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RELATIVELY OPTIMAL REINFORCEMENT PATTERNS
FOR FIBER-REINFORCED COMPOSITE MEMBRANES

A. A. G. Cooper* and E. M. Wu**
Materials Research Laboratory
Department of Mechanical and Aerospace Engineering

Washington University
St. Louis, Missouri 63130

1. Summary

A method is proposed to obtain relatively optimal reinforcements in a fiber~

reinforced composite membrane. The method is based on the fact that:

a. A reinforcing fiber is most efficiently utilized when it coincides
with the direction of maximum required stiffness.
b. The directions of principal trajectories are not dependent on any fiber

reinforcement as long as the fibers coincide with those directions.

An optimality condition for the fiber reinforcement is derived. The derivaticn

is an adaptation of one given in the literature for isotropic homogeneous materials. The

optimality condition derived states that the specific strain energy divided by the speci-

fic number of fibers is a constant, for maximum stiffness at a given weight, and mini-

mum weight for given stiffness. Since optimization of the reinforcement only is con-

sidered and optimization of the matrix is not included, the resulting optimum is relative.

Mathematically, the optimum is weak. As an example, some numerical values

for a boron-epoxy wedge in tension were computed.

* Research Assistant
** Assistant Professor
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3. Notation:

(Notation used in appendix, not included)

) equation (7)

7] Reference number [7]

2 number of fibers (§8.2.); k=1,2.
by Ce

by 2CP

CE constant (§8.2.)

CP constant (§8.2.)

Cii stiffness coefficient; i, { = 1,2,6.
Cl optimelity constant §8.2.)

ds wrface area element

e Elz

°2 o

°3 ‘1%

n, exponent of 8 (#8.2.); i=1,2,3.



4.

Pi external load; i=1,2, __ _

r radius; figure 1; 1=1,2

Sii compliance coefficient; i, i = 1,2,6.
U specific strain energy (§8.2.)

L, component of U, dependent on 2, ($8.2.)
v volume

W 8 work done by external loads

a wedge angle; figure 1.

) variation

SI displacement of loadpoint of PI

€ strain; §=1,2,6.

o, stress; i=1,2,6.

Nocmenclature:

FLAG:  Fiber LAying Gadget.

FRC: Fiber Reinforced Composite



RELATIVELY OPTIMAL REINFORCLMENT PATTERNS
FOR FIBER-REINFORCED COMPOSITE MEMBRANES

A. A. G. Cooper
Materials Research Laboratory

Washington University
St. Louis, Missouri 63130

5. Introduction

Fiber-reinforced composites (FRC's) can ke of great advantage in structures or
structural parts requiring a material with distinct directional characteristics. Pressure
vessels, for instance, are such structures, znd fiber-wound pressure vessels are examples

of successful utilization of FRC's.

The directional load or stiffness requirements are not always constant throughout
the structure; quite often they change rapidly, i.e. the directions and values vary con-
siderably over a short distance. A well-known example is a strip with a hole under

tension.

FRC's are most commonly applied in the form of cloth or tape made of continu-
ous straight fibers. Therefore, in order to follow changes in directions, a laminate has to
be made consisting of several layers with different orientations. It is obvious that the
material is not used very efficiently in these cases of rapidly changing directions, the
more so since generally the directional loads and/or stiffness requirements vary simul-
taneously and significantly as well. Hence it appears to be worthwhile to look into the

possibility of a more satisfactory method to deal with this kind of protlems.

Simply stated, the problem is how to use as little material as possible to provide

as high a stiffness as possible in a given direction, and clearly this is an optimization
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problem.

In this report an account is given of initial work done on a method to optimize

the reinforcement. It is based on two observations:

a. For a unidirectionally reinforced FRC, the direction of maximum stiff-
ness coincides with the fiber direction.

b. The principal stress (and strain) directions in an isctropic body do not
change when the isotropic body is made spacially orthotropic; i.e. |
when the axes of orthotropy coincide with the principal stress (strain)

directions.

By laying fibers along principal trajectories determined for the isotropic case,
reinforcements are obtained which are (relatively) optimal under certain conditions for

the stress and/or strain tields. This is the essence of the method discussed in Section 8

of this report.

Optimum designs are often impracticable because they are too complicated and
hence too expensive to fabricate. This is not likely to happen to FRC designs optimized

as outlined in Section 8, for the following reasons:

a. The price of a reinforcing material like boron or graphite is so high [35] that it
contributes substantially to the cost of the structure. Any weight reduction causes
a similar cost reduction of the reinforcing mategjal and hence also an overall cost
reduction for the structure.

b. One of the main factors contributing to material cost is the precision required for

fiber alignment. High precision is also required when the material is applied to



the structure. For the method discussed in Section 8, the material is used in the
form of a single continuous wire. Hence the need for precision during fabrication
has been eliminated, and of the two precision requirements, only the one for appli-
cation remains. Not only will this result in lower cost but it will be beneficial also
for the overall precision finally achieved.

c. The percentage of material waste will be very low for production versions of the
fiber-laying device described in Section 9, since the length of the fiber needed can
be computed accurately. (Production versions of the FLAG will be equipped with

a fiber cutting device. Therefore, no fiber will be laid along return loops.)

In order to put the method in a proper perspective, some optimization theories
and techniques used in the field of FRC's as well as a few other fields are briefly

surveyed.

Finaliy, a description is given of an experimental Fiber-LAying Gadge: (FLAG)
which is being developed to lay & singte continuous fiber along a-curved trajectory in a
flat plane. This device will eventually be capable of laying fibers in predetermined
patterns, and then test specimens can be made to check theoretical results with experi-

mental data.

6. Structural Application Methods for FRC's

In this section a brief survey is given of methods used to obtain optimal struc-
tural applications of composites reinforced with continuous fibers. Of these methods,
i

drawbacks are indicated which have been aleviated by the method discussed in Section 8.

Extensive bibliographies covering each of these methods can be found elsewhere, see for



instance Reference 1.

6.1. Lamination

Continuous fibers are often worked into tapes or woven fabrics. In a laminate
made of layers of tapes and/or fabrics, the number and the orientation of the layers are
variables which allow the structural designer to more or less match the material proper-

ties and the structural requirements.

Methods have been developed to determine rationally the number and orienta-
tion of the layers ([2, 3, 4] and £51, Div. 6. Propulsion Systems). Apart from the fact
that sometimes these methods reportedly yield questionable results, they determine the
variables in one single point only. In applications where the stress and/or strain gradient
and direction do not vary considerably throughout the structure, these methods will pro-
vide useful information. However, in structures with stress concentrations they become
impractical since they require application of the material in quantities and forms that
are impracticable. The designer therefore is forced to compensate by using more mate-

rial and thus decreasing its efficiency.

As a result, the superior directional properties are not used to full advantage in

many laminated structures.

6.2. Filament Winding

Fiber-wound structures account for some of the most successful applications of

FRC's. This is mainly due to the uniformity of the stiess-and-strain fields in structures

particularly suited for fiber winding, e.g. pressure vessels.
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Fiber-winding iechniques, to a certain extent, allow for aligning fibers with
principal directions and controlling the number of fibers in a given direction. In some
cases geometrical disturbances Iike openings in vessels can be incorporated in the design

in such a manner that the design is optimal [1].

Stress analysis of fiber-wound structures is based either on netting analysis or on
a continuum=-mechanics approach [6]. In netting analysis, most frequently used in the
early days of filament winding, the fibers are assumed to be the load-carrying consti-
tuents of the composite, with the matrix not playing a load-carrying role at all. Netting
analysis simplifies the stress analysis of fiber-wound structures considerably and in many
papers its application has been investigated, e.g. [7-11]1. Studies of some special struc~

tures, not being fiber-wound structures, have also been based on netting analysis [12].

When based on continuum mechanics, the analysis of fiber-wound structures
becomes complicated [6]. Since the structures under consideration have one or more
axes of rotatory symmetry and also because the stress and strain fields are un’form, the

complicated analyses are stil' tractable.

6.3. Reinforced Concrete

Reinforced concrete can be classified as a fiber-reinforced composite. The
functions of reinforcement and matrix, as assurned in analyses of reinforced concrete
structures, differ trom those in "real” FRC's; the reinforcement is assumed to carry

tensile loads while the matrix carries compressive !oads.

The reason for paying attention to the field of reinforced concrete is the fact

that in that field, too, there is a need for optimization of the reinforcement. And some



interesting methods have been developed, both theoretical [13] and experimental [14].
In [14) a discussion has been given on the determination of the reinforcement pattern
in a reinforced concrete plate of irregular form by employing Ligtenberg's reflection-
moire method. With such an experimental method, the method discussed in Section 8

could still be used in cases where analytical and numerical analyses are impractical.

7. _Optimum Design

There is a distinct difference between "structural analysis” and "structural
design." Analysis is the study of the behavior, i.e. stresses, deflections, etc. of a struc-
ture of given form, dimensions, and material constants. Design, or direct design as it
sometimes is called, is concerned with structures in which certain parameters, e.g.
plate thickness, are to be determined. These parameters are determined such that the
structure not only satisfies conditions of equilibrium and compatibility but also meets
one or more additional requirements. For example, the requirement that the ;fiffmss
be maximum for a given weight or the weight be minimum for a given stiffness. The
structure resulting from such a structural design procedure is an optirum (or optimal)

design.

On the subject of optimal structural design, a most extensive literature now
exists and quite a few survey papers cover parts of the subject. Barneﬁ's paper [15]
is a good introduction (and a very readable one at that) to some optimum design topics
related to the method discussed in Section 8. Also, a survey article [16] is mainly

devotad to reinforce 4 concrete optimization.

The following paragraphs in this section refer to fields in optimum design theory

which are related to the problem of optimization of FRC's.
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7.1. Plastic Design

Plastic dasign deals with structures in which plastic deformation is allowed to
occur. Much progress has been made in developing the theory and many important

results have been estabiished concerning optimality conditions.

In [17], minimum weight plastic design has been related to uniform strength
elastic design, based on the assumption that the yield function is directly proportional
to the specific strain energy. One of the important theorems in the theory of plastic
design states that a design is a minimum weight design if the rate of dissipation per
unit volume is constant. Analog to this, for an elastic design to be an optimum design

the specific strain energy is constant [171.

7.2. Elastic Design

Derivations of optimality conditions for elastic structures are often based on the
principle of minimum potential energy. This principle states (see for instance [is],
page 171) that the displacement which satisfies the differential equations of equilibrium,
as well as the conditions at the bounding surface, yields a smaller value for the potential
energy of deformation than any other displacement, which satisfies the same conditions

at the bounding surface.

Usually, only one type of siructure is treated at a time, e.g. sandwich beam,
column, etc., and a linear relationship between stiffness and weight is assumed [19].
Furthermore, in most cases only one design parameter, like the thickness of a plate, is

independently variable.
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A generally applicable optimality condition for maximum stiffness designs has
been derived by Huang [20]. His very simple derivation, also based on the principle of
minimum potential energy, leads to a condition for optimality. This derivation is used

in Section 8 to establish an optimality condition for the reinforcement in FRC membranes.

Since an optimization problem can be formulated as an isoperimetric problem
[21, 221, variational calculus is frequently used in derivations of optimality conditions.
Once an optimality cond’iion has been established, for instance to obtain maximum stiff-
ness for a given weight, gnother optimality problem with the same condition can easily
be formulated to obtain minimun; weight for a given stiffness. This is due to what is
called h. reciprocity of isoperimetric problems [211; in the theory of mathematical
programming it is known as duality (see for instance [23]1). This approach has been fol-

lowed in [24].

7.3. Maxwel!-Miche!l Structures

A theory of optimum frame structures based on work by Maxwell [25], has been
developed by Michell [26]. According to this theory, the bars of an optimum frame
coincide with the principal strain trajectories of a displacement field involving constant
principal strains the value of which is determined by means of Hooke's Law by the
allowable stress and the E-modulus of the bar material. The principal strain lines can
be shown to be given by the same equations as the slip lines in plane flow of a perfectly
plastic solid [27, 28]. For the story of the revival of the interest in Michell structures,

see [15, 27].

In [29] it has been suggested that this theory can be applied to FRC's. A lami-

nate of varying number of layers has to be used to approximate the change in fiber
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diameter required by the theory. No justification has been given for this application

of the theory.

Michell “tructures are statically determinate and can therefore be dimensioned
such that the designs sre uniform strength designs and optimum designs as well. Gener-
ally, FRC structures, e.g. plates under a biaxial state of stress, are statically indetermin=
ate and consequently applicability of the theory to FRC structures is far from being

self-evident.

7.4. Systematic Structural Synthesis

The methods of optimization mentioned in the three preceding paragraphs are
analytical. However, much work of a numerical nature has also been done. By means
of numerical methods, cases can be investigated which are too complicated to be treated

analytically, e.g. highly indeterminate structures.

Systematic structural synthesis is the procedure leading to an optimum design by
iteration of an analysis-redesign cycle. For the iteration, quite a few numerical methods
are known {11. Ths primary requirement fo be met bv such methods is a rapid conver-

gence to an absolute optimum.

Structural synthesis is basically the same trial and error design procedure as has
always been used by structural designers. It differs in that the procedure has been ration-
alized in *he sense that in the iteration process every next step yields a design that is
better than or at least as good as the previous one. This is achieved by employing mathe-

matical methods daveloped in the theory of mathematical programming [23, 30]. Because
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of the enormous amount of numerical operations involved, these methods are practicable
only if computers are used. Even then, particularly when non-linear programming
methods are applied, only a limited number of design variables can be handled to pre-

vent the problem from becoming too complicated to formulate [31].

In [32], systematic synthesis has been discussed and illustrated by an example
problem. An important result reported in the paper is the observation that the minimum
weight optimum design for a statically indeterminate structure is not necessarily a fully

stressed design.

The significance of statical determinacy or statical indeterminacy and fully
stressed design in structural optimization was not very clear in the past [15], but has
since been investigated thoroughly [16,311: A statically indeterminate structure isa
relatively optimal design, which is not fully stressed and not stiffer for the sume weight
nor lighter for the same stiffness than a corresponding statically determinate optimum

design.

Sometimes a stafically indeterminate structure can become fully stressed if it
has been prestressed [331. This fully stressed design is lighter than the optimum design

obtained without prestressing.

If the domain of feasible solutions is not convex or the mathematical program=
ming techniques do not, in general, yield absolutely optimal solutions, then other methods

have to be used [34].

7.5. Conclusions from the Literature Survey

From the literature survey, some conclusions can be drawn which indicate pos-

sible directions of investigation of the optimization of reinforcement in FRC's.

e we delia il Sl Il
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Statically indeterminate optimal designs are, in general, relatively optimal in
the sense that an equivalent but statically determinate design can be found which is
absolutely optimal. An orthogonally stiffened plate in some instances can be considered
as a statically determinate structure since the two equilibrium conditions can be taken
care of by the two sets of appropriately dimensioned stiffeners [36]. Unfortunately, this
appears to be impossible for an FRC membrane because elastic interaction between two
mutually orthogonal unidirectional fiber systems in FRC's would couple the solutions for
each of the two equilibrium conditions. For the same e 1son, Michell's theory does not
seem generally applicable to FRC structures reinforced with fibers of constant diameter.
These observations indicate that probably in only a few special cases reinforcements pat-

terns can be obtained which are absolutely optimal.

The use of numerical method, particularly non-linear programming methods,
complicates matters considerably. Therefore, it appears fo be expedient, at least ini-

tially, to investigate the optimization problem analytically rather than numerically.

An unsuccessful attempt was made to find ways to apply the results of [17] to
FRC's. The elastic strength concept as mentioned in [17] requires the structure to be
statically determinate. This restriction severely limits the applicability of any opti-
mality condition derived from [171. Therefore, this approach has not been pursuved.
Moreover, compleiely satisfactory strength theories for composites have not yet been
established. Any oprimization theory basad on a strength theory could be expected to
be plagued by such nuisances as non-invariaiicy with respect fo coordinate transforma-

tion or ambiguity of principal directions.
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Numerical methods are virtually inevitable when a structure is to be subjected
fo many different loading conditions. Such a case, however, will be considered to be
beyond the scope of this report, which is primarily meant as zn attempt fo grasp the

fundamentals of reinforcement optimization.

8. Optimization of Fiber Patterns in FRC Membranes

In this sectioi, after some preliminary remarks, an optimality condition is
derived for FRC membranes. The derivation is a direct adaptation of the one given by
Huang [20] for homogeneous isofropic materials. The term membrane refers to struc-
tures with in-plane siress resultants only; it implies that coupling effecis are not to occur.

Hence, only balanced laminates are considered.

In the third paragraph of this section a few comments are made on an illustra-

tive example of seemingly trivial form: a wedge in tensior.. Details of the analysis of

this wedge aypear in the Appendix.

8.1. Preliminaries

a. Frem experiments as well as from theory it is evident that in unidirectionally rein-
forced FRC's the direction of maximum stiffness coincides wih the fiber direction.
Hence, if the FRC is required fo provide a certain stiffness in a specific direction,
the fiber material is most efficiently utilized when the fibers coincide with that

direction [35].

b. Directional reinforcement does not affect principal stress or strain directions as long

as the directions of the reinforcement coincide with the principal directions. Thast
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is, the principal directions in an isotropic body remain unchanged when fibers are
laid along those directions. As in the isotropic case, the principal stress trajectories

continue to coincide with the principal strain trajeciorics. This follows from Hooke's

law:
% = 5169 T S26% T 6%
where € = shear strain
0110y = normal stress
0f = shear stress
516’ 526’ 566 = compliance coefficients

If the 1- and 2-directions are principal stress directions, then 0, = 0. Since the
principal lines form an orthogonal system, and the fibers are laid along the principal
lines, the FRC is locally specially orthotropic. Therefore, 516= 526 = 0. Thus,
€= 0 regardless of the elastic constants. That is, regardless of the number of fibers
if the fibers coincide with the principal stress lines. As €= 0 is a sufficient condi-
tion for the strains to be principal strains, it follows that principal siress lines and

principal strain lines, which coincide in the isctropic case, continue to coincide in

the case of locally special orthotropy.

Observations a. and b. lead to the hypothesis that fiber reinforcements are opti-

mal if the fibers follow the trajectories. And since the trajectories are not changed by
the presence of the fibers, they are the same as if the materic| were isotropic. This is
fortunate since for the determination of frajectories in isotropic bodies analytical,

numerical and experimental methods are known.
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8.2. Optimaliiy Condition for FRC Membranes

An infinitesimally small element of an FRC membrane is considered. The
reinforcement is treated as a specially orthotropic medium in the form of two kinds of
layers. In one kind of layer the fibers coincide with the 1-direction and in the second
kind the fibers coincide with the 2-direction. The 1- and 2-directions coincide with

the principal stress (strain) directions. Let the two sets of layers be represented in the

_ form of two layers. (In an actual laminate the layers of the two sets can bn arranged

such that no coupling effects occur.) The elastic constants for a layer are:

(k) _ "
S = CE A
k) _ "3
Ca = Cpay

(k) "2
Co2 Ce

where Ci(ik) = stiffness coefficient for kth layer (k=1, 2)

CE,CP = constants

a, specific number of fibers in kth layer (specific = per unit area)

n,

: exponent, to be determined theoretically or experimentally

In the following, by strain energy, the strain energy accumulated in the reinforcement

is meant. The strain energy per unit area of a membrane of unit thickness is:
u = 1/2 (al ¢ t o, e2)

where o, and e, are the principal stresses and strains.
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+ o.e, =

D = 9 2 %2

(with the usual assumption of strain compatibility between the layers)

(M) (2) 2 (1) (2) (A DI V) 2
1/2 [(c” PO 2C L e ey + Gy + Cyp) ‘2]

n n n
1

3 2
l/2[(bI e 8, + b2°3al + bI e, )

(1)

n

2 "3 ™
+ (bl. 2, + b293a2 + bl e, 2, )]

1

1/2 [(2"1) + (2 uz)]

where UI = component of U, depending on a,

b|=CE; b, = 2C

Adspting Huang's [20] analysis, an optimality condition for FRC's is derived in the

following. Tie external work WB can be considered as a measure of stiffness. WB can

be written as [20]:
AN

-Wy = fl/z Uy + U,)ds '\Nsi\
where P, = external loads } N

summation over tepeated index
8! = displacement of loadpoint of P,

dS = surface area element
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Two designs, B and B, are ccmpared which are subjected to the same loading and have

the same stiffness, i.e. WB = WE . Thus,

n

n n
1 3 2
1/2 f[(bl e;a, + b2 e, 2, + b] e, 2, )

n n n

2 3
+ (b]ela2 + b293a2 + b]e2a2 )] ds - Pisi
()
_ X PRL . "3 - "
l/2j L(b‘ e, 8 ¢+ b2 88,7 * b] e, 3, )
n, n, ny - _
+ (blela2 + b293a2 + b]e2a2 )J dsS - Pisi
By the principle of minimum potential energy [18], the following inequality holds:
n n
- 1 - g | -
l/2f[b]e,13] B L as F b]ezaz]ds - PR3
n n, 3)
<12 f[o 05" + ...+ be,5,2]ds - Ry
Substitution of (2) into (3) yields,
- L _ngng n, 62
l/2fl_b]e](a] -3 )+b2e3(a] -, )+ble2(a] -a )
(4)

n

n n n n n
2 3 | 1
-32)+b]e2(a2 2, )]dSZO

_ 2 }
* bye (E) -a,") + byey (3,

Assuming that Ei and 3, do not differ very much, i.e. assuming that & a, is very

small in,
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Sin then can be expanded as follows:

al=a" +n a.n-] ] a, + terms of higher orders of & ar which will be neglected

Sin = ain + n‘ai"-ISai (5)

With (5), (4) becomes:

n, -1 n,-1 n,=-1

1 3 2
I/Zf[(bl e " 4 8a] + b2 e 2 Ny 8a] + bl e,n, 8 8a])

n,- 1 na-l n, -1
+ (ble] n,a, 8a2 + b2e3a2 ng 852 + bl e,n 2, 8a2)]d5 >0
or, with (1),
a»Ul aU2 45 > 0
— - >
1/2/ 7, Sa, + “25.2 4 (6)

The volume of the reinforcement can be expressed as:

<
1}

C fa d S, where C is a positive constant and a = 3 + a,

1}
o)
~
~
[+ ]
Q.
v

v

(7)

|
O
>
o
+
]
o
N
4
Q.
v

The design B will not have a greater reinforcement weight than any neighboring design
B of the same stiffness, if the reinforcement volume of B is not greater than the rein-

forcement volume of B. Hence, a condition has to be found for which,
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or, from (7),

[8a, + Bayds 20

Then, from (8) it follows that this is true if,

1 _ 2 _
aal - aa2 - c'l (8)

where Cl is a positive constant, the optimality constant.

From (8) it follows that:

UI = Cl a + constant

where the constant is zero since UI =0 for a; = 0, as follows from (1). Similarly,

U2=Cl 2, Furthermore,
42 a
2U=U|+U2_U|(I+;)=Ulq
Thus, the optimality condition becomes:
U v
1, i S constant 9)
a a 2,

Equation (9) is a sufficient optimality condition in the sense that it leads to a reinforce-

ment that is not heavier than any other reinforcement of the same stiffness.

To prove the necessity of the optimality condition, the external work WB is

maximized for given V. This leads to the variational expression:

=l et

Sl -
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1 3 2 2 3 1
8/ [(b] e 8 + b203¢!|l + bl e,a, ) + (bl e, 2, + b203a2 + bl L) ) -
- R5 - AC +a2)]dS -0

where A is a Lagrange multiplier.

The Euler equations reduce to:

" -1 n3-| n2-l

bl e Ny 3, + b2 e, nq 2 + bl e, Ny 3 - AC =0 (10a)
n2-l n3-| nl-l

bl e, n, 2, + b2 e, ng 2, + bl e, Ny 3y AC = 0 (10k)

Combination of (10a) and (10b) yields (8).

The optimum is weak and relative. Weak because of the assumption made for
(5), namely that Sai be very sinall [21]1. Relative for two reasons: firstly, because of
the statical indeterminacy, as is discussed in Paragraph 7.5. and secondly, because only
the optimality of the reinforcement is considered. That means optimization with respect

to the total weight of fibers and matrix together.

8.3. Examgle

The simplest e);;mple illustrating the potential of the method is a wedge in ten-
sion (see Figure 1). The isotropic case has been discussed in [37] and the anisofropic case
in [38]. Details of the analysis appear in the Appendix. Based on data for boron-epoxy,
some numerical values were computed, which are represented graphically (see Figure 2,

where the optimal design is designated by A and the unidirectional one by B).
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In Figure 2, Weight is the weight of that part of the wedge that is bounded by
taandr, and fpe The reciprocal of the strain energy in that part of the wedge is a
measure of the stiffness. The specific stiffness is defined as the reciprocal of the product

of the strain energy times the weight.

For increasing wedge angle, the graph for the stiffness shows tha increasing

superiority of the optimal design over the unidirectional design.

In the graph for the ratio of the weight of the optimal design to the weight of the
unidirectional design, a distinct decrease becomes evident at approximately 10 degrees.
This can be explained as being due to the fact that past that angle the cosine starts to
differ substantially from 1, and decreases more rapidly. The fiber spacing, being a func-
tion of the secant, therefore increases more rapidly which in turn causes the weight to
sncrease af a decreasing rate. And so the ratio of the weights of the optimal and the

unidirectional design decreases.

The fact that the optimal design is significantly stiffer as well as lighter than

the unidirectional design is illustrated by the curve for the ratio of the specific stiffnesses.

9. Fiber LAying Gadget (FLAG)

In order to check theoretical results with experimental data, test specimens have
to be made in which the fibers run along trajectories predetermined by the theory. A
device, called FLAG, was made to lay a single continuous wire, thread or fiber along
any predetermined curve. In this section this FLAG is described. The FLAG itself is

mounted on the pen carriage of an X-Y recorder, replacing the pen assembly. The X-Y



26

recorder is controlled by a PDP-12 digital computer through a D/A (digital to analog)

converter.

With appropriate modifications the FLAG also can be used for curved surfaces

of almost every type. Its range of application, therefore, is less restricted than is the

case for fiber winding techniques.

9.1. Description of the FLAG

Plumber's delight, pictured in Figures 3, 4, 5 and 6, and made of leftovers and

some scrap pieces of copper tubes and brass, is FLAG, an experimental Fiber LAying

Gadget.

Details of its construction are shown in Figure 5. It consists of a wheel (1)
pressing the fiber onto a sticky layer and simultaneously pulling the fiber (3) from the
reel (2). The wheel and reel are rigidly interconnected by the tube (4) through which
the fiber is guided from the reel to the wheai. This prevents the fiber from being
twisted when the wheel follows a curved trajectory and rotates around a vertical axis.
The wheel-reel assembly is supperted by two aligned bearings (5), allowing for unre-
stricted rotation around the vertical axis of the aligned bearings. The bearing assembly
is fixed to one end of a curved tube (6) by mean: of two joints (7) and (8) which have
mutually perpendicular horizontal axas. Both joints are rigid, but they are adjustable
for alignment purposes. The other end of the curved tube is fixed to a horizontal bit (9)
that fits in the pen carriage of the X-Y recorder (see Figure 4). Like the pen assembly,

the bit can rotate freely around its horizontal axis. The wheel is covered with teflon

W |
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tape to prevent it from sticking to the layer. To avoid practical complications, no pro-

vision was made for a fiber-cutting device.

9.2. Operation of the FLAG

The FLAG, mounted on the pen carriage of the X-Y recorder, is controlled by
a program in the PDP-12. Coordinates for the FLAG are calculated in digital form,
and by means of a D/A converter these digital data are converted into voltages which
activate the X-Y recorder. The potentiometers of the recorder provide fine adjustment,

necessary to scale the computer output to Hie X and Y ranges of travel of the carriage.

Tha trajectory of the wheel is the fiber trajectory determined through theory.
The trajectory of the FLAG is calculated as follows: Let b be the dist .nce between
the vertical axis of the two bearings and the point of contact between wheel and layer
(see Figure 6); Let (xI " Yl) be a point on the fiber trajectery and (x2 . y2) the corre-

sponding point on the trajectory of the vertical axis. Then,

Xg = % + b cosq
Yo = y; * b ocosq
dyI
where 1 is definedby tg n = Fral
1

Since the fiber trajectory is known, n can be calculated for any point (xI : YI) and

hence (x2, y2) can bs determined. This computation is executed in the PDP-12.

Bt



9.3. Initia! Results

NN TN o ey eosas

In order to determine experimentally the effect of the interspace between the
fibers on the elastic constants of the composite, several unidirectional test specimens
have fo be made, with different fiber snacing. To this end a program for the PDP-12
was written to make the FLAG lay fibers along straight parallel lines. The distance
between the lines, i.e. the interspace between the fibers, can be adjusted by the corre-

sponding potentiometer on the X-Y recorder.

First trial runs with thread, nylon and steel wire indicated that the fiber needed
to be guided almost to the point of contact between whe-~| and layer. This was accom-
plished by flattening the lower end of the fiber guiding tube and making it follow the
contour of the wheel (see Figure 7). Two different wheels of different diameter were
used--the bigger one for the stiff wire and the small one for the flexible thread and

nylon.

In the first prototype of the FLAG, the distance betweer: the vertical axis and
the point of contact between wheel and layer was about twice as long as it is in the
current version. This was done to avoid wheel shimmy. Consequently, however, the
radii of the return loops at the end of each trajectory had to be quite large. Therefore,

the distance was reduced rather arbitrarily to its present value. Still no wheel shimmy

occurs.

For the development of the FLAG, nylcn fiber has been used almost exclusively

because of easy handling combined with moderate stiffness. At first, masking tape

served as the sticky layer, but the fiber usually sank into the adhesive layer of the tape,

-l 1
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too deeply to be covered sufficiently by the resin applied afterwards. Evaluation of other
materials finally led to Booklon, a product of Boekelo P'astics N. V. in the Netherlands.
Normally used to cover books, maps, etc., Booklon is a transparent, self-adhesive, pias-
tic sheet with a protective covering which is easily peeled off. The adhesive layer is very
thin and the fibers therefore are exposed sufficiently to allow satisfactory wetting during
subsequent application of resin. The protective covering performs well when used as &
releasing top layer. Once the resin is cuted, the Booklon base layer and the protective
covering can be peeled off easily. The resin content is well controlled when some pres-
sure is applied during curing, since the fibers act as spacers. For void control, the methods

commonly employed in hand lay-up techniques are used.

10. Conclusion

In the foregoing a method has been discussed to obtain relatively optimal rein-

forcements in FRC membfanes It is based on the observations that:

1. In FRC's the direction of miaximum stiffness coincides with the fiber
direction, and
2. Principal trajectories are independent of fiber reinforcement as long

as the fibers coincide with the frajectories.

An optimality condition is derived which states that the specific strain energy
divided by the specific number of fibers is a constant. The method is illustrated by the
example of a single-layer wedge in tensio~. The results obtained for the example indi-
cafe the potential of the method proposed: for a 20-degree wedge, the improvement of

the spscific stiffness can be in the order of 50 percent. Therefore, it will be worthwhile

Wil
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to investigate more complicated cases and to formulate criteria concerning the
necessity of a locally orthogonal reinforcement pattern or the sufficiency of a
locally unidirectional pattern. It will also be worthwhile to try to extend the optim-

ality criterion by including the matrix in the optimization.

To take full advantage of FRC's, coupling effects have to be included because

of their possibly beneficial consequences (e.g. with regard to stability).

These points iliustrate the investigation of optimality of FRC plates is

pertinent to both the theory and the application of FRC's.
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Figure 1. Coordinates and loading of wedge.
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Figure 3. Fiber laying device: FLAG mounted on
X-Y Recorder.

Figure 4, FLAG replacing pen-assembly.
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Appendix: Analysis of the Wedge

Solutions for an isotropic wedge and an anisotropic wedge, respectively, can be

found in [37], p. 97 and in [38], p. 87, respectively.

The composite is assumed to be an epoxy matrix reinforced with boron fibers.
The following data are used:

e = 45 x 10° kg/em?

0.035 x lo° kg,/c:m2

Pe = 2.35 g/cm3

©
]

.15 g/cm3

m

As for the geometry of the wadge (see figure 1) r, /r, = 3and0 < @ < 15"

The optima: solution is compared with the solution {or a wedge made of

unidirectional tape, oriented in the x ~ direction, with the following constants:
fiber fraction: 65% by volume

E = 28 «x IO6 kg/cm2
= 028 x IO6 kg/c:m2
= 025

C = 01 x10° kg/em?



a2

The stress distribution in an isotropic wedge is given by [37] :
P cos ©

g =

r(a + |/2sin2a)

where o is I'ho stress in the r~direction (figure 1): all orher stress - components
are zero. The wedge is assumed to be of unit thickness.

The principal trajectories are straight lines in the r - direction and concentric
circles in the @ - direction.
Fibers are laid in the r - direction only.

From the optimality condition, paragraph 8.2. (g),:

o
ir follows —— = Cl
Ea

C coczo

srgll
ia.. E. = cl 7—

where E = E - modulus in the r - direction
= constant

p2
2 (a+ 1/2sin 2a)

<
c

T

The number of fibers Is & = ay ‘TL'("

(A1)

(A2)
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a3

where a; = aatr,
f (8) = function of 8, to be determined.

For E the rule of mixtures holds, hence E is a linear function of the fiber
volume fraction and consequently alsc a linear function of a, the wumber of
fibers, as is shown later in this appendix.

E= C3A + (:4 (A 3)
where C3 =Va (Ef - Em)
Ve = fiber volume parcentage for a = constant
C, = Em' H\.E-modflusoffhommix

E, = E - modulus of the fiber

Henceforth C 4 will be omitted since Em« Ef for the matetial considered.
Then, from (A 1), (A 2) and (A 3) it follows:

ca o 2 cu 0
3 [ ré

or £(0) =‘/ 2 cos § (A4)
Cl C3 .' I'I




a4

Substitution of (A 4) into (A 2) gives:

_ i , : cos
a - A ——
r an
- i ‘/ 2 cos 0
oS — r (As)
€ G

After substitution of (A 5) into (A 3), the E - modulus becomes

" CC cosO
(A 6)

assuming Em <« E P

The constant C, can be determined from the boundary condition at r = N
8=0. At this point the stress is maximum and therefore the n.mber of
fibers ought to be maximum. For the sake of simplicity ay is assumed to be 1.

(If 3 > 1, one or more than one additional layer is needed.)

Expression (A 5) then gives

",

1 - ¢/ 2 1
|

Cl C3

1
. .2 (A7)
1.€¢ C-I ! C_ rj_
1
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The strain follows from & = F thus:

C r
- cos O ]
«=vC, G,C i

‘f <
ors € = 1:- (A 8)

that is, the strain in the r - direction is constant
Substitute (A 7) into (A 6), respectively, to obtain

r

a =1 T]' cos 0 (A9)
"
E=C3 — cos @ (A 10)

(Still under the assumption that y = 1 at0=0),

The strain energy accurnulated in the wadge bstween r= " andr= For Iss

UA = //UdS=
M +a
= Cl/ / a rdr do
n -a

Substitution of (A 7) and (A 9) yields:

I
UA = 2-3— -;I—- 2sina (All)

. The relationship between fiber frac tion aad number nf fibers is found as follows:



aé

Let d be the fiber diameter and Xf the distance between the centers of two neighbor-
ing fibers. Thena = d / X since a is defined as the number o fibers per
unit area of the membrane (the unit area can convenientiy be chosen as being

dx d).

The fiber fraction (volume percentage) per unit area is:

v &
R

\/ 5

or Vg = 0.785 a
The total welght of the fibers Is

W, = ffpf Vg rdr d 0 =
= 1,57 P (r2 - rl) sina (A12)
where P; = specific gravity of the fiber material

The total weight of the matrix Is
W =Jffp, (1-V) ri do =

= p (r2 - rl) [ (r2 +r|)a - .57 N sinal (A13)

m

where P, = tpecific gravity of the matrix material
(A 13) added to (A 12) ylelds the total weight (per unit thickness d) of the wedge

between F=r andr=r2

Lo
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= (r2-r]) [1.57 ( Pe = pm) ry sina + P (r2 + r])cl

For a wedge of anisotropic material a solution has been given in [38].

The stress distribution is given by:

o = L (Acos@ + Bsin6)

r L®

where 0 =stress in the r - direction; all other stress components are zero
1/L(8) = E = modulus in the r - direction
A, B = constants to be detern.ined from the equilibrium conditions in

x = and y= d'rection:

+a
/oxrdO =p
-a

+a
/0yrd9 =0
-a

where o, rd@ = o cos O rd@

ayrcﬂ = osin® rdd

(A 16) and (A 17) are expanded:

A/m -‘-’f—‘;% deo + a/m—I_—m-—""?""“° do = P

(A 14)

(A 15)

(A 16)

(A 17)

(A 18)



a8
"% in0 cos “4in20
A/ —[-m-—"‘ =2 W +B TWM de =0 (A 19)
-Q
L () can be computer from the principal constants and the usual transformation:
: 4 2y 4
- Sos 0 Lf1 R 2 2 sin 0
L(G)-E = i':— (—G -Efx—)sin 0 cos 9+—-—E

b4

By numerical integration for a set of a values ranging from 1° up till and including
I5° the corresponding values for A were computed. Because of the symmetry of
the geometry with respects to @ = 0, and since L (0) is an even function of @

while sin @ is not, the second integral in (A 18) and the first one in (A 19) are

zero, and hence B = 0.

Now, an expression for the strain energy is derived:

B _/:nrdr do =
//—E [Acos9+Bsm0]2 4o =

‘rz a a
=/ {AIA Ec:oo2 0d0+B/ E sin © cos 6d6] +
r -8 -

a a 2 dr
+B [A/EsinOcOQOdO +B/Esin 0d0) | =

Substitution of (AI8) and (AI9) yields:

"2
Ug = |n(;) AP (A 20)

The total weight of the anisotropic wedge (per unit thickness d) between r = n

[ PRS REE
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andr = fa iss

W= g5 (Vg v e )(n?-n?) (A 21)

(a in degrees)

Substitution of tha data for the geometry and for boron-epoxy unidirectional

tape as given at the beginning of this appendix, yields:

Wg = 35 (065x2.35+0.35x1.15) 8r 2 x 107=
_ , -3 2
= 027x10 " x n xa (kg) (A 22)

Since in the point (r = n 0 = 0) the stress is maximt;m in both wedges, with the
maximum having the same value in both cases, the results derived for the
optimal sclution have to be adjusted. The value of Vf for a =1 has to be 0.65
Instead of 0.785. Instead of (A 14), the following expression is used for the

calculations:
WA=(r2-rl) [1.3 (e-pm) n sina+¢n (r2+r|)a] (A 23)
Substitution of the data for the geometry and for boron and epoxy gives:

W, =r, 2 201.3 (2.35- 1.15) sina + 1.15 x 4 x 51 x103=

-3

= [BJ2sina+ 016al x 1 2x 107 (k) (A 24)

( @ in degrees)

The graphs in figure 2 were calculated using (A Il), (A 20), (A 22) and (A 24)
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