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ABSTRACT 

Tests were conducted in the Aerodynamic Wind Tunnel (IT) of the 
Propulsion Wind Tunnel Facility to determine the effects of test section 
plenum chamber volume on the centerline Mach number distributions, 
wave-cancellation properties of perforated walls, model force data, and 
tunnel acoustics at Mach numbers from 0. 6 to 1.3.   Results were ob- 
tained with plenum chambers of four different sizes at plenum-to-test 
section volume ratios between 8. 3 and 0.8.   Reducing plenum volume 
produced no measurable effect at Mach numbers below 0. 95.   At Mach 
numbers above 0. 95, decreasing the plenum volume increased the in- 
ternal plenum losses, increased the plenum suction requirements, and 
increased the centerline Mach number deviations; however, the Mach 
number deviations were small at Mach numbers below 1. 15.   Reducing 
the plenum volume also produced a small increase in the effective wall 
porosity but had no measurable effect on measured model forces except 
to increase the forebody drag coefficient at Mach numbers above 1.05. 
Changes in the plenum volume had no significant effect on tunnel acous- 
tics. 

This document is subject to special export controls and 
each transmittal to foreign governments or foreign 
nationals may be made only with prior approval of 
Arnold Engineering Development Center (XON), Arnold 
Air Force Station, Tennessee 37389. 
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SECTION I 
INTRODUCTION 

Consideration of the national demand for transonic testing led to a 
study of methods of obtaining a transonic capability in the von Karman 
Gas Dynamics Facility (VKF) 40-in. Supersonic Wind Tunnel (A) with- 
out significant modifications to the facility.   The recommended method 
would utilize a removable plenum insert to provide a 30- by 30-in. 
transonic test section just upstream of the Tunnel A model injection 
system (Fig.  1, Appendix).    The proposed insert (Fig. 2) would pro- 
vide current transonic design features including variable porosity walls; 
however, the plenum depth and plenum volume would be considerably 
less than that normally used in current transonic wind tunnels. 

The effect of plenum volume on transonic wind tunnel performance 
is relatively unknown.   A survey of the literature produced only two re- 
ports concerning the effects of plenum volume on transonic wind tunnel 
performance (Refs.  1 and 2) and both of these reports were on slotted 
tunnels.   Since the effects of plenum volume on a perforated wall tran- 
sonic wind tunnel were unknown,  an exploratory test program in the 
Aerodynamic Wind Tunnel (IT) of the Propulsion Wind Tunnel Facility 
(PWT) was conducted to determine the effects of plenum volume on test 
section flow characteristics of a perforated wall transonic wind tunnel. 
Free-stream Mach number distributions, wave-cancellation properties 
of perforated walls, model force data,  and tunnel acoustics data were 
obtained.   Three auxiliary plenum sizes were investigated which, along 
with the standard IT plenum, gave plenum volume-to-test section volume 
ratios of approximately 0. 8,  1. 8, 3.0, and 8. 3. 

SECTION II 
APPARATUS 

2.1   TUNNEL 

Tunnel IT is a continuous-flow, nonreturn wind tunnel equipped with 
a two-dimensional, flexible nozzle and an auxiliary plenum evacuation 
system.   The Mach number range is normally from 0. 2 to 1. 5 utilizing 
variable nozzle contours above M = 1.1.   For the present study, the 
nozzle was fixed on the sonic contour because the proposed modification 
to Tunnel A will have a fixed sonic nozzle.   Total pressure control is 
not available in Tunnel IT, and the tunnel is operated at a stilling cham- 
ber total pressure of about 2850 psfa with a ±5-percent variation dependent 
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on tunnel resistance and ambient atmospheric conditions.   The stagna- 
tion temperature can be varied from 80 to 120°F above ambient tempera- 
ture as necessary to prevent visible condensation in the test region. 

The Tunnel IT test section is composed of four removable walls 
which form a test region 37. 5 in. long and 12- by 12-in. in cross sec- 
tion.   The top and bottom walls are supported by flexures at the nozzle 
exit and by screw actuators at the downstream end to provide for varia- 
tion in wall angle.   The walls were set at zero wall angle (walls parallel) 
for this investigation.   The variable porosity test section walls can be 
set for porosities from 0 to 10 percent; however, the. installation of the 
auxiliary internal plenums made it difficult to change the wall porosity 
during the test.   Therefore, the wall porosity was set at 3 percent for 
this investigation. 

The general arrangement of the tunnel and its associated equipment 
is shown in Fig. 3.   A detailed description of the tunnel and its capabili- 
ties is given in Ref. 3, while details of the variable porosity walls are 
given in Refs. 4 and 5. 

2.2  PLENUM 

The effective plenum volume was varied by the use of three remov- 
able auxiliary plenums installed inside the regular IT plenum.    The dis- 
tance between the test section wall and the plenum wall was 2 in. for the 
small internal plenum, 4 in. for the medium internal plenum,  and 6 in. 
for the large internal plenum.    The small plenum simulated the plenum 
depth ratio desired for the proposed Tunnel A insert.    The internal 
plenums exhausted to the regular IT plenum at the rear of the test sec- 
tion.   The internal plenums for each wall of the test section were not 
interconnected except through the regular IT plenum.    The regular IT 
plenum has a circular cross section 41.25 in. in diameter. 

The large internal plenum consisted of a 24-in.-square aluminum 
box built around the test section.   The medium internal plenum was 
formed by installing 2-in. filler blocks inside the large internal plenum. 
The stringers of the variable porosity walls were deeper than the 2 in. 
required for the small plenum.   Therefore, the small plenum was formed 
by bolting aluminum plates to the outside of the test section wall frames 
and using filler blocks to reduce the plenum depth to the required 2 in. 
Details of the internal plenums are shown in Fig. 4. 
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2.3 STATIC PRESSURE PIPE 

A l-in.-diam static pressure pipe was used to obtain the centeriine 
static pressure distributions from Tunnel Station -2. 6 to 34.4.   The pipe 
has a total of 41 orifices which are spaced 2 in. apart from Station -8. 6 
to 3.4 and 1 in. apart from Station 3.4 to 37.4; however, not all orifices 
were used during this investigation because of an insufficient number of 
manometer tubes.   The pipe attaches to the model sting support strut in 
the rear of the test section and extends into the stilling chamber.   The 
installation is shown in Fig. 5. 

2.4  CONE-CYLINDER MODEL 

A sketch of the 20-deg cone-cylinder model showing the pressure 
orifice locations is given in Fig.  6.   Through fabrication error, the 
cone angle was 18 minutes less than originally intended.   An installation 
sketch is given in Fig.  7, and a photograph of the installation is presented 
in Fig. 8.   The tunnel blockage of the cone-cylinder model was 1 percent. 

The model orifices were relatively small, 0.023 in., and it was diffi- 
cult to remove the burrs resulting from final machining.   The data from 
a few of the orifices are not presented because of consistently high or low 
pressure measurements which were attributed to these burrs. 

2.5  AGARD CALIBRATION MODEL B 

The AGARD Calibration Model B is an ogive-cylinder with a delta 
wing.   The specifications for the model are given in Eef. 6.   The basic 
dimensions of the model are given in Fig. 9,  and details of the installa- 
tion are presented in Fig.  10.   The tunnel blockage with the model at 
zero angle of attack was 2. 5 percent. 

2.6   INSTRUMENTATION 

Model, static pipe, tunnel total, and auxiliary internal plenum pres- 
sures were photographically recorded from a multitube mercury manom- 
eter board referenced to the standard tunnel plenum pressure.   Selected 
pressures were also measured by six precision pressure balance trans- 
ducers for on-line monitoring.   The standard tunnel plenum chamber 
reference pressure was measured with a servo-driven mercury manom- 
eter.   The tunnel total temperature was measured by an iron-constantan 
thermocouple and displayed on an indicating potentiometer-type recorder. 
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Model forces on the AGARD Model B were measured with a six- 
component, internal, strain-gage balance.   The dynamic outputs of the 
balance were monitored with an oscillograph to prevent overloading of 
the balance.   The base pressures were measured by a 5-psi precision 
pressure balance transducer referenced to the standard tunnel plenum 
static pressure.   Model force data were recorded on paper tape for off- 
line data reduction. 

The influence of the size of the plenum volume on the magnitude 
and frequencies of the fluctuating pressures in the test section was also 
considered.   In order to evaluate this possible influence, microphones 
were installed in the stilling chamber, in the test section wall immedi- 
ately downstream of the nozzle exit, in the internal plenum,  and in the 
standard plenum.   The stilling chamber microphone was mounted approxi- 
mately 8. 5 in. from the tunnel shell, facing upstream.   A screened pro- 
tective nose was installed to protect the diaphragm.    The test section 
microphone was installed with the diaphragm flush with the wall.   The 
plenum chamber microphones were installed in the forward region of 
each plenum in areas that were expected to have relatively low flow 
velocities.   In order to evaluate the vibration sensitivity of the micro- 
phones, accelerometers were integrally mounted with the stilling cham- 
ber and test section wall microphones.   The locations of the test section 
and internal plenum microphones are shown in Fig. 4. 

The output of each microphone and accelerometer was measured on- 
line using a root-mean-square (rms) voltmeter and recorded on magnetic 
tape, using an FM tape recorder, for an off-line spectrum analysis.   In 
order to ensure the maximum signal-to-noise ratio of the dynamic data, 
selectable gain, decade amplifiers were included in the signal condition- 
ing instrumentation.   A dynamic calibration was performed on each 
channel prior to the day's test run.   All dynamic calibrations were at a 
center frequency of 1 x 10^ Hz.   The microphones were calibrated with 
a precision acoustic calibrator at magnitudes that were representative of 
the tunnel operating levels.   The accelerometers were calibrated electri- 
cally using the sensitivity most recently determined by the Calibration 
Laboratory.   The frequency passband of the dynamic instrumentation 
was 50 Hz to 10 kHz; the upper cut-off frequency was determined by the 
magnetic tape recorder. 
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SECTION III 
PROCEDURE 

3.1   TEST CONDITIONS 

The tests were conducted over the Mach number range from 0. 6 
to 1.3.   The stagnation pressure varied from 2775 to 2990 psfa.   The 
stagnation temperature was maintained at temperatures from 135 to 
165°F as required to prevent moisture condensation in the test section. 
The nozzle was set on the sonic nozzle contour for all Mach numbers. 
AU data were obtained with parallel test section walls set at a porosity 
of 3 percent. 

3.2 TEST DISCUSSION 

The test was conducted in three phases.   In the first phase, tunnel 
calibration data and tunnel centerline Mach number distributions were 
obtained for the three auxiliary plenum configurations.   In the second 
phase, the static pressure distributions on a 20-deg cone - cylinder model 
were obtained to investigate the effects of plenum chamber volume varia- 
tions on the ability of the perforated walls to eliminate compression and 
expansion wave reflections from the test section walls.   In the third 
phase, force and moment data on an AGARD Model B calibration model 
were obtained to investigate the effects of plenum volume variations on 
model force data. 

The fluctuating dynamic pressures were measured during the static 
pipe and cone-cylinder phases of the test.    Following the establishment 
of the desired steady-state tunnel conditions, the overall rms levels 
were measured at each microphone and accelerometer position, and a 
30-sec record was taken on magnetic tape. 

The evaluation of the air-on fluctuating pressures required that the 
no-flow acoustic disturbances, the vibration induced disturbances, and 
finally the instrument noise levels be evaluated.   To accomplish this, 
three so-called background runs were established, and rms and magnetic 
tape data were taken.   For these three background conditions, the main 
tunnel valve (Valve No.  1) was closed, and thus there was no airflow in the 
test section.   The first background condition was with the compressor and 
steam ejector on, and permitted the evaluation of flanking acoustic, sources 
not associated with airflow.   In addition, with the aid of the accelerom- 
eter s, the evaluation of structural inputs to the microphones was also 
possible.   The second background was with the compressor on and the 
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steam ejector off.   This allowed a crude evaluation of the acoustic dis- 
turbances contributed by the compressor.   The third background condi- 
tion was with both the steam and the compressor off.   This allowed the 
evaluation of the minimum noise or instrument noise levels. 

Based on the rms measurements, it was found that, for Back- 
ground No.  1, the acoustic levels were 30 to 60 times below the mini- 
mum air-on levels.   Correspondingly, the vibration levels were re- 
duced by less than a factor of ten.   For Background No. 2, the acoustic 
levels were further reduced by a factor of about two, and there was no 
decrease in the vibration levels.   For Background No. 3, the acoustic 
and the vibration levels were both reduced by a factor of greater than 
100 from the minimum air-on levels.   Thus, it is concluded that the air- 
on measurements are representative of flow-induced disturbances and 
are not influenced by flanking acoustic transmission paths, vibration, or 
instrument noise. 

3.3  DYNAMIC DATA REDUCTION 

As mentioned in Section 2.6, the outputs of the microphones and 
accelerometers were measured using an rms voltmeter and were also 
recorded on magnetic tape for future analysis.   Because of the length 
of time required for a comprehensive spectrum analysis, only the rms 
data are presented in this report.   The rms data were corrected for the 
calibration and background values. 

3.4  PRECISION OF MEASUREMENTS 

The estimated uncertainties in the data which can be attributed to 
instrumentation errors and data acquisition techniques are presented 
below.   The uncertainties were determined for a confidence level of 
95 percent. 
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M„ 0.60 1.00 1.2 

cL ±0.0015 ±0.0008 ±0.0007 

Cm ±0.0111 ±0.0061 ±0.0054 

cD ±0.0013 ±0.0011 ±0.0010 

cD,b ±0.0008 ±0.0005 ±0.0005 

^P/Pt ±0.003 ±0.003 ±0.003 

P/Pt ±0.003 ±0.003 ±0.003 

M. ±0.0035 ±0.0035 ±0.0035 

a ±0.1 ±0. 1 ±0.1 

7 ±0.15 ±0. 15 ±0.15 

2a ±0.0018 ±0.0018 ±0.0018 

SECTION IV 
RESULTS 

4.1   CENTERLINE MACH NUMBER DISTRIBUTIONS 

Representative test section centerline Mach number distributions 
obtained with the standard IT plenum (Ref. 4) and with the three aux- 
iliary internal plenums installed in the tunnel are presented in Fig.  11. 
Variations in plenum volume had no measurable effects on the test sec- 
tion centerline Mach number distribution for Mach numbers below 0. 95, 
and are, therefore, not presented.   The 2a Mach number deviations be- 
tween Stations 12.4 and 30.4 for aU plenum configurations are presented 
in Fig.  12.   At Mach numbers above 0. 95, decreasing the plenum volume 
increased the 2CT Mach number deviations when compared with the stand- 
ard IT plenum.   The 2cr Mach number deviations for the large and medi- 
um size plenums were approximately the same magnitude at all Mach 
numbers.   The 2a Mach number deviations for the small plenum were 
greater than the other internal plenums at Mach number above 0. 95. 
The increase in the 2a Mach number deviation for the small plenum is 
primarily the result of a perturbation in the Mach number distribution 
near Tunnel Station 20.    The cause of this increase is not known.    The 
test section wall does have a transverse frame near this location; how- 
ever, no significant Mach number deviations were noted at the locations 
of other transverse frames (Stations 7,  14, and 27). 
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Decreasing the plenum volume also increased the plenum suction 
required to establish the desired test section Mach number at Mach 
numbers above 1. 0.   Static pressure measurements on the bottom -walls 
of the internal plenums revealed that the increased suction requirements 
were caused by a static pressure gradient along the length of the plenum 
(Fig.  13).   The static pressure gradient increased with decreasing plenum 
volume and was attributed to the increased friction losses associated with 
the increased velocity required inside the plenum as the plenum volume 
was reduced.    This static pressure gradient produced an increase in the 
local Mach number aft of Tunnel Station 30 for Mach numbers above 1.15. 

It should be noted that the internal plenums were open to the regu- 
lar tunnel plenum at the rear of the test section only.    This required the 
entire mass flow that was being removed through each wall to pass through 
the openings at the rear of the internal plenums.    Most of the mass flow 
removal through the walls occurs ahead of Station 14 at Mach numbers 
above 1.0.   Therefore, removing the auxiliary plenum flow in the 
vicinity of tapered porosity region should reduce the flow inside the 
plenum shell aft of Station 14 and improve the Mach number distribution. 

4.2  CONE-CYLINDER PRESSURE DISTRIBUTIONS 

The pressure distributions on a 1-percent blockage, 20-deg,  cone- 
cylinder model were measured to determine the effect of plenum volume 
on the wave-cancellation properties of perforated walls.   The pressure 
distributions of the cone-cylinder model can be better understood with 
the aid of Fig.  14.   The initial reflections from the bow shock and the 
shoulder expansion fan on the model will impinge upon the model at the 
approximate stations shown.    If the wall possesses the desired wave 
cancellation characteristics, the model pressures will show no pertur- 
bations at these specific body stations.   If the wall is too open, then the 
bow shock will be reflected as an expansion wave and the shoulder expan- 
sion fan will be reflected as a shock wave.   If the wall is too solid, the 
bow shock will reflect as a shock wave and the shoulder expansion fan 
will reflect as expansion waves. 

The model pressure distributions for the standard IT plenum 
(Ref. 5) and the three auxiliary plenum configurations are compared in 
Fig. 15 with interference-free curves that are based on theory and on 
empirical results from Refs. 7 and 8.   The error in cone angle results 
in a corresponding error in the interference-free pressure ratio of less 
than 0. 002, which is considered to be insignificant. 
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The interference-free data were available at discrete Mach numbers 
only, whereas the Mach number at which the present wind tunnel data 
were obtained deviated from the nominal values as much as AM = 0. 010 
for the large and medium plenum configurations.   The deviation from 
the nominal Mach number for the small plenum was also less than 0. 01 
for Mach numbers up to M,,, = 1.05.   At higher Mach numbers, the de- 
sired Mach number was difficult to set with the small plenum because 
of the amount of plenum suction required to establish test conditions. 
Data presented in Fig. 15e for the small plenum at a nominal Mach num- 
ber of 1. 15 were actually obtained at M,,, = 1. 172, and no data for the 
small plenum were obtained at a Mach number close enough to 1.20 to be 
used for comparison with the interference-free curves.   Data for the 
cone-cylinder models using the standard IT plenum configuration were 
obtained prior to the tunnel calibration with the variable porosity walls 
(Ref. 4), and the Mach number for these data may vary as much as 0.03 
from the nominal value. 

The data indicate that decreasing the plenum volume produces a 
slight increase in the effective wall porosity.    This is most evident at 
a Mach number of 1.10 where the bow wave reflects as a very weak 
expansion wave in the vicinity of x/d = 4.   The reflected bow wave pro- 
duces a slight increase in the pressure ratio that gets stronger with de- 
creasing plenum size.   The disturbance from the reflected shoulder wave 
near x/d = 7 also increases slightly with decreasing plenum volume at 
these Mach numbers.   If the wall porosity were reduced, these effects 
would probably disappear. 

4.3  AGARD CALIBRATION MODEL B FORCE DATA 

The lift, drag,  and pitching-moment characteristics of the AGARD 
Model B were obtained at Mach numbers from 0.6 to 1.2 with the four 
plenum configurations.    Typical force and moment data for selected 
Mach numbers using the standard IT plenum data as a basis for com- 
parison are presented in Figs.  16 through 20. 

Considerable difficulty was experienced in obtaining good data be- 
cause of problems with the model support system.    After data had been 
obtained with the standard IT plenum, the balance was found to be loose 
on the sting.    Therefore, the runs with the standard plenum were 
repeated.   When the data were reduced after testing had been completed, 
the data for the small plenum also showed evidence of a loose balance. 
A comparison of data obtained with and without the loose balance with 
the standard plenum configuration revealed that the only measurable 
effect of the loose balance was to decrease the effective angle of attack 
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for angles of attack below 3 deg.   When the angle of attack was corrected 
by the amount necessary to give the correct lift coefficient at zero angle 
of attack, the data agreed within the accuracy of measurement.   There- 
fore, the data obtained at angles of attack below 3 deg with the small 
plenum were corrected by the amount necessary to give the correct lift 
coefficient at zero angle of attack. 

Decreasing the plenum volume had no effect on the aerodynamic 
coefficients except to increase the forebody drag coefficient at Mach 
numbers above 1.05 with the small plenum (Fig.  18a).   The lift coeffi- 
cient for the medium plenum was higher than for the small, large, and 
standard plenums at angles of attack above 3 deg for Mach numbers be- 
tween 0. 6 and 0. 9.   A bearing in the pitch mechanism failed while test- 
ing this configuration and was replaced prior to testing at M,,, = 0. 95. 
Therefore, it is felt that the angle of attack was incorrect at higher 
angles of attack for Mach numbers below 0.95 when the medium plenum 
was installed.   The good agreement between the lift coefficients with 
the small and large plenums supports this conclusion. 

The base drag values for the AGARD Model B with the three aux- 
iliary internal plenums installed show much better agreement with each 
other than with the standard tunnel results.   Since the base drags for the 
three internal plenums are in substantial agreement, there does not 
appear to be any significant effect of plenum volume on base drag. 

4.4  ACOUSTIC DATA 

The acoustic measurements were included during the plenum volume 
study to determine if the 'inherent cavity resonances of the various size 
plenums could influence the fluctuating pressures in the test section. 
Such an influence could limit the test capability of the proposed tunnel 
insert; particularly in the areas of buffet, flutter, and Magnus force 
testing. 

As mentioned in Section 3. 3, only the overall rms data are presented 
in this report.   In addition, the rms data in the plenum cavities have not 
been presented because of the need for the spectrum analyses for the 
interpretation of the overall levels.   Thus, discussion is limited to the 
data taken in the stilling chamber and in the test section. 

The test section data are limited by the fact that the microphone 
was located on the wall and at the forward end of the test section rather 
than on the tunnel centerline and at a midpoint in the test section.   This 
was necessary because the dynamic instrumentation had to be installed 

10 
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in a manner that would not require extensive modification to the moving 
plate of the variable porosity walls.   During the conduct of recent acous- 
tic studies in Tunnel 16T, forward and midsection microphones were 
mounted on the test section wall, and two centerline microphones were 
installed in a 10-deg" cone.   The data from these microphones have been 
used to arrive at a qualitative assessment of what information can be 
derived from the 1-ft tunnel wall-mounted microphone.    Based on this 
comparison, it appears that for low Mach numbers (M,,, < 0. 85) and for 
large disturbances (p > 10. 0) the measurements at the forward location 
can be considered as representative of the free-stream levels.    For 
M,,, > 0. 85, the measurements are low by a factor of 3 to 4.   The expla- 
nation for this lower level is twofold: (1)  the forward microphone is 
shielded from the test section disturbances as the velocity approaches 
M,,, = 1.0 and (2)   the flow conditions at the wall are relatively constant 
at the forward end of the test section while the need for plenum suction 
at the higher Mach numbers alters the flow at the midsection of the 
wall and raises the noise levels.   Thus, the test section wall data are 
intended to show only the relative variations of test section noise levels 
as a function of plenum volume size. 

A comparison of the measured rms levels in the stilling chamber 
and on the test section wall is shown in Fig. 21 for the three different 
internal plenum volumes and with the static pipe installed.   Also, in 
Fig. 21b, selected points with the standard plenum volume are shown. 
These points were taken with the AGARD model installed, however, 
rather than the static pipe.    It is noted in Fig. 21a that the stilling 
-chamber levels are relatively constant as a function of auxiliary plenum 
size.   Thus the stilling chamber can be considered as a constant acous- 
tic source, and the measured variations in the test section can be attri- 
buted to the influence, either direct or indirect, of the auxiliary plenum 
volumes.   As noted in Fig. 21b, this influence is slight except at low 
subsonic Mach numbers where the smaller volume shifts the maximum 
rms pressure to a lower Mach number.   The same trends are repeated 
with the cone-cylinder model installed (Fig. 22).   In both figures, the 
maximum level does not change significantly, only the Mach number at 
which it occurs.   Thus based on the measured overall rms noise levels, 
there is no apparent penalty in using the smaller plenum volume. 

SECTION V 
CONCLUSIONS 

An investigation of the effects of reducing plenum volume on tran- 
sonic flow characteristics has been conducted in the FWT Aerodynamic 

11 
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Wind Tunnel (IT).   The basic purpose of the study was to determine the 
feasibility of a transonic insert proposed for the VKF Supersonic Wind 
Tunnel (A), which, to produce a transonic test section of reasonable 
size (30 by 30 in.), would have a necessarily small plenum volume ratio 
of approximately 0.8.   The primary results of the tests, which are pre- 
sented below, show in general, that only relatively small adverse effects 
were obtained for reductions in plenum-to-test section volume ratio from 
approximately 8. 3 to 0.8.   Since methods of improving the flow quality, 
such as a better plenum suction arrangement and variable porosity walls, 
can be incorporated in the insert design, it is concluded that the plenum 
insert is a very promising method for providing a transonic test capabil- 
ity in Tunnel A. 

The following specific conclusions have been drawn from the results 
obtained: 

1. Decreasing the plenum volume produced no measurable 
effects on the test section Mach number distribution at 
Mach numbers below 0. 95.   At Mach numbers above 
0. 95, decreasing the plenum volume increased the devi- 
ations in local Mach numberj however, the deviations 
were small for Mach numbers up to 1.15.   Slightly 
larger deviations were obtained with the small plenum 
than with the medium and large plenums. 

2. Decreasing the plenum volume increased the plenum 
suction required to establish the desired test section 
Mach numbers at Mach numbers above 1.0. 

3. Reducing the plenum volume produced a slight increase 
in the effective wall porosity. 

4. Reducing the plenum volume had no effect on the lift, 
base drag, and pitching moment coefficients for the 
AGARD Calibration Model B.   The forebody drag coeffi- 
cient was observed to increase with decreasing plenum 
volume for Mach numbers above 1.0. 

5. Reducing the plenum volume had no significant effects 
on the tunnel acoustics. 

12 
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