UNCLASSIFIED

AD NUMBER

AD878220

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; AUG 1970. Other requests shall be referred to Air Force Materials Lab., AFSC, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML ltr, 8 May 1974

THIS PAGE IS UNCLASSIFIED

AFML-TR-70-58 Volume 1

82 60 N

00

١

Ĩ

ן יו

ŧ

İ

ADVANCED COMPOSITES DATA FOR AIRCRAFT STRUCTURAL DESIGN

Volume I: Material and Basic

Allowable Development -

Boron/Epoxy

- L. M. Lackman
- G. H. Arvin

E. O. Dickerson

R. B. Meadows

LOS ANGELES DIVISION NORTH AMERICAN ROCKWELL

TECHNICAL REPORT AFML-TR-70-58, VOLUME I

AUGUST 1970

This document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory, (AFML/LC), Wright-Patterson Air Force Base, Ohio 45433.

AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

> This document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory, (AFML/LC), Wright-Patterson Air Force Base, Ohio 45433.

The distribution of this report is limited because the report contains technology identifiable with items on the strategic embargo list excluded from export or re-export under U.S. Export Control Act of 1949 as implemented by AFR 400-10.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

ACCESSIO	h far				ſ
CPSTI		WHITE	SEGTI	OX 🗌	
00 C		BUFF	SECT	01	P
UNAN.	CED.		-		
JUSTIFIC	. KSITA				
BY Distrie	DTION/	AVAILA	 Bility	CODE	S
DIST.	_ A)	/AIL. 0	nd/er	SPECIA	Ľ
9					
0	+				

AFML-TR-70-58 Volume I

ADVANCED COMPOSITES DATA FOR AIRCRAFT STRUCTURAL DESIGN

Volume I: Material and Basic

Allowable Development -

Boron/Epoxy

- L. M. Lackman
- G. H. Arvin
- E. O. Dickerson
- R. B. Meadows

This document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory, (AFML/LC), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

This report was prepared by the Los Angeles Division of North American Rockwell Corporation under Contract F33615-68-C-1489, Project 6169CW, for the Advanced Composites Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. Mr. R. L. Rapson (AFML/LC) was the Air Force Project Engineer and Dr. L. M. Lackman was the North American Rockwell Program Manager. The work described in this report was performed during the period from 15 March 1968 to 15 December 1969.

The authors of Volume I are Dr. L. M. Lackman, and Messrs. G. H. Arvir, E. O. Dickerson, and R. B. Meadows, who were responsible in the course of this program for program management and analytical studies, structural design manual development, experimental testing and data reduction, and specimen fabrication, respectively. In addition, Mr. Arvin also served as the General Editor of this report.

That portion of the basic allowable determination pertaining to the effect of nuclear blasts was assigned to the Columbus Division of North American Rockwell. Mr. K. I. Clayton was responsible for this segment of the program and for the corresponding subsection of this report. Dr. A. Caputo contributed to the thermal expansion analysis described in Section V.

The authors wish to acknowledge the contribution of the Fort Worth Division of General Dynamics to this program, in particular for their assistance during the material development phase and in general for the smooth coordination between this program and their related concurrent efforts under Contract F33615-68-C-1474. Special mention is made in these regards for the cooperation and assistance of Mr. P. D. Shockey.

This report was submitted by the authors 3 March 1970.

This technical report has been reviewed and is approved.

V C

Robert C. Tomashot Technical Area Manager Advanced Composites Division

ABSTRACT

This volume is Volume I of four volumes and summarizes that portion of the program under Contract F33615-69-C-1489 concerned with the development of a material processing technology at AR, the determination of material properties for a specific epoxy resin and glass scrim cloth, the determination of the effects of nuclear blast on the strength of a composite laminate, and the assessment of existing micromechanics techniques for the prediction of composite lamina characteristics. All efforts in this program were relative to a specific boron/epoxy composite material system, known commercially as Narmco Rigidite 5505, produced in prepreg form by the Narmco Materials Division of the Whittaker Corporation.

During the material and processing development, a procurement specification (Appendix I) and a process specification (Appendix II) were established, and have demonstrated a capability to produce satisfactory material consistently, provided the prepreg tape used is of high quality. Prepreg tape made with twisted filaments or with too advanced a resin is shown to be unacceptable. A concept of prepreg tape with rotated scrim cloth is shown to increase certain mechanical properties markedly.

Tests are described for a program to characterize individually Narmco 2387 resin (the matrix resin in Narmco 5505 composite) and 104 glass scrim cloth. Test data are presented for standard mechanical properties and elastic constants at room temperature and 350°F.

A test program to determine the effects of nuclear blast on boron/epoxy laminates is described and test data are presented. The effects of nuclear radiation as studied under this program were shown to be of no practical concern in aerospace structure design, but thermal shock effects can be significantly damaging without adequate thermal protection.

An evaluation is presented to show the degree of validity of several existing micromechanics techniques for predicting composite lamina characteristics from known properties of the constituents. Elastic constants and thermal coefficients of expansion are presented, and predicted properties are compared to test results. A separate assessment is made of macromechanics techniques for predicting the coefficients of expansion of a crossplied laminate.

> This abstract is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory, (AFML/LC), Wright-Patterson Air Force Base, Ohio 45433.

> > iii

22 AUVE AUVESTIC AUVESTIC AUVESTIC AUVESTICATION AUVEST

TABLE OF CONTENTS

and the state of the

dianta di

na adaraha hararaha harang barang b

Section		Page
I	INTRODUCTION	1
II	NR/GD COORDINATION	4
III	MATERIAL DEVELOPMENT	5
	Quality Control Verification Test Program Transverse Property Improvement Study	5 32 90
IV	BASIC ALLOWABLE PROGRAM	104
	Constituents	104
	Matrix Resin Scrim Cloth	104 139
	Nuclear Blast Effects on Boron/Epoxy Laminates	175
v	MICROMECHANICS/MACROMECHANICS ANALYSIS	204
	Elastic Constants Thermal Expansion - Micromechanics Thermal Expansion - Macromechanics	204 208 218
APPENDIX I	PROCUREMENT SPECIFICATION	223
APPENDIX II	PROCESS SPECIFICATION	245
REFERENCES		253

v

a ve comment a var a stille artikt

.-

LIST OF ILLUSTRATIONS

Figure No.

Title

Page

the set

strends restances and managements

1	Quality Control Test Fixture (Flexure and Interlaminar	
2	Siledij	
2 7	Boton/Epoxy Quarrey Control lest Fixture Drawing /	
Л	Batch 297 Samples with Separator Paper	
4 E	Batch 297 Samples Williout Separator Paper	
5	Batter 297 Quality Control Data	
0	Namico Tape with Filaments of Various Degrees of	
7	INIST	/
0	Panel Layup Showing Twisted Tape	,
0	Patiel Layup Snowing Iwisted Tape (Close-op)	
9 10	Chality Venification Test Dresson for P/Energy Lorington	/
10	Quality verification lest Program for B/Epoxy Laminates 54	,
11	Summer of Floures Test Fixture Loading Configurations	,
17	Summary of Flexural lest Fixture Loading Configurations)
15	Test	,
14	Longitudinal Tension - [0] ar Laminate	Ś
15	Longitudinal Tension - [0] GT Laminate	
16	Poisson's Ratio way for [0] Laminates	
17	Longitudinal Tension - $[0/\pm 45/0]_{T}$ Laminate	
18	Longitudinal Tension - $\left[0/\pm 45/0\right]_{2T}$ Laminate	ŗ
19	Poisson's Ratio ν_{rot} for $[0_2/\pm 45]_c$ Laminates	3
20	Transverse Tension - $[0]_{TT}$ Laminate	į
21	Transverse Tension - [0] GT Laminate	5
22	Transverse Tension - $[0/\pm 45/0]_{T}$ Laminate	5
23	Transverse Tension - $[0/\pm 45/0]_{2T}$ Laminate	7
24	Poisson's Ratio ν_{VV} for [0] and $[0_2/\pm 45]$ Laminates	3
25	Surface and Subsurface Matrix Effects on Plies 90° to	
23	Loading Direction.)
26	Transverse Tension - $[+45/0_2/-45]_T$ Laminate	2
27	Laminate Compression Beam Bending Test Specimen 63	3
28	Failed Compression Beam Test Specimen.	4
29	Bending Beam Failing Stress Calculation	5
30	Compression Stress-Strain Curve for [0]3T Laminate	2
31	Longitudinal Compression - [0]6T Laminate	3
32	Compression Stress-Strain Curve for [0/±45/0]T Laminate 7/	4
33	Compression Stress-Strain Curve for [0/±45/0]2T	Ī
	Laminate \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $.$	5
34	Beam Compression Test Specimens - [0] 3T Laminate	5
35	Beam Compression Test Specimen [0]6T Laminate	7
36	Beam Compression Test Specimens - [0/±45/0]T Laminate 7	R
37	Beam Compression Test Specimens [0/±45/0]2T Laminate 70	ģ
	The subscreen set and the set of	م

vi

Figure No.

The state of the s

entry of the starting of the start of the start of the starting of the startin

anganan asa ay kanangang agang ahagan kasa

i terrana dan meni kerakan dan belegi di kandana yekin pada baran terra dan kara terrakan terrekan dan baharan

St And Report

38	45° Off-Axis Tension $[0]_{3T}$ Laminate	L
39	45° Off-Axis Tension [0] _{6T} Laminate	5
40	Typical Deflected Specimen in Flexural Test Fixture 86	5
41	Rotated Scrim Longitudinal Tension Stress-Strain	
	Curve Comparison With Non-Rotated Data for Narmco	
	5505 at Room Temperature	ł
42	Rotated Scrim Longitudinal Tension Stress-Strain	
	Curve Comparison With Non-Rotated Data for Narmco	
	5505 at 350°F	5
43	Rotated Scrim Transverse Tension Stress-Strain	
	Curve Comparison With Non-Rotated Data for Narmco	
	5505 at Room Temperature	2
44	Rotated Scrim Transverse Tension Stress-Strain	
	Curve Comparison With Non-Rotated Data for Narmco	
	5505 at 350°F	3
45	Narmco 2387 Cast Resin Blanks and Tensile Specimens 106	5
46	Narmco 2387 Resin R.T. Tension Stress-Strain Curve 109	9
47	Narmco 2387 Resin R.T. Poisson's Ratio 110	D
48	Narmco 2387 Resin 350°F Tension Stress-Strain Curve 112	2
49	Cylindrical Narmco 2387 Resin Tension Coupon 114	4
50	Narmco 2387 Resin Tension Stress-Strain Curve 110	б
51	Narmco 2387 Resin Tension Stress-Strain Curve 119	9
52	Narmco 2387 Resin Poisson's Ratio	D
53	R.T. Compression Stress-Strain Plot of Narmco 2387	
	Resin	3
54	350°F Compression Stress-Strain Plot of Narmco 2387	
	Resin	5
55	R.T. Compression Poisson's Ratio for Narmco 2387	
	Resin	7
56	Pure In-Plane Shear Loading Test Fixture Sketch 12	8
57	In-Plane Shear Test Set-up 129	9
58	Resin Shear Specimen Diagram Showing Fracture	
	Locations	1
59	Room Temperature Shear Stress-Strain Plot for	
	Narmco 2387 Resin	3
60	Narmco 2387 Resin Tension S-N Curve - Room Temperature . 13	5
61	Narmco 2387 Resin Axial Tensile Creep at 350°F 13	7
62	Integrated Average Coefficient of Thermal Expansion	
	for Narmco 2387 Resin Over Range Between R.T. and	
	Indicated Temperature	8
63	Longitudinal Tension 104 Glass Scrim Cloth Stress-	_
	Strain Curves - 104 Glass Scrim Cloth - RT 14	5
64	Longitudinal Tension Stress-Strain Curves - 104 Glass	
	Scrim Cloth - 350° F	6
65	Poisson's Ratio $\nu_{\rm XY}$ vs $\epsilon_{\rm X}$ - 104 Glass Scrim Cloth 14	7

vii

Figure No.

5

THE PERSON NAMES IN CONTRACT OF TAXABLE PERSON O

Selected Markets

inter aufent helten der Alle Statesten in der Bereiten aufen der Bereiten der Be

Title

Page

÷

.

4

,

66	Transverse Tension Stress-Strain Curve - 104 Glass	1/19
67	Transverse Tension Stress-Strain Curve - 104 Glass	140
	Scrim Cloth - 350°F	149
68	Poisson's Ratio μ_{yx} vs ϵ_y - 104 Glass Scrim Cloth	150
69	Longitudinal Tension, Post Cured Scrim Laminate	
	at R.T	153
70	Poisson's Ratio for Post Cured Scrim Laminate at	
	R.T	154
71	Longitudinal Compression - 104 Glass Scrim Cloth -RT	156
72	Scrim Cloth Compression Specimens After Failure	
	t R.T	157
73	Longitudinal Compression - 104 Glass Scrim Cloth-350°F.	159
74	Failure of 12 Ply 104 Glass Fabric Compression	
	Specimens Tested at 350°F	160
75	Poisson': Ratio $v_{\rm XY}$ vs $\epsilon_{\rm X}$ - 104 Glass Scrim Cloth	161
76	Calculation of Shear Modulus from Diagonal Strains	163
77	Shear Stress vs Principal Strains - 104 Glass	
	Scrim Cloth -RT	164
78	Shear Stress vs Shear Strain – 104 Glass Scrim	
	Cloth - R.T.	166
79	Scrim Cloth In-Plane Shear Specimen for Room	
	Temperature Test	167
80	Shear Stress vs Shear Strain - 104 Glass	
	Scrim Cloth - 350°F	170
81	Scrim Cloth In-Plane Shear Specimen for 350°F Test	171
82	S-N Curve for 104 Fabric/Epoxy 12-Ply	173
83	Strain vs Time for 104 Glass Creep Test	174
84	Integrated Average Coefficient of Thermal Expansion	
	vs Temperature 104 Glass Scrim Cloth	177
85	Tension Specimen	190
86	Compression Specimen	181
87	Interlaminar Shear Test Specimen	182
88	Failed Radiation [0] _{6T} Tension Specimens	186
89	Failed Radiation [0/±45/0] _{2S} Tension Specimens	187
90	Failed Radiation [0] _{6T} Compression Specimens	188
91	Failed Radiation [0/±45/0] _{2S} Compression Specimens	189
92	Failed Radiation [0] _{6T} Interlaminar Shear Specimens	190
93	Thermal Input	192
94	Thermal Shock Test Setup	193
95	Combined Thermal Shock and Tension Test Setup	194
96	Combined Thermal Shock and Compression Test Setup	195
97	Failed Thermal Shock [0] _{6T} Tension Specimens	198
98	Failed Thermal Shock [0/±45/0] _{2S} Tension Specimens	199
99	Failed Thermal Shock [0] _{6T} Compression Specimens	200

Figure	No.
--------	-----

Title

100	Failed Thermal Shock [0/±45/0] compression	
	Specimens	201
101	Degradation of Ultimate Tensile Strength vs Thermal	201
	Shock Loading	• • •
102	Tunical Buidimenti mal I	202
102	spical undirectional Laminate and Typical Filament	
		206
103	Model of Single Lamina Element.	200
104	Model of Single Lamina Element with Serie Clash	209
105	a Transverse Coefficient of The Tail	211
	Thansverse coefficient of Inermal Expansion for	
100	Boron/Epoxy Ply (No Scrim).	212
100	Typical n-Ply Laminate and Thermal Distortion	220
107	Longitudinal Coefficient of Thermal Expansion for	220
	Laminates of the Time [] (AIS (00)	
	$\frac{1}{n} = \frac{1}{n} = \frac{1}$	222

Page

LIST OF TABLES

Taule	Title	Page
I	Mechanical and Physical Property Requirements	8
II	Batch 283 - Quality Control Test Results	•
III	(NARMCO)	9
	(NARMCO)	10
IV	Batch 283 - Bleed System for Second Quality Control Retest	10
V	Batch 283 - Second Quality Control Retest	
VI	Batch 283 - Filament Strength Versus Flexural	11
	Strength	12
VII	Panels Test Results	13
VIIJ	Batch 279 - Test Results from Known Good	17
IX	Batch 288 - Narmoo and NR Quality Control	15
х.	Test Results	14
X	Test Results	15
XI	Batch 297 - Quality Control Test Results	10
XII	Batch 297 - Test Results of Interchange	10
	Between NR and GD Twisted Tape	18
XIII	Batch 297 - Summary of Available Data by Roll	19
XIV	Batch 297 Acceptance Data	21
XV	Physical Properties of Batch 297	22
XVI	Batch 297 - Effect of Heatup Time on Laminate	28
10171	Inickness	30
XVII	Batch 512 - Quality Control Test Results	30
XVIII	Batch 528 - Quality Control Test Results	30
	Batch 334 - Quality Control Test Results	31
	Batch 364 - Quality Control Test Results	32
	Balch 504 - Quality Control Pest Results	32
	Summary of Quality Control Data	30
XXIII thru XXVI	Filamentary Laminate Static Property Data	50
XXVII thru XXX XXXI	Filamentary Laminate Static Property Data Failing Strength and Strains Comparison for	50
	$[0_2/\pm 45]_c$ Laminates \ldots \ldots \ldots	5 0
XXXII	Filamentary Laminate Static Property Data	61
XXXIII	Longitudinal Compression Beam - Ultimate	
	Stress and Modulus Summary	65
XXXIV	Versus Core Density	67

x

Table

and the state of t

in Materia

Walter and Additional Additional Additional Additional Additional Additional Additional Additional Additional A

and the second
SHI POLISH SA

the share a subsected

的自由的制度及自然的法的本的制度

add by the second s

Nalati

-97

Page

100 C

XXXV thru XXXVIII	Filamentary Laminate Static Property Data	68
XXXIX	Filamentary Laminate Static Property Data	80
XL	Filamentary Laminate Static Property Data	82
XLI	Extensional and Flexural Moduli Values.	88
XLII	Interlaminar Shear-Critical Flexural	
	Specimen Failing Stresses	89
XLIII	Longitudinal Flexural Specimen Failing	
NPT	Stresses	91
XLIV	Transverse Flexural Specimen Failing	
177 17	Stresses	92
XLV	Comparison of Rotated Scrim and Standard	-
NR 177 (1)77 737	Laminate Properties	93
XLVI thru XLIX	Filamentary Laminate Static Property Data	96
L	Resin Characterization Test Program for	
	Narmco 2387 Resin with Filler	105
LI	Resin Characterization - 15-Ply Unidirectional	
	Laminate Test Results	107
LII	Resin Matrix Static Property Data	108
LIII	Resin Matrix Static Property Data	111
LIV	Resin Matrix Static Property Data	115
LV thru LVI	Resin Matrix Static Property Data	117
LVII	Resin Matrix Static Property Data	122
LVIII	Resin Matrix Static Property Data	124
LIX	Resin Matrix Static Property Data	132
LX	Scrim Cloth Characterization Test Program	140
LXI thru LXIV	Filamentary Laminate Static Property Data	141
LXV	Filamentary Laminate Static Property Data	152
LXVI	Filamentary Laminate Static Property Data	155
LXVII	Filamentary Laminate Static Property Data	158
LXVIII	Filamentary Laminate Static Property Data	165
LXIX	Filamentary Laminate Static Property Data	164
LXX	Coefficient of Thermal Expansion for 104	
	Scrim Cloth Laminate	176
LXXI	Test Specimens - Nuclear Blast Effects	179
LXXII	Tension Test Results for Control Specimens -	
	Radiation	184
LXXIII	Test Results of Irradiated Specimens	185
LXXTV	Tension Test Results of Control Specimens -	
	Thermal Shock	196
LXXV	Test Results of Thermal Shock Specimens	197
LXXVT	Constituent Elastic Pronerties	205
LXXVII	Micromechanics - Test Versus Theory	202
LXXVIII	Summary of Expressions	200
LYXIX	Constituent Properties	217
IVYY	Boron / Fnorma Commonsite Dronontias (Including	1 2 1
JVVY	Scrim Cloth)	217

xi

Title

LXXXI	Calculated Expansion Coefficients	218
LXXXII	Comparison of Predicted Values and Test	
	Data for Coefficients of Thermal Expansion	
	at Room Temperature	221

LIST OF SYMBOLS

ن بن بي بي بي بي بي بي

Mantinalities, Managinalities, 2001 and and an and an and an and an and an and an
२२ दुस्ट्र हे थे.

erta ér

A	-	area (in. ²)
a	-	length dimension (in.), esp rectangular panel
b	-	width dimension (in.) esp width of compression panel normal to load, or breadth of beam cross section
CL	-	centerline
D	-	diameter (in.)
Е	-	Young's modulus (1b/in. ²)
Ef	-	Young's modulus of filament material (lb/in. ²)
Em	-	Young's modulus of matrix material (1b/in. ²)
E ^g L	-	Young's modulus of impregnated glass scrim cloth in filament direction $(1b/in.^2)$
e ^g T	-	Young's modulus of impregnated glass scrim cloth transverse to filament direction $(1b/in.^2)$
E _L , E _a	-	Young's modulu ^r of laminae parallel to filament direction (lb/in. ²)
E _T ,E _β	-	Young's modulus of laminae transverse to filament direction $(1b/in.^2)$
E _x	-	Young's modulus of laminate along X reference axis (lb/in. ²)
Ey	-	Young's modulus of laminate along Y reference axis (lb/in. ²)
F	-	allowable stress (lb/in. ²)
f	-	applied stress (lb/in. ²)
G	-	shear modulus
G _f	-	shear modulus of filament material (lb/in. ²)
G _m	-	shear modulus of matrix material (lb/in. ²)

G ^g LT	-	shear modulus of impregnated glass scrim cloth (lb/in. ²)
G _{LT} , G _{aß}	-	shear modulus of laminae in LT or $\alpha\beta$ plane (lb/in. ²)
G _{xy}	-	shear modulus of laminate in XY reference plane (lb/in. ²)
h	-	height dimension (in.), esp height of beam cross section. Also, sometimes used for thickness.
h _i	-	thickness of i th ply or lamina (in.)
М	-	moment (in1b)
Р	-	applied load (1b)
t	-	<pre>(1) thickness (in.) (2) time (sec)</pre>
Vf	-	filament content (% by volume)
Vg	-	glass scrim cloth content (% by volume)
v _m	-	matrix content (% by volume)
α	-	coefficient of thermal expansion (in./in./°F)
α _f	-	coefficient of thermal expansion for filament material (in./in./°F)
$\alpha_{ m m}$	-	coefficient of thermal expansion for matrix material (in./in./°F)
$\alpha_{\rm L}^{\rm g}$	-	coefficient of thermal expansion of impregnated scrim cloth in filament direction $(in./in./°F)$
$\alpha_{\mathrm{T}}^{\mathrm{g}}$	-	coefficient of thermal expansion of impregnated scrim cloth transverse to filament direction (in./in./°F)
$\alpha_{\rm L}^{}, \alpha_{\alpha}^{}$	-	laminae coefficient of thermal expansion along L or α axis (in./in./°F)
α _Τ , α _β	-	laminae coefficient of thermal expansion along T or β axis (in./in./°F)
α _x	-	laminate coefficient of thermal expansion along general reference X axis (in./in./°F)

a state

α _y	-	<pre>laminate coefficient of thermal expansion along general reference Y axis (in./in./°F)</pre>	
a _{xy}	-	laminate shear distortion coefficient of thermal expansion (in./in./°F)	
Δ	-	difference (used as prefix to quantitative symbols)	
δ	-	élongation or deflection (in.)	
E	-	strain (in./in.)	
γ	-	shear strain (in./in.)	
θ	-	angular orientation of a lamina in a laminate, i.e., angle between L and X axes (°)	
ν	-	Poisson's ratio	
νf	-	Poisson's ratio of filament material	
νm	-	Poisson's ratio of matrix material	
$\nu_{\mathrm{LT}}^{\mathrm{g}}$	-	glass scrim cloth Poisson's ratio relating to contraction in the transverse direction due to extension in the longitudinal direction	
ν ^g TL	-	glass scrim cloth Poisson's ratio relating to contraction in the longitudinal direction due to extension in the transverse direction	
$\nu_{\rm LT}, \nu_{\alpha\beta}$	-	Poisson's ratio relating contraction in the T or β direction due to extension in the L or α direction	
^ν TL ^{,ν} βα	-	Poisson's ratio relating contraction in the L or α direction due to extension in the T or β direction	
v _{xy}	-	Poisson's ratio relating contraction in the y direction due to extension in the x direction	
^v yx	-	Poisson's ratio relating contraction in the x direction due to extension in the y direction	
Σ	-	total	
σ	-	applied axial stress (lb/in. ²)	
τ	-	applied shear stress (1b/in. ²)	

xv

.

.

regel Crevic de la

THE REAL PROPERTY AND A PROPERTY AND

SUBSCRIPTS

С	-	composite or laminate as a whole, as distinguished from individual constituents		
f	-	filament		
g	-	lass scrim cloth		
i	-	i th position in a sequence		
L, T, z	-	laminae natural orthogonal coordinates		
m	-	matrix		
max	-	maximum		
min	-	minimum		
x, y, z	-	general coordinate system, also laminate coordinate system.		
a,β, z	-	laminae natural orthogonal coordinates		
Σ	-	total		
0	-	initial or reference datum		
		SUPERSCRIPTS		
с	-	 compression or creep composite or laminate as a whole, as distinguished from individual constituents 		
cu	-	compression ultimate		
f	-	filament		
g	-	glass scrim cloth		
is	-	interlaminar shear		
isu	-	interlaminar shear ultimate		
m	-	matrix		

xvi

pl	-	proportional limit	
S	-	shear	
su	-	shear ultimate	
t	-	tension	
tu	-	tension ultimate	
(overline)	-	denotes parameter related to portion of composite lamina exclusive of scrim cloth	
		UNITS OF MEASUREMENT	
Ksi	-	Kilopounds per square inch, 10 ³ lb/in. ²	
Msi	-	Megapounds per square inch, 10 ⁶ lb/in. ²	
n	-	neutrons	
r	-	Roentgens	
μ	-	prefix micro- (10 ⁻⁶)	
G	-	prefix Giga- (10 ⁹)	
Т	-	prefix Tera- (10 ¹²)	
KT	-	prefix Kilo-Tera- (10 ¹⁵)	
MT	-	prefix Mega-Tera- (10 ¹⁸)	

410

and a state of the

 xvii

This page is intentionally left blank

Section I

INTRODUCTION

The purpose of this program was to take the first step toward the generation and presentation of basic engineering data necessary to perform high-confdence-level structural design of primary aircraft structures utilizing advanced composite materials. The program was limited to an in-depth generation of basic material allowables for one boron/epoxy and several graphite/ epoxy material systems, and the determination of basic structural element response for the boron/epoxy system alone. The boron portion of this program was conducted in conjunction with a concurrent General Dynamics/Fort Worth (GD/FW) program which was funded under Air Force Contract F33615-68-C-1474. The boron/epoxy material system highlighted by both these programs was Narmco 5505, furnished by the supplier as 3-inch prepreg tape. This is a composite material consisting of collimated 4-mil boron filaments, 208 per inch of tape width, embedded in a matrix of Narmco 2387 epoxy resin, and supported on a 1-mil layer of 104 glass scrim cloth. The graphite portion of this program is being conducted independent of any other program, and will be described in fuller detail in a later volume of this report. Additional data for all these materials, as well as for other filament/matrix material systems, were obtained from published Government, industry, and technical journal reports, and were used to augment the data generated in this program.

This program was composed of three major ... ork task areas:

- Task I Generation of Composite Material Design Allowables
- Task II Structural Element Test Program and Analysis Evaluation
- Task III Development of Advanced Composite Structural Design Manual for Aircraft

Task I is divided into two distinct areas of effort by the separate boron/epoxy and graphite/epoxy programs. The purpose of the boron portion of task I was to complement the basic material design allowable activities conducted by GD/FW (reference 12) and to develop acceptable laminate fabrication and inspection procedures. The boron effort was divided into the following work areas: The establishment of program coordination procedures for the North American Rockwell Corporation and General Dynamics related programs; the accomplishment of a limited material development program; the generation of basic allowables for the constituent materials; establishment of the accuracy of current analytical procedures for predicting certain basic allowables; and the development, where reliable techniques were lacking, of prediction techniques for these basic material allowables.

The graphite portion of task I consists primarily of a screening and characterization of several graphite/epoxy material systems and will be delinated in a later volume of this report.

The purpose of task II, which was concerned solely with boron/epoxy material, was to generate data on basic structural elements which form the building blocks from which aircraft structures are designed. A minimum evaluation of structural elements was conducted, including one basic laminate and one elevated temperature. Factors which were considered in the detail design of the structural elements included laminate orientations, panel proportions and edge restraints, effectiveness of typical forms of panel stabilization, evaluation of cutouts, and thermal gradient effects. One or more elements were selected for each primary and/or combined load applications. The test program included local and general instability of flat panels and natural frequency determinations. The results of this test program were compared to predicted response, failure mode, and strength techniques for basic structural elements.

The task III work area was originally centered on the development of an advanced composite structural design manual for aircraft structures. The first effort of this task involved revision and refinement of the Aircraft Division of the Intermediate Draft of the Structural Design Guide developed by the Southwest Research Institute, San Antonio, Texas, under Air Force Contract AF33(615)-5142. The completely revised and reorganized Aircraft Division resulting from this phase of effort was published in the Final Draft of the Design Guide in November 1968 under Contract AF33(615)-68-C-1241. Soon thereafter, a review of the Final Draft by a select industry group led to a decision by AFML to reorganize the entire Design Guide for the First Edition, which was then assigned to NR/LAD under Contract F33615-69-C-1368.

Subsequent phases of task III of this program, in light of the foregoing developments, consisted of the preparation of the Aircraft System Applications chapter of the First Edition of the Design Guide as well as the preparation of data generated by tasks I and II of this program for incorporation into the various technical function-oriented chapters. Task III also included the incorporation into the Design Guide of data generated by the concurrent GD program.

The bulk of the basic material allowables for the 5505 material system was generated by the General Dynamics contract. This concurrent and integrally related contract was coordinated with the Los Angeles Division program effort through scheduled periodic coordination meetings. These meetings insured the continuous flow of pertinent program data between the two contractors.

This report is divided into four separate volumes, in each of which the subject areas of interest comprise an independent segment of the overall program. Each volume is a self-contained document, complementing the other

2

three volumes but not dependent upon them for coherence or continuity. The titles of the four volumes are:

 Volume I - Material and Basic Allowable Development - Boron/Epoxy
 Volume II - Structural Element Pehavior - Test and Analytical Determination
 Volume III - Theoretical Methods

Volume IV - Material and Basic Allowable Development - Graphite/Epoxy

Volume I contains three major areas of interest: The material development program (section III), the basic allowable program (section IV), and an evaluation of micromechanics prediction techniques (section V).

Section III covers the history of the problems encountered in quality control of supplier-fabricated prepreg tape, the fabrication and test program to demonstrate the quality and consistency of NR-fabricated laminates, and a NR-developed technique for augmenting the transverse properties of uniaxial laminae by reorienting the major axis of the scrim cloth.

Section IV covers the determination of mechanical properties of the resin matrix and scrim cloth constituents of Narmco 5505 boron/epoxy composite. The properties of the boron filament constituent were considered to be sufficiently established outside the efforts of this program. The properties of the fabricated Narmco 5505 composite itself, as distinguished from those of the individual constituents, were determined principally by General Dynamics. The one exception to the foregoing division of responsibilities is the NRconducted investigation of nuclear blast effects on the mechanical properties of composite laminates, which is covered in section IV.

Section V is concerned with the assessment of existing techniques for elastic constants and thermal expansion characteristics of laminae as a function of constituent properties. In addition, a subsection concerning macromechanical prediction techniques for thermal expansion has been included here because of a desired continuity with the related micromechanics subsection.

Laminate ply orientations are described and specified in this report by use of the laminate orientation code defined in the Structural Design Guide for Advanced Composite Applications.

SECTION II

NR/GD COORDINATION

This program and the concurrent General Dynamics/Fort Worth Contract F33615-68-C-1474, entitled "Development of Engineering Data for Advanced Composite Materials," were mutually complementary. The basic interface between the two programs lay in those areas of each program related to the characterization of Narmco 5505 boron/epoxy composite in which NR had responsibility for determining the mechanical properties of the composite constituents; GD had responsibility for establishing mechanical and physical properties of the composite itself in several mutually agreed-upon "standard" laminate orientations; and NR, in turn, was responsible for determining the quantitative response characteristics of composite basic structural elements when subjected to various types of loading.

Consequently, continuous coordination between the two programs was conducted throughout their active spans. This was accomplished partly by a series of joint meetings of the NR and GD Program Managers and the AFML Project Engineer, held as circumstances dictated at either Wright Patterson AFB, Ohio, Fort Worth, or Los Angeles. Otherwise, continuous coordination was maintained by telephone and mail.

SECTION III

MATERIAL DEVELOPMENT PROGRAM

In this program, boron/epoxy fabrication technology was developed at NR initially through the use of General Dynamics (GD) material and process specifications and with the assistance of GD materials engineers. This technical base was expanded through the development of NR procurement and process specifications (appendixes I and If) and a quality control test fixture shown in figures 1 and 2.

The purpose of the material development task was to develop a materials technology base that would insure that all structural elements fabricated during this program would be of consistent high quality. The initial step consisted of fabricating 15-ply, 3 - x 12-inch unidirectional quality-control-type panels from which longitudinal and transverse flexural specimens and interlaminar shear specimens were obtained and tested. Consistency in fabrication techniques was established almost immediately, and a quality verification program was initiated.

All boron/epoxy prepreg material was obtained from Narmco Materials Division of the Whittaker Corp in Costa Mesa, California, in the form of 3-inch-wide prepreg tape on rolls containing 250 to 300 continuous lineal feet of material, commercially known as Narmco Rigidite 5505. Laid-up composites were fabricated by curing for 2 hours at 350° F and 85 psi, initially as specified by GD/FW FPS 2001A and later in accordance with the NR-developed process specification (appendix II). All composite panels were laid up with the integral 104 glass scrim ply down. A separate 104 glass prepreg ply was used to close out the part and is referred to as a balance ply.

QUALITY CONTROL

hundun tataateessa hartuud dataanaa tataanaa dataa keessa keessa keessa keessa keessa keessa keessa keessa kee

Prepreg tape material received was inspected visually, and measurements were made to determine conformance of both physical and mechanical properties to the requirements of NR Specification ST0130LB0004 (appendix I). This specification requires the physical and mechanical properties shown in table I.

WARDER STATES

þ

(')

F

Figure 2. Boron/Epoxy Quality Control Test Fixture Drawing

G

Ì

7 了

TABLE I. MECHANICAL AND PHYSICAL PROPERTY REQUIREMENTS OF ST0130LB0004

MECHANICAL PROPERTY REQUIREMENTS (1)

Test	RT	270° F	350° F
Longitudinal flexure (ksi)	225	195	170
Transverse flexure (ksi)	13	10	8
Interlaminar shear (ksi)	13	7	5

(1) Based on 15-ply unidirectional composite with a thickness per ply of 0.0051 inch minimum to 0.0054 inch maximum.

PHYSICAL PROPERTY REQUIREMENTS

Resin content

Volatile content

Tack

 $Flow^{(2)}$

To be defined

2 percent maximum

29 to 34 percent by weight

Adhere to a vertical steel surface

(2) At present, flow shall be such as to produce a composite within a 0.0051- to 0.0054-inch per ply thickness when processed per ST0105LA0007.

The following paragraphs present the quality control results from each batch of prepreg tape received and the material problems encountered.

NARMOO 5505 - BATCH 283 (TEXACO FILAMENT)

The prepreging and quality control work performed by Marmco at their Costa Mesa facility was witnessed by an NR materials engineer. The production run witnessed was Narmco batch 282, with United Aircraft/Hamilton Standard filament. Quality control tests were conducted by Narmco to qualify the material to GD Specification FMS2CO1A; all of the specification's requirements were exceeded. This batch was scheduled to be supplied to NR and GD; however, because of contractual delays, this batch (282) was used to fill another Narmco order. Subsequently, batch 283 was produced with Texaco filament for NR and GD.

Although a "filament is filament" philosophy had been generally accepted at the initial coordination meeting between USAF, NR, GD, and Narmco (i.e., filament from any qualified producer is acceptable and interchangeable, provided it satisfies filament specification requirements), it seemed wise to observe the processing and quality control testing on batch 283 because of the change in filament supplier. The "filament is filament" philosophy implies that all filament qualified to FMS 2002 will produce boron prepreg tape with properties that will qualify the tape to FMS 2001A.

NR personnel observed the Narmco processing and quality control testing of batch 283 with Texaco filament. The production run had been halted since the longitudinal flexural strength requirements of FMS 2001A had not been met, although all other mechanical and physical requirements conformed to this specification. The maximum thickness requirement (0.0054 inch/ply) of FPS 2001 was also exceeded for these specimens. Table II presents the mechanical property data developed from the initial quality control testing at Narmco.

Property	Spec No.	RT Reqd (ksi)	RT Actual (ksi)	350° F Reqd (ksi)	350° F Actual (ksi)
Longitudinal Flexure	1 2 3 Avg.	225	195 205 <u>211</u> 204	170	188 186 <u>187</u> 187
Transverse Flexure	1 2 3 Avg.	13.0	$ 15.3 \\ 13.7 \\ 14.1 \\ 14.4 $	8.0	$ \begin{array}{r} 10.1 \\ 13.8 \\ \underline{12.6} \\ 12.0 \end{array} $
Interlaminar Shear	1 2 3 Avg.	13.0	15.4 14.7 <u>14.6</u> 14.9	5.0	9.07 8.41 <u>9.09</u> 8.84

TABLE II. BATCH 283 - QUALITY CONTROL TEST RESULTS (NARMCO)

For retesting, it is Narmco's normal quality control policy to increase the number of specimens from 3 to 6. Therefore, two additional panels were fabricated for longitudinal flexural testing after the failure of the first quality control specimens to pass the specification requirements. These new specimens exceeded the 0.0054 inch/ply maximum and also did not meet the flexural strength requirement. Flexural strength data for these two laminates are shown in table III.

Panel No.	Spec No.	Flexural Longitudinal Strength (ksi)
A	1 2 3 Avg	205 195 <u>200</u> 200
В	1 2 3 Avg	$ \begin{array}{r} 201 \\ 212 \\ \underline{199} \\ \underline{204} \end{array} $

TABLE III. BATCH 283 - QUALITY CONTROL RETEST RESULTS (NARMCO)

Careful examination of the specimens tested showed that, in addition to their being too thick, they were cut improperly. The long side of the specimen was not cut parallel to the filament but at some small angle to the filaments, resulting in loss of filament continuity from one end of the specimen to the other. Since increased thickness and filament continuity can affect flexural strength, four additional laminates were fabricated with strict attention being paid to filament alignment during layup and cutting, and with provisions for increased resin bleeding to reduce the thickness. The bleed system variation for each of the four laminates is described in table IV.

Laminate No.	Layup Description
1	Same as Narmco standard process*, except three plies of 120 glass fabric cut to same size as layup and two small holes placed in mylar film at opposite corners 1/2 inch from each edge
2	Same as standard except four plies of 120 glass fabric cut 1/2 inch larger than layup.
3	Same as laminate 2 except holes in mylar as described in laminate 1.
4	Same as laminate 2 except five plies of 120 glass bleeder. * Essentially identical to NR Process Specification ST0105LA0007, reproduced in this report as Appendix II.

TABLE IV. BATCH 283 - BLEED SYSTEM FOR SECOND QUALITY CONTROL RETEST
The increase in bleed systems described in table IV did not change the cured laminate thickness to the extent that might be expected. Thicknesses of each of the cured laminates, along with flexural strengths which again did not meet the requirements of FMS 2001A, are shown in table V.

Laminate No.	Specimen No.	Thickness* (in.)	Flexural Strength (ksi)	Flexural Modulus (Msi)
1	1 2 3 Avg	0.083 0.084 <u>0.082</u> 0.083	190 195 <u>194</u> 193	$27.1 \\ 25.3 \\ 24.4 \\ 25.6$
2	1 2 3 Avg	$\begin{array}{c} 0.081 \\ 0.080 \\ \underline{0.080} \\ 0.080 \\ \hline 0.080 \end{array}$	204 217 <u>205</u> 209	26.2 27.8 <u>26.3</u> 26.8
3	1 2 3 Avg	0.080 0.079 <u>0.079</u> 0.079	207 226 <u>219</u> 217	$ \begin{array}{r} 26.8 \\ 28.9 \\ \underline{28.4} \\ \underline{28.0} \end{array} $
4 .	1 2 3 Avg	$ \begin{array}{r} 0.080 \\ 0.080 \\ \underline{0.080} \\ 0.080 \\ \hline 0.080 \end{array} $	210 207 <u>195</u> 204	$ \begin{array}{r} 25.7 \\ 27.8 \\ \underline{27.3} \\ \underline{26.9} \end{array} $
* Allowable th	nickness (15 pli	.es) = 0.0765 - (.0810 inch	

TABLE V. BATCH 283 - SECOND QUALITY CONTROL RETEST RESULTS

Since all of the quality concrol tests conducted that were matrixcritical passed the requirements of FMS 2001A, and the filament-critical longitudinal flexural quality control test did not pass, filament strengths were examined. Table VI shows the relationship of filament strength to flexural strength for batch 283 and the batches just prior to and following batch 283.

On the basis of these limited data, NR incorporated into its material specification a filament strength requirement of 450 Ksi (min. avg.).

NR accepted 500 feet of batch 283 to be utilized for materials development and familiarization.

Batch	Filament Manufacturer	Filament Tensile Strength (ksi)	Flexural Strength (ksi)
283	Texaco	423 413 (1)	204 (2)
Prior to 283	Hamilton Standard	459	Exceeded 225
Following 283	Hamilton Standard	445	Exceeded 225
NOTES: (1) (2)	Narmco tests - average o Average of all flexural	f 26 spools data previously pres	sented.

TABLE VI. BATCH 283 - FILAMENT STRENGTH VERSUS FLEXURAL STRENGTH

Four laminates were made from batch 283 per FPS 2001 by three different NR personnel. The thickness was excessive, and the longitudinal flexural strengths were low. As with the Narmco quality control tests on batch 283, the matrix-critical transverse flexure strength requirement was exceeded. These data are shown in table VII.

A meeting was held in Los Angeles between AFML, NR, and GD/FW personnel. GD materials engineers monitored NR fabrication techniques and stated that NR's techniques were in accordance with GD's FPS 2001, and that resultant composites should be of high quality, if the boron prepreg (batch 283) had been acceptable. It was learned that, for quality control laminates, GD used a 104 glass prepreg balance ply. This practice was subsequently adopted at NR. At this time, two laminates were fabricated from batch 282; one by NR and the second by a GD/FW materials engineer. Neither laminate was tested, since both exhibited excessive thickness, i.e., 0.084 inch (NR) and 0.083 inch (GD). A third panel was made using twice as much bleeder (six plies of 120 glas:), and its thickness was 0.086 inch.

GD agreed we conclose a small quantity of boron prepreg tape that passed the quality concrol requirements of FMS-2001A from another program so that NR could determine the efficacy of their fabrication methods. This material from Narmco batch 279 was received, and the NR-fabricated laminates passed all the FMS-2001A requirements. These data are shown in table VIII.

NR fabricated two additional 15-ply laminates from batch 283 using special techniques to increase the resin bleed in an attempt to decrease the laminate thickness. One method used was to provide three plies of 120 glass bleeder on each side of the laminate, and the second was to provide a resin reservoir at each end of the composite to allow resin bleeding parallel to the filaments. Neither method resulted in any significant effect on

Specimen No.	Thickness (in.)	Longitudinal Flexural Strength (ksi)	Thickness (in.)	Transverse Flexural Strength (ksi)
1 2 3	0.083 0.083 0.084	201 185 184	0.082 0.082 0.083	14.5 13.0 13.8
1 2 3	- 0.083 0.083	- 203 197	0.080 0.082 0.081	14.4 12.7 13.4
1 2 3	- 0.084 0.085	- 184 194	0.082 0.083 0.084	15.9 14.0 14.0
1	0.085	186	0.083	13.5
	Specimen No. 1 2 3 1 2 3 1 2 3 1 1	Specimen No. Thickness (in.) 1 0.083 2 0.083 3 0.084 1 - 2 0.083 3 0.083 1 - 2 0.083 3 0.083 1 - 2 0.084 3 0.085 1 0.085	Specimen No. Thickness (in.) Longitudinal Flexural Strength (ksi) 1 0.083 201 2 0.083 185 3 0.084 184 1 - - 2 0.083 203 3 0.083 197 1 - - 2 0.084 184 1 - - 2 0.083 197 1 - - 2 0.084 184 3 0.085 194 1 0.085 186	Specimen No.Thickness (in.)Longitudinal Flexural Strength (ksi)Thickness (in.)10.083 2 0.083201 185 0.082 0.0820.082 0.08320.084 0.084184 1840.0831- - 0.083 0.083- 0.082 0.0810.082 0.0821- - 0.083 0.083- 0.082 0.0811- 0.084 0.085- 0.084 1940.083 0.08310.085 0.085186 0.083

TABLE VII. BATCH 283 - PERSONNEL FAMILIARIZATION PANELS TEST RESULTS

TABLE VIII. BATCH 279 - TEST RESULTS FROM KNOWN GOOD MATERIAL (NARMOD BATCH 279)

Property	Specimen No.	Thickness (in.)	Room Temperature (ksi)	Thickness (in.)	350° F (ksi)
Longitudinal flexural strength	1 2 3 Avg	0.079 0.080 0.080	229 243 233 235	0.080 0.080 -	213 204 - 209
Transverse flexural strength	1 2 3 Avg	0.080 0.080 0.080	14.4 14.9 14.9 14.8	0.080 0.080 0.080	12.7 11.9 12.7 12.4
Horizontal shear strength	1 2 3 Avg	0.080 0.079 0.080	16.3 15.9 15.9 16.0	0.078 0.080 0.079	7.1 7.8 6.9 7.3

thickness over previous specification methods. The thicknesses were 0.083 and 0.084, respectively.

No other attempts were made to utilize any of the remaining material from batch 283.

NARMCO 5505 - BATCH 288 (HAMILTON STANDARD FILAMENT)

The prepreging and subsequent Narmco quality control testing were monitored by an NR materials engineer. All specification requirements were met.

Subsequent NR quality control acceptance tests were conducted. During the cure of the NR laminate, both pressure and temperature were temporarily lost and a resin-rich laminate was produced, resulting in a slight increase in laminate thickness. Increased resin content usually does not affect transverse flexural and horizontal shear strengths to the extent that it affects the longitudinal flexural strength. A second quality control panel was fabricated, and no problems were encountered during the cure. The mechanical property test results of the Narmco tests and both NR panels are shown in table IX.

	Narmo	o Data	NR	Data	NR Remake					
Test	RT	350°F	RT	350°F	RT	350°F				
Longitudinal flexural strength (ksi)	253	207	227	187	233	209				
Transverse flexural strength (ksi)	17.0	12.7	15.0	14.6	16.8	14.5				
Interlaminar shear strength (ksi)	13.5	5.5	15.7	8.4	16.1	8.7				

TABLE IX.	BATCH	288	- NARMCO	AND NF	QUALITY	CONTROL	TEST	RESULTS
-----------	-------	-----	----------	--------	---------	---------	------	---------

NARMCO 5505 - BATCH 297 (HAMILTON STANDARD FILAMENT)

Batch 297 was qualified by both Narmco and NR quality control testing. These data are shown in table X.

Further examination of this batch of material revealed that this material had a tendency to roll up across its 3-inch width. It was further determined that this rolling or curling problem was more severe with the last roll received by NR/LAD (No. 52) than it was with the first roll (No. 1).

This curling effect is shown in figures 3 and 4. The lengths of prepreg tapes shown in these figures are 1, 2, 3, 4, and 5 feet, respectively. It appeared that lengths of up to 2 feet could be handled without difficulty, 3-foot lengths would be marginal in handling, and lengths beyond 3 feet would be very difficult to handle from a fabrication standpoint.

theory of the state of the

T +	Narm	co Data	NR Data					
1est	RT	350°F	RT	350°F				
Longitudinal flexural strength (ksi)	247	230	251	213				
Transverse flexural strength (ksi)	16.6	10.1	16.5	12.7				
Interlaminar shear strength (ksi)	15.3	5.5	15.8	7.9				

TABLE ... BATCH 297 - NARMCO AND NR QUALITY CONTROL TEST RESULTS

Narmco studies revealed that the boron filament was twisted (from one turn in 2 feet to one turn in 13 feet) and suggested that this could be the cause of the tape curling characteristics. Since it was observed that the curling problem was more severe for roll 52 than roll 1, roll 52 was tested for mechanical properties to determine if the degree of tape curl affected these properties. These data are shown in table XI, and significant difference in longitudinal flexural strength can readily be seen.

Since further exploration of the effect on mechanical properties of twisted tape was deemed desirable, a small testing program was initiated. It was agreed between NR and GD, who also was cognizant of the tape curling problem, that IITRI* type unidirectional tensile specimens (figure 11) would be exchanged. Both NR and GD fabricated 10 $[0]_{6T}$ coupons from rolls 51 (GD) and 52 (NR) with five specimens tested by the fabricator and the other five interchanged and tested. These data are shown in table XII.

These data are below the 186 ksi average tensile strength of batch 288 (acceptable material in all respects) obtained by IITRI. This correlates well with low longitudinal flexural strength obtained on rolls 51 and 52.

These test data also indicate that NR and GD test techniques are equivalent. The data are based on a nominal ply thickness of 0.0052 inch.

All of the available longitudinal flexural data are shown in table XIII.

^{*} Illinois Institute of Technology Research Institute

Figure 3. Batch 297 Samples with Separator Paper

2

E.

Teet		Ro	011 52	Data	Roll 1 Data						
		RT		350°F	RT	350°F					
Longitudinal flex strength (ksi)	ural	231	(1)	196	251	213					
Transverse flexur strength (ksi)	al	13.0	(2)	12.3	16.5	12.7					
Interlaminar shea strength (ksi)	r	14.8		7.9	15.8	7.9					
NOTES: (1) One tes require (2) One tes require	t value (ment of 2 t value (ement of 1	(223.9 225 ks: (12.1 13 ksi	ksi) o i per ksi) o per a	out of three appendix I. ut of three ppendix I.	did not mee did not mee	et the t the					

TABLE XI. BATCH 297 - QUALITY CONTROL TEST RESULTS VERSUS SEVERITY OF TWIST

 TABLE XII.
 BATCH 297 - TEST RESULTS OF INTERCHANGE BETWEEN

 NR AND GD TWISTED TAPE

Tested by	NR Fabricated (Roll 52)	GD Fabricated (Roll 51)
NR	153 ksi 166 157 160 <u>187</u> 165 avg	173 ksi 175 178 174 192 178 avg
GD	181 175 178 161 * 139 * 178 avg	171 172 175 172 189 176 avg

* Specimens were improperly gripped and have been discounted.

A STATE STATE AND A CONTRACT OF A STATE AND A STATE

TABLE XIII. BATCH 297 - SUMMARY OF AVAILABLE DATA BY RO	ATLABLE DATA BY ROLL	OF	SUMMARY	-	297	BATCH	XIII.	TABLE
---	----------------------	----	---------	---	-----	-------	-------	-------

Roll No.	Longitudinal Flexural Strength (ksi)	Data Source
1 1	251 247 285	NR Narmco
30 43 50 52	265 265 219 (1) 219 (1) 231 (2)	Narmco GD GD NR
NOTES: (1) (2)	The 350°F strengths were below the appendix 170 ksi. The averages at 350°F were 154 ks 156 ksi for roll 50. One value out of three was 223.9 ksi, which ksi requirement of appendix I.	I requirement of i for roll 43 and is below the 225

As previously mentioned, there was some evidence that the curling problem was more severe in the latter rolls than the initial rolls. Table XIII reflects what may be a degrading effect on the latter rolls of prepreg tape due to curling.

Mechanical property test data from NR and GD, along with limited data from both Narmco and Grumman, are shown in table XIV. These data are also shown in graphic form in figure 5 along with Narmco resin content measurements and the thickness measurements available from table XIV. The physical property measurements conducted at NR are presented in table XV.

All these data were accumulated and presented by GD and NR at a meeting at Narmco, Costa Mesa, California, at which most of the major aerospace users were in attendance.

A careful review of the data presented in table XIV shows that all the rolls in runs 1 and 2 meet the acceptance standards contained in appendix 1. It was agreed that all these rolls would be used in the NR structural element program. The below-specification (FMS 2001A) performance of rolls 14 through 52 was cause for rejection, and rolls 19, 20, 21, 24, 29, 37, 38, 39, 44, 45, 46, 47, 49, and 52 were returned to Narmco.

This meeting was primarily stimulated by the severe twist or curl evident in batch 279 and other currently produced boron/epoxy prepreg tapes. Narmco had received approximately 1 pound each of filament from (1) UAC that had what was judged to be twist of a magnitude comparable to that used in current batches of prepreg tapes, (2) UAC that had low twist, and (3) AVCO that had no

TABLE XIV. BATCH 297 ACCEPTANCF DATA

	420				3.6					_						_																	
ear si	350	5.5	8.0	7.4	6.6				,	7.1					7.5	8.4	7.3			7.4			74				5.8		7.4	7.6	5.7		8.0
She She	270				8.8																												
	ът	15.3	15.8	15.0	16.6	15.5			1	15.0	16.0	15.3	15.0		15.5	15.4	16.4	13.5		15.4		1	15.0	16.0	14.5	15.4	15.9	14.9	15.0	15.0	16.0	15.9	15.0
	420				5.7				_																								
lex	350	10.1	12.7	12.4	10.1	12.4				0.0		12.5			11.1	12.4	10.6	9.2		10.0			1.6], .3	11.3	11.9	10.3	6°0	0.0	11.0	11.4	12.8	12.0
90° F ksi	270				14.7																												
	RT	16.6	16.5	16.2	16.2	16.4				15.8	15.2	16.1	15.1		14.7	15.8	15.5	15.0		16.0			15.0	15.5	15.0	15.0	15.2	12.8	15.0	15.0	15.2	15.2	13.0
	420				94		_																							_			
lex	350	230	214	177	188	216		(185)	(168)	182		221			170	186	184	181	(175)	184		(157)	187	212	190	191	154	196	175	166	156	187	200
0° F ks	270				226																						-						
	RT	247	252	253	253	236	285	251	254	243	245	240	241	256	272	222	232	202	233	240	265	217	240	244	227	228	220	225	240	224	219	220	231
	Thickness		0.078-0.078	0.077-0.079	0.076-0.078	0.080				0.078-0.079	0.077	0.079	0.079		0.083-0.087	0.084		0.087		0.080-0.08	0.076	0.087	0.082-0.085	0.081	0.084	0.082	0.082-0.088	0.080	0.079-0.083	0.081-0.085	0.080-0.083	0.081	0.077-0.080
	Source	Narmco	Narmco	NR	8	8	Narmco	Grumman	Grumman	NR	8	8	6	Grumman	NR	GD	6	9	Grumman	NR	Narmco	Grumman	NR	8	8	9	8	6	NR	NR	6	6	NR
	Roll	1	1	2	S		6	80	11	12(30.3%)	13			17	19(34.6%)	22	23		28	29(32.9%)	30	31	37(33.9%)	41	42		43		46(32.8%)	47(34.7%)	50	15	52

21

.....

: . .

Roll No.	Tack	Resin Flow (%)	Volatile Content (%)	Resin Content (%)		
2 12 19 29 37 46 47	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable	11.5 10.8 16.1 13.7 13.3 10.4 14.4	0.4 0.5 0.6 0.5 0.5 0.5 0.5	31.4 30.3 34.6 (1) 32.9 33.9 32.8 34.7 (1)		
NOTE: (1) Does not meet the specification requirements of 29-34%.						

TABLE XV. PHYSICAL PROPERTIES OF BATCH 297

twist. Both 1/8-inch and 3-inch prepreg tapes from each type of filament are shown in figure 6. The high-twist UAC filament produced both 1/8-inch and 3-inch tapes with high twist. The low-twist UAC filament produced tapes with only a trace of a tendency to twist, and the AVCO nontwisted filament produced tapes with no twist. From this direct evidence, it was concluded that filaments which are twisted produce boron/epoxy prepreg tapes that also twist, and untwisted filament produces flat tape with no tendency to twist or curl.

A further manifestation of the tape-twisting problem occurred during attempts to use batch 297 to fabricate panels for the structural element program. (This program is covered in volume II of this report.) Curling was so severe that attempts to use this batch were abandoned. Figures 7 and 8 illustrate the impracticality even of laying up satisfactory panels with these tapes.

Since many of the quality control specimens were out of tolerance with respect to thickness, it was suspected that the resin matrix might be too far advanced. An examination of the physical property data in table XV shows that even though both flow and resin content were within the specification (appendix I), the resultant composites in some cases (e.g., rolls 29 and 37) were too thick. It would appear that flow, as measured in the quality control tests, is possibly not a satisfactory indication of resin advancement, which is a key factor in the ability of the resin to produce proper thickness composites. Narmco used gel time to measure resin advancement, and their specification required 4 ± 0.5 minutes at 300° F, as measured on a Fisher-Johns apparatus. The resin used in prepreg tape batch 297 had a gel time of 4.0 minutes. It was suggested to Narmco that the gel time of chis same resin batch which was then on the boron tape should be measured. Three subsequent measurements of gel time of the resin on roll 23 resulted in reduced times of 3 minutes, 30 seconds; 3 minutes, 40 seconds; and 3 minutes, 36 seconds. It

- -----

Figure 6. Narmco Tape lith Filaments of Various Degrees of Twist (Sheet 2 of 3)

Figure 6. Narmco Tape With Filaments of Various Degrees of Twist (Sheet 3 of 3)

Purch Layup Showing Twisted Tupe (1 setup)

was suggested that possibly 4 ± 0.5 minutes gel time might be too short, and the lower gel times may be the problem area relative to composite thickness.

Roll 23 was selected for the gel time measurements because GD had fabricated three quality control 15-ply unidirectional specimens without successfully producing a composite within the required thickness range (0.0775 to 0.082, including 0.001-inch, 104 glass prepreg balance ply). In addition to the gel time measurements on roll 23, quality control composites were made by NR and Narmco using the identical process used by GD to determine if the heatheatup rate showed any significant difference in finished composite thickness. All the composites fabricated by GD, Narmco, and NR were too thick. These data are shown in table XVI.

Fabricator	Heatup Time	Thickness Range	Bleeder Fabric Remarks
Narmco - laminate No. 1	40-45 min	0.087-0.088	Complete bleeder saturation
Narmco - laminate No. 2	40-45 min	0.039-0.091	Complete bleeder saturation
GD/FW - three laminates	7 min	0.083-0.087	Incomplete bleeder saturation
NR - laminate No. l	23 min	0.087-0.089	Incomplete bleeder saturation
NR - laminate No. 2	23 min	0.085-0.091	Incomplete bleeder saturation

TABLE XVI. BATCH 297 - EFFECT OF HEATUP TIME ON LAMINATE THICKNESS

The incomplete bleeder fabric saturation shown in figure 9 is a still further indication of resin advancement.

In the final evaluation of batch 297, considering its unpredictable curling characteristics and the wide inconsistency in its properties, it was jointly decided to reject the batch in its entirety.

heissakulmunduk turkanalah adukut tadu yushindisidan

Figure 9. Batch 297 Incomplete Bleeder Fabric Saturation

NARMCO 5505 - BATCH 312 (HAMILTON STANDARD FILAMENT)

Batch 312 qualified in every respect, and the mechanical property acceptance test data are presented in table XVII.

	Longitudinal Flexure (ksi)		Transverse Flexure (ksi)		Interlaminar Shear (ksi)	
Roll No.	RT	350°F	RT	350°F	RT	350°F
(*)	259	199	14.1	11.7	15.5	6.0
4	248	241	13.7	12.3	14.8	8.6
5	251	227	13.1	12.1	14.7	8.3
15	247	222	15.3	10.9	14.5	7.2
24	244	206	13.8	11.2	14.6	7.2

TABLE XVII. BATCH 312 - QUALITY CONTROL TEST RESULTS

NARMCO 5505 - BATCH 328 (HAMILTON STANDARD FILAMENT)

Batch 328 qualified in every respect, and the mechanical property acceptance test data are presented in table XVIII.

	Longitudinal Flexure (ksi)		Transverse Flexure (ksi)		Interlaminar Shear (ksi)	
Roll No.	RT	350°F	RT	350°F	RT	350°F
1 5 10 15 20 25	259 259 244 250 235 233	229 222 210 217 212 212 212	13.7 14.5 14.2 14.8 14.3 13.9	12.4 12.3 11.7 11.8 12.1 11.7	14.6 14.6 15.5 15.5 15.1 15.2	8.9 8.9 8.2 8.0 8.4 8.4

TABLE XVIII. BATCH 328 - QUALITY CONTROL TEST RESULTS

and a divisity and a substance and a substance where

NARMCO 5505 - BATCH 334 (HAMILTON STANDARD FILAMENT)

anterior of the second second reaction in the second second second second second second second second second s

Batch 334 qualified in every respect, and the mechanical property acceptance test data are presented in table XIX.

	Longitudinal		Transverse		Interlaminar	
	Flexure (ksi)		Flexure (ksi)		Shear (ksi)	
Roll No.	RT	350°F	RT	350°F	RŢ	350°F
1	252	202	15.2	10.3	15.1	6.5
10	241	202	14.0	11.2	15.1	6.6
14	241	197	14.8	11.2	14.9	6.6

TABLE XIX. BATCH 334 - QUALITY CONTROL TEST RESULTS

NARMCO 5505 - BATCH 348 (HAMILTON STANDARD FILAMENT)

Batch 348 qualified in every respect, and the mechanical property acceptance test data are presented in table XX.

	Longitudinal		Transverse		Interlaminar	
	Flexure (ksi)		Flexure (ksi)		Shear (ksi)	
Roll No.	RT	350°F	RT	350°F	RT	350°F
1	236	202	13.2	12.0	14.8	9.3
5	242	214	13.7	11.9	14.6	10.2

TABLE XX. BATCH 348 - QUALITY CONTROL TEST RESULTS

NARMCO 5505 - BATCH 364 (HAMILTON STANDARD FILAMENT)

Batch 364 qualified in every respect, and the mechanical property acceptance test data are presented in table XXI.

	Longitudinal Flexure (ksi)		Transverse Flexure (ksi)		Interlaminar Shear (ksi)	
Roll No.	RT	350°F	RT	350°F	RT	350°F
364	232	209	13.5	11.8	15.1	9.5

TABLE XXI. BATCH 364 - QUALITY CONTROL TEST RESULTS

CONCLUSIONS

With the exception of Narmco batches 283 and 297, all boron/epoxy prepreg tape received was acceptable and of reasonably consistent high quality. The average mechanical property test results for all the acceptable tape batches are summarized in table XXII.

	Longitudinal		Transverse		Interlaminar	
	Flexure (ksi)		Flexure (ksi)		Shear (ksi)	
Batch No.	RT	350°F	RT	350°F	RT	350°F
288	233	209	16.8	14.5	16.1	8.7
312	248	224	13.5	11.4	14.7	7.8
328	247	217	14.2	12.0	15.1	8.5
334	245	201	14.7	10.9	15.0	6.6
348	239	207	13.5	12.J	14.7	9.8
364	232	209	13.5	11.8	15.1	9.5
Spec rqmt	225	170	13.0	8.0	13.0	5.0

TABLE XXII. SUMMARY OF QUALITY CONTROL DATA

On the basis of the filament strength and composite strength data from batch 283, NR wrote into its materials specification a requirement for 450 ksi as the minimum average filament strength that would be acceptable for use in prepreg tape.

VERIFICATION TEST PROGRAM

A verification test program was undertaken at the beginning of the contract to insure that composite laminate fabrication procedures and testing techniques would provide high-quality specimens and valid data. This program covered a series of tests on two basic orientations, $[0]_C$ and $[0_2/\pm 45]_C$, on which a relatively large quantity of data was available for comparison.

A summary of the verification program indicating specimen type, quantity, and instrumentation is given in figure 10. Sketches of the specimens are shown in figure 11.

Interlaminar shear and flexure testing of thin laminates posed special problems because of the small magnitude of the failing loads and the loading conditions required to make critical the interlaminar shear mode of failure. Previously, such tests have utilized especially thick laminates. However, the need for a capability of testing the widely used thin laminates directly, as represented by these three- to eight-ply specimens, was highly desirable. Thus, a new interlaminar shear loading configuration and specific modifications of conventional flexural test procedures were developed for quality control tests for thin laminates. The possible loading arrangements, resulting moment and shear values, and the shear-to-moment ratio are shown in configurations A through G of figure 12. Use of the conventional interlaminar shear specimen, type B of figure 12, did not provide critical interlaminar shear in any of the laminates to be tested. However, when the loading was moved offcenter to the quarter-span point, the shear load increased while the bending moment decreased, as shown in specimen type A. This resulted in critical interlaminar shear in the six- and eight-ply specimens and near-critical shear in the three- and four-ply specimens. On the basis of this result, special adapter fittings, shown in figure 13, were made for use with the basic test fixture to provide a 0.10 inch offset of the load. Longitudinal flexural tests were conducted with the conventional 2.0-inch span, quarter-point loading configuration (type D of figure 12).

Very low failing loads were predicted for transverse flexure because of the thin laminates and low transverse strengths. Using the same 2.0-inch span, quarter-point loading configuration, predicted failing loads are from 0.53 to 5.7 pounds. For low loads, the 0.40-inch span, centrally loaded (type B) specimen increases the failing load by a factor of 2.50. The 0.40-inch span was therefore used for the three- and four-ply laminates, and the 2.0-inch span, quarter-point loading for the six- and eight-ply laminates.

An additional problem resulting from the very low failing loads was the need to counterbalance the approximately 4-pound movable loading head of the test fixture. This was accomplished by adding a spring between the fixture frame and plunger guide arm and calibrating the system as a function of head position.

LONGITUDINAL TENSILE TEST RESULTS

ment by a multi ver

The unidirectional $[0]_{3T}$ and $[0]_{6T}$ longitudinal tensile specimen failing stresses from the initial tests were considered to be unsatisfactory because of excessive scatter in the results. Consequently, the test technique was modified and new spe imens machined for retest. This change consisted of

	_	المحصيفات بالمستعلات				and the second	
Түре	TEST	LAMINATE ORIENTATION	THICKNESS (PLIES)	SPECIMEN TYPE AND SIZE	NO. OF SPECIMENS	INSTRUMENTATION & STRAIN GAGE REQUIREMENTS	
		[0] _c	3-PLY 6-PLY		4 4	1 SPEC: STRAIN GAGED:	
N	LONG.	[0/±45/0] _{nT}	4-PLY 8-PLY	TR1 /2 X 9 N.	4 4	0,90 DEG 3 SPEC: EXTENSOMETER	
TENS IO		[0] _c	3-PLY 6-PLY		4	1 SPEC: STRAIN GAGED:	
	TRANS	[0/±45/0] _{nT}	4-PLY 8-PLY	IITRI 1 X 9 IN.	<u>4</u> 4	0, 90 DEG <u>3 SPEC</u> : EXTENSOMETER	
		[0]	3-PLY 6-PLY	BEAM ** GD/FW 1 IN. X 22 IN.	2 2	STRAIN GAGE ALL SPECIMENS WITH	
COMPRESSIO (LONG).	N	[0/±45/0] _{nT}	4-PLY 8-PLY	23 LB/CU FT H/C CORE	2 2	Ο & 90 DEG GAGES	
IN-PLANE SHEAR MODULUS (BY CALC FROM TENSILE SPECIMENS)		[+45] _c *	3-PLY 6-PLY	IITRI I X 9 IN.	3	ALL SPECIMENS: GAGE IN LINE WITH LOAD	
INTERLAMIN (LONG.	AR SHEAR)	[0] _c	3-°LY 6-PLY		<u>4</u> 4	NO INSTRUMENTATION	
		[0/±45/0] _{nT}	4-PLY 8-PLY	GD/FW 0.25 X 0.6 IN.	4		
		[0] _c	3-PLY 6-PLY		3		
ш	LONG.	[0/±45/0] _{nT}	4-PLY 8-PLY	GD/FW 1/2 X 4 FR.	3	NU INSTRUMENTALION	
FLEXUR		[0] _c	3-PLY 6-PLY		3	NO INCEDIMENTATION	
	TRANS	[0/±45/0] _{nT}	4-PLY 8-PLY	GU/FW 1/2 X 3 IN.	3		
TOTAL					86		

QUALITY VERIFICATION OF NR/LAD B/EPOXY (5505) FABRICATION AND TEST PROCEDURES

* MADE FROM (0) PANEL

** BONDED USING TWO LAYERS AF130 ADHESIVE PER FACE. CURED AT 45 PSI FOR 1 HOUR AT 350° F.

Figure 10. Quality Verification Test Program for Boron/Epoxy Laminates

1

oraniisanniiliiliitein rumatioonniiniiniiniiniiniiniiteen. Akkiininiitteeto on iniiniiteeto on taataan

esternariageness tast terraren errans

Figure 11. Tensile and Compressive Verification Test Specimens

PRINCIPAL APPLICATION	SPECIMEN AND LOADING	MAX MOMENT INLB	MAX SHEAR LBS	RATIO SHEAR/MOM (1/IN.)
A. SPECIAL INTERLAM. SHEAR	P 	0.075P	0.75P	10.00
B. INTERLAM. SHEAR	P 	0.10P	0.50P	5.00
C. SPECIAL FLEXURE	P/2 1.0 - P/2	0.15P	0.50P	3.33
D. TRANS. FLEXURE	P/2 - 1.0 - P/2	0.25P	0.50P	2.00
E. SPECIAL FLEXURE	P/2 1.0 P/2	0.375P	0.50P	1.33
F. LONG. FLEXURE (0.060 -0.070)	P 2.00	0.50P	0.50P	1.00
G. LONG. FLEXURE (0.081 -0.090)	2.50	0.625P	0.50P	0.80

Figure 12. Summary of Flexural Test Fixture Loading Configurations

adalahak.Siyakeungkaana kerasinadip angun bahadankenindanaina.Sirasinowyaasinetesaas.Aranometa.Arano

Figure 13. Test Fixture Adapter for Offset Interlaminar Shear Test

eliminating the tensile rods between the grips and the machine head and attaching the grips rigidly to the machine heads.

Original results varied from 158 to 184 ksi for the $[0]_{3T}$ specimens and 159 to 177 ksi for the $[0]_{6T}$ specimens. Comparable values for retested specimens are shown in the following tabulation:

[0]_{3T} Longitudinal Failing Stress (ksi)

Original Test	Retest		
184	184		
176	180		
162	177		
158	153		

Average 170 Average 174

[0]_{6T} Longitudinal Failing Stress (ksi)

Original Test	Retest
177	192
174	189
168	187
158	184
Average 169	Average 188

The new technique provided a definite improvement in the strength level and consistency of the six-ply specimens. This improvement resulted from the elimination of secondary bending stresses due to better alignment and centering of the load. However, little improvement in either scatter or average stress was accomplished in the three-ply specimens. This may be characteristic of the thinner laminate.

Comparison of the $[0/\pm 45/0]_{nT}$ four- and eight-ply laminate longitudinal results indicates extremely good consistency in failing stress (97.6 versus 98.6 average values) and longitudinal deformation. A significant difference in transverse strain ϵ_y is noted; the four-ply material was found to have a lower ϵ_y than the eight-ply because of a surface ply effect which is discussed more fully under the transverse tensile test results.

Longitudinal tensile specimen data are summarized in tables XXIII through XXVI and plotted in figures 14 through 19.

Material System: Boron/Epoxy Load Orient: 0° Type Loading: Tension X, Comp , Shear , Interlam Shear									
Type Soal	e Test Specimer k at Temp	:Cou	pon: 1 x F for	<u>9 in. w</u> Hı	<u>ith 1-172</u> r.	in. Tabs Fest Temp	RT	°F	
Batch No. 288									
Property Spec Ide			1	2	3 ⁽²⁾	4 (2)		Ave.	
(Ksi)	F ^{p1}	115	117	112	122		117		
	F.85								
ess	^F .70	F.70							
Stre	F at 2/3 ϵ_1^{u}	123	123	106	121		118		
	F ^{ult}	184	177	153	180		174		
us k10 ⁻⁶	E or G (prim	31.2	35.4	31.2	32.8		32.7		
Modul E,G	E' or G' (secondary)		27.7	25.0	30.3	30.8		28.5	
ı./in.	Proportional Limit	$\frac{\epsilon_1}{\epsilon_2}$.00410	.00400	.00360 000670	.00420 000800		.00395	
n ii		€45	00670	00675	00511	00620		00611	
rai	Ultimate	E2	.00070	.00033	.00311	.00025		.00011	
St		€ 45							
No. of Plies Actual Laminate Thickness .0157 to .0160(1) Spec Laminate Thickness: Max .0162 , Min .0153 , Nominal .0156 Properties based on: Nominal Thickness X ; Actual Thickness									
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density lb/in.3									
Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> Scrim Cloth <u>104</u> Additives Used <u>None</u> Oure Spec <u>NR Spec ST0105LA0007</u>									
Comments: (1) After subtracting 0.001 in. for extra scrim balance ply (2) Strain-gaged									

TABLE XXIII. FILAMENTARY LAMINATE STATIC PROPERTY DATA I = 0 and I = 0

and the second
70. C

Material Typ Typ Soa	System: e Loadin e Test S k at Tem	<u>Boron</u> g. Te pecimen p	<u>1/Epox</u> nsion : _Cou	x x, Co pon, 1 x F for	mp], 9 in. w	Lam Orie Load Ori Shear ith 1-1/2	ent: <u>[0]</u> 61 ient: <u>0°</u>], Inter] in Tabs Test Temp_	lam Shear [] 	
	Bat	ch No.		288					
Property Spec Ident			1	2	3 (2)	4 (2)	Ave.		
(Ksi)	F ^{p1}			123	108	110	117	114	
	F.85								
ess	F.70								
Str	F at $2/3 \epsilon_1^{\text{ult}}$			128	128	130	125	127	
	Fult			189	187	192	183	188	
us c10 ⁻⁶	E or G (primary)			29.8	30.7	28.8	28.8	29.5	
Modul E,G	E' or (secor	E' or G' (secondary)			25.0	27.0	27.9	26.2	
/in.	Proportional		ε 1	.00440	.0037	.0039	.00410	.00403	
in.,	LIMIT	E2	}		-000850	-000850			
rain	Ultimate		€ <u>45</u> € <u>1</u> € <u>7</u>	.00695	.00675	.00706		00683_	
St		€45							
No. of Plies <u>6</u> Spec Laminate Thickness: Max <u>.0324</u> , Min <u>.0306</u> , Nominal <u>.0312</u> Properties based on: Nominal Thickness X ; Actual Thickness									
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density 1b/in.3									
Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> Scrim Cloth <u>104</u> Additives Used <u>None</u> Cure Spec <u>NR Spec ST0105LA0007</u>									
Comments	(1)	After s Strain-	subtra gaged	cting 0.	001 in.	for each	scrim balar	ce ply	

TABLE XXIV. FILAMENTARY LAMINATE STATIC PROPERTY DATA

40

Material System: Boron/Epoxy Load Orient: 0° Type Loading: Tension X, Comp , Shear J, Interlam Shear J Type Test Specimen: Coupon 1 x 9 in. with 1-1/2 in. loading tabs									
Soal	(at Temp	°	F for	H:	r.	Test Temp.	RT	°F	
Property	Batch No. Spec Ident	288	-					Ave.	
	ppl	1	52.0	5	4 (2)		50 F		
Stress (Ksi)	F.85	50.0	52.0	55.0	47.0		50.5		
	F.70								
	F at 2/3 ϵ_1^{ul}	67.5	66.	68.5	60.7		65.7		
	Fult	98.4	95.5	99.6	96.7		97.5		
Modulus E,Gx10 ⁻⁶	E or G (prima	16.4	16.6	16.5	15.0		16.1		
	E' or G' (secondary)	14.0			13.0		13.5		
'n.	Proportional Limit	ϵ_1	.00310	.00325	.00330	.00320		.00321	
in./		€2 €45				. 00195		-00195	
rain	Ultimate	ε <u>1</u> ε ₂	.00640	.00625	.00655	.00625		.00635	
St		€ 45							
No. of Plies <u>4</u> Actual Laminate Thickness <u>0215</u> D Spec Laminate Thickness: Max <u>0216</u> , Min <u>0204</u> , Nominal <u>0208</u> Properties based on: Nominal Thickness X; Actual Thickness									
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density lb/in.3									
Laminate: Tape or Matrix Desig Manuf Manuf									
Scrim Cloth Additives Used Cure Spec <u>NR Spec ST0105LA0007</u>									
Comments: (1) After subtracting 0.001 in. for extra scrim balance ply2 Strain-gaged									
		gageu	·			<u>, </u>		<u></u>	

TABLE XXV. FILAMENTARY LAMINATE STATIC PROPERTY DATA $[0/+45/0]_{m}$

arushanye isa sakasa ku sanarahanan sanagan intera. Prove sana kanarahanan manananan nanarahan na ang manarahan -

ethesterkhantitista, dah Zadad bia Distrik

Material Type	System: <u>Bord</u> e Loading: Ter	on/Epo nsion	Lam Orient: 21 Load Orient: Shear, Interlam Shear th 1 1/2 in loading tab.						
Soal	k at Temp	0	F for	<u> </u>	r.	Test Temp	<u></u> °F		
	Batch No.			288					
Property	Spec Ident		1	2	3	4 (2)	Ave.		
(Ksi)	Fbl	62.0	67.0	66.0	72.0	65.7			
	F.85	85.5				85.5			
ess	F.70	F.70							
Str	F at 2/3 ϵ_1^{ul}	67.5	66.	74.0	73.5	70.2			
	F ^{ult}	88.5	101.0	106.0	104.1	99.8			
us :10 ⁻⁶	E or G (prima	18.7	15.0	16.5	16.1	16.5			
Modul E,G	E' or G' (secondary)		14.7	13.0		13.8			
/in.	Propertional Limit	ϵ_1	.00350	.00445	.00400	.00450	.00413		
in.,		EAE				00320	00320		
in	Ultimate	€ 1	.00580	.00670	.00700	.00693	.00661		
Stra		€ <u>2</u> € 45				<u>00510</u>	00510		
No. of Plies <u>8</u> Spec Laminate Thickness: Max <u>.0432</u> , Min <u>.0408</u> , Nominal <u>.0416</u> Properties based on: Nominal Thickness X ; Actual Thickness									
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density 1b/in.3									
Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> Scrim Cloth <u>Additives Used</u>									
cure spe		VIVOII							
Comments	Comments: (1) After subtracting 0.001 in. for extra scrim balance ply (2) Strain-gaged								

TABLE XXVI. FILAMENTARY LAMINATE STATIC PROPERTY DATA $\begin{bmatrix} 0/\pm 45/0 \end{bmatrix}_{2T}$

42

Figure 14. Longitudinal Tension - $[0]_{3T}$ Laminate

Figure 15. Longitudinal Tension - [0]_{6T} Laminate

10

ા માર્ગ પ્રયાણ પ્રાપ્ત પ્રાપ્ત સામાં પ્રત્યેલ આ ગામ માત્ર સાથે પ્રાપ્ત સાથે પ્રાપ્ત સાથે જ આ ગામ આ

THE ADDRESS OF THE PROPERTY OF

State -

13-13-12-51

-1145145

Figure 16. Poisson's Ratio ν_{xy} for $[0]_C$ Laminates

:

Figure 17. Longitudinal Tension - $[0/\pm 45/0]_T$ Laminate

•

this and the second s

Figure 18. Longitudinal Tension [0/±45/0]_{2T} Laminate

Figure 19. Poisson's Ratio v_{xy} for $[0_2/\pm 45]_C$ Laminates

TRANSVERSE TENSILE TEST RESULTS

Transverse tensile specimen data are summarized in tables XXVII through XXX and plotted in figures 20 through 24.

A rather significant difference in failure strength exists between the three-ply $[0]_{3T}$ and six-ply $[0]_{6T}$ unidirectional specimens, with the six-ply being the stronger (8.69 versus 5.87 ksi, based on average values). However, the lowest value of the six-ply and the highest value of the three-ply specimens are nearly equal (7.45 versus 6.98 ksi). This could result from either the greater sensitivity of the thinner laminate to internal defects or to testing techniques.

A smaller difference exists in the primary modulus between the three-ply and six-ply results (2.84 versus 2.58 Msi, respectively). This may be due to the balance ply of glass scrim cloth, which would contribute more significantly to the $[0]_{3T}$ (four layers of scrim) than to the $[0]_{6T}$ (seven layers of scrim) laminate.

Transverse tensile strength of the four-ply $[0/\pm 45/0]_T$ laminate was unexpectedly higher than that of the corresponding eight-ply $[0/\pm 45/0]_{2T}$ laminate by a factor of approximately two (29.75 to 16.59 ksi average values). Consonant with the strength differential, the failure strains of the four-ply were over twice the values of the eight-ply laminate. In addition, the primary modulus of the eight-ply was higher than the four-ply laminate (4.31 to 4.00 Msi average), and the four-ply specimens evidenced a much greater degree of ductility, especially at the higher load levels. In effect, these two thicknesses of the same basic $[0/\pm 45/0]_{nT}$ laminate family behaved as though they were from different layup orientations.

A probable explanation of this difference is indicated in figure 25, which shows the surface strains for the plies at 90 degrees to the loading. The initial failure, for all three cases shown, is in the matrix material between the filaments of the plies at 90 degrees to the applied load. When these plies are on the outside, the matrix material between filaments can elongate without appreci. ble biaxial stress because of its proximity to the free surface of the laminate. However, when the 0-degree plies are in the interior of the laminate, this surface relief is no longer available, and a relatively large biaxial stress (in the short transverse direction) is developed.

On the basis of this consideration, a significant reduction in strength would be expected in the four-ply material if the plies at 90 degrees to the loading were placed in the center as shown in the $[+45/0_2/-45]_T$ laminate of figure 25. Thus, the strength of this configuration of four-ply material should be close to that of the eight-ply. To evaluate this, three $[+45/0_2/-45]_T$ specimens were made and tested in transverse tension. (A moderate

Material Type Type Soal	Lam Orient: [0] 3T Lam Orient: 90° Type Loading: Tension X, Comp , Shear , Interlam Shear Type Test Specimen: Coupon, 1 x 9 in. with 1-1/2 in. tabs Soak at Temp - °F for Hr. Test Temp											
Batch No.288PropertySpec Ident1234 (2)Ave.												
	F ^{pl}		3.15	3.3	3.25	3.1		3.20				
(Ksi)	F.85					6.00		6.00				
sss	F.70											
Stre	F at 2/3 ϵ_1^{ul}	t	4.65	3.87	4.30	5.65		4.61				
	F ^{ult}		5.75	4.85	5.90	6.98		5.87				
us 10 ⁻⁶	E or G (primary)		2.95	2.80	2.75	2.87		2.84				
Modulı E,Gx	E' or G' (secondary)		1.94		2.50	1.60		2.01				
in.	Proportional	ε1	.00107	.00115	.0012	.00107		.00112				
in./	Limit	€ <u>2</u>			ļ	.000010		.00001				
Strain	Ultimate	ε ₁ ε ₂ ε ₄₅	.00225	.00185	.00240	.00310 .000015		.00240 .000015				
No. of H Spec Lan Properti	Plies <u>3</u> minate Thickness ies based on:	s: M Nomi	ax <u>.0162</u> nal Thic	Actual La , Min kness X	aminate T , ; Act	hickness Nominal ual Thickn	.0160 to .0156 n ess	<u>.01</u> 55(1)				
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density lb/in. ³												
Laminate: Tape or Matrix Desig 5505 Manuf Narmco Scrim Cloth 104 Additives Used None Cure Spec NR Spec ST0105LA0007												
Comments	s: <u>()</u> After (2) Strain	subtr n-gage	eacting 0	.001 in.	for ext	ra scrim b	alance p	ly				

TABLE XXVII. FILAMENTARY LAMINATE STATIC PROPERTY DATA

Materia	I Sy	stem: <u>Boror</u>	FILA	MENTARY	LAMINATE	STATIC P. Lam Orio Load Or	ROPERTY DATA ent: <u>[0]_{6T}</u> ient: 90°	
Tyr Tyr Soa	pe I pe T ak a	oading: Te est Specimer t Temp	ension n: <u>Cou</u>	$rac{1}{2}$, Control $rac{1}{$	omp [] , <u>(9 in. w</u> H	Shear ith 1-17 hr.], Interl 2 in. tabs Test Temp_	am Shear
		Batch No.		·····		288		
Property Spec Ident				1	2	3	4(2)	Ave.
	F	pl		4.8	4.2	4.7	4.2	4.4
(Ksi)	F	.85			7.45		6.90	7.17
ess	F	.70						
Str	F	at 2/3 ϵ_1^{ul}	t	7.75	6.05	7.00	6.92	4.01
	F	ult		9.85	7.45	8.70	8.75	8.69
.us x10 ⁻⁶	E	or G (prima	ıry)	2.30	2.75	2.60	2.67	2.58
Modu] E,G	E (E' or G' (secondary)		1.70	1.80	1.90	1.80	1.80
/in.	P L	roportional imit	ϵ_1	.00210	.00160	.00185	.00170	.00181
in.	-		E2 EAF			 	.000025	.000025
ain	11	ltimato	ε ₁	.00487	.00325	.00380	.00400	00398
Str	0.	LEIMALE	€ <u>7</u>				.000040	
No. of P Spec Lam Properti	lie ina es l	s <u>6</u> te Thickness pased on:	· 43 · Ma	A ax <u>.0324</u> nal Thick	L , Min mess X	minate Tr .0306, ; Actu	Lickness <u>032</u> Nominal <u>031</u> Pal Thicknes	$\frac{2 \text{ to } .0315(1)}{2}$ s
Filament Fil Vol	Co Fra	unt/ ct0/	in. Res	Void Co sin Wt Fr	ontent ract _0,	% P1 Lam	ly Thick Density	in. 1b/in. ³
Laminate Cure Spe	: : 	Tape or Matr Scrim Cloth • NR Spec S	ix Des	si <u>g 5505</u> 104 LAO007	5	Manu Additive	uf <u>Narmco</u> es Used <u>Non</u>	e
Comments	•	 After (2) Strain 	subtra -gaged	acting 0. 1	<u>001 in.</u>	for extra	a scrim bala	nce ply

Material Typ Typ Soa	Aaterial System: Boron/Epoxy Lam Orient: 00° Type Loading: Tension X, Comp , Shear , Interlam Shear Interlam Shear Type Test Specimen: Coupon, 1 x 9 in. with 1-1/2 in. tabs Soak at Temp °F for Hr. Test Temp °F											
	Batch No.			28	38							
Property	Spec Ident		1	2	3	4 (2)	Ave.					
	F ^{pl}		11.4	11.0	9.2	10.0	16.4					
(Ksi)	F.85					25.10	25.10					
ess	F.70											
Str	F at 2/3 ϵ_1^{u}	lt	22.0	27.0	23.0	25.6	24.4					
•	F ^{ult}		26.6	32.8	28.8	30.8	29.7					
us c10 ⁻⁶	E or G (prim	ary)	4.40	3.60	4.20	3.80	4.00					
Modul E,G	E' or G' (secondary)				3.00		3.00					
'n.	Proportional Limit	ϵ_1	.00248	.00270	.00215	.00235	.00242					
[n./		E2				:000475	:000475					
L L	<u> </u>	¢45	00680	00080	00760	00800	00929					
rai	Ultimate	E ₂	1.00000	1.00300	.00700	.00030	500157					
St		€ 45										
No. of F Spec Lam Properti	Plies <u>4</u> minate Thicknes les based on:	s: M Nomi:	ax <u>.0216</u> nal Thic	Actual La _, Min kness χ	minate T <u>.0204</u> , ; Act	hickness. <u>021</u> Nominal <u>.02</u> ual Thicknes	1 <u>5 to .021</u> 0() 208 is					
Filament Fil Vol	Fract	/in. Re	Void Co sin Wt F	ontent ract <u>0,</u>	% P Lam	ly Thick Density	in. 1b/in. ³					
Laminate Cure Spe	Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> Scrim Cloth <u>Additives Used</u> Cure Spec <u>NR Spec ST0105LA0007</u>											
Comments: (1) After subtracting 0.001 in, for extra scrim balance ply (2) Strain-gaged												
		050										

TABLE XXIX. FILAMENTARY LAMINATE STATIC PROPERTY DATA

52

CHANNEL HIS

1444

salasing a nancessa san anganangan sa

<u>A BERGERANGEN STELLA IZ KARAN</u>A AGA MENGA MENG

Material Type Type Soal	System: <u>Boron/</u> e Loading: Te e Test Specimen k at Temp	Epoxy nsion : Cou	X, Co pon, 1 x F for	mp[], 9 in. wi	Lam Orien Load Ori Shear th 1-1/2 r.	nt:0 ent:90 , Inte in. tabs Test Temp	+45/0] _{2T})° rlam Shea	r 🗍			
Drononto	Property Spec Ident 288										
Property	Spec Ident		2	3	4 (2)	1		Ave.			
	F ^{p1}	<u> </u>	10.5	8.1	10.0	10.2		9.7			
(Ksi)	F.85										
ess	F.70										
Str	F at 2/3 $\epsilon_1^{ ext{ ul}}$	t	12.48	13.67	13.90	12.90		13.24			
	F ^{ult}		16.25	16.85	16.85	16.40		16.57			
ې د E or G (primar			4.00	4.80	4.50	3.95		4.31			
Modul E,G	E' or G' (secondary)		3.70	4.10	4.00	3.70		3.87			
'n.	Proportional	ϵ_1	.00253	.00166	.00200	.00250		.00217			
). 1	Limit	E2			:000430			7000430			
ы Ч		€45	0.0110	00705							
aiı	Ultimate	[<u>e</u>]	.00410	.00397	.00395	.00436	<u>↓</u>	.00408			
Str		E 45		<u> </u>	.000700	 		.000/00_			
No. of H Spec Lan Properti	Plies <u>8</u> minate Thickness les based on:	s: M Nomi	ax <u>.0432</u> nal Thic	Actual La , Min kness X	minate TI <u>.0408</u> , ; Actu	nickness Nominal ual Thick	0423 tc . .0416 ness	0415①			
Filament Fil Vol	Fract 0.	/in. Re	Void C sin Wt F	ontent ract0.	% P. Lam	ly Thick. Density_	1b/	in. in. ³			
Laminate: Tape or Matrix Desig5505 Manuf Scrim Cloth Additives Used Cure Spec NR Spec ST0105LA00^7											
Comments: (1) After subtracting 0.001 in. for extra scrim balance ply											
	(2) Strain-gaged										

TABLE XXX. FILAMENTARY LAMINATE STATIC PROPERTY DATA

11/2011

53

-

Figure 20. Transverse Tension - [0]_{3T} Laminate

.

ners were nigen in werten were sorderen werten die en terste ster werte die ster die ster die ster die ster die

Figure 21. Transverse Tension - $[0]_{6T}$ Laminate

Figure 22. Transverse Tension - $[0/\pm 45/0]_T$ Laminate

A TABAH ANA BABARAMANI ALASIMI AN

And the second of a second second

:

:

÷

Figure 23. Transverse Tension - [0/+45/0]_{2T} Laminate

Figure 24. Poisson's Ratio v_{yx} for $[0]_C$ and $[0_2/\pm45]_C$ Laminates

58

amount of warpage was experienced, as expected, but did not affect the tests.) Results are given in table XXXII and figure 26. A comparison of strengths and failing elongations is given in table XXXI.

Laminate	Plies	Failing Stress Ftu (ksi)	Failing Strain €tu (in./in.)
[0/±45/0] _T	4	29.7	0.00828
[0/±45/0] _{2T}	8	16.5	0.00408
[+45/0 ₂ /-45] _T	4	12.5	0.00270

TABLE XXXI. FAILING STRENGTH AND STRAINS COMPARISON FOR $[0_2/\pm 45]_C$ LAMINATES

It is noted that the failing stress of the special four-ply laminate with the interior plies transverse to the loading was indeed reduced, even below that of the eight-ply laminate. This is felt to confirm the existence of the surface relief for the $[0/\pm 45/0]_T$. In addition, it indicates the presence of a ply sequence sensitivity even to membrane-type loading. As a result of this sensitivity, the four-ply laminate $[0/\pm 45/0]_T$ was considered unsuitable for use in the element test program.

LONGITUDINAL COMPRESSION BEAM TEST RESULTS

A modified beam bending specimen for use in determining laminate compression allowables was designed to avoid the cost and difficulties reported to exist from use of the bonded metal loading blocks (reference 11). This configuration, shown in figure 27, depends on a resin-filled core section for support of the loading pin and load distribution into the core. A thin layer of spacer material separates the resin filler from the compression test laminate face to avoid excessive stiffening and flattening in this area. Maximum bearing stress (estimated for a six-ply unidirectional compression face) is a relatively low value of about 3,000 psi, well within the capability of the resin filler material.

A single prototype beam specimen was fabricated and tested to evaluate the practicality of this design. Some "air bubble" voids were present in the core-filled zone as shown in figure 28, but these were considered acceptable and did not affect the test.

The face sheet chosen for the verification test was the $[0]_{6T}$ laminate, since this would generate the highest pin loadings and core shear loadings. Specimen failure occurred at a laminate stress level of 510,000 psi (filament stress of 1,015,000 psi). This result is considerably higher than those

htintarenan dalarada katatatais dalah kalandahan katatatan kataka haraka daratatan dalaratatan dalaratatatatat

Material System: Boron/Epoxy Lam Orient: $\frac{[+45/0}{2}/-45]_T$ Type Loading: Tension [x], Comp], Shear], Interlam Shear] Type Test Specimen: Coupon, 1 x 9 in. with 1-1/2 in. loading tabs Soak at Temp°F for Hr. Test Temp RT_°F											
Description		Batch No.		f	28	38					
Ave											
	F	p1		6.7	5.9	7.0			6.6		
(Ksi)	F	.85									
ŝ	F	.70									
Stre	F	at 2/3 ϵ_1^{ul}	t	9.0	7.9	8.2			8.3		
	F	ult		13.7	11.7	12.1			12.5		
y E or G (pr			ry)	4.85	4.90	4.50			4.75		
Modul E,G	E (E' or G' (secondary)		4.30	4.40	4.10			4.26		
in.	P	roportional	ϵ_1	.00137	.00120	.00152			.00136		
/ · u		Limit	€2			:000325			000325		
i L			€45		L						
rai	υ	ltimate	ε <u>1</u>	.00290	.00250	.00270	 	 	00270		
Sti			€ <u>4</u> 5	<u> </u>	+	.000500	+	+	000200		
No. of P Spec Lam Properti	lie ina es	s <u>4</u> te Thickness based on:	: M Nomin	ax <u>.0210</u> nal Thic	Actual La <u>5</u> , Min kness X	minate Tr .0204 , ; Actu	nickness Nominal Mal Thick	.0215 .0208 ness			
Filament Fil Vol	Co Fra	unt/ ct0/	in. Re	Void Co sin Wt F	ontent ract_ <u>0</u> ,	% P1 Lam	ly Thick. Density_	1b,	in. /in.3		
Laminate: Tape or Matrix Desig Manuf Narmco Scrim Cloth Additives Used Cure SpecNR Spec ST0105LA0007											
Comments	Cure Spec NR Spec ST0105LA0007 Comments:(1) After subtracting 0.001 in. for extra scrim balance ply (2) Strain-gaged										

TABLE XXXII. FILAMENTARY LAMINATE STATIC PROPERTY DATA

Figure 26. Transverse lension $-[+45/0_2/-45]_T$ Laminate

ŧ

halashdarahuttan. 3.

Here and the second

Figure 28. Failed Compression Beam Test Specimen

1.1

ten automumentation superior superior data in the part of the superior of the

66

The application of the particular of the particu

,

reported in reference 1. Calculations of laminate stress and stresses in other elements are shown in figure 29.

Beam failure did not originate in the composite face but rather is considered to have started with a core-to-titanium face bond shear failure near one of the end supports. After failure, the composite face remained undamaged except for a small flexural fracture at one edge caused by laminate bending from a secondary peeling action. This is illustrated in figure 28.

Since the design of the beam specimen was considered to be satisfactory, the remaining specimens were fabricated and tested in the same manner. A summary of the tailing stress, modulus, and method of failure is shown in table XXXIII.

Laminate	Specimen	Ultimate Stress (Compression) (ksi)	Modulus (Msi)	Failure Location
[0] _{3T}	1 2	415 551	31.46	Laminate Laminate
[0] _{6T}	1 2	510 523	29.36	Bond Laminate
[1/±45/0]T	1	330 338	18.43	Laminate Laminate
[0/±45/0] _{2T}	1 2	342 352	14.28	Laminate Laminate

TABLE XXXIII. LONGITUDINAL COMPRESSION BEAM - ULTIMATE STRESS AND MODULUS SUMMARY

Results of the tests were remarkably consistent between laminates of the same thickness and also between the two thicknesses of the same type laminate. The only exception was specimen 1 of the [0]_{3T} configuration, which fell significantly below all the other unidirectional failing stresses. During the test of this specimen, it was noticed that a larger than ordinary number of edge-located filaments debonded from the laminate, forming independent splinters. The failure of this specimen evidenced somewhat more general splintering than the other unidirectional specimen failures. A possible reason for this may be the variability of the resin fillet formed by the excess core-to-face adhesive along the edge of the laminate. Where present, this fillet was a strong restraint against the lateral buckling of the longitudinal edge filaments.

Another item of interest is the difference in modulus between the thin and thick laminates of the same orientation. This is attributed to the lateral load induced by (the Poisson's ratio effect of) the core. On the thinner gages, the lateral load would have a greater influence, resulting in an apparent increase in longitudinal modulus. This is most apparent in the $[0_2/\pm 45]_C$ laminates.

Of major interest is the very high compressive strengths of laminates when fully stabilized by the heavy core. Failures were typical of ultimate material compressive strength, rather than the stability-induced failure found by edgewise compressive tests on lighter core. The data in table XXXIV illustrate this difference.

Laminate	Core	Type Specimen	F <mark>c</mark> u (ksi)	Mode of Failure
[0] _{6T}	23 1b/ft ³	Beam	517	Ult comp
[0] _{6T}	4.5 lb/ft ³	Edge comp	128	Face wrinkle
[0/±45/0] _{2T}	23 lb/ft ³	Beam	348	Ult comp
[0/±45/0] _{2T}	4.5 1b/ft ³	Edge comp	152	Face wrinkle

TABLE XXXIV. LONGITUDINAL COMPRESSION BEAM - FAILURE STRESS VERSUS CORE DENSITY

This indicates the importance of providing adequate laminate stabilization if the higher compressive strengths are to be achieved.

Data sheets and stress-strain plots (based on strain gage data) from the compression beam specimens are presented in tables XXXV through XXXVIII and in figures 30 through 33.

Failure modes and locations are depicted in the photographs, figure 28 and figures 34 through 37. Failures in all cases initiated in the composite laminate, except for the prototype $[0]_{6T}$ specimens, which experienced initial failure in the core-to-titanium face bond.

SHEAR MODULUS TEST RESULTS

Tensile specimens to provide data for calculating the in-plane shear modulus of unidirectional material were cut at 45 degrees from the $[0]_{3T}$ and $[0]_{6T}$ panels. The results of these specimens are shown in table XXXIX and figure 38 for the three-ply material and in table XL and figure 39 for the six-ply material. These results should be used with caution, since the validity of this test method has been shown to be questionable.

Material Type Type Soal	System: <u>Boron</u> e Loading: Ter e Test Specimen: c at Temp	/Epoxy ision [°	, Com lwich Beau F for	φ <u>x</u> , <u>n, I in.</u> Ηι	Lam Orien Load Orien Shear wide x	nt: [0]31 ent:(.55 in. c Test Temp	rlam She leep x 2 	ar 2 in. long °F		
Property	Batch No.			288		1	r	Δνο		
rioperty	rpl		1 (1)					100		
Ksi)	F.85									
) ss:	F.70									
Stre	F at $2/3 \epsilon_1^{u1}$	t				1				
	F ^{ult}		415	551				485		
عد 10 ⁻⁶	E or G (prima	.ry)	31.4					31.4		
Modulı E,Gx	E' or G' (secondary)									
in./in.	Proportional Limit	ε ₁ ε ₂ ε ₄₅	00430 +.00220					00430 +.00220		
Strain	Ultimate	ε <u>1</u> ε ₂ ε ₄₅					<u> </u>			
No. of I Spec Lar Propert:	o \$\epsilon 45 No. of Plies Actual Laminate Thickness Spec Laminate Thickness: Max _0162 , Min _0153 , Nominal _0156 Demonstriag based on: Nominal Thickness X : Actual Thickness									
Filamen Fil Vol	t Count Fract _0	/in. Re	Void C esin Wt F	ontent_ ract _0.	%] Lar	Ply Thick n Density	•1	in. b/in.3		
Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> Scrim Cloth <u>104</u> Additives Used <u>None</u>										
Comment	s:(1) Stra	in-gag	ged							

TABLE XXXV. FILAMENTARY LAMINATE STATIC PROPERTY DATA

St. 161.12

the second with the second
	TABLE XXXVI.	FILAM	ENTARY LA	MINATE S	TATIC PRO	DPERTY DAT	A
M-4	0	/**			Lam Orie	$nt: \underbrace{[0]}_{\mathbf{i}}$	6T
Material	System: <u>Bo</u>	pron/E	poxy		Load Ori	ent: <u>'0°</u>	
Туре	e Loading: Te	nsion	L, Co	mp[X],	Shear 🗌	, Inter	rlam Shear 🔲
Iype	e Test Specimen	: <u>San</u>	awich Bea	<u>m, 1 in.</u>	wide x	1.55 in. d	<u>eep x 22 in. lo</u> n
	k at lemp	······································	F for	H:	r.	Test Temp.	<u></u> °F
	Batch No.		288				
Property	Spec Ident		1 (1)	2			Ave.
	Fbl		410				410
(Ksi)	F.85						
ess.	F.70						
Str	F at 2/3 ϵ_1^{u1}	.t	340				340
	Fult		510	523			516
us k10 ⁻⁶	E or G (primary)		29.3				29.3
Modul E,G	E' or G' (secondary)		27.6				27.6
in.	Proportional	61	01220				01220
	Limit	ϵ_2	+.00500	<u> </u>	<u> </u>		+ 00500
in		EA5	1.00500	1	<u> </u>	<u> </u>	F.00500
ii		ϵ_1	01560	+	+	╋╍╍╍╍┥	
ra	Ultimate	E2	1	1	<u>}</u>		
St		€ 45	{	1	1	1 1	
No. of P Spec Lam Properti	lies <u>6</u> inate Thickness es based on:	s: M Nomi	ax <u>.0324</u> nal Thicl	Actual La _, Min . kness X	minate T <u>.0306</u> , ; Act	hickness Nominal ual Thickn	0 <u>312</u> ess
Filament Fil Vol	Fract 0	/in. Re	Void ũ sin Wt Fi	ontent ract	% P Lam	ly Thick Density	in. 1b/in. ³
Laminate	: Tape or Mat	rix De	sig	5505	Man	uf <u>Narmc</u>	
	Scrim Cloth		104		Additiv	es Used	None
Cure Spe	ecNR Spec S	0105L	A0007 🔔				
Comments	;: <u>(1)</u> Stra	in-gag	ed				

Material Type Type Soa	System: <u>Boro</u> e Loading: Te e Test Specimer . at Temp <u>-</u>	n/Epox nsion : <u>Sand</u>	y D , Con wich Beam 'F for	mp [x], 1, 1 in. H	Lam Orie Load Ori Shear wide x 1 dr.	ent:0 ent:0 , Into .55 in. d Test Tem	erlam She leep x 22	ar [] in. long _°F
	Batch No.			288				
Property	Spec Ident		1 (1)	2	1	T T	1	Ave.
	F ^{p1}	234					234	
Ksi)	F.85							
ess (F.70							
Str	F at 2/3 ϵ_1^{u}	lt						
	Fult		330	338				334
us :10 ⁻⁶	E or G (prim	18.4					18.4	
Moduli E , Gx	E' or G' (secondary)	E' or G' (secondary)						16.2
/in.	Proportional	ε 1	01230					01230
in.		ε ₂ ε ₄₅	+.01100					+.01100
ain	Ultimate	E1						
Str		¢ 2 € 45				+		
No. of F Spec Lam Properti	Plies <u>4</u> minate Thicknes les based on:	s: M Nomi	/ lax <u>.0216</u> nal Thick	Actual L _, Min Eness X	aminate T , ; Act	hickness Nominal. ual Thick	.0208 mess	
Filament Fil Vol	: Count Fract	/in. Re	Void Co sin Wt Fi	ontent ract	% P Lam	ly Thick. Density	1b	in. /in.3
Laminate Cure Spe	e: Tape or Mat Scrim Cloth ec <u>NR Spec STO</u>	rix De 105LA0	esig	5505	Man Additiv	uf <u>Nan</u> res Used _	mco	
Comments	;: <u>(1)</u> Strain	-gaged	1					

TABLE XXXVII. FILAMENTARY LAMINATE STATIC PROPERTY DATA $[0/\pm 45/0]$.

Material Type Type Soal	System: <u>Bo</u> e Loading: e Test Speci k at Temp	ron/Epoxy Tension men: Sand	, Con wich Bear F for	$\frac{mp[X]}{n, 1 in.}$	Lam Orie Load Ori Shear wide x I r.	ient:], Inte .55 in. d	$\frac{1}{0^{\circ}}$	ar [] in. long °F			
D	Batch N	io		288							
Property	Spec Id	lent	$1^{(1)}$	2				Ave.			
	F ^{pl}		200					200			
(Ksi)	F.85										
ess	F.70										
Str	F at 2/3 e	ult 1									
	Fult		342	352				347			
us k10-6	E or G (pr	rimary)	14.2					14.2			
Modul E,G	E' or G' (secondary	E' or G' (secondary)						13.9			
in./in.	. Proportion Limit	$\begin{array}{c c} \text{hal} \epsilon_1 \\ \hline \epsilon_2 \\ \hline \epsilon_{AE} \end{array}$	00950 +.00800					00950 +.00800			
Strain	Ultimate	ϵ_1 ϵ_2 ϵ_4				+					
No. of F Spec Lam Properti	Plies <u>8</u> ninate Thickn es based on	ness: M : Nomi	1 ax <u>.0432</u> nal Thick	L Latual La , Min Kness x	1 minate T 0408 , ; Act	hichness Nominal ual Thick	.0416 ness				
Filament Fil Vol	Fract <u>Q.</u>	/in. Re	Void Co sin Wt Fi	ontent act0	%P Lam	ly Thick. Density_	1b,	in. /in.3			
Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> Scrim Cloth <u>Additives Used</u> Cure Spec <u>NR Spec ST0105LA0007</u>											
Comments	Comments: (1) Strain-gaged										

TABLE XXXVIII. FILAMENTARY LAMINATE STATIC PROPERTY DATA $1 \text{ cm} \text{ Origont} = [0/\pm 45/0]_{2T}$

(Hile)

Figure 30. Compression Stress-Strain Curve for $[0]_{3T}$ Laminate

nguyeran Marda Martanan Maharanan untur kataran dara tara di kataran dara dara katarakan kataran kataran katar

andarninizadi dani da karangan ngangangan na karangan ngangan ngangan ngangan ngangan ngangangan ngangangan ng

Figure 31. Longitudinal Compression - $[0]_{6T}$ Laminate

Figure 32. Compression Stress-Strain Curve for $[0/\pm 45/0]_T$ Laminate

Strathter Frank Although Add

uli mandmusiada

Figure 33. Compression Stress-Strain Curve for $[0/\pm 45/0]_{2T}$ Laminate

Figure 34. Beam Compression Test Specimens, [0]₃₁ ...minate

The THEFT

tan di biring terrestan den bereiten den bereiten den bereiten bereiten bereiten bereiten bereiten bereiten ber

The rest is the second second second

anadressons vid loris bis diga and

webbiliter a behavior

1941 A280

Figure 35. Beam Compression Test Specimen [0]_{6T} Laminate

Mateiial	Sys	stem: Borg	on/Epo:	Load Orient:					
Type Loading: Tension X, Comp , Shear , Interlam Shear Type Test Specimen Coupon, 1 x 9 in. with 1-1/2 in. tabs									
Soa	k a	t Temp	0	F for	H:	r.	Test Temp	RT	_°F
Batch No. 288									
Property Spec Ident			1(1)	2(1)	₃ (1)			Ave.	
Stress (Ksi)	F ^{p1}			5.3	5.0	5.3			5.2
	F.85			9.0	9.4	8.1			8.8
	^F .70			-	-	11.0			11.0
	F at 2/3 ϵ_1^{ult}			8.95	9.33	9.35			9.21
	F ^{ult}			11.35	11.45	11.51			11.44
Modulus E,Gx10 ⁻⁶	E or G (primary)			2.47	2.60	2.51			2.53
	E (' or G' secondary)	-	-	-			-	
in./in.	Proportional Limit		ε 1	.00230	.00200	.00230			.00220
			E2	-	-		+		-
ui.		1	€ <u>1</u>	.00670	.00686	.00754			.00703
Stra	Ultimate		€ <u>2</u>	-		-			
No. of Plies Actual Laminate Thickness016* Spec Laminate Thickness: Max0162_, Min0153, Nominal0156 Properties based on: Nominal ThicknessX; Actual Thickness									
Filament Fil Vol	Co Fra	ount/	'in. Res	Void Co sin Wt Fi	ontent ract	% P Lam	ly Thick. Density_	1b,	in. /in.3
Laminate: Tape or Matrix Desig <u>5505</u> Manuf <u>Narmco</u> * Scrim Cloth <u>Balance Ply</u> Subtracted Additives Used Cure Spec <u>NR Spec STC105LA0007</u>									
Comments:(1) Strain-gaged									

TABLE XXXIX. FILAMENTARY LAMINATE STATIC PROPERTY DATA Lan Orient: ^[0] 3T

80

1000.4

THE POST

1461 (Sel 14.2 m

Figure 38. 45° Off-Axis Tension $[0]_{3T}$ Laminate

Material System: Boron/Epoxy Lam Orient: 6T Material System: Boron/Epoxy Load Orient: 45° Type Loading: Tension X, Comp , Shear , Interlam Shear , Type Test Specimen: Interlam Shear , Load Orient:									
Soa	k at Temp	°	F for	<u>-</u> Hı	ſ. '	Test Temp	RT	°F	
Property	Batch No.	88	(2)	- (1)					
Froperty Spec Ident			1 (1)	2 (2)	3 (1)			Ave.	
Stress (Ksi)	F ^{p1}	5.1	5.1	5.1			5.1		
	F.85	8.60	8.85	9.20			8.88		
	F.70	10.35	10.6	10.90			10.63		
	F at 2/3 ϵ_1^{ul}	9.90	10.80	9.90			10.20		
	Fult	12.40	12.89	12.37			12.55		
Modulus E,Gx10 ⁻⁶	E or G (prima	2.37	2.46	2.53			2.45		
	E' or G' (secondary)	0.80	0.50	0.80			0.70		
n in./in.	Proportional	ϵ_1	.00235	.00235	.00235			.00235	
	Limit	€2	-	-	-				
		€45	-	-	-		ļ	-	
rai	Ultimate	e E	.00910	.01021	.00893		 	1.00941	
St:		€ 45	-	-	-				
No. of Plies Actual Laminate Thickness0320 * Spec Laminate Thickness Max0324 , Min0306 , Nominal312 Properties based on formal Thickness x ; Actual Thickness									
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density 1b/in.3									
Laminate: Tape or Matrix Desig5505 ManufNarmco									
* Scrim Cloth <u>Balance Ply Subtracted</u> Additives Used Cure Spec <u>NR Spec ST0105LA0007</u>									
Comments: (1) Strain-gaged									

TABLE XL. FILAMENTARY LAMINATE STATIC PROPERTY DATA

Child States of a state of the

SPECIMEN TYPE: IITRI TENSILE COUPON ROOM TEMPERATURE NOMINAL PLY THICKNESS = 0.0052 INCH 104 GLASS BALANCE PLY

n han bereiten an bereiten die bestehen die bestehen die bestehen die stehen die stehen die stehen die stehen d

Figure 39. 45° Off-Axis Tension [0]_{6T} Laminate

The shear modulus ${\rm G}_{\alpha\beta}~$ for unidirectional material was calculated by using the equation (reference 1):

$$G_{\alpha\beta} = \frac{1}{\frac{4}{E_{45}} - \frac{1}{E_{\alpha}} - \frac{1}{E_{\beta}}(1 - 2\nu_{\alpha\beta})}$$

where data values are defined in the following sketch:

Using the values of moduli and Poisson's ratios found in the previously tested tensile tests of the $[0]_{3T}$ and $[0]_{6T}$ laminate, and primary moduli from the 45 degree specimens, $G_{\alpha\beta}$ was calculated to be:

Laminate	[0] _{3T}	[0] _{6T}
E_{α} , Msi	30.0	30.0
E _β , Msi	2.64	2.71
E45, Msi	2.53	2.46
${}^{\boldsymbol{\nu}}_{\beta \boldsymbol{\alpha}}$	0.0162	0.0175
$G_{\alpha\beta}$, Msi	0.839	0.841

FLEXURAL SPECIMEN TEST RESULTS

Because of the relatively thin laminates used in the flexural tests, the maximum moment and shear values must be corrected for the deflected shape of

the beam at failure. These values, in terms of coefficients to use with the applied load, have been developed for the three beam types, A, B, and D, shown in figure 12.

For each type of beam, values of maximum shear and maximum moment have been determined in terms of the deflection at the loading point (machine head deflection) and the 'hickness of the laminate. A typical deflected specimen is shown in figure 40.

The necessary correction factors are due solely to the change in geometry from deflection which changes the moment arm "a" from the reaction to the loading point, and the magnitude of the reaction due to its inclination. Since the point of contact changes because of the cylindrical surface of the support (and also the load pin for type A offcenter loading), a rather complicated relationship exists.

These factors are independent of the type of material, and assume only that the specimen is of constant thickness (moment of inertia). They deal solely with the static or free body determination of beam shear and moment loading and have nothing to do with the flexural stress distribution through the thickness of the material.

Using the shears and moments based on failing load and deflection, maximum interlaminar shear stress and outer ply bending stress have been calculated for each specimen. These stresses reflect the use of an effective flexural modulus to compensate for variation in ply moduli in the loading direction. In addition, outer ply stresses are calculated by using a "c" distance to the midpoint of the ply rather than the distance to the surface. This is because the critical point, either for filament failure or for matrix failure, will most likely occur at the midthickness of the ply.

The method of calculating the effective flexural modulus used to estimate specimen stress was based on consistent strain in the load direction but no requirement for strain consistency (uncoupled) perpendicular to the loading. This condition is representative of long, narrow specimens. Specimens which are wide relative to the length require consideration of lateral strain compatibility (coupled). On the basis of an analogy to the column versus plate transition, an aspect ratio of 1.0 was used to determine whether the uncoupled or the coupled modulus should be used. In accordance with this criterion, the coupled moduli were used only with the 0.4-inch-span specimens.

Uncoupled moduli were computed by the formula:

$$E_{x}^{f} = \frac{\sum_{i} (Ad^{2}E_{x})_{i} + \sum_{i} (E_{x}I_{o})_{i}}{t^{3}/12}$$

AND DEPENDENCE

where A, d, and E_X are the values of area, mid-ply-to-neutral-axis distance, and modulus of each of the individual plies of the laminate, and "t" is the laminate thickness. Values of EI_0 for each ply are given in table XLI.

Coupled flexural moduli were calculated from the flexural rigidity (D) values which have been developed to use in plate stability predictions.

$$E_{n}^{\text{flex}} = \frac{12 D_{n} (1 - v_{mn} v_{nm})}{+^{3}}$$

A summary of the extensional and flexural moduli (coupled and uncoupled) is shown in table XLI. One minor difference in approach exists, that of the model used in determining the $(EI)_0$ for a ply. These models and the resulting values are shown for the coupled and uncoupled flexural moduli.

Failing loads for the flexural specimens are presented in tables XLII through XLIV. Calculated failing interlaminar shear stress and outer ply axial stress for each specimen, based on the previously discussed approach, are shown in the same tables. Exceptionally good agreement was found in all three failure types, considering that the specimens were much thinner than the standard 15-ply flexural laminate. A summary of these results compared with typical quality control specimen data is shown in the following comparison.

Туре		Verificat	ion Program La	minate	Range of Batch 288
of Test	[0] _{3T}	[0] _{6T}	[0/±45/0] _T	[0/±45/0] _{2T}	QC Data (15-ply)
Interlaminar shear, ksi	16.0	20.1	11.8	14.8	13.5 to 16.1
Longitudinal flexure, ksi	218	195	192	194	227 to 253
Transverse flexure, ksi	13.5	13.4	24.0	16.2	15.0 to 17.0

Interlaminar Shear

Table XLII presents results of the interlaminar shear (type A) specimens. Comparison of the interlaminar shear and the flexural stresses indicates that all specimens failed in the interlaminar-shear-critical mode. Interlaminar shear failing stresses of the $[0/\pm 45/0]_{\rm C}$ four-ply and eight-ply laminates were 11.8 and 14.8 ksi, respectively, and close to the predicted 13.0 ksi strength. Values for the $[0]_{\rm C}$ three-ply and six-ply specimens were 16.0 and 20.1 ksi,

Orientation	Property	Exte	E nsional Msi	E ^{flex} Coupled (Wide Plate) Msi	E ^{flex} Uncoupled (Beam) Msi
[0] _{3T}	Ex	3	1.25	31.25	29.30
	E _{.y}	3	.55	3.55	3.25
[0] _{6T}	E _x	3	1.25	31.25	30.8
	E y	3	.55	3.55	3.49
[0/±45/0] _T	E _x	1	.7.7	24.4	27.2
	Ey	5	.91	3.76	3.33
[0/±45/0] _{2T}	E _x	1	.7.7	19.4	19.7
[0/±45/0] _S	E y	5	5.91	5.37	3.32
*Properties t = 0.0052 Fil/in. = 2 E _t = 60 Ms E _m = 0.50 M **Properties t = 0.0052 E _x = 31.25	in. 212 i Msi Msi uniform	/ Local Inertia	Longitudinal Ply (EI) _{ox}	* $(E_x I)_o^H =$	** $(F_x I)_0^R =$
$E_y = 3.55 M$	si uniform	e-P1)		in.	0.105 <u>in.</u>
 (EI)₀ - single assuming mathematical (EI)₀ = single assuming mathematical sists of f: matrix with vidual modulin the anal 	ply value aterial is 5. ply value aterial con- ilament and a n their indi- uli considered lysis.	Model for Single	Transverse Ply (EI) _{oy}	$(E_{y}I)_{o}^{H} =$ 0.0145 $\frac{1b-in.^{2}}{in.}$	$(E_{y}I)_{o}^{R} =$ 0.0102 $\frac{1b-in.^{2}}{in.}$

TABLE XLI. EXTENSIONAL AND FLEXURAL MODULI VALUES

MILLERGERED CONTROL DUTY

The second second

A STATE OF CASE
0.00

TABLE XLII. INTERLAMINAR SHEAR-CRITICAL FLEXURAL SPECIMEN FAILING STRESSFS

and the second
any . Kutat

LUXXII.

Laminate Orientation	2		Spectmen	e	Propor Lim	tional it	Fail	ing	Maxin	*	Maxin	*	Maximum ^a * Interlaminar Shear Stress (avg)	Muximum ^{an} Hexure Stress (avg)
Specimen Type	of of Plies	Ŷ	Width (in.)	Thick (in.)	Load (dI)	Def1 (in.)	Load (1b)	Defl (in.)	Shei (1b)	ar	Mom ni)	.) ent	Ks i	Ksi
[0] _{3T} Type A	r		0.25 0.25 0.25 0.25 0.25	0.0165 0.0164 0.0164 0.0163	43.9 48.3 44.8 45.8	0.0170 0.0180 0.0173 0.0173	46.9 49.3 46.5 48.9	0.0190 0.0195 0.0184 0.0184	45.72 49.30 43.94 48.90	46.96 avg	1.050 0.872 1.418 0.865	1.051 avg	16.0	69.5
[0] _{6T} Type A	Q		0.25 0.25 0.25 -	0.0328 0.0330 0.0329	100.0 92.0 98.0 -	0.0112 0.0106 0.0122 -	116.0 117.0 115.0 -	0.0150 0.0153 0.0160 -	102.0 104.1 104.0 -	103.4 avg	4.616 4.504 4.025 -	4.382 avg	20.1	80.1
[0/±45/0] _T Type A	4	19 19 4 19	0.25 0.25 0.25 0.25	0.0218 0.0217 0.0216 0.0216			46.3 46.3 46.5 46.0	0.0149 0.0149 0.0145 0.0142	41.67 41.67 41.47 40.84	41.42 avg	2.004 2.004 2.092 2.116	2.054 avg	11.8	109.5
[0/±45/0] _{2T} Type A	ω	HUN4	0.25 0.25 0.25 0.25 0.25	0.0427 0.0425 0.0424 0.0422	122.0 121.0 117.0 118.0	0.0120 0.0120 0.0111 0.0110	128.0 129.0 132.8 131.8	0.0130 0.0135 0.0135 0.0135 0.0134	112.6 115.2 118.5 117.1	115.9 avg	5.824 5.598 5.763 5.799	5.746 avg	14.8	112.4
						Cons Las								

* Considering deflection effects on reaction and span ** Considering the directional moduli of the plies and bending stress at midplane of the surface ply

respectively. The lowest value, 11.8 ksi, occurred between +45° and -45° oriented plies. All other values occurred between 0° plies.

Longitudinal Flexure

સ્પ્રેસ કે પ્રતિત્વાન કરિયેટ પ્રતુ કરા તા કરવા સાલવા સલવાસ સંસ્થિતિ તા કાર્ય સાવવા સાથે છે. કે સ્થાન કે સ્થાન ક

Table XLIII presents results from the longitudinal flexural test specimens. The $[0]_{3T}$ specimen was first tested as a type D (?-inch span) beam but could not be failed because of excessive deflection. It was then loaded as a type B beam to failure. All other laminates were failed as type D beams.

The $[0]_{3T}$ type B specimen gave a somewhat higher value of flexural stress (218 ksi) than the other three orientations, which were very consistent (196, 192, and 194 ksi). These values are in good agreement with the higher values from carefully conducted tension coupon tests.

Transverse Flexure

Table XLIV presents results from the transverse flexural test specimens. Two types of specimen configuration are represented. The $[0]_{3T}$ three-ply and the $[0/\pm 45/0]_T$ four-ply specimens were tested in the 0.4-span, type B beam configuration. The thicker $[0]_{6T}$ and $[0/\pm 45/0]_{2T}$ specimens were tested using the 2-inch span, type D beam.

Transverse failing stresses of the $[0]_C$ laminates were consistent (13.5 and 13.5 ksi) and agree well with the 13.0 ksi allowable. This is in spite of the difference in laminate thickness and specimen types.

Transverse stresses of the four-ply and eight-ply $[0/\pm 45/0]_{C}$ laminates were 24.0 and 16.2 ksi, respectively, which exceed the estimated allowable. This may result from some yielding in the outer (transverse) ply and its support by the stiffer 45-degree-oriented adjacent ply.

TRANSVERSE PROPERTY IMPROVEMENT STUDY

A study was initiated to develop improved transverse properties for unidirectional laminates, a goal which was felt would be highly beneficial to unidirectional composite applications in this program, such as hat- and Z-section stiffeners. NR/LAD conceived the idea of rotating the scrim cloth 90 degrees relative to its normal direction to orient the stronger (warp) axis of the cloth in the transverse direction of the unidirectional prepreg tape.

One roll (No. 8 - 248 feet) of Narmco batch 334 (special) was specialordered, with the 104 glass scrim rotated 90 degrees. The 104 glass has a preaking strength of 55 lb/in. in the warp direction and 20 lb/in. in the TABLE XLIII. LONGITUDINAL FLEXURAL SPECIMEN FAILING STRESSFS

and in the second second

Maximum** Stress (avg) Flexure 218 196 192 194 Ksi Interlaminar Shear Stress Maximum** (avg) 6.4 8.4 4.8 5.4 Ksi 37.54 16.08 40.08 avg 38.31 avg avg avg (1n.-1b) Maximum* Moment 38.95 41.21 40.08 6.660 6.762 6.498 15.98 15.15 17.11 37.29 40.11 37.51 37.72 89.52 37.54 87.50 avg avg avg avg Maximum* Shear (1b) 85.88 92.13 89.55 38.06 38.75 36.82 85.15 91.89 85.46 37.56 35.37 40.22 0.1262 0.1315 0.1310 0.0264 0.0268 0.0256 0.1968 0.2067 0.1900 0.2815 0.3110 0.3083 Defl (in.) Failing 95.0 101.0 98.0 90.3 95.5 91.5 29.6 30.6 31.5 74.0 75.3 71.8 Load (1b) 0.1445 0.1754 0.1670 0.1700 0.1910 0.1537 Defl (in.) Proportional Limit 76.8 72.8 87.0 22.1 23.0 24.4 Load (1h) 0.0332 0.0330 0.0331 0.0221 0.0223 0.0222 0.0168 0.0171 0.0170 0.0432 0.0437 0.0435 (in.) Thick Specimen Width (in.) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 2 ~ ~ ~ <u>ч 2 м</u> 3 5 1 105 No. of Plies ∞ 9 4 m [0/±45/0]_{2T} Orientation $[0/\pm 45/0]_{T}$ Laminate Specimen Type D Type Type B Type D Ω [0]_{3T} [0]_{6T} Type

* Considering deflection effects on reaction and span ** Considering the directional moduli of the plies and bending stress at midplane of the surface ply

TABLE XLIV. TRANSVERSE FLEXURAL SPECIMEN FAILING STRESSES

Laminate Orientation			Specime	, "	Propor Lim	tivnal it	Fail	ing		•			Maximum** Interlaminar Shear Stress (avg)	Maximum** Flexure Stress (avg)
Specimen Type	No. of Plies	No.	Width (in.)	Thick (in.)	Load (1b)	Def1 (in.)	Load (1b)	Defl (in.)	Sher (1b)	ar)	Mom Mom	ent -1b)	ƙsi	Ksi
[0] _{3T} Type B	M	1 3 2	0.50 0.50 0.50	0.0165 0.0166 0.0164	2.8 4.3 1.5	0.0095 0.0148 0.0071	4.2 4.5 4.3	0.0150 0.0160 0.0145	2.128 2.285 2.180	2.20 avg	0.399 0.425 0.408	0.412 avg	0.48	13.5
[0] _{6T} Type D	Q	4 2 M	0.50 0.50 0.50	0.0328 0.0327 0.0327	5.2 5.5 4.0	0.1200 0.1262 0.0940	6.3 6.6 6.4	0.1685 0.1782 0.1785	5.777 6.104 5.935	5.94 avg	2.55 2.69 2.61	2.611 avg	0.57	13.4
[0/±45/0] _T Type B	4	301	0.50 0.50 0.50	0.0223 0.0223 0.0221	9.4 8.3 6.5	0.0180 0.0150 0.0135	24.5 18.6 24.2	0.0545 0.0500 0.0555	17.57 11.51 15.61	14.90 avg	1.34 1.36 0.968	1.220 avg	1.57	24.0
[0/±45/0] _{2T} Type D	œ	301	0.50 0.50 0.50	0.0413 0.0422 0.0419	7.8 13.5 10.4	0.0519 0.0850 0.0685	16.3 17.8 17.0	0,1187 0.1235 0.1175	14.85 16.23 15.49	15.52 avg	6.67 7.28 6.97	6.975 avg	1.12	16.2
* Consideri ** Consideri	ing defind	lectic direc	on effec ctional	ts on re moduli c	action of the p	and span olies and	ı l bendir	ng stress	at mid	plane o	f the s	urface j	ylv	

fill direction. A 15-ply unidirectional laminate was fabricated from this special batch, and data from this laminate were compared with the average of NR data from batch 334, rolls 1, 10, and 14 (standard scrim orientation) in table XLV.

	Average Three Rolls Standard Scrim Orientation	Scrim Rotated 90°	
Longitudinal flexure, RT	245 ksi	246 ksi	
Longitudinal flexure, 350°F	200	196	
Transverse flexure, RT	14.6	19.3	
Transverse flexure, 350°F	10.9	18.7	
Interlaminar shear, RT	15.0	14.7	
Interlaminar shear, 350°F	6.6	7.4	

TABLE XLV. COMPARISON OF ROTATED SCRIM AND STANDARD LAMINATE PROPERTIES

From this table, it is seen that the transverse flexure strength shows a remarkable increase from rotating the orthotropic scrim cloth, amounting to a 32 percent increase at room temperature and a 72 percent increase at 350°F. The longitudinal flexure and interlaminar shear results are within the scatter range for normal material. Thus, on the basis of these data, it would appear that by rotating the scrim cloth 90 degrees, the transverse strength of a ply is greatly increased, while the other strength properties remain virtually unchanged.

In addition to the quality control data, longitudinal and transverse tension unidirectional IITRI-type coupon specimens were tested at room temperature and 350°F. The numerical results of these tests are given in tables XLVI through XLIX. Average stress-strain curves are also presented in figures 43 and 44, on which are plotted rotated and nonrotated results to provide a comparison of the two types of data.

Figure 41 indicates that the test values for the longitudinal room temperature Young's modulus and ultimate strength of the rotated scrim specimen are slightly lower than the nonrotated specimen, but this difference is suspect in view of the data shown in table XLV. The 350° F results for the same type of test, as shown in figure 42, indicate that there is virtually no difference between the rotated and nonrotated results. This is as expected, since the boron filaments essentially determine the longitudinal strength of the unidirectional boron/epoxy laminate.

Figure 41. Rotated Scrim Longitudinal Tension Stress-Strain Curve Comparison with Non-Rotated Data for Narmco 5505 at Room Temperature

-

પ્રયુપ્ત કે આ ગામના તેમના પ્રાથમિત પ્રાથમિત કે આ ગામના આ

historica and a state of the st

Figure 42. Rotated Scrim Longitudinal Tension Stress-Strain Curve Comparison With Non-Rotated Data for Narmco 5505 at 350⁰F

Material Type Type Soal	System: <u>Boron/</u> e Loading: Ter e Test Specimen: k at Temp	Epoxy ision [Coup	(Rotatec \overline{X} , Cor \overline{Don} , $1/2$ F for	Scrim) mp, x 9 in. v	Lam Orien Load Ori Shear <u>vith 1-1/</u>	nt: [0] ent: j Inter 2 in. tab: Test Temp	6T 0° rlam Shea s RT	ar [] °F	
D	Batch No.	334	(2)	(2)	- (2)				
Property	Spec Ident		2-1(2)	2-2(2)	2-3(2)	2-6(2)		Ave.	
	F ^{p1}		34.0	50.0	42.0	34.0		40.0	
(Ksi)	F.85								
ess	^F .70				l				
Str	F at 2/3 ϵ_1^{u1}	t							
	Fult		169	165	156	166		164	
us c10-6	E or G (prima	ry)	28.8	28.6	28.0	28.8		28.5	
Modul E,Gx	E' or G' (secondary)								
$\dot{\Xi}$ Proportional ϵ_1 .00120 .00170 .00150 .00120 .00140									
E Proportional ϵ_1 .00120 .00170 .00150 .00120 .00140 Limit ϵ_2 - - -00225 -000225 -000225									
i.i		£45		A POF	DAP/F	00100			
air	Ultimate	$\frac{\epsilon_1}{\epsilon_1}$.00610	.00595	L00505	-00118		-00330	
Str		€ <u>2</u> €45	+		-00103			1	
No. of I Spec La Propert	Plies <u>6</u> minate Thickness ies based on:	s: M Nomi	lax nal Thic	Actual La , Min kness X	aminate T ; Act	hickness _ Nominal _ ual Thick	(1) .0312 ness	·	
Filamen Fil Vol	t Count / Fract	/in. Re	Void C sin Wt F	ontent ract	% P Lan	ly Thick. Density_	1b	in. /in.3	
Laminat	e: Tape or Mat	rix De	sig Rota	ted Scri	m 5505 Mar	uf_ <u>Na</u>	rmco		
	Scrim Cloth	104 (Slass Fab	ric, War	g Additiv	res Used	None		
Cure Sp	ec <u>NR Spec STO</u>	LU5LA0	007						
Comment	s: (1) After su	btract	ting 0.00	1 in. fo	r scrim b	balance pl	<u>y</u>		
<u> </u>	(2) Deformat	ion da		Strain g	ages				

TABLE XLVI. FILAMENTARY LAMINATE STATIC PROPERTY DATA

96

Materia Tyj Tyj	1 System: <u>Boror</u> pe Loading: T pe Test Specime	/Epoxy ension	(Rotate	d Scrim) cmp[],	Lam Ori _Load Or Shear[_	ent: <u>[0]_{6T}</u> ient:], Iņter	0° lam Shea	ar 🗍
Soa	ak at Temp		°F for_	ŀ	lr.	Test Temp_	350	_°F
Property	Batch No.	<u></u>						
	- pl	L						Ave.
			62.5	ļ				62.5
(Ksi	F.85							
ress	F.70	·						
Stı	F at 2/3 ϵ_1^{u}	lt				†+		
	F ^{ult}		161			<u> </u>		161
us c10 ⁻⁶	E or G (prim	ary)	29.7					29.7
Modul E,G	E' or G' (secondary)							
in./in.	Proportional Limit	$\frac{\epsilon_1}{\epsilon_2}$.00210				· ·	00210
ain		ε ₄₅ ε ₁	.00530					00530
Str	Ortimate	€ <u>2</u> € 45						
No. of P Spec Lam Propertie	lies inate Thickness es based on:	: Ma Nomin	A A al Thick	ctual Lar _, Min _ ness X	ninate Th ; Actu	ickness Nomina10 al Thicknes	(1) 312 55	
Filament Fil Vol	Count / Fract	in. Res	Void Co in Wt Fra	ntent act <u>0.</u>	% P1 Lam	y Thick Density	1b/ii	_ in. n. ³
Laminate: Cure Spec	Tape or Matr Scrim Cloth NR Spec STOL	ix Des 104 G1 05LA00	ig <u>Rotat</u> ass Fabr 07	ed Scrim ic-Warp at 90	5505Manu Additive	f <u>Narmco</u> s Used <u>No</u>	one	
Comments	(1) After sub	tracti	ng 0.001	in. for	scrim ba	lance ply		

TABLE XLVII. FILAMENTARY LAMINATE STATIC PROPERTY DATA

STATISTICS STATISTICS

laterial Type Type	System: <u>Boron/</u> Loading: Ter Test Specimen	Epoxy ision	(Rotated X, Co upon, W(Scrim)	Lam Orie Load Ori Shear	nt: ent: 	90° 90° frlam Shea tabs	ar 🗌		
Soal	c at Temp		'F for	Hı	· · · · · · · · · · · · · · · · · · ·	fest Temp	RT	_°F		
Property	Batch No. Spec Ident		i	2	3	4	5			
	F ^{pl}		6.92	7.31	6.20	7.23	6.39			
(Ksi)	F.85									
ess	F.70									
Str	F at 2/3 ϵ_1^{ul}	t								
	F ^{ult}		10.32	10.39	10.59	9.78	9.48			
us c10 5	E or G (prima	ry)	2.84	2.90	3.65	3.19	3.17			
Modul E,G	E' or G' (secondary)									
$ \begin{array}{c c} \vdots \\ \vdots \\ \text{Limit} \\ \hline \end{array} \begin{array}{c} \text{Proportional} \\ \epsilon_1 \\ \hline \end{array} \begin{array}{c} .00224 \\ .00252 \\ .00170 \\ .00238 \\ .00279 \\ \hline \end{array} \begin{array}{c} .00279 \\ \hline \end{array} \end{array} $										
$\begin{array}{c} \vdots \\ \vdots $										
itrain	Ultimate	€ <u>45</u> € <u>1</u> € <u>2</u>	.00390	.00414	.00360	.00371	.00396			
No. of H Spec Lan Properti	Plies minate Thickness les bascd on:	S: Nomi	fax nal Thic	Actual La , Min kness X	aminate T ; Act	L hickness Nominal wal Thick	(2) .0312 mess			
Filament Fil Vol	: Count / Fract	'in. Re	Void C sin Wt F	ontent ract0,	%P Lan	ly Thick. Density	1b,	in. /in. ³		
Laminate Cure Spe	e: Tape or Mat Scrim Cloth NR Spec STO	rix De <u>104</u> 05LAC	esig <u>R</u> ota <u>Glass Fa</u> 0007	nted Scri Abric	m 5505 Additiv	uf <u>Narm</u> ves Used _	co None			
Comments	s: <u>(1) W = 1 in</u> (2) After su	. for btrac	specimer ting 0.00	ns 1, 2, 01 for sc	and 3; 1, rim bala	/2 in. fo nce ply	r specime	ens 4, 5,		

TABLE XLVIII. FILAMENTARY LAMINATE STATIC PROPERTY DATA

Material	System: Boron	/Epoxy	(Rotated	Scrim)	Load Ori	ent:	90°		
Тур Тур	e Loading: Te e Test Specimer	ension 1:Coup	$\frac{X}{\text{on}}, W(1)^{\text{or}}$	mp , x 9 in.	Shear 🗍 with 1-1/	2 in. tal	rlam She	ar 🗌	
Soa	k at Temp	c	'F for <u></u>	H:	r.	Test Temp	RT	_°F	
	Batch No.								
Property	Spec Ident	-	6	7				Ave.	
	Fbl		6.39	6.29				6.70	
(Ksi)	F.85								
e S S	F.70								
Stre	F at $2/3 \epsilon_1^{u_1}$	lt							
	F ^{ult}		9.48	9.43				9.97	
us <10 ⁻⁶	E or G (prima	ary)	3.64	2.80				3.17	
Modul E,G	E' or G' (secondary)								
$\begin{array}{c c} \vdots \\ \text{Proportional} \\ \text{Limit} \end{array} \begin{array}{c c} \bullet & 0.00236 \\ \bullet & 0.00220 \\ \hline & 0.00231 \\ \hline & 0.002$									
in.		ε ₂ ε ₄₅					 	 	
ain	Ultimate	ϵ_1	.00363	.00338			 	.00376	
Str		€ <u>2</u> € 45	 					╂─────	
No. of F Spec Lam Properti	Plies <u>6</u> Minate Thicknes es based on:	s: M Nomin	م ax nal Thick	ctual La _, Min mess X	minate Th , ; Actu	nickness _ Nominal _ 1al Thick	.0312 ness	•••••	
Filament Fil Vol	Fract <u>0.</u>	/in. Re:	Void Co sin Wt Fr	ntent act <u>0.</u>	% P1 Lam	ly Thick. Density_	1b,	in. /in.3	
Laminate Cure Spe	e: Tape or Mat Scrim Cloth ec <u>NR Spec ST</u>	rix De: 104 G 0105LA(sig <u>Rotat</u> 1ass Fabi 0007	ted Scrim ric	<u>5505</u> Manu Additiv	uf <u>Na</u> es Used <u>N</u>	rmco one		
Comments	: <u>(1), (2)</u> See	previo	us page						

TABLE XLVIII. FILAMENTARY LAMINATE STATIC PROPERTY DATA (CONCLUDED)

a ann an the second second

issipilitating and independent of the state.

Materia Typ Typ Soz	l Sy De L De T ak a	stem: <u>Boror</u> oading: To est Speciment	$\frac{1}{2}$	$\frac{x}{2}, C$	ed Scrim)	Lam Ori Load Or Shear ith l-1/:	ent: [0] _{6]} ient:], Inte in.tabs	1 90° rlam She	ar 🗌
				r tor_	ł	ir.	Test Temp		°F
Property	,	Spec Iden	t	1-4	E1	E2			Ave
	F	pl		4.42	4.08	3.85	3.87		4.06
(Ksi)	F	.85							4.00
ssə.	F	.70							
Sti	F	at $2/3 \epsilon_1^{u}$	lt				†		†
	F	ult		7.81	6.48	6.71	6.40		6.85
lus x10-6	E	or G (prima	ary)	1.60	1.60	1.51	1.76	<u> </u>	1.62
Modu. E.G	E (:	' or G' secondary)							
$\stackrel{i}{\leftarrow} \begin{array}{c c} Proportional \\ Limit \end{array} \begin{array}{c c} \epsilon_1 & .00250 & .00255 & .00219 & .00257 \end{array}$									
in ir			€45 €1	00499	00157	20150	00120		
Stra	U	ltimate	ε ₂ ε ₄₅	.00488	.00455	. 104.59	.00420		.00455
No. of P Spec Lam Properti	lies inat es l	s <u>6</u> te Thickness based on:	: Ma Nomir	ax nal Thick	L Actual La _, Min . Eness \	ninate Th ; Actu	L nickness Nominal wal Thickne	0312 ess	
Filament Fil Vol	Cou Frac	/////	in. Res	Void Co sin Wt Fr	ontent act _0,	% P1 Lam	ly Thick Density	1b/	in. in.3
Laminate Cure Spe	:] c	Tape or Matr Scrim Cloth R Spec STOID	ix Des 104 G 05LA00	ig <u>Rotat</u> lass Fab 07	ed Scrim ric	5505 _{Manu} Additive	uf <u>Narm</u> es Used <u></u>	co None	
Comments									

TABLE XLIX. FILAMENTARY LAMINATE STAFIC PROPERTY DATA

The transversely loaded rotated scrim specimens show definite improvements in stiffness as well as strength over standard scrim results, as shown in figures 43 and 44. The increase in properties is especially evident in the 350°F data. This is evidently due to the fact that the scrim cloth is less affected by the high temperature than the resin; thus, in the 350°F environment, the scrim cloth properties decrease in a smaller proportion than the resin properties. This sar reasoning would explain the 72 percent increase in rotated scrim transverse flexure quality control data over standard scrim data, as mentioned earlier for the 350°F environment, while only a 31 percent increase was encountered at room temperature.

Figure 43. Rotated Scrim Transverse Tension Stress-Strain Curve Comparison With Non-Rotated Data for Narmco 5505 at Room Temperature

Figure 44. Rotated Scrim Transverse Tension Stress-Strain Curve Comparison With Non-Rotated Data for Narmco 5505 at 350°F

SECTION IV

BASIC ALLOWABLE PROGRAM

CONSTITUENTS

Mechanical properties of the matrix and the scrim cloth materials were investigated to develop reliable data for these constituents to support the laminate property prediction techniques which are based on constituent data.

MATRIX RESIN

Mechanical and physical properties of the Narmco ...387 resin, including filler material, were determined at room temperature and at 350° F, 15 shown in the test program outlined in table L. Specimens were cast and machined to final configuration to provide "bulk type" matrix property data.

A special cure cycle was followed to minimize the exotherm problem and to cast resin specimens as void-free as possible. The preheated resin was shaped and cut into a rectangle preparatory to placement in the mold. The resin was placed in a circulating air oven at room temperature, then the oven temperature was gradually raised to 200° F. The specimen material was maintained at 200° F for 20 hours, followed by gradual heating for 2-hour dwell steps at 300° F and 350° F. The sequence of casting the Narmco 2387 resin and the configuration of the machined tensile specimens is shown in figure 45.

A 15-ply unidirectional boron/epoxy laminate was laid up from Naraco lot 364 roll 1 and processed in accordance with the aforementioned cure cycle (except cure pressure was 85 psi) to compare resin cure cycle properties with standard laminate properties. The laminate specimen interlaminar shear, longitudinal, and transverse flexure room temperature test data are shown in table LI, together with typical standard cure laminate specimen data.

Laminate strengths using the special resin cure cycle are not equivalent in all cases to those of a standard laminate. Although the transverse flexural strengths are equal, the special (long) resin cure cycle reduces the longitudinal flexural and interlaminar shear strengths by about 8 percent. Since bulk matrix specimens require a special cure and this cure, when applied to laminates, does not develop equivalent properties, the bulk matrix data must be used with due recognition of this fact. Not only the cure process and resulting properties are different, but also the "in situ" strength cf the matrix may not be fully reflected by the bulk data.

	Specimen Type	Number of		
Type Test	and Size	Specimens	Temperature	Instrumentation
Tension	ASTM, D638, Type 1 3/4 x 8.5 in.	5 4	RT 350° F	0°, 90° gages on all specifi- cations
Coefficient of thermal expansion	(Tension syecimen)	(1)*	0-3:0° F	0°, 90° gages
Compression	ASTM, D695 1/2 x 1/2 x 2 in.	3 3	RT 350° F	0°, 90° strain gages on all specimens
Shear	Slotted picture- frame jig 6 x 6 in.	1	RT 350°F	Three-leg rosette Three-leg rosette
Fatigue	ASTM, D638, Type 1 (same as tension)	7 (R = 0.1 at 7 load levels)	RT	No instrumen- tation
Creep	ASTM, D638, Type 1 (same as tension)	3 (at three load levels)	350° F	One O° gage per specifica- tion
Total		27 + (1)		
* Conducted u	sing one of the tensi	le specimens	· · · · · · · · · · · · · · · · · · ·	L

TABLE L. RESIN CHARACTERIZATION TEST PROGRAM FOR NARMCO 2387 RESIN WITH FILLER

al managed and the state of the second

The following boron-epoxy laminates using the resin cure cycle were

tested to verify equivalence of the resin cure and standard laminate cure cycles:

Three longitudinal flexure coupons at RT Three transverse flexure coupons at RT Three interlaminar shear coupons at RT

Figure 45. Narmco 2387 Cast Resin Blanks and Tensile Specimens

Type Test	Special Resin Cure Cycle *	Standard Laminate Cure Cycle *
Longitudinal flexure Ksı	210 213 <u>223</u> 215 avg	229 234 <u>234</u> 232 avg
Transverse flexure Ksi	13.5 13.9 13.2 13.5 avg	12.4 13.5 14.4 13.4 avg
Interlaminar shear Ksi	13.9 13.6 13.8 13.8 avg	14.0 15.3 15.9 15.1 avg

TABLE LI. RESIN CHARACTERIZATION - 15-PLY UNIDIRECTIONAL LAMINATE TEST RESULTS

* All specimens made from 2387 resin, Narmco Batch 364, Roll No. 1

In addition, for laminate strength prediction based on constituent properties, the filament-to-matrix interface tensile and shear strength should also be considered. Also, the level of residual stress in the matrix material may be a very significant factor in some laminates.

Matrix Tensile Strength

Tensile properties of the bulk 2387 resin matrix were determined using ASTM D368-64T Type I (0.75- x 8.5-inch dog-bone) specimens about 0.135 inch thick. Tensile tests gave unexpectedly low failing stresses for both room temperature and 350° F relative to the published data shown on page 113. Data for the room temperature tests are given in table LII and figures 46 and 47; data for 350° F are given in table LIII and figure 48.

Examination of the fracture surface of the NR/LAD specimens indicated presence of small air bubbles in the cross section. These voids did not result in a significant reduction of section area but could introduce stress concentrations sufficient to explain the lower strengths. To evaluate this consideration, a small bar of resin material cured at Narmco was machined

Material Type Type	System: <u>Narmco</u> E Loading: Te	2387 ension	Resin x], Con D368-64	mp], T.Type I	Shear	, Interlam	Shear 🗌		
Soal	k at Temp	°°	F for	<u>-</u> Hı	·····	Test Temp_RI	°F		
Batch No.									
Property	Spec Iden	5	$1^{(1)}$	2.(1)	_3 (1)		Ave.		
	F ^{pl}			2.77	2.92		2.85		
(Ksi)	F.85								
ress	F.70								
Stı	F at $2/3 \epsilon_1^{u}$	1t		3.25	2.82	ļ	3.04		
	F ^{ult}		4.28	4.67	4.10		4.18		
lus x10 ⁻⁶	E or G (prim	E or G (primary)		0.50	0.49		0.51		
Modu] E,G	E' or G' (secondary)	E' or G' (secondary)							
/in.	Proportional Limit	ϵ_1		.00570	.00600		00585		
in.		E2		-00200	:00200	<u>+</u>			
ain	Ultimate	ε <u>45</u> ε ₁		.01010	.00865		.00937		
Stri		€ <u>2</u> € 45							
Actual Resin I	Specimen Thick	ness <u>S</u> r	pec.1: 0.	134 in. S	Spec 2: ().135 in. Spec	3: 0.127 in		
Resin I	Designation Manufacturer <u>Na</u>	87 inc	luding g	lass fill	er mater	ial			
Cure Sp	ec <u>Special sl</u>	ow cur	<u>e simula</u>	ting NR S	Spec STO	L05LA0007			
Connent	:s:								

TABLE LII. RESIN MATRIX STATIC PROPERTY DATA

108

nyahindi hara _{na}ulahan hukukura tanan hukura anan nanan mananan yahin kanangan kuranan kuran kuran kuran kuran k

ORIGINAL

Figure 46. Narmco 2387 Resin RT Tension Stress-Strain Curve

Figure 47. Narmco 2387 Resin RT Poisson's Ratio

Material System: <u>Narmco 2387</u> Resin Type Loading: Tension x, Comp , Shear , Type Test Specimen: <u>ASIM D638-64T Type I, 0.135 in</u>, Interlam Shear thick Soak at Temp _____ °F for ____ 350 °F ___Hr. Test Temp_ Batch No. Property Spec Ident Ave. 1 2 3 F^{p1}. 1.13 1.13 1.13 1.13 Stress (Ksi) F.85 ------------F. <u>70</u> ------------F at $2/3 \epsilon_1^{\text{ult}}$ 2.70 2.39 2.70 2.60 Fult 3,08 3,12 3,22 3,14 Modulus E,Gx10⁻⁶ E or G (primary) .17_ ,130 .166 ,156 E' or G' (secondary) ___ - - -------Proportional ϵ_1 Strain in./in. 00690 00720 00720 00711 Limit €₂ ------------€45 E1 03180 03740 03720 04320 Ultimate € 2 ---____ ---€45 Actual Specimen Thickness Spec 1: 0.135 in.; Spec 2: 0.138 in.; Spec 3: 0.132 in. Resin Density _____ Resin Designation 2387 including glass filler material Manufacturer Narmco Cure Spec ____ Special slow cure simulating NR Spec ST0105LA0007 Comments: _

TABLE LIII. RESIN MATRIX STATIC PROPERTY DATA

Figure 48. Narmco 2387 Resin 350°F Tension Stress-Strain Curve

14.20

into small circular tensile specimens as shown in figure 49. This material had no observable voids. During machining, one end was chipped as shown, but was bonded prior to test. Test preparation also included wrapping the grip area with several layers of glass fabric.

Crussing and the line

The tensile test of the first Narmco specimen resulted in data similar to those obtained from the NR cast material. Investigation into the cure cycles used indicated that data reported from other sources and shown below were based on material which had been postcured beyond the 2 hours at 350° F used in the NR/LAD process.

The remaining Narmco specimen was then postcured for 4 hours at 350° F. This was accompanied by a very noticeable darkening of the resin color. The postcured specimen failed at a stress level over twice that of the material without postcure. A data sheet (table LIV) and stress-strain plot (figure 50) give properties obtained on the postcured Narmco specimen.

To determine the effect of postcure on NR/LAD cast specimens, three specimens originally scheduled for fatigue testing were postcured 4 hours at 350° F and then static tested, 2 at room temperature and one at 350° F. Results of these tests are shown in tables LV and LVI and figures 51 and 52. A summary of these results with previous tensile values is given below.

	NR/LAD Mate	Cast rial	Narmco Mate	o Cast erial	AVCO Reported	Narmco Reported	
Temper- ature	No Postcure	Postcured at 350° F	No Postcure	Postcured at 350° F			
RT	4,280* 4,680* 4,100* 4,180 avg	4,670* 7,550*	3,900	7,830	8,800	5,300 to 7,050	
350° F	3,080* 3,120* <u>3,220</u> * 3,140 avg	2,879*			3,800		

* Numerous spherical voids (gas bubbles) throughout specimen

The variation in the room temperature tensile strengths of the postcured material is believed due to the presence of the spherical voids caused by the bubbles which formed during cure. Unfortunately, all the resin specimens were subject to this condition, and it is present in varying degrees throughout

Figure 49. Cylindrical Narmco 2387 Resin Tension Coupon

TABLE LIV. RESIN MATRIX STATIC PROPERTY DATA

Material System: ___Narmco 2387 Resin

		- coor noonn			
Тур	e Loading: Tensi	on X, Comp], Shear], Interlam Sh	near 🗍
Тур	e Test Specimen: 🗅	ylindrical Ters	ile Coupon. (<u>) 2430 in diamet</u>	ter
Soa	k at Temp	°F for	Hr.	Test Temp RT	°F
	Batch No.				
Property	Spec Ident				Ave.
	F ^{p1}	1.05			1.05

(Ksi)	Fbl		1,95					1,95	
	F.85		7,65					7.65	
ess	F.70								
Str	F at 2/3 ϵ_1^{ult}		5.75					5.75	
	F ^{ult}		7,83					7.83	
us c10-6	E or G (primary)		0.48					0.48	
Modul E,G	E' or G' (secondary)								
/in.	Proportional	\epsilon	0,00400					0.00400	
ì	Limit	€ 2							
•ਜ		€ 45							
ain	IIItimate	ε1	0.0193					0.0193	
tr	Ultimate	e ₂							
Ś		€45							
Actual	Actual Specimen Thickness Specimen cross-sectional diameter: 0,2430 in.								
Resin Density									

Resin Designation _2387 including glass filler material

Manufacturer <u>Narmco</u>

Cure Spec ______4 hours at 350° F

Comments: <u>Material cast at Narmco and Postcured at NR/LAD</u>

Figure 50. Narmco 2387 Resin Tension Stress-Strain Curve

. Sector L

TABLE LV. RESIN MATRIX STATIC PROPERTY DATA

Material System: <u>Narmco 2387 Resin</u>

AND A CONTRACT OF A

aterial Type	E Loading: Ter	sion[$\frac{\text{kesin}}{\text{x}}$, Com	p], Type T	Shear 🗌 ,	Inte	rlam Shea	ar 🗌
Soal	at Temp	• <u>••••</u> ••	F for	- <u>- 1910</u> - Li	r. 7	Cest Temp	RT	_°F
	Batch No.							
Property	Spec Ident		1 (1)	<u> </u>	2			Ave.
	Fbl		3.05		-			
Ksi)	F.85		-		-			-
ess (F.70		-					-
Stre	F at $2/3 \epsilon_1^{\text{ult}}$		3.20		-			
	Fult		4.67		7.55			6.11
us 10 ⁻⁶	E or G (primary)		.47		.51			.49
Modul È,G	E' or G' (secondary)		_		-			
in.	Proportional Limit	ϵ_1	.0064		-			-
n./		E2	0021			Į]	ļ
л Г		€45				<u> </u>	 	- 0175
ai	Ultimate	E 1	0102	(2)	0108	+	+	
Stı		€ 45			-	1		-
Actual	Specimen Thickr	ness_	Spec 1: 0	<u>136 in</u>	; Spec 2;	0.125 ir	1.	
Resin I	Density							
Resin Designation 2387 including glass filler material								
Manufacturer Narmco								

Cure Spec (3) Special slow cure simulating NR Spec ST0105LA0007

Comments: (1) Strain gaged (2) Extrapolated (3) Postcured 4 hours at 350° F Numerous small spherical voids throughout specimens

TABLE LVI. RESIN MATRIX STATIC PROPERTY DATA

Material System: <u>Narmco 2387 Resin</u>

Type Type Soal	e Loading: Ter Test Specimen k at Temp	<u>5 2387</u> nsion (: <u>ASTN</u> 350°F	<u>x</u> , Cor D368-64 for	mp], I Type I, 0.2 Hi	Shear	, Inte in thick Test Temp	erlam Shear	· 🗌
Property Spec Ident 2							Ave.	
	F ^{p1}							
(Ksi)	F.85		-					
ess	F.70		_					
Str .	F at 2/3 ϵ_1^{ul}	t	-					
	Fult	F ^{ult}						
us x10 ⁻⁶	E or G (primary)		.12					
Modul E,G	E' or G' (secondary)		-					
/in.	Proportional Limit	\euler _1	-					
in.,		E2 EAF	-	 	 			
uin		ε <u>45</u> ε ₁	.046					
Stre	Ultimate	€ 2 € 15			 	+	 	
Actual Specimen Thickness 0.137 in.								
Resin D	ensity				<u></u>			
Resin D M	esignation <u>2387</u> Manufacturer <u>Nar</u>	inclu co	uding gla	ss fille	r materi	al		
Cure Spec <u>*Special slow cure simulating NR Spec ST0105LA0007</u>								

Comments: <u>* Postcured 4 hours at 350° F</u> Numerous small shperical voids throughout specimens

TTPS: Thomas Turning Topsen

State of the State of States of the States o

Figure 51. Narmco 2387 Resin Tension Stress Strain Curve

Figure 52. Narmco 2387 Resin Poisson's Ratio

the specimens. Close-spaced voids or concentrations of voids in a local area is suspected to be the cause of the random low values.

As an additional check on the tensile strength and the possible influence of the gas bubble voids, three of the tensile specimen ends were tested in flexure. This provided a relatively localized zone of the critical tensile stress and a much lower probability of having a bubble in the maximum stress region. The 2-inch-span flexural loading fixture with a central load was used. Test results were as follows:

Specimen	Temperature	Failing Load	Central Deflection	Calculated* Max Stress	Calculated Deflection
1	RT	45.7 lb	0.128 in.	14,740 psi	0.143 in.
2	RT	39.9 lb	0.115 in.	12,943 psi	0.125 in.
3	350°	21.9 lb	(Not recorded)	7,300	

*Based on $f = \frac{MC}{I}$; $\delta \frac{W \ell^3}{48EI}$ with E = 510,000 psi

Determining the cause of the surprisingly large difference between tensile and flexural results was beyond the scope of the program. On the basis of the room temperature stress-strain curves (for tension and compression), a large bending form factor did not appear probable, and the difference in results was greater than expected for bubble-type concentration factors.

Matrix Compression Strength

Compression properties of the bulk 2387 resin material were developed using a 1/2- x 1/2- x 2-inch specimen loaded in the 2-inch direction. Room temperature properties are listed in table LVII and plotted in figure 53.

Elevated temperature (350° F) compression properties are listed in table LVIII and plotted in figure 54. One specimen of this group was straingaged, but readings after heating the specimen exceed the SR-4 recorder range, so no strain gage data are available, and all deformation was based on extensometer measurements.

TABLE LVII. RESIN MATRIX STATIC PROPERTY DATA

Material System: <u>Narmco 2387 Resin</u>

Турі Турі	e Loading: Ter e Test Specimen	nsion	$\begin{bmatrix} & & \\ & $	m_{x} ,	Shear	, Inter	lam Shear	·
Soal	k at Temp	0	F for	Hr		Test Temp_	RT	°F
_	Batch No.							
Property	Spec Ident		_1	2	3 (1)			Ave.
	Fbl		3.60	5,28	8.88			5.92
(Ksi)	F.85		13.0	14.0	16.2			14.6
ress	^F .70			20.7	-20.3			20.5
Stı	F at $2/3 \epsilon_1^{\text{ul}}$	t	-	22.0	20.7			21.3
	Fult		25.0	24.2	23,5			24.2
lus x10 ⁻⁶	E or G (prima	ary)	.570	.576	440			. 5287
Modul E,G	E' or G' (secondary)			aa	-			-
/in.	Proportional	ε 1	0054	0087				0071
in.		E2						
Ľ		¢45		-	-	┝		-
rai	Ultimate	E ₂						-
St		€45				Ť		
Actual	Specimen Thickn	ess(0.50 in.					
Resin D	ensity			<u> </u>		······		
Resin D M	esignation <u>238</u> anufacturer <u>Nar</u>	7 inc. mco	luding gl	ass fille	er materi	al		

Cure Spec Special slow cure simulating NR Spec ST0105LA0007

Comments: (1) Strain-gaged

and a standard and a standard and a standard and a standard and a standard and a standard and a standard and a And a standard and and

rechendenden solo, maskanny felden filben av Charkard bisker bister fin stream de statistiker de

Figure 53. RT Compression Stress-Strain Plot of Narmco 2387 Resin

Material Type Type	System: <u>Narmco</u> e Loading: Te e Test Specimen	<u>2387</u> nsion : <u>1/2</u>	Resin , Com X 1/2 X 2	mp_{χ} , 2 in, con	Shear [],	Interl	am Shear	
Soal	k at Temp <u>350°</u>	<u>F</u>	for	<u>17</u> Hr	т. Т	'est Temp_	<u>350°F</u>	
Property Spec Ident								
		.	4	5	6 (1)		Ave.	
	F ^{p1}		2,04	2,04	2.16		2.08	
(Ksi)	F.85		4.4	3.5	3.8		3.9	
ess	F.70		4.6	4.3	4.6		4.5	
Str	F at 2/3 ϵ_1^{ul}	.t	10,7	11.4	10,1		10.7	
	F ^{ult}	17.3	18.4	14.7		16.8		
lus x10 ⁻⁶	E or G (primary)		.20	• .16	.16		.17	
Modu] E , G	E' or G' (secondary)		-	-	-		-	
'in.	Proportional	ε1	0108	0144	0150		0134	
n./	LIMIT	E2		-	-			
'n		e 45	-	-	-			
rai	Ultimate	E 2	- 282	316	2/9			
Št:		€ 45		- •	-		-	
Actual Specimen Thickness Actual Specimen Thickness 0.50 in. Resin Density Resin Designation 2387 including glass filler material Manufacturer Narmco								
Comment	s: <u>(1)</u> Strain	gaged	specimer	n, but ga	ge readin	igs exceede	xd recorder	

TABLE LVI'I. RESIN MATRIX STATIC PROPERTY DATA

Plots of strain data above $80,000 \ \mu$ in./in., or about 5,000 psi, indicated a rather erratic response (figure 54). Further checks of these tests indicated in the material appeared to creep above this loading, and the test engine increased the rate of loading to compensate. Precise loading rates are not available for these curves. .

The manner of failure was rather unusual. The specimen appearance was unchanged up to failure, which occurred catastropically with a disintegration of the specimen into particles and powder. The mode of failure was explosive in nature, and the result was as though the specimen had been hit with a hammer.

Poisson's ratio for the room temperature specimen, based on strain gage readings, is plotted in figure 55.

Matrix Shear Strength

Shear properties of the bulk 2387 material were developed using an in-plane shear testing fixture. The specimen was a single plate of resin approximately 3 x 3 inches and about 0.20 inch thick. The specimen was loaded in a picture-frame, shear-type loading fixture developed at NR/LAD, which applies pure shear to the edge of the test area. This device is shown schematically in figure 56. The principal feature of this fixture is the application of loads by pin-ended links aligned along the edges of the test section. Link loads are delivered to test fixture loading plates, which are in turn bolted to the specimen loading tab doublers (bonded to the specimen face). A typical test setup ready for loading is shown in figure 57.

Strain gage rosettes were placed back-to-back in the test area of the specimen. During the 300° F bake for curing the strain gage bonding for the elevated temperature specimen, the resin fractured at the edge of the test area between adjacent diagonal slots. The reason for the fracture was not apparent but may have resulted from a stress concentration at the end of the slot and some thermally induced strain due to the presence of the bonded aluminum loading doubler on each tab.

The room temperature shear specimen was tested and failed at an unexpectedly low shear stress. The strain gages again indicated that a relatively pure shear had been applied, since the readings at +45° and -45° were equal but of opposite sign, and the 0° gage was near zero. However, one surface of the specimen picked up load earlier and was strained more critically than the other, as noted in the following data.

alianta di Banalia di Sana

nnad halanannannanna harangan muuristationan

Figure 55. RT Compression Poisson's Ratio for Narmco 2387 Resin

Figure 56. Pure In-Plane Shear Loading Test Fixture Sketch

ality of the second second second

in.

1.11

Fighterentiation in the property in which is the particular in the state of the sta

Nie Arkeite

SALAH DI ALEMER

well for our restance in the state of the state of the second state

いたのかがい

1.29

:

Load Increment	Rosette	Strain Gage Strain (Readings Gage Orier	-μ in./in. ntation
(Pounds)	Location	+45°	0°	-45°
0-50	Side 1	+708	51	-692
	Side 2	-98	-19	+117
50-565	Side 1	+2,483	-76	-2,711
	Side 2	+2,203	-167	-2,138
0-565	Side 1	+3,191	-25	-3,403
	Side 2	+2,105	-186	-2,021

Using the data from the 0-565-pound loading, the critical surface is 1.23 times the average. If this ratio is used, the failing stress on this surface would be (1.23) (1,540), or about 1,900 psi, still well below expected strength, being 1,900/4,130, or 45 percent of the tensile strength of specimens without postcure.

The early failure of this specimen is undoubtably due to the stress concentration developed at the ends of the diagonal slots. This factor is also indicated by the form of fracture of the test area as illustrated in figure 58.

A data sheet (table LIX) and shear stress versus shear strain plot for the two increments recorded (figure 59) are included, covering the room temperature properties.

Ĭ

Figure 58. Resin Shear Specimen Diagram Showing Fracture Locations

TABLE LIX. RESIN MATRIX STATIC PROPERTY DATA

Material System: <u>Narmco 2387</u> Resin

Type Type Soal	e Loading: Te e Test Specimer k at Temp	ension : Pure	, Com shear P F for	mp], icture-F	Shear <u>x</u> rame Spec	, Inte	erlam She	ar []
Property	Batch No. Spec Ident		(1)					Are
	F ^{p1}		(<u>1)</u> _			1		-
(Ksi)	F.85		-			1		
s F.70		-					-	
Str	F at 2/3 ϵ_1^{ul}	.t						-
	Fult		(2) 1,54					1.54
وم الم الم الم الم الم الم الم الم الم ال		iry)	0.191					0.191
Modul E,G	E' or G' (secondary)		-					-
n./in.	Proportional Limit	$\frac{\epsilon_1}{\epsilon_2}$						-
itrain i	Ultimate	€45 €1 €2	0.00825	(3)				0.00825
Actual	Specimen Thickr	ess <u>=</u>	0.210 in.				<u> </u>	
Resin D	ensity							
Resin D M	esignation <u>238</u> anufacturer <u>Nar</u>	7 11CO						
Cure Sp	ec <u>No post cu</u>	re	. <u></u>					
Comment (2) Pre	s: <u>(1)</u> Instrum emature failure	ented due t	with back o stress	-to-back	strain	rosettes slots		

(3) Extrapolated

12. A. 20 A. 7 B. & D. A. BUSHLAND

Figure 59. Room Temperature Shear Stress-Strain Plot for Narmco 2387 Resin

Matrix Fatigue Strength

Fatigue strength of the bulk 2387 resin material was determined by using the same type specimen used in the tensile property program. On the basis of results of the tensile testing, it was decided to postcure all specimens 4 hours at 350° F.

Although postcured strengths of the two room temperature specimens differed (4.67 ksi and 7.55 ksi), the lower value was considered to be a "bad" point compared with other sources and a basic strength of 7.26 ksi was chosen for the fatigue test program.

Fatigue specimens were cycled at various stress levels between 40 and 60 percent of this value, using an "R" factor of 0.10. Results were as follows:

Percent Static Strength	Max Stress (ksi)	Cycles to Failure
40	2.85	No failure*
42	3.0	497,050
44	3.2	34,100
45	3.3	104,000
50	3.6	25,350
52	3.8	16,700
61	4.45	1,450

*After 10,397,000 cycles

An S-N plot indicating percentage of static strength (based on 7.26 ksi) versus cycles to failure is shown in figure 60. The consistency of the fatigue data is unexpected, considering the variation of static tensile strength.

The specimen which was cycled at 40 percent without fatigue failure was static tested. Static failure of this specimen occurred at 7.44 ksi, which was above the basic assumed static strength and essentially equal to the best postcured resin test strength of 7.55 ksi.

Matrix Creep Strength

Creep strength of the bulk 2387 resin material was determined by testing three postcured tensile-type specimens at 350° F. Static strength at 350° F for this batch of material (considering casting, curing, and postcuring) was considered to be about 3,000 psi. The initial stress level was 1,000 psi, and on the basis of its short life, the remaining levels were chosen lower. Results were as follows:

Specimen	Percent Static Strength	Creep Load Level (psi)	Failing Deformation (in./in.)	Time to Failure (hours)
1	33	1,000	0.080	2.0
2	25	750	0.046	1.1
3	17	500	0.044	3.8

A plot of the total strain versus time after load application is shown for each specimen in figure 61. The second, or 750 psi, specimen appears inconsistent with the others. No reason for the low elongation was evident, but it may have been a result of the minute voids (bubbles) found in this batch of material. All specimens contained these voids to a similar degree as well as could be determined by visual examination.

Matrix Thermal Coefficient of Expansion

Coefficient of thermal expansion values for the bulk 2387 resin were determined by using the broken elevated temperature shear specimen. Readings of the individual legs of the back-to-back rosettes indicated a uniform response in all directions. However, there was some creep apparent above the 300° F temperature level during the first run (probably due to incomplete postcure), resulting in significant zero readings on return to room temperature. A second run, however, gave the same low temperature data and relatively small zero readings on return to room temperature.

Values of the coefficient of thermal expansion were based on the second run and are calculated in the following table. A plot of the values versus temperature is given in figure 62.

Temperature (T)	∆т	α_{Gage}	$\Sigma \epsilon_{\text{Resin}}$	Apparent ^Q Resin	Actual* ^α Resin
°F	°F	(µin./in./°F)	(µin./in.)	(µin./in./°F)	(µin./in./°F)
72	0	-	-	-	-
100	28	6.05	620	22.1	28.1
150	78	6.26	1,870	24.0	30.2
200	128	6.69	3,220	25.2	31.8
250	178	6.97	4,650	26.1	33.0
300	228	7.22	6,250	27.4	34.6
350	278	7.34	8,250	29.7	37.0

*Average integrated value of α over entire ΔT range between T and room temperature (i.e., not value of α at temperature T)

Hillin & Hill

al a de la la la caracter des

•

Figure 62. Integrated Average Coefficient of Thermal Expansion for Narmco 2387 Over Range Between RT and Indicated Temperature

Ţ

SCRIM CLOTH

interesti. Maadidada hittiin tarihtiin hittiin hittiin hara atterveettii

Mechanical and physical properties of the 104 glass fabric scrim cloth laminate made with the Narmco 2387 resin system without filler were determined at room temperature and 350° F, as outlined in the test program of table LX. Specimens were made from a 12-ply laminate panel with ply thickness about 0.001 inch, giving a final laminate thickness of about 0.012. The cure cycle was identical to that used for the boron/epoxy laminates reported. Properties determined included E^{C} , E^{t} , F^{tu} , F^{Cu} , F^{Su} , ν , G, and the associated stressstrain curves at room temperature and 350° F. In addition, the coefficient of thermal expansion limited creep data at 350° F, and room temperature fatigue strength were determined.

Scrim Cloth Tensile Strength

Longitudinal and transverse room temperature and elevated temperature tensile test data for 104 glass scrim cloth and 2387 resin are presented in tables LXI through LXIV and in figures 63 through 68.

The following summary of average ultimate tensile strength and moduli is given for comparison purposes.

Type Allowable	Room Temperature	350° F
F ^{tu} , ksi (average)	35.95	35.38
F ^{tu} , ksi (average)	11.59	10.61
E ^t , Msi (average)	2.88	2.47
E _T , Msi (average)	1.59	1.28

Since the results of the first creep specimen indicated this property to be relatively noncritical for design, it was decided to postcure and static test the remaining two creep specimens. Strength of postcured scrim cloth laminates was of special interest since there was evidence that postcuring would increase the strength of Narmco 2387 resin. The two untested creep specimens were therefore postcured for 14 hours at 350° F to insure the attainment of all postcure effects and then statically tested.

Туре	Test	Type *** Laminate	Thickness	Specimen Type and Size	Number of Specimens	Temperature	Strain Gage and Instrumentation Required		
	•	104 Coluit	12 ply	IITRI 1/2 x 9	5	RT	0°, 90°		
u	Long.	104 fabric	12 ply	IITRI 1/2 x 9	3 ·	350° F	strain gages		
Tensi	Coeff of therm exp	104 fabric	12 ply	IITRI 1/2 x 9	(1*)	RT → 350	0°, 90° strain gages		
	Trans	104 fabric	12 ply	IITRI 1x9	3 3	RT 350	0°, 90° strain gages		
Con	mression	104 fabric 12		2 w x 8 h Sandwich panel 1/8 cell HC **	3	. RT	0°, 90° strain gages		
	10103310A	10		Edge-loaded	3	350° F	0.0		
Cre	еер	104 fabric long.	12 ply	IITRI 1/2 x 9	1	350° F	One O° strain gage per specimen		
Fa	tigue	104 fabric long.	12 ply	11TRI 1/2 x 9	10 R = 0.1 at 10 stress levels	RT	No instrumentation		
		 _			1	PT	One		
Sh	ear	104 fabric	12 ply	Slotted picture frame 6 x 6 1/8 Cell HC **	1	350° F	strain gage rosette per specimen		
To	tal	-	-	-	33 + (1)*	-	-		
*	<pre>* Conducted using one of the transverse tensile specimens ** 1/8-5055-0.001 (4.5 lb/ft³) aluminum HC, 1 inch thick *** 104 glass fabric prepreg using 5505 resin</pre>								
	without fi	ller (≈0.00]	thickness/p	ly)					

.

TABLE LX. SCRIM CLOTH CHARACTERIZATION TEST PROGRAM

140

Material Typ Typ Soa	l System: <u>10</u> De Loading: T De Test Specime ak at Temp	04 Clas ension n: <u>Cou</u>	s Fabric [X], G pon, 1/2 °F for_	:/Epoxy cmp □, x 9 inc	Lam Orien Load Orien Shear hes with 1 Ir.	nt: <u>[0/90] Wov</u> ent: , Interlam <u>-1/2 tabs</u> Test Temp	en 0° Shear RT°F
	Batch No.						
Property	y Spec Iden	t	1	2	3 (2)		
	Fb1		21.2	21.8	21.0		21.3
(Ksi)	F.85						
ess	F.70						
Stre	F at 2/3 ϵ_1^{u}	lt	24.7	25.7	22.4		24.2
	Fult		36.7	37.8	33.3		35.9
lus x10 ⁻⁶	E or G (prim	E or G (primary)		2.7	3.2		2.8
Mođu] E,G	E' or G' (secondary)	E' or G' (secondary)		2.3	2.8		2.4
'n.	Proportional	ϵ_1	.00780	.00820	.00580		.00726
n./	Limit	E2			:000960		:000960
ц ц		<i>e</i> ₄₅					
cai	Ultimate	ϵ_1	.01380	.01480	.01100		.01320
Stı		EAS	<u> </u>	 	.001230		
No. of P Spec Lam Properti	lies <u>12</u> inate Thickness es based on:	s: Ma Nomir	ax nal Thick	Actual La _, Min kness X	minate Thi , 1 ; Actua	ickness <u>0110</u> Nominal <u>012</u> al Thickness	<u>to .011</u> 7
Filament Fil Vol	Count / Fract	/in. Res	Void Co sin Wt Fr	ontent ract	% Ply Lam I	y Thick Density	in. 1b/in. ³
Cure Spe	Matrix Desi Scrim Cloth	g. <u>Nar</u>	mco <u>2387</u>	without	filler ma Additives	terials Used	
Comments	:(2) Strain	-gaged					······

TABLE LXI. FILAMENTARY LAMINATE STATIC PROPERTY DATA

and the second support of the second s

and the second secon

ar ree years a star a sta star a sta

Station & Marchan

in the second states in

ų,

Thread a

....

;

Material Typ Tyr Soa	System: <u>104 G</u> e Loading: Te e Test Specimen k at Temp	lass F nsion : <u>Coup</u> 350	abric/Ep X, Cc on, 1/2 F for	oxy pmp[], x 9 in, w 0.17 H	Lam Orie Load Ori Shear <u>ith 1-1/2</u> r.	nt: <u>[0/90]</u> ent: <u>0°</u> , Inte 2 in, Tab: Test Temp	Woven rlam She s 350	ar []
Batch No.								
Property	Spec Ident		1	2	3 (2)			Ave.
	Fbl		-	13.0	-			-
(Ksi)	F.85		-	-	-			-
es ,	F.70		-	-	-		*	-
Str	F at 2/3 ϵ_1^{ul}	.t	28.7	18.9	25.0			24.2
	Fult	F ^{ult}		26.0	36.7			35.3
us دا0 ⁻⁶	E or G (prima	E or G (primary)		2.34	2.95			2.47
Modul E,G	E' or G' (secondary)	E' or G' (secondary)		1.875	-			-
/in.	Proportional e	 <i>ϵ</i> ₁	-	.00410				-
Ŀ.		E2	-			ļ	 	-
н. Ц		¢45	-	-	-			
rai	Ultimate	En			00121		<u> </u>	
St		€ 45	-	-	-		<u> </u>	-
No. of F Spec Lam Properci	Plies <u>12</u> ninate Thickness les based on:	s: M Nomi:	ax <u> </u>	Actual La , Min. kness X	minate Th , ; Actu	nickness Nominal Mal Thick	0.0110 .012 ness	
Filament Fil Vol	: Count , Fract	/in. Re:	Void C sin Wt F	ontent ract <u>0,</u>	% P1 Lam	ly Thick. Density_	1b/	in. 'in. ³
Cure Spe	Matrix Desi Scrim Cloth	g. Nar	mco <u>238</u> 7	without	filler. Additive	es Used		
Comments	:(2) Strai	n-gage	d			· · · · · · · · · · · · · · · · · · ·		

TABLE LXII. FILAMENTARY LAMINATE STATIC PROPERTY DATA

The last of the la

ALC: NOT BEEN AVE

Material System: 104 Glass Fabric/Epoxy Load Orient: 1090 Material System: 104 Glass Fabric/Epoxy Load Orient: 90° Type Loading. Tension X, Comp , Shear , Interlam Shear Interlam Shear Type Test Specimen: Coupon, 1 x 9 in. with 1-1/2 in. tabs Soak at Temp °F for Hr. Test Temp °F								
Batch No.						Ave		
							7.05	
(Ksi)	Fr-		7.35	7.20	9.00		}	1.85
	F.85		-	-	-			-
SSS	F.70		-	-	-			-
Stre	F at 2/3 ϵ_1^{ult}		7.40	7.55	9.1			8.01
	Fult		10.58	10.77	13.41			11.59
Modulus E,Gx10 ⁻⁶	E or G (primary)		1.54	1.68	1.54			1.59
	E' or G' (secondary)		-	1.26	1.25			-
in.	Proportional Limit	€ 1	.00525	.00470	.00555			.00517
/·u		ε ₂		-	000600			-
i d		<i>ϵ</i> ₄₅	-	-	-	ļ	ļ	
air	Ultimate	ϵ_1	.00750	.00750	.00837	 	<u> </u>	00779
Str		E AS	<u>↓ </u>	<u>↓_</u>	<u>000810</u>		╉───╼	_
No. of Plies 12 Actual Laminate Thickness .01100115 inch Spec Laminate Thickness: Max, Min, Nominal .012 Properties based on: Nominal Thickness x ; Actual Thickness								
Filament Count /in. Void Content % Ply Thick in. Fil Vol Fract Resin Wt Fract Lam Density 1b/in.3								
Matrix Desig. Narmco 2387 without filler.								
Scrim Cloth Additives Used								
Cure Spec								
Comments: (2) Strain-gaged								

TABLE LXIII. FILAMENTARY LAMINATE STATIC PROPERTY DATA

and shirts of a straight and shirts of the

Material Typ Typ Soa	System: <u>104 (</u> e Loading: Te e Test Specimen k at Temp	lass nsion : <u>Cou</u> 350 °	Fabric/Ep x, Co pon, 1 x F for	poxy mp [], 9 in. wi	Lam Orien Load Orie Shear th 1-1/2 r.	nt: [0/90] ent: 9 , Inter in. Tabs Test Temp	Woven 0° rlam Shear 350
Property	Batch No.			······	~ (2)		
Property Spec Ident			4	3 (2)		Ave.	
	F ^{p1}	4.20	4.25	4.55		4.33	
(Ksi)	F.85		8.20	-	-		-
ess	^F .70		-	-	-		-
Str	F at 2/3 ϵ_1^{ult}		6.25	7.80	8.20		7.42
	Fult		8.66	11.44	11.73		10.61
us c10 ⁻⁶	E or G (primary)		1.17	1.16	1.51		1.28
Modul E,Gx	E' or G' (secondary)		1.09	.99	1.23		1.10
/in.	Proportional Limit	ϵ_1	.00390	.00370	.00315		.00354
		E2			000320		
u i	Ultimate	¢45	-	-	-		-
rai		E2	-	-	00069		-
St		€45	-	-	-		
No. of H Spec Lam Properti	Plies <u>12</u> minate Thickness ies based on:	s: M Nomi	ax nal Thic	Actual La _, Min kness X	minate Th , ; Actu	nickness _ Nominal _ Mal Thickn	0.0110 .012 ness
Filament Fil Vol	Count/ Fract _0	in. Re	Void C sin Wt F	ontent ract_ <u>0.</u>	%P1 Lam	y Thick Density	in. 1b/in.3
Cure Spe	Matrix Desi Scrim Cloth	g. <u>Na</u>	irmco 238	7 withou	t filler. _ Additive	es Used	
Comments	s: <u>(2)</u> Strain	-gageo	1				

TABLE LXIV. FILAMENTARY LAMINATE STATIC PROPERTY DATA

Figure 63. Longitudinal Tension Stress-Strain Curves - 104 Glass Scrim Cloth - RT

Figure 64. Longitudinal Tension Stress-Strain Curves - 104 Glass Scrim Cloth -350° F

:

)

Į

istisenter Baranan dittal Education ditta

THE REAL STREET, STREE

March Sec. 200

E

Figure 65. Poisson's Ratio $\nu_{\rm XY}$ vs $\epsilon_{\rm X}$ - 104 Glass Scrim Cloth

Figure 66. Transverse Tension Stress-Strain Curve - 104 Glass Scrim Cloth -RT

THE REAL PROPERTY.

The second

hitar saadan maankalikalikatai pitantaks

and Contractional Difference Additional-Disco an in the second second second

Figure 67. Transverse Tension Stress-Strain Curve -104 Glass Scrim Cloth - 350° F

Figure 68. Poisson's Ratio ν_{yx} vs ϵ_y - 104 Glass Scrim Cloth

WILLIAM BERNY

Results of the postcured scrim cloth specimens are listed in table LXV and plotted in figures 69 and 70. Comparison of these data with earlier tests of specimens without postcure indicates that there is relatively little difference in room temperature properties, as noted in the following tabulation:

Property	Non-Postcured Specimens	Postcured Specimens
Proportional limit, F ^{tpl}	21.3 ksi	23.4 ksi
Ultimate stress, F ^{tu}	35.9 ksi	39.3 ksi
Modulus, E _x	2.88 Msi	2.90 Msi
Ultimate strain, $\epsilon^{ ext{tu}}$	0.0132 in./in.	.015 in./in.
Poisson's ratio, v-		
At straın 0.004 in/in	0.150	0.143
At strain 0.010 in/in	0.124	0.126
At strain 0.018 in/in	-	0.093

It can be concluded that postcure of the Narmco 2387 resin has no significant influence on the longitudinal properties of the scrim laminates at room temperature.

Scrim Cloth Compression Strength

independent die Anthe Anthe States

Room temperature compression properties of the 12-ply, 104 glass fabric laminates, tested as faces of a 1-inch-thick aluminum honeycomb sandwich specimen, are given in table LXVI and figure 71. Types of failure are shown in the photograph (figure 72). Failure occurred by a compressive fracture of the face sheet in a line across the specimen followed by an overlapping of the failed ends. In two instances, both faces failed simultaneously; in the other, only one face failed, resulting in a curved specimen shape.

Elevated temperature results are given in table LXVII and figure 73. The type of failure, shown in figure 74, was of a single face in all instances. Fracture was similar in appearance to the room temperature specimens.

Poisson's ratio results are shown for room and elevated temperature in figure 75.

Material System: <u>104 Glass Fabric/Epoxy</u> Load Orient: 0°								
Type Loading: Tension X, Comp , Shear , Interlam Shear								
Type Test Specimen: <u>Coupon, 1/2 x 9 in. with 1-1/2 in. tabs</u>								
Soa	k at Temp		F for	H:	r.	Test Temp	, <u> </u>	_°F
Batch No. (1)								
Property Spec Ident			2	1	γ		Ave	
	F ^{p1}	23.4	23.4				23.4	
Ksi	F.85							
 	E			<u> </u>		<u> </u>	 	
es:	1.70							
Str	F at $2/3 \epsilon_1$ ult							
			<u></u>	·			{	
	F ^{uit}		35.2	43.5	(2)			39.3
- 9	E or G (primary)		2.00	2 00				2 00
ST .01			2.90	2.90				2.90
lu v	E' or G'		<u> </u>		†	<u> </u>	<u> </u>	†
Hod E.	(secondary)							
		<u> </u>	<u> </u>		<u> </u>		┢╴───	<u> </u>
in.	Proportional Limit	ε1	.0083	.0085				.0084
		€ 2	00114	-	1	1	1	
ii -		£45					1	
ain	Ultimate	<u>€1</u>	.0130	.0169				.0150
tr		E2-	 	L	<u> </u>		<u></u>	
<u>دن</u>		e 45	<u> </u>	I				
No. of F	lies <u>12</u>		A	ctual La	minate T	hickness .	.0115	
Sj.ec Lan	inate Thicknes	s: M	ax	_, Min	······ ,	Nominal_	012	
Properti	es brand on:	Nomi	nal Thick	mess x	; Acti	ual Thick	ness	
Filmon*		/in	Void Co	ntent	§ D	ly Thick		jn.
Fil Vol	Frac: 0.	Re	sin Wt Fr	act 0.	Lam	Density	1b/	$\frac{1}{10.3}$
Laminate	e: Tape or Mat	rix De	sig <u>2387</u>	resin	Man	uf <u>Na</u>	armco	
Scrim Cloth Additives Used <u>No filler</u>								
Cure Spec								
(1) Specimens were postcured for 10 hours at 350° F								
comments	(2) Both	faile	ed at ext	ensomete	r pin poi	nt grip a	attachmen	
	(2) 200				r r	<u> </u>		

TABLE LXV. FILAMENTARY LAMINATE STATIC PROPERTY DATA Lam Orient: [0/90] Woven

152

A HER GER GER VERTREREN BEREREN BEREREN BEREREN GER BEREREN DE GER BEREREN DE GER BEREREN DE GER BEREREN DE GE De Ger bereren b

Đ

Figure 70. Poisson's Ratio for Postcured Scrim Laminate at Room Temp

バイト はちたほうれた。 べきじょうたいれいき いたくし バッチ

and and a statistic data of the generation and the state of the state of the state of
Material	System: <u>104 G1</u>	<u>ass Fa</u>	bric/Epo	ху	Load Ori	ent: 0°	<u></u>	
Тур	e Loading: Te	ension	 , Co	xmp 🔀 ,	Shear 🗍	, Inte	rlam She	ar 🗌
Soa	e lest Specimen k it Temp	1: <u>none</u>	YCOND Sa F for	<u>ndwich Ec</u>	lgewise Co	mpression	<u>i Spęcima</u> pr	<u>•n</u>
			1 101	/1	· ·			
``````````````````````````````````````	Batch No.			_	•			
Property	Spec Ident		1	2	3 (2)			Ave.
	Fb1		-9.15	-9.61	-8.87			-9.21
(Ksi)	F.85	_	-	-	-			-
ess	F.70		-	-	-		·	-
Str	F at 2/3 $\epsilon_1^{ul}$	.t	-16.6	-16.8	-16.8			-16.7
	F ^{ult}		-46.8	-47.9	-45.3			-46.7
us x10 ⁻⁶	E or G (prima	ary)	4.57	4.80	4.68			4.68
Modu] E,G	E' or G' (secondary)		3.04	3.21	-			3.12
/in.	Proportional	$\epsilon_1$	<b>.</b> 00 200	.00200	:00180			.00193
'n		E2	-	-	:000550			:000550
n i		e 45	-	-	-		<u> </u>	-
rai	Ultimate	6	.01190	1701230	_01190			-01203
St		ε45						100510
No. of Plies       Actual Laminate Thickness         Spec Laminate Thickness:       Max, Min, Nominal _012         Properties based on:       Nominal Thickness x ; Actual Thickness								
Filament Count /in.       Void Content % Ply Thick in.         Fil Vol Fract Resin Wt Fract Lam Density lb/in.3								
Laminate	: Tape or Matr Scrim Cloth	rix Des	sig_2387	resin	Manu Additive	fN s Used <u>N</u>	armco io filler	
Cure Spe	·C							
Comments	:(2) Stra	in-gag	ed					

## TABLE LXVI. FILAMENTARY LAMINATE STATIC PROPERTY DATA Lam Orient: <u>10/90</u> Woven

1

hadden about the street haddener.

on substanting and the state of 
-----



Figure 71. Longitudinal Compression - 104 Glass Scrim Cloth - RT



Material Type Type Soal	System: <u>104 Gla</u> e Loading: Te e Test Specimen k at Temp	nsion[ Honey 350°	Dric/Epox , Cor ycomb San F for_0	$\frac{y}{dwich Ed}$	Load Orie Shear [], gewise Co	nt: <u>0°</u> Inter mpression Test Temp	rlam Shea n Specime 35	
	Batcic No							p
Property	Spec Ident		4	5	6 (2)			Ave.
	F ^{p1}		-7.14	-8.72	-8.40			-8.09
(Ksi)	F.85		-	-	-			-
ss:	F.70		-	-	-			-
Stre	F at 2/3 $\epsilon_1^{ul}$	t	-20.0	-21.2	-20.5			-20.7
	Fult		-29.3	-30.6	-29.3			-29.7
us 10-6	E cr G (prima	iry)	4.12	3.98	4.68			4.26
Modul I:,Gx	E' or G' (secondary)		3.09	3.11	3.25			3.11
in.	Proportional	$\epsilon_1$	.00174	00225	00220			.00210
in./	Limit	€ <u>2</u>		-	+.0004			+.0004
Strain 1	Ultimate	$\epsilon_{45}$ $\epsilon_{1}$ $\epsilon_{2}$ $\epsilon_{45}$	- .00726 -		00838 +.00145			- -00813 -00145
No. of Plies <u>12</u> Spec Laminate Thickness: Max, Min, Nominal Properties based on: Nominal Thickness _X ; Actual Thickness								<u></u>
Filament Count /in.       Void Content % Ply Thick in.         Fil Vol Fract Resin Wt Fract Lam Density 1b/in.3								
Laminato Cure Spo	e: Tape or Mat Scrim Cloth	rix De	sig_ <u>238</u>	7 resin	Manu Additiv	uf <u>Na</u> ı es Used _	mco No fill	er
Comments	s: <u>(2)</u> Strai	in-gage	ed					,

TABLE LXVII. FILAMENTARY LAMINATE STATIC PROPERTY DATA Lam Orient: [0/90] Woven

158



And Alexandra and Alexandra and Alexandra

Figure 73. Longitudinal Compression - 104 Glass Scrim Cloth - 350°F





ters at the pression states at the content of the

יער לה. אני לה היו או אור להוצה אלי עודעלע לההולה היה היה היה היה היו אישר או אור היה היה או היה אורה או היה או היה היה היא אור אור להוצה אלי עודעלע לההולה היה היה היה היה היא היא היא אור אישר אור היה האורה אורה אור היה או

the state

or na cuidh tai.

Trues

Ì

. بوراریاریان

Se service in

l.

Figure 75. Poisson's Ratio  $u_{\rm XY}$  vs  $\epsilon_{\rm X}$  - 104 Glass Scrim Cloth

161

•

#### Scrim Cloth Shear Strength

In-plane shear tests at room temperature and  $350^{\circ}$  F were conducted on sandwich panel specimens having 12-ply, 104 scrim cloth laminate faces and 1/8-5052-0.001 aluminum honeycomb core. Specimens were instrumented with strain gage rosettes (EA-06-250RA-120, Micro-Measurements), one on each face of the honeycomb panel. (See sketch, figure 79.) The center leg (No. 2) of each rosette was parallel to the edge of the test section, thus coincident with the axis of the applied shear. The other legs (No. 1 and No. 3) were at +45° and -45° to the shear axis. Under this condition, pure shear will produce equal strains of opposite sign in gages No. 1 and No. 3, and a zero reading in gage No. 2. This condition was closely approximated by the recorded strain gage readings on both specimens, as indicated in the following tabulation:

	Load		Rosette	Strain ( Gage Ro to Shear	Gage Read tation Re r Axis	ing-μin./in. lative
Specimen	% Ultimate	Temperature	Location	+45°	0°	-45°
1	93	RT	Side 1 Side 2	10,962 9,805	1,381 60	-9,852 -10,003
- 2	92	350° F	Side 1 Side 2	22,220 20,610	312 711	-22,490 -21,650

In only one instance did the center gage reading represent a significant percentage of the diagonal readings. The surface ply of this face did not maintain true orthotropy but appeared to be off 90 degrees between warp and fill directions.

Shear strain and shear modulus were obtained from the +45° and -45° strain readings using the method shown in figure 76.

Room temperature strain gage readings are plotted versus applied shear stress in figure 77. These show the consistency of the recorded data and the nonlinearity of the shear response.

Results of the room temperature test are tabulated in the data sheet (table LXIII) and plotted as shear stress versus shear strain in figure 78. The specimen after failure is shown in figure 79.

Elevated temperature shear data have been processed in a similar manner. However, in this case, an estimated correction had to be made for the creep which was experienced, especially at the higher stress levels. From the record of machine head deflection, a composite loading curve was constructed by joining the segments representing the increase from each load level to the next. This eliminates the creep occurring during the reading periods and the



Figure 76. Calculation of Shear Modulus From Diagonal Strains



· .....

Figure 77. Shear Stress versus Shear Strain - 104 Glass Scrim Cloth - RT

164

	TABLE LXVIII.	FILAN	ENTARY L	AMINATE S	STATIC PR	OPERTY DA	TA	
Material	System: 104 (	lace	Fabric/F		Lam Orie	ent: <u>[0/90</u>	Woven	
Typ	e Loading: Te	nsion			Load Ur:	lent:	<u>U</u> arīam Sha	
Тур	e Test Specimen	: <u>_Pu</u>	re_Shear	Picture I	rame, II/	<u>C Sandwic</u>	h	
Soa	k at Temp		°F for	H	r.	Test Tem	DRT	°F
	Batch No.							
Property	Spec Ident		(1)			Т	<u> </u>	Ave.
	F ^{p1}		2.10					2.10
Ksi)	F.85		5.35					5.35
ess (	F.70	<u> </u>	7.95					7.95
Str	F at 2/3 $\epsilon_1^{ul}$	t	9.10					9.10
	Fult	<u> </u>	11.11					11.11
us c10 ⁻⁶	E or G (prima	ry)	.93					.93
Modul E,G	E' or G' (secondary)							
/in.	Proportional	γ	.00230					.00230
i.		-						
r R						<u> </u>	<b> </b>	
rai	Ultimate		.0229			+		.0227
.st	•					1		
No. of F Spec Lam Properti	lies <u>12/</u> inate Thickness es based on:	: M Nomi	A lax nal Thick	Actual La _, Min . Xness X	minate T ; Act	hickness Nominal ual Thick	.012 ness	•
Filament Count /in.       Void Content % Ply Thick in.         Fil Vol Fract Resin Wt Fract Lam Density 1b/in.3								
Laminate	: Tape or Matr	ix De	sig 2387	resin		lanuf. 🔤	Narmco	
	Scrim Cloth.			<u></u>	Additiv	es Used <u>}</u>	io filler	<u> </u>
Cure Spe	C							
Comments	: <u>(1)</u> Stra	in-ga	ged					

;

ž



Figure 78. Shear Stress versus Shear Strain - 104 Glass Scrim Cloth - RT

sosperies and developmentation and so Physics and the second second second second second second second second s





loading dropbacks. By applying the same percentage of loading deflection versus total deformation to the strain gage readings, a corrected plot of diagonal strain versus shear stress was developed to approximate a constant loading rate test.

An elevated temperature data sheet (table LXIX) is based on these results, and an estimated (creep-extracted) shear stress versus shear strain curve has been plotted (figure 80). The specimen after failure is shown in figure 81.

Material System:       104 Glass Fabric/Epoxy       Lam Orient:       0°         Type Loading:       Tension       , Comp       , Shear X       , Interlam Shear         Type Test Specimen:       Pure Shear Picture Frame /H/C Sandwich         Soak at Temp       350°F for       .33       Hr.       Test Temp       350°F									
	Batch No.								
Property	Spec Ident		(1)	2 <b></b>				Ave.	
	Fbl		1.10					1.10	
(Ksi)	F.85		2.80					2.80	
ess	F.70		4.05					4.05	
Str	F at 2/3 $\epsilon_1^{ul}$	t	5.25					5.25	
	F ^{ult}	_	6.85					6.85	
us c10 ⁻⁶	E or G (prima	ry)	.50					.50	
Modul E,G	E' or G' (secondary)								
'in.	Proportional	<b>ε</b> 1	.00220					.00220	
in./	LIMIT	€ <u>2</u>							
in		€ <u>45</u> € 1	0271					.0271	
tra	Ultimate	E2							
S		€45		l					
No. of Plies <u>12/Face</u> Actual Laminate Thickness         Spec Laminate Thickness: Max, Min, Nominal <u>.012</u> Properties based on: Nominal Thickness X ; Actual Thickness									
Filament Count /in.       Void Content % Ply Thick in.         Fil Vol Fract Resin Wt Fract Lam Density lb/in.3									
Laminate	: Tape or Mati	rix Des	sig <u>238</u> 7	resin		Manuf.	Narmco		
	Scrim Cloth				Additiv	es Used	No fil	<u>! 'r</u>	
Cure Spe	C								
Comments	: <u>(1)</u> Strai	n-gage	d			,			

TABLE LXIX. FILAMENTARY LAMINATE STATIC PROPERTY DATA

1215

ikan kutan bindeni birnam tahu nahadi milan di kan kutan dingera sama an manyakan di kara dagi sina da

THE REAL

CINCERSING.



Figure 80. Shear Stress versus Shear Strain - 104 Glass Scrim Cioth - 350°F



#### Scrim Cloth Fatigue Strength

Fatigue test data for the longitudinal scrim cloth/2387 resin room temperature specimens are presented in the form of a conventional S-N curve (figure 82). The ordinate is in terms of percentage of the ultimate tensile strength, which was chosen as 36.6 ksi at the time the fatigue tests were conducted. This is so close to the final average tensile ultimate (35.95 ksi) that the curve was not replotted to the later value.

It is significant to note that while the curve follows a typical shape, the relative percentage is well above that of most of the typical structural metallic materials.

The test was conducted for a single R factor of 0.10 to avoid load reversal on the specimen. The data are unusually consistent for fatigue results, and a trend curve has been plotted through the lower values.

#### Scrim Cloth Creep Strength

Three creep tests of the 104 glass fabric/2387 resin laminate were originally scheduled. The creep test of the initial 12-ply (longitudinal) laminate at 350° F was terminated without a failure after increasing the stress to about 85 percent of the average static elevated temperature strength. Initial loading of the specimen was up to an 80-percent strength level. After 382 hours of this load without creep, the load was raised to 82.5 percent for 23 hours and then raised to 85 percent to the termination of the test.

No noticeable creep was observed at the 82.5 percent load, but after application of 85 percent, a relatively steady increase in strain gage reading was observed as noted in figure 83. After 580 hours, a very rapid increase in strain was observed, which soon resulted in loss of gage readings but no failure of the specimen. Loading was maintained for 4 days longer (677.2 hours from start); then the specimen was unloaded for inspection.

An electrical check of the gage confirmed an open grid circuit. This obviously was the cause of the rapid increase in readings over the 1-hour interval. There is no way of knowing whether or not some of the apparent creep prior to this time was also caused by gage failure.

There was a very severe darkening of the specimen, the surface being almost black. There may also have been some embrittling of the material because when the specimen was accidentally dropped, both end tabs broke off.



PERCENT OF TENSION ULTIMATE

173

No. of Lot of Lo

;



Figure 83. Strain versus Time for 104 Glass Creep Test

As a result of the high percentage load and relatively long life without significant creep, it was decided to test the remaining two creep specimens statically at  $350^{\circ}$  F. It is suspected that one reason for the scatter in elevated temperature tensile strength might be the sensitivity to postcure. (Previous test results varied from 26 to 43 ksi.) To evaluate this, the two remaining creep specimens were postcured for 14 hours at  $350^{\circ}$  F and then static tested at  $350^{\circ}$  F. Test results are given under the section on scrim cloth tensile strength.

#### Scrim Cloth Thermal Coefficient

Coefficient of thermal expansion data for the 104 glass fabric/5505 resin laminate were based on back-to-back strain gages on a 1- x 9-inch, 12-ply laminate. Differences in readings between the two sides indicated that considerable warpage occurred when the specimen was heated. Results are based on the averaged readings of the back-to-back gages of the unrestrained laminate. The method of calculating the results, using the strain gage thermal characteristics is shown in table LXX. The resulting coefficient of thermal expansion data for the laminate are given in figure 84.

#### NUCLEAR BLAST EFFECTS ON BORON/EPOXY LAMINATES

#### INTRODUCTION

Nuclear blast effects are normally considered to fall into three categories. Two of these, nuclear radiation and thermal shock, are of a specialized nature and merit separate consideration in the acquisition of basic material allowable data. The third environment, overpressure, is indistinguishable from any other type of dynamic airload, and can be handled in the same manner as other mechanical loadings.

To determine the nuclear radiation effect on boron/epoxy composites, mechanical property test coupons were exposed in a nuclear reactor to different periods of time. Thermal shock effects from nuclear blasts were simulated through the use of quartz heating lamps with the test coupons held under load prior to imposing the thermal shock. The degree of degradation was determined by comparison of the remaining strength with strength data from basic allowable tests on unexposed material.

Tempera	ture	ΔT	^a gage (1)	104 Fabric, Reading	Longitudinal ^a x (2)(3)	104 Fabric, Reading	Transverse ^a y (2)(3)	
		(°F)	(µ in./in./°F)	ΔT (µ in./in./°F)	(μ in./in./°F)	ΔT (µ <b>in./in./°</b> F)	(µ in./in./°F)	
75°		0	1	t			t	
100°		25	6.05	0	6.05	3.60	9.65	
150°		75	6.26	- , 33	5.93	3.60	9.86	
200°		125	6,69	- , 80	5,89	2.73	9.42	
250°		175	6.97	80	6.17	2.63	9.60	
300°		225	7.22	62	6.60	2.97	10.19	
350°		275	7.34	36	6.98	3.27	10.61	
(1)	(α) gag	II II	[(α) ₁₀₁₈ steel	<ul> <li>apparent stra ^ΔT</li> </ul>	<u>iin</u> ] on 1018 stee	I		
(2)	(α) com	posit(	$= (\alpha)$ = $(\alpha)$ = $\frac{\alpha T}{\Delta T}$	ut (µ in/in/°F	(:			
(3)	α lis	ted i:	s integrated ave	rage over entire	e dT range			

TABLE LXX. COEFFICIENT OF THERMAL EXPANSION FOR 104 SCRIF, CLOTH LAMINATE



<u>, della dagina daginati bisarteettee</u> Unit<u>anne 2000 daginati bilaana da</u>in

Figure 84. Integrated Average Coefficient of Thermal Expansion vs Temperature — 104 Glass Scrim Cloth

#### Test Specimens

The boron/epoxy test specimens of table LXXI were fabricated per the configuration of figures 85 through 87. A 104 glass balance ply was used on both the crossply and unidirectional orientation.

Eight of the thermal shock coupons (four tension, four compression) were submitted to the Air Force Materials Laboratory at Wright Patterson Air Force Base, Ohio, for the following high-temperature protective coating. The selected samples were primed with a catalyzed silicone primer to a dry film thickness of  $1.0 \pm 0.2$  mil, and then top-coated with catalyzed white silicone topcoat in-house formulation No. AF-66 to a dry film thickness of  $3.0 \pm 0.2$  mils. Formulation No. AF-66 is a white, highly reflective, emissive, high-gloss, high-temperature silicone primer and topcoat combination which was developed to meet the requirements for use on high-speed (mach 3) aircraft (reference 2).

#### NUCLEAR RADIATION

#### Test Loads and Test Procedure

The primary radiation effect of interest to the degradation of materials is considered to be from fast neutron radiation. On the basis of aircraft vulnerability requirements, an exposure of  $1 \times 10^{12}$  neutrons per square centimeter was selected as an integrated single exposure, with six such exposures used to simulate a typical expected lifetime air vehicle exposure.

Irradiation of the boron/epoxy specimens was conducted at the 2-megawatt Battelle Research Reactor (BRR Irradiation No. 1859). This facility is located 15 miles west of Columbus, Ohio, where the core of MTR-type aluminum fuel assemblies is suspended in demineralized water, 25 feet below a mobile bridge. Available unperturbed radiation levels at the core face are approximately:

Fast-neutron flux

 $1 \times 10^{13} \text{ n/(cm^2)(sec)}$ 

Thermal-neutron flux

 $2 \times 10^{13} \text{ n/(cm^2)(sec)}$ 

Gamma dose rate

 $1 \times 10^8$  r per hour

Configuration	Environment	Quantity	Orientation
Tension	Control	4	[0] _{6T}
Standard 1/2 x 9 IITRI coupon		4	[0/±45/0] _{2S}
	Thermal shock	8	[0] _{6T}
		8	[0/±45/0] _{2S}
	Neutron radiation	6	[0] _{6T}
		6	[9/±45/0] 2S
Compression	Thermal shock	8	[0] _{6T}
l x 5 single-face compression sandwich speciman		8	[0/±45/0] _{2S}
	Neutron radiation	6	[0] _{6T}
		6	[0/±45/0] 2S
Interlaminar shear Standard short beam (0.25 x 0.60)	Neutron radiation	6	[0] _{6T}

# TABLE LXXI. TEST SPECIMENS - NUCLEAR BLAST EFFECTS

INTERNATION.

- 1 C

東王



Figure 85. . Tension Specimen

;

asaarkastaananashaanaanaanaanaanaayig

Distant of



÷,

¥ 5, 11 (24

र केल्फ 105

areataste ' artistatista atustististatistati atustisti b

HEREDARKSINSTATIONTAL OF AND ADDRAWNS

Figure 86. Compression Specimen



### SPECIMEN DIMENSIONS

 LOAD METHODS

S = 0.4 OVERHANG MUST BE RAME OVER EACH END

LOAD AND REACTION SUPPORTS ARE 1/8 IN. RADIUS STEEL RODS. ALL FILAMENTS ARE O^O TO THE L DIMENSION.

Figure 87. Interlaminar Shear Test Specimen

The specimens were grouped into sample sets numbered 1 through 6. Each sample set was composed of one each of the following specimens:  $\begin{bmatrix} 0 \end{bmatrix}_{C}$  compression,  $\begin{bmatrix} 0_{2}/\pm 45 \end{bmatrix}_{C}$  compression,  $\begin{bmatrix} 0 \end{bmatrix}_{C}$  tension, and  $\begin{bmatrix} 0_{2}/\pm 45 \end{bmatrix}_{C}$  tension. The three small coupons of composite for interlaminar shear tests were placed one each in sample sets 1, 3, and 6. The samples were affixed to aluminum plates with aluminum foil molded to conform to the shapes of the specimens. A dosimeter wire was then attached to each assembly and the assemblies covered with a 20-mil cadmium wrapper to shield the samples from thermal neutrons. These assemblies were then double-sealed in polyethylene bags under a nitrogen atmosphere and irradiated, one side only, in a neutron flux of approximately 7 x 10⁹ neutrons/cm²/sec for the prescribed times. Dose measurements indicated that the range of doses to the samples did not span the required 6 x 10¹² neutrons/cm²; therefore, sample sets 3 and 5 were reirradiated. The integrated fast-neutron (>0.1 mev) doses were:

Sample Set No.	Fast-Neutron Dose
	$(Tn/cm^2)$
1	0.4
2	1.1
4	2.0
6	3.1
3	6.2
5	7.2

Reactor pool water leaked into the inner polyethylene bag during underwater handling. However, the samples were subsequently decontaminated using only clear water. A survey for removable surface contamination showed that all contamination had been removed by this method.

#### Test Results

Results of tension tests conducted on control coupons taken from the laminates to be incorporated into the nuclear radiation specimens are documented in table LXXII. Results of the irradiated specimens are documented in table LXXIII with photographs of the failed specimens presented as figures 88 through 92. All tests were performed at room temperature on an Instron Test Machine.

RADIATION
SPECIMENS -
CONTROL
ILTS FOR
<b>EST RESU</b>
TENSION T
. 11XX.1
rari.F.

Ftu (Nominal) (psi)	176,300	186,200	181,300	102,900	104,600	103,700	
Ftu (Actual) (psi)	168,700	177,100	172,900	100,300	102,400	101,300	
Load (Pounds)	2,740	2,970	Average	2,180	2,220	Average	
Nominal * Thickness (Inches)	0.0312	0.0312		0.0416	0.0416		
Actual Thickness (Inches)	0.0326	0.0328		0.0427	0.0425		
Width (Inches)	0.498	0.511		0.509	0.510		
Orientation	[0] _{6T}	[0] ⁶		[0/±45/0] _{2S}	[0/±45/0] ₂ S		
Specimen No.	3894-39-1	3894-39-2		3894-39-3	3894-39-4		

* Based on nominal lamina thickness of 0.0052 inch

SPECIMENS
IRRADIATED
OF
RESULTS
TEST
LXXIII.
TABLE

ELECTRONIC STREET

tu inal) și)	Avg 178,200	Avg 102,500	Avg 183,600 Avg 171,700	Avg 11,060
F (Nom (p:	175,700 171,600 175,600 176,500 189,000 180,600	102,800 97,800 104,900 95,700 109,400 104,300	239,400 188,500 179,400 169,200 162,900 162,900 170,400 171,000 171,000 176,600 191,100	10,500 11,100 10,000 12,000 11,000
Ftu (Actual) (psi)	166,100 162,300 166,100 166,800 178,600 170,700	101,800 94,600 103,990 92,600 105,900 100,900	226,400 178,200 169,600 155,400 154,000 154,900 164,900 165,400 165,400 170,800 184,800	9,900 10,500 9,500 11,400 10,400 10,800
Load (Pounds)	2,730 2,530 2,730 2,720 2,960 2,800	2,100 1,950 2,175 2,000 2,250 2,175	7.180 5,600 5,475 4,900 6,900 6,900 6,575 6,570 7,720	113 120 128 119 126
Nominal Thickness (Inches)	0.0312	0.0416	0.0312	0.0312
Actual Thickness (Inches)	0.033	0.042 0.043 0.043 0.043 0.043 0.043	0.033	0.033 0.033 0.053
Width (Inches)	0.498 0.491 0.498 0.494 0.494 0.502	0.479 0.479 0.502 0.502 0.501	0.961 0.952 0.978 0.928 0.964 0.975 0.975 0.971 0.971	0.258 0.258 0.265 0.255 0.255 0.259
Orientation	[0]6T	[0/±45/0]25	[0]6T [0]6T [0/±45/0]2S [0/±45/0]2S	[0] _{6T}
Radiation Sample Set No.		0 M O M A N O	しちちいこのこれらの	ס סטיטי די די
Specimen No.	3894-39-R1-1 3894-39-R1-2 3894-39-R1-2 3894-39-R1-3 3894-39-R1-5 3894-39-R1-5 3894-30-R1-6	3894-59-85-1 3894-59-85-1 3894-39-85-2 3894-39-85-5 3894-59-85-4 3894-59-85-4 3894-39-85-6	3894-39-1A-1 5.94-39-1A-2 3894-39-1A-2 3894-39-1A-3 3894-39-1B-4 5894-39-1B-6 3894-39-3A-1 3894-39-3A-2 3894-39-3A-2 3894-39-3A-2 3894-39-3B-5 3894-39-5B-5	3894-59-1A 3894-59-1A 5。34-59-5A 3894-59-5B 3894-39-6A 3894-39-6A
Test	Tension		Compression	Irterlaminar Shear



Figure 88. Failed Radiation  $[0]_{6T}$  Tension Specimens



Figure 89. Failed Radiation  $[0/\pm45/0]_{2S}$  Tension Specimens

Statistic Statistics of the Statistics



Figure 90. Failed Radiation  $[0]_{6T}$  Compression Specimens



Figure 91. Failed Radiation [0/±45/0]_{2S} Compression Specimens



Figure 92. Failed Radiation [0]_{6T} Interlaminar Shear Specimens

www we that the state of the st
#### THERMAL SHOCK

# Test Loads and Test Procedure

The analytical determination of an integrated thermal input rate, based on 50 calories per square centimeter per aircraft vulnerability requirements, is shown as figure 93. Calculations were made for a 0.050 external aircraft aluminum skin painted white. A calibration was made to position quartz lamps to duplicate this response as closely as possible using 0.050 aluminum painted black. Three quartz lamps of 2,000 watts each at 230 to 250 volts ac, positioned 3/4 inch from the front face of the specimen, produced 350° F on the back face in 8 seconds. All boron/epoxy specimens were tested with the lamps held at this position, with all specimens painted black on the exposure side except those having the AF-66 thermal protective coating. All thermal shock tests were conducted using an MB tensile machine with a 20,000-pound constant load maintainer, calibrated 16 June 1969. The test specimens were preloaded to different stress levels and held under load while imposing the thermal shock; the loading was continued to failure after the heat was dissipated with an air blast at 90 psi. Photographs of the test setup are shown in figures 94, 95, and 96.

## Test Results

Results of tension tests conducted on control coupons taken from the laminates to be incorporated into the thermal shock specimens are documented in table LXXIV. Results of the thermal shock tests are documented in table LXXV: photographs of the failed specimens are presented in figures 97 through 100.

#### CONCLUSIONS

On the basis of ultimate tensile and/or interlaminar shear strength, there is no degradation of boron/epoxy  $[0]_C$  and  $[0_2/\pm 45]_C$  laminates when subjected to fast-neutron (>0.1 mev) doses ranging from 0.4 to 7.2 Tn/cm². However, considerable degradation of ultimate tensile strength was experienced by similar composites when subjected to thermal shock loading, as shown in figure 101, unless an adequate thermal protective coating is utilized. No attempt is made to correlate the compression test data since the single-face test specimens were more sensitive to face-to-core bonding and stabilization than to the nuclear radiation or thermal shock environments.



Figure 93. Thermal Input

The section of the states of the section of the sec



Figure 94. Thermal Shock Test Setup





TABLE LXXIV. TENSION TEST RESULTS OF CONTROL SPECIMENS - THERMAL SHOCK

T

STERACTICS SPail

Ftu (Nominal) (psi)	181, v, .	180,012	180,544	107,641	88,610	98,125
Ftu (Actual) (psi)	171,200	172,812	172,006	104,137	86,734	95,435
Load (Pounds)	2,870	2,870	Average	2,230	1,880	Average
Nominal Thickness (Inches)	0.0312	0.0312		0.0416	0.0416	
Actual Thickness (Inches)	0.0330	0.0325		0.0430	0.0425	
Width (Inches)	0.508	0.511		0.498	0.510	
Orientation	[0] _{6T}	[0] _{6T}		[0/±45/0] _{2S}	[0/±45/0] _{2S}	
Specimen No.	3894-38-1	3894-38-2		3894-38-3	3894-38-4	

÷.,

-

TABLE LXXV. TEST RESULTS OF THERMAL SHOCK SPECIMENS

A THE PARTY

1414011444-Addit

and designing

Test No. (77) (pounds Orientation (Inches) (Inches) (Inches) (Pounds) (ps1) (ps1) (ps1) (ps1) (ps1) (ps2) (ps2) (ps2) (ps2) (ps3) (		I Snerimen	Back Face Temn	Preload at Heat Innut		Width	Actual Thickness	Nominal Thickness	Load	F ^{tu} (Actual)	F ^{tu} (Nomina.	1
ined 394-38-1-1 - 726 [0] 6f 0.639 0.033 0.033 2.600 161,100 170,400 mol shoet 3394-38-1-2 - 1,340 0.5500 0.033 12,800 145,000 145,000 145,000 145,000 145,000 145,000 145,000 153,500 145,000 155,000 Ng 3939-38-1-5 - 1,700 0.033 0.033 2,488 155,000 155,000 Ng 3939-38-1-7 25 0 1,800 155,700 155,700 Ng 3939-38-1-7 25 0 1,800 155,700 155,700 Ng 3939-38-1-7 25 0 1,203 0.033 0.033 2,400 157,900 155,700 Ng 3939-38-1-7 - 1,200 0.013 0.0499 0.033 0.034 2,440 145,800 155,700 Ng 3939-38-1-7 - 1,200 0.013 0.0499 0.033 0.031 2,500 152,400 157,900 155,700 Ng 3939-38-1-7 - 1,200 0.013 0.0499 0.033 0.0415 1,750 80,400 35,100 Ng 393,100 Ng 393,00 150,700 35,100 Ng 35,000 35,000 35,000 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,700 35,000 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900 150,900	Test	No.	(4°)	(Pounds	Orientation	(Inches)	(fnches)	(Inches)	(Pounds)	(psi)	(psi)	,
mai shock 3394-35-1-5 - 714 0 0.540 0.544 2,422 143,500 114,000 Mg 3394-35-1-5 - 1,740 0.553 0.033 1,756 105,500 145,000 153,500 145,000 153,500 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,700 155,	ined	3894-38-1-1		726	[0] ₆ T	0.489	0.033	0.0312	2,600	161,100	170,400	
dual 3894-38-1-5 - 1,786 0.503 145,600 153,500 Årg 151,500 Årg 3894-38-1-5 - 1,400 75,700 155,500 Årg 3894-38-1-5 - 1,700 0.433 0.033 2,446 153,500 155,500 Årg 3894-38-1-5 - 1,700 0.435 0.033 2,440 172,800 155,500 Årg 3894-38-1-5 - 1,700 0.435 0.033 0.033 2,430 172,800 157,700 155,500 Årg 3894-38-1-5 - 1,700 0.435 0.033 0.033 0.033 0.033 0.033 0.035 0.033 0.034 0.172,800 157,700 155,500 Årg 3894-38-1-5 - 1,700 0.450 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.050 0.043 0.043 0.044 0.050 0.043 0.043 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.043 0.044 0.050 0.044 0.050 0.044 0.000 0.043 0.044 0.050 0.044 0.050 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044 0.000 0.044	mal shock	3894-38-1-2	•	714		0.498	0.034		2,428	143,300	156,200	
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	p	3894-38-1-3	•	1,786		0.500	0.033		1,786	108,200	114,400	
tion $3894-38-1-5$ - $1,490$ (057) (156,500 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 156,700 17,00 156,700 17,00 156,700 17,00 156,700 17,00 156,700 17,00 156,700 17,00 156,700 17,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10,100 10	citudinal	3894-38-1-4	ı	1,340		0.487	0.033		2,485	154,600	163,500	Avg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ion	3894-38-1-5	1	1,490		0.493	0.034	Ţ.	2,580	153,900	167,700 15	56,500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-1-6	ı	1,700		0.499	0.034	ji	2,440	143,800	156,700	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-1-7*	250	1,800	-	0.485	0.033	•	2,600	162,400	171,800	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3894-38-1-8*	250	1,800	[0] _{6T}	0.489	0.033	0.0312	2,300	142,500	150,700	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3894-38-3-1	450	457	[0/±45/0] 2C	0.500	0.043	0.0416	1,730	80,400	83,100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-3-2	·	456		0.497	0.043	-	1,800	84,200	87,000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-3-3	460	1,228		0.497	0.043		1,228	57,400	59,300	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-3-4	420	886		0.498	0.043		1,929	000,06	93,100	Avg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-3-5	460	1,140		0.495	0.043		1,773	83,200	86,100 8	35,400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-3-6	460	1,143		0.500	0.043		1,700	79,000	81,700	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3894-38-3-7*	275	1,257	•	0.499	0.043	-	1,986	92,500	95,600	
bined 3894-38-1-1 100 2,014 $[0]_{6T}$ 1.008 0.033 0.0312 2,014 60,500 64,000 and 1.000 1,000 1.0018 0.0999 1,660 48,600 51,300 84,500 64,000 and 3894-38-1-2 100 1,000 0.999 1,018 0.999 1,660 47,100 49,800 88,100 73894-38-1-5 110 1,200 1.029 1.029 1,600 47,100 49,800 88,600 33894-38-1-6 - 400 0.9999 1,020 0.033 0.0312 1,600 47,100 49,800 88,600 3894-38-1-6 - 2,000 0.9999 1,000 0.0939 0,35700 103,500 103,900 88,600 36,900 3894-38-1-6 - 2,000 0,0999 0,033 0.0312 1,600 47,100 49,800 88,600 3894-38-1-6 - 2,000 0,0999 0,033 0.0312 1,600 47,100 105,800 3894-38-1-6 - 2,000 0,0999 0,033 0.0312 1,600 47,100 105,800 3894-38-1-6 - 2,000 0,0999 0,033 0.0312 4,180 127,500 113,500 105,800 3894-38-5-1 130 1,800 0,0996 3,700 82,400 82,400 85,200 3894-38-5-1 130 1,000 0,0996 3,400 82,400 85,200 3894-38-5-1 130 1,000 0,0996 3,400 82,400 85,200 3894-38-5-1 130 2,430 0,0416		3894-38-3-8*	270	1,243	[0/±45/0] _{2S}	0.489	0.043	0.0416	1,972	93,700	96,900	_
mal shock3894-38-1-21001,0001.0331.0181.66048,60051,300nd3894-38-1-31208000.9792,80083,30088,10049,800starts1101,2000.9990.9991.0182,80083,50088,1003894-38-1-51101,2000.9991.0291.60047,10049,80088,6003894-38-1-64000.99991.60047,10019,90088,6003894-38-1-7*0.04330.03330.05124,180127,500134,9003894-38-5-10.04163894-38-5-10.04163894-38-5-11302,4300.99661.00160.99563,94389,20081,5003894-38-5-11302,4300.99661.0020.94163894-38-5-6-00.99661.0020.94163894-38-5-7*1102,0000.94163,94389,20092,20081,5003894-38-5-7*1102,0000.94560.04163,94389,20092,00081,5003894-38-5-7*1101,0000.9450.04163,74389,20092,20081,5003894-38-5-7*1101,9060.0430.04163,74389,20092,0091,500	bined	3894-38-1-1	100	2,014	[0] ₆₁	1.008	0.033	0.0312	2,014	60,500	64,000	
nd3894-38-1-51208001.0182,80083,50088,100pression3894-38-1-51101,2008000.9792,88789,50094,500Avg3894-38-1-51101,20010010,2991.0291,60047,10049,80088,6003894-38-1-7*-2,000101610.99990.03330.03124,180105,80088,6003894-38-1-7*-2,00001610.99930.03330.03124,180127,500119,9003894-38-1-7*2,00001610.99930.03330.03124,180127,500134,9003894-38-5-11001,0000.99930.04163894-38-5-213001,8000.99660.04163894-38-5-21401,0000.99660.04163894-38-5-51401,0000.99660.04163894-38-5-6-00.04163894-38-5-71102,9000.9450.04167,70087,70081,50081,5003894-38-5-6-002,4305,90089,20092,20081,5003894-38-5-7*1101,9860/245/0]_251.00220.04163,71485,50088,5003894	rmal shock	3894-38-1-2	100	1,000		1.033	-	-	1,660	48,600	51,300	
pression $3894-38-1-4$ 130 800 0.979 0.979 7.89,300 94,500 Avg $3894-38-1-5$ 110 1,200 1.029 1.600 47,100 49,800 88,600 $3894-38-1-5$ 110 1,200 0.999 0.033 0.033 0.0312 4,180 127,500 119,900 $3894-38-3-1$ - 22,000 $[0]_{61}$ 0.999 0.043 0.0416 $[0/^{2}45/0]_{25}$ 1.018 0.0416 $[0/^{2}45/0]_{25}$ 1.018 0.0416 $[0/^{2}45/0]_{25}$ 1.016 0.996 $3.320-3894-38-5-2$ 130 1,800 $0.999$ 0.0416 $[0/^{2}45/0]_{25}$ 1.016 0.996 $3.320-37,500$ 88,600 $85,200$ $3.894-38-5-2$ 130 1,000 $0.999$ 0.0416 $[0/^{2}45/0]_{25}$ 1.016 0.996 $3.320-37,500$ 80,100 $105,800$ $3.894-38-5-2$ 130 2,430 $1.000$ 0.996 $1.000$ 0.996 $3.324-38-5-2$ 130 2,430 $1.000$ 0.996 $1.000$ 0.996 $3.320-77,500$ 80,100 $47,500$ 81,500 $38,400$ $3894-38-5-5$ 130 2,000 $1.001$ $1.000$ $1.000$ $1.000$ $3.894-38-5-5$ 130 2,430 $1.000$ $1.000$ $0.996$ $3.394-38-5-5$ 130 $2.430$ $8,500$ $80,100$ $4vg$ $3.894-38-5-5$ 130 $2.430$ $2.430$ $8,5200$ $80,100$ $3.894-38-5-5-5$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-5-500$ $3894-38-5-500$ $3894-38-5-500$ $3894-38-5-50$	nd	3894-38-1-3	120	800		1.018		, <u> </u>	2,800	83,300	88,100	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pression	3894-38-1-4	130	800		0.979			2,887	89,300	94,500	Avg
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		3894-38-1-5	110	1,200		1.029			1,600	47,100	49,800 8	8,600
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		3894-38-1-6	1	400		0.989			3,700	113,300	119,900	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3894-38-1-7*	ı	2,000		0.999			3,300	100,100	105,800	-
3894-38-3-1 $[0/:45/0]_{25}$ 1.018 $0.043$ $0.0416$ 3894-38-3-21301,800 $[0/:45/0]_{25}$ 1.015 $[0]$ $3,500$ $85,200$ $80,100$ 3894-38-3-31401,0000.996 $[0]$ $3,320$ $77,500$ $80,100$ 3894-38-3-4130 $2,430$ $85,200$ $89,100$ $Avg$ 3894-38-3-5130 $2,430$ $1,000$ $1,000$ $2,430$ $85,700$ 3894-38-3-6-0 $0.996$ $1.016$ $2,430$ $56,500$ $89,400$ 3894-38-3-5130 $2,000$ $1.016$ $2,430$ $56,500$ $89,400$ $Avg$ 3894-38-3-5110 $2,000$ $45,700$ $47,500$ $81,500$ 3894-38-3-6-0 $0.043$ $0.0416$ $5,714$ $85,600$ $88,500$ 3894-38-3-8*110 $1,986$ $[0/:45/0]_{25}$ $1.008$ $0.043$ $0.0416$ $5,714$ $85,600$ $88,500$		3894-38-1-8*	110	2,000	[0] ₆₁	0.993	0.033	0.0312	4,180	127,500	134,900	
$3894-38-3-2$ $130$ $1,800$ $1.015$ $3,5600$ $85,200$ $85,200$ $3894-38-3-3$ $140$ $1,000$ $0.996$ $3,322$ $77,500$ $80,100$ $3894-38-3-4$ $130$ $2,430$ $85,200$ $80,100$ $3894-38-3-5$ $130$ $2,430$ $85,700$ $47,500$ $80,100$ $3894-38-3-5$ $130$ $2,000$ $1.016$ $2,430$ $56,500$ $89,400$ $Avg$ $3894-38-3-5$ $130$ $2,000$ $1.016$ $2,430$ $56,500$ $89,400$ $Avg$ $3894-38-3-5$ $110$ $2,000$ $1.016$ $2,943$ $89,200$ $92,200$ $3894-38-3-7*$ $110$ $2,000$ $1.002$ $4,945$ $118,600$ $3894-38-3-8*$ $110$ $1,986$ $[0/245/0]_{25}$ $1.008$ $0.0416$ $3,714$ $85,600$ $88,500$		3894-38-3-1	ı	;	[0/±45/0] 2S	1.018	0.043	0.0416	:	F - 1 1	1	
$3894-38-3-3$ $140$ $1,000$ $0.996$ $3,320$ $77,500$ $80,100$ $3894-38-3-4$ $130$ $2,430$ $2,430$ $58,400$ $Avg$ $3894-38-3-5$ $130$ $2,000$ $1,016$ $2,430$ $56,500$ $58,400$ $Avg$ $3894-38-3-5$ $130$ $2,000$ $1,016$ $2,430$ $57,700$ $47,300$ $81,500$ $3894-38-3-5$ $110$ $2,000$ $1.016$ $2,943$ $89,200$ $92,200$ $3894-38-3-7*$ $110$ $2,000$ $1.002$ $1.002$ $4,945$ $118,600$ $3894-38-3-8*$ $110$ $1,986$ $[0/245/0]_{25}$ $1.008$ $0.043$ $0.0416$ $3,714$ $85,600$ $88,500$		3894-38-3-2	130	1,800	4	1.015	+	-	3,600	82,400	85,200	
$3894-38-3-4$ $130$ $2,430$ $2,430$ $56,500$ $58,400$ $Avg$ $3894-38-3-5$ $130$ $2,000$ $1,016$ $2,000$ $45,700$ $47,300$ $81,500$ $3894-38-3-6$ $ 0$ $1.027$ $ 0$ $1.027$ $ 3,943$ $89,200$ $92,200$ $3894-38-3-7*$ $110$ $2,000$ $4,945$ $118,600$ $3894-38-3-8*$ $110$ $1,986$ $[0/t45/0]_{25}$ $1.008$ $0.043$ $0.0416$ $3,714$ $85,600$ $88,500$		3894-38-3-3	140	1,000		0.996			3,320	77,500	80,100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3894-38-3-4	130	2,430		1.000			2,430	56,500	58,400	Avg
3894-38-36 - 0 1.027 3.943 89,200 92,200 3894-38-3-7* 110 2,000 1.002 4 4,945 118,600 3894-38-3-8* 110 1,986 [0/±45/0] ₂₅ 1.008 0.043 0.0416 3,714 85,600 88,500		3894-38-3-5	130	2,000		1.016			2,000	45,700	47,300 8	31,500
3894-38-3-7* 110 2,000 1 1.002 1 4,945 118,600 3894-38-3-8* 110 1,986 [0/±45/0] ₂₅ 1.008 0.043 0.0416 3,714 85,600 88,500		3894-38-3-6	•	0		1.027			3,943	89,200	92,200	
$3894-38-3-8*$ 110 1,986 $[0/:45/0]_{25}$ 1.008 0.043 0.0416 3.714 85,600 88,500		3894-38-3-7*	110	2,000		1.002			4,945		118,600	
		3894-38-3-8*	110	1,986	[0/:45/0] _{2S}	1.008	0.043	0.0416	3,714	85,600	88,500	











Figure 100. Failed Thermal Shock [0/+45/0]2S Compression Specimens



Figure 101. Degradation of Ultimate Tensile Strength vs Thermal Shock Loading

Further verification of the nondamaging effects of nuclear radiation is found in the results of other investigators. In one program (reference 3), boron/epoxy laminates were virtually unaffected by exposure to mixed radiation fields characterized by thermal and fast neutron fluxes up to 38 and 12 KTn/cm², respectively, and gamma doses up to 43 G-ergs/g-cm. These radiation levels are well above crew survival limits in all but heavily shielded vehicles, so that the use of boron/epoxy composites cannot be questioned in conventional aircraft on the basis of strength degradation due to nuclear radiation. In another program (reference 4), significant degradation had not occurred at a thermal neutron flux of 30 KTn/cm², confirming reference 3, but was definitely noticeable at 1 MTn/cm².

### SECTION V

#### MICROMECHANICS/MACROMECHANICS ANALYSIS

In relation to composite materials, the type of analysis which utilizes the physical and mechanical properties of the constituents, i.e., fibers, matrix, and glass cloth carrier, to predict the physical and mechanical characteristics of a single lamina is referred to as micromechanics. Macromechanics refers to the type of analysis which utilizes the physical or mechanical properties of a single lamina to predict the physical or mechanical characteristics of any laminate. This section is concerned with evaluating the accuracy of the more mundane micromechanics prediction techniques by utilizing the constituent property data generated in section IV and comparing these predicted values with experimental lamina data.

#### ELASTIC CONSTANTS

Table LXXVI contains the values of the elastic constants for the boron filaments, epoxy matrix, and 104 glass carrier which were used in the evaluation of the accuracy of micromechanics prediction techniques for single lamina elastic properties. The elastic properties for the matrix and 104 glass cloth were obtained from experimental data generated in this program, and the boron filament properties were obtained from the Aircraft Systems Division of the Final Draft of the Design Guide (reference 5).

For unidirectional composite materials, the "rule of mixtures" is generally used to predict the longitudinal modulus and major Poisson's ratio. This rule states that the desired property is equal to the sum of the products of the corresponding constituent property and its volume fraction; hence

$$E_{L} = V_{f}E_{f} + V_{m}E_{m} + V_{g}E_{L}^{g}$$
(1)

ź

ŧ

and

$$\boldsymbol{\nu}_{\mathrm{LT}} = \boldsymbol{V}_{\mathrm{f}} \boldsymbol{\nu}_{\mathrm{f}} + \boldsymbol{V}_{\mathrm{m}} \boldsymbol{\nu}_{\mathrm{m}} + \boldsymbol{V}_{\mathrm{g}} \boldsymbol{\nu}_{\mathrm{LT}}^{\mathrm{g}}$$
(2)

where  $E_L$  denotes the longitudinal Young's modulus of a single lamina;  $\nu_{LT}$  is the major Poisson's ratio for the lamina.

		Value	
Constituent	Property	Room Temperature	350° F
Boron filament	E _f	57.0 Msi	57.0 Msi
	۴	0.20	0.20
	Gf	23.75 Msi	23.75 Msi
5505 resin system	Emt Em	0.51 Msi	0.16 Msi
	E ^C m	0.53 Nsi	0.17 Msi
	$v_m^t$	0.31	*
	ν m	0.40	×
	Gm	0.20 Msi	*
104 glass	E ^g *** L	2.88 Msi	2.47 Msi
	E ^g *** L	1.59 Msi	1.28 Msi
	ν ^g _{LT}	0.14	0.10
	GLT	0.93 Msi	0.50 Msi**
* Not available; ** (	estimated; ***	tension modulus	

# TABLE LXXVI. CONSTITUENT ELASTIC PROPERTIES

and the statements

naalaa ay farka ahaday . Ahacaa ahada aha

Figure 102 illustrates a typical unidirectional laminate whose  $E_L$  and  $\nu_{LT}$  properties are predicted by equations 1 and 2.



Figure 102. Typical Unidirectional Laminate and Typical Filament Unit

Figure 102 also illustrates a typical repeated filament unit, where D, s, h, and  $t_g$  denote filament diameter, filament spacing, ply thickness, and glass cloth carrier thickness, respectively. For Narmco 5505, these terms take on the following values:

D = 0.004 inch s = 0.0048 inch h = 0.0052 inch t_g = 0.001 inch

Thus, the volume fractions for the composite constituents are found to be:

$$V_{f} = \frac{\pi D^{2}}{4hs} = 0.503$$

$$V_{g} = \frac{t_{g}s}{hs} = 0.192$$

$$V_{m} = 1 - V_{f} - V_{g} = 0.305$$
(3)

In addition to the longitudinal constants,  $E_L$  and  $\nu_{LT}$  for a unidirectional composite, many micromechanics solutions have been presented for determining the transverse modulus  $E_T$  and the shear modulus  $G_{LT}$ . Most of these solutions are summarized in reference 6; however, none of these solutions accounts for the glass cloth carrier. One of the solutions (reference 7) was slightly modified to account for the carrier and is as follows:

$$E_{T} = \begin{pmatrix} \underline{D} \\ \overline{h} \end{pmatrix} \int_{0}^{\pi/2} \overline{E}_{T} \cos \phi \, d\phi + E_{m} \left( 1 - \frac{D}{h} - \frac{tg}{h} \right) + E_{T}^{g} \left( \frac{tg}{h} \right)$$
(4)

where

$$\widetilde{E}_{T} = \frac{E_{f}E_{m} [f^{*}E_{f} + (1 - f^{*}) E_{m}]}{[(1 - f^{*})E_{f} + f^{*}E_{m}] [f^{*}E_{f} + (1 - f^{*})E_{m}] - f^{*}(1 - f^{*})(\nu_{m}E_{f} - \nu_{f}E_{m})^{2}}$$

$$f^{*} = (D \cos\phi)/s$$

$$\frac{\pi/2}{G_{LT}} = \left(\frac{D}{h}\right) \int_{0}^{\infty} \widetilde{G}_{LT} \cos\phi \, d\phi + G_{m} \left(1 - \frac{D}{h} - \frac{t_{g}}{h}\right) + G_{LT}^{g} \left(\frac{t_{g}}{h}\right) \quad (5)$$

where

$$\widetilde{G}_{LT} = \frac{\underset{m f}{G_m (D \cos \emptyset) + G_f \left(1 - \frac{D \cos \emptyset}{s}\right)}}{G_m (D \cos \emptyset) + G_f \left(1 - \frac{D \cos \emptyset}{s}\right)}$$

In reference 8, a modification to equations 4 and 5 is presented, in which the Young's moduli for the resin and scrim cloth are replaced by equivalent moduli defined by:

$$E_{m}^{\star} = \frac{E_{m}}{\left(1 - \nu_{m}^{2}\right)}$$

$$\left(E_{T}^{g}\right)^{\star} = E_{T}^{g} / \left[1 - \left(\nu_{LT}^{g}\right)^{2} \left(E_{T}^{g}/E_{L}^{g}\right)\right]$$
(6)

The results from these relationships are compared to the values obtained from the relationships recommended in reference 9 for rectangularly packed arrays with a glass carrier, and to typical measured single-lamina elastic constants for Narmco 5505. All theoretical values were calculated by using the elastic constants listed in table LXXVII for tension loading.

Property	Temperature	Experimental Value	Rule of Mixture	Method of Reference 7	Method of Reference 9
E _L (Msi)	RT	30.0	29.3	-	29.4*
E _T (Msi)	RT	2.60	-	2.27	2.07**
				2.48***	2.32*
ν _{LT}	RT	.210	.222	-	.218
G _{LT} (Msi)	RT	1.00	-	0.88	0.82
* E ^g L wa	as used to cal	culate this num	ber.	••••••••••	
<b>**</b> E ^g wa	as used to cal	culate this num	ber.		
*** Metho	od of referenc	e 8.			

TABLE LXXVII. MICROMECHANICS - TEST VERSUS THEORY

The correlation of prediction methods with test data in table LXXVII is reasonably good and, as such, indicates that relatively simple closed-formed micromechanics procedures can be utilized to predict elastic constants for single laminae of filamentary composite materials.

#### THERMAL EXPANSION MICROMECHANICS

The thermal expansion investigations consisted of micromechanical and macromechanical phases. The micromechanical portion involves predictions of expansion coefficients for single, unidirectional, composite laminae. The second part takes a macromechanical approach to describe the behavior of multi-ply laminates subjected to uniform temperature changes. art ern soten a skarkelingen eftigt soten fan te kast neede fan te sterfele of erte fan te sterfele genome

Thermal expansion coefficients and thermal stresses are calculated on the basis of an a priori knowledge of the mechanical and thermal response characteristics of each ply. A comparison of the predicted and experimental expansion coefficients for a boron/epoxy composite system is presented.

#### EXPANSION COEFFICIENTS

We first consider a single ply consisting of regularly spaced, unidirectional fibers embedded in a matrix material. This model is shown in figure 103.





It is assumed that both fibers and matrix materials are homogeneous, isotropic, and linearly elastic. It is further assumed that the fiber and matrix are firmly bonded together and that there are no voids in the composite.

The longitudinal coefficient of thermal expansion,  $\alpha_L$ , is obtained by enforcing the conditions of force equilibrium and compatibility in the longitudinal direction. Since there are no external forces applied to the composite layer, the equation expressing force equilibrium is given by:

$$\sigma_{\mathbf{f}} \widetilde{\mathbf{V}}_{\mathbf{f}} + \sigma_{\mathbf{m}} \left( 1 - \overline{\mathbf{V}}_{\mathbf{f}} \right) = 0 \tag{7}$$

where  $\sigma$  denotes normal stress, the subscripts f and m denote filament and matrix, respectively, and  $\overline{V}_f$  is the filament volume fraction.

The corresponding compatibility condition is

$$\epsilon_{\rm L} = \epsilon_{\rm f} = \epsilon_{\rm m} \tag{8}$$

where  $\epsilon$  denotes strain and L, f, and m denote total longitudinal ply, longitudinal filament, and longitudinal matrix strains, respectively. Since both fiber and matrix were assumed to be isotropic, elastic materials, then stress-strain relations are:

$$\epsilon_{f} = \frac{\sigma_{f}}{E_{f}} + \alpha_{f} \Delta T = \epsilon_{L}$$
(9)

$$\epsilon_{\rm m} = \frac{\sigma_{\rm m}}{E_{\rm m}} + \alpha_{\rm m} \Delta T = \epsilon_{\rm L} \tag{10}$$

Solving equations 9 and 10 for the stress components and then substituting equation 7 yields

$$\epsilon_{\rm L} = \alpha_{\rm f} \left( \frac{E_{\rm f}}{E_{\rm L}} \right) \Delta T \, \overline{V}_{\rm f} + \alpha_{\rm m} \left( \frac{E_{\rm m}}{E_{\rm L}} \right) \, \left( 1 - \overline{V}_{\rm f} \right) \, \Delta T \tag{11}$$

where:

$$E_{L} = \overline{V}_{f} E_{f} + \left(1 - \overline{V}_{f}\right) E_{m}$$
(12)

Then, from equation 11, the longitudinal coefficient of thermal expansion is given by:

$$\overline{\alpha}_{L} = \frac{\epsilon_{L}}{\Delta T} = \alpha_{f} \left( E_{f} / E_{L} \right) \overline{V}_{f} + \alpha_{m} \left( E_{m} / E_{L} \right) \left( 1 - \overline{V}_{f} \right)$$
(13)

Generally, derivation of the transverse coefficient of thermal expansion is not as simple as that for  $\alpha_L$ . The solution for a rectangular array of cylindrical fibers was presented in reference 10. The approach taken accounts for the shape of the fibers and, consequently, the expression for  $\alpha_T$  includes rather complex integrals. However, an approximate solution, which is shown to be quite close to the exact solution is also presented. The approximate expression for  $\alpha_T$  is given in equation 14.

$$\overline{\alpha}_{T} = \left(1/\overline{E}_{T}\right) \left[\alpha_{O} E_{O} \beta + \alpha_{m} E_{m} \left(1 - \beta\right)\right]$$
(14)

where

$$\alpha_{o} = \alpha_{m} (1 - 2\beta) + 2\beta \alpha_{f} - \nu_{m} (\alpha_{f} - \alpha_{m}) (1 - 2\beta)$$

$$E_{c} = \frac{E_{m}E_{f}}{E_{f} (1 - 2\beta) + 2E_{m}\beta}$$

$$\overline{E}_{T} = E_{0}\beta + E_{m} (1 - \beta)$$

$$\beta = \sqrt{\overline{V}_{f}} \text{ and } \nu_{m} = \text{Poisson's ratio of the matrix.}$$

A much simpler expression results for  $\overline{\alpha}_T$  if it is assumed that the rule of mixtures is applicable. The transverse coefficient of expansion is then given by:

$$\overline{\alpha}_{T} = \alpha_{m} \left( 1 - \overline{V}_{f} \right) + \alpha_{f} \overline{V}_{f}$$
(15)

Equations 14 and 15 were used to calculate  $\alpha_{\rm T}$  for a boron/epoxy composite. Constituent properties used in these calculation are given in table LXXVI. The predicted values for  $\alpha_{\rm T}$  are presented in figure 105 as a function of filament volume fraction. There is not much difference between the two sets of values for fiber volume fractions up to about 50 percent (maximum deviation of approximately 10 percent between predicted values). The fiber volume fraction of the boron/epoxy layer of the boron/epoxy-scrim prepreg tape is 62.3 percent. For this fiber volume fraction, the law of mixtures predicts an  $\bar{\alpha}_{\rm T}$  of 11.8 µin./in./°F, while the method of reference 10 predicts  $8.8 \mu$ in./in./°F.

The boron/epoxy prepregs currently being used for structural laminates have a woven glass scrim backing (figure 104). The presence of the glass scrim modifies the thermal expansion behavior of the boron/epoxy composite to some extent. Two micromechanical approaches were taken to include the effects of the scrim.



Figure 104. Model of Single Lamina Element with Scrim Cloth





۰.

The first of these approaches provides the simplest expression for  $\alpha_T$  by assuming that the rule of mixtures is applicable. Although this assumption is conceptually fallacious, it is a reasonable starting point since the scrim comprises a very small fraction of the total volume. On the basis of this assumption,  $\alpha_T$  is given by:

$$\alpha_{\rm T} = V_{\rm f} \alpha_{\rm f} + V_{\rm m} \alpha_{\rm m} + V_{\rm g} \alpha_{\rm T}^{\rm g}$$
(16)

The longitudinal coefficient of expansion is calculated on the basis that the boron/epoxy layer is in parallel with the glass scrim layer. This model is shown schematically in figure 105.

The conditions of force equilibrium and strain compatibility in the Ldirection are enforced to determine  $\alpha_{L}$ . The force equilibrium equation (no externally applied forces) is given by:

$$\overline{\sigma}_{L}k' + \sigma_{L}^{g} (1 - k') = 0$$
⁽¹⁷⁾

where:

a, in na mandring in a far ar an an and and a changa and an a change and a start of the 
$$k' = V_{f} + V_{m} \tag{18}$$

The compatibility equation is:

$$\vec{\epsilon}_{\rm L} = \epsilon_{\rm L}^{\rm g} = \epsilon_{\rm L} \tag{19}$$

Then, assuming that no transverse stresses develop, the stress-strain relations for the boron/epoxy layer and glass scrim are:

$$\overline{\epsilon}_{L} = \left(\overline{\sigma}_{L}/\overline{E}_{L}\right) + \overline{\alpha}_{L}\Delta T$$

$$\epsilon_{L}^{g} = \left(\sigma_{L}^{g}/\overline{E}_{L}^{g}\right) + \alpha_{L}^{g}\Delta T$$
(20)

Combining equations 19 and 20 yields:

$$\bar{\sigma}_{L} = \bar{E}_{L} \epsilon_{L} - \bar{\alpha}_{L} \bar{E}_{L} \Delta T$$

$$\sigma_{L}^{g} = E_{L}^{g} \epsilon_{L} - \alpha_{L}^{g} E_{L}^{g} \Delta T$$
(21)

Then, substituting equations 21 into 17 produces:

$$\mathbf{k'} \left( \overline{\mathbf{E}}_{\mathrm{L}} \boldsymbol{\epsilon}_{\mathrm{L}} - \overline{\alpha}_{\mathrm{L}} \overline{\mathbf{E}}_{\mathrm{L}} \Delta \mathbf{T} \right) + \left( \mathbf{1} - \mathbf{k'} \right) \left( \mathbf{E}_{\mathrm{L}}^{\mathbf{g}} \boldsymbol{\epsilon}_{\mathrm{L}} - \alpha_{\mathrm{L}}^{\mathbf{g}} \mathbf{E}_{\mathrm{L}}^{\mathbf{g}} \Delta \mathbf{T} \right) = 0$$

(22)

$$\alpha_{L} = \frac{\epsilon_{L}}{\Delta T} = \overline{\alpha}_{L} \left(\overline{E}_{L}/E_{L}\right) k' + \alpha_{L}^{g} \left(E_{L}^{g}/E_{L}\right) \left(1 - k'\right)$$

where:

$$E_{L} = k' \overline{E}_{L} + (1 - k') E_{L}^{g}$$

A more conceptually sound method for calculating  $\alpha_{\rm T}$  does not employ the arbitrary assumption of the rule of mixtures. This approach considers the boron/epoxy layer to be in parallel with the scrim in both the L and T directions. In other words, the expansion of two bonded orthotropic thin layers is considered. The macroscopic approach to this problem will be discussed later. It will be assumed that the properties of the two layers are known, either from micromechanical considerations or from experiment. An approximate micromechanical approach will be presented here for comparison with equation 16 and the macromechanical approach to be presented later.

We proceed to calculate  $\alpha_T$  in a manner similar to that employed to determine  $\alpha_L$  of equation 22. The equations of equilibrium of compatibility in the T-direction are:

$$\overline{\alpha}_{T}k' + \sigma_{T}^{g} (1 - k') = 0$$
⁽²³⁾

and

$$\overline{\epsilon}_{\mathrm{T}} = \epsilon_{\mathrm{T}}^{\mathrm{g}} = \epsilon_{\mathrm{T}}$$
(24)

Assuming no longitudinal stresses develop for uniform temperature change, the stress-strain relations for the two layers are:

$$\vec{\epsilon}_{T} = \left(\vec{\sigma}_{T}/\vec{E}_{T}\right) + \vec{\alpha}_{T}\Delta T$$

$$\epsilon_{T}^{g} = \left(\sigma_{T}^{g}/\vec{E}_{T}^{g}\right) + \alpha_{T}^{g}\Delta T$$
(25)

Combining equations 24 and 25 yields:

$$\overline{\sigma}_{T} = \overline{E}_{T} \epsilon_{T} - \overline{\alpha}_{T} \overline{E}_{T} \Delta T$$

$$\sigma_{T}^{g} = E_{T}^{g} \epsilon_{T} - \alpha_{T}^{g} E_{T}^{g} \Delta T$$
(26)

Substituting equations 26 into 23 results in:

$$k' \left(\overline{E}_{T} \epsilon_{T} - \overline{\alpha}_{T} \overline{E}_{T} \Delta T\right) + \left(1 - k'\right) \left(E_{T}^{g} \epsilon_{T} - \alpha_{T}^{g} E_{T}^{g} \Delta T\right) = 0$$

$$\alpha_{T} = \frac{\epsilon_{T}}{\Delta T} = \overline{\alpha}_{T} \left(\overline{E}_{T} / E_{T}\right) k' + \alpha_{T}^{g} \left(E_{T}^{g} / E_{T}\right) \left(1 - k'\right)$$

$$(27)$$

where:

or

$$E_{T} = k' \tilde{E}_{T} + (1 - k') E_{T}^{g}$$

The longitudinal expansion coefficient is identical to that obtained for the previously considered case. Consequently, equation 22 provides the estimated longitudinal expansion coefficient by replacing the subscript T with L.

A summary of expressions to be used in numerical computations is presented in table LXXVIII.

#### TABLE LXXVIII. SUMMARY OF EXPRESSIONS

I. Expansion Coefficients for Boron/Epoxy Lamina (without glass cloth carrier) -  $\overline{\alpha}_{T}$ ,  $\overline{\alpha}_{L}$   $\overline{\alpha}_{T} = \alpha_{m} \left(1 - \overline{V}_{f}\right) + \alpha_{f} \overline{V}_{f}$   $\overline{\alpha}_{L} = \alpha_{f} \left(E_{f}/\overline{E}_{L}\right) \overline{V}_{f} + \alpha_{m} \left(E_{m}/\overline{E}_{L}\right) \left(1 - \overline{V}_{f}\right)$  $\overline{E}_{L} = \overline{V}_{f} E_{f} + \left(1 - \overline{V}_{f}\right) E_{m}$ 

# TABLE LXXVIII. SUMMARY OF EXPRESSIONS (CONCLUDED)

II. Law of Mixtures for 
$$\alpha_{T}$$
, Boron/Epoxy Scrim Lamina  

$$\alpha_{T} = V_{f}\alpha_{f} + V_{m}\alpha_{m} + V_{g}\alpha_{T}^{g}$$

$$\alpha_{L} = \overline{\alpha}_{L} \left(\overline{E}_{L}/E_{L}\right) k' + \alpha_{L}^{g} \left(E_{L}^{g}/F_{L}\right) \left(1 - k'\right)$$

$$E_{L} = k' \overline{E}_{L} + \left(1 - k'\right) E_{L}^{g}$$

$$k' = V_{f} + V_{m}, V_{g} = 1 - k'$$
III. Boron/Epoxy in Parallel With Scrim  

$$\alpha_{T} = \overline{\alpha}_{T} \left(\overline{E}_{T}/E_{T}\right) k' + \alpha_{T}^{g} \left(E_{T}^{g}/E_{T}\right) \left(1 - k'\right)$$

$$E_{T} = k' \overline{E}_{T} + \left(1 - k'\right) E_{T}^{g}$$

$$\alpha_{L} = \overline{\alpha}_{L} \left(\overline{E}_{L}/E_{L}\right) k' + \alpha_{L}^{g} \left(E_{L}^{g}/E_{L}\right) \left(1 - k'\right)$$

$$E_{L} = k' \overline{E}_{L} + \left(1 - k'\right) E_{L}^{g}$$

## CORRELATION WITH EXPERIMENT

The micromechanical expressions derived for  $\alpha_{\rm T}$  and  $\alpha_{\rm L}$  were used to predict these quantities for comparison with experimental values. Table LXXIX presents the constituent properties for these calculations as obtained from this report and reference 11.

Property	RT	260° F	350° F
α _f , μin./in./°F	2.7	2.7	2.7
α _m , μin./in./°F	27.4	33.3	38.0
$\alpha_{\rm T}^{\rm g}$ , $\mu$ in./in./°F	9.5	9.3	10.6
$\alpha_{\rm L}^{\rm g}$ , $\mu$ in./in./°F	6.2	6.2	7.0
E _f , Msi	57.0	57.0	57.0
E _m , Msi	0.51	-	0.16
E ^g , Msi T	1.59	1.4	1.28
E ^g , Msi	2.88	2.6	2.47

TABLE LXXIX. CONSTITUENT PROPERTIES

Experimental values of the boron/epoxy composite with glass scrim backing are given in table LXXX (reference 12).

TABLE LXXX. BORON/EPCXY COMPOSITE PROPERTIES (INCLUDING SCRIM CLOTH)

Property	RT	260° F	350° F
$\alpha_{\rm L}, \mu \text{ in./in./°F}$	2.32	2.53	2.83
$\alpha_{\rm T}, \mu \text{ in./in./°F}$	10.67	14.98	13.98

The volume fractions of the constituents for the Narmco 5505 system are  $V_g = 0.192$ ,  $V_f = 0.503$ ,  $V_m = 0.305$ . In the boron/moxy layer,  $\overline{V}_f = 0.623$ .  $\overline{V}_m = 0.377$ . The values for  $\alpha_L$  and  $\alpha_T$  calculated from the expressions summarized in table LXXVIII are presented in table LXXXI.

Property	Expressions Used	RT	260° F	350° F
α _L	II	2.88	•	2.82
	III	2.88	-	2.82
α _T	ΪI	11.55	13.3	15.00
	III	11.67	-	-

# TABLE LXXXI. CALCULATED EXPANSION COEFFICIENTS

From this table we can see that there is not much difference in the results obtained by the two methods. The probable reason for this is the fact that the scrim represents a very small percentage of the boron/epoxy-scrim composite and has only little effect on the total behavior. In view of this, there is little justification for using the more complicated expressions III in preference to the simpler law of mixture expressions II.

### THERMAL EXPANSION - MACROMECHANICS

Once the elastic and thermal response characteristics for each ply have been determined, the thermal response for an N-ply laminate can be predicted with the use of micromechanics. In this subsection we consider that the ply coefficients of thermal expansion  $\alpha_L$ ,  $\alpha_T$ ,  $\alpha_{LT}$  are known from testing or the previous micromechanics subsection.

The thermoelastic stress-strain relationship for the ith ply of the laminate for a state of plane-stress, i.e., the stress components normal to the LT plane are taken to be zero, is given as:

$$\begin{cases} \sigma_{\mathrm{L}} \\ \sigma_{\mathrm{T}} \\ \sigma_{\mathrm{LT}} \end{cases} = \begin{bmatrix} T_{11} & T_{12} & 0 \\ T_{12} & T_{22} & 0 \\ 0 & 0 & 2T_{33} \end{bmatrix}_{\mathbf{i}} \qquad \begin{cases} \boldsymbol{\epsilon}_{\mathrm{L}} & -\boldsymbol{\alpha}_{\mathrm{L}} \Delta^{\mathrm{T}} \\ \boldsymbol{\epsilon}_{\mathrm{T}} & -\boldsymbol{\alpha}_{\mathrm{T}} \Delta^{\mathrm{T}} \\ \boldsymbol{\epsilon}_{\mathrm{LT}} & & \end{bmatrix}_{\mathbf{i}}$$
(28)

where:

historia and a barrier and a state of the st

Higher Strategics

relation holly be by a construction of the second

and a second 
$$T_{11} = E_{L} / (1 - \nu_{LT} \nu_{TL}) = T_{22} E_{T} / E_{L}$$
  

$$T_{12} = \nu_{TL} T_{11} = \nu_{LT} T_{22}$$
  

$$T_{33} = G_{LT}$$

With the use of appropriate coordinate transformations and the foregoing relations, the coefficients of thermal expansion for the N-ply laminate shown in figure 106 are shown in reference 13 to b $\epsilon$ :

$$\left\{\alpha^{C}\right\} = \left\{ \begin{array}{c} \alpha_{X}^{C} \\ \alpha_{X}^{C} \\ \gamma \\ \alpha_{XY}^{C} \end{array} \right\} = \left[B\right]^{-1} \left\{C\right\}$$
(29)

where the terms on the right side of equation 29 are defined in reference 13, and  $\{\alpha^{C}\}\$  are the coefficients of thermal expansion for the laminate. The coefficient  $\alpha_{XY}^{C}$  is associated with a shear mode of thermal distortion and takes on the value of zero whenever the laminate is balanced in the sense that it is composed only of sets of  $\frac{1}{2}\theta$  plies. The general picture of thermal distortion of an N-ply laminate due to a uniform temperature change of  $\Delta T$  is also shown in figure 106.

The equations developed in reference 13 for multi-ply laminates were programed for an IBM 360 computer for application to boron/epoxy laminates. The computer program, designated as AC-40, requires a nominal number of input data for each case and is described in full in reference 13.

#### CURVES FOR COEFFICIENTS OF THERMAL EXPANSION

In order to assist the designer in predicting the coefficients of thermal expansion for laminates, i.e.,  $\alpha_X^C$ ,  $\alpha_Y^C$ ,  $\alpha_{XY}^C$ , a curve is presented for laminates of the type  $[0_{n1}/\pm 45_{n2}/90_{n3}]_C$ , where the designer only needs to know the relative percentages of the plies at 0°, ±45°, and 90°,

where

n₁ = number of plies at 0° 2n₂ = number of plies at ±45° n₃ = number of plies at 90°





Figure 106. Typical n-Ply Laminate and Thermal Distortion

220

This design curve is presented as figure 107 and is for finding  $\alpha_{\rm X}^{\rm C}$ . If  $\alpha_{\rm Y}^{\rm C}$  is desired, it can be found by reading the curve for  $\alpha_{\rm X}^{\rm C}$  after interchanging the "% at 0°" and "% at 90°" labels. Further, for this type of laminate,  $\alpha_{\rm Xy}^{\rm C} = 0$ . Similarly, curves for other laminate families can be developed with the utilization of AC-40.

### CORRELATION WITH EXISTING ANGLEPLY DATA

hitsheitschebriket

A PARTY CONTRACTOR

Some coefficient of thermal expansion data for  $[0_2/^{\pm}45]_{\text{C}}$  and  $[0/^{\pm}60]_{\text{C}}$  laminates are available from reference 12 and are compared to values predicted by AC-40. The results of this comparison, shown in table LXXXII indicate that the prediction technique developed on the previous pages is valid at room temperature. However, caution should be used at elevated temperatures because of the nonlinearity of the unidirectional transverse  $\alpha_{\tau}$ .

	[0 ₂ /	^{±45]} C			[0/±	^{60]} C	
α	c x	α	c y	α	c x	α.	c y
$\mu$ in./	in./°F	$\mu$ in./	in./°F	$\mu$ in./	in./°F	$\mu \text{in.}/$	in./°F
Pred	Test	Pred	Test	Pred	Test	Pred	Test
2.36	2.60	7.75	6.10	3.10	3.25	4.85	3.3

TABLE LXXXII. COMPARISON OF PREDICTED VALUES AND TEST DATA FOR COEFFICIENTS OF THERMAL EXPANSION AT ROOM TEMPERATURE



# APPENDIX I

utenseensteelung Preisig gebesering kiel halpasseensteele verbeauergord. Andereise tugtaat hat oor is andees

lituta Salisi dalilika aktika dala k

ALCONT N

PROCUREMENT SPECIFICATION

ADVANCED COMPOSITE MATERIAL - BORON/EPOXY PREPREG

(NR Specification ST0130LB0004)

	PREPARED BY		CODE I	DENT. NO. 43999	NUMBER
	R. MEADOWS		LOS ANG	ELES DIVISION	STO1 30LB0004
	APPROVALS		NORTH AMERICAN F	ROCKWELL CORPORATION	MATERIAL
1 1	1.KO:	A			DATE 4-26-69
	<u> </u>		CDCCU		SUPERSEDES SPEC. DATED:
			SPECI	ICATION	20 February 1969
					A PAGE 1 of 20
	A	DVANCED	COMPOSITE MATERI	AL - BORON EPOXY PREP	REG
			-		
			1. SCOPB		
			2. APPLICABLE	DOCUMENTS	-
			3. REQUIREMEN	15 CIDANOB	
			4 QUALLTI AD	SURAINCE	
			6 NOTES	N FOR DEDLARKI	
			G. MOILS		
				•	-
			-		
			REVIS	IONS	
REV.	DATE	REV. BY	PAGES AFFECTED	REMARKS	APPROVED
	}				
		<b> </b>	<b> </b>	·····	
	<u> </u>	<u> </u>			
FORM	006-H-3 REV 11/67	t	(m - 1)	DICATES CHANGE	
			(= - 11		

		C	ODE IDEN	7. NC	)	439	99							
	NUMBER				RE	VISION	LEI	TER			PACE			
·	STO	130LB0004	A								FAUE	2		
l. S l.l treat preim	COPE This spe ed, para pregnate	cification es llel in-plane d ma'erial.	tablish , colli	es t mate	the d,	requ cont	irem inuc	ients ous n	s for nonof	• the ilar	ermos nent	settin boron	ng r n fi	esin ber
1.2	Classifi	cation												
1.2.1	<u>Resin</u>	Type The imp	pregnat	ing	res	in s	hall	be	clas	sifi	ied a	s fol	llow	s:
<u>Type</u>			Descri	ptic	on o	f Im	oreg	nati	ing I	<u>lesi</u> ı	1			
I		General (200° F	Purpose max.; c	onti	nuo	us e	фов	ure	up t	o 10	000,000	) hour	rs)	
II		Heat Rest (350° Fi	istant max.; c	onti	nuo	us e	xpos	ure	up t	- :0 1,	,000	hours	3)	
III (Fut	ure)	High Hea (600°F m	t Resis ax.; co	tant ntir	: nuou	s ex	posu	re u	up to	1,0	000 h	ours)	)	
1.2.2 class	<u>Impreg</u> ified as	nated Boron F follows:	ilament	<u>-</u>		The	imp	regi	nated	l boı	ron f	ilame	ent	shall
<u>Class</u>	•										•			
1	A nonin woven g resin.	ntegral compo- glass fabric,	site of and im	boı preg	on gnat	fila ed w	nent ith	s su an a	appor appli	ted cabl	and le th	orier	nted sett	on a ing
2	An unsu applica	apported comparison to the second sec	osite o tting r	f bo esir	oron 1.	fil	amer	ts i	mpre	gnat	ted w	vith s	n	
2. A	PPLICABLI	E DOCUMENTS												
2.1 this	<u>Documents</u> specifics	a The latest ation to the e	t issue extent	s of spec	theifi	e foi ed h	llow erei	ing n:	docu	ment	ts fo	rm a	par	t of
SPECT	FICATIONS	5												
01 101	ary		-											
<u>Milit</u>	-9300	Resin, Epoxy	y, Low	Pres	sur	e Lar	nina	ting	5					
<u>Milit</u> MIL-R														
<u>Milit</u> MIL-R <u>North</u>	Americar	Rockwell Con	rporatio	on										

FORM 101-H-2 REV. 12-67

• .

225

1.

	NORTH A	AMERICAN ROCKWELL CORPO ROSPACE AND SYSTEMS GROU	DRATION UP		
	COD	E IDENT. NO43999			
NUMBER	130LB0004	A REVISION LETT	I I I I I I I I I I I I I I I I I I I	PAGE 3	]
American Socie	ty for Testin	g and Materials			
ASTM D579	Standard Sy Fabrics	pecifications and Meth	hods of Tes	st for Woven	Glass
STANDARDS					
<u>Federal</u>					
Federal Test Method Std.No. ¹	Plastics: N +06	Method of Testing			
Military			-	-	
MIL-STD-414	Sampling Pr Percent Def	rocedures and Tables f fective	for Inspect	tion by Varia	bles for
Society for Pla	stics Industr	¥ · · · ·			
SPI-Prepreg-l	Resin and V Reinforceme	Volatile Content of Pr ents	reimpregnat	ed Inorganic	
supported, class thermosetting r using low press molding having	:, or unsuppo esin as speci ure laminatin properties de	rted, class 2, and im fied. They shall be og methods (under 100 escribed in this speci	capable of psi), to p fication.	with the app being molde roduce a cur	licable d, ed
3.2 <u>Materials</u>	Procured by t	he Supplier			
3.2.1 <u>Impregna</u> the general req materials, nonc low pressure la requirements of	<u>ting Resin</u> uirements of orrosive to m minating meth this specifi	The resin used for ty MIL-R-9300. The resinct and shall be can ods, to a fully therm cation.	pes I and in shall be pable of b noset state	II shall con free of for eing molded, and meet th	form to eign using e
3.2.2 <u>Boron Fi</u>	lament		•		
a. <u>Material</u>	The boron fil meet the requ	ament material suppli irements shown in tab	ed to the le I.	tape process	or shall
		Table I			
	BORO	N FILAMENT PROPERTIES	5		
Property Tensile Strengt Modulus of Elas Diameter, Inches Density, Maximum	h, min. avg., ticity, Tensid s m lbs/in. ³	psi on min. avg., psi	<u>R</u>	equirement 450,000 55 x 10 ⁶ 039 to 0.004 0.095	- 1

FORM 131-H-2 REV. 12-67

.

L
	NORTH AME AEROS	RICAN R	OCKW ND SY:	ell (	CORF S GR(	'ORA' JUP	TON				
	CODE II	DENT. NO	)	43	999						
	NUMBER STO1 30LB0004	A	REV	/ISION	LET	TER			PAGE	4	
b.	<u>Splices</u> Splicing of boro the following re	on fila quirem	ment ents	s sh	alļ	be	perm	itte	d in .	accorda	nce with
	<u>Method</u> - 1 inch to 2 inch	ies ove	rlap	spl	ice	wit	h un	ifor	m res	in appl	ication.
	<u>Heat Requirements</u> - Types withst for no at tem	I and anding t less peratu	II m a m tha res	ater inim n 10 up t	ial um ( ) mi: ;o 3	spl of 2 nute 75 ⁰	ices 00 g s an F.	sha ram d mu	ll be tensi st no	capabl le load t emit	e of at 400 ⁰ F volatiles
	<u>Conformability</u> - Splices h being wou producer	aving ind on shall	any the be c	indi ship ause	cat: pin fo:	ion g sp r re	of b ools ject	reak by ion.	s or the f	split <b>s</b> ilament	after
	<u>Frequency</u> - Average distan	nce bet	ween	sp]	ice	s -sh	all	be a	mini	mum of	1000 ft.
	<u>Labeling</u> - All splices sha under the splic	ull be e.	mark	ed t	by i	nser	ting	ab	lack	strip o	f paper
c.	Filament Spool Requirement	<u>.</u> -			-	-					
	<u>Spool Diameter</u> - The boron diameter	n filam not le	ents ss t	shan	11 8 i	be s nche	upp <u>l</u> s.	ied	on sp	ools of	a
	<u>Winding Tension</u> - Boron fi the ship	lament	s sh pool	all .8.	Ъе '	woun	d un	der	unifo	rm tens	sion on
	<u>Winding Pattern</u> - Filament a minimu overlapp	s shal m spac oing or	l be ing cro	e lev betu ssov	vel veen vers	when adj of	wou acen fila	nd c it fi ment	on the lamen ts.	spools its, wit	3 with th no -
	Liner Interleave - Filamen leave i overlap the lin	nts sha Inserte oping c ner is	ll t d at r cr inse	e wa the rose	ound e en over i.	wit d of s of	h a 'eac fil	pape h le amer	er lin evel w nts pe	er inte vind wit ermitted	er- th no 1 before
	Filament Length per Spool	- Eac! perc	spo ent	ol's	shal Doro	l cc n fi	ntai lame	.n 20 ent p	),000 materi	ft. ± 1 al.	LO
3.2 sha wit the shi clo	2.3 <u>Glass Fabric Carrier</u> all conform to requirements th a 1100 soft finish. Thes collimated boron filaments pping and when handling dur oth shall be parallel to the	When s of ASI se supp s in th ring la e lengt	peci M Dy orti eir yup h of	fyin 79 f ng n fixe open the	ng c type mate ed p rati e bo	lass 58 rial osit ons. ron	il, (Ind s sh ions Th fils	the lustr all whi ne was ment	glass cy Sty be ca ile in arp of t of t	a fabric vle 104 pable of storag the ca the prep	c carrier ) fabric of holding ge, during arrier preg.

FORM 131 2 REV. 12-67

43999 CODE IDENT. NO. NUMBER REVISION LETTER PAGE 5 ST0130LB0004 3.3 Materials Procured by North American Rockwell Corporation (NR).- Boron filament reinforced uncured plastic preimpregnated material, class 1 and class 2 shall consist of collimated, parallel in plane boron filaments impregnated with thermosetting resin (see 3.2.1) and shall be supplied by the linear foot in 3inch widths for class 1 and 1/8-inch widths for class 2. Boron filaments shall be completely wetted by the resin. a. b. Preimpregnated material shall have 206 to 214 filaments for each 1.000-inch width of material. The minimum number of feet of class 1 material, per pound of filament supplied, shall be based on the number of filaments per inch of width as stated below. A maximum loss of 10 percent shall be allowed for processing. Fibers per 1 inch of Tape Feet of Delivered 3 inch Wide (class 1) Prepreg per Pound of Bare Filament, minimum 102 206 208 101 210 100 99 212 98 214 All filaments shall be collimated and parallel to the center line of the c. prepreg within an angle of 15 minutes. d. Filaments shall not be crimped. There shall be no cured resin particles in the material. e. f. Prepreg shall be free of all parting agents or any other foreign material, and shall be of uniform natural color. The physical properties of the uncured prepreg material be in accordance g. with the requirements shown in table II. Table II UNCURED PREPREG, PHYSICAL PROPERTIES Requirement Property 2 % max. Volatile content, percent by weight 29 - 34 Resin content, percent by weight Shall adhere to a steel Tack plate when held in a vertical position. To be defined later Gel Time * *NOTE: Such to produce a ply thickness of 0.0051 to 0.0054 inch when cured per ST0105LA0007.

CODE IDENT NO 73000

			DE IDEI	<b></b>	0	432			•				
	NUMBER				RE	/15101	LET	TER		·			
	S	T0130LBC004	A	T	Ι	Γ					PAGE	6	
3.3.1 0.012 touch may d any o	Boron inch m each o eviate ther fi	Filament Spac aximum and 0.0 ther. Not more from the above lament.	<u>ing</u> 002 in e than requi	Spac ch m 3 p reme	ing inim erce nts.	betw um ( nt c Bo	veen see ¹ of th oron	adj +.23 he q fil:	acen ); ti uanti ement	t fi hey ity ts s	lament shall of tap hall r	ts shal not pe insp not cre	l be ected ss over
NOTE:	Avera	ge filament sp	acing	is O	.000	8 in	ch.						
3.3.2 any 12 per 10	Boron 2 inch 1 00 feet	Filament Splid length of class of tape shall	<u>ces</u> - s l pr be pe	No m epre rmit	ore g. ted.	than No m	ore	fila tha:	ment n 3 :	spl such	ices s group	shall o os of s	ccur in flices
3.3.3 class order	Prepro 1 and 1 . Width	<u>ag Width.</u> Prej L/8 inch width ns shall be he	preg m s fo <b>r</b> ld to s	ater clas with	ial s 2 in <u>t</u>	shal unle .03	l be ss c l in	e fu othe: nch.	rnis rwise	hed e sp	in 3 i ecifie	inch wi ed in p	dths for urchase
3.3.4 the la	<u>Prepre</u> ast roll	e <u>g Length</u> Pro l of a batch wi	epreg i hich si	leng hall	th p exc	er r eed	oll 25 f	sha Seet	11 Ъ •	ə 25	0-400	feet e	xcept
3.3.5 quali- requin of mat inspec the sp inch 1	Prepre ty throu rements terial. ction ta pecified length s	<u>e Uniformity</u> ughcut. Any se of this specif Lineal footag ag attached l length of pre- shall be .030 i	- Each ection fication ge of : to t epreg n inch f	bat of reje- ne r- nate: rom	ch o prep hall cted oll rial the	f pr reg not mat of p . M edge	epre mate be eria repr axim	eg me ria remail s reg a num a	ateri l whi oved hall and s accep	ial ich fro be shal otab	shall does r m a co itemiz l not le way	be of not mee ontinuo zed on be inc viness	uniform t the us length the luded in of any 24
3.3.6 ments exceed	<u>Stora</u> of this ling C ^O	<u>e Life (Shelf</u> specification F or a minimum	<u>Life)</u> n after n of ly	- T sto da	he p orag ys s	repr e of tora	eg m 6 m ge a	iate: iontl it 7	rial hs at 5 ⁰ F	sha t ter max	ll mee mperat imum.	et the tures n	require- ot
3.3.7 cf qua could crosse marked such a tape s	<u>Workma</u> ality wo adverse ed or br by ins areas ex shall li	<u>nship</u> Prepre- orkmanship and ly affect its oken fibers, i erts and shall ceeds 2 percer e flat.	eg mate shall perfor irregul be ca nt of f	erial be f mano lar o use the f	l fu: free ce. carr: for total	rnis of Vis ier rej l taj	hed all ible or i ecti pe l	to finguation to find the final sector of the	this uriti licet aplet only th of	spection tion te in if the	cifica and de of dr mpregn the to e roll	tion s fects y spot ation tal le	hall be which s, voids, shall be ngth of olled
3.4 <u>(</u> confor ance w	<u>Sured Pr</u> m to re rith STO	epreg Mechan quirements lis 105LA0007 and	nical p sted in tested	prope tal l in	ertie bles acco	es o: III ordan	f cu and nce	red, IV with	, lam wher 1 4.3	nina fal 10.	ted pr bricat	epreg : ed in a	shall accord-
							•				•		

FORM 131-H-2 REV. 12-67

allistikaensen

internation descention and an

1

14.00207

## CODE IDENT. NO. ____43999

NUMBER				REV	/15101	I LE1	TER					]
STO1 301 BOOOL	k	A							Γ	FAGE	1	
						<b>.</b>			*			
			Tab!	le I	II							
REQUIREMENTS FO	R MECI	HANI	CAL	PRO.	PERI	IES	OF	CURE	D LA	MINA?	res	
-	_			•								
Test	Tem	oera	ture	2.	<u>F</u>	Mini	mum	<u> </u>	imat	<u>e Val</u>	lues, Ks	<u>i</u>
						Туре	<u>1</u>	Ty	pe I	Ī	Type II	I
Flexure longitudinal			ጥና			2	5		005			
Toxito, Tongi dudinar		2	70			~~~~	-		195			
		2	50				-		170			
Flexure, transverse		-	ÎĤ			10,	.0	1	3.0			
		2	70			-	-	l	0.0			
		3	50			•	•		8.0			
Horizontal Shear			RT			13.	,0	1	3.0			
-		2	70			•	-		7.0			
		3	50			-	-		5.0			

#### Table IV SANDWICH FACE TENSION TEST REQUIREMENTS FOR TYPE II CURED LAMINATES

Filamenc Orientation	Temp. F	Initial E, psi x 10 ⁻⁶	Yield Strain A <u>in./in.</u>	Ultimate Strength, <del>St</del> <u>Ksi</u>
0 ⁰	RT	30.0	4000	180
0°/90°	RT	16.0	2000	90
900	RT	3.0	2000	12
	•			

. . . .

(NOTE: For the purpose of this specification, "yield strain" is defined to be the strain at which the particular orientation first becomes inelastic.) 3.5 Identification Marking .- Each roll of prepreg shall be permanently marked with the following data:

SPECIAL INSTRUCTIONS (if required, see 5.2)

RESIN TREATED BORON REINFORCED PREPREG

TYPE . CLASS NR SPECIFICATION NO. STO130LB0004

WIDTH OF MATERIAL

LINEAR FEET

MANUFACTURER'S BATCH NO. AND DATE OF MANUFACTURE

MANUFACTURER'S DESIGNATION

STORAGE TEMPERATURE, MAX: 0° F

SHELF LIFE: 6 MONTHS at 0° F

INSPECTION RECORD AND COMMENTS: ITEMIZED DESCRIPTION OF REJECTED MATERIAL UNCLUDING LINEAR FOOTAGE OF SUCH REJECTS AND THEIR LOCATION.

CODE IDENT. NO. _____43999

NUMBER		REVISION L	ETTER		
STO130LB1004	A				

#### 4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Responsibility for Inspection</u>.- The supplier shall be responsible for the performance of all inspection requirements specified herein. The supplier may utilize his own facilities or any commercial laboratory acceptable to NR. NR reserves the right to perform or witness any of the inspections specified herein, when these inspections are deemed necessary to substantiate prescribed requirements.

4.2 <u>Certificate of Conformance</u>.- The supplier shall furnish with each shipment a certified report (in triplicate), stating conformance to the requirements specified herein and listing the specific results of all the quality conformance inspection tests. This report shall also include this specification number, type and class, the purchase order number, the batch number, roll number and footage in each, manufacturer's designation and date .. manufacture. An itemized description of any rejected material including linear footage of such rejects and their location shall also be included.

4.3 <u>Subcontractor</u>.- When materials for subcontract fabrication are purchased directly by the subcontractor, the subcontractor shall be responsible for determining that the material meets all the requirements of this specification. With each part shipment the subcontractor shall submit a copy of the report specified in 4.2.

4.4 <u>Inspection Records</u>.- The supplier's inspection records of examination and tests for conformance to the requirements of this specification shall be kept complete and available to NR upon request.

4.5 <u>Inspection Lot</u>.- A lot shall consist of all the material forming part of one purchase order and submitted for acceptance at one time. A batch shall be that quantity of material compounded and manufactured at one time.

4.5.1 <u>Level of Inspection</u>.- Each batch in each lot shall be tested for conformance to the quality conformance inspection requirements.

4.6 <u>Classification of Inspections</u>.- The inspections requirements specified herein are classified as follows:

- 1. Qualification Inspection (See 4.7)
- 2. Quality Conformance Inspection (See 4.8)

4.7 <u>Qualification Tests</u>.- Qualification inspection tests shall be as specified in table V.

CODE IDENT. NO. ____43999

NUMBER REVISION LE		<b>SE</b> 9	
ST0130LB1004 A			
TADLE V			
QUALIFICATION INSPECT	TION		
m +	Poquément	Mathad	
lest	paragraph	paragraph	
		<u>Feer of the second</u>	
Impregnating Resin		1. 77	
Conformance	3.2.1	4.11	
Boron Filament Properties			
Tensile strength	3.2.2	4.12	
Modulus of elasticity, tension	3.2.2	4.13	
Diameter	3.2.2	4.14	
Density	3.2.2	4.15	
Olever Televier Counter T			
Conformance	3,2,3	4.16	
com or mance	رەغەر		
Reinforced Uncured Prepreg			
Visual examination	3.3 a,d,e	f 4.17	
Filament count	3.3 b	4.18	
Filament alignment	3.3 c	4.18	
Volatile content	3•3 g	. 4.19	
Resin content	3•3 g	4.20	
Tack	3•3 B	4.21	
	2•2 B	h 03	
Boron filament spacing	3.3.2	4.24	
Allouphlo uidth	3.3.3	4.25	
Allowable length	3.3.4	4.26	
Uniformity	3.3.5	4.27	
Storage life	3.3.6	4.28	
Workmanship	3.3.7	4.29	
•			
Cured Prepreg			
El crowne l'angi tudi nal	3.4	4,30,1	
Flexure, fongroudinar	3.4	4.30.2	
Horizontal shear	3.4	4.30.3	
Tension, sandwich face	3.4	4.30.4	
•	-		

CODE IDENT. NO. ____43999

NUMBER		REVISION LETTER	PAGE TO	!
 ST0130LB1004	A			

4.7.1 <u>Recualifications</u>.- Any change in formulation shall be submitted by the manufacturer in writing to the NR Engineering Materials & Producibility via the Purchasing Department. The material shall then be subject to requalification.

4.8 <u>Quality Conformance Tests</u>.- Quality conformance inspection tests shall consist of all tests listed for the reinforced uncured prepreg (see 3.3) and the flexure, transverse flexure and horizontal shear tests listed for the cured prepreg (see 3.4). In addition, the sandwich face tension tests on the cured prepreg may be required if requested by NR Engineering Materials and Producibility.

4.9 Test Conditions.-

4.9.1 <u>Standard Conditions</u>.- Unless otherwise specified herein, all room temperature tests shall be conducted at a temperature of  $75^{\circ}$  to  $79^{\circ}$  F, and a relative humidity of 45 to 55 percent.

4.10 <u>Test Specimen Preparation</u>.- Test panels from which test specimens will be prepared shall be fabricated in accordance with ST0105LA0007. Test specimens shall be cut from the test panel prepared, using diamond studded cutters.

4.11 <u>Conformance of the Resin</u>.- The impregnating resin shall be tested for conformance to the applicable requirements of MIL-R-9300.

4.12 <u>Tensile Strength</u>.- The acceptability of boron filament tensile strength for each machine run shall be determined by sample testing in accordance with section C of MIL-STD-414 for an AQL of 10.00. The procedure for evaluating each machine run is to test four samples, compute the average tensile strength  $(\bar{X})$  and the sample range ( $\bar{R}$ ) and determine K from K = ( $\bar{X}$ -377,000)/R where X and R are measured in psi. If K is greater than 0.276 then the run is acceptable. If K is less than 0.276, test three more samples and determine K for the seven samples shown above. If K is greater than 0.266 then the run is acceptable. If K is less than 0.266 then test three more samples, compute the average strength ( $\bar{X}$ ) and the sample range ( $\bar{R}$ ) for the new total of ten samples and determine K. In the case of ten samples ( $\bar{R}$ ) is the average range of two subgroup ranges of five samples each as described in Standard MIL-STD-414. If K is greater than 0.341 the run is acceptable and if K is less than 0.341 the run is not acceptable.

4.12.1 <u>Strain Rate</u>.- Tensile values shall be determined using a one-inch gage length and a prosshead loading speed of 0.05 in./minute.

4.13 <u>Modulus of Elasticity, Tension</u>. - The tension modulus of elesticity of the boron filaments shall be based either on sonic measurements or specimens using long gage lengths (ten inches or greater) from which the stress-strain values can be obtained. The modulus of elasticity shall be determined for a minimum of one test at the end of each machine run.

and the second second

DE IDENT. NO. ____43999___

		CODE	IDEN	T. NO	)	4322	2						
	NUMBER		1		REV	15101	LEI	TER					
	STOI	30LB1004	A		[		<u> </u>				PAGE	11	
L.1L by the	<u>Filament I</u> e use of ei	Diameter The ther a micros	e dia meter	meter or	er o an	f th opti	ie bo .cal	oron com	fila	amen tor.	its sha	ll be	measured
1.15 in ac	<u>rilament l</u> cordance wi	<u>lensity</u> The	dens est M	ety letho	of od S	the td.	bor No.	on f: 406	ilame , Me	ents thod	shall 5012.	be de	termined
4.16 to th	<u>Conformanc</u> e requireme	ents of ASTM	<u>ss Fa</u> D579	<u>ibric</u> for	<u>e</u> .− typ	The e 58	gla We	ss fa ven (	abrio glas:	c ca s fa	rrier bric.	shall	conform
4.17 impre neces	<u>Visual Exa</u> gnated mate sary in acc	mination of erials shall cordance with	<u>the U</u> be ex 3.3.	<u>Incu</u> amin	red ned	Prep visu	oreg all	.— T y, u	he re sing	einf mag	orced nifica	uncure tion i	d pre- f
4.18 examine the co optice	<u>Boron Fila</u> ned visuall ount of the al comparat	<u>ment Count a</u> y using an o boron filam tor or other	nd Al ptica ents. suita	ign il co Th able	nent ompa he a ins	- 1 rato ligr trun	he i or a men nent	uncu: t 50 t shi	red ] -100] all ]	prep X ma be c	oreg sh gnific hecked	all be ation using	to make the
4.19 weight for 1 in a $(W_2)$ . volat	<u>Volatile (</u> ed to the r 4 to 16 min desiccator The volat ile content	Content A 3 hearest 0.001 hutes at 320° to ambient c tile content t shall be ba	x 3 gram to 3 ondit in pe sed c	incl (W- 330 ⁰⁻ tions ercen	h sq l) a F. s an nt s he a	uare nd h The d re hall vera	e of leat spi wei be ge	l pi ed in ecimo ghed 100 of th	ly u n an en i to (W ₁ -N hree	ncur air s th the W ₂ )/ spe	ed pre circu nen rem neares W1. T cimens	preg s lating oved, t 0.00 he mea	hall be oven cooled l gram n percent
2.20 shall ing in square	<u>Resin Cont</u> be determin n methyl et e of 1 ply	<u>ent.</u> The re- ned in accor- chyl ketone fo uncured prep	sin d dance or 6 reg.	conte e wit minu	ent th t utes	of e he p . 1	ach proc he	rol: edur spec:	l of e of incn	the SPI sha	uncur -Prepr 11 be	ed pre eg-1, 3 x 3	preg by boil- inch
L.21 cured 0.125 surfa Remove weigh the in	<u>Tack</u> The prepreg. x 4 x 8 ir ce (100 RMS e the separ t, but shal nitjal weig	e tack shall with the pack with the pack ach stainless S max.). Remu rator sheet. I be capable wht.	be de kagin stee ove a The of r	etern ng se el pl nir h prep emov	nine epar late bubb preg val	d or ator , he les sha with	and and ll	l pl: eet n vert: wrin not l los:	y 3 : up, ] ical: nkle: be d: s of	x ^{l;} clac ly, s wi islo mor	inch s the the having th a s cated than	pecime prepre a smo queege by its 5 per	n of un- g on a oth e. own cent of
L.22 : this :	<u>Gel Time</u> specificati	The gel time on in the fu	requ ture.	lire	nent	s ar	id ti	est i	neth	od s	hall b	e adde	d to
L.23 using	<u>Boron File</u> an optical	<u>ment Spacing</u> comparator a	Th at 50	ne bo )-100	oren DX m	fil agni	ame: fica	nt sj atio	paci) n.	ng s	hall b	e meas	ured
L.24 for th shipme	Boron Fila ne boron fi ent.	ment Splices lament splice	Th es sh	e co all	onfo be	rman cert	ice t ifi	with ed by	the y the	req e su	uireme pplier	nts of on ea	3.3.2 ch

FORM 131-H-2 REV. 12-67

43999 CODE IDENT. NO. NUMBER **REVISION LETTER** PAGE ST0130LB1004 12 4.25 <u>Allowable Width.-</u> The width of the prepreg shall be measured using an optical comparator. 4.26 Allowable Length .- The allowable length shall be obtained from the data obtained from the supplier for each roll of prepreg. 4.27 Uniformity. - The uniformity shall be determined visually or by other means at the time of use. 4.28 Storage Life. - The storage life of the uncured prepreg shall be certified by the supplier. 4.29 <u>Workmanship</u>.- The workmanship shall be determined visually or by other means at the time of use. 4.30 Preparation of Cured, Composite Laminated Test Specimens .- The test specimens of cured, composite laminate shall be fabricated in accordance with ST0105LA0007 unless otherwise specified. All filament orientation within the length of the specimen shall be within  $\pm 1/2^{\circ}$ . A mean value for strength, based on three specimens, both at room temperature and one elevated temperature (350° F), shall be reported. (NOTE: Strength tests at 270° F, may be required if included on the purchase order.) 4.30.] Flexure, Longitudinal (0°).a. Specimen dimensions shall be as shown in figure 1. The thickness dimension (t) will be in the range .0775 - .082. A variation in thickness over a specimen may not exceed 0.004 inch. (NOTE: 15 plies including balance ply of 104 glass.) A load support method shall be utilized as shown in figure 1. Ъ. The specimen shall be loaded in a universal test machine at a load rate C. of 0.05 inch per minute. Record the load at failure. d. Calculations: Flexure, ultimate,  $f_u = \frac{3 \text{ PS}}{2 \text{ Wt}^2}$ e. P = load in poundsS = span in inches W = specimen width in inches specimen thickness in inches

1.000

- Autor

CODE IDENT. NO. ____43999___

NUMBER	DEVIS	IN I FTTFP		ר
ST01301B1004	ATT		PAGE 13	
	· 0.	╶┯╼┹╼╌╾┚	·······	· L··
4.30.2 <u>Flexure, transverse</u>	<u>(90°)</u>			
a. Specimen dimensions shal (t) may vary from .0775 104 glass.)	l be as shown to .082. (NOTH	in figure 2. E: 15 plies inc	The thickness cluding balance	dimension ply of
b. A load support method sh	all be utilize	ed as shown in	figure 2.	
c. The specimen shall be lo of .05 inch per minute.	aded on a univ	versal test ma	chine at a load	rate
d. Record the load at failu	re.			
e. Calculations: Flexure,	ultimate, f _u	$= 3PS/4 Wt^2$	•	
<pre>P = load in pounds S = span in inches W = specimen width in inch t = specimen thickness in</pre>	es inches		-	
4.30.3 Horizontal Shear			-	
<ul> <li>a. Specimen dimensions shal from .0775 to .082. Var (NOTE: 15 plies including</li> <li>b. The specimer, shall be lo load of 0.05 inch per mi</li> </ul>	l be as shown iation in a s g balance ply aded to failun nute.	in figure 3. pecimen shall n of 104 glass.) re in a univer:	Thickness may not exceed 0.00 ) sal test machine	vary 3 inch. e at a
c. A load support method sh	all be utilize	ed as shown in	figure 3.	
d. Record the load at failu	re.			
e. Calculations: Horizonta	l shear, F _{Hs}	= 3P/4 Wt		
<pre>P = load in pounds W = specimen width in inch t = specimen thickness in ;</pre>	es inches			
				i
				:

•

.....

FORM 131-H-2 REV. 12-67

236

CODE IDENT. NO. _43999 REVISION LETTER NUMBER PAGE 14 ST01301B1004 4.30.4 Sandwich Face Tension.-1. Preparation of Test Specimen A. Prepare boron composite face sheet 1.0 inch wide by 22 inches long with thickness as follows: (1) All fibers  $0^{\circ}$  to 22 inches dimension - 6 plys (0.0306 to 0.0324) (2) All fibers 90° to 22 inches dimension - 8 plys (0.0408 to 0.0432) (3) Fiber orientation 0°/90°-8 plys (0.0408 to 0.0432) Note:  $0^{\circ}/90^{\circ}$  skin ply orientation as follows:  $90^{\circ} - 0^{\circ} - 90^{\circ} - 0^{\circ} - 0^{\circ} - 90^{\circ} - 0^{\circ} - 90^{\circ}$ B. Bond boron composite face sheet into sandwich beams as follows: (1) For  $0^{\circ}$  and  $0^{\circ}/90^{\circ}$  composites use (a) 23 lb./ft.³ aluminum honeycomb core 1.5 inches thick by 1.1 inches wide by 22 inches long (b) 0.125 inch thick aluminum sheet same width and length as the borch skin for the opposite face (2) For  $90^{\circ}$  composites use (a) 4.5 lb./ft.³ aluminum honeycomb core 1.5 inches thick by 1.1 inches wide by 22 inches long (b) 0.080 inch thick epcxy/glass fabric laminate same width and length as the boron skin for the opposite face (3) Bond using two (2) layers of AF130 or equivalent in both bond lines. Cure at 15 psi for one hour at 350° F. 2. The load support method utilized shall be as shown in Figure 4. 3. The minimum instrumentation for determining elastic properties is shown in Figure 4. 4. The test procedure shall be as follows: A. Load the specimen to failure at the following load rates: (1) 0°-700 pounds per minute. (2) 0°/90-300 pounds per minute. (3) 90°-70 rounds per minute.

CODE IDENT. NO
NUMBER REVISION LETTER PAGE 15
ST0130LB1004 A
<ul> <li>B. Record strain gage and load data at the following increments:</li> <li>(1) 0°-100 pounds of load.</li> <li>(2) 0°/90°-50 pounds of load.</li> <li>(3) 90°-10 pounds of load.</li> </ul>
C. The strain values from the two longitudinal gages shall not differ more than ten percent and differences less than five percent are attainable.
D. Record the load at failure.
5. The stress in the composite facing is
$\sigma_{\overline{t}} = \frac{\mu P}{Wt \left[ C \div \left( \frac{t+T}{2} \right) \right]}$
<pre>where for = stress in psi     P = load in pounds     W = width of composite facing in inches     t = thickness of composite facing in inches     C = thickness of core in inches     T = thickness of opposite facing in inches</pre>
4.31 <u>Retest</u> If a material sample fails to meet the requirements of this specification due to preparation of test specimens, retest is permitted. The results of the original tests and the retest, and the reasons for failure, shall be included in the test report.
$\frac{L}{2}$ .32 <u>Rejection</u> Each batch of material shall be rejected if it does not pass the acceptance tests.
5. PREPARATION FOR DELIVERY
5.1 <u>Packaging</u> Prepreg material shall be rolled on a reel of not less than 8 inches in diameter. A non-adherent paper or Mylar separator of a contrasting color shall be used on one side of the material against the glass carrier if used to prevent the layers of material from sticking to each other. Each roll or rolls of prepreg shall be heat sealed in an evacuated, moisture-proof plastic bag. An identification tag shall be placed within each bag prior to sealing.
5.2 <u>Packing</u> Units packaged as specified in 5.1 shall be packed in exterior- type shipping containers in a manner that (if refrigerated shipment is required by NR) will allow solid carbon dioxide to be packed in sufficient quantities to maintain a material temperature of $0^{\circ}$ F, maximum, during transit. Upon receipt, containers shall be opened and examined to ascertain that solid carbon dioxide remains therein, if used. Prepreg rolls shall be packed in a horizontal posi-

tion and containers so marked so as to insure horizontal positioning for shipment and later stored in an upright, vertical position. The shipping container

FORM 13.-H-2 REV. 12-67

ւներեն երեներություն։ Դերեներություն

-500

ge uzerte, vere proseguenou en angen vrouenten de besenten 21 Vereneur - Anteres

ź 

ALTER STATES OF STATES

1000

		CODE I	DENT.	10	43999					_
	NUMBER			RE	ISION L	ETTER		PAGE	36	
	ST0130	LB0004	Δ						10	
shal dest appl	l be so constr ination. Ship icable to the	ucted sc as ping contain mode of tran	to as ners s nsport	sure hall ation	safe d comply •	lelive; v with	ry and a carries	accept r regui	ance at lations	their
5.2. foll	l <u>Marking of</u> owing informat	<u>Shipment</u> ) ion:	Each s	hi <b>ppi</b>	ng cor	itaine:	r shall	be ma:	rked wi	th the
RESI NR S NR P MANU	N TREATED, BOR PECIFICATION N URCHASE ORDER FACTURER'S NAM	ON REINFORC O. STO130LB NO. E, TRADEMAR	ed pre 0004 K or s	PREG, TYPE YMBOL	LOW F	RESSUI	re mold:	ING		
MANU STOR DATE SHEL	FACTURER'S BAT AGE TEMPERATUR OF MANUFACTUR F LIFE: 6 MON	CH AND LOT H E, MAXIMUM E THS AT O ^O F	NO. O ^o F			-				
6.	NOTES									
6.1 when frem stif	Intended Use. molded using e, aerospace a fness and stre	- The mater low-pressur nd similarl ngth-to-wei	ials p e lami y rela ght ra	rocur natin ted p tios	ed in g meth rimary are re	accord nods, a stru quire	dance w are sui ctural d d.	ith th table compon	is spec for use ents wh	ification, in air- here high
	•									
							-			
•										

FORM 131-H-2 REV. 12-47

.



FORM 131-H-2 REV. 12-67

240



FORM 131-H-2 REV. 12-67



Horizontal Shear (0°)



Length (L) = 0.60  $\pm$ 0.01 Width (W) = 0.250  $\pm$ .003 Thickness (t) = 0.0775 to 0.082 Span (S) = 0.4 (Overhang must be same over each end.) Load and reaction supports shall be 1/8" radius steel rod. All filaments to be 0° to the L dimension. All dimensions are in inches.

Figure 3. Test Method: Horizontal Shear  $(0^{\circ})$ 

FORM 131-H-2 REV. 12-67



131-H-2 REV. 12-67 FORM

sing paragraphic territor

h history, this material is fill a surgerine stabilities.

: -

## APPENDIX II

620 A CONTRACTOR AND

## PROCESS SPECIFICATION

## ADVANCED COMPOSITES - FABRICATION OF PARTS OR COMPONENTS

## UTILIZING BORON/EPOXY PREPREG

(NR Specification ST0105LA0007)

District Self

R. ME						10007			
	DOWS APPROVALS KOLINI		LOS ANGELES DIV	SION	TYPE				
	APPROVALS	N	ORTH AMERICAN ROCKWELL	CORPORATION	PROCESS				
the la	Y0.	9			DATE	10			
720		mette	• •		SUPERSED	69 ES SPEC. DATE			
			SPECIFICAT	ION					
					REV. LTR.	PAGE 1 of 8			
TITLE	ADVANCED	COMPOSITE	S - FABRICATION OF PART	S OR COMPONEN	TS UTILIZ	ING			
	BORON-ER	OXY PREPRE	G						
	····								
				_					
			$\setminus$						
			,						
			REVISIONS						
			REVISIONS			1			
REV.	DATE	REV. BY	<b>REVISIONS</b> PAGES AFFECTED	REMARKS		APPROVED			
REV.	DATE	REV. BY	<b>REVISIONS</b> PAGES AFFECTED	REMARKS		APPROVED			
REV.	DATE.	REV. BY	<b>REVISIONS</b> PAGES AFFECTED	REMARKS		APPROVED			
REV.	DATE	REV. BY	REVISIONS PAGES AFFECTED	REMARKS		APPROVED			
REV.	DATE	REV. BY	REVISIONS PAGES AFFECTED	REMARKS		APPROVED			
	DATE	REV. BY	REVISIONS PAGES AFFECTED	REMARKS		APPROVED			
REV.	DATE	REV. BY	REVISIONS PAGES AFFECTED	REMARKS		APPROVED			
	DATE	REV. BY	REVISIONS PAGES AFFECTED	REMARKS		APPROVED			

.

Carl Contractor

14 2 1

		CODE I	DENT. N	1 <b>0.</b> <u>4</u>	<u> 3999</u>							
	NUMBER			RE	ISION	LET	TER			DACE		
	ST0105LA0007	· 「		T						FAUE	2	
	1. SCOPE This specif using boron-epoxy preim	ication pregnate	covers d mate	s the erial	fab s.	rica	tion	ı of	par	ts or	compon	ents
	2. APPLICABLE DOCUMENT	rs										
	2.1 <u>Documents</u> The lat this specification to t	test iss the exten	ues of it spec	f the cifie	fol d he	lowi rein	.ng ( ),	locur	ment	s form	n a par	t of
	SPECIFICATIONS											
	North American Rockwell	Corpora	tion									
	STO1 30LB0004 Advance	ed Compos	ite Ma	ateri	al -	Bor	on	Брох	y Pr	epreg		
	3. REQUIREMENTS											
	3.1 <u>Safety This spec</u> hazardous. Coordinate measures.	eificatic with Ind	on invo lustria	olves al Hy	; mat gien	eria e ar	al o nd S	r op afet;	erat y re	ions v gardi	which a ng prec	re autionary
	3.2 Materials Mater	ļals shal	1 be a	as fo	llow	s:						
	Acetone	Commerci	lal									
	Boron-Epoxy Prepreg	STO1 30LE	30004,	Туре	· II,	Cla	15 <b>5</b>	1				
	Coroprene Supports	Armstror	ng Cor!	k								
	Glass Fabric											
	Designation	Type										
	104	Impregna	ated *									
	120	Dry		C	Comme	erci	al					
	181	Impregna	ited *	ſ	`	moi	<b>م</b> ا					
	LOL * Impregneted wit	Dry h the cor	10 <b>10</b> 0	in er		1 94	the	hor	on i	fibers		
	. Tubi egue oen aro		HC 105	± 0j			<b>Q</b>	0			•	
i	GS-3 Teflon Release Agent	Ram Cher	nical,	Gard	iena,	, Cạ	lifc	rnia	1			
	Methyl ethyl ketone	Commerci	ial									
	Mylar	E.I. dul	Pont d	eNemo	ours	& C	ompa	ny				
	Tedlar	E.I. du	Pont d	eNemo	ours	& C	ompa	ny				
	Vent Cloth TX1040	Pallfle	x Prod	ucts,	, Pu	tnam	<b>,</b> Co	onnec	ctic	ut		

ACCUMULTING IN

CODE IDENT. NO.	43999
-----------------	-------

NUMBER		REV	ISION	I LET	TER		PACE		ך
ST0105LA0007							FAUE	3	

3.3 <u>Storage of Boron Impregnated Materials</u>.- Boron impregnated materials (STO130LB0004) shall be stored in sealed plastic bags at temperatures not exceeding 0°F. Before use, the material shall be removed from storage and allowed to come to room temperature before unsealing the plastic bag. A record of the time out of refrigeration shall be maintained and when the accumulated time exceeds 10 days, the material shall be retested in accordance with 4.2. Any partially laid-up parts which must be stored, shall first be sealed in plastic bags before storage at temperatures not exceeding 0°F. Upon removal from storage, the parts shall be allowed to reach room temperature before being unsealed.

3.4 <u>Manufacturing Documents</u>.- Manufacturing personnel shall have all applicable drawings and specifications and be thoroughly familiar with their contents before starting any fabrication. A permanent manufacturing record shall be kept of each batch and roll number of all boron prepreg material, together with the applicable part numbers and individual serial numbers of all parts fabricated with the material.

3.5 Equipment.-

3.5.1 <u>Tooling</u>.- Tooling shall be of steel or titanium. It shall be adequate to manufacture parts which meet all engineering requirements affected by tooling.

3.5.2 <u>Templates</u>.- Templates shall be furnished for each ply of boron prepreg called out on the engineering drawing. The templates shall be of transparent 0.007 inch thick Mylar film and the ply size, location, numerical sequence, and filament orientation shall be clearly and permanently marked. The templates shall be so designed that one surface will make a left-hand and the opposite surface will make a right-hand part. Each surface shall be clearly and permanently marked as to which hand part it makes. The templates shall have tooling pin holes around the periphery in order to locate each ply exactly in relation to the other plies.

3.5.3 <u>Autoclave</u>.- The autoclave shall have vacuum system, thermocouples with recording charts and pressure regulator system. It must be capable of delivering 80 to 90 psi and  $340^{\circ}$  to  $\pm 360^{\circ}$ F. The vacuum system must be capable of at least 25 inches of vacuum.

3.5.4 Auxiliary Equipment. - The following auxiliary equipment is required:

- a. Portable vacuum cleaner
- b. Scissors
- c. "Stanley" knives
- d. Boron prepreg tape dispenser, supported overhead in the layup room, with the head able to swivel 360 degrees.
- e. Teflon or polyethylene squeegee (6X3X1/4 inch piece).

FORM L 131-H-2 REV. 12-67

over a second second second and second s

carltur instact (Na

The second secon

States in the second

. =

			JT 3000
"NDE	INFNT	MA	41999

				CO	DE ID	ENT.	104	לללבי			-				_
	NUMB	R					RE	VISIO	N LE'	TTER			PACE		]
	ST	0105	LAOOO	7	Γ					[			FAUE	4	
3.6	Templa	ate	Layup	- Tem	plate	lay	up sł	all	be a	as f	ollo	ws:	<u> </u>		
	8.	Wir n F	e the noisten Blow d	exposed and in e ry with	d tem eithe clea	plat r ac n dr	e sui etone y, oi	face or	e wi meti ree	th c hyl air	lean ethy or n	che 1 ke itro	esec: tone	loth (MEK).	
	<b>b.</b>	A r e	roll o: at roa	f boron m tempe:	prer ratur	oreg, re, s	hall	be ]	loca	ted	on t	he d	ispe	nser.	
	с.	Unr t	roll st templa	ufficien te. Cu	nt bo t wit	bron ha	prepi sharj	regi p to	to f cl.	orm	one	stri	p ac:	ross the	2
	d. Layup the boron prepreg in the area indicated on the template with the scrim cloth up. Place the 3-inch wide tape: adjacent to each other but do not overlap. Gaps shall not exceed 0.030 inch.										te acent				
	e.	Tri t	im the templa	tape w. te.	ithir	) the	max	Lmum,	min	imm	1 lin	e sh	lown	on the	
	f.	Rub C	b out contac Do not	the bor t with try to	the 1 move	ayup templ e res	with ate. in.	a so Rul	quee b pa	gee rall	to c Lel t	reat oth	e in Ne fi	timate laments	•
	g.	Ren	nove a object	ll boro s from	n spl the s	linte surfø	rs, ce.	cros: Use	sove vac	rs o uum	or ot clea	her, mer,	fore if	ign necessa	ry -
3.7 follo	Templ	.ate	Layup	Inspec	tion	Th	le tei	mpla	te l	ayu]	o sha	11 1	œ in	spected	as
	8.	Gaj	ps bet width	ween bo whether	oron : witl	filam	ents 3 i	sha nch	ll n wide	ot e ta <u>r</u>	excee pe or	ed 0. • bet	.030 tween	inch in tapes.	
	<b>b.</b>	Boi	ron fi crossc	laments ver eac	h ot	ll no her w	nt be rithi:	sta na j	cked ply.	l one		ove a	notn	er or	
	c.	The	e layu	p shall	. be :	free	of c	ured	pie	ces	ofi	resir	1.		
	no1	<u>'</u> Е:	Shoul by re enoug with	d any c moving h to re accepta	of the the move able 1	e abo entin the mater	ve d re le defe rial.	efec ngth ct.	ts of Of The	file st:	r, tř ament rip s	ney : t in shall	shall ast lbe	. be rem rip wid replace	oved e d
	đ.		e layu shall If the the st	p shall be remo foreig rip sha	be : oved : n ma all b	free where teris e ren	of a e pos al ca noved	ll f sibl nnot and	orei e vi be rej	ign i itho rem place	mater ut de oved ed as	rial amage wit) s ab	. Fo e to hout ove.	breign m the lay damage,	aterial up.

and a stand and a data and the stand and and and an and a standard an

-----

"

.

	CODE	IDENT. NO	4399	9	_			
NUMBI	R		REVISIO	LETTE	R		PAGE	7
510.	.05LA0007			LL	1		>	<u> </u>
.8 <u>Stora</u> protective re not to not exceed 3.9 <u>Prepa</u>	re of Template Layu film. Store all be laid up within ing O [®] F in a sealed ration of Layup Too	p Cov template 24 hours bag. 1 Pre	er the layups , they epare th	layup flat. shall ne layu	with If be st	a cle the f ored	ear plastic templates at tempera follows:	e atures
a. b. 3.10 <u>Lay U</u>	Clean the tool wit or MEK to remove a smooth surface moistened with a with another cle free air or nitr Apply GS-3 release Cover the layup to p Of Part Lay up	h clean all for . Wipe cetone of an chees ogen to agent. ol with o the par	cheesed reign ma with a or MEK a secloth remove TX-104 rt as fo	loth, iterial final and imm Blow any tr ) vent ollows:	using clean mediat with maces cloth	eith lish chec ely clea of l: or	tc develog secloth wipe dry an, dry oil int. equivalent.	e p L-
<b>8.</b>	Lay up onto the to drawing. The pe glass fabric epo system as the bo Rub out with a s All splices shal	ol a el ply : xy prep oron fib queegee l be th	peel p shali c reg (im ers) wi to rem e butt	ly if s onsist pregnat th 1/2 ove all type.	specif on on wed wi inch air Remov	ied th t exce pock re th	by the engine y of 181 he same real ss on all a ets and wra e separato	ineering sin sides. inkles. r
b.	Select the require boron layup down	d templa	ate and	place	it on	n t <b>he</b>	tool with	the
c.	Locate one side of Caution shall be pins.	the ter used t	mplate o locat	on the e the f	corre templa	ect t ate o	ool pins. n the corr	ect
d.	Remove any protect layup. Do not f filaments.	ive fil orce th	m from e film.	betweel Do no	n the ot dis	tool sarra	and boron nge any	
e.	Work the lay up as motion to create the tool or peel	gainst t an int ply.	he tool imate c	or pe ontact	el ply betwe	y usi een t	ng a wipin he boron a	g nd
f.	Remove the template the template par roll, vibrating not be used to t	e, usin Tallel t the tem Tacilita	g a pee o the f plate a te temp	ling av ilamen s it i late r	ction ts ind s roll emoval	cres to a led. l.	ted by rol 2 inch dia Dry ice s	ling meter hall
g.	Inspect the boron with 3.7.	layup a	fter th	e temp	late :	remov	al in acco	ordance
h.	Repeat steps b thi laid up. Each ) before the next	rough g ply layu ply ie	until a p shall started	ll of be in	the respecto	equin ed by	red plies a Quality A	ire Issurance
<b>i.</b>	The external surface ply of 104 glass as the borch fil	ace of t s fabric pers and	he part impreg	shall nated with t	cons: with the part	ist d the s rt.	of one bala same resin	nce system



FORM L 131-H-2 REV. 12-67

era aran manya manyerang manyerang manyerang manyerang manyerang manyerang manyerang manyerang manyerang manyer

CODE IDENT. NO. _______

	 	love	
ST0105LA0007		PAG	° <b>E</b> 7

3.12 <u>Cure</u>.- The assembled layup shall be placed in an autoclave, and the temperature of the autoclave shall be raised to 350°F in 30 minutes or less at a rate that does not exceed 10°F per minute. Parts shall be cured at 80 to 90 psi and a temperature of 340 to 360°F as follows:

- a. Parts fabricated with Narmco 5505 Rigidite shall be cured for 110 to 130 minutes. With full bonding pressure maintained the parts shall then be cooled below 150°F as measured at the hottest area of the part.
- b. Parts fabricated with Minnesota Mining and Manufacturing SP-272 shall be cured for 55 to 65 minutes. With full bonding pressure maintained, the parts shall then be cooled below 150°F as measured at the hottest area of the part. The part shall be postcured for 215 to 265 minutes at 340° to 360°F. (An oven may be used for the postcure; parts shall be heated at a rate not to exceed 10°F per minute).
- c. The cure of parts fabricated from STO130LB004, Types I and III, boron epoxy prepreg shall be as specified by Materials and Producibility Engineering.

3.13 <u>Test Tabs</u>.- Test tabs fabricated with the production parts and the physical tests on the tabs shall be as specified by Materials an: Producibility Engineering.

3.14 <u>Nondestructive Testing</u>. - Nondestructive testing of parts shall be as required by Materials and Producibility Engineering.

3.15 <u>Finished Parts</u>.- All finished parts shall meet the following requirements.

- a. Before trimming, the part shall be inspected in an excess area with a Barcol Impressor. The average of ten readings shall be not less than 80.
- b. The thickness shall not be less than 0.0051 inch nor greater than 0.0054 inch per ply.
- c. After trimming, the part shall be weighed to within 1/10 pound and the weight recorded on the planning sheet.

3.16 <u>Packaging</u>.- The parts shall be wrapped in clean heavy paper or plastic sheet, sealed, and labeled with the part number or other suitable identification. The wrapped parts shall be packed in suitable containers to prevent damage to the part.

and a start of the second s The second sec

HIGHER PURITY ACT

CODE IDENT. NO. _43999____

MUMBER	REVISION LETTER	BACE O
ST0105LA0007		FAGE 8

## 4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Surveillance</u>.- Quality Assurance shall establish the minimum surveillance, control, and maintenance required to assure continued quality and consistency in manufacture.

4.2 <u>Retest of Boron Impregnated Materials</u>.- Boron impregnated materials which require retest shall meet the qualification inspection requirements for cured prepreg in accordance with ST0130LB0004. (See 3.3.)

4.3 <u>Inprocess Layup Inspection</u>.- Inprocess layup inspection shall be made by Quality Assurance in accordance with 3.7, and 3.10 g and h.

4.4 <u>Visual Inspection</u>.- All parts shall be visually inspected to insure compliance with section 3. The cured part shall be closely observed on both surfaces and all items not acceptable shall be recorded on the planning sheet. The following are not acceptable.

- a. Gaps between boron filaments in excess of 0.030 inch in width.
- b. Boron filaments crossing over an adjacent filament.

c. Wrinkles.

- d. Foreign objects such as metal chips and loose, short fibers.
- e. Contour discrepancies.

4.5 <u>Determination of Part Thickness</u>.- The part shall be marked in a suitable grid patter, and measured for thickness. The thickness at each grid intersection shall be recorded on the planning sheet and accepted by Quality Assurance if within the design limits. The thickness shall be in accordance with 3.15.

5. PREPARATION FOR DELIVERY .- Not applicable.

6. NOTES .- Not applicable.

## REFERENCES

- "Structural Airframe Application of Advanced Composite Materials," Air Force Materials Laboratory Report AFML-TR-69-101, General Dynamics/Fort Worth Division, March 1970
- Stout, R. L., "Air Drying, High Temperature Resistant, Silicone Protective Coatings," Air Force Materials Laboratory Technical Report AFML-TR-67-433, April 1968
- Baird, R. C., and Bullock, R. E., "Radiation Effects on Boron Filaments and Composites; Part I - Low-Dose Exposure," General Dynamics Report No. ERR-FW-716
- Bullock, R. E., 'Radiation Effects on Strength Properties of Boron Composites at High-Dose Exposures," General Dynamics Memo No. REM 1518, 20 June 1968
- 5. <u>Structural Design Guide for Advanced Composite Applications</u>, Final Draft Edition, prepared for the Air Force Materials Laboratory by the Southwest Research Institute, November 1968
- Chao, T. L., "A Study of Elastic Properties of Filamentary Composites; Part I - Two-Dimensional Mechanical Properties," Report No. 3, Case Institute of Technology/Solid Mechanics, Structures, and Mechanical Design Group, February 1967
- 7. Greszczuk, L. B., "Elastic Constants and Analysis Methods of Filament Wound Shell Structure," Report No. SM-45845, Douglas Aircraft Company, January 1964
- Greszczuk, L. B., "Theoretical and Experimental Studies in Properties and Behavior of Filamentary Composites," Paper No. 3550, Douglas Aircraft Company, February 1966
- Foye, R. L., "Advanced Design Concepts for Advanced Composite Airframes," Air Force Materials Laboratory Report AFML-TR-68-91, Volumes I and II, July 1968
- 10. Greszczuk, L. B., "Thermoelastic Properties of Filamentary Composites," AIAA 6th Structures and Materials Conference, Palm Springs, California, April 1965
- 11. <u>Structural Design Guide for Advanced Composite Applications</u>, First Edition, prepared for the Air Force Materials Laboratory by North American Rockwell/ Los Angeles Division, August 1969

- 12. "Development of Engineering Data for Advanced Composite Materials," Air Force Materials Laboratory Report AFML-TR-69-108, General Dynamics/Fort Worth Division, 1970
- "Advanced Composites Data for Aircraft Structural Design," Air Force Materials Laboratory Report AFML-TR-70-58, Volume III, North American Rockwell/Los Angeles Division, 1970

Unclassified

DOCUMENT CONTROL DATA - R & D	•
(Security classification of tille, body of abstract and indexing annotation must be entered when the overall report is classified	)
North American Rockwell Corporation	N
Los Angeles Division	
Los Angeles, California 90009 N/A	
J REPORT TITLE	
ADVANCED COMPOSITES DATA FOR AIRCRAFT STRUCTURAL DESIGN	
VOLUME I: MATERIAL AND BASIC ALLOWABLE DEVELOPMENT - BORON/EPOXY	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Final Technical Report (15 March 1968 - 15 December 1969)	
5 AUTHORISI (First name, middle initial, last name)	
Leslie M. Lackman, George H. Arvin, Edward O. Dickerson, Robert B. Meadows	
6 REPORT DATE 78. TOTAL NO OF PAGES 75. NO OF REFS	
August 1970 13	
SH. CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBERIS)	
F33615-68-C-1489	
b. PROJECT 110 AFML-TR-70-58, Volume I	
6169CW	
C. 9b. OTHER REPORT NO(S) (Any other numbers that may be a this report)	ssigned
d.	
1, DISTRIBUTION STATEMENT	
This document is subject to special export controls and each transmittal to fo	reign
governments or foreign nationals may be made only with prior approval of the A	ir
Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433	
11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY Advanced Composites Division (AFML	/LC)
Air Force Materials Laboratory	
Wright-Patterson Air Force Base, O	hio
13 ABSTRACT	

This volume summarizes that portion of the program concerned with the development of a material processing technology at NR, the determination of material properties for a specific epoxy resin and glass scrim cloth, the determination of the effects of nuclear blast on the strength of a composite laminate, and the assessment of existing micromechanics techniques for the prediction of composite lamina characteristics. All efforts in this program were relative to a specific boron/epoxy composite material system known commercially as Narmco Rigidite 5505. A procurement and a process specification were established during the program and have demonstrated a capability to produce satisfactory material consistently. Tests are described for a program to characterize separately Narmco 2387 resin and 104 glass scrim cloth. Test data are presented for standard mechanical properties and elastic constants at both room temperature and 350°F. A test program to determine the effects of nuclear blast on boron/epoxy laminates is described and test data are presented. An evaluation is presented to show the degree of validity of several micromechanics techniques for predicting composite lamina characteristics from known properties of the constituents.

DD FORM 1473

. . . . . .

Security Classification			•				
14 KEY WORDS	LINI	K A	LIN	кв	LINKC		
	ROLE	ΨT	ROLE	WT	ROLE	wτ	
Aircraft Structural Design							
Advanced Composite Materials							
Advanced Composite Structure							
Filamentary Composite Materials							
Filamentary Composite Structure							
Fiber-reinforced Materials							
Filamentary Laminates							
Composite Material							
Composite Structure							
Boron/Epoxy Composite							
Narmco 5505 (Rigidite)							
Epoxy Resin Matrix							
Narmco 2387 Resin							
Boron Filament							
Glass Scrim Cloth							
Anisotropic Analysis							
Micromechanics							
Strength Properties of Composites							
Elastic Constants of Composites							

ž,

## Security Classification

insurface and the second s

.et. e. de la 11 -_