniques,
we compare the diagrams in Fig. 7.5-1 and 7.1-2 and observe that their
forms are identical except that a relay replaces the gain h o' The com-
pensated open loop transfer function G(s) relating W(s) to U(t) is given by

3

.._(E_). = _l:l_T (SI - A)-l 2 (7.5"2)

A
~ U(s)

G(s)
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Figure 7.5-1 Relay Control System

The transfer function G(s) has the same characteristics here as it does in
Eq. (7.1-18); its poles are the zeros of the polynomial

D(s) = Det (sI - A) (7.5-3)

and its numerator is an (n—l)'Ch order polynomial having coefficients that
depend upon h, A, and b, Assume h is chosen so that G(s) has n-1{inite zeros.

It is well known that the relay may be treated as a very high gain
amplifier for sufficiently small input signals (Ref. 79). This is most easily
seen by examining Fig. 7.5-2 which depicts the transfer characteristics of
a high gain saturating amplifier. For very small signals the amplifier is
linear and has a gain of m. For larger input signals the equivalent linear-
ized gain (Ref. 79) of the amplifier decreases because the output remains
constant. As m approaches infinity, this nonlinear characteristic becomes
that of a relay, a device whose output may assume either one of two vaiues,
also referred to as a bistable element. Under the assumption that the relay
can be treated as a gain, h o’ for small signals, the system car be modeled
as shown in Fig. 7.5-3, which is identical to Fig. 7.1-3. Therefore the
linearized system can be described in terms of a transfer function relating
W(s) and V(s),

oy
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m=SLOPE

Figure 7,5-2 The Gain Characteristics of a
High Gain Saturating Amplifier

R-2574

V(S) + W(S)
S o Gls) . »-

- h | ————

Figure 7.5-3 Linearized Single-Output Feedback
System Associated With Fig. 7.1-2

W(s) _ G(s) i
Vi{s) = 1+5G(E) (7.5~4)

where ho is large (it can be considered infinite for small signals), There-
fore n-1 of the closed loop poles will be close to the zeros of G(s) and the
remaining closed loop pole is positioned far in the left-half-plane. Con-
sequently, insofar as the gains h can be chosen so that the zeros of
G(s) are insensitive to parameter variations in A and b, the closed loop
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pole locations of the linearized system will also be insensitive. That is to
say, the criteria for designing an insensitive controller using a relay as in
Fig. 7.5-1 are exactly the sam as for the high gain state feedback system
described in Section 7.1.2.

The manner in which h should be chosen depends on the st:ucture
of A and b. No general procedure has been developed to accomplish this
goal. Ii has been observed (Ref. 121) that when the plant's equations of
motion are in the phase-variable canonical form defined by Eq. (7.1-8),
the bistable feedback controller produces an insensitive system. This is
explained by the fact as pointed out in Section 7.1-2, that large feedback

gains dominate the effects of variations in a P in determining the

1’
zeros of G(s) when the elements of the state vector are phase variables.

Bistable ccatrol systems have also been investigated for spacial
missile applications (Refs. 19, 121, 123) with some success in achieving
generally uniform autopilot response characteristics at different plant
operating conditions. It would be desirable to determine more general
classes of systems for which it can be shown that all-gtate feedback in con-
junction with a relay controller produces an insensitive closed loop system.

7.6 SUMMARY AND CONCLUSIONS

A review of some methods for designing fixed gain feedback con-
trollers to reduce sensitivity to variations in airframe parameters has been
presented. A few methods are capable of producing acceptably insensitive

designs with a fixed configuration controller when plant parameter variations

are large. Specifically, the Liapunov design technique described in Section

7.4, the high gain state variable feedback contr.ter in Section 7.1.2 and the
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bistable controller in Section 7.5 are well suited for treating wide param-
eter variations in some types of control systems. The Liapunov method is
investigated further in Chapter 10.

The Liapunov design technique guarantees asymptotic stability of
the output error, even for time varying plant parameters. However it is
basically a high gain feedback design limited to applications with minimum
phase plants.

The state variable feedback techniques -- both the linear and
bistable versions -- for making the dominant system closed loop poles
insensitive to parameter variations depend upon being able to choose feed-
back gains that can dominaté the coefficients of the closed loop character-
istic equation, This can be accomplished only when special sets of piant
state variables are available for feedback.

The other techniques discussed in this chapter -- complex plane
methods, time domain sensitivity techniques, and minimax design -- are
useful in designing gain scheduled control systems when a single confi-

" R N pia i shiaiis .
R ey SN T A ST o 7 2 N

guration controller is not satisfactory. With these methods it may be
possible to use fewer sets of gains than would otherwise be required.
Another possibility is that a fixed configuration coniroller can be designed
by these methods and an adaptive loop added, as suggested in Section 2.3,
to further compensate for plant variations.
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