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ABSTRACT 

The development of high-strength structural adhesives has created many new 
uses for adhesive joints and established a need for additional theoretical 
and experimental study. An adhesive lap joint is analyzed, taking advan-
tage of its similarity to a sandwich structure for which an established 
theory exists. The principle of minimum complementary energy is used to 
develop the governing equations, which are equivalent to a single differ-
ential equation of eighth order. Included in the complementary energy 
expression are contributions due to shear and normal stresses in the 
adhesive layer and due to shear, axial, bending, and normal stresses in 
the adherend. 
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FOREWORD 

The work reported herein was authorized by DA Task 171(220hA11002,  "Stress 
Analysis, Failure, and Design Criteria for Dynamically and Statically 
Loaded Structures." 

The authors are Indebted to Professor Wilfred H. Uorton for assistance 
ard advice received during the course of this work. 
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LIST OF SYMBOLS 

D differential operator -i 

E effective elastic modulus of the adherend material in plane strain 
defined in equation  (29), lb/in.2 

E Young's modulus of the adhesive material, lb/in.*" a 
p 

E*    Young's modulus of the adherend material, lb/in. 

o 
G     shear modulus of the adherend material, lb/in. 

G     shear modulus of the adhesive matei'ial, lb/in. 

h     adhesive layer thickness, in. 

K     dimensionless parameter defined in equation (17) 

L     differential operator determinant defined in equation (53) 

L1 jLg,! Lagrange undetermined multipliers 

M bending moment per unit width of adherend, lb-in./in. 

m dimensionless bending moment variable defined in equation (l?) 

N axial force per unit width of adherend, lb/in. 

n dimensionless axial force variable defined in equation (17) 

P     differential operator determinant defined in equation (^3) 

Q     transverse shear force per unit width of adherend, lb/in. 

q     dimensionless transverse shear force variable defined in equation 

(17) 

R     differential operator determinant defined in equation (52) 

2 
S     stress variable defined in equation (9), lb/in. 

s     dimensionless stress variable defined in equation (17) 

t     adherend thickness, in. 

U     complementary strain energy for a unit width of the joined structure, 
c    lb-in. 
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X coordinate shown in Figure 1, in. 

x dimensionless coordinate defined in equation (17) 

Y coordinate shown in Figure 1, in. 

Z coordinate shown in Figure 1, in. 

6 variational operator 

quantities defined in equation (17) 

M- dimensionless wavelength parameter introduced in equation (17) 

v effective Poisson's ratio of the adherend material in plane strain 
defined in equation (29) 

v' Poisson's ratio of the adherend material 

2 CT jO ,0 normal s t r e s s e s , l b / i n . xx ' yy ' zz ' 
2 a CTZZ in the adhesive l a y e r , l b / i n . 

T >T >T shear s t r e s s e s , l b / i n ? xy xz zy ' 
_ 2 T Tz in the adhesive layer, lb/in. 

T dimensionless stress variable defined in equation (17) 
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INTRODUCTION 

Adhesives have been in use for hundreds of years. Genghis Khan's remark-
able success was partially due to his archers' use of small, powerful bows 
made by laminating different materials with animal and vegetable derivatives 
used as gluing agents.1*2 Exposure to moisture severely weakened these bows 
and caused them to fail after some use. Typical of all adhesives until 
recently, loss of strength due to moisture strictly limited the structural 
importance of f.uch materials until the development of synthetics. 

With the development of synthetic resin adhesives came the possibility of 
new applications. Previously only wooden components were bonded, but now 
metal-to-metal joints between dissimilar materials became feasible. 

There are a number of reasons why the replacement of mechanical fasteners 
and welded joints by adhesives is attractive. The continuous nature of , 
the joint reduces stress concentrations and provides longer fatigue life 
Dissimilar materials can be effectively joined with adhesives where an 
alternative joining procedure would have been nonexistent or prohibitively 
difficult before. A good example is the metal-paper honeycomb sandwich. 
New structural applications such as honeycomb sandwich and fibrous com-
posites have been made possible with strong adhesives. Yet another impor-
tant advantage is an economic one- Adhesive joining eliminates a number 
of production costs associated with setting up and assembling joints with 
rivets and spot welds.-'- The lap joint is particularly favorable in this 
respect because of its basic simplicity and ease of fabrication. 

The inability of a stress analyst or designer to determine whether or not 
he has correctly analyzed the stress distribution in an actual adhesive 
joint is the most formidable disadvantage to the use of this joining proce-
dure . There are several reasons why this is so. 

A realistic adhesive joint is influenced by factors that analytical methods 
neglect. A statistical evaluation of experimental results is required to 
predict accurately the regions in which failure will occur. Air bubbles 
or voids, residual stresses due to improper curing, variation of the adhe-
sive layer thickness, and the "notch effect" due to convex or concave 
adhesive layer boundary all significantly influence the stress concentra-
tions and the stress distributions within an adhesive j o i n t . v a r i -
ation of thickness ic so important that some authors consider thickness to 
be the essential criterion for strength predictions.8,9 This means that 
the care taken in the fabrication of an adhesive joint is a determining 
factor of its strength - a factor which, unfortunately, cannot be accounted 
for in a deterministic fashion. 

Theoretical efforts have left important areas unexplored or inadequately 
examined. There is no unified view that spans the entire range of useful 
parameters, although many analyses exist which treat limited cases. There 
are a number of theories available that are based on simplifications of the 
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actual three-dimensional elastic problem. Unfortunately, their application 
is limited by the fact that it is unclear in which instances the simplifi-
cations are valid. 

Experimental research and widespread engineering use of adhesives is 
hampered by the lack of a fully reliable nondestructive test. Where experi-
mental research is held back, analytical work is also hindered. As Sherlock 
Holmesl° said, "I have no data yet. It is a capital mistake to theorize 
before one has data. Insensibly one begins to twist facts to suit theories, 
instead of theories to suit facts." Theory without experimental confirma-
tion cannot be completely relied upon. 

These three facts - the statistical nature of adhesive joints, uncertainty 
surrounding available theories, and the lack of reliable nondestructive 
testing techniques - have limited the use of adhesives and plagued joint 
designers. Nevertheless, analytical and semiempirical results currently 
must be used as the best available means of estimating joint characteristics 
for design purposes. After manufacturing has commenced, destructive tests 
on a sampling basis are normally conducted to insure joint reliability. 

The analysis of the complete three-dimensional adhesive joint problem is 
difficult and, in view of the uncertainty of practical fabrication tech-
niques, cannot be justified. Fortunately, investigators have established 
some degree of correlation between experimental data and their particular 
simplified theories. Reference 1 provides a good survey of the contribu-
tions of Volkersen, de Bruyne, Goland and Reissner, Plantema, Mylonas, and 
others J>H-1^ 

The present thesis is concerned with establishing a unified theory that 
spans the unexplored area between a rigorous elastic analysiŝ -3 and the 
highly simplified theory of Lunsford.1? Initial simplifications due to 
similarity of adhesive joints and sandwich structure make possible'a 
straightforward analysis accounting for what are believed to be the most 
important factors influencing joint behavior. 

A complementary energy expression is obtained and combined by means of 
Lagrange multipliers with the equilibrium equations. The principle of 
minimum complementary energy is employed to obtain equations of consistent 
deformation which can be reduced to a single eighth-order equation. 
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ANALYSIS 

FORMULATION OF THE PROBLEM 

In any engineering theory it is desirable to simplify the actual physical 
problem in order to reduce the difficulty of obtaining numerical results, 
particularly when the neglected effects are of minor importance. Never-
theless, it is advantageous to retain as many contributing factors as is 
necessary to adequately describe the problem. The analysis of adhesive 
joints should be approached in this spirit. This problem is an intricate 
one, but it is highly academic to account for all details because of the 
uncertainties and irregularities introduced by practical fabrication 
techniques. 

The simplest adhesive joint is the lap joint. Since it is the most com-
monly used in actual applications of adhesive joints, it is considered 
here. Furthermore, the analysis will be restricted to a lap joint which 
has one adherend much stiffer than the other. (A "rigid" idealization 
will be used.) The remaining adherend thickness t will be assumed to be 
much greater than the adhesive layer thickness h so that the ratio of 
h to t will be negligibly small. An inverse relation exists between 
joint strength and adhesive thickness; therefore, a very thin adhesive 
layer can be expected. 

Adhesive lap joints resemble ordinary sandwich structures, such as those 
with high-strength faces and thick cores. A sandwich core is loaded pri-
marily in shear, with the effect of face parallel normal stresses of 
secondary importance; the same is true of the adhesive layer. Axial and 
bending stresses are the primary loading of both sandwich face sheets and 
adherends, but transverse normal and shear effects must be included for 
the latter. From the established theory of sandwich structures, the as-
sumption of a state of antiplane stress in the core is used for the adhe-
sive layer. 

The analysis will be conducted by otaining the equilibrium equations of 
the upper, nonrigid adherend. An expression for the complementary energy 
of the system will be derived including effects of shear and normal stresses 
in the adhesive layer and shear, axial, bending, and normal stresses of the 
adherend. The equilibrium equations, multiplied by Lagrange multipliers, 
will be added to the complementary energy expression. The principle of 
minimum complementary energy is used along with the variational calculus 
to obtain the governing equations, which are reduced to a single eighth-
order differential equation. 

Adhesive Layer 

It is assumed that a scate of antiplane stress exists and that there are 
no body forces or residual stresses acting on the adhesive layer. Attention 
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Is restricted to a unit width in the y direction. 

The equilibrium equations are 

a    + T    + T    =0 (l) xx,x    xy,y xz,z v ' 

T    + ^    + T    = 0 (2) yx,x   T,y   yz,z 

T    + T    + a    =0 (3) zx;x    zy,y    zz, z VJ/ 

The usual notation for stresses is used, vith a's denoting normal stresses 
and T'S denoting shear stresses. 

The above assumptions are equivalent to 

a  =T   =T  =a  =T   =T   =0   (h) xx    xy    yx    yy    yz    zy        v ' 

The simplified equations are 

V = 0 (5) 

T v + O ,    = 0 (6) 

where 

T = T , a = a (?) zx '      zz v'' 

Equation (5) indicates that T is a function of x alone. 

T = T(X) (8) 

See Figure 1 for coordinates. 
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Equation (6) indicates that 

a =    S - z T (9) 

where S is a function of x only. 

S   =   S(x) (10) 

Adherend 

The arrangement, dimensions, and coordinates of the adhesive joint to be 
considered are shown in Figure 1. Figure 2 illustrates a typical element 
of the upper adherend, from which the following equilibrium equations can 
be deduced by inspection: 

N   = T (11) 

Q,x = S-Hx W 

M       -   Q-|T (13) 

THE ENERGY EXPRESSION 

The derivation of the complementary energy expression can be found in 
Appendix I.    The contribution of the adhesive layer shear and normal stresses 
is 

The contribution of the adherend shear, axial, bending, and normal stresses 
is 

.    iM'f TT       i r^ r FN2  A  laM2")   v TNS   6 MS   /3h A , \ t W- üc    =    äJolUt    +   rrJ-ELT-f"" Vt   +1Jl2NT,: 
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By adding (lif) and (15) and the sum of the product of equations (ll)-(l3) 
and Lagrange multipliers, the desired expression is obtained. 

+ tl (",* - ?) * h («* - 3 + I \J * L3 (« " I ' " M,x)] } 3)1 (l6) 

Li' V and are Lagrange multipliers that physically correspond to the 
displacement parallel to the joint, the displacement normal to the joint, 
and the adherend bending rotation, respectively. The following dimension-
less variables and parameters are now introduced: 

12M N a T 
m ~ Et2 ' n = Et ' q " Et > 7 ~ E 

S X L1 L2 
E ' Ht 

Ki = r > = r (17) 

X3 L3 ' K ~ E t 
Eh 
2 t a 

1 
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By rewriting (l6) and neglecting terns of order £ copared to unity 
because they assmall, the expression becomes 

(T ) .  /2   E . „   a^,2 J  
v ,x' ( 11 ,     v   „ ,    v   _V.« + te G + K ö:^ + "IOST • te8  12n + is? "rjr - 

if^-i-^-M^^-) 

+ \. (V-8 + itT,x) + >-3(^i-€)]to (18) 

GOVERNIMG EQUATIOMS 

The principle of minimum complementaiy energy states that 

6U = 0 c 

6^ 6m, 6s, and 6T are Independent variations; the corresponding Euler 
equations are 

6n: 
T        \. v _ix  v 0   l,x f. 

6m:    rrr 
—   v _Jlx . v    3tx 
12 ' 2W ji   20   12^ = 
m 

, .    6 E „  1 B „ 
6<1:    fG^-lOG1 -^ + \- = 0 ^    3 

(19) 

(20) 

(21) 

(22) 

(23) 



6T: Vl5 15 G 
K 

L\ .xx 11 
-)T - " V + 210 

n v ,x 
2¥ U 

V 
2̂ tO 

m 

l^E x 2'x 

10 G q " 1 " 2t 

X3 #=° (2̂ ) 

EgunMcnr; (l?0) - (2^) are shown in Appendix II to be equivalent to the 
following eighth-order governing differential equation: 

(fe• K) - Hov + § f * I11!+ 39<r - T + 105o: K)K] V 
l-i 

+ [l02 + ^ (§) - f V2 - f i f V + (teo + 12^-^ - 126^ V)K] V 

E 2 
. - (l89v + 5^6 | + 1260^ K) 2^1 + 1260T = 0 (25) 

a |j. 

The differential equation has eight associated boundary conditions, four of 
which must be satisfied at each end of the adhesive joint. The usual bound-
ary value problems for joints are those for which the horizontal force, 
vertical force, bending moment, and adhesive shear stress assume prescribed 
values at the joint edges. 
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DISCUSSION 

The eighth-order differential equation (25) is the governing equation for 
an adhesive lap joint. It is valid only for lap joints in which one adher-
end is much stiffer than the other. Furthermore, the flexible adherend 
thickness must he much greater than the adhesive layer thickness. This 
equation is more general than the idealized problem that it represents 
would suggest. Adhesive layers must be thin. Many applications involve 
attachment of flexible materials to a relatively rigid structure, and lap 
joints are quite common. 

A comparison of the governing equation with previous theories is possible. 
The energy expression for the adherend, equation (15), has four bracketed 
quantities. They are, respectively, axial and bending energy, coupling 
term between axial and bending energy and normal stress energy, energy of 
normal stresses, and shear stress contribution. If the adherend shear 
contribution is neglected, the resulting equation would lead to Goland's 
and Reissner's results.13 If adherend shear and normal stresses are neg-
lected, then the equations would reduce to Plantema's results.1^ Lunsford's 
theory is obtained if shear, normal, and bending stress contributions of 
the adherend are neglected along the normal stress terms of the adhesive 
layer energy expression, equation (l^).15 

The theory presented cannot be considered complete until experimental con-
firmation is obtained. Experimental research at the Georgia Institute of 
Technology Aerospace Structures Laboratory is in progress, and it is hoped 
that an assessment of the theory's usefulness will be forthcoming. 
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C0NCLUSI011S 

A unified engineering theory for adhesive lap joints has been developed 
using a modified version of the principle of mlnlinum complementary energy. 
Attention is restricted to Joints vith one adherend assumed rigid and to 
joints whoee adhesive material is idealized as linearly elastic.    Simplified 
stress distributions are determined from elementary considerations and are 
used to construct the appropriate energy functional.    Energy contributions 
included are shear and normal stresses in the adhesive layer and shear, 
axial, bending, and normal stresses in the adherend. 

The governing equations are reduced to a single eighth-order equation. 
The theories of previous investigators are obtainable from the present 
theory when appropriate energy contributions are neglected.    Currently, 
no experimental confirmation of the theory's validity is available.   How- 
ever, research on adhesive joints at the Georgia Institute of Technology 
Aerospace Structures Laboratory is being conducted,  and an evaluation of 
the theory is planned. 
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APPENDIX I 

DERIVATION OF COMPLEMENTARY ENERGY EXPRESSION 

The complementary energy of the adhesive layer is given by 

uc = 11 J h L + ̂  ]dz dx 
o -- a a 

Equation (26) is integrated over the thickness of the layer after sub' 
stitution from equation (9)• 

The following expression is obtained: 

The adherend strip is considered to be in a state of plane strain 
(c = 0). The energy expression including axial, bending, normal, 
and ahear effects is 

U B [* r | ( JS£_ V CT + !|£_ + JZL. ) dz d x c J J t \ E E x x z z E G / ° -g 

where 
E1 2v' E = s- , v = ,2 > v ~ 1 - v' 

1 - v' 

in which E' is Young's modulus and v' is Poisson's ratio. 

ex i s given by xx 
CT - ? + £ Mz XX t t 

and the energy contribution by 

P 2 °xx , N2 12M2 

J t T " dZ = Et + ~ Et" 
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By using 

a xz, 

and by substituting from equations (10) and (12), an expression can be 
obtained for a upon satisfaction of the boundary equations. 

XZ 

6Q f 1 z2 \ - ( 3z2 z 1\ CTXZ = — U • ; + T \ " t ¥ ) 

The energy contribution can nov be obtained. 

t 2 
f 2 J£_ 6£+2_ii)ft _1QT 
J t G Q 5Gt 15 G 5 G 
~2 

An expression for CT can be obtained from the following equation: zz 

o + o = 0 
xz,x zz,z 

Equations (32) and (3k) are used to evaluate which becomes, upon 
satisfaction of boundary conditions, 

CTzz 
= (|-^Z + f3z3)Q,x + + ̂  + + t ) 

The energy contributions can now be evaluated and are found to be 

Jf-r- a z • [ii3* - 5# r * u) 
"2 

• T / # ( ^ • «t • 0] 
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and 

I 
Jt 
2 v , v ^ — a o dz = — I — 
t E xx zz E L 2 

r s . « s . ( a• i)xHT 
2 5 t \ t / 12 

(f-) (37) 

The adherend energy contributions are combined according to equation 
(28), and the result is as follows: 

1 JTN2 12M2 1 v fNS 6 MS ( 3h ^ . Vt uc = 2 j lbt + r r J - E L T - F T - I t + 1/i2NT,x 

v MT 

* ( T + 1 ) - K T ] + tBl02 - t b + U)S"T,* 

Respectively, the square-bracketed quantities are axial and bending energy, 
coupling between axial and bending energy and normal energy, normal stress 
energy, and energy due to shear stresses. 

* 
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AFPENDIX II 

REDUCTION OF ITOPBggg GOVERNING BQyÄTIONS 
TO A SINCLE EIGHIH-ORDER GOVERNING EQUATION 

In addition to the five Independent variations mentioned previously In 
equations (20)-(2U), there are three remaining: ÜK\,  6\2, and 6x3. The 
equilibrium equations In nondlmenslonal form are obtained by setting these 
three Independent variations equal to zero. 

n 
-f   - T (39) 

^    2t |i x ' 

1 = i + ^ c*' 

Using equation (Ul), equation (1*0) becomes (r- « l) 

..|> + ^ (te) 

X2 can be solved for in equation (22), \3 can be solved for in equation 
(23), and then \x can be obtained from (24). These values can be substi- 
tuted into equations (20) and (21) to obtain 

T ET 
v  ,x   vs /IE,  a „. \    jxxx •ur-t- - T - feö+ ^K

; - ^r 

u u      n      ^ 
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, 

12 25Ö   M     + \ 20 12    V35 /      2^     2520 ^T 

v^.   ,xx v       fxx «i«E «xi        IE 
48     ST   +   ITlO       2      +   120 G   H     "    10 Ö q,x (W) 

Upon rearrangement and substitution of (39) and (te), equation! (43) 
and (44) become 

m 

1 E '.x 
10 G n (fe^D1 XXX 

3 (^5) 

6G^" " Vl5 + 2)'t-T 
xxxxx 

= 12T - (3v + I + 12 ^ K) -^ + (| + 3K) -^f (46) 

Writing in operator notation, (4-5) and (46) become 

[IISM-fe^fetM2*]- 

-yf?*(^*f)4]' (*?) 
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[se]'-[(%*!)4]» 

. [12 - (3V • I • 12 i K ) 4 + (f • 3ic) 4 ] T (48) 
a ^ n 

where D is the differential operator • Equations (kj) and (k8) may-
be solved for q. and m in terms of T. x 

»-r 
m = RT 

(50) 

where L, P, and R are differential operators defined below. 

P P 11 12 
P = 

P P 21 22 

P - 12 - (3* - f + 12 It) ̂  * (f + 3K) ̂  
a (i n 

P = . (l_ +K)£ *12 \ 15 2 / 5 

p = 1 _ E D ( 2 V \ D 3 
21 10 G [i Vl5 2/ 3 

P22="[1 + l 0 £ 2 + f e (M + K )^ ] 
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'■■■-'.-■ .,.......,, 

■ 

«12 

R21  ^ 

«12 
= 12 (3-f ^K)^(^*C) IT 

u 

R - 2. £L a 
^21 " 5 G u 

6 E D 
5 G ^ 

«22 " "- 
1_ E D 4 

10 G IT 
(2    . Y\ DJ 

Hi   ^2 

^1  ^ 

Lll = «11' L12 = P12' L21 a «21' ^ " ^22 

\    (52) 

i 

> (53) 

If the operator L Is applied to equation {hi),  the follcwlog result Is 
obtained: - 

Lq - | T - -^ Un - 0 (5k) 
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The terms q and m can now be eliminated with the aid of (1+9) and (50): the 
result is 

(P ' I " W R) T = 0 (55) 

If the differential operators are expanded, the above equation can be 
written in the form (25). 
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