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•RELATIVELY OPTIMAL REINFORCEMENT PATTERNS 
FOR FIBER-REINFORCED COMPOSITE MEMBRANES 

A. A. G. Cooper* and E. M. Wu** 
Materials Research Laboratory 

Department of Mechanical and Aerospace Engineering 
Washington University 

St. Louis, Missouri    63130 

1.  Summary 

A method is proposed to obtain relatively optimal reinforcements in a fiber- 

reinforced composite membrane.    The method is based on the fact that: 

a. A reinforcing fiber is most efficiently utilized when it coincides 

with the direction of maximum required stiffness. 

b. The directions of principal trajectories are not dependent on any fiber 

reinforcement as long as the fibers coincide with those directions. 

An optima I ity condition for the fiber reinforcement is derived.    The derivation 

is an adaptation of one given in the literature for Isotropie homogeneous materials. The 

optimal ity condition derived states that the specific strain energy divided by the speci- 

fic number of fibers is a constant, for maximum stiffness at a given weight, and mini- 

mum weight for given stiffness.  Since optimization of the reinforcement only is con- 

sidered and optimization of the matrix is not included, the resulting optimum is relative. 

Mathematically, the optimum is weak.  As an example, some numerical values 

for a boron-epoxy wedge in tension were computed. 

*  Research Assistant 
** Assistant Professor 
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3.    Notations 

(Notation used in appendix, not included) 

(7) equation (7) 

[7] Reference number [7] 

a number of fibers (18.2.);  k = 1,2. 

b1 C
E 

b2 ^P 

% 
constant (§8.2.) 

CP 
constant (f 8.2.) 

C. stiffness coefficient; I, f = 1,2,6. 

C| optimality constant (18.2.) 

dS surface area element 

•l '.' 

•2 '/ 

«3 'l^ 

n. exponent of a. (18.2.);  i ■ 1,2,3. 
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P external load;  i = 1,2, 

r. radius; figure 1;  1 = 1,2. 
1 

S compliance coefficient; i, \ = 1,2,6. 
•I 

U specific strain energy (f 8.2.) 

U. component of U, dependent on a.  (f 8.2.) 

voi •lume 

W_ work done by external loads 
B 

wedge angie; figure 1. 

variation 

displacement of loadpoint of P. 

strain;  i = 1,2,6. 

a stress;  i = 1,2,6. 
I 

4.    Nomenclature? 

FUG:       Fiber LAying Gadget. 

FRO Fiber Reinforced Composite 
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RELATIVELY OPTIMAL REINFORCLMENT PATTERNS 
FOR FIBER-REINFORCED COMPOSITE MEMBRANES 

A. A. G. Cooper 
Materials Research Laboratory 

Washington University 
St. Louis, Missouri   63130 

5.   Introduction 

Fiber-reinforced composites (FRC's) can be of great advantage in structun 

structural parts requiring a material with distinct directional characteristics.   Pressure 

vessels, for instance, are such structures, and fiber-wound pressure vessels are examples 

of successful utilization of FRC's. 

The directional load or stiffness requirements are not always constant throughout 

the structure; quite often they change rapidly, i.e. the directions and values vary con- 

siderably over a short distance.   A well-known example is a strip with a hole under 

tension. 

FRC's are most commonly applied in the form of cloth or tape made of continu- 

ous straight fibers.   Therefore, in order to follow changes in directions, a laminate has to 

be made consisting of several layers with different orientations.   It is obvious that the 

material is not used very efficiently in these cases of rapidly changing directions, the 

more so since generally the directional loads and/or stiffness requirements vary simul- 

taneously and significantly as well.   Hence it appears to be worthwhile to look into the 

possibility of a more satisfactory method to deal with this kind of problems. 

Simply stated, the problem is how to use as little material as possible to provide 

as high a stiffness as possible in a given direction, and clearly this is an optimization 
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problem. 

In this report an account Is given of initial work d>ne on a method to optimize 

the reinforcement.  It is based on two observations: 

a. For a unidirectionally reinforced FRC, the direction of maximum stiff- 

ness coincides with the fiber direction. 

b. The principal stress (and strain) directions in an isotropic body do not 

change when the isotropic body is made specially orthotropic; i.e. 

when the axes of orthotropy coincide with the principal stress (strain) 

directions. 

By laying fibers along principal trai'ectories detarmined for the isotropic case, 

reinforcements are obtained which are (relatively) optimal under certain conditions for 

the stress and/or strain fields. This is the essence of the method discussed in Section 8 

of this report. 

Optimum designs are often impracticable because they are too complicated and 

hence too expensive to fabricate. This is not likely to happen to FRC designs optimized 

as outlined in Section 8, for the following reasons: 

a. The price of a reinforcing material like boron or graphite is so high [35] that it 

contributes substantially to the cost of the structure. Any weight reduction causes 

a similar cost reduction of the reinforcing matesjal and hence also an overall cost 

reduction for the structure. 

b. One of the main factors contributing to material cost Is the precision required for 

fiber alignment.  High precision Is also required when the material Is applied to 
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the structure.  For the method discussed in Section 8, the material is used in the 

form of a tingle continuous wire.   Hence the need for precision during fabrication 

hat been eliminated, and of the two precision requirements, only the one for appli- 

cation remalnt.   Not only will this result in lower cost but it will be beneficial alto 

for the overall precision finally achieved. 

c.  The percentage of material watte will be very low for production vertions of the 

fiber-laying device described in Section 9, since the length of the fiber needed can 

be computed accura'/ely.   (Production versions of the FLAG will be equipped with 

a fiber cutting device.  Therefore, no fiber will be laid along return loops.) 

In order to put the method in a proper perspective, some optimization theories 

and techniques used in the field of FRC't as well as a few other fields are briefly 

surveyed. 

Finally, a description it given of an experimental Fiber-LAying Gadgei (FLAG) 

which it being developed to lay a singfe continuous fiber along a curved trajectory in a 

flat plane.  This device will eventually be capable of laying fibert in predetermined 

patterns, and then tett specimens can be made to check theoretical results with experi- 

mental data. 

6. Structural Application Methods for FRC's 

In this section a brief survey is given of methods used to obtain optimal struc- 

tural applications of composites reinforced with continuous fibers.  Of these methods, 

drawbacks are indiceted which have been aleviated by the method discussed in Section 8. 

Extensive bibliographies covering each of these methods can be found elsewhere, see for 

■ 
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Instance Reference 1. 

6.1.  Lamination 

Continuous fibers are often worked into tapes or woven fabrics.  In a laminate 

made of layers of tapes and/or fabrics, the number and the orientation of the layers arc 

variables which allow the structural designer to more or less match the material proper- 

ties and the structural requirements. 

Methods have been developed to determine rationally the number and orienta- 

tion of the layers ([2, 3, 4] and [5], Div. 6. Propulsion Systems).  Apart from the fact 

that sometimes these methods reportedly yield questionable results, they determine the 

variables in one single point only.  In applications where the stress anchor strain gradient 

and direction do not vary considerably throughout the structure, these methods will pro- 

vide useful information.  However, in structures with stress concentrations they become 

impractical since they require application of the material in quantities and forms that 

are Impracticable.  The designer therefore is forced to compensate by using more mate- 

rial and thus decreasing its efficiency. 

As a result, the superior directional properties are not used to full advantage in 

many laminated structures. 

6.2.  Filament Winding 

Fiber-wound structures account for some of the most successful applications of 

FRC's.  This is mainly due to the uniformity of the stress-and-strain fields in structures 

particularly suited for fiber winding, e.g. pressurB vessels. 
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Fiber-winding techniques, to a certain extent, allow for aligning fibers with 

principal directions and controlling the number of fibers in a given direction.  In some 

cases geometrical disturbances like openings in vessels can be incorporated in the design 

in such a manner that the design is optimal [1]. 

Stress analysis of fiber-wound structures is based either on netting analysis or on 

a continuum-mechanics approach [61.  In netting analysis, most frequently used in the 

early days of filament winding, the fibers are assumed to be the load-carrying consti- 

tuents of the composite, with the matrix not playing a load-carrying role at all.  Netting 

analysis simplifies the stress analysis of fiber-wound structures considerably and in many 

papers its application has been investigated, e.g. [7-11].  Studies of some special struc- 

tures, not being fiber-wound structures, have also been based on netting analysis [12]. 

When based on continuum mechanics, the analysts of fiber-wounJ structures 

becomes complicated [6].  Since the structures under consideration have one or more 

axes of rotatory symmetry and also because the stress and strain fields are un'form, the 

complicated analyses are stil' tractable. 

6.3.  Reinforced Concrete 

Reinforced concrete can be classified as a fiber-reinforced composite.  The 

functions of reinforcement and matrix, as assumed in analyses of reinforced concrete 

structures, differ from those in "real" FRC's; the reinforcement is assumed to carry 

tensile loads while the matrix carries compressive 'oads. 

The reason for paying attention to the field of reinforced concrete is the fact 

that in that field, too, there is a need for optimization of the reinforcement.  And some 

■ 
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Interesting methods have been developed, both theoretical [13] and experimental [14]. 

I In [14] a discussion has been given on the determination of the reinforcement pattern 

in a reinforced concrete plate of irregular form by employing Ligtenberg's reflection- 

moire method. With such an experimental method, the method discussed in Section 8 

I could still be used in cases where analytical and numerical analyses are impractical. 

I 7.  Optimum Design 

There is a distinct difference between "structural analysis" and "structural 

design."  Analysis is the study of the behavior, i.e. stresses, deflections, etc. of a struc- 

ture of given form, dimensions, and material constants.   Design, or direct design as it 

sometimes is called, is concerned with structures in which certain parameters, e.g. 

plate thickness, are to be determined.  These parameters are determined such that the 

structure not only satisfies conditions of equilibrium and compatibility but also meets 

one or more additional requirements.  For example, the requirement that the stiffness 

be maximum for a given weight or the weight be minimum for a given stiffness.  The 

structure resulting from such a structural design procedure is an optimum (or optimal) 

design. 

: On the subject of optimal structural design, a most extensive literature now 

exists and quite a few survey papers cover parts of the subject.   Barnett's paper [15] 

is a good introduction (and a very readable one at that) to some optimum design topics 

■ related to the method discussed in Section 8.  Also, a survey article [16] is mainly 

devoHd to reinforc? J concrete optimisation. 

*- The following paragraphs in this section refer to fields in optimum design theory 

I which are related to the problem of optimization of FRC's. 

■   ■ ■ 
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7.1.  Plaittc Datlgn 

Plastic dasign deals with structuras in which plastic daformation is allowed to 

occur.  Much progress has been made in developing the theory and many important 

results have been established concerning optimal ity conditions. 

In [17], minimum weight plastic design has been related to uniform strength 

elastic design, based on the assumption that the yield function is directly proportional 

to the specific strain energy.  One of the important theorems in the theory of plastic 

design states that a design is a minimum weight design if the rate of dissipation per 

unit volume is constant.  Analog to this, for an elastic design to be an optimum design 

the specific strain energy is constant [17]. 

7.2. Elastic Design 

Derivations of optimality conditions for elastic structures are often based on the 

principle of minimum potential energy.  This principle states (see for instance [18], 

page 171) that the displacement which satisfies the differential equations of equilibrium, 

as well as the conditions at the bounding surface, yields a smaller value for the potential 

energy of deformation than any other displacement, which satisfies the same conditions 

at the bounding surface. 

Usually, only one type of sMicture is treated at a time, e.g. sandwich beam, 

column, etc., and a linear relationship between stiffness and weight is assumed [19]. 

Furthermore, in most cases only one design parameter, like the thickness of a plate, is 

independently variable. 

■ 

■ 
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A generally applicable optlmality condition for maximum stiffneii designs has 

been derived by Huang [20].  His very simple derivation, also based on the principle of 

minimum potential energy, leads to a condition for optimality.  This derivation is used 

in Section 8 to establish an optimality condition for the reinforcement in FRC membranes. 

Since an optimization problem can be formulated as an isoperimetric problem 

[21, 22], variational calculus is frequently used in derivations of optimality conditions. 

Once an optimality con^non has been established, for instance to obtain maximum stiff- 

ness for a given weight, another optimality problem with the same condition can easily 

be formulated to obtain minimum weight for a given stiffness.  This is due to what is 

called t..j reciprocity of isoperimetric problems [21]; in the theory of mathematical 

programming it is known as duality (see for instance [23]).  This approach has beon fol- 

lowed in [24]. 

7.3.  Maxwell-Michel! Structures 

A theory of optimum frame structures based on work by Maxwell [25], has been 

developed by Michel I [26].  According to this theory, the bars of an optimum frame 

coincide with the principal strain traiectories of a displacement field involving constant 

principal strains the value of which is determined by means of Hooke's Law by the 

allowable stress and the E-modulus of the bar material.  The principal strain lines can 

be shown to be given by the same equations as the slip lines in plane flow of a perfectly 

plastic solid [27, 28].  For the story of the revival of the interest in Michel I structures, 

see [15,27]. 

In [29] it has been suggested that this theory can be applied to FRC's.  A lami- 

nate of varying number of layers has to be used to approximate the change in fiber 
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diameter required by the theory.  No justification has been given for this application 

of the theory. 

Mlchell •»'uctures are statically determinate and can therefore be dimensioned 

such that the de.igns f-re uniform strength design! md optimum designs as well.  Gener- 

ally, FRC structures, e.g. plates under a biaxial state of stress, are statically indetermin- 

ate and consequently applicability of the theory to FRC structures is far from being 

self-evident. 

7.4.  Systematic Structural Synthesis 

The methods of optimization mentioned in the three preceding paragraphs are 

analytical.  However, much work of a numerical nature has also been done.   By means 

of numerical methods, cases can be investigated which are too complicated to be treated 

analytically, e.g. highly indeterminate structures. 

Systematic structural synthesis is the procedure leading to an optimum design by 

iteration of an analysis-redesign cycle.  For the iteration, quite a few numerical methods 

are known [11.  Th3 primary requirement to be met bv such methods is a rapid conver- 

gence to an absolute optimum. 

Structural synthesis is basically the same trial and error design procedure as has 

always been used by structural designers.  It differs In that the procedure has been ration- 

alized In !he sense that in the iteration process every next step yields a design that is 

better than or at least as good as the previous one.  This is achieved by employing mathe- 

matical methods developed In the theory of mathematical programming [23, 301. Because 
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Statically indef rmlnata optimal dwign. a,*, In genial, relatively optimal in 

H* «me that an equivalent but .t.tically detanninate de,ign can be found which i. 

ab«lutely optimal. An orthogonally .Hffened plate in «me instance, can be considered 

a. a .tatically determinate structure since the two equilibrium conditions can be taken 

care of by the two sets of appropriately dimensioned stiffs [36].  Unfortunately, this 

appears to be impossible for an FRC membrane because elastic interaction between two 

dually orthogonal unidirectional fiber systems in FRC's would c«,ple the solutions for 

each of the two equilibrium conditions.  For the same re «on, Michell's theory does not 

seem generally applicable to FRC structures reinforced with fibers of constant diameter. 

These observations indicate that probably in only a few special cases reinforcements pat- 

terns can be obtained which are absolutely optimal. 

The use of numerical method», particularly non-linear programming methods, 

complicates matters considerably. Therefore, it appean to be expedient, at least ini- 

«.lly, to investigate the optimization problem analytically rather than numerl^lly. 

An unsuccessful attempt was made to find ways to apply the remits of [17] to 

FRC's.  The elastic strength concept as mentioned in [171 requires the structure to be 

statically determinate. This restriction «vetely limits the applicability of any optl- 

m.lity condition derived from [171.  Therefore, this app«,ach has not been pursued. 

Moreover, complexly satisfactory strength theories for composite, have not yet been 

astablished.  Any oprlmization theory based on a strength theory could be expected to 

be plagued by such nuisances as non-invariar.cy with respect to coordinate transforma- 

tion or ambiguity of principal directions. 
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Numerical methodi are virtually inevitable when a structure is to be subjected 

to many different loading conditions. Such a cate, however, will be considered to be 

beyond the scope of this report, which is primarily meant as an attempt to grasp the 

fundamentals of reinforcement optimiration. 

8. Optimization of Fiber Patterns in FRC Membranes 

In this section, after some preliminary remarks, an optimality condition is 

derived for FRC membranes.  The derivation is a direct adaptation of the one given by 

Huang [20] fcr homogeneous isotrop!c materials.  The term membrane refere to struc- 

tures with in-plane stress resultants only; it implies that coupling effech are not to occur. 

Hence, only balanced laminates are considered. 

In the third paragraph of ihis section a few comments are made on an illustra- 

tive example of seemingly trivial form:   a wedge in tension.   Details of the analysis of 

this wedge r^pear in the Appendix. 

8.1.  Preliminaries 

a. From experiments as well as from theory it is evident that in unidirectionally rein- 

forced FRC's the direction of maximum stiffness coincides wish the fiber direction. 

Hence, if the FRC is required to provide a certain stiffness in a specific direction, 

the fiber material is most efficiently utilized when the fibers coincide with that 

direction [35]. 

b. Directional reinforcement does not affect principal stress or strain directions as long 

as the directions of H» reinforcement coincide with the principal directions.   That 
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is, the principal directions in an isotropic body remain unchanged when fibers are 

laid along those directions.   As in the isotropic case, the principal stress trajectories 

continue to coincide with the principal strain traiecrorics.   This follows from Hooke's 

law: 

e6   =    SUa1     ■    S26°2    +   S66a6 

where       e,    =    shear strain 
o 

a  , o-    =    normal stress 

a.    =    shear stress 
6 

S.,,S_,,SZ,    =    compliance coefficients 
16      26      66 

If the 1- and 2-directions are principal stress directions, then   a. = 0.   Since the 

principal lines form an orthogonal system, and the fibers are laid along the principal 

lines, the FRC is locally specially orthotropic.   Therefore,   S16= S26 = 0.   Thus, 

£   = 0  regardless of the elastic constants.   That is, regardless of the number of fibers 
6 

if the fibers coincide with the principal stress lines.   As   e   = 0  is a sufficient condi- 

tion for the strains to be principal strains, it follows that principal stress lines and 

principal strain lines, which coincide in the isotropic case, continue to coincide in 

the case of locally special orthotropy. 

Observations a. and h^ lead to the hypothesis that fiber reinforcements are opti- 

mal if the fibers follow the trai'ectories.   And since the trajectories are not changed by 

the presence of the fibers, they are the same as if the material were isotropic.   This is 

fortunate since for the determination of trajectories in isotropic bodies analytical, 

numerical and experimental methods are known. 
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8.2.  Optimally Tonditton for FRC Membranes 

An infinitesimally small element of an FRC membrane is considered.   The 

reinforcement is treated as a specially orthotropic medium in »he form of two kinds of 

layers.  In one kind of layer the fibers coincide with the 1-directlon and in the second 

kind the fibers coincide with the 2-direction.  The 1- and 2-directions coincide with 

the principal stress (strain) directions.  Let the two sets of layers be represented in the 

form of two layers.   (In an actual laminate the layers of the two sets can bo arranged 

such that no couplina effects occur.) The elastic constanh for a layer are: 

C (k)   =    C    a"1 
Cll E ak 

C (k)   =   C    a"3 
C12 CP ak 

Cik)   =    CF a"2 
22 E    k 

where  C.^ =  stiffness coefficient for  kth layer (k= 1, 2> 

C., C- = constants 

a,   =  specific numbw of fibers in kth layer (specific = per unit area) 

n.   =  exponent, to be determined theoretically or experimentally 

In the following, by strain energy, the strain energy accumulated in the reinforcement 

is meant.  The strain energy per unit area of a membrane of unit thickness is: 

U   =    1/2 (a1 e1    +   o2 Cj) 

where  a.  and  e.  are the principal stresses and strains. 
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2U   -   Vl    +   a2 e2 

(with Ht« usual assumption of strain compatibility between the layers) 

r  (1)        (2)     2 0)        (2) (1)       (2)      ., 

"  ^Kl   + CllW   +   2(C12 + C12^1 e2   +   ^22 + C22)e2j 

(1) 

"    ^[(b,^ a"1 +   bjeg."3   +   b^^"2) 

n2 n3                    nl 1 
+   (bl -l a2 +   b2 e3 a2     +   bl e2 a2  >] 

=   1/2 [(2U,)   + (2U2)] 

where U. ■ component of U, depending on a. 

b,  =CE;   b2=2Cp 

•l   "  'l '   »2 =  '2 ;   '3 = '1 '2 

Adapting Huang's [20] analysis, an optimallty condition for FRC's is derived in the 

following. Tiie external work W_   can be considered as a measure of stiffness. W_ can 

be written as [20]: x 

-WB   =/l/2(U1  +U2)dS   -\S. 

where  P. ■ external loads \ \ 
\ summation over repeated index 

S.  =  displacement of loadpoint of  P.   I 

dS = surface area element 
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Two designs,   B  and  B, are compared which are subjected to the same loading and have 

the same stiffness, i.e. WR = W= .  Thus, 

rr "l n3 "2 1/2 J [(b, e1 a1       +   b2 e3 a,      +   b, e2 a1   ) 

n2 n3 "l 1 
+   (b. e. a-      +   ^ e3 a2      +   ^ e2 a«  ) |   d S    -    P. 5. 

(2) 

r r        ni n3 n2 
"  WJ L(bi5i5i    + ^'a'l    + bi525i ) 

n» n„ n. 

+ (b^ij2 + ^'a'a3 + bi52521)J dS " pi5i 

By the principle of minimum potential energy [18], the following inequality holds: 

n, n. 
1/2/^ e^ a1

1    +   ...    +   ^ Sjäj1] d S   -    P. 5. 

(3) 
<   \/2f\hy^l^    +   ...   +   b1e2ä2

2]dS   -   P. 5. 

Substitution of (2) into (3) yields. 

n,       n, n.       n_ n.       n. 
l/2/[b1e1(ä1

1-a1
1) + b2e3(i1

3-a1
3) + b1e2(ä1

2-a1
2) 

(4) 
n9     "9 "a     n3 ni      ni 1 

• +   b1e1 (52   -a2^) + b2e3(ä2
J-a2

J) + ^ e2 (a2 ' - a2')] d S   >  0 

I Assuming that i.  and a.   do not differ very much, i.e. assuming that  5 a.   is very 

small in, 

I 
I 
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ä.   =   a.    +   5 a. 
i t i 

_n i.    then can be expanded as follows: 

5.n = e.n  + na.n"    5 a.  + terms of higher orders of  5 a., which will be neglected 
1 1 

_n n    , n-1* a.     =   a.     +   n a.       o a. 
11 11 

(5) 

With (5), (4) becomes: 

n,-l n„-l n«-l 

^/hTl-!1     8al    +   b2e3al3     n38al    +   ble2n2al2     ^^ 

nÄ-l n.-l n.-1 
+   (h}e}n2a2

2     S ^   +   b^a^     ng 5a2   +   b,.^^^     8a2)]dS   >   0 

or, with (1), 

^/(Sfa«i +^r2
6^ ds> 0 (6) 

The volume of the reinforcement can be expressed as: 

V   =    C   /a dS, where  C  Is a positive constant and a = a. + a« 

SV   =   cfSadS 

=   c/(8a1  + 8a2)dS (7) 

The design B will not have a greater reinforcement weight than any neighboring design 

§ of the same stiffness, if the reinforcement volume of B is not greater than the rein- 

forcement volume of  B.   Hence, a condition has to be found for which, 

..   .,L)f..'   ■„.- .: ■ ^       :--■■ ■■.■■'     .-   ■        !-:vV..;- 
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av > o 

or, from (7), 

f{Sa}    +   8a2)dS  >0 

Then, from (6) it follows that this is true if, 

-J-   =   —£   =    C. (8) 
9 a. 9 a* i 

where  C.   is a positive constant, the optimality constant. 

From (8) it fol lows that: 

U.    =    C. a.    +   constant 

where the constant is zero since  U. = 0 for a. = 0, as follows from (1).  Similarly, 

LL = C. a«.  Furthermore, 

2U   =   u,   +   u2   =   U, (1 4 !2)  =   u, ^ 

Thus, the optimality condition becomes: 

—   =   —   =   —   =    constant (9; 
a a, a* 

Equation (9) is a sufficient optimality condition in the sense that it leads to a reinforce- 

ment that is not heavier than any other reinforcement of the same stiffness. 

To prove the necessity of the optimality condition, the external work W    is 

maximized for given V.  This leads to the variational expression: 

.. 
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/•^ n. n n n n n 
SJ [(b^,./   + bj.g.^ +   b,.^2) + (blV2

2 + b2e3a2     + ^.2-2 ) 

-   P. 5.   -   XC (a,   + a2)] dS   =   0 

where   X  is a Lagrange multiplier. 

The Euler equations reduce to: 

^1v,n,"^2•3"3^V,+ b.-2
n2''n2"-xc = 0    (,0,, 

Combination of (10a) and (10b) yields (8). 

The optimum is weak and relative.  Weak because of the assumption made for 

(5), namely that   «a.  be very small [21].   Relative for two reasons:   firstly, because of 

the statical indeterminacy, as is discussed in Paragraph 7.5.  and secondly, because only 

the optimality of the reinforcement is considered.  That means optimization with respect 

to the total weight of fibers and matrix together. 

8.3.  Example 

The simplest example illustrating the potential of the method is a wedge in ten- 

sion (see Figure 1).  The isotropic case has been discussed in [37] and the anisotroplc case 

in [38].   Details of the analysis appear in the Appendix.   Based on data for boron-epoxy, 

some numerical values were computed, which are tepresented graphically (see Figure 2, 

where the optimal design is designated by A and the unidirectional one by B). 
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In Figur. 2, Wight is A. wight of th.f p.rt of th. wdg. Ih.t.. boooAd by 

± a .nd r,   .nd r,.  Th. r.ciproc.l of Ih. .tr.in ».rgy in th.t p.rt of th. «.dg. i. . 

„..„,. of th. .tiffn.«.  Th. .p.ciflc .tiffn«. I. d.fin.d .. A. r.ciproc.l of th. p,o*ct 

of the strain energy times the weight. 

fo, inching wndfl. .ngl., H» graph for th. .tiffn«. d»« th, inching 

wp«io.ity of th. optim.1 d..ign o».r th. unldir.otion.l d..ign. 

,„ th. g..ph for th. r.tio of th. w.i,ht of th. optim.l d«ign to th. w.ight of th. 

u„idir.ction.l d«ign, . di.tinct d...... b.com.. .vid.nt .. .pp.oxim.t.ly 10 d^rM.. 

TM. can fa. .xpl.in.d .. fa.ing du. to th. f.ct th.t p«. th.. .ngl. th. «.in. .frt. A 

difhr «,fa.t.nti.lly fron, 1, .nd d.cr..«. mor. r.pidly.  Tfa. Hb« n«cing, fa.infl • func- 

«„ of th. «cnt, .W«. incr..« n^r. r.pidly which in turn c.u„. rt,. „.ight to 

incr..« .. • d.cr...ing r.t..  And » th. r.tio of th. w.igh« of th. optim.l .nd th. 

unidirectional design decreases. 

Th. t.ct that th. optin«! d..ign I. .ignificntly .tiff« .. «II » W- *." 

A. „nidir.ction.1 d..ign i. illu.tr.t.d fay th. curv. for th. r.tio of th. .pccific .tiffn«». 

9. Fifa« LAyinfl G.dg.t (FLAG) 

,„ „rd« to ch.ck th««.ic.l r«ulh with .1<P«lm.n«l d.t., t«t ^io-n. h.v. 

„ b. m.d. in which th. flfa«. ruo .long tr.^tori« pr.d.rtm,in.d fay th. th«ry. A 

d.vlc.. c.ll.d FUG, w« n-d. h. l.y . «ngl. contlnuou. wir., thr«d « fib« »long 

.„yp~d.t«n.in.dcurv..  ,n thi. «ctioo thi. FLAG i. d.«rib.d.  Th. FLAG «-If i. 

„ount.d on th. p.n c.rri.g. of .n X-Y rKord.r, r^Lcing A. p.n .«mfaly.  Th. X-Y 
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recorder is controlled by a PDP-12 digital computer through a D/A (digital to analog) 

converter. 

With appropriate modifications the FLAG also can be used for curved surfaces 

of almost every type. Its range of application, therefore, is less restricted than is the 

case for fiber winding techniques. 

9.1.   Description of the FLAG 

Plumber's delight, pictured in Figures 3, 4, 5 and 6, and made of leftovers and 

some icrap pieces of copper tubes and brass, is FLAG, an experimental Fiber LAying 

Gadget. 

Details of its construction are shown in Figure 5.  It consists of a wheel (1) 

pressing the fiber onto a sticky layer and simultaneously pulling the fiber (3) from the 

reel (2).  The wheel and reel are rigidly interconnected by the tube {A) through which 

the fiber is guided from the reel to the whe«i.  This prevents the fiber from being 

twisted when the wheel follows a curved traiectory and rotates around a vertical axis. 

The wheel-reel assembly is supported by two aligned bearings (5), allowing for unre- 

stricted rotation around the vertical axis of the aligned bearings.  The bearing assembly 

is fixed to one end of a cu^ed tube (6) by meam of two ioints (7) and (8) which have 

mutually perpendicular horizontal ax«.   Both ioints are rigid, but they are adjustable 

for alignment purposes.  The other end of the curved tube is fixed to a Kxizontal bit (9) 

that fits in the pen carriage of the X-Y recorder (see Figure 4).  Like the pen assembly, 

the bit can rotate freely around its horizontal axis.  The wheel is covered with leflrn 

II 
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tape to prevent it from sticking to the layer.   To avoid practical complications, no pro- 

vision was made for a fiber-cutting device. 

9.2.  Operation of the FLAG 

The FLAG, mounted on the pen carriage of the X-Y recorder, is controlled by 

a program in the PDP-12.  Coordinates for the FLAG are calculated in digital form, 

and by means of a D/A converter these digital data are converted into voltages which 

activate the X-Y recorder.  The potentiometers of the recorder provide fine adjustment, 

necessary to scale the computer output to Hie X and Y ranges of travel of the carriage. 

The trajectory of the wheel is the fiber trajectory determined through theory. 

The trajectory of the FLAG is calculated as follows:   Let b be the dist .nee between 

the vertical axis of the two bearings and the point of contact between wheel and layer 

(see Figure 6);   Let  (x., y.) be a point on the fiber trajectory and  (x_, y-) the corre- 

sponding point on the trajectory of the vertical axis.  Then, 

x-   =   x.    +   b cos tj 

y2   =   y1    +   b cosii 

where   r\  is defined by  tg TJ   =   -?— . 

Since the fiber trajectory is known,  r\  can be calculated for any point (x  , y ) and 

hence (x  , y ) can be determined.  This computation is executed in the PDP-12. 
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9.3.  IniHai Reiulfs 

In order to determine experimentally the effect of the interspace between the 

fibers on the elastic constants of the composite, several unidirectional test specimens 

have to be made, with different fiber soacing.  To this end a program for the PDP-12 

was written to make the FLAG lay fibers along straight parallel lines.  The distance 

between the lines, i.e. the interspace between the fibers, can be adjusted by the corre- 

sponding potentiometer on the X-Y recorder. 

First trial runs with thread, nylon and steel wire indicated that the fiber needed 

to be guided almost to the point of contact between whe-l and layer.  This was accom- 

plished by flattening the lower end of the fiber guiding tube and making it follow the 

contour of the wheel (see Figure 7).  Two different wheels of different diameter were 

used—the bigger one for the stiff wire and the small one for the flexible thread and 

nylon. 

In the first prototype of the FLAG, the distance between the vertical axis and 

the point of contact between wheel and layer was about twice as long as it is in the 

current version.  This was done to avoid wheel shimmy.   Consequently, however, the 

radii of ths return loops at the end of each trajectory had to be quite large.  Therefore, 

the distance was reduced rather arbitrarily to its present value.  Still no wheel shimmy 

occurs. 

For the development of the FLAG, nylcn fiber has been us-ed almost exclusively 

because of easy handling combined with moderate stiffness.  At first, masking tape 

served as the sticky layer, but the fiber usually sank into the adhesive layer of the tape. 
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too deeply to be covered sufficienfly by the resin applied afterwards.  Evaluation of other 

materials finally led to Booklon, a product of Boekelo Plastics N. V. in the Netherlands. 

Normally used to cover books, maps, etc., Booklon is a ^ansparent, self-adhesive, plas- 

tic sheet with a protective covering which is easily peeled off.   The adhesive layer is very 

fhin and the fibers therefore are exposed sufficiently to allow satisfactory wetting during 

subsequent application of resin.  The protective covering performs well when useH as a 

releasing top layer.   Once the resin is cuted, the Booklon base layer and the protective 

covering can be peeled off easily.  The resin content is well controlled when some pres- 

sure is applied during curing, since the fibers act as spacers.  For void control, the methodt 

commonly employed in hand lay-up techniques are used. 

10. Conclusion 

In the foregoing a method has been discussed to obtain relatively optimal rein- 

forcements In FRC membranes.  It is based on the observations that: 

1. In FRC's fbe direction of maximum stiffness coincides with the fiber 

direction,, and 

2. Principal trafectories are independent of fiber reinforcement as long 

as the fibers coincide v^ith the trafectories. 

An optimality condition is derived which states that the specific strain energy 

divided by the specific number of fibers is a constant.  The method is illustrated by the 

example of a single-layer wedge in tonsior.   Tbe results obtained for the example indi- 

cate the potential of the method proposed:  for a 20-degree wedge, the improvement of 

fhe specific stiffness can be in the order of 50 percent.  Therefore, it will be worthwhile 



I 
30 

■ to invesMgafe more complicated cases and to formulate criteria concerning the 

| necessity of a locally orthogonal reinforcement pattern or the sufficiency of a 

locally unidirectional pattern.  It will also be worthwhile to try to extend the optim- 

allty criterion by including the matrix in the optimization. I 

I 

I 

I 

I 

i 

To take full advantage of FRC's, coupling effects have to be included because 

of their possibly beneficial consequences (e.g. with regard to stability). 

These points illustrate the investigation of optimality of FRC plates is 

pertinent to both the theory and the application of FRC's. 
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Figure 3. Fiber laying device; FLAG mounted on 

X—Y Recorder. 

Figure 4. FLAG replacing pen-assembly. 
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(b: see paragraph 9.2.) 

Fjgureö.. FLAG: dimensions. 

Figure 7 FLAG-wheel. 

(see paragraph 9.3.) 
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Appendix: Analyri« of the Wecfae 

Solutions for an isotropfc wedge and an anisotroplc wedge», respectively, can be 

found In [37], p. 97 and in [38], p. 87, respectively. 

The composite is assumed to be an epoxy matrix reinforced with boron fiben. 

The following data are used: 

Ef   =   4.5   x    I06 kg/cm2 

E     =   0.035   x    I06 kg/cm2 

m ^ 

Pf   =   2.35 g/cm3 

3 
P     =    1.15 g/cm m 

As for the geometry of the wedge (see figure U r« / r.  = 3 and 0 < Of <  15 

The optimal solution Is compared with the solution Tor a wec^e made of 

unidirectional tape, oriented In the x - direction, with the following constants: 

fiber fraction:  65% by volume 

Ex =   2.8       x  I06 kg/cm2 

E =   0.28     x  I06 kg/cm2 

V =   0.25 

C =0.11 xlO6 k^cm2 

. 
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I The stnts distribution in an ixotraplc wedge is given by [37]   : 

P cos9 
o  = 

r (o + 1/2 sin 2a ) I 

• where a is the stress in the r-direction (figure 1):  all other stress - components 

are zero. The wedge Is assumed to be of unit thickness. 

The principal trajectories are straight lines in the r - direction and concentric 

circles in the 8 - direction. 

Fibers are laid in the r - direction only. 

From the optimality condition, paragraph 8.2. (g),: 

U 
  = C1 

a 

it follows 

2 
9 
j      = 

Ea 
Cl 

U.     Ea 
■^ 

cos2 8 
1" r 

where E = E - modulus In the r - direction 

C. = constant 

P2 

2     (o+ 1/2 sin 20)2 

(Al) 

The number of fiber» Is   a = a, -^- f (8) (A 2) 
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a3 

where a„  = a at r. 

f (•) = function of 9, to be determined. 

For E the rule of mixtures hold», hence E Is a linear funcKwi of the fiber 

volume fraction and consequently alto a linear function of a, the ..umber of 

fibers, as Is shown later In this appendix. 

Vf|  = fiber volume percentage for a = constant 

C^ = I  . the E - modulus of the matrix *        m 

E. - E - modulus of the fiber 

Hwwefarth C4 will be omitted since E^« ^ for the material considered. 

Then, from (A 1), (A 2) and (A 3) It follows: 

r2 
C2        co«2 • 

C3a     "   ^-~77-^- 

or   fW :J5Z    _£2Li 
" C1 C3      a1 rl 

(A4) 
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Substitution of (A 4) into (A 2) gives: 

9 
a  =  'l 

'l  J C2 cos< 
r 'c c.   arj 

i.e. .i 

1 "3 

2        cosG 

C, C3 r (A 5) 

After substitution of (A 5) into (A 3), the E - modulus becomes 

f _   4/ 2  3 cos 9 

C, r (A 6) 

assuming E   «   E,. 
m t 

The constant C1 can be determined from the boundary condition at r = r., 

9 = 0. At this point the stress is maximum and therefore the number of 

fibers ought to be maximum.  For the sake of simplicity a] is assumed to be I. 

(If a^  >  1,      one or more than one additional layer is needed.) 

Expression (A 5) then gives 

1 ■k 
V 

C3 

1 

c1 
.   C2 1 

ri 

(AT) 
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Th« strain follows from   f  ■    -2., thus: 

f^JE"    -£2ii      4/      1 r 

on .■V¥ (A 8) 

that Is, th« strain In th« r - olraqtlon Is constant 

Substitut« (A 7) Into (A 6), respectively, to obtain 

. = 1    —   cose (A9) 

E = C3  — cose (A|0) 

(Still under the assumption that a. = 1  at e =0 ). 

The strain energy accumulated In the wedge between r = r.   and r = r„ 1st 
1 y 

dS = 

=    C7      J      a  rdr de 
r,        -a 

Substitution of (A 7) end (A 9) yields: 

A        C3 "—     2"na (All) 

The relationship between fiber free tlon and number of fibers Is found as follows: 



ad 

Ut d bf th« ftlMr dlanrwtar and Xf tlie dlntanca between the centers of two neighbor- 

ing fibers. Then a - d / X^ since a Is defined as the number o* fibers per 

unit area ef the membrane (the unit area can conveniently be chosen as being 

dxd). 

The fiber fraction (volume percentage) per unit area Is: 

Vf - t     d2 

or  vf = 0.785 a 

The total weight of the fibers Is 

Wf " //pf Vf rdr d 9 = 

" 1«57pf r} frj-r^ slna (A 12) 

where  pf ■   specific gravity of the fiber material 

The total weight of the matrix Is 

Wm = //^0-Vf)rdrde = 

"     Pm <r2 ' rP   C (r2 + r^a   " l,S7 rl ,ina] (A '3) 

where pm = specific gravity of the matrix material 

(A 13) added to (A 12) yields the total weight (per unit thickness d) of the wedge 

between r = r.  and r = r2 



■ 

a7 

WA = Wr + W    = 
Arm 

= (VV  tl.57 ( Pf- Pm)   r,  t\nm*   Pm (r2 + r^a] (A 14) 

For a wedge of anisotroplc material a solution hat been given in [38]. 

The stress distribution is given by: 

1     (A cos 9 + BsinO) ,   . , 
* - T *—nsy L (A is) 

where a = stress in the r - direction; all other stress components are zero 

1 / L (0) = E - modulus in the r - direction 

A, B = constants to be determined from the equilibrium conditions in 

x - and y- direction: 

/Vd» ss? (A 16) 

JY69 " 0 (A 17) 
-« 

where   o   rdö =   a cos 9 rdö x 

a  rd9 =   9 sin 9 rd9 
y 

(A 16) and (A 17) are expanded: 

,   ^   « /        «In   9 
A   I -TTBT    d«   +   Bl        "" .Q ff9     d«   = P (A 18) 



a8 

/♦• /• + «    9 

tin ft   CM fl     «      « /      «In   9    J« 

-a •/-«i 

L (Ö) can be computer' from the principal constants and the usual transformation: 

K« . ^ .   ~li   +^ .   ^ .|n2eeo,29 + ^9 

By numerical Integration for a set of a values ranging from 1° up till and Including 

15° the corresponding values for A were computed.  Because of the symmetry of 

the geometry with respects to Ö = 0, and since L (0) Is an even function of 8 

while sin 0 Is not, the second integral in (A 18) and the first one in (A 19) are 

zero, and hence B = 0. 

Now, an expression for the strain energy is derived: 

UB
sffo( rdr d8 = 

= /    /^- E   £Acos8 -f Bsin8]2 d8 = 

V"      fa    2 t* 
= /     | A [A /  E cos    Öde + B /    E sin 8 cos 9d8]   + 

'r, •'-a J-a 

+ B   [A / EsIn8cos8d8 +8/ Esin28d8]  |   ^f 

Substitution of (AI8) and (AI9) yields: 

AP - ■ '•(?) 
The total weight of the anlsotropic wedge (per unit thickness d) between r = r. 

(A 20) 



a 9 

and r = r. IK 

(a In degrees) 

Substitution of the data for the geometry and for boron-epoxy unidirectional 

tape as given at the beginning of this appendix, yields: 

WB = sfra   (0,65 x 2t35 + 0*35 x ]']5) 8 ri 2 x ,0"3 " 

= (UZxIO"3*^ 2x o    (kg) (A 22) 

Since in the point (r = r^ ö = 0) the stress is maximum in both wedges, with the 

maximum having the same value in both cases, the results derived for the 

optimal solution have to be adjusted. The value of V. for a = 1 has to be 0.65 

Instead of 0.785. Instead of (A 14), the following expression is used for the 

calculations: 

WA = (r2 " V  l]mZ (? " Pm) rl ,,na + 'm  (r2 + rl)a ] (A 23) 

Substitution of the data for the geometry and for boron and epoxy gives: 

WA = r1
2 2[1.3 (2.35-1.15)slna+ 1.15 x 4 x ^] x 10'3 = 

=   [3.12slna+ 0.16o]  x ^ 2x I0"3    (kg) (A 24) 

(a In degrees) 

The graphs In figure 2 were calculated using (A II), (A 20), (A 22) and (A 24) 
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