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ABSTRACT

Volume VII deals with the fallowing topics:

1, Optimum Detector for Nonisotropic Noise

The previously obtained expression for the optimum defector when
signal and noige are zero-mean gaussian processes, and when the noise may
contain interference components are analyzed to determine the detailed
structure of the detector. The detector turns out to contain beam formers
that are aimed at the target signal and each interference, the signals
from the interference beams being passed through rather complex filters and
then subtracted from the target signal. The complexity of the optimum
filter relative to conventional systems is examined, and it is found that
the added complexity is quite moderate. ‘

2. Adaptive Array Processing -

The optimum detector discussed above is most easily constructed by
using transversal filters, conasisting of a tapped delay line and adjustable
weights applied to the taps. Algorithms based on the method of stochastic
approximation for automatically adjusting these weights are considered in
this section and conditions for convergence and rate of convergence under
several different conditions are obtained.

3. Optimum Passive Bearing Estimation in a Spatially Cohervent

Noise Environment

The Cramer-Rao lower bound i computed for the bearing estimator,
subject to the assumption that interference noise ie present. The results

are compared with those obtained for a modified split-beam tracker

employing simple interference nulling.




4. Space-Time Propertics of Sonar Dgtection Modela

The problem of optimizing array configurations is not a well-posed
problem unlees it can be shawn that an optimum actually exists. Many
commonly used models for sonar detection systems turn out to be singular
so that the optimum does not exist i.e. it is infinite. A rigorous
exgmination of the problem of model singularity, using measure theoretic
considerations is umdertaken in this gsection, and general criteria for

nonsingularity of models are developed.
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FOREWORD

This is the seventh in a series of reports describing work performed by Yale Univer-
sity under a subcontract with Electric Boat division of General Dynamics, prime
contract number NO0OL1-6F-C-0392, The Office of Naval Research is sponsor for
this contract, LCDR J. F. Lyding is Project Officer for ONR, Mr, J. W. Herring
is Project Engineer for Electric Boat division under the direction of Dr. A, J,

van Woerkom, Manager of Scientific Research,
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I. Introduction

This report is the first of two volumes dealing with work completed
under contract 8050-31-55001 between Yale University and the Electric Boat
Company during the period from July 1,.1968 to April 30, 1970. More
detalled discussicns of the results are contained in the four progress
reports Nos. 38, 39, 40 and 41, which are =zypended. The companion volume
(vol. VIII of this series) covers work done during the same time period
and contains results submitted originally in progress reports No. 42 and 43.
Three of the toplcs contained in this volume are continuations of work
covered in earlier reporic. dealing with the affects of anisotropy of the
background noise field - also referred to as interference noise. The three
progress reports deal respectively with the form of the optimum detector,
with the behavior of adaptive detectors, and with bearing estimation under
these noise conditions., The fourth topic, which deals with the effect of
signal models and the variocus possibilities for singular detection is
entirely new and represéents a substantial departure from work described in

previous reports.

II. The Optimum Datector for Nonisotropic Noise

An expression for the optimum detector transfer function when the noise
contains one or more strong interference components was originally obtained
in Progress report No. 33, which is part of volume V of this series. The
implication of this expression on the detailed structure of Fhe detector is
examined in Progress report No. 38,

The results of both reports are based on the assumptions that the
signal, noise, and interference are all sample functions of a zero-mean
gaussian random process, that the interference consists of a number of

isolated point eources and that the noise is otherwise isotropic and far-




field. Under these conditiona the filter can be shown to separate into a
spatial part - essentially a set of beam formers - apd a temporal part or bl
Bckart filter. Por the case of s single interference the spatisl part,

which is also the significant part, takes the form:

- e (1)
H''(w) =] - T K ()65 (w) eI
w) = . - ——————re -
WK
oty 1+ MK, () e'JWT§1>

where the T, are the aignal delays, the Til) are the interference delays,

M is the number of hydrophones, Kl(m) 1s the ratio of interference spectral

density to ambient noise Acnsity, and Glo(m) is given by

(1)
M "jw(Tk-Tk )
G,y = J e
10 k=1

This result can be interpreted to mean that the filter contains a simple
beamformer aimed at the signal and a second beamformer aimed»at the inter-
ference, and that the interference output is subtracted from the signal
output after being passed through a filter with the transfer function
glven by the coefficient of the second bracketed term in the above

expression.

For more than one interference the result 1is basically similar - a ;
beam i aimed at each interference and the output 1s subtracted from that |
of the main signal beam after passage through a compensating filter. The
complexity of these compensating fiiters increases with the number of the
interferences; in fact even for a single interference it is such that
automatic design by some sort of adaptive mechanism would almost have to
be used. This point is considered further below.

A major difficulty in the design is that because of the need to form

several beams simultancously, beam ateering must be done by tapped delay




lines. The number of taps and the tap spacing are largely a function of

array resolution, which in turn, can be related to array apeftute. For
;;; typical arrays the number of taps tends to be very large; however this is

true even if conventional or suboptimal instrumentations are used. The

added complexity required in the optimal instrumentation is, from this point

of view, quite modest.

IIT. Adaptive Array Processing
The automatic design of complicated filter transfer functions of the
sort mentioned above can be accomplished fairly easily by means of trans-

versal filters - filters produced by feeding a signal into a tapped delay

line and adding the weighted tap outputs to form the output. For a delay

line having M taps the output y{t) of such a filter has the form W

M
y(t) = ¢, x(t-1,)
L=y

.- where x(t) 1is the input signal, and <y is the weight applied to thc intput

delayed by the time T If t, -

1 1~ "1
expression is a discrete approximation of a convolution integral in which

is small for all i = 1...M this

the ¢y represent the impulse response of a filter at time ti' Since each

¢, can take on any arbitrary value, extremely complex filters are easily

i
synthesized in this way. It was shown in progress report No. 34 that the

adjustment of the c, subject to one of several criteria of optimality is

1

easily accomplished by means of algorithms based on the stochastic j
approximation method of Robbine and Monro.Progress report No. 39 is a
continuation and elaboration of the earlier report.
The basic assumptions used in the analysis are:
1) Target, interference, and ambient noise are zero mean gaussian processes

2) The sum of interferences, ambient noise, and local noise are regarded as




-

the effective noise, which is assumed to be statistically independent
of the target signal.

3) ‘The target signal component 81(t) observed at the output of the 1th
hydrophone is a linear time invarient transformation of d(t), the
target-aignal that would be observed at the output of an ideal isotropic
hydrophone located at the origin of coordinates. The autocorrelation
function of d(t) ie aasuneé to be known,

4) The statistics of the noise¢ field are unknown. It 18 not known whether
interferences are presen%, or where they are located.

5) The wave fronts of target and interference are assumed to te plane over
the dimensions of the receiving array.

It is assumed that the adaptive mechanism is to produce a filter
optimized in a given direction and designed to suppress interference signals
from other directions. By varying the azimuth for which the filter is
optimized the system produces a bearing response pattern which can be
examined by an operator to determine whetfier a target is present.

The space~time filter takes the form of a set of K hydrophones, each
connected to the input of the delay line of a transversal filter having
M taps. (Note that this notation differs from that used in most of the
other reports in this series). The outputs of all the transversal fllters
1s summed to form the signal (t), which after possible further filtering,
is squared and smoothed to yield the observed output. The adjusting
algorithm for the K(M+l) weights in all of the transversal filters then
takes the simple form:

By = 8y 2 21y Ry = 2y 0y)

where W, is the vector of all of the tap weights suitably indexed, v, 1is a

3

is the input space~time autocorrelation function,

3

weighting parameter, Edz
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EJ ig the output z(t), and n, 18 a vector of delayed versions of the received

]
sipnal; all at the jth step in the iteration. The process converges for y

3

of the form vy, = ylja with % < g <1, R

] -4
signal direction and autocorrelation function are known; thus it contains the

can be computed 1f the target

information about desired target direction that is needed for the filter to
adjust 1itself,

General expressions for the convergence of the filter have been
obtained and are given by Egqs., 3.5 - 32 and 3.5 - 33 of progress report 39.
These expressions are too complicated to yield much insight. They can how-
ever be simplified by chosing specific expressions for the weighting
parameter 73. A particularly simple expression results from the choice
ng) = EYE%ITT;" where xm is the mth eipenvalue of the covariance matryix

of the received signal, and where the superscript (m) on y, implies that

i
different weights are used in different filters. 1In this case it is found

that the mean-square error at the (j+1)th step is given by

2 2 .4 2 1 T
e -e = K(MHL) e + - MW, ~-W ) R (W-¥W )
317 Tmin 07 P e e A

where Ry is the covariance matrix of the received signal, and where e in
is the irreducible error resulting from the fact that a continuous filter
is approximated by a discrete structure. If the second term is initially
larger than the first then this expression indicates an initial m.s. error
reduction at a rate j—z; however eventually the first term will always
dominate, with the result that convergence eventually takes place at a rate
37t

As long as the noise environment is stationary the filter converges

to the optimum form discussed in previous progress reports (e.g. #38) in

which the interference noises are strongly suppressed. Thisz is shown not

e i N o



only analytically, but also by means of a computer simulation using real

TN

data. If the noise environment is nonstationary, partial results have : ;
been obtained under the following conditions:

1. If the nonstationarity can be characterized by chanping parameters,
wvicth the values of the parameters governed by a known dvnamic relation

then the method of stochastic approximation can be modified by inclusion

of this dynamic relation. 1In fact the recursive Kalman filter method can i
be applied tao this case with results that converge to those obtained by
the method of stochastic approximation in the stationary case. In the

nonstationary case the weighting parameter Y, of the stochastic approxi-

3

mation algorithm is wodified and takes the form 75 = Yj + 8, where B 1is

a constant., For the case where the optimum gain parameter &  is given by

3

the relation

3] = a 93 +u 0<ac<l

=341 3

and where the desired filter output is given by

D, =H 8 +v

i -1+ |

T

%
where Hj - :T
R

and where uj and vj are stationary independent, zero mean, scalar, white

noise processes, with variances q and ¢ respectively, then

B =qld

For the stationary case q = O and a = 1, so that 8 = 0, but in seneral
the presence of a nonzero 8 prevents the gradual disappearance of the
wveighting parameter Yj‘ which wouyld make trackine of a changing environ-

ment impossible. On the other hand, the fact that y, does not po to zero

3




as jJ + = has the e¢ffect that the filter does not converge in mean square,
which means that a small jitter (proportional to B) continues to exist in
the output.
2. If the nonstationarity 1s such that the optimum gain parameter Qj
satisfies a relation of the form
1

9j+l - 93 +0 (ja]
i.e. the nonstationary is in a sense "temporary” and disappears with j + =,
then the standard method of stochastic approximation converges as long as

the weighting factor vy, has the form

]
v, = 90
a
Iy
where k<ac<l
and s < ¢

Other methods for dealing with nonstationary environments can be

envisioned, but have not yet been evaluated.

IV. Optimum Passive Bearing Estimation in a Spatially Coherent

Noise Environment

Report No. 40 13 a continuation of report No. 37 which was included
in vel. V. The earlier report dealt with the Cramer-Rao lower bound for
determining the rms bearing error attainable in an isotropic noise field.
The present report extends this to the case where interference is present.
As in the earlier report the analysis initially considers an axbitrary
number of hydrophones arbitrarily spaced on a linear array, and arbitrary
signal, ambient noise, and interference spectra. However, in order to get
results that are simple enouph to yield some insight into important

parameters, some of this generality is sacrified; in particular it is




assuned that the ambient noise power im much greater than the signal power;
signal, interference, and ambient noise spectra are taken to be identical in
form, and the hydrophone spacing is wniform. Additional important assumptions
are that the interference bearing is known and that the ambient noise is
independent from hydrophone to hydrophone. Also, as in the earlier report
the performance of the split-beam tracker is computed to provide a comparison
between the possibly unrealizable bound and a practical inatrumentation.
Approximate expressions for the lower bound take on simple forms if
the target and interference separation is either very large or very small.
In each case limiting expressions have been obtained for the ambient-noise
dominated case (MI << N) and for the interference dominated case (MI >> N).
The parameter deterwining target and interference separation is y = (d/c)-
Qo (sin 6 - sin 6 ) where d is the hydrophone spacing, ¢ is the sound
velocity wmax is the maximm frequency, @ is the target bearing and ¢ is
the interference bearing. If the bilas terms are neglected then for y >> 1

the reepective lower bounds are approximately

2,2 2
__ 1 5 gﬁnczﬂ st)/s MI << N)
T o) a%cos®o (M) [144-2)1/N)
max
6~ 82 > é
2.2 2
36mc” [N+ (M-1)NS] /S ™MI > N)
3 42 oo sl 3
g T Yo ax d"cos " B8[M =M~ - B/5 M~ + 2M]

The lower bound for I = 0 (1.e. no interference) is the same as that

found in report No. 37. By comparing the denominators in the two
expressions above one can conclude that the effect of a remote interference
is equivalent to the loss of 2/5 of a hydrophone,

For near interference, such that y < 1/M, the corresponding results

arT




36wc2(Nz+MSN)/82

(ML << N) :
' T w)  d2coslo(ut ) (140" 1y 10wy )
% - 8)° - : |
36 mc2MI [ (M=1)51/5° - ML >> N
T miax dzcosze(Mﬁ-Mz) y <3

W1

If the difference in denomirators (which amounts to the previously mentioned
2/5 M) is discounted, the lower bound in the interference dominated case is
seen to be MI/N times as large as for large y.

A modified form of split-beam tracker employing simple interference
nulling ahead of the split-beam section was considered in progress report

No. 29. TFor this tracker the following results were obtained:

96nc2N2/S2 y>1
T Wl a%cos® 0 P (u-2)? M>> 1
. ] max
(6 - 8)" =
(64) Znc®n?/s? 1 yeel
o) dlcos® o w2 G4 M << 1

The second of these expressions is invalid for y very near zero because
some of the approximations made to obtain it break down, however it is an
indication that the modified split-beam tracker cannot estimate bearings
extremely close to the interference bearing (since as a result of the
nulling there is no signal in this direction). In this respect the split-
beam tracker performance appears to fall considerable short of the Cramer-
Rao bound, which is finite for y = 0, albeit consideralby larger than for
large separation. The comparison between the split beam tracker and the
Cramer—Rac bound 1s facilitated by computing the ratio of the two error

variances, this is




2 2.67Q142.4/M)  y>> 1, M>> 1

H'—i,i(l-i-all‘l) 0<y«<<l, M>> 1
y

The asecond of these expressions is invalid for y * O as indicated above.
Both expressions indicate that for sufficiently large M the gplit-beanm
tracker performance 18 fairly close to the lower bound; but at the same
time they also suggest thaf some improvement might be achieved, particularly
for small separations between target and interference, by going to a
different implementation. Such implementations are currently being studied.
By plotting curves for the exact expressions relating (5 - 5)2 toy
it is found that the large y approximation is good for separations between
target and interference bearing greater than the beam width of the array,
defined as the angle for which the signal cutput falls to one half its
maximum value. This is roughly true both for the C-R bound and the split-
beam tracker. Also, in both cases, for separation smaller than the beam-

width the performance deteriorates rapidly; however the deterioration is

considerably more rapid in the case of the split-beam tracker.

The error variance decreases with M4 for large separations in both
cases, and the C-R bound decreases with M3 for zero separation between
target and interference bearing. Thus theoretically the error can be made
arbitrarily small for both large and small separations by letting M become
sufficlently large. Here it must be noted however, that for a fixed size
array the assumption of zero ambient noise correlation between adjacent

hydrophones will become invalid fur very large M.

V. Space Time Properties of Sonar Detection Models

In all previous work, and in most analyses of sonar in the literature

the array configurations are taken as given. In a good many of the analyses

10
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reported in the previous volumes, in fact, the arrays have been assumed to
be linear and with equally spaced hydrophones. The question naturally
arises as to whether the performance of an array with a given number of
hydrophones might not be improved substantially by seeking an optimum
configuration.

It turns out that the attempt to find algorithms for determining the
optimum placement of hydrophones involves searches through a 3K-dimensional
continuum, wheré K is the number of hydrophones. For the large values of K
that are of practical interest such a search is an extremely formidable
undertaking for which there is no guarantee of success. Hence it hecomes
very desirable to obtain first some estimate for the ultimate performance
of which an array with a large number of arbitrarily spaced hydrophones is
capable. Such an e2stimate is, however, even conceptually possible only if
in the limit of continuous observation (f.e. as K + =) the signal model
remaine nonsingular. Many commonly used models turn out, in fact, to be
singular; i.e. as K + = 1t becomes possible to determine the presence or
absence of the signal with zero error even though both the array size and
observation times are finite, Por this reason such models are physically
not completely realistic (which 1s not to say that they are not useful), and
it is desirable to obtain general conditions guaranteeing that a given model
be nonsiﬁgular. This is in essence what is done in report #41,

The approach taken is based on the realization that any communication/
detection (C/D) system can be represented as a series of mapping operations;
1.e. an encode operator e maps source characters from the space A of source
characters into the space W of channel signals which is in turm mapped by a
transmit operator t into a space V of receivable signals, etc. until the
final mapping produces an estimate a of the source character, which 1is an

element of the space A. The operators are stochastically determined, hence

11
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can be considered as being themselves elements of probability spaces E, T,
etc. The notation is generalized by denoting the space of source characters
by Sl and the space of mappings of § into §

by S, where K= 1,2,3...L.

2R~1 2F+1 2K
A marginal probability measure uy may then be defined on each of the spaces
S1 where 1 = 1,2,4,6...2.., These measures will induce probsbility measures in
the remaining spaces SZK+1’ K= 1,2,3,,.L; furthermore they induce conditional
measures of the form u:: the measure induced in S conditioned on the tyamns-—
wission of a aignal a,

A class of models having particularly simple properties are the factor-

able models. 1In this class the probability measure y defined on the product

space S = S1 b4 S2 x sk e S2L is given by
T oMy Mg Mg reer ¥y

This form of the measure implies that the stochastic operations of the model
are independent. Most of the models used in the usual communication and
detection studies are factorable in this sense.

The central theoremes concerning the singularity of models are then
given by Corollary lof Theorem 9, and Theorem 10 of chapter 2:

If S1 = SZL+1 are countable with discrete metric, then the model M

r
2L+1

for which u(r) > 0

is singular if and only if the conditional measures u and U§L+1 are

orthogonal for every pair of characters r and s in S1
and such that r # s.

If M is a factorable model then it is singular if and only 1if u;k+1
and “;kﬂ are orthogonal for all k < L, and r # s.

The implication of these theorems is that for a factorable model to
be singular, singularity most be present in the first stage, and it must

be preserved by all subsequent transformations or mappings. Vhile this

might appear to be a rather strong requirement which would have the effect

12




of making most practical models nonsingular, it turne out that many of the
@ usual encoding transformations considered in communications processes

preserve singularity, eo that eingular models are actually more common than
might be supposed. In particular, it is shown in Theorem 1 of chapter 3
that additive stages are usually singularity preserving. On the other hand
it 1s shown in Theorcm 2 of this chapter that 1f stage k 18 such that the
support space of the measure "2k is a subspace of the previous space (SZk—l)
and 1f Yoy is independent of uy for all { < 2k then the model M is nonsingular.

Particularly simple statements can be made if the conditional measures
";k+1 are Gaussian. In this case one can use the fact that two Gaussian
measures are either orthogonal, or they are equivalent. Furthermorc
according to Theorem 4 of chapter 3 two Gaussian distributions P and  are
equivalent if and only if

1. m(*) e H(PQ)

. 2. rp has a representation Pp(a,t) = I xK ek(s) ek(t) where the set of

functions ek(t) is a complete orthonormal set in the reproducing
kernel Hilbert space H(T,) and E(l—kk)z <=, and 2 > c> 0 for all k.

In this theorem FP and rQ are covariance of the distributions P and Q, with

mean functions m(+) and O respectively. As a consequence of this theorem

singularity may occur when the mean function of the signal process lies

outside the space H(FQ); i.e. if P has a linear projection outside the support

space of Q: 1f this is not the case singularity may still occur if some nolse

eigenvalues are zero or if the signal and noise processes do not put almost

the same energy into all but a finite number of dimensions (or eigenvalues),
Applications of this theory have been made to two simple sonar situatioms.

The first of these is one dimensional: a source is either to the right or to

the left of the observer, and the observer can determine the direction of wave

propagation. This situation is singular, even if the velocity of propagation




is random, if random noise is added, and if other random effects are present,
as long the randomness 1s not sufficient to make a right-going wave look

like a left going wave.

The more interesting problem of sonar in three-dimensions has also
been anslyzed with the result that the usual model in which the signal wave-
front isa deterministic function of the coordinates is also shown to be
singular. This explains the result of Vanderkulk that as the number of
hydrophones goes to infinity, the array gain becomes infinite and detection
becomes perfect. This result is shown to hold even 1f white noise is added
at each hydrophone; to produce a nonsingular model it is necessary to
introduce some perturbations into the wavefront., The effect of perturbed

wavefronts is currently being analyzed.

14
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Summary
The feasibility of using tapped-delay-line filters to synthesize the

optimum processor is investigated in this report. It is found that the
most severe requirement that is placed on the delay lines arises from the
necessity of steering the array in steps that are commensurate with the
resolution of which the array is theoretically capable, If delay lines to
accomplish this can be fabricated then the additional comnlexitv required
in the construction of an optimal filter is relatively minor; that is, it

requires delay lines of no greater complexity.




The Optimum Detector for Nonisotronic Noise

T. Introduction.

In Progrees Reporr No. 33 (Ref.l) the effect of localized noise sources
on tha performance of the optimum (likelihood-ratio) detector of directiomal
Gaussilan sizoals was investigated. In the preseat report the structurc of the
optimun detector iz considered.

The nomenclature used in this progress report is exactly the same as that
used in Ref. 1, which is agsumed to be available to the readar.

11. Gepneral Form of the Optimum Detector

The goucral form of the eptimum dcetector is contaimed in Eqs,(22) and (23)
2f Ref. 1. If the output cf the filter is designated by
u=log LR - C (1)

thea the optimum detector structure has the form

WT
ooty I Em )’ 2
-1 x
7 Q () Vo(n)
where H(n) = ggz; 3

1+ $(n)G_(n)/N(n)
and where the optimum array cain Go(n) ig defined bv
6_(m) = vi(me (v (m) (4)
1f the time of observation T is large, the summation in (2) can be converted tn
an integral in the frequency variable f; hence the detector output u takes the

form

w
w1t TR | Pag (5)
g .

thore by direct analogy with Eq.(3)

- *

SSEY Q_l(f) v ()

H(E)Y = -—32T

- vl + S(f)GO(f)/N(f)

6
N(f (6)

~

A-2




In this expresaion S(f) and N(f) are, respectively the eignal and noise apectral
densities, and Q(f) 1s the noise spectral matrix whose elements are the cross
spectral densitias of the noilse voltages received on the different hydrophones

of the array. 7J(f) is the steering vector, given by

c eJZHle
17
v( A Y - . 7
KAL) jZHfTM 7
Ve
i
where the c, are hydrophone gains and Ty the s3ignal delays. Also, the array

gain becomes

c_(6) = (5 DY () @)

If the bandwidth W is very large, Parseval's theorem can be used to con-
vert Eq.(5) into

T 2
u I W flz(e)|“ae ()
% o)

where z(t) is the inverse Fourier transform of g?(f)g(f). This implios that

u can be obtained from a circult of the form shown in Tig. 1.

H (f N

- l( ) f———
[—_—"———' = "TEEE%l
H, (f) Y 5 " (f) ——Lqua- |-rra- 13
- / ¢ l 2 to -
_ \\7, B rer . T -f’

Figure 1. Likelihood-ratio Detector
In this figure Hc(f) is a filter containing the common frequency--sensitive .

component in H(f), namely A-3




H (£) = SE) (10)

n(f)fii§fiié;Y§37h(f)

The¢ individual filters Hl(f)’ Hz(f)...Hm(f) are thon respectively the first,
- %
sccond, .... , lith row of the matrix product Q 1(f)g,(f).

II1. Lecaticd Yrructuvre of the Filter with Directiomal Intcrferencc.

As In saction IV of Ref. 1 we assume that the noise componeat consists of
an isotropic part and a number of point sources. Than the noise spectral

aatrix has the form

N () R % 7
ey = TGN [Qo(f) + ril Kr('f)!,r (f)!E(f)] (11)
I () . ¢h
where K_(f) = and where I_(f) 1s the spectral density of tha r  noise
r No(f) T

saurce.,

Since the frequency weighting filter of Eq.(10) is common to all channels,
the essential oneration performed by the processor is
v "l *
E'(f) = @ "(f)V (£) 12
The inversion of the spectral matrix in (12) can be accomplished by
means of Eq.(353) in Ref. 1. The result is

N(f) {
N (f)

o)

vy - R R R e ) an

H'(f) =

where the dependence of QO, yr’ Kr’ G, and g on f has been suppressed for
convenlence, The notation of Ref. 1 18 used, with n replaced by f in all
cases. Note that the scalar muleiplying factor N(f)/No(f) can be absorbed
into Hc(f) of Eq.(10) so that the essential omeration is that indicated by
the oxpression in the braces, {...}.

To gain some insight into the implicatioms of this result we consider some
sirple examples. In all cases we assume that Qo(f) = T, the unit matrix;

this implies that there is no Interphone correlation of the 1sotropic noise

component.
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Suppose first that there 1s only a single interference. Then the ex-

Fression inside the braces in Eq.(13) becomes

WE(E) = O () =y o 10
- N(f) -— - 1+K1M -1
-jmrl_ —jmtl(l)
e e
. K.G .
= |- - 110} (1) (14)
f-jur 14K M ‘=Ju,
M 1 M
e e
vhere ¢ = 27f and where )
M jZﬂf(Tk - rk) 15)

G.. =G, (fy = £ e
10 ° 710 kel
The unsuperscripted 1's are the signal delays, while the superscrintad T's

are the interference delays. Thus Eq.{14) indicates that the filter forms

two beams, one steered on the signal and one on the interference, the outnut
of the Interfercnce beam 1s passed through a filter with transfer function
chlol(l + KlM) and the result is subtracted from the signal beam output.

A possible system block diagram is shown in Figure 2. This svstem is quite

similar to that proposed by V.C., Anderson [4] and.reported on hy Cox [5].

-t — 5 Signal Ream
‘]: 1 | I
X +
-1 SO

1 ] -]
| I ' q () —1
Ty | c
! __TI] Interfercnce
—tT2 ) I NG WIS
7
/ ( )2
SRS
N =T T -
l M Wl dt
{ (1L o
oM
outnut

Figure 2. Optimum Filter for Single Interference.
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Thig filter can be constructed using M tapped delay lines to generate the
delays Ty and Tk(l) in each hydrophone channel, and two additional delay lines
to generate the filter functioms Hc(f) and Kl(f)Glo(f)/[1+MR1(f)]. The use
of tapped delay lines for the construction of variable filters is discussed
in detail in Refs.{2} and [3]. and it has the advantage that they permit
automatic adjustment by relatively simple adaptive algorithms.

It 13 clear that the delay lines used in each of the hydrophone channels
must have a sufficient number of taps and a sufficiently small inter-tap
spacing to permit steering téiany one of the distinct beams that can be re-
solved by the array system. In this connection it should be noted that if
interference eliminafion were not a factor mechanical steering of the array
could be used to redﬁce the length of these delay lines. However, since
interferences may come from any direction, interference elimination requires
that delay lines of the maximum length needed to steer the array through 360°
ba used in cach channel.

A discussion of delay-line characteristics is given in Appendix B, and
it is shown there that the number of taps nceded tends to be very large.
Specifically, for a linear array with M hydrophones spaced uniformly a
distance d apart the number of taps iz given by

B4 M(C-1
2/6 ¢

K=

where B is the signal bandwidth and c the velocity of sound. Using typical
values of B = 2% x 5000 rad/sec., d = 2ft, ¢ = 5000 ft/sec, and ¥ = 100, this
works out to K = 26400 taps. Also, it is shown in Appendix B that the tap
{ncrement under these conditions should be on the order of 1.55u sec. The

number of taps needed appears to be well beyond currently available hardware.
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;; The function Glo(f) given in Eq.(15) 1is moat easily constructed from a
delay line having at least M taps giving the delays tk‘l) - T kwil,,.M,
Since both target and interference can be located anywhere in azimuth this
line must have t§¢ same resolution as that needed in the individual channels.
Furthermore, the naximum delay needed is at least twice that needed in the
channels. This is easily demonstrated by considering a linear array in which

(

T n . T = k %(aine - sin ©)

1
where 91 is the Interference direction and 6 the signal direction. The maximum

value of delay, obtained fork =M, 0, = -n/, and & = 7/y 1s 2Md/c while the

1
ninimum value is -2Md/c. A delay line can only produce positive delavs: the
effect of negative delays can be obtained by inserting a fixed delay line inte
the line from the upper summing junction in Fig. 2, as discussed in Ref.S5.

If thig is done the range of delays needed in the tapped delay line under

.- ' consideration is 2Md/c compared to a maximum delay of (M-1)d/c¢ needed in the
channels.

The additional frequency weighting Kl(f)/[l + MKl(f)] is a relatively
minor modification in the filter characteristic. It can be imnlemented by
applying different weights to the tap outputs beforc they are summed, as
explained in Refs,[2] and [3]. Thus the entire filter function
Kl(f)clo(f)/[l + MKl(f)] can be constructed from a standard tapped delay line
filrer using a delay linz with twice as many taps, hence twice as long, as

the delay lines used in the channel. It therefore involves no major additional

design problems.

Actually, it is possible to redraw the block diagram of Figure 2 in such
a way as to cut the length of the delay line needed to generate Glo(f) in
half; i.e. to make it no longer than the lines used in the individual channels

to steer the array. Such a block diagram is shown in Figure 3.
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Figure 3: Modified Block Diagram for Single-Interference Filter.

It can be verified that this system produces the same output as Figure 2, but

the delay line at the lower right of the diagram, which is nceded to generate

(1) (1)
1 2

- TZ’ etc. Hence the maximum length

the function Glo(f) has taps only at delays 7t

the delay differences 11(1) - Ty TZ(I)

of this line needs to be no greater than the lines used in the ilndividual

, etc. rather than at

channels.




Finally, the function Hc(f) must be congidered. Since this is a much
. simpler function than Glo(f) it can be synthesized by means of a geparate
-tapped-delay-line filter with only a modest number of tavs., Alternatively,
Hc(f) can be generated in each channel by summing some of the tap outputs
of the delay lines used for steering the array.

If the signal and noilse spectra are similar in form and 1f the SNR
S(f)Go(f)/N(f) is small, Hc(f) can be omitted entirely.

Two Interferences

With two interferences the expression in the braces of Eq.(13) becomes

explicitly: : 14K,6, /Elxzc;lz 1t '-'Elcm
w _ g1y -1 * ¢ * ‘
B = 0,7, - g [y 1Y, |8
o *
KT8, 1HKGy K840

If it is again assumed that 90 = 1, then this becomes
waou™ * *
H !Q Al(f)g_1 - Az(f)y_2 (16)

Kl(f)[1+MK2(f)]Glo(f) - Kl(f)KZ(f)Glz(f)Gzo(f)

where Al(f) = (17)

IR (D)4, ()] + -G, (8) | 21K ()R, (E)

Kz(f)[lﬂ‘ll(l(f)]Gzo(f) - Kl(f)KZ(f)Gzl(f)Glo(f)

and Az(f) = (18)

2 2
LUK (D4R (£) ] + [M°-[G,, () | “1K, (£)R,(E)
Thus the system takes the form shown in Figure 4. If M is large, and if the
interference sources are reasonably well separated it is showm in Ref.l that
|G12(f)|2 M and can therefore be neglectad relative to Mz. Under these

conditions the denominator factors giving

K. (f) K, (E)K, (£) (£)G, A (£)
800 * Ty G - 22220 as)
1 [1+m<l(f)][1+m<2(f)l
and
K. (£) K, (£)K, (£)C, ., (£)G, . (f)
« 2 _ 1 2 21 10
&0 = macEy 200 - TIRK, O THK, (O] (20)
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HKz(f) are large.

A further simplification can be made if one assumes that Mxl(f) and

If this is not true then the interference-to-ambient noise

ratio is not really large enough to make interference eliﬁination netessary

or worthwhile.

10

Al(f) "

and

-

e o

te

() 6, (£)G,0(0)

M2

jZWf(Tk(l)

e

- -rk)

M
L

k=1

¥z
.

¢
_.._.____—’/

With this additional assumption

1 M M j2vf(rp(1) - rk(Z)
qz L I e -
kel §=1
Mo qare(e, D - D
1 k k
- qz z T e
k=1 j=1
Signal -
_Bean. " (f)
z [ c
+

1st Interference

Bezam

\

T

-

7 Ian Interference
\\k Beam

E -
Y

A, (£)

Figure 4: Filter for Two Interferenccs.
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;; It 1s easily seen that the filter functions Al(f) and Az(f) can be
constructed from tapped delay lines with weights applied to the tap outputs.
Since the single summation term has already been discusaed, we consider only
the double summation. Again, it 13 clear that the resolution needed is the
same as in the delay lines used in the chamnels. Alsc, 1if one examines all

{1) (2)
extreme values of Tk, Tk , and Tk

one can show that for a linear array
the total delay can range from -2Md/c to 2Md/c. Since the delays required
by Al(f) may be the negative of thoge required by Az(f) it 4s necessary to
use a fixed delay of 2Md/c in the signal beam channel and tapped delay lines

of length 4Md/c in each of the interference channels., Thus the tapved delay

lines must be four times as long as those used in the hydrophone channels.
Since there are Mz terms to be summed it might appear that at least
Mz taps would be needed on these delay lines. Although it is shown in
Appendix B that tapped delay lines used for linear or circular arrays should
have considerably more than MZ taps, this is not necessarily true in other
array geometrles., However, if a line with sufficient resclution to resolve
distinct beéms of the array system doesg not have enough taps, it simply
means that some of the terms in the double summation are identical, at least

to the accuracy of the delay increments. Hence these terms will be more

heavily weighted in the sum. Thus it appears that the delay line required

for the double summation nceds to be no more complicated than that used for

the gingle gummation. Note that it is just as easy to implement the exact forms
of A, (f) and A,(f) as the approximate onesigivé; in Eqs.(21) and (22). If

the additional frequency weighting required by the exact function is reasonably
smooth it will call only for small’changes in the weights applicd to the tap

outputs. This is true even if the effect of iGlz(f)I2 iQh;he denominator

of Eqs. (17) and (18) is taken into account, because the dhanges introduced

Y

by this term are no more rapid chan those produced by the numerator terms.
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Also the function Bc(f) may as well be combined with Al(f) and Az(f). Thus
the optimum filter capable of handling two interference signals would con-
gist of M tapped delay lines of unit length and two delay lines of four times
thia length. In addition a fixed-length delay line would be needed in the
signal-beam line as discussed in the previous example. The number of taps in
a unit-length tapped delay line is that given in Eq. (A~35) of Appendix B.

It is undoubtedly possible to rearrange the block diagram to make more
efficient use of the delay lines as was done in the previous example.
However, since such a procedure would not reduce the complexity of the delay
lines by any order of magnitude, this matter is not pursued here.

More than Two Interferences

If the assumption go(f) = I is used in Eq.(13) the expression in braces

becomes: -
* & *° . x -1
" - - . .
H(E) = (v - RV VRY, LR T + 61 )
=v oAy - a (fiv A DV (23)
Yo ~ 40 - 408 oD

where A_(£) = /K_(£) [x®h element of [L + 1 'gl.
Since [I + G] 1s now an R dimensional matrix it is clear that instead of
double summations of the sort appearing 1n Eqs.(21) and (22) Ar(f) now

involves R-fold surmations. A typical form of such a summation {s the three-

0 (2) (2) (H
M M M j2rf(r -1 + T -1 -T1).
fold summation I z I e k k 3 i '3
kel j=1 %=1

4lthough it is somewhat difficult to examine all terms of this seort, it is
fairly clear that the maxipvm delay that can occur is twice the value
required to steer the array through 360°. Also, it is nccessary to account
for the fact that these delays can be positive or negative. Thus each one
of the Ar(f) {or Hc(f) Ar(f)] can be generated by a delay linec of four unit
longths, The R-fold summation will, of course, require the addition of MR
terms; however as was noted in connection with the double summation, many of
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these terms are identical, and therefore the variable weights applied to each
tap output should permit the filter functions to be generated without the
need for a larger than normal number of taps.

Assuming that a quadruple-length delay line cen be comstructed by
connecting four single-length lines in series we see thar the total number
of tapped delay lines is 4R#M. 1In addition aﬁ least one fixed delay line
is needed to permit the generation of negative delays,

It will be noted that none of the block diasramspresented so far are in
the form of Figure 1. Since the block dlagrams suggested in Ref, 3 are of
this form, it is of some intercst to consider the arrangement showm in
Figure 3, which is essentially in the form of Figure 1.

By inspection of this figure the transfer function ¥ (f) for k = 1...M

is given by ()
-j2nfr, R -jomEy r
B (f) = e + I e A_(D) (24)
r=1

It is clear that a tapped-delay line filter that can implement Ar(f) for

r = 1....R will have sufficient flexibility to implement B _(f). Furthermore,
the post-summation filter Hc(f) shown in Figs. 1 and 5 can be moved into

each of the hydrophone channels, and the delay line filter that can implement
H (f) can also implement Hk(f)Hc(f). Thus it appears that a delay line of
four time unit length in each hydrophone channel, with adjustable weights

on each tap, should suffice to generate the optimum filter function. This
arrangement would therefore call for 4M unit-length lines, where unit length
refers to a line capable of providing all the delays needed to steer the
array through 360°. In Ref.[l] it was suggested that the number of single
interferences that can be eliminated by the kind of system discussed here

is on the order of M. Therefore, since for all M > 24> 4™ + M the
block diagram of Fig.5 is less efficient in the use of delay lines than that

of Fig.4. However, it is again true that no order-cf-magnitude difference is
involved.
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Conclusion

If correlation of the isotropic noise components betwcen adjacent hydro-
phones is negligible then the optimum filter is shown to consist of an array
system capable of forming a signal beam and R additional beams that are
steered on each one of the interference sources. After passing through rather
complex filters these outputs are subtracted from the signal beam-former out~
put and the result is then passed through a post-summation filter, squared,
and averaged,

Filters of considerable complexity can be synthesized automatically by
use of tapped delay lines. The tap outputs are individually weighted anc
then summed to provide the filter output; the weighting can be accomplished
by a simple computer which implemernis an adptive algorithm. Such adaptive
filters have been considered by Luckey [2] and by Chang and Tuteur [3].

If tapped delay lines are used to generate the R + 1 beams that must be
formed by the system it 1s shown that the number of taps required is
proportional to BDzlcd where B is the signal bandwidth, D is the array siZe,
d is the interphone spacing and ¢ is the vzlocity of sound. Typically, for
a lincar array with 100 hydrophones the number of taps required is on the
order of 20000 or more; which appears to be well beyond current technology.
However, slnce this requirement arises primarily from the need to produce
several beams it is shared by suboptimum processors such as the simple
multiple beam former. In fact, it is also shown that the additional com-
plication needed to make a conventional system into an optimum one is
relatively minor. For a system having M hydrophones, and capable of elimi-

nating R interference sources, the optimum system would require 4R+M delay

lincs, while the simple beam former would require M delay lines. The
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conclusion seems to be therefore that if tapped delay lines can be built

to steer the array satisfactorily then the optimum processor can be built

fairly easily by the use of a few additional delay lines plus some

relatively simple associated circuitry.
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AEEendix A

The Number of Distinct Beams Produced by an Array

Consider a conventional array having ¥ hydrophones as shown in Figure Al.

For the sake of simplicity 1t is assumed that the only processing done is to

xlktlﬁ.mmMJ-rl S,

I
. s,(t) 2 8,(t) ’Si
%, (1) T, 5 — I j—— ()" ] Integrator
~ —_—— —_—

e - e rmamd.

A

s () L /

Figure Al* Conventional Array.
{ciiy the signal from <ach hydrophone in order to steer the array: the delaved
sigails are thin sumned, the result is squared, and averaged.

The received signal is

x{t) = s(t) + n(y) Al
whor. x(ti = fxl(t)....‘xn(t)]T,
L T
A(t) = Inl(t) ..... “w(t)‘ )
S(O = (s () sv(t)]T.

For the purbose of this discussion we comsider only s(t), which is

1gsumed to be oxpanded {n a Fourier series so that

WT junt
s(t) = v s V(n) ¢ A2
N rE =Wl a-
i" o 1
‘ N nll }
[
whepe v(n) = . givos the signal direction.
- Ju TM
-
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The effect of the delays following the hydrophones is to multiply the
signal vector by a steering matrix with the result that after summation the

signal sz(t) is given by

M WT Ju (t, - 1.") Jut
sz(t) = F I se ° k k e ™ A.3
k=1 n=-Wt
where rk' is the delay imparted to the signal at the kth hydrophone. After
aquaring
M M TW ™ o (e, -1, "t (et -1,")]
s,(8) = I I I : see KK T A

k=1 f=1 n=-TW m=-TW

The effect of the integrator is to pass only the dc component of this signal
which is obtained by setting m = =n in the last summation (we make use of

the usual convention that w~m=—mm). Thus

M M TW jo [t -1t "=t 41, ']
34u b I ™ I 's lze n k 'k e A.5
k=1l £=1 n=-TW O
M M M l |2
= 2 I L z 8 cos w (t, - 1,."' =1 ' +1) A.6
k=l %=1 p=1 © n"k k&t Ok

where in the last summand the term corresponding to m = 0 has been omitted.
2
The summation over n can be approximated by an integral in which ‘Snl

becomes S(w), the signal power spectrum; thus

T M M 2mu
s, ==L £ J s(wcos w(rt,-1, "-1,+7,dow A7
4 Ta12=1 o k k L2 2

The argument of the cosine function 1s a function of the steering angle 6
which depends on the array geometry. Typically, for a linear array in which
the hydrophone spacing is d
- l_ |=_(l_ - [}
e T Ty T, t T, . (k~2)(sin 6 - sin 6') A.8
where c is the velocity of sound, & is the direction of the signal, and @'

is the direction in which the array 1s stecred. For other array geoometries

one can in general onlv say that A-17




- ' - - L 2. v
T = Tk T, - Ty " £(k,2,0,0") A9

where D 18 some distance parameter (such as the diameter in a spherical array)

and where f(k,2,0,9') 1is a dimensionless function having the following

properties
£(k,2,6,8) = 0 for all k and 2
A.10
f(k,k,9,8") =0 for all 8 and 6'

If the array is steerad approximately in the signal direction
8' = 6 + A9, where A€ is small, then

2
(k,2,0,8") = A0 £'(k,%,0) + 55%1—-£"(k,2,e) + ... A.11

where £'(k,%,0) £(k,2,6, 0 + A8) etc,

AB=(
If A8 is small, and 1f £'(k,%,8) is finite, only the first term of this series

R
d(a8)

noads to be fetained, so that for small A6 Eq.(A.7) becomes:

'T 2 2 2mW D
SQ(AS) =— L T [ S(wcosfw= f'(k,2,0)808)dw A.12
P c
k=1 ¢=1 o

It is now also possible to expand S, in terms of A8 around a8 = 0, 1If only

terms up to second order are retaimed in this expansion, then in view of A.10

2ny 2.2 2 M M :
o (38) = L7 syl - WRTAOT o pirerk, 1,012 de  A.13
4 ™ 2

o 2¢ k=l 2=1

The ratio of output for A® # 0 to that for 40 = 0 is

s, (49) 2.2 2 .M M
Sa(o) =1 -2 éﬁe =1z 1 [f'(k’l,9>]2} A.1l4
4 oy 2€ Mk=1 ¢=1
J wiS(w)dw
2 o .
waere B = o A5
f S5(w)dw
O

When the integrals in this expregssion comverge for W + « B is frequently taken
45 2 dcfinition of the signal bandwidth [6). 1t cam, of coursc be evaluated

1f an explicit form for 5(w) and a valuc for w are known.
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If the beam is completely off target £(k,£,8,8') is presumably quite

large and therefore the integrand in A.7 4s a rapidly oscillating function

for all k # ¢. Significant contributions to 84 are therefore made only by

RO N NP

those terms for which k = %, with the result that for the bean completely

off target

o™ A.16 i
8, = 3 S §5(w)dw :
o H
50 that f
s, (off target)
4 1 AL7

5, (0) M
The beam width can now be defined in terms cf the value of 48 for which

94(A6)/sa(0) takes on some specified value between its maximum wvaluc of

s
unity and its minimum value of ﬁ-. We take this value to be %1 thic is a
2.

satisfactory value for all M > For large M the double summation in A.14
is a large number and therefor: the value of AQ required to produce a value
of 54(Ae)/54(0) of %—is small. Therefore the higher-order terms that were

omitted in A.1l should, in fact be negligible for sufficiantlv large ™.

Setting A.1l4 eqgual to L results 1in

2
2
@9? - < A.1R
203 ¥ M 2
DB E & {(f'(k,2,8)]17}
T kelgel
The beam width is defined to be rqual to 246; thus
Beam width = 248 = 21 A4.19
M M
, t 1 2
DB/ L I [£'(x,2,0)]
Jr=1 =1

For simple array geometries the double summation appearing in this
cxpression can be cvaluatced in closed form. Thus consider a linear arrav
in which the hydrophone spacing is d. Then letting D equal the arrav iength,
we: have D = (M -~ 1}d, and we sce from Fqs.A.8 and A.9 that

f(k,2,8,6') = L (k-2)(sin 6 - 8in 8'). Hence

M-1
A-19




£'(k,2,0) = iT (k-f)cos 6

and M M 2 M M 2 4 2
IoIlfke,0) =283 5 o eny? L8 0 MA,
k=1 2=1 (M~1)" k=1 =1 (¥-1)

Hence for the linear array

ong - 2fBc(-1) . _ 2/6c 4.0

DBJMZ-l cos 8 MB 4 cos 6

1f M >> 1.

The fact that this expression becomes infinite for 6 = ¥ g-is a reflection
of the fact that in the end-fire direction thé first-order term in A.11l
v7anishes, so that the quadratic term should be ugsed. This is a pecullarity
of the linear array which does not occur with other arrays.

The number of distinct beams is most reasonably defined as

2m
average beam width

However, in order to avoid the complication introduced by the infinity that

cccurs in Eq.A.20 for 6 = f-% we obtain an estimate of N for the linear

array by use of

N = 2n (average reciprocal beam width)

B(D/c)cosd
Thz average reciprocal beam width is the average of ——-7:————— over the
- - 2v6
interval - ; <9 < 3 and it is equal to E%ég. Thus for a linear array
mveé
with hydrophone spacing d, the number of distinct beams 1is approximately
N = z— B[‘[-é A.21
Iy ¢
vH
Typically, we can take d = 2 ft ¢ = 5000 ft/sec and B = 27 x 5000 rad/sec.
giving g
N=-—M:I10M A.22
3

Another simple geometry for which A.19 can be put into a closed form 1is

the circular array with an even number of equally spaced hydrophonus.
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Assume that the nominal signal wavefront is perpendicular to one of the major
diameters and consider a small displacement A8 away from this nominal

direction. Then if D is the major diameter it can be showm that
£'(k,2,0) = ism% (k-2) | cos% (kbg -2)

For sufficlently large M one can replace the double summatiom by a double

integration:
M M 271 T 2
|3 b sinz-E (k—l)cos2 z (k+2-2) = M S r sinz(x—y)cosz(x+y)dxdy =L
M M 2 4
k=1 f=1 T o o©
A.22a
Thus Eq.A.21 becomeg
be
248 = BD A.23

This appears to be independent of M, however for comstant interphone distance
D 1s a function of M; in fact for the circular array, with M large. N = Md/m.
(This follows since for large M, Md is approximately the circumferecnce of

the circle). Hence Eq.A.23 becomes:
4

200 = A.24
BMd/c
and the number of distinct beams is
N = -;- Bid /e A.25

These expressions are very similar to the corresponding ones for the linear
array, Eqs. A.20 and A.21.

The dependence of N on M is seen to be a direct consequence of the
fact that both the linear and circular arrays are one-dimensional, so that
for constant interphone distance D is proportional to M. This dependence is
different for arrays in which the hydrophones are distributed over an area
or a volume,

The simplest example of an arca distribution is an array in which the

hydrophones are equally distributed over a square. Such a distribution, for
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M = 9 is shown in Fig. A.2.

+~d -+,

o -+ |
s 4= R

-~

Figure A.2: Square hydrophone array.
M M 9
Evaluation of I I [f'(k,2,8)]" 1is somewhat tedious, but essentially
kel gwl
straight forward. It turns out, rather surprisingly, that the result does
not depend on 6, and is, in fact exactly equal to M?/G. Also, D = (vM-1)d.

Hence, by use of Eq. A,19 the beam width is given by -

208 = 2;§E . /6 A.26
(M-1)Bd

and therefore the number of heams is

N = 1B _ n(M-1)Bd

A.27
'IG—C ".G‘C

Note that in terms of D,B, and ¢ this result is essentially the same as that
obtained for the linear array (Eq.A.20). Hence in going from a one-
dimensional to a two dimensional array the major change is in the dcpendence
of D on M.

From dimensional arguments this conclusion can be extended to other
two dimensional arrays such as a spherical array with hydrophones only on

the surface. For all such arrays

259 « A.28

ABa
where the dependence on UM g approximate and holds for large M. In additior

for a volume distribution it 1is expected that

2486 « ;I?%" A.26
Bd

Th.. factor of proportionality in all of these cases appears to be on the order

of 10 or leas.
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Avpendix B

Characteristics of Delay Lines Required in Array Processors

In this appendix we examine the total time delay, number of taps, and
delay between taps of the tapped-delay lines required to steer the array
over 360° in azimuth. We consider initially the linear array with uniform
spacing between hydrophones for the sake of mathematical simplicity; thcse
results are then extended to other arrays with suitable modifications.

Conslder a simple array processor of the form shown in Figure A.1l. Ve
assume that the signal from each hydrophones is applied to a tapped delay
line and that the delays -tl', -, ', .-

2

put from the proper tap in each channel. We assume that the taps are

M' are obtained by taking the out-
equally spaced along the line, that the time delay between adjacent taps is
At and that the total number of taéé is K. Thus the maximum delay that can
be obtained from any line is KAt. It i{s assumed that all the M delay lines
are identical.

If a linear array is stecred in the broad-side direction all the delays

‘are equal, and we may as well assume that the delays are zero, i.2. the

outputs of the first tap on each line are conmected to the summer. Supposc
now that we wish to steer the array away from the broad-side dircction by
the angle A8, Tha smallest value of A8 is obtained by making thc delay of
the ith hydrophone equal to (1-1)At; i.e. on the first delay line we
connect to the first tap, on the second delay line to the second tap, etc.
For a linear array with uniform hydropheone spacing d the difference in

time delay between the 1th and jth hydrophone is gilven by

T - Tj = ({1 - 3) % sin © A.30
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where c is the velocity of sound and € is the angle betwean the wave front and
the array axis. PFor small 6 near 0 = zero sin & = 6 = 48, Thus, since for

adjacent hydrophones the minioum value of Ty T 18 £1, we have

b
At = g-na A.31
c min

The minimum value of A® obtainable from a linaar array with M hydrophones
is given by Eq. A.20 of Appendix A. 1t seems reasonable to design the system
in such 2 vay that this minimum is matched to the minimum obtainable due to
the limitationa imposed by the finite number of taps available on the tapped

delay lines. Thus we get

276
AT = ™M A.32

(Note that we are actually equating the Aﬂm n of A.31 to 2A0 of Eq. A.20;

i
however this ig consistent with the definition of the number of distinct beams
1in Appendix A).

In order to steer the beam into the end-fire direction the delays betwemn
adjacent hydrophones must be made equal to %; thus the maximum amount of
d:lay, required at the last hydrophone, is (M - 1)d/c. Therefore the number
of taps on each delay line must be

d
¢ - G=nde B ¢ 101

AT 2/6
Using the same typical values as in Appendix A, i.e. B = 27x 5000, d = 2,

A.33

¢ = 5000, we cobtain

1.55x10”"
"

and K = 2.67 M(M-1)

T =

If M = 100, A1 = 1.55 usec and K = 26400 taps.
For other array geometries a relation such as A.31 will gencrally hold,
.xcept that if the spacing is not uniform d should be the smallest inter-

hwirsehone spacing. Then using Eq. A.19 we obtain in general
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AT 2dM

b B 3 5
BD/ L T {[£'(k,%,8)]
~Mkalg= 1

A.34

Also, since the meximum delay required is in general D/c, the number, K, of

taps on the delay ling¢ rwst be

2 ;‘i M 2
BD, /I % [£'(k,2,8)]]
g = 2fc k=1 2=1 A.35
1% 4 vy
2cdit

.

4s 1s shown in Appendix A the expression under th:z square root is gencrally

rroportional to MZ; c.g., for the circular array it is M2/4. Thus it anopears

to be gonerally true that

2
. BD .
K= 53 A.36

with the factor of proportionality probably on the order of unity. For one-
dimcensional arrays, such as lines or circles, D is proportional to M4, hence
2
K is approximately proporrional to BM df.., For two dimensional arrays D 1is
praportioﬁél to ﬁ?d: therefore K is propertional to “Md/c. For volume
v/ 34
distributed arrays, XK would be proportional to ~—¥E*——-—— Similarly, the

Incremental delavy At 1s inversely proportional to BM for one-dimunsional

1
arrays to BM!‘i for two dimensional arrays and to RM /3 for threce-dimensional

arrays.
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SUMMARY

This investicztion ig ccincer ed with the design and analysis of
an adaptive array processor in hich the individual filters consist of
tapped-delay linez and adjustaltl~ gains. Convergance properti:za of the
iterative proceduvrss are considered and the performances in filtering
as well as in detection are detemiined anaiytlically.

Chapter I presents the background and description of the problem
to be considered. Chapter Il describes the structure of tapped-delay-
line filters in an arrsy. The eifect ¢f misadjustment and the relation-

ship between mean squared error and the number of delay elements are
discussed.

In Chapter II1 the design of adaptive tapped-delay-lime filters
is formulated. The method of stcochastic approximation and mean-
3quared-error criterion are employed to adjust the gains automaticaily.
It is shown that it is not necessary that the desired signal generailiy
used to obtain the error function be available. Either signal or noise
correlation functions will suffice to gensrate the error gradient.
Problems basic to all adaptive processes such as the conditions for
convergence, rate of convergence, choice of the welghting sequence
are answered uwith explicit expressions. Adaptation in a nonstationary
environment is considered in Chapter IV using algorithms derived from
the Kalman filtering techniques and dynamic stochastic approximation
methods.

In Chapter ¥ one approach in the a2sign of an optimum adaptive
array detection svsterm is considered. Use is made of the convergence
properties of ada.stive tapped-delay-line filters and the properties of
likelihocd-ratio detectors for the case of Gaussian input processes and
low input signal-to-noise ratios. This approach is especially useful
when the received wavetcrms are disturbed by strong but unknown noise
sources. The performances of the proposed adaptive dotector are analyzed
for bandlimited processes. The output signal-to noise ratie and
directivity patterns are evaluated and comparad with those of the
nonadaptive systems,

In Chapter VI results ohtained from digital computer simulations
are presented to check the afore-mentioned analyses using both actual
sonar signals erd data gercyaoted from random numbers.
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CHAPTER ONE INTRODUCTION

1.1 The General Problem

The problem of designing a linear device to eliminate noise or
to predict the future behavior of an incoming signal was considered
by Wiener [1] mcre than twenty-five years ago. Wiener filters are
optimal in the least square sense for stationary signals. More recent
work by Kalman and Bucy [2] has led to the desiga of optimal time-
variable linear filters for certain kind of non-stationary signals.
For such signals, Kalman-Bucy filters can deliver substaptially better
performance than Wiener filters.

Both the Wiener and the Kalman-Bucy filters must be designed on
the basis of a priori or assumed knowledge about the statistics of the
input (useful eignals and noises) to be processed. These filters are
optimum in practice only when the statistical properties of the actual
input signals match the a priori information on the basis of which the
filters were designed. When the a priori information is not known
perfectly, the filters will not deliver optimal performance. The
concept of adaptive filters has been developed to solve such problems.

An adaptive filter can adapt itsgelf to changing operating conditions.
These cnanges may be due to variations in the input signals or the
internal structure of the filter. Adaptation is accomplished by ob-
sevation of the reaction of the filter to an external signal or to an
internal variaticn with subsequent goal-directed variatien of the filter

parameters so that some quality criterion is minimized.

{
¢
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There are gseveral criteria for optimization of a processor for
an array of sensors such as hydrophones. Farran and Hills [3] have
used the criterion of maximization of array gains to design real
weightings for individual sensors. With a similar approach Mermoz [4]
has been concerned with the optimum utilization of an array for
separation of a signal of known waveform from noise. Wiener [1] used
the criterion of minimizinpg signal distortion to design filters. Rurg
et al [5] developed a theory for spatial processing of seismometer arrays
based on the Wiener least-squared-error criterion. Bryn [6] used the
2valuation of the Neyman-Pearson likelihood ratio to minimize risk,
whereby a theory of optimum signal processing has been developed for
three-dimensional arrays operating on Gaussian signals and noises. All
of the above contributors were concerned with matrix-inversion techniques
for the optimum solution to the array processing problems. Edelblute,
Fisk, and Kinneson [7] have shown that the above criteria yield
equivalent Tesults at a single frequency. Performance comparison between
optimum, suboptimum, and conventional detection systems under different
operating situvationc has been made recently by Schultheiss and Tuteur
[8,9,10].

“hen the noise or signal distribution is not perfectly known, the
aforz-mentioned detection methods present two major difficulties. If che
underlving statistics are unknown, the previous techniques cannot be
used, i{f they are incorrectly assumed, the consequent detector performance
can be absurd.

Since adartive filters can be constructed with only partial
knowledge aboutr the system and filters can be incorporated tc realize

most detectich sysrems, adaptive detectors can be designed in a similar




fashion. 1In this study one approach to the design of an optimum adaptive

array detection system 1is considered. Use is made of the convergence
’* properties of adaptive tapped-delay~line filters and the properties of ;

likelihood-ratic detectors for the cases of Gaussian input processes

and low signal-to-noise ratios. This approach is especially useful when

the received waveforms are disturbed by strong but unknown nolse sources.




1.2 Adaptive Filters, Detectors, and State of the Art

Considerable {interest has been expressed recently in the applica-
tion of adaptive filters to communication problems. Widrow (11} and
Gabor, et al {12] have independently inveatigated and constructed systems
that "learn” or adjust themselves to stochastic signals in order to
minimize error rower. Both compare a filtered, noisy signal with a noise-
free signal to obtain the error. The mean-sqare error as a function
of certain of the filter parameters is a high-order varabolic surface,
These parameters are adjusted according to surface searching procedures
for minimum error. Gabor and Widrow each have constructed their self-
organizing systems in the form of a highly specialized analog computer.
Bucy and Follin [3] supgegested an adaptive filter which measures the
spectral densities of the fmput signal and noise processes and adjusts
its band-pass to give optimum filtering in the Wiener sense.

Narendra and McBride [4) described an optimization technique which
15 applicadble to filtering problems. The change in each parameter is
determined from an error gradient in parameter space computed by cross-
correlation methods which are independent of signal spectra and require
no teat sifnal or parameter perturbation. This method works if either
the noiseless sicrnal {s available or zhe signal spectrum is known. Some
averagine operaticon is nerformed to obtain the parameter increments.

More recently Widrow [15,16] analyzed an adaptive filter consisting
of tapped-delav-line and adjustable gains. The adaptive algorrihm was
ohtained throueh heuristic reasoning rather thzn mathematical rigorous-
ress. Some appreoximat: methods were given to estimate the rate of
adaptation,effect of mizadjustments,etc. However, a noise-free signal

or 1 sirnulated signal is required to adjust the gailns.
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A number of authors have applied "adaptive' techniques to the
problems of detecting signals in the presence of noise. The problem of
designing an adaptive filter for a fixed waveform whose time arrival
i8 unknown has been considered by Glaser {18}. In his work a statistical
decision theoxry approach 1s used. Local waveform uncertainty is expressed
in terms cf an a priori probability density function but recurrence time
uncertainty is not. The epoch is instead detected on a local basis and
the assumption is made that epoch measurement 1s accurate.

Jskowatz, Shuey, and White {19] have propused an adaptive filter
for detecting a recurrent fixed waveform. The basic operations are :

(1) comparison of a sample of the incoming waveform with an estimate

of the unknown signal, (2) correlation of these two, (3) on the basis
of the correlator output, guess whether or not a signal is contained

in the current sample of the incoming waveform, (&) at those times
when a signal is guessed to be present, form a new estimate of the
signal which consists of a weighted average of that sample of the input
with the prior estimate.

Although basic nuidelines irom signal detection theory are used in
the adaptive filter of Jakowatz and et al, the design approach is
not an optimum one as the authors indeed recognized. Two characteristic
features are apparent in this adaptive filter. First, a local detection
is required before any modification of the memory is made. Secondly,
the receiver memory is used to remember a single waveform. This is
undoubtedly an inadequate memory for the receiver to be optimum. Their

adaptive filter may be, however, a practical receiver when the local

waveform signal-to-noise ratic is large enough to permit good local




detuction. In such a case the simple implementation of a receiver
with a single vaveéoru memory may justify its suboptimum detection
pertormance.

Daly {20} and Scudder {21) have considered a local detection
protlem in which a fixed local waveform recurs in a synchronous
“mancer. In the local detection case the problem becomes that of
det :ction where each of the local waveform recurrences are using all
th. past {nformation. The approach is Bayesian and one of optimum
rezolver deaign.  One central problem is common, however, and that
{s the problem of tmplementing an optimum rcceiver which requires
an cxponentially growing memory. As Scudder [21] pointed out, the
standard nonsequential realization of the optimum recelver 1s very
complex, grows exponentially with time, and the analysis of its
performance is close to fmpossitle, even using present day computers.

In detection problems, the primary goai is to decide between
two hypotheses: presence of signal plus noise or noise alone. If
cnhe profers correct decision to mistakes, Petersonm, Birdsall, aad
Fox {22} have shown that the optimum receiver is one which realizc§
the Iixelihood ratio of the observation and this fact does not depend
on uay specific quantity to be maximized or minimized.

Th like!ihood ratio plays a2 central role im the design of
wdirtive recelver realizatfon as {t did in the design of optimum
recvivers in clissteal detection theory. The adaptive recelver
realization in this report is obtainecd by censtructing Wiener
Lfilrers for each sensor sutpul, cascading the sum of these Iilters
with the inverse square root of the signal srectrum demsity, then

squaring d averaging. Siace the Wiener fliters are approximated

Best Available Copy




by tapped-delay lines and realized adaptively, the detector
implementation is very simple and practical, For Gaussian
processes and low signal-to-noise cases, the proposed system
will asymptotically form a likelihood ratio detector and at
the same time the output signal-to-noise ratio is maximized.

1.3 Problem statement and objectives

The problem considered in this study 1s the passive detection
of a noise~like signal waveform generated by a source located
in a known direction from the receiver. Typical applications of
this general problem can be found in sonar detection, seismic
detection and radio communications. The sonal application is the
one that primarily motivates this study, and examples will be
taken from the sonar area. In order to take advantage of the known
directivity of the target signal, a directional receiver in the
form of an array is employed to distinguish signal from noise. 1In
the sonar application, the receiver comsists of an array of hydro-
phones, together with an appropriate processor. Generally speaking,
the processor consists of individual filters on each sensor output,
a summer, a post=-summation filter, a square-law device and an
averaging filter, The output of the averaging filter is used to
indicate the presence of a target signal.

In the absence of a target signal the averaging filter output
is the result of noise waveforms picked up by the array elements.
The nolse is partly far-field noise and partiy locally generated.
The far-field noise 1s often assumed to be directicnally isctroplc;
however, there may also be directional noilse sources. These direc-
tional noise sources are referred to as interference sources; while

the directionally isotropic component 1is referred to as ambilent




noise. In the absence of interference noise, detection of a target
signal can be based sirplv on the presence of a directional compon-
ent in the received signal, However, 1f interference sources catt
be expected to be present in the noise field, then it is neceasary
to define the target Iin some way to cdiatinguish it from the direc-
tional neoise components.

The research described herein is concerned with develuping a
system for processing the outputs of a passive array of hydrophones
under the following assumptions:

1) Target, interferences, ambienc ncise and local noise are assumed
to be gaussian random processes.

2) The sum of interferences and ambiert noise are regarded as the
effective noise, which ie assumed to be statistically independ-
ont of the target signal.

3) The target-signal component si(t) observed at the output of
the 1th hydrophone is a linear time-invariant transformation
cf d(t), the target-signal component observed at the output of
an ideal isotropic hydrophone located at the oripin of the
coordinates. The target direction is known, together with its
autocorrelation functinn (but not necessarily its power level).

4) The statisticy of the noise ficld are completely unknown. Inter-
foronces may be present, but this is not known. If they are
present, their directions iru unknown.

5) The wavefronts of target anl interferences are regarded as
plan. over the dimensions of the receiving array.

6) The processor 1s a directional array whos: gain is maximized

in the direction from which the target is expected to come.
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Since the processor is to be desi{gned in such a way that it can b.
easily implemented and be able to operatc well in real time in the
presence of unknown noise field, adaptive techniques must be employed.
The system proposed here consists of an adaptive linear multichannel
filter and algorithms for iterative adjustment of the filter coeffi-
cients on the tapped-delay lines., A new philesophy is introduced
here for designing adaptive algorithms using the methods of stochastic
approximation. This philosophy allows any given partial information-
e.g., the correlation functions between the wavefront and various
delayed signals - to be incorporated directly into the weigiit-
adjustment procedure.

This information 1s completely specified once the spectrum and
the direction of the tarpet are known. 'Since this term appears in
the adjustment formula, a space-time filter optimum in a predeter-
mined direction is produced. This filter is supposed to reduce
disturbances coming from other directions. When a signal appears
in the cxpected direction, a maximum responsc will show on a display
device. The average bearing response can be obtained from a plot
of the averaged squarer output versus the looking angle of the array.
In most practical situations a narrow peak is considered to be the
target.

Convergence properties of these algorithms arc investigated both
analytically and using simulation experiments as e¢xamples. The
variations of errer varlance, signal-to-noise ratio, and directivity

patterns during and atter the adaptation period are determined.




CRAPTER TWO

GENERAL FORM OF THE ADAPTIVE PROCESSOR

2.1 Signal and Noise Models

Let us consider an array of K omni-directional hydrophones. 1If both target
signal and noise are present at each hydrophone, the total gignal received by the

ith hydrophone is

xi(t) = si(t) + ni(t) (2.1~1)

where si(t) is the signal component and ni(t) is the noise component. It is
assumed in all cases that the signal originates from a source sufficiently remote
from the hydrophone array so that the wavefront is essentially plane over the
dimensions of the array. This assumption also neglects distortions due to

surface scattering and other propagation effects., Let d(t) be the signal received
by a hypothetical hydrophone situated at an arbitrary reference point in the array.
d(t) 1s assumed to be a member function of a zero-mean gaussian random process.

If the array and its housing were acoustically transparent, the signal component
at the 1ith hydrophone is si(t) = d(r—ri), where T, repregsents the propagation
delay between the ith hydrophone and the reference point. Then the signals at all

hydrophones can be represented by the vector
= - - —_— - 3 o1-
s(t) [d({t rl) d(t rz) d(t TK), (2.1-2)

where K 1is a constant denoting the number of hydrophones in an array. If this
expression is Fourier transformed, there results

T

() = D(w) 2 ()

(ejml ejmK K (2.1-3)

wherea aT(m) =
and where D(w) 1s the Fourier transform of d(t).
Let the spectral density of the reference signal be ¢d(w). Then the signal

field may be represented by the cross-spectral density matrix

(w) = 2, aw) Q*T (w) (2.1-4)

,n:\
58 d
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The model used for gencrating tho obgerved signals 1is shown in Fig. 1,

The noise background {s also assumed to be gaussian and to consist of ambient
ncise with power density matrix ?o(u) plus interferences with power spectral
density fi(m), i=1,2,7"", L. Assuming that all the interferences are statis-

tically independent, the total noise background is then

1 b

wy = 4
inn(w) Fle) + 42

P -

1 ii(u) . (2.1-5)
In case the ambien! noise is independent from hydrophone to hydrophone and

has power spectral density ¢o(m) at each hydrophone, and 1f there is only a

slngle int.rferonce present with spectral denmsity iI(m) y then Eq. (2,1-5)

reduces to

*T

2a() = o (@) L+ 6@ b(w) b () (2.1-6)
where 1 is the unity matrix and
T Jwey  Jue, jue

bi(w) = (e e e e Ky (2.1-7)

is composed of the appropriate delay for each hydrophone to steer the array

conventicnally at this single interference. The noise model is shown in Fig. 2.

2.2 The Structure of the Receilver

Recelving arrays consist of individual filters on each hydrophone output,
a post-summation filter, a2 square-law device, and an averaging filter. A
schematic diagram is shown in Fig. 3. They are commonly used in sonar systems
te increase the ratio of desired signal powor received to undesired noise power
rcceived from othi~r sources. The hydrophones are assumed to be omnidirectional
and to be passive, i.e., they recclve aignals from the surrounding environment.
No signals are transmitted to the environment from the hydrophones.

The signal received by the array from the hydrophones are assumed to result
from two separate mechanisms:

1) One component produced by the target signal propagating
in the medium surrounding the hyvdrophones.
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2) A second component produced by ambient noise and
interfering sources.

The total output signal from the hydrophone to the processor is the sum
of the signals described in the above if the target signal is present or just
the second component in the absence of the target signal, Normally, the signal
components from the individual hydrophones are related to each other through
some simple linear transformation (such as a purc delay), while the noise
components from these hydrophones are relatively less correlated unless some
interferences are present.

The principle of the array is that, by suitably adding the outputs of indivi-
dual hydrophones (perhaps after a lincar transformation is appli=d to each), the
signal components may be made to add up faster than the noise components. Then,
the ratio of signal power to noise power at the summing junction or array beam-
former output may be higher than at the individual hydrophone outputs. It is also
true that array systems are essentially matched filters in space; a directional
signal is matched by 2 directional receiver. The directionality of an array is
obtained by properly delaying the target signal from each hydrophone and summing
the result. This addition is coherent for signals coming from the direction
corresponding the delays, but inccherent in other directions. Therefore, a
target signal can be distinguished from the noise becausc of its directivity and
a diregtional array 1s needed to deteet it,

The Optimum Receiver

As shown in Fig. 3 the array processor consists of individual filter
Hi(w), i=1,2,~",K, on each hydrophone, a post-summation filter G(w) , a
square-law device, and an averaging filter Hav(w) . Although G(w) can be
included in the individual filters, it is considered separately for convenience.

There are several criteria of optimization of a processor for am array of

hydrophones. It has been shown by many authors [3) - {7] and very briefly in
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Appendix A that the optinum individual filters
T -
B () = (B () Hy(e)e+ K (w)] (2.2-1)
for the models described in Sect. 2.1 are of the form

N *-1 *
Hw) = & ° a (2.2-2)

The form of the individual filters is found to be invariant under changes
of optimization criteria. Only the optimum pogt-summation filter G(w) needs
to be modified.

Assuming CGaussian statistics for both the signal and noise and using a

likelihood ratio test, G(w) is found to be

1
G (W) = ¢% [1 + Y al gl a]-JZ;
L d d -~ -nn-=

(2.2-3)
If one is interested in aestimation and minimizes the mean squared error between
the target signal and summer outputl, the appropriate filter is
¢ (w) = G2 (u) | ' (2.2-4)
m L
If one maximizes the iignal-to-noise ratio at the detector output G(w) 1s

PN 1 -
GM(“’) = Gm(w)/dad (w) (2.2-5)

An interesting simplification occurs for the case of small Signal-to—noise ratio

at the input to the squarer, or when

*T -1
$g2 Y pac<l (2.2-6)
then 1
2
o= = - -7
GL(m) GM(w) ¢d(w) (2.2-7)

and the detector structure is essentially the same regardless of the design
criteria either to use a likelihood ratio test cr to maximize the cutput signal-

to-noise.

1 This 1s really not what we intend to do, but Eq. (2.2-4) is included her. for

reference.
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From Eqs. (2.2-2) and (2.2-7) we can alternatively write the optimum

filters as

L1 * x-] %

Eop * fm %2 A%, (2.2-8)
and the post-summation filter
1
-2
Gw) = 4,7 () (2.2-9)

ids(x) , appearing in Eq. (2.2-8), 1s just the spectral vector between the refer=
ence signal and various signal components of the hydrophone outputs.

In any system which operates in a realistic noise field, the optimal filters
rnust be periedically revised, It is important, therefore, that these filters
assume a form that can readily be changed. The results concerning optimnl filters
described by Egs. (2.2-2) and (2.2-8) have assumed that the filters are arbitrary
without constraints and cannot be constructed without statistical knowledge about
both the signal and the noise. In the following section we shall examine the
rather practical situation in which filters in an array consist of weighted-
tapped-delay lines. This type of filters can approximate the physically unreali-
zable Wicner filters such as Eq. (2.2-2) or (2.2-8) tn z2ny desirable degree.
Furthermore, adaptive techniques can be applied to automatically adjust the
waights on thesc lincs without using noise statistics. The relationships between
tapped-dé lay-line filters and the Wiener filters are discussed very shortly. The

rdaptive part will be treated in Chapter Three.

2.3 Tarped-Dednv-Ling Filters in an Array

Wo sholl first of all deseribe the structure of a tapped-delay-line multi-
chnncl filter processing the outputs of K hydropheones. The output of ezch
hydrophone enters a tapped-delay-line, and is picked off at various t-psfusually
cqually spacud) om the delav line, delayed in time but unchanged in wave-siaape.
The sivnnl frem each tzp is passcd throush an associated variable attenuator

(thie welrhe); all the zattenuator output signals are then summed.




DELAYS WEIGHTS

x;(t)
e

xi{t)

. . - c—— . it s e Wi, Mot St St tn.  fm—

— —— —— — — — — — — — —— — —— — ———— o—— m—— ——

SUMMER
OUTPUT

XK(f) e.ij XK(f‘A) fC\
- 2V

Figurce 4, Tapped-Delay-Line Falter in an Array
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a) Notations and the Filter Output

It is seen in Fig. 4 that each delay line consists of (M+l) tap points lead-
ing to (M+1) weights c.. The tap points are separated by M ideal delays of A
seconds each, Note that each veight 1s indexed by its tap point, and each tap

ppint is {dentificd by the index of the succeeding delay.

Define
¢, = k™ weight on the 1™ filter (2.3-1)
Y-k T Cax 2.3-2)
n(t)
(i_l)mk = xi(t‘kA) (203-3)
£(t)
v(t) - ni(t-kA) (2.3-5)
(1-1)M+k '

where 1 =1, 2,..., K, 1s the hydrophone index and k = 0,1,2,...,M , 1s the tap
point indux. Using vector notation, the column vector of output signals n for
the entir. hydrophone array may bec written as the sum of delaved tarpget signal

veetor L and a delayed noise vector v , or

2Rty R - | L (2.3-6)
where
23 g0 0 <o a(e) ] (2.3-7)
K (M+1)
Tp 1ag () () see E(e) ] (2.3-8)
- K(M+1)
o4& v (e) véft) .o v(tﬁ ] | o (2.3-9)
K(M+1)

and 3? Jenotes the transpose of r . If the weight vector W Jefined as

-~

pi = -

v [w1 v, "'"K(H+1)) (2.3-10)
the filter output z(t) is tnen
‘ T

z2't) = Won(e) (2.3-11)
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Note that W and n are K(¥Hl)-dimensional vectors.

The equations given above expross the continuous time nctation for the
variables uged in this research. Uniform discrete-time samples of these quanti-
ties are also of interest and are expressed by using the discrete-time index 3 .
Time samples are assumed to be taken at intervals of Tsamp seconds and, for
notational simplicity, the values of the variocus parameters at the jth sampling

instant are expressed as

1, 4 n(r) (2.3-12)

t =
t=1 Tsaunp

z, & 2(t) (7 3-13)

Because the present work 1Is concerned with iterative weight~adjustment pro-
cedures, the jth sampling instant is associated with the jth iteration of the
weight vector. Thus, the value of the K(M+l)-dimensional weight vector at the

jth iteration is Hj . Hence a weight parameterjized by a discrete time index §

is interpreted as the jth iterated value of the weight, while an unparameterized
weight, as in (2.3-2), is interpreted as a time-invariant quancity.

b) Autocorrelation Matrices of the Input

When both the target signal and the noise processes are described in terms
of their statistical properties, the performance of the system can be evaluated
in terms of its average behavior. The quantity of most interest is the second
statistical moment. For the K-dimensional vector of array output signals, X(t),
the second moment becomes the (KxK)~dimensional autocorrelation matrix gx(r)

givén by
R (D 4 EX(t) X' (£-0)] (2.3-14)

where f(t) =[x (6 % (8) v xp(0)]

E{+] denotes "expected value',
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and Tt 1is a running time-delay variable. For the K(M+l)-dimensional vector of
all the signals observed at the weights, n(t), the second moment is the

KM+1) x K{(M+l)-dimensional autocorrelation matrix En given by
R (0 = E[n(t) 0’ (e-0)] (2.3-15)

Usiag Eg. (2.3-7) in Eq. (2.3-15) gives

nl(t)
R (1) = E : fn (t=1)+* n{t-1) } (2.3-16)
-n . 1

K(M+1)

and, using Eq. (2.3~14), the second moment gﬂ becomas

R (D) gx(r+A) coe gx(-r-rm)w
R (1) = | BT : (2.3-17)
-n

gx(wMA) gx(r)

’

The above matrix is in the form of a Toeplitz matrix having equal matriz-valued
elements along any diagonal. Note that by the assumption of independence of

signal and nolse components, we have

! 3=
B_n(r) = B-sm + R, (1) 12.35-18)

where R, (z) and Bv(z) are, respectively, the K(M+l) x K(M+1)~dimensional signal

and noise autocorrelation matrices given by

R () = E[£() £ (t-1)] (2.3-19) -

B (D) = Elx(t) vl {e-n)] (2.3-20)

These matrices are also of the Toeplitz form analogous to Eq. (2.3-17). The
advantage of the Toeplitz configuration is that the entire matrix can be con-
structed from the first row of the submatrices - i.e., from the matrices Ex(r),

gx(r+ﬁ), EX(T+MA), in Eq. (2.3-14). Thus the K(M+l) x K(M+1l)~-dincnsional auto~
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correlation matrice can be stored as a K x K(M+l) -dimensional matrix:

c) Optimum Weights

The difference between the summer output and the desired (reference) signal

is the error function

e(t) = d(t) - z(t) (2.3-21)

using the notation defined previously we can write the square of the error as

dwage =at -2 amfu+w o’y (2.3-22)

the mean value of which is

W (2.3-23)

To obtain the optimum vector Eop which minimizes the mean-squared error, we take

the gradient of Eq. (2.3-23) and set the resulting form to zero,

Yw o z-2dg+2 (B_E + _gv)_vg =0 (2.3-24)
or
= -1 _
Hop = B¢ *R) "Ry (2.3-25)
where
T —— —_—
R.p: = [d(tIn,(t) « « « d(In(t) ]
Tdt 1 K(M+1)
- [d(t)el(t) - TC I (2.3-26)

K(M+1)
is determined completely by the signal correlation function Rd(r) and various
delays for independent signal and noises. WNote that in Eq. (2.3-25) EE’ Ev

and R

Ry, are shorthand for gg(o) and R (o)

—dg

d) Effect of Non-Optimum Gains

The effect of non-optimum gains on the minimum mean-squared error 1is con-

sidered here. The absolutely minimum squared error achievable in using the
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tapped-delay lines 1is obtained by substituting BEq. (2.3-25) into Eq. (2.3-23)

2 2 T T
Cpin = 4 V2 H HE TR W
2 .T
= 4 - Ry Yop
2z T -1
4 - Ry, R Rye (2.3-27)

Using Eq. (2.3-27) and Eq. (2.3-25), Eq. (2.3-23) can be expressed as for any

fixed!as
2 2 T T
- - +
e d 25&:3 w R ¥
2 T T T
= + -
min ¥ Rgg Hop " 2Rg WA TR W
2 . T T T
®pin ¥ Hop R W, - 2H R MFW R W
o :5 + (W -V )T RW-w ) (2.3-28)
min =~ =op° ™ —op

1f we relate the arbitrary gain to the optimum one by

W= W+ AW

then from Eq. (2.3-28) the difference in mean squared error due to non-optimum

values of W 1is

2 2 T2 T
be” = e” - e L W Hop) B"n 4] Hop)
- K(M+1) K(M+1) 5
= (W R (W) = Ry Iy vy Bwyng oy
< l(Z(M-ir-l)2 wax il\wilma:':!nj nh! (2.3=-29)
all 1 all
i,h




Thus, the error due to non~optimum gaing is bounded if the deviations of the
gains and the input correlation functions are bounded. Note especially that

for tapped-delay-line filters max |n 1 ™ | = Ry(0) + R (o) .
all 1,h "

2.4 The Tapped-Delay Line Filters and the Wiener Filters

The multichannel Wiener filter which minimizes the mean-squared error
between the summer output in an array and the target signal is obtained by

combining Eqs. (2.2-2), (2.3~3) and (2.2-4). The individual filters in this

case become

¢
%1 *
H () = 814 d
m —nn <, L -1
g2 2nn-é
* * =1 #* ko]
LR G A U P PR PR (2.4-1)

where ¢ (w) 1is the input spectral matrix
%X
= 2.4-2
o W) = g @+ 8 (W (2.4-2)

and gds(m) is the spectral density vector between the desired signal and
various signal components of the hydrophone outputs.

Eq. (2.4~1) is the generalization of the single channel Wiener filter

¢, (w) ¢ (w)
d Jwa d Juc .
H (W) —_———————— & 2 ——— e (2.4-3)
o 9g(w) + ¢_(w) ¢x(w) ,
for the case of long delay a =+ - » , [1] . The factor ejma is missing in

Eq. (2.4-1), but it is understood that Wiener filters of this type arec uat
physically realizable. Although they cannot be constructed by RLC networks,
they can, nowever, be approximated by tapped-delay lines in practice. We
will first of all show that the tapped-delay-line filters with galns given by

Eq. (2.3-25) will approximate the continuous Wiemer filter Eq. (2.4-1) in the
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mean squared sense.

Consider a transfer function vector
#-1 * N
Biw) = & " gy (W) (2.4~4)

and the transfer functica vector for the tapped-delay~line filters

M
- ~jwka -
Hy(w) = B, 5 © (2.4-5)

where

Ech = leg €pp mr ol s k= 0,1,2,0 00,

Equating Eqs. (2,.4-4) and (2.4~5) yields

M

-juwkd
ko Sk

e

= ol 8] W (2.4-6)

*
Premultiplying both sides of Eq. (2.4-6) by gxx gives

L

~jukd _
kEO gxx(m) L © =

iss(m) (2.4-7)

Multiplying the above equation by eijA and integrating in the frequency domain,
we have
M © ®
1 * Jole-k)a  _ 1 * JulA 2.4-8
REO 20 J dw Exx(w) € S o J dw st(m) e {(2.4~8)
-0 -

But the frequency integrations are just correlation functions, i.e.,

~
Rxlxl(lﬁ—kA) s RxlxK(ZA-kA) k

1 * Ju(Ro-kd) d oo . _
T [ dw gxx(m) e = . . gxx(ZA ka)

R (28-ka) -+ R (LA~kA)
x*1 *k*¢ 7/

(2.4-9)
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and

. Rdsl(zb)
1 * Juwid - .
27 dw gds(w) e : A'ﬂds (24}
Rdsx(kb)
(2,4-10)
Thus Eq. (2.4-8) can be written as
M
~kAY = 3 - s -~
kEO ¥ (rA-K8) ¢ Yyg (ra) , 2 = 0,1,2,"°*, M (2.4~-11)
or
M K
kél 151 Rxdxh(kA—EAl cik = Rdsi(lﬁ) (2.4-12)

for 2 = 0,1,2,+-+,M; b= 1,2,¢+*, K. Using the definitions of various

correlation matrices we see that Eq. (2.64-12) is equivalent to Eq. (2.3-253.

shﬁm) is approximated by gz(m) jn the sense of minimizing the mean
squared error In the frequency domain. For the sake of simplicity, let us
first trest the case of a single filter.

1If the transfer function H(w) can be regarded as being band limited to

(—mo < w < uc) , then by simple Fourier expansion we have

) = (3, o ¢ (2.4-13)

where
3 e - (2.4-1%)

and the c's are Fourier cocfficients

r25r (m
o = H(ayJk & o | n(m)elmw»‘;—% (2.4-15)
I

2

LT =

B-26




The impulse response of the Wiener filter Eq. (2.4-3) generally takes the

form shown in Fig. 5; i.e., it has a peak value at 1 = a , and |h(t)] = 0 as

’ {t ~a]l + = . The memory of the filter can therefore be defined as the value
of 1 for which the ratic (h(r)l/lhmax(-r)l has some predetermined small value
that is not exceeded for 1 > T, on the positive side and T < 0 on the negative
gide. 1If the noige spectrum is relatively flat the filter memory is proportiomal
to the correlation time Tc of the signel.

For a filter having a finite memory o 0 for sufficiently large k. . In
general C ™ c:. and hence if o 0 8o does cy - The infinite series of
Bq. (2.4-13) can therefore be truncated to a finite series running from
k=-M/2 to M/2 (where, for simplicity, M 1is assumed to be an even number),
and the resulting finite sum will approximate H(w)} as closely as is derived by
making Mil, the number of taps, large enough. Then

/2 M

-juka -JuA(R-M/2)
KE-u/2% © 250 Semy2 ©

HB{w)

Tt omitte (2.4-16)

JwAM/2
& 220 €

! ' =
where £ = k + Mf2 and < cR_M/2 .
It is readily seen that the summation terms in Eq. (2.4-16) can be constructed
using welghted~tapped delay lines. The middle of the delay line corresponds to
the term k = O.

The minimum mean squared error resulting from the process cof zpproximeting

M/2

B b g 5 ¢

is obtained by choosing the coefficients in accordance

with Eq. (2.4-15)

B-27




- 1 { ° /2 -Jukd 4o
€l m 2—"-- : lﬂ(w) - kE-MIZ Ck e ‘ duw
=2y
o
1 rZ“wo 2 u/2 2
= 57 fH(w)f dw ~ kg-H/2 icki
v m
o
1 rm H ] Mfz 2
= o TH(w)? dw - 2 o [ck}=
- ¥ 2
2 vz lckl (2.4-17)

Thus M is determined by the maximum pcssible value of 2 . Since Ick! + 0 for
values of k such that k A >> Tc , the signal correlation'time, it also follows
that M 1s proportional to TC/A with the proportionality constant chosen to

procuce an acceptable mean square error. A typlcal value of M might be

4
4T n .

The extension of this argument to arrays of filters such as in Figure 3 is
immediate except that in general the filters must introduce additional delays
in order to steer the array. Hence the impulse response of hi(t), the ith

filter, peaks at t = T and diminishes for values of t away from Ty e If all

the filters consist of delay lines having M+l taps, then by reference to Eq.

2.4-16 one can mzke

M/2

~Julk+k DA
kim/2 °k° 1

Hi(w) =

. eju(ﬁ/z-ki)é ~jihw (2.4-18)

it X

2

where, as in Eq. (2.4-16), < = k+M/2 , ci = and where in addition

Co-M/2 °

kil =T The value of < for which ci in maximum is then given by




e e

Tty 17 v

L =» M/2 - ki « Also, if the maximum delay 18 such that ki <k then

i i
max
M must clearly be increased by ki . over the value needed for a2 single filter
max
applied to the mame signal spectrum, i.e., typically M might be
4Tc
M= —— + ki {2.4~18)
max

2.5 The Effect of Interferences on the Processor Structure

In this section we consider the effect of interferences on the processor
atructure under the assumptions that
1) The input spectra are identical in shape (but not
in power levels) over the frequency range (O,ma)
vwhere most of the input power is concentrated,
2) The directions of the interferences are known
exactly and the tap sparing are set to the
desirable amount.
The optimum individual filters in a general array configuration are re-

written here for convenience
H = ¢ ¢q 2 {2.5-1)
where the noise spectral matrix are given by Eq. (2.1-5)

L
R (2.5-2

In the above 32's are understood to be function of w ; ¢ is the ambient
noilse spectral matrix, and the gi(i = 1,2,--L) are the interference spectral
matrices. The signal and noise models shown in Fig. 1 and 2 are used here.
When necessary, a superscript will be used to indicate various interferences.
For example, the itb interference delay is defined as

T T R
Ei = [e e e J, 1=1,2,--+, L.

a) No interference

If there is no Interference, the general noise spectral matrix reduces to
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the ambient noise spectral matrix. Let

(%11 %12 *" fax

= . {2.5~4)

The optimum filters defined in Eq, (2,2-8) become

% K -jut

-1 n

- - -8)
Eop ¢d 20 a m§1 1, ¢ (2.5-5

T . { 1
L: ¥ Um Y2m """ %m
and

-1

-1
a &%

is the i~h element of {¢ 1 .

Un

Cince the input spectra are assumed to be similar, the term ¢1h/¢d will be a
constant for 1 = 1,2,-~,K ; h = 1,2,--,K , K baing the number of hydrophones
in an array. The 1th optimal filter can be constructed using X taps with the

welghts set at

Sk T Yi (2.5-6)
for the input signal xi(t) delayed by 2" seconds. The implementation 1is
shown in Fig. 6a.

If the ambient noise is independent from hydrophone to hydrophone, we then
have the simpler implementation shown in Fig. 6b, Heve only a single gain
ey = ¢d/¢11 = q.y is used to weigh the delayed input xi(t-ri). This system
ig similar to that studied by Schultheiss for likelihood ratio detection of
Gaussian signals with noise varying from element to element of the recelving
array [39]. Furthermore, if the ambient noise power is identical to all hydro-

phones, a conventional beamformer is obtained. Thus the cost ¢f implementing
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optimum filters depends largely on the degree of acise correlation between
varicus hydrophones.

b) Single Interference

If there is cnly a single interference and the amblent nolse is gtatistically

independent from hydrophone to hydrophone, the optimum filters are

® -
B~ fo, L+ b b 17 ¢, " (2.5-9)

—op = =

and the 1th row is just

njmp -
¢ -jut i K Jule - 1)
. 4 [ i_ e m om ] /9t
Hi(m) ¢0 e 2:3273; mgl e {2.5=10) :
1
2
If the input apectra are identical in shape, then 1
}
.—jwp
~jurt i M juCe - t) ]
- S i _e m m . {
B = £ [ e ST o1 J (2.5-11) |

wvhere 8§, N, and I are respectively the power levels of target, ambient noise,
and interference. 'The filter defined by Eq. (2.5~11) can be constructed by
setting the galns according to

1

Gy =~ ©F N/I

) (2.5-12)

Z)wn

Sy T

at taps correspconding to time delays of

84 = Py T Pk + T (2.5-13)
for { = 1.2,---. K and k= 1,2,-—~, K . (Gik is the Kronmecker §8). Heraz

the number of taps on cach individual filter is equal to the number of hydro-

phones in the array (M = K). The effect of interference appears in summaiion

h

terms of Eq. (2.5-11). The impulse response of the 1" £11ter under this

situacion will consist of two parts. There is a positive spike of strength

S 1

F (1 === ) at t =1, and negative impulscs of strength § 1 at
N kR i N (K
1T T TR
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o

¢} Two or More Interferences

In the presence of L interferences, the inverse of a general noise

spectral matrix has been investigated by Tuteur {33]. The results are

T
OB A
-1 - -1 * * 11 . -1
- ¢ —b L —-—
Sn &, -8 T [V by - Vo b 11+ 6] : o (2.5-14)
T
Ny by
where G has elements
- %% b oslar (2.5-15)
81h 1% AU % 3n .
For independent ambient noise;
29 - ¢° I , I = unity matrix
Eq. (2.5-14) reduces to
T
oy by
S S W | L * i ;
R L CHRLRC S 2.5-16)
o T
Yoy, By
where
A T S (2.5-17)
ih ¢° —t —h
If two interferences are present, L = 2 , the inverse of the corresponding noise
spectral matrix becomes
ol -t - f—"—[(q; +¢. K)o, b BT
-nn ¢o = D o 1 1-1-1
* T * T.2
- 2.5-18
+ (¢D + ¢, K)¢2 22 gz 2 ¢1 ¢, (91 22) 1 (2.5-18)
where
Dm (8 406, K)o + 6K -0, ¢, |b] byl? . (2.5-19)
o 1Yo 2 172 =31 =2 :
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For similar input spectra, the optimel individual filters are

. ol *

=op -nn d>d =
5 * SN * T %
y& - p [WN+X)II; by bya

* * * * .
+ (N + Kr)1, b, y_z a =2 I.1,(b. h’r) al (2.5~20)

where I for k = 1,2 1s the power of the kth interference.
The 1™ {ndividual filter is therefore

¢)) (1)

-jut -jwe K Jul -T)
_ s 1 _ SN 1 o n
H, N D [(N + KIl)I1 e nE1 ©
-jmpi(z) K jm(p(z) - 1)
+ (N+KI)I, e e © m
2772 m=1

-jwp 1 K K Julp ) ~p (L +p @ _ )] (2.5-21)
-21,1, ¢ g T e D = n n
172 m=l n=1

‘v Eq. (2.5-21) the first two terms inside the bracket can be realized using K
taps, but the last term would reguire Kz to produce the desired impulse response.
It is readily seen from Eq. (2.5-16) that in the presence of L interfering
sources KL taps would have to be used. Since the number of hydrophones in an
array may be large (in the order cf 102 or more), the cost of implementing
optimal filters for several interferences could become extremely large.

A different point of view has been taken by Tuteur[45] who has considered the
number of taps on the delay line required to realize the angular resolution of
which the array is capable. For the particular example of a linear array he has
found that thu tap spacing needed to match the angular resolution is on the order
of 1/BK where B is the signal bandwidth in hertz. Since the maximum delay re-
quired to steer the array over 180° in azimuth {s 2(K-1)d/c , where d 1is the

hydrophone spacing and ¢ the velocity of round in water, the number of taps
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needed to provide all the possible signal delays required by the p's and t's in
Eq., (2.5-21) is

4’ M = 2 BK(K ~1)d/c (2.5-22)

e

s & Although for typical bandwidths and large array sizes this number is very large,
; it is independent of the number of interferences. This is true siance the argu-
3 ment based on angular resclution implies that many of the KL taps reguived to
implement Eq. (2.5-16) can, in fact be considered identical. Note that M as
given by Ea. (2.5-22) is on the order of K times as large as the value given in

f{ Eq. (2.4-19). The very much larger estimate obtained here is a dirett result of

requiring the array to be able to resolve several sources at different angles

i simultaneously. If delay lines with the smaller number of taps given by Eq.

f _-§ (2.4-19) were used one would expect a performance degradation resulting from the
l ‘ fact that the array could in general not be precisely steered in the various

‘aterference directions. The extent of this degradation has not been investigated.




CHAPTER THREE

THE ADAPTIVE MECHANISM

3.1 Introduction

The previous chapter presented a means for determining the optimum values
of the gains provided that the statistical properties of both the desired signal
and the noise are known,

In the present chapter a method is developed for adjusting the gains auto-
matically when this information 1s only partially available. In particular, it
will be shown that adjustment 1s possible if only the correlation function of
the desired signal, or (not and) of the noise is available.

The adaptive filter described here bases its own design (its intermal gljust-
able gains) upon estimatad or measured statistical characteristics of input and
output signals. The statistics are not measured explicitly and then used to
design the filter; rather the design is accomplished in a single procees by
recursive algorithm which updates the adjustments with the arrival of each new
data sample.

Two of the most commonly used iterative methods for making adjustments to
improve system performance are the relaxation method and the method of steepest
descent (or ascent). The relaxation method involves making a change in the value
of only one of the controller parameters and then re-evaluating the performance
measure. If the performance has been improved, a second change in the same
direction is made; otherwise, the first change is retracted and a change in the
opposite direction is made. This process is continued until no further improve-
ment in the performance measure can be accomplished by adjusting that particular
parameter; whercsupon the same process is repeated for each of the remaining
controller parameters. After gseveral iteratlions through the entire procedure,
the controller parameters tend toward that set of values which yields the optimum

performance measure.
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The methods of steepest-descent (or ascent), referred as gradient techniques
are operated in a manner similar to the relexation method, with the notable excep~-
tion that all parameters are adjusted simultaneously rather than sequentially.
This is done by measuring the partial derivative of the performance measure with
respect to each of the controller parameters and then adjusting all the para-
meters in such a way that the net effect is the largest possible improvement in
the performance measure. A number of techniques have been developed for deter-
mining the partial derivatives.

The most straightforward method is to perturb each of the parameters sequen-
tially and measure the derivatives directly. This procedure, however, offers
little advantage over the relaxation method. A second technique is to perturb the
parameters simultanecusly in such a manner that the effect of the perturbation of
each parameter on the performance measure will be distinguishable from the effects
of the perturbations of all the other parameters. Ways in which this may be done
include perturbation by independent random noise, distinguishing the individual
effects by correlation detection {14]; or perturbation by frequency-separated
sinusoids, distinguishing the effects by narrow-band detection [40].

Gradient techniques can be considered as the special case of the more gen-
eral method of stochastic approximation, by which either deterministic or random
problems can be solved with ease. In this chapter adaptive algorithms wili be
derived to automatically adjust the weights on the tapped-delay lines described
in the previous chapter. The methods of stochastic approximation will be used

extensively in the remaining part of this research.

3.2 Methods of Stochastic Approximation

The methods of stochastic approximation were originally developed by Robbins
and Monro in 1951 [28]}. Their purpose was to find the root of a function dis-
turbed by measuring noilse. The term "stochastic" refers to the random character

of the experimental errors, while the term "approximation'" refers to the con-
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tinued use of past measurements to estimate the approximate position of the goal.
Kiefer and Wolfowitz [29] adapted the ides of stochastic approximation to the
problem of finding the maximum of a unimodal function obscured by noise, Blum
{30] used the gradient method to extend thc above techniques to the multi-
dimensional case. Later on Dvorestzky [31] greatly gemeralized and unified the
whole theory and Kesten [41] derived some formulas to gpeed up the rate of com~-
vergence in terms of the number of changes in sign before a certain step.

a) Basic Considerations

Stochastir approximation, much like ordinary successive approximation in the
abgence of experimental error, involves two basic considerations--first choosing
a promising direction in which to search and selecting the distance to travel in
that 'direction. Picking a secarch direction ie no more difficult for satochastic
then for deterministic approximations, for one simply behaves as if he belleved
the experimentzl results, ignoring entirely the possibility of error. This means
of course that the experimenter will move away from his goal whenever he 1is mis-
led by the vagaries of chance error. It will be seen that such temporary set-
backs do not prevent ultimate convergence if the step sizes are chasen properly.

In both stochastic and deterministic schemes, the corrections are made
progressively small as the search proceeds so that the process will eventually
converge. To make this convergence rapid, one would 11ke to shrink the step size
as speedily as possible. The main difference between stochastic 2and determinis-—
tic procedures is in fact the speed with which the steps can be shortened. When
noise 1s totally absent one can reduce the steps very rapidly, but when there is
danger of an occasional jump in the wrong direction, shortening the steps too
rapldly could make it impossible to erase the long-run effects of a mistake. 1Im

the latter case the process would still converge, but to the wrong velue.

b) The Ordinary Methods

Many problems in godern engineeringz systems design can be reduced to that of
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finding the extrema of functions of several varisbles

Ia= Q(cl. Corven cn) = Q(e) (3.2-1)
where ¢ = (cl, Copssnes cn}.

Denoting the optimal values of c by Eop and assuming that the extremum of interest

to us is 2 minimum, we can obtain the solution of ¢ = ¢

Sop by setting the gradient

of Q(c) equal to zero, i.e.,
v.Qe) =0 (3.2-2)

3Q(e) 3Q(e)
ac. = L3 ] ac *
n

where V Q{c) =
¢ - 1

Generally a closed-form solution cannot be obtained for (3.2-2), so iteration
methods are required, especially the gradient method. The gradient method re-
lates the coordinates of a given point with the coordinates of the preceding

point and the gradient VQ(c) . The algorithm for determining Sp caD be

written in the form
S T 8y T YT ALY (3.2-3)

When Q(E) is not given analytically or is not differentiable, the gradient

VQ can be approximately determined with the formula

(EJ a) - Q_(_El a)
& 5o = 90 (3.2-4)

where

Q, (c, a) = {Q(c + a 31),.... Qe + a 5.“)} (3.2-5)

and Ei denotes the base vectors
e = {1, 0,..., 0} , g ={0,0,..., 1} (3.2-6)

The corresponding algorithm is then

Q+(£ Y a.) = Q (E » a.)
= - ] k| -3 3 e
S441 7 H T Za {3.2-7)




In the above we assumed that Q(g) 1r a deterministic function. If we
consider a function Q(EJEJ , where x = {xl. Xyseovs xn) i3 8 vector cf sta-
tionary random variables with distribution P(x) , it is natural to attempt to

find the extrema of the mathematical expectation:

() = [ Q(x|c)P(x)dx = Ex{(il_g)} (3.2-8)
X

The conditien for determining the optimal value Eop is of the form
M) = B Q) = 0 (3.2-9)

We can apply the algorithwms (3.2-3) and (3.2-7) te (3.2-9) and functional
(3.2-8) only when the priori distribution P(x) 1s known and, consequen;ly, the
mathematical expectation can be determined beforehand. Frequently, however, the
probability density function P(x) is unknown. Nonetheless, the optimal vector
Sop can still be determined by applying the gradient method using VCQ(E}E)
instead of E{?CQ(Ejg)} . This 1s one of the advantages of using the method of

stochastic approximation, With this method the algorithms for determining ¢

~op
can be written in the form
Ejtl = Ej - ','J, Vc Q(ij‘_c_j) (3.2-10)
£f Q(xl¢) is analyric and dlfferentiable, and
Y
- R - -
Sye1 T &y 7, {Q+(5j|gj, a;) Q_(Ejl_gj, aj)} (3.2-11)

if 7 Q(x|ec) docs not exist., Here

¢ 5=t Yj determines the pitch of the algorithm

and generally depinds on the index of the step and the function itself.
Algorithm (3.2-10) is a wulrivariate form of the Robbins-Monro procedure,
while algorithm (3.2~11) is a multivariate form of the Kiefer-lWclfowitz scheme.
The analogy between deterministic and stochastic algorithms 1s apparent. ‘It
should be emphasized however, that stochastic algorithms deal with statiomary

random variables which may contain random noise in addition to the useful signal.
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t) Convergence Conditions and Their Geometrical Significances

’ We shall describe the conditions under which the above-mentioned algorithms
converge. Since the mean squared error is used throughout this study as the only

performance criterion, Q(Ejgg is analytic and differentiable and we therefore
need to consider only algorithm (3.2-10).

Let ¢ satisfy the equation
—op

E(7, Q(xjea)} = 0 (3,2-12)
E{VCQ(gjg)} is a set of real measurable functions of real variables c such that

BV alxle)} & 0 for ¢ = Cop (3.2-13)

>
vhere Eop is a constant vector, and where e < means ci

c Y
—op op

for all 1 .

Theorem 1 : Let Y, , Y, ... be a sequence of positive numbers such that
—_—— 1 2 q

(Al 1im vy, =0

jw
I (3.2-13)
(a3 381 Y; < @

Let the following conditions be satisfied

oo A 4

T
1nf L (¢ - g, BT Qxle)} >0 (3.2-14)
(B €< |le- Eopll <=
e>0
© E{chQ(ZJE) VCQ(EJEQ} S-d(szp Lop + 9?_) (3.2-15)

for all ¢ 1in a bounded set and d > O

Then the sequence cj defined by (3.2-10) converges with probability one to

c .
—op
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Proof: The above theorem has been proved by many authors. An outlime is given

in Appendix B .

We see that there are geveral restrictions impused on the sequence {yj}
as well as on the behavior of the function VCQ(EjS) . These conditions not

only guarantee the convergence of the algorithms but also possess certain geometri-

cal meanings.

(1) Yj > 0 . This 1s to assure that the corrections, on the average, are to be

mads 1in the rieht directions.

(2) Yj +0 as 3 >« , This 1s to assure that Ej célhulated from algorithm

(3.2-10) will converge on some specific value. Suppose we let the measured

error gradlent be VCQ(E‘E) and tie averaged gradient be E{VCQ(gjsﬁ}-

Then

VCQQISJ) = E(VCQ(gt_lg_j)} + £, 31 =1,2,... (3.2-16)

1

where &y is a zero-mean random variable.

Thus, VCQ(EJSj) is not necessarily zexo even if Ej = Lop - If the condi-
tion Yj +0 as § » = {is satisfiled, the random fluctuation gj are reduced to

zero as J + = , which permits ¢ tc converge.

_j

{3 jgl Y§ < = or 1§J Y§ =0 ag J > o=

This condition is needed to account for the cumulative effect of the fluctua-

tion ij . If Eq. (3.2-16) 1is substituted in Eq. (3.2~10), there results

-c. = - E - 3.2-17

Sie1 T Yy vy n{VCQ(ﬁlgj)} Yy & ( )
Summing the zbove from § = J upward gives

-c, = - ,L )} - % 3.2-18

e Ty 7T ghy vy BRRGEDY - gy vy &y (3.2-18)




which expresses the total variation in ¢ from the Jth step onward. The

variance of the random part of this variation is

g 2 © @
EGE vy 50T ) = gEs i vy e By & (3.2-19)

It is assumed that observations on Q(glc) are taken sufficiently far apart in

time so that the
; 4

- - T v2 {g2
Hence the righ-hand side of (3.2-19) becomes ng Y5 {gj}

are independent.

Assuming that E[§§] < E[gé] for all J < j <= ,

2

{ -3 2 2 @® _
E 1 GEy vy &% El&g] 351 7y (3.2-20)

jzj *i + 0 assures that the variance and the total random

variation approach zero as J + @

Hence the requirement

(4) Y=

Conditions (1) through (3) assure only that ¢, converges to some value

_._j
g, + Condition (4) assures that ¢_ = Cyp + This follows from Eq. (3.2-18).
Taking expectations on both sides yields
Elc_ - %] ==k E{ch(glgjn (3.2-21)

T = if ¢ approaches any valuge other
4E5 Yy , gy app y
than Eop , E{VQQ(EJEj)} will not be zero for any j > J and therefore the total

Then, gince condition (4) implies

corrective effort E{VCQ(5|£j)} becomes infinite.

sE1 Yy
The above four conditions state that the rate with which yj dacreases must
be such that, on the one hand, the variance of performance index vanishes, and on

the other hand, the variation in vy, over the varlation period is large enough

J
for the law of large numbers to hold.
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inf (c - -Eop)T E{VCQ(_’E’S)} >0 for e>0.

(5) e < {‘2 - sop“ < %

The condition determines the behavior of the surface E{VCQ(EJE)} =y close to

the minimum and, consequently, the sign of the increments of ¢, . Actually, if

-—j

the error criterion does have a unique minimum, the above condition is generally

satisfied.

(6) E{ECT Q(x|e) VCQ(EIQ} <d (5:101)'r Sop * g_T_g) ford > 0 .

This condition requires that the mathematical expectation of the quadratic forms
T ¢
E(9, Q(x|e) ch(zjg)}
increase, as ¢ increases, no faster than a quadratic paraboloid.

d) Modification of the Ordinary Methods

In this section we shall consider the algorithm

c. =Y

41T & (VQ1+ vQ,) (3.2-22)

3

rathar than the previous one

£

47 Y (VQl + VQZ) (3.2-23)

S441

where Ql + Q2 = Q 1is a function of the error, and the average of it is the per-
formance criterjon to be minimized.
Comparing Eqs. (3.2-22) and (3.2-23) with the regular gradient method with

constant vy

= - y(¥Q Q .2-24
S441 7 Y v(VQ; + VQ,) (3.2-24)
we see that in Eq. (3.2-23) no average is taken while in Eq. (3.2-22) a partial
average is tzken. £ , the random component of the gradient

Q= YQ + £

is e¢liminated by the properly chosen sequence Yj .
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One would conclude therefore that the same Yj which eliminates the error
caused by the difference between (Vﬁi + Vaé) and (¥Q, + VQ,) would also
eliminate that caused by the difference between (56; + 565) and (vQ, + Vaé).

This is stated precisely in Theorem 2,
Theorem 2 : Let Yy o» Yyeoeo be a sequence of positive numbers such that

= b o oo b 2 o -
@ lim Yj o, j£1 Yj , jEI Yj < (3.2-25)

Jore

Let the following conditions be satisfied

. T ——
B inf . (gfgop) E{VCQ1 + VcQZ} >0 (3.2-26)
e<lle-e |l <3
p E
(© E{(VQ, + V3T (7.Q, +70,)0} <d(el c_ +c' o) (3.2-27)
¢l 2 ¢l 2 =\ op =ep L L

where € >0 ,d >0,

Then the algorithm

£j+l = Ej - yj (VQl + qu) (3.2-28)
minimizing

E(Q, (&) + Q,(e)}

converges with probability one to Eop .
Proof :

Subtracting Eop from both sides of Eq. (3.2-28)
- - - - vq 3.2-2
Ej+1 Eﬂp Ej Eop 'Yj (VQI + VQz) ( 9)

and taking the inner product, we have

T T
(Ej+1 - Eop) (£j+1 - Eop) = (gj - Eop) (Ej - Eop)

-2 Yj(cj - EOP)T(VQ1 + Vﬁé) + Y%(VQl + EGZ)T(vql + 362) (3.2-30)

B-45




Taking the conditional mathematical expectation for given 810 Epaees 53 yields

- 2
Bllleyyy = 2opl 1% lggs 5oeev &)

- - 2 _ -e )T 7
Hey = gopll? - 2 vyley = g0 BlVQ, +7Q,)
+v3 E((vg + 7,7 (vq, + T} (3.2%31)

From condition (c) , Eq. (3.2-31) becomes
: - 2
E{Ilgj.'_l %p" l_cll’ 22""‘ -c—j}

T a—
- gop) E{VQI + qu}

+y2ae To  + () (3.2-32)
Using condition (B), the above reduces to

v L 7 | E(E‘E‘j+l _Sopllz ‘El’ Ezb'--, Ej}

aetc (3.2-33)

< lle
~op

f. f =3 j

From this point on, we can follow in exactly the same manner the steps leading

- 2 +y2a+
Sl 12+ 2y

from (B-9) to (B-18) in Appendix B,

- 3.3 The Design of Adsptive Tapped-Delay-Line Filters

The adaptive algorithms used here are derived from the methods of stochastic
approximation stated in the previous sections. The quality criterion may be
represented in the form of the mathematical expectation of some strictly convex
function of the deviation of the output variation from the desired fumction. For

simplicity we shall use the mean-squared criterion. Thus
I (0) = E{Q(d - 2)} with 0(e) = e’ (3.3-1)
For the tapped-delay~line filter shown schematically in Fig. 4 we know

xi(t) = si(t) + ni(t) (3.3=2)
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It 18 assumed for the moment that these functions are stationary random processes.
Nongtationary or time-varying systems will be considered in a later section.

As seen from Fig. 4 and the definition of d(t) given in Sect.iz.l the error
function is

e(t) = d(t) = d - g?n_ (3.3-3)

and its square is

Qe) =e* =a’-2danW + Wan ¥ (3.3-4)

The gradient of Q with respect to the weights becomes

vQle) = 2dn +2 nnW=-2en (3.3-5)

Upon using algorithm (3.2-1C), the adaptive scheme to adjust the weights cbtained

as

¥ = W, +2 Yy L (dj - zj) (3.3-6)

The above adjustuent procedure requires the availability of the error
function as a real time function. This regquirement 1is not convenient in dealing
with communication problems such as filtering and detection, and it must therefore
be removed.

This is done by rewriting Q{e) as

Qle) = [d(t) = z(e)12 = z2(t) + d%(t) - 2 d(t) z(t)
) ) R(M+1)
= 2+ di -2 5w [ (0 + v (0] (3.3-7)
Let
2
q = zX@® (3.3-8)
Q, = 4%©) - 2 a®) a(o) (3.3-9)
and note
VQl = 229z = 2 nz (3.3-10)
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E{vQ,} = - 2E{dg} 4 - 2 Rge (3.3-11)

where
fag, ) ey s (o) ] (Aoac) | Ryl
i dt, d(t) s (£=8) LIGRIERNTY Ry (1;=8)
Baem B . =E | - E . = 1.
| oag L, d(t) s, (t-M) d(t)d(t+r, -MA) R, (r,-MA)
L : : .
!'L at, ) Ld(ti oy (2-0)] \d(t)é(cﬂx-m), \R‘;(tK-MA)’
(3.3-12)

In the above Rd(T) 18 just the autocorrelation function of the desired
signal d(f). For any given number of taps and their spacings, together with the
knovn signal dircction, R, can be completely specified if Rd(T) is given.

Substituting (3.3-10) and (3.3-11) into (3.2-20), we obtain the desired

algorithm to adjust the weight vector

= - .3-13
B T Byt vy ry a2y Ry (3.3-13)

During the training period, the information required to adjust the weights
is just the signal autocorrelation function. z and n are available as real time
functions. Algorithm (3.3-13) will be used extensively in designing an array
processor. Its convergence properties are given in the next two sections. The

implementation of this adaptive mechanism is very simple.

T+

hl(t) Rd(ti-kA) L = (1=-1)M+k

z(t) >@ ;@ ;)®ﬁ———-———> bw,

A rather detailled structure is shown schematically in Fig. 7.
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In comparing the formula for the optimum gaina
W= & +R)PR
~op =5 = 13

with the recursive procedure

e R R

we see several advantages in using adaptive tapped-delay-line filters over non-

adaptive tapped-delay-line filters:

(1) No ncise fZeld mzasurements are required since the weights are adjusted in
the presence of norm:l hydrophone outputs.

(2) No sclutions of simultaneous equations for the weights are required.

{3} When the asignal correlation functions are used in (3.3~13) the difficulty

of generating some simulated signals as proposed by Widrow and et al [16] is
corpletely removed.

(4) 1t is not necessary to assume that the undesired interferences originate from

poirt sources. The noise can take any realistic forms.

3.4 Physical Interpretations of the Convergence Conditions

It has been shown that algorithm (3.3-13)

= W -2 +2vy, R 3.4-1
Bpn = By T2y gyt 2oy By .41
is derived fpom (3.2-20) with ¢ replaced by W , i.e.,
Ej-l-l = gj - yj(vq1 + \.n';-z) (3.4-2)

Although (3.4-2) converges both in mean square and in probability under certain

' mathematical conditions. it is not clear whether these conditiong can be met in

reality. These conditions are repeated here for convenilence.

(A) lim vy, =0

o - -, Zew 0
R R B 3 Ty
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(®) ‘n o -

T —

L ) V'(VQ1+VQ2) > 0 -

e<|lw-w_ |l <2
= ~op €

W
—op

(C) EB{(vQ + VGZ)T (vQ; + vQ)}

T
<Al o+t EW,d>0

The choice of vy, which satisfies (A) is rather at our own disposal, We can

3

always set = 1;‘ where y > 0 and 1/2 < a <1 to fulfill the require-

V)
ments of (4). The remaining conditions depend on the surface of the error
gradient, which in turn depends on the choice of error criterion and the physical
system under‘consideration.

We shall show in the £:llowing two lemmas that conditions (B) and (C) are
sarisfied 1f (1) the error functica Q(e) 1is strictly convex; (2) the second
Z:yivative of Q(e) with respect to e exists and 1s uniformly bounded; (3) all
stgnals (useful signal, ambient noise and interferences) are generated from phys-
ically realizable sources and thus their second order statigtics are uniformly
tounded. The first two conditions are definitely satisfied because the perform-
ance criterion employed here is just the mean squared error so that Q(e) = ez ’
which is strictly convex and aiqiaez = 2 1s uniformly bounded. The third condi-
tion concerning the boundedness of the correlation functions of the input proc-
esses 18 also satisfied in most practical situations.

Consequently, we can conclude that all the convergence conditions can be met
in practice and the adaptive schemes should be operative in adjusting the welghts
on the tapped-delay linmes.

Lemma 1 : For the tapped delay line filters, if Q(e) = e2 then at the neighbor-
hood of !op uinimizing E{Q(e)} the following statement is true:

T —_—
inf (ﬂ—ﬂop) ]:.{VQ1+VQ2} >0

e<|lw-w_ ||«
¥-¥

TR )

e >0
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Procf: Since 1 = E(Q] has a minimum at W = !°P , we can write for
k=1, 2, ... KD
a2 2,00
< 0 for L wdp . (3.4-3)
thus
_ k) 31
(wk uop ) awk > 0 for all k (3.4-4)
and
T —
vinf W - ﬂop) E{vQ, + VQ,} > 0 (3.4-5)
e lw-u |l <2
- —op €
Lemma 2 :

Let Q= Ql + Q2 = e2 . If the second order statistics of the input
processes are hounded, then for the tapped-delay-line filters under study the

following condition 1s always satisfied:

BO(TQ, + TG0, + W) sk WD W+ H W), Ky > 0

Proof

Using a Taylor series expansion about W =W , we have

-op
vQ(W) = 9Q(W) I E-W) (3.4-6)
W=W W=y
=~ ~op = ~op
where J is the Jacobian having elements
2
J.o0m 28 g k=1,2,..., K(WD) (3.4-7)
ik W, 3w
1"k
Since the error function is
K(M+1)
e(t) = d(t) = z(x) = d(x) - L, W (8D (3.4-8)
we see that
00,02 ke o 8 () (3.4-9)
4uk Rre) ka je k
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32q 32q
and S = =5 n(t) = 2 n(8) n (t) (3.4-10)
kL de
Therefore, the averaged value of the error gradient can be written in the follow-

ing form in view of the above expressions

vQ = VQ +2§n(g—W)-21_1ﬂ(g-w) {3.4-11)

because VQ = 0 at the optimum peint and En 18 the input correlation matrix
with elements nk(t)ng(t) for k, 2 = 1,2,..., K(#1).
Note that

E{(vQ, + EEE)T(vql + 562)}

T T -
< E{V Ql + Vv Qz} E{VQl + VQZ} (3.4=12)
and for real wvariables

az + b2 > =2 ab from (a + b)2 >0

(a-12cal +b2 < 2(a% + 1D (3.4-13)
The desired result is obtained by substituting Eq. (3.4-12) into Eq.(3.4-11)

and setting a constant

ky = sup ENCGINGY (3.4-14)
1 all k,2 k L

for all k and 2 . The comstant k, defined above will be bounded if the second

order statistics of the input processes are bounded.

3.5 Convergence Properties of the Adaptive Tapped-Delay-Line Filters

Having found an algorithm which converges in som: sense, we shall now
investigate how fast it converges. In other words, we would like to know how
fast the parameters approach to their values and the mean-squared-error at each

stage during the adaptation period. The effect of the input statistics on the
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rate of convergence will be determined. The zdaptive bel avior adjusted in the
presence or absence of the target signal will also be studied.

Rewrite algorithm (3.3-13) here for convenience

W = W +2 - +5-1
+1 j Yy Rye = 2 Yy 2y Iy (3.5-1)
Since the summer output is
T
"Wa .‘2
z, LN (3.5-2)
we have

Moy = (L-2y, n,n) W, +2y (3.5-3)

L] 340y Yy 3 Rae

Taking the mathematical expectation of (3.5-3) and diagonizing the input correla-~

tion matrix R such that
-n

-1
R =P AP (3.5-4)

we obtain

-1
E[gjﬂl = (1 - ij EOADR E[gj] + 271 Re (3.5-5)

where P is an orthonormal matrix and A 1s the corresponding eigenvalue matrix.

Some comments are in order

1) In Eq. (3.5-4) the input correlation matrix assumes different values
depending upon whether the input contains noise only or signal plus noise. When
both the target signal and the undesired noise are present, the output of the 1th

hydrophone is

xi(t) = si(t) + ni(t) ' (3.5-6)

so that the various delayed {nputs nk(t) contain signal components Ek(t) as

well as noise components vk(t)

'"xk(t) - Ek(t) + ‘-‘k(t) y k= 1, 2., .., K(M+1) (3.5-7)
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and

nz=(4+v) (§_+1)T3 (3.5-8)
Eln 2] = BE £ + v '] E[W) = (& +R) E(W] (3.5-9)

gﬁ and R, are the input signal correlation and input roise correlation

matrices, Thus, 1t is important to keep in mind that

gﬂ - 3£ + 5M when xi(t) = si(t) + ni(t) (3.5-10)
and
Bh - Ew when xi(t) = ni(t) ) (3.5=-11)

2) In taking the average over Eq. (3.5-8) 1t is assumed that W 1is
statistically independent of p . Although W cammot affect n 1in any manner,
the increment of W at each stage is related to n by Eq.(3.5-1). Since the incre-
ment 18 generally very small and the total effect involves addition of a large
number of small increments, we can assume E{n__?ﬂ] = E[Q_QFJ E{W] 4in a manrner
similar to that used in the analysis of phase-locked loopsl.

Thus for large 3j (at later stages during the training pericd) there should be

little correlation between and

Y LFFE R
In returning t> Eq. (3.5~5), let us define a new weight vector

W' =pw (3.5-12)

and a new delayed input vector

n'=¢n (3,5~13)

Since2 R W as seen from Eq. (2.3-25),

R -
~dg =n —op
we transform Eq. (3.5-5) into

W' oy=(1 -2y, A) E[W'] + 2 W' (3.5-14)
E[_jﬂ) ( vy A) [,,_j] vy MY
1
See A. J. Viterbi, Principles of Coherent Communication
McGraw Hill Book Co., N. Y., 1966.
2 -1 -1
The optimum weight vecror Hop assumes gﬂ gdg or R, Edg depending on the

training environment.
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or

E[!j+1] - Eép = (1 - ij A) (E[H&] - E&p) (3.5-15)

Now consider any particular component of W' , and for clarity no subscript

or superscript denoting the component is used. Then we obtain a difference

equation for E[w'!] = !

3 A

——

M -~ ' = - e - ¥ -
"j+l Yap {1 2Yj A) (wj wop) (3.5-16)
whose solution is
- ]
] - [ ] - 1 -
wj+1 (wl wop) kﬂl Q 'Zyj A) + wop (3.5-17)

We shall now calculate the mean square of the weights.
If we first take the outer product and then the mathematical expectation on

both sides of Eq. (3.5-1), we can write after some algebraic manipulationsl[17]

T T Pa—
Bipp Myp = By By o+ by (R W= UL
2 2 T
+ 4 Yy ey ﬂj n, (3.5-18)

where {A}° denotes the symmetric part of matrix A and

{a B)° = %(55T+§AT)

For large J , the following approximation can be made

Z ) ) -
94N 7 Cfwe Y T cta b (3.5-19)

which can he viewed as a Taylor series expansion arcund the optimum point and

with higher order terms neglected.

1 This is done by combining the following steps:

T T T 2 2 T
B g Bgey T Mg By 2y e Wy ny Ty By Yy ey 0,
T T T,s
e - - W
be ey Gy ny vy My =2 R, - MY Hy)

c. {1° 1is used to make the expression compact and the superscript cam be

reroved in dealing with diagonal terms of a squave matrix.
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Therefore, Eq. (3.5-18) becomes

T T8
w ] -
B gt By Gy B W - DE
2 2
{ °min & (3.5-20)

Using the transformation W' = P W defined in Eq. (3.5-12), we can express the

+ 4 v

diagonal terms of the above matrix as

Wi wj:f-l}D = Hj'T}D v by, L@ -ww P

3" 2 (3.5-21)

while the outer product of Eq., (3.5-14) is

d———

* 1 T - - .1 e T8 1 v T 3,5-22
Biog By = TA =Gy P HT 4 4y W 3.3-22)
Let
- [T v gt T = v yrL -t |TV (3.5-23)
v, (Eﬁ Hj)ﬂﬂj Ej) W' w )j w, 5

Subtracting the diagonal terms of Eq. (3.5-21) from those of Eq. (3.5~22)

yields
D .- D 2 A e2 .5~24
!j-f-l Q QYJ A)\_Ij +4Yjaemin (3.5=24)
2 ey 2
which has elements of the form (wj) - (wj) .
Thus, for any particular component of !g , we have
(w! )2 - (57)2 =y = (l-~4dy, A)v, + 4~ 2, ;5 (3.5-25)
i+l k| 3+l 3 3 3 min :
Iterating backward,
3 = ] 3

= - 2 (L -4v,2) (3.5-26)
VJ+1 vlkgl (1 47k1)+4)\e 2

e
min k61 Tk gkl
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But vy 0 because (;;) - "i . 80 that
S T L W - : A-by, 1) (3.5-27)
J+1 541 7 Y41 min kil Yk 28kbl )

Using Eqs. (3.5~17) and (3.5-27) we shall find the rate of convergence in terms
of weight vaziance and the mean squared error.

The weight variance is

K(M+1)
z
]

Hw, , -w_ |]|2

@ _ 2 (3.5-28)
—j+1  -op

[“j-’rl ~ Yop

and the mean squared error at each stage of adaptation is from Zq. (2.3-28)

—

2 2 . -
eitl T fmin T Wyer m YT R Wy, - R
- [ _u' « - . Y
(Wj+1 HOP) A (Ej+l !op.) (3.5 49.

where A and W' are defined by Eq. (3.5-4) and Bq. (3.5-12) respectively.
The expected difference between the mean squared error at each stage during the

training period and the minimum mean squared error is then

— — K(M+1)
02 2 - ¢ (m) - |(m) 2}
Eley4y = Cpynl Etmgl ‘o (ger = Vg )
L{M+1) -
b m)  (m)y2 5=
- mﬁl Am (w3+1 - wop ) (3.3-30)
Since
N v 32 o ' .l r o Lot 32 -
Wipl ~ ¥op? = Wi Vi)t Gy Yop) (3.5-31)
the weight variance 1s
N K(M+1) -3 3 . 3 L xS
T L A B A
R Y N P VN (3.5-32)
Y1 op k=1 k m
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and the mean squared error becomes

2 2 TP T
®54l T Cnin " mEl 2 2 Cmin i1 Yk dfkar -4 vpAp)
K(M+1) 3 2
o), (@))2 ) N
+ .5 N, Vop ) (1,0 -2 v A)) (3.5-33)

Eqs. (3.5-32) and (3.5-33) are the desired expressions for the rate of convergence.

Althougbh they appear to be quite complicated, simpler results can be achieved by

setting the weighting sequence vy, to some special forms.

b

1 1

P TEFS 33 (3.5-34

This really mear: that Yj is a diagonal matrix whose mth element 1is
1
ETS;ISK; for m=1,2,...K(M1). Eq. (3.5=34) is8 a legitimate choice as it

satisfies all the required conditinns for convergence.

Since
J N ] . 1 1 5
Wit -2y M = 0 Q- =5y (3.5-35)

and [see (C-B) of Appendix C]

2
2 (k+1) ..
B, {1l =4y )= 1 (1~~~ = 2o $3.5-36)
=kt 2 =k +
p=k+l f=k+l 2+1 (j+1)2
the mean sguared error at ezch stage is
=z 3 j__ RosD , 1 ROMD @) L m)y2
541 ~ Smin 7 nil Cmie T el w1 op )
(3+1) (3+1)
3 q 1 T
= K{Hl) e + (y_-w ) R(E-W )
min (j+1)2 (j+l)2 1 —op -n—1 -—op
(3.5-37)

1 This is the optimum choice of Yj which provides the fastest rate of con-

vergence and can be derived by meking e, a minimum for each 3=1,2,... . Simula-

3

tion results also confirm this argument. B-59




and the weight variance is

—=  K#Hl)
- 2,4 __ 2 L
RUNSIES W} Geny? Cutn w1 X
+ 1 3 flw, =w_ |12 (3.5-38)

The significance of the sbove expressions is apparent.

The initial error at time J = 1 dis just the norm of the difference between the
initial and optimum gains in the parameter space, i.e.,
2

T .
et M, - Eop) En M, - gop) (3.5-39;

ol

The initial mean-squored errcr will decrease at the rate of 1/j2 ; j being the
adartation time. However, the first term on the right-hand side of Eq. (3.5-37)
decreases at the rate of j/(j+1)2 ~ 1/ and will definitely dominate the first
term during the later training period. It is proportional to the total number
of gains being adjustcd ané the z%solutely obtainable mean~squared error using

that many taps. That Is, fcr large }

2 I L. 2

i+l e, = 3 K(M+X5 e in (3.5-40)
It gppears that more :rainiug time would be required to make e§ approach to
eiin if more weights {K(M+l) in number ] are to be adjusted. Actually, eiin
is a monotone dacreasing fuun-tion of M . It was shown in Chapter 11 that

— ® K(M+1)

K . | 2 gy - 2 -

e o = JH(w) |? du i1 v (3.5-41)

-

where H(w) 1s the ccntinucus transfer function to be approximated. Since this
quantity does not decrease linearly with M , there is always compromise to be
made between the training time and the accuracy of approximation. Therefore we

should kecp in mind that using too many taps may do more harm (longer training
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period) than good (smaller mean-squared error). That the mean squared error

decreases at the rate of la— for Yy (-%) is a well-~known fact in employing
3 ]

the methods of stochastic approximation. Here, however, we have shown explicitly
the dependence of errcr rate on syatem parameters such as the number of hydro-
phones in an array, number of taps for each individual filter, and the input

statistics. As a simple illustration, suppose that we want to reduce the error

in a single filter to about 1Z of its minimum

) 2 ., 2
(ej+l - emin)/emin = 0.01

then for 100 taps we uneed roughly J = 10,000 samples to adjust the weights or
equivalently about 10 seconds of real~-time data for a sampling rate of 1,000
samples per second.

The time required to-make this same adjustment in an array of filters need
not be much greater since the adjustment can be done in parallel processors
operating simultaneously. Darallel processing is quite feasible hére, since the

basic slgorithm 18 so simple.
) v, = s (3.5-42)
3 203+

The choice of vy defined in Eq. (3.5-34) requires some a priori knowledge

1

about the input statistics. If the noise correlation matr!x is unknown, an

agsumption forcing us to apply adaptive techniques, the input correlation matrix
and thus the eigenvalues cannot be determined. Here we shall consider an arbi- 3
trary sequence Y, = 1/2(3+1).

Since (see Appendix C)

(A --ry . DQ#2-n 1
341 DT 1o en

&y (3.5-63)

for 3 >>1 and jJ >> a
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and

3 22 (er)
T, (1-35 o () (3.5-46)
L=k+l 31 (1+1) 2
Eq. (3.5-33) becomes
— — K(M+1) ( 22 o2 3
2 2 m_ min 25
e - g 2 E ...} E (k+1) m
3+l min m=l { (j+1)2xm k=1
|(m) (m)
A w - w! 2
+ B 1 op } (3.5-45)
(j+1)2km ( P(Z-Aup )

which of course reduces to Eq. (3.5-37) when Am =1 for m=1,2,..., K(HH1).
c) Yy = Y = constant (3.5-467

The expressions for defined by Eqs. (3.5~34) and (3.5-42) satisfy

'3
the conditions for convergence as stated in Section 3.2, In these cases the

v's and thus the gain increment AW W, become smaller and smaller

= W -
e B Lo
as time J proceeds during the adaptation period. It is anticipated that the
rate of convergence will be increased if a small constant value is set for vy .

As shown by Comer [42], the algorithm with constant vy has comparatively little

noise resistance. Furthermore, in the presence of measuring ervor with variance

a?, convergence in the usual sense does not occur, but
- 2 2 : 5=
Um [lu,, - ¥ P < pir, 02 (3.5-46)
j-&m
and
F(y , c?) +0 as y~0 (3.5-47)

We shall next study the rate of convergence when y 1s a constant.

From Eq. (3.5-17) we sce that with y, = vy = constant

i
wh.,o= (W - w') ?1 A - 2y0) + v
"j+l 1 ap’ k=1 Y op
- (1 - 2y1)3 (Wi =i ) bl (3.5-48)
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Since

2 -l all -~y
a + ay + ay° + o+ + ay -

1=y {3.5-49)
We can obtain
b
_ S . -(3-1)
kEI (1 - 4y1) Y [{1~ 4y2) -1} (3.5-50)
Thus,
J

k|
2 . 2 i-k-1
kgl Vi igk+l (1 - 4v2) ve (1= 4vd)

k1
j-1 3 -k
= Y21 - 4T T (- avd)

- 42 Z%T 11-@- e (3.5-51)

and Bq. (3.5-27) beconmes

—1—)2 2

Ojer T Vg4 T S Y [ - (- w3 (3.5-52)

The mean-squared error 1s then

-3 -y — K(M+1)
2 2 - 2 . i-1,
ej+1 - emin - emin Y mé Am 1-qa- AYAm) .

K(M+1)
- v (m) R (m)\2 - 9 23
+ mgl Xm (wl wop Y 1 hykm)
{3.5-53)
It is seen from the above expression that if the error is to decrease at 2all, one

basic requirement should be met, i.e.,

0<1- hylm <1 with v >0 (3.5-54)

for m= 1, 2, ...,K(M+1)

which implies

0 <y«

4;1 (3.5-55)
max
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Amax i3 the largest eigenvalue of the correlation matrix gﬂ + Thus

Y = constant cannot bé set at will if stability of the adaptive loop is to he

maintained.

Conclusion

The adjustable gains under the operation of our proposed adaptive scheme
using signal correlation functions converge to two different sets of optimum

values depending on whether the input contains target signal or not during the

training period, i.e.,

-1
lim W (35 +R)

oo 1 Bgg if x=z+n
}m_w_j-g_:lgdg if x=n.
J-W

The moan squared error decreases approximately gs the first power of the adapta-
tion time. The rate of convergence is essentially indifferent to the number of
welghts to be adjusted as our algorithm allows simultaneous adjustments. Tha
seize of error, on the other hand, does depend on the total number of taps and
the difference batween the initial and the optimum values of the weights. It

1s also of importance to note that the weighting sequence cannot be selected at

will. Although Yy© —iw ,‘% < a <1 satisfies all the conditions for conver-

3

gence for any positive constant y , this cornstant should not exceed Z%—- if
max
stability of the adaptive lnop is to be maintained. This is especially important

during the early stages of adaptation. Simulation results are given in Chanter

aix.

3.6 Further Remarks on the Operations of the Proposed System

2} Choice of thée Inltial Weights

Although the adjustable welghts can be set to any values at the beginning of

the adaptive process, it 1s desirable to set them not too far from their optimum
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by using whatever information is available concerning the statistics of the ncise
field. The formula for calculating the optimum gains can be utilized to start
the initial computaticn with inaccurate noise statistics. This kind of choice
will shorten the adaptation period amd thus rvduce the cost of operation. Im
cases where absolutely no such Information is known, the gains associated with
the input delayed by Ty = 1,2,...K) are set to 1 and the rest to zero so that
a sjuare law detector is used at the starting momeants. As the adaptive proceeds,
the whole system will gradually be transformed into an optimum one. Any target
signal not detectable during the early stages can probably be ferretted out at a
later time.

b) Problem of Signal Suppraossion

In most adaptive detection systems such as those of Glaser [18}, Jackowatz,
etc. [19] more errors are made as the input signal-to-noise ratio is decreascd.
In fact, it has been hypothesized that if the signal-to-noise ratio is gradually
decreased, eventually a point ie reached where instability occurs, with conse-
quent breakdown of the system. That is, for signal-to-noisc ratios below a
certain level, the uumber of errors degrades the quality of the measurements to
the extent that the use of the erronecus measurements by the detcction regults
in even more errors. This, in turn, causes even poorar measurem-nts, and so on
until a complete collapse of the system performance to an error rate c¢f one-half
oceurs. In cur system, however, adaptation always takes place regardiess of the
prasence of the target signal. It 1s therefsre reasonable to anticipate that
there will be no signal suppression phenomenon.

c) Problem of Uncertain Signal Powzr

In designing most non-~adaptive optimum detection systems, complate statisti-
cal knowledge 1s required for both the signal and the neises. That ia, thelr

spectral shapes as well as their power levels are assumad to be known. The

B-65

W TN Y LR S ey g



proposed adaptive system assumes no information about the noise fields, which
represents one of major advantages in applying iterative procedures. Although

it is reasonable to assume that the general shape of signal spectrum is known,
signal power level may be in some cases uncertain before detection, To get more
ingight about the operation of the proposed system one may ask how the uncertain
signal power affects the system performance. This can be answered by studying
what algorithm (3.5-1) converges to if signal is indeed present in the postulated
direction but has a power level different from that assumed.

It {s shown in Appendix D that if the assumed signal power differs from the
actual power bv a multiplicative constant, the gains adjusted according to
algorithm (3.5~1) will converge in mean as well as in mean square to their opti-
mum values multiplied by the same constant. Consequently, the asymptotic struc-
ture of the proposed system will differ from the optimum one by a multiplicative
constant if incorrect signal power is assumed during the adaptation peried. For
a fixed threshold the detectability of the detector, in terms of false alarm rate
and miss probability, will be degraded to an extent depending on how the constant
deviates from unity. The threshold should be adjusted around its normal operating
level as a function of the signal power. If, however, some kind of display device
i3 available as in most practical cases to observe the directivity pattern of the

array system, uncertain signal power will not affect the sensitivity of the pat-

tern.  The output signal-to-noise ratio remains essentially unchanged.
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CHAPTER FOUR
ADAP. TON IN A NONSTATIONARY ENVIRQNMENT

4.1 Introduction

In Chapter III iterative procedures were derived which involve nc noise
statistics and no explicit time-averaging. 1t is generally noted that the
optimum processor can do significantly better than the conventional procwmssor

for highly directional noise. However, highly directional noilse fields are

likely to be nonstationary. For example, in the sonar array problem, the most

likely sources of directional noise or interference are ships, and ships may be
moving. Under this situation the input covariance matrix and hence the optim.:
gains on the tapped-delay lines will be a function of time. It is obviously
desirable to modify the algorithms in such a way that adaptation can still be
accomplished in 2 nonstationary environment. Otherwise, if we still use the

same algorithm to estimate the gains, the actual optimum point in the parameter
space would have moved to some other place before a steady state 1s reached.

This is a very important problem frequently encountered in practice,.

In this chapter we shall consider several partial solutions to this diffi-
cult problem. These solutions are partial because each one of them can be applied
to very restrictive cases under particular assumptions. If the law governing the
parameter variation is known completely, we can generalize the dynamic stochastic
approximation method [36) to adjust the time-varying parameters. In case the
dynamics of parameter variations 1s generated by a special mechanism and some
pertinent statistics are available, we can then apply the Kalman filtering
techniques to this nonstationary problem. Cases mostly encountered in practice
are nevertheless different from these two. We cannot expect to know the equation
of parameter varietion exactly, nor do we have complete statistics. I1If all the
information we have about the noise fields is the rate of change, we shall just

use the ordinary procedure and determine the cffect of nonstationarity on its
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convergence properties.

4,2 Application of the Method of Dynamic Stochastic Approximation

When the random environment is nonstationary with time-varying statistics,
the optimum parameter set € = Eﬂp becomes a function of time fndex j . Its
value at tim¢ 3§ will be denoted by gﬂ . It 15 assumed here that the law
governing the variation 1s known, although the sequence to be estimated 1s un-~
known. In this case the generalized dynamic stochastic approximation method
developed in Appendix E can be applied to the design of adaptive tapped-delay
line filters. If the variation of 8 1s governed by a known operator L such

that gj+1 = L(gj’j) then the desired algorithm is given by (Eq. E-19)
W,., = LW -y, vQ(x |W 4.2-1)
Mypg = LG, ) - vy vedg W) (

where the C's are replaced by the W's. Upon using (4.2~1) the adjustment pro-

cadure for our delay line filters becomes

LW, ) + 2y

= - 4,2.2"
LSRR 1R T Ty Yy (4.2-2

The above formulation 1s restricted to the case where the dynamics of the opti-

mum set § are described by a homogeneous difference equation

) =L 8 (4.2=3)
3+l T =3+l,1
where £j+1 g not necessarily linear, may be assumed to be a state transition

matrix (if Qj is treated as the state of the system at t ) with the properties

3

and

-1
Lt ™ Bk

Thus, if the law governing the variation of the optimum set is completely known,

we can always take the time-varying effect into account and adjust the parameters
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systematically to their optimum state. However, in most practical cases such as
sonar detection problems, this variation is random due to the random nature of the
unpredictable environments like thermal noise, surface agitation flow ngise, cavi-
tation noise, moving interferences, etc. Then the time-varying trend can only be
described statistically by its measured or estimated frequency Tesponse or spec-
trum,

It seems likely that the well-known Wiener prediction theory can be applied
to estimate the variation. But there is a serious drawback in using this theory.
Since 9j+l is estimated from _e_j and possibly other previous states, the prob-
lem at hand is similar to that of a random walk. The estimation error at each
step may be small, but the accumulated error can be (not necessarily) very large.

Convergence in mean square or in probability is not assured. In the next section

we shall modify the sequency v vy, + 8

] 3 ]

-tochastic approximation method. The sequence Yj satisfies the usual conditions

such that yi in using the ordinary

Yj * N %-< <1 and Sj is used to correct the time-varying effect. As a
3
limit Yj +0 when j -+ = , but B8, will converge to a small counstant. Since
-

the optimum set is always moving, some adjustments should be made at all times.

4.3 Application of the Kalman Filtering Techniques

It has been shown in our previous developments that the adaptive tapped-delay
line filters designed via the methods of stochastic approximation using the current
input information can asymptotically converge to the Wiener filters. Since Wiener
filters are designed for stationary processes and their extensions to the time-
varying case are the Kalman filters, we shall apply the Kalman filtering techniquus
to the design of adaptive tapped-delay-line filters with the hope that more rapidly
convergent algorithms can be obtailned and at thc same time adaptation in nonsta-
tionary envirnnments can be achicved. Consider a discrete filter consisting of

tapped-delay-lines and K(M + 1) adjustable gaing W . Let &4 be the tap spacing




and C,  be the weight at the k™ tap on the 1P fiiter.

Referring to Fig. 4 and the notation of Scction 2.3, the filter output is given
by
T
z(t) = W'n (4,.3-1)
where W and n are K(M + 1)-dimensional vectors.

The performance criterion to be minimized is the meen squared error at each stage

hetween the desired filter output d4{t) and the actual filter output z(t).

1 3 T2, 1
J. = T & - WI“A = |lp, - H, W] 4.3-2)
3 7 k=1 (dy ~ n, WI™ & 3 l',j L Wi (
where Dj is a j~dimens ional vector and Ej i a ix[(M+1)K]-dinensional matrix
defined respectively by
' "‘Y —- .y
: ; T
D4 oy
d nT
S e T 3y (4.3~3)
=1 : o= .
i | .
i
: o T
; d
L E .

—

For large Jj and stationary environment Eq. (4,.3-2) is just the usual meau

squared error

3= el e [a(e) - z(t)]? (6.3-4)
Suppose that at each time tj there are available the-desired filter output Bj
which is related to the optimum gains gj and additive measuring roise !ﬂ
D, =H 6 +v (4.3-5 ﬂ
Byt Hy Gty ) ;
The noise !j i5 an additive random sequence with known statistics
E[!j] =0 for all j (4. 3-6) ﬁ
Elv, vi] = ¢, ¢ (4.3-7)
=] & 1 3k
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The matrix Q_J is assumed to be non-negative-definite unless otherwise stated.
Let the optimum gains be generated by a source described by a first order dynamic

1
system

y=ad vy, (4.3-8)

where the constant O < a <1 1s a scalar and Ej-l 1s a wvector random sequence

with known statistics

E{“LLJ] = 0 {4.3~9)
T ,
E[Ej Hk] - Qk ij (4.3~10)

The matrix @, 1is assumed to be nonnegative-definite, so it is possible that
-1

Eﬂ = 0 . It is also assumed that the random sequences gj and Ej are uncorre-
lated.

“mploying the well-known Kalman filtering techniques (a sumrmary is given in
Appendix ¥), the estimate of the optimum gains at stage (] + 1) can be calcu-

lated from its previocus value by

T

= - ar 4.3-11

Wipp =¥y + K ldy-an, ¥ ( a)
=1

= 4.3-11b
5 thhy ( ‘
-1 2 -1 -1 T

= 4-3-11
Bt Rt Ty gy ( ©

)

It is to be noted that Eq. (4.3-8) 1s a rather particular model for which
the results presented in this section hold true. This assumption makes
the present approach s partial solution. For slowly varving parameters,
the variance of the random sequznce Ej » var [n] = (1-32) var [6] , *s

small and permits us to assume a = 1,
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{(4.3-11c) can be rewritten in a more convenient form for computationsl purpose
2 2 T
P, = P, , + - P + +
B ety 40 - TR ) nyiR g,
+ gj] (a +9_j - (4.3-11¢)

P 1s a K(M+1) x K(M+l)-dimensional matrix.

Since we are at liberty to process new dara only one at a time, and for slowly

time-varying case a = 1 [37], we arrive at the following simpler formulation

for the iteration process

T LY
!j+1 = wj j+1 4+1( 341 7 Qj+1 Hj) (4.3-12a;
with
1
£j+l - E £j+]- (4.3‘1%)
‘1 1 L T
Pipm By v aD T, 0y (4.3-12¢)
or
(B, + qDn (P + ql)
Bj"‘l = Ej + q.! - = e j+l —j+l e (4.3-12¢)
[¢+__J+1(P +ql) n ~j+1]
whare
b = Var (v)) (4.3-13)
q = Var (uj) (4.3-14)

for stationary white random sequences {VJ} and {uj}. Algorithm (4.3-12) will
be discussed for both stationary and nonstationary cases. Its relationship to
the method of stochastic approximation wili also be given.

a) Stationary Case

In the stationary case the optimum gains are time invariant so that
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4
91 = 91—1 for all 3 , a=1 and Hj = 0 . Suppose that ¢ = 1 , (3.6-15)

reduces to

= _ T .
E-j+1 Ej ¥ Lj+1 L4 (d3+1 Lyt !%) (4.3~15a)
I‘-l - r-l + T 4.3-15b)
=~j*1 3 Lie1 41 (4.3-15

fombining Eq. (4.3-15a) and (4.3-150) gives an alternative expression

%)

- Tyl 4T
—5+1 :

1, 8, H, D, (4.3~16)

which 158 just the solution of minimizing the error (4.3-4) by the least square
fit. The relationship between optimal filtering and least square fit has been
~ointed out by various authors [43, 44}. The sequence Ej descrlbed by Eq.

(4.3-16) will be shown to converge to the optimum gains

-1 -1
= = 4.3-17

fhis is done by rewriting Eq. (4.3~16) in the forn

1.T -1,1.,T ,
s [ = 2 4,3-18
w.,l [jn Hj] [jﬂ ]Dj {(4.3-18)

Applying the strong law of large numbers and making use of the fact that continu-

ous functilons of convergent random sequences are also convergent, we caun state

that
-1 3 -1
1.7 1 T
;f: T ;ﬁ: 5 i1 % )
-1
= {E_I[n g_T]} = 3;1 (4.3-19)

* This corresponds to the problem of minimizing !{Ej_ gj SJ[Z irstead of
H_Qj‘ Ej o l2_1 used in Eq. (F-7). The weighting matrix R:
R

R, 1s requir.d

is required if the measuring noise 31 is Gaussian distributed with zoro mean

and covarlance matrix Bj . For details, see [44].
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with probability one if R exists and is positive definite. Bn alwuys meets
these requirements because 1t is the correlation matrix of the delayed inputs.

By the same token we can atate

HT

3
1
B D)= Ua (3 I & nd =Ry {4.3-20)

j-)Q

1lim I%

j—tw

with probability one if Rdn exists. Consequently one concludes that

-1
Prob% ;ff_?u? Ry Ran 5’-} ! (4.3-21)
and the limit 8 winimZzes the mean squared error defined by Eq. (4.3-2). It

is noted that in using algorithm (4.3-15) the initial estimate of the parameters

Y .
TTa

is arbitrary and T;l is finite and positive definite. We can just set
W, = 0 and r,=L1-= unit matrix to start the iteration process. The connection
between algorithm (4.3-15) and the ordinary method of stochastic approximation

~an be constructed as follows:

.-om Eg. (4.3-15b) we have

L;l‘ F—SEN Ej"-jr = -F-:lkilnkﬂ:
b (4.3-22)
- ot J(i'kgl B I
which for large J converges to
o re by JR = iR (4.3-23)
goren -3 o T -
Thus the weighting matrix appearing in Eq. (4.3-15) approaches to
1 -1
R
and the corresponding algorithm becomes
Gt G RTE L T G ) (4.3-24)
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Eq. (4,3-24) 18 just the adjustment procedure derived from the ordinary method

of stochastic approximation

By = Yyt xgeg Ny Gy g B (4.3-25)
with
1 -1
Y41 T 31 By (4.3-26)
1j+l is considered as a weighting matrix in this case and in the simplest case

is just Ij+l - 3Ei‘£»’ if gﬂ is a diasgonal marrix and vy= constant. In the

transformed parameter space where Ef =PV, Rn - gfl£§g_ the optimum weighting

(k) 1
Y441 T Gy A

expressions for the rate of convergence have been derived in Section 3.5. Since

sequence is being the kth eigenvalue of Eﬂ . Explicit
algorithms (4.3-15) and (4.3-25) minimize the same quadratic criterion in the
limit, it will be of interest to compare the convergence properties of the two
algorithms. It is to be expected that algorithm (4.3-15) will be more rapidly
convergent than algorithm (4.3~25) since at each stage of the iteration, algo-
rithm (4.3-15) uses information from the inputs of all past stages whereas algo-
rithm (4.3-25) only uses information from the input that is received at the currunt
stage. The optimum sequence {Yj} defined by Eg. (4.3-26) can be predetermined
only when we know the ccrrelation matrix Eﬂ » which contradicts our motivation

of using adaptive techniques. That algorithm (4.3-15) converges faster than

algorithm (4.3-25) with arbitrary Yj = —i— , % <a <1, can be further 1llus-
i

trated by comparing the methods of minimization embodied in each of the algorithms.

Algorithm (4.3-25) proceeds in the direction of the negative gradient of

(dJ - E: )2 at the jth iteration stage. Algorithm (4.3-15), on the other hand,
=3 j ;2
is a sacond order algorithm that selects Hj which minimizes k§1[(dk—g 2k) 1 at

the jth iteration stage. On this basis, it seems plausible that algorithm

(4.3-15) should be more rapidly convergent than algorithm (4.3-25), a conjecture
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that will be reinforced by the simulation results presented in Chapter Six.
The requirement that the desired filter output d(t) be available can be re-

moved using signal correlation functions.

() Nonstationery Case

In the general case where the optimum gains vary with time zs a result of
the nonstationary noise fields, algorithm (4.3-12) will have to he used to make
adaptation possible in nonatationary environments. If we are willing to adjust
the weighting matrix £j+1 at each stage during the adaptation period, algorithm
(4.3-12) is the desired procedure. If, however, we just want to modify the ordi-

nary method of stochastic¢ approximation such that

.\5 - YJ + = ) (4.3-27)
where

. w-L 1

EETCI. cxgl

then o = constant can be found in the following discussion to correct the time~
varyinpg effect. As a limit Yj + 0 when J + » , but adjustments are made at
all time duc to the presence of &

Consider the adjustment procedure

-1 T

Y Ty Y i Yt (dyyy - 5 l‘-j+1) (4.3-28)
where the welghting matrix [ in the stationary casec is

i;il - 531 . % :j+l :§+l (4.3-29)
and that In the nonstationary case {is

~eml (. 5 )_l = (I + B +q 1)"1 PR n (4.3-30)

—j+1 =i+l Fi+l = = L kg ‘}*1

Followiag the arguments leading to Eq. (4.3-23), we can write from Eq. (4.3-29)

-1 oo 4+ R

L (4.3-31)
“j4l
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{ : Since Eq. (4.3-30) 1is a nonlinear difference equation of the form

T -1 -1
I - +
3 ’ x_j-é-l (xj a) + Yj+1
whose explicit solution is not available, we shall onlv consider the ssymptotical

hehavior of Eq. (4.3-30) for large 3 such that

! -1
'3 & e S
i 1 T . -1
b b. t Dyer Dger < [Dgey + Byl
v c. I.., <<B
r‘ —4+1 —j+1
" *
. 1f the above assumptions hold, one can obtain the steady state I as
- ~32
¥ lim §j q (4.3-32)
g ! S
; :? and the adjustment constant 8 defined in Eq. (4.3~27) has the form
- g = 4 4. =33
T b (& )
] Therefore, a simple 1iterative procedure tc adjust the gains in nonstationary
3 _ . ' environment is
- T
4 : =W + (v +q - ) 4.3-34)
By T Yy H Gy ) oy Gy - Wy gy . (4-3-34)
- -
i ; : -3 : replacs ; igns
;] The quantity d3+] 5j+1 appearing in Eq. (4 3-324) can be replaced by the signal
; E correlation function R, .
? Summary - Let the actual target wavefront dj and the summer cutput
: 1 z, = FT W, be related at time ¢ by
" 3 -3 ] ]
- d, = ﬂr W, +v 74.3-35;
h| e it 3
?' -4 wherv the noise vj is an additive random sequence with known statistics
E[v,] =0, Var (v.,) = ¢
| Lv, , BEE
] * See Appendix G for details
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Ler the optimun gains :j be described by a first order dynamic system

R = 3 _’:_3_1 + ‘51—1 (4.3-36)
where the constant 0 < a < 1 48 A scalar and 31 a vector random sequence with
known statistics E[gj]- o, E[Ej 2;] = q I. The algorithm to estimate the adjust-

able gains W which minimizes the mean squared error at each stage

hi
T
2y M4y - o Wl (4.3-37)

(Y
Code |t

can be written in the general form

n - T _
Ej*l = Ej + ‘j [B'dé D‘j ‘n-j _"!_j] (4.3-38)

The weighting sequence T assumes different expressions depending on the sta-

~3

tionarity of process and on whether an optimum estimation procedure (fastest

convergence rate) is required. Four different choices of l‘1+1 are listed below:
'_.\. Qat'ion‘aril:y, ———— e e e
B I
T tationa
lop': tmality | statlonary nons ry
I
P -1 T .1 -1 -1, 1 T
= + T = (T + ql + — n
| optimum ! 1_j l-.i‘l I]—j Qj ) 54 (-j-l ql) ry [\_j o,
i
R O S
| i
i nonoptimum | r, =v, I =Gy, +d 1
| R R B I
: | SN
whoere \',=Yf,v>0,~1~<a<l.
3 In 2

4.4 Nonstaticnarity and the usc of Ordinary Methods of Stochastic Approximation

a) Notations

Recall that the adjustment procedure used very frequently in this study is
of the form

Voo, o= W, + 2y R, -2y, z (4.4-1)

! 37Ty Sa 15
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which !s derived from the ordinary mcthod of atochastic approximation

Hj+l = gj -y TQ (4.4~2)

The optimum gains for the multiple-sensor array

8 (4.4~3)

SR NN AR

are obtained by solving E[VQ] = O .
In order to illustrate the essential steps involved, we shall consider the
simplest case where only a single filter is designed by adjusting a single

gain constant. Extensions to the general case 1s reasonably straightforward,

The optimum gain in this case is then

8 = Cop = [R (0) + Rn(t))]'1 R_(0) (4. 4=4)

where RS(T) and Rn(T) are respectively the signal and noise autocorrelation

functions. When the noise fileld is time-varying such that
R (1,8) = R (1) [1+ £(0)] (4.4=5)

the optimum gain is also a function of time ¢

-1
8(t) = RS(O) + Rn(O) {1 + £(t)] RS(O) (4.4=6)

whose value at time t = {1 will be denoted by 6

h |
In the above £(t) 1is a time function and depends entirely on the nunsta-

tionarity of noise fields. This function will be a counstant in the stationary

case.

At time t = j , the optimum géin can be written from Eq. (4.4-6) as
A, = 8 +F (46.4-7)

where

- -1
e, = [R(0) + R (0] R_(0) (4.4-8)




is thae time-i{nvariant optimum gain and

-1 -2 .2, .2
FJ .- lnb(o) +R (0)] 7 R (O + [R (0) + R (0)] Rn(ﬂ)fj + ...}

(4.4-9)
is the time-varying part resulting from a simple series expansion.

Thus, the optimum gain at any instant can be related to its previous value by

8 = 8 <+ A8 4.4-10
1T g0 (4.4-10)
Aej is the increment of Bj at t = 3§ and given by
A9, = F - F
3 3+l 3 A
= — - -1 .o
= 0,(f,,- £R (0) { 1+ [R(0) +R (0] Rn(Q)(fj+1+ £+ |
e (4.4-11)
Let the dominating part of ABj be denoted by OG{%Q.
h|
Then we have
1 5
= em— .[6"
ej+1 ej+0(w) (6.4-12)

]
Up to now we have not posed any restrictions on w so that Eq. (4.4-12) is

valid in general.

b) Assumptiocns and Analysis

It is assumed that in using the adjustment procedure

7q, (4.4-13)

1T Ty
the following conditions hold

(1) There exist constants K, and Ku such that

2
vo.| < | - 4. 4-14
Kzlcj - eji < |VQj} LR ojl (4.4-14)

for all § . This simply says that the gradient is of bounded variation.
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| - : Note that

-
’ 531 - Véccj> <0 when <y % e_1 (4.4-15)
: { and
| = (¢, - 4.4-16 :
§ EIVQ | ey oy = ey - 0 )u ( ) j

for some W , l(E < u < Ku .

(11) The conditional variance of VQj is also bounded !

Var [7Q,]cyeee, ¢1 < o? <= ' (4.4-17)

3

: L Since Var [x] = ¥ - % , we can write from Eqs. (4.4-16) and (4.4-17) %

E[(ij)ZIC]_’"',C,‘]

3 ; 2
. 7 = Var [VQJ!CID'." Qj] + {E[vo.j|Cl"'.! Cj]§
< 0+ (ey - aj)zu2 (4.4-18)
(111) The weighting sequence is of the form
Yj:% N ‘Y'>O’%<uil. (‘0.4‘19)
k|
Subtracting Eq. (4.4~13) by Eq. (4.4-12)
1 o Coan
Gj+1-8j+l=oj-ﬁj-yj ij-o(;Tu—) : (4.4-20)
and squaring give
_ 2_ 22 2 1
(cj+l - ej+l) = oy Gj) + vy (VQj) +0 (jzw)
1
- 2yj VQj (cJ - ej) + 2yj VO 0(jm )
1 ne
-2 (Cj - ej) O(—L;"') (4.4-23)

- 3
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Taking the conditional expectations on both sides of Eq. (4.4-21) yielde

2
!((cJ+1 - 95*1) EOTRERN cjl

K
2 2 2, 1
- (cj - ﬂj) + ] E[(VQj) Icl."'cj] + ;—;
- 2vyQey - 8y) ElVQ leg,eerscy]
1
+ 2 vy 0(;;—) EfVQJIcl."'. cj]
~ 2 (c:j - 91) 0(;;‘) (4,4-22)

Prom Egs. (4.4~16) and (4.4-18) it follows that

2
ElCeyyy = 84400 Tty o]

-2 Yj(cj - ej)z u+2 Yy 0(‘;&;)’63 - 93|“
*2v, 0D ey - o,
O %af :—g—(cj -e 4 %
- ?% (cj - ej)z + ;% -;% |cj - ejl
+ -:—g lcj - ejl (4.4-23)

where the Ki's are constants.

We shall now consider several ranges of w relatlve to a .

Case 1. W oa .

After enlarging the corvesponding coefficients, the terms of lower order of




3l

magnitude wili jnciude the terms of higher order. Thus, for . » 3 ,

Eq. {4.4-23) becomges

21 .
5(((3+1 - ej+1) icl,...,cj]

X 4 K
4 2 2 6
<{(1- D(c, -8) % —— + = ’c -8 | (4.4-264)
5 ] ] 52 3 ] 3

Now, we take (unconditional) expectations on both sides of Eq. (4.4-24). When

estimating E[}ca - GJI] , we use the inequality [47}

Ef|x]] < e+ ¢} E[x?] (4.4-25)

The inequality (4.4-25) holds true for every € > 0 and every random variable

with finite variance.

If we get e = for some small ¢ > 0 , then the unconditional expectation

6%
of Eq. (4.4-24) is

2
E[Cj+l - 9j+l) ]
K K
4 2 2
< - -39 E[(cj - Bj) 1+ 2a
3 ]
K
6 1 W= 2
+ — + 6 E -9
] { o 3 [Cey - 871 }
K K K
7 2 i 2
= (1 - a) E[(Cj - ej) ]+ TR +—2—a-
] 3 3 (4.4-26)
A lemma due to K. L. Chung* will be used here.
Chung's lemma : Let Vj s 3= 1,2, e i , be real numbers suca that for
j=J
v < a1- 2yv + B (4.6-27)
$+1 EIE N

* Chung, K. L., "On a Stochastic Approximation Method,"
Ann. Math., Statist. vol. 25, pp. 463-483, 1954.
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wvhere 0 < 3~ 1, a->0 ,b>0,1t real.

Then

m sup 355 v, - B (4. 6~28)
nr= j a

This lemma remains true 1f the {nequalities (4.4-27) and (4.4~28) are reversed

and si{imultaxeously, 1lim sup 1is changed into 1lim 1inf.
e 3o
Upon using Eqs. (4.4-27) and (4.4-28), we have

2, -a 3
E[(:j - SJ) = 0(37) for w335a

and
B{(c, - @ )2 = O(j-zw + 20") for o < w < % a
i (6.4-29)
Case 2. w < a .
Under this situatiom Eq. (4.4-23) reduces to
)2
E[Gj+l - BJ+1 Cl, cj]
K K K
byee - e3yi 4 8 - e -
< (- J“)(CJ ej) + o lcj ej| + e (4.4-30)

If we take the unconditional expectations on both sides of Eq. (4.4~30) and

follow similar steps leading from Eq. (4.4-24) to Eq. (4.4-26), we obtain

2 K4 2 K
Elley g = 9,07 = (1 - F) El(e, - 0071 + R (4.4-31)
Invoking Chung's lemma gives
El(e; - 0p%1 = 077 {4.6-32)

Since, by assumption in this case w < a , we see that the sequence {c,}

3
1 =1,2,,....., will diverge.

Cagse 3. w =2 .

Following steps similar to the above two cases and letting ¢ be a constant,
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p X X
“ . < - ,._5. - 2 ,..1.._
Effe ) = fya)" opeegyle 0 3“}(C3 T A
Ke .
+ 3‘; icj - 611 (6.4—33)
and
K K
2 4 2 i
E((cj+1 - 93+1) 1< - ;;) E((cj - Gj) 1+ ;ig
K
6 -1 2
+ ;; e+ e E[(cj - ej) ]
Q 2 o
= A -EAM Ele - 0% + K/
(4.4-34)
Chung's lemma gives
El(c, - 8,)%] = 0(§°) = constant (4.4-35)

J 3

¢) Conclusion
There are several points worth noting in the above anmalysis. ali tho results
are intuitively reasonable. The inequality w > a indicates that the rate of
parameter variation is slcwer than the rate of convergence in the atationary case
(in the order of j_“). If the rate of time-variation 1s relatively slow
(w ;-% @) , the ordinary method of stochastic approximation can be employed to
adjust the time-varying parameter without affecting the rate of convergence. On
the other hand, if the optimum parameters vary at a rete slower than but compa-
rable to the rate at which Yj decreases (o < w < %»0), the actual rate of con-
vergence is reduced by an amount depending upon the diffevence (w-a). Suppose

that the rate of parameter variation is faster than that of convcrgence, we can

never expect to have the algorithm converge to the desired value at any time.
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This Lls tndicated to Tse 3 where . - 1 . In short, the interrelationships

of w, i+, and the rate of convergence Are

S

¥ £ 2 @
w3 ‘j*(cj-.jj) bt
w w3 Vi e B congtant
® < w < }2- 2 '\'j * 0(3-2‘"2&)
a2 v, = 0™
3
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CHAPTRR FIVE

PERFORMANCE ANALYSIS OF THE ADAPTIVE RECEIVER

5.1 Introduction and /ssumprions

In Chapter Two the rather practical situation in which filters in an array
consist of welghted-tapped-delay lines were conafdered. It is shown that tapped-
delgy~line filters can approximate the continuous Wierer filters quite clcsely
with proper delays and proper weights. The method of stochastic approximation
and a mean square error criterion were employed in Chapter Three to derive
adjustment procedures using signal statistics.

An adaptive array receiver is formed by incorporating these adaptive tapped-
delay-line filters in an array as shown in Fig. 3. In this chapter we shall study
the performance of such a processor. The performance criteria to be evaluated
are the output signal-to-noise ratio and directivity patterns. These quantities
depend on a number of system parameters such as field (target, noilse, inter-~
ferences) properties, number of hydrophones in an array, number of taps and their
spacings on the tapped-delay lines, adaptation time, locations of the target and
interferences, etc.

The following assumptions are used to simplify the analyses:
1) Target, interference and ambient noise are assumed to be
Gaussian random processes,
2) The receiving array is assumed to be linear and to consist of
K omnidirectionmal hydrophones.

3) The wavefronts of target signal and interference are regarded

as plane over the dimensions of the recelving array.

4) The sum of interference and ambient noise is regarded as the

cffective noise.




5)

6)

7)

The input spectra are identical in shapes (but not in levels)
over the frecuency ranpe (O, mo) where most of thair power is
concentrated. This situation closely resembles conditions

encountered in practice {f one ignores periodic components of
the irput processaes,
The nolse consists of a single point interference and ambient

nofse.

The ambient ncise is statistically independent from hydzophone

to hydrophone.

Mathematically, the above assumptieons are equivalent to the following equations.

{1) Rartios of the input
2 () /9 (0) = S/N
¢ (w)ie (w) = N/I (5.1~1)
n L
@I(u)/QJ{w) = 1I/s
for 9 < Toug oy is large. The spectra are zero clsewhere.
(2) Spectral Matrices
Signal $ - a a*T
& *ss bg 22
{5.1-2)
N i & I+ b *T
oise ~nn ¢n - ¢I bk
With the aid of o matrix inversion formula [7]1
7,7t -1 . -1, T -1 T -1
p+qr)] = p -1 PG H)/Q+y p 9!
we have
Gl . B 5 (5.1-3)
D N e ’
n 1
':I
1 ) T
If p ¢xists and 7 v° 1is of rank 1.
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where

Jwt Jwt Jur,,
’ _a_T- e e 2... e B!
fwo, dwp i
ble fo Lo 2. K (5.1-4)

and for a linear array of egually spaced hydrophones,

[») -

T, - T, = ]1 - h|%~sln ET » 9y ph

< h = 1 - h]g’ sin & (5.1=-5)

together wirth the following definitions
d = hydrophone spacing
¢ = gound veleclity in water

8., = target angle

@
L]

interfarence angle

= unity matrix

]

5.2 Statistics of an Array Receiver

It will be necessary for all cases to obtain expressions for the mean and
variance of tha detector output. Some useful expressions for the related spectral
densities and spectral matrices will be obtained first. Referring to Figs. 1 to

3, the beamformer output is

K
= ’ -
z(t) 1£1 Yi(t) {5.2-1)

and, therefore, its autocorrelation function is

K K
R (1) = Elz(t) 2(x+0)} = I, I, E{y, (t) v, (x+0)}

K X
™= a L d -2
Ep ek R, (O (5.2-2)

Yi'k

The power spectral demsity of 2z 1s consequently

K K ¥ K *
6 (0) = BB b = B B 6 (W) B G W) (5.2-3)
z i=1 k=1 YV 121 k=1 xixk Hk
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where ® indicates the conjugate., If the transfer function vector H(w) 1is

defined by
B (w) = (R, (0 Bo(w) eoe 7 (0)] 2-4
£ By lor Bylad e iy (5.2-4)
then Eq. 15.2-3) can bhe wri“ten ccupact’y as

5 (w) = B (w0} 8 (w3 3" () (5.2-5)

vhere gr(w) is the “uanspose of H(w) and

7. vee b
' 1%

¢XK: ¢xKx¢ (5-2-6)
St ™

is the input epectral matrix.

If the roferenced signal d(t) and noise ni(t) are assuued to be un—-

correlated fo all 1 , then

R (t) = R (t: + R (1)

*1% %% %1%
$ (w) = ¢ (w) + ¢ (w)
*1 " 4% £1%
and
2T Yt Y (5.2-7)
The ¢'s are understood to be functions of w . ¢ and ¢ are respectively
- —ss ~nn

the signal and noise spectral matrices defined by Eqs. (2.1~3). One very useful
property of the spectral matrices is that they are Hermitian, i.e.,

@*T = g (5.2-8)

Assuming without loss of genetalityl that the averaging filter has unity gaim at

1 This assumes that the fiiter does not have any poles at w=0Q; i.e., does not

contain an integrator, Thus this assumption 1s not completely ceneral, but In
practice integrators will always be of finite time. Fo it ig not a very serious
loss of generality.
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w = 0 , the detector output will have an average

-]
’ v = ( - ) = =z -
y ’ hav (1) zzix Trdt z, Hav(m 0)
‘o
A b, (o (5.2-9) L
2 1 27 z s * 03
. 1 i
But
¢, (W) = |62 ¢ (W ' (5.2-10)
zy z
Hence, in the presence of signal, using Eq. (5.2-5)

B

. L X
Y gon -1 { 6|2 5 & 5 (5.2-11)

Zir
in the absence of signal

vy == | lc2ET e B dw (5.2-12)

v = - — 2 & 9
Yd.e.® Vs -~ Py =g lej2 1 H dw (5.2-13)

-

In order to obtain a convenient expression for the output varlance, assume that
the averaging time Tav is long compared to the correlation time of zl(t) s O
equivalently, that the bandwidth of the lowpass averaging filter Hav(w) is much

narrower than the bandwidth of zl(t) . Then [23, 24}

rm
2 1 2

0 " == (6. (@1° duw

y “Tav | 21
rm

-2 lo|* (¥ ¢e  + & ) BI? du (5.2-14)
Ty —s8 “nn’ =

4

-
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where Tav is the averaging time defined by

2
l/Tav é hav (1)dr (5.2-15)

(]

S0 far we have assumed that the individual filters in an array are con-
tinuwous filters. If tapped-delay lines are used to replace them, then referring
te Fig. 4 the following expressions are obtained

Let the 1th individual filter bde

M -ijik )
Hi(m) = yEo Sy © (5.2-16)

~

where Cik and 8, are the weight and spacing at the kth tap on the ith
filter,

The welghts assume different values depending on the training environment.

The post-summation filter G(w) 1s fixed at all times by (2.2-9), i.e.,
-1
G = oy % (@ (5.2-17)

Substituting Eq. (5.2-16) and (5.2-17) into Eqs. (5.2-9) through (5.2~14}, we

obtain the following statistics

o0
1
Ysen T I [ lel2 B ¢ R du

- -]

T i $;" 0 Jutepe = by
121 1%l k=0 220 ik Che Zw a Fxx
-
(5.2-18)
R S 2yl *
YN T Zn { lol2 1" ¢ B
-0
= IZ( g t; ;! C C - dw ¢_1 ¢ ejw(Am' ) Aik)
11 né1 kb0 220 Cak “xe 7w a *un
o (5.2-19)
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3 - - - L 2
yd.c. <y>S+N <y>N 2n ‘G' R 233 B de
" K X M - -
; L Z L g C C = dw ejm(‘ti Th)ejm(bh2 Aik)
- 121 hel k=0 R&0 “ik “h2 27 1
E - (5.2~20)
9 > e 1 3 T *
) 2 - x L 2
i S T, fel* " o H )%

3
3
b
3

K X K K M M M M
= I £ £ T I I I I Cu CiiyCi. Cuyuy
=l 1'=1 hwl h'=1 k=0 k'w0 g=0 g'ap 1k 1'k’ "t "hU2

-

5 1 wele s JoCny *lyigr < By = B!
5 “Tav d Oygfy BBy
- (5.2-21)
v where ¢x xh(or ¢n nh) 1is the ijth element of the input (or noise) spectral
] i i

matrix and Eq. (2.2-21) is valid for the case of small signal~to-noise ratios.

$H It 1s readily seen that if every gain C,, (1 = 1,2,...k and k = 0,1,...H)

ik
:§ - is multiplied by a constant such as the cese of uncertain signal power, the final

value of the cutput signal-to-noilse ratioc, defined as the change of dc level due

to the appearance of a target signal divided by the mms fluctuation of the output,
remains essentially unchanged.

i 5.3 Initial Behavior

Assuming the worst case where absolutely no information about the noise
field is known, the gains associated with the input delayed by 1y (1 = 1,2,...K)
are set to 1 and the rest to zero so that z square-law detector is used at the

starting moments. Here the output of each hydrophone 1s delayed to provide maxi-

1 The integral appearing in Eq. (5.2-20) will, in general, yileld delta-functions
with infinite strength at certain Instants. This difficulty does not arise in
practice since most processes are bandlimited and the range of integration is

w, to Wy s where w, and wy are finite numbers.

1 1

B-93




mum response in the signal direction, i.e.,

B (w) = 8" (5.3-1)

The weights and spacings are simply

Cor ™ Bk

(5.3=2) }
A = Ti Gik

Substituting Eq. (5.3-2) into Eq. (5.2-20) gives the dc change of the output

due to the presence of target

0 o
-(1) 1 T * 2
Ya.e. = Zn J_md“(al 245 HpdlGl

1=] h=1 “ii "hk 27

K K 1 Yo KZmO
R B R m | (5.3-3)
(o]

The output variance is obtained by combining Eqs. (5.3-1), {5.3~2) and (5.2-21)

2 " 2 14 |
0y~ L T *y el g
(UY ) "Tav[ mdu (21 LI gl) i1
X K X %o Jult, + 1= 1,=T_) §§
- r i 1 1 dw o726 o e BboBtoLd I
f=1 h=l 1'=1 h'=1 d gty By |
Ig !
Yo 2 &
= = | L+l (5.3-4)
av S
o]

a) The Output Signal-to-Noise Ratio

Dividing Eq. (5.3-3) by the square root of Eq. (5,3-4) glves the output signal-

to-noise ratio
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]
z
|

1 w 1 ' | (5.3-5)
o *T =
{J (1+§- la 2‘2)2 dw} 2 :

o K

*
The term ié_;_hli appearing in the numerator of Eq. (5.3~5) is propor=~
tional to the side lobe level in the direction of interfererce. For narrow baand
systems which have proncunced side lobe structure, the signal to-noise ratio is
seen to depend on the side lobe level in the interference direction. This cer-
tainly agrees with our expectation.

We shall now evaluate the integral foxr the case of similar input spectra.

Note that

KK Julpp-py)) K K

151 0k © = E1 plq 0% v (o py)
k-1 K
= K+ 2 151 h§i+l cos w (ph- pi) (5.3=6)

The value of the double sum in Eq. (5.3-6) can be further evaluated for our case
of a linear array with equal spaced hydrophones. If such an array 1s steered
broadside; i.e., if the target is at a location perpendicular to the array axis,

then
d .
op= Py =-Ih -1} Zsino = |~ 1]p (5.3-7)

and the double sum in Eq. (5.3-6) can be replaced by a single sum

K K Julp, - L) K-1
1E1 nk1 © = K42 B, (K~1)coswip (5.3-8)
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Using Eq. (5.3-8), we have

2 2 “o la |2
1) N, K T 12 2 2
ey - &L a+ i )2 qu
y ] vr'l‘av N K
<0
2 ‘”o K K ju(p, =~ p,)
(ED X do {1 +-L— L, L, & ho U142
S’ nT KN {i=]1 h=}
av J
[+ ]
rw
N 2 K o I K-1 2
= CgD ;T:v {1+ ﬁ'[K + 2 151 (K-1) cos uipol} dw
Jo
2 Kw f K-~1 sin w_{1p
N [¢] I 4 o o
- @ = liegiz+y i —2—2 (k1)
S “Tav~ N K i=]l moipo
I2 K-1 sin w ip
+ ;7 {1 + X igl T (X-1)

- —

K-1 K-1 sin uso(i~'h)p° sin m°(1+h)po )
I iy - + 1(X-1) (R-h) ]
K2 1=1 h=1 mo(i h)po mo(1+§)po

(5.3-9)

In most practical cases the maximum frequency processed is very high such that

[V > .
o®o 1

except for 1 ~ h and ve have a simpler expression

*
Yo . La,Tgl"‘z
! —_— ar—
{ \1+N K )dU
JO -
2 K-1
. L,1 2 y2
= g {1+2 N + =3 {1+ 7 igl(K-i, 11
N K
1. 12 2. .1
= u {1+ 2 §'+ ;E (3 K + EE)}
The output signal-to-noise ratio becomes
1
T w 1 2 - =<
.1 avios S, . 1,10 20,1472
SNR, = 3 (=2 gkil+2 Xt 2 (31 + BK)}

Then the gums associated with P, make negligible contribution

(5.3-10)

(5.3-11)



2 : For most cases of practical interest, the number of hydrophones in an array is

’ large K »> 1 g0 that for ambient-noise-dominated environment
SNR, ¢ K () whe (E‘i) » 2k (5.3-12)
NBy N n (3 3 :

and for interference~dominated environment
1
SNR. o ii (§) when (592 << Z-K (5.3-13)
1 I 1 3 '

The results concerning the output signal-to-ncise ratio have been previously
derived by Schulthiess {32] for a conventional power detector under the assump-
tions that the interference and ambient-noise are white over 0 < w < W, and

-1
G(w) = 1 . In our case G(w) = ¢d 2 and the input spectra are similar rather

NETN PP

than constant over the same frequency range. This 1s equivalent to inserting an

Eckart filter

$

d(m)
2

legw)|? =
£ O

{5.3-14)

after the beamforming point irn the absence of interference. The effect of in-

serting this filter has also been considered by Schultheiss and reported else~

where [39],

b) Directivity Patterns

[P

The average output of the squarer, y , yields the so-called directivity
pattera which mav be obtained by varying the electrical time delays and keeping
the physical orientation of the array fized, or by keeping the electrical time
delays fixed and varying the physical orientation of the array relative to the
plane wave signal. It is a function of the target bearing relative to the bear-
ing angle of the major lobe of the array pattern.

Let 6, and 61 be the target and interference bearings relative to the

T
broadside condition with the convention of signs that angles are measured clock-
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vige from broadside.

= Target
7
//// _ — " Interference
A BT’ -
L8
- - ;jrd = Arvay

Tf we define the following terms for a linear array of equally spaced hydrophones,

qd
T, - sin 8r (5.3-15)
o = Ssias (5.3-16)
(s} c 1
s = Sqne (5.3-17)
° c

d = hydrophone spacing

c velocity of sound in water

then the signal and interference delays at the 1th phone in a linear array with
equal spaced hydrophones would be

» (K- .3-18

T, K-1)1 (5 )

Py ™ &-1p (5.3-19)

and the steering angle
1

where T_ , the looking angle appearing in the individual filters, is the

- (K-1) %o (5.3-20)

independent variable of the directivity pattern.
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gt o

st e -

1t 1s scen from Eq. (5.2-18) that the averaged output is

: -]
— - ~1- 2 > ~d
yp= 7| dlel? @ e B
-4
K Kk 1 “s -1 jw(ri— Th)
= 4E1pEy 37| ety lege + 4y S4n
Q

Jule, = 0y jm(; -1 )
R L T
K K, [% je-h)(r - T)

= 1wl 77| dwle

0 ~
JW(i-h)(oo— to)
e ]

y
[~]

dw

+

v

.’.
=
w2
By

(5.3-21)
[+]

Upon using Eqs. (5.3-6) and (5.3-8) and carrying out the integration, we have

w
- [ N 1
yl(e) = 3r K(1 + S + S)
k-1 sin moi(To- TO)

+ 2, (K-1)

woi(ro- ro)

1 sin moi(po— To)

+ (5.3-22)

uoi(po- To)
T %o
ent variable in calculating the directivity pattern y(8). 1If target and inter-

In the above o = g sin 91 » T, < % sin 6 = %-sia 8, 9 being the independ-

ference are well separated in bearing, the directivity pattern will take the

general form shown below because of the plus signs appearing in Eq. (5.3-22).

y(®)

4

—-8

0
T B-99 I




In the signal direction 1 = T, and for WPy >> 1

w

3 « 2x (&4l

~

Similarly in the interference direction T P,

yeme) = 2ria+H el
1 1 2n 8 3

and in any other directions

- “s N I
7,(8) = - KA+ -+ 2)

5.4 Final Behavior

a) Optimum Gains and Training Environment

(5.3-23)

(5.3=-24)

(5 . 3"25)

The final form of our adaptive array processor is the one in which all the

gains are set at their optimum values. From the convergence properties of adap-

tive tapped-deslay-line filters we know that the final values of the gains are

different under different training enviromment. They are

L% = R, RO Ry
m  _ -1
¥, B R
wvhere
HT a e . Ciy=~— Cqy Cop===0C, —==C_ —==¢__ ]
.4 10 11 M €207 TR0 T %k
T
R, = Elg5)
R, = E{vy']
g 05,00 8yt - &)~ s (- M)]
2? = [nl(t) nl(t - A) - nK(t - Ma)]

as indicated in Fig. &,

(5.4-1)

{(5.4-2)

1t has been shown in Seat. 2.4 that for the tapped-delay-lime filters, if
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the gains are set according to Eq. (5.4-1) or (5.4-2), they are approximately

equivalent to the optimum filters

-1
(54Y) _ % * * )
H Qo *e) ¢;2 (5.4-3)
(N) - *..1 A
LA e (5.4-8)

The accuracy of the above approximations depend on the number of taps ueed, For
the case of similar input spectra we shall see that filters defined by Eq.(5.4-3)
or (5.4-4) can be realized completely by tapped delay.lines wilth proper settings
and proper spacings.

Although the optimum gains are difficult to be expressed analytically using

Eq. (5.4-1) or (5.4=2), they can be computed in the frequency domain by
L e
- et mt i —
Cik TS Ei(m) e dw ‘ (5.4~5)
~a Tt = kA

faor the kth gain on the ith filter. Hi(w) is just the ith row of either Eq.

(5.4~3) or (5.4-4).

We shall firgt of all consider Eq. (5.4-4),

Since
¢ " B
(N) %x-1 %* d - = *
B 'me "¢ a = —[L~po7T7la (5.4-6)
“nn 'd n K+ ¢n/¢1
its 1th row is
* K *
NONER S by 1k B %, (5.4-7)
1 o, 1 X + °n7¢1 '

80 that the impulse response 1is

. ~jup, K Julp, ~ 7,)
h,(t) = 3= ?Al_jwi-e - k]ejwtdt
1 2n P, € K+ ¢ /6
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s 1 ejm{t-ri)d
N 2r w

* K Jw(t -p, +p, -~ 1)
1 1 i k k
K+ N 2 f du [k, e (5.4-8)

as ig shown in Section 2.5, Egs. (2.5-12), (2.5-13)

™y _ S o1 _
“1k n G TFR (5.4-9)
I
at
Aik = Ry - Py + T (5.4-10)

If the gains are adjusted in the presence of target, we shall use Eq.(5.4-3)

instead of Eq. (5.4-4).

Since
-1 * * * T -1 *
® -
(08 + ) g2 "=, téa 2) 4 a
—s8 -nn
-1 * T %] k)]
- ¢ 2 a9 ¥n %a 2
- [¢* 1 d —nn -nn 16 a* - OO d (5.4-11)
nn 1+ ¢ aT ¢*_1 a* d= 1+ 4 aT 0*-1 *
d= -nn — d -nn —
and let
*T
1+¢, af ool " 1+d> 4 |2 b[” ]
a a = — —
d ~un ¢n K+ ¢n/¢1
1 (5.4-12)
A — .
K
we have
pS o g™ g | (5.4-13)

For the case of similar input spectra, Kl is just a constant

2
A N® + KNI (5.4-14)

1 N2 + KNI + KSN + SI(K® - K§>
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where
*
k2 4 12"l <k (5.4-15)

with equality when a = b or whan target and interference are in the same direc-

tion.
Therefore
Cgi“'n) F chiz:) for 1 = 1,2,..., K; k = 1’2,-...1( (5-4-16)

In other words, for similar input spectra the optimal gains trained under noise
alone differ from those under noise plus signal only by a multiplicative con-
stant Kl . Thus, all the pesformance criteria (output signal-to-noise ratio,

and directivity pattern) remain essentially unchanged regardless of the training

environment. Of course, should the input spectra have distinctive shapes, C§i+N)
and Ci:) would assume different values. If the signal-to-noise ratio is small

at the input to the squarer

L |

% 2 2nn <<l

the constant Kl is close to unity independent of the input spectral shapes.
In view of the above discussions we shall use the optimal gains defined by

Eq. (5.4-9) In analyzing the final behavior of our adaptive processor.

b) The Output Signal-to-noise Ratio

From Eqs. (5.4~9), (5.4-10) and (5.2-20), the dc chznge of the output is

0

—a0

b 2 (g? *
Yae © In | el @, & g B)dw

K K K K L s ;
= &1 nd1 1 eB1 W Gy - K+N/I) N Cny - K/ )

wn

w
L odw ejm(ph PR PR + 0y Tk) (5.4~17)
2
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For the sake of simplicity, we shall assume that the array is steered broadside.

Then T, =0 (L{=1,2,---,K) and the above expression reducea to

2K X-1 sin w i o

= K+2 2 (R-1) ]

w, i o

K-1 sinw_ 1o
+ L %+ (I ®-D o___ 20

]
(ReN/D 2

1
mo pO

K-1 K-1 sin mo(i-h)oo sin w°(1+h)p°
Y2k by ®OEN Iy Y T a0

&1 k1 (5.4-18)

or
2
- Y% &
2w

—0

K2 (k-1 + N/I)2
yd.c

K + N/I)2

. K-1 stnw, 1o
'{ - i w1k U 1
T L] o]

2 K-1 K-% sin w (i-h)po

o
+ 5 1E1 piyp (KD (R-h) IR EETN

KZ(K—l + N/I)

+

sin w (1+h)p
2 2] } (5.4-19)

wo(i+h) o

Let us now consider the variance of the detector output. From Eqs. (5.4-9),

(5.4~10) and (5.2-2) we have

2 *
(o§”)) = ;%__, lol* (L ¢ B')? de
av

-0
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K K K K X K K K

181 1081 wda nedr da wrda ofr o =
R LS SR NI B
N 1k RN/, TTLTKT RHN/TUThE O KN/ UH'RT O KN/ ;
W
) julp, - p,) 2 3
L1 -2 i h i
T du ¢g (8, 8y *+9p e ;
av :
[« )
j(D(Q 1 = P v)
i h
. (¢n éi'h' + ‘bI e
ejw(oh' Dz + Tﬂ. + Dho - pzl + tﬁl - Qi + pk - Tk - pi' + pk' - Tkl) ?
(5.4-20)
Rearranging, " ’
[+
2 K K K K
(=) 1 -2 ¢ 8 1
GRS TR T S S -l B "I PO - R O~y o
¥y i=1 h=] k=1 =1 “Tav d N “ik K+N/I
[+} i
julp, - p)
i h", § _ 1 I
lo  Syptép e 1§ Gy K+NII)
Ap{p, = p, + 1T, -p, +p —1)2
o *h [ [ i k k i
Yo K K -jwTt K Juw(-p, + 0, - 1,.)
1 dwl g, 008 ft.t_ 3z Tk Ky
T @ 1 3=1 h=1' N KN/ k=1
av
[o]
5 =Juty 1 § Julp, =0y + rz)]
(g (e TN, 2%l e
2
julp, - 0,)
N 1 i h
.[ -s- ﬁih + S e ]}
W _ 2. 2
3 (§_) ‘ 1 K e:\m(pi 'ri)|
= T W AR { 7R O}
av
[}
(5.4-21)
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For T 0, 1t reduces to

@
w) 2 2| ° ' R K Julp, -n)
@y - ;%—-—(%) dw { K - E%%T" £y fy 1 'h
y av I
[+

1 K K

Jw(pi - ph) 2
* (K+N/I)2 [ 4% piy @ ] }

w 2 K-1
o .3 2 2K _
" T @ { K k+2 1, D)

gin w ip
_ZK o)
1(+z~./I

]

i
Yot Po

1 2 K-1 gin w, i Po
ZE;§7;)2 [K® + 4K i£l (K-1) ——E;_Iji;_—

+

K-l K-1

+2 L

: sin wo(i-h)po
131 hsl

wo(i-h)p°

sin mo(1+h)p°

(K-1) (K-h) (
mo(i+h)p°

+ )]

(5.4-22)

Dividing Eq. (5.4-19) by the square root of Eq. (5.4-22) yields the final form

o the output signal-to-noise ratioc

o

T, w, 2 o K(K-1+ N/p)
SNR = Py ( av_o ) S I

® 2 T N K+ N/I

K-1 sinw_ 19p
K(K—i TNy 1E D T
S Yy * Po

1 -

2 K-1 K-1
A D] z L

I, (R-1)(K-h)
K (K-1+N/I)2 =1 k=1

1
sin wo(i—h)po p]

- wo(i=h)p

sin uo(i+h)o°]
wo(1+h)p°

If wp >> 1 then
oo 1

T w 2 _
1 a: o) %’(K-l) N/ (R-1)T 1+ 1 (K-1) (2K 1)]

1
( 2
2 1+N/KI 3 K(K-1+N/I)2

SNR_ =

Nof

1 Tav wo
5 ( )

S
- N (k-1
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H
i
&
H

E
:
H

Eq. (5.4-23) or (5.4~24) gives the asymptotic performance of the adaptive array
processor. Since the training period is definitely of finite time, the actual
signal-to-noige ratio is lower than that given by Eq. (5.4-23) or (5.4-24). It
is to be noted that Eq. (5.4~23) 1is just the output gignal-to-noise ratio of an
optimal (likelihood ratio) detector first investigated by Schultheiss [32] and
then by Tuteur [33] from a simpler formulation under the same assumption [similar
input spectra over (0, uo)]. This 18 no coincidence but stems from the fact that
adequately large number of taps is used (number of taps per hydrophone output =
number of hydrophones in an array) and that for similar input spectra the con-
tinuous individual filters are just combinations of time delays and constants.
Therefore, it is reasonable to expect that in this special case the adaptive
array processor can, in principle, converge to the optimal processor after suffi-
ciently long period of adaptation.

In the absence of interference the behavior of the processor remains un-

altered throughout the training period because

N

1 Tav [o] S
= - e (=2Y__0y 9 = L4=25
SNR1 SNR > ( - ) N K for 1 0 (5 )

Without interference we do not take advantage of the reason why the opiimum
detector 1is superior to the conventional detector:
1) It can combat noise correlation between hydrophones and
2) It can utilize variations in input signal-to-noise ratio over the processed
frequency band.

Since from Eqs. (5.4-19) and (5.4-21) we can write

T, W, 7
SNR_ = % /__E_\[ (Q) X - RN/ 17 dw (5.4.-26)

N
o

we see in the above equation that in the absence of the interference or for very
*T 2
large values of N/I the side lobe factor i& hl approachas zero and cutput
K+N/
signal-to-noise ratio depends linearly on the number of hydrophones K. For very
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{2
strong interference (N/I << 1), the same quantity approaches to IE- 2' k.

The size of this side lobe in a fixed direction depends on frequency. In a narrow

band system large variations in this term may occur. That is, there will be dis-

tinct maxima and nulls i{n the side lobe pattern. In 2 broad band system the

magnitude of the side lobe 1s averaged over frequency,

¢) Directivity Pattern

Using Eq. (5.2-18), (5.4-9) and (5.4-10), we have

K K K R g2 1 1
. (5, = o) (5, = o)
B1 ek ik Btk T R Cne” BT

Yo jwlt, - 1)
1 -1 i" "n
T ) do ¢, L84 + oy S4n

3lm(lc>1 oh) jw(oh— Pyt TRy + Pr rk)
+ ¢I e le

N/, k=1 e le

-
[un
=|wn

- 2
1 “o, K -jwti —jwr K jm(pk- rk) jmTi
- 1 {; le -2t }dm
o

~

W ~jwpl - -
o ~jwt i K jolp,~ 1,) Jut,
+ Ll e s g o K Ko7 (5.4-27)
2w N KAN/T k=1
o

The writing of the above expression is permissible because for

*_1 * h
Em = gnn ¢d a we have
T “k -1 3T -1 *T -1
lol2 m, o B = ¢ a2 0, (sgaa” + o b, a4,
*T ST -1 -
= 42 2 (5.4-28)
o (a a“teya o2
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which is equivalent to the integrand appearing in Eq. (5.4-27).

Eq. (5.4=27) 1is further simplified to

™ 2, K K Juh- (1 - 1)
v = .L») dw(%) { T [+] o]

Yo 5 79 151wy ©
[« ]
2 g ej“(fi' Ty  x ej“(‘h* Pp” Pt )
/1 1k hel k=1
1 K jw(pi- Ti) K jw(rh— ph) 2
+ == [ e nd1 © ]
(K+N/1)
. .
o K K Jou(i-h)(t - p))
1 S 1 o o
+ o3| de @ K- gGRIT i1 nkL ®

o

-1,- 1T +¢

KRR Julry -1t dop-ny

L

I, .. e %
1% nE1 1

K K jw(i—h)(ro- ;O)

—t-1 - o+
; 5 0F ejw(Ti Ty Th Y PR At T
1f1 né1 k1

hxk

+

and

° 2
K juw(,- 1,) K Ju(t-o» ))
i 1 h h
(e né1 ©

? 5 Juld-h) (o - 1)) g ? ejw(k—l)(To- P,
121 ns1 © k=1 221
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K-1 -
= [K+2 121 (K-1) cos w 1(90- Tu))

K-1 ~
K 4+ 2 hgl {K-h) cos @ h(po— ID)]

K-1
2 -
K™ + 2K 121 {(K-1)[cos w 1(90- 10) + co8 w i(ro- po)]

K-1 ) .
+2 5 (R-1)7 cos w i(1 - 1)
K-1 K-1 .
+2 .1, L, (k-1) (K-h) ‘ cos (ioo- i + ht - hpo)
i=h
+ - -
cos (o, =17, = by, + hpo)]} (5.4=31)
We have
w 2 K-1 sin g i(ro- )
vy o= 2 (é) K+ 2 iEI (K-1) 0
Yo 2r N w 1t =-1)
o o o
K-1 sin w_ ¢t - 1)
- ———.—.2K > =] 4] 0
EyT K+ 2,5 ®-D — -
w 1 (t-1)
[o] [s] [
K-1 sinw i(p = 1)
+ *—1———2[x2+2xi§1(x-1)( o .o 9
o o o
sin 1(T - ) k-1 sin w i('{' - ; )
+ = i(.’. _oo )0) + 2 ig—l (K _1)2 o [¢] - 0 ]
oo "o w 1t - 1)
0 o] [¢]
. i
¥ K-1 sin w_1(t - p ) !
r Sy (K(R-14N/T) _ 1 _ o o7 Po? )
* = WD 2 o g D ] (5.4-32)

w 1k1°7700)

In the above the last terms on the right-hand sides of (5.4-30) and (5.4-31) f

have been omitted because these terms always contribute very little upon integra-
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sin w T
tion. They are divided by w_ which ie large to make -—w——r-i’— negligible.

o]
At an angle far away from both the signal and interference directions, we may

neglect all the oscillatory terms and get

(g)z Ca-m? % 5,2

s
= (&) K{K~1)
¥ w2 2r N

N £
o O

v, (8 =

Yo .S, K(K=14N/1)

~

In the signal direction, to -1,

w 2,2 2
- L% 5.% K(R-14N/T)
Yo (8= 8 = o

X + N/I)2

b Yo 8 Bammyn? 1 b @

2n 'N (K+N/I)2 3 K(K=-1+N/1)

Yo S, K(R-14N/1 _
* o © TaaND (5-4-34)

and i{n the interference direction, T, %P,

S 5% € g-rayn?

y, (8 =10 =
1 2n (K&N/I)z
w, g2 Y s, R(K~14N/I)
- 3 ) RE-D + 50 @) Taawn
Yo 5.7 (k-1) Yy S, K(K-1) )
- w W (K+N/KI)2 -3 W T/t (5.4-35)

Although exact shapes of the optimal directivity pattern given by Eq.
(5.4-32) cannot be plotted without assuming specific input power levels, they

will take the general form shown below by comparing Eqs. (5.4-33) through
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(5.4-35). There {s always a maximum in the signal directicn and a minimum in the

interference direction. Specific results will be given in the next chapter.

¥, (0)

N

.5 Adaptive Behavior

The behavior of a tapped delay line filter is completely determined once the
-..g¢hts and apacings ar. known., 1If Cik aud Aik are the weight and spacing at
tae kth tap on the ith filter, then for an array of K hydrophones and M taps at

each sensor output, the impulse response vector of the pre-~processor (from hydro~

phone outputs to the beamformer) is

-

'i hl(t) ]’ ( Ciq §(t = 8,.)
| H
| hz(t) f " Cu S(t = Au
- | _ (5.5-1)
h(e) = | L=k :
( » ‘| [}
. .
! hx(C) : Cxa §(t - AKQ
and the transfar function vecter
. Yy -7 _ijll -
AR ! ‘ C1g
IAORN e T
LS _ M l ‘2%
Hw) = . L "o o (5.5-2)
) i
i | I * "jNA
P i i | Kp.
;Mg ! L Cxe
j !




For the adaptive array processor the tap spacings are fixed throughout the

_’ training period but the weights are adjusted according to

Hj+1 - Ej - Zyj n3 z:l + 273 Edg (5.5-3)

actn i s

where Yj determines the pitch of the algorithm and generally depends on the

T s A -

time index j ; the n's are the delayed inputs and 2z 1is the summer output. The

i

variation of the weights during the training period will thuc determine the adapt-
- {-; ive behavior of the processor. The filtering problem was studied in the last two
‘ chapters where the variations of mean squared error as a function of time index

] and input statistics were expressed explicitly. Here we shall study the
letection problem by examining the variations of the performance.criteria during‘
the training period. Since the input is random, the weights expressed by (5,.5-3)

.ve random and only their expected values are of gignificance. It has been shown

(el 5

"~ Sect. 3.5, especially Egs. (3.5-7), (3.5-35) and {3.5~43), that the expected

e,

~aiues of Ej at any stage is related to their initial and final values by the

¢ ‘general formula
. P E[_Vij_,_l] =Py ¥y ta N (5.5-4)

where W, = W{§=1) and W_ = W(j==) ; p, and q, are functions of J and depend

h |
on the choice of the weighting sequence vy

]

. For example, 1if ¥ is chosen as

3 ]

a weighting matrix such that

L 9
1 A
Yj = m) 1' (5.5=5)

o
K(M+1)
k= k h eigenvalue of 5“ s 1= 1,2, K(M+1)

then

1 (5.5-6)
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\} UG T+ (5.5=7)
If, however

j- —2—(;—;—17 I, 1= unity matrix (5.5=8)

1 then they are of the form

T(j+2 ~ r'{j+2 = a
| rii-x ;?aii): =P = f%%‘;‘“‘i%xﬁéTf (3.5-9
] max’ 1 “ntn’
q‘j - 1 - pj (5.5-10)
where A and A are the minimum and maximum eigenvalues of the input
min max 7

correlation matrix R .
-n

Combining Eqs., (5.5-2) and (5.5-4) we can write
E’j“"l - pj ﬂl(W) + q:’ B«(N)

Y g, ot * 5.5-11
Pj_a_ qj_.nn ¢d_a. (-"’)

ﬂl(w) and H(w) denote respectively the initial and final forms of transfer
function vectors.
Since in all cases Py = 1, q, = 0 and p, =0, q, = 1, the adaptive processor
starts to be a square law detector and will be transformed gradually into an
optimal one. We can determine where the adaptive processor stands between these
bounds during the adaptation period by substituting Eq. (5.5-11) into the expres-~
sions of various performance criteria.

Basically, we are required to evaluate the following three integrals

W

Q
S 2 T * -
A lc| (py B, + a R) e . (pj B +aq H) dw (5.5-12)

‘9
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By = 71— | 161 Oy By v q BT g Gy By 4 g B4 (5.5-13)
av
W
(o]
1 2 ” s T ~ ~
Cypp = 27| I612 oy By +q 8D 0 (@, H) +q, H)de (5.5-14)

0

where in Eq. (5.5-14) the H's have steering vector a rather the signal delays
8 in deriving the directivity patterns.

Since

T *
(pj Hy + 4 H) ¢ (pj E, + ay H)

2.,T, * 2.7 *
= PJ Ei 2,51 + qj H, Q.Em;
T *
+ :.zpj 9y B, 2 H, (5.5-15)

we shall evaluate each one of the three integrals, Egqs. (5.5-12) through (5.5-14)’

by using Eq., (5.5-15).. When the first two terms of Eq. (5.5-15) are used, the
results are already available from the previous two sections on the initial and _
final behaviors. !

Thus, we obtain A;ii , k= 1,2,3, when the kth term on the right-hand side of

Eq. (5.5-15) 1is substituted into Eq. (5.5-12)

v, 2L 2 1T *_ 2= )
8941 % Py Zn [ lol® 8" o By = 2% vy (5.5-16)
@ _ 2 L |7 g2 4t *_ 2 —(=) )

S PSTR P ‘ l612 n, %es Bo = 9y Y40 (5.5-17)

whare ;gli is given by Eq. (5.3-3) and ;ﬁfi by Ea. (5.4-19)

i
( _

(3) . 1 |” 2 3t
Ay =2pgay 3| IG12H 0 B de

1
= rryaygr| tg 2 %21
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vhich for broadside condition becomes

K Julpy=pp)

wo § L. e
3 K | °5 p _ 151 bsl
Age1 iy 77 f § [K ¥ + N/1 ldu
Q
w X
- 2p g 2 & K-1+N/1
49 27 % KN/
K-1 sinw_1p
2 0 o
- wr 1f & oy 1o, )

if w, Py ¥ 1, then
Ko
(3) o .S, K~-14N/I
A P4y T Q) Tt
We shall consider the second integral.

Note that

2 2.T * 2 x T *
+ 4 ¢ + H & U
Py Yy (B 2 H) 4 py" ay (H ¢ B, 2 H)
3 T * T *
+ 2 ¢ B ) (H 2 H
Py 9y H, 2 H) (B 2 H)

* *
+2p,% q @] 0 KD (H oK)

(k)
441 7

hand side of Eq. (5.5-20) into Eq. (5.5-13)

Thus we obtain B

*
ol () ¢ B

(1) 4 1
B = - 1,

j+1 pj T

av

-l

2
4 (D)
pj (°y )
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(5.5-19)

(5.5-20)

k =1,2,***,6, by substituiing the kth term on the right-

(5.5-21)




@ 4 1 Ve Wt * 2 '
Bybl = 9y mr— | l€1* (y g H) dw
av
2
4 , (=)
- 5.5-22)
qj (GY ) (
1 2 (=) 2
where (cry } 1s given by Eq. (5.3-9) and (c:y ) by Eq. (5.4-22).
3+ Py %y T, 2 Zhn e
Yo
2 2 1 -2 *T ~1 2
4 Py 9 o 4 (2 2tm m 2 ¢d) de
av
[s)
2
K w
2 2 0 -
= 4Py 9y T (5.5-23)
av
-
“ 2 2 1 4 gl * T *
B:;-6-1 4 pj qj “Tav lel @-1 gtm gl) (&, gnn B )dw
2 2 1 -2 *T 2 *T -1
-4 Py 9y ;;.f:; 0 @ & 20 a 2, a)dw
Jo
(w N
T.
2 21 ° I *, 2 a b2 _
ol PR R (R + 5 12 b DK - gy de 5.5-24)
av
o
which becomes for broadside condition
2 K-1 ginw 1p
4y _ 2 2 2  K'I/N _ 0 0
By+1 4py 9y {K + gy B+ g% &D o, 1o, !
K-1 sin w_1p
/N 2 o 0
+ Kan/T [K™ + 4K 131 (K-1) “"0 i po
K-1 K-1 sin wo(i-h)wop0 gin mo(:H-h)oo \
+ 2 I L. (K~1)(K-h)( + )
i=1 h=1 wo(i—h)mopo mo(i+h)po
(5.5-25)
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Furthermore, if w o, > 1, then

- 2
(4) 2 2 % 2 B3N L LN 2., T
S {x + + 2+ 2 5 &1 ]}

4 94 nT N/1 T KN/

2 1
- 4wy qu "; {Kz v o o+ &2+ 3 K(K—l)(zl(—l)]}
(5.5-26)
863 3 1 4 * T *
Byl = 2P 9y a7 i el . ¢ B b H)dw
{u
3.1 ° -1
- Zp_1 94 3T J .a)(a -nngnnd’dé)dm
av
-
sk sle la""b|?
- 2 vy qj T ¥ & - W)dw {(5.5-27)
[}
for 1, = 0 , the abcve expression reduces to
Kw K~-1 gin w_1 p
(5) 3 o 8, (K(K~I4HN/I)_ o
= 2p,4, -— & o -2 1: (K-i)-—-—-——————-]
j+1 3% T, N IR+N/T) wy, 1o,
. 3,8 Yo 2 K-1W/I _
2 Py 9y (N) T, K® /T for wp > 1 (5.5-28)
) 3 1 o,
e - 2Py YW | lol* @y g KD @ o Hdw
uO
3.1 -2 , *T *T
=2py 7T 0y (@ g e aegde
av
[a}
W, )
= 3 K ! T g2
av J
o
Kw K-1 sinw_10p
N 1 0 o) \
= 2 = (—)§K+—[K+2 L ®-1)—— )
pj qj nTav S N i=1 w, i oy l

B-118




for Ty * 0 and
2

3 “s N I
Zpy 9 T, @A+ (5.5-29)

for pw > 1,
oo
We shall next consider the third integral. Using the kr'h term on the right-hand

gide of Eq. (5.5-14) in evaluating Eq. (5.5-13), we have c(k) k=1,2,3

j+1°
-3
A 2 1 2 4t *dw=p 2T 5—
€441 5 Py Zn lcl? By & H; du Py (5.5-30)
(2) 2 1 2 ~T ~% —_ _
Ci+1 " Y4 Zn lel? B, 2, K, do = 4y Ve (5.5-31)

-0

where ;1 is given by Eq. (5.3-22) and ;; by Eq. (5.4-32).

(3 1
€531 = 2P Y 7

-Eﬂj—ql OA*T(¢dqa_gT+gm)g;né.dm
‘0
Py "o S [(o*T |2 1 T *T *T
= {K'*i[é al2 - o772 aa bb alide
° (5.5-32)
Since )
‘;*T al? - 121 hgl QJM(i-h)(TOf "o (5.5-33)
and
Ty
K K K Ju(t- ;i- T+ o Py ;k)
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K K ju(i-h)(r - 20)
Kfindr @
K Ju(i-k)(o - ?0)
* i1k e
R K Ju(k-)(p = 1)
K,I L, e
w1 k1
K K K jm(ti- YT T + P P tk)

S2K+ Lyl ks e

1xhxk (5.5-36)
Eq. (5.5-32) reduces to the following expression by omitting the contribution due

to the last term on the right-hand side of Eq. (5.5-34)

NG Yo S, S 1
Cya1 Py dy 7 K+ 3K~ 5T (k% - )]

w K-l sin w_ 1(1t - t)
o 8 0 o 0 K
+2p, q, — (K-1) = (1+ )
1Y 7 wik o e~ 1) K+N/T
0 o o
sin - T -
X w, 1 - 1)) sin o 1(p 10)
[ = + ] (5.5-35)
K4N/1 ) w 1 - 1)
w 1 (po- ro) o o 0

Just as we did in expressions ;i and ;;

§+i in a similar fashion. When the array is steering in a direction

for three special cases, we shall also

evaluate

far away from that of target and interference, we neglect all the oscillatory

terms and get

o (3 . ook 4S8 _1 . )
Corr @ = pyay T KIl+§ - § gy OK - 2] (5.5-36)
In the target direction, To 51,
e sy - keS8 1 ~
Cyyp =0 >pyay i [(R+FK-g¥x +N/I (k% - 210
o akeny1 N7t

m K#N/I i 1 (x-1)
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’

w
0

2
5 2R ~4K+24KN
pj qj —— x[1+ —T;ﬂ'i_-L_I

(5.5=37)
and in the interference direction
(3) ., 2o $g.8 .2 2
J+1(e e) Py 9y 7 [K+NK Nm(SK-ZK)}
w K-1
S c K
*iry @ T mwT if &
= m K[1+S 5?:_.11(_"'_21!3./_1_] (5,5-38)
Py Yy T N K8/ ’

Now we are ready ro express the performance variations during the training period.
(1) Outpur signal-to-noise ratio

3

. A0
k- j+1
SNRy,y = ‘ s 72 (5.5-39)
sk}
U B4

where the A's are given by Eqs. (5.5-16) through (5.5-19) and the B's by FEags,
{(5.5-21) through (5.5-29)

(2) Directivity Pattern

3
o (k)
Vi =it Sy (5.5-40)

where the C's are given by Eqs. (5.5-30), (5.5-31) and (5.5-35). For any parti-

cular steering direction ;j +1 18 readily computed from Eqs. (5.3-23) through
(5.3-25), (5.4-33) through (5.3-35), and (5.5~36) through (5.5-38)

Various
computations are shown in Chapter Six.
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CHAPTER SIX
COMPUTER SIMULATIONS AND NUMERICAL EXAMPLES

6.1 Iutroduction

A great deal of attention has been given to proving that iterative pro-
cedures described in previous chapters converge under certain conditions. Having
proved convergence of the adjustment schemesgs, our problem iz to demonstrate that
the procedures are feasible; that 1s, solutions caen be cbtained by using the
adjustment proccdures in a reagonable amount of time. To establish this point,
computer studies were made to the design of adaptive tapped~-delay-line filters
and detectors. Recall that the approach to adaptive recelver design has been an
optimal one. The adaptive design is a result of realizing the optimum receiver
in a sequential manner,

In this chapter we consider simulating an adéptive processor on a digital
computer for a rather specific case to observe how the processor performances
vary with time. Several examples have been worked out by digital computer simu-
lations to verify all the theoretical analyses presented in Chapter III.

Some computations have also been carried out to show the performances of
an adaptive detector deacribed in Chapter V. These computations were done based
on theoretical analysis rathar than simulation which, in this case, would require
too much computing time without providing any general conclusions. All these
numerical examples were worked out on the IBM 7094 I1-7040 direct-coupled system
at the Yale Computer Center.

6.2 Conputer Sirulations

An arbitrary array processor was used here as an example to demonstrate the
properties of the two alporithms given in (3.3-6) and (3.3-13), i.e., the alpo-
rithons using desired signal and signal correlation function, respectively.

A linear array of six uniformly spaced isotropic hydrophones was assumed to
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i
-3

be influenced by the following set of sipgnale: K
1. A planar target waveform incident from the broadside.
2. A single interfering planar noise waveform incident at

angie 6. = 120° .

1

3. A "white" gaussian noise source at each hydrophone repre-

senting the ambient noise which 18 assumed to be uncorrelated

from hydrophone to hydrophone.
The hydrophones were spaced c/m0 units apart, where c 1is the velocity of
propagation in the isotropic medium and we 1s the center frequency of the
target signal. The output of each sensor was processed using a tapped-delay
line containing ten multiplying weights and nine ideal time delay of (Eib)
seconds each, Because the target-signal waveform was incident from the broad-
side direction, the target signal arrived simultanecusly -- i.e., in phase —-
at the output of all six hydrophones.

The target signal and the interference were moQﬁ}ed as a broadband
gaussian random processeg. At each hydrophone thé ratio of target-signal vari-
ance to total noige variance 1s 0.0l. All these properties were penerated by
passing a pseudo-random gaussian sequence through an appropriately designed
digital filter. Signal, noise, and interferences were generated as sequences
of random numbers frem random number gemerators. The sequences were then trans-
formed from rectangular distribution to normal distribution using existing
programs. Each simulation started with an initial weight vector haviag all com-

ponents assoclated with no-~delays set to unity and the rest to zero. The weight

vector was then adapted using the appropriate iterative equations.

Yo
3 j 23+
Y, being a vartiable parameter. The behavior of the process depends critically

Throughout the study the sequence Yy, was determined as vy

on the parameter Yo ; hence each case considered was carried out for a number
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of values of Yo . As Y, was increased, the comvergence of the process in-
¢reased eteadily until a point was reached for which the process would break into
violent oscillations that took a long time to die ovt. This point was predicted

in Chapter I1II that sk ;uld satisfy

'3

for all |} , espacially at the starting moments. Since the largest eigenvalue

Rmax was not known a priori, the best weighting sequence y, can only be chosen

3

by experiments,

As a check case, the optimum (mean-square sense) values of the coefficients
were found by correlation techniques, by averaging the necegsary values of the
correlation furctions RS(T) and Rn(r) over an interval of 2000 samples. This
set of coefficiente 1s compared in Table 1 with the sets of coefficients obtained
by the approximation method for the two algorithms chosen. The average filtered
error as mcasured by the algorithms over the 2000-sample interval 1s plotted
against time Iindex during the adaptation period. This is shown in Fig. 8 where
the minimum mean squared error with the optimum weight is denoted by a horizontal
line. The smooth curve indicates the mean squared error calculated by theoretical

analysis.

Fig. 9 shows how the welpght vector approaches its optimum point independent

of the initial settings.,

Figs. 10a and 10b show that faster rate of converpence can be obtained by
Y
o
23 i - o scillation. =
increasing Y, if Yj 23+1) * but not too large to cause osc a n When
constant welghting sequence was used (Fig. 10a), the mean squared error at later
adaptation stages would oscillate around the minimum mse instead of approaching

{t praduaily. For a single filter and known correlation functions, the rclation~-

shins butween the rate of converpence and the maximum eigenvalue are shown in
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Fig. 10b. As evidenced by Table 1 and Figs. 8 and 10, the filter designs for the
two algorithms are equivalent in the senae that they result in nearly equal values
of average filtered error. The average filtering errors as cbtained by these two
algorithms over the 2000-sample interval were only a few percent greater than that
for the filter designed by correlation techniques. In view of the limitation on
the length of data available, this performance is entirely satisfactory.

The important point to be brought cut is that the total computing time re-
quired by any one of the two adjustment procedures_for finding the optimum set of
coefficients was no greater than the computing time required to measure the nec-
egsary correlation functions and solve the associated set of simultaneous equa-
tiong for the minimum mean-square error coefficients. Thus the adjustment methods
are no more trouble to apply than correlation techniques, yet they eliminated the
requirement of a priori statistics.

The effect of uncertain signal is shown in Fig. 11, We see that if the
assumed signal power differs from the actual power by a multiplicative constant,
the pains adjusted according to algorithm (3.3-16) will converge to iheir opti-
mum values muitiplied by the same constant.

An attempt was made to compare the rate of convergence for two different
approaches: the Kalman filtering technique using all the past information (see
Section 4.3) versus the ordinary method of stochastic approximation. As expected,
the Kalman technique pives a faster rate of convergence. Some of the reasons
were given in Section 4.3. See Fig. 12.

There 1s no general method to select the right number of taps so that a
pradetermined accuracy can be achieved for any given system. ESiveral runs were
made to plot the minimum mse versus the number of taps. It was found that by
properly adjusting the tap spacings, five or six taps could produce quite satis-

factory results. One plot is shown in Fig. 13,
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Figure 13. Minimum MSQ vs.

number of taps per hydrophone output
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When thie simulated array processor was used as a detector, the detector
. output was examined. After 2000 samples of adaptation, the weight vector was
held fixed and the same 2000 samples were sent to the detector. The input con-
tained noise only at the beginning of this operation and contained both sipgnal
and noise starting from t = 1000. ¥ig. 14 shows clearly how to interpret the
detector output and decide the presence of & target.

6.3 Experimental Results

Sonar noise recorded at sea from a collection of 6 hydrophones has been used
to teat the iterative rules described in previous sections. An IBM 1800 computer
was used to make data tapes compatible with an IBM 7094-7040 system which was used
as the principal computational tool in the experiments.

The noise was a 2-second noilse sampled every 1/8000 second. The total hand-
width of the data was abhout 425 Hz to 2400 Bz. The hydrophones in a linear array
were separzted by 7.5 inches.

Since the data were collected in actual sea water, the directionality of the
noise field was not known exactly. From the display of correlation functions of
several channels (See Fig. 15) there seemed to be some Interferinp source present
in addition to the ambient noise.

In order to show how the processor eliminates backpround noise, a tarpet
signal was produced from a noise generator and passed through a filter. The
signal autocorrelation function is shown in Fig. 16. Three different signal

directions were tested, i.e., direction A (opposite to the assumed noise direc-

tion, direction B (perpendicular to the assumed noise direction), direction C
(similar to the assumed noise direction). After proper signal delays we obtained
three different noilse correlation matrices whose cross-correlation coefficients
for the six chamnels are tabulated in Table 2.

It is seen from Table 2 that for direction B the actual noise correlation

matrix consists of many cscillatory terms, If gignal delaye were inserted to
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gllgn target coming from direction C, the interference was also in phase g0 that ‘
all the cross-correlation coefficients are positive. On the other hand, .if signal kA l
delays were inserted to align the target comingvtron direction A, the noise fiald

was further de-correlated. Consequently, the array gain defined by

b 1-to-noise ratio of the summer output
aignal-to-noise ratio at channel 1

Gas larpest if the target came from direction A and least if both the target and
the noise came from the same direction. This is shown in the second row of Table
5. Note cthat the signal-to-noise ratio in this experiment has been defined as the
;ignal pover divided by the noise power, rather than the d.c. change of the output
due to tho presence of the target divided by the rms fluctuation 6f the output.
The later definition is more meaningful for the detection problem ahd.thg former
definition is useful for the problem of signal extraction. Several cases were
;tudied o2 how our proposed adaptive array processor eliminated the undcsired
éolse. Complete results are shown in Table 3, where SNRin is the input signal-
»to-noiSe ratio at Changel 1, SNRC is the output signal-to-noise ratio of:the con~-
@entionel processor, SNR6 is the final output signal-to-noise ratio of the adap-
tive processor after 2000 iterative adjustments and using 6 taps in each individ-
Qal filter, SNR12 is the same as SNR6 except that twelve tups were used for each
individual filter. So far we have assumed that the reference or desired signal
é(t) is the same as the target signal, i.e., d(t) = s(t). If d(t) is replaced

by some dclayed version of s(t), f.e.,
d(t) = s(t - 1)
ﬁhen, for some proper choice of t , smaller mean-squared error or larger signal-

to-noise ratios may result. Further discrssions on this point can be found in

(1]. For < ¢ 0 , the corresponding SNR6 and SNRlz are denoted by SNR'6 and

SNR'12 . The ioprovement of SNR produced by the adaptive processors over that -
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{.1) Chunnel

sapnsd coremny frors () Dircetion C,

t 2 3 4 5 6
1.0 0.70 0.55 0.56 0.43 0.24
0.70 1.00 0.64 0.58 0.40 0.24
0. 5% 0.64 1.00 0.68 0.44° 0.2t
0.56 0.58 0.68 1.00 0.58 0.26
0.43 0.40 0.44 0.58 1.00 0.34
0.24 0.24 0. 21 0.26 0. 34 1.00

i 2 3 4 5 6
1.00 0.42 -0.27 -0.13 0.10 0.089
0.42 1.00 0.36 -0.34 0.05 0.11

-0.27 0.36 1.00 0.22 -0.23 O0.10
-0.13 -0.34 0.22 1.00 0.29 -0.13
0.10 0.05 -0.23 0.29 1.00 0.27
-0.089 0.1t 0.10 -0.13 0.27 1.00

1 2 3 1 5 6

1.00 -0.36 0.2t -0.13 0.12 -0.11%

-0.3 1.00 -0.29 0.24 -0.21 0.07
0.21 -0.29 1.00 -0.33 0.15 -0.13
0.13 0.24 -0.33 1.00 -0.24 0.12
.10 -0, 21 0.15 -0.24 1.00 -0.07
e fL 0 0.97 -0.13  0.12 -0.07  1.00
Tl e 4« cearrelotien coffivients for

(!)) Dive Taoay

N
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Cascs
Items Dircction C Direction B

SNR_ 0. 002431 0.006676
SNR_
- 2.38 6.55
SNR
SNRO, 0.003967 0.009556
SNROA 0.004135 0.010772
SNRO, , 0. 004001 0. 009887
SNRO;Z 0.004187 0.010955
SNRO,
R 2.13 db {.56 db
‘%NRO(‘,
_T;z'q"ﬁ’)“ 2.31 db 2. 06 db
) C
SI\’RO‘ 9
- 2.1% du 1.73 db
]
SNR_
SNRO!
_— Z.36 db 2.15 db
SNR _

Direction A

0.012054

i1.8
0.0?594
0.03179
0.02774

0.03293

3,18 db

4.24 db

3.63 db

4. 41 db

TADLE 3. FKaperimental resulls (.‘-;NRIN:O. 001039 for

.\]l ( .'l:,('h)
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by the conventional processor such as SNR'GISNRc arc measured in db. These results
shown here are remarkably close to the optimal filtering using complete input
statistics (performed independently by R, Kneipfer of U.S. Underwater Sound
Laboratory, New Lomndon, Comnecticut).

6.4 Numerical Computations

To investigatc how an adaptive detector changes its performance during the
training period, we could, in principle, simulate such a processor in digital
computers. However, there exist some practical difficulties. Since detection
performances (output SNR, directivity patterns) are functions of output mean
and variance, at each stage of the training process we are required to calculate
the output and variance using sufficlently large numbers of samples (say, 1000
or more) for !1 s where J = 1,2,..., number of test samples. Furthermore, if
we want to change any one of the many system parameters such as number of hydro-
phones, npmber of taps, or input statistics, the whole process would have to be
repeated.

In light of the above difficulties, analytic expressions were derived in
Chapter V to determine how the adaptive detector performs for a epecific case
in which the input spectra are ldentical over a certain frequency range. Equations
(5.5-3%) and (5.5-40) are used extensively to carry out numerical computatioms.

Fig. 17 shows the variation of output signal-to-noise ratios during the
adaptation period,

If target and interference are well separated in bearing, the (normalized)
directivity patterns are shown in Fig, 18. 1In Fig. 18 computations were made
using approximate expressions in the tarpget direction (8 = BT) s, interference
direction (6 = 61) , and remote from both, Optimal (j = =) behaviors of the
array processor as a function of other system parameters have been consideved

previously by Schultheirs [32] and are not plotted here.
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Exparinental regsults using sonar data have vgrified that practical adap-
tive array processors can perform nearly as well as optimum processors in a
stationary environment. It should be poagsible to adopt similar iterative
processors to seismic and electromagnetic arrays which operate in a direcﬂonal
noise environment. It might be poseible to minimize reverberation as well aa

ambient noise in aystems where reverberation is significant,
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CHAPTER SEVEN
SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Summary and Conclusion

The research described herein has developed a system for processing the
ocutputs of & passive array of hydrophones. The system consists of an adaptive
linear multichannel filter, together with algorithms for iterative adjustment
of the weights on the topped-delay lines., It is designed to process the re~
cefved wavefront in the presence of ambient noilse and interferences. The
system is designed in such a way that it can be readily implemented and be
able to operate well in real time in the presence of noise fields whose statis-
tics are unknown a priori.
a) Assumptions

The development and analysis of the array processcr presented in this
research has been based on the agsumptions that

(1) Target, interferences and ambient noise are assumed
to be gaussian random processes,

(2) The sum of interferences, ambient noilse and local
nolse are regarded as the effective noise, which
is assumed to be atatically independent of the
target signal.

(3) The target-signal components s,(t) observed at the
outputs of the ith hydrophone is a linear time~-
invariant transformation of d(t), the target-signal
component observed at the output of an ideal isotropic
hydrophone located at the origin of the coordinates.
The target direction is known, together with its
autocorrelation function (but not necessarily its
power level).

(4) The statistics of the noise field are completely
unknown. Interferences may be present, but this
i3 unknown. If they are present, their directions
are unknown.

(5) The wavefronts of target and interferences are
regarded as plane over the dimensions of the array.
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(6) Tho processor is a dircctional array vhose gain 1is
naximized i{n the direction from which the target 1s
expected to come.
In Chapter V, in order to analyze the performancce of the proposed processor,

it was further assumed that

(7) The array 1s linear and consists of equal spaced
hydrophones.

(8) he ambient noise is statistically independent from
hydrophone to hydrophone.

(9) ‘the 1npﬁt proceéses are band limited and of similar
spectra,

b) :Summagy of Results

A matcnatlcal model has been developed to describe the characteristics of
the {nput processes and the processing mechanisms. This model has been used to
vxanine the array processor when the filter coefficients are adjusted iteratively
8n a8 to opiimize the processor in accordance with the following performance
mcdaurcsz

(1) inimum mean-squared error between the beamformer

cutput and the target signal for the filtering
problem.

(2) Maxioun si{gnal-to-noisc ratio at the processor out-
put for the detection problen.

For a general array confipuration consisting of individual filter on each
hydrophone .utput, a post-surmation filter, a square-law device, und an averaging
fllfcr, the optimum ind{vidual filtccrs can be constructed by tapped-delay lines
with the welphts set to some optizal values. Although these optimal values can-
net be deturzined without complete knowledre about both the target and the noise,
nuthods of «tcchastic approximation can ke applicd to adjust the weights itera-
tiviely. The only information ruquired in using the adaptive algorithms ;a the
corrulation functions betwcen the wavefront and the various delayed sipnals.

The proposed.algorithms have been shown to converge in mean squaré and - in
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probability as long as the second order statistics of the input processes are
bounded. Explicit expressions for the rate of convergence are derived in terms
of input statistice, various system parameters and training environment. The
mean~squared error is found to decrease approximately as the first power of the
adaptation time. The rate of convergence is essentially indifferent to the
number of weights to be adjusted as our algorithm allows simultanecus adjustments.
The size of error, however, depends on the total number of taps and the starting
point. Ranges of the weighting sequence are determined to maintain stability of
the adaptive loop. It is alsc of interest to note that there is no signal sup~
pression phenomenon in using our algorithm and that the final system performance
is independent of the signal power level.

Several partially effective techniques havs becen proposed to adjust time~
varying parameters. It is also found that the ordinary methods of stochastic
approximation can still provide convergent algorithms if the rate of parameter
variation is sufficiently slow. Qualitative discussions are provided.

The performsnces of the proposed adaptive receiver are evaluated and com-
pared with those of the non-adaptive systems. The whole system starts to be a
conventional detector and is gradually transformed into a spare-time filter
optimum in a predetermined direction. This optimum filter is shown to reduce
disturbances coming from cther directions. When a signal appears in this parti-
cular direction, a maximum response will be produced. In actual operatiocn, the
average bearing response can ba obtzined from a plot of the averaged squared out-

put versus the looking angle of the array. In most practical situations narrow

peaks are considered to be targets.

7.2 Suggestions for Future Research

The following problem areas have been suggested by the research reported

here:

a) Applications in Oiher Areas

Much work remaine to be done in other areas of application. New areas of

B-147




application ghould be explored both from a theoretical standpoint and from a
practical one. Two important areas are geismic arrays and satellite communica-
tions.

In processing seismic data the direction of the source is generally known
because of the impulse nature of the initial signal. The direction and nature
of seismic nolse are not easily determined. The iterative procedure suggested
in this research could be used to minimize the effect of such noises.

The suggested system presented here might be used to improve the signal-
to-noise ratio for communication signals recelved from trensmitters located on
deep space probes. Presumably, the direction of the source is known (e.g., the
location of a satellite), but the characteristics of the interfering noises are
unknown. The improvement coffered by the array-processing system presented here,
as compared with conventional systems, might be appreciable.

Detailed analysis of the above two areas will be very useful and important
in understanding the performances of these adaptive systems.

t) Nongtationary Problems

The applicability of adaptive techniques to statistically nonstationary
procesges presents some highly challenging mathematical and statistical probleﬁg:
and perhaps is the one 11 which the strongest applications of adaptive techniqués
will be made. In this research some procedures have been proposed. But they
are applicable only to special cases. A generalized formulation to handle this
problem would be highly desirable.

¢) Automatic Recognition of Bearing Respornsa

In applying the proposed algorithm to actual sonar systems, an operator
is nceded to interpret the bearing response. One would like to ask whether or
not an automatic respomse reader can be coustructed by studylng the character-

istics of directivity patterns and by developing some recognition algorithms.
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APPENDIX A

THE OPTIMUM DETECTOR FOR DETECTION OF A GAUSSIAN
SIGNAL IN GAUSSIAN NOISE BACKGROUND

Suppose that the array consists of K hydrophunes, and that the received

signal at the 1th hydrophone is xi(t)
x,(t) = 8 (£) + n(t) , {=1,2,°, K . (A-1)

where si(t) is the signal that would be observed at the ith hydrophone 1f
there were no noise, and ni(t) is the noise which includes both ambient noise
and interferences. Both ai(t) and ni(t) are assumed to be Gaussian random
processes with zero mean and so 1s the input xi(t) . If the spectrum of
xi(c) is limited to frequencies below w, ©ps, and the x(t) are observed

over an interval T , such that wor >> 1 , then xi(t) can be expanded in a
Fourler series

w T
o}

2 () = I xi(n)ejl'unt/’r (4-2)
o

where xi(n) are complex Fouriler coefficients satisfying xi(-n) = x;(n) and
where the asterisk stands for complex conjugate. It is seen that all the
available information about the signals received by the entire array is con-
tained in the set of vectors
) %, (n)
x,(n)

X(r) = : (A-3)

Following [6) and [7], we assume that X(n) and X(m) are statistically inde-

pendent for n ¥ m ., By the same token, we let the signal component of xi(t)
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be given by

w T
o}

j2mnt/T

8, (t) = n_gon s (e (A-4)

sc that the signal at all hydrophones is represented by

sl(n)
ez(n)
EICYRE S ' (A-5)

sy (n)

Here again we assume that S(n) 1is independent of S(m) for n¥ém .

The optimum dctector is known to be the likelihood ratic detector, which
determines the piesenca or absence of a target by comparing the likelihood
ratio

£ (X

£, (X

p—e

LR =

(4-6)

N

to a fixed threshold. Here fs(ﬁ) is the conditional probability density
function of the :gceived samples (over all hydrophones and over all fre-
quencies) when s¥gnal 1s assumed to be present; similarly fN(g) is the
conditional probabllity density function when signal is assumed to be absent.
Since X(-n) = §f(n) » and  X(n) and X(m) are independent for n ¢ m, Eq.
(A-6) can be written as

<7 FolX(n)]

ndl FGIX(W ] (A-7)

LF =

Yow, define the sisnal and noice covarlance matrices at cach frequency by

P() = < X'(n) X (n) > (A-8)

Qo) = < X () K () >y w9




3

where the superscript T refers to transposition and the symbol < >  means

N
eusemble average subject to the noise-only nypothesis. Then the conditional

prebebllity density functions appearing in Eq. (A-7) can be expressed as
*T ~1
£y [X(n)] = Cy oxp [-X "(@ Q "(n) X(n)) (A-10)

£IX@] = Cyp exp [- X () (P(n) + Q(m)} " X(m)] (a-11)

sc that the likelihood ratio is

wT
I I e PRSI S (a-12)
R = I CN(“) exp [X "(n) {Q "(n) - [P(n Qm)] "iX(n
where the c's are the normalizing constant of the Gaussian distribution. We
further assume that the signal originates from a source sufficlently remote
from the array so that the wavefront is plame as it approaches the receiver.

Referring to Fig., 1, we have
*T
P(n) = ¢d(n) a(n) a "(n) (A-13)

where ¢d(n) is the signal spectral density at frequency n ,
27nt

T }, and 1, 4is the delay at the 1th hydrophone. Since

i
P(n) 1s now of rapk 1, the inversion of the second term in the brackets can

ai(n) = exp [ ]

be written [7]

[Q+P1 = [Q+daatyt
-1 -1
P
= Q-l - 9. — R (A"].IQ)
*T -]
1+¢a Q a

Using Eq. (A~14), one finds that the logarithm of the likelihood ratio is

given by

8T x™m) g m) B(n) @ Ln) X(n)

log IR = C + I

nf1 (A-15)

14 ¢, 2 () Q7 ) atw)
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where
w T
o
C = log nEl CB+N(n)/CN(n)

*
Since g?(n) = Q (n) , the quadratic form appearing in Eq. (A-15) can be

written in the form

* - - - -
¥Tgtrgtx - xTgt g2t

*
T kel K *_1 X T

“ o QT a) @ Tad' R
* 2

- e, 8 QY (T Q") e I QM (a-16)

and therefore
wOT 2 2 -

log IR = C+ I, f(n) g(n)f GL(n) . (A-17)
where

H (2) = Q "H(n) a"(n) (a-18)

2 *T -1

G () = ¢,/{ 1 +23,(m)a (n)Q "(n) a(n)] (A-19)

ﬁo(w) and GL(m) are the optimum individual and post-summation filters, respec-
tively, as referred in Fig. 3.

If we let n=w , Aws = 1

o T the summation appearing in Eq. (A.17)

can be transformed into an integral for large T
w T
o T |2
n§1 15 ("Jn) Hw) G
—
2rT

~ 2
[x* (w) H(w) GL(w)] dw

fr

-0
roc

1| ) , N
-—2;? J {‘;1 GL(w) HQ(@\) Xl(u”‘ dw

-~

2
Lz (FHe (0 1 (@ % 21 e (A~20)
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The last expreseion is obtained by invoking Parseval's theorm. Eq. (A.20)
and hence Eq. (A.17) can be implemented Iin a form represented either by Fig.
A-la or by Fig. A~1b. These two structures are equivalent, but the latter is
drawn here for future comparison. gnn(m) {s just the noise matrix Q(w) and
used here to make the nomenclature consistent with our previous developments.
We shall now consider other performance criteria for the array system.
Referring to the general array configuration Fig. 3, and combining the post-
summation and the individual filters to make G{(w) = 1 , we see from Sect. 5.2

that the signal~to-noise ratio at the detector output is

N
SNE = -3 (a-21)

Agsume that gu(m) maximizes (A.21), and let
H(w) = §M(w) + eh(w) (A-22)

where h(w) 1s an arbitrary vector function of w . Eq. (A-21) must now

have a maximum at & =0 If y_H is in fact optimum. That is,

dSNR

de

-0:
c=0

Nl:‘c’
ERE]

feo
*
R IR VR SRR S of VENRLop
J‘M
oo |
T 2 - * T * A‘23
) b et e - o By By o TR, d (4-23)
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4
3

Lo g e U

where DH . NM are the optimum value of denominator and numerator, respec-
tively, of Eq. (A-21)
DZ Y T/

2. M
ZN

M
is actually arbitrary since any constant multiplier in Eq. (A-21) cannot effect
the condition for a maximum. The two integrals of Eq. (A-23) are equivalent by
virtue of the fact that the spectral matrix is Hermitian

*T

8 = o (A=24)
and [241]
- W oo 8 T et (A-25)
}—m 1 ¢ 2 do = . 2 ¢ Bl dw
Hence
dSNR N R 5 * T e ~26)
d e [_w B le gss Qxx EH EH 3'xx]h dw 0 (4-26)
em=0

x"
Every component of h 1s arbitrary, however, and Eq. (A-26) will not be

*
. itisfied for all h unless

LN o FORER -2

Taking ¢ = 1 and using Eq. (2.1-2), i.e.,

Eq. (A-27) reduces to

1
- * - = * - *
Bem U8, T gt e 20, 1 e a2
But,
-1 * * ¥ T .-1 *
[gxx] ¢d3 [Enn+ ¢d3-§] ¢d—a-
*-1 * T %1
= ¢*—1 ¢d an 2 a8 &, 14, a
-nn T %1 * d
14438 L
¢
1 d (A-29
"l & [ T (a-29)
%38 %5y 2




T I T

Eg. {A~2B) can be rewritten as

1
$,2
. o} A 3
By v T Ve T o1 s " B W G (A-30)
1+ ¢, a ¢ a
d ~ -nn =
where '
¢d2 Gi
(,M- : T = T {(A-31)
+ 3.3 P a Y
d - -mn = 2
%4

ie the post-summation filter maximizing the signsl-to-noise ratio at the detec-

tor output. If one wishes to minimize the mean squared error between the signal

wavefront and the summer output

el [d(t) -~ 2()12 = 224+ a -2 Ry, (0) (A=32)

then, by using Fg. {5.2-9)

I N R R *
z = o !‘ ﬁ'z\'-\.“ldui = 3 { i 2 H duw (A-33)
-0 -
1 *T %
R,, (O 7 | bga H do (A-34)
one obtains
{m
2 1 T . * * k. ~
R = 5 8+ e, - 2 (a " K ldu (A-35)
4

Employing the sam: techniques of calculus of variation, Eq. (A-35) is wini-

mized by choosing

O T b T A S d
= L r . G v 1 * _
- ~XX d -nn 1+, a T s 1 a
d - n —
= H G (A-36)
-0 m
where
sy 1
L (3n
“d -) 2 -nn a

is the post-summation filter minimizimg the mean square error.
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Thus, the optimum individual filter for our signal model is

EW = 01w a*w (A-38)

and 1is invariant under changes of optimization criteria. Only the optimum
post-summation filter G(w) needs to be modified according to

1
2 -
G, = G = Gyé,2 (A-39)
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Theorem 1: Let Yir Yo e be 4 sequence of positive numbers such that

(A n

(A 2)

(A o

(A 2

lim Ki - o

’—b«n

o
2
-

=1

X

3!

¥

]

vy

"~

Y <

>

Y

a

Ik

0 .

APPELDRIK 3

PROOE OF THEGRE:: 1

Let the rollowing conditions be satisfied

(B)

inf

T .
C) EivV a(xivi.

( C < \._ .«.’ <
Then the seqgo«oe .
. 1

¢ ow _

—j+; i
converge: wirn o
'P!'(H)fv: Cabitraat i,

C @

'E-“'j‘i SO !

, \
where, f.or stmpli- ,

AR

(c ~c ) BV Qx]e)r > 0
e, Qixle

. bounnded s

(B-1a)

(B~1b)

(B-1c)

(3-1d)

- (B-2)

BEERS)

o -de )

{

(R-5)

o




Squaring Eq. (B-5)
(r0q - T ey e ) = (e, ¢ )T (g, - )
=3+l “op” =3+l “op =3 “op° 4 ~op
T
- 2ryley my) 19

+y;diaze

and taking the conditional mathematical expectation for given Cys Egseees £j'
we obtain
- 2
Bl leyyy ~ Sopl1? legs Spoeenagy?
2 T
= - -2 -a E{V Q}
Hey = gpl1? - 2vy (e - g )7 E{Z @
+ ¥ E(7’ Qv Q (B-6)
From condition (C), Egq. (B-6) becomes
E{|lc -c |1?%e c.} < lle, —c ||%2 - 2y,E(c, - ¢ )TVQ}
=41 Sop!' LT =7 7 Ty “op 37 Top
T T
+ v 4 + ¢, ¢ (8-7)
Y3 9 (eop Sop + &y &y
Using condition (B}, Eq. (B-7) is reduced to
- 2
E{I|Ej+1 Eop” !Eli---:s_j}
- 2 2 4+ 22 T (B-8)
<llgy -epll?@svjar+r v de o
= - 2 2
Let Z, e, Eop“ Wy @+ @
o ) T Y » (B-g)
- - 2 2
Then Zy4 Moy = Sopl 12 illgey @+ v @
o0 T o0
2 2 B-10
+ kvz-j-i-l 2dYk £ Eop mEk-l-l -+ Ym d) ( )
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Taking the conditional mathematical expection for given & 52.---.51 ’

we have

E{z_1+1|51""’£j} - l-l{ng_,_l - sopllzlg_l....c Lo, (L +y2 D

=3 k=3+1
w T 0
2 2
* k§j+1 e Zop i+l a+ Y b
T o«
- 2 2 2 2
2 Hey -epllP@rard +vfac e (1, ,0+vgd)
-] T o
2 2
kg 2 s Cop pley B D
= Z
_.j
or E{§j+ll£1""’£j} < Zj (B-11)
Next, taking the conditlonal mathematical expectation for given El""’zj
on both sides of Eq. (B-1l), we have
E{gj+1[£1,.,.,§j} iZ,_, (B-11a)
Since gj - f (gl. 32,...,51)
Inequality {B-1la) shows that Zj is a gemimartingale, where
EZ <EZ, < ...<EZ <= (B-12)

-+l — - 1

so that, according to the theory of semimartingalesl the sequence Ei con-
verges with probability one, and hance by virtue of Eqs. (B-1b) and (B-lc)
the sequence (Ej - Eop) also converges with probability one to some random
number § . It remains to show that P(f = 0) = 1, It 1s seen that from
Eqs. (B-12), (B-9) and (B-ic) the sequence E(Ej - gop) is bounded. Now
taking the mathematical expectation on both sides of the inequality (8-7)

1
Doob, J. L., Stochastic Processes, John Wiley and Sonas, N. Y.,1953
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Blllegyy = gl 12 < Ellley - 2 117 - 2y, El(gy - _cop)T v Q}

+ 2, dlg Te & z(g_JT gy

-op —op

and adding the firat j inequalities together, we have by deduction

J .
Blllegyyy - gopl 12y < Blllg - Sop! 12+ E, (d_qopr Sop¥i + OVg !(g: (%)

]
- &y 2y Bl (ey

{2} 15 bounded and condition (B-lc) is fulfilled, from

T
- _c_op) v qQ} (B~13)
Since E{llgj - gopl
Eq. (B-13) 1t follows that

®

5" “op)T vQl <m (B-14)

Using condition (B-1b), i.e., jEI Yj = o and noting (B-2)

T
inf . E{(c - Eop) vQl >0

£ < Hg-gopH < =

We deduce from Eq, (B-14) that
E{(gﬁ - gop)T vV Q} + 0 with probability one for some sequence N . (B-15)

Now, taking E{||gj - [2} > £ with probability ome, and comparing

c |
=op
Eg. (B~15) with Bg, (B-2) we obtain

£ = 0 with probability one. (B-16)

Therefore, algorithm (B-4) converges with probability one

- - = “17
P ;i: (gd Sop) 0 1 (8-17)

as well as in mean square sense, l.e.,

1im E{Hsd - gopllz} =0 (B-18)

j—)-w
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APPENDIX C

Some properties of Gamma functions

Since M{(a+mn) = {(a+n=-1)T(a4+n-=-1)

(c+n-1)(ac+n=2)T{a+n-2)

B o o = e

= (a+n-1) {a +n - 2) — al(a)

We have

n .
kgl(u +k=1D=a(a+l) == (a+n-1)
g
Thus
A

(3+0)1 (3+1)! (2 - )

*
Eq. (€-2) can be approximated by using the formula

r

1 1
5 5 1 1 139
r(x) = e x ¥ 2 (2")2 }l + 1ix + -

288x2  51840x°
571 1
- B S o (._
2488320 x° “5‘}

¢ o Xy X 2 (2n)2

P
it

for x> 1 (c-3)

From Eq. (C-3) we cen vwrite for j >> 1,

11
F(j +2 - ) = e‘(j+2—0) (j+2—a) I+2~a- 2 (2“)2
3 1
- e—(j+2—a (j+2-a) I+ 2 (j+2-u)-u (211)2 (c-4)
31
(GHD 1 = T2 = o 3P upydt 2 omy? (c~5)

Since

jJj+2-a=3+2 4f § > a

* Whittaker and Waston, Modern Analyeis, p. 253
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we obtain from Bqs. (C~=4) and (C-5)

T'({+2-a L {(4+2-a -
o - BEEY < gno™

1
3+n°

] if §>>1 and § >> a

Therefore, combining Bqs. (C-2) and (C~-6) gives

by 1
ksl 1+1 P(Z-l)(j+1)l
and furthermore,
n A
A n
J"T_m(l - j+l) ¥ m
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APPENDIX D

EFFECT OF UNCERTAIN SIGNAL POWER ON THE PINAL
VALUES OF THE GAINS

To 1llustrate the cesential steps involved in studying the convergence
properties of algorithm (3.5-1), we shall conaider only the single gain case.
The corresponding extensions to multiple gain case is straightforward but
laborious due to matrix manipulations. Examples have been presented in Sect.
3.5.

Let the assumed signal correlation function ﬁs and the actual signal

correlation funcrion Rs be related by a multiplicative constant Gs

Rs = G8 Rs : (p-1)

The single gain version of (3,5-1) is

~

cj+l = cj + ZYj R.dB - Zyj zj nj

2
-2
3 cJ xj (D-2)

c, + 2 G R -2
371 % R T

since z(t) = cn(r) = cx(t) in this simple case.

The optimum gain is known to be

-1 — -l
6=¢c = (R +R) "R =x R (D-3)
op 8 n ] 8
The average of Eq. (D-2) 1s then
e, = (1 - 2y ;E)Z + 2y G;Ee
1 h | ] J s
Z
"oyl G- e
3 — 1 -
2 .2
- D-4
+G59k£1 Zka 9.=E+1 1 279_):) ( )
If we set
S S (D-5)
] 5
2(3+1)x
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Bq. (D-4) becores

= “1 1

RS T s A {D-6)

which shows that the mean of c converges to Gse at the rate of j"l
(c1 - Gse)

(cj+1 - GBB)- T +0 as j (o-7)
We shall consider c§+1 .
Squering (D-2)
2 2,2 2 2 2 .2
cj+l = (1 - 2Yj xj) cj + 4yj Gs Rs

2
+ 4y (1 - 2y, x7) ¢ Gs Ra

] S I R

and taking tiz average yield

— — —— ——p——

2 2 2 4 2
cj+1 = (1 - 4yj X+ 473 x ) cj
2 2 -2 —_
+ 471 Gs R, + 4Yj 1 - 2Yj x7) G, R, cj (D-8)
If we let
3 24 ,
- E 3 (D“g
4Yj x 4Yj X vj
252 gt P T - D-10
le Gy R, + 471(1 2Yj ® ).Gs R ey = uy ( )
Eq. (D-8) reduces to a simpler form
2 2
- - . +
€41 a vj) ¢y uy
3 ] h|
[ 3 2 - - D—ll
S (1 vj) + k£1 U o+l (1 vj) ( )
From Eqs. (D-5) and (D-9) we can write
~ - A A
2 2 4 1 2 _
(1 - vk) -1 - (&Yk x - byk x) = (1 - E;Eﬁ(l - 3:19 (D-12)
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wvhere

Ay= 1=~ ¥l-a (D-13)
Ay = 1+ 1-a (D-14)
572
- a = x /x : {D-15)

Two approximations for the Gamma function wiil be used

,‘
I o LAy . DGl - A 1 _
iy O @Y T @D ¥ TEa Gt (p-16)
n A A 2
1 2 m
I (1 ~-) (1 -o7) = —— (p-17)
k=m kt+1 k+1 (n+1)2

Using Egs., {D-12) to (D-17), Eq. {D-11l) becomes

2 2 1
c —

T e A e ?

J 2
kel (k+l)2 (0-18)
(3+1)
But from Egs. {(D-10) znl “u-3)
w o iR ¢ a (1= Do R T
U = A G BT S (- 2n X)) Gy R e
2 2
[¢ R
s g 1 K —
= g + 4 = D GS RS =
(k+1)7 > Zlaely w”
Sl s |
e =t =0 Lo Zki (D-19)
e -5 = -5 s s
(k+l) ( 3 <" o
Substituting Eq:. (D-3) and {(D-#7 ipio Eq. (D-19) gives
1 200,247 K2 + 268 ¢ X (D-20)
= ¢ A AR )
k (k+l)2 s 5 k J
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and Eq. {(D-18) becomes

" —2- °12

Al St A+

¢ o
M r-apr-a) g+
1 2 .2
3 y 2.2, 3, & 3 2
A + 7 G & * 7 k51
ff, (3+1) (3+1)
2G 8 ¢ 3
8 1 k
> E o (9‘21)
gy kel
For large J , we may write
3 42 i (441
W1 i kT T2 (D~22)
B
e S (p-23)

Eq. (D-21) then becomes

c = < 1 2
PHLT T(2-2)T(2-A,) (1+1)
+ —-17 Gsz o2 + <;s2 0% + 26,6 ¢, —1—7 (D-24)
(3+1) (3+1)
The error variance in the parameter space is
2 2 - 2
- = - - (D-25
(ey4q = ® Ciap " 20 €44y - O (D-25)

which by utilizing Eqs. (D-24) and (D-6) reduces to

2
z e !
€341 8y = 1‘(2--1\1)1‘(2-4%2)(j+1)2
2 1 2 2 2 2
+ 65 — _ [ -1+ 31 (36."-26+2)+G "+ 1)]
(3+1) 2 s s s
1
+ 2c, 6 [§ (¢ -1) -1} (D-26)
1 (J+1)2 8
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Jei 4 1+1 8
- 2
" AT G
g 2
+ cazo:,‘ i“"‘L"f +2-12 ]‘41.'I3
(3+1)
1
PP M (©-27)
R T | (J+1)2 j+l
and we bave the asymptotical expression
’ ) 2
lie (o, ~-M" = (6 - et (D-28)
g e yta 8
or
14 (¢ -.(; ”)2 = 0 (D-29)
j:; i+l 8

Therefore, onc can onclude that {f the assumed signal power differs from the
actual power by a rultiplicative constant Gq , the gains adjusted according
te algozithr (3.0 05 will vanverew {r. menn as well as in mean square to their

optimum valuvs multiplied Ly the some constant Gs .
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APPERDIX B
GENERAL DYNAMIC METHODS OF STOCHASTIC APPROXIMATION

Recently Dupac [36] has proposed a dynamfc stochastic approximation
method for the particular case whare the optisum of a production process
moves linearly during the optimization period. This method essentially
congigts of a two-step, approximation procedure to be performed at each
stage of the optimization process. The firast step is designed to correct
the time-varying trend of the parameters being estimated; the second step
is made by means of an ordinary stochastic approximation procedure, based
ou the observation of a new sample. In [36], the parameters were assumed
to vary linearly and the convergent conditions remain essentially unchanged
from those of the stationary case.

Here we generalize the above method to include any nonlinear and cou-
pling variations. Convergent conditions are modified accordingly and the
proposed method is shown to reduce to Dupac's scheme as a special case.

a) Dupac's Method

Consider the problem of findi g the extrema of functions of several
variables
1=0q (x|e) (E-1)
vhere x = {xl, x2.....xn} 1s a vector of random processes with distribu-
tion P(x) and ¢ = {cl, cz,...,cn} i8 a vector of parameters to be adjusted.
When P(x) is unknown, an algorithm derived from the method of stochastic

approximation to obtain the set Eup = 9 1is

c

= - v,VQ(x, le,) (E~2)
g1 g - Yyl
whose properties have been derived in Section 3.2 and Appendix B. It is
assumed that € 18 time-invariant, i.e., 6, = @ for all j .

.—j

When the random environment is non-statiomnary, the optimum set 8
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becomes 2 function of time index J . Its vslue at time 3 will be denoted i
by @ y Dupac [36] has considered the case where Qj is linearly (in his i
sense) time-varying.
0y -0, 1+ B =0 (2 (E-3)
=+l = ] jw
where w » a ,a belng related to Yj by Yj =0 (—%fﬁ .
]
Dupac's method is to estimate the unknown parameters ¢ by
Caag = S 1+ 5 -y 906x]e) (B-4)
41 =5 k| S It
Algorithm (E-4) can be shown [36] to converge with probability one
!
Pllte (¢, ~0) =0l=1 (E-5) :
e ST 7O
as well as in mean square i
| \ |
Tim B jig, - 0.1]¢' =0 (E-6) *
PRyl !
E
i
vader tre following condirionas %_
MR T (E-7)
W vy = =, Facl,y>0 -
’ J
(B) There exist constants XK, and K, >
0 <K, <K < = | guch that
x u
HENCTERIN 1 |12 |
Eoite = ol 2 e, ) Vaale ey < Klle, -3 (E~9) !
SRR 2y Ty Tyl < ol = !
;
{C) For all values o y
Ty - I
var [77Q ¥Q) ~ 2 < = (E-9)

where

vQ

Flxic)

e

for simplicity.

Condition (B) and (C) are equivalent to conditions (3.2-14) and (3.2-15).

Conditlon (B) simply says that

tive slope and the other of finite-pusitive slape.

70 wmust lie between two planea, one of posi-

This condition in one-
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dimensional case is illustrated below

i 'fﬁ line of finite-positive
3 % G alope
/ e
a
"

/’ p _—1line of slope > 0

s --._._.,-,) [

Condition (C) says that the variance of {V QVq} is finite while Eq.
(3.2-15) says that its expected value rather than its variance is finite.
The conditions imposed here on the behavior of VQ are somewhat stronger

than those for the ordinary methods of stochastic approximation.

b) The General Method

In this section we shall relax the reatriction that the parameters vary
linearly during the adaptation period, It is assumed that the law governing
the variation is known, although the sequence to be estimated is unknown.

Theorem 3: Let the variation of @ be governed by a known operator such that

0 =1 (E-10)
G =t &y,
Define the following quantities

T)T

9—3 = g(gj'j) = (grad Lj (E-11)
A gy :‘115 s {eigenvalues of gj} (E-12)
I - Ej = E{Q(}_jlcj)} | (E-13)
E{chjlgl, Caveens 35_1} - o, (E-14)
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BERs G e

T
BLV,Q 0, leps gponenn gy ) 1:_n_§ 3 + di o? (E-15)
Yy - ._g... (E~16)
]
\ ,
S (-17)
3
4y = -‘%‘ (E-18)
3
Then the algorithm
Sy = My g - YjVCQ(Ejlgj) (E-19)

converges in the sense of Eqs. (E~5) to (E-6) under the following conditions
A -6 <ac14+8 '
2 —
0 <8
1

0<8<3 (E-20)

B. There exist constants Ki and Ku s 0 < l(2 < Ku < = , such that

T —emem

K -8 |l - - 2 -
ey - ayl1% < ey - )7 TR <k lley - 8l (E-21)
for 3=1, 2,...
C. For all values of ¢
Var [VCTQ VCQ] < ¢? < (E-22)

Note that conditions (E-18) and (E-19) are just conditior® (E-8) and (E-9),
vut Eq. (E-7) is replaced by Eq. (E-20) to take account of the time-varying
effect.
Proof:

From Egs. (£~10) wmd (¥-13) the cstimation error equation cao be written
in the form
) - ¥

Lic, ) - L3

I 2,1 7y

G441 7 S50 T e T j et

= (, -y Y E-23)
Gy &g = vy Y ¢
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i

where Qj » defined by Eq. (E-11), is a nonsingular matrix.
Take the inner product of Eq. (E=23)

T T T } T T 2
S 21T 5 G 6y 8y - Py 2y 8 Ty Ty 4TY

Note that

(E-24)

Ej is 2 function of 51 » §=1,2,..., and hence a random varisble.

Taking the conditional mathematical expectations of Eq. (E-~24) and using the

definitions Eqé. (E-12) to (E-15), we obtain

T
Bleyy epaleyy &preeoigy g}
2, T
< Aj E{gj gjlgq, Soreees 51_1}

2 [mT m, + d° 02]

ey tvy gy my +

T
-2y, A
RS
From Eq. (E-21) we can write
T 2
moey > Klleyll
T 2
myomy < K llell
and thus Eq. (E-25) becones

V., < A2y, - A, KV, +y2 KV

2 42 L2
T I e R R A IR LA IR E I I

i b

2KV, +v2 42 o?

2 -
- By Ry g ROV, vy gy

where

<
[]
m
~—
o

37 By gylepr e gy

-1
ky = KAy

-2
R, = K]

Since the sequence Y is monmotonic decreasing, there is

3

(1 - 2ygky + v2K,) < [1-(2-c)k,v,)

J 33 3773
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(E-25)

(E-26)

(E-27)

(E-28)

(E-29)
(E-30)

(E-31)

(E-32)
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and
f1-(2- Ej)kjvjl >y (r-33)

0 < Ej <2 for 323 {BE-34)

Thus, for §j > J , inequality Eq. (E-28) wmay be weakened to

2r1.¢9 - 2 42 2 _
VJ+l < lel 2 cj)kjvj] + Yy dj o (B-35)

The term in the bracket is positive for § > J , and we may start with j = J

and use this recursive inequality repeatedly to obtain

RPN 1,
Ve S VyBriy, g-1 o8y 209° oEy vp 9% Bg 3oy ol A2 (E-36)
in which
A
Byvi “alger G-y 8, 0gdizgy (E-37)
= 0 . 1 > j
and
-k (2 - E-38
Ej j( ej) > 0 ( )

By taking the logarithm of both sides of Eq. (E-37) and using the inequality

log (1 - Ylgi) e (E-39)
one may show that
| : { (E-40)
Bi,j < exp ? = L L8 -

4

Therefore, it 1s necessary to have

X

y Fyo= 3 (E-41)
321 730
and
j£1 x; < @ (E-42)
to make the first tern on the vight-hand side of Eq. (E-36) vanish
lim B =0 (E-43)

J-1,3-1
g .
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Now, let us consider the remaining term on the right-hand side of Eq.(E-36).
Let u(x) denote the unit step function

ulx) = 1 x>0 (B-44)
0 x <0

Then the limit of the term in question can be written as

P 1,
;i: o o0&y Yy 9 B ,i-1 mie+l 2m

3-1
2 2 42 - - 2
¢ ;‘12 oy YR 4By g (- wC-p] L, A2

j-1
- o2 2 - uli-
o zZJ Yy di ji: 51,3-1 (1-wC-N1 L., Ai _ (E-45)

The interchange of limit and sum 1s justified provided that the sum is

absolutely convergent, i.e.,

Ly vid <o (E-46)

Combining Ege. (E-36), (E-43), and (E-45) at least yields the desired results

lim Vj =0 (E-47)
Frmo

if Eqs. (E-41), (E-42), and (E-46) are satisfied.
Since, by ratio test, the series jzl j-a diverges for o & 1 and

converges absolutely for a > 1 , for the ordinary'stochastic approximation

we require

o b - o ¥ = —L
so that El Yj and X < if Yj ja

2
j 151 7y

In the general dynamic case, we require that

2d2< )‘2<oo

4517 &y 7o ghi Yy 9y < e and T N .



As Ej is proportional to Agl by Egqs. (E-10) and (E-38), we can let

g, = 0039 : (E-48)

and
4, = 0(3~%) (B-49)

Eqe. (E~41), (E-42), and (E-46) are satisfied if Eq. (E-20) is satisfied. The

constraints given by Eq. (E-20) indicate that the sequence - —% cannot

T3
be chosen arbitrarily. If the optimum set varies too fast (§ < 1/2), the pro-
posed algorithm will fail to track it, Actually the ordinary stochastic approxi-
mation method convexges at the rate of O(j_u), the tracking operation will

definitely fail whenever 6§ > a or 8 > a .

In {36}, it is assumed that

1 -
gjﬂ gj 1+ j) L(_e_j’j) (E-50)
Then 7 -
(1 + %)
T ' _
gj = (grad 1.j - a+ %) | (E-51)
‘ 0 1
: (1 + 30
1 1. g
= -— Rt E—52
AJ 1+ i O(jo) ( )
Bg= & =0 (E-53)

so that % < a < 1 remains unchanged as in the statlonary case.
It 1s also to be noted that although Yj +0 as 3 + « or the adjustments
become smaller as the adaptation process proceeds, the parameters to be esti-

mated still vary in a way similar to the variation of the optimum set because

£j+1 - L(-c-j,j) for j > = .
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APPENDIX F

SUMMARY OF THE KALMAN FILTERING TECHNIQUES

In this appendix the fornulas for the discrete time optimum-filter
solution are given. Detail derivations can readily be found in the
literature.

Define the following nomenclatures:

gj : sgystem state vector or system parameters
Bj ¢ input or control function

25 ! white noise

Eﬂ : system output vector

A : system dynamics function

G : input constraints on system state

Ej i constraints on observing the state of the

system from the system output

If a linear system is characterized by the difference equations

93+1 A QJ + ggj (F-1)
D = H, 8, +v¥ (F=2)

together with the statistics:

E{y_j} - E{!j} =0 for all ) : (F-3)
Ely, 5';'} - Q akj (F-4)
E{v, g';} = Ry akj (F-5)
Ely, v} =0 (F-6)

The optimum filter minimizing the performance criterion

T -1 -
) R (gdg Dj) (F-7)
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18 described by

PR Gy 23

Jo7

- ¢ - d
where dj+1 the (j+1)-st column of Ej+1

bj+l « the (j+1)-st qolumn of Ej*l
and 51 18 the weighting matrix defined by
T -1
Ko By ha Xy
-1
-1 T T
P = (AP A" 4+ G G
Bt @ha 4 6860
T -1
a4 B B
Ej+l is the outer product of error of the optimal
Bla s B oGt s Gy 7 &)

B-

]

—
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(F-8)

(r-9)

(F-10)

(F-11)
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APPENDIX G

DERIVATION OF EQS. (4,3~32) AND (4.3-33)

3 * The general algorithm has been derived by Eq. (4.3-12):

T
Wipr ™ Byt Loy Yyagldyyg = g 8

where

1
L™ 744

-1 -1 1
Bl = @yt ald T Ny

and

In the stationary case q = 0 , thus

-1 11
+ —
P N

T
B ™ By

Dy41 Yea

or

-1 -1 T
Ty1° Ty F Ly Ly

wnich has & recursive solution

d T

1
e T Y1 G dE e

= T +j§n'—'jkn

(derived in Eq. (4.3-23)

Combining Eqs. (G-1) and (G-2) gives

W = W, + P

~1
L. TFS R 1 e ¢ Gy

41 7 441 5y

-1 ol T
15 %3 T 441 Y41

be the weighting matrix for the stationary case
and

1]
Pivrd Byt By
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(¢-1)

(6=2)

G-3)

(G=4)

(6-3)

(¢-6)

G-7)

(G-8)




be the weighting matrix for the nonstatiomary case such that

-1 -1, T
By ¥ B0 - By D e Ny (6-9)
Since from Eq. (G-6)
Pt e op
b (G-10)

we can write for large )

T

1

¢ H+1 L4 < (Pj+l + Bj+l) (G-11)

Ly n << (P, + q i1

¢ =3+l H+1 3 = (6~12)
Thus, Eq. (G- 9) becomes

(®,,, +B3,_ 0 = (¢ +qD7L

j+1 3+l N (G~13)

~ince Pj = O(j-l) and Bj + B = const., we can write

P, << B, for large j
or from Eq.

B = ¢ (G-14)
“nich is Eq. (4.3-32).
Returning to Eq. (G-7) since for iarge §

P’ = P 4+ B =3 = R = R - (G—'].S)

ST e ¢
the corresponding algorithm bocomes
- S . - ne ..

Wipr = By Fogy (4 - v W) (5--16)

Comparing with the crdinary algorithm
T W
B T H Ty Tya By T a By (G-17)
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we can replace vy by 73 such that

t - 75 + B = Yj o+ s. (G‘IB)

¥ 3 s

which ig Eq. (4.3-33) which has B = 0 for q = 0 .
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I__ Introduction

The present report extends the amslytical techniques outlined in
Progress Report No. 37 ("Optimum Passive Bearing Estimation in s
Spatially Incoherent Noise Environmemt," by Verne MacDonald and
Peter M. Schultheiss) to the physical situation shown in Figure 1. A
linear passive hydrophone arrsy is used to estimate the bearing @
of a distant target in the presence of ardistlnt interfering acoustical.
source at bearing ¢. The linear array contains M hydrophones arbitrarily
placed at points (Rl...,Rm) relative to an arbitrary origin. Bearing is
measured relative to an axis perpendicular torthe array axis. The target
signal wavefront and the interference wavefront impinging on the array ..
are assumed to be essentially planar; this sssumption implies that the
target and interference ranges are much greaster than the array lenpth.

‘We obtain a theoretical lower bound on rms bearing estimation
error through the Cramér- Rao inequality, and we compare this bound
with the rms error of a modified split beam tracker derived in
Progress Report No. 29.

As in Progress Report No. 37, we neglect any inhomogeneities of
sound velocity or attenuation in the water., Ambient noise is assumed
independent from hydrophone to hydrophone, with equal power and identi-~
cal spectra at all hydrophones. The results obtained here are intended
primarily to show to what extent a distant point-source interference
deprades tarpet bearing measurement accuracy, but the results also in-

dicate at least qualitatively




the affect of any directionsl (coherent) -oxponent of noiss,
irreapective of how this component ariseu. In this report, the
interference bearing is assumed to be known; a future report will treat
the problem of an interference of unknown bearing.

The procedure for obtaining the Cramér-Rac lower bound is
straightforward, but the details are extremely laborious. For that
rTeason, only selected intermediate resulte are presented in this report.
A cumbersome result is obtained for arbitrary signal, interference,
and poise spectra and hydrophoune spacing. This result is made some-
what more manageable by the assumptions:

1. ambient noise power much greater than signal power.
2. eignal, interference, and noise spectra of identical form.

3. uniform hydrophone spacing.

11 Sketch of the Procedure for Finding a Theoretical Lower Bound
on Mean Square Bearing Estimation Error

Let p(gje,Q) be the joint probability density of the hydrophone
data x for specified target bearing 6 and interferance bearing ¢. The
Cramér-Rac inequality places the following lower bound on the variance
of any estimate 6 of 8 based on X.

2
=7 (1 + db/dg)
(1) (e-90) > 7 &
-3 log p(x }6,¢)

862

Here b is bilas, and overbars denote averages with respect to the dis-
tribution of x.

The data x ey take any legitimate form, such as time samples or
expansion coefficients of the waveforms produced by the hydrophones. For

analytical convenience, we let x be the vector F of the complex

[




coefficients of exponential Pourier series expansions of all hydrophone
output waveforms over a time irterval (-T/2, T/2). If the output of the

ith hydrophone is represented by ti(t). then the Fourier coafficients

take the form
T/2 “fo, t
(2) Fi(mk) -.] fitt)e dt (i=1,...,M)
-7/2
(3) w ~w, + 25k/T (k=1,...,n)

We will take w, the lower limit on the rrocecssed bandwidth to be O,

J J
but it need not be. Our data are then arrayed in the Mn - dimensional

vector

(4) F = Fl(ml),..., Fk(wl);..., Fl(mn)...., %(mn).

If s(t) and 1(t) represent the signal and interference components
respectively of the waveform at the array origin, and 1if n,(t) re-
pregents the ambient noige component at the ith hydrophone, then the

time waveform at the output of the ith hydrophone 1is
(5) fi(t) = s(t-bi) + i(t-Gi) + ni(t), with

(6) 8, = (r /c) sin @ & = 7(:1/c) sin ¢,

where ¢ 18 sound velocity. We assume that s(t), 1(t), and all {ni(t)}
are stationary zero-mean Gaussian processes, with the result that all
components of F are stationary zero-mean jointly Gaussian random

variables. The joint probability density of F can then be written as

1 - derived in Appendix A.




. 1 29T g e, 0)p
(M pcele,e) "o e , ,=
(2r)"™" cet R (8,4) '

vhere T and * indicate transposition and complex conjugation, respectively.

The elements of the correlation matrix R are

B Ry k3. "5F QW) F ().

1

Appendix B represents R, det R and gf in detail.

% 1 Cnce the forms of det R and 3_'1 are established they ean be substituted
2 } into the probability density (7) and the Cramér - Rao inequality (1)
can be applied to this probability density. As a matter of terminclogy,

:; 3 one may wish to view p(ZJB,Q) as being a likelihood function

L(8) or a conditional likelihood function L(8|4). -

IITI Results for Arbitrary Spectra and Array Geometry

When the Cramér ~ Rao inequality (1) is applied to the joint
probability density (7) without any new assumptions or approximations,

.

the following general result is obtained after many tedious steps:

9 (6- §)2 = var () 2 (1 + db/ae)? -

n k22 2 M1 M N

. 2(8T) w, cos” g 2(1“)2 . 5 (e mri)oin " .
2 & K T1TF)I8204

kel ¢t D D 1=1 =141




g . N ;;u Iz ('1“'3;2 =1_ i 2( -2f Ity (r1+rj) +
2 ful j=i+l ? fo1 ui+1 P71
1F M : M
M E L
Zm':itj + 2(2: tpz }cosi k + ZI( r 2) - rp% s
Del 3 p=1 P p=l
where
M-1M "
1) o* & o2 + i s + 51K -2 F cos,, 1
1wl jei+l
k & ri-r] (ein 6 - Bin )
(11) »:l.ni.1 gin [: rami %

T, -r
12) cosig 8 cos [;%:_1 w (sin & - sin ¢€:] .

and the details of the mnotation are:
6,4 : target, interference bearings, respectively

{ti}: hydrophone locations

- ¢ : sound velocity
k : frequency index (1,...,n)
1,j,p»q : hydrophone indices (1,...,M)
(Sk,Ik.Nk) = [5(wk), I(uk),u(wk)] : signal, interference,
and noise spectra, resp.

We shall assume that the observation time T 1is sufficiently large
go that negligible error is introduced in (9) by converting the sum over
the frequency index to an integral with respect to frequency. If one
multiplies all terms in the summation over k in (9) by the factor

(TAw/271), which equals unity, and then lets Aw -+ du, the result may be

written




“ * 2 2
(13) (6 - 8) a (1+dbJde) +

M-1 M 2

“n 2, .2 2 2 £ I

[ IS (ww'cos” 8 J21%(w) | | ‘”1”5’ siuij(w) o+

; 7 €2 D(w) ' D(w) ge1 juitl

wl {

M-1 bk M-1M
N (w)+MI {w) oz (:-1-::3)2 _I(w) Lz {-{z 'p) (riﬂj) +

N(w) 1=1 j=1+1 N(w) i=li=l+t  |p=l

H

.2 2\ £ @
ZErirj + 2[* rp )) cosij(m)+2 t tp )—2 rp dw
p=l p=l p=l

zz Results For Weak Signaly Identical Spectra, and Uniform Spacing

In order to obtain a less cumbersome result, we now make the

following assumptions :

(14) N(w) >> MS(w) w & s o,

n

(H)EW%HWJWJ'[¥WLEW%MW{} u fwsa
(G(w) arbitrary)

(16) r, = id i=1,...,M

Aspumption (14) states that the coherent sum of signal power from all
the hydrophones is still much smaller than the ambient noise power

at any one hydrcphone. This assumption permits one to neglect the
frequency~dependent part of the factor Dk(IO). Condition (15)

requires that the signal, interference, and ambient noise processes

have identically shaped spectra over the processed frequency band.

Thig assumption 1is intended primarily to eimplify the complicated inte-
gral in (13), but it is actually realistic for certain cases of interest.

If the target and interference are similar vessels, for instance, then




the spectra of the broad band acoustical waveforms emanating from them
may be quite similar. The ambient noise may also be similar in
character to the signal and interference processes, except that the
noise is likely to have a broader bandwidth. The assugption (15) ia
realistic if the ratios S(w)/I(w), S{w)/N(w), asnd N(w)/I{w) remain
close to some constant values throughout the processed frequency band.
The integral in (13) is simplified considerably, since one in effect
replaces the spectra [S(w),I(w),N{w)] by the constants (S,I,N),
respectively. Uniform hydrophone gpacing (16) offers a typical example

of linear array configu;ations, and it converts the complicated sums

involving the {ti} into polynomials in M.
The subatitution of assumptions (14)-(16) intc the general result

(13), together with the assumption that wy # 0 and the definition

w

w_, ylelds the following result
max n

i — =

~ A 2 2
a7 (e-e)2 3 {1+db/d9)" wc D

Tsz w 3 d2c0326
max
M-1
28 0w 1 .1 . 2
D (180 3 § I (M-p)° (y cos(2py) + (py~ 1) sin(2py)}
y
K p=1 2p
i
———v—" V
A A
- GO - Gl
M-2 ¥-1
1 .Y ap-qdpg 2
+ = : 5 2y cos{(p~q)yl+|(p~ady _ 2 sin[(p-q)y
y p=l q=ptl (r-q) (p~q
4
- (;2
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M-2 M-1

__1 . t 1 (M~p) (M-q) pg Ey cos{(p+)yl+ (.(M),z—%—”? sin{(ptq)y]
¥  pel qeptd  (phdP : P
v &
A
-63

—
* Ll + - 1 | bl

N 36
——
de, 1
Py
Mol
I S T O n3-22u2-!_1_4;m3 2y eralpy)+(py’_ 2.) sin(py) >
N 3 3 2 P {z
y p=1 . P - .
)
v
8¢
2 _2 3
(1+db/de) nep
23 2 2 .
TS woax’ €98 ] : - —
21 i L 11
—-— G - e ; =0 - ==
D e T3 6 Gz*“:] +E+(M D - w7365
v : y
Wwre
(I7) 0 E NT ¢ M(S+D) + M(M-1)SI
L u) .y
{19y y = :S‘__C!&-. (sin ¥ - 3in &),

The result (17) can be made more comprehensible by econsfdevi.x
its asymptotic forms for large y (interference remote in beariiy

from target) and small y {interference near target in beariuny:




A. Remote Interference
A
If y >> 1, cthe oscillatory expressions G1:Gy, and G, may be
neglected with respect to Go’ and G5 may be neglected with respect

to (M-Z)Gk, for M >> 1, The lower bound given by (17) 1a then

approximately

A

" T 2 2
_ay2 b4 1 + db/d8 ¥ ¢ D
(20) (8-8) _%L.i).z_

T8 wmax d cos” 0

2z S b 2
I .MM oy LM =M
> 95+ [H-(M 2) NI 36

Further approximations can be made in this result if one assumes
either that ambient noise dominates interference or vice-versa. The
factor D(18) takes different forms in these two limiting cases.
(21) D = | N%+ MN(S+D) MI << N

MIN + M(M-1)IS MI >> N

Substituting (21) into (20) yields
7

(1 + db/cm)2 36 1 cz . N24MeN (MI<<N)
- 2
"= 3 2 2 4 S
22) (5-0)2 2 | ooy 4° cos’e(u’-u%) [1+(M-2)_1NJ
1 2 2 2,
(1 + db/de)” 36n ¢ . N™+{M-1) SN (MI>>N)
3 2 2 4 .2 3 S2
\Tw d“cos e[(u -M )_g_u +zxﬂ

* example : d=2ft., c = 5,000 ft./sec., 0™ 27 x 5,000, (sin6-ging)=1:

then y= (d/c) W ax (8in6 -sing) = 4n




a
-y
.

dL

1f one sets I/N equsl to zezo in the noise~dominant version of

the above insquality, one obtains a lower bound on the variance of
bearing estimates in the absence of interference. Note that the

lower bound in the interference-dominated case is almost identical

to the lower bound in the no-interference case. This condition obtains,
of course, only when the interference is remote in bearing from ths
target. When the number of hydrophones is large, the effect of a
remote interference is equivalent to the loss of 2/5 of a hydrophone *.
Note that we have assumed that the strength of the interference has
negligible effect on the bias b(6).

B. Near Interference

*h
If y < 1/M, one may replace the oscillatory functions in
(17) by the first two terms of their respective Maclaurir geples.

When the target and interference are very close in bearing,

PO 2 2
(23) (s-0)% = L ; dbéde) 36 ; c“p

TS Weax d2 cas 8

o) 1+t L y2
N1

*see Appendix C for explanation.
**example : d= 1lft., ¢ = 5,000 ft./sec., Coax = 2r x 5,000, (sind - siny)=
.003, M= 50; then y = (d/¢) Wy (8100 - sing) =

6r x 10> < 1/50 = .02
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To find the results for the noise-dominant and interference-

dominant cases, we substitute the expressions for D in (21) into (23):

(1 + db/ae)? 36 n ¢ | NP4MSN (MI<<N)
3 2 2 & 2 427 2 2
Tw o, 9 cos 8 QM M) 1 +("-M );_2_,3__} ]
¥ 10
J
2 2 2
—3 l (1 + db/de)” 360 n ¢~  [N+(M-1)5]° 1 (>N,
(24)(8 6)" = Tmmzx dzcosze(MA-Mz)(Hz-l) g? yz y>>3 .1
w1
(1 + av/ae)? 36x el M . I[M(M-1S]  (MIsom
W 3 dzcosze(Ml‘—HZ) S2 y<<3_ N

\ "max
- | 1
By setting (I/N) equal to zero in the first line of (24), we obtain
a lower bou;d on the variance of 8 in the absence of interference.
The last line sets a lower bound on the variance of 6 when the
target and interference are essentially coincident in bearing. A
strong interference at the ssume bearing as the target is seen
to increase the variance of 6 by & factor of approximately (MI/X),
The weak interference versions of (22) and (24) closely resemble
the no-interference result given by Eq.(35) of Progress Report i'0.37.
The primary object of including the weak-interference results in (22)
and (24) is to indicate the first-order effect of an interference on
target bearing estimation accuracy. The situation which presents
considerable practical difficulties is that in which a strong inter-
ference is present. ‘

C. Strong Interference

By substitutins the strong-interference version of D(21) into
the zeneral result (17), one obtains the lower bound for the strong-

interference case with arbitrary y :

c-11

iy e =



j;_}db[dﬂ)z r cz . H—!?
-T2 T 3 dzcosze g2
(25) (e~8)" = nax .
26— L ~6,46,)+0M-2)6,~ 16
Mo y3 17273 4 y3 5

v Split-Ream Tracker Performance

Progress Report No.29 presents results for the varliance of
bearing estimates obtained in the presence of a single point-source
interference with a modified version of the split-beam tracker. We
shall repeat some of those results, which are valid for the following
conditions

1. signal weak with respect to ambient noise.

2. uniform hydrophone spacing.

3. signal, interference, and ambient noise spactra flat over

the processed band.

In the split-bgam tracker, the estimate 5* is obtained by varying
the steering angle 8, to determine for what value of 8o the output
z equals zero. This value of 8, is then teken as 8. The variance of
z,ci, can be derived as a function of 8,8,,4, the array geometry, and
the spectra of the signal, interference, and noise processes. Then

the variance of 6, oéz, is given approximately by the formula

2
o)

(26) og - LA
I3i /880| 60 =8

This formula is valid if ai/aeo is essentially constant for 6, in
the interval (G—o",@*-oé) .
From equations (38-42,85,90) of Progress Report No.29 we have the

the following results (for white or prewhitened spectra):

* The notation used here differs somewhat from that used in Progress Report No.29.
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Ta 3 2 y 2 2y

4n N° [(H._1)2+ 101'-2)2-201'-1) 01" ~2)ain y + 106'-2)stn 2y ]
nax

(28) 3% /aeo

-w S dcos 6 [1-2 sgin y + 2 l-cos 1]1-1' (M'—l)z.
c y 2
y

8o = ©

where M' 1s simply M/2. Substituting (27) and (28) into (26), we obtain

#mcz . _N_z_
Tw 3 cl2 coszeHz(l-i-Z)l' s
max

n
-

2
(29) g

((M—Z) 2+}5 (M-4) 2-2 (M-2) (M-4)siny + (M-4) 2 . singy ]
y 4 y

2
[ 1-2 ainy+21cosz]

)
v y

The simpler asymptotic expressions for large and small y are

(30) 96 nc? N (y>>1, 1>>1)
Twm:.x dzcoszebiz (1-1-2)2 S2

DOIMN
e

(6w N _tﬁ (y<<1), 1>>1)

Tmmgx d2 cosz SHZ (M-Z)A yt' 52

The latter expression becomes unbounded as y approaches zero, that 1is,

as the target and interference bearings converge.

C-13
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Below some critical value of y, depending on all the parsmeters in
z
(30). including #. the expression for ag in (30) becomes invalid

because the condition for the validity of (26) 1s no longer met.

The form of the latter expression in (30), however, suggests the

very reasonable conclusion that it essentially impossible to estimate

a target bearing extremely close to the interference bearing, using

the implementation under consideration. It should be noted that (30)
becomes invalid for any value of y when |cos ©| falls bel;w some criﬁicg}
value, again because the condition on the validity of (26) is not met.

As long as mneither y nor |cos Gl is too small, hﬁ'ever, (30) gives

an accurate and meaningful result.

VI A Comparison of the Split~Beam Tracker Variance with éhe Cramér-Rao

1.7

Lower Bound

Figures 2 through 4 present g graphical comparison of the split-
beaw tracker variance, according to (29), and the Cramér-Rao lower
bound for the strong-interference case according to (25), for various
values of M. In plotting the Cramér-Rao lowe; bound, wve assume that
dh/d® is puch smaller than unity, so that the factor (1+ cn:/de)2 in

%
(25) can be ignored. This assumption is invalid for 0 near * w/2,

but it should be valid for most of the possible range of © simply
because in a good estiratoY¥ one would expect bias to be much smaller
than 2 radian for ali values of 6. If b(8) is a well-~behaved function,
tle condition that L(%) is small implies that db/d8 {is also small

aver most of the allovallc range of 8. The lower bound which we have

plotted is

C~14




(v 2 [ 1 /
T — 1
R %108 p(F|0,9) -

202

It should be remembered that the results for the split-beam tracker,
designated Gs:t , are algo invalid for & near % n/2 and for y very

near zero, as explained at the end of the previous section. !

2
sbt

y for various values of M. In general, this ratioc is the complicated

Figure 4 displays the ratio ¢ / °§R as a function of
quotient of equations (29) and {25), but the form of the ratio is rela-
tively simple for very large or very small y, algso assuming a very

small signal-to-noise power ratio. From equations (24) and (30) we have

(32) i 2.67 (1 + 2.4/M) y>>1, M>>1
o 2
sbt o ‘
2 = ;lli- (1 + g} y<<1, M>>1
o 2 M
CR y

This expression, of course, becomes invalid for very small y, because
Us:t becomes invalid. It does indicate, however, that when the target
and interference bearings are very close, the'variance of the modified
split~beam tracker estimate greatly exceeds the Cramér-Rac lower bound.
The curves for both the split-beau tracker variance (Fig.2) and
the Cramér-Rao lower bound (Fig.3) clearly exhibit an overall vari-

ation as H-a. For y near zero, the curves rise sharply for both the

split-beam tracker and the lower bound.

* It happens that ap(§|9,¢) / 36 = 0 for 0 + /2, The final paragraph of
Appendix A explains that this condition implies that db/de = -1 for

6=t /2,
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It 18 clear in both cases, however, that an increaaelin the number of
hydrophones pushes the “break’ value of y progresaively closer to

zero, in other words, an increasing number of hydrophones should

permit a system accurately to measure target bearings progressively closer
to the interference bearing.

The shape of the split-beam tracker curves varies only weakly with
the number of hydrophones. The lower bound curves, on the other hand,
become progressively flatter, beyond the steep rise for small y, as M
increases; that is, the performance of an ideal bearing estimator should
be essentially independent of the angular separation between target
and interference for a large number of hydrophones so long as the
separation exceeds some small minimum value. For large values of M, the
lover—-bound curves can be approximated very well simply by connecting
the asymptotic curves for large y and small y.

Fig.4 shows that the ratio of the split-beam tracker variance to
the lower bound depends only weakly on the number of hydrophones. It is
true, however, that as M increases, the split-beam tracker performance
edges slightly closer to the lower bound. Béyond the region of small y,
the ratio remains less than about 4 for am arrsy containing 10 or more
hydrophones. The performance of the modified split-beam tracker is
reasonably good, then, unless target and interference bearings are too
close. The minimum angular separtion between target and interference for
satisfactory performance can be expressed roughly in terms of the
beamwidth of the array. The beamwidth 1s determined by considering the
average signal-derived output Z of a conventional detector * as a
function of the puravcoter y', which is defined exactly as y above,

e¢xcept that ¢ 15 now interprepted to be the steering angle.
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The beamwidth is defined in terms of y' as the distance between the
two values of y' for which Z falls to half its maximum value, which
occurs at §' = 0. As an arbitrary standard of adequate performance
one might require that the variance of a practicsl estimator be no
greater than ten times the Cramér-Rac lower bound. From Fig. &4 one
can determine the values of y at which the curves reach the walue 10.
These values turn out tc be approximately equal tc the beamwidth of the
array, assuming a flat signal spectrum with cutoff frequency o *
Thus, by this arbitrary standard, the modified spit-beam tracker offers
adequate performance as long as signal and interference bearings are
separated by at least a beamwidth.

The point at which the Cramédr-Rao curves in Fig. 3 change from

steep to relatively flat can alsc be described quite accurately in terms

of beamwidth. The change occurs at approximately 1.75 times the
bandwidth.

VIl Conclusion

The Cramér-Rao inequality indicates that the presence of a point-
source interference ralses the lower bound on target bearing estimation
variance over that obtained in the absence of any interference. 1f the
target and interference bearings are separated by an angular difference
of more than approximately twice the array beamwidth ,the inecrease in the
lower bound is small. In fact, for a large number of hydrophones, the
increase is equivalent to the loss of only 2/5 of a hydrcphone. If Ehe
angular separation between target and interference is on the order of
a beamwidth or less, the increase 1s substantial. Uhen the target and

interference bearings coincide ‘the worst case the lower bound is

*A conventional detector consists of an array of hydrophones followed by a bank of

variable delays for the purpose of steering, then a summer, squarer, and low-pass

filter.
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MI/N times greater than in the no-interference case. Since in the no-
interference case the lower bound varies as n'a, the iower bound for
g 3 the case of coincident target and interference bearing varies as

H_3. In theory, then, even this lower bound can be made arbitrarily small

by making i sufficiently large , while all other parametars remain
constant.

E ] The modified split~beam tracker discussed in Progress Report No. 29
{ ylelds a bearing estimation variance no larger than &4 times the Cramér-
Rao lower bound, as long as the angular separation between the target
and interference is greater than roughly twice the beamwidth. If the
angular separation is substantially smaller than a beamwidth,

however, the bearing estimation variance is unsatisfactorily large.

If the target and interference bearings coincide, this implementation
is cowpletely incapable of measuring target bearing. Thus, although the
modified split-beam tracker offers reasonably good performance when the
interference is remote in bearing from the target, it is unsatisfactory
when the target and interference are very close in bearing, and a

different implementation must be sought for this case.
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Appendix A: Derivation of the Crawér - Nao Inequality

Begin by writing the following equation, which is in effect a
definition of blas b(8), as the discrepancy between the mean value

of the estimaze 8 (x} and the true value 8:

(a~1) .é(_l_l_) - J 5(1{) P (1, é,‘#) dx = &+b(e),
R
x

vhere Rx is the domain of x. Now differentiate both sides of (A-1)

with respect to 8:

- 3p(£‘9,¢)
(A-2) J 8(x) ———-—— dx = 1 + db/d®

R a0
x

Let £(8) be any function of 8 which is not a function x.

an(xle,e) 3 d
(A-a)f £(8) ————— dx = £(0) ——I plxlo $rax = £(6)—(1)=0
L LI 26

X x

Subtract {A~3) from {A~1); multiply and divide the integrand by

px|e,):
[ " ] 3p(_}£‘9,¢)
(A-4) I 0(x)}-f(8) ————— dx
28
R
X
. 1 ap(x|6,¢)
- J 8(x) - £(6) p(x]6,¢) dx
pixle, ) a6

Fx

. 3log p (x]6,4)
= [ [B(E) - f(e)] p(§|e $)dx = 1 + db/de
30
Ry

The Schwarz inequality reads
- 2
(A—S)J 'fz(gc_)dgc_ I gz(lc_)d_:_:_i ” f(g_t_)g(g_)dg]
R_x_ Rﬁ RE
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Let £ (x) =|6(x) - f(ﬂ)J' p(x|5,4) and

3log pix|¢,s)
: g(x) & "";;""“ Vp(x|8,6) Apply (A-5) to (A-4):

R

! . 5 - :
: (A-6) f [e(:) - :(e)] p(xle,e)dx l’“ﬁ PO | Lixle 9)ax
! X 5_

2 (1 + do/de)?

This inequality is equivalent to

(A-7) [8(x)-r(0)1% 2

Equatidn (A—?) holds for any f£(6). Using variational techniqueﬁ,
one can show that the choice for £(6) which minimizes the left side of

(A=7) 18 £f(6) = 6 Thus for arbitrary £(0),

e —

B0 ¢ (o0)-s

2+ db/de)?

alog p(xle, 9 P

30
Tre right side of (A-7) is often derived as a lower bound on mean
suare error (f(24)s3), and so 1t is. It should be emphasized, however,
that 1f bias ts present, mean square error cannot achieve this lower
bound. A tighter lcver hound on mean square error 1s as follows:

~ EEERE ' 2
(1-9) (e-e) - h (= )4(:.-,1) 2 b (8) + sl"‘dbédez ~
2log plxlA 4) |

36
4
The rightmost two memberz of (A-3) are seen to be equivalent to (1)

thrOugh the following fdentity, which is proved in various textbooﬁs'1
. For example, Harry L. Van Trees, Detection, Estimation, and Modulatian

Theory, Part 1, Section 2.4,
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(4-20) 2log plxje.4) |° ;T

- -3 log p(x]6,4)
.. $ 28 ‘ a8

A point deserving comment is the question of what properties, if any

are common to the bias functions associated with all possible estimators

6{x) which might be used in the same situation. The derivation of the

Cramer-Rao inequality indicates one fact about the derivative db/d6.
Suppose that the derivative 3p{x|6,4)/36 equals zeroc identically for
some value of 8, which we shall designate as 8y, independently of x.

According to (a-2), then, unless 6(5) is infinite, db/d6 must cqual

‘.‘_u,i. ,_.,.
e e e bt NN RO

-1 for & equal to 65, sc that both sides of (a-2) =2qual zero. Since we
3 know that 6 is restricted to a finlte interval, the possibility of an
é infinite 5(x) is unacceptable. The only conclusion that can be drawn,
fE therefore, is thet db/d9 must be -1 at the poin:c 8, for any acceptabie

estimator 6(x). This conclusion may be repeated syubolically as

;§ [3E(x§ﬁiél =0l QQ‘ = -1
B (a-11) 38 5280 48 lgag,

Note that the behavior of db/d8 away from the point €, and the behavior
of b(3) at all points are in no way specified by (p-11). These depend

on the specific form of 6(x).
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g - Appendix B: The Correlation Matrix R, its Determinant, and its Inverse

We shall atate the form of the correlation matrix, its determinant,

| R and its inverse without proof, The vector F is written at the edges

Lo of R to indicate which two elements of F correspond to each element
0 of R.
i 1.1 1 1,1 .1 F, (w,)
= @-1)] sertent a],874b,,1 coeap S ¥bT (A1
E 11,11 .2.1.1 111
b a8 +b,,1 ST+ITHN reelnyS +b2MI ...} all Fz(wl)
N . . . ' elements :
- 1.1,1.1  1.1,.1.1 1,.1.1 zero
R=T/2 aMls +bM11 aMZS +bMZI as o STHITHN FM(wl)
. n, 0,0
3 SHI 4N L. IF, (v )
all elements zero ceo : I
— -‘w
Fl(wl) Fz(wl) ...FM(wl) ves Fl(wn)... -M(wn)
-A43 § =8
kB ejwk(&i a3 Ky ejwk( { J)
13 y =
A, & (r,/c) sin ® 8 é(t )c) sin §
¢ r,/e) s i i

sk 1% nKy  AlSGe) . TG, N(w, ), ]

8,6: target, interference bearings, respectively
S(w), I(w), N(w): signal, interference, noise spectra, regpectively
T: observation time

{ri}: hydrophene locations
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¢: sound velocity

g i,j: hydrophone indices (1,..,M)

k: frequency index (1,...,n)

Both R and _lfl have the property that only the elements of the
MxM diagonal submatrices are nonzero. Each of the n diagonal submatrices
corresponds to a different frequency but has the same form.

(8-2) det R =

Mn n M-1_M
(x/2) 12 {(N“)2+m~x“(s“-n“)+s“1“[nm--l)-2{_‘1 ) cos !;.j]‘}
kel =1 j=1+1
where
Ty7Ty
(B~3) cos l;f‘.j g cos [ - wk(sin g-sin ¢)]

In the absence of interference, det R is independent of 8, but with
interference present, it depends on both 6 and #.
The elements of _1_1_.1 are as follows, with {,} hydrophone indices,

and k,L frequency indices:

(8-4) ®r! ask-(nk)“‘3
i,k;3,£ = X
T det R
k.2 K, k.. k Kk wea K
(N 4+ (M-1)N (S +I )-i-SKI [(M-1) (M-2)-2 Z z cos _ ] (i=3);
p=1 gq=p+l Pl
P!q*i
M
ko k ki ok ke Kok, ok ke ko ko Kk {
N “135 +bijI Y= S IT[2 2X"13+bij) z(apjbip+aipbpj)] 141,
p=1
p#i,)
where
1 k=i
{B~5) Gk
0 ked
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Apprndix C: Equivijent Cost in Hydrophones of a Remote Interference

The two limiting forms of the result (22) indicate that the factor
& 2 ) o 4 2 3
(M ~M7) in the no-interfercnce case (I/N=0) changes to [M -M"-(8/3)M +2M]
in the remote-interference case. The equivalent cost x in hydrophones is
found by substituting (M-x) for M in the no-interference expression and
setting it equal to the remote-interference expression.

4

(c-1) [(M-—x)l‘—(M-x)z] =M --M2~(8/5)M3+2M

3 4

9
,M“-I.M x +... -(r-(2 oo.) = MM o~ (8/5)M3 +...

x = 275 Fer M>> 1

Thus, having a strong remote interference with M hydrophones 1s in a

sense vyuivalent toonoowiae no interference and (M - 2/5) hydrovhones.
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SUMMARY
Space-time Properties of Sonar Detection Models
James Peyton Gray

. April 1970

A measure theoretic structure that is general emcugh to encompass
most models of sigral detection is used to investigate singularities
in models of sonar detection. Singularities that appeared in previous
sonar work are shown to derive from simplified modeling of sound
generation and transmission., The existence of singularities in a
model of sonar detection is alsec shown to seriously restrict the
usefulness of that model in investigations of sonar array design.

Finally, methods for avoiding singularities are discussed.
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1., INTRODUCTION

The problem addressed in this dissertation di1d not just materialize
out of thin air, but rather evolved during an investigation of algo-
rithms for sonar array design. 1In this chapter the sonar array deéign
problem will be analyzed and the relevance of later chapters estab-
lished. The link between the analysis and the subsequent work ig
the question of singularity of models of passive sonar detection as
the number of hydrophones increases without bound. In the limit,

this means continuous observation.

1.1 Sonar Array Design

Passive sonar detection systems extend from sensors (hydrophones
used as acoustic energy *o electric energy transducers) o oﬁtputs
which range from simple audio for human interpretation to complex
situation displays of diverse kinds. Too complex to be designed as
a whole, these systems must be partitioned; the traditional parti-
tioning allows a single lead out of the array subsystem into the
post-array processor and assumes that the spatial processing is to
be done in the array subsystem and time processing of the resulting
signal is to be done by the post-array processor. This yilelds a
factored sonar detection system in the sense of Middleton [1]
(Figure 1.1). That is, there are two operators: one, the array
processor, is a function of hydrophone position and signal location,
but is independent of signal and noise statistics (the signal is

assumed to be a stationary point source). The time operator is
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dependent upon signal and noise atatistics, but is independent of
the array geometry and target location. This factorization leads to
advantages in design, consttQCtion and operation that are manifest.
Iu wmany cascs these advantages moxe than offset the sub-optimal
performance of the factored syatem.

Under these conditions, -designing the array means placing the
hyd:ophones and combining their outputs to maximize somewfigﬁré of
merit at the array subsystem output., Array output SNR 1s often used,
with delayed summing, i.e., beam-forming, as the processing. Alter-
natively, if the signal is confined to a narrow frequency band,
beam width or the ratio of main beam level to maximum sidelobe
level may be used. Although the cost is increased considerably,
the beam width and side lobe levels can be partially controlled by
introducing shading factors. Other variations in the array proces-
sing that have been investigated include multiplying the outputs of
several phones together before delayed summing (Shearman [1]) and
hard limiting the signals before delayed summing (Anderson [1],

Usher [1], Schultheiss [1]).

o '
. :\ Array Time

Processing [————————B Processing —& Output

L J L J
| T

Array Subsystem Post-array Processor

Figure 1.1 A Factored Detection System
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Within this basic beam-forming approach, relatively little

attention has been paid to the question of hydrophone locatiom.
For instance, Skolnik, et al [1] used dynamic programming (Bellman
[1]) (even though the principle of optimality does not hold) to
position hydrophones in a linear ;tray for "best" beam patterns.
Their paper contains references to reléted design approaches. The
mbte usual design method is to assume an ad hoc array geometry and.
then to compute beam patterns and shading factors {(Lowenstein [1]),
sometimes with explicit inclusion of inter-phone acoustic coupling
and the directionality of each phone. This computation is so
involved that an optimization algorithm (for phone position) based
upon it {s impractical.

Even if the compufation involved were reasonable, conventional
beam pattern optimization suffers from a serious defect: the beam-
forming/time processing type of detector is not optimal. Ian fact,
the optimal detector factors into separate space and time processors
only under very restrictive assumptions: if the spatial processing
is to be done first as in conventional beam-forming, a strong signal
assumption must be valid (Middleton and Grogimnsky [1]). If the
detector is to be optimum for small signals then a portion of the

time processing must be performed first (Goode [1]}, Bryn [1]), and

the observation time must be long. This fact is especially pertinent

today, when the optimal processor can Se implemented digitally as
a special purpose computer, for, there is no reason to believe that
an array designed for beam-forming is the best arr;y for use with
an optimal processor. Consider, for instance, a noise source

located within the volume available to the array: a beam-forming

D=3
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algorithm would put all the phones at a distance from the noise
source, while an optimal processor would place one phone right on
top of tt;e local noise and then subtract the local noise from the
other phones.

One man has considéred array design with optimal prdcessing;
N.T. Gaarder, In his diébertation and two closely related papers )
(Gaarder [1][21{3]) has‘found optimal radii for circular point
detector arrays when a l;klihood ratio processor is used on the
array outputs. Unfortunately, his results depend in an essential
way upon a trick.evaluation of the eigenvectors of the covariance
of the noise.f# For our purposes, however, the.chief defect in
Gaarder's work is the assumption of isotropic poiae; an assumption

vhich he considers essential to the analysis (Gaarder [2] page 48).

F This trick is the same one used earlier by Vanderkulk [1)
and depends on the point detectors being arranged at the k roots
of -1 in the complex plane. Gaarder does not seem to have been
aware of eithur Vanderkulk [1] or Bryn [1], at least he does not
reference them in Gaarder [2] or [3].




1.2 Array Optimization Algorithms
Why éﬁs Caarder been the only one to consider array design
with optimal processing? Simply because any general spprosch must
founder on the shoals of numerical analysis. In order to illuminate
this point, we -will try to formulate an array optimization glgorichm
for 1iklihood ratio processing of the array outputs. - |

Let the observed pressure field be §(xj,t)=£ (t) at each of k

3 )
point sampling hydrophones where x4 is a vector in 3-§bacé. A set
of n linear functionals {f;} can be applied to 5J(t) to derive a set
of obgervation coefficients. These can be arranged in a single
vector nt
nm-(cj »£4) m=itn(i-1)

We can form the likli-hood ratio:

A(n;=Frob(ne{signal4noise})/Prob(ne{noise alonel)
Assuming that signal present and signal absent are a priori equally
probable, assuming small SNR, and assuming independent Gaussian
signal and noise, a well known computation yields

A‘-21nA(n)=(q.R*1QRfln)
where Q and R are the covariances of the signal and noise processes,
respectively. A° is a function of the n<k observations Ny but it
is also a function of the 3k coordinates

x-{xj} J=1l...k
For small signals at the input, the output signal to noisé ratio

is a measure of the detector's performance. Some algebra gives

SNR, (x)=Tr (" 1gr"1Q) 7 ((Trr-1Q) 2+2Tr (=~ 1qr"10q))




This expression reveals the essantial difficulty that aay
optimization algorithm must overcome: the independent variables,
x-(xj) 3=1,...,k enter the function SNRk(x) through a matrix
inversion. This weans that the principle of optimality does not
hold, so that a simultaneous optimization in 3+k variables is
necessary instead of the k optimizations in"3 variables that could
bé handled easily. Needless to say, an analytic derivation of the
extreme points is very difficult, and has been carried out only
by Gaarder [2] and only in a very special case. ;

The computation of SNR, (x) at a single point x is a formidable
task, especially since the values of k which are of practical
interest are in the 100+ range. Since the inversion of a matrix
much larger than 20 by 20 is generally conceded to be possible
only after extensive study of the particular case,* a straight
forward computational appreoach would be a massive undertaking.
Prodigious amounts of machine time and spveral man-years of effort

could be consumed with no guarantee of success except for small k.

* Wilkinson [1]. Matrix inversion algorithms fail on matrices
that are ill-conditloned; correlation matrices are genmerally ill-
conditioned. Extensive study of a given matrix would be needed to
estimate the depvee of ill-conditioning and adapt an inversion
algorithm to 1. ¢.ecial techniques, such as the use of programmed
multiple-precision arithmetic might be needed to do the job. All
of this implicitly assumes long detection times so that the linear
functionals can be Fourier transform coefficients. In this special
case, R will cousist of n uncoupled k by k submatrices or the main
diagonal leading to a much easier inversion of R than is the case
for a general R




i

Bemaiog once ssid "“The purpose of cowputing is insight...”
(Hamming {1]). At the very least, then, before making sn investwent
of the magnitude esrimated above, one would like to have some hope
of & substantial reward of insight. In this case, one would like
to know that the optimized array would offer substantially improved
performance. This means knowing that i

e SR (x) = SRy (x)
is at least 5 oxr 6 db, whgte X, represents any reasonable array
geometry-uniformly distributed hydrophones for instance.

It 18 clear that max SNRk(x) is a strictly increasing* function
of k. One way, then, t: estimate Ak for a particular signal and
noise distribution, would be to substitute 1im max SNRk in place of

. k x
max SNR, . Unfortunately, the limiting value is less available than

X
the maximum. If the limit exists, though, Ak can be estimated
thusly: taking L>>k,

8, =5NR; (x;) = SNR, (x5) + &; + g,

AL-m:x SNRp (x) ~ SNRL(xO)

Ey~max SNR, (x) ~ max SNR; (x)
where 1L increases to 0 as k and L go to infinity and 4; decreases

to 0 as L goes to infinity. For fixed k and large enough L, then,

4, 1s approximated by

Ak’-Ak—AL-EkL- SNRL(XO) - SNRk(xo)

Add an additional hydrophone at xkix for all xjei.
Since it picks up some signal power, its output Improves the
performance of the optimal detector, so that there exists x* for
which

* Let x be the point at which SNRk_l(x) attains its maximum.

max SNRk(x)>-SNRk(x*)>m§x SNRk_l(x)
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vith an error which is positive for large emough L. Thisz wmeans
that if we compute Ak‘ and it is small, then there surely is not
enough reward to justify a large investment in array design, at

- least for that particular signal and noise model. On the other
hand, if Ak‘ iz large, then we can not be certain of a substantial
reward, but we can be hopeful. In words, thies eatimate is derived
by comparing the detection performance of systems with m;dé;;tély
dense and highly dense hydrophone arrays, where the arrays are
both in the same volume. -

The underpinning of this heuristic calculation is the existence
of 1ﬁm max SNRk(x) *, Or, put another way, the model must be non-
singular in the limit of continuous observation. This first step
is not trivial; many ﬁodels of passive sonar detection are singular
in the limit of continuous observation. The body of this disser-
tation is devoted to understanding why this is so, and determining

how to avoid it.

" The particular expression given for SNR(x) is valid only for
small signal it the output of the detectwur. The difficulty in
evaluating R™* still remains in any figure of merit for the optimal
detector, however.




1.3 Previous Work in Singularity of MNodels

In the last section we sawv that {f & model is singular (li.e.,
if detection 15 perfect) in the 1limit of continuous observation
then it will not be useful in array desipn. We are led by this
route to consider singularities in detection models.

A model is a mere semblence, a mathematization of a portiom
of reality. As a comstruct it can best be judged by its fruitful-
ness; as an image of the real it must be judged by the faithfulness
of its representation. WNow, singularity as & property of the mathe-
matical model is neither good ner bad but merely interesting.

VWhen considered as a reflection of reality, however, it is an
effront to our sensibilities - experience teaches that nowhere is
there perfection, everything is fuzzy around the edges, nothing
works perfectly. Therefore, a singular model can not be a faithful
representation of the real. '

Of course, singularity is a fascinating subject in its own
right, but, to deepen our understanding of the world we need models
of greater faithfulness, which in detection thecry means non-—
singular ones. The tension implicit in this statement is reflected
in the literature dealing with singularity: it has been studied
by two nearly disjoint sets of workers. On the one hand stand the
mathematicians and closely related types (e.g. Yaglom [1]).
Generally speaking this group has concérned ictself with conditions
for orthogonality or equivalence of Gaussian measures (so-called
structural questions). This problem was solved to a purist's
satisfaction by Feldman [1], who proved that two Gaussian measures

are either orthogonal or equivalent. This result was proved, at
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With the exception o£‘51epian [1] (and he is not an engineer by
training) the singularities have variously: been accepted without
question (Martel and Mathews [l1] ); been considered relatively
unimportant (Vanderkulk {[1], Gaarder [2][3)); been eliminated by
addition of a white self-noise at the detector (Root [1}). The
white noise solution to the singularity dilema works wellrgnough
when functions of a single variable are under consideration, but,

as both Vanderkuik and Gaarder show, array based detection models can
be singular as k increases to infinity even in the presence of white
noise at each point detector, although detector performance, as
measured by the array gain, does increase extremely slowly with k.
This is a puzzling behavior, and although it raises serious questions
about the adequacy of the models that are being manipulated*, neither
author offers a discussion or rationalfzation.

There has not been, *hen, a satisfactory treatment of model
singularity, especially for non-gaussian problems and for somar
models. The remaining chapters offer a treatment of singularity
in models of detecticon and communication which is useful in sonar

and which is independent of the random processes involved.

* If detection becomes perfect as the number of phones, increases,

how can one be sure that the model is close to the real world, unless
a comparison with a betrter model has established a range of validity

for the simpler one?
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2. MODELS OF COMMUNICATION AND DETECTION SYSTEMS

That system analyses are performed upon models of reality is
obvious. It is less so that problems more difficult than perfor-
mance evaluation deal not with models but with classes of models.

For example; questions of system sensitivity force consideration of
all those models which are close, in some metric, to a given one,
while system synthesis means attempted maximization of a'performance
criterion over a collection of models, These facts make an explicit
discussion of classes of models desireable.

The basic theme of this chapter is the introduction of classes
of models, which is accomplished in sections 2.1 and 2.2. Some
basic mathematical problems are discussed in section 2.3 and then
‘two examples are presented in section 2.4. In 2.5, several methods
of topologizing a class of models are discussed. In section 2.7 common
performance criteria are derived and applied in an example. Finally,
singular models are defined and their effects evaluated in section
2.8. The final section, 2.9, is an example of singularity sneaking
into a non-factorable wmodel

A moderate background in the measure theoretic development of
probability theory is required for this chapter. Knowledge of Halmos
[1] or Kingman [1] 1is sufficient. In a&dition, the development of
stochastic procusses as probability wmeasures on appropriate spaces
of sample functions is assumed. The first and last chapters of
Parthasarathy [1] contain relevant material. Notation is standard,

or is defined as it appears. Distribution is used synonymously
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with probability measure, Operator, map and transformation are
used to mean function. Supp(u) 1s any support of the measure u,
while supp(u) is the closed support of u, that is, the smallest of

all of the closed sets which support u.

2.1 The Concept of Classes of Models

By suppressing all detail, a communication or detection (C/D)
system can be modeled by an operator which maps a set of source
messages into a set of estimated source messages. See Figure 2.1.
But, it is the detail which is of interest to the aq&lysc; this
internal structure may be modeled conveniently by a serics of
composed operators, as in the example displayed in Figure 2.2.
Models of particular C/D systems may require different operators,
but the general structure shown is sufficient to represent all
open-loop C/D systems.

Since C/D systems are probabilistic in nature, the operators'
must be stochastically determined; this is depicted in Figu¥e72.3.
The model, taken as a whole, must then be a probability space, but,
one with a rather complicated internal structure. A point in this
space for the example consists of a single source character, a,
and four operetors, g, n, t, e, so that 4, the estimated signal, is
related to a by

a=(gonotoe) (a)
Another point might consist of the same original message a, fol-
lowed by a different set of operators, g0 My» tl' e), SO that

al-(glonlotloel)(a)
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More
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Figure 2.2
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Figure 2.3
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Tﬁis representation of C/D models leads naturally to consi-
deration of classes of models. By limiting membership in the sets
A, W, V, R, E, T, N and G, a'particular class of models can be .
constructed which embodies the constraints imposed on the C/D
system by the outside world (in jargon, by the supra-system of
which the C/D system is a component). Different measures u then
represent different models. Questions of optimization, seusitivity
and the like, which imply a reference class (find the optimal system
in this class of systems) can now be discussed with the universe

of permissable systems explicitly represented.

2.2 Definitions

Having motivated everyome, it is time to be more przcise.
We begin by formalizing the discussion given in the preceeding section.
Let Si be a complete metric space with metric di(‘,') and obtain

a measurable space, also denoted by S, where no confusion can result,

i
by generating a o-field Bi from the open sets in Si’ Elements of

Bi are Borel sets of Si and B, is the Borel o-field of Si.

i
If 82k i1s a space of measurable mappings of 52k—1 into S2k+1

for k=1,2,3, ... L and u is a probability measure on the measurable
product space

=8 x S x 5, Xx...%x S2L = @I S

1 2 4 Z JeE 3

where

E={1} union {2,4,6,...2L}
then the 2L+2 tuple

M-(Sl'SZ"..'SzL+l'u)
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is calléd a level L C/D model. It will also be called an L-stage
(C/D) model.

That this definition is not vacuous is demonstrated by the
following example. Let 51-53-(3,3), that is, the real line under

the standard metric. Elements of S2 will be additive translations:

if t €S, then
a 2

t 15,5 ta=s, for all acR

82 becomes isometric (and isomorphic with respect to addition,

although that does not concern us here) to S, and 83 if we take

1
dz(ta,tb)nia-b!

hence Sl’ 82 and S3 are all complete separable metric spaces.

Since elements of S, are clearly measurable mappings, every 4—tuple

M=(S 53’“) where u is any measure on §=5,%5, 13 a level 1 c/D

12520
model or a one stage C/D model.

Por odd j>1, the measure u should in some sense induce a
measure, call it uj, on SJ. Let C(Ti) be a measurable‘cylinder*
set in S with base Ti in Si' Define (for even i only)

ui(ri)EV(C(Ti))
so that My is the marginal measure on the measurable space Si.
Now extend this notation to prism%sets*. If F is any subset of
indices from the set E, then C(T') is the prism set defined by
c(T.)= I C(T,)
F jeF 3

* Cyliader set as defined in Cramer (1], page 17. Prism set is
his rectangle set when the index set F contains only two indices.
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where ghe C(Tj) are all cylinder gets. Obviously, .
u(T=(C(T)) - <

defines a marginal measure oﬁ the measurable product gpace I Sj

Taking JeF
22n=(1,2,4,...,2n) for all n>1

we are now able to define an induced measure for odd k by:

Y  (B2.1)

~ -1 -1 -1
v (Q= S x. (t, 7otz 0. .0t 7 . Qu (de.dt,...d¢L
k ns tl 2 4 k-1 Ek-l 1772 k~1

5“{-1

where xtl(Z) is the indicator function of the set 2 (that is,
xc(z)=l if tez, apd 0 otherwise), This definition holds whenever
the integral exists. If the integral fails to exist; ¥y is unde~
fined. C/D models of such a pathological nature are interesting
in the same way that the plague is: both are to be avoided. There
are interesting mathematical problems here; they are discussed
in section 2.3.

An important simplification in this relationship occurs when
v 1s a product of marginal measures, that is, when the stochastic
operations of the model are independent. In that case,

u-”lu2"4"'"2L"J2£"j (E2.2)

and

by (@)= éuk_zcc‘lan_lcdc) for all k odd>1

k-1
A C/D model with this property will be .termed factorable.
When the target space Sk is gﬁ, the distribution s equivalent
to a density mp (allowing the densiiy to be a generalized function):

mk(x)= J mk_z(t"lx)uk_l(dc) (E2.3)
S
k-1
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If ¥ 1 has an associated density:

-1
u Q)= Si 1uk_z(t Qm_, (t)de

and if both mk_z and mk—l ex;st:

m (x)= S mk_z(t“lx)mk_l(t)dt
Sg-1

Conditional probabil}ty calculations play an important role
in detection theory, so it will be well to consider conditicning
of C/D models, Suppose that a particular character has been
transmitted, and define |

z;n-{z,a,...zn}

S =W §

n JeEY 3

n

and let t be elements of S;n.v If puk= fu we see that
s

k+l
Extended to set conditioning: (for ul(R)>0)

1
ud @= 7 x (e lugay
k+l . a— =
Sk
k
is the measure induced on S conditioned by transmission of a.

Mg (@Q=Cuy (R D (O (o)
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2.3 Induced Mcasures*

In section 2.2, C/D models were defined which consist of an
original space of randomly chosen characters and a number of spaces
of stochastic opecrators which take the source characters through
& series of transformations. Now we-bant to deal with the measures
induced on the gpaces Spo for odd k>1l. Under casily satisfied
conditions, the measures defined by E2.1 will be induced; tﬂac is,
the integral will exist and so will the induced measure defined by
that integral.

Thé most Expcditious approach to this subject réquifé; a
certain redirection of our thought. To begin, we note that an
L-stage model

ML'(SI’SZ' ceo ’SZL+1‘")
is mofc théhﬂdh arbitrary 2L+42 tuple. An assumed structure exists:
every even index space Sk consists of operators which map sk—l .

into Sk+l’ or put annther way, for ke2j, 4=1,2,...,L there is8 a

nap Ok of (Sk-l’sk) into sk+l which is defined by
¢k:(u,v)»v(u)usk+1 for all (u,v)c(Sk_l,Sk)
The set ijzjul,z,...,L), one map ak for each stage of the model,

represcents the totality of ways in which source characters are
transformed into detecued characters. By modifying the definition
of O slightly, this can be made more explicit., Let 0k map (S'sk-l)

into (S,Sy4)) according to the rule:i#*

* This section has benefited greatly from conversations with
Prof. M. Kean: of the Yale Mathcmatics Department.

*%  We remember that Sc(Sl,Sz,Sa,...,SZL)
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ek(s,sk_l)-ei(s,sk_l,sk)
(8,4, (5y115,))
=(5:541?
In every essential way, then, @k and ok are equivalent. In particular,
ek is & measurable map 1ff Ok is.
Goling one step further, let's compose several Gk starting at the
first stage, k=2:
vk-ekook_zo...oe‘oez
We see that ¥ maps (S’Sl) into (S’Sk+1) for each even k up to 2L.
Yk is measurable if each @j, j<=k is measurable, since composition
preserves measurability. ¥, is not in exactly the form we would
like, however. To get that form, let v be the binary selection
operator: if x is any n-tuple, x=(x1,x2,...,xn) where n may be
infinity, then
Jvxzx

3

Now define Pk as

Pk(S)*Zva(S,Sl)=Zv(S,Sk+1)=Sk+1

Pk expresses the way in which S is mapped into by the model.

k+1
Note that Fk is measurable 1ff 'k is, with the result that Fk is
measurable whenever ¢, 1s for all j<=k. For reference, we state

]

this as a theorem:
THEOREM 1 rk is measurable if @j is measurable for all j<=k

The existence of induced measures on sk+1 can now be expressed
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THEOREM 2 If rk i3 measurable then the integral in E2.1 exists

and Vsl is the measure induced on Sk+1'
PROOF Measurability of Fk means that Bl defined by
S |
uk+l(Q) u(rk Q) is & measure. But this is just E2.1.

The previous theorems depend entirely on the product topology
assumed for the mcdels. As a direct resulc, we need only considerr
the measurability of ¢2-¢ in trying to derive conditions applicable
to whole models which will guarantee the existence of all induced
measures in the models. The first result is an extension cf the

well known case when S, 1s a single operator:

THEOREM 3 & is measurable whenever S2 is a separable discrete space.
PROOF 82 must consist of a countable number of points {bi).
Letting Q be a measurable set in 53, b;lq is a measurable
set since all bi are measurable. So,
-1, ... -1
¢ Q_lij(bi Q’bi)

is measurable.

Thls is true ror completely arbitrary spaces § Countability

1
of Sl’ on the other hand,iis not sufficleut to ensure measurability
of ¢. TFor instaace, let §;={1}, S3={0,1} and SZ(D)={bx:xq3*}
where the maps b, are defined by

b, (1)={1 {f xeD, and O otherwise}
and D is any subset of the cxtended real line R*. Metrics on 5,
and 53 are trivial; on S2 let

dz(bx,by)-!x—yl




so that S, is isomorphic and isowmetric to R*. If D is any non-

2
measurable set then ¢‘1({1))'is non-measurable, even though each
operator bx in Sz(D) is measurable.

The problem in this example is that bn+b in S, does not imply
that bn(x)+b(x) in &5, This difficulty need not arise...in fact,
the following theorem shows that point-wise convergence of the.
operators in 82 is sufficient for continuity, hence measﬁragility

of ¢. Necessary conditions for the measurability of ¢ remain to

be discovered, however.

THEOREM 4 If the maps in 82 are continuous and convergence in S,
is pointwise, then ¢ is continucus, hence measurable.
PROOF Let {ai}be a subset of 5,, a,+a and {bﬂ) be a subset of
Sz, bj*b. Then
d3(¢(ai,bj),@(a,b))=d3(bj(a1),b(a))
<=d3(bj(a1),bj(a))+d3(bj(a),b(a))
<e(ai)+e(bj)
where the first term converges té zero by continuity

of the by and the second by the point-wise convergence

in Sz. This shows that ¢ is a continuous map of Slx52+83.

As an important example of a situation where S2 is a space to
which Theorem 4 applies, let S1 and 53 be metric spaces apd 82 the
set of all continuous maps of Sl into 83 which have bounded ranges,
meaning that the range of cach bcs2 can be covered by a single ball
of finite radius. §_ becomes a metric space if the metric is:

d. (b,,b )=sup d_(b_(a),b,(a))
2712 acSl 301 2
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Verifying the metric space axioms:
1, dz(bl,b2)>-0 anq -0 1ff bl-b2
2. dy(by,by)mdy(by,b,)
which follows from
4y(b1:D3)sup d (b (a) by (a)).
<-s:p(d3(b1a,bza)+§3(b2a,b3a))
<-sgp d3(bla,b2a) + s:p d3(b23,baa)
-dz(bl,b2)+d2(b2,b3)

As an easy consequence of these definitions we have:

THEOREM 5 1If 53 is complete, &0 is 52.
As a complete metric space, 82 supports a Borel o-field and
Sy Sz, S, form a class of C/D models (when taken over all measures
of weight 1 on the measurable product space §). Since convergence
in 52 is pointwise, Theorem 4 applies and a measure vy is induced

on 83 by the model. Many other spaces have a suitable topology

also. FTFor instance, if S1 and 53 are Banach spaces then §, can be

taken as the space of normed linear operators from S, into S_, and

1 3
Theorem 4 will apply.

The results given here are not inclusive, but they serve our
immediate needs: all cof the models used in the sequel will satisfy

the conditions of Theorem 4. In the obvious cases, no mention

will be made of this fact.
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2.4 Two Examples of Classes of Models

Examples serve to clarify general concepts, so0 several will

be presented using the ideas introduced in sections 2.1 and 2.2.

Detection of Gaussian Signals in Additive Gaussian Noise

Consider the problam of detecting a Gaussian signal obscured i
by additive Gaussian noise, but otherwise unaffected by transmissién.
A model for this situation follows: (the Synonym column references

section 2.1 while the Spzce column references section 2.2)

Space Synonym Meaning and Definition

Sl A The set of source characters. Here, the set
{1,0} interpreted as {signal, no signall.

2 E Encoding operators. Here the signals are
Gaussian, so, take E to be therset {eh} where
h ranges over (abstract) Hilbert space, H.
Then, for ach, eh(a)za-h.

53 W The channel waveforms. 1In this case, the Hilbert
space H.

4 N Noise operators. The noise is additive
Gausslan, so take N to be the set {n :heH}.
For weW, nh(u)5w+h. "

5 R Received waveforms. Again, just H, which
recurs several times in this example because
the transmission mapping is the identity

operator.




meresnzsion sl

Space Synonym Meaning and Definition

s6 G Detection operators., Frequently the detection

operator is not stochastic; in this example
assume that it is not and take G={gl for
some fixed giR+A.

8, A Estimates; the set {1,0}, interpreted as

{signal present, no signal present}.

Specification of u completes the model. Assuming independence
(see E2.2) we have
uey lv 2"4"6
wvhere
¥y 1s discrete, ul{:l)=pi
v, is degenerate, u {gl)=1
My and u, are independent Gaussian distributions.
The induced distributions Bgs Mg and u, are also of interest.

By is not Gaussian because of the spike of mass P, &t the origin,

a
3 3

is Gaussian. The same holds for Mg! unconditioned it is not a

Of course, v, , the distribution in S, conditioned by a value in Sl

normal distribution, but conditioned by a S,, it is. Finally,

1’
u7(ai)=di, the detection probability of 31557.

I1f H has finite dimension, then it is isomorphic and isometric
to g?. Suppose then that v, is the distribution which has auto-
covariance P and mean p while "4 has autocovariance Q and mean q.
The dcnsitics are} .

my (0)=1//C(2)B[P]) expi-Ch=p, 2™  (h-p))/2)
v, (0)=1//((21)7]Q]) exp(-th-q,Q" (h-))/2)
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In-urder to derive u3, recall that xz(F) is the indicator

T s

function of the set F and is defined by

g’ xz(F)-{l if zeP, O otherwisel

- Also, let

e
.
o

FO-F-(O}
Then
u3(F)= / by eI, (de)
, ;

= £y Ry (ae) + xp() £ uy (8HODuy(de)
2 S2.

3 o A SN - Y ST T

=P; ; uz(de) + poxo(F)

0

or, in terms of densities:
ms(x)=plm2(x) + poé(x-O)
Similarly, Mg can be expressed as
b T -1
- ug(F)= / uy(n "Fu, (dn)
] S

mS(X)= s u3(x-n)u4(n)dx
8
A
=m3*m4(x)

= pymym, (x) + pgn, (x)

Known Waveform in Additive Gausslan Noise Communications
This example 1s a slight modification cf the previous one.
Sl becomes ﬁO,l,Z,...,n} interpreted as the set

{no character,character #1,...,character #n)

. : D-27




¥We take ul(i)upi as before, but the encoding operator 1s a fixed

map e:A+Wzl, so0 that Wy i6 degencerate at the point e. This reflects
the known waveform assumption. Yy and N are unchanged, but the
induced distribution Mg 18 mwore complex, being conditionally Gaussian
at euch of the source characters. We may leave Ve unchanged although
tiae detector, g; is a different operator. Finally, u~7(1)-di as.

before.

2.5 Topologles qﬁ Classes of Models

When a class of models is to be manipulated, advantage can
often be takea of structural properties of the class. For example,
cuppose that a performance criterion Il is definc.d on a class, C,
cf models. (By this we mean that T is a bounded, real-valued
functfon en - wet L. For wore detall, see section 2.7} If C
has only the discrete topology, then selection of the model which
raximizes ¥ can be done only by a strafight scarch. On the other
Land, 1f C Is o worwed linear space, a pradient search technique
can Le wned o iroe o class of wmodels is really a set of measures,
e g e atrer o0l b urultures on sets of measures which must
Lo dnvestisated.,  We i) look at two busic topologies for scts
cf probability ceanures,  One well known method embeds them within
& Laaach spe. o (e oo ool sincer whiile the other method, due to

Fokutanl [1], c¢mbeds thew wofthin abstract Hilbert space.
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. Embedding Within a Sup-norm Banach Space
? s iz % §§- It ia well known that the probability measures can be given a
: wetric derived from a Banach gpace of all finite measures. Heré we
z : i look at one Banach space based on the sup~norm. Let M be the set
i 1 p . of all signed, finite measures on a measurable space (X,S). M is

a linear space over the realé;'ind defining

) Hull=/ au, + s au_ =7 afu]
X X X

we can easlly verify that

1, |u]l|>=0, and =0 1ff uz0 true zero
2. Haeu|l=la]+]]ull scalar multiplication
3. Hutvl te=| lull+]1v]] triangle inequality

Proof: dutu|<=d|ul+d]v]
g0 that M is a normed linear space. It is also a Banach space

since it 1s complete:

THEOREM 6 M is complete
PROOF Let {u,} in M be a Cauchy sequence, ui-'u:'ﬁ where M is
the coupletion of M. .We wish to shew that u is actually
in M so that M=M. But,
ul L=l umss 11+ 111
and since (ui) is bounded (it 1is Cauchy), y is finite.
It remains to show that u 1s countably additive.

Letting {Bi) be a sequence of disjoint sets in S, set

-l IB ) - Bum
Gk P te1 il

Now choose a subsequence of the uys call it y, , so that

k
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Ilpk-ull is non-increasing. (set u,+u, 1f necessary) Choose

i "1

a further subsequence My from the sequence v, so that
[Hug-ulf<ensan

for an arbitrary e>0. Then it is clear that

- n
Co B <= £ Hu -] =" (1-27)
gy ML gy e

Since My 18 countably additive,

n n n
By)-ug ([T BydhigC E B T vB, |

n
X
- {i=] i=1

Q =ju(
T ]
|G-ad CE B 1+ 3 |Gum < e
<o (u-p Y LB+ E |[C(u=p )B, [< ¢
Mo Ve n’ i

Chioosiny e<1,11a Q =0 and y is countably additive.
nroo

The probability wmeasurcs form a subset P within M. Since
'probgbility SRR RN L distinguished by dpp>r0 and by fdup=1
or []upf[ul, thi:. subset is a small portion of the unit sphere in M.
P satisfics tic iotric space axioms 4f d(u,v)=||u-vl|. P is
bounded since
O vy fa, 03 d0 v)=s2

Furtheriore, ¥ Is cooplete since {"1) in P with p,+u means that
Huideetiog ivile, 1]
hubized o il=1 T 1]

. [ M
which stows thot Lt )=l.
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Lebesgue~-Stieltjes Measures and the Space M°

when (X,S) is (g?,Ln), that is, Lebesgue measurable sets on
n-dimensional Euclidean space, the space M 18 especially interesting
since its elements can be represented explicitly as Lebesgue-
Stieltjes measures. In applications, it is almost always this
space which is used since explicit calculations can be made with
relative ease. Often, {(e.g., with Gaussian distributions) interest
is centered on distributions which are continuously, or at least
piecewise continuocusly, differentiable. These form a dense
manifold M” within H(g?) which is not closed under the M-norm.
Introducing a simple sup-norm on the derivatives, however, makes
M~ {itself into a Banach space. The set P” derived from P in a like
manner is a subset of M“ of course. While P is bounded, P° is not,

although it is a metric space. However, P” is complete:

LEMMA 1 1f p;*p' in P” then P P in P where pn=fp;, p=/p”

PROOF The integral is continuous.

THEOREM 7 P~ is complete.

PROOF Let {pi} be a Cauchy sequence in P”, that 1is, p;+p‘é§’,
the completion of P*. p~° is piecewise continuous because
of the sup-metric in P° . By lemma 1, Sp=l so that

p’eP”, or, P’=F", as required.
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Embedding Within Hilbert Space (Rakutani [1})

The set P defined on the previcus page can also be embedded

within a lilbert space in order to form a metric space ?u. Consider

first the case p>v and define

o Cu,v)= f/(du/dv)dv
X

from Schwarz's inequality we can show that
1, O<p(u,v)<=l
2. plu,v)el {£ff ymy

3. p(u,v)=p(v,u)
Proof: plu,v)= /Y (Sp/dv)dv= /(1/¥(dv/dn)) (dv/du)du
X X

= [/(dv/du)dp=p{v,u)
X

Now we can obtain a quasi-metric (i.e., a metric without the trilangle

inequality) by
o{u,v)=-Ln p{u,v)= -Ln f¥(du/dv)dv
X

slnce we have

1. O<=o(u,v)<co

2. ao(p,v)=0 1ff u=v

3. o(u,v)=o(v,u)
only the triangle ineqguality fails at times to hold. It is the
logarithm in the definition of o which distorts the "distance"

surface. For instance, let X={x;,x,} and suppose that:

l Xl xz
u 3/4 174
v 1/2 172
w /4 3/4




Direct calculation shows that

A W

]

plu,v)mp(v,u)= 0.965

plu,w)= 0.816
so that

a(u,v) + o(v,w) = 0.092 < 0.14 = o(u,w)
which is a clear failure of the triangle inequality,

How let u,u”¢P, be arbitrary. We do not assume that pwu”.

H
Choose a third measure veP, such that p<v,u’<v . (u+u")/2 is one
such element, but there may be many others. Now define two elements
of L2(x,5,v) by

¥ )=/ (du/dv) () ¥ (w)=/Tdn"7dv) (w)

Both ¥ and ¥° are on the unit sphere in Lz, and, when pvp’ it is

clear that

plu,u’)= f#(du/du')du;= SY(du/av)Y(du"/dv)dv= (¥,¥7)
X X

where (¥,¥”) is the inner product of ¥ and ¥~ in Lz.

This relationship provides a natural extension of p{(u,u”)
to those cases where it is not the case that pvu”. It is also
clear that p(u,u”) so defined is independent of v so long as u<v
and p“<v. Also, only when ulu” does p(p,u")=0. Finally, since

[le-e{12=] e[ {2+l T[22, ) =2(1~0 (u,17))

we see that PH can be made into 2 metric space by defining

du,u”)=| [¥-¢ | {=V(2(1-p (u,u")))
Since this metric is independent of the choice of v, PH has been
isometrically embedded into abscraet Hilbert space.
The quasi-metric ¢ can also be useful, especially for Gausslan

measures, since it induces the same topology on PH as does d(+,*).
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This follows since there exist twoe constants kl and k2 such that
K 0Qu,u7)<=d? (u,u ") <mkoa (u,u”)

for cither olu,u”) or d(u,u”) sufficiently small.

2.6 Application to Examples

It has only been possible to apply the metrics of the previocus
section to concrete numerical examples in the case of independen:
models, where each marginal measure can be treated 1qdependently.
The whole model can then be treated as one point in the appropriate
product metric space, although we do rot explicitly do that here,
but are content to develop the metrics for the individual marginal

measures. The forms of the P-space, P’-space and P -space (Hilbert)

H
metrics are developed for countable spaces and for one-dimensional

Gaussian distributions.

Sequence Spaces

For distributions on denumerable spaces, such as ¥y on Sl in
the examples of section 2.4, we define pi-u(i}. Then it is clear
that: (define qi=\:{i})

Denumerable P-space Sup-metric

-v| {=max|p,-q.
thu-vi] ilpi a; !

Denumerable PH—Space Hilbert Metric

1/2
4G )= (22 G 1 22 B/ 1 =0y -y vt
i i




Gaussiaﬁ Case
.¥ Gaussian distributions on R™ are also interesting. Let F
¥ and G be Gaussian distributions, means o and L varianceg OF and
) and with densities d¥ and dG. We define Ql and QZ to be the
roots of the quadratic equation iﬂ the variable Q:
Ln dF{Q)~Ln dG(Q) (E2.6)
Since, for Ke{P,G},
dK(Q)=(o /27 )7 expl-(Q-m,)?/202]
we have this form of E2.6:
Ln o + (Q-mp)2/20§ = Ln o, + (Q»mG)Z/ZUé
If op=0g then Qlﬂ(mFﬁmG)lz, Q, (Figures 2.4 and'2.5)
Caussian Measures in P-space over g}
In order to obtain an expression for the metric in P, we
-want to form IF-G](E}). wooking at the nine cases,
(oF <,=,> cG)x(mF <=, mg)
we see that 0p<0; means that dF>dG between Q1 and Q2 no matter
what values D and L have and that dF<dG between Q1 and Q2 whenever
0F>0G. When TE=0s, dF>dG up to Ql if mp<me and dF<dG up to Ql if
np> M. 1f mF-mG then dF=dG everywhere.
Consider case fl: 0F>OG

d(F,6)=|r-6| (r*y=rd|r-c|

9 Q +oo
=" (dF-dG) + f7(dG-dF) + [ (dF-dG)
~oo Q Q,

Defining

+oo 1
erf(x)= f V/2n 7" exp(-£2/2)dE
x
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Figure 2.4

Roots of E2.6 when ?F’OG’ mp<me

b +G
]
A
i {
) /NG
w b i y i Lol
4 / ! '
1
0, U
Figure 2.5

Roots of E2.6 when OpmOq» identifying 4o and -wg

i1.e,, using the one point compactification of the real line.
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we see that

y
SV2n "} exp(~£2/2)dE = 1-erf(y)
)

b4
V77 L exp(-£2/2)dE = erf(x)-erf(y)
x _

so that
d(F,G}= -2erf{(QimF)/aF} + 2erf[(Q2-mF)/oFl
+2erf[(Q1-mG)/oG]— Zerf[(Qz-mG)/oG]
and since 0F<OG changes the signs, case {##2 gives the negative of the
above equation so that, for aF#ocz
d(F,C)=2]erf[(Ql-mF)/cF]-erf[(Ql—mG)/oG]
+erf[(Q,-mg) /o 1-erf[ (Qy-m,) /o1 ]
vhile 1f Op=9g then
d(F,G)=2|erf['mG l 20 ]-erf] g !/ 2a ][

These two equations define d(*,*) for any Gaussian measires in P(E}).

Gaussian Measures In P”-space over 3}

While the P-space distance is relatively messy, the P“ distance
between Gaussian distributions has a particularly simple form.
Letting f and g be the frequency functions of the distributions

F and G we have

d(f,p)= sup|£(x)-g(x)|

X
- max{f(mr)-g(mF);g(mc)-f(mc)}

-{f(mF)—g(mF) when o <=0 and

F
g(mc)—f(mc) when 0F>=oc}
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Gausslan Measures in P, -space over 5}
Finally, we evaluate the metric derived from embedding the set
P within Hilbert space. Computing p(+,=):
p(F,G)=//dF/dG dG
=(1l/ chFaG )Iexp[-[(x—mF)/2aF12-[(x—mc)/2cG]2]dx
completing squares in the intééiand,
- 21 a2 —gla? - 2 222
(opoc/f //o%¥ok Yexpl ofol (mp-m:) 2/ (o+02)?)
and substituting we obtain:
1
a(F,0)= 21 1-0(F,0) /2
— 1/2
/2 [1~(aFcG/§ //3§+aé )exp[—o%ué(mg-mc)zl(0%+oé)2]] /
which shows just how complicated conceptually simple results can
become. As a next step, these formulae should be extended to

multi-dimensional Gaussian distributions, but we will not do it

here.

2.7 Performance Criteria and Linear Risk

No sooner are we given a class C of models then we want to
choose one of the class to analyze or perhaps to build. The
easiest way to accomplish this is to define a real valued function

M on C. The set-valued right inverse n~t

then images the total
ordering < on 51 into a total ordering << defined on C. Either
the lub or glb of << should exist in T so that this element can
be the one chosen. Sinece changing M+ swftches the lub and glb
of the induced ordering <<, we will be interested in showing that

I is bounded either above or below, but not necessarily both.
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We will only discuss a single class of performance criteria,
but they are useful for simple detection problems since they
take 82L+1=81 rather than some combination of the intermediate spaces
in which case the model would be set up for estimation problems
or mikxed detection/estimation problems. We arrive at our class
of criteria by assuming a linear relationship between the various
detection alternatives and the total benefit produced by the model.
Let C(a,b) be the benafit derived when aes1 is transmitted and
bc82L+l-Sl is detected. The expected benefit is just
N (w)=sCla,buy; ., (db)uyg (da) _
where the integration is over SlxsZL+l and the integral exists
whenever C(a,b) is measurable. When C(a,b) is bounded,nc is too.
This Daysian performanée criterion can also be written in an
expanded form as
M (u)=rCla,b)x, (¢~ dbu(dadt)
nc should be insensitive to changes in p since u can nevexr be
known exactly. At the least this should mean continuity of HC with
respect to some topology on the space of which u is a member. One

of the merits of a linear risk (or benefit) performance criterion

is precisely this continuity in both of the spaces P and P”:

THEOREM 8 If |C(4,b)| is bounded by c¢ then Ni, is continuous in P.
PROOF ORI =[fc(a,b)xa(5f1&b)(u-v)(dadi)
<=};‘;xa(§1db) [u=v] (dadt)
« ¢cf |u~v|(dade)
- EGP(u.V)
where dP(',') is the metric in P.
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COROLLARY 1 1f S is countable then 2 _(b) 18 continuous in P, '
1 2L+1 «

o BB b0 e s

C
PROOF Let p;*p' in P°. We wish to show that nc(pn)+nc(p) where

COROLLARY 2 If C(a,b) s bounded then 1 is continuous in P~. ;

pn-fp; is in P. But since p;+p‘ in P* implies that

P,*P in P (Lemma 1, section 2.>), this follows immediately.

2.8 Expected Error and Singularity

An important special case of linear benefit arises vwhen
C(a,b)=dl(a,b) where dl(',') is the metric in the spaces S1 and
SZL+1' The resulting performance criterion, ndl’ or simply nd, is
the expected error. If nd(u) is zero, the model

H'(Sl’SZ""’SZL+1’”)

is said to be singular. If ul(a)>0 then a is called a naturally
occurring source character; 1t is clearly no restriction to
consider only naturally occurring source characters. The following
theorem and corollary are basic to an understénding of model

singularity.

THEOREM 9 If Sl=82L+1 are countable w;th a discrete metric then
M is singular iff u§L+l(r)=1 for every naturally occurring
rcSl.
PROOF To establish necessity, assume that M is singular. Then
0=Tlg(W)=/d(a,b)uy, ,, (db) y (da)

- I d{a;,b vl (b,)u(a,)
1 17y am®y 1%
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and since each term in the sum is positive, each term

T M s

i' must be zero separately:
d(ai,bj)ug£+l(bj)ul(ai)-0 for all 1,4
from which the necessity follows, and, so does the

sufficiency.

COROLLARY 1 If 81=82L+1 are countable with a discrete metric

then M is singular iff ur

s
21&11p2L+1 for every naturally

occurring pair r¢#s in Sl.

This corollary expresses the well known, but usually imprecisely
stated, fact that model singularity is equivalent to measure

orthogonality. An obvious extension of this theorem is provided by:

for a natura’ly occurring

THEOREM 10 If M factors then p§L+l 1 “§L+1
palr rés 4iff "§k+l l-ugk+l for all k<L.
PROOF We will establish necessity for k=L-1 by showing the . ;
contraposftive. Letting Qi=supp(u§k+l)#, this means ‘
assuning either u;k+l(Q§)>0 or u;k+l(qi)?0 and showing
that the same holds for either p§L+l or "§L+l’ respectively.

First note that

x - Loy *
¥7141 (R é*xr(g R)u,, (dt)
L

# This and subsequent proofs have been simplified by suppressing
references to ''some" support and talking instead about a (reads like
the) support of a measure. No error has been introduced by doing
this, while the arguments have become easier to follow.
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or, since M factors and 2L-1=2k+l

r -1 1
u2L+1(R)' rf xa(tzLR)uzL(dCZL)uzL_l(da)
k%21
s
and a similar expression holds for "2L+1(R)'

Now assume that u§k+1(Qi)>0 and look at:

r 8y -].8 r
u2b+1(QL) o xa(tZLQL)sz(dtzL)uzL_l(da)
QexSy,

r -1.8
I Vi (5219005 (dEpp)
2L

- r 8 ~1,.8
> s; oy (G P E219 00 (985))
L

which by the lemma below, is greater than zero. This
establishes necessity and hence the theorem, since the

sufficiency 1s immediate from the definitions.

r [
LEMMA 1 I1f u2k+l(qk)>0 then

. -1
0</ul (g 0 e Q0w (At )

2k+1
Sa1,
& S-S -1.5

PROOF 1 "2u+1(QL) sfu2k+l(t2LQL)"2L(dt2L)

2L

- IyE [ -1 s -
SI"2k+1(Qk n tZLQL>u2L(dtzL)
2L

-1l.8 s
hence tZLQL c Qk for all tZLesupp(uZL). But, stronger
than that, this says that Q: is covered by the inverse

maps of Qz, or, precisely,

D P 8
t sﬁ ( )tZL(QL) 0 Qk
2L EUPP oy

_ But that means that if u;k+1(Qz)>0 then likewise

r 8 -1s
O Mugpqy (Q N £51Q))u,, (de, )

2L

21
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Tﬁis theorem says that the conditinnal measures must start
out orthogonal and stay orthogonal 1f the model i3 singular,
and vice-versa. But, this hoids only for factorable models, where
the marginal measures are all independent. A non-factorable model
can be rigged, as in the example of the next section, which is
still singular even though some of the intermediate conditional
méasutes are not. The converse counter-example vhich corresponds
to this example is easily constructed, so it will not be explicitly

glven.

2,9 Singularity in a Non-factorable Model
Qur example will illustrate the necessity of the faetorability

assumption in Theorem 10, section 2.8. Take as the model

M=(Sl,82,83,sa,55,u°v)

where a is defined on Sl and v 1is defined on SZXSA’ and
5,=5,=55=(0,1}
52=84={0,1}x{0’1}

The measure a« is given by

xeSl a(x)

1

0 1/2

S2 and 84 are both spaces of operators, and in order to give
v on Szxsa, we will represent pairs of operators (b,d)cszxs4 by
enumeration of the operator values on all of the points in Szxsa.
To define one pair (b,d) we only need to give four values since Sl,
the domain of bcsz, and 53, the domain of d;SA. each conslist of only
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two points. All possible operator pairs (b,d) cam thus be repre-
sented by all possible 4-tuples with entries of zero and ome.
So, letting each (b,d)cszxs4 be represented by the 4-tuple of values

(b(0),b(1),d(0),d(1)), we define v by this table of values:

xcszxsé-(b(o),b(l),d(O),d(l)) v(x)
0 0 ) 0
0 0 Q 1 \
0 0 1 0
0 0 1 1 -
6 1 o0 o A
0 1 0 1 1/2
0 1 1 0
0 1 1 1
1 0 o 0
1 0 0 1
1 0 1 0 1/2
1 0 1 1 :
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

The marginal distributions can then be calculated:

xc82 8(x)= Sv{x,dw) xS §(x)= Sfvu{(dw,x)
4

00 0 0 0 0

01 1/2 0 1 1/2

10 1/2 1 0 1/2

11 0 1 1 0

and we can calculate the conditional induced measures as well.

On the intermediate space, 33, we have:
$3 | s3= 7 x 021480
k=0

00 172
01 1/2 ’ |
‘10 1/2

11 1/2

D-44




TR .-

o

This shows clearly that uawug, in fact, they are equal., However,

on the last space, 55, the conditional induced measures are:
1 3 .-
i3 u (3= 5 x, (b "od “(3))v(db, ,dd )
5 k.m0 1k " m kK" "m

HROO
| 2alE 2 L
OO

clearly showing that ug l_u%.
This, then, 1s a non-factorable 2 stage model. The marginal

measures after the first stage are equivalent, while the marginal

r’s

" measures after both stages are orthogonal, making the model singular.

This happens because the two stages are not independent; the model
does not factor. As a result, the second stage can be arranged

{and is in th;s example) so0 as to undo the random selectien
introduced by the first stage. Fortunately, this kind of dependence,
correlation of 1, is not ..ven a plausible representation of reality,

and so would never be used in an actual C/D model.
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3. LINEAR TRANSMISSION AND ADDITIVE NOISE

In chapter 2 the outlines of a general theory of communication
and detection models were established. In this chapter that theory
will be specialized in order to obtain certain results for models
of additive noise and linear transmission. The assumption of
additive noise is widely made because of the mathematical tractability
which it provides...and, once additive noise is assumed, the
assunption of linear transmission often follows.

A special "multiplicative" stage is also definéd and analyzed.
Although this type of stage is rather simple, it is included here
for reference in chap:ér 4, where these three kinds of stages,
multiplicative, additive, and linear, will be used in the synthesis
-0of sonar models. The theorems in this chapter will then make it
possible to expose and understand a certain kind of (additive)

singularity that can arise in these models.

3.1 Additive Stages

When the effect of a stage of a C/D model is to add two linear
subspaces together, as in stage 2 of the examples in section 2.4,
a very important kind of singularity of the model can occur.
Following Figure 3.1, suppose S a.d N ére subspaces of a linear
gspace, 8§ n N the subspace they have in common and S+N their sum.
1f Hg is supported by 5-{0}, (i.e., by § exclusive of the origin)
uo(O)hl and supp(un)CN, we can consider two measures, Vgin and

upyy ©ON the sum space SN which are induced by addition of the
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. Figure 3.1

Possible Singularity in Additive Stages

two spaces, We sece that Mo H N and that u N is supported by

S
| G that portion of S+N which is above N if SN=0. The result is that
%?I ] . Moan J_uN, and the reason is that supp(ug ) has a linear projection
i

i outside of the subspace spanned by supp(uN). This last phrase

will turn up again in a stronger form when we consider Gaussian

processes a little later in this section.
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We say that the k-th stage, (S ) of a C/D model

2k-1 5230 52141
is additive if:

1. S2k+l is a Banach space,

S2k-1 is a subspace of 82k+1

3. Szkn(bh:hcq} where Q is a subspace of Sortl and

b t52i-17%21-1%0 € Sy

For simplicity of nomenclature, we will use SZk to mean both

the space of operators and the subspace Q of S since the map

2k+1
¥(by)=h is an isomorphism. Giving S,, the norm (Ibhllnllhil makes
¥ an isometry as well.

As defined here, additive stages have an important property:
when S2k n Szk—l
common, singularity 1is preserved by the k-th stage. In an abuse

=0, that is, when they have only the origin in

of language tha. is unlikely to cause confusion, a stage which
preserves singularity is itself said to be singular., If we let
Mk be the first k stdges of a C/D model M, we can state this as

a theorem:

THEOREM 1 If Nk—l is8 singular and stage k is additive with
SzanZR_an, then Mk is singular, i.e., stage k is
singular,

PROQF Singularity of Mk 1 implies the existence of disjoint

supports for the conditional measures: Q:_ln Q: l=(}.

for all sFr. Since we also have Sanszk_lwo, we have
v b(Qp_y) A v b(QF_y={)} for all sfr
bes beS k-1
2k 2K
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But,

. v b(g ) = Q
-’ beSZk 7

80
Q: n Q; ={}, for all s#r
and Mk is singular. (rememwber that Q: is defined tc be

the support of “§k+l' see theorem 2.10)

| This theorem is useful whenever additive noise is used in a

model, as it 1s in the examples of section 2.4 and as it is in the

sonar models of sections 4.4 and 4.5. Having these sufficient
conditions for an additive stage to singular whets the appetite
and motivates a search for necessary conditions. As a step in

that direction:

THEOREM 2 1If Mk—l is singular, stage k is such that SuPp(HZk)DSZK-l
and Yok is independent of ui for all 1<2k then Mk is

non-singular.

PROOF 2k+1(Qk) & I X (t2
k-1% Zk

and by the assumed property of stage k,

(dr (da)

r
ka)“zk T o) Yok-1

su (u n su ¥{)
pp(u,, ) pp(uzk_l)
so that t ka n Qk 1#{} forlall t in some set T of
T 8
positive My, measure in SZk' Hence u2k+l(Qk)>O and Mk

is non-singular.

Notice that this proof really says nothing about the singularity

of Mk 1’ gso the theorem holds even Lf Hk x.is non~singular.
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Gaugsian Measures

When Gaussian measures are assumed in anything, stronger
results can usually be expected. In the Gaussian detection models,
in fact, Mk must either be singular or the conditional measures muét

be eouivalent:
THEOREM 3 If v and u are Gaussian, either uly OT YW,

A proof in the gencral case has been given by J, Feldman [1}.
For further discussion of related work, see section 1.3.

Various ways of telling whether ulv or ww have been discovered.
They fall, generally, into two groups: 1) general, universally
applicable and non-constructive, hence useless in practical analysis.
Feldman's original proofs are of this nature; 2) constructive,
but applicable only to speciai kinds of normal distribntions,.such
as Markov processes, or, stationary processes at least one of
which has a rational spectral density. What is perhaps the most
useful of the universal results was obtained by Kallianpur and

Ocdaira [1]:

THEOREM & PaQ 1ff

1/ m(e)el(r,)

Q

2/ I, has a representation Fp(s.t)=xukek(s)ek(t)

where {ek] is a c.o.n. in H(PQ) and Z(l—uk)2<oo

and uk>=c>0 for all k




P A 11 e e

In this theorem, H(I') is the reproducing kernel lilbert space
(Aronsajn [1][2]) with kernel I' and P,Q are the distributions for
the normal processes with coréelations rP,rQ and mean functions
m(+) and 0 respectively.

As an iumediate application to additive stages, we have:
COROLLARY 1 1f P | Q because m(-)éH(l‘Q) then PHQ | @

This can be applied to example number 1, section 2.4, to

_ show that the second stage, which is additive, is singular if

1l 1l
u3 l»"é because the mean of ¥y is not in H(Tuk). As an application

of the second conditien of Theorem 3 we have
COROLLARY 2 1f P | Q because 0 or some u=0 then P | P+Q

This is the situation that occurs when the signal, Q, occupies
some dimensions ("bandwidth") that the noise does not. While this
can not happen in a practical sense, it can plague model builders.

More about this in Chapter 4. Finally, as a converse to Corollary 2:

COROLLARY 3 If P | Q because u, 0 or some 1,=0 then P+Q\Q.
This is the normal situation: the noise, Q 1s wider-band

than the signal, P, so the additive noise stage 1s non-singular.
Thinking in terms of linear spaces, Theorem 4 says to first

look at the linear space most closely tied to the process (with

distribution) Q. This is just H(FQ), the RKHS (Reproducing Kernel
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Hilbert Space) with kernel PQ. B(TQ) is a natural space for Q
because A) it supports Q and B) distances reflect the concentration
of Q along various axes. Now, given another Gaussian process P

with mean m(:), in order to see if P | Q we have to do several things.

The first is to check that m(*)ed(l If it is not, then P is

Q-
lifted up out o H(IQ), that is, has a linear projection outside

of the support of Q, so, P 1_Q. If m(*)eH(l,.) then we still have to

Q
check further. To begin with, rp may not be representable in
n(TQ)xB(FQ), that is, Ty may have a linear projection outside of
H(FQ)z. The support of P will then too, so that P l_Q. Secondly,
some L, may be zero. That is, H(YQ) may have 1ineaf dimensions

not needed to represent I'_, in which case supp(Q) will have lipear

P’
dimensions outside of supp(P), so that again P 1_Q. Finally, we

are asked to look at the distribution of '"energy" into the different
“"eipenfrequencies" of the two processes. Unless the two put almost
the same encrgy on all but a finite number of dimensions, i.e.,
unless i(l—uk)2<co, then P l_Q. While this last requirement has

the only probabilistic flavor of all the requirements for P\Q,

even 1t 1is closely related to the concept of projections ouside of

a given linear space. What it says is that supp(P) and supp(Q) may
not sneak linear projections outside of each other through divergent

behavior at infinfity {f P~Q is to hold.




3.2 Linear Stages

g When SZk—l and 92k+1

in sZk are linear operators (additive and continuous) from SZk—l

v into SZk+l then stage k is linear. As one expects, linear stages.

are also capable of preserving singularity, or of being singular

are Banach spaces and all of the elements

to use the verbal shorthand introduced in section 3.1. The simplest
case arises vhen Moy is degenerate at t, in which case the effect
of the stage depends enti;el& upon the nullspace of t, call it To.

Letting Ei be the subspace spanned by Qi, we have:

THEOREM 5 1f So41 is a Hilbert space, M4 is singular and

6&21 1 T for all but one re$; then M is singular.
—r r = 8 =T .
PROOF t(Qk_l)DQk and t(Qk__1 n t(Qk_l) = 0 since t is 1:1
on § Zk-l-TO .

Extension ¢f this result to Banach spaces requires the assump-
tion that projections P0 onto TO and Pl=I—P0 exist, since the
existence of a projection onto an arbitrary subspace of a Banach
is not guaraenteed. If Pl does exlst, we have:

THEOREM 6 1If Mk-l is singular and PlQi_l=Q for all but one

s
k-1

€S, then Mk 1s singular.

1

Either of these theorems has an obvious extension tc multiple
operators via the simple expedient of defining:

Ton{union of all nullspaces of operators in supp(ug)!}
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Under thie definition, To may not be unique, go the extended
theorem must be phrased as: Mk is singular 1if Mk—l is singular
and there exists at least one Ty such that P1Q§N1=Q:_l for all

but one saSl.

3.3 Multiplicative Stages
The k-th stage of a model is saild to be source multiplicative
if: -

1. 52k+l is a Banach space

is isomorphic to § in the uswal way, see section

Sox 2k+1

3.1, and e,eSy, maps ac$ into a-heszk+1.

2e~1
3. SZk—l is the field from which Sox41 15 generated,

1
either C or Rl.

The following almast trivial theorem on singularity of a
source multiplicative stage, finds application to the first, or
encoding stages of models in sections 4.4 and 4.5.

THEOREM 7 1If Ml is source multiplicative, n, has no atomic part,

2
Sl={0.l}, ui J,ui and ui is completely degenerate at O,
then Ml is singular.

PROOF All of the mass of Hy is collapsed onto zero when
multiplying by zero, so that ug

with mass 1 there, while u% does not have an atomic part

is depenerate at zero

at the origin.
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Just to be different we could let SZk rather than S be

2k-1
the field from which S,ks1 15 generated. We say that the k-th

stage 1s slmple operator multiplicative if:

1. 82k+1 is a Banach space

2. Sgey s Sy

3. SZk is isomorphic to the field ot ®oktl and 1if aeSZk-l’
bes,, then b(a)=b-ac$2k+1

This kind of stage models a simple fading? the amplitude of
the signal is a random variable. Another kind of “multiplication”,

in vhich the space of operators has a group structure, is a delay

stage:
1. 82k+l is a space of functions. Each function has the
real line as at least one argument, say the first.
2. Sapep 18 Sy
3. SZk is a group of translation operatorsy if aaSZk_1

and Thcszk then Th:a(tl,...)+a(tl+h,...)
These two last types can be combined to give a gross model

of multi-path transmission effects. If ac$ and TeS then

2k-1 2k
T(b,h) (a)=Ibya(t+h,) '
A natural gquestion to ask is, what kind of topology can SZk have
and still induce a measure on 52k+1' The simple operator multi-
plication, being a subspace of the space of linear operators,
presents no problem. What about the delay stage? It,too, is a
linear operation, but now the "natural" morm, |lTh‘|-lh| does not

always induce a suitable topology: the functions in S2k+l must

be continuous first.
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4. APPLICATIONS TO SONAR

Models of sonar systems must include descriptions of the process
of sound transmission, either explicitly or implicitly. Often these
descriprions begin by assuming not only that the scalar wave equa-
tion is applicable, but that a particular solution of the wave
equation can be used. {(for example, incident plane waves, Bryn [1})
While this approach avoids a great deal of complexity, the assump-
tions involved may create serious problems (e.g., singular models)
whose origins have been obscured by the lack of explicit detail in
the fnitial model building.

One of the concerns of this chapter is to identify and under-
stand all of the assumptions that are made in the sornar models to
be used here, so the chapter starts with a discussion of the basic
physics of sound transmission (this follows Sokolunikeff [1] quite
closely). Derivation of the scalar wave equation requires several
major assumptions which are identified for discussion in section 4.6.

Sections 4.2 and 4.3 are primarily concerned with the kernmel
of the transmission cperator defined implicitly by solution of
the inhomojpeneous wave equation in 2 and 4 variables, respectively.
The kernel of the 2 variable operataor can be characterized nicely,
chiefly because the solution of partial differential equations
in two variables can be reduced to the solution of ordinary dif-
ferential cquations along characteristics. Consideration of the
4 variatle transmission .~crator is much more difficult; it has

only been possible to muce a start here.
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Sections 4.4 and 4,5 are devoted to sonar problems; the theory
previously developed ia applied to the construction and analysis of
sonar models in 1 and 3 spatial dimensions. Finally, section 4.6
contains a summary of the work in the area of singularity of sonar
models and sugpestions on the construction of non-singular models.

Throughout section 4.1, especially, use is made of the Einstein
summation convention: whenever a subscript occurs on the figﬁt side
of an equation that does not appear on the left, a summation over
all values of that index is implied. The range of the indices is
from 1 to the dimension of the gpace in which one is yorking,

normally 2 to 4.

4.1 The Physics of Sound Transmission

Underwater sound tra-smission is treated here as a special
case of wave propagation in a continuous medium., As mentioned
above, we want to derive the differential equation which governs
sound transmission in order to point out all of the physical assump-
tions that are implicit in the use of the scalar wave equation to
model sound propagation. Since we want to uncover assumptions,

we are forced to begin at a general level:

Strains

Consider two states of the same material body:

Initial State | Deformed State
Spatial Region To T
Reference Frame Y X
Coordinates of a iy x1

point P
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As our first assuuotion, (s physically ressonable one though),
let the deformation of To into T be of claass C1 and 131 so that
the point transformation

x’-xi(ly.zy,3y,t)

has an inverse

Loelyx,x2,%%, 1)

for all values of the deformation parameter t, and the derivatives
axt/ady aly/axd

exist and are continuous.

s

1f ds % and ds” are the initial and deformed lengths of am
infinitesimal are, their difference represents the strain produced
in the wmedium by the deformation., Restricting ourselves to rec-
tangulayr Cartesian coordinates alone, we can write:
Z-diydiy
1

ds,
ds2 mdxddx
so that
as?-ds Be(axbraty « ak/ady - ealyaly
"(Gij-aky/axi . aky/axj)dxidxj
or,
dsz—dsoz-ZiJn(y,t)diydjy

m2e (x, ) dxtaxd

J

where ijn is the Langrangian strain tensor and ¢ is the Eulerian

1}

strain tensor.

Letting a-(cl,gz §3) be the displacement vector, we can write:
ﬂi(y,t)-xi(y.t) -1y

Ei(x,t)-xi -~ iy(x,t)




- GBSt

R

ARG eb Y s

Differentiating and substituting for 3x1/33y and aiylaxj, vwe see that
2, @y, =3¢ /ady +agd/aty + ag®/aly - ac¥/ady
2cij(x,t)-az1/ax5 azj/ax1 - atk/axd o ggk/axd

By assummning infinitesimal stiains, we can drop the produgt terms

and also disregard the difference; between the inictial and deformed

coordinates since
‘axi/33y=6; + agl/ady =s§

Baving done this, we find
1y"=eqy=L/2 - etraxd + agd/axh -

. '(&1'1 + Cj'i)lz _ (E4.1)

In this lincar theory, eij is symmetric.

This set of assumptions is unreasonable in general, but in

passive sonar problems the particle displacements are so very small

as to justify their adoption.

Stress
Stress, the force per unit of area, is also characterized by
a symmetric tensor, the stress tensor Tij. Thexre are no assumptions

hidden under the tensor cover.

Equation of Equilibrium

Consider @ body T which is in equilibrium under surface forces
glven by the stress tensor Tij and volume forces given by the force
per unit of volume Fi, Letting A; be a fixed unit vector and ny be
the unit surface normal, tbhe assumed equilibrium is expressed by:

sPLydr + i3 n,do =0

n
v s
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for cvery subregion V of T bounded by the surface S.

Apflying the

divergence theorem and noting that Ai is & constant, we seethat,

at every point in 7T

o+ Tii =0

s

Equations of HMotion

(E4.2)

Using D'Alembert's principle, we add the inertial force -pai

to obtain the equations of motion:

Fi + Ti§ - pai = 0

where p 1ia the depsity and al is the acceleratiorn

Stress-Strain Relatlonships

(E4.3)

An additional basic assumption is that stress and stvain ere

linearly related:

13 . A3 km

1
km

Of the 81 components of the tensor cii, 27 are eliminated by the

symnetry of Tij, and 18 more by the symmetry (in the linear theory)

of ckm.

Since the strain energy per unit volume is

- .13 e 13 km
bW = 1 651j CkmE §c1j
W =c§gckmcij/2 = ct?ckmcijlz

i3 k

we see that km ™ ci?' which eliminates 15 more components,

Igotropic Medium

If the medium is isotvopic then more components can be elim-

inated: .

a)

3 interchanges of axes: 18 components eliminated,
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b) Together with reversal of the sense of an axis, a) shows
that all but three independent coefficients are zero.

e) Invariance under rotation shows, finally, that
12 11 11 '
€12 7 11 7 22
The vemaining components can be taken in the form:

12, 13 23 21 3% 32 z
€39MC137C237C21%¢317C32 u .
11_33_22_ 22_ 33_ 33, f

®)2"®337¢337611 7% 722"
11 22 33
©117€27=¢33" A2u
from which we obtain the isotropic relationship:
i Lkl i : ’
Tj - lekdj + 2pej (E4.4)

The assumption of isotropy 1Is a gocd one in sonar work.

Isotropic Equations of Motion
Putting E4.4 into E4.3, qnd using E4.1, we obtain, using
D'Alembert's principle again
Otudeyy +ugd e,y = 0k, - (E4.5)
No assumptions about'k, u or p ha§é-been made. All three could
be functions of position. The metric tencor, gjk, would become

jk

the Kronecker delta &° , in Cartesian coordinates of course.

Perfect Fluid
A perfect fluid is one in which u=0. If we define the dilation,
I, to be the particle divergence,
1= gf) = vt
then we have
Xﬁfki - czi

as the equation of motion for anm isotropilc perfect fluid.
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To worﬁ the dilation into this equation, differentiate with respect
to xi and sum on 1 to obtain

Av21 = o1 |
where we have assumed that variations in A and p are small compared
with those of I. Unless ) and p are taken to be constants, a theory
based on this description of sound propagation would not be valid”
for arbitrarily low frequency waves. The assumption that water is
a perfect fluid is more innocuous in sonar work; the effect of this
assumption is to make it impossible for the model of the medium to
support shear waves,  These do exist in water, but the low viscosity
limits their range so greatly that they can be safely ignored.

Since the stress tensor for a perfect fluid is

1o apel
SRRSLH

we can define p=ri and ke=-) in order to obtain

p=-kI
and if cZ=-k/p  then

c292p = B ) (E4.6)
That is, within the limitations of our assumptions, {(the important
ones being: very small particle displacements; a linear stress-
strain relationship; nearly coustant bulk modulus and density;
yielding a ncarly constant speed of sound) sound propagation obeys
the scalar wave equation.

It would be very interesting to develop the following sonar

models with these assumptions weakened or eliminated, but it does

not seem possible to do this.
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4,2 The Two Variable Wave Equation

s The scalar wave equation,

“ ?2p = B/c (E4.6)
é i describes the propagation of sound when wave amplitudes are small
% ) and ¢, the speed of cound, is nearly constant. While this classic
d differential equation has received the attention of many minds for
i; i well over 100 years, its properties are still not completely known
? 4 - and cataloged. (Courant [1])
; ? In this section, some interesting properties of the equation

in two variables, time and one spatial dimension, are developed,
g 7 ' using very elemenrary methods, based on the properties of charac~

teristics for 2 variable differential equations. In section 4.3,

following, similar results are sought for & variables, but here

a variety of methods must be employed, none with complete success,

R n—

' f . The results sought are eSRentially concerned with the size of the
null space of the operator defined by (E4.6) when operating on
Cauchy initial data, with and without inhomogenecus terms.
Consider the differential operatorf
wipl = cz(x.t:)pxx “Pee (E4.7)
For scalar wave phenomena, c2 is positive so that W is everywhere

hyperbolic. The characteristic curves for W, those along which W

¢ # Tho prerequisites for this discussion can be found in any
standard text, e.g. Courant [1] or Morse {1]. Note that independent
variahles, x,y,z,t, used as subscripts denote differentiation:
9f()/9x=f_(-). Other subscripts, such as n,k etc., do not denote
differentiation, but serve merely as auxiliary arguments to functions.
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is an interior operator, are defined by the cquation ';
c2¢x2 - ¢c2- 0
vhere ¢(x,t)=0 defines a curve in the (x,t) plane which we assume
to be regular, i.e., ¢y and ¢, may not both vanish simultaneously.
We see that co, = ¢ _on the characteristies, or, for constant

c, 4= x *ct <+ x ., Characteristics are also rays, or, the direc-
[+]

tions of propagation of wavefronts (Figure 4.1).
Now consider a simple radiation problem for constant ci f
Wip] = -c*5 ()8 (x=a)
p(x,0).= 0 x$a
P (x,0)= 0 x¥a
where S(t) is the inteunsity of a point source located at x=a.
The solution, p(x,t) for all t>0 is given by
plx,t) = S(t-|x~a|/c) (E4.8)
fhat is, the sipgnal produced by the point source divides in half,
one half propagates to the left, x<a, the other to the right, x>a.
The propagation is along the rays. If many poiut sources are present,
or distributed sources are assumed, then E4.8 generallzes to
plx,t) = (1/2)/ds, (t-|x-a]/c) (E4.9)
vhere dS, is the signal intensity at x=i, and the integration is in
the Ricmann-Stieltjes sense, 1f 8, vanishes for all A<=a, then
in the region x<a, .
p(x,t) = Sa(t—ixfgllc)KZ (E4.10)

where 5 is an equivalent source defined by
S5(t) = 1ds, (e-ja=r}/e)
An analopous introduction of &zn equivalent point source is possible

if SA vanishes for A»>a.
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Now we ask the question: when are different source distri-
butions indistinguishable to an observer? That is, when do two
different source distribution; differ only by a §ector which lies
in the nullspace of the linear operator T:S$+p defined implicitly
by Wipl= ~cSt ? For the observer we will take an open ray-connected
set D of the (x,t) plane, andrﬁy ray-connected, we will mean that
any two points r,seD can be connected by a (“zig-zag') ?aﬁh.;f
ray—-segments. Let KD be the set of constant functions on D. Letting
Da be the set of waveforms from a point source a that are observable

in D, we see that

THEOREM 1 If D is an observation region, Sa and Sb are point sources,
and a<D<b, then Da n Db =0,

PROOF Let w(x,t}eD,nD, and take any two points (xé,to) and
(xl,tl), conne-ted by the ray-path P. w(x,t) is a
constant along each ray segment of (positive,negative)
slope since (weDa, chb), hence w is constant along
all of I' so that w(xo,t°)=u(xl,tl). Since the points
were arbitrary, wexD., Since neither Da nor Db contain

KD' the theorem is proved. (constant functions are not

in D or Dy because they viclate the initial conditions)

This result is not unexpected, and admits obvious generalizations
to distributed sources and sources within the observation region. A
gencralization to cover random sound velocities is also possible,

although not so obvious (Figure 4.2).




THEOREM 2 1If D is an cbservation region, Sa and S

PROOF

ofat
b are poin
sources with a<D<b and transmission is governed by

-ely -u

Wiu] = ¢ YTV
with zexo initial conditions, and

0<£<-c(x,t)<§z<m
and c{-,+) twice continuously differentiable, then
DanDbno.
Make a change of coordinates in the equation

Wlu] = cz(x.t)uxx-utt-h(x,t)
by letting

g=£(x,t) n=n(x,t) (E4.11)
where we assume that the transformation ¢:(x,t)+(f,n)
is everywhere invertible, {.e., £xnt—£tnx#0. We find:

2.2 _p 2 2 - . 2 o2

ugelefed ~£21 + v [e%En, -Eengd + o [e2nf -n 2]

=h{z(g,n),t(&,n)) = g(t,n) (E4.12)
If the transforwation yi(x,t)+(E,n) is chosen so that

cixﬁ'Et en =-ng (E4.13)
(solution of these two flrst order pattial differential
equations is certain since ¢ is in Cz) then the transformed
equation, E4.12, becomes

2£tntu£n=g(§.n)
Since ¢ is bounded away from zero, £, can be zero only
if &, 1s zero (E4.13). But if either is, both are, and
the transformation becomes singular, whieh has been ruled
out. Put another way, solutions of E4.13 which are

bounded away from zero exist since ¢ is bounded away from

0; =zee Courant [1], page 491 et. seq.
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As a result, E4.12 can be written as

U™ g(L,n)/26 n, (B4.14)
This {s a canonical form for the constant coefficient
wave cquation; £=constant and n=constant are characteristics
and rays of the solution. Theorem 1 now applies showing
that

D, (€,n)nD (€,n) = O

and the theorem is establishcd;

It !s now casy to prove that random wave velocities do not enlarge

the nullspace «f the transmission operator very much:

THECGRLM 3 If D {6 an observation region, Sa and Sb are point sources
and transmission is governed by
WC[u) = cz(x.t)uxx-utt
with zero initifal conditicis, and ¢ {s randomly chosen
from a uet C* each of whose elements c satisfy
0<g<ﬂc(x,t)<-2<°

and cach of which is twice continuously differentiable,

then b oboot.  (by D we mean u b_(c)
i L a a
ceC¥*

PROF ]l gc)anb(c)no by Thecorenm 2.
a . .

This result shows that, with culy two discrete directions from
which signals cen come, random propagation can not hurt your discri-
mirition. A random medium jJust is not able to make a left going

“wav: look 1ike a right going one.
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4.3 The Four Variable Wave Equation

How let W be the differential wave operator in 4 variables:

Wipl=92p-p,, , (E4.15)

We are interested in an inverse problem in differential equations:
given suitsble x and the equation W{pl=x with suitable boundary
conditions, we can solve for p, But, given p, can we solve for
x? The obvious answer is yes: everywhere p is known, x is knowm
also, just apply W to p. But can x be determined in a region of
the independent variables removed from the region in which p is known?
In general the aﬁswer is no. With further assumptions about x,
however, it can be yes, »

This whole area of inverse problems in parital differential
equations is difficult and relatively untouched: the problems are
generally ill-conditioned. If we think in terms of some inverse
operator Ji:p*x then J will be unbounded. What little that has been
done with these problems has been done with relatively tractable
equations: Poisson's equation, where the entire apparatus of complex
variable theory can be used, and equations in two independent
variables where reduction to ordinary diffecrential equations along
characteristics is a powerful trick. (Lavrentiev [1])

A complete treatment of this problem cgn not be expected, then.
The most we can hope to do is to treat a few special cases and te
acquire some insight.

Leoking at Figure 4.3, we see that at each point V=(t,x,y,z)
in 5&. a.characteristic conoid exists for the cperator W. This
conoid 4s a right circular 45° hypercone, axis parallel to the t-axis.

Let Po be a hyperplane tet >ty and P8 a hyperplane t-ts<tv. Intuitively,
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Po is the obsexvation plana, and P‘ is the given plane, or the
plane of assumed values. The conical frustrum whose base ie the
intersection, Bo, of PD and H is mirrored by reflection across Po
into a frustrum of another right circular 45° hypercone, L, which
has & vertex W in the plane t-tL~2to—tv. The sheet of L, called

L, which lies below tL intersects the plane PB also; we call the base

thus determined BgL' while the base of H in the plane Pg is th.

The uniqueness (but not the existence) of any solution to
the initial value problem
Wi{u] = 0 7 in L n H
(“’“t) = (V’ovwl) on BO
is established by the following well known theorem. The proof,

based on an "energy" integral, is worth repeating for the light it

sheds on the behavior of the wave equation.

THEOREM &4 A solution u to the differcntial equation W[u]=0
in Ln H satisfying arbitrary initial conditionms
(u,u )=(v_,¥;)
on BO (where wo is twice continuously differentiable
and ¥y is once continuously differentiable) is unique.
PROOF We will show that the initial conditions uniquely deter-
mine the value of the solution at the point W. As every
other point within LnH is the vertex of a characteristic
.cone whose base 1s within the gphere Bo, this will
establish the uniqueness of the solution throughout

Lﬁﬁ. Suppose, then, that u, and u, are both twice

1
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continuously differentiable solutions of W[u]=0, with
the same irnitial conditions ul-uz-wo, ulnuz-#1 on Bo.
Their difference, u=u,-u,, must be everywhere zero if
"‘uniqucgcsd is to obtain; ‘Noting that u satisfieé Wlu)=0
within Lrll with zero initial data on B,, we integrate
over all of L above Bo, that 1is, K:

0=f3u/3t(3%u/dt? - v2u)dxdt

K
since

du/at - 32u/at? = (3/3t) (du/at)2/2
and
du/at « a%u/ax,? = (3/3x,) (3u/dt « dufdx,) -
dufaxy - d%u/dtax,
- (a/axi)(au/a: . Bulaxi) -
(3/3t) (du/axg)2/2
we sece that the above integral can be writte as

e o fet) [(wulat) T+ E(au/axi)21/2 -
K

i
L(3/oxg) (3u/dt + du/Ixg)dxde
i
Sfuce Gauss' theovem cays JSV-Fdv = fFends, we have:
v S
Os{(1/2)0fdx v f de]{[(Au/ot) 4+ E(au/axi)zlcos(n,t)
B K’ i
[o]
-ZE(bu/Bt)(bu/axi)cos(n,xi)} (E4.16)
i
'>;ﬂcgr 7 ofs the lateral uﬁrface of K. The intepr-al

over b 1s zero .ince the initial data are zero.
Multiplving and dividing by cos(n,t), which 18 constant
on k£°, and using the identity, pood on K-,

cos?(n,t) w Ecosz(n,xi) (24.17)
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we obtain

0=(1/2cos(n,t))/ E[(Bulat)coa(n,xi)-(aulaxi)cos(n,t)lzda
K4 .

From this it fellows that on K~
ut/cos(n,t) = OXiIcos(n,xi) -y
Using this fact, we evaluate the change in u along some
generator, m, of K:
Ju/om = u.cos(m,t) + xuxicos(m,xi)
wyfcos(n,t)cos(m,t)+ Zcos(n,xi)cos(m,xi)]
wycos (m,n)
which 13 zero since a generator and normal are perpendicular.
Now, letting the generator m meet Bo in the point mo,
, " _
J (3u/om)dm = 0 = u(W)—u(mo)
o
0
and since u(m,)=0, so does u(W), which establishes the

theorem.

This theorem can be interpreted in different ways. From the
usual point of view it proves the uniqueness of a linear operator
W which maps (¢.¢t)502(30)xcl(84) into uccz(kﬁﬁ). Applying the

theorem to the sphere B , a more symmetric view has us consider

-3
the linear operator V which maps (¢,¢t)ecz(Bg)xcl(Bg) into
(u,ut)cCZ(Bo)xcl(Bo). Since V maps functions on a given domain
into functions with a smaller domain, intuition says thai V should

be many to one, i.e., have a non-vanishing kernel, If this were

not the case, then the following theorem would hold:
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Conjecture 1 A solutfon to the differential equation W{u]=0
.‘_”in‘p satisfying rh; coﬁditions
(u, e = (b,90) on B,
wvith ¢L(;2, \::tx.lfl and u=0 in H, is unique.

Attempted Proot:ve will attempt to prove uniqueness by considering
the difference, u, of the two solutions v, and u, with
the same data on B . Since L extends to -, ve will
introduce a hypercone J with upper sheat J and axis r=0,
vertex Voat some point below V, (Figuvre 4.3) and
consider u only within the region Ln—j. Within _I;nﬁ
Lo wuenens follows directly from Theorem 4. Within
ek, w 1. zevo Ly assunption. This leaves a region
Lok 4, Loweded on the outside by portions L7, J° of
the: sheets of Loand J, on the inside by portioés H” and
oot b neveew and lower sheets of H. The stéps in the

cl et ene d vy weer foo wids regioa, up Lo

Pon appears here with 4 suirtaces iustead of 2@

e det fodo b do oo f da)lL L)
L J i i’
il r BT aud M7 vanish siuce u 1s =ero

Cbutfore, we nmaltiply and divide by cos(n,t),
G apg . e Bdeatdty £4.17 to find:

Geoo o L G codn i)

. -
Lt

Wi v fure o ddbs have opposite s{pns because one ( +
Ly wavdy wcreoss L7, while the other

VI VI

‘. Vi vaven 8CKE0Ys j'. ‘fhus fafls the pl‘OOfo

D=4
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This failure of an attempted proof does not ghow that the
conjecture is false, but it strongly suggests that it is. Note
that this proof can be carried through successfully in one spatial
dimension because ingoing/outgoing translates into leftgoing/right-

going in one spatial dimension, and these wave types are independent.

The proef alsc 18 successful in 3 dimensions if u is restricted to

be spherically symmetrical, for in that case, ingoing/outgoing
waves types are independent.

The initial conditions on Bg that lie in the kernel of the
operator V are still unknown, but, it seems that there are some.
Furthermore, this kernel of V is in addition to the kernel cen-
sisting of functions which are zero on Bg-tht These are in the
kernel of V because Hu&ghen's principle holds in 3 spatial dimensions,

so that Bg—B is the complete domain of dependence of B or the

gh

‘point W. In two spatial dimensions (in fact, all even spatial

dimensions) by contrast, the failure of Huyghen's principle makes
V even less invertible.

While this discussion has been about V, an operator from initial
conditions into initial conditions, by Duhamel's principle the same
will be true of the transmission operator that maps into u from
source distributions. That is, the transmission operator will have
a kernel whenever u can only be observed in a limited region. In
order to display one way in which this can happen, we look at the
field produced by a spherical shell source h(r,t)=h(t)§(r=s).
Green's function in the transform domain is

gm(r,ro)=exp[iwk] /4nR

R = |r-r°|
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so the field at ro is
U(ro,s,w) = [dvH{w)d (r=s)exp{iwR]/4TR
where H(w) is the Fourier transform of h(t). A little algebra éives:
U(ro,s.u) - sH(w)exp[iws}sin[urol/wro
From this we see that exact cancellation is possible everyghere
{r,<s} inside the spherical éﬂéll source if only a second spherical
shell outside the first, at a radius qrs, is excited by -
G(w) = H(uw)explin(s-q)]s/q
This cancellation depends upon the spherical symmetry. To
see just how critical this dependence is, consider ;wo hemispherical
sources at ruadii s and q. One finds that the field from one
hemisphere is:
U(to,s,w) = sH(m){exp[iw(rg+sz)1/2]—exp[iw(t°-s)]}lziwro
and for both it is:
21wty [Uy-U] = HCw)explin(r+s2)/2) - si(w)expliv(r,=s))
-qG(w)exp[iw(r§+q2)1/2] + qG(w)exp[iw(ro-q)]
Proper cliolce of G(w)can cause cancellation of the second and
fourth terms, but, no cancellation of the first and third termws is
possible. Soine leakapge around the edges of the hemispheres always
occurs.
1f the wave equation is written for the velocity potential ,
vhere particle velocity is u=-Yy and pressure is ptpwt for a
density p, then the energy flux, or intensity is
I=-py Yu=pu ] (E4.18)
Given in gome region, what cancels 1t? Obviously, it is -y¢. But,
I(e) = I(-¢)

That 1is, the wave energy flux is the same for ¥ and -¢. In words,
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the cancelling wave is going in exactly the same direction at every

¥ point of cancellation. This explains the leakage discovered in the
two hemisphere problem; failure of spherical symmetry at the edges
of the hemispheres results in the generatfon of waves that are mnot
going in exactly the same direction.

Now let a point source launch a wave, ¢, and follow a portion
of the wave front that travels towards the origin. This portion of
the wavefront can be cancelled, but only be another wavefront
traveling the same direction but with opposite sign: -¢. Such a
wavelet could only be generated by a (portion of) a spherical
shell with the point source as center. In particular, a spherical
shell of large radius with center at the origin can not launch
such a wave.

Surmarizing these bits and pieces of evidenze, we state

Conjecture 2 Let u be determined by
Wlul=h(t)8(y=y,) + g(e,4)8(r=r,)
(u,u.) = (0,0) at t=-oo
h(t) a given point source at the point y,#0
g(6,¢) a given spherical shell source at radius L
Then u is non-zero in any open connected set containing

the origin,

This conjecture requires proof from a mathematical point of
view. From an engineering viewpoint, it can be regarded as true,
Extensions to a finite sumber of point sources and non-concentric

shells follow from the truth of this conjecture.
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4.4 Passive Sonar in One-space

Following the lines of section 2.4 we begin with the construc-
tion of a class, call it 0SD, of level 4 C/D models. Models in
this class differ only in their measures, and the class is broad

enough to encompass a wide variety of specific sonar models.

Space Meaning and Description

5y {0,1}, standing for {no eignal,signal} as usual.

82 Encoding operators e, with values in 53 defined by
eh(a) = gh

The set of encoding operators is isomorphic and isometric
to 83 under the map ¢iep~h.

S3 Source distribution functions for the plane, representing
the signal and forming a subspace of SS' These are
limited by the assumption that h(x,t)io for all x>a,
that is, the signal is confined to a right half-plane.

5, Additive noise operators, ng(h)=g+h with values in 85.
The noise operators are isomorphic and isometric to a
subspace of S5 under the map ¢:ng*g. This subspace is
restricted by the assumption that g(x,t)=0 for all x<8,
so that the noise is restricted to a left half plane.

S Source distribution functions for the plane. These
functions are intended to lie within the domain of the
transmission opcrators in the space 56' but since they
enter via an integral, no great number of restrictions
need be placed uvpon them. We choose the space of all

Lebesgue square integrable functions in all space-time.
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Space Meaning and Description

b ]
Intuitively, this space, Lz(gz), is reasonable, representing
s Lt dees a finite encrgy constraint on the signals and
noise.

36 Transnission mappings, T from 55 into S7, defined

C’
implicitly bty solution of

cz(x,t)u wh{x,t)

xx et
where c{(x,t) is twice continuously differentiable and
O<c<me(x,t)<=c<o
and hQSS. The Cauchy initial data are prescribed as
(u,ut)B(O,O) on the linc te-=,
S7 All solutions of the inhomogeneous wave equation, but
considered in a given observation region D with
a<D<B
87 is a linear manifold within L2(D) in view of SS'

a Detcction operaters, A1l possible measurable maps of

wm

87 into Sg' Which ones ave chosen dupends upon the

particular model of class 0OSD which is befing considered.

39 {0,1} standing for {neise alone, signal plus noise}.
e new oviire the zlass 05D for wingular models, If M is one
of the factorat.le nwdelsn 1r 08D, then eraje :L is singular by

theorem 3.7, while stape MZ is singular (i.e., preserves singularity)
by thecorem 3.1. Sta; ¢ 1 14s also tecn to be singular by application
2

of theorem 3.5 combined with theorem 4.3. This leaves only the fourth

stage, the detector, between us and singularity of the entire wodel,
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Bu: any detector tlat wmaps the support of u? into 1c59 preserves
gingularity, and there are many of theae, Our conclusion, theﬁ,

is that all ot the facturable wmodels in 0SDh that have “'good"
dezectors, which certainly inciudes any optimal (Baysian) deteétors,
ar: singular, hence inadequate as analytic guides to reality.

Tiiis helds for quite peneral signal and noise locations (as long

as they are disjoint and the detector is between them) and for
arbltrary sound velocities, even random velocities (as long as

they are bounded asway from cero, and glossing over the inadequacy
of the 8cal.ar wave equation's dcscription of sound transmission
when the soun! velowicy is not slowly varying, which fact really
means that some ol the nmodels in the class 08D ce not good images
0! reallﬁy' sfngthr Uf not). suchvgencrality is posgiblé.ﬁecadse'-
of the gecrietrie ofcplicity of the problem: detection really reduces
toe a deterwinatlic. «» the dircction of the incident wiives: left-

).'"ll;" Taweain o e T s ',;f,vlni?. RTSOTTESE TS % RITTIN




4.5 Passive Sonar in Three-gpace

Relatively little in the definition of the clags OSD needs to

be changed in order to generate a class, TSD of &4 stage C/D models

applicable to sonar problems in 3 spatial dimensiona. We have:

Space Meaning and Definition

5, -{0,1), standing for {noc signal, signal}

82 Encoding operators ey with values in 83 §efined by

eh(a) = ah
The usual identification with 33 i{s provided by the
map w:eh¢h.

S3 Source distribution funections for Bf, representing the
signal and forming a subspace of SS‘

34 Noise operators, ng(h)-g+h. The usual embedding of sk
into SS is provided by w:né*g. Notice that 83 and Sa
have not been restricted to half-spaces as they were
in the class 0SD.

S5 Source distribution functions for 4-space, equal to
Lz(gé). The discussion of Ss'in the dafinition of OSD
applies here as well.

86 A slngle transmission operator, T:h+u as defined by

solution of the problem
Vzu—utt=h(z,t)
(n.ut)-(0,0) at te-w
The theory for the class TSD is not as comprehensive

as that for 05D, as the degenerate nature of 56 indicates,
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Space Meaniny and Definition

s Defined by solution of the wave problem above., A linear

manifold within Lz(D) when restricted to a compact set Degf.

;; ; ; 58 Detection operators, all possible meﬁsuraﬁle wmaps of s7
. ; . into Sg, but with an inplici; statement of the observation
domain. This repf&éents a slight change frogrsﬂiof:clasa
0SD. There, the observation domain was explieit in the
definition of 57, rather than 4mplicit in the choice of
a detection operator from Ss.
Sq {0,1} for {noise alone, signal plus noise}

Each model in TSD is singular in stage LI by theorem 3.7, and

each factorable model for which suppu, and suppy, are disjoint is

3
‘singular in stage M, by taeorem 3.1. Since 87 contains waves defined

throughout Eﬁ, stage M3 is singular whenever M, 1s by application of

2
theorem 3.5. This leaves the detector between us and singularity
of the model. (notice that this chain of reasoning differs from
that used in discussing the singularity of 0SD. There stage 3 was
key, and singularity occurred when the detection region was between
the signal and noise sources. Here we are pushing the key problems
back to stage 4, the detection stage.)

When Yy peaks up to one on spherical shell sources (at fixed
or variable, known or unknown, radii) and . peaks up to one on
point sources (fixed or variable leocation, one or any finite

number of sources) located inside the shell sources, but not at the

centers of the shell sources, and the detector selected from 88
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observes an observation region containing the origin, then, 1if
the detector iz optimal the qodel is singular according to
conjecture 4.2.

Some of the models considered by Vanderkulk [1] (those without
self«noise) are members of ;he class TSD. M_ is singular, as ever.

1

gy peaks up on a single point source at infinity, while ua'peaks

up on a shell source of infinite radius. 83 and S4 are effectively
geparate linear spaces so that Mz is singular, (theorem 3.1), not
by virtue of the epatial separability of the sources, but, because
¥, Benerates a process of independent (spatial) increments on the
surface of the shell. The ug generated process of polnt sources
has U, measure zero since all of the rest of the sphere has zero
excitation. M3 is singular again, which brings us to the detect;r.
As the number of phones in the Vanderkulk model increases to oo,
observation becomes continuous and the whole model becomes singular,
as he shows. This result supports conjecture 4.2,

A fruitful way of looking at these results is this: an optimal
detector fed continuous observations can form a zero-width beam
péttern, and perform perfect range discrimination for point sources
(any finite number of them). The key is the exactly known wave-front
available from the source(s). Other signal models that provide
exactly known wave-fronts will likewise be singular in the limit
of continuous observation.

The introduction of self-noise at the hydrophones is not a
cure for this singularity (Vanderkulk [1]). A slight modification
of the class TSD suffices to include the self-noise. Spaces § 6 aad

8

89 of TSD become Slo and Sy, of TSD', and new spaces are introduced:
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Space Meaning and Definitjion

- 37 Solutions of the wave equation. Suhspace of §, after
: restriction to the observation set D,
58 Self-nolse injection, dk(h)=k+h. SB is embedded intc a
linear subspace of S9 by the map w:dk+k.'
Sg .LZ(D) where D is a compact observation set in _ﬁ
le l(old 88).
811 {old sg)

The self-noise, stape & of TSD', fails to remove the singularity
because it is spatially white, ics power spread equally over all of
39, so, it has zero power on any one dimension of Sg‘ {in the limit

of continvous sbservaiiong.
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4.6 Implications
The general conclusion to be drawn from all of this is that the
available monar models are inadequate. How can they be 1mproved?
The possibilities are: stages 1l and 2 might be ﬁodif;ed to cause
the signal and the noise to Qverlap, but, this means putting power
from the noise at the same sﬁifial 1oca£ions as the signal,hand
since the signal can be anywhere, the whole volume of 3—;§a£§ ﬁust
be filled with noise sources.f# At the same time, the signal must
be made into a distributed source in order to destroy the peifect
wave-front generated by a point source. This medicipe seens
excessively bitter -- the noise model that results has little

resemblence to the ncisz sources that we think are present in the

‘ocean., Furthermore, point source signals should be permissible

since any distributed source of finite dimensions looks like a

‘point source as it recedet.

As we have seen, introduction of self-ncise does nothing for
us, so, as the only remaining possibility, the tramsmission stage
must be modified. The cure is easy to talk about, difficult to
use, It consists of modeling the randomness of the medium. If

there is a low frequency signal cut-off, this modeling can be

# Even this might not work since, in the Gaussian noise case
with independent radiators, a finite radius spherical ensemble
produces the same correlation function within the sphere as does

a spherical surface ensemble (Cron [1] {[2]). There is also the
problem of infinite energy: if an infinite radius spherical volume
ensemble is postulated, there must be zero energy generated in
every differential element of volume!
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accomplished by perturbing the speed of sound in the wave equation
since volume inhomogeneities can then be assumed to be much greater

than a wavelength (sectionm 4.1). T the transmission operator

).’
perturbed by a small amcunt A, maps x into u as defined by solution

of

(c + A(z,t))zvzu—u -y

tt
(u,ut) = (0,0) at tw-e=

Unfortunately, it is difficult to estimate the realism of the
low frequency cut-off assumption. Officer (1), for instance, gives
estimates for when the elkonal equation is a gbnd Qpproximation to
the wave equation, but not for when the wave equation is'a good
approximation to the physical situation. It is probably not too
good, especially in the upper ocean where a fair amount of sea-life
serves to complicate things by creating smaller scale veolume
inhomogeneities.

In order of decreasing realism, and increasing analytic ease,

it is suvggested tiat models be modified to

1. Contain the transmission operator defined by the wave
equation with random speed of sound and (scattering type)
terms duc to low frequency signals.

2. Contuin the trausmission operator defined by the wave
equation with random speed of sound, without sgcattering
terrma.

3. Contaln waveiront perturbation noilse iutroduced as arrival

tirme jitter at each hydroplione.
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Only 3 secems simple enough to lead to analytic results, However,
extensive analytic and numeric work with 1 and 2 should be done to
model the statistics of the arrival time jitter process. VThis kind
of modification of sonar models should have a significant effect
on the results of sonar analyses. It is probable, for 1n§tance,
that a point source of interference will cost considerably more
than one hydrophone to null (Schultheiss [2]) when perfect wave-
fronts are eliminated. It is not clear what effect a model with
Jitter will have on detection in the limit of continuous observation.
Modeling jitter In that situation should provide an interesting
mathematical challenge, as it would seem to reéuire a stochastic

process whose elements are (continuwous?) maps of a set into itself.
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5. BUMMARY
. After providing a summary of the contributions nade by each
of the previous chapters, we present & short liat of further

research topics (of all sizes),

5.1 Contributions of this Work

The chief contributions made in this work may be divided

conveniently along chapter lines:

Chapter Contribution

1l Analysis of array design problems, showing their relation-
ship to model singularity.

2 Development oi a means for classifying most models of
communication and detection. Presentation of an adequate
and precise definition of model singularity.

3 Discovery of an underlying feature of singularities in
certain kinds of modeis, namely, inequality of the
signal and noise subspaces.

4 Application of these results to sonar detection models,
with the conclusion that models currently used are
inadequate and may give misleading results. éuggestions

for improving the models are given.

D-88




5.2 Possib;e Direstions for Further Work

The possibilities presented for further work are also

conveniently treated on a chaptér, section basis: (we restrict

this list to problems directly suggested by the work presented

here)

Suggested Extensions or Modifications

Section

1.3

2.2

2.3

2.4,5,6

2.7

Any extension of the theorems on orthogonality versus
equivalence of Gaussian measures, as revealed'by proper-
ties of their covariances, to the sonar case would be
very interesting.

The model apparatus defined in this section provides a
convenient skeleton for a taxonomy of detection modelé,
the compilation of which would serve to consolidzte the
understanding of C/D problems that has been achieved so
far and prepare a base to support further achievement.
Sufficient conditions for existence of induced measures
are needed,

Further examples could profitably be investigated. N
dimensional Gaussian processes, as well as processes
defined more directly by thelr sample spaces await
treatment (Parthasarathy [1]). Additional topologles
might be investigated.

Additional performance criteria could gell be inves-
tigated for continuity properties: Neyman-Plerson,

for instance, is closely related to the Baysian risk,

Maximum information transfer is another candidate for
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Section ~ Suppested Extensions or Modifications

investiyation., Also, while continuity of nc in P and P!

has Leen shown, a proof of continuity in P“ is lacking.

4.3, A good deal of open ground lies here, but it may continue

v

to lie fallow through {ufertility. At any rate, conjecture
4.1 could use a counterexample or a proof while éonjactﬁre
4.2 necds a proof, and, many theorems similar to conjecture
4.2 nced to be investigated (they would differ from con-
jecture 4.2 chiefly in the source geometrics assummed).
ihis can be paraphrasedby saying that a much deeper
unﬁc;ﬁtdndfug 5( thc transmigsion opcrathr ié’a pré~‘
requisite to better understanding oi sonar models.

4.0 Jittes o lely beekoa.  Also, amalytie work, numeric

[P I |
i T iedw

caper Leent:n to provide the statistics of the
“ftteey process.  Analytfc work to justify t'e jitter

Dodebleoaine sk propertien dae the Linit of
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