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BINARY DETECTION GF RANDOMLY OCCURRING SIGNALS
Defines a statistical procedure for detecting signals occusring at unknown
times; describes implementation and procedures for calculating the probability
of detection.
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PROBLEM

Obtain design procedures and criteria for reliable Navy communica-
tion in a hostile, an adverse, or an unstable environment, through use of
statistical decision methods and otker signal processing techniques. The spe-
cific problem with which this report is concerned is the detection of signals
which occur at random (unknown) times.

RESULTS

1. The binary moving-window detector is a feasible method of detect-
ing signals which occur at random times.

2. The statistics of the moving-window detector can be obtained by an
exact computational method without resorting to Monte Carlo simulation.

3. The binary moving-window detector can be easily implemented for
use in existing and future communications systems.

RECOMMENDATIONS

1. Investigate existing communications systems and plans for future
systems for possible application of the binary moving-window detector as an
inexpensive and effective means of detecting communications signals.

2. Fxters the analysis to cover multilevel quantization of data.

3. Investigate methods of obtaining analog moving-window detectors
(to avoid the ioss due to quantization) which can be simply implemented.

4. Analyze the use of distribution-free statistical procedures in conjunc-
tion with moving-window detectors.

ADMINISTRATIVE INFORMATION

Work was performed under ZFXX-212-001 (NELC Z222) in the
Decision and Control Technology Division and under J0-0768413 (NELC
fellowship in the Department of Applied Physics and Information Science,
University of California at San Diego). The report covers work from
January to August 1970 and was approved for publication 30 November
1970. The detection device described in this report is covered by U. S.
Patent No. 3,517,172, “Moving-Window Detector for Binary Integration,”
Navy Case No. 42,878, issued on 23 June 1970.
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INTRODUCTION

Much of the literature on statistical signal detection is concerned with

the problem of choosing between two hypotheses about a random variable X
under the assumption that, for all of the n observations xq, ..., Xy, on X,
exactly one of the hypotheses is true. In signal detection terminology, this
3 means that either all n observations are of signal-plus-noise or none is. Thie
;  situation presupposes that knowledge is available as to when a signal, if pres-

ent, will occur; for otherwise it would not be possible to ensure that the

above assumption is satisfied. For example, consider a communications sys-
A3 tem where knowledge is available at the receiver as to when a message, if
-2 transmitted, will be received. Then, during the time when a signal can occur,
the received data will result irom either signal-plus-noise or noise only {but
not both). However, if no Lnowledge is available as to when a message will be
received, the data will first result from noise only and will change 1o signal-
plus-noise at some unknown time. (This would be the case, for example. in
signal-intercept applications.) It is this latter situation which will be dis-
3 cussed here; that of detecting signals which occur at some unknown times.
Emphasis is placed exclusively on the detection aspect; that is, the procedure
is useful only for detecting if a signal is present or not. Some other data
4 processing is recessary to determine information such as message content.
2 Discussion «ill be confined to detection methods involving “binary
integration,” a term used to describe detection based on data which are
quantized into two levels, one and zero (ref. 1-5). In particular, a so-called
“moving-window detector” (ref. 1 and 2) will be discussed, and methods for
: calculating the detection statistics (false-alarm probability, etc.) related to
3 this detector will be described.
; Results will be given which will show how the detection probability
varies with SNR, signal duration, and sample size (the window *“width>’), and
a brief discussion cf the equipment required for implementation will be given.

: THE DETECTION PROBLEM

The detection problem considered here is that of detecting signals
which appear at some unknown times and remain for a fixed time. The
problem can be described as follows. Let x,,n=1,2,..., be asequence of
independent observations on the output X from a receiver, considered as a
random variable with density function f(x, 8), # an unknown parameter.
Suppose that 6 = 6, corresponds to the case where the output results from
noise alone and that 8 = 6 corresponds to the case where the output results
from signal plus noise (of some specified SNR, S(B 1)) Suppose also that
6=05forn=1,2,...,mp,and =01 forn=my +1,...,my +L, where
mj is a random variable denoting the observation at which the first signal
appears. Forn>mj +L, @ = 8, until the next appearance of a signal at the
random time mo, efc. It will be assumed that two signals will be separated
by at least N observations, where N is the sample size used in the test proce-
dure (discussed later). It will also be assumed that the duration of any signal
37 will be a known, fixed number L of observations.
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As mentioned in the introduction, only detection will be discussed
here. However, a detector output indicating that a signal is present can be
corsidered by the receiver as an “alarm™ which activates recognition, loca-
tion (in time or frequency), or data processing stages. Figure 1 isa simplified
block diagram of a compiete system utilizing a moving-window detector and
a time-lag recorder. The receiveroutput is fed simultaneously to both the
moving-window detector and the {ime-lag recorder. If the moving-window
detector decision is that a signal is present, an alarm causes the time-lag re-
corder contents to be read out and processed. The time-lag recorder could
be a tape loop, magnetic drum, core storage (for digital data), or any conven-
ient means of storing data collected during a short time interval. The actusl
Iength of time for which the time-lag recorder must store data is determined
by such factors as the expected duration of signals to be processed and the
expected time required for the moving-window detectss to produce an alarm
after the signal begins.

RECEIVER ~ 1 MOVING-WINDOW > Aarm
DETECTOR
L
\ 4

RECOGNITION,

TIME-LAG > LOCATION, OR

RECORDER DATA-PROC.
STAGES

Figure 1. Simplified Block Diagram of a System Utilizing the Moving-Window
Detector As An Alarm.

THE DETECTICN PROCEDURE

The method cf detecting signals (occurring at random tirnes as indi-
cated above) which will be discussed here is the so-called “moving-window
detector’ (also called a moving average or a sliding window) (ref. 1 and 2).
The moving window of width N operates as follows. For each of the sub-
sequences of observations (x1,. .., xN), (x2---> XN#+1) +- - s (xk, e
Xk+N-1) » - - - , of length N, a test statistic Sg4+N_| (%Ks - - - » XK4N-1) s
computed and, on the basis of this statistic, a decision ix made that either
0 =04 or 0 =01. The test performed on each subsequesce will be cailed a
subtest, and a specific test statistic will be discussed later.

A representative sequence of observations when a signal is present is

L
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where the asterisk indicates observasions from the signal-plus-noise popula-
tion. Note that L+N~1 consecutive subsequences (as described in the previous
paragraph) will include at least one signal-plus-noise observation. This
prompts the following definition of a false alarm and of a detection: If no
observation in a particular subsequence is from the signal-plus-noise popula-
tion and the subtest decision is that § = 0 (a signal is present), then a false
alarm occurs. Likewise, if for any of the L+N~1 consecutive subsequences
for which at least one observation is from the signal-plus-noise population,
the decision is that 6 = 01, then a detection occurs. Optimization will be
defined as the maximization of the probability of detection, with the false-
alarm probability held fixed.

The false-alarm probability will be denoted by «, and the probability
of detection will be denoted by D(-), where the parenthetical entry will
determine the pertinent variables of which the detection probability isa
function. For example, in the context above, D(L,N) denotes the proba-
bility of detectionas z function of the signal duration L and the test size N.
Formulas for (or siethods for calculating) « and D(-) will be given later.

Note that since a decision occurs for each observation, the average false-alarm
rate (in false alarms per observation) is equal to a.

BiNARY INTEGRATION

A test which is of practical interest, due fo its simplicity and ease of
implementztion, is the binomial test. When applied to signal detection, this
test is call:d “binary integration,” “k out of n detection,” “double-threshold
detection,” and “coincidence detection™ (rei. 1-6). For binary integration,
the statistics of the moving-window detector can be obtained analytically;
i.e., without resorting o Monte Carlo simulation. The calculation of the
statistics of the binary moving-window detector will be discussed in the next
section.

The binary moving-window detector operates as follows. The data
Xp,n=1,2,...,are compared with a threshold q, and the random variable
yj is given the value 1 if x; 2 g, and is given the value 0 otherwise. Thus the
sequence Xp, n = 1, 2,. .., is converted into the binary sequence y,, n=1,
2,... . At the kth obs:rvation the statistic

k

Sk=. z Yj n

is calcuiated and compared with a threshold V and, if Sy 2 V, the decision

is made that = 6 (a signal is present); otherwise, a decision is made that
6= 60.*

*Some authors define a detection as the occurrence of a threshold crossing; that is, a sig-
nal decision occurs at the kth observation only if Sk =V and S _ 1< V. (Ref. 7, page 767.)
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Under the previous assumptions about the density of X, it follows

that
P (vn=110=0,) = ff(x,Oo)dx | @

q
P (yn=118=0]) =f,f(x,01)dx 3)

q

Denoting these probabilities by pg and py, respectively, it follows that®

N,/ : _
AR

=V

The following procedure is used to optimize the test, in the sense of maxi-
mizing D(V,N) for given L. o, and SNR (ref. 6). (Here, D(V,N) denotes the
probability of detection as a function of the threshold V and the test size N.)
Let N be fixed. ForeachV,V=1,2,...,N, equation 4 is solved for the
value po(V) for which the given false-alarm probability « is obtained. For
each po(V), equation 2 is solved for the threshold q(V), and for each q(V),
equavion 3 is solved for p1(V). The pairs (po(V),,p](V )), V=1,2,..., N,
so obtained are used (in a method to be described in the next section) to
calculate D(V,N), and the value of V for which D(V,N) is maximum is
selected. Now N is allowed to vary and the above procedure is followed for
each N.** The test size N is then chosen as the value of N for which D(V,N)
is maximized, baving chosen the optimum value of V for each N. Results
will be given later to show how the probability of detection varies with N,
for fixed L and a.

*Equation 41s valid for any particular subtest, and the average false-alarm rate is o false
alarms per observation even though the subtests are not independent.

**1t will be seen from results presented later that usually only values of N in the neighbor-
hood of L need be tried in the optimization procedure; that is, Nopt = L. Also, for
many of the probability densities of interest, the optimum threshoxl)d V (for fixed N)
can te deterinined without need of considering all possible values for V. This is the
case, for example, when the detection probability D(V) (for fixed L, N, and a) is uni-
modal. It is then only necessary to determine the first value of V for which D{V+ 1)
<D(V). Finally, it is sometimes possible to solve equations 2 and 3 for pj asa function
of py, and thus avoid the intermediate step of determining q (ref. 6, page 349).
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CALCULATING THE PROBABiLITY OF DETECTION

The method used for calculating the probability of detection for the
binary moving-window detecior is an application of the theory of finite
Markov prccesses* (ref. 8-10). This theory cannot be applied directly to Sy
since {Sk} 11.;1 is not a Markov process (ref. 8). However, if all possible
configurations of ones and zeros in the kil subsequence are considered. then
finite Markov process theory can be applied: as discussed below.

The binary moving-window can be viewed as follows. Suppose that
after each observation. the contents of an N-bit shift register are shifted left
by one bit and the binary datum for that observation is inserted in the right-
most bit. Then, after the kth observation, the content of the shift ragister
is the kth binary subsequence, and Sg s the sum of the I's in the shift regis-
ter. If we let Ry, be the number obtained by regarding the shift register con-
tent as a binary number, then {Rkl j'?.—.] is a finite Markov process with
possible states 0, 1,.. ., 2N_ 1. That {Rk} is a Markov process follows from
the fact that the possible values of Ry, are determined completely by the
value of Ry_1 and yg. Note that a Ieft shift of an N-bit shift register is equiv-
alent to multiplication oy two, modulo 2N. Hence, if Ri-1 =i, thenRy =
(2i)mod 2N if yj. = 0 and Ry =1+ (2i)mod 2N, ify; = 1. 1 p(n) is the
probability of a 1 at the nth observation, then the transition probabilities are

1-p(n) if j= (2i)mod 2N ‘
pjj(m) =P (Rn =jlRp-1 = i) = ipm) ifj=1+Qimod2N (5)
10 otherwise

The transition matrix, for the states ordered as the numbers 0, 1,..., 2N -1,
has the form

gny pn) O o ... 0 0

0 (} qn), pm) . . 0 0

_ 0 0 0 O . q(.n) p(;l)
POl g pm o0 0 ... o o |®

0 0 gqmn pm) . .. 0 Q

0o 0 0 0 ... gm pm

where q(n) = 1 - p(n). Notice that the lower half of the matrix is identical
with the upper half since R}, is independent of the high-order bit of Ry,_j.

*A finite Markov process is a stochastic process, which can take on only a finite number
of values, such that the outcome at the kth stage of the process depends on the outcome
at the (k-l)St stage and on rio previous outcome. If, additionally, the outcome at the
kth stage is independent of k, the process is called a Markov chain.




To avoid cumbersome subscripts, in the following we will let W= 2N,
If the components of the probabxlxtyvectorl’l i (‘m( ) cee s TW- 1(“)
denote the probability that Ry, has values 0. 1, . . ., W-1, then the corre-
sponding probability vector I1541 can be found fror:

41 = P(n+1) N

‘Trom thec form of P{n)in-equation 6, note that the indicatcd matrix multipli-

cation in equation 7 reduces to

D) = [mM) + mpy ] gtnt1)

m™i+1 (n+1)= [‘n‘i(n) T W+W lz(n)] p(n+i) 8
i=oo]»’~--,¥-’]

For the problem treated here, it is assumed that the probability -of
entering a 1 into the window in the no-signal case has a constant value p,
independent of n. It will be shown that after N-observations the process
reaches equilibrium in the sense that I+, = ]IN, n=1,2,...,untilthe
process is disturbed by the occurience of a signal. Specifically, if K is de-
fined as the number of 1°sin the binary Tepresentation of the mumber], then

INtn= (TO""’TW l) n=0,1,... (9a)

7=P6 3(1-20) 33 =0,1,..., W-1 &)

To see that equation 9 is true forn= 0, note that after N observations the
content of the shift register represents the results of N independent
Bernoulli trials the ordered results of which have probabilities given by
equation Sb. Next, note that Kjyw/p =KjFl =Kpj4y fori=o, 1,. ..,

*?--l. Using this and equation 9b in equation-8, we have

mp(N*1) -[ Ki (1-P )N'(Kﬁ”] (1-70)
=gt (1-po ) N Ki=mp M
w41 (NH1) = [PoKi (1-po) (Kiﬂ‘)] P
poKi+] (1-po) N- (Kj+1) _ —

which implies that equation 9 is true forn=1, 2, ... .
As stated previcusly, a signal-present decision occurs whenever the
number Sy of ones in the window is greater than or equal to the threshold V.
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Equivalently, a signal-present decision oceurs whenever the outcome Ry isa
member of the subset D of states such that jeD if K >VF (I\ is the num-
ber of 1’s'in the binary representation of the number j.) A stafe in D will be
called a decision state.

From the definition of a detection, when a signul is present there are
exactly N+L~1 consecutive observations for which a rorrect signal-present
decision (not a false alarm) can occur. The probability of detection defined
previously can be restated as

DLN)=1-P(Rié D for k=m#1, ... . m+L+N-1) t10)

where it is assumed that the first signal observation is X;,+1. 1n words. equa-
tion 10 states that 1-D(L,N} is the probability that the process fails to enter
a decision state as the signal data “passes through™ the window. Calculating
the probability of detection is accomplished by the following recursive pro-
cedure.

Assume that there have been at least N observations of noise only, so
'that the probability vector Tl Las the form given by equation 9. (For con-
wvenience of notation, the observations have been reindexed so that the first
signal observation is ‘xl.) Let Ag= (7\0(0), - ’7\\\'—](0)) , where RR(O) =
7@ if k¢D, and \;(0) = 0 otherwise. Compute Aj={rg(D..... Aw-;¢] ))
from Ag by first using equation 8 and then settingkk(o) =0if keD. (That
is. A1 = AgP(1) with all components of A corresponding to decision states
set equal 'to zero.) ‘Continue computing A4 | from A, in this fashion until
AN+'L—‘1 is obtained. In these computations, p(n) (the probability of entering
a1 into the window) is given by rp(n)=‘p-l forn=1,2,...,L,and by p(n) =
po for n=1L+1, ..., N+L-1; correspending to the situation where the signal
data is “‘entering” 'the window and “leaving’ the window, respectively. The
‘probability of detection is given by

DLN) =1~ » N1 an
j¢D
That is, 1-D(L,N) is the-sum of 'the components of AN+] -] corresponding

to nondecision states
The validity of equation 11 will be proved by showing that. forn= 1,

2...., NHL-1.P[R;¢D. R _1¢D, ..., RoéD] = z A0, with (1) obtained
i¢D
asindicated above. Asibefore, W = 2N, Note that

*Themotation jéDmeans “j is.a‘member of the set’D.” Similarly, i¢D means *j is not a
mmember ofithe setiD.”




P[R) =j. Rp¢ D] z P[Ry=jIRg=i]P[Rg=i] (12)

i¢D
W-1

=P[R =jlRg =0 (13)
=
W-1

= z pii(1) A0} (14)
i=0

and (by definition) \(1) = P[R{ =j, Rg¢D] ifj¢D and \(1) = 0 if jeD.

Equation 13 follows from equation 12 since Ri(o) =P [Ro = i] if i¢D and

Ai(O) =0 if ieD, and equation 14 follows from equation- 13 by the definition

of L(1) in (5). Hence, P[R;¢D, Ro¢D] = > A1), Now, suppose 3™ =
D

P[Rm =i, Rm_1¢D, .. ., Ro¢D] if i¢D and ;™ = 0if ieL, i =0, ..., W-1.

Then

P [Rm+l =1l RméD, P RoéD]

=> P[Rmt1 =ilRm = i, RyyT ..., RodD]
i¢D
-P[Rp =i, Ry-1¢D, - . ., RgéD] (15)
Applying the Markov property (sce the footnote on page 7) to the conditional

probability in equation 15 and using the definitions of Ai(m) and pij(m+l),
we have

W-1
P[Rmﬂ =j, Rm¢D, - .., RoéD] = z P[Rm+1 =jRpy = i])‘i(m)
i=0 (16)

W-1
= z pij(m+1 2™ a7

i=0

the right-hand side of which is an application of equation 8 to Ap,. Setting
™D = P[Ryps1 =J, RndD, .. ., Ro¢D] if ¢ and ™™D = 0 je, it

follows that P[RmHéD, cees R0¢D] = z )\i(m-H) and equation 11 follows
i¢D
by induction.
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RESULTS

Results are given for three probability densities, the Kice, Rayleigh,
and Gaussian (normal) densities. The Rice density is used to describe the
output X from 2 linear envclope detector when the SNR is constant (non-
fluctuating). This density is given by

-

2
f(x,81)=xexpl-(%- +01)] lo(x\/”:ﬂ_]) dx, x>0 (18)

witere 01 isthe SNR, and I () is the modified Bessel function of the first
kind, order zero (ref. 11). The comresponding no-signal density is given by

f(x, 0) = x exp[x2/2], x>0 19)

which is obtained from equation 18 by setting 6} = 0=8,. Solving (2) for
g, given p,, fesults in

q= (-2 Inpo)* - (20)

The solution to equation 3 for py, given po, is obtained from the so-called
Q-function®

oo 2 -
P1=Q(\/201,q)=f xexp[—(% +01)]Io(x 201)dx @n
q

which is tabulated (ref. 12), or can be calculated recursively (ref. 13).

The Rayleigh probability density can be used to describe the output
Y from a linear envelope detector when the SNR fluctuates according to the
Swerling case.2 (ref. 14). This density is given by

f(y 0 )=—y-exp ——Xg—- y=>0 (22)
Y1) T 146, 2(1+0y) |

where, in this case, 01 is the average SNR, averaged over all possible fluctua-
tions. The corresponding no-signal distribution is again given by equation 19.
The probability p; can be obtained in terms of p, directly, without the
intermediate step of calculating q. Since the solution to equation 2, using

P
equation 19, is pg = el / and the solution to equation 3, using equation

2
22, isp; =312 1401) it follows that
1

o, =po/(1#01) 23)

o0
*The Q-function is defined by Q(a, t) = f X exp [—(x2 + az)IZ] fo(ax) dx.
t
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It is noted that the results to be given for the random variable X (and
Y) described above are valid also for any random variable W = T(X) (Z = T(Y)),
when T is a one-to-one monotone increasing transformation. Hence, the
results obtained utilizing densities associated with a linear detector are also
v:_a)lid for a square-law detector, with the iransformation T defined by T(u) =
u=/2. -
The Gaussian density can describe the receiver output under a variety -
of situations. When a signal is present, it is assumed that the associated proba-
bility density is

f(x,01) =em ™ exp [- (01) 212 j ©4)
where the SNR is § 12/ 2. When no signal is present, the density is
f(x, 0) = ) exp [-x2/2] (25)

The equation relating p; and pg (used in lieu of equations 2 and 3) is

p) =erfc [erfc"1 (po)— 0 1] (26)
where
erfe(@ = 2% [ ¢ t2at @7
g

Figure 2 shows the probability of detection D(V) as a function of
the threshold V for several values of the SNR, with «, N, and L fixed. For
each curve, the circled point indicates the maximum value of D(V), and the
corresponding optimum value of V can be read from the abscissa. These
results indicate that the optimum value for V is relatively insensitive to SNR.
A similar result was presented in Worley (ref. 6). Although insensitive to SNR
(for each probability density), the results of figure 2 indicate that knowledge
of the probability density is necessary. For example, using V = 4, which is
optimum for the Rician model, significantly degrades D(V) if used for the
Rayleigh model. It is expected that for large values of N (and L), the dif-
ference in the optimum values of V for the three models will become more
pronounced. That is, as N increases it becomes increasingly more important
that the probability density describing the receiver output be known, so
that the optimum value of V can be obtained. No results are available at
present to support this claim; however, related results are presented in Worley
(ref. 6).
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Figure 2. Probability of detection D(V) as a function of the threshold V, for

several values of the SNR.

Figure 3 shows the probability of detection D(L,N) as a function of
the test size N, for several values of the signal duration L where, for each N
and L, the optimum V is chosen. Notice that for both the Gaussian and
Rician models, D(L,N) has a distinct peak which occurs for L=N. However,
for the Rayleigh model, D(L,N) is relatively flat (as a function of N for each
L), with a maximum at N=1. These results again indicate the importance of
knowing the probability density associated with the receiver output if

optimization is to be achieved.
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IMPLEMENTATION OF THE BINARY MOVING-WINDOW DETECTOR

As mentioned earlier, binary integration is of interest due to the ease
in which a system for binary integration can be implemented. One very im-
portant application of the binary moving-window detector is the detection of
communication signals (from both friendly and unfriendly sources) which
occur at random times. If the number of data samples which must be col-
lected and stored is large, then binary integration may well be the only feas-
ible method of detection due to ihe speed at which computations must be
made. A brief description of & particular method of implementing the binary
moving-window detector for detecting communication signals will be given.
A similar and more complete description (in terms of a multiple-range-bin
radar system) is found in Dillard (ref. 2).

A block diagram of the binary moving-window detector of width L,
as applied to the detection of randomly occurring communication signals. is
shown in figure 4. The inputs labelled S, S, and C are illustrated in figure 5.
The input S (SAMPLE PULSES) is a sequence of pulses occurring at equally
spaced intervais corresponding to the rate at which the receiver output is
sempled and quantized. The input S is the logical complement of S when
considered as a logical input to and-gate 2. (In figure 5, relatively negative
voltages are considered logical ““ones” and relatively positive voltages are
considered logical “zeros.””) The input C (CLOCK PULSES) is a sequence of
ptlses occurring at L. times the rate of the SAMPLE PULSES, where L is the
window width.

The heart of the detector is the delay line, which is a clocked (digital)
recirculating memory. The total delay is adjusted to exactly L+1 CLOCK
PULSE periods, where L is the window width. Logically, the delay line can
be considered as an (L+1)-stage shift register which shifts at the clock rate.*

At each SAMPLE PULSE the receiver output X is compared with the
reference q and if X > q the quantizer output Q = 1; otherwise Q = 0. Also,
at the occurrence of each SAMPLE PULSE, and-gate 2 is disabled by S, and
thus inhibits recirculation of the corresponding data bit. And-gate 1, being
enabled by the SAMPLE PULSE, causesa 1 or 0 to be “written™ into the
delay line accordingly asQ =1 or Q = 0. Thus, the old data which were pre-
vented from recirculating are replaced with new data (from Q, via and-gate 1).
Between occurrences of SAMPLE PULSES, and-gate 1 is disabled (S is at
logical zero) and and-gate 2 is enabled, allowing the data to recirculate. Since
the delay line has total delay of exactly L+1 CLOCK PULSE periods, a data
bit which is inserted after the jth SAMPLE PULSE will precess by one CLOCK
PULSE period for each trip through the delay line. After a total of L trips,
the data bit will have precessed to the point where it appears at and-gate 2
when S = 0 and is thus replaced by new data. Therefore, the input to the
delay line between the occurrence of SAMPLE PULSES is the binary data
from each of the previous L receiver quantizations.

*In many applications it is more convenient and economical tc actually use a shift register
rather than a (digital) delay line. However, when L is large, the use of a shift register may
be much more costly than, for example, the use of a magnetostrictive delay line.
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Figure 5. Timing Relationships Among the Sample Pulses,
Clock Pulses, and the Tctal Delay of the Delay Line.

Counter S is reset by each SAMPLE PULSE. The input to the delay
line together with the CLOCK PULSES are applied to and-gate 3. Asa
result, counter S counts the total number of “ones” obtained from the L
previous quantizations of the receiver output. That is, counter S compuites

k
Sk = Z ¥
i=k-L+1
where yj is the binary datum from the ith quantization of the receiver output.
The contents of counter S are compared with the threshold V and, if Sy =V,

a signal-present decision occurs. Thus, after each receiver-output quantiza-
tion, the comparator indicates if the threshold V is exceeded.

s
REFERENCE
VOLTAGE q THRESHOLD
2
v
RECEIVER DELAY LINE
OOTPUT % Q COMPARATOR [—>
QUANTIZER OR A - ’ 4\ . gUET.‘ESTTOR
1 L -
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Figure 4. Block Diagram of the Moving-Window Detector.
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CONCLUSIONS

The detection of randomly occurring signals can be accomplished by
2 binary moving-window detector. The detector is easily implemented and
can be applied to existing and future communications systems, especially for
use as an “alarm™ to initiate location, recognition, or data processing stages.
The statistics of the binary moving-window detector can be obtained
by a direct calculation, without resorting to Monte Carlo simulation. Methods
for obtaining these statistics are easily programmed for computer calculation.

RECOMMENDATIONS

1. Investigate existing communicaticns systems and plans for future
systems for possible application of the binary-moving-window detector as an
inexpensive and effective means of detecting communications signals.

2. Extend the analysis to cover multilevel quantization of data.

3. Investigate methods of obtzining analog moving-window detectors
(to avoid the loss due to quantization) which can be simply implemented.

4. Analyze the use of distribution-free statistical procedures in con-
junction with moving-window detectors.
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