
UNCLASSIFIED

AD NUMBER

AD878595

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; 30 NOV 1970. Other requests
shall be referred to Naval Electronics
Laboratory, Center, San Diego, CA 92152.

AUTHORITY

usnelc notice, 26 jun 1972

THIS PAGE IS UNCLASSIFIED



I 
I

oOn

O

BINARY DETECTION OF RANDOMLY OCCURRING SIGNALS

Defines a statistical procedure for detecting signals occurring at unknown
times; describes implementation and procedures for calculating the probability
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George M. Dillard Research and Development Report 30 November 1970

t r a ~ mi t t ale L w t ° f o r e i g n o v o r a ,i e n t s o r f o , ....p a e a t

NAL LE CTFONISA ORA Y CE

SAN~~r A DEOCAFONA91519-7

-. ~I 7i'



PROBLEM
Obtain design procedures and criteria for reliable Navy communica-

tion in a hostile, an adverse, or an unstable environment, through use of
statistical decision methods and other signal processing techniques. The spe-
cific problem with which this report is concerned is the detection of signals
which occur at random (unknown) times.

RESULTS
1. The binary moving-window detector is a feasible method of detect-

ing signals which occur at random times.

2. The statistics of the moving-window detector can be obtained by an
exact computational method without resorting to Monte Carlo simulation.

3. The binary moving-window detector can be easily implemented for
use in existing and future communications systems.

RECOMMENDATIONS
1. Investigate existing communications systems and plans for future

systems for possible application of the binary moving-window detector as an
inexpensive and effective means of detecting communications signals.

2. Elxter-' the analysis to cover multilevel quantization of data.

3. Investigate methods of obtaining analog moving-window detectors
(to avoid the loss due to quantization) which can be simply implemented.

4. Analyze the use of distribution-free statistical procedures in conjunc-
tion with moving-window detectors.

ADMINISTRATIVE INFORMATION
Work was performed under ZFXX-212-001 (NELC Z222) in the

Decision and Control Technology Division and under JO-0768413 (NELC
fellowship in the Department of Applied Physics and Information Science,
University of California at San Diego). The report covers work from
January to August 1970 and was approved for publication 30 November
1970. The detection device described in this report is covered by U. S.
Patent No. 3,517,172, "Moving-Window Detector for Binary Integration,"
Navy Case No. 42,878, issued on 23 June 1970.
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INTRODUCTION
Much of the literature on statistical signal detection is concerned with

the problem of choosing between two hypotheses about a random variable X
under the assumption that, for all of the n observations x 1 .. . , xni, on X,
exactly one of the hypotheses is true. In signal detection terminology, this
means that either all n observations are of signal-plus-noise or none is. This
situation presupposes that knowledge is available as to when a signal, if pres-
ent, will occur; for otherw ise it would not be possible to ensure that the

above assumption is satisfied. For example, consider a communications sys-
tem where knowledge is available at the receiver as to when a message, if
transmitted, will be received. Then, during the time when a signal can occur,
the received data will result 'ram either signal-plus-noise or noise only (but
no! both). However, if no knowledge is available as to when a message will be
received, the data will first result from noise only a,d will change zo signal-
plus-noise at some unknown time. (This would be the case, for example, in
signal-intercept applications.) It is this latter situation which will be dis-
cussed here; that of detecting signals which occur at some unknown times.
Emphasis is placed exclusively on the detection aspect; that is, the procedure
is useful only for detecting if a signal is present or not. Some other data
processing is necessary to deteimine information such as message content.

Discussion will be confined to detection methods involving "binary
integration," a term used to describe detection based on data which are
quantized into two levels, one and zero (ref. 1-5). In particular, a so-called
"moving-window detector" (ref. I and 2) will be discussed, and methods for
calculating the detection statistics (false-alarm probability, etc.) related to

this detector will be described.
Results will be given which will show how the detection probability

varies with SNR, signal duration, and sample size (the window "width"), and
a brief discussion of the equipment required for implementation will be given.

THE DETECTION PROBLEM
The detection problem considered here is that of detecting signals

which appear at some unknown times and remain for a fixed time. The
problem can be described as follows. Let xn, n = 1, 2, ... , be a sequence of
independent observations on the output X from a receiver, considered as a
random variable with density function f(x, 0), 0 an unknown parameter.
Suppose that 0 = 00 corresponds to the case where the output results from
noise alone and that 0 = 01 corresponds to the case where the output results
from signal plus noise (of some specified SNR, S(0 1)). Suppose also that
0=00 forn = 1, 2,... ml , and 0 = 0 1 forn= 1 I 1,..., m +L, where
m1 is a random variable denoting the observation at which the first signal
appears. For n> m1 + L, 0 = 00 until the next appearance of a signal at the
random time m2, etc. It will be assumed that two signals will be separated
by at least N observations, where N is the sample size used in the test proce-
dure (discussed later). It will also be assumed that the duration of any signal
will be a known, fixed number L of observations.
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As mentioned in the introduction, only detection will be discussed
here. However. a detector output indicating that a signal is present can be
coxsidered by the receiver as an "'alarm" which activates recognition, loca-
tion (in time or frequency), or data processing stages. Figure I isa simplified
block diagram of a complete system utilizing a moving-window detector and
a time-Jag recorder. The receiver-output is fed simultaneously to both the
moving-window detector and the time-Jag recorder. If the moving-window
detector decision is that a signal is present, an alarm causes the time-lag re-
corder contents to be read out and processed. The time-lag recorder could
be a tape loop, magnetic drum, core storage (for digital data), or any conven-
ient means of storing data collected during a short time interval. The actual
length of time for which the time-lag recorder must store data is determined
by such factors as the expected duration of signals to ht processed and the
expected time required for the moving-window detector to produce an alarm
after the signal begins.

RCEVR MOVING-WINDOW ALARM
DETECTOR

RECOGNITION,
TIME-LAG LOCATION, OR

_ TERDER DATA-PROC.RECORDER
STAGES

Figure 1. Simplified Block Diagram of a System Utilizing the Moving-Window
Detector As An Alarm.

THE DETECTION PROCEDURE
The method c! detecting signals (occurring at random timies as indi-

cated above) which will be discussed here is the so-called "moving-window
detector" (also called a moving average or a sliding window) (ref. 1 and 2).
The moving window of width N operates as follows. For each of the sub-
sequences of observations (Xl,.. , xN), (x2, - -.. xN+ ) .... , (X,-
Xk+Nl) ,.. .. , of length N, a test statisticSk+Nl (xk..., Xk+Nl) is
computed and, on the basis of this statistic, a decision i. made that either
0 = 00 or 0 = 0 1. The test performed on each subsequence will be called a
subtest, and a specific test statistic will be discussed later.

A representative sequence of observations when a signal is present is

L

... ,X,X,X,X,x Ix ,.. .,X ,x,x,x,,x,x,...
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where the asterisk indicates observationis from the signal-plus-noise popula-
tion. Note that L+N-1 consecutive subsequences (as described in the previous
paragraph) will include at least one signal-plus-noise observation. This
prompts the following definition of a false alarm and of a detection: If no
ooservation in a particular subsequence is from the silnal-plus-noise popula-
tion and the subtest decision is that 0 = 01 (a signal is present), then a false
alarm occurs. Likewise, if for any of the L+N-I consecutive subsequences
for which at least one observation is from the signal-plus-noise population,
the decision is that 6 = 01, then a detection occurs. Optimization will be
defined as the maximization of the probability of detection, with the false-
alarm probability held fixed.

The false-alarm probability will be denoted by a, and the probability
of detection will be denoted byD(-), where the parenthetical entry will
determine the pertinent variables of which the detection probability is a
function. For example, in the context above, D(L,N) denotes the proba-
bility of detection as P function of the signal duration L and the test size N.
Formulas for (or methods for calculating) a and D(-) will be given later.
Note that since a decision occurs for each observation, the average false-alarm
rate (in false alarms per observation) is equal to a.

BINARY INTEGRATION
A test which is of practical interest, due to its simplicity and ease of

implementation, is the binomial test. When applied to signal detection, this
test is call d "'binary integration," "k out of n detection," "double-threshold
detection," and "coincidence detection" (re;. 1-6). For binary integration,
the statistics of the moving-window detector can be obtained analytically;
i.e., without resorting to Monte Carlo simulation. The calculation of the
statistics of the binary moving-window detector will be discussed in the next
section.

The binary moving-window detector operates as follows. The data
xn, n = 1, 2,..., are compared with a threshold q, and the random variable
yi is given the value I if xi > q, and is given the value 0 otherwise. Thus the
sequence xn, n = 1, 2,..., is converted into the binary sequence Yn, n =,
2, . At the k obsc.rvation the statistic

k

Sk= Yi (1)

i=k-N+l

is calculated and compared with a threshold V and, if Sk > V, the decision
is made that 0 = 01 (a signal is present); otherwise, a decision is made that
0=0o.*

*Some authors define a detection as the occurrence of a threshold crossing; that is, a sig-
nal decision occurs at the kth observation only if Sk = V ind Sk.l< V. (Ref. 7, page 767.)
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Under the previous assumptions about the density of X. it follows
that

P (Yn= 1 O=Oo) f f( (2)
q

00

P(yn= 110=01) =f (x,)dx (3)

q

Denoting these probabilities by po and p 1, respectively, it follows thai*-

= Poi lP) - (4)

i=_V

The following procedure is used to optimize the test, in the sense of maxi-
mizing D(VN) forgiven L. a and SNR (ref. 6). (Here, D(VN) denotes the
probability of detection as a function of the threshold V and the test size N.)
Let N be fixed. For each V, V = 1, 2,... ,N, equation 4 is solved for the
value po(V) for which the given false-alarm probability a is obtained. For
each po(V), equation 2 is solved for the threshold q(V), and for each q(V),
equa,'ion 3 is solved for pl(V). The pairs (po(V),pl(V)), V= 1, 2, . , N,
so obtained are used (in a method to be described in the next section) to
calculate D(VN), and the value of V for which D(VN) is maximum is
selected. Now N is allowed to vary and the above procedure is followed for
each N.** The test size N is then chosen as the value of N for which D(V,N)
is maximized, having chosen the optimum value of V for each N. Results
will be given later to show how the probability of detection varies with N,
for fixed L and a.

*Equation 4 is valid for any particular subtest, and the average false.alarm rate is o false
alarms per observation even though the subtests are not independent.

**It will be seen from results presented later that usually only values of N in the neighbor-
hood of L need be tried in the optimization procedure; that is, Nopt t L. Also, for
many of the probability densities of interest, the optimum threshold V (for fixed N)
can be determined without need of considering all possible values for V. This is the
case, for example, when the detection probability D(V) (for fixed L, N, and a) is uni-
modal. It is then only necessary to determine the first value of V for which D(V + 1)
< D(V). Finally, it is sometimes possible to solve equations 2 and 3 for PI asa function
of po, and thus avoid the intermediate step of determining q (ref. 6, page 349).
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CALCULATING THE PROBABILITY OF DETECTION
The method used for calculating the probability of detection for the

binary moving-window detector is an application of the theory of finite
Markov processes* (ref. 8-10). This theory cannot be applied directly to Sk
since {Ski : 1 is not a Markov process (ref. 8). However, if all possible
configurations of ones and zeros in the kh subsequencc are considered, then
finite Markov process theory can be applied: as discussed below-

The binary moving-window can be viewed as follows. Suppose that
after each observation, the contents of an N-bit shift register are shifted left
by one bit and the binary datum for that observation is inserted in the fight-
most bit. Then, after the th observation, the content of the shift registeris the kt h binary subsequence, and Sk is the sum of the I's in the shift regis-

ter. If we let Rk be the number obtained by regarding the shift register con-
tent as a binary number, then IRk = 00l is a finite Alarkov process with
possible states 0, 1, .. , 2N- 1- That [Rk1 is a Markov process follows from
the fact that the possible values of-Rk are determined completely by the
value ofRk._1 and Yk- Note that a left shift of an N-bit shift register is equiv-
alent to multiplication by two. modulo 2N. Hence, if Rk_-l i, then Rk =
(2i)mod 2N if Yk = 0 and Rk = I + (2i)rnod 2N, ifYk = .I l'p(n) is the
probability of a I at the nth observation, then the transition probabilities are

I[ -p(n) ifj = (2i)mod 2 N

[0 otherwise

The transition matrix, for the states ordered as the numbers 0, 1 ..... 2N -1.
has the form

q(n) p(n) 0 0 - . 0 0
0 0 q(n), p(n) . 0 0

P(n) 0 0 0 0 (n) p(n) (6)q(n) p(n) 0 0 . .. 0 0
0 0 q(n) p(n) - - - 0 0

0 0 0 0 q(n) p(n)

where q(n) I - p(n). Notice that the lower half of the matrix is identical
with the upper half since Rn is independent of the high-order bit of Rn_.I

*A finite Markov process is a stochastic process, which can take on only a finite numbei
of values, such that the outcome at the kth stage of the process depends on the outcome
at the (k-l)st stage and on no previous outcome. If, additionally, the outcome at the
kth stage is independent of k, the process is called a Markov chain.
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To avoid cumbersome subscripts, in the following we will let W =2 N

If the components of the probability-vector1in= .(-i0(n)... .\,..l('))
denote the probability that Rn has values 0. 1, ... V-1, then the corre-
sponding probability vector 11n+ 1 can be found frori

Nn+l = IlnP(n+l) (7)
- ,,, *~ ,,,,, )-nequation 6, note that the indicatcd inatrix multipli-

cation in equation 7 reduces to

2 i(n+l) = [ri(n) + ,ir+W/2(n)] q(n+l)

i=0I
IT. i+l (n+l ) = [ri(n) + Tri+wV/2(n)] ])(,,+1 (8)

j=0 . -- 1

For the problem treated here, it is assumed -that the probability of
entering a I into the window in the no-signal case has a constant value Po ,
independent ofn. It will be shown that after Nobservations the process
Teaches equilibrium in the sense that fIN+n = 1IN, n = 1 2,.., until the
process is disturbed by the occurrence of a signal. Specifically, ifKj is de-
fined as the number of I's in the binary xepresentation of the aumber j, then

II~n ,-0.., W!);n= 0, 1,-.. ,(9a)

.....10 ... IW I
K_~0N~ p)N1% ,j0 1 , . ..<W- (9b)

To see that equation 9 is true for n = 0, note that after N observations the
content of the shift register represents the results of N independent
Bernoulli trials the ordered results of which have probabilities given by
equation 9b. Next, note that Ki+Vw/2= Kj-+ = K2i+l fori= 0, 1,..
W
T-1. Using this and equation 9b in equation8, we have

- [pQi (1 )N -(IKj+l ,:( -v0 )

=poA (1-po) i= 712i(N)

t2 i~l(N+l) = [poKi (-po)N - ( Ki+l ] po

= Ki + 1 I - N- ( Ki+l = ,7r2i+,,( N )

which implies that equation 9 is true forn = 1, 2,....
As stated previously, a signal-present decision occurs whenever the

number Sk of ones in the window is greater than or equal to the threshold V_
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Equivalently, a signal-present decision occurs whenever the outcome Rk is a
member of the subset D of states such that jeD if Kj > V.* (Ki is the num-
ber of I'sin the binary representation of the numberj.) A state in D will be
called a decision state.

From the definition of a detection, when a signal is present there are
exactly N+L-i consecutive observations for which a correct signal-present
decision (not a false alarm) can occur. The probability of detcction defined
previously can be Testated as

D(L,N) = I-P(Rke D for k = m+l . m+L+N-I) (10)

where it is assumed that the first signal observation is xm+ 1. In words, equa-
tion 10 states that I-D(L,N) is -the probability 'that the process fails to enter
a decision state as the signal data "passes through" the window, Calculating
'the probability of detection is accomplished by the following recursive pro-
cedure.

Assume 'that 'there have been at least 'N observations of noise only, so
'that the probability vector 11o has the form given by equation 9. (For Con-
-venience of notation, the observations have been reindexed so that the first
signal observation is 'x 1.) Let A0 = (A 0( ) ..... kW 1 (0)), where k(0) =

7k(0) if kD, and XI (0)= 0 otherwise. Compute A 1= (A0(I..W( 1)

from Ao by first using equation 8 and then setting'Xk(0) = 0 if keD. 'That
is. A1 = AoPCI) with all components of AI corresponding'to decision states
set equal'to zero.) 'Continue computing An+1 from An in this fashion until

AN-l_1 'is obtained. In these computations, p(n) (the probability of entering
a 1 into the'window) is given by p(n)'= pl for n = 1,2,... , L, and by p(n) =

p0 'for n = L+1 .... N-L-1; corresponding to the situation where the signal
data is "'entering" 'the window and "leaving" the window, respectively. The
-probability of detection is given by

D(L,N) = 1 - '7A:(N+L- ) ( 11)
j4D

That 'is. i-D(L,N) is thesum of thecomponents of AN+L_ 1I corresponding

'to noradecision 'states
The'validity of equation 'lI will beproved by showing that, for n = 1.

2.... , N+L-I, IP[R DRn_,l © ... , ROO;D = Wj(n), with 'Xj(n) obtained
j 'D

as indicated above. As before,'W = 2N . 'Note that

*Thetnotation jeDmeans ' j isamember of.the set D." Similarly,.idD means "j is not a
imember ofthe set ID."
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P[RI =jR0D] =Z P[R! =JRo=i]P[R0=i] (12)

ieD

W-I
P [R!I = J1R0i] Xi(0) (13)

i=0

W-I

- pij(l)xi(0  (14)

i=0

and (by definitio,),Xj( 1)= P[R1 =j. ROOD] ifjeD and ji) =0 ifjeD.

Equation 13 follows from equation 12 since xi(0) = P [Ro = i] if ieD and

i(0 ) = 0 if ieD, and equation 14 follows from equation 13 by the definition

of Iij(l) in (5). Hence, P[RI4D, RO4D] = Xi( ). Now, suppose Xi(m):-

ieD

P[Rm = i, RmI4D)..., ROOD"] if i4D and X (m) = 0 if ei=0,..., W-1.

Then

P [Rm+! J, Rm4D, ... , ROD]

= .P[Rm+I =iIRm = i, Rm-.) -,..., ROOD]
ieD
- P [Rm = i, RmI-lD,..., ROOD ]  (15)

Applying the Markov property (see the footnote on page 7) to the conditional
probability in equation 15 and using the definitions of Wi(m) andPij(m+l),
we have

W- I

P[Rm+I =j, Rm4/D,..., ROOD] = , P[Rm+I =jIRm = i]Xi(m)

i=0 (16)
W-I

= pij(m+l)Xi(m )  (17)

i=0

the right-hand side of which is an application of equation 8 to Am. Setting

XJ(r11) = P[Rm+l =j, Rm4D .... , ROOD] if jOD and ,j(m+1) = 0 ifjeD, it

follows that P [Rm+I1D .O. R0 j] = xi(m+1) and equation 11 follows

ieD
by induction.

10



RESULTS
Results are given for three probability densities, the Rice, Rayleigh,

and Gaussian (normal) densities. The Rice density is used to describe the
output X from a linear envelope detector when the SNR is constant (non-
flucluating). This density is given by

(x,01 =xex xp +[0 lo)]1o(xv/2Ti)dx, x>0 (18)

where 01 is the SNR, ahd do(-) is the modified Bessel function of the first

kind, order zero (ref. 11). The corresponding no-signal density is given by

f(x,O)=x exp[-x2/2], x>O (19)

which is obtained from equation 18 by setting 01 = 0 = 00. Solving (2) for

q, given Po, results in

q = (-2 in Po) (20)

The solution to equation 3 for pI, given po, is obtained from the so-called

Q-function*

p, = Q (v/201, q) f x exp +-(+ 0 i)] o (xV2 I-)dx (21)

q

which is tabulated (ref. 12), or can be calculated recursively (ref. 13).
The Rayleigh probability density can be used to describe the output

Y from a linear envelope detector when the SNR fluctuates according to the

Swerling case-2 (ref. 14). This density is given by

f (y,, y 0  (22)f~yI I+0 2(1+01)

where, ink this case, 0 1 is the average SNR, averaged over all possible fluctua-

tions. The corresponding no-signal distibution is again given by equation 19.

The probability p1 can be obtained in term,; of po directly, without the

intermediate step of calculating q. Since the solution to equation 2, using

equation 19, is Po = e -  and the solution to equation 3, using equation

22, is p1 = e - /I2 1+01), it follows that

Pl= P°1/(I+01 (23)

00

*The Q-function is defined by Q(a, t)f x exp [-( + a2)/1 10(ax) dx.

t
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It is noted that the results to be given for the random variable X (and
Y) described above are valid also for any random variable W = T(X) (Z = T(Y)),
when T is a one-to-one monotone increasing transformation. Hence, the
results obtained utilizing densities associated with a linear detector are also
valid for a square-law detector, with the transformation T defined by T(u) =
u2/2.

The Gaussian density can describe the receiver output under a variety
of situations. When a signal is present, it is assumed that the associated proba-
bility'density is

f(x, 01)= (2-Y-/2 exp [- (x-0 1) 2/ 2 (24)

where the SNR is 012/2. When no signal is present, the density is

f(x, 0) = (2,r)' exp [-x212] (25)

The equation relating p 1 and po (used in lieu of equations 2 and 3) is

p1=erfc erfc1(po)- 0i (26)

where

CO

erfc(q) = (2-T) -
V f et 2/ 2dt (27)

q

Figure 2 shows the probability of detection D(V) as a function of
the threshold V for several values of the SNR, with a, N, and L fixed. For
each curve, the circled point indicates the maximum value of D(V), and the
corresponding optimum value of V can be read from the abscissa. These
results indicate that the optimum value for V is relatively insensitive to SNR.
A similar result was presented in Worley (ref. 6). Although insensitive to SNR
(for each probability density), the results of figure 2 indicate that knowledge
of the probability density is necessary. For example, using V = 4, which is
optimum for the Rician model, significantly degrades D(V) if used for the
Rayleigh model. It is expected that for large values of N (and L), the dif-
ference in the optimum values of V for the three models will become more
pronounced. That is, as N increases it becomes increasingly more important
that the probability density describing the receiver output be known, so
that the optimum value of V can be obtained. No results are available at
present to support this claim; however, related results are presented in Worley
(ref. 6).
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Figure 2. Probability of detection D(V) as a function of the threshold V, for
several values of the SNR.

Figure 3 shows the probability of detection D(LN) as a function of
the test size N, for several values of the signal duration L where, for each N
and L, the optimum V is chosen. Notice that for both the Gaussian and
Rician models, D(LN) has a distinct peak which occurs for L=N. However,
for the Rayleigh model, D(LN) is relatively flat (as a function of N for each
L), with a maximum at N= 1. These results again indicate the importance of
knowing the probability density associated with the receiver output if
optimization is to be achieved.
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IMPLEMENTATION OF THE BINARY MOVING-WINDOW DETECTOR
As mentioned earlier, binary integration is of interest due to the ease

in which a system for binary integration can be implemented. One very im-
portant application of the binary moving-window detector is the detection of
communication signals (from both friendly and unfriendly sources) which
occur at random times. If the number of data samples which must be col-
lected and stored is large, then binary integration may well be the only feas-
ible method of detection due to the speed at which computations must be
made. A brief description of a particular method of implementing the binary
moving-window detector for detecting communication signals will be given.
A similar and more complete description (in terms of a multiple-range-bin
radar system) is found in Dillard (ref. 2).

A block diagram of the binary moving-window detector of width L,
as applied to the detection of randomly occurring communication signals, isfshown in figure 4. The inputs labelled S, 5, and C are illustrated in figure 5.
The input S (SAMPLE PULSES) is a sequence of pulses occurring at equally
spaced intervals corresponding to the rate at which the receiver output is
sampled and quantized. The input S is the logical complement of S when
considered as a logical input to and-gate 2. (In figure 5, relatively negative
voltages are considered logical "ones" and relatively positive voltages are
considered logical "zeros.") The input C (CLOCK PULSES) is a sequence of
pulses occurring at L times the rate of the SAMPLE PULSES, where L is the
window width.

The heart of the detector is the delay line, which is a clocked (digital)
recirculating memory. The total delay is adjusted to exactly L+1 CLOCK
PULSE periods, where L is the window width. Logically, the delay line can
be considered as an (L+1)-stage shift register which shifts at the clock rate.*

At each SAMPLE PULSE the receiver output X is compared with the
reference q and if X > q the quantizer output Q = 1; otherwise Q = 0. Also,
at the occurrence of each SAMPLE PULSE, and-gate 2 is disabled by 5, and
thus inhibits recirculation of the corresponding data bit. And-gate 1, being

enabled by the SAMPLE PULSE, causes a I or 0 to be "written" into the
delay line accordingly as Q = 1 or Q = 0. Thus, the old data which were pre-
vented from recirculating are replaced with new data (from Q, via and-gate 1).
Between occurrences of SAMPLE PULSES, and-gate 1 is disabled (S is at
logical zero) and and-gate 2 is enabled, allowing the data to recirculate. Since
the delay line has total delay of exactly L+1 CLOCK PULSE periods, a data
bit which is inserted after the jth SAMPLE PULSE will precess by one CLOCK
PULSE period for each trip through the delay line. After a total of L trips,
the data bit will have precessed to the point where it appears at and-gate 2

when S = 0 and is thus replaced by new data. Therefore, the input to the
delay line between the occurrence of SAMPLE PULSES is the binary data
from each of the previous L receiver quantizations.

*In many applications it is more convenient and economical to actually use a shift register

rather than a (digital) delay line. However, when L is large, the use of a shift register may
be much more costly than, for example, the use of a magnetostrictive delay line.
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Figure 4. Block Di2gram of the Moving-Window Detetor.
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Figure 5. Timing Relationships Among the Sample Pulses,
Clock Pulses, and the'Fctal Delay of the Delay Line.

Counter S is reset by each SAMPLE PULSE. The input to the delay
line together with the CLOCK PULSES are applied to and-gate 3. As a
result, counter S counts the total number of "ones" obtained from the L
previous quantizations of the receiver output. That is, counter S computes

k

Sk= Yi

i=k-L+ I

where Yi is the binary datum from the ith quantization of the receiver output.
The contents of counter S are compared with the threshold V and, if Sk > V,
a signal-present decision occurs. Thus, after each receiver-output quantiza-
tion, the comparator indicates if the threshold V is exceeded.
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CONCLUSIONS
The detection of randomly occurring signals can be accomplished by

a binary moving-window detector. The detector is easily implemented and
can be applied to existing and future communications systems, especially for

use as an "alarm" to initiate location, recognition, or data processing stages.
The statistics of the binary moving-window detector can be obtained

by a direct calculation, without resorting to Monte Carlo simulation. Methods
for obtaining these statistics are easily programmed for computer calculation.

RECOMMENDATIONS
1. Investigate existing communications systems and plans for future

systems for possible application of the binary-moving-window detector as an
inexpensive and effective means of detecting communications signals.

2. Extend the analysis to cover multilevel quantization of data.

3. Investigate methods of obtaining analog moving-window detectors
(to avoid the loss due to quantization) which can be simply implemented.

4. Analyze the use of distribution-free statistical procedures in con-
junction with moving-window detectors.
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