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ABSTRACT

Hydrostatic tests were conducted on nine fabricated
IY-80 steel hemispheres to observe the effects of residual
stresses from cold forming and welding on elastic response
and collapse strength. Nondimensionalized collapse data
indicated that residual stresses due to welding play a sig-
nificant part in the collapse strength of fabricated HY-80
steel hemispheres.

ADMINISTRATIVE INFORMATION

The work de-.ribed in this report was sponsored by the Naval Ship

Systems Carand, Subproject SF 35.422.210, Task 15054.

INTRODUCTION

For several years the Naval Ship Research and Development Center

(NSRDC) has been studying realistically fabricated hemispherical shells in

order to determine the individual contributions of such factors as local

flat spots and thin spots, mismatch at joints, residual stresses, and

boundary conditions to the observed reduction in strength of these shells

as compared with perfect hemispheres. Tests have been conducted on both

30- and 66-in. diameter HY-80 hemispheres fabricated by welding together

six doubly curved "orange peel" shell segments plus a shallow polar cap.

Some of these hemispheres were hydrostatically tested in the as-fabricated

condition while others were stress relieved prior to hydrostatic testing.

Comparison of test resultsI12 indicated an appreciable difference in col-

lapse strengths attributable to the weakening effects of residual stresses,

first from cold forming the individual segments and second from welding the

segments together. Since forming stresses can be eliminated on prototype

hulls by stress relieving the segments or by using hot forming practices,

the project herein report94 was initiated to detemine the effect of weld-

ing residual stresses alone.

Seven 66-in. diaster and two 30-in. diameter hemispheres were

fabricated and tested. Of the 66-in. diameter hemispheres, three, AF-1,

lIhfermces are listed an pae S1.



AF-2, and AF-3, were tested in the as-fabricated (cold formed) condition

while the segments for the other four, SRS-l, SRS-2, SRS-3, and SRS-4, as

well as the two 30-in. diameter hemispheres SRS-2A and SRS-3A, were stress

relieved after light tack welding and before final welding. The as-

fabricated models were made to supplement previous test datR.

DESCRIPTION OF MODELS

Seven 66-in. diameter HY-80 steel hemisphercs were made by the Lukens

Steel Company using procedures used for full-scale submarine bulkheads.

Except where noted, the methods were the same as used for the 66-in.

diameter hemispherical models reported in References 1 and 2. Each of the

present models consisted of six 60-deg "orange peel" segments and one

shallow spherical cap, all formed from pieces of the same flat plate. An

assembled hemisphere is shown in Figure 1. Models AF-I, AF-2, and AF-3

were made by cold forming the individual segments and welding them together.

Models SRS-l, SRS-2, SRS-3, and SRS-4 were made by hot forming the indi-

vidual segments, lightly tack welding them in place, stress relieving for

an hour at 1025 deg, and finally welding the segments.

Models SRS-2A and SRS-3A, 30-in. diameter HY-80 hemispheres, were

made at NSRDC. The segment configuration was the same as for the 66-in.

diameter hemispheres. The individual segments were cold formed, lightly

tacked to their mold and stress relieved at 1025 deg for ai hour. The

stress relieved segments were then welded together.

In the case of the two 30-in. models, SRS-2A and SRS-3A, two extra
"orange peel" segments were cut from the same plates and cold formed.

Compntss'on specimens were cut from one segment. The other segment was

stress relieved with its model after which compression specimens were

taken. The yield strength distribution for these extra segments is shown

in Figure 2. Typical stress-strain curves for model SIS-2A from the

original flit plate and the two extra formed segments are shown in

Figure 3.

For all calculations Young's modulus and Poisson's ratio were

assumed to be 301106 psi and 0.3. respectively. For all models the yield

strength i of the original plate was used in calculations for the collapse

pressure. It is rvali•ed that this will not be representative of the
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material in place for the three AF models because of work hardening. Data

on the variation in yield strength due to forming and stress relieving is

presented in Table 1.

Prior to testing each hemispherical model was welded to a stiffened

cylinder. The cylinders used on the 66-in. and 30-in. hemispheres were

made from HY-80 and HY-ISO steel respectively for two previous series of

htmispheres. Although the cylinders did not provide membrane boundaries

at the hemisphere-cylinder juncture, it was felt that the stiffnesses

would be sufficiently close to preclude any detrimental effects. Model

and cylinder assemblies are shown in Figure 1 together with nominal

dimensions.

PROCEDURE

DETERMINATION OF INITIAL IMPERFECTIONS

The analysis for imperfect spherical shells3 requires the determi-

nation of local imperfections over the entire shell surface. This was

accomplished by measuring deviations from an assumed radius using an

assumed center as reference. This data was fed into a computer program,

YLOl, which calculated a new center and new average radius and modified

the deviations accordingly. These deviations were plotted in the form of

contour maps as sh-wn in Figure 4. Minus signs indicate inward deviations.

The view is of the inside of the model rolled out into a flat surface

whose radial scale remains constant. The scale factor is found by dividing

one half of the circumference of the hemisphere by the diameter of the

plotted circle. The scale in all other directions is a function of

orientation and distance from the center of the plot. To overcome the

sapping problem clear plastic overlays such as shown in Figure S were used.

Any di•gonal across an oval represents the same arc length on the hemi-

sphere.

In addition to sphericity readings ISI thickness readings were made

on each shell. They are presented in Table 2.

The contour map, overlay, and thickness table were used to examine

flat spot areas. The method is described in detail in References I and 3.

Each flat spot was charactori:*d by its ratio of local to nominal radius

R I/A and its local thickness h

3



In addition to flat spots, mismatches at welded joints in terms of

deviations from sphericity are given in Figure 4.

Recently the examination of flat spots has been automated. A com-

puter program, OSRI, written by R.D. Rockwell of NSRDC incorporates YLO0

but requires the additional input of thickness measurements. Output in-

cludes the contour map which was heretofore plotted by hand and a table of

local radii.

TEST PROCEDURE

Each hemisphere was instrumented with between 50 and 150 foil-

resistance strain gages. Areas for gaging were chosen on the basis of

flat spot calculations and mismatch readings. Additional gages were placed

at the edges of segments for the SRS models to detect the effect of weld-

ing residual stresses. Strain gage locations are shown in Figure 6.

The 66-in. and 30-in. models were statically tested in oil in the

NSRDC 6-foot head testing tank and 4-foot testing tank, respectively. The

test setup is shown in Figure 7. In most cases each test consisted of

three pressure runs--the first and second to approximately 70 and 90 per-

cent, respectively, of the collapse pressure and the third to collapse.

The final increment prior to collapse was less than 2 percent of the col-

lapse pressure.

RESULTS AND DISCUSSION

Experimental collapse pressures for each model are shown in Table 3.

Figure 6 shows strain sensitivities defined by the slope of the initial

linear portion of the applied pressure versus measured strain curve and

given in uin./in./psi.

Typical pressure-strain plots are presented in Figure 8. Pressure-

strain data for Model SRS-l is not availablz for presentation. For such

an %.stable model it is unlikely that straiii gages at local flat spots

experienced appreciable nonlitearity prior ti collapse. Model SRS-2 is

also not included. For this model all gages were linear up to collapse.

Figure 9 shows the models after collapse.
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Nondimensional plots of experimental results for the nine models

are presented in Figure 10; the abscissa is the ratio of elastic buckling

pressure P to the yield pressure P, and the ordinate is the ratio of the
3 y

experimental collapse pressure P to P. It should be noted that local
c y

geometry in the area of failure was used to calculate P' and P', which are
3 y

defined by the expressions

P= - 0.84E a for 0- 0.3 (1)

p, a y a RIm (2)
Y (RR10)

2

where h is the average thickness at the flat spot,a
R 1 is the local outside radius,
RlM is the local midsuriace radius,

E is Young's modulus, and

a is the yield strength.Y

Results of References I &nd 2 have been included for comparison.

The difference between the yield line and the iowex bound for the stress

relieved models of References 1 and 2 was attributed to secondary moments.

The difference between the lov~er bounds for the previous stress relieved

models and the present models composed of stress relieved segment3 (SRS)

is attributed to residual welding stresses. The difference between the

lower bounds for the SRS mocels and the models tested in the as-fabricaLed

(AF) state is attributed to residual forning stresses. The present results

for the three as-fabricated models are consistent with previous results.

Tht data point for AF-2 lies on the previously determined lower bound

curve for as.fabricated hemispheres. AF-2 failed near a meridional weld.

The data points for AF-l and AF-3 however are considerably above the lcwer

bound line. These two models failed in the middle of "orange poel" seg-

ments. A certain amount of scatter is evident in ute data points for the

six models composed of stress relieved segments. SRS-3A for example

proved stronger than a comparable .iemispher* vwth-xut residual welding

S



stresses. The lower bound curve for these six models is somewhat lower

than one might expect. It appears that removing the residual forming

stresses does not do as much to increase the buckling pressure as does

removing the residual welding stresses. The failure areas for all but

SRS-4 of these six models were near welded joints.

Local fabrication mismatch between adjoining segments of the 66-in.

diameter hemispheres was 0.1 inch or less. Mismatch for the 30-in.

diameter hemispheres was 0.04 inch or less. This amounted in some cases to

as much as 26 percent of the shell thickness. Although this sounds ex-

cessive it should be mentioned that the severity of the mismatch was al-

ways limited to a fraction of the length of the connection. None of the

most severe mismatches as shown in Figure 4 are within the failure areas.

The effect of mismatch alone on the collapse strength of hemispherical

shells has been investigated and the results presented in Reference 4.

As is readily apparent from Table 4 only three of the nine models
of thiL series collapsed at area I, the geometrically "critical" area

based on minimum h /R This is attributed to such factors as variations
a V*

in residual stress, yield strength, the shape of the stress-strain curve

and the shape of the flat spots which are neglected in the present analysis.

Prior to destructive testing on- must assume that failure will occur at

area I. The predicted collapse pressure, Ppred' is thus based on the local
geometry of area I. Should failure occur at a less "critical" flat spot

the analysis becomes more conservative. Table 4 shows values of Ppred for

the present series of models and compares them with the experimental col-

lapse pressures Pexp"

Although both areas I and VI were within the failure area of SRS-2,

area VI was used for the collapse calculations for two reasons. First,

area VI was the closest to the center of the failure area and second, no non-

linearity of strains was recorded at area I just prior to failure. Be-

cause of its relatively low Rl/A ratio no strain gages were placed at area

VI.

Measured maximum membrane stress sensitivities are compared with

their theoretical or calculated counterparts at several flat spot areas for

each model in Table 3. Eouations defining the two stress sensitivities

are also given in the table. With few exceptions agreement between the

6



two was within 10 percent with the calculated value usually greater than

the measured value. Looking at the exceptions in Table 3 in all but one

case, SRS-3 area V where all measured strain sensitivities were somewhat

suspect, the calculated stress was higher than the measured value.

CONCLUSIONS

1. Residual welding stresses appear to play a significant role in

the collapse strength of HY-80 steel hemispheres. Nondimensionalized

collapse data for hemispheres whose formed segments had been stress

relieved prior to being welded together fell closer to the lower bound

results for hemispheres tested in the as-fabricated condition than to the
lower bound for completely stress relieved hemispheres.

2. The agreement between calculated and measured membrane stress

sensitivities at flat spot areaz was fairly good. With few exceptions

agreement was within 10 percent.
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Figure 4 -Deviations from Sphericity
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Figure 6 - Strain Gage Locations and Strain Sensitivities

The layout shown represents a view looki ng iiqto the open end of the model
except where noted. Both inside and outside surfaces are instrumented for each
position indicated. All inside gages have numbers begining with 200 and all out-
side with numbers begining with 100 (only the outside gages are indicated on these
diagrams). All circumferential gage numbers end with an even number and all
meridional gages with an odd number, All gages oriented 45 deg from these directions
have numbers ending with the letter A. The strain sensitivity for each gage is given
In Parenthesis adjacent to the gage in # In./in./psi. The figure on the left is the
sensitivity for the outside and the right for the inside. *indicates gage far which
Pressure strain plots are shown on Figure 8. The area of failure is Indicated by
broken line.
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Figure 8 - Typical Pressure-Strain Plots
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" ~PSD 324503

Figure 9d - Model SRS-1

PSD 325446

Figure 9e - Model SRS-2
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Figure 9f -Model SRS-3

Figure 9g - odcl SRS-4
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Figure 9h -Model SRS-2A

Figure 9i - Model SRS-3A
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TABLE 1

Compressive Yield Strengths

Yield Strength in psi

Source of Yield Strength
Coupo fro Cold Formed

Modl Oigial oupona Plate Cold Formed and StressMoe Oiial Oign•Plate* Segment
Plt* Stress Relieved t Relieved

with Model Segment

AF-I 93,035

AF-2 96,731

AF-3 92,332

SRS-1 95,951

SRS-2 96,651 94,462

SRS-3 95,453 94,789

SRS-4 80,577

SRS-2A 89,723 88,121 87,970

SRS-3A 20,830 90,117 90,417

*

Used in calculations for P .
Y
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Table 2 (Continued)

Meridional Orientation in degrees

0 15 30 45 60" 60 75 90

0+ 0.252 0.251 0.252 0.251 0.251 0.251 0.244 0.242

15 0.247 0.242 0.244

30 0.244 0.242 0.240 0.244 0.248 0.251 0.244

45 0.243 0.242 0.244

60" 0.250 0.250 0.240 0.249 0.250 0.252 0.243

60+ 0.252 0.251 0.252 0.251 0.254

75 0.247 0.246 0.247

90 0.254 0.246 0.240 0.240 0.250 0.2b0 0.244

105 0.247 0.244 0.244

." 120- 0.252 0.250 0.250 0.251 0.249 0.250 0.243

]120* 0.250 0.250 0.250 0.247 0.248

9 135 0.245 0.242 0.243

S150 0.254 0.242 0.240 0.240 0.246' 0.251 0.243

165 0.243 0.242 0.241

S180- 0.250 0.250 0.248 0.249 0.249 0.Z54 0.243

* 18C* 0.249 0.248 0.251 0.250 0,251

195 0.244 0.246 0.244

210 0.252 0.244 0.240 0.243 0.252 0.256 0.244

S225 0.247 0.242 0.244

240" 0.247 0.247 0.248 0.248 0.248 0.251 0.244

240* 0.252 0.250 0.250 0.249 0.250

255 0.247 0.243 0.244
270 0.254 0.244 0.240 0.241 0.247 0.249 0.244

285 0.247 0.242 0.241
300" 0.2SI 0.2S0 0.249 0.2O 0.251 0.252 0.245

300* 0.252 0.2S3 0.250 0.248 0.249
31S 0.249 0.251 0.247

330 0.25 0.244 0.246 0,240 0.247 0.249 0.24S

14S 0.246 0.240 0.241

360 o.ZS 0.249 o.2so o02SO o.248

hAVG-0.Z47 'MI-.0.240 hw..-0.zs

48
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TABLE 4

Comparison of Predicted and Experi-
mental Collapse Pressures

Model Failure Area Pp * Pe p

pred exp rpred

AF-1 II 1035 1260 1.22

AF-2 VI 2076 2240 1.08

AF-3 I 2460 2700 1.10

SRS-I I 465 490 1.04

SRS-2 VI 1280 1575 1.23

SRS-3 I1l 2007 2360 1.1I

SRS-4 VI 2207 2850 1.29

SRS-2A VI 880 1060 1.20

SRS-3A I 2001 2440 1.22

tPpred is determined by calculating P3 and

PV at Area I, the "critical" area with respect
y

to ha/RI, and then using the proper lower

bound curve in Figure 10 to get P or Pc pred"
The data points in Figure 10 were based on the

local geometry in the "failure area."
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