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FOREWORD

The underlying purpose of this report is to
present an objective evaluation of several techniques for
adaptively controlling and guiding tactical missiles.
Because design trade-offs always exist between perform.-
aace and control system complexity, there is probably
no one control method that is preferable for all applica-
tions. Consequently, in this work no single method is
advocated as the panacea for all missile design problems.
Insteadthe discussion emphasizes distinguishing charac-
teristics of each technique so the reader can judge which
is most suitable for his own situation.

A by-product of this research effort is an
organized, unified discussion of many technical aspects
of adaptive control which have heretofore been available
only in isolated papers. New research results produced
by this investigation are also included. Therefore,
although this study has been performed primarily for
tactical missile applications, the material collected here
should also be of interest to those working in other areas
where adaptive control methods are needed.

The authors are grateful for the encourage-
ment and support provided by Mr. David Siegel of the
Office of Naval Research and Mr. Paul Blatt of the Air
Force Flight Dynamics Laboratory. Acknowledgement
is also made to Professor Richard V. Monopoli of the
University of Massachusetts for his contributions rela-
tive to Liapunov design techniques. Helpful assistance
was provided in several technical areas by Professor
John J. Deyst, Jr. of the Massachusetts Institute of
Technology and by Dr. Joseph J. Budelis. Appreciation
is Plso expressed to Professor Wallace E. VanderVelde
of the Massachusetts Institute of Technology for his help-
ful review of portions of the document.
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ABSTRACT

The fields of adaptive control and guidance are
searched for techniques that can be beneficially applied
to the design of guidance systems for tactical missiles.
A large number of existing adaptive control techniques
are investigated and new methods which are suited to the
needs of missile control systems, are proposed. The
feasibility of promising autopilot design procedures is
demonstrated through computer simulations, using real-
istic time-varying airframe dynamics. Guidance tech-
niques for tactical missiles are also reviewed and a
number of steering laws, derived from optimal control
theory, are evaluated. Quantitative comparisons are
made between different guidance laws on the basis of
intercept accuracy and control effort expended.

The report is published in two volumes con-
taining four basic parts -- Introduction (which includes
the summary and conclusions for the entire report),
Adaptive Control Theory, Adaptive Control Applications,
and Guidance. The first two parts constitute Volume I
and the remainder together with several appendices
compose Volume II.
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1. OVERVIEW

1. 1 BACKGROUND AND OBJECTIVES

The high performance requirements for some tactical missiles

necessitate careful design of missile guidance and control systems. This

task is made difficult because certain quantities (e. g., mass, dynamic

pressure, etc.) related to the missile's dynamic characteristics and the

target's motion vary in an unscheduled manner. In the autopilot, fixed con-

troller configurations employing either constant gains or time-varying

prescheduled gains for compensation may not be sufficiently flexible to

provide good response characteristics over a wide range of parameter

variations. With respect to the guidance function, fixed-gain steering laws

may not be sufficient to overcome the adverse effects of target maneuvers

and autopilot lag on terminal accuracy. The purpose of this effort is to

determine whether these problems can be surmounted by the application of

2daptive guidance and control methods which provide a capability for chang-

ing the system design as the missile proceeds toward its target.

Adaptive techniques have led to improved aircraft control sys-

tems in numerous cases. A few adaptive autopilots exist in operating

aircraft and missiles or have been flight tested (Refs. 1 - 6). Many others

have been proposed and subjected to various amounts of analysis and

simulation. However, most studies of adaptive autopilots have been for

aircraft applications. Missiles have certain characteristics distinct from

aircraft tlat influence control system design; e.g., pilot safety is not a

factor, faster control system res)onse is generally required, and changes

in airframe dynamics can be mo:'e pronounced. Consequently, it is

possible that different objectives will be required of adaptive missile

1-1
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control systems (e. g., achieving a desired speed of response may be

more important than matching a specified model).

Many varieties of guidance laws have been investigated for

tactical missiles. The most popular of these is proportional guidance,

so-named because the missile normal acceleration comnand is propor-

tional to the angular rate of the line-of-sight to the target. However, in

situations where target maneuvers and missile autopilot time lags cause

excessive miss distances with this technique, alternative guidance pro-

cedures may be beneficial. The analytical tools of modern control

theory are helpful in developing such methods.

This report discusses those missile applications where adap-

tive techniques are needed to provide improved performance, reviews

the adaptive methods currently available, and delineates those which seem

appropriate for missile applications. Improved methods of adaptive con-

trol are suggested and the relationship betreen missile guidance and

autopilot response is investigated.

1.2 SUMMARY

The research effort described in this report can be divided

into three broad categories: tactical missile operational requirements,

adaptive control, and guidaice. Operational requirements are reviewed

to determine those characteristics which influence the design of mis-

sile guidance and control systems and to point out particular classes

of missions where adaptive control technology can be useful. Adap-

tive control theory is reviewed to determine those methods which. are

most promising for missile autopilot design. In several instances the

prior state-of-the-art is extended by developing techniques which satisfy

1-2



THE ANALYTIC SCIENCES CORPORATION

some of the particular demands made by the missile application. Simu-

lationri of specific techniques are performed using realistic models of air-

frame dynamics. Finally, guidance laws for tactical missiles are investi-

gated to determine which are most capable of yielding the desired level of

guidance accuracy. A summary of the results and conclusions obtained

from this study, including a list of topics requiring additional research,

is given below and in Section 1.3.

1.2. 1 Tactical Missile Operational Rtequirements
I

Tactical missile operational requirements are discussed at length

in Chapter 3. The objective is to indicate those aspects of a mission

which influence missile guidance 2nd control system design in general,

and, in particular, those whict, indicate that adaptive techniques will be

beneficial. To this end, tne lollowing categories of design considerations

are established:

Target Dependent Desigrn Considerations

Weapon System Dependent Design Considerations

t Adaptive System Design Considerations

These factors ai examined with T espect to the performance of a conven-

tional proportional guidance systom. In this case the presence of target

maneuvers and initial condition errors at launch, together with nonnegligible

autopilot dynainics, contribute to the terminal miss distance. This suggests

a need for a missle autopilot that has rapid response characteristics in all

situations where a target may be encountered and for improved guidance

laws th,,t explicitly include the effrc'ts of target maneuvers and autopilot

dynamics in their design criteria.

1-3
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In order to obtain satisfactory missile autopilot response

characteristics under all operating conditions, adaptive control tech-

niques are needed when unpredictable changes in flight conditions along

the missile trajectory -- e. g., change's in altitude and airspeed --

cause variations in the equations of m(.tion for the airframe. The type

of tactical missile considered most extensively in this report utilizes

aerodynamic lift to provide the force required to turn the missile's velo-

city vector. The vehicle's lifting surfaces are assumed to be fixed, with

tail-mounted control surfaces providing the necessary pitching moments.

This missile configuration is most common in currently operational

weapons. It has the greatest need for adaptive control techniques because

the equations of motion are strongly dependent upon the airframe aerody-

namic characteristics, and hence upon the missile flight condition. In

some cases alternative airframe control arrangements, for which it may

be easier to incorporate a particular type of adaptive control system, are

suggested.

From an examination of the various design considerations in the

context described above, it is concluded that adaptive techniques are most

applicable for weapons used against air targets, particularly in "dog-fight"

situations, and for long-range ground attack missiles that fly a widely-

varying altitude and velocity profile.

Air targets require that the missile autopilot achieve rapid re-

sponse to guida.cv commands in order to overcome target maneuvers and

errors existing at launch. The latter are especially important in dog-

fight applications where the missile may be launched relatively close to the

target. The desired response characteristics must be achieved under a

wide variety of flight conditions defined by the overall altitude-airspeed

profile for all possible engagement situations. The dog-fight application

1-4
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also has the most severe requirements in that the missile may thrust

along its entire trajectory, caushig rapia changes in airspeed and mass

distribution. Variations in airspeed, altitude and mass distribution are

reflected as changes in tie parameters describing the airframe equations

of motion. These parameter variations must be compensated by the auto-

pilot to maintain the desired response characteristics; adaptive control

techniques are potentially suited for this purpose.

A standoff missile launched against a surface target may also

undergo large changes in flight condition because of altitude and airspeed

variations along its trajectory. In this application a long flexible airframe

may be needed to carry a large warhead. Consequently maintenance of

control system stability at all flight conditions in the presence of significant

structural bending can be the most important consideration favoring the use

of adaptive control techniques in this type of mission.

The above qualitative considerations motivated the direction of

the researcb reported herein. Adaptive control techniques that have a

capability for adapting rapidly to changes in airframe parameters a re

emphasized. Guidance laws that can compensate for target motion and

autopilot dynamics are also investigated. Throughout this work it is tacitly

recognized that for a given weapons system the question of whether missile

parameter variations should be treated as unknown or whether they are

really kmown as functions of some measured vaiable -- such as time or

range - can be a matter for debate. Often implementation considera-

tions -- e. g., available computer storage -- can mitigate in favor of one

design philosophy or the other. However, it is conceivable that either

approach or a combination of both can yield acceptable systom designs for

the same application. This document makes no attempt to settle the issue

of when adaptive methods are necessary or prefe'a;le as opposed to mak-

ing use of a priori information. Our purpose is to present an evaluation

1-5
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of adaptive methods that will be helpful for deciding which adaptive tech-

nique to use when insuff'cient information is available to design a com-

pletely preprogrammed control system.

1.2.2 Adaptive Control

An extensive literature search for adaptive control techniques

applicable to missile autopilot design was performed, leading to the classi-

fication of adaptive systems into the following categories:

* Parameter Adaptive Contrcl Systems (PACS)

* Learning Systems

* Adaptive Insensitive Control Systems (AICS)

These classifications are defined in Chapter 2 and they largely account for

control systems which have adaptive properties (vAthin the context of the

definition of "adaptive control" used in this report) and exclude those which

do not. The study concentrates on systems of the PACS and AICS types;

these tend to make the most use of a priori information about missile dy-

namics and lead to relatively simple controller designs. Within these

categories a number of different types of adaptive systems are considered

in this report, as summarized in Table 1.2-1. Those which are investigated

most extensively are discussed below.

Parameter adaptive control systems are divided into two cate-

gories according to whether they utilize implicit plant identification or

explicit plant identification procedure -; Implicit identification relies upon

an indirect measure of system operating condition such as Pn output error

signal, to provide an indication of variations in missile dynamics and to
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TABLE 1.2-1

STJKvIARY OF ADAPTIVE CONTROL TECHNIQUES*

(.RANIENT METHODS f4 2)

FIXED REFERENCE

[-MODEL 122.823)

ACCELERATED GRADIENT METHOD(4 8E2) -/ I ADAI'TIVE REFE9ENCE
METHODS USNG N.xDE, (824)

- IMPliCIT PIAN!
DIENT IF CATION (48) 1XED REFERENCE

LIAPUNOV DESIGN TECHNIQUES 1ODEL (8 33)

I. ADAPTIVE REFERENCE
MODEL (834)

PAR XFFT'R ADAPTIVE [ DITHER ADAPTIVE SYSTEMS (45)

COt fLOL SYSIEMS

ADAPTIVE POLE ASSICNMENT
MEIHO: (539 !.9495

- ETHOD: USING ADAPTIVE OPTIMAL REGULATOR

IDENTIFICATION(, 9) VETHOD( S 4 1,9 29 4)

AWXP TIVE
CONTIROS- IEARNINI3 SYSTEMS (232)

SADAPTIV! OPTIMAL MODEL FOLLOWNG
SYSTEMS (S42.S 4 3,93,94)

- ADAPTIVE OUTER LOOP

-VCOMPIEX PLANE METHODS (7.1)
CO)NFlOL b.edMS

-IME DOMAN SENSITIVITY FUL' ,T I"S7()

FIXED CONFIURA1I0. MINIMAX CESiGN METH. )S( 73)

FIXED REFERENCE

- LIA FP N O V D ESIG N M E TH O D S 7 4 ,I0 ) _A )O N R F E C
k..AAPNE TFERENCE

MCT)EL )l04

-- ISTAN' CONTROLLERS)P 5)

Relevant chapter and section numbers are indicated in parentheses.
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obtain adaptive signals for adjusting autopilot feedback gains. By contrast,

explicit identification directly estimates airframe parameters by process-

ing measurement data and utilizes the parameter estimates to adjust auto-

pilot gains. Implicit identification methods are appropriate when the cri-

teria for system performance are independent of plant parameters --

e. g., when uniform response characteristics are required at all operating

conditions. Explicit identification is needed when the desired performance

is dependent upon operating condition.

Several adaptive methods employing implicit plant identification

are selected for detailed investigation in Chapters 4 and 8. These are:

gradient adaptation algorithms, procedures analogous to gradient methods

but which exhibit a faster convergence speed, and Liapunov design tech-

niques. Gradient methods lead to adjustment rules for adaptive parameters

which tend to reduce a measure of the difference between the actual system

output and the desired output; the desired output is generated by a reference

model. Each parameter is adjusted in a direction that is the negative of the

gradient of the performance measure with respect to that parameter. It is

characteristic of these procedures that they adapt relatively slowly with

respect to the desired system response and methods for improving their

convergence rate are needed.

A new, rapidly adapting gradient-type procedure (called an accel-

erated gradient method) is devised. Simulations of a pitch rate commvnd

autopilot for a tail-controlled missile designed by this method indicate

a marked improvement in adaptation speed over conventional gradient

methods. This algorithm is tested for several fixed missile flight con-

ditions, using the -MA model. of desired ,,--n-n-ce, and also for time-

varying airframe dynamics. The adaptation time achieved is shorter than

the transient response time of the autopilot to command inputs.
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Liapunov design techniques can be used to select adaptive

parametei7 adjustment rules that are asymptotically stable for a wide range

ef system operating conditions. These methods compare favorably with

gradient techniques for which only specialized local stability properties

are known. However, somewhat more computational complexity is re-

quired to implement the Liapunov adaptive autopilot than is needed for the

accelerated gradient technique. A new Liapunov technique is developed

which exhibits good adaptation properties when applied to a missile pitch

rate autopilot.

From the standpoint of guidance, it is most important for a tacti-

cal missile autopilot to have a consistently good normal acceleration re-

sponse to steering commands. For an aerodynamically controlled missile

with tail-mounted control surfaces, the transfer function relating normal

acceleration to control deflection is nonminimum phase; i.e., it has a

right-half-plane zero. This characteristic tends to inhibit the application of

adaptive methods utilizing implicit plant identification techniques. In partic-

ular the accelerated gradient technilue depends upon a high gain adaptive

loop to achieve rapid adaptation characteristics. In the normal acceleration

autopilot described above, high loop gain together with the right-half-plane

zero tends to make the adaptive loop unstable. In addition, Liapunov design

techniques are theoretically restricted to minimum phase plants for reasons

discussed in Section 4.4.4. To circumvent these difficulties a method is

devised for using either the accelerated gradient method o., the Liapunov

design technique with an adaptive reference model to provide adaptive

control of missile pitch rate and normal acceleration simultaneously.

The design is based upon a concept of partial plant identification which

involves the estimation of a few key airframe parameters. Simulations

of this type of autopilot indicate a good capability to achieve satisfactory

normal acceleration response.
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Three adaptive control methods requiring explicit plant identifi-

cation are investigated in Chppters 5, 6, and 9. The con~trol system is

separated into two parts -- a parameter identifier and an adaptive control

law. The subject of identification is treated briefly in Chapter 6; a num-

ber of parameter estimation techli'ques are reviewed which are potentially

applicable to tactical missiles. In studying adaptive control laws it is

assumed that accurate parameter estimates can be rapidly obtained; one

method, referred to as basic parameter estimation, does have this capa-

bility. However, in a particular weapon system, the question of whether

rapid identification is possible depends upon the data processing technique

to be applied, the noise level in sensor outputs, and the types of sensors

available. Adaptive control laws which are investigated use pole assign-

ment, optimal model following, and optimal regulator control techniques.

Each has a well-defined method for computing feedback gains, given know-

ledge of plant dynamics; in an adaptive system, the gains must be com-

puted "on-line" as estimates of plant parameters become available.

Adaptive pole assignment is generally the simplest explicit

method for choosing feedback gains. If the identification of airframe

parameters is accurately accomplished and if all the important airframe

state variables can be accurately measured, the auLopilot gains car, be

selected so that the dominant poles of the compensated system always have

specified values simply by solving a set of linear algebraic equations. Con-

sequently, a uniform normal acceleration response can be achieved regard-

less of the missile's flight condition, provided sufficient control capability

is available. Alternatively, different autopilot response characteristics

may be desired at different flight conditions to allow for changes in control

capability caused by variations in the missile airframe dynamics. This

requirement can be accommodated in the pole assignment method by speci-

fying different sets of closed loop poles based on flight condition.
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By comparison with the pole assignment technique, adaptive

optimal control methods provide a somewhat more systematic procedure

for achieving a compromise between desired autopilot response charac-

teristics at each flight condition and the control levels required to achieve

them. The control law is more difficult to implement in the adaptive

optimal methods than in the pole assignment technique because the feed-

back gains for the former are determined by solving nonlinear matrix

Riccati equations, on-line as airframe parameters are identified. Several

iterative numerical search procedures for solving these equations are

reviewed. For missile applications, the classical Newton-Raphson method

seems to be most efficient and conditions can easily be established for

which the iterations converge to the proper solution. However, the amount

of computation required probably restricts the use of adaptive optimal con-

trol methods to those situations where a fairly large data-processing capa-

bility is available.

Because the pole assignment method is more easily implemented

than the optimal control techniques and because it provides the most direct

control over system response characteristics, it is judged to be the most

suitable adaptive procedure requiring explicit plant identification. Any

additional computational capability available to a designer might bene-

ficially be devoted to the task of obtaining accurate estimates of the air-

frame parameters and important state variables.

The other broad category of adaptive systems defined in this

repcrt -- Adaptive Insensitive Control Systems -- is characterized by a

fixed configuration, nonadaptive controller designed to make the system

as insensitive as possible to plant parameter variations. Then if an adap-

tive capability is still required, it can be added as a parallel control loon;

any of the adaptive techniques described above can be used for this purpose.

1-I1



THE ANALYTIC SCIENCES CORPORATION

Our investigation here is confined to fixed configuration controllers,

particularly those which do not require an auxiliary adaptive capability.

An investigation oi insensitive nonadaptive design techniques is performed

in Chapters 7 and 10. The most successful methods for designing insensitive

controllers for linear systems depend upon some type of high gain feedback

control law. One such technique, described in Section 7.4, utilizes a sat-

urating high gain amplifier in the feedback path to provide a control

signal that reduces the error between the autopilot and the output of a

specified reference model. By varying the saturation level of the ampli-

fier as a prescribed nonlinear function of certain measured system state

variables, it is shown theoretically that this control system is well-

behaved when the airframe parameters are unknown. The method is applied

to the design of a pitch rate autopilot for a tail-controlled missile to demon-

strate its capability for maintaining a small output error. However this

type of system design is not well suited for controlling the output of transfer

functions having dominant nonminimum phase characteristics because the

associated right-half-plane zeros tend to aggravate the stability problems

always associated with high loop gain. The situation is made even more ci.f-

ficult when the right-half-plane zeros vary with plant operating cornition.

Consequently high gain methods are not directly applicable for controlling

the normal acceleration response of a tail-controlled missile. In Chapter 10

it is suggested that this problem can be circumvented through use of the

adaptive reference model concept described previously for the accelerated

gradient and Lapunov types of adaptive systems.

In addition to the various ar_.aptive control techniques described

above, methods of obtaining maneuver forces which are possible alterna-

tives to using aerodynamic lift with tail control surfaces are considered.

These may be especially helpful in overcoming the problem of obtain-

ing adaptive control of normal acceleration. For example, if control

1-12



THE ANALYTIC SCIENCES CORPORATION

surfaces are mounted forward of the missile's center of gravity in a

canard configuration, the nonminimum phase character of the normal

acceleration transfer function is eliminated, Another possible configura-

tion is rotatabie wings in conjunction with tail controls, the former

being used to quickly develop lift while the tail controls maintain stability.

The possibility of employing the missile's own thrust vector, rather than

lift forces, to turn its flight path also has favorable implications for auto-

pilot design in that there is less dependence upon highly variable aero-

dynamic characteristics to achieve control action.

1.2.3 Guidance

A review and analysis of some homing guidance techniques

applicable for tactical missiles is presented in Chapter 11; a summary of

the methods considered is shown in Table 1.2-2. The classical methods --

pursuit, beamrider, and proportional guidance laws -- often work well

against stationary or nonaccelerating targets. However more sophisticated

techniques that can account for potential target acceleration: and for missile

autopilot dynamics are desirable in encounters with highly maneuverable

air targets.

Several guidance laws formulated using optimal control theory

are evaluated. These include the effects of target acceleration and auto-

pilot dynamics (or airframe dynamics in the completely coupled case where

the autopilot and guidance law are designed simultaneously). They require

the minimization of a performance index composed of quadratic penalties on

the terminal miss and the applied steering (or control). command. The

resulting optimal steering and control laws are compared using adjoint

sensitivity techniques.
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TABLE 1. 2-2

SUMMARY OF GUIDANCE TECHNIQUES*

R -3661

FURSUIT

CLASSICAL F
GUIDANCE METHODS | BEAMRIDER(11.2.1)

PROPORTIONAL

GUIDANCE
(n1)

PARTIALLY COUPLED
AUTO PILOT-GU IDANCE
LOOPS (11.2.2, 11.3)

OPTIMALI
GUIDANCE LAWS
(11.2.2,11.3,11.4) ICOMPLETELY COUPLED

AUTOPILOT-GUI DANCE
LOOPS (Hi.4)

1. 3 CONCLUSIONS

1.3.1 Control

The primary conclusions derived from this study are summarized

below with respect to the categories of minimum phase** and nonminimum

phase plants. This classification is motivated by the practical application

discussed throughout this work -- namely the task of achieving uniform

normal acceleration response from a tactical missile autopilot over a wide

variety of flight conditions. The suitability of various adaptive control

Relevant chapter and section numbers are indicated in parentheses.
**

A minimum phase plant is one whose transfer function has only
left-half-plane zeros.
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methods for achieving this goal strongly depends upon whether the airframe

input-output transfer function is nonm nimum phase, as with a tail controlled

lifting vehicle, or is minimum phase as with a ca-ard control surface con-

figuration.

Control of Minimum Phase Plants - When the plant is mini-

mum phase, all of the control methods discussed in this report have

merit. However, individual techniques differ in the theoretical principles

upon which they are founded, their associated computational complexity,

and their ability to yield desired response characteristics.

With respect to complexity, adaptive techniques requiring ex-

plicit plant identification tend to require the most computational capability

because they involve estimation of plant parameters as well as adaptive

adjustment of feedback gains. Next in order of complexity are those adap-

Live methods which implicitly identify the plant; these procedures are

somewhat simpler because they require no estimates of plant parameters.

Finally, the least complex methods are those which are not adaptive --

i. e., fixed configuration controllers that are insensitive to plant parameter

variations.

The best adaptive control over output performance characteristics

is potentially provided by those adaptive methods that explicitly identify the

plant, particularly the poie assignment technique. If accurate paramezer

estimates can be quickly obtained, a gain adjustment algorithm can be

specified that rapidly changes feedback gains to their desired values.

Furthermore, the pole assignment method allows precise control over the

output transient settling time to a step ihput command. The methods using

implicit plant identification also exhibit good adaptive properties, but they

have an associated nonnegligible adaptation time required to achieve the
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desired controller characteristics. By contrast with adaptive techniques,

adaptation time is not a consideration with fixed configuration insensitive

controllers. The particular nonadaptive (Liapunov) design examined in

this work e%4_"bits the capability for maintaining a small output response

error to an input step command provided the saturation level of the com-

pensating high gain amplifier is sufficiently large. From the simulation

results obtained in this study, all of the above techniques appear suitable

to compensate for rapid airframe parameter variations such as are en-

countered in dogfight missile applications.

Another important aspect of these control techniques is the con-

troller gain level required to achieve good performance characteristics,

or equivalently, the control system bandwiAth. Excessive bandwidth (gain) is

undesirable because of the resulting sensitivit to measurement noise and

the danger of exciting high order structural or scnsor modes. The insen-

sitive controller designs employ the highest control loop gain. The adap-

tive techniques which utilize implicit plant identification also have certain

high gain properties because high gain compensation is added to their

adaptive loops to improve adaptation speed. Control methods which explic-

itly identify the airframe dynamics have the lowest gain level requirements

because controller gains can be adjusted directly to their proper values,

which are known as functions of the airframe parameters.

Control of Nonminimura Phase Plants - Throughout this

report the problems associated with obtaining desired response charac-

teristics for a plant whose input-output transfer function is nonminimum

phase have been emphasized. Of all the techniques described above for

controlling minimum phase plants, the only methods that can achieve good

control of nonminimum phase plants are those using explicit plant identifica-

tion. If all airframe parameters can be identified on-line, then a good gain
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adjustment algorithm can be designed. For the other methods the high

gam character of the adaptive loop or the main control loop together with

the variable plant right-half-plane zeros tends to produce variable stability

properties. However, adaptive control methods using implicit plant identi-

fication and insensitivc mode! following control techniques can be modified

to yield good output response characteristics for a nonminimum phase plant

if the concept of an adaptive reference model is introduced, as suggested

in Sections 8.2.4, 8.3.4, and 10.4. The latter depends upon having the

capability to obtain estimates of a few plant parameters (two are found to

be sufficient for the missile application considered here) which are used

to adjust the reference model dynamics in a prescribed fashion as plant

dynamics vary. Applied to an autopilot for a tail-controlled missile, this

design principle utilizes a pitch rate reference model whose parameters

are adjusted on the basis of estimates of two airframe parameters in such

a way that the resulting normal acceleration response has the desired

properties. Consequently the adaptive reference mode! combines the con-

cepts of implicit and explicit plant identification, utilizing the basic control

techniques of the former with the aid of partial plant identification.

The methods of adaptive control are ranked relative to each other

in Table 1.3-1 according to the various properties mentioned above. The

number one in each column is assigned to those techniques which are con-

sidered to be most favorable with respect to the particular attribute.

Progressively higher numbers indicate decreasing favorability. It is

emphasized that this evaluation is very qualitative and should be ,sed only

as a general guide for selecting a particular method.

1.3.2 Guidance

Using graphical displays of performance data for various optimal

missile guidwice laws, a number of comparisons based upon guidance
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TABLE 1.3-1
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law, the resulting guidance performance can be significantly degraded from

that predicted by ,aalysis. This observation reinforces the need for

adaptive techniques which can identify airframe parameters or can main-

tain predictable autopilot dynamic characteristics as flight conditions vary.

The degree of computational complexi,. required to mechanize

optimal guidance techniques generally increases as more effects are

included in the mathematical model of the guidance problem. A qualitative

conclusion of this study is that the greatest relative improvement in guid-

ance accuracy over conventional proportional guidance is achieved from

those steering laws that account for target maneuvers; the effect of mis-

sile autopilot dynamics is somewhat less significant, particularly if con-

trol actuation effort expenditure is not too important. These conclusions

should be regarded as a preliminary evaluation, subject to further refine-

ment in a particular application after considering effects of random mea-

surement aoise, time-varying random or intelligent target maneuvers,

and control level limiting.

1. 3.3 Areas for Additional Research

The conclusions of this study suggest several topics in missile

autopilot and guidanco law design which merit additional investigation. A

brief outline of these areas is given below.

With respect to the autopilot, we have noted that adaptive control

methods requiring e_pi)cit pl,tnt identification (parameter estimation) are

well suited for tail-controlled missiles having fixed lifting surfaces. A

summary of parameter estimation techniques that are potentially applic-

able to tactical missiles is provided in Chapter 6; however no comparative

evaluation of the performance of such methods has been carried out. A
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detailed investigation of parameter identification techniques should be

performed to determine their capability for tracking time-varying missile

parameters in the presence of sensor measurement errors.

Adaptive control methods requiring implicit plant identification

are also promising for use in missile autopilots. Some additional inves-

tigation of those hybrid (using partial explicit identification) methods that

use an adaptive reference model(see Sections 8.2.4, 8.3.4, and 10.4) is

needed. The goal of that research is to determine whether the limited

amount of plant identification required can be accomplished with signifi-

cant savings in computational requirements over complete plant identifica-

tion.

It has been observed that some of the problems associated with

designing autopilots for tail-controlled missiles having fixed lifting sur-

faces can be alleviated if alternative control arrangements are used --

i. e., canard control surfaces, rotatable wings in conjunction with tail or

canard controls, and thrust vector control. I is suggested that further

studies of autopilot design for these configurations be made using realistic

models for missile dynamics.

The investigation of missile guidance laws described in this

report does not consider the effects of measurement noise and random or

intelligent target maneuvers. In addition, practical limitations on the

amount of control surface deflection available and the allowable magnitude

of the airframe normal acceleration are not treated. It is recommended

that guidance law criteria that include these effects be investigated, to

provide a more accurate evaluation of the missile's ultimate capability to

achieve a small terminal miss distance.
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1.4 READING GUIDE

This repoit is divided into four basic parts -- Introduction

(Chapters 1 through 3), Adaptive Control Theory (Chapters 4 through 7),

Adaptive Control Applications (Chapters 8 through 10), and Guidance

(Chapter 11). The first two parts constitute Volume I and the remainder

together with the appendices compose Volume II. A brief reading guide is

presented here to indicate those portions that are largely self-contained in

their subject matter.

Chapter 2 establishes a few technical definitions for describing

the separate functions in a missile guidance and control system and for

classifying different adaptive control methods. This material is introduc-

tory in nature and is helpful for understanding the organization of the

report and the terminology used throughout. Chapter 3 is a qualitative

discussion of factors that influence the design of tactical missile guidance

and control systems and documents the need for adaptive control technology

in certain types of missions. This material can be omitted by the reader

who is interested in other applications.

Specific control methods are discussed in Chapters 4, 5, and 7

according to the definitions provided in Chapter 2, and corresponding appli-

cations to missile autopilot design are described in Chapters 8, 9, and 10.

Largely self-contained pairs of chapters are: 4 and 8, 5 and 9, and 7 and

100 The material in Chapter 6 on parameter identification methods is also

a separate unit. Chapter 11 discusses missile guidance, occasionally

referring to material in Chapter 3. The appendices provide analytical

details and technical background which are referenced in the main body

of the report. To assist the reader, each chapter begins with a brief out-

line of its contents and ends with detailed summaries and conclusions.
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2 2. DEFINITIONS AND CONCEPTS

In this chapter some definitions are established which describe

the guidance and control functions in a tactical missile and which dis-

tinguish between different methods of adaptive control, This is a neces-

sary preliminary task in this report because no standard terminology

exists in the literature for these topics. An effort is made to introduce

only enough terms to delineate the most significant features of the sub-

r ject.

2.1 GUIDANCE AND CONTROL: DEFINITIONS

The task of directing a missile to impact with a target can be

viewed as one complex control problem which requires both f3rce and

torque commands to a vehicle having twelve state variables describing

its motion -- six translational (position and velocity) and six rotational

(angular position and angular velocity). However, in most applications

it is found that the vehicle responds much more quickly to rotational

commands than to instructions to change its translational state. Hence

it is possible, and conventional, to divide the overall control problem

into two simpler subproblems referred to as guidance and control. To

facilitate the subsequent discussion of these tasks, we need to establish

a descriptive vocabulary.

The guidance law refers to conditions imposed upon the missile's

translational state to achieve impact with the target. For example, the

objective of proportional guidance* is to null the angular velocity of the

See Chapter 11 for a detailed description of proportional guidance.
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line of sight (LOS) to the target with respect to inertial zpace; this

ensures a collision course. The guidance law is the specification that

this angular velocity be zero.

The steering law refers to the manner in which vehicle accel-

eration is prescribed so as to satisfy the guidance objectives. In the

example of proportional guidance with planar motion, the steering law j
requires that the component of vehicle acceleration normal to the LOS I
be proportional to the angular rate of the LOS. I

The control law refers to the procedure used for realizing the f
steering objectives; it is implemented by the autopilot. The control law

prescribes the signals applied to those missile components -- e.g., a i
gimballed engine, an aerodynamic control surface, or torquing jets -- ,

which operate to accelerate the missile in the proper direction. j
Often we shall omit the word "law," especially when referring

to its mechanization. The term "command" i.e., steering ommands

used to denote the time history of the signal which is applied to imple-

ment the associated law. The terms guidance and steering are often

used interchangeably in the literature; however there are different steer-

ing laws which can achieve the same guidance objective. Consequently

they are treated here as separate, albeit closely related, concepts.

The three functions -- guidance, steering, and control -- are

illustrated in Fig. 2.1-1. The overall system is characterized by the I
guidance and control loops. It is usually assumed that these can be de-

signed independently of each other because the autopilot response is

typically much faster. However an analysis of overall system perform-

ance, i.e., determination of the ultimate miss distance achieved, must
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AUTOPILOT LOOP

COMNS SERN OMNS ATPLT COMMANDS MISSiE STATE MISSILE STATECOMMANTO YNAMS KISSNEMTATICN

KINTATIE

GUIDANCE LOOP

Figure 2.1-1 Function Diagram of Guidance,
Steering, and Control

include their combined effects. Typically the major coupling effect

between the two loops is the autopilot lag in responding to guidance

commands*

Most of the technical discussion in this report is concerned with

adaptive control techniques which are applicable to autopilot design: these

are discussed in Chapters 4 through 10. Chapter 11 is devoted to the

subject of guidance and treats some of the aspects of coupled designs, i.e.,

those where the guidance and control loops are considered simultaneously

rather than separately.

,
The assumption that guidance and control loops can be designed

independently may lead to excessively large termibal miss
distances. Recent work (Ref. 7) indicates that steering com-
mands generated by optimal guidance can be somewhat im-
proved over those associated with proportional guidance if auto-
pilot dmamics are taken into account in the design. More is said
about this topic in Chapter 11.
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2,? ADAIrFVE CONTROL SYSTEM: A DEFINITION

The words "adaptive control" have been used to describe a

wide variety of control system designs. Because of this general usage,

there is little agreement upon a standard definition for an daptive control

system; indeed, a very broad class of systems is often implied. For

example, any ccntroller designed to produce acceptable system behavior I
in the presence of a time-varying or partially unknown environment*

could justifiably be called adaptive based upon the many definitions im- I
plied in the literature. In this work, adaptive control has a more limited

meaning that embodies the essential ideas about adaptation so that onie can

ascertain which systems fit the classification and which do not. For this

purpose, the following definition is established:

An adaptive control system (ACS) consists of a plant and
a controller having both of the following characteristics:

1. The controller design is based on a nominal
but inexact mathematical model of the plant
dynamic environment.

2. A method is provided for altering the controller
structure" as information is gathered about
the plant environment.

An ACS is illustrated by the functional block diagram in I
Fig. 2.2-1. In general the important variables in the system can be

expressed as vectors, denoted by underscored lower case letters and I
thick signal flow lines. The objective is to achieve satisfactory response

of the plant state x(t) to a command input v(t); the input often can be f
Here environment means both the plant dynamics to be controlled and

disturbances acti g upon the plant.

This includes the possibility of simple gain changing. I
2-4
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Figure 2.2-1 Adaptive Control System (ACS)

measured but it is usually not known in advance. In a missile autopilot v(t)

is the set of steering commands generated by the guidance loop. The most

distinctive feature of the system is the controller, whose structure is

varied by means of the adaptation commands, w(t). The latter are

generated from information gathered about the system performance,

summarized by the vector, p(t). A more specific description of various

types of contro!hors and performance assessment units that are used in

adaptive systems will be given presently.

The above def 1'ition is suggested in part by Jacob's remarks

(Ref. 8) regarding the different meanings of adaptive control. Condition

(1) of the definition exists in mos!-, physical situations, either because the

complete mathematical description of the plant is unknown or because

approximations are made intentionally to limit complexity; it provides

a means for beginning the system operation with a nominal controller
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design. Condition (2) is the essence of the definition in that the controller

adapts its structure to the real-time behavior of the environment. The

adaptation signals, w(t), are generated by an algorithm that seeks to

improve system performance. Examples of control systems which are

not adaptive within this context are:

Systems designed using optimal deterministic
or stochastic control theory, based upon an a
priori mathematical model that is assumed to
be complete in every detail; these are called
optimal control systems.

Fixed configuration linear controllers, charac-
terized by fixed gains, which are designed to
be relatively insensitive to plant parameter
variations but which do not satisfy condition (2)
of the definition; these are called low sensitivity
control systems. *

The definition is procedural in nature in that it emphasizes the approach

used for synthesizing the control- :; the resulting system configuration

does not determine whether the system is adaptive so much as does the

"point of vew" of the designer (see Truxal, Ref. 9).

2.3 TYPES OF ADAPTIVE CONTROL SYSTEMS

The configuration illustrated in Fig. 2.2-1 is very general.

To treat the subject in more specific terms, three types of adaptive

control systems are defined in this section.

*

While not adaptive in the sense defined here, these systems are
important in combating the effects of parameter variations and are
discussed further in Section 2.3.3 and Chapters ? ,nd 10.

2-6
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2.3.1 Parameter Adaptive Control Systems (PACS)

In designing an adaptive system, a frequently used assumption

is that for some period of time the plant environment can be described

by linear, time-invariant, deterministic or stochastic differential equa-

tions. Associated with this type of mathematical model, there are many

frequency domain and time domain synthesis techniques for designing a

linear controller whose gains are constant over the period for which the

plant description is valid. A system designed by one of these methods

is made adaptive by specifying an algorithm for changing the values of

the controller gains as the plant dynamics vary; the gain changes are

based upon a suitable performance criterion. This type of ACS is discussed

extensively in the literature and accounts for all of the operational adap-

tive systems referenced in this report (Refs. 1 - 6); it suggests the fol-

lowing definition:

A Parameter Adaptive Control System (PACS) is an adap-
tive system in which the controller structure is fixed to
within a set of adaptive gains that are adjusted according
to a specified adaptation algorithm.

Thus the configuration of Fig. 2.2-1 is specialized. A simple example

of a PACS is illustrated in Fig. 2.3-1, where the variable structure con-

troller consists of a single adjustable gain, k.

The above definition says nothing about the plant, whether it is

specified to within a set of unknown variable parameters or not. How-

ever, in order to design a workable adaptation algorithm, one must

generally start with some a priori knowledge about the plant's structure.

Typically the form of the equations of motion is required to within some

unspecified, possibly time-varying, coefficients. This requirement

becomes apparent in the discussion of specific parameter adaptive
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Figure 2.3-1 Example of a Parameter Adaptive
Control System (PACS)

systems in later chapters. It is mentioned here to permit distinguishing,

in a qualitative way, those situations where a PACS is likely to be

appropriate from those for which a different type of adaptive design is

desirable. We shall return to this point in Section 2.3.2.

The major portion of this report is devoted to parameter adap-

tive systems because they seem to offer a reasonable compromise be-

tween the amount of a priori knowledge assumed about the plant (missile

airframe dynarrics) and the required complexity of the adaptive con-

troller. As such the PACS is still a very general category that covers a

wide variety of proposed designs. Most of these fall into one of two cate-

gories, referred to as explicit or implicit plant identification systems.

Explicit Plant Identification Systems - In a PACS with explicit

plant identification, adaptation is achieved by attempting to completely

determine the plant equations of motion while the system is operating and

by adjusting controller gains on the basis of the information so obtained.

To illustrate, consider the following example:

2-8
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Example 2.3-1 - The plant is a first order system whose

equation of motion is

*R(t) = a(t) x(t) + u(t)

where a(t) is unknown (but is usually assumed to be slowly varying) and u(t)
is the plant input. The latter is to be given by

u(t) = bv(t) - k(t) x(t)

where b is a fixed gain, k(t) is an adaptive feedback gain, and v(t) is the
command input.

Explicit plant identification is obtained by operating on the plant
output x(t) to determine a(t) or an estimate, ai(t). The latter is used to
adjust the feedback gain according to some design criterion; e. g.,

a W(t) k(t) = b

with b assigned a value which provides desirable closed loop behavior.
Solving for k(t) and substituting into u(t), one obtains the following equation
for the closed loop system

x (t) = [a(t) - a(t) + b] x(t) + bv(t)

If the difference between a(t) and its estimate is small, the adaptive sys-
tem is approximately described by

k(t) e! bx(t) + bv(t)

Presumably the designer would assign a value to b which provides satis-
factory response characteristics for some assumed form of v(t), such as
a unit step function. A diagram illustrating the controller funictions is! given in Fig. 2.3-2.

Explicit plant identification has the advantage that the system

potentially can adapt rapidly to plant variations. In Fig. 2.3-2, if the

known input v(t) is nonzero and if error-free measurements of x(t) are

available, an accurate estimate of the plant parameter can be quickly

obtained and k(t) is immediately adjusted to the proper value. This

property is important from the standpoint of analyzing the resulting design.

Suppose one asks whether the system configuration is asymptotically

2-9
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stable. * To avoid the analytical difficulties impl-ed by the fact that the

plant operating condition is time-varying, stability in adaptive systems is

often investigated by assuming the unknown parameters are held constant.,I

For the example in Fig. 2.3-2, it is clear that if a(t) is constant and if

identification is perfect, the differential equation for the adaptive system

is simply

A(t) = bx(t) i bv(t) I
For asymptotic stability all that is required is b < 0, a condition which is I
completely under the control of the designer. In more general situations

it is also true that the controller gains are immediately adjusted to the

desired values if the plant parameters are assumed constant and if they

can be rapidly identified. Under these conditions the system stability

characteristics are determined a priori. With the operation of the explicit

plant identification system viewed in this manner stability is not an im-

portant theoretical problem.*** It will be demonstrated that such may not

be the case for the second category of parameter adaptive systems.

Qualitatively, asymptotic stability means that x(t)-.0 as t-. - if v(t) = 0.
A more detailed discussion of stability is given in Appendix D.
**

Identification can be accomplished if enough output variables are mea-
sured so that information about all the unknown parameters is available;
i.e., the parameters are "observable." See Chapter 6 for more details
on this sulject.

Clearly, parameter identification cannot be perfect because measure-
ment errors alway3 exist to scie degree. However, if the plant param-
eters are considered fixed for all future time, the estimation procedurej
should yield parameter estimates whose errors asymptotically approach
zero. Consequently the controller parameters asymptotically approach
those values which satisfy the design criteria, usually ensurirg asymptotic
stability, Of course, the speed of convergence of the controller param-
eters is affected by the rate at which plant identification errors go to zero.
Furthermore, if there is a lag in adjusting the control gains caused by j
slow identification, a real practical problem of "temporary instability"
may exist. I
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Figure 2. 3-2 An Example of Adaptive Control With
Explicit Plant Identification

Implicit Plant Identification Systems - In a system employing

implicit plant identification, no attempt is made to identify the plant com-

pletely. Instead, output variables of interest are examined and their

behavior compared with desired performance criteria. This comparison

produces an error signal and controller gains are adjusted so as to force

the error to be small in some sense. The goal for the implicit type of

system can be the same as if explicit identification were used; however

the means of achieving this goal are different. A PACS that fits this

classification is illustrated by the following example.

Example 2. 3-2 - The control system for this example is illus-
trated in Fig. 2.3-3. The desired output is provided by passing the com-
mand input v(t) through a model which is specified and constructed by the
designer. The plant is compensated by a single, variable feedback gain
k(t). The error signal, defined as

e(t) = y(t)- ym(t

2-11



THE ANALYTIC SCIENCES CORPORATION I
CONTROLLER I

INPUT v(t) + P T OUTPUT y(t)

IrI
~I

klt

ADAPTATION ERRORe(t) +

S ALGORITHMi ' )
i(t) :-,, -,(e'(t))

II

SiMODEL

Figure 2.3-3 An Adaptive Control System With
Implicit Plant Identification

is measured and used to generate an adjustment in k(t). The gradient
method illustrated here adjusts the controller gain according to

k (e2(t)) (2.3-1)

where a is a proportionality constant to be chosen. This technique is din- I
cussed extensively in Chapter 4. Intuitively, k(t) changes in a manner
which tends to reduce the squared error. In fact it will be shown th.t this
adjustment rule is a direct result of the desire to minimize the integral
square error, J;

J e e2(X) dX (2.3-2)
t

for some interval of length T.

This PACS is significantly different from that in Example 2.3-1.
The plant is never explicitly identified; satisfactory adjustment of k(t)
proceeds indirectly be generating t,-e quantity
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T-k (e2(t))

Techniques for accomplishing this are discussed in Section 4.2.

Observe that the basic objective is to make tLe s, 3tein and the
model identical, or nearly so in the sense of minimizing J. If the plant
parameters were explicitly identified, the controller could be adjusted
immediately to yield the best approximation to the model. However, in
this system the adaptive gain is adjusted relatively slowly in the general
direction of its best value. To the extent that it ultimately achieves the
same goal as does explicit plant identification, albeit by different means,
it is called an implicit identification system.

Because the plant is never explicitly identified in this type of

PACS, it is not known at any time what the ideal values of the adaptive

gains should be; at best only the direction in which they should move can

be ascertained. Consequently, many implicit identification methods, such

as that illustrated in the above example, drive the controller gains quite

slowly to their best values; i.e., they adapt slowly to plant changes.

Therefore the control system must be analyzed for stability to insure con -
vergence of the adaptive gains to their optimum values. As stggested for
explicit identification methods, this can be done by assuming the variable

plant parameters have some nominal constant valies. However, one is

often frustrated in the analysis by the fact that the adaptive control portion

of the system is aonlinear. An additional difficulty is that the perform-

ance index J in Eq. (2.3-2) is a fuiiction of time because of fluctuations

in the input, v(t); hence, the optimum choices of the feedback gains vary,

even if the plant paraneteis are constant. T"se characteristics make

the stability of implicit plant identification v:vstems more difficult +o pre-

dict than that of explicit systems.
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i

2. 3.2 Learning Control System (LCS) j

To provide motivation for defining a learning control system, it

is useful to consider some things that a parameter adaptive control sys-

tem, as defined in Section 2. 3-1, does not do. It has been pointed out that

a PACS using implicit plant identification is characterized by a controller

which is completely specified to within a set of adaptive gains that are

varied on the basis of some performance measure. Although it was not

specifically mentioned, the gain adjustment also proceeds without

"performance verification, punishment and reward, or memory," (Refs.10

and 11). The implementation (f these additional functions provides the

basis for the definition of a learning system.

Recall that in Example 2.3-2, the adaptive gain k(t) is adjusted

2ccording to Eq. (2..3-1) in an effort to reduce the magnitude of the integral

square error, J, in Eq. (2.3-2). Now in order to mechanize k(t), the

quantity (e 2 (t))/bk must be generated; usually this can be done only

approximately. Furthermore an appropriate value of a must be selected;

it should not be so large that k(t) changes too rapidly and "overshoots" its

optimum value,* nor so small that it converges too slowly. These con-

siderations imply that one has no way of being certain that the change in

adaptive gain always reduces the error. The difficulty is illustrated in

Fig. 2. 3-4 for a parameter optimization problem where the objective is to

minimize F(k), starting from a trial iraile k1 . Corxectly applied, the

gradient adjustment rule should yield a new value k such that F(k2 ) < F(kl);

however, too large a ckhange in k may yield the opposite result, Fearing

unsatisfactory behavior of this sort, one might control k(t) by Eq. (2. 3-1)

This possibility is common to gradient methods employed to find
the minimum ralue of a function.
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Figure 2. 3-4 The Effect of an Excessively Large Gradient
Step in a Parameter Optimization Problem

for a while, concurrently evaluating the actual integral square error and

comparing it with the predicted value J would havre if the gain had remained

constant. By this mithod one could verify that the adaptive action taken

actually improves the lerformance. If improvement is observed the

adaptive controller can be rewarded by increasing the adjustment factor, a.

If worse performance is observed, punishment is applied by decreasing a.

Finally, one might store in a memory the required changes in a that im-

prove system performance, as a function of the observed states of the plant.

The objective is to "remember" what actions were favorable orL- unfavorable

for various cases so that the correct adaptive action can be anticipated when

those situations recur. In other words, the adaptation algorithm is itself

adaptively adjusted.

The above digression into the conceptual deficiencies of a PACS

motivates the following definition:
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A Learning Control Systemvi*(LCS) is an adaptive
system whose structure conforms to that of Fig. 2.2-1,
without restriction on the form of the controller, which
can incorporate the added functions of

# Performance Verification

a Punishment and Reward i
* Memory

The definition is generally consistent with the literature on the subject;

two survey articles which discuss the functions defined above in some

detail are Refs. 10 and 11.

The term "learning" appears to be almost synonymous with
"adaptive", as the latter is used in Section 2.2. It is difficult to imagine
a more general definition of adaptive controller than the one for a learning I

system; certainly the PACS seems to be a special case of an LCS. The

terminology used here is chosen as a reasonable compromise between I
historical precedent, the need for distinctions which confuse as few readers

as possible, and current conventions. Usually "learning" is reserved for I
a controller that possesses in some degree the functions - memory, etc. -

defined above; if the latter are absent, another term -- e.g., parameter I
adaptive -- is used (Ref. 11). The general system structure depicted in

Fig. 2.2-1 is called "adaptive" in this report because it seems to be the I
first name given to controllers having a variable structure and it has a

meaning at least as broad as any other.

The added capability of an LCS, as compared with a PACS,

implies more complexity in implementing the adaptive controller. To

identify circumstances in which an LCS may be preferable, recognize that

the existence of the three functions ir.cluded in the definition potentially

*Sometimes called a Self-Organizing Control System.
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enables an LCS to achieve satisfactory control of a plant about which little

or nothing is known. By trying various input control signals and observ-

ing the resulting behavior of the system, the learning controller in effect

constructs a catalog of empirically determined input-output relationships.

Thus the LCS really accomplishes system identification of a much more

general sort than that described in Section 2. 3. 1 for a PACS. This implies

that a learning system is best suited for those situations in which there is

very little a priori information available about the system structure.

For the applications considered in this report, many of the

identification capabilities of an LCS appear to be unnecessary. The form

of the equations of motion for a missile airframe and the range of varia-

tion of its parameters are generally known. With this information avail-

able, paeaileter adaptive design techniques can often be employed. The

considerable complexity inherent in implementing most learning methods

tends to favor use of a parameter adaptive system where possible.

An investigation by Adaptronics Corporation (Ref. 12) has led

to the development of equipment which possesses a limited learning capa-

bility and has received favorable ratings in aircraft flight tests. This

device, called a Self-Organizing Controller (SOC), has a mode of operation

that can also be interpreted as a particular form of parameter adaptive

"ystem which is described in Section 4.2.5. A feasibility study for use of

learning systems in aircraft has been reported (Ref. 13); this work

indicates that considerably more must be accomplished in the way of per-

formance analysis and controller simplification before such techniques are

practical on a large scale.

2-17
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I

2. 3.3 Adaptive Insensitive Control Systems (AICS) I

This section defines a third type of ACS which incorporates I
design principles related to system sensitivity. The most familiar method

of reducing the effects of plant parameter variations is through feedback. f
For a single-input single-output plant, the act of coupling the output to the

input through a high gain reduces the sensitivity of the compensated system I
to fluctuations in the plant. For uxample, in Fig. 2.3-5, the transfer

function T(s) is given byj

T(s) Y(s) _ KG(s)
Vs) 1 +KG(s)

For a given value of the gain, K, T(s) 1 when I

IKG(s)I >> 1 1
Consequently, perturbations in the plant transfer function do not substan-

tially affect T(s) at values of s for which the inequality holds. The larger I
K is, the wider the frequency range over which these conditions are valid.

From this basic principle have sprung many methods for reduc-

ing or minimizing sensitivity to plant variations. A generally common f
characteristic of these techniques is that the resulting controller has fixed

elements. The design is accomplished by assuming particular ranges of I
variation for unknown parameters and selecting a fixed configuration con-

troller which gives the most insensitive overall control system, within the

required performance specifications.

This approach is useful, even in those situations where a fixed

controtler isn't adequate. For instance, in open loop adaptive systems

See Section 5.2 for" a brief discussion of open loop adaptive systems.
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Figure 2.3-5 A High-Gain, Low Sensitivity Feedback
Control System

where different sets of fixed control gains are used for different measured

plant operating conditions one wishes to minimize the number of required gain

levels. This can be accomplished by creating a low sensitivity design for

each gain setting. It is the view of some authors (Refs. 14, 15, and 16) that

adaptive systems are often proposed without careful consideration of alter-

native, fixed-configuration designs which are less complex and more
reliable.

With these considerations in mind, we make the following

definition:

An Adaptive Insensitive Control System (AICS)
is one which has a low sensitivity, fixed configuration
controller and possibly includes a separate adaptive con-
troller in a parallei feedback loop.

An AICS is illustrated in Fig. 2.3-6. One first designs a fixed controller

to make the system as insensitive as possible to plant variations. Then if

adaptation is still required, it can be added in a second control loop. If
the latter should fail, reasonably good performance may be maintained
with the inherently more reliable fixed controller. This is a pLilosophically

pleasing approach in that one attempts to get the most out of time-tested
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Figure 2.3-6 An Adaptive Insensitive Control System (AICS)

linear feedback techniques before turning to adaptive systems. A review

of some methods for designing insensitive controllers is given in Chapters

7 and 10.

2.3.4 Summary

In this section the following types of adaptive systems are defined:

a Parameter Adaptive Control Systems (PACS)

Explicit Plant Identification

Implicit Plant Identification"

* Learning Control Systems (LCS)

* Adaptive Insensitive Control Systems (AICS)

2-20It
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Most of the adaptive methods discussed in this report fall under the PACS

category which seems to use a priori information given about plant dynamic

characteristics to best advantage. Learning Control Systems for the most

part are not yet practical for missiie applications. (A possible excep-

tion to this judgment is the Adaptronics device, discussed in Sections

2.3.2 and 4.2.5, which has a limited learning capability.) However, it is

not apparent that an LCS is needed for tactical missiles since a reasonable

amount of a priori knowledge about airframe parameters is usually avail-

able. The third category is also important. Techniques for designing

fixed configuration controllers yielding low sensitivity are investigated in

Chapters 7 and 10; the adaptive portion of an AICS can be designed by any

of several methods discussed in this report.
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3. APPLICATION OF ADAPTIVE METHODS TO
GUIDANCE AND CONTROL OF TACTICAL MISSILES

Adaptive control techniques have been successfully applied to high

performance aircraft, and the need for such methods in designing missile

control systems has been well documented (Refs. 4, 17, 18, 19). In any

situation for which there may be large variations or uncertainties in the

mathematical description of the plant together with s"-rict performance re-

quirements, adaptive methods are desirable. These conditions potentially

exist as much, or more, for missiles as for aircraft. i this section, con-

siderations affecting the design of guidance and control systems for tactical

missiles are reviewed and situations where adaptive systems may be bene-

ficial are delineated.

3.1 FACTORS AFFECTING DESIGN OF GUIDANCE
AND CONTROL SYSTEMS

This section considers some important factors which influence

the design of a missile guidance and control system for a tactical mission.

For the purpose of this discussion the following categories are established:

0 Target dependent design considerations

0 Weapon system dependent design considerations

• Adaptive design considerations

The first two of these are fundamental to the design problem, regardless

of the method of control to be used. The third classifies particular

mission requirements that impose a need for an adaptive system.

3-1
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3. 1. 1 Target Dependent Design Considerations "

Four target-related factors that influence guidance and control (
system design are:

• Target vulnerability

• Target maneuverability

Target defenses

* Target environment

These are discussed qualitatively in the following paragraphs.

Target Vulnerability - For a given type of missile warhead and

fuse, the target vulnerability places requirements on the maximum allow-

able miss distance in order to inflict an acceptable level of damage upon

(i.e., "destroy") the target. The necessary accuracy specifications are

usually expressed in terms of a figure-of-merit called the Circular Error,

Probable (CE P). This is the radius of the circle, centered at the target,

through which the warhead must pass with a probability of 0. 50 in order to

achieve an acceptable probability cf kill. I is quantitatively determined by

simultaneous consideration of target characteristics, warhead type, and

fusing method. Typical values of CE P's for surface targets are given in

Ref. 20.

The guidance function of a tactical missile is to bring a warhead

sufficiently close to a target. Usually a CE P of only a few feet or few tens
of feet, depending upon the type of target and the warhead capability, can
be tolerated. Because the missile travels at high speed, this task can be

accomplished only if steering commands (see Fig. 2. 1-1) are promptly

executed, especially near the end of the trajectory. Consequently,
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specifications for the autopilot include requirements on such performance

measures as delay time, rise time, settling time, and overshoot. *

iarget Maneuverability - The maneuverability of the target aLso

affects the missile guidance and control system design. In an encounter with

an accelerating target, missile steering commands usually vary more

rapidly than those needed to follow a nonmaneuvering target; hence the

former usually imposes the requirement for a more rapid missile autopilot

response. This need has been documented for air targets (Refs. 22, 23).

The choice of guidance method is also influenced by target maneuvers. For

example, the concept of proportional guidance is motivated by assuming a

constant velocity (nonmaneuverin ,) target, When maneuvers are included

in the mathematical model of target behavior, a so-called biased proportional

guidance law (Ref. 7) achieves better accuracy. Some quantitative informa-

tion about aircraft evasive tactics is available in Ref. 24.

The influence of target acceleration and autopilot lag on miss dis-

tance for a proportional guidance system is illustrated in Fig. 3. 1-1. The

missile's steering command for this technique is given by

a rv X
m c

where a is the missile acceleration normal to the line of sight, q is am

proportionality constant called the navigation ratio, vc is the relative clos-

ing velocity between missile and target, and , is the angular turning rate of

the line-of-sight (LOS) to the target in radians per second. In determining

the curves of Fig. 3.1-1 it is assumed that the autopilot dynamics are first-

order with a time constant of r seconds. Target acceleration is taken to be

*

See Ref. 21, p., 79, for definitions of these terms.
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a constant value, at. The ordinate of the graph is the normalized

miss, m,

mm - 2
atr

where m is the distance by which the missile misses the target, in feet.

Tie abscissa is tine-to-go until intercept, t, normalized by the auto-
pilot time constant.

To interpret Fig. 3.1-1, assume the missile and target are on t

a collision course (k 0) with t = 2 r and 77 = 3. At that instant the targetgo

begins a constant acceleration maneuver normal to the LOS; the resulting

normalized miss 2r seconds later is indicated by m1 on the graph. Observe

that the unnormalized miss distance is proportional to r
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Consequently a large autopilot lag is highly detrimental tc guidance accuracy.

From the standpoint of the target, the curves indicate that a con-

stant acceleration maneuver is most successful in causing the interceptor to

miss if begun within a few missile autopilot time constants before intercept.

Otherwise the interceptor has time to react to the target's behavior, as

indicated by the relatively small values o! mn for t 6. The practical

importance of a target's timing its evasive maneuvers has been pointed out

in Ref. 26.

ThE - -is another aspect to the fact that a target maneuver can

cause appre- -°..le miss distances if begun only one missile autopilot time

constant befou intercept. When t -a T, the time remaining within whichgo

the guidance system must act to null the terriinal miss is about the same as

the autopilot response time. Consequently the guidance accuracy for this

case may be improved more eificiently if the complete system is designed

treating the equations of motion for the autopilot and guidance loops in

Fig. 2. 1-1 simultaneously, rather than separately.* (See Section 4. 5.3 of

Ref. 25.) The formulation of a coupled guidance and control design problem

and sone of its implications are discussed in Chapter 11.

Target Defenses - Any offensive system can expect to encounter

target defenses. These may be classed either as evasive or destructire.

.
That is, a coupled guidance-control design problem formulation may

produce a more efficient steering law than would be achieved simply by
building a faster autopilot or by raising the steering law gains.

3-5



THE ANALYTIC SCIENCES CORPORATION

Evasive defenses include electronic countermeasures, evasion maneuvers,

decoys, and any acticn taken to "fool" the offensive system. The target

attempts to bide itself in a "high noise" background. Consequently the

guidance system must be capable of "seeing through" the defenses; this I
may require sophisticated data processing techniques and judicious choice

of unjammable sensors. Debtrr_tive defenses aee those with which the I
enemy attempts to destroy the offensive system. Potentially these canu be

antimissile-missiles and high density antiaircraft fire, etc. Thus the

offensive missile itself becomes a target which may have to take evasive

4 action prescribed by its guidance system in order to fulfill its mission. J
Target Environment - Noise induced within the missile guidance

system by the target environment* and its relationship to the missile homing .'

sensor contributes to the terminal miss distance. The effects of this noise

source are best described by discussing air and surface targets separately.

For an air target, thp adverse effects of noise produced by the

target environment generally increase as the range to the target decreases. I
To understand this behavior, consider a proportional guidance system in

which the measured LOS angular rate is determined by apparent changes in

the relative direction of the target. If the latter is an aircraft, a radar

homing sensor may receive separate signals from various parts of the I
fuselage, wings, or tail. The angular dispersion in. the received reflections

(known as scintillation noise) causes the radar receiver's estimate of LOS

angular rate to be inaccurate. The measurement error increases as the

ratio of range to target dimensions decreases with decreasing t (Ref. 25).

* go

The target environment includes the tWrget itself and any other objects
which are within the field of view of the homing sensor.
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The magnitude of the scintillation noise for an air target is deter-

mined primarily by the target's dimensions, for a given to its effect upon
go

the guidance system is most important when the range is quite short. It is

observed in proportional guidance bystems (Ref. 25) that an increase

in the autopilot lag reduces the terminal miss caused by this particular

error source if there is no filtering of measurement data. This is one

situation in which an autopilot with a relatively slow response givP-5 htter

system performance than a fast response, the reason being that the mis-

sile's airframe effectively filters the high frequency noise on the steering

command caused by measurement errors. It is probably more efficient in

terms of autopilot actuator fuel consumption to incorporate a filtering

capability in the guidance loop design. However, in either case, the pres-

ence of scintillation noise tends to favor a limit on the autopilot bandwidth.

For a surface target, a homing sensor may receivc, reflections

or emissions from many different objects, as well as from the target.

Consequently, compared with air targets scintillation nois is a greater

source ox difficulty in this application; in fact, it is the chief cause of

terminal miss and greater filtering of guidance commands is necessary,

The above discussion uses a radar homing sensor to illustrate

the effects of scintillation noise on the guidance system; the same source

of measurement errors exists with optical and infrared seekers. When

the presence of seeker noise requires some type of filtering in the guidance

loop, the bandwidth of the steering commands is restricted and the required

response time of the autopilot is limited. This effect is most pronounced

in systems designed for surface targets which have an inherently noisy

background.

All oi the factors discussed in Section 3. 1.1 influence the mis-

sile system design. In addition to considering the properties of any one

3-7



THE ANALY'IC SCIENCES CORPORATION I

target, the system designer may have to provide a capability against tar

gets with different characteristics. Such will be the case i! a mu.di-

purpose weapon system is desired for use against both surface and air

targets, or against a wide variety of surface targets having diiferent CEP

requirements and environmental characteristics.

3,. 1.2 Weapon System Dependent Design Considerations

Five factors related to the missile weapon system which influ-

ence missile guidance and control are:

0 Missile dynamic environment

• Allowable system complexity

• Required system reliability

• Sensor and navigation equipment

* Launch conditions

Each of these is discussed in this section.

Missile Dynamic Environment - The missile dynamic environ-

ment reiers to the quantitative description of the equations of motion, ran-

dom forces (wind gusts) acting upon the missile, and limitations on both the

controls and plant state. It is conventional to assume that the equations of

rotational motion are linear differential equations with coefficients whose

values depend upon the time-varying flight condition, the latter being defined

by the missile's altitude, speed, and mass distribution at any particular instant
of time. One simple mathematical model for missile airframe dynamics is

given in Section 8. 1-1. In a typical mission the flight condition can vary
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in a generally unscheduled manner. This is the sort of behavior which has

motivated use of adaptive control in aircraft. In missiles the variations

tend to be more rapid and more extreme because of proportionateiy larger

mass and velocity changes

Wind gusts are undesirable external forces acting upon the mis-

sile which can contribute to target miss. The transfer function between the

gusts and the missile states of interest should have as smaHl magnitude as

possible over the gust frequency range.

Autopilot control limitations also affect the missile guidance

capabilities. Not only are control surface deflections limited, but the total

energy available to drive the actuators is restricedo For example, if the

actuator is battery driven, it may be advisable to have "sluggish" control

and steering commands during the initial part of the trajectory to avoid

excessive energy consumption, permitting use of a smallei battery. Usually

a "tight" guidance loop is desired when close to the target; hence over the

entire mission, a variable response may be desired. Other possible mis-

sie characteristics that influence guidance and control system design are:

* Throttleable vs constant thrust engine

* Multiple engine burn periods vs single burns

* Continuously variable controls vs bang-bang controls

* Techniques used to generate control moments --

canards, direct lift devices, thrust vectoring

• Acceleration constraints imposed by structural
limitations

* Missile speed constraints caused by aerodynamic
heating of various components -- radomes,
propellants, avionics
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I

Allowable System Complexity_ - The allowable weapon system

complexity refers to the amount of equipment which can be devoted to guid-

ance ad control tasks. If all such functions are to be performed entirely

on board the missile, constraints on missile volume and weight place obvious

limitations upon the system. On the other hand, if control of the trajectory

is to be shared with another vehicle -- e. g., launch aircraft, ship, or

ground spotter -- more sophisticated guidarce and control techniques can

be implemented.

Required System Reliability - Reliability is an important con-

sideration in any missile design. The effects of poor reliability are all too f
evident at the operating level (Refs. 23, 26-28). Various guidance and con-

trol techniques require different amounts of computation and associated

hardware. Those techniques which promise the most in terms of flexibility

and performance often are also the most complicated to instrument: there-

fore, their reliability may be questioned. An effort is made in this report

to indicate trade-offs between system complexity, reliability, flexibility and

performance for several adaptive techniques.

Sensors and Navigation Equipment - The sensors and navigation

equipment available to the weapon system determine the accuracy with

which important state variables can be determined from physical measure-

ments. Having good estimates of the states is essential to mechanizing

feedback guidance and control systems. Some types of sensors which may

be available to provide guidance and control information are as follows:

Radar range and doppler measurements

Inertial navigation system

Radio navigation (Loran, Omega, etc.)

Satellites

Lasers

3-10



THE ANALYTIC SCIENCES CORPORATION

Individual gyroscopes and accelerometers

Infrared detectors

Radar and optical correlation techmiques

Sensor characteristics which affect guidance and control sys-

tems design are

* Measurement noise

0 Sensor dynamic cha-acteristics

* Physical quantities measured

• HominE sensor acquisition range

A brief discussion of these factors follows.

Measurement noise inherent in missile sensors influences overall

guidance accuracy. An illustration of this effect is given in Figs. 3.1-2 and

3.1-3 for a proportional guidance system with a semiactive radar homing

sensor (radar transmitter at launching site, radar receiver in missile),

having both random and bias measurement errors.

The normalized root mean square (rms) miss, m' caused by

receiver noise is plotted in Fig. 3.1-2 as a function of normalized time-to-

go. The rms terminal miss, a m' is given by

- 15 2Um T v

am
r

where r is the range from missile to target at which the receiver signal to

noise ratio (S/N) is equal to one (S/N increases with decreasing range to

the target). The quantity p is the receiver noise power spectral density in

rad2 /rad/sec (Ref. 25) required to yield S/N = 1 at the specified value

of r. To calculate the error caused by receiver noise, assume that the
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Figure 3. 1-2 Normalized Root Mean Squaare (rms) Miss Distance
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missile and target are on a collision course at the instant the radar receiver

is activated, As in Fig. 3.1-1, the corresponding value of t yields thego
resulting normalized rms miss. The actual terminal miss in feet for fixed

r nd~ s roorioalto~1.5 2
r and p is proportional to T " 5and v2. Thus both autopilot lag and closing

velocity have significant effects on this source of error. The longer the

receiver noise acts upon the guidance system, the larger is its effect on

Jm' asymptotically approaching a limit with increasing flight time.

The fact that the curves in Fig. 3.1-2 approach zero with t
go

is a result of an increasing S/N as the range to the target decreases and a

decreasing amount of time remaining for the noise to affect the guidance sys-

tem output. Consequently from the standpoint of reducing seeker noise effc:zts,

the missile should be as close as possible to the target before the homing

sensor is activated. However, this is obviously impractical because the

seeker is needed to sense the effects of initial condition errors and target

maneuvers (see Figs. 3.1-1 and 3.1-4); several autopilot time constants

are required to reduce the terminal miss distance from these sources to an

acceptable level. Therefore the steady state errors in Fig. 3.1-2 are most

applicable to an error analysis of the guidance system, except possibly for

some "dogfight" situations where .he missile is launched in close proximity

to the target.

The effects of measurement bias errors are illustrated in Fig.

3. 1-3 for a proportional guidance system. The miss distance in feet is ex-

pressed in terms of the norm"-lized miss according to

2
m = mb Vcr

where X is a bias error in the LOS angular rate. This contribution to ter-b
minal miss tends to approach a small constant value as t increases beyond

go
about 10r. Again autopilot lag and closing velocity have a significant effect.
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Figure 3.1-4 Normalized Miss Distance Caused by an Initial
Line-of-Sight Angular Rate X(O)

Sensor dynamic characteristics which are part of the autopilot

and guidance loops 2ometimes affect overall system design. The situa-

tion often arises where the sensor dynamics, * although insignificant in

themselves, cause undesirable behavior in a high gain autopilot loop.

Hence they may limit the amount of compensation which can be applied for

stabilizing the missile airframe. Guidance sensors can also have response

characteristics that cannot be ignored (Refs. 25, 29).** In addition, con-

straints on sensor motion relative to the missile's airframe (most sensors

have a very limited search angle) can cause the missile to "fly blind" over

some portion of its trajectory or require it to follow a particular trajec- I
tory in order to keep the target in view.

For example, gyroszopes and accelerometers have dynamics which
may affect performance of a high gain loop. '**

For example, o.mballed target sensors may have associated dynamics
which are significantly coupled with those of the airframe, even for lowc~ntrol loop gain.
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The physical gintities measured by the sensors determine

which state variables are observed directly or can be extracted with

various data processing techniques. For example, if airframe structural

bending modes are important hi a given application, special sensors may

be required to measure the bending states for the purpose of generating

appropriate control signals.

Finally, the acquisition range of the homing sensor specifies

the minimum distance the missile must be from the target in order to

begir. homing guidance. When the acquisition range is larger, less accuracy

is required of midcourse guidance or, when there is no midcourse phase,

the allowable "launch window" is larger.

Launch Conditions - Several aspects of missile launch conditions

influence guidance and control system design. These can be broadly cate-

gorized as:

Launch range and launcher orientation relative II to the target

* Missile configuration and orientation on the
launcher.

Launcher r and launcher orientation help determine whether

a single homing guidance phase is sufficient to reach the target or mid-

course guidance is also required. The latter is necessary when the launch

range is so great that the homing sensor cannot track the target. Midcourse

guidance may us9 either self-contained inertial, electronic*, celestial, or

launcher-aided navigation, or some combination of these, to put the missile in

position for the homing phase of the trajectory.

Electronic refers to earth or satellite based navigation nets such as

Loran, Omega, etc.
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For launches quite close to the target, initial condition errors are

important, especially in air combat situations (Ref. 22). This is illustrated

in Fig. 3.1-4 for the case of proportional guidance with an initial line of sight

angular rate, i (0). In this graph, the terminal miss is given by

m = fii,(0)r r jgo

where r is the range to go, f
go

r =v t
go c go

Again, autopilot lag, modeled as a first order system with time constant r,

has a large influence on terminal accuracy, and a value of t at launch
go

considerably larger than r may be required to achieve acceptably small

miss.

There are certain situations where initial conditions are pre-

dominant in determining the terminal miss. For example, if a dogfight mis-

ile using proportional guidance is launched in an attack 450 off the beam of an

enemy aircraft, as indicated in Fig. 3.1-5, the initial LOS rate is given by

r cos 450
go

where vt is the target's velocity. Consequently m in feet is calculated from

m = 0.707 mIv tl T

For a target traveling at Mach 1.5 (about 1500 feet/sec) and 4 missile auto-
pilot time constant of 0.2 second, a value of t as large as 3.5 with 77 = 3,

go

results in a terminal miss of about 15 feet. For a faster target or larger

time conotant the mi.' s is proportionately greater. Depending upon the type

of fusing in the missile warhead, this level of accuracy may be unacceptable.

3-16

I



THE ANALYTIC SCIENCES COROCRATION

-I / R-I2B7

k !INTERCEPT
//

//
TARGET /

/ /

/

tMISSILE:
II

Figure 3.1-5 An Off -Beam Shot in a Dogfight Encounter

The missile configuration and orientation in its launcher deter-

mjiie whether the missile's sensor can initially view the target. If it cannot,

a programmed turn may be required to properly orient the missile. Tis

condition sometimes exists in dogfight actions or in attacks a'aginst surface

targets where the missile seeker is unable to track the target from its

mounting on the launch aircraft.. More indirect effects of the launcher on

guidance and control system design are size and weight restrictions which

can be imposed by the design of the launching mechaism (Sce Ref. 23 for

an example where system design has been inhibited by such considerations).
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3. 1.3 Adaptive Design Considerations

Sections 3. 1.1 and 3. 1.2 are concerned with characteristics of

tactical missiles and missions that influence the design of any missile

guidance and contr'ol system. This section treats those which determine

whether an adaptive system is appropriate. The following factors are

considered:

* Parameter variations within the descriptions I

of target and plant characteristics 1 V

Desired missile performance

Restrictions on the controller

Parameter Variations - It is clear that variations of missile plant

parameters with changes in flight conditions indicate that an adaptive auto-

p~ot may be beneficial. The causes of this behavior have already been

enumerated in Section 3.1.2 under the heading "missile dynamic charac- j
teristics".

With respect to the guidance portion of the missile system, the

motion of the target is often not well known; consequently adaptive steering

laws may be needed. An example of this type of application is the feedback

steering law proposed in Ref. 7 which contains the time-to-go as a param-

eter. * T' :.:e-to-go is not accurately known for a maneuvering target; hence

it must be continually estimated and readjusted in the steering equations,

resulting in an adaptive guidance function.

Desired Missile Characteristics - The existence of parameter

variations is not in itself sufficient justification for advocating adaptive

Thit. steering law is also described in Chapter 11.
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techniques for a missile autopilot. The degree of restriction upon desired

airframe response is also important in determining whether an adaptive sys-

tem is required. To illustrate this point, consider the problem of designing

compensation for the time-mvariant linear piant in Fig. 3.1-6(a) according

to two possible criteria represented in Fig. 3. 1-6(b) and (c). In both cases

the plant is to be compensated so that its closed loop poles lie anywhere in

the indicated region, for any of the possible locations of the open loop poles.

It is clear that the design requirements imposed by Fig. 3.1-6(c) are more

restrictive than those of Fig. 3.1-6(b). Conceivably one might be able to

choose fixed compensation to achieve the conditions in (b) whereas an adap-

tive controller could be necessary in (c). The implication here is that wide

latitude in the desired response characteristics may periit a nonadaptive

system design, even though parameter variations do exist.

In an aircraft, the required autopilot response to stick commands

is primarily determined by the pilot's desire for the airplane to exhibit

certain handling qualities. Often these objectives are stated so that

a desired transfer functico can be approximately specified for the auto-

pilot. In this case, the task ,of the control system over the entire flight

regime is to "map" the variable plant characteristics into those of a relat::vely

fixed model, as illustrated by Fig. 3. 1-6(c). It is unlikely that a fixed con-

figuration controller will produce the desired performance and use of an

adaptive control system is indicated, On the other hand, in the presence of

varying airframe dynamic characteristics, the pilot's behavior can change

with flight conditions. For example, if Ae aircraft responds too quickly to

his commands, the pilot can compensate by using slower stick movements.

In this sense, the pilot is capable of bsin% an adaptive element within the con-

trol loop and thereby can supply his own adaptAve characteristics to the

system.
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Figure 3. 1-6 Possible Design Criteria for
a Linear Plant with Unknown
Open Loop Poles
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Because there is no human in a missile, there appears to be no

reason why its autopilot response characteristics should closely approxi-

mate those of a fixed model. In addition to requiring that the airframe be

stable, the system specification is more likely to be in terms of a minimum

settling time, delay time or damping ratio, giving rise to design require-

ments exemplified by Fig. 3.2-6(b). To the extent that there is more latitude

in the specification of response characteristics, there is less need for adap-

tation than in an aircraft. However, as compared with an aircraft, the mis-

sile's parameter variations are proportionately greater. Also, because the

missile is required to hit a target while flying at high speed, the autopilot

response time is generally shorter than for an aircraft. The absence of a

human in the autopilot loop implies thatthe missile has less inherent adaptive

capability. All of these considerations tend to reinforce the need for adapta-

tion.

Missile autopilot response characteristics are restricted by band-

width considerations (Ref. 6). Allowable bandwidth is limited by the need

to

* Avoid excitation of bending modes

* Avoid driving poles associated with sensor
dynamics into instability

* Minimize the effects of sensor noise

On the other hand, large bandwidth is desirable to:

* Achieve rapid airframe response to steering
commands

* Minimize the effects of wind gusts

These are conflicting sets of objectives. Consequently, at each flight

condition one may desire only enough bandwidth to achieve the required

3-21



THE ANALYTIC SCIEN ES CORPORATION

settling time. This objective in the presence of changing missile dynamics

tends to favor use of an adaptive system.

Restrictions on the Controller - Some controller characteristics

related to the need for adaptive systems are:

* Available control actuation energy

• State variable measurement limitations

* Controller structure constraints V

The existence of a limitation on the control actuation energy

available in a miss ie can impose a restriction on the allowable system

bandwidth. The restriction is needed to prevent the missile controls from

expending excessive amounts of fuel in responding to noise from the autopilot

and guidance sensors and in following steering commands (Ref. 25). This

observation reinforces the previous suggestion that no more bandwidth is

desired than necessary to satisfy the command and gust response require-

ments along the trajectory.

State variable measurement limitations restrict a controller's

ability to achieve certain closed-loop pole configurations. For a con-

trollable*, linear, time-invariant system, whose state variables are all

available for use in feedback compensation, ft is possible to put the closed V
loop poles anywher-e in the complex plane (Ref. 30) by properly choosing

feedback gains. Thus the design criteria shown in Fig. 3. 1-6(b) might

readily be met for all flight conditions by choosing constant nonadaptive

controller gains so thb.t the closed loop poles are sufficiently far in the left-

half complex plane for any values of the plant parameters. If the states are

not all available for direct measurement (as in a multistate single-output

7I
See Appendix A for a definition of controllability.

3
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system), they must be effectively derived by passing the measurement

through appropriate filters, assuming the system is observable.* The ability

to accomplish this can be restricted by hardware limitations, measurement

noise, and stability considerations. Thus even though the desired region for

the system closed loop poles may be as large as in Fig. 3.1-6(b), the attain-
able region, for any given flight conditioi, can be considerably smaller with
the available measurements and constraints on compensation complexity.

In this situation a different controller may be required for several ranges

of flight conditions in order that the closed loop poles are always in the

desired region; consequently an adaptive autopilot may be helpful.

In addition to constraints on the measurements, thei e may be

controller hardware limitations. For example, in a digital system the

minimum attainable response time is influenced by tDe sampling rate. If

the latter is much faster than the desired response, the digital system has
essentiaily the same capability as a continuous system. As the response

time approaches the sampling period, distortions are introduced by "loss

of information" incurred in the sampling process. Other types of hardware

restrictions are a lack of equipment required to perform the computations**

necessary for a proposed system design or limitations on control magnitude

and variability. All of these restrict the control flexibility available for

any one flight condition; consequently a different controller structure may

be needed for each of several different flight conditions to achieve accept-

able system performance. This leads one to consider use of an ACS. For

example, control surface deflection constraints for a missile can motivate an

*

See Appendix A for a definition of observability.
**

For example it may be easier to mechanize a simple open loop (see
Section 5.2) adaptive system than it is to provide the filtering capability
for estimating unmeasured state variables in a high gain fixed config-
uration system of the type described in Section 7. 1.2.
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adaptive design where the maximum deflection tends to be used at all flight

conditions in response to steering commands (Ref. 31). In this way the

autopilot always utilizes its full control capability, tending to make the air-

frame response as fast as possible.

3.1.4 Summary

In this section a number of factors which should be considered for

designing guidance and control systems in general, and adaptive systems in I
particular, are delineated. A quantitative evaluation of all factors for a

particular class of targets and type of weapon system leads to specifications

on the guidance and control system. For the purpose of this report, the

material in Sections 3.1.1 through 3.1. 3 is used to suggest two rather

general tactical missions -- those against air targets and those against

ground targets using a stand-off missile - - which impose different perform-

ance requirements on both the guidance and control functions and for which

adaptive techniques are probably needed. These are described in the next

section and are summarized in Table 3.1-1.

TABLE 3.1-1

SUMMARY OF ADAPTIVE APPLICATIONS FOR
TACTICAL MISSILES

R-3660

ARLONG-RANGE LAUNCH
AIR

TARGETS. DOGFIGHT ENCOUNTERS

TACTICAL
MISSION

GROUND
TARGETS STAND-OFF LAUNCH
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3.2 TACTICAL MISSIONS REQUIRING AN ADAPTIVE
GUIDANCE AND CONTROL SYSTEM

Two types of tactical missions are considered here for which an

adaptive system design should prove beneficial: those against air targets

and those against ground targets using a stand-off missile. In both cases
emphasis is placed upon weapons having aerodynamic control surfaces
because they experience the widest airframe parameter variations.

3.2.1 Air Targets

This section discusses two classes of missions against air targets

which present different levels of difficulty to an autopilot designer. These

are: the long-range launch and the dogfight engagement. A long-range

Launch against an air target is essentially one for whic, the missile booster

ceases thrusting prior to intercept and the homing guidance is activated

sufficiently far from the target so that initial condition errors are not im-

portant. A dogfight engagement is one in which the missile is launched

reativeiy close to the target; thrusting usually continues over its entire

trajectory and large initial conditions errors can be experienced by the

homing guidance system. These distinctions are not intended to be all-

inclusive. Certainly one can envision a situation where a missile is launched

a long distance from the target and possesses a terminal thrust capability,

as well as a boosting phase. Our intent here is to discuss the long-range

and dogfight situations as being representative types of tactical missions

that require different degrees of adaptivity in the system design.

A stand-off missile is one which is launched a considerable distance

from its target, usually for the purpose of keeping the launcher
vehicle out of the reach of enemy defenses.
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The most important requirement for an autopilot in use against

an air target is rapid response to guidance commands. This is necessary

largely because of the target's potential maneuvering c2pability (see Fig.

3. 1-1) and because of initial condition errors, the latter being most im-

portant in dogfight type encounters (e. g0 , see Figs. 3. 1-4 and 3.1-5). In

addition to these sources of terminal error, contributions to miss dis-

tance caused by certain types of measurement errors are accentuated by

the presence of autopilot lag (e.g., see Figs. 3. 1-2 and 3. 1-3). All of

these adverse effects on guidance accuracy can be held to an acceptable

level by an autopilot having a sufficiently high speed of response.

The autopilot designer's task is made difficult by the requirement

to achieve good performance characteristics over wide ranges of missile

airframe parameter variations. An attack capability is needed at different

altitudes, and the missile's mass distribution and velocity are time-varying.

Velocity variations are most pronounced in the dogfight application when the

missile accelerates over its entire trajectory. To the extent that a missile

relies upon aerodynamic lift for the force needed to change its direction of

.nt... changes in flight conditions impose changing requirements

upon the control system. At high altitudes and low velocities where dynamic

pressure is low, much larger angles of attack are required to achieve a

specified acceleration than are needed at low altitudes and high velocities.

Consequently these two extremes of* operating conditions require different

amounts of control surface deflection to achieve a given response. In

addition, the effectiveness of an aerodynamic control surface is dependent

upon dynamic pressure so that a given surface deflection produces different

control moments at different flight conditions. A third effect of mis-

sile parameter variations is that the natural damping characteristics of

the airframe's rotati.onal motion change with flight condition; consequently

varying amounts of stabiiizing control must be supplied by the autopilot.
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These considerations imply that for air targets the autopilot compensation

must be highly responsive to changes in flight condition, especially in dog-

fight weapons; adaptive techniques provide-an effective means for accom-

plishing this task.

From the standpoint of guidance, the cp ibiiity of the target to

maneuver and the effects of autopilot dynamics imply that a steering law

which differs from that used in conventional guidance techniques (Ref. 7)

may beneficial. Consideration of these factors introduces state variables

(e. g., target and missile acceleration) into the model for the guidance

problem which can be used advantageously in a steering command, provided

they can be measured or estimated, In Chapter 11 an adaptive, optimal

steering law is described which potentially minimizes the terminal miss

distance caused by these error sources.

3.2.2 Groumd Target: Stand-off Missile

Missions agdinst ground targets that seemmost 1"'--'MI-.. .. .. y to benefit
from an adaptive control system are those for stand-off missiles having

varying altitude--velocity profiles enroute to the target. Along such a trajec-

tory, the same types of plant parameter variations exist as in attacks on air

targets except that the missile's dynamics in the vicinity of a ground target

are more likely to be known a priori. In addition, the missile often has a

long flexible airframe to carry a large warhead. Therefore the effects of

bending modes may have to be considered in the autopilot design. The

combination of airframe parameter variations and bending modes often causes

difficulty in obtaining a stable autopilot with a fixed configuration controller.

In some cases it has been found (Ref. 19) that several sets of scheduled gains

are required to maintain the proper autopilot characteristics over the entire

trajector.
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Just as for air targets, there is also need to maintain a desired

speed of airframe response to guidance commands. However by way of

comparison, this requirement is not so strict when attacking ground targets. I *1
Because the latter are generally not maneuvering the primary source of

error in t1 gulidance system is uncertainty in knowledge of target location, j
caused by noise on sensor neasurements. The major noise source is the

target's environment, as de; cribed in Section 3.1.1. In order to obtain a

good estimate of the target's position, filtering of guidance measurements ]
may be required; consequently the autopilot bandwidth may not be so large J
as for air targets.

I
3.2.3 SummarI

In this section some aspects of missions for tactical missiles are f
described to indicate that adaptive guidance and control techniques may be

quite beneficial. An important design objective for a missile to be usod [ '
against air targets is to achieve a rapidly responding autopilot in the pre-
sence of airframe parameter variations. This requirement is most severe

in a dogfight mission which must cope with significant launch initial condition

errors, target maneuvers, and a missile airframe undergoing rapid changes

in dynamic pressure and mass distribution. In addition it is desirable to have

a steering law that includes the effects of target maneuvers. For a stand-off

missile to be employed against surface targets, the main design problem is

likely to be maintaining airframe stability along a trajectory having large

altitude variations.

In subsequent chapters a variety of adaptive guidance and control I
techniques are described which are potentially capable of meeting the

demands of the above types of missions, Air targets, especially those in
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dogfight engagements, constitute the more difficult class of missions

because the missile requires faster response to control and steering com-

mands and missile airframe parameter variations are roiore rapid and less

predictable in these applications. Therefore in this report considerable

emphasis is placed upon adaptive techniques that can rapidly compensate

for changes in missile dynamics.

In this next section we begin a study and evaluation of specific

types of parameter adaptive control systems, the main purpose being to

demonstrate which recently developed adaptive techniques are feasible

for use in missile design.
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4. PARAMETER ADAPTIVE CONTROL SYSTEMS
WITH IMPLICIT PLANT IDENTIFICATION

The literature contains a wide variety of proposals for parameter

adaptive control systems. This chapter gives an annotated review of sev-

eral methods, pointing out distinguishing features, advantages, and disad-

vantages of each with special reference to missile design. Analytical details

are presented to justify the use of various adaptive techniques and to describe

their characteristics; some of the analysis is new in that it generalizes re-

sults and concepts in existing literature and presents new techniques that

appear suitable for missile applications.

4.1 ERROR SIGNALS IN ADAPTIVE SYSTEMS

A fundamental auantity associated with any control system is its
"response", or output y(t) to an input v(t). In relation to quantities defined

in Fig. 2.2-1, y(t) is some function of the state x(t); it consists of only

those variables upon which judgments about the quality of system perform-

ance are based. To provide a standard for evaluating system behavior, a

desired output yd(t) is defined with which y(t) is to be compared. Typically

yd(t) may be specified as the result of a known operation upon v(t), i.e., i.
is the output of a model. These output quantities permit one to define an

error function which measures the deviation between actual and decired

response. The primary objective of any control system design is to make

the error small in some sense.
*

Hence, the term model reference system is often used where yd(t)
is the output of some trasfer function operating upon v(t). More
generally, in the sense that yd(t) always can be defined, all control
systems are model reference systems.

4-1
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The definition of an error signal is really the first step in

designing a control system and it nften p!ays an important role in deter-

mining the structure of the controller. For this reason, we suggest some

specific types of errors that can be used to measure the deviation between

y(t) and yd(() and outline some of their implications upon system design.

4.1. i The Output Error

The output error has the obvious definition

e 0() Y(t-yd(t

This is the most natural measure of performance to define in many applica-

tions. An example of its use for generating adaptive control signals has

been given in Fig. 2.3-3. To illustrate the deiiaition more clearly, con-

sider a single-input, single-output system described by the equations*

i(t) = Ax(t) + bu(t); x(O) = 0**

u(t) = v(t) - r(t)

y(t) = cT x(t)

m(t) = Hx(t) (4.1-2)

Capitals (e.g., A) denote matrices; underscored lower case letters (e.g., x)
denote vectors. It is assumed that the reader is familiar with the vector-
matrix notation for linear differential equations. For completeness, a sum.-
mary of the essential properties of their solution is given in Appendix A.

The presence of unknown initial conditions and random forcing functions
are neglected in this report. We are interested ix) applications where the
known input v(t) generally dominates the error signal. However, the
reader should recognize that significant unknown inputs can adversely
affect the behavior of some adaptive systems.
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where v(t) is a command input, r(t) is a free control variable and m(t) is

a set o linear measurements of the state variables that are available for

specifying r(t), Let the model be described by the time invariant linear
system,

em (t) = Am m(t) + b v(t)

Yd(t) = cT x m(t) (4.1-3)

with

e o(t) = y(t) - Yd(t),

as illustrated in Fig. 4. 1-].
*

In desiging an optimal control system to minimize a quadratic

function of e (t), with a priori knowledge of A and b (assuming for the

moment that the plant parameters are constant), it is found (Refs. 32

and 33) that both x(t) and x~ (t) are required to determine r(t). As a con-

sequence, a nonlinear matrix Riccati equation having dimension 2n must

be soived for the optimal feedback control gains, which are also 2n in

number. When elements of A and b are unknown and one uses adaptive

model following optimal control based upon plant identification methods, as

in Chapter 5, a similar situation exists. On the other hand, dimensionality

considerations of this type are not inherent with the implicit identification

adaptive systems described in subsequent sections of this chapter.

A summary of the important facts about optimal control of
linear systems with quadratic performance indices is given
in Appendix B.
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v (I) U W( PLANT y W)
_ (t): A x(t) + bu(t)

y (t): c T x (t)

MODEL yd(t)

Yd(t) = T X.(t) I

Figure 4.1-1 Output Error Signal for a Single-Input,
Single-Output Adaptive System

4.1.2 Reference Model State Independent Error Signals

An alternative error definition (Refs. 32 and 33) which does not I
require knowledge of both the plant and reference model state variables is

an output derivative error signal designated by the symbol _ (t). It is ob-

tained by substituting the plant state x(t) for x m(t) in tne equations of

motion for the reference model. In terms of Eqs. (4.1-2) and (4.1-3) eo(t)

is a scalar given by

* (t) =A m x(t) + bm v(t)

Sm(t) m- (t)

0o(t) -& (t - m(t) (4.1-4)
4-
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Substitution for (t) from Eq. (4.1-2) yields

Mot = c T [(A- Am)x(t) + (b - bmv(t) - br(t)] (4 1-5)

The significance of Eq. (4.1-5) as compared with the expression for e (t)
0

is that eo(t) is independent of xm(t) . When a linear feedback control law

r(t) = hT m(t)

is applied, the error becomes

0(t) = cT [(A-bhTH-Am)x(t) +(b-bm)v(t)]

and it is an indication of the difference between the reference model and

compensated plant dynamics, as measured by the quantities, (A-bhTH- AM)

and (b- bm).

A somewhat different error signal can be dcfined by operating on

the system output, y(t), with the "inverse model"* to produce a pseudo-

input signal v(t). The input error signal, e .(t), is then defined by

ei(t) = v(t) - (t) (4.1-6)

A single-input, single-output adaptive system illustrating the generation of

e.(t) is shoV. in Fig. 4.1-2. The quantity _(t) is interpreted as being the in-

put command to the model required to produce y(t) at the model output. (As

noted previously, there is the question of existence of the inverse model. For

instance, if v(t) is of higher dimension than y(t), there is in general no unique

model input which will produce y(t); that is, the inverse model does not exist.)

When the inverse exists.
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R-1298

I 'I
v~t) :: + u~t) -- PLANT yt -

M~t~t

|r~ ~~CO L L ER:

INVERSE

Figure 4.1-2 An Adaptive System Based Upon
an Input Error Signal

To analytically demonstrate the method of generating the input

error, consider the system represented by Eqs. (4. 1-2) and (4. 1-3). The

operation of the reference model with an input v(t) is described by

xm(t) = A mxm(t)+ -mv(t)

y(t) = cTXm(t) (4.1-7)

In the context of Fig. 4.1-2, y(t) is given at the output and v(t) is to be

determined. Denoting the Laplace transforms of v(t) and y(t) by V(s) and

Y(s) respectively, one sees from Eq. (4.1-7) that

v(s) -cT (Is - (4.1-8)

An equivalent set of state equations for the inverse model with y(t) as an I
input and v(t) an output can be obtained (Ref. 34) upon determination of the

4
4-6

IJ



THE ANALYTIC SCIENCES CORPORATION

transfer function V(s)/Y(s) in Eq. (4. 1-8). An additional practical restric-

tion on realizability is that thio transfer function have no more zeros than

poles; also the inverse model must be stable. These requirements imply

that the transfer function for the model itself must be minimum phase and

have at least as many zeros as poles.

The implementation of Eqs. (4.1-2), (4.1-7) and (4.1-8) is

illustrated in Fig. 4.1-3. One controller of this type has been proposed

for lateral control of a manned lifting reentry vehicle (Ref. 35).

In designing an optimal control system based upon a priori

knowledge of A and b in Eq. (4.1-2), assuming x(t) has dimension n, it is

observed (Refs. 32 and 33) that minimization of a functional of e o(t) or

e. (t) leads to a feedback controller consisting of culy n feedback gains.

This requires the solution of an n-dimensional rnatrix Riccati equation. A

similar situation exists for the adaptive optimal systems discussed in

Chapter 5. Recall that for the output error signal defined in Section 4.1. 1

the corresponding optimal controller requires 2n feedback gains obtained

from a 2n-dimensional Riccati equation. Consequently a comparison of

the various error signals favors and e, (t) for designing optimal control-
0 -1

lers on the basis of computational complexity. With respect to performance,

qualitative comparisons (Ref. 32) indicate that design techniques using an

output error signal have more potential for achieving a satisfactory system.

For adaptive systems which do not employ the techniques of optimal control,

there is no apparent dimensionality advantage connected with one of the

above error signals and the choice of error signal should be made on the

basis of reference model flexibility and performance capability.

For the reasons outlined above the output error signal is used in

this report to design controllers for those adaptive systems which do not

4-7
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R-1293

v~t + ~t~ PLANT PLANT OUTPUTV W + U i (t) A x(t) +bu(t) y Wt ,

r (t) y (t): STX (t)

INVERSE MODEL

INVERSE MOJDEL INPUT5
_______ ____ V(S) ______ y(t)

ly sT(15sAm)l'bry

Figure 4.1-3 Method of Generating the Input Error 5
Signal for a Single-Input, Single-
Output Adaptive System

require the optimal control techniques discussed in Appendix B and

Chapter 5. This is the most natural selection from a physical point of

view and it permits complete flexibility in the choice of reference model.

The use of both output derivative error and output error signals is inves-

tigated for the adaptive optimal model following methods discussed in

Chapter 5.

4.2 GRADIENT METHODS FOR ADAPTIVE CONTROL j

The gradient search technique or method of steepest descent is 1
a common numerical procedure for finding the values of a set of n param-

eters, a, which collectively minimize a scalar function p(a) (Refs. 36 and

37). This procedure generates a sequence fa 0 , a1 ,...) according to the

iterative relationship,

4-8
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a. = a.-a -

-1+ 1 -1 6

a.-1

T [q (a) . (a)

where a is a step size control. At each stage, a is changed in the direction

of the negative gradient of o(a) with respect to a, tending to reduce the

value of 'p. If a condition is reached such that

bo=- 0(a

-k

with sufficient accuracy, ak is an approximate solution for the value of a

that (locally) minimizes p. Convergence of the method depends upon the

properties of the function to be minimized.

Several applications of the above technique for use in adaptive

control systems have been proposed in the last ten years (Refs. 38 -47).

These procedures are motivated by the objective of minimizing a func-

tional* J(e(t)) of the error e(t) between the system output and some desired

(reference model) response (recall the discussion of error signals in

Section 4.1). The usual form of J is

t+T

J L[e(X)] dX (4.2-1)

t
*

A functional depends upon a time history of its argument whereas a func-
ioii depends upon only a single value of its argument. J is also referred

io rsP a performan c3 index or cost functional, or simply the cost.

4-9
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where L(e) is a known, scalar, positive, differentiable function having the

following properties:

L(0)- 0

L(e) > 0; e / 0 (4.2-2)

The differentability condition is not strictly necessary from the j
standpoint of weighting the error (e.g., L(e) = e is a useful performance

measure although it is not differentiable at the origin); however, it is a

convenient assumption for deriving the adaptation algorithm. Often the

error signal is a scalar and L(e) is chosen as (Refs. 40, 41)

1 e 2 !
L(e) = e (4.2-3)

because it places a heavy penalty on large response errors. For most of I
this discussion we also adopt Eq. (4. 2-3).

The integration interval -- t X t +T -- should be long enohgh

to include most of the significant time history of e(t); otherwise J may not

be representative of system performance. For example, in Fig. 4.2-1 an

error signal is shown beginning at time t0 . The interval to t : T1 clearly

contains much less information about e(t) than does the interval t o ! t ! T 2 .

It is possible that any action taken to minimize the integral square error

over the sma!ler interval would have an adverse affect on J evaluated for the

the longer interval. However, if the input v(t) and plant dynamics vary in

a completely unpredictable fashion, the error will behave likewise and one

cannot know a priori whether a. given value of T is sufficiently large or not. j
Consequently, to justify this approach it is assumed that v(t) and the

plant operating conditions are relatively constant over the integration I

I
4-10
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e (t)

t

to T, T2

Figure 4.2-1 Possible LItegration Intervals, to t <

and to : t : T2, for Evaluating the
Integral Squar 3 Error

interval. * We also assume the adaptive controller will succeed in forc-

ing the compensated system to follow the reference model fairly closely

so that most of the significant variation in e(t) occurs in a period of time

whose :Lgth is approximately equal to the settling time, Tm, of the

reference model. These considerations lead to the conclusion that T should

satisfy

T > t m  (4.2-4)

Because the dependence of J upon controller gains is ,int iiown

exactiy at any time t, it cannot be minimized directly. Instead, an iterative

real time procedure, analogous to the classical gradient method described

above, is used to find the optimum controller. The rationale for this

technique is that small adjustments in the adaptive gains can be calculated

to reduce the value of the performance index at successive steps, even

Another possible assumption is that the input and plant dynamics vary
randomly within the interval t !c X c t + T so that J is a good performance
measure in an average sense (Ref. 47). This is not very characteristic
of missile behavior, however.

4-11
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though its exact minimum cannot be determined. For example, consider

a desired adjustment, 6k, in a controller parameter k, calcilated accord-

ing to

-k - "4.2-5) j
where a is a positive constant which controls the size of the step in the I
negative gradient direction. (For purposes of exposition, only one adap-

tive gain is considered.) If ot is sufficiently small and (bJ/bk) is known

approximately, a change in k, given by

k - k+Ak

should produce a lower value of the performance index. The distinctions

among various gradient parameter adaptive control techniques are pri-

marily in the rwthods used to calculate Ak and to increment k.

Before discussing specific methods, something more should be

said about the value of T in Eq. (4.2-1) and of a in Eq. (4.2-5). The

question arises, "Is there any practical i ,.er bound upon T?" The an-

swer partially lies in the convergence properties of steepest descent

methods; their convergence rate is usually Cefined by the number of gra- I
dient steps required to get acceptably close to the minimum of J. In the

gain adjustment algorithms described in subsequent sections, each step J
requires a period of time equal to T to determine the value of Ak. If n

steps are necessary for convergence, the total time requires is nT seconds. {

In addition, the integration interval should be short so that plant parameters

and input signals do not change appreciably within an integration interval. j
Hence, given that an increment Ak is to be cAculated over an interval of

length T, the latter should be as small as possible consistent with condition

(4.2-4); consequently one tries to achieve the condition, T a r m .

4-12
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*The choice of a in Eq. (4.2-5) is always a matter of judgement

in a gradient method. Too large a value can lead to divergence from the

minimum of J and instability of the adaptive control system (see Fig. 2.3-4);

too small a value leads to slow convergence. As we shall see subsequently,

the methods used to instrument Eq. (4.2-5) can place additional restrictions

upon Ak and hence also upon a. Typically a is large enough so that several

intervals of length T are required to achieve the desired change in the adap-

tive gain. Consequently, the adaptation time, T (time required for the

controller gains to settle close to their terminal values) is significantly

longer than T and Tm" More will be said in Section 4.2.6 about the con-

vergence properties of gradient methods.

4.2.1 The M. I.T. Gradient Rule

Gradient tchniques of adaptive control (Refs. 40-44) are exem-

plified by the method developed at M. I.T. by Osburn, et al. (Refs. 40,41)I

in the early 1960's. In this type of PACS, adaptation is achieved by

adjusting feedback gains in a controller to reduce some measure of error I
between the system and model outputs. A fairly general situation* can be

described in terms of the system equations for Fig. 4.1-1,

A(t) = Ax(t) + bu(t)

u(t) = v(t) - r(t)

y(t) = cT x(t)

r(t) = h(t)T x(t) (4.2-6)

,
This is not intended to represent all possible controller structures. One

could add filters with their own dynamics and adjusable parameters in the
various feedback paths. These equations are sufficiintly representative to
illustrate the control techniques described in the following sections.
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where v(t) is a command input, h(t) is a set of feedback gains to be adjusted f
adaptively,* and A and b contain unknown system parameters. In designing

the adaptive controller, A and b are assumed constant. It is also im-

plicitly assumed that the entire state x(t) can be readily measured or esti-

mated; if this is not the case, those gains corresponding to the unknown

variables are set equal to zero. The reference model for desired system

behavior is linear and time-invariant, described by

X'(t) = A x (t) + b v(t)

Ym(t) = cxW(t) (4.2-7)

and the scalar output error signal is

e(t) = y(t) - ym(t) (4.2-8)

For convenience of exposition the model and plant are chosen to have the

same dimension; this is not a necessary restriction.

The adaptation procedure is motivated by the desire to assign

a fixed value to dhe feedback gains, h, so that a performance index havini

the form of Eq. (4.2-1) is made as small as possible. Now the exact

dependence of J upon a fixed h is not known because some of the system

parameters are unknown. Therefore, starting with an initial value,

h(to ) at t = to, a change Ah(t o ) is to be calculated so that

ordero'+ h < J [h(to)] (4. 2-9)

More generally, it is desirable to multiply v(t) by an adaptive gain k(t)
in order to null the steady state output error to a constant input. This is
done in Chapter 8 dealing with applications but is omitted here to
simplify the discussion.
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As suggested by Eq. (4.2-5), it is desired that each component, Ahi, of

Ah be given by a gradient algorithm,

t +T
0

=~o 1 b hI . Let e (t] dt (4. 2-10)
1 h~t0) to I~oI I

where

Le(t ) _L rL[e (f
e6e

4 .e(t) (4.2-11)

1 ~ ~ ~ ~ 0 __________ k__The quantity a i is a positive constant,* hereafter referred to as an adapta-

tion gain (distinct from the adaptive gains, h), which determines the size of

the gradient step. If Ahi (to) can be calculated, presumably gain incre-

ments corresponding to successive intervals - - t. t' t j+1 -- of length T

seconds can also be determined, permitting a sequence of gradient steps

ttj+l

Ahi(tj) =-aiS [Le(t) ehi.(t)] dt; j = 1,2,...

tj h(t)

In order that the gain adjustment be accomplished in analog

fashion, Osburn (Ref. 40) suggests that hi(t) be continuously corrected

according to**

For a true vector gradient algorithm, all the ot's are equal; here
we allow for the possibility of different values.

,Aternative methods which have some conceptual advatages are

suggested in Appendix C and Section 4.2.2.
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(t) -o L (t) eh.(t) (4.2-12) 11e

Consequently it follows that if we define I
t +Tt° 0Se

Ah i  L eh.(t) dt (4.2-13)
to 1 1

then, by Osburn's method, J
h,(to+T) = hi (to)1+A (4.2-14) I

The above procedure for calculating the change in gai is dif-
ferent from that prescribed in Eq. (4.2-10) where hi(t) is held constant

over the integration interval. It is desired that Ah i - Ah-. To the extent

that this condition holds, the adjustment rule given by Eq. (4.2-12) for

each adaptive gain approximates a gradient procedure. Restrictions on its

validity will be described presently, after outlining a mechanization pro,-

cedure for Eq. (4.2-12).

To implement the adaptive controller the quantities, L e(t) and

eh (t), are required. For the purpose of the ensuing discussion choose L(e)
as in Eq. (4.2-3) so that

L e(t) = e(t) (4.2-15)

To derive the weighting function, ehi(t), refer to Eqs. (4.2-6), (4.2-7) and

(4.2-8). By direct differentiation of e(t) with respect to hi, it follows that

T bx(t)ehi(t) = cT -=--eh - bhi

A Thi(t) (4.2-16) 1
4-16
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because the model dynamics are independent of the adaptive gains. A differen-

tial equation for the vector partial derivative in Eq. (4. 2-16) is obtained by

differentiating the first expression in Eq. (4.2- 6) with respect to hi, producing

hi ~t) = [A-b(t)T] x".(t)- bxi(t); ,o,

(t [A-ih1,..,n

xh (t)1  =0 (4.2-17)

t=t
0

The initial ccniditions are zero because x(t o ) is unaffected by a change in

hi at time to.

Equations (4.2-16) and (4.2-17) determine eh.(t) in terms of the

system parameters, A and b, which are unknown. Of course the whole

point of this discussion is to derive a control law that is -n dependent of

these quantities. In the M.I.T. method the assumption is nade that the

compensated system closely follows the model. This may ,e reasonable if

the umknown parameters are slowly varying with respect to the adaptation

time. Therefore, substitute Am and b for A and b in Eq. (4.2-17) to

obtain an approximation to x (t), denoted by -hi(t). Combining the result

with Eq. (4.2-16) producer

ae(t) cT(--h " -- - - it

(t) = Amh(t)-bmxi(t); _h(to) = 0. (4.2-18)

and

_Xhi~(t) a- h.(t) (4.2-19)

4-17
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Equations (4.2-12), (4.2-15) and (4.2-18) together describe the M.I.T.I

adaptive controller:

M. L T. Gradient Adaptive Controller Equations

f(t) = -cie (t) c h(t); i=1,..n

~(t) A ~ b) bx.(t); (to) 0; i 1,...,n (4.2-20)

The synthesis of the ACS for the system described by Eqs. (4.2-6), (4.2-7),1

and (4.2-8) is illustrated in Fig. 4.2-2. A more specific example of this

method is as follows:

WEIGHTING FUNCTION
GENERATORS''9

y tt

A(t x 00 + W (

YmAt)

Figure 4. 2-2 Application of the M. I. T. Parameter
Adjustment R~ule

4-18
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Example 4.2-1: M.I.T. Adaptive Controller for a First Order
System

Plant Equation

k(t) = ax(t) + u(t)

u(t) = -h(t) x(t) + v(t)

Reference Model Equation

*m(t) =amXm(t) + v(t)

Error Equation

e(t) = x(t) - x re (t)

Adaptive Controller

(t) = -ae(t) -h(t)

ae(t) = 6x(t) xh
ah h ht V )

xh(t) amxh(t) - x(t)

A functional block diagram of this system is given in Fig. 4.2-3. Note
especially the dynamics required to generate _Xh(t).

In Section 4.2. 6 the performance of gradient adaptive systems

is discussed in some detail. At this point we can make a few general

observations about the M. I. T. technique, based upon the structure of the

controller in Eq. (4.2-20) and some analysis provided in Appendix C.

The principal advantage of the M. I. T. method is that it is a sys-

tematic procedure for designing an adaptive control system that does not

4-19
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integration interval in Eq. (4.2-10), thereby initially increasing the

performance index and possibly causing instabiliLy.* Second, the method

used to generate the weighting function ehi(t) in Eq. (4. 2-12) may be

inaccurate unless the integration interval satisfies the condition, T >> Tm

Consequently plant parameters must be even more slowly varying than

pvw-viously assumed and the adaptation gains oi must be further restricted

in nagni'ade. If the system is constructed without consideration of these

factors -- e.g., if the c.'s are made very large and plant parameters are
1

known to vary widely over an interval of time comparable with the adapta-

tion time -- the system may still perform acceptably; however, its opera-

tion cannot then be justified on the basis of its likeness to a gradient

method. These observations imply that the Pdaptation time, being larger

than T, satisfies

Ta > T >> rm (4.2-21)

Hence the M.I.T. rule adapts slowly; i.e., the gains h. converge slowly

toward their best values, relative to the model response time.

To implement the M. I.T. method, it is observed from Fig. 4.2-2

that a set of signals, 3h (t), must be derived for each adaptive parameter,

h. To generate each Xhi(t), the controller must perform n integrations.

Consequently the order**of the adaptive controller increases by the

dimension n of the model state for every adaptive gain, thus adding to the

overall system complexity. For example, in an autopilot having three

measured state variables -- pitch rate, normal acceleration and control

surface deflection -- with three adaptive feedback gains, the order of the

controller is 12, 3 for the model itself and 9 for the adaptive gains.

*

See the footnote in Section 8.2. 3.
**

Order refers to the number of independent states required to
describe the entire adaptive controller.
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With respect to Lhe validity of Eq. (4.2-20), recall that it is

assumed the compensated system is always similar to the model. In any

situation where this assumption does not hold, the signals W(t) in Eas.
1

(4.2-18) and (4.2-19) may be inadequate approxi.nations to \h.(t). The

requirement that the system always be near the optimum configuration

tends to negate the basic philosophy of gradient methods (at least in

classical function minimization applications) which are historically useful

in heading toward the minimum of a function from a point far 'tway.

Another property of the controller which may discourage its use

in applications is its nonlinear structure (see Eqs. (4.2-6) and (4.2-20)).

This characteristic, which is common to all of the methods discussed in

Chapter 4, makes analysis of system behavior difficult. The effect of

nonlinearities is discussed more fully in Section 4.2.6.

In some situations the fact that the absence of a command input v(t)

prevents adaptation from occurring can be objectionable. When v(t) is identi-

cally zero, the output error is also generally zero and Eq. (4.2-20) indicates

that no adjustment is made to the adaptive gaTh in r'esponse to -olant p ?ram-

eter variations. During such a pel, -1 the iaLter might dri.9 suliciently so

that the adaptive system i: :. ,',,startailly different irom tt,-- moe. nother
harmful effect of this .,ort can be caused by the presence of noise at the

inputs to analog integrators used to implement the equations for h(t). With

no error signal, the adaptive gains could be driven in a random fashion to

the wrong values. Most of the adaptive techniques described in this Chapter

are subject, to these problems.

The variation of the adaptive gains produced by noise can be pre-

vented by usuiig digital integration techniques (Rer. 48). However, the

inability of the controller to compensate for changes in plant parameters

4-22
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when v(t) is small cannot be corrected without explicit identification of the

plant's ope.rating condition (see Section 6.3) or introduction of a "signal

adaptive technique" which adjusts the gains a. in Eq. (4.2-20) in response1

to changes in the level of v(t).* However, neither of these problems may

be important in tactical missiles where the command input, being a steer-

ing command, probably will not be zero for long periods of time.

The long adaptation time and hardware requirements associated

with the M. I. T. method seem to be its greatest disadvantages for purposes

of missile control. In a missile, parameters vary cuite ralidly, especially

while thrusting, and required response times are short, making it desirable

that the adaptive controller respond quickly. Volume and weight constraints

imposed on missile subsystems also inhibit the allowable complexity of the

control system. However, the gradient concept presented by Osburn has

motivated the discovery of related techniques which may be more suitable.

These are discussed in subsequent sections.

4.2.2 A Discrete Form of the M. I.T. Rule

It is noted in Appendix C that the restrictions on adaptation time

imposed by the analog imi:lementation of the M. I. T. rule may be alleviated

by discretely updating the adaptive gains and resetting the quantity _h (t) in

Eq. (4.2-20) to zero a. beginning of each integration interval associated

with the performance index. * " his procedure yields a more accurate mea-

sure of the gradient of the perfori, . nce index and it is mechanized by the

following set of equations:
*

A signal adaptive method for adjusting an adaptation algorithm is
suggested in Eq. (8.2-34).

See also the footnote discussion in Section 8.2. 3.
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Discrete Parameter Adjustment Algorithm

Ahi(t) = - ei [e(t)eh.(t) (tj) = 0; J=0,1.1 i= 1,.n1h h (tj)

h.i(t) =h(tY*) Ah (t' ) t i < t +
T

eh(t) = cT xh (t)
h.-h. - 1 (ti i

(t) (t)- b x.(t); = 0;

(4.2-22)

The implementation of the above equations is illustrated in

Fig. 4.2-4 for the system and model dynamics of Example 4.2-1. From

a practical point of view, the requirement for peri;fic sampling and up-

dating increases the computational requirements beye-cd those of the con-

tinuous rule.

The adaptation time T still tends to be large, satisfying
a

Ta > T t- Tm, although improvement is indicated over the condition ex-

pressed in Eq. (4.2-21). However, one must keep in mind that such im-

provement is related to the question "under what circumstances is the

M. I.T. rule approximately equivalent to a gradient procedure?" The

digital form of the algorithm implements the gradient step in Eq. (4.2-10)

exactly, to within the approximation made by substituting the model dynam-

ics into Eq. (4.2--17). However, it still does not have rapid convergence

characteristics. Thus one is led to seek simpler, more rapidly adapting

techniques.
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WEIGHTING FUNCTION
PLANT GENERATOR

I HOLD II I

SAMPLING PERIOD

rH L i X(t

[~ ... x,(t]

LZH

Figure 4.2-4 Dizcrete Form of Example 4.2-1

Discrete gain updating procedures have a) o been advocated for

the purpose of systematically determining the best ch ie of the gains o.

in Eq. (4.2-22) at each time t. (Refs. 45 and 46). Th.L enables one to beJ
more certain that a specific change in the adaptive gain v i11 improve the

performance over the next integration interval. Heretofore only heuristic

specifications have been given for these gains

In choosing each ai the question to be answered i., "llow far1!
should the set of gains h be adjusted in the gradient d .ectiun of the per-

formance index to achieve an intermediate minimum?" To illustrate,

suppose that J is a function of two adaptive parameters hI and h 2 . The

Such a system actually falls under the classification "Learning
System" defined in Chi.ter 2.
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function can be pictured as a surface iL three dimensions as shown in

Fig. 4. 2-5 with contours of constant values of J projected onto the param-

eter plane as illustrated in Fig. 4.2-C. StnAing at the point (hl(t0 ),

h2 (t0 )) in Fig. 4.2-6 and moving in the vector gradient direction (normal to

the constant cost contours) it is clear that a minimum in that direction is

achieved at the point (hl(tl), h2 (tl)). This determines the size of the first

gradient step. One continues in this manner +o the points (hl(t2 ), h2 (t2 )),

etc., until sufficiently close to the minimum. Although the cost is reduced

at vach step, convergence may still be slow, depending upon the shape of

the cost surface and the initial values of the adaptive gains. Moreover, the

gradient directions are only approximately known,

From the standpoint of implementation, the step size calculations

to determine the successive minima in the gradient direction described

above require more computation than previously described methods.

Limited published simulation results (Ref. 46) do not indicate substaitial

improvement in adaptation rate by the use of such a technique; its principal

value compared with conventional gradient algorithms is thait it more surely

adjusts the adaplive gains toward their best values.

4.2.3 A Relay Form of the M.I.T. Rule

An alternative adaptation algorithm (Refs. 41, 42) suggested by

the form of Eqs. (4.2-12) and (4.2-15) is

/ e(t) ( it)
lW~t = -aie(t) sign (t)) ]- a e(t) sign

1; x>0

sign(x) = 0 ; x = 0 (4.2-23)

-l ; x<0
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J (hi h 2

/ \OPTIMUM VALUE of(hph)]

Figure 4.2-5 Graph of J(hl, h2)

[h1 (t0),h2(t0)]J

f-4,(t1),hP(A)

Figure 4.2-6 Projection of J(h1 ,h2 ) on the hl-h2 Planej
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This gain adjusmient rule is mi' vea : the fact that the primary objec-

tive is to adjust ii. i a direction which improves pei-forma. This canI

be accomplished by making h. proportional tu i? ) witn an aigeL _ ;" siff'
1

determined by the weighting fumction, 6e(t),/ac)1,. A stalAity analy3fs of

one specific application of this design to a third order system has been
reported (Ref. 49).

I
The use of the relay form of the M.I.T. rule s illustrated in

Fig. 4.2-7 for the problem stated in Example 4.2-1. There is somre com-

putational advantage in taking the sign of the weighting f~wiction befor-

multiplying it by the error signal, as opposed to performing the analog

multiplication e(t) ehi(t) in Eq. (4. 2-12). However, the weighting function

must still be generated.

4.2.4 A Simplified Gradient Technique

The methods described in preceding sections, all of which are

variations on the M.I.T. parameter adjustment rule, require that the

quartities 5j1i(t) be generated for the adaptation algorithms given by

Eqs. (4.2-20), (4.2-22), and (4.2-23). It is desirable to have a procedure

that does not require these signals, because they are not generally avail-

able directly from the system plant or model. Such a technique can be

obtained by interpreting the performance index, J, (Eq. (4.2-1)) somewhat

differently. The approach used here is motivated by the work of Barron

(Ref. 12). The results obtained are similar to those given by Dressier

(Refs. 44, 51); however the derivation is considerably simpler. The

technique can also be viewed as a specific case of the methods proposed by

Donalson (Ref. 43).
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Because L depends explicitly upon e(t) which in turn depends explicitly

upon the state x(t) through Eq. (4.2-8), it follows that L(t)(N) contains

terms involving x(t) (N) Assume an N exists which is just large enough

so that L(t)(N) explicitly contains the adjustable gain h. That is, L(t)(N)

is a function of h. This is always possible because the differential equa- 1
tions for the state -- Eq. (4. 2-6) -- contain hi, unless the plant parameters

assume values such that the error and all its derivatives are independent I
of the adaptive gain. We tacitly assume the latter situation does not occur.

By the definition of N, no other terms in the expansion contain hi explicitly.

Now define Ah. as in Eq. (4.2-10), and substitute the expansion in Eq.
1

(4.2-24) for J, producing

t+Tto L (to)(N (T - to)N

Evaluation of the integral leads to

i(t°) - -ai 6hi  (N+1)! (4.2-26)

This result implies that the change Ahi(to) can be calculated at the begin-

ning of the integration interval, to the extent that the power series in

Eq. (4. 2-24) is a good approximation. This is not possible in the pre-

viously described gradient methods and permits a more convenient I
parameter adjustment algorithm.

To obtain an analog adaptive control law, compute hi continously

according to g
4
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6L(t)(N)
i(t) = - i _h.

1

A TN
= a. ,7.T 1).(4.2-27)

and update h.(t) continuously. If

SL(t)( N )
- constant

h.

over the integration interval, it follows from Eqs. ,4.92-26) and (4.2-27) that

t +T
0

Ahi= - h Alik' (4.2-28)
1 pi to 6h.

t1
0

To recognize the advantages of Eq. (4.2-27) for computing hi(t)
over Eq. (4.2-12), we need to compute BL(t)(N)/ h for the system in

Eqs. (4.2-6), (4.2-7), and (4.2-8). For the case

1 e2(t
L(e) =  e (t)

it follows that

bL[e(t)] (N ) =e(t) e(t)(N) (4.2-29)ahi hi

because from our definiticii of N in Eq. (4.2-? all derivatives of e(t) of

order less than N do not depend upon N hitv. Substiti,": <: of

Eq. (4.2-6) into Eqs. (4.2-27) and (4.2 prduces:
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I

i(t) = -B.e(t) cT x1 - bh i

x(t)(N) -AN-i bxi(t) 
1

-h

i
)

where N is the smallest positive integer* such that cT AN-i b 0. TheI

implementation of the above equation requires knowledge of the scalar

quantity c AN - 1 b which depends upoR the unlmown system parameters.

However in many cases its -1gebraic sisgm is lown a priori to be constant

over the expected range of parameter variations. Therefore it is con-

venient to define a new gain $i' by the re4tion

8= 0 i sign (cT A i)j

and to redefine the adaptation algorithm as:

Simplified Gradient Adaptive Controller Equations

I~i(t) = 8.' e(t) xi(t); i = 1, .,n (4.2-30)1' 1 1

The synthesis of this contruller is illustrated in Fig. 4.2-8. 1

Compare the form of Eq. (4.2-30) with that for the M.I.T. [
method in Eq. (4.2-20). The primary analytical distinction between the

two methods is that the weighting function X(hi(t) in Eq. (4. 2-20) is replaced j
by xi(t) in Eq. (4.2-30). With respect to the details of the derivation, the

It is assumed that N exists and has the same value over the entire range of
parameter variations. This condition holds for the applications treated in
this report,
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iz=Ax~bu X,(t W

hn-, (t
• • e(t)

VWt > MODEL y'(t)

iFigure 4o 2-8 Application of Simplified Gradient
, Parameter Adjustment Rule

requirement for knowledge of the algebraic sign of c T A N -1 b is less

burdensome than the need to approximate the dynamics in Eq. (4.2-17)

for the M. I. T. rule by those of the system model in Eq. (4. 2 -18). The

i differences in hardware requirements between the two systems are evi-

dent from comparison )f Figs. 4.2-2 and 4.2-8. The simplified gradient

method has the advantage that h i(t) is determined by signals, e(t) and x (t),

which are available from measurements upon the plant and the model,

The application of Eq. (4.2-30) to the first order system of

Example .. 2-1 is as follows:

~Eyample 4.2-2: Adaptive Contro of a First Order System

Plant Equation

k~)= a x(t) + u(t)

u(t) = -h(t) x(t) + v(t)
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Model Equation

mr(t) = a m xm(t) + v(t)

Error Equation

e(t) = x(t) - xm(t)

Adaptive Controller

h (t) = ge(t) x(t)

A functional block diagram of this system is prrivi-df in T.Fg, . 2-9: ,e
reader should compare this with Fig. 4.2-3, ncntug the absence of the I]

s-neal -h(t) and its associated weighting function eneraicr. j
Just as with the M.I.T. rule described in Section 4.2-1, certain

restricLtions apply to the simplified gradient method in order that it approxi-

tnate the gradient step defined in Eq. (4. 2-10). First of all, the length T

of the integration interval must be short enough so that the expansion of the

performance index in Eq. (4.2-24) is valid. This condition is analogous to

the requirement that the M.I.T. analog adjustment rule in Eq. (4.2-12)

adjust the adaptive gains in the right direction at the beginning of the inte-

gration interval associated with the performance index, On the other hand,

the integration interval must also be sufficiently large so that the perform-

aice mdex is a good measure of system performance; i.e. condition (4.2-4)

should be satisfied. If there is no value of T which satisfies both of these

requirements, the system may or may not respond acceptably; however its

behavior cannot be predicted from analogy with gradient methods.

The ,bvious conflict between the above competing specificationsI on the size of .he integration interval can be important in some
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S;"490

PLANT

V---------------t)
h(t) x(t) .

MODEL -

VW X,(t)

Figure 4.2-9 Example 4.2-2: Application of Simplified
Gradient Method to First Order System

applications. In designing a normal acceleration autopilot for a tactical

missile in Chapter 8, the use of this particular gradient method is initially

frustrated because the value of T required to satisfy condition (4.2-24) is,

too short. The resulting performance index is not a representative
measure of the error and the adaptation algorithm is unstable.

There are several advantages of the adaptation algorithm pro-

posed in this section relative to those gradient methods previously des-

cribed; these are:

See the footnote discussion in Section 8.2.3.
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0 The adaptive controller requires only the signals
e(t) and x(t) which are assumed available by
model, measurement upon the system plant and

* The parameter adjustment rule in Eq. (4.2-30)
requires a priori knowledge only about the sign
of the scalar quantity

T N-1
c A b.

This can often be inferred from the expected
range of parameter variations within the system.

& The adaptive gain, hi(t), responds somewhat
fastei t2 . apttion commands than it does in the
id. 1. T :-_.thod. This occurs because fii(t) is not
equal to zero at the start of an integration interval,
as it is in Eq. (4.2--20).

The most significant advantage is the ease of implementation. The response

characteristics of the simplified gradient method are analyzed in Section

4.2. 6, and a method is suggested in Section 4. 3 for improving its adapta-

tion speed. I

4.2.5 Parameter-Perturbation Gradient Techniques

For all of the gradient methods described so far, the parameter

adjustment rule prescribing hi(t) has been implemented using variables

either available in the plant and model or generated within the controller j
by use of additional dynamics. Implicit in these techniques is the assump-

tion that some a priori quantitative information is available about the plant.

For the M.I.T. method, Eq. (4.2-17) is approximated by Eq. (4.2-18),

assuming the compensated system closely follows the model. In the

simpler method of Section 4.2.4, the sign of the quantity c T AN - 1 b must
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be known for all operating conditions. Therefore in both cases implemen-

tation of the adaptation algorithm depends upon knowledge of system operat-

ing characteristics.

Alternatively, it is possible to mechanize a gradient gain adjust-

ment rule by "interrogating" the plant using a parameter-perturbation

technique to experimentally determine the signals required for the adaptive

controller. To outline the features of this approach, recall the

expressions

L(t)(N)
hi(t) = " _i h.

1

L(t)(N) - e(t) eh(t)(N) (4.2-31)bh. ah.
1 1

given in Eqs. (4.2-27) and (4.2-29) for the simplified gradient method in

Section 4.2.4. It is stipulated that e(t) (N) is known to be explicitly a func-

tion of the adaptive gains. Thus, conceptually one can determine

be(t)(N)/ hi experimentally by time-differentiating the error signal as often

as necessary, rapidly perturbing hi with a known increment 6hi, and cal-

culating the finite difference approximation,

ae(t)(N) e(t, h; + 6hi)(N) - e(t, hi)(N)

h -
(4.2-32)

from measurements of e(t, hi)(N) and e(t, hi + 8hi)(N). These differentiation

operations should be relatively distortionless in that their associated time

lag (incurred in any physical mechanization of a differentiator) ;hould be

much smaller than the system response time. At first, such a proposition
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may be alarming to anyone familiar with the evils of "perfect" differentia-

tion, especially in the case of many cascaded differentiations. However,

because this operation occurs in the adaptive loop, Eq. (4.2-32) can be

mechanized with little disturbing effect on the overall system.

To illustrate in simplified terms how such a system might be

designed consider the following example, using a first order system with

its plant described by a differential equation whose functional form is

essentially unknown.

Example 4.2.3 - Let the equations defining the plant, reference

model and error signal be given as folows:

Plant Equation

k(t) = f [x(t), u(t)]

u(t) = v(t) - h(t) x(t)

Model Equation

km(t) = am Xm (t) + v(t)

Error

e(t) = x(t) - xm(t)

The objective is to implement a gradient adaptation algorithm,
having the form of Eq. (4.2-31), for the single adaptive gain h(t). This is
to be accomplished assuming nothing is known about f(x, u) except that it
depends explicitly upon the control u(t), and hence also upon the adaptive
parameter, h,). Suppose h(t) is of the form

h(t) h 0o(t) + 6h(t)
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where h ok) and 5h(t) are respectively low frequency and high frequency
components of the adaptive gain and 6h(t) is a known perturbation signal.
If the latter has a small amplitude, at any instant of time the plant dif-
ferential equation is approximately given by

k(t) -! f "x(t); v(t)- ho(t) x(t )  + f-- )(4 2-3

L 0 J h 0(t)

The quantity ae(t)(N)/ h required for this exampie is given by

e(t)(N) _ t) _ (t) t ,
h h h- xh(t)

reflecting the facts that x (t) is independent of h and 6(t) is the lowest
order derivative which is explicitly a function of h. Regarding ho(t) as
approximately fixed, it is clear that *h(t) is approximately the coefficient
of the high frequency term 8h(t) in Eq. (4.2-33);

6f[x, v-hx]
h ho(t )

Now suppose one derives an estimate of A(t), denoted A(t), and

processes it to obtain a quantity *h(t),

t

A(X) u~kX) dX
1 ) 6h(X) 2 dX (4.2-34)

where r is a short interval whose value is to be specified presently. With
the assumption that (t) -(t) to first order in 6h, Eqs. (4.2-33) and

(4.2-34) yield

t fx,v-hox+ 6h(X) 6h(X) d

xh(t) 2h t (4.2-35)
x3 

t 6h(X) 2 dX~t-T
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If T is sufficiently small so that all quantities in Eq. (4.2-35) except 6h1 are
nearly constant over the integration interval and if 5h is periodic with zero
mean and a fundamental frequency much greater than 1/T, e.g.

6h(t) = E sin c; w>>

then Eq. (4.2-35) reduces to

A~ ( - h 2! * t
-ho

Hence xh(t) is the desired estimate of * (t). This procedure is a cor-
relation processing technique. It is chfracterized by the fact that the
numerator in Eq. (4.2-34) is a measure of the dependence of k(t) upon
6h(t). The multiplication and integration of these two variables divided
(normalized) by the integral square value of 6h(t) constitutes a correlation
operation; it is one technique that can be used to realize Eq. (4. 2-32).

Having an estimate, h,(t), of 6h(t) as required by Eq. (4,2-31),
we can design an adaptive controller described by the equations

(t) dx
dt

St (x) 5h(x) d

Xh(t) =t -T

t-T

h(t) = h (t) + 5h(t)

where B is small enough in magnitude so that I o(t) I is small with
respect to 011(t) I.
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In summary, the adaptive gain contains a low frequency com-
ponent ho(t) as ts principal part. A small amplitude, high frequency
unbiased signal 6h(t) is superimposed upon ho(t) to provide a means for
measuring (a(t)/bh) via Eq. (4.2-34). The higher -xs frequency, the less
disturbing effect the perturbation signal has upon the system's operation.
A block diagram illustrating te mechanization of the controlier is given
in Fig. 4.2-10. The net result is an approximate realization of the gra-
dient algorithm in Eq. (4.2-31), the only prior knowledge required being
that f [x, u] in the plant equation depends explicitly upon the adaptive gain;
i. e., the system is known to be first order.

The differentiation operation required to obta in x(t) must have
sufficient bandwidth to recover the contribution of 6h(t) to :(t) in Eq.
(4.2-33); this will also tend to amplify any noise contained in the measure-
ment of x(t). However, the integration of Xh(t) to obtain ho(t) in the adap-
tive controller achieves considerable smoothing; also extremely high
amplitude noise can be "clipped" with saturating devices. For example,
as noted previously in Section 4.2-3, one may obtain satisfactory control
if h(t) is given by

ho(t) = -ae(t) sign %(t) ]

This form of control law can be effectively implemented by addition of
appropriate relays in the diagram of Fig. 4.2-10.

With respect to the above example, special notice should be

taken of the following features that have general implications for parameter-

perturbation techniques.

* Considerable auxiliary circuitry is required to
determine !h(t); in particular, this includes the
introduction of a test signal 6h(t), accurate dif-
ferentiation, and a correlation processing unit.

Where there is more than one adaptive parameter,
the associated perturbation signals must be
independent or "orthogonalt ' in some sense so
their effects on the error signal can be separated.

0 The system design requires knowledge only of the
order of the system, i.e. the value of N inEq. (4. 2-31).
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UNKNOWN R-5$2
DYNAtAI 5

u(t) -(t)

I TEST SIGNAL
GRADIENT ADAPTATION ALGORITHM GENERATOR

4 x(t) I J (l):t Son wt

N~t) + " I CORRELATION PROCESSING UNIT

II

h. W DfLA
I II X(t)

fI t, It)d

MODEL 6 0(t)
' --.-------------- 1

Figure 4.2-10 Example 4.2-3: Paramneter Perturbation
Gradient Method

An examl.le of a device using a parameter perturbation technique

is the Adaptronics "Se1-Organizin,; ContrciAer (S00)." (Refs. 12, 52-59).

This approach can be used in varicus system configurations, one of which

(Ref. 59, Fig. 3.3, Configuration B and also Ref. 57, Fig. 3) has a design
,

philosophy analogous to that described in this section. The instrumenta- I
tion used in the Adaptronics unit to accomplish the tasks suggested by

Eq. (4.2-32) is considerably different than that illustrated in Fig. 4.2-10;

however the functional operations required are similar. Specifically:

The so-called series mode of the SOC (Ref. 52, po 57 arnd Ref. 59,
Configuration A, Fig. 3.3) is better described as a learning system
(See Section 2.3.2) in the terminology used in this report.
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0 Independent high frequency noise sources are used
to perturb the adaptive parameters (Barron reports
this method is better than using deterministic sig-
nals such as sinusoids (Ref. 57)).

* Accurate differentiation of the error signal is re-
quired with associated correlation detection cir-
cuitry to determine the effects of the parameter
perturbations on the performance.

0 Only knowledge of the order of the system is re-
quired to design the controller.

With respect to control of missiles, an important question seems

to be whether so little is known about the airframe dynamics that the capa-

bility of a parameter perturbation method is necessary, in view of the

relatively extensive circuitry requirements. If an important sensitivity

factor, e. g., the control moment effectiveness, should switch sig during

flight because of a shift in the center of gravity, such a method may be

quite beneficial. On the other hand, if the key quantit;es such as cT AN - 1 b

in Eq. (4.2-30) have known constant sign throughout the flight (as is the

case with the trajectory data used for the applications in Chapters 8, 9, and

10), a parameter perturbation technique may not be required. In general

it seems desirable to use a design procedure that effectively utilizes all of

the a priori information available about the missile airframe.

Another perturbation signal method (Ref. 60) which has been

advocated for use with gradient adaptation algorithms in stochastic adap-

tive control systems* employs only a single external signal to determine all

the weighting functions, be/6hi, i = 1, .. ,n, used in the M.I.T. gain adjustment

rule. This teclhnique could no doubt be adapted for deterministic systems.

However, in order to work well, the perturbation signal must be at a low

See Ref. 61 for a general discussion of stochastic adaptive systems.
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'requency with respe t to the system bandwidth and the resulting adapta-

tion time is longer thr, for applicaions where the weighting functions are

immediately available.

In this report, emphasis is placed upon those aspects of gra-

dient methods which are independent of whether a parameter perturba-

tion capability is required in the adaptive control system. In particular,

for the methods discussed in Chapter 4, we are interested in improving

the convergence rate at which adaptive gains approach optimum values;

various means for accompishing this goal are described subsequently.

If it is determined in some particular application that a parameter per-

turbation approach is best, techniques for reducing adaptation time can

still be applied.

4.2.6 Performance of Gradient Methods

All 3f the gradient methods discussed in preceding sections are

based upon the objective of adjusting a set of parameters h to minimize a

performance index,

t+T

J = T L[(r)] dr (4.2-36)

t

subject to the equations of motion, e.g., Eqs. (4.2-6), (4.2-7), and (4.2-8).

Consequently, for a given command input v(t), J is a function of t and h.

Various algorithms have been proposed for adjusting the adaptive gains

(e.g., Eqs. (4.2-20) and (4.2-30)) based upon the concept of continuously

changing them in a direction that reduces the cost, i.e., in the direction of

the negative gradient of J. However, this rather heuristic design
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procedure does not permit one to predict, with any degree cf certainty,

how well the resulting adaptive control system will actually perform.

Qualitative statements can be made about various response measures,

3such as adaptation time, which may hold if the system work. well. How-

ever the equations of motion for the closed loop adaptive system might be

basically unstable, in which case convergence of the adaptive gains will

not be attained. Censequently, it is natural to ask: "How well does a

s:; ,cific adaptation algorithm perform? Do the varying parameters h(t)

actually achieve optimum values? Is the adaptive system stable ?"

Considerable effort has been made to answer thes;c olestions, but all

attempts have fallen short of complete success (Refs. 36, 43-47, 49, 50,

62, 64). It is useful to point out why the determination of convergence

properties for gradient methods is a difficult task.

If the performance index in Eq. (4.2-36) is time-invariant and

if the various so-called gradient adaptive algorithms closely approximate

a true gradient procedure, conditions for their convergence can be esta-

blished based upon certain a. sumptions about the shape of the surface,

J(h) = constant

This is the context of material presented in Refs. 36, 46, and 63. However,

e(t) in Eq. (4.2-36) is a functional of the changing command input v(t) and

the time rarying system parameters; furthermore time appears in the

limits of integration for J. Thus j depends upon time as well as the adap-

tive gains. Furthermore, in Sections 4.2.1 and 4.2.4 we have noted that

the analog adjustment algorithms bave certain theoretical defects vis-a-vis

true gradient methods. Consequently most of the mathematical properties

of gradient methods applied to minimizing functions of parameters are only

heuristically applicable to gradient-adaptive systems.
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One suggestion for avoiding a time-varying performance index

has been offered by Chang (Ref. 47). This approach is to treat the input

v(Wl and the plant variations as ranetom processes and to minimize the

expected value of J over the ensemble of their possible time histories.

However, the associated requisite statistical properties -- stationarity

and randomness -- are not typical of the missile application.

By using a discrete parameter adjustment rule (see Section

4.2-2), Pearson (Ref. 45) establishes conditions for which an improve-

ment in performance is obtained at each stage, although convergence

cannot always be guaranteed. A similar method is proposed by Winsor

(Ref. 47).

James and Hagen (Refs. 49 and 62) attack the question of con-

vergence directly by linearizing the nonlinear gradient ACS equations

about some operating condition and studying local stability properties of

the linearized equations of motion. This technique bypasses questions

about improvement in the perfcrmance index. It directly analyzes the

adaptive controller, represented by expressions such as Eq. (4.2-30),

without considerng the gradient arguments used to justify its design.

Because the system is nonlinear only local behavior (behavior in the vicinity

of an assumed operatihg point) can be studied. Ideally one would prefer to

have information about stability in the large or global stability, especially

when large departures from an equilibrium condition are likely as in an

accelerating missile.
iI

Liapunov methods (Refs. 44 and 50) have been used to determine

stability properties that do not depend upon linearization of the equations of

motion. However these results also apply only for a restricted region of

system opt ration.
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Because of the limitations noted in the above methods for ana-

lyzing gradient-adaptive systems, the characteristics of various ACS

designs described in preceding s~ctions cannot be completely predicted

analytica-lly in the presence of realistic variations in command input and

system parameters. Nevertheless, valuable insight may be gained about

system operation by assuming some particular set of operating conditions

and investigating local behavior. A stability analysis using linearization

methods appears to be the most systematic procedure for this purpose.

Furthermore, such an approach suggests compensation techniques for

improving the convergeunce rate of the parameter adjustment mechanism

(Ref. 62). This point of view is developed here for analyzing the perform-

ance of gradient-adaptive systems.

The concept of convergence most appropriate for describing a

PACS is that of stability. Using stability theory, one can sometimes

determine conditions for which the state variables in a given control

system remain bounded or converge to an equilibrium sAution. In an

adaptive system, the state includes the adaptive gains with any associated

dynamics plus the state :nariables of both the system reference model

and plant.

Various definitions of stability and related theorems, especially

those attributed to Liapunov, have been extensively documented and applied

to control system design problems for several years (see Refs. 64-70 for

a representative sample of this literature). This theory is specifically con-

cerned with the asymptotic behavior of the solution of a set of differential

equations (i.e., the state of a dynamical system) as time approaches in-

finity. To make our discussion reasonably self-contained, a brief sum-

mary of the results used in this and subseqaent sections is provided in

Appendix D.
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To investigate the stability properties of a gradient type,

parameter adaptive system, a convenient sequence of steps is:

a Design the PACS.

* Determine an approximate solution for the
states of the system, assuming the plant
parameters and command input are constant
or vary in a regular (e.g., periodic) manner.

* Analyze the system stability properties about
the approximate solution.

To illustrate the application of this procedure, we consider the equations

associated with the parameter adjustment rule in Section 4.2.4.

Design the PACS - The equations of motion associated with the

simplified gradient method for our multiparameter example (Eqs. (4.2-6)

and (4.2-30)) are repeated here for convenience,

i(t) =(A-bh()T ) x(t) + bvr(t)

Sr(t) = Am x m(t) +b v(t)

i(t) = c [(t)- xm(t)] xi(t), i = 1,2,.. ,n (4.2-37)

where A and b are taker as constants and the 0', indexed on i, are a set of

n fixed adaptation gains selected by the designer. The latter are to be dis-

tinguished frow the adaptive gains, h(t). The algebraic signs of the i are
T N-1

identical with the sign of the quantity c A b. The output error signal

is defined by

e(t) = cT (x(t) - (t))  (4.2-38)
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Determine an Approximate So!ution - Eq. (4.2-37) is nonlinear;

it may be conveniently simplified if we make the identifications

h(t) = h o + 6h(t)

x(t) = xm(t) + 6x() (4.2-39)

and linearize about h and x m (t). For the linearizations to be valid, 6x(t)

and 6h(t) should be small. At this stage x m(t) is known from Eq. (4.2-37)

but h is not; we shall make some quantitative assumptions about the iatter
-- 0

presently. Substitution of Eq. (4.2-39) into Eq. (4.2-37) with the definitions

AA = A-bh T - A ; Ab = b-b

0 m

0 00

S 2

B ' = - . . .

* 0

0 0 0'
n

produces*

linear terms forcing terms nonlinear terms

Wit) A-bhT 'bx (t 6x(t) IF 1A xK)-b 6h(t) 6x(t)
jI -- m I t - -M

6() B'x (t c I I [] 6h(t) [ ]0 v(t) B'6x(t c xt--.t- . m.. M J 0

(4.2-40)

The notation [0] denotes a matrix with all its elements zero; 0 denotes
a column vector with all elements zero.
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Equation (4.2-40) is still exact; nov. we shall neglect the forcing; terms* and

analyze the local stability properties of the unforced nonlinear equations

about the equilibrium point -- 6x(t) = 0, 6h(t) = 0. This can be accom-

plished by considering only the linear dynamics,

t X(t)I--- (4.2-41)
A!(t) L6h(t)]

where A has the partitioned form

I 1'A121All A1

A2 2

Al 1  A-bh; A = -bx T (t)
-- o 012 -- m

A21 B'x m(t)c ; A22 : 0] (4.2-42)

From a theoretical point of view it is desirable that AA and Ab can be

made zero at each plant operating condition, for some choice of the adap-

tive gaino. Otherwise the equilibrium point of Eq. (4.2-40) is nonze7o

and is input d.:nendent.

No quantitative investigation can proceed until a representative

form of v(t) is specified and values are assumed for A, b and h . Conditions-- O

on the constant values of A, b, and h can be selected in various ways,
-- -O

depending upon the particular application at hand. For this discussion, we

shall suppose that all plant states can be estimated so that h can be chosen

The effect of the forcing terms in Eq. (4.2-40) is discussed in
Appendix E.
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arbitrarily, and we assume the plant is controllable (see Appendix A) so

that the compensated system can be assigned any desired set of closed loop

poles by proper choice of h, given A and b (Ref. 30). With this amount of

freedom in the controller, it is natural to choose h so that the closed loop-o
poles of the reference model and the compensated plant are equal. The

rationale is that the closed loop poles of the ACS and the reference model

should be close together, if not necessarily coincident, when the adaptive

mechanism is working satji-factorily. This condition can be stated more

compactly as

Det Is-A] = Det Is-A+bh TJ (4.2-43)

where s is the independent variable of the Laplace transform. Note, how-

ever, that the gains cannot generally be selected to make the matrices A

and A - bhT identical. (We are explicitly neglecting this fact by omitting--- 0
consideration of the forcing terms in Eq. (4.2-40).)

Analyze the Local Stability Properties - If the input v(t) is

periodic; e.g.,

v(t) = V cos Wt

with constant amplitude and frequency then A(t) is also periodic in the

steady state. For periodic linearized equations, Floquet theory can be

applied to determine the global stability properties of Eq. (4. 2-41) and

thereby often deduce the local stability properties of the corresponding

nonlinear system (see Sections D. 3 and D.4). The simplest such form of

v(t), v(t) = constant, is the one we shall consider here; the corresponding

equilibrium states of x m(t) and A(t) are also constants. In this case local

stability properties of Eq. (4.2-40) are conventionally determined by the
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eigenvalues of A; however, the nature of this particular nonlinear system

prevents our using classical stability theorems.

The principal technical difficulty in applying the results of

Section D. 4 to the matrix A is that it has eigenvalues equal to zero. This

is evident because the columns of the matrix A12 are all equal to a scalar-12

multiple of b and A2 2 is identically zero. Therefore the columns of the

matrix

A ~-bxT[ iA;LZ: TJi

are all scalar mutliples of each other. If there is more than one such

column, i. e., if there is more than one adaptive gain, X has at least one

zero eigenvalue and the results of Section D. 4 are not applicable. To infer

local asymptotic stability for t.e nonlinear system, the eigenvalues of A

must all have strictly negative real parts (Ref. 71). When some of them

have zero real parts, the system may be either asymptotically stable,

stable, or unstable, and its stability properties can be determined only by

investigating the nonlinear terms in the Equations of motion.

Apparently no one has worried, heretofore, about the above

mentioned problem in applying linearization techniques to Eq. (4.2-40);

however, it is an important mathematical question. One can easily find

different sets of nonlinear differential equations, whose linearized por-

tions 1;ave somc eigenvalues on the imaginary axis of the complex plane I
and whose stabiL'y properties are quite different, viz.,

k(t) = x(t)3  (4. 2-44a)

k(t) = -,r(t) 3  (4. 2-44b)
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f Considering both equations as linearized about x = 0 each has its asso-

ciated eigenvalue at the origin. However, the solution to Eq. (4.2-44a)

is unstable and that for Eq. (4. 2-44b) is asymptotically stable. Hence

the nonlinear terms entirely determine the local system behavior.

Equation (4.2-40) can be shown to be locally stable, assuming

the nonzero eigenvalues of X have strictly negative real parts; the details

of the proof are supplied in Appendix E. Furthermore, the incremental

plant states, 6x(t), exponentially approach zero at a rate determined by

the real parts of the nonzero eigenvalues of .. The incremental adaptive

gains, 6h(t), approach a set of possible constant values because there is

generally no unique value of h that renders the steady state value of 6x(t)

equal to zero for a constant v(t).

The above lengthy preliminary remarks provide justification for

our performing a classical frequency domain analysis of Eq. (4. 2-41).

The equations are stable, and the values of the left-half-plane closed loop

poles give an indication of system adaptation time, i.e., the time re-

quired for 6x(t) to become sufficiently small. The main quantity of interest

is the error, e(t), given by

e(t) = cT 6x(t) (4.2-45)

Using the partitioned notation for A and denoting Laplace transforms of

6x(t) and e(t) by AX(s) and E(s), respectively, one obtains

E (s) = c T s - All) A 12 A2 1 A&X(s) (s (4. 2-46)

through manipulation of Eqs. (4.2-41) and (4.2-45). Substituting into

Eq. (4. 2-46) for A1 2 and A21 from Eq. (4.2-42) and using the definition
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Go(s) T / - \l _ b (4.2-47)

the error equation becomes

1!
E(s) = m'x~ G0(s) E(s) (1) (4.2-48)j

I
where Xmi is the ith component of x.

Equation (4.2-48) is a frequency domain representation of a

linear, time-invariant, homogeneous differential equation for the error.

Recall that each Xmi is considered constant and each adaptation gain i'

is specified by the designer for the gradient adaptation algorithm. The
quantity G (s) is just the transfer function between the command input v(t)

and the plant output y(t), including the fixed feedback gains h ° in the con-
00troller. The poles of Go0(s) are assumed to be those of the model (see

Eq. (4.2-43)). A block diagram illustrating Eq. (4.2-48) as a feedback

control system is given in Fig. 4.2-11.
T0(s)" '

INPUT:O _ E (s)

i ~A X M, I Oot l G. (s
f I

Figure 4.2-11 Block Diagram of Error
Equation, Eq. (4.2-48)
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The local stability properties of e(t) are determined by the

poles of the transfer function Te (s) in Fig. 4.2-11;

n 2S (A. =-A"
s+kG(s) e i= m

These results are similar to those obtained by Hagen (Ref. 62) for specific

examples using the M. I.T. gradient algorithm. The only influence one

has over system stability characteristics, given the controller structure in

Eq. (4.2-37), is through the gains $i'(i = 1, .. ,n) which contribute to the

adaptive loop gain ke .

An e amination of the root locus for the denominator of T (s) as
e

a function of k eprovides an indication of the net effect of changes in any

fli. First of all, the locus is a function of plant operating conditions. The

poles of Go(s) are assumed to be made equal to the poles of thc' reference

model by the steady state adaptive gains, h; however its zeros generally

depend upon plant parameter values. This is a consequ3nce of the fact

that AA and Ab in Eq. (4.2-40) are usually not zero. Also, the steady

state value of each xmi is affected by changes in the input signal v(t),

resulting in a changing loop gain. Both of these effects may arise in mis-

sile autopilots (see Chapter 8). It is interesting to note the effects of

sens t ivity to plant variations are not totally eliminated in this adaptive

tec.ique; they are simply transferred to the adapti? - loop. In designing

the system, values for the gains pi should be selected which provide satis-

factory adaptation characteristics for all operating conditions, if possible.

A second point about Te(s) is that for nonzero values of the
Xmi' s, each p i has the same qualitative effect on k as does any other

because ke depends linearly upon these quantities. The full range of
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variation in k can be achieved by setting each adaptation gain to zero2is nonzero. In other words, the Bis
except one, e whose coefficient xmj o

are not independent in their effect upon local stability. The fact that the

adaptation gains are dependent in relation to ke might suggest setting all

xc-,Ct one o ' t zero for purposes of ,.1 fymig the adaptive con-

troller. indeed, the local stability characteristics near a steady state

solution of Eq. (4.2-40) would be the same, for a specified value of ke, as

with any other choice of the Bi s. However, we must also consider the!

response of the adaptive system to large variations in plant parameters.

In order that the system follow the model closely for large departures

from steady state, all the adaptation gains should be nonzero to provide

control over each h..

No complete prescription is available for choosing appropriate

values of the f Is relative to one another. As a first try, they might be
1

selected so that each contributes equally to ke; i.e., require

x  g (4.2-50)
1 m.

where g is a specified constant and Xmi -- i = 1,.. ,n -- are the expected

steady state levels of the reference model state variables. The result is

I= --- ; k = ng (4.2-51)
Xm.

1

where n is the number of adaptive gains. The value of g can be chosen to
specify the location of the poles uf Te (s) by a root locus analysis. From

knowledge of the systenm closed loop poles, the adaptation time can be

inferred. It is roughly two or three times longer than the inverse of

the magnitude of the real part of the dominant pole (or pole pair).
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The procedure outlined above for choosing adaptation gains in

the adaptive controller and analyzing its local stability properties is rea-

sonably systematc, being partially determined by a conventional root-

locus design methou. To illustrate its application, consider the following

example.

Example 4.2-4 - For this example we use the first order sys-
tem in Example 4.2-2 (Fig, 4.2-9) whose plant, model, and adaptive gain
equations of motion are given by

k(t) = [a - h(t)1 x(t) + v(t)

km(t) = amXm(t) + v(t)

A(t)= Pe(t) x(t)

e(t) = x(t) - Xm(t)

The local dynamics of the error are readily obtained from Eqs. (4.2-47)

and (4.2-48) by making the identifications

c = 1; b 1

Al = a - ho = am

N =1; B'=

Thus

E(s) = 2 E(s)

s (S - am)

The root locus for the error equation as a function of $> 0 is given in
Fig. 4.2-12. Observe that as the gain increases the system passes ftom
an overdamped condition to a more oscillatory one with the maximum
amount of damping being obtained at
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Figure 4.2-12 Root Locus for Example. 4.2-4

a
a- 2

Consequently, with respect to overall system performance, this high gain
adaptive J.oop suffers from the same tendencies toward instability as does
an ordirp F, nonadaptive, high gain control system.

It is also evident that the adaptation time Ta is always greater
than the model time constant, rmi,

"m la mi

Roughly speaking,
2

T 2 4T
a - - 4 m
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This agrees with the qualitative statements about gradient methods made
in Section 4.2.

For the gradient method analyzed in this section, the locus of

closed loop poles for the adaptive loop in Fig. 4.2-11 behaves as in any

high gain control system, when the adaptation gains Bi are increased. In

many applications the system can become unstable. From the standpoint

of local stability, the designer effectively has control over only one

variable, namely ke, with which he can adjust the dynamics of the adaptive

loop. Perhaps if a more general adaptation algorithm could be devised,

more infuence could be exerted over system adaptation time. In Section

4. 3 a method for designing such a controller with the aid of techniques

described in this section is developed.

All of the discussion in this section has applied to adaptive sys-

tems with a single input and a single error signal. Systems having irultiple

inputs and error signals can be treated by the same analysis technique.

4.2.7 Decoupled Gradient Adaptation Algorithms

In a parameter adaptive control system with more than one adap-

tive gain, control systems designeis frequently try to achieve a decoupled

condition among various adaptive loops (Refs. 35, 57). Qualitatively speak-

ing, the concept of decoupling arises when there are several adaptive gains

hl,..,hn and se -eral significant error signals, el, .. , em. In such a situa-

tion it may happen that an individual error signal is primarily affected by a

particular subset of the gains. A concrete example is the lateral control of

an airframe (Ref. 35). In this application, the roll and yaw autopilot channels

have coupled dynamics but feedback gains h1 and h2 can be selected such

that h1 has primary control over roll rate and 12 has primary control over
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I
lateral acceleratioii. In making adaptive adjustments to h1 and h it is

desirable to change h1 only if an error in the roll channel behavior is

detected and to change h2 only in response to an error in the yaw channel.

Decoupling of this nature has been extensively described by

Barron (Refs. 57, 59) in association with the Adaptronics Self-Organizing

Controller. This device is described in Section 4.2-5 as being somewhat j
representative of a parameter perturbation type of gradient adaptation

technique. Our purpose is to indicate that the decoupling principle can be J
a;plied just as well to any gradient method.

Consider the same multidimensional system and model as in

Section 4.2.2 but with a vector error signal e(t) defined by*

k~t) A [A b hT(t)] x(t) + b v(t)

k* "(t) = Amxm(t) + b v(t) I

e(t) x(t) - m(t) (4.2-52)

where h(t) is a set f adaptive gains. Observe that

e(t W 6T[x(t) -xm W) (4.2-53)

where 8. is a vector containing all zeros except for the ith element 1
which is one. Define a set of performance indices (J,) by the

relations

The decoupling principle is more useful for systems having multiple
inputs; the development here is primarily for illustrative purposes.
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t+T

Ji e2(T)dr; i1,..,n (4.2-54)

t

and require that hi be adjusted to effect a reduction in Ji according to

J.
= i --.I i= I,. .,n (4.2-55)

6h1

Applying the same techniques used in Section 4.2-4 to obtain an analog

gain adjustment rule, one obtains the following decoupled gradient adapta-

tion algorithm from Eqs. (4.2-52) through (4.2-55):

hi(t) = p9' ei(t) x.(t) (4.2-56)

The quantity i is a design parameter specified by
1 --

i  sign ( 6 A > 0

The integer N. is the minimum order required of the Taylor Series

expansion for Ji, analogous to that given in Eq. (4.2-24), to insure that
T Ni-1

5. A b / 0. The resulting ACS is illustrated in Fig. 4. 2-13.

Notice that hi(t) varies only in response to the error e.(t); ioe.,

el(t) = 0 4 hi(t) = 0

C,)nsequently the adaptive gains are "decoupled," each being associated

with only one error signal. In systems where it is known from the form of

A and b that hi(t) primarily governs the behavior of xi(t) and has little

effect upon other sta!s, such a gain adjustment rule may be desirable.
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Figure 4.2-i3 Implementation of a Decoupled Gradient
Adaptation Algorithm

!

4.3 ACCELERATED GRADIENT PARAMETER

ADJUSTME NT ME THODS

In Section 4. 2.6 a liear analysis of a nonlinear, gradient adap-

tation algorithm indicates a need for more control over the linearized

adaptive loop poles than is provided by the gains 0,i' in Eq. (4.2-50). This I
is necessary to improve the response characteristics of the error signal.

Our purpose here is to suggest a linear compensation technique which can j
achieve this end using an approach motivated by Ref. 63.

In Eq. (4.2-37) the adaptation algorithm is given by I
f i(t) = e(t) xi(t); i = 1,..,n (4.3-1)

To obtain better adaptation properties, consider Plssible modifications to

this parameter adjustment rule. Perhaps the most natural approach is to

use linear compensation, such as:
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Accelerated Gradient Controller I

Ef(s) = Gc(s) E(s)

i(t) e e(t) X.() '.n(4.3-2)

i f

where E f(s) and E(s) denote the Laplace transforms of ef(t) and e(t). Thus

Eq. (4. 3-i) is altered by passing the error signal through a linear time-

invariant filter having a transfer function Gc (s) which is to be specified.

The implementation of the controller is illustrated in Fig. 4. 3-1 which

can be compared with Fig. 4.2-8.

The parameters which define Gc (s) can be selected by analyzing

their effect upon local system stability using the method described in

Section 4.2-6. To begin the stability analysis, the plant and model from

Eq. (4.2-37) and the new controller in Eq. (4.3-2) are linearized. The

details are omitted here because they are identical to those given pre-

viously; the resulting error equation is

Go0(s) G c(S)"
E(s) - -k e  s E(s)

n

k 2 (4.3-3)
e I m.i=l 1

Comparison with Eqs. (4.2-48) and (4.2-49) shows that the adaptive loop

in Fig. 4.2-11 is modified by the addition of Gc(s) in the feedback path, as

indicated in Fig. 4. 3-2. One expects that the added flexibility provided by

the compensation paramettirs permits the stability characteristics of the
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Figure 4. 3-1 Implementation of Accelerated Gradient Controller 1

E (s) II

Sk, GO l G (s) !

Figure 4.3-2 Block Diagram of Error Equation for
the Accelerated Gradient Controller

system to be improved over those obtained in Section 4.2.6. Con-

ventional root locus, complex plane methods are used to determine

Before illustrating the use of the above technique with an examtc-

ple, it is worth noting that other forms of the controller are possible. For j
instance,
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Accelerated Gradient Controller II

pi(t) =e(t) xi(t)

Wi(s) = Gc (s) Pi(s); i = 1,.., n

(t) = 'w.(t) (4.3-4)

where Pi(s) and Wi(s) denote Laplace transforms of pi(t) and wi(t). In this

case the product function, pi(t), is passed through the linear filter. The

linearized error equation associated with Eq. (4. 3-4) is identical with

Eq. (4.3-3); however the compensation is implemented differently as indi-

cated in Fig. 4.3-3. Observe that one filter Gc (s) is required for each

adaptive gain; therefore one might expect the mechanization in Fig. 4. 3-1to

be preferable. However, there may be exceptions to this conclusion. For

instance, if one decides that Gc (s) should have one zero and no poles, the

configuration in Fig. 4.3-1 is not realizable but that in Fig. 4.3-3 is, if

the zero is combined with the integrator in the adaptive loop. Consequently

it may be desirable to use either controller I or II, or a combination of the

1two, depending upon the application. The latter is a more general structure

which we include here for use in Chapter 8;

Accelerated Gradient Controller II

Ef(S) = Gcl(s) E(s)

Pi(t) ef(t) xi(t) i = n

Wi(s) = GC (s) Pi(s)

h.(t) = , w.(t) (4.3-5)
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r 4 \ y(t)

" MODEL L

Figure 4. 3-3 Implementation of Accelerated Gradient Algorithm II

where different linear filters G.1 (s) and Gc 2 (s) may be employed. If

Gc 2 (S) = 1, Eq. (4.3-5) reduces to Eq. (4.3-2); if Gc 1 (s) = 1, Eq. (4.3-4)

is obtained. The error equation corresponding to Eq. (4. 3-5) is
Go(S) (s)G Gc(S).

E(s) =-k cl 2  E(s) (4.3-6)

[ sI

It is emphasized that Eqs. (4. 3-2) and (4. 3-4) are equivalent

only in the sense of their associated linearized, time-invariant systems. I
If either time variations in xm(t) or nonlinearities are considered, the con-

trollers are not the same.

Now we illustrate the linear compensation technique with a

simple example:

Example 4.3-1 - The first order system of Examples 4.2-2
(Fig. 4. 2-8) and 4. 2-4 is modified by inserting compensation Gc(S) just
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before the integrator in the adaptive loop, as suggested in Fig. 4.3-3.
The resulting error equation is

E2 [ s)A ]E(s
E(s) I ~A s(s - am)

which shoul be compared with that bn example 4. 2-4; the only difference
is the term G (s). If C,((s ) takes the form

G0c (s) = s-zc Zc

where

z <a <0
c C

- 2
the locus of roots for the error equation as a function of loop gain, ke =iom,

is qualitatively illustrated in Fig. 4.3-4. By properly positioning zc in
the left-half-plane, a reasonably small system settling time can be achieved
for a moderate level of ke. The magnitude of the loop gain is controlled by B.
This behavior of the closed loop poles should be compared with Fig. 4.2-12
where only the gain is adjustable.

For this example the use of lead compensation in the adaptive
loop considerably improves the system's local stability properties. The
equations of motion for the complete ACS are

i(t) = (a - h(t)) x(t) + v(t)

cm (t) = amXm(t) + v(t)

h(t) = 0 (e(t) x(t) + w(t)]

v(t) = -e(t) x(t) zc

e(t) = x(t) - xM(',).

and its mechanization is illustrated in Fig. 4.3-5. The compensation zero
is combined with the adaptive loop integrator to achieve realizability.
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Figure 4. 3-4 Locus of Roots for Error Equation in
Example 4.3-1 as a Function of ke >0
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In applications where rapid adaptation is desirable, it appears

likely that the techniques described in this section can be applied with

better results than conventional gradient-adaptive systems. There are

some additional computational requirements imposed by the linear com-

pensator Gc(S). The latter is usually most economically located as indi-

cated in Fig. 4.3-1. Additional evaluation of the accelerated gradient

adaptive system is made in Chapter 8.

There is some question about whether an accelerated gradient

controller based upon a different gradient method than that described in

Section 4.2.4 might be more suitable than the technique described in this

section. In particular, this type of stability augmentation can just as well

be applied to the M.I.T. algorithm discussed in Section 4.2-1. This has

not been done here because of the greater computational complexity asso-

ciated with the MoI. T. method. However, the missile application con-

sidered in Section 8.2. 3 indicates that better control of a normal accelera-

tion autopilot may be achieved if a discrete gain updating procedure of the

type described in Section 4.2-2 is used, rather than an analog gain adjust-

ment rule. The reason for this conjecture is that the discrete method

more closely approximates the gradient of the p-rformance index with

respect to the plant parameters. The task of designing and evaluating a

discrete type of accelerated gradient algorithm is potentially a subject of

future investigation.

4.4 LIAPUNOV DESIGN METHODS

This section describes methods for designing adaptive control

systems which guarantee certain global stability properties by "building

them into" the controller. Section 4. 4. 1 presents the background and

fmdamental theory of the technique. An investigation of adaptation time,
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similar to that in Section 4.2.6, is provided in Section 4.4.2. In Section 1
4.4. 3 existing techniques are generalized to make them suitable for mis-

si le applications. A theoretical limitation that prevents use of this I
approach to compensate nonminimum phase systems, and the associated

implications for direct adaptive control of missile normal acceleration, I
are discussed in Section 4.4.4. i

4.4.1 Design Principles I

All of the adaptive control techniques considered in the preceding

;ections suffer from the fact that nothing general can be said about their

global stability properties, even with the simplifying assumption that plant I
parameters and input variables are all constant. The reason for this dif-

ficulty is that the adaptive systems are nonlinear and no general conditions I
for stability in nonlinear systems are known. The linearization techniques

described in Sections 4.2.0 and 4.3 can be applied to determine stability

properties in the vicinity of an equilibrium solution. However this is not

completely satisfactory for systems in which plant parameters are likely

to undergo large deviations from equilibrium conditions.

An alternative approach to the use of gradient methods for model

reference adaptive systems that can be applied in certain situations I
(Refs. 73-77), is to design a nonlinear adaptive controller for adjusting

feedback gains with the direct objective of making the differential equation I
for the output error e(t) globally asymptotically stable. In this case the

adaptive loop design is nc t based upon the objective of minimizing a per- I
formance index. Instead, a controller is synthesized by imposing the con-

dition f
lir e(t) = 0
t-4
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at the beginning of the design procedure. The technique used to accomplish

this task is derived from the stability theorems associated with the second

J method of Liapunov; these are summarized in Appendix D.

The synthesis procedure for adaptive systems using Liapunov

design techniques can be described qualitatively by the following steps:

Choose a reference model and controller configuration, define a Liapunov

function, and determine the adaptation algorithm. These procedures are

most easily explained by considering an illustrative example. The one

chosen here has also been discussed by Winsor (Ref. 72).

Choose a Reference Model and Controller Configuration - Let

the plant and controller structure be described by

A(t) = A x(t) + bu(t)

u(t) = v(t) - h(t) x(t) (4.4-1)

where h(t)T is a set of adaptive feedback gains. The equations of motion

for the reference model are

_ (t) Am x m(t) + bv(t) (4.4-2)

and a vector error signal is defined, by

e(t) = x(t) - xm(t)

Assume that A and b are constant and have the phase variable canonical

form (see Eq. (A-2) and Section 7.1.2)
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o 0 .. 0

0 0
0 0 1 0 1 0 0 0

Ab (4.4-3)
. . . . . 0 •

0 0 0 1 ~ 0

-a a 2  * -a n J 1

with all elements, ai, i = 1, .. , n, being unknown. The dynamical matrix

for the reference model is "stable" (all its eigenvalues have negative real

parts) and is given by

0 1 0.. 0

0 0 1 0. 0
A m b m = b (4.4-4)

0 0 .. 0 1

-a -a . -a
Lm I  m2  mn

These definitions represent a multidimensional system having the same

form as Eqs. (4.2-7) and (4.2-8) with a special structure assigned to A,

Am, b, and bm.

The design objective is to null the error signal regardless of the

behavior of the comaa input, v(t). To this end, we obtain a differential

equation for e(t) by subtracting Eqs. (4.4-1) and (4.4-2). The result after

some manipulation is

6(t) = Am e(t)+ [A-Am-bh(t)TI x(t) (4.4-5)
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In order to drive e(t) to zero for arbitrary v(t) there must exist a set of

constant values h for the feedback gains so that--e

jim [A -A m-bh(t) T] = 0 (4. 4-6)

h(t) - h- -e

Otherwise, for some input signal the state x(t) in Eq. (4.4-5) could "force"

the error to be nonzero. In other words, the controller should have the

capability to make the equations of motion for the system output variables

(2(t) in this case) identical with those for the reference model. This

characteristic is generally true of systems designed by Liapunov synthesis

techniques.

Define a Liapunov Function -- Associated with Eq. (4.4-5) are

two sets of state variables -- the eiements of e(t) and the quantities

zi(t) - a M.-ai -h.(t); i = 1, n (4.4-'7)
1

which are obtained by expandmig the bracketed term in Eq. (4.4-6) and

substituting from Eqs. (4.4 3) and (4.4-4). Note that a value of hi exists
1

for each i such that Eq. (4.4-6) is satisfied. An adaptation algorithm is

desired which nulls both e(t) and the vector

z W [z l M t) o . .. . .. Zn (t)] 
T

For this purpose choose a positive function of the state variables,

V[e(t), z(t)] > 0 ; x, z / 0

to serve as a candidate for a Liapunov function. If we can find am adjust-

ment rule for the adaptive gains such that
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V(t) 0 (4.4-8)

for all e(t) and z(t) along solutions of Eq. (4.4-5), then the stability f
theorems of Appendix D can be used to infer the asymptotic behavior of

e(t) and z(t). I
Our selection for V is /

n

V[e(t), z(t)] A e(t)T Q e(t) + i zi(t)2  (4.4-9)
i=1 I

where Q is a positive definite symmetric matrix, unspecified for the pre-

sent, and each constant, Xi, is greater than zero. The choice of V is ad hoe

in nature because there is no general systematic method for picking a

suitable Liapunov function. In any given application it may be chose from

the designer's experience or by trial and error. Usually one first thinks

of using a function that depends quadratically upon the state variable'- this

form is associated with the concepts of "power" and "energy". However,

the principal justification for the structure of Eq. (4.4-9) is that it leads to

a satisfactory criitroller design for the particular dynamical system under

investigation. f
Recognizing that the elements of A and b are assumed constant

but the feedback gains are time-varying, we differentiate Eq. (4.4-9) and

substitute from Eqs. (4.4-5) and (4.4-7) to obtain

([e(t), z(t)] = [e(t)TA + m~) (AQA e.~b) Q(t)
n

+_e(tQ[A (t )+(A -A .b h(t) X(t] -2 ~X z (t)i(tW
i=4-
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This expression can be put into a more convenient form by making the

definitions

a , . . . . . a I

T
a - .. a

am a1[a m n

"X, 0 0 G
A

0 x2 0 • 0

A

* . . . 0

[o 0
L0 • 0 n

q Qb (4.4-10)

and regrouping terms; the result is

4 (e(t), z(t)) = e(t)T (A mQ+QAm e(t)+ 2z(tTx(t)_ Te(t)-2 z_(tA it

(4.4-11)

Note that the vector q is the nth column of Q.

Determine the Adaptation Algorithm - The next step in the design

procedure is to seek conditions on fi(t) and Q which force V to satisfy

Eq. (4.4-8); i.e., cause V to be a Liapunov function. For the problem at

hand, Lhis is accomplished if

TATQ + QA m  = -P (4.4-12)
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and

A (t) = A 1 x(t) qT e(t) (4.4-13) 1
where P is any positive definite matrix chosen by the designer. It is imown I
(Ref. 65) that if Am is stable, as we have assumed, Eq. (4.4-12) yields a

positive definite matrix Q, as required by the definition of V. Substitution

of Eq. (4.4-12) and (4.4-13) into Eq. (4.4-11) produces

V(e(t), z(t)) = - e(t)T Pe(t) <0; e(t) / 0 (4.4-14)

Therefore V is in fact a Liapunov funct don for the system of differential i
equations consisting of Eqs. (4.4-5) and (4.4-13).

I
By application of Theorem 3 in Section D. 6 to the equations of

motion and the Liapunov function defined above, it follows that

lim e(t) = 0;
t-. -

Furthermore, this result is independent of the form of v(t). This is a I
considerably more powerful stability condition than is currently available

for gradient-adaptive systems. If v(t) is bounded, a condition which cer-

tainly holds for any physical application, it follows that x(t) is also bounded

and hence by Eq. (4.4-13)

lim h(t) = constant
t-4 co

However, note that there is no guarantee that the adaptive gains actually I
approach values such that the model and system dynamics become identical,

although we have stated in Eq. (4.4-6) that such a set of gains must exist.
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For example, if v(t) is unity the state x(t) asymptotically approaches a

constant value

lim x(t) = . . . . 0

Consequently the only requirement on the asymptotic behavior of h(t) in

Eq. (4.4-5) in order that the vector e(t) approach zero is

lim Zra t= lim (aml a h(t
t-+C 4 o I

The steady state values of the other elements of h(t) are arbitrary. The

explanation of thib behavior is that the controller is primarily driving the

error to zero, as evidenced by the conditions in Eq. (4.4-14). For some

special input signals, it is possible to accomplish this task without making

the model and system dynamics identical. On the other hand, if v(t) is

sufficiently "rich" in frequency content, one can expect h(t) to approach

the value h defined in Eq. (4.4-6). Loosely speaking one may say that-e
the error is asymptotically stable and the state z(t) is stable. This is a

typical characteristic of adaptive systems designed using Liapunov theory

because V in Eq. (4.4-14) is only negative semidefinite with respect to

the total state of the adaptive system, i.e., it is independent of z(t).

Therefore the vector z(t) can approach any vajue which allows e(t) to

approach 0 (see Theorem 2, Section D. 5),

The complete set of equations of motion for the error signal is

summarized as follows:

6(t) = Am e(t) + [A- Am - bh(t)T x(t )

x(t) = Ax(t)+b (v(t) - h(t)T x(t))

=(t) A x(t) qT e(t) (4.4-15)
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Note that the adaptation algorithm for h(t) does not depend upon any unknown

system parameters, in c'ntrast to the "exact" realizations of the gradient

methods described in the preceding sections (e.g., see Eq. (4.2-17)). A J
block diagram illustrating the mechanization of the controller is given in

Fig. 4.4-1. The configuration is similar to that in Fig. 4.2-8 for the I
gradient-adaptive system, the principal difference being that a weighted
sum of the elements of a vector error signal multiplies each component of |

the state vector. However, recall that a particular structure is assumed

for A, Am~ band bm in the Liapunov design; no such restriction exists for I
gradient techniques. Furthermore, all the states x(t) must be measured;

gradient methods permit partial state feedback. I
The quantity q is specified through the choice of P in Eq. (4.4-12)

and A is a diagonal matrix of positive, but otherwise arbitrary, elements.

Hence one has considerable variety in the choices of adaptation gains in the

equation for h(t), all of which yield the desired stability properties. One

might conjecture that this provides some control over the convergence rate,

or adaptation time, of the system. This question is treated in more detail

in Section 4.4.2. At the present it is worthwhile summarizing and dis- I
cussing the steps taken in deriving Eq. (4.4-15) in the context of a qualita-

tive design technique. J
Summary - The essential features of the design procedure f

illustrated above are qualitatively stated as follows:

Design Procedure I
(1) Choose a reference model for he system to be

controlled and define an er,:-o, signal e(t).

(2) Select a controller cor-'iguration with enough adaptive
gains to provide the ,-apability for making the system !

output dynamics !denticl W, those of the model.

47
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Figure 4.4-1 An Adaptive Controller Designed by
a Liapunov Synthesis Technique

(3) Define the set of state variables, z(t), which des-
cribe the difference between system and model
dynamics as a function of the adaptive gains.

(4) Define a positive definite function V(e(t), z(t))

(5) Pick an adaptation algorithm such that

V : 0; e(t) / o

along solutions to the equations of motion.

With the assumption that system parameters are constant, this procedure

leads to a controller design that drives the error to zero. The advantages

of having global stability properties that are independent of the system

input, v(t), have already been cited. However, a few words of caution are

in order; there are some unsatisfactory aspects of this design technique

which may not be evident from the ease with which the particular control

law in Fj. (4.4-15) was derived.
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First of all, the applicability of Liapunov techniques depends t
upon the form of the equations of motion. For the case treated in this

section, the quantities A, A , b, and b have special structures which

readily permit choice of compensation that can match the reference model

to the system. In general, the dynamics associated with the state )
variables of interest do not have such a representation; a case in point is Ii
the airframe for a missile or aircraft. Many more than n elements in the 1)
matrix A may be unknown, In such cases it is not always clear how to

complete step (2) of the design procedure. For similar reasons steps (4) j L:

and (5) are also ad hoc in rature; there is no.general systematic procedure

for choosing a Liapunov function and adaptation algorithm.

Another potential disadvantage is that one cannot directly specify t Kj
which state variables must be estimated or measured for use in the adap-

tive controller. In some cases all of the state variables are required.

There is more flexibility in this respect with gradient techniques.

One more consideration is that although a controller ca., e e- i
signed which theoretically succeeds in reducing the output error asymp-

totically to ze:ro, there is little quantitative informnatiorn -.. ,-ut how rapidly

the process proceeds. Convergence of the adaptiv-, gd__s may be too slow

for a particular application. Some discussion of this question is given in

the next section. 1
From these reflections it is cccluded that Liapunov synthesis

techniques are desirable for controlling systems with unknown parameters I
if a good adaptation rate can be achieved. However, there exists no sys-

tematic recipe for synthesizing a controller in a wide variety of practical I
applications. This observation is supported by the variety of specialized

results, relevant to Liapunov design tec hnques, that have been reported in

the literet.ire, One of the first to use the method was Parks (Ref. 73) who
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designed stable nonlinear controllers for several different plants with one

or two unknown parameters. Phillipson (Ref. 74) suggests a means for

improving the stability (i. e., adaptation rate) of a particular controller

design for a first order system; the idea has recently been extended to high

order systems having many unknown parameters but also having many in-

dependent control variables (Ref. 75). The improvement is obtained by

augmenting the equations for fi(t) in Eq. (4.4-15) in such a way that V tends

to be more negative. Some success has been reported (Ref. 76) in extend-

ing the use of Liapunov techniques by relaxing the assumption that all un-

known system parameters are constant. The result obtained is a type of

"practical stability" (see Section D. 7) where the error is held to within

some known bound. The latter currently applies only to systems having a

single time varying plant parameter. Another recent study demonstrates

certain practic-.€ advantages in using a nonquadratic Liapunov function

(Ref. 77).

In subsequent sections more attention is given to the questionl of

convergence rate; i.e., how rapidly does the error approach zero, and also

the problem of applying Liapunov synthesis methods to adaptive control of

airframe dynamics.

4.4.2 Adaptation Rate for Liapunov Methods

Having demonstrated a method of adaptive control which can

insure that the error approaches zero asymptotically, it is desirable to

know how rapidly convergence proceeds. Recall that in Section 4.2. 6 a

linearized analysis of the nonlinear gradient controller equations yields

information about both local stability and adaptation time from the closed

loop poles associated with the linearized error equation (Eq. (4.2-48)).
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Stability is guaranteed for a controller synthesized by Liapunov methods; i
however, linearization is still useful for providing infornation, '. ixi speed

of adaptation. j

Following the procedure of Section 4.2.6, we define

h.(t) 4 he+ 6h(t)

x(t) x M + e(t) -ei

and linearize Eq. (4.4-15) about h and x M(t). (Recall that h is the set

of values for the adaptive gains which satisfies Eq. (4.4-6).) The result is

6 (t) I A M. :-bx m(t)T iFe(t)
1x - iF,

- - - -------- - -I + nonlinear terms
A8-(t) Axm(t) T  1 [0] h

L 0  6h-tL(4,4-16)

Denoting the Laplace transform of e(t) by E(s), neglecting nonlinear terms,

and assuming that x m(t) has a constant value rex (corresponding to the

steady state solution to a constant input), one can eliminate the variables

6h(t) from Eq. (4.4-16) to obtain

E(s) (- s -Am) x A xm -TE(s) (4.4-17) I
In order to determine the closed loop poles associated with the

linearized system it is more convenient to have a scalar measure of the I
error. For this purpose define

et = q e(t); E ) = q E(s)
q~t q

I
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and multiply both sides of Eq. (4.4-17) by q . The result is a scalar

error equation,

E(s) n I x2  1 G(s) Gqs) (4.4-18)Eq(S - iM. s q ()

where

Gq(s) = q Is-A )b (4.4-19)

The quantity Gq (s) is interpreted as the transfer function between the model

input and the scalar "output" signal

yq(t) A q x(t)

The closed loop poles associated with the dynamics of e q(t) are

the same as for any e14ment of e(t); i. e., they are eigenvalues of the par-

titioned matrix in Eq. (4.4-16). Consequently Eq. (4.4-18) qualitatively

determines the transient behavior of all the error signals. Recall that q

is calculated from Eqs. (4.4 -0) and (4.4-12); once it is determined the

poles and zeros of Gq (s) can be calculated and a conventional root locus3

analysis performed of the quantity

k G (s)

where

n
-- 1 2 (4.4-20)

e E m.

i=l 1 1
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This approach is quite similar to that used to treat the gradient I
method, as is evident from comparison of the above expressions with

Eqs. (4°2-47) through (4.2-50). The quantities X. have a fmu:ction analo-

gous to the adaptation gains i in Eq. (4.2-50); they affect only the total

adaptive loop gain. The vector q provides additional control of the adap-

tive loop response in that it determines the zeros of G (s); no such design
q

capability is available in the gradient method. However q can be mani-pu-

lated only indirectly; it is one column of the matrix Q which satisfies

Eq. (4.4-12) for some positive definite matrix P. Given P, it is easy to

determine Q and hence q; on the other hand, given a desired value of q,

there is no direct method of finding associated positive definite matrices I
Q and P.

In order to improve the adaptation properties of 'q. (4.4-15) one

might try the methods of Section 4.3. That is, insert linear compensation J
.t appropriate points in Fig. 4.4-1 to modify the linearized error equation.

n
For example if the signal I 1 qiei(t) is passed through a filter having trans-

fer function Gc(s), Eq. (4.4-18) is modified as follows:

G (s) G (S)

q e s q

whiclh is analogous to Eq. (4.3-3). However introduction of the filter may

improve the local stability characteristics at the expense of the global con-

vergence properties. The condition that V' < 0 for the nonlinear system

is not generally satisfied when arbitrary compensation is added in this

fashion.

To improve the adaptation speed and retain the global stability
properties of Eq. (4.4-16), the controller must be modified in such a way

that " remains nonpositive. A method for accomplishing this in the

4-84



THE ANALYTIC SCIENCES CORPORATION

i multidimensional example of the preceding section has been suggested

(Refs. 74, 78). The procedure is to redefine the plant input u(t) in

Eq. (4.4-1) according to

u(t) = v(t) - [h(t)T + ae(t)T qx(t)T A-l] x(t)

h(t) = A1 x(t)q e(t) (4.4-21)

where the algorithm for h(t) is the same as before and a is a positive con-

stant. Implementation of the modified cnitroller is illustrated in Fig.

4.4-2. The only change from Fig. 4.4-1 is that a feed-forward path is

inserted around each integrator. It is interesting to recall that the same

type of lead compensation is found useful in Example 4.3-1 for the

accelerated gradient method.

With substitution for u(t) from Eq. (4.4-21) into the planL

equations of motion, Eq. (4,4-1), the error dynamics become

6(t) =Am(t)+ [A -Ambh(t)Tl x(t)-abe(t)T qx(t A-x(t) (4.4-22)

and the time derivative of the Liapunov function in Eq. (4.4-9) becomek,

n
T rT ] -

(t) =-e(t)T Pe(t)-2a We(t) 2 i _ x.(t)2  (4.4-<,)

Therefore, for the same initial values of e and x, the new form of controller

in Eq. (4.4-21) yields a lower (more negative) initial value of V than that

given by Eq. (4. 4-14). Its magnitude is regulated by the size of a. There-

fore the initial adaptation rate for the system is faster as a increases.

However a higher convergence rate is not necessarily obtained for all time
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!

hh). I

q ',At)'"

V (t) i MODEL j

Figure 4.4-2 A Method for Improving the Adaptation
Time of the System in Fig. 4.4-1

because the solutions for e(t) resulting from Eq. (4.4-1) and (4.4-2) are

not the same. Furthermore the second term on the right hand side of

Eq. (4.4-23) is not a positive definite function of the error; consequently

as a is raised, instead of decreasing more rapidly, the error may tend

toward values such that

e(t)' q - 0

The effect of the a-dependent term in Eq. (4.4-21) upon the adapta-

tion time is more explicitly displayed by analyzing the linearized time

invariant equations of motion, analogous to Eq. (4.4-16).

6(t) A -ak bq -bx F e(t)

S...------ +nonlinear terms (4.4-24)

6 (t> A- x ,m _ [0] 48h(t)
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Using the same procedure as for deriving Eq. (4. 4-18), one obtains

Eq(s) = -k -s Gq(s) s+ E

E q(s) q TE(s) (4.4-25)

Comparison uith the error equacion (Eq. (4.4-18) for the original system

design indicates that the effect on local stability of modifying the plant

input as in Eq. (4.4-21) is to add an open loop zero at s = - 1/o in the root

locus analysis, tending to improve stability by putting the closed loop poles

further in the left half complex plane. This result is similar to that ob-

tained in Example 4.3-1 for the accelerated gradient method.

The discussion of this section illustrates how the convergence

rate of an adaptive system design by Liapunov methods can be determined.

It assumes that the input to the plant is constant so that the partitioned

matrix in Eqs. (4.4-16)and(4.4-24) is time-invariant and that the transient

behavior of the error signal is determined largely by the matrix eigen-

values. The latter are determined by a conventional root locus for a scalar

error equation. This analysis enables one to Judge the effect of free

parameters in A, q, and a on the system adaptation rate.

4.4.3 A Synthesis Procedure Applicable for Missile Control

The principal hinderaiice to using the Liapunov synthesis methods

described in the preceding sections is that they do not provide a design pro-

cedure appl cable to all ;-.ear dynamical systems. In each lmown successful

application, a special structure for the mathematical description oi the plant

and the reference model is dictated, e.g., Eqs. (4.4-1) through (4.4-4).
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The equations of motion for a missile do not conform to any of the cases

previously treated in the literature; consequently a more general design

technique is required. The development of such a method (Ref. 79) is the

purpose of this section.

Specifically we are interested in the case where the quantities

.A, A m , b, andrb in Eqs. (4.4-3) and (4.4-4) have a more general struc-

ture and furthermore b and b need not be ideatical. Thus suppose the
m

equations of motion are

*(t) = Ax(t) +bu(t)

Am(t) = Amxm(t) +b mv(t) (4.4-26)

with outputs

y(t) = c x(t)

ym(t) = c Txm(t) (4.4-27)

and error signal

e(t) = y(t) - Ym(t) (4.4-28)

The objective is to design an adaptive feedback controller so that e(t) is

nulled. The approach is to manipulate Eqs. (4.4-26) and (4.4-27) to obtain

an error equation having the same form as Eq. (4.4-15). Then the con-

troller can be derived by the reasoning used in Sections 4.4.1 and 4.4.2.

First it is convenient to introduce Laplace transform notation --

U(s), V(s), Y(s), Yi(s), and E(s) for u(t), v(t), y(t), ym(t) and e(t)

respectively. In these terms input and output variables are related by
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Y(s) = G(s) = cT(Is-A)" b

U(s)A

v--V- - = GmS b -2mV(S G(s) = e (Is -AM 7b (4. 4-9

as indicated in Fig. 4.4-3. Assume that both the plant and the model have

i zeros and n poles with e < n; somewhat more generality is possible by

allowing the model to have fewer zeros but the above restriction is sufficient
thfor our purpose. Thus q(s) and qm(s) in Fig. 4.4-3 are I order poly-

nomials and p(s) and pm(s) are nth order polynomials. In addition the

model poles are chosen to have strictly negative real parts.

In Laplace notation the equations of motion for the plant and the

model (neglecting initial conditions*) are

p(s)Y(s) = q(s) U(s)

Pm(s)Ym(s) = qm(s) V(s) (4.4-30)

Subtracting these expressions and adding the term (pm(s) Y(s)) to both

sides of the result produces

Pm(s)E(s) = &p(s)Y(s) + q(s)U(s) - qm(s) V(s) (4.4-31)

where

A&p(s) Pm(s) - p(s)

*

Initial conditions are treated in Ref. 79; they do not significantly
alter the system behavior.
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I

V(S) U (S) PLANT Y(S)

JJ

EGs) (

qE(s)

q(S) m )

Figure 4.4-3 Input-Output Relations for Adaptive
Control System Design Problem

It is assumed that the coefficients of sn in p (s) and p(s) are both equal tom
me so that Ap(s) has order n-i. Now certain manipulations are per-

formed which convert Eq. (4.4-31) into the desired form.

Divide both sides of Eq. (4.4-31) by an Ath order polynomial

Pc(s) defined by
I

pc(s) +cx. S + . + 15 + ao

which has all its zeros in the left half complex plane, producing J

rl(s)E(s) Ir(s)Y(s)
Pm(S)'E(s) P- P(S) + Ap(s)'Y(s) + P +kU(s)

r~(s) Us(s) ) V(s) _ r 3 (s)V(s) 
(4.4-32)

PcS) k PC (s
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where

Pm(s) m p(s) c + Ar(s)
Pm (s)' + Ps) Pps) P)

C C

qs) _ r2(s) (s) qm(s) k r 3(s) (4.4-33)
k~s +PC (.-3Pc(S-- -k p- pc =  km pc-

The quantities pro(s)' and Ap(s)' are quotient polynomials of order n-A

and n -. e - 1 respectively, generated by performing enough steps of the

polynomial division operations indicated on the left hand side of the expres-
sions in Eq. (4.4-33) until the order of the remainders, rl(s) and Ar(s), is

-1. The purpose of the above operation is simply to obtain rational

terms on the right-hand side of Eq. (4,14-32) whose numerators are of

lower order than their denominators. hi addition, Pc(s) must be such that

Pm(s)' has all its zeros in the left-half complex plane. A polynomial that

has these properties always exists. A general procedure for finding one

is given in Ref. 79; it is not described here because the applications con-

sidered in this report are sufficiently simple so that a suitable choice

for pc(s) is readily obtained.

Still referring to Eq. (4.4-32), the gains k and k are the
m

quotients after a single step in the division operations q(s)/pc(s) and

qm(s)/pc(s) respectively. That is, k and km are the gains associated with

the plant and reference model transfer functions,

- q(s) A k(sL+q - s l + . . +q 0)
G (s) p8s) n+p n -lsn 'l + " " " +p0

qm(s)A km(sZ+qme. 1 s -+.. +qm0 )Gm(S)=:--(-) n - n-i
ms +Pmn 1 s + 5. +pm 0
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tI

Therefore the remainders r 2 (s) and r 3 (s) have order . - 1 or less. Now to

make the notation in Eq. (4.4-32) more suitable for this discussion define

the following quantities: I
Polynomial functions:

n- 1 1
Ap(s) a-isl Ar(s) __ bsi

i=O i=O 5
-1 2-1

"'cs, rs A "Ir 2(s) E_ c is' r3(s) : disli

i=O i=O

1-1 n-1-1

-rl(s) = fi sl Pm(S)' E gis +s (4.4-34) 1
i=O 

i=O

Constant Vector:

T = [aaf . . a. .f. .. (4.4-35)

New varb,.es:

Yc(s )  Y(s) Ec(s ) A E(s) I
c

U(S) - U(s) V(s )  V(s) (4.4-36)

cc c

I
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Vector sets of state variables associated with Eq. (4.4-36):

YctT = LY(t),(t) . . Yc(t)(l)] (.-8

et T = A e (t)( - ! )

Forg(t) c(t) - e

euc(t) T a  [eUc(t) 6ce(t) . e . c(t)( l 1

uv ()c (T t 6v C~)--- (t)( l 1 (.-7

v () IVc (t) c(t) . .. vec )(.-7

Vector output variable s:

y(t) w T ry t)(t).. y(t) (n ' - )-  (4,4-38)

Forcing vector:

f (t)T ' [ Y(t)T Yc(t)T u (t)T v tT ec T ] (.-9

Error state variables:

e(t)T  [e(t) 6(t) e(t) (n -1.4-40)
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Dynamical quantities:

0 1 0 0

0 0 1 0

0 0 0 1

-go -gl i--

T [0 0 . . . . . 0 1] (4.4-41)

Using the above definitions we can rewrite Eq. (4.4-32) in the

time-domain, state variable form

T
6(t) = Ge(t) + g p f(t)+ ku(t) - k mv(t))  (4.4-42)

where G is a stable* matrix by our assumptions on pm(s)' in Eq. (4.4-33).

It is evident that this expression has the same form as Eq. (4.4-5) if we

make the identifications

G A
m

(pft - vm) (A - Am) x(t)

ku(t) ~ - h(t)T x(t)

Consequently we can employ the synthesis techniques for u(t) used in

Sections 4. 4.1 and 4.4.2. First augment p and f(t) as indicated by the

definitions

All the eigenvalues of G have negative real parts.
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a -k m v(t)

Then, following the procedure indicated in Eq. (4.4-21) let

T T T -l
u(t) = - h-c(t)Tfa(t) - e (t ) q-' (t )  - a(t )

1 -1 T

n (t) = - A _ e(t)

A Qg (4.4-43)

where h (t) is the set of adaptive gains, Q and A are positive definite

matrices to be determined, and a is a positive constant. Define a posi-

tive definite function

V(e(t), z( )) e(t)T Qe(t) + z(t)T Az(t)

z(t) a - kh(t) (4.4-44)

Differentiation of this expression and substitution from Eqs. (4.4-42) and

(4.4-43) produces

(_e(t),t) = e(t)T (GTQ + QG) e(t)- 2 (t)T -1))_

(4.4-45)

If we select Q such that

GTQ + QG = -P
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where P is any positive definite matrix, then V is nonpositive. A positive

definite Q exists that satisfies this condition because G is a stable matrix.

In particular,

r(e(t),t) !5 -e(t) w  Pe(t)

which according to theorems 2 and 3 in Appendix D implies 7

lim Ie(t)I = 0 (4.4-46)
t - o

The only knowledge about the plant required to implement Eq. (4.4-43) is

the sign of k in Eq. (4.4-32) which is often the same for all plant operat-

ing conditions. Since A is arbitrary, the magnitude of k can be set to one.

One final point of interest is a method for picking initial values

of h (t). To do this refer to Eq. (4.4-43) and note that if the error e(t) is

identically zero,

T

Substituting this expression into Eq. (4.4-42) and setting e(t) = 0 implies

that

(p - khc(t)T) f(t) = 0

or

hc(t) = (4.4-47)

In other words the feedback gains have just the right values so that
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Y(s) V m(s)

The elements of Pa are specified by Eq. (4.4-34) and (4.4-35) and they

depend upon the unknown plant parameters. Thus if approximate values of

the latter are known at the time operation of the system begins, the initial

gains can be computed from Eq. (4.4-47).

The practical difference between Eqs. (4.14-43) and (4.4-21) is
dimensionality. The vector f a(t) defined in Eq. (4.4-39) has 31+n 1

elements and the same number of adaptive gains are required. Further-

more all of the signals in f (t) and e(t) must be generated; in particular

(n - i - 1) derivatives of the output y(t) must be obtained and these may not

be directly available from measurements on the system. The quantities

defined in Eq. (4.4-37) are obtained by mechanizing thf operations indi-

cated in Eq. (4.4-36). For a high order system the resulting controller

is quite complex, as illustrated by the block diagram in Fig. 4.4-4.

This Lk punov design technique can be applied to pitch rate auto-

pilots. In Chapter 8 it is used to design a pitch rate adaptive controller

for a representative set of missile airframe dynamics. Unfortunately,

Liapunov methods in their present form have a theoretical limitation which

prevents their use with plants having a nonminimum phase input-output trans-

fer function. The reason for this restriction and its implications for mis-

sile design are disci;ssed in the next section.

4.4.4 Theoretical Limitations of Liapunov Techniques

The objective of the Liapunov synthesis method described in

Section 4.4.3 is to find a controller which nulls the error signal e(t)

regardless of the input v(t). We shall show here that the ability to achieve
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Figure 4.4-4 An Adaptive Control Sys~tem Designed
by a Liapunov Method

this goal is necessarily limited to plants whose transfer functions have no

zeros in the right-half complex plaqne (i. e., they are minimum phase).

Refer to the diagram in Fig. 4.4-3, and the equations of motion,

Eqs. (4.4-42) and (4.4-43). Suppose that the system is at rest with no

initial conditions, v(t) = 0, and

e(tV 0 (4,, 4-48)
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Let an arbitrary v(t) suddently be applied. The theory developed in the

previous section states that the Liapunov function V(e(t), Pa- kh(t))

cannot increase and therefore must remain at its initial value, zero.

Consequently Eq. (4.4-48) continues to hold. This implies that

InY (s) = Y m(S)

in Fig. 4.4-3 or, equivalently,

U(s) G(s) = G m(s) V(s)

Solving for U(s) one obtains

Gm(s)
U(s) -G(s) V(s) (4,4-49)

If G(s) has right-half-plane zeros they appear as poles in the

transfer function Gm(s)/G(s). Consequently the response of u(t) to v(t),

given by Eq. (4.4-49), is in general unbounded. Thus although the output

error remains zero, an internal signal which is not observed in the output

is growing very large. This type of performance is intolerable within a

physical system and consequently some other design technique must be

used. Such behavior is a consequence of the fact that the Liapunov func-

tion defined in Eq. (4.4-44') ignores several state variables incorporated

in the controller design. Ti~e quantity f(t) in Eq. (4.4-42) is coupled to

e(t) through the equations of motion and the compensating transfer function

(1/pc(s)); however V is a function only of z(t) and e(t). Consequently one

cannot be sure that all of the internal signals remain well behaved.

Another interpretation is that the adaptive controller effectively cancels

the plant zeros with corresponding poles; it is well-known that the use of

such compensation should alwnays be avoided when dealing with nonminimum

phase plants.
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As discussed in Chapter 8 the transfer function relating control

surface deflection to normal acceleration for an aerodynamically controlled

missile with tail mounted control surfaces typically has a right-half-plane

zero. Consequently the limitation described above applies to that important

application. Some possible methods for circumventing this restriction with

alternative missile configurations and an adaptive reference model are dis-

cussed in Section 8.3.4.

4.5 DITHER-ADAPTIVE SYSTEMS

4. 5. 1 Background

In previous sections, adaptive methods are described whieh do

not explicitly identify the plant; that is, no attempt is made to determine

any unknown parameters in the plant's equations of motion, In these cases

adaptive control is achieved by adjusting controller gains to null the error

between the desired p'ant response and its actual output for a command

input. The type of PACS considered in this section is characterized by an

adaptive controller which operates to null the plant output error to a very

special type of input, namely, a high frequency oscillation, or "dither"

signal.

There is some subjectivity in the choice of the title, "Dither-

Adaptive Systems." Another point of view is that these techniques accom-

plish partial system identification. They effectively determine certain

quantities that depend upon, but do not completely specify, plant dynamics.

Typically, some parameter related to the impulse or frequency response

is estimated from measurement data and an adaptive gain is adjusted to

maintain it at a constant, desired value as operating conditions vary. Both I
I
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interpretations -- output error control and parameter identification --

seem to be appropriate for this category of adaptive systems.

Dither-adaptive systems are important, both historically and in

terms of current applications. They were among the first types of adaptive

systems to be developed and have found the widest usage in flight tests and

operational aircraft and missiles (Refs. 1, 2, 4, 5, 6). Their advantages are

that the adaptive mechanism is usually quite simple, involving no more than

one or two controller gains and they rely heavily on complex plane synthesis

techniques. Hence the system's operation is reliable and relatively easy to

analyze. On the other hand, there is little experience available for apply-

ing these techniques to situations where several adaptive parameters are

necessary to compensate for changes in plant dynamic characteristics.

The particular examples of dither-adaptive systems discussed

below have been extensively described in the literature and appear in

several textbooks (e. g., Refs. 9, 36, 80). For this reason only a brief

treatment of each is given here to provide comparisons with other tech-

niques.

4. 5.2 Principles of Operation

All of the adaptive systems discussed in this section basically

operate upon t'1e principal that the control loop gain should be maintained

at a proper level. This is an important parameter in most control sys-

tems because it is related to the properties of stability and bandwidth.

Recall from the discussion of Section 3. 1.3 that a large autopilot bandwidth

is necessary in a tactical missile to achieve satisfactory transient response

for the dominant system dynamics. However its maximum allowable fre-

quency range is often limited by higher order dynamic effects associated
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with sensors and flexible airframe bending modes and by the effects of

sensor noise. The former can cause the system to become unstable or !
exhibit undesirable flexure oscillations; sensor noise tends to introduce

undesirable high frequency signals into the control system. Consequently

it is reasonable to design an adaptive controller with the primary function

of maintaining constant bandwidth over all plant operating conditions. In

many cases this condition can be achieved by adaptively controlling the
loop gain.

To illustrate how the concept of loop gain control arises, con-

sider a plant whose two dominant open loop poles and single zero lie within

the regions indicated in Fig. 4. 5-1. This is one simple model for the

"stick free" pitch motion of an aircraft or missile. In addition there areJ

two open loop poles associated with control actuator dynamics which are

relatively far from the origin. It is desired that compensation be designed

so that for any locatio.i of the open loop poles and zeros, the dominant

closed loop poles are close to the particular locations shown.

A conventional control system design to meet the above specifi-

cations is indicated in Fig. 4.5-2. The compensation consists of feedback

elements H(s), defined by

H (s) =h( cz)(sz)

(s - PC, (s -Pc 2 )

whose zeros are at the positions of the desired closed loop poles in Fig.

4. 5-1 and with real poles, Pc, rind Pc2, for realizability. In addition, a

compensating gain kc is placed :in tha forward path to provide control over

the total loop gain.
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Figure 4. 5-1 Design Criteria for Fourth Order
Airframe - Actuator Dynamics
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Figure 4.5-2 Block Diagram for System in Fig. 4.5-1
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Defining the transfer function of the actuator and the plant

together to be G(s), the overall transfer function, T(s), for the compen-

sated system is

Y(s) kcG(s)
W~)=VsT k, (s k H

If k is chosen to be sufficiently large, it is possible to make
c

T(s) H (s) (4.5-1)

over the frequency range of interest. The zeros of H(s) are the poles of I
~H-l(s) and they have been selected to meet the requirements specified in

4.5-1. Note that H(s) is a time invariant compensator so Eq. (4. 5-1) 1
implies T(s) is independent of plant variations for large kc

In terms of the root locus plot shown i, Fig. 4. 5-3 the interpre-

tation of this compensation technique is that the loop gain is mgde sufficiently

large so that the dominant poles of G(s) move to the zeros of H(s) and one

pole of i(s) becomes cancelled by the plant zero. The maximum allowable

value oi k is limited by the motion of the actuator poles which mo-ie into
C a

the unstable region for excessively high loop gain. f

To demonstrate the relationship of the above design to the system i
bandwidth, consider the transfer function F(s) relathig a measurement dis-

turbance input at H(s) in Fig. 4.5-2 to the system output;

f(s) A Y(s) _ kcG(s) H(s)(452
S1 +k G(s) H(s)

This relation is of interest in assessing the effect of measurement noise in I
the feedback loop upon the system output. The bandwidth of F(s) is defined
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Figure 4. 5-3 Locus of Closed Loop Poles for the
System in Fig. 4. 5-2

here as the range (assumed to be continuous) of frequencies 0 IwlI wb,

such that

IF(j)I IF(°)I (4.5-3)

For his particular example, if the actuator poles are sufficiently distant

from the open loop airframe poles, the loci that originate at the former

always cross the jw axis at about the sayne frequency w0 . In addition we

assume that the loop gain in Fig. 4.5-2 has a value such that the closed*

loop poles are approximately at the positions zp, zc, Zc, 010 + 1c, and po0
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where a° is a small negative number and p0 is far out on the negative real
axis with IpoI >> 0o. With these conditions, the form of F(s) is approxi-

I

F(s) 010P o <
(s o O W0)(S o 0 + )( o) 

and for those frequencies s = jw such that I << IP'

W2

IF(jiw) I o (4.5-4)

I I-"° - 1- +O(\°/ 1) I
The bandwidth wb of this function is indicated qualitatively in Fig. 4.5-4;

it is a function of wo, which is approximately constant, and ao which varies
0 0

with the loop gain. Therefore we can regard w b as being controlled by the

loop gain.

In order that the closed loop poles be as close as possible to the

desired values for all plant operating conditions, the loop gain should be

held at its maximum permissable value, consistent with stability require-

ments. For example, the closed loop poles produced by the actuator can

be required to have a constant, slightly negative real part, a . The value
0

of k required to achieve this condition varies with changes in plant gain,

k . This consideration motivates the use of an adaptive technique forP
adjusting the compensation to maintain the required degree of damping.

Dither-adaptive systems perform this type of task by maintaining a small

amplitude high frequency oscillation within the system and evaluating the

resulting response relative to the desired design criteria. At least three

distinct methods for adaptively controlling the loop gain have been advocated.
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BANDWIDTH b wo

Figure 4. 5-4 Magnitude of the Transfer Function
in Eq. (4.5-4)

We categorize them nere according to the particular technique used to

generate the perturbation signal.

* IFigh gain

* Limit cycle

* External test signals

High Gain - Aircraft autop l.ot designs which employ an adaptive

controller to maintain a high loop gain have been developed by both General

Electric Co. (Refs. 1, 2, 6, 9, 36) and Sperry Gyroscope Co. (Ref. 1).

Successful applications to control of roll and pitch motion have been re-

ported. The example in Figs. 4.5-2 and 4. 5-3 illustrates the manner in

which this type of system operates with a loop gain k defined by
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k= kh  2k k (4.5-5)a c p

where k varies with plant operating conditions and k is adjusted adap-
p c

tively. For a given value of k, as k is increased the actuator pole iocus
in Fig. 4.5-3 moves toward the imaginary axis. When the damping be-

comes sufficiently small, disturbances in the control system produce

oscillations at frequencies near w which can be detected by means of a

bandpass filter. As the amplitude of the detected oscillation becomes too

large, kc is reduced; when the oscillation is too low kc is increased. This

adjustment procedure tends to maintain constant closed loop actuator pole

locations at all flight conditions and the total loop gain is always large

enough so that the dominant airframe poles are near the desired values.

It is evident that this design technique is very much influenced

by the type of system to be compensated. The method works well when it

is possible to adapt satisfactorily to all plant operating conditions with a

single adaptive gain. Because it relies upon conventional complex plane

synthesis techniques to provide most of the compensation (e.g., H(s) in

Fig. 4. 5-2) and uses a relatively simple adaptation algorithm, the opera-

tion of the system is easily predicted. Two disadvantages associated with

high gain systems are sensitivity to sensor noise and possible excitation of

unwanted bending oscillations in a flexible airframe. In any given applica-

tion the possible effects of these factors on guidance accuracy and the mis-

sile structure must be considered.

This approach to system design has proven feasible for control of

pitch rate in aircraft and may also be suitable for missiles. However, as

discussed in Chapter P, many missile applications need an adaptive normal

acceleration autopilot to achieve the desired response to steering commands;

in this case the plant transfer function for certain types of missiles has
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nonminimum phase characteristics that vary with flight condition. Under

such circumstances, achieving good normal acceleration response has

often required an open loop (Section 5.2) adaptive system (see Refs. 17

and 19) having several sets of gains to be switched in at various flight con-

ditions. Adaptive high loop gain methods do not appear to be appropriate

for this type of application. Some of the factors to be considered in high

gain control of nonminimum phase plants are discussed in more detail in

Chapters 7 and 10.

An Adaptive Limit Cycling System has been designed by

Minneapolis Honeywell and applied to the autopilots of several aircraft

(Refs. 1, 6, 9, 36). Its distinguishing feature is the presence of a non-

linear saturating element (e. g., a relay) in the forward path as indicated in

Fig. 4. 5-5. The fixed linear compensation and the saturation limits ±D

are selected so that the control system sustains a low amplitude, high

frequency limit cycle (oscillation). Variations in the total effective loop

gain, which is dependent upon the relay drive level D and the plant param-

eters, cause changes in limit cycle amplitude which can be detected and

corrected by adaptively adjusting the value of D.

Methods for analyzing and synthesizing control systems using

nonlinear compensation with specific applications to adaptive systems are

given in Refs. 80 and 81. If the compensation is chosen to make the limit

cycle frequency approximately independent of plant parameter variations

and its amplitude dependent on the total effective loop gain, measurements

of the amplitude afford a means for adaptively adjusting the saturation level

of the nonlinear element to maintain invariant limit cycle characteristics.

The net result, as demonstrated by a linear analysis of the control loop in

Fig. 4. 5-5, is a system which has approximately constant loop gain,

implying constant bandwidth.
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Figure 4.5-5 An Illustration of the Control Loop in an
Adaptive Limit Cycling System

As in the case of the high gain method, the design of the adapta-

tion algorithm is influenced by the system to be controlled. Plant and

sensor dynamics play a role in determining limit cycle properties. In

addition, the effective loop gain is usually large -- a fact that tends to miti-

gate against its use for missile applications having nonminimum phase trans -

fer functions. If a relay is used, its switching action may excite unwanted

high order modes. Therefore the limit cycle method is most appropriate

for those missile applications (e. g., roll autopilots) where the above objec-

tions do not arise.

The use of external test signals to control loop gain has been

proposed by Smyth (Ref. 82) and Stallard (Ref. 83). This method relies

upon a high frequ.mcy signal, A sin w t., introduced into the control sys-

tem from an external source to identify gain characteristics, as illustrated

in Fig. 4.5-6. The test signal permits the actual forward loop gain to be

identified and the compensation k is adjusted adaptively to maintain it at ac
constant value.
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Figure 4.5-6 A Dither-Adaptive System Using
a Perturbat ion Signal

The gain identification method is based upon the fact that most

realizable closed loop transfer functions T(s) satisfy the condition

1 1

I fi

lim IT(jw)I - ; q > 0

where k fis the forward loop gain. For our example in Fig. 4.5-2,

lim IT(jw)l - af p
3

Consequently, the gain k, measured at any particular high frequency

0o, is approximately given by
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2k k
o 3

and it determines the shape of the high frequency response; j

urn I T(j w)i k ( )3

If kc is always adjusted so that k is constant over the range of plant operat-

ing conditions, the forward loop gain (and the total loop gain as well) is also j
essentially constant. I

The system output is monitored by a bandpass fiiter to provide a

direct measurement of the system gain at the frequency, w0 of the per-

turbation signal. The adaptive loop changes kc so as to maintain jT(jwo) I
constant for all plant operating conditions. In addition, phase information j
can be ob ained by cornpaiing the time shift between input perturbation

signal and output of the bandpass filter. This permits use of two adaptive j
adaptive gains -- one to control magnitude of T(jw o ) and the other to con-

trol is phase. Evidently more than two adaptive gains can be accommo- j
dated by inserting several different test signals to provide control of T(j',)

at additional frequencies. An evaluation of the relative merits of this type J
of dither-adaptive system as compared with limit cycling systems is pro-

vided in Ref. 84.

The significant difference between this method and the two dis-

cussed previcusly hi this chapter is that the basic control loop is designed

independent.y V the adaptation a orithru. it is unnecessary to choose any

of the compensatiorn parameters to sustain a self-induced oscillation.

I
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Consequently it is a more fledble technique; many adaptive gains cn be

implemented and a high gain system is not necessarily required. However,

the need for external dither signal generators and processing equipment

for each additional adaptive gain impose greater hardware requirements.

In situations where several adaptive gains may be needed, as in a high

performance missile, the usefulness of such a technique remains to be

investigated. In those applications where only the loop gain need be

adjusted, the simpler limit cycling and high gain systems seem adequate,

in view of current applications.

4.6 SUMMARY AND CONCLUSIONS

4.6.1 Summary

Gradient-Type Techniques - In Section 4.2 we have reviewed

the state-of-the-art in parameter adaptive control system designs which

use gradient adaptation algorithms and indicated those which may be use-

ful for missile applications. One of the earliest such methods, the M. I. T.

gain adjustment rule, is discussed in Sections 4.2. 1 through 4.2.3 to pro-

vide an explanation of gradient methods and their general convergence

properties. It is noted that the M. I.T. rule usually requires considerable

computational capability for mechanization and it has an adaptation time

significantly greater than the model response time. A simplified gradient

technique is described in Section 4.2.4; it has the primary advantage over

other gradient methods of requiring no additional system dynamics (filters)

to generate the necessary adaptation signals.

Parameter perturbation gradient methods are discussed in

Section 4,2.5. These require the least amount of a priori knowledge about
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the plant (only its order neek! be known). However, test signals and logic t

circuitry are needed to process measurements made of the system

response.

In Section 4.2. 6 it is demonstrated that the performance of a

gradient method can be analyzed by linearization techniques. The concept

of "decoupling" for systems having several important error .igna's is

explained in Section 4.2.7 and is shown to be compatible with any gradient

technique. _

Finally, the gradient methods summarized above are utilized

to develop an accelerated gradient algorithm in Section 4. 3. The latter is

based upon the simplified gradient method and introduces linear com-

pensation in such a way as to improve convergence characteristics.

Liapunov Design Techniques -In Sections 4.4.1 through 4.4.3 the

state-of-the-art in Liapunov design tezhniques for adaptive controllers has

been reviewed and extended to systems whose dynamics are representa-

tive of missile applications. These methods have the important characteristic

that they reduce the system output error to zero regardless of the type of

input sipal, so long as the latter is nonzero. The greatest limitation of

Liapunov methods is their incompatibility with plant input-output transfer

functions having right-half-plane zeros, as described in Section 4.4.4.

The latter problem prevents these synthesis techniques from being used to

design adaptive normal acceleration autopilots in certain applications.

Additional discussion of this problem is presented in Chapter 8 where its

significance for airframe design is considered ii more detail.

Dither-Adaptive Systems - Of the three types of dither-adaptive

systems described in Section 4. 5, the high gain and limit cycling methods

have given good performance in a number of applications to aircraft and
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missile roll and pitch autopilots. Current versions of these techniques

rely upon a single adaptive gain to achieve uniform response characteristics.

Methods using external test signals are more flexible but are also more

complicated to implement, requiring additional signal generators.

Both the limit cycling system and the use of test signals have the

relative advantage that adaptation can proceed without a command input sig-

nal because the oscillations required to identify the loop gain are always

present. The high gain system depends upon natural oscillations induced

by an input signal to the system; if the latter is not presenf for some period

of time, the loop gain may drift away from its desired -value.

To the extent that all of these methods have an identification

capability -- i.e., they effectively measure the loop gain -- and the desired

value of the identified quantity is known, the speed of adaptation can be quite

rapid. The loop gain can be rapidly adjusted to its known desired ,Jue. In

this respect dither-adaptive systems potentially exhibit behavior which is

characteristic of techniques employing explicit plant identification.

The design procedures ior dither systems are ad hoc in nature.

Consequently, the backlog of experience available with current specific

applications does not immediately provide synthesis techniques for a normal

acceleration autopilot. As discussed in Chapter 8, the latter is important

for missile guidance systems. Insofar as dither-adaptive methods maintain

large loop ga,!' l to achieve uniform output response, they appear to be in-

appropriate for those missile applications where the airframe input-output

transfer function has nonminimum phase characteristics that vary with flight

condition -- e. g., for tail-controlled missiles with fixed wings.

4.6.2 Conclusions

Chapter 4 has been concerned with methods for adaptive control

without explicit identification of unknown plant parameters. The salient
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features of each are summarized in Table 4.6-1. Two types have been

selected for additional investigatioa in missile applications discussed in

Chapter 8 -- these are the accelerated gradient and Liapunov design tech-

niques described in Sections 4.3 and 4.4. The former is attractive be-

cause it is a quite general design procedure whose local convergence p

properties are expected to be superior to conventional gradient techniques. I l

Its main disadvantage is that its global - ability properties are unknown.

To find a method which does not suffer from the latter difficulty one turns

to Liapunov design methods. The latter are somewhat ad hoc in nature [

and are not suitable for controlling nonminimum phase plants.* For those I

situations where they can be applied, the response error between the |

adaptive system and its reference model is driven to zero, regardless of

initial conditions and plant input.

A chara'cteristic common to all of the adaptive methods discussed

in Chapter 4 is that adaptation cannot be achieved unless the system is j!
excited by input signals of one sort or another. In the case of gradient and

Liapunov design techniques the command input v(t), representative of a

missile steering command, must be nonzero to generate an error signal.

Otherwise the adaptation algorithm is not active. In dither-adaptive sys-

tems, special test inputs or self-induced oscillations provide the signal

required for adaptation. If there are applications where adaptation does

not take place for long time intervals because of the absence of the required

excitation signals, the iystemt s operation will be erratic if plant param-

eters change substantiaily during such "quiet" periods. An input signal

adaptive tec ue for alleviating this problem is suggested in Eq. (8.2-34) 1
of Chapter 8.

A method for circumventing this difficulty is suggested in
Section 8.3.4.
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TABLE 4.6-1

SUMMARY OF ADAPTIVE METHODS USING

IMPLICIT PLANT IDENTIFICATION
MehXCOtput.10011m, Adaptition I Acr,-;a Ope tional iavn e

elliR Rejuire mrnts Timre Adatn Or2toa tadatacs

Exiten iv' con ml"'on.l ISicnificantly longer than Systemratic design pro- Siti I or .,air .pe it ,in
capability I.s ;c~d to reference model set !cedure apylica1ble toI sanpin that the adaptive Sys-
generate adaptation. Sig- settling time. . ide variety of sys- Icn 6~ ,e f olious Ilte reference
nals. Recquired high order tems n'odc* .,d niot parameters vary
adaptive controller. sIoulo jeetiie to adaptation time.

IRcquire nia-zero morit signalI to
Analog aCtietv a Cipti.,on algor."m.

Global 'iility prorperties are
gereerali, unkown~.

,The gain adjustment ruile can some-

times be a poor approximation toa

M.I.T. Gradient - _______ _________
Same as for Analog. Theore tal!y some- Systenmatic design jSamne az'm for Analog.

what "turter than for procedure
Analog. Can control site and I

Dsecrxte direction of gain ad -
justmentS more 2ccu
rately than the analCog
method.

Same as for Ana log ex- 11.10 directly predict- Systematic design Srue as for Analog.
cept that use of relays a~bl cin terms of ax procedure

Relay simplifies the required analogy Ih .1 on0
mnultiplicatin operation.. Iventional gradient

________________ ~search procedure. _________________________________ ___________

All adaptation signals ISame as for oither ISystemaitIc design Glo bal stabilIity properties are
obtained directly from (gradient-like r etbods. Iprocedore generally unknicun.
plant and model st-te Applicable tona wide Derivatinn A the adaptation 'cgoritbmn
variables. Requires. to,, variety of aystems. require, .rUnC2'-d Taylor ieries

flimp~led Gradient order adaptive controller, expansion tor the perfoi reant index

that may )ot always be valid.
Requires non-zrco input signal to

activat e adcipit on algorithm.

Santa as for Simplified Potentially much laster Some as for Simplified Same as foir implified Gradient

Accelerated Grattient Grydient except for added than for conventional IGradient. May aeM; anaitv op
adaptive loop compenna- gradient methods.phae0hginaptvlo.

Same as for any of the jaeas for an, of the Permits decouping Of Same as fhr any of the above

Deould rdttt aov. above. adaptive toopi when
Decouled G~entaeveral er~or signals

I ______________ are to heomntled____

Low order controller Can be controlled by Glt-hal stbility prop- Ad-hoc design procedure -

reltat ive to M.1. T. eof stabilizing ertie a~e konown foi, Rqie o-eoiptspl"
Lsio apMehd Gradient method. com14.pennatlon. arbitra ry systemi inputo Weqis ndptonr inpthinao

parameters. Not siited for centrolltag nonmnilmum
phase plants.

Adaptive controller has Potentially extremely Simple. reliale Only one adaptive gain permitted.
only ore adaptive gain; ".mall if loop gain is adairtlue loop. May excite airframe bending mod-s.
requires handpass identified and main-
filter, tabled 0t 1 eovstmil May be sensitive to noise.

levljbuistntanou No systematc design procedure for
adjustznnnt. everal iaitive gains,

High Oln Ad hoc desigrn procedure requiring com-
pensation such that the Sv51cm support

, high ( qoency osciliation.

Dither-Adia Adtivate ami~ipt,~iin algorithmnn.1t

llystema s~ie o eoiru ~nit
Same as for 11gb Gain. Same as for Hlighi Gais. Same as for Hi1gh Gain. Same ax for Hi1gh Giin except that

Limit Cycle a~daptatwon can proceed in .Ie absence

1o an input signal.

Adaptive controller can Potentially extremely Adaptive conitroller No bystvatatic design pruceut for
Accommodate many odap- small if transfei func- can accenmodate -vstim rrouir.ng sever-mi ...aptive

Eyterastl live pains: requires bead- tio parameters are several adaptive gains galis.
Teat Sipasj pass filters and external identified and mama.

test signals. tained at a cooxtan;
level by i nttantaneiais
adaptive gain adjust.-
ment.
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Although several types of adaptive systems have been consirered

in this chapter, others can be created by combining some of the prope:zL:.

of the separate categories established in this report. For example, w-

have classified parameter adaptive systems according to those which ex-

plicitly identify plant parameters or those which do not. However, it is

certainly feasible to consider techniques that combine both philosophies,

e. g., a system that uses partial plant identification. One "hybrid" system

of this type employing an adaptive reference model is suggested in Sections

8.2.4 and 8.3.4 as a mearns of achieving satisfactory control of missile

normal acceleration. There is no express intent to exclude other suc!'-

possibilicies from this investigation. We have concentrated on those basic

principles that lead to reasonably general, systematic design procedures

for adaptive systems, recognizing that many variations and combinations of

these ideas can be desirable in specific situations.
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5. PARAMETER ADAPTIVE CONTROL SYSTEMS
WITH EXPLICIT PLANT IDENTIFICATION

5.1 INTRODUCTION

Chapter 4 is concerned with methods of adaptive control which

do not identify the mathematical description of the plant. In fact, for the

parameter perturbation methods discussed in Section 4.2. 5, the form of

the plant's equations of motion need not be known. Now we consider an

alternative approach which presumes a capability for identifying all im-

portant unknown system parameters.

In this section it is assumed the plant dynamics are completely

described by linear differential equations with coefficients that can be

accurately estimated. For the purpose of control it is assumed that the

parameters are approximately constant over an interval sufficiently long

so that the system can be considered time-invariant. With the latter

assumption and using the parameter estimates, an adaptive controller

can be designed emp!oying any of the numerous synthesis techniques

axailable for deterministic, linear, constant systems. This approach

effectively divides the adaptive control problem into two parts:

* Identification (estimation) of plant parameters.

* Controller design based upon par-ameter esti-
mates,

A possible configuration of the resulting adaptive 5system is illustrated in

Fig. 5. 1-1 for a system having a set of unknown parameters a(t), Recall

Example 2.3-1 as a specific illustration of this technique.
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Figure 5. 1-1 Adaptive Control with Explicit
Plant Identification

Division of the adaptive control problem into two distinct sub-

problems -- identification and control -- is justified when accurate esti-

mates of parameters can be extracted rapidly. These can be achieved

when observations of the system output are relatively noise-free or when

identification is based upon direct measurements of flight condition -- I

i.e., velocity, dynamic pressure, etc. (see the discussion of "basic

parameter identification" in Section 6.3). If this condition is not met, i.e.,

it the identification process proceeds slowly because of inaccurate mea-

surements, the s.paration of identification and control may not be the best

de sign method. Then the problem can be treated with the aid of stochastic

control theory, a subject which is beyond the scope of this report. We

shall discuss only the case when rapid plant identification can be accom-

plished.

The diagram in Fig. 5.1-1 indicates that the system requires

mechanization of not only an adaptive controller but also a parameter esti-

mator. Each of these units can require quite a bit of computational
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capability -- either analog or digital. Consequently hardware requirements

are generally greater than for systems which do not require identification.

However the additional equipment does yield some operational advantages.

If system parameters vary sufficiently slowly so that the instantaneous

plant transfer function accurately determines its transient response, the

performance of the control system can be completely specified by the

designer, as discussed in Section 2.3o 1. He will choose an adaptive con-

troller that adjusts itself to provide the proper stability, response time,

etc., for each estimate of the plant's operating condition. The adaptation

time is effectively zero because the controller adapts almost instantaneously

to changes in system parameters, assuming that identification proceeds

rapidly.

Of the two problem areas described above, most of our effort is

directed toward designing the adaptive controller, proceeding with the

assumption that some identification method is used to obtain accurate know-

ledge of plant parameters. This is a logical first step in investiga'ng the

feasibility of various control techniques. If good performance is achieved

by means of adaptive control when plant dynamics are perfectly identified

as they vary during system operation, a more detailed investigation of the

effects of estimation errors and the mechanics of various identification

tecihniques is warranted. To give the reader some familiarity with param-

eter estimation methods, a qualitative review of the subject is provided in

Chapter 6.

In this chapter we consider various methods of designing a param-

eter adaptive control system for a linear plant whose parameters are

%ssumed known (via estimation) at each instant of time. To be specific, the

equations of motion are
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x(t) = Ax(t) + bu(t)

u(t) = - r(t) + v(t) j
m(t) = Hx(t)

T

y(t) = c x(t) (5.1-1)

where y(t), r(t), v(t), and m(t) are respectively the output signal, the con-

trol to be chosen by the designer, the input command (e. g., the steering

command for a missile autopilot), and the observations provided by the

sensors. The dynamics represented by A and b are assumed sufficiently

slowly-varying so that at any instant Eq. (5. 1-1) can be considered time-

invariant for the purpose of prescribing the control signal r(t). The con-

stant quantities, H and c, are assumed to be known a priori.

The fact that a. scalar input appears in Eqs. (5. 1-1) is not in-

tended to be restrictive. Specific commemt will be made concerning any

results mentioned in succeeding sections that are not applicable for mul-

tiple input plants.

5.2 OPEN LOOP ADAPrIVE METHODS

Open loop adaptive methods were among the first techniques

advocated for adaptive autopilot design. They are applicable in a situa-

tion where the range of variation in plant dynamics is known a priori as

a function of certain measurable variables that constitute the plant operat-

ing condition. Their principal feature is a feedback controller having gains

that can be changed as operating conditions vary to maintain the proper

system input-output dynarmics.* The term "open loop" describes the fact

They are also referred to as gain-scheduled systems (Ref. 1).
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that control gain adjustments are made from measurementF, of quantities

that are only indirectly related to the desired system performance.

For example, a missile airframe will have dynamics which are

a function of dyramic pressure (we neglect airspeed and mass distribution

for illustrative purposes only). For various pressures, ql < q2 < " " n

preflight analysis may show that feedback gains, kV k2 ,.. kn provide

adequate compensation leading to an open loop adaptive system illustrated

in Fig. 5.2-1. The particular gain, k(q), used at any dynamic pressure

is given by a quantized relation such as

k(q) = k; q 2 < q < q 1 +  2

2 1

Open loop adaptive systems have been designed for helicopters

(Ref. 85), aircraft (Ref. 3) and missiles (Refs. 17, 19). In the past some objec-

tions to their use for aircraft and missile applications (Ref. 1) have been:

* A large number of gains must be stored when all vari-
ables defining the flight condition vary widely and when
there are several feedback paths; or, if only a few
gains are used, poor performance is experienced near
the points where gains are switched.

* The parameters of the airframe equations of motion are

assumed known a priori as a function of flight condition.

* The flight condition must be measured.

* The reliability characteristics of a large number of
gain switchings may be unsatisfactory.

* The dependence of the particular gain setting upon the
flight condition ean be quite complicated, especially
because the flight condition is a function of three vari-
ables -- dynamic pressure, airspeed, and mass
distribution.

5-5



THE ANALYTIC SCIENCES CORPORATION I

I-NN i

INPUT M!SSILE OUTPUT

IDYNAMIC

Jl SWITCHI
GAIN k () CONTROLLED

ACCORDING TODYNAMIC PRESSURE

_ I |

t q

Figure 5.2-1 Example of an Open Loop Parameter
Adaptive Control System

However, many of these disadvantages predate the capabilities of modern

digital computers. In the remainder of this chapter we consider adaptive

methods that are improved versions of the first open loop adaptive tech-

niques, made possible by modern control and computer technology.

5.3 MODEL FOLLOWING ADAPTIVE CONTROL

Model following adaptive control is conceptually related to sev-

eral types of parameter adaptive techniques discussed in Chapter 4. The

design goal is that the compensated system duplicate the performance of
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a reference model. From current knowledge of plant parameters, con-

troller gains are set to achieve the desired characteristics. In comparison

with adaptive systems using implicit plant identification, the adaptation time

is potentially very short -- no greater than that required to accomplish the

identification and update the controller gains. Example 2. 3-1 illustrates this

design principle. There the objective is that the first order system behave

according to the model

i(t) = bx(t) + bv(t)

while its actual equation of motion is

k(t) = ax(t) + bv(t) - k(t) x(t)

with "a" unknown and k(t) being an adaptive gain. An estimate a of the

parameter provides the means to define k(t),

k(t) = a - b

so that the resulting system closely follows the model.

More generally, one attempts to design the system so that its

closed loop transfer function T(s) between input and output is close to that

for a reference model, Tm (s). Several approaches to this task can be

suggested:

o Transfer Function Matching Design Procedure

* Minimum Integral Square Error Design Procedure

Pole Assignment Design Procedure

To illustrate the transfer function matching procedure for

obtaining desired response characteristics with a plant transfer function
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G(s, a) having a set of unknown parameters a, we consider the addition of J
adaptive feedback and forward loop compensation H(s, h) and Gc(s, k) having

adjustable gains h and k, as illustrated in Fig. 5.3-1.* To see the cor-

respondence between this system configuration and Eq. (5.1-1), denote

Laplace transforms by capital letters. Then it follows that I
G(s,a) = cT(Is - A) - l b

MMt = y(t)

R(s) = - (Gc(sk)- 1)V(s)+Gc(sk)H(s,h)Y(s) (5.3-1)

The requirement that T(s) be appro:imately identical to a specified trans-

fer function Tm(s) for a reference model is expressed by 1

G c(s,k) G(s,a) T

T(s) - 1 + Gc (s,k) G(s,a) H(s,h) Tm(S) (5.3-2)C!

With a substituted for a in Eq. (5. 3-2), h and k are to be chosen so that the

equation is satisfied for all values of s. When the measurements consist of

more than a single output variable, several feedback paths can be used to

provide greater flexibility in the controller design. In any case, the design

problem is an algebraic one; i.e., determine values of the adaptive gains as

functions of a such that coefficients of the polynomials in T(s) and Tm(s) are j
equal to within terms contributed by negligible poles and zeros. In carrying

out this design procedure one must insure that H(s, h) and Gc(s, k) are j
realizable and that no instability is introduced by attempting to cancel right-

half-plane poles and ieros.

The notation Gks, a) emphasizes that the transfer function is dependent I
upon the parameters as well as the independent variable, s.
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Figure 5.3-1 Adaptive Linear Compensatior:

The minimum integral square error design procedure advocated

by Newton, et al., (Ref.86) may be preferred when practical design con-

straints provide insufficient freedom in choosing the compensation in

Eq. (5. 3-2) to systematically derive an adaptation algorithm for the ad-

justable gains. In this method one specifies G (s, k) and H(s, h) to within a
cI

number of adaptive gains which are chosen at each value of to yield

TW(s) - T m(s) (5.3-3)

in a precisely defined sense. The procedure is to assume a particular

functional form for v(t) in Eq. (5. 1-1) -- a step, ramp, etc., -- beginning

at a time to and determine values of the ,)daptive gains which minimize the

index

J = e2 (t) dt
to

e(t) = y(t) - ym(t) (5.3-4)
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where Ym(t) denotes the reference model output produced by applying v(t)

to the input of T i(s). The quantity t is regarded as the instant when the

plant parameters have a particular measured value a and e(t) is calcu-
-O

lated for to : t as though the parameters remain constant for all future

time. If the particular values, h and k , of the compensation gains which

minimize the index can be obtained explicitly as functions of ao, adaptive

adjustments can be made as the parameter estimates are updated by

the identification procedure.

For a kmown input having Laplace transform V(s), the error is

given by

E(s, h, k,) =[shko)Tm(s) V(s)

where it is recognized that T(s) is a function of the adaptive gains and plant

parameters. The index J can be evaluated by applying Parseval's theorem

(Ref. 86) to Eq. (5. 3-4), producing

J° I
=-j E(s,h k 0̂ ) E (s,h k a 0 )ds (5.3-5)

Analytical expressions for integrals of this type aie tabulated in Ref. 86.

The values of 4he adaptive gains that minimize J are the solutions of the

set of equations

J 0; i=l, , M

ak (5.3-6)
1

5-10



THE ANALYTIC SCIENCES CORPORATION

where m and t are respectively the dimensions of h and k.*

The above design procedure provides a rational basis for approx-

imating a model when it is not feasible to duplicate its behavior exactly.

The similarity between the performance indices in Eqs. (4.2-1) and (5.3-4)

is obvious; however, explicit plant identification has the advantage over the

gradient method that the optimum controller gains for minimizing the cost

can be computed from Eq. (5.3-6) a" soon as a is known, at least in
-O

principle. The fact that the latter expressions are generally nonlinear

algebraic relations among the elements of h and k may pose practical dif-

ficulties in designing the adaptive controller. However for a low order

plant, such as that associated with the dominant motion of an airframe, this

type of design teclique is probably feasible.

A third form cf model following adaptive control is provided by the

pole assignment design procedure. The compensation is chosen so that the

dominant poles of T(s) in Fig, 5.3-1 have specified values for all plant oper-

ating conditions. This desigi' :riterion is justified on the basis that the

poles of a linear system are the inost important quantities in determining

its response characteristics. It is most readily applied when the measure-

ments in Eq. (5. 1-1) are the full (dominant) state -- i. e., m(t) = x(t); this

condition can be representative of a missile autopilot. For example a third

order airti ame-actuator combination lw-, pitch rate, normal acceleration,

and control surface deflection as dominant state variables, all of which can

be measured by existing types of sensors.** In cases where x(t) cannot be

measured directly, it may be possible to estimate it from the available data

Also see Rekasius (Ref. 127) for a similar pvoblem formulation.
**

Of course, any mathematical model of airframe dynamics neglects
certain high order effects which can become impora nt if the auto-
pilot gains are made sufficiently large.
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(see Section B. 2). The pole assignment technique has been suggested for - i
tactical missile applications (Refs. 18 and 87).

To obtain the desired values for the closed loop poles, the con-

troller is given by J
r(t) = hT x(t)

where h is the set of adaptive gains. The resulting equations of motion are

x(t) : A(a) - b (a)hT1 x(t) + bv(t)

where A and b are both fuactions of the unknown parameters a. Having an

estimate a of the parameters, the poles of the transfer function between-o
input and output are approximately equal to the eigenvalues of the matrix

For a controllable system,* h can be selected to provide any desired eigen-

values (see Ref. 30). The appropriate feedback gains are determined by

requiring"

n

Det [Is -A(j + b (j) iTT] TT A s~m) (5.3-7)

See Appendix A for a discussion of controllability.
** n

Det [ ] denotes the determinant; Tr denotes the product of
i=

n terms.
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where the Pmi, i = 1,o. ,n, are the desired closed loop poles. If coeffi-

cients of like powers of s on each side of Eq. (5.3-7) are equated, n alge-

braic equations that are linear in the elements of h are obtained. * Their

solution is readily obtained as a function of the estimated parameters in

the form

-o= P(o do'Pm1 ' 0 m) (5.3-8)

where P is a known matrix and d is a known vector. This design procedure

is usually the simplest to implement of the three methods described here.

All of the model following design methods discussed in this sec-

tion have appeal for adaptive systems in situations where specific, uniform

response characteristics are desired over a wide range of operating ccndi-

tions. From this point of view, the minimum integral square error design

procedure identified with Eq. (5.3-6) for obtaining approximate equality

between the system and model output behavior is the most general approach.

It allows one to optimize any given controller configuration with adjustable

gains, in the sense of minimizing the integral square error between the

reference model and system output responses.

From the standpoint of implementation, all of the above techni-

ques seem promising for any missile which has some computational capa-

bility. The latter is likely to be available in any situation where explicit plant

identification can be performed. The g:eatest computer burden will likely

arise from the minimum integral square error design method because the

expressions (Eq. (5.3-6)) that determine the adaptive gains are nonlinear.

.

The equations are linear because the plant input u(t) in Eq. (5. 1-1)
is a scalar.
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I

The simplest control technique when all the important plant state variables I
can be observed, is the pole assignment method; this approach is investi-

gated further in Chapter 9 for a specific application.

One characteristic common to all of the design criteria described |

here is that no consideration is explicitly given to the "effort" required, in

terms of control capability, to follow a given model. It usually costs some-

thing in the way of fuel or power consumption to force a plant to improve its

response characteristics and it may be desirble t. incorporate a penalty on

excessive control levels into the problem formulation. Furthermore, any

practical control device has saturation limits; consequently it is desir-

able to avoid a design that cals for control magnitudes that cannot be

achieved. I

The minimum integral square error design method discussed in

this section can be modified to inciude a penalty on the use of too much

control. For example, J in Eq. (5. 3-4) can be redefined to include a term

involving the plant input L.t). In subsequent sections we shall consider this

possibility in the context of optimal control theory.

5.4 ADAPTIVE OPTIMAL CONTROL I

Some fundamental ideas about optimal control of linear systems

are summarized in Appendix B. The analytical tools of this subject are

used here to define methods of adaptive control which can compensate for j
changes in plant dynamics.

The possibility of adaptive optimal control was proposed by

Ho (Ref. 8U). It has been generalized to include adaptive computations for

time-varying feedback gains (Refs. 89-92) and also for adaptive estimation
I

5-14

4I



THE ANALYTIC SCIENCES CORPORATION

of system parameters (Refs. 90-92). A survey of some additional literature

on this subject is given in Ref. 93. Only the deterministic adaptive optimal

control problem is considered here to indicate benefits likely to be achieved

by such methods and to assess the amount of adaptation required.

5.4. 1 Adaptive Optimal Reguiator

The optimal linear regulator is explained in Appendix B. Recall

that it is concerned with finding a control u(t) such that the state of a

dynamical system,

_k(t) = A(t) ,,(t) + b(t) u(t) (5.4-1)

is driven to the origin of state space (x = 0) from an initial condition x0 .

The type of system we have been considering in this chapter has the form

of Eq. (5.4-1) but u(t) is given by

u(t) = -r(t) + v(t)

where r(t) is a control variable that can be chosen by the designer and v(t)

is a prescribed input that represents steering commands applied to a mis-

sile autopilot. To pat ULis situation into the context of a regulator problem,

assume A aid b are constant and v(t) is a constant up until some time t o

At t the system is 2t a steady state equilibrium x and v(t) is suddenly0 -O

changed to zero and held there. Now, the objective that the system follow

v(t) is attained by requiring that the states all be driven to zero. Conse-

quently, temporarily suppressing v(t),it is meaningful in our application to

coasider the problem of selecting a function u(t) = -r(t) such that states of

the system

k(t)= A(a) x(t) + b(a) u(t); x(t) (5.4-2)_ (t)0 x o (042
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approach the origin in an optimum fashion. Because both the system and

the control law are linear, the design will also be optimal for driving the

state to any desired steady state value with a constant input. In this sec-

tion we assume that ".il the elements of x(t) can be determined from the

measurement data.

As discussed in Appendix B, the criterion for an optimum design

which seems to be most useful for linear systems is the minimization of a

quadratic performance index. For this discussion the index is defined to be

co :<t) Qx(t) +ut)]dt (5.4-3)

where Q is a positive semidefinite constant matrix and r is a positive con-

stant scalar. The upper limit of infinity is justified because the control

system response is to be made much faster than the significant variations

in ',(t) ,and h. We know that the minimum value of J is finite fr.)m the

discussion of Section B.4.

To obtain a solution for u(t), set the parameters a in Eq. (5.4-2)
equal to their estimated values a and use the results given in Appendix B

-O
specialized to the above forms for the performance index and equations of

motion; the result is a control law

u(t)= h(ao)T x(t)

!(,,;,) lba) s(&) t 2t to (5.4-4)

where S(a o ) is the positive definite solution to the steady state Riccati

equation (see Section B. 4 for conditions under which the solution exists),
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-SAy) - + 0 (5.4-5)

If the parameters a were really constanc, u(t) given by Eq. (5.4-4)

would be the optimal control for all time; however, we are interested in

situations where the parameters can change in some unknown fashion. Con-

sequently, at a later time t1 , having new parameter estimates a 1' it is

desirable to solve the optimal control problem again, minimizing

J = J [x(t)T Qx(t) + ru(t)2] dt

t1

subject to

k~)=A(a 1 ) x(t) + b a u(t)

The solution is

u(t) 1 b (Q)T S( 1 ) x(t); t t, (5.4-6)

where S(a 1 ) is obtained from Eq. (5.4,-5) with a substituted for ao

Evidently the adaptive updating procedure can be continued in the

above fashion; discrete changes in the adaptive gains are necessary at times

t, t 2 ,.., rather than continuous adjustments, because the solution of Eq.

(5.4-5) generally requires digital computation. This task together with the

parameter estimation algorithm imposes a large computational burden upon

the adaptive controller. Various techniques for solving Eq. (5.4-5) are des-

cribed in Appendix F.

A diagram illustrating the adaptive optimal regulator configura-

tion, modified to include the input command, is given in Fig. 5.4-1. Observe

that v(t) is multiplied by a gain kdc(_) , the purpose of which is to ensure that
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Figure 5.4-1 Adaptive Optimal Regulator

the output variable of interest -- e. g., pitch rate or normal acceleration --

has the proper steady state (d-c) level for a constant v(t). This modifica-

tion is necessary because nothing is included in the optimization problem

which regulates the steady state response to an input command. The equa-

tion of -notion for the compensated system is

*(t)~~~ = Xii'xt+ v(t)

y(t) = cT x(t) (5.4-7)

wher,; the carats are shorthand notation denoting quattities that are func-

tions of the given parameter estimate a. Tu ensure that the output y(t) = v(t)

in the steady state, the d-c gain must satisfy
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k - cTA 1 (5.4-8)
dc T (AT

This calculation can be made in the adaptive controller, given A(a), b(a)

and h(a).

With respect to performance, one must consider what relevance

the solution of a regulator problem has to the desired missile response

characteristics. in Section 3.1-3 it is suggested that control system

specifications are likely to be expressed in terms of rise time, overshoot,

settling time, etc. It is observed that optimal regulator controllers often

exhibit satisfactory properties of this sort provided the weighting con-

stants, Q and r, in Eq. (5.4-3) are properly chosen. Consequently a

fundamental design problem is selecting appropriate values of Q and r.

As indicated in Appendix B, the choice of weighting matrices in

a performance index is a subjective matter, If the matrices have the re-

quired mathematical properties, the optimal design is always asymptotically

stable. Beyond that, specific values generally must be selected by trial and

error. Although certain qualitative effects of changes in Q and r can be

deduced from the form of J (e. g., increasing the weighting on the control

tends to increase system response time and decrease the control magni-

tude), few general analytical results relatiag the weighting constants to

classical response measures are available. *

With respect to the idea of an adaptive control .system based on

optimal regulator theory another question arises. Suppose values of Q
*

Reference 128 gives relations between Q and r and the closed loop
system poles; however if closed !,bop pole specifications are to be the
design criteria, the pole assignment method described in Section 5.3
is preferable.
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and r are obtained which provide satisfactory response characteristics at

some particular operating condition. What happens when plant parameters

change? The answer is that the response characteristics also generally

change, even though the optimal gains are recomputed, because for con-

stant. values of Q and r the optimal system design is dependent upon the

plant parameters. If one desires an invariant response time, say as mea-

sured by the real rart of the dominant system closed loop poles, a means

for adaptively adjusting Q and r with changes in operating condition must

be provided. To accomplish this there is again a need to relate Q and r to

the desired response measure to determine the required adjustments in the

adaptive feedback gains. It may be possible to obtain a set of equations

which provide such a relationship (e. g., see Section B. 5); however exten-

sive numerical calculation -- i. e., an iterative procedure -- is likely to

be required to obtain a solution. The associated computation would be in

addition to that required to solve Eq. (5.4-5). For first and second order

plants, it is sometimes possible to derive the desired expressions in ana-

lytical form; this fact may be useful in designing autopilots for tactical mis-

siles when the combined airframe and control actuator dynamics can be

treated as second order. In this report no attempt is made to adaptively

adjust the performance index weighting constants.

Variation in the adaptive optimal system's response with changing

plant dynamics is not inconsistent with the design philosophy of optimal con-

trol tecliques. In Section 5.3 control methods for duplicating reference

modei characteristics exactly without regard for the required control levels

are presented. In the presence of changing plant dynamics, varying amounts

of control effort are required to accomplish this task. By comparison, any

design criterion which penalizes the control, as the optimal regulator does,

is bound to use less control than a model following technique at some operat-

ing conditions and use more control at others. Consequently the response
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characteristics of the adaptive optimal regulator design must also vary.

Rather than to try preventing this behavior by adaptively changing Q and r,

it is more logical to use a method which guarantees uniform response

characteristics if the latter are desired.

Experience obtained with optimal regulator designs in Chapter 9for

missile applicatixis indicates that fixed values of Q and r can probably be

selected which provide good, although variable, response characteristics over

the range of flight conditions that are typical of a missile approaching a tar-

get. During portions of the trajectory (e.g., during boost) where missile air

speed is significantly different than it is near the intercept point, consider-

ably different performance will be observed. However, if the optimal con-

trol law is recomputed sufficiently often, all flight conditions are stable and

the autopilot yields better performance than the uncompensated airframe.

As pointed out in Chapter 3, a uniform autopilot :,esponse may not

be required for a tactical missile when the effects of noise have to be filtered

out of the guidance system. That is to say, the required system bandwidth

may vary along the trajectory. This situation is likely to occur in long range

launches against air targets. At relatively long ranges where the signal to

noise ratio of the guidance measurements tends to be low, more filtering is

required than at close ranges when better target information is available.

Consequently an autopilot design whose speed of response improves as the

missile approaches the target may be acceptable; this characteristic is in-

herently provided by the adaptive optimal regulator technique whe applied

to a thrustiUng missiie (sec Chapter 9).

5.4.2 Adaptive Optimal Model Following Systems

The preceding section discusses an optimal regulator design for

an adaptive system in which the resulting control system response time

can vary with plant operating conditions. This occurs because no adaptive
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mechanism is provided to adjust the weighting constants in Eq. (5.4-3) to

maintain direct control over performance characteristics as plant param-

eters change, To obtain more uniform behavior, one can introduce the

concept of an optimal model following system. The latter is another ver-

sion of the design philosophy used in Chapter 4 and Section 5.3, with the

difference that optimal control theory is applied to achieve a compromise

between the system behavior and the control effort expended. The techni-

ques described here are also discussed in Refs. 94, 95, and 96.

Let the plant be defined by Eq. (5.4-2), repeated here for con-

venience,

i(t) = A ( ) x~t) + b fl u(t) (5.4-9)

'7he reference model is specified by the equation

m(t) = Amxm(t) (5.4-10)

For this discussion x(t) and x m(t) are each assumed to be of dimension n,

although in general a model of different dimension than the plant can be

accommodated. The command input v(t) is initially eliminated from con-

sideration by the same linearity argument used in Section 5.4.1.

Recall that a variety of error signals are defined in Section 4. 1

which are appropriate for measuring the difference between the system re-

sponse and that of the reference model. Let us assume that x(t) can be ob-

served and define an output derivitive error by the expression

( m

Xm(t) 9 Am x(t) (5.4-11)
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The quantity x is obtained by substituting x(t) for x m(t) into Eq. (5.4-10).-m - m-

This definition for the error hps the advantage that it depends only upon

the state of the system and not that of the model. Notice that if A = Am ,

u(t) = 0, and x(to) = xm(to), then (t) is iden-ically zero.

Having defined the error signal, we seek a control u(t) such that

the index

J = I [(t)T Q(t)+ ru(t)2 dt (5.4-12)

to

is minimized, where Q is positive semidetinite ana r > 0, subject to

Eqs. (5.4-9) and (5.4-11). To obtain a solution, expand V(t) using Eqs.

(5.4-9) and (5.4-11) obtaining,

1_(t) = (A (ao) -Am) x(t) - b (a u(t) (5.4-13)

One can see that substitution for the error in Eq. (5.4-12) makes the inte-

grand dependent only upon x(t) and u(t), but it also contains cross-products

of these terms. The presence of cross-products of the state and control

variables yields somewhat different (.xpressions for the optimal control law

than in the case discussed in Appendix B. The solution is given in Ref. 94

as follows:

u(t) = (0)['~) +H&)jxt

A A~)~( (5.4-14)

A(& o A
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where S(a satisfies

1 b()()T )T O'y(i &> 0

= A(%)- 1 b( b . T'r ("

X~a ' r()

Q _(aao) -b()Q (5.4-15)

r -O)~-0 a  r:ao ) -\ -_o

Aside from some additional algebra, the form of the exp, ession for u(t) is

the same as Eq. (5.4-4). The solution of an nth order matrix Riccati {
equation is required, just as in Eq. (5.4-5).

The above synthesis technique is called (Ref. 94) the model-

in-the-performance-index method. The control law is made adaptive by

successively recomputing its feedback gains as new parameter estimates

become available; the structure of the controller is exactly the same as

shown in Fig. 5.4-1. One expects to achieve response characteristics that

better approximate those of the model as operating conditions vary than can

be achieved by the optimal regulator design previously described. How-

ever, this control technique generally does not have the capability to make

the reference model and the control system identical. The reason for this
is evident from an exTamination of the quantities which define (t) in Eq.

(5.4-13). The control law is of the form

u(t) = -hT x(t)

which together with Eq. (5.4-13) implies that

e(i) (A - Am-bh1T xt)

52
5-24

IJ



I
THE ANALYTIC SWlENCES CORPORATION

If A, Am , and b have values at a particular operating condition such that

mm

for all choices of n, then the plant and reference model dynamics cannot

be made the eame.

Under suitable conditions the feedback gains approach a limit-

ing value as r vanishes in Eq. (5.4-12). In the special case where a value

of h = h exists such that*
-- M

A-A bhT = 0 (5.4-19)A m -- in

it follows hat.

limr h = h
r-.0 -m

Otherwise the limit has a value dictated by the solution to Eqs. (5.4-14)

and (5.4-15) with r set equal to zero.

A comparison between the model-in-the-performance-index

method and the optimal regulator is provided in Chapter 9 for a specific

tactical missile application. The conclusion is that little advantage is

gained in obtaining desired system response characteristics using the

formcr when Eq. (5.4-16) does not hold for some value of h. (One sug-

gestion. for insuring that Eq. (5.4. 16) always does hold for some value of

A matrix of gains will always exist such that Eq. (5.4-16' holds when
the nu,1-er of independent inputs is equal to the dimension of x and
when the associated input parameter matrix Eq. (B-2), B, is
nonsingUiar,,
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h is offered in Section 5.4.3.) Consequently the added controller complex-

ity required by Eqs. (5.4-14) and (5.4-15) is probably not justified.

Another approach to the model following philosophy, called the I
model-in-the-system technique (Ref. 94), utilizes an output error signal

(see Section 4.1.1) defined by I

e(t) = x(t) - x m(t) j
The performance index to be minimized is° I

j o[~) Qe(t) + ru(t)2] dt

t
0

subject again to Eqs. (5.4-9) and (5.4-10). Now J is a function of both

model and system states; this again leads to a linear controller but one

which depends upon 2n state variables if x(t) and x (t) each have dimen-

sion n. The optimal control is given by

1 A >]
(t) r b a oI [S21 (-') m')+ 22 (o -j (5.4-1'i,

where S2 1 (ao) and S2 2(ao) are solutions of a 2n by 2n matrix Riccati equation,

[51 S1 ]A [0]] A T r[0 111 1 nm 11 12

1 22 J L J o J ] 21 22 J
1~ [5S11 S 12 ]j0 01[:11 S 12M+Q _Q 0 5418- H 0 (5.4-18)

0 I Q I
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where the carats denote functions of a
-O

Equation (5.4-18) can be solved in two steps because only S21

and S22 are required. By performing the indicated matrix multiplications

and considering each partitioned portion separately, one obtains

T + T is A J + Q0 (5.4-19)

S A +A S isA0(.2)
21 m 21- r 22b- 21- Q = 0 (5.4-20)

The first expression can be solved for S22 which is then substituted into

Eq. (5.4-20) to determine S Observe that the former, which is the set

of gains associated with the plant state x(t), is independent of the reference

model dynamics.

The computational burden associated with solving Eqs. (5.4-19)

and (5.4-20) is greater than for either the optimal regulator or the model-

in-the-performance-index techniques. Consequently an adaptive system,

requiring successive solutions for the adaptive gains as new parameter

estimates become available, is more difficult to implement.

A functional diagram for the model-in-the-system method is

presented in Fig. 5.4-2. When an input command v(t) is included, there

are two points at which it can be applied -- at the model input and at the

plant input. In Fig. 5.4-2, v(t) is applied at both inputs, using two adap-
A A

tive d-c gains, kde and k dc 2  Their purpose is to scale the system so

that a single output variable

V(t) = cT x(t)
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dc I" -;
AA

AI

ESTIMATOR

Figure 5.4-2 Block Diagram rf an Adaptive "Model-in-the-
System" Optimal Controller

matches the input in the steady state when v(t) is a constant. From the

standpoint of optimality, there is nothing in the theory developed above that

suggests how the two gains should be chosen. The only condition which

they must satisfy to achieve the desired output level is

- blAT9A lb~ k (5.4-21)
k 2 d+b -i_ n-m Idc

Consequently fide and fdc2 are linearly dependent. Either gain can be

selected arbitrarily, the other is then determined by Eq. (5.4-21). The

question is, what are their optimal values.

To resolve the above question we assume v(t) is a constant input

and reformulate the optimization problem in terms of incremental control
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and state variables measured about their steady state values. The result

is that the optimal control 'aw is

u(t) = - rT21Xm(t) + S2 2x(t + k2dv(t) (5.4-22)

The matrices S21 and S22 are determined by Eqs. (5.4-19) and (5.4-20)

and kdc2 is given by Eq. (5. ,.'.-21) with

k del = 1 (5.4-23)

That is to say, v(t) is fed into the model through a unit gain and kdc2 makes

up the "deficit" in d-c gain between input and output.

A configuration which uses kdc 2 = 0 is appealing conceptually in

that Fig. 5.4-2 becomes analogous to a reference meoel followed by a high

gain feedback system, which is a classical design for making a control sys-

tem insensitive to plant variations (Ref. 6). By the latter procedure, an

arbitrarily good approximation to the model can be achieved if the plant's

loop gain is sufficiently large. The model-in-the-system approach also

has a high gain structure; however, the forward gains S. and multiple
12

feedback paths permit only a qualitative analogy with the classical design

concept. The level of feedback gains, as determined by S2 2 , required to

achieve a desired response time is generally greater than in either the

optimal regulator or the mode -in-the-performance-index approaches. High

gains can have a relatively adverse effect on performance if there are high

order modes which have been neglected in the plant dynamics or if the
autopilot sensor noise level is large.

As pointed out by Tyler (Ref. 94) the mdel-in-the-system method

is a somewhat more general design procedure than that achieved by the
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model-in-the-performance-index approach. The latter cannot always I
provide compensation such that the system dynamics differ from those of

the reference model by only an arbitrarily small amount. By comparison, I
the model-in-the-system technique generally does have this capability when

the performance weighting Q is made arbitrarily large. This greater |

flexibility may justify the additional computation required to solve Eq.

(5.4-20) in some applications. However, our conclusion with respect to |

missile autopilots is that their response characteristics are more easily

regulated with the pole assignment technique described in Section 5.3. 1
Further elaboration upon this point is provided in Chapter 9.

5.4.3 Transformation of Variables i

In the preceding sections we have discussed adaptive optimal

control techniques that can be applied to a system described by equations

having the form

_(t) = Ax(t) + bu(t)

u(t) - -r(t) + v(t)

m (t) - x(t) (5.4-24)

where the dynamics are assumed to be accurately known through use of

some parameter identification method. All of the design criteria des-

cribed for adaptive optimal systems have been expressed in terms of the I

behavior of x~t) and the structure of A and b. Alternatively it may be con-

venient to design a control law in terms of a different set of statc variables

z(t) which are related to x(t) by the linear nonsingular* transformation

A nonsingular (singular) linear transformation is one where the

associated matriK M is invertible (not invertable),
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x(t) = Mz(t) (5.4-25)

The matrix M is assumed known; it can be specified arbitraril3, except

that it must not be singular. The equations of motion for z(iI in be

derived by substituting from Eq. (5.4-25) into Eq. (5.4-2.); the result is

i(t) M- 1 AMz(t) + M - 1 bu(t)

u(t) = -r(t) + v(t)

m(t) = Mz(t) (5.4-26)

Because A, b, and M are assumed known, the behavior of z(t) is completely

described by Eq. (5.4-26) and all of the control problems treated in pre-

vious sections in terms of tie state x(t) can be reformulated in terms of

the new variables z(t). Any feedback control law expressed in terms of

z(t) can be mechanized in terms of x(t) according to

r(t) = f(z(t)) = f (M-i'x(t))

The use of the above type of transformation can have some advan-

tages for the purpose of control system design. First of all, in some cases

the state z(t) has more physical significance than does x(t) so that more

intelligent performance criteria can be selected using Eqs. (5.4-26). This

possibility is not to likely in tactical missiles if the measurements m(t)

are identical to the state x(t); bowever, it may be an important considera-

tion in other applications. Another advantage of Eq. (5.4-26) -- and the

more important one for our purpose -- is that the structure of the dynamics

in Eq. (5.4-26) may be preferred. For example, it is true (Ref. 30) that

every controllable linear system can be described by a set of equations hav-

ing the phase variable canonical form:
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A(t) = Ao z (t)+ b u(t)

0 1 0 0 0
0 0 • 0 0 0'

. b °  (5.4-27)

0 0 0 1 0
a 1  . n 2 'n- 1 j I

L 0 '1 L J

Therefore, referring to Eq. (5.4-26), for every set of values of A and b

it must be true that there exists a. matrix M such that

M"1 AM = A0

M- 1b = b (5.4-28)- --O

provided Eq. (5.4-24) is controllable. One advantage of the form of Eq.

(5.4-27) is that the control law derived using the model-in-the-performance-

index method of Section 5.4.2 has the capability for making the dynamics of

the reference model and the closed loop system identical for all values of

the plant parameters, provided the reference model dynamics are also in

phase variable canonical form. In other words, if Am in Eq. (5.4-10) has

the form

0 1 0 0

0 0 0 0
A = * .

m
0 0 0 1
00 01 " n-2 On-1]

and if we make the identifications-- A--Ao, b-.b o -- in Eq. (5.4-16), then
for each set of values for the elements in A there exists a set of feedback

0

gains h m which defires a control law
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T
r(t) h z(t)

su. that

A -A -b hT 0o m --- m

It is pointed out in Section 5.4-2 that the above condition is desirable in

order to have the capability for achieving nearly uniform system response

characteristics at all plant operating conditions (i.e., at all values of Ao )

using the model-in-the-performance-index method. If M can be determined

from Eq. (5.4-28), then the optimal control law derived in terms of z(t)

can be mechanized in terms of the observed variables x(t) according to

(see Eq. (5.4-14) with the identifications u(t) - -r(t), x(t) -, z(t) = MIx(t)).

r(t)- a-I b(_) T [s( ) +QH(ao)]M l x (t) (5.4-29)

A convenient method for obtaining the matrix M defined by Eq.

(5.4-28) is derived in Ref. 125 and is summarized in Ref. 126. It is stated

here without proof, First note that

Det(Is - A) Det (M-  Det(Is - Ao ) Det (M)

_ n n-1
- 1n-i s - . ,,- (5.4-30)

Therefore expand the determinant on the left side of Eq. (5.4-30) and equate

coefficients of like powers of s on both sides of the equation to obtain the

elements of A in terms of the estimated parameters in A. Then obtain the

set of n vectors mi, i =0,.., n - 1, from the recursion

5-33

-!I



I
THE ANALYTIC SCIENCES CORPORATION

M b+Am.; i0,..,n-2 (5.4-31)

and define M according to

M I0 -l . n- 1  (5.4-32)

Note that M depends upon the elements of A and b through Eqs. (5.4-30) and

(5.4-31); therefore in an adaptive system the above calculations must be

repeated whenever new parameter estimates are obtained.

In summary, any controllable system described by Eq. (5.4-24)1
can also be represented by Eqs. (5.4-25) and (5.4-26). Any feedback con-

trol law defined in terms of the variables z(t) can be implemented if the

transformation matrix M is known. Therefore any of the control methods

described in previous sections can be applied to the state variables z(t);

the only computational difference consists of the additional calculations

needed to determine M and M- 1 . An important special case of Eq. (5.4-26) j
is the phase variable canonical form defined by Eqs. (5.4-27) and (5.4-28)

with M given by Eqs. (5.4-30) through (5.4-32). Phase variables offer

design advantages in adaptive control systems that are based upon the model-

in-the-performance-index concept; the feedback gains can always be selected

for any particular set of parameter values so that the reference model and

plant dynamics are identical. In adaptive systems M and M-1 must be

recomputed whenever new feedback gains are calculated on the basis of new

estimates of the parameters in A and b. I

5
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5.4.4 Other Optimization Methods

The questiop arises whether performance indices different from

the quadratic type u.sed throughout Section 5.4 may be more suited to de-

signing missile autopilots using optimal control techniques. For instance,

control surface deflections are limited by hard constraints; i.e., they

saturate. Why not impose the condition,

Iu(t)! M (5.4-33)

where M is a bound on the control, rather than use the time integral of

u(t)2 as a performance measure which provides only an indirect limitation

on the control level? Moreover, because response time is a prime con-

sideration, why not seek a control law that brings the state to a desired

condition in minimum time?

The main aiswer to these questions is that it is difficult to obtain

feedback laws for most such optimization problems. For low order linear

systems, minimum time feedbach controllers have been derived (Ref. 97).

The control law is usually "bang-bang" with its switching points determined

by the time at which the state passes through a specified switching surface

in state space. The equations for this switching surface and the associated

logic are reasonably complex; for systems higher than second order with

arbitrary dynamics, analytical expressions for +he feedback control may

not be available. Furthermore, because of the saturation constraint on the

control, the optimal policy for driving the system state to any point in state

space is not linearly related to the solution for driving the state to the

origin. Therefore, the switching surface equations are also dependent upon

the desired terminal state. In addition, bang-bang controllers tend to be

quite sensitive to noise, always calling for the maximum control level

regardless of the signal magnitude.
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An adaptive, minimum time controller has been investigated for ii
a second order autopilot (Ref. 98). The result is a rather complicated de-

sign procedure that considers only the case where plant initial conditions

are driven to zero. As an alternative to analytically computing time-

optimal control laws, predictive adaptive systems have been advocated

(Ref. 152). The latter empirically calculate the control signal switching

points for the minimum time controller by on-line plant parameter identi- I
fication and fast-time analog predictive simulation of the plant response

characteristics. This is a practical method if the plant dynamics can be

modeled as a first or second order plant having real open loop poles. How-

ever more complicated plant models are likely to be needed to accurately f
describe missile airframe dynamics whose open loop poles are dominated

by their imaginary parts; consequently for a missi.e autopilot the amount

of on-line computation required for the predictive simulation method may

be excessive. More development is required in order to obtain a practical I
adaptive autopilot ,,ith 0 .- c A y ... achi&VVr, iii±UU Lme response

to input commands.

Optimal control problems for linear systems with quadratic per-

formance indices and bounded control constraints of the form in Eq. (5.4-33)

have also been considered (Ref. 99). Near-optimal feedback controls have

been derived which are characterized by linear-type behavior during those

periods of time when the control is unsaturated. As in the time-optimal i
control law mentioned above, the points where control saturation occurs I
are determined by a nonlinear function of the state which depends both upon

the plant dynamics and any inputs to the system. Consequently an adaptive

controller based upon this method would also require a relatively large

computational capability.

A method is suggested in Section B. 5 for determining a control

law for a linear system which minimize-s a quadratic performance index
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subject to quadratic integral constraints. This i, a technique for relating

the weighting constants Q and r in the performance index to specific desired

response characteristics. The method produces a liaear control law but

requires much more computation to determine the feedback gains than the

optimal design techniques described in this chapter.

5.5 SUMMARY AND CONCLUSIONS

In this chapter adaptive control techni-vues which can take advan-

tage of accurate real-time estimates of unknown plant parameters are dis-

cussed. Section 5. 3 describes design methods which achieve a desired

degree of similarity between the input-output transfer functions for a re-

ference model and the compensated plant. The mort promising of these

when all the important plant state variables can be measured is the pole

assignment scheme, which determines the required feedback gains by

solution of a linear set of algebraic equations. It is the simplest technique

to implement in an adaptive controller. Simulation results obtained with

this method are discussed in Chapter 9. Section 5.4 treats optimal control

methods that afford a systematic compromise tetween the control effort

expended and the output response characteristics; however, they require

considerably more on-line computation than the pole assignment technique

when used in an adaptive configuration. The optimal regulator and model-

in-the performance-index designs are evaluated for sample missile tra-

jectories in Chapter 9.
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6. PARAMETER ESTIMATION

In Chapter 5 adaptive control techniques are considered for

linear plants having equations of motion

i(t) = Ax(t) + bu(t)

which depend upon parameters that are slowly varying, relative to the

desired aatopilot transient response, in an unknown fashion. It is assumed

there that a capability exists for identifying or estimating the elements of

A and b and aw.ptive control is accomplished by regularly updating a linear

controller, using synthesis techniques for time-invariant linear systems.

This type of adaptive system is desirable for use in tactical missile auto-

pilots because it can provide desired steering command response charac-

teristics over a wide range of flight conditions, as demonstrated in

Chapter 9.

An important assumption in Chapter 5 is that the unknown system

parameters can be accurately identified. Furthermore this must be accom-

plished quickly with respect to the dominant response time of the guidance

and control system and with respect to the rate at which the parameters

vary. The purpose of this chapter is to briefly review identification tech-

niques which potentially c~n perform this task and to indicate those which

are most suitable for use in tactical missile guidance and control systems.

6.1 PROBLEM FORMULATION

For consistency with the applications treated elsewhere in this

report, we consider a plant having a single input, u(t). The equations of

mction are
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i(t) = Ax(t) + bu(t)

m(t) = Hx(t) (6.1-1)1 I
where m(t) is a set of measurements used to derive parameter esti-

mates. We shall assume that the measurement matrix H is known;

this is realistic for the missile application where m(t) is likely to

consist of some or all of the elements in the state vector x(t)--

e.g., pitch rate, normal acceleration, and control surface deflection. In

this mathematical model both u(t) and m(t) in Eq. (6.1-1) are deter- I
ministic; i.e., they are known exactly. Identification of the param-

eters of a system undor the above assumptions is referred to as I
deterministic identification.

It is generally true that random errors caused by inaccurate

sensors are present in the measurements. Also, knowledge of the

system input is imperfect because of extraneous influences such as

wind gusts or random errors and noise inherent in system components.

These effects can be described by modifying Eq. (6. 1-1) according

to

*(t) = Ax(t) + bu(t) + Gv(t)

M(t) = Hx(t) + w(t) (6.1-2)

where v(t) and w(t) are vector random (stochastic) processes. Identifica-

tion of parameters in a system modeled by Eq. (6.1-2) is known asI

stochastic identification.

I
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There is no unique set of parameters which defines the airframe

dynamics. For example, in addition to the elements of A and b, the poly-

nomial coefficients in various plant input-output transfer functions -- e. g.,

Mi(s) T -

Us)= h i(Is-A)-b (6.1-3)

where M.(s) is the Laplace transform of the ith element of m(t), U(s) is the

transform of u(t) and h is the ith row of H -- can also provide a complete

mathematical system model. Because such sets of parameters are coef-

ficients in a set of linear differential equations it is convenient to define

one class of parameter identification techniques as equation coefficient

identification.

Another category of identification methods is motivated by par-

ticular characteristics of a missile's equations -f motion. Referring to

Eqs. (8.1-2) through (8.1-4) it is clear that the elements U;* A and b for

the missile are functions of several aerodynamic variables. Often the

latter can be described as functions of a relatively small number of funda-

mental physical quantities. In particular, all of the variables that vary

with flight condition -- aerodynamic coefficients, dynamic pressure,

monwent of inertia, and airspeed -- can be expressed in terms of altitude,

airspeed, and mass distribution. The last of these is assumed to be a sin-

gle parameter determined by the amount of fuel consumed. Thus the

number of parameters which are required to specify the system dynamics

is reduced from a set of six -- Mq, M, M3, L , L, and V -- (see

Eq. (8. 1-1)) to a set of three, provided the necessary functional relation-

ships between the two sets can be mechanized on board the missile. These
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I
considerations lead to another class of identification methods called basic

parameter identification, referring to those which estimate the aerodynamic 1

and inertia variables that constitute the missile flight condition.

The above definitions provide us with the following categories

of identification methods:

6 Equation Coefficient Identification 1

Deterministic

Stochastic I

6 Basic Parameter Identification

Deterministic

Stochastic

Both equation coefficient identification and basic parameter identification

are discussed in the sequel with emphasis on the tactical missile applica-

tion, examining particular advantages with disadvantages of each. I
I

6.2 EQUATION COEFFICIENT IDENTIFICATION I

Most identification methods discussed in the literature are of the

equation coefficient type. This is a more general category than basic

parameter identification because the unknown parameters, ie., the ele- f
ments of A and b in Eq. (6. 1-1), are structurally common to many

applications. Several techniques using either deterministic or stochastic

system models are outlined here.
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6.2.1 Deterministic Equation Coefficient Identification

Deterministic equation coefficient identification methods typi-

cally rely upon comparison of the actual plant with an adjustable plant

model (e.g., see Refs. 38, 39, 100). Figure 6.2-1 illustrates one con-

venient system configuration (Ref. 100) for this identification method. It

uses so-called "state variable filters" that, in effect, differentiate the

system output and input variables a sufficient number of times to deter-

mine all plant state variables, * simultaneously suppressing (filtering)

high frequency noise inherently associated with differentiation. In addi-

tion an appropriate error signal is generated, representing the difference

between the actual plant parameters and their estimated values. An error

measure defined as a positive scalar function of the error signal is then

used to adjust the parameters of the model in some systematic way to

reduce the value of the error measure.

With a proper definition of the identification error measure,

L(e(t)), its gradient with respect to the set of unknown plant parameters,

a, is well defined. Gradient parameter adjustment methods similar to

those used in "Gradient Adaptive Control" (see Chapter 4) can then be used

to adjust the model parameters to reduce the error measure. Identifica-

tion is accomplished when the parameters of the plant model match the sys-

tem parameters and the error measure is minimized. If this procedure is

to be successful for missile applications, the model parameters must

converge quite rapidly. To give a specific illustration of this technique,

consider the following e.mmple of a first order system.

It is tacitly assumed that the system is observable, as defined in
Appendix A.
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Figure 6.2-1 Deterministic Equation Coefficient Identification

ii

Example 6.2-1 - The equations of motion are

*(t) = ax(t) + bu(t) (6.2-1)

where x(t) and u(t) are the output and input variables respectively and the
constant coefficients, a and b, are to be identified. Writing the Laplace I
transforms of x(t) and u(t) as X(s) and U(s), three filtering operations of
the form 1

(s) -  X(s)S+0J

s x(s) I

0(s) -  U(s) (6.2-2)
S+W

are performed to obtain estimates of the output, the output derivative and
the input, denoted by the orresponding time functions x(t), 1(t), and u(t)
respectively. The filter pole at - w is chosen to suppress high frequency
noise that may be present in the measured data.
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With the estimates obtained above it is useful to define an

"equation error" as

e(t) A k(t)- ax(t) - pu(t) (6.2-3)

where a and 0 are "model parameters" to be chosen as estimates of a and
b, respectively, by the identification algorithm. Equation (6.2-3) is moti-
vated by the desire to obtain parameter estimates such that (see Eq. (6.2-1))

e(t) - i(t) - ax(t) - bu(t) = 0

Transforming Eq. (6.2-3) and applying Eq. (6.2-2) produces

E(s) - sX(s) aX(s) _U(s) (6.2-4)s +W, s+W S+w

The goal of the identification scheme is to choose a and 0 so e(t) approaches
zero. If this can be done, E(s) = 0 in Eq. (6.2-4) and consequently

sx(s) - a X(s) - 0oU(s) = 0 (6.2-5)

where ao and go are the values of a and $ which make the error zero. Com-
parison of Eq. (6.2-5) and Eq. (6.2-1) yields the identities

a a s0 = b (6.2-6)

Therefore knowledge of % and % identifies the system.

For this example the error measure is chosen as e(t) 2 . The
coefficients a (t) and 0(t) are then driven along a steepest descent path
(negative gradient direction) of the error measure as follows:

t [e(t) 2 ]
a(t) = -k

= 2k(t) e(t)

4(t) = -k !-~t2[e(t)2 ]

= 2kW(t) e(t) (6.2-7)
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where k is a positive multiplier -- the "identification loop gain." If the
identification loop is asymptotically stable and if there is no measurement
noise, e(t) will approach zero as t grows large and the system will be
identified. A block diagram of the above processing technique is given in
Fig. 6.2-2.

PLANT ADJUSTABLE MODEL

I .

AAEE ATFILTENR () eW

Coei IenTE Id i i n f aF iOrder Pla)

PARAMETER ADUTMN ALIT

Application of Liapunov stability theory to the above class of

problems results in a set of conditions under which the identification

algorithm is asymptotically stable (Ref. 100). If the plant has p unknown

constant coefficients, the identification loop can be made asymptoticallyI
stable if the input u(t) contains harmonic components having at least

p/2 separate frequencies, none of which is shifted in phase Ly ai. -agle of

exactly kff radiants (k is any integer) as it passes through the plant. IN.-

6-8
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other words, the input must contain enough independent signals so that each

unknown parameter has an independent eifect on the observed output sig-

nals. Furthermore if p linearly independent error measures are constructed

and a gradient method is used to reduce all these error measures, identifi-

cation can be made to converge at an arbitrarily rapid rate, assuming there

is no noise in the system (see Ref. 100 for details). In effect the identifi-

cation algorithm is asymptotically stabie no matter how large the identifi-

cation loop gain is made.

The above identification method can potentially be applied to tacti-

cal missile autopilots. When autopilot sensor outputs are relatively noise

free quite rapid identification should be possible because of the high con-

vergence rate that can be achieved. In the presence of nonnegligible noise

it has been shown (Ref. 104) that the equation coefficient erromr remains

bounded under certain conditions. The size of the bound and the converg-

ence rate of the error to a steady state root-mean-square value are deter-

mined by the noise level.

A possible disadvantage of the equation coefficient technique is

that the identification properties are largely determined by the type of input

signal. In particular, complete identification requires that u(t) contain a

sufficient variety of harmonic components. In tactical missiles the input is

provided by the guidance law and is therefore not normally under the direct

control of the designer. * It is possible to apply external low level signals

additively to u(t) for identification purposes, but these would tend to be

masked by measurement noise. The extent to which the input signal affects
identification can only be ascertained from investigating the properties of

*
Recall that a similar problem is encountered in the adaptive control

methods described in Chapter 4.
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u(t) as determined by the guidance loop. Qualitatively we kaiow u(t) will

contain random noise from the homing sensor measurements and low

frequency signals resulting from target maneuvers and launch initial con-

dition errors. Thus enough different frequencies will probably be present

to provide an adequate identification capability.

The dependence of identification performance upon input signal

properties is a characteristic of all equation coefficient methods. Only

basic parameter identification described in Section 6.3 is independent of

the autopilot input signal.

6. 2.2 Stochastic Equation Coefficient Identification

The deterministic method described in the previous section does

not explicitly account for random errors in measurements of the plant input

and output variables. In fact random errors will prevent complete con-

vergence of the identification loop. A number of methods have been devel-

oped for handling the stochastic identification problem (Refs. 101, 102, 103,

104) and some encouraging simulation results have been obtained. Two

representative approaches to this problem are examined here with the em-

phasis being placed on those techniques which can be implemented in real

time by some type of recursive algorithm. A more comprehensive review

of identification methods is provided in Ref. 101.

Linearization and Filtering _- The most straightforward approach

to identification in thv presenc3 of random noise is to assume that thera are

good initial or nominal estimates of the unknown coefficients, The system

state vector is enlarged by adding states representing the perturbations of

the coefficients from the nominal values (Ref. 102), and a linearized vec-

tor differential equation is developed for the augmented system. Because
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the resulting equations of motion are now linear, a recursive minimum

variance estimator (Kalman filter) can be developed to obtain estimates of

both the system state variables and the equation coefficients, thus identi-

fying the plant. This technique is illustrated by the following example:

Example 6.2-2 - Consider the first order system

R(t) = ax(t) + u(t) + v(t) (6.2-8)

where x(t) is the state, "a" is the unknown parameter, u(t) is a known input
variable and v(t) is a random process. Equation (6.2-8) is rewritten as

AX

a =a +Aa
0

+ =(a Aa)x + A x

+ = 0 (6.2-9)

where xo and ao are known nominal values for the state atod parameter with
Ax and Aa being small perturbations. The explicit dependence on time has
been omitted from the notation. If we define xo and ao by the differential
equations

W (t) - a x (t) + u(t)
0 0 0

: 0 (6.2-10)0

then the linearized equations for the perturbations are obtained by com-
bining Eqs. (6.2-9) and (6.2-10) and neglecting second order terms:

(t) a Ax + xo(t) Aa +v(t)

A = 0 (6.2-11)
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Equation (6.2-11) is subsequently regarded as the equations of motion of
the system, including Aa as a state variable.

The measurements available for identification purposes are

m(t) = x(t) + w(t) (6.2-12)

where w(t) is random measurement noise. Introducing the definitions

m(t) = m (t) + Am(t)

mo(t) = (t) (6.2-13)0 X O

into Eq. (6.2-12) produces the incremental measurements

Am(t) = x(t) + w(t) ((.2-14)

Equations (6-2-11) and (6.2-14) comprise the linearized system
with state variabies Ax(t) and Aa; the measurement Am(t) is obtained by
calculating

Am(t) = m(t) - xo(t) (6.2-15)

The time-varying coefficient xo(t) in Eq. (6.2-11) is obtained by integrating
the deterministic nominal trajectory provided by Eq. (6.2-10). With this
mathematical framework a Kalman filter can be designed to estimate Ax(t)
and Aa from the incremental measurements. The complete estimated
state and parametev variables are then given by

X (".) + A,,^(t)

0'

a(t) - a0 + , (t) (6.2-16) 1
where Ax(t) and W(t) are the Kalman filter e stimates. If A yields an accurate
estimate of a, the system is identified. Furthermore an estimate of the state
is also available for use in controlling the system. It is also common pyac- I
tice to continually update xo(t) and ao with the estimated incremental values,
resulting in the so-called "extended Kalman filter" (Ref. 138).
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Compared with the deterministic equation coefficient identifica-

tion method, the stochastic identification technique described above re-

quires significanily more computation. This is to be expected because

the objective of the latter is to optimally suppress the effects of noise;

furthermore this method can also handle the case when the unknown param-

eters are time-varying.

Although it cannot be claimed that the above identification method

is optimal, it is clear that if the nominal values of the parameters are

fairly accurate the system is nearly linear and the linearized filter should

be close to optimal. No proof of convergence is available for this proce-

dure so if the nominal values of plant parameters are inaccurate the

method may not yield satisfactory estimates of x(t) and Aa. The latter

question must be carefully investigated in any specific application. Again

it should be noted that the performance of the filter is dependent upon both

the deterministic input u(t) and the noise input v(t). The speed and accu-

racy of identification will depend upon the properties of these input signals

as well as upon the level of the measurement noise.

A number of simulations of linear filters applied to the above

identification problem formulation have been performed which demonstrate

good performance (Ref. 102). Also, many successful applications of

Kalman filtering to other types of linearized nonlinear problems are re-

ported in the literature (especially orbit determination for space vehicles

(Ref. 133)). Consequently this identification technique is promising for

missile applications.

Least Squares Identification - A second approach to stochastic

identification (Ref. 103) resembles the deterministic method of
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Section 6.2.1 above. In this method a set of filters, designed with the

statistical characteristics of the random noises in the system taken into

account, are used to obtain estimates of the plant state variables. The

error defined represents the difference between the actual and assumed

values of the model parameters and a positive scalar function of the error

is used as an error measure. The latter is inaccurate, however, because

of random noise in the available plant input and output data. To account

for randomness, the identifier applies a least squares estimation method

to the error measure to identify the plant parameters, effectively filter-

ing the data to yield the best estimates of the coefficients, in the least

squares sense. Figure 6.2-3 illustrates the identification method in

block diagram form and a specific illustration of the technique is given

in the following example.

1-2)94

DIS
T
URBANCE

INPUT MEASUREMENT

yINOI

INPUT OUTPUT STATE ESTIMATES LEAST ESTIMATES
PLANT VARIABLE SQUARES "

FITR I ESTIMATOR

L T

Figure 6.2-3 Least Squares Parameter Identification

Example 6. 2-3 - Consider the same first order system treated
irn Example 6.2-2,

i:(t) :ax(t) + u(t) + v(t)

m(t) :x(t) + w(t) (6.2-17)

I
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where x(t) is the state, "a" is the unknown parameter, u(t) is a known input,
v(t) is a random process, and rn(t) is a measurement of the state corrupted
by noise, w(t). Just as in Example 6.2-1, x(t) is passed through appro-
priate filters to obtain the filtered estimates -- i(t) and x(t)o Then an
equation error

A ^A

e(t) = i (t) - ax(t) - u(t) (6.2-18)

is formed where a is an estimate of the unknown parameter to be determined.
The error measure is again defined to be e(t)2 .

The least squares estimation procedure determines a to mini-
mize the integral, J, of e(t)2 over an interval of system operation having
length T;

t +T

J = e(t) 2 dt (6.2. 19)
to

Substituting from Eq. (6.2-18) into Eq. (6.2-19), setting aJ/ a = 0, and
solving for a , one obtains the familiar least squares estimate

t +T
i~~ ~ ~~ o (()ut) (t) dt

t
A 0

a- t +T (6.2-20)
0. 0

t o (t)2 dt
t

A block diagram for this example is shown in. Fig. 6.2-4. The effect of
the integration in Eq. (6.2-20) is to suppress the random noise by averaging.
The entire processing technique can be automated recursively so that a
continuous estimate d(t) is obtained. Furthermore, in the event that "a" is
actually time-varying, the recursive scheme can weight the measurement
data in a manner which effectively discards old measurements.

A significant difficulty with the least squares identification tech-

nique is the presence of bias errors in the parameter estimates. The latter

are caused by the noise in the system input and in the measurements of the
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i i,,5

V (t) PLANT LEAST SQUARES ESTIMATORr.. .. ...- - -- ---

Figure 6.2-4 At Illustration of Least Squares

Parameter IdentificationI

system output. Identification error bias can be removed if knowledge of I
the statistics of the radadom disturbances is available. However, the
latter are often not accurately known so that some other correction methodI

is desirable.

bis Using the so-called instrumental variable method (Ref. 103)

biserrors can be removed without requiring known noise statistics. This

technique consists of deriving so-called instrumental variables that are

highly correlated with the system states, but totally uncorrelated with ran- I
doma errors in the system. Reformulating the least squares estimator to

utilize these variables can e'iminate the biasing effect of the random dis- 3
~turbances. The resulting identification procedure yields nnbiased esti-
I mates at somewhat decreased efficiency in statistical estimation; i.e., it j

does not provide optimal statistical weightinL: to the data. Consequently

the parameter estimates may converge more slowly to the true parameter1

vaiues than with tWe ~ast squares estimation procedure. An illustration

of this method is given in the next example.I
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Example 6.2.4 - To illustrate the instrumental variable method
we continue with Example (6.2-3). Recall the parameter estimate was
given by

t +T

(X"(t) -u(t)) ^(t) dt
t

0

t oT (6.2-21)
0 +T

Xt (t) 2 (t

The estimate aA contains a bias error whose magnitude is a function of "a"
because the denominator in Eq. (6.2-21) contains the square of the random
errors in i(t). Furthermore the numerator contains products of quantities
(*(t) and x(t)) whose errors are correlated; these also contribute to the
bias error.

The principle of the instrumental variable technique is to modify
Eq. (6.2-21) so that products of highly correlated random errors do not
appear. One way of doing this is to generate another estimate of x(t) by
implementing the deterministic equation

t(t) = ao X(t) + u(t) (6.2-22)

where u(t) is the known syscem input, ao is a nominal, a priori estimate of a,
and X(t) is the so-called instrumentalvariable. Because there are no unki,own
random processes in Eq. (6.2-22) and no errors are incurred in measur-
ing 9(t), K(t) is statistically independent of x(t), However, if ao is rea-
sonably close to the actual value of "a", 2(t) is close to x(t). The above
arguments provide a rationale for modifying Eq. (6. 2 -2i) to obtain

t +T
AM)- u(t)) X(t) at

a 0 (6.2-23)
t (t) i(t) dt

t
C'
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The random errors in i now tend to be unbiased at the expense of j
some reduction in estimation accuracy. The modification to the least

squares estimator is illustrated in Fig. 6.2-5. 1

I
MODIFIED R-'196

PLANT W(1) LEAST SQUARES ESTIMATOR

.0 A

FI

_ _ _ _ _ _ _ __
L

INSTRUMENTAL VARIABLE
GENERATOR

I I

Figure 6.2-5 An Example of Least Squares Identification
With Instrumental Variables ]

As in the linearized filtering method of Section 6.,'.2, no ana-

lytical means are available for guaranteeing convergence of the instru-

mental variable method. However, it does remove biases from estimates

of the plant parameters and a priori statistics of the parameters are not

required. In addition, experimental evidence (Ref. 103) indicates that the
method works qite well, even in the presence of large random errors in j
system input and output data.
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The instrumental variable technique can be cast in the form of a

recursive estimation scheme (Ref. 103), similar in form to a Kalman fil-

ter. It is also possible to alter the estimator so that as time passes, old

data are gradually ignored in favor of new information. The process of

eliminating old data allows tracking of time-varying parameters and thus

provides a potentially useful identification method for missile applications.

6.3 BASIC PARAMETER ESTIMATION
AND FUNCTION GENERATION

Equation coefficients defining the dynamics of a tactical missile

are functionally related to basic parameters of the flight condition --

vehicle altitude, air speed, mass distribution. Knowledge of these quan-

tities allows computation of the equation coefficients if the functions relat-

ing the basic parameters to the equation coefficients are well known. Thus

the system is identified if a complete set of basic parameters can be esti-

mated. To indicate specifically what is meant by this technique, we include

here one of the airframe equations of motion for an aerodynamically con-

trolled missile, taken from Eqs. (8.1-2) and (8.1-3),

a(t) -S C= q(t) -- C a(t) - 49 CN 6(t) (6.3-1)

where q(t), a(t), and 6(t) are respectively pitch rate, normal acceleration

and control surface deflection. The definitions of the symbols in the

coefficients of these variables are given in Section 801 1; each one is

determined by the flight condition and the physical geormvt.Ly of the air-

frame. Assu:ning tie geometry is known a priori, estimates of flight
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condition enable one to calculate the coefficients in Eq. (6.3-1) if the

required functional relationships (e.g., between CN, and mach i.umber)

are known. This identification philosophy is also associated with "open

loop adaptive control" (see Section 5.2).

An important advantage of the approach outlined above is that

estimation of the basic parameters and subsequent calculation of the equa-

tion coefficients can be accomplished independently of the missile's rota-

tional motion if the required sensors a.-e available. For example, the

natural "'esponse of the airframe to steering commands usually changes

missile altitude by only a few feet whereas altitude must change by

hundreds of feet before the airframe parameters are altered to any appre-

ciable degree. Consequently direct altitude measurements are relatively

unaffected by airframe dynamics. This is a significant distinction from

those identification methods described previously where the determination

of airframe state variables -- e.g., pitch rate and normal acceleration --

is required to identify the plant parameters. Furthermore identification

can proceed without requiring an autopilot input signal having special

characteristics to excite the airframe dynamics; indeel, the autopilot input

can be zero.

Estimation of the basic parameters is readily accomplished if

they can be measured directly. * The missile's velocity, which is approxi-

mately equal to airspeed, may be available from an inertial unit; in a dog-

fight application where thrust is applied continually along the trajectory, a

In the absence of such a capability, the basic parameters can be
determined from the measurements of airframe state variables;
however considerably more computational capability would be re-
quired and the identification would be dependent upon the autopilot
input signal characteristics.
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single integrating accelerometer mounted along the longitudinal axis may

provide adequate velocity information. A barometric altimeter will pro-

vide adequate altitude measurements. The measurements from these sen-

sors contain random errors as well as the low frequency basic parameter

variations of interest. It seems probable that in many applications the

random errors would be sufficiently small relative to the quantities of

interest so that no pro cessing of the measurement data would be required.

However, if the error level is unacceptable, an estimation technique can

be employed. Usually the basic parameters can be modeled as constants

or as outputs of !'jw order linear dynamical systems and a low order

Kalman filter can be designed to provide the appropriate estimates. Care-

ful design will produce an estimation algorithm that is stable and relatively

insensitive to er'cors in knowledge of the statistics of the signal and noise

random processes. Redundant data from multiple sensors can be readily

incorporated to enhanc.e accuracy and reliability. Furthermore, the fil-

tering operations for different basic parameters such as velocity and alti-

tude can be effectively decoupled, thereby minimizing the complexity of

the total filter configuration. As a result of these considerations it is

reasonable to infer that filtering appropriate sensor data can yield esti-

mates of basic parameter values with sufficient accuracy to identify the

system.

Since the equation coefficients are the ultimate goal in identifying

the system, the identifier must be capable of generating them from the
basic parameter estimates. In geneial the eouation coefficients are func-

tions of dynamic pressure, vehicle inertia properties and the vehicle sta-

bility derivatives. Dynamc pressure is a well known function of airspeed

and air density; the latter is in turn a function of altitude. The moments

of inertia for a tactical missile are usually known as functions of engir,

thrusting time, The stability derivatives are functions of Mach number, I
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which is a function of airspeed and altitude. Of all the above relationshipsj

probably the most difficult to determine are the stability derivatives as

functions of Mach number. The latter must be obtained from extensive !

wind tunnel and flight tests over the entire flight regime of the vehicle.

The dependence of the stability derivatives on Mach number can be stored ,

in a computer either as tables or as approximating functions -- e.g.,

polynomials.

With sufficiently accurate determination of dynamic pressure, I
inertia properties, air speed, and stability derivatives the vehicle guid-

ance system can generate equation coefficients for the equations of motion I
of the vehicle. Analog computation methods for evaluating these functions

would require extensive on board equipment capability. A digital guidance

computer however can calculate the equation coefficients using polynomial

approximations to the experimental data; it can perform this identification

task along with basic parameter estimation, autopilot control and guidance,

on a time shared basis.

For the missile application, basic parameter estimation requires

the most computer capability and the most a priori knowledge about air-

frame dynamics as functions of air speed, etc., of all the identification I
methods described in this chapter. On the other hand, it is the best suited

for rapidly identifying the airframe parameters in the presence of random |
inputs and measurement noise, provided adequate airframe aerodynamic

data are available. Basic parameter identification has a significant ad-

vantage over equation coefficient methods irn that it does nt depend upon

measurements of airframe state variable9 and is therefore independent of

the autopilot input signal characteristics. Consequently this is a promising

technique for missile applications.

I
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6.4 COMBINED IDENTIFICATION AND ADAPTIVE CONTROL

As explained in Chapter 5 the purpose of idencification is to

provide accurate estimates of plant parameters for use by the control sys-

tem. When the identification and control functions are performed simul-

taneously in the system, the controlier closes a loop around the plant, as

indicated in Fig. 6.4-1. Consequently the estimates of the plant param-

eters affect the control action taken and the control action in turn influences

the operation of the identification procedure. Thus th( identifier and adap-

tive controller may be closely coupled. Although it is possible in some

circumstances to guarantee convergence of the identifier operating by itself

with the open loop plant (e.g., see Fig. 6.2-1), the convergence criteria

described in vrevious sections are no longer applicable when the control

loop is closed as h, Fig. 6.4-1. In particular, interaction effects may de-

grade the performance of the identifier which would in turn affect the con-

trol loop.

,1-2237
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Figure 6.4-1 Combined Identific.tion and Control

The possibility of significant control-identification coupling

effects is greatest in the equation coefficient methods described in Section

6.2 where the controlled variables (pitch rate, normal acceleration, etc.)

are an integral part of the identification process. In basic parameter
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1

identification described in Section 6,3, the quantities to be estimated -- I
velocity and altitude -- are largely independent of the autopilot; conse-

quently the identification process is not significantly affected by control

actions.

In equation coefficient identification, it appears likely that if

identification can be accomplished rapidly, relative to changes in the dynam-

ics of the controlled plant, the total system behavior should be satisfactory.

However, the question of interaction effects cannot always be ignored and

it presents an area for further research.

6.5 SUMMARY AND CONCLUSIONS

Two distinct approaches are taken in this chapter to the identifi-

cation of tactical missile parameters. These are defined as equation

coefficient identification and basic parameter identification. In addition,

both deterministic and stochastic identification methods have been e'amined.

All of the equation coefficient identification techniques have the I
property that they depend upon measurements of airframe state variables

to identify airframe parameters. Consequently the speed and accuracy of

identification will be adversely affected by measurement noise and random

forces acting on the airframe. In addition the performance of these tech-

niques depends upon the properties of the input (steering command) to the

airframe which excites the airframe state variables. In some tactical I
missile applications -- e. g., dogfight situations -- parameters vary ex-

tremely rapidly and it is not clear whether equation coefficient identifica- I
tion can be accomplished well enough to provide adequate adaptive control.

This is an important topic for future investigation. I

i
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The basic parameter estimation method is an especially straight-

forward technique for identifying the system if direct measurements of the

pertinent basic parameters are available. In particular, the parameter

estimation problem can be effectively decoupled from the missile short

period dynamics, thereby yielding rapid identification. Furthermore, only

three basic parameters -- airspeed, altitude, and mass distribution --

need be estimated. However, this scheme assumes that the stability

derivatives are known functions of Mach number. The conceptual simplicity

of basic parameter identification i& appealing and it will be quite practical

if the necessary aerodynamic data and computational capability are

available.
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7. LOW SENSITIVITY CONTROL SYSTEMS

In previous chapters methods are discussed for designing adap-

tive feedback controllers to compensate for plant parameter variations.

Their salient feature is that controller gains are adjusted adaptively to

maintain uniform output response characteristics a plant dynamics vary.

As a possible alternative to adaptive methods, this chapter considers fixed

configuration controllers which are designed so, that the compensated sys-

tem is relatively insensitive to changes in plant parameters. If such a sys-

tem yields satisfactory response characteristics, it is usually preferable

to an adaptive system which tends to be more complex and less reliable. In

the event that adaptation is still needed, it can be supplied by an auxiliary

control loop as suggested in Section 2.3.3.

To design an insensitive controller it is necessary to determine

the manner in which variations in plant parameters affect performance

(sensitivity analysis) and then establish procedures to compensate for un-

desirable effects (sensitivity control). A quantitative measure of the effect

of parameter variations called a sensitivity fimction is usually defined. If

a given system is subject to small parameter deviations, the methods of

first order differential sensitivity analysis* are usually sufficient to

assess the changes in system performance. However, when parameter

deviations can be large within some known range, as is typically the case

in tactical missile applications, first order sensitivity analysis is not

adequate.

That is, the first order partial derivatives of various quantities
with respect to the parameters are used to define sensitivity.
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In this report, it is arsumed that the structure of the plant

dynamics is given, that its equatins of motion are linear, and that the

range of variations in plant parameters is knou.. While the literature j
abounds with techniques for designing insensitive controllers for this class

of systems when parameter variations are small, few methods have been

developed which treat large variations. The latter case is of most interest

in designing a control system for a tactical missile because of the wide /
variety of aerodynamic conditions to which its airframe is subjected. The

following sections review some of the approaches taken in designing feed-

back controllers to produce low sensitivity systems, with emphasis on

those which apply for large changes in plant operating conditions.

I
'. 1 COMPLEX PLANE METHODS I

7.1. 1 Frequency Domain Compensation Techniques

It is pointed out in Section 2.3.3 that one of the earliest methods

for reducing the effects of parameter variations in a control system was

through feedback. An example is given in Fig. 2. ,-5 which illustrates that

coupling the output of a plant to its input through a high gain amplifier can I
reduce the sensitivity of the compensated system to changes in the plant

dynamics. More generally, various compensation networks ran be added !

in the system control loop to obtain desired response behavior. This

approach is characteristic of several design procedures described by I
Horowitz (Refs. 16, 106). Often, the design is based on the assumption that

the closed loop transfer function for the ccntrol system should possess only 3
a small number of dominant poles. To achieve this goal, high loop gain and

appropriately specified compensation networks are chosen with the aid of I
complex plane analysis -- root loci, Bode plots, Nyquist diagrams, etc.
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The selection of compensation network parameters is based on knowledge

of the expected ranges of plant parameter variations and on desired toler-

ances on the input-output transfer function.

The need for compensation networks in the design procedure des-

cribed :bove arises because not all the plant state variables are directly

available for feedback control. (As will be demonstrated in subsequent

sections, the system design is accomplished more simply when all the

plant states can be measured or estimated. The compensating filters in

the single output system can be loosely regarded as "state estimators" or
"observers" which generate signals that are closely related to plant state

variables.

To aid the design procedure outlined above the sensitivity of feed-

back systems is often described by frequency domain sensitivity functions.

Consider the single-input, single-output, time-invariant linear feedback

system illustrated in Fig. 7. 1-1. The transfer function G(s, a) represents

the plant and H(s) is some fixed comrinsation network. Assume that the

parameter a, associated with the plant dynamics, is known to be within a

certain range of values. The closed loop transfer function T(s) relating

the output to the input is given by

Y(s)
T(s) = VS

_ G(sj a)

1 +G(s, a) H(s)

It is clear that if tG(s,a) H(s) >> 1 (i.e., if the loop gain is large) then the

transfer function can be approximated by

T(s) 2 (7.1-2)
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Figure 7.1-1 Feedback System With One Input
and One Observed Output

indicating that the closed loop system is approximately independent of the

characteri ,tics of the plant, G(s, a). The sensitivity function S(s) of the

closed loop transfer function with respect to an incremental parameter

change Aa is defined by (see Ref. 107)

(s AT(s, a) / a (7.1-3)
AaT(sj a)/a

The numerical value of IST(s)! at a particular value of s is approximately the

percentage change in I T(s, a) I caused by a one percent change in the

parameter, a. For differential perturbations, Eq. (7.1-3) becomes I
ur T (.3) a ST~ a B__ T(s, ae)(.-4lima S (s) T(s, a) acyA01-4 0 AC

It is often desirable to def.ne :, Lensitiv .t  ..°.-Aon ST(s)re on

senting changes in the closed loop transfer function cai.ed by variations in

the entire plant transfer function, not jut, s single pa . *.,eter. This can I
be done using arguments similar to t',..e axove, leadfr. to the relations
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S" (s) AT (sA
AGT(s, G

Trn STG(S) 4 T G(s, a) T(sa)

AG -0 G S (s) T(s, a) OG(s, a)

1

1 +G(s,a) H(s) (7.1-i)

The quantity SG(s) is the percentage change in I T(s, a) I caused by a one

percent change in the magnitude of the plant transfer fi.ction. Consequently

it is reasonable to say that the 6ystem sensitivity is improved by the feed-

back compensation (as compared with no feedback) if

IST(j w)I < 1 (7.1-6)

for all frequencies, w, of interest. This condition will hold if the so-calied

return difference, 1 +G(jw, a) H(jw), in the denominator of Eq. (7. "-5) has mag-

nitude greater than one. The design criterion expressed by Eq. (7.1-6)

may be employed to specify the parameters characterizing H(s) in order to

achieve a low sensitivity iesign. The basic design approach, which often

relies on a trial and error process, is to shape the frequency response of

the loop transmission G(s, a) H(s) so that Eq, (7. 1-6) is satisfied in the fre-

quency range of interest.

The above first order analysis of sensitivity to plant parameters

has been extended (see Ref. 108) to the multi-input, multi-output case. The

extension incorporates a sensitivity matrix which relates output errors due

to parameter variations in a feedback system to those due to parameter

variations in a corresponding open loop system. The design criterion

analogous to Eq. (7.1-6) for multivariable low sensitivity systems is that
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over the frequency range of interest a sensitivity matrix, S(Jw), must I
satisfy the condition I

S T(-jW) S(jW) - I 0 (7.1-7)

where I is the identity matrix. In other words the matrix [ST(-jw)S(jw) - I] J
should be negative semidefinite. It is demonstrated in Ref. 108 how

Eq. (7.1-7) can be satisfied for a two-input, two-output turbine control I
system. In that example, it is shown that the feedback compensation can

consist of pure gains (no additional dynamics). However, in general, it is

necessary to arrive at a satisfactory compensation via trial and error

methods. i

The frequency domain compensation techniques described above

have proven successful in several applications (Refs. 14, 1i) involving both

small and large parameter variations. In addition to designing fixed con-

figuration controllers, these methods are also helpful in designing open

loop adaptive systems of the type described in Section 5.2 where plant

parameter variations are extremely large and it is desired to h-ve as few

sets of gains as possible. In most cases the high gain character of the

feedback loop is the chief reason the system is insensitive to plant disturb-

ances. Therefor( the missile autopilot designer must also consider possi-

ble adverse effects .auszd by noise and structural bending modes. Further-

more in plants with varying dominant right-half-plane zeros, high loop gain

tends to make the system stability properties quite sensitive to parameter

changes. As mentioned previously, the latter problem exists in normal j
acceleration autopilots for missiles having fixed wings and tail-mounted

control surfaces.

I
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7.1.2 State Variable Feedback

The preceding section briefly describes complex plane synthesis

procedures which can sometimes be used to make the behavior of specific

system output variables insensitive to parameter variations. When all the

system state variables can be measured, somewhat more flexible methods

are available for designing the controller; such techniques are the subject

of this section,

In Ref. 109 it is shown that fixed gain feedback controllers can

be used to desensitize plants whose equations of motion possess a certain

form -- phase-variable canonical form. The equations of motion for this

type of plant are given by

_(t) = Ax(t) + bu(t)

0 10 • 0r

0 01 0 0

0 [ 1 0 1
A b=(71)

-a -a 2  o•-an L1

u(t) = -r(t) + v(t)

r(t) = hT x(t)

hT = [h 1 h2 h3. • h (7.1-9)

The quantity u(t) is the plant input and r(t) is the feedback control signal.

Since each state variable of the plant is independently measured and
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weighted by an elemero of h, this form of control is referred to as all- I
state feedback. The traracteristic polynomial of A is defined as

D (s) = Det(sI - A) (7.1-10)0!

The roots of D (s) are the poles of the open loop system and they determine

the time history of x(t) in response to v(t), in the absence of feedback.

The polynomial may be expxressed in the form

Do(S) = sn +a sn - 1 + + a2 s+a 1  (7.1-11)

Clearly if the plant parameters a1 , . . . an vary, changes in the behavior

of the open loop system are deterriined by the manner in which the roots of

the characteristic eauation (Eq. (7. 1-11)) shift in the complex plane.

To compare the open and closed loop systems, Eqs. (7.1-8) and

(7.1-9) are combined to obtain the characteristic polynomial of the closed f
loop system, Dc(S), given by

D( s) = Det(SI- AbhT ) ( 1-12)C!

or, in expanded form

Dc(S) = s n + -h+a s n  + .+(h +a2 + h+ai (7.1-13)

th n a)n2 2'+1 3

It is well known that the roots of an nt h order polynomial can be assigned

any desired values provided n of its coefficients can be arbitrarily speci- j
fied*. Therefore, assuming the feedback gains are unconstrained, one can

The only exception is that a polynomial of od order must have
one real root.

7-8



THE ANALYTIC SCIENCES CORPORATION

choose h o, h for known fixed values of . , a so that all the

closed loop poles (zeros of D (s)) lie at arbitrary locations in the complex

plane. Now suppose that a,.. , a in Eq. (7.1-13) are unknown but are

constrained to lie within known bounds. In this case the desensitizing capa-

bility of feedback in the presence of plant parameter variations becomes

readily apparent. All the fixed feedback gains can be chosen such that each

"dominates" its associated plant parameter in D (s); the concept of the

feedback controller dominating the closed loop system response is of pri-

mary importance in obtaining an insensitive design.

In the above design procedure it should be clear that the greater

is the range over which the plant parameters vary, the larger the feedback

gains must be in order to suppress the effects of those variations. Conse-

quently the resulting control system has a high gain character. In mech-

anizing such a system care must be exercised to insure that excessively

large geedback signals do not produce unacceptable saturation of physical

control devices.

Because the equations of motion of most physical systems do not

appear in phase variable canonical form when written in terms of the state

variables of interest*, it may not be possible to apply the above design

technique directly. The fact that the differential equations of motion of a

linear system can often be transformed to exhibit this canonical structure

is of no assistance because the transformation itself requires knowledge of

the very parameters which are not precisely known.

A linear feed'aack control law written in terms of an arbitrary

set of state variables defined by the equations

,
The state variables of interest are those that can be measured or

estimated without knowledge of the plant parameters.
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I
(t) - Fz(t) +_ !u(t)

u(t) = -hT z(t) + v(t) (7.1-14)

does not necessarily reduce the sensitivity of the system to parameter

ariations, particularly if the elements of g as well as those of F also vary.

To describe more generally what conditions are required to obtain an in-

sensitive system design with all-state feedback, let us introduce a scalar

gain h° into the expression for the control law in Eq. (7.1-14) so that the f
equations of motion become

_(t) = F z(t) + S u(t)

u(t) b 0 h T z(t) + v(t) (7.1-15)

A block diagram for the system is shown in Fig. 7.1-2. The character-

istic polynomial D (s) for the closed loop system is given by
c

D(s) = DetSI- F +h0  hT) (7.1-16)

Insofar as the behavior of the system is governed by the roots of D (s), it

can be made insensitive to parameter variations if h0 and h are chosen so

that they dominate the effects of variations in F and g in Eq. (7. 1-16).

However this cannot be accomplished unless F and g have special proper-

ties -- such as the phase variable canonical form defined in Eq. (7.1-8).

In particular, if any elements in g vary with plant operating conditions the

use of feedback can make the roots of Dc (s) more sensitive to parameter

variations than those of the open loop characteristic polynomial. This

effect is observed in the applications investigated in Chapter 9.

7
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PLANT

+ f

+ FF

Figure 7.1-2 A Control System Employing State Feedback

Another way of looking at the effects of feedback in the general

case is to define a new variable

w(t) 4 hT z(t) (7.1-17)

The Laplace transforms of w(t) and u(t) in Fig. 7.1-2 are related by the

transfer function

W(s) = hT(sI - F) G(s) (7.1-18)
U (s) -

Equation (7.1-18) and Fig. 7.1 -2 suggest that the blouk diagram be redrawn

as in Fig. 7.1-3, which is simply a single output system compensated by a

feedback gain h0 . Consequently the system closed loop poles as a fimction

of h are described bythe locus of the zeros of the quantity P(s) defined by0

P(s) = 1 + h G(s) (7.1-19)

If the dimension of z(t) in Eq. (7.1-15) is n, then the denominator of G(s)

is the nth erd(,r polynomial,
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h 0
R -2674 f[

T

Figure 7.1-3 Single Output Feedback System
Dynamically Equivalent to
Fig. 7.1-2

D (s) = Det (sI - F)

and its numerator is an (n-l)th order polynomial having coefficients that

depend upon h, F, and g.' If the feedback gains h can be chosen so that n-1

zeros of G(s)are insensitive to variations in F and g,** then (n-1)closed

loop poles of the system shown in Fig. 7.1-3 can also be made insensitive

by placing them close to the zeros of G(s) using a large value of h0 in

Eq. (7.1-19). The remaining closed loop pole will have a large negative

real part. Therefore, to the extent that the response characteristics of

interest are determined by values of the dominant closed loop poles, the sys-

tem behavior is insensitive to parameter variations. However, one should

keep in mind that this compensation technique does not provide direct con-

trol over the zeros in the transfer functions between the input v(t) and other

output variables (different from w(t)) that may be of interest. Consequently

there may be some noticeable changes in the time histories of important output

The fact that the numerator of G(s) is an (n - 1)th order polvnomial
can be verified from the mathematical definition of (sI - F)" .
**

That is, h must dominate the coefficients in the numerator of G(s).
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variables as plant parameters vary; the fact that the closed loop poles are

relatively invariant implies primarily that the settling time of the system

transient response is approximately constant. The above design technique

is illustrated in Fig. 7.1-4 where the block diagram for a second order

system is depicted along with the corresponding root locus. As h becomes
0

large, the closed loop poles approach the open loop zero at -c and another

zero at --. If the gains h in Eq. (7.1-18) can be chosen to make c insensi-

tive to the plant parameters, the dominant closed loop pole will also be

insensitive.

For some special system configurations, such as the phase vari-

able canonical form in Eqs. (7.1-8) and (7.1-9), it is readily demonstrated

using either of the arguments described in the above paragraphs than an

insensitive control system can be designed. However, in general, the

details of the specific application to be considered must be examined to

determine whether the proper conditions exist for all-state feedback to yield

an insensitive design, as has been noted in Ref. 109. Typically the equa-

tions of motion for an aerodynamically controlled tactical missile written in

terms of directly measurable state variables (normal acceleration, pitch

rate, and control surface deflection) have at least one element of the vector

g with a wiie range of variation along a trajectory. If these variables are

used for feedback control the elements of h, being multiplied by the ele-

ments of g i Eq. (7.1-16), cannot dominate the parameter variations in

F and g and an insensitive design cannot be obtained.

Besides designing insensitive linear feedback systems, the

ruethods treated, in this section are also useful in explaining the qualitative

behavior of certain fixed configuration nonlinear controllers. The latter

are discussed in Section 7.5.
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Figure 7.1-4 Illustration of the High-Gain State Feedback
Technique for Desensitizing the Dominant
Closed Loop Poles of a Second Order System

7.1.3 Closed Loop Pole Sensitivity J
The sensitivity reduction methods discussed in the preceding

sectlzns -- employing classical frequency domain techniques such as Bode

plots, root locus plots, etc., -- are referred to in this chapter as complex I
plane methods. Several analysis and design procedures that are specifically

concerned with determining the influence of plant paraneter variations upon J
the locations of the system closed loop poles are also included in this class.

Since th. closed loop poles largely dictate the manner in which the system j
behaves, it is desirable to learn in what direction and by how much they

shift in the complex plane when the plant parameters are changed. In I
Ref. 110 deterioration of system performance due to plant parameter varia-

tions is measured by detecting whether the closed loop system poles move

out of specific circle- ila the complex plane which define regions of allow-

able pole variation. If the des.,red locations of these circles are specified I
in terms of the positions of their centers and the size of their radii
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(sensitivity tolerance radii), the controller feedback gains can be deter-

mined by the designer according to the following procedure: Given the

sensitivity tolerance radii, circle centers, and specified controllei struc-

ture, the feedback gains of the controller are chosen in such a manner

that the ranges of plant parameter variations for which the closed loop

poles remain within the circles are as large as possible. In the literature

on sensitivity reduction, this approach is referred to as the inverse sensi-

tivity problem. This design procedure is quite complex in that it requires

optimization (maximizing the allowable ranges of parameter variations)

subject to inequality constraints on the pole locations.

The problem of sensitivity analysis -- i.e., that of determining

the manner in which closed loop poles shift because of changes in plant

parameters, -- can be approached by employing several methods from the

theory of matrices. Often these procedures require little computational

effort, but they seldom yield precise results. For example, Ref. 111

describes an analytical method for determining the bounded areas in the

complex plane within which all of the system closed loop poles lie for a

known set of feedback gains and a fixed set of plant parameters. By allow-

ing the plant parameters to vary, "composite" bounds on the pole locations

for the specified ranges of variation can be determined. However, these

are us'ially too conservative to be helpful in designing a system wikh

reasonably restrictive performance criteria.

7. 1.4 Summary V Complex Plane Methods

From the discussion in Section 7.1 it can be concluded that com-

plex plane methods offer a limited potential for designing insensitive con-

trol systems for tactical missiles by means of fixed gain feedback
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controllers. Except for the special case when the plant equations are given I
in phase variable canonical form (a condition that usually does not hold for

tactical missiles), little can be said a priori about the ability of feedback {
controllers to reduce the sensitivity to wide variations in plant parameters.

Nevertheless, these techniques can be useful for designing open loop adap- j
tive controllers (see Section 5.2) in which it is desired to minimize the

number of gain settings required over the range of plant operating condi-

tions. In addition complex plane methods provide insight for analyzing the

behavior of nonlinear controllers, as will be demonstrated in Section 7.5. 1
I

7.2 TIME DOMAIN SENSITIVITY FUNCTIONS I
It is often desirable to predict the manner in which the time

response of a dynamical system changes when its parameters deviate from I
their nomiaal values. Tomovic (Ref. 112) discusses several time domain

methods for establishing the degree of sensitivity that a dynamic system F
possesses with respect to first order (small) chaiz,,geG in plant parameters.

Consider a linear dynamical system described by I

k(t) = A(q) x(t) (7.2-1)

where q is a single. ,ariabie parameter. Given initial conditionsx and to,

the solution of Eq. (7. 2-1) can be regarded as a function of both t and q.

If x(t, q) is known for a particular value q of the variable parameter and if

% is perturbed by a "small" amount, Aq, the new solution can be approxi.

mated by the relation

ax(t, q) |

x(t , qo +  q) =x(t, ) + aq % Aq (7.2-2)
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Equation (7.2-2) is a Taylor Series expansion about the point qo' where

higher order terms have been ignored. A measure of sensitivity of the

solution to Eq. (7.2-1) to the perturbation Aq is the term

_Xq(t)- ?
q aq %

which is known as the sensitivity function*. By differentiating Eq. (7. 2-1)

with respect to q, it is easily shown that x satisfies the linear diiferential
-q

equation

1~(t) = A(q0 ) x (t) + bA(q) xtq aq %

x q(to) = 0 (7.2-3)

The initial condition _ (to ) is zero because a change in the parameter value

at time to does not have an instazitaxpous effect on the state. Equation

(7.2-3) can be solved (integrated) by choosing q to be a nominal value

within the expected range of parameter variations.

In general, a set of oifferential equations in the form of Eq. (7. 2-3)

must be solved to determine the sensitivity Jnction associated with each

variable plnt parameter. Consequently a complete sensitivity analysis of

the system may be quite tedious. For linear syzems whose dynamics are

nominally time invariant, one sensitivity function x. can be determined in

terms of any other, _xp, corresponding to a parameter p, by means of a

,In certain types of adaptive control systems (see Eq. (4.2-17)) x (t)
is a weighting function in the adaptation algorithm. The atter is
a different usage of this function than is discussed in tis section.
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linear transformation, x = T pqx q, where T is a known nmatrix, thus f
requiring the solution of only one set of differential equations (Ref. 113).

The type of sensitivity function described above is a first order

measure of the effect of parameter variations which is useful only for small

changes in parameter values. In tactical missile applications, large varia-

tions in parameter values are often encountered sG that a higher order sen-

sitivity analysis is needed. Sensitivity functions describing second, third,

etc. order effects can be derived in the same manner as x q; however many

more differential equations must be solved to obtain them.

Several workers (Refs. 114, 115, i16) have incorporated the

concept of first order sensitivity functions in techniques for designing low

sensitivity feedback controllers. A nominal set of plant parameters is

usually assumed and methods are presented which allow a designer to choose

feedback gains in a manner that causes the sensitivity functions to be small

in a sense specified by the design criterion. In situations where plant

parameters undergo large variations, such as the tactical missile appli-

cation, this design concept may be useful for specifying different sets of

controller gains which are scheduled on the bpsis of measurements of flight

conditions. I
Another time domain approach to the large parameter variation

problem has been put forth in Ref. 117. In that reference, the authors

present a measure of sensitivity of linear systems based upon a quadratic

performance index of the type discussed in Appendix B. After specifying

the performance index of a system for which nominal plant parameters are

assumed, the optimal control law that minimizes the index and the resulting |

value of the index are obtained. Then, applying the nominal optimal control I
to the system, the class and range of plant parameter variations which in-

crease the values of the performance index by no more than a specified
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amount, AJ, is established. That is, an upper bound on the change in the

performance index is specified and a search in parameter space is carried

out to determine the ranges of permissible variation in plant parameters.

While this is a useful concept for sensitivity analysis, it has been p:acti-

cally limited to plants having no more than 3 parameters because of the

computation involved.

7.3 MINIMAX DESIGN

Several authors have treated the problem of devising constant

gain feedback controllers for variable parameter linear systems by em-

ploying minimax techniques (Refs. 118, 119). The concept is perhaps best

illustrated by means of an example. Assume that it is desired to minimize

an index of performance, J, for a given dynamical system whose behavior

depends on two quantities, -- a compensating gain k and an unknown param-

eter a that lies within known bounds. To determine the "best" value of k

in the minimax sense, the performance index J(k, a) is first maximized

with respect to a, regarding k as fixed; then it is minimized with respect

to k over all possible values of a. Loosely stated, the best choice of k is

the value that minimizes J for the worst possible value of the unknown

parameter.

The above discussion is made clearer by depicting the procedure
in a graphical manner in Fig. 7.3-1 where a family of curves for J is plotted

as a function of a for several values of the gain k. The objective is to find

the value of k that mLn-mizes the peak value of J subject to the constraint

a a b
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R-2577 £
J( k,c)

\,,,mox (k,a)J
!

/kI

min max (k,a) -

k a k4~

a 00 b a

Figure 7.3-1 Illustration of the Solution to a i
Minimax Design Problem

The dashed curve in the figure joins the maximum values of J, max J(k, a),

over all values of k. The minimum of this curve has the value i
njin max J(k, a) and the corresponding value of k = k3 is the desired gain.

Essentially, the above design approach is one which provides the

best system design in the event that the unknown plant parameters assume

the worst possible values. If 'he best performance attainable with this

technique is adequate and if the parameters assume any other set of values - -

e.g., if t=& 0o with k = k3 in Fig. 7.3-1 -- then the index will have a lower

value, J0 , and presumably the performance will be better.

The design philosophy here is different from that used in adaptive

systems or in the design techniques discussed previously in this chapter. A

control system designed by the minimax procedure may not be especially

insensitive to plant parameter variations; instead, the system performance I
characteristics are guaranteed to be at least as good as those associated

with the minimax value of the index J. This characteristic gives rise to the i
objection that the minimax design technique tends to be pessimistic. By
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designing for the worst possible values of the unknown parameters, it

fails to take advantage of the fact that the worst case may occur only rarely.

This observation has implications for dogfight missile autopilot design

where the worst set of flight conditions is typically encountered at the be-

ginning c- boost. A minimax control law that considers the full range of

parameter variations may fail to take advantage of the increased control

surface effectiveness at higher velocity flight conditions in order to design

an autopilot that operates well during the first part of the boost phase.

Consequently the system performance might be better "on the average" if

some other design technique were used. For example, if a = a in

Fig. 7.3-1, then k = k4 yields a lower value of J than does k = k3 .

Salmon (Ref. 118) has considered dynamic systems subject to

parameter variations and has designed fixed gain feedback controllers

according to a minimax criterion in the manner outlined above. The ob-

jective is to choose a gain vector k in a feedback control iaw

u(t) = kr x(t)

for the system

_(t) = A(a) x(t) + b(a) u(t)

The vector k is to be selected so that a quadratic performance index is

optimized in the minimax sense over k and a, where a is a vector of un-

known parameters which comprise the variable elements of A and b. A

numerical algorithm is developed which is guaranteed to converge to a

solution for the set of feedback gains. The method can handle any number

of unknown parameters but the computational load increases accordingly.

The essence of the system design process is summarized in the following

steps:

7-21



i]

THE ANALYTIC SCIENCES CORPORATION

* Choose a quadratic performance index I
0 Choose a time-invariant linear controller structure

* Determine the minimax controller

Using a minimax design technique in the context of the theory of 1

differential games Michael and Merriam (Ref. 119) derive time-invariant

feedback gains and establish bounds on the variations in plant parameters

which insure that the control system remains asymptotically stable. This

technique may also be a useful design aid but it yields rather loose per-

firmance specifications. The criterion of asymptotic stability alone may

not be sufficient for the design of certain systems, particularly those which

must exhibit a "tight" closed loop response under a wide range of operating

conditions as required for tactical missile applications.

The minimax techniques described in this section can be used to I

design control systems for plants whose parameters vary widely. However,

the resulting controller may not give acceptable performance because of

the conservative nature of the minimax criterion. The methods outlined

provide another set of design tools which can aid in developing the final I
configuration of a feedback control system.

7.4 LIAPUNOV DESIGN ME THODS I
In recent years several techniques (Refs. 120 - 124) fbr designing I

insensitive controllers have been developed which are based upon the
"second method" of Liapunov. Monopoli (Ref. 124) has devised such a i

technique which also incorporates a reference model. In this particular

method the controller is designed to force the output of a plant to follow the I
output of a model having desirabie response characteristics. This is
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accomplished in a manner that keeps the output error sniall in the presence

of unknown plant parameters and a time-varying input signal v(t)o

" The design procedure is similar to that presented in Section 4.4.3

"" for an adaptive controller. Let the plant and reference model be described

g by the equations of motion

*(t) = Ax(t) + b u(t.)

j _m(t) = Am~m (t) + bmv(t) (7.4-1)

with outputs

y(t) = c x(t)

ym(t) = T Xm(t) 7-2

and an output error signal

e(t) = y(t) - Ym (t)

Follo'ving the development in Section 4.4.3, we write the input-output

relations for Eqs. (7.4-1) and (7.4-2) in Laplace transform notation:

p(s) Y(s) = q(s) U(s)

Pm(() = qm(s)V(s)

q(s) A T -1
ps) = c (sI-A)"b

pm(s) acTs' )lcr
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It is assumed that both the plant and the model have A zeros and n poles J
with . < n. The system configuration is pictured in Fig. 7.4-1. The

design objective is to select U(s) so that the transient response of Y(s) is

insensitive to plant parameter variations.

v(,l u(, ) 'PIT q

I
(s) (s)

LI E_________1

MODE L h
G,(s) = Ys)

Figure 7.4-1 Input-Output Relations for Insensitive
Control System Design Problem

Using exactly the steps indicated in Eq. (4.4-31) through (4.4-41)

we manipulate Eqs. (7.4-3) to obtain the error differential equation given

in Eq. (4.4-42). For the reader's convenience this development is repeated I
here.

n ubtracting the expressions for Y(s) and Ym(s) in Eq. (7.4-3) and

adding the term pro(s) Y(s) to both sides of the result produces

Pmo(s) E(s) = Ap(s)Y(s) + q(s)U(s) - qm(O) V(s) (7.4-4)

where I

Ap(s) -4 pm(s) - q(s)
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I

It is assumed that the coefficients of sn in pmo(s) and p(s) are both equal to

one so that Ap(s) has order n-i.

Now further manipulations are performed which convert Eq.
(7.4-4) into the desired form. Divide both sides of Eq. (7.4-4) by an Ath

order polynomial pc(s) defined by

PC(s) = s + a i +s . + lS+%

which has all its zeros in the left half complex plane, producing

r (s) E(s)
p (s)' E(s) + p(s)' Y(s) + (S) kU(s)

r2 (s) U(s) r3 (s) V(s)
+ () V(s)- (7.4-5)

where

Pm(s) r r(s) Ar(s)=Pr Ap(s)' +
m s' : PC, pE(M

q(s) a_ r2(s) qm(s)  r3(s)
q:s - k+ + P- km + (7.4-6)

The quantities pm(s)' and Ap(s)' are quotient polynomials of order n-A and
n- e- I respectively, generated by performing enough steps of the polynomial

division operations indicated on the left hand side of the expressions ini
Eq. (7.4-6) until the order of remainders, r 1 (s) and Ar(s), is 1- 1. The

purpose of the above operation is simply to obtain rational terms on the

right-hand-side of Eq. (7.4-5) whose numerators are of lower order than
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their denominators. In addition, PC (s) must be such that pm(S)* has all its

zeros in the left-half complex plane. A polynomial that has these properties

always exists. . general procedure for finding one is given in Ref. (79);

it is not described here because the applications considered in this report

are sufficiently simple so that a suitable selection for pc(s) is obvious.

Still referring to Eq. (7.4-5), the gains k and km are the quotients

after a single step in the division operations q(s)/pc (s) and qm(s)/pc(s)

respectively. That is, k and k are the gains associated with the plant and

reference model transfer functions,

q(s) k (sA+q1- A-1 + +qo
p ( -sn + Pn- sn - 1 + " " " +PO

Gm(S) a k-m sA +Pr s-l+ + m

m n n-1 " Pmo

Therefore the respective remainders r 2 (s) and r 3 (s) have order A- I or less.

To make the notation in Eq. (7.4-5) more suitable for this discussion we

define the following quantities:

Polynomial functions:

n-A-I 1 r)i
Ap(s)' = ais r(s) biS

i=0 i=0

r 2 (s) = -is -r 3 (s) di s i

i=O i=O

-In-A-1 n-

rl(s) a fis I r(s), gisi+s n -A (7.4-7)
i-=0 i=0
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Constant vector:

T a .. n i b ~ d 1  0  .. (7.4-8)

New variables:

Y() A (s) E E(s)
y (s) E (s)=

U (s) U(s) V s V(s)(749
C C

Vector sets of state variables associated with Eq. (7. 4-9):

y (t)T I Yc(t) C(t) . y . )

e (t)T [ e~t(t) e) ***e(t)~
1

yu (t)T u c (t) ii (t) . . . vc(t)(L)](.-0

Vector output variables:

fY) L(t) y(t) %(t) (7.4-11

7-27



|
THE ANALYTIC 'CIENCES CORPORATION u

Error State Variables: 3

e(t)T [e(t) 6(t). • • e(t)(n - l)J (7.4-13) 1

Dynamical Quantities

I
0 1 •• 0

o 0* 0 1
0 0 o 1 1

-go -gl " gn-1-I

T 4  0 1] (7.4-14)

Using the above definitions we can rewrite Eq. (7.4-5) in.tle time-domain

state variable form I

6(t) = Ge(t) + (PT f(t) + ku(t) - km v(t)) (7.4-15) 3
I

where G is a stable' matrix by our assumptions on p o(s)'in Eq. (7.4-5),

which is identical to Eq. (4.4-42). 3
To derive a feedback control law that yields an insensLive control

system a Liapunov approach is used which is somewhat different from that

described in Section 4.4 for adaptive systems. We postulate the existence

of a Liapunov function in e(t) having the form
* U
All the eigenvalues of G have negative real parts.

i
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V(e) = eT Qe (7.4-16)

where Q is some symmetric positive definite matrix that is to be deter-

mined. The time derivative of Vis given by

V(e) = _TQe + e Qe (7.4-17)

Substituting for 6(t) from Eq. (7.4-15) into Eq. (7.4-17) and collecting

terms produces the relation

(e,t) = eT (GTQ+QG) e+2 T Q e [p fT(t) +ku(t)- kmv(t) 1(7.4-18)
It is desired to make _V(e) negative, in order to guarantee

asymptotic stability for the system error. Therefore, choose Q so that

GTQ+QG = -P (7.4-19)

where P is any positive definite matrix. So long as G is a stable matrix

it is known (Ref. 65) that the solution to Eq. (7.4-19) is an appropriate

positive definite symmetric matrix Q, as required in Eq. (7.4-16). All

that remains is to choose u(t) so that the term

.9T Qe I _(t) + ku(t) - k mv(t)1

in Eq. (7.4-18)°is negative. This can be done by nmaing u(t) assume the

sign opposite to that of the quantity (k TQe) and have a magnitude suffi-

ciently large to dominate the terms dependent on f(t) and v(t). Therefore

let
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I
i u~t) = k max ma

q Qg

+1 ; x>O 3
sign(x) 0 ; x = 0 (7.4-20)

where denotes the maximum value of the argument. Substituting VI
max

from Eqs. (7.4-19) and (7.4-20) into Eq. (7.4-18) produces the inequality I
V(e(t),t) c -. e(t)T Pe(t) < 0; e / 0 (7.4-21)

which implies (see Theorems 2 and 3 in Appendix D) that

lim Ie(t)! = 0 (7.4-22)
S--=co

Thus we have constructed a control law that is capable of driving the output

error to zero as long as the parameter values remain within their specified I
ranges. In this sense the system is insensitive to plant parameter variations.

There may be some difficulty in implementing the nonlinear func-

tion (relay), sign (gTe(t)). When the error signal is small, the relay output

will "chatter" if the error frequently passes through zero; this tends to be

undesirable when translated into motion of mechanical parts such as missile

control surfaces. Consequently a modification to the control laws is desir-

nble, Af ve define

7
7-30 I

_



THE ANALYTIC SCIENCES CORPORATION

f(t) f(t)

sat (c,f(t)) S1  ; f(t) > (7.4-23)
I -I ; f(t) < -

as illustrated in Fig. 7.4-2, and define a new control law

[3 +n [ It k l I i €

u(t) = - [ j- m f m jv(t) sign(k) sat Te(t)
Smax nmx

(7.4-24)

then the time derivative of the Liapunov function satisfies

V(e(t),t) c - eT(t)Pe(t) < 0 ; aT e(t)l > c (7.4-25)

Because "V is not strictly negative for all nonzero values of e(t), condition

Eq. (7.4-22) is not generally satisfied; however it can be shown that e(t)

remains bounded by a procedure described in Ref. 120, making use of

Theorem 4 in Appendix D. The implementation of the above control law is

illustrated m Fig. 7.4-3.

To mechanize the control law specified by Eq. (7.4-24) the

designer must have a priori knowledge of the sign of the gain k and he must

know the ranges of variations of the elements in p. Both k and p are deter-

mined by the plant parameters; hence the ranges of parameter variations

must be known. Furthermore k must have constant algebraic sign or the

times that it changes sign during plant operation must be either known or

measurable; otherwise stability will not be maintained. These conditions

are often satisfied for missile applications where sufficient test data is
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Sol (d, (Wt)

1.0'1

Figure 7.4-2 Graphical Representation of the
Function, sat (E, f(t))

A Y,

LI

VL , 2it) *I

Figure 7.4-3 An Insensitive Control System
Designed by a Liapunov Method
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available at different flight conditions to provide the expected ranges of

airframe parameter variations.

The system illustrated in Fig. 7.4-3 is quite complex, requiring

additional dynamics to generate f(t) and 3 2 +n + 1 feedback gains. However,

the form of Eq. (7.4-24) suggests a simpler type of control law. Although

the bracketed term in Eq. (7.4-24) is dependent upon f(t) and v(t), it can be con-

sidered as a variable gain, D(f(t), v(t))o Using this notation Fig. 7.4-3

can be redrawn much more compactly as in Fig. 7.4-4 where f(t) and v(t)

are inputs to the "drive level" of the nonlinear element. The purpose of D

is primarily to keep both the gain and the saturation level high enough so

that the system has desired stability properties. Assuming that the ele-

ments of f(t) and v(t) remain bounded, it is possible to choose a constant

vatlue of D so that the system behaves satisfactorily, v!z.,

D 1 f(t) + k Mv(t) sign(k)

max max max max-

This provides a inuch simpler control law.

Y(t) v(t) R -,272

Figure 7.4- 4 A,1te,i,,o Rresent ation of Fig. 7.4-3
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Notice that Fig. 7.4-4 is quite similar in structure to the limit

cycling adaptive controller discusFed in Section 4.5-2 and illustrated in

Fig. 4. 5-5° However, the analogy is not complete because the objective I
of the latter is to maintain a limit cycle with constant amplitude in the

presence of plant variations by adaptively controlling the drive level. The

Liapunov design described here can have a limit cycle unider the conditions

of Eq. (7.4-25), but its amplitude is made arbitrarily small by choosing C

small. Furthermore the insensitive character of the Liapunov controller

is more a consequence of having a sufficiently large value of D and not so

much that D is time varying.

It is necessary to point out that the above design technique gen-

erally works well only for nonminimum phase plants, just as is found to be

true for the adaptive systems discussed in Section 4.4. The plant input

u(t) tends to grow without bound when the plant has a right-half-plane zero

for the same reasons given in Section 4.4.4. Another interpretation of this

behavior can be gained from Fig. 7.4-4, Regarding the drive level as con-

stant and the nonlinear element as a. linear gain having the value D/E for a

small error signal, the control loop is essentially high gain. Therefore,

in the linearized sense, there are closed loop poles close to the right-half-

plane zeros of the nonminimum phase transfer function, rendering the sys-

tem unstable.
4

In summary, the Liapunov synthesis technique leads to basically

a high gain nonlinear control loop chosen to keep the system stable in the

presence of unknown plant parameters and a changing input. Therefore the

operating characteristics of the system should be similar to any high-gain

design; it may be sensitive to sensor noise in the feedback loop and higher

order modes neglected in the design may be excited. Furthermore it is not

suitable for use with nonminimum phase plants. A simulation evaluation of

this technique is presented in Chapter 10. 1
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7.5 BISTABLE CONTROLLERS

Research in the design of feedback controllers which contain a

relay (bistable element) indicates that they can exhibit a high degree of

insensitivity in system behavior for a wide range of plant parameter varia-

tions in some applications (Refs. 121, 122, 123). A special case of such a

controller, but one which also incorporates a reference model, has been

discussed in Section 7.4. The insensitive character of these systems has

often been observed empirically (Refs. 121, 123) with little analytical

explanation of their behavior, except for the method discussed in Section

7.4 which has a firm theoretical basis. This prompts one to search for

some fundamental properties of certain classes of relay controllers to

determine conditions for which they will exhibit desirable characteristics.

The general structure of the type of relay control system con-

sidered here is shown in Fig. 7.5-1. The dynamics of the plant are char-

acterized by the nth order system of equations

i(t) = Ax(t) + bu(t)

u(t) = v(t)- r(t)

r(t) = sign (hTx(t)) (7.5-1)

where A and b represent the unknown plant dynamics.

In order to utilize linear frequency domain analysis techniques,

we compare the diagrams in Fig. 7.5-1 and 7.1-2 and observe that their

forms are identical except that a relay replaces the gain h0 . The com-

pensated open loop transfer function G(s) relating W(s) to U(t) is given by

G(s) W h (sI -A) b (7.5-2)
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PLANT R -2S73 j

_~t U x)t+

Figure 7.5-1 Relay Control System I

The transfer function G(s) has the same characteristics here as it does in

Eq. (7. 1-18); its poles are the zeros of the polynomial I
D(s) = Det (sI - A) (7.5-3)

and its numerator is an (n-l)th order polynomial having coefficients that I
depend upon h, A, and b. Assume h is chosen so that G(s) has n-lfinite zeros.

It is well known that the relay may be treated as a very high gain

amplifier for sufficiently small input signals (Ref. 79). This is most easily I
seen by examining Fig. 7.5-2 which depicts the transfer characteristics of

a high gain saturating amplifier. For very small signals the amplifier is

linear and has a gain of m. For larger input signals the equivalent lhnear-

ized gain (Ref. 79) of the amplifier decreases because the output remains I
constant. As m approaches infinity, this nonlinear characteristic becomes

that of a relay, a device whose output may assume either one of two values,

also referred to as a bistable element. Under the assumption that the relay

can be treated as a gain, ho, for small signals, the system can be modeled

as shown in Fig. 7. 5-3, which is identical to Fig. 7.1-3. Therefore the

linearized system can be described in terms of a transfer function relating

W(s) and V(s),
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R-2578

OUTPUT

INPUT
i m :SLOPE

Figure 7.5-2 The Gain Characteristics of a

High Gain Saturating Amplifier

i -2574

V(s) +__(_ W(s)
G(s)

Figure 7.5-3 Linearized Single-Output Feedback
System Associated With Fig. 7.1-2

W (s) G(s)VTri 1 + h G(s)
0

whtere h0 is large (it can be considered infinite for small signals). There-

fore n-1 of the closed loop poles will be close to the zeros of G(s) and the

remaining closed loop pole is positioned far in the left-half-plane. Con-

sequently, insofar as the gains h can be chosen so that the zeros of

G(s) are insensitive to parameter variations in A and b, the closed loop
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pole locations of the linearized system will also be insensitive. That is to I
say, the criteria for designing an insensitive controller using a relay as in

Fig. 7.5-1 are exactly the samo as for the high gain state feedback system I
described in Section 7.1.2. 1

The manner in which h should be chosen depends on the st.ucture

of A and b. No general procedure has been developed to accomplish this I
goal. It has been observed (Ref. 121) that when the plant's equations of

motion are in the phase-variable canonical form defined by Eq. (7.1-8),

the bistable feedback controller produces an insensitive system. This is

explained by the fact as pointed out in Section 7.1-2, that large feedback

gains dominate the effects of variations in a,,. . , a in determining the

zeros of G(s) when the elements of the state vector are phase variables. I
Bistable ccntrol systems have also been investigated for spicial

missile applications (Refs. 19, 121, 123) with some success in achieving

generally uniform autopilot response characteristics at different plant

operating conditions. It would be desirable to determine more general

classes of systems for which it ca, be shown that all-dtate feedback in con-

junction with a relay controller produces an insensitive closed loop system.

7.6 SUMMARY AND CONCLUSIONS

A review of some methods for designing fixed gain feedback con-

trollers to reduce sensitivity to variations in airframe parameters has been 1
presented. A few methods are capable of producing acceptably insensitive

designs with a fixed configuration controller when plant parameter variations

are large. Specifically, the Liapunov design technique described in Section

7.4, the high gain state variable feedback contr,.'Ier in Soction 7.1.2 and the
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bistable controller in Section 7. 5 are well suited for treating wide param-

eter variations in some types of control systems. The Liapunov method is

investigated further in Chapter 10.

The Liapunov design technique guarantees asymptotic stability of

the output error, even for time varying plant parameters. However it is

basically a high gain feedback design limited to applications with minimum

phase plants.

The state variable feedback techniques -- both the linear and

bistable versions -- for making the dominant system closed loop poles

insensitive to parameter variations depend upon being able to choose feed-

back gains that can dominate the coefficients of the closed loop character-

istic equation. This can be accomplished only when special sets of plant

state variables are available for feedback.

The other techniques discussed in this chapter -- complex plane

methods, time domain sensitivity techniques, and minimax design -- are

4 useful in designing gain scheduled control systems when a single confi-

curation controller is not satisfactory. With these methods it may be
possible to use fewer sets of gains than would otherwise be required.

Another possibility is that a fixed configuration controller can be designed

by these methods and an adaptive loop added, as suggested in Section 2.3,

to further compensate for plant variations.
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