UNCLASSIFIED

AD NUMBER:	AD0875469		
LIMITATION CHANGES			
TO:			
Approved for public release; distribution	n is unlimited.		
FROM:			
Distribution authorized to US Government Agencies only; Export Control; 1 Jul 1970. Other requests shall be referred to Air Force Weapons Laboratory, Kirtland AFB, NM 87117			
AUTHO	RITY		
AFW/L ltr dtd 30 Nov 1971			

A COMPUTATIONAL METHOD FOR EXACT, DIRECT, AND UNIFIED SOLUTIONS FOR AXISYMMETRIC FLOW OVER BLUNT BODIES OF ARBITRARY SHAPE (PROGRAM BLUNT)

AFWL-TR-70-16

3

AD8755

Ronald H. Aungier Capt USAF

TECHNICAL REPORT NO. AFWL-TR-70-16

July 1970

1 -

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLEE), Kirtland AFB, NM, 87117.

A COMPUTATIONAL METHOD FOR EXACT, DIRECT, AND UNIFIED SOLUTIONS FOR AXISYMMETRIC FLOW OVER BLUNT BODIES OF ARBITRARY SHAPE (PROGRAM BLUNT)

Ronald H. Aungier Capt USAF

TECHNICAL REPORT NO. AFWL-TR-70-16

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLEE), Kirtland AFB, NM 87117. Distribution is limited because of the technology discussed in the report.

FOREWORD

This report was performed under Program Element 62601F, Project 5791, Task 27.

Inclusive dates of research were May 1969 through December 1969. The report was submitted 11 May 1970 by the Air Force Weapons Laboratory Project Officer, Captain Ronald H. Aungier (WLEE).

Information in this report is embargoed under the U.S. Export Control Act of 1949, administered by the Department of Commerce. This report may be released by departments or agencies of the U.S. Government to departments or agencies of foreign governments with which the United States has defense treaty commitments, subject to approval of AFWL (WLEE).

This technical report has been reviewed and is approved.

Ronald N. Quages

RONALD H. AUNGIER Captain, USAF Project Officer

Celatter m. Ha

WALTER M. HART, JR. Lt Col, USAF Chief, Fuzing Environment Branch

CARL F. DAVIS Colonel, USAF Chief, Electronics Division

ABSTRACT

A time-dependent numerical method is presented that provides direct, exact, and unified solutions for axisymmetric flows about blunt nosed bodies of essentially arbitrary shape. The differencing scheme used ensures that the required stabilizing terms can be specified arbitrarily small and completely independent of the finite difference mesh sizes used. The method is shown to be more accurate than other reported time-dependent techniques. Computational procedures are introduced to enhance the computer efficiency obtainable with the time-dependent method. Extensive comparison with standard computational methods shows that the present method is comparable in both numerical accuracy and computer efficiency. A FORTRAN IV computer code and instructions for its use are provided.

(Distribution Limitation Statement No. 2)

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is made available for study with the understanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflict or any other questions between the Government's rights and those of others, notify the Judge Advocate, Air Force Systems Command, Andrews Air Force Base, Washington, DC 20331.

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

CONTENTS

Section		Page
I	INTRODUCTION	1
	Statement Of The Problem	1
	The Scope Of This Study	1
11	THE BLUNT BODY PROBLEM	2
	Description Of The Problem	2
	Inverse Techniques	2
	The Method Of Integral Relations	3
	The Time-Dependent Technique	3
III	THE TIME-DEPENDENT METHOD	4
	Background	4
	Advantages	4
	Computational Accuracy	5
	Computer Efficiency	5
IV	DESCRIPTION OF THE TECHNIQUE	6
	The Coordinate System	6
	The Governing Equations	9
	Finite Differences For Interior Points	10
	Finite Differences For Body Points	12
	Finite Differences For The Stagnation Streamline	13
	Computations For The Shock Points	14
	Points On The Upstream Boundary	19
	Selection Of The Time Step	20
	Segmented Solutions	20
v	PRESENTATION OF RESULTS	23
	Investigation Of The Stabilizing Term Effects	23
	Unsteady Flow	23
	Blunt Body Flow At Various Mach Numbers	27
	Validation Of The Method For Blunt	
	Body Flows	29
	Afterbody Flows	29

v

CONTENTS

Section		Page
	Arbitrary Body Shapes	36
	Application To Typical Reentry Vehicles	37
VI	THE FORTRAN IV COMPUTER CODE	41
	Machine Routines	41
	Dimensioned Variables	41
	The Main Program	41
	Subroutine BODY	92
	Subroutine COEFF	97
	Subroutine DATA	112
	Determinant Subroutines	122
	Subroutine DMPOUT	128
	Subroutine GEOM	139
	Subroutine INITIAL	186
	Subroutine INTAPE	199
	Subroutine INTEG	203
	Subroutine INTERP	206
	Subroutine LOAD	211
	Subroutine NMESH	221
	Subroutine OTAPE	232
	Subroutine RESET	236
	Subroutine RESTART	243
	Subroutine SHOCK	248
	Subroutine SKIP	261
	Equation Of State Routines	264
VII	COMPUTER CODE USER'S INSTRUCTIONS	271
	Input Data	271
	Case Data Input	272
	Body Geometry Data Input	275
	Magnetic Tapes	278
	Restart Option	278
	Load Options	279

.

vi

CONT	ENTS
------	------

Section		Page
	Segment Lengths	279
	Printed Output	280
	Sample Problems	281
VIII	CONCLUSIONS	297
	The Differencing Scheme	297
	Surface Boundary Conditions	297
	Computer Efficiency	297
	The Blunt Body Solution	298
Appendix		
I	STABILITY CONSIDERATIONS	299
	Results From Reference 1	299
	Stability Analysis For Backward Differences	300
11	THE UNSTEADY SHOCK PROBLEM	302
	The Method Of Godunov	302
	The Method Of Moretti And Abbett	303
	Application On The Symmetry Axis	305
	REFERENCES	306

11.LUSTRATIONS

Figure		Page
1	Body Oriented Coordinate System	6
2	Transformed Coordinate System	8
3	Shock Fixed Coordinates	15
4	The Shock Wave x-t Diagram	16
5	The Shock Point Iteration Scheme	18
6	Investigation Of The Stabilizing Term Effects	24
7	Surface Entropy Profiles For A Sphere In Mach 4 Flow	25
8	Surface Total Enthalpy Profiles For A Sphere In Mach 4 Flow	26
ò	Shock Shapes At Various Times For Unsteady Flow Over A Sphere	27
10	Shock Velocity At Various Times For Unsteady Flow Over A Sphere	28
11	Shock Shapes For Flow Over A Hemisphere At Several Mach Numbers	30
12	Comparison Of Time-Dependent Methods With An Integral Relations Solution	31
13	Surface Density Distributions For A Sphere In Mach 4 Flow	32
14	Surface Pressure Distributions For Sphere- Cones In Mach 4 Flow	33
15	Surface Pressure Distribucions For Sphere- Cones In Mach 6 Flow	34
16	Surface Pressure Distributions For Sphere- Cones In Mach 10 Flow	35
17	Surface Pressure Distributions For Ellipsoid Cylinders In Mach 6 Flow	- 36
18	Surface Pressure Distribution For A 10° Sphere-Cone In Mach 20 Flow	38
19	Surface Mach Number Distribution For A 10° Sphere-Cone In Mach 20 Flow	39
20	Surface Pressure Distribution For A 25° Sphere-Cone In Mach 8 Flow	40
21	The One-Dimensional Riemann Problem	302

LIST OF SYMBOLS

A	weighting term defined by equation (45)
a	sound speed
В	weighting term defined by equation (46)
C,	empirical constant used in equation (63)
C ₂	empirical constant used in equation (63)
C,	specific heat at constant volume
f	general function
G	metric of the coordinate system
g	general function
К	body curvature-also a constant used in the stability analysis
L	streamwise length of a body segment
М	Mach number
'n	mass flux across a wave
n	coordinate normal to the body
Р	pressure
P	a general velocity component
r	body radius lefined by equation (1)
S	entropy
S	coordinate parallel to the body
t	time
Ŭ	velocity component parallel to the shock wave
u	velocity component along s
v	velocity component normal to the shock wave
v	velocity component along n
Ws	the shock velocity
x	a general coordinate-also the coordinate normal to the shock wave
У	the coordinate parallel to the shock wave
z	distance along the symmetry axis, defined by equation (2)
a	a constant used in the stability analysis
β	a constant used in the stability analysis-also the shock angle
Ŷ	the ratio of specific heats
δ	a constant defined by equation (88)

ζ	the ratio of the pressure in front of a wave to the pressure
	behind the wave
η	a nondimensional coordinate defined by equation (7)
θ	the body angle
ĸ	1 - Kn
μ	coefficients of the stabilizing terms
· #0	an empirical constant used in equation (62)
ν	a constant used in the stability analysis
ξ	a coordinate defined by equation (6)
ρ	density
r	transformed time variable defined by equation (8)
Φ	stabilizing term
φ	a constant used in the stability analysis
	SUPERSCRIPTS
(ξ)	relative to the ξ coordinate

\\\\				-	
(η)	relative	to	the	η	coordinate
(x)	relative	to	the	x	coordinate

SUBSCRIPTS

m	maximum value of a quantity
S	value of a quantity at a point on the shock wave
t2	value behind a normal shock
0	value of a quantity when $s = o$
	free stream value of a quantity
2 .	behind a shock wave

x

SECTION I

INTRODUCTION

T. STATEMENT OF THE PROBLEM

A direct, exact, and unified numerical method for predicting the inviscid flow about high performance blunt bodies of essentially arbitrary shape is presented. This work was motivated by a requirement for extremely accurate definition of the edge conditions used in detailed boundary layer analyses. Accurate boundary layer analyses for slender high performance reentry vehicles must include consideration of entropy layers, bluntness induced pressure gradients, boundary layer displacement effects and vehicle shape deformation due to ablation mass loss. This requires an accurate inviscid flow solution capable of considering a general class of body shapes. Blunt body solutions of sufficient accuracy to be employed for these analyses are generally limited to body shapes defined by specific conic sections or power law profiles. Also, a description of the entire flow field usually requires the use of matched solutions from two or more numerical methods. A numerical method capable of considering the entire flow field is desirable, i.e., a unified solution procedure. An additional objective of this study was to develop a numerical method which can be easily generalized to three-dimensions to treat the angle-of-attack problem. An extensive development study considering three-dimensional problems is impractical due to the long computation times required to generate these solutions. Also, a numerical method for these problems should first be validated for axisymmetric flow, where standard solutions and experimental data are readily available. Consequently, it is believed that significant advances in developing techniques for three-dimensional problems must be based on axisymmetric flow studies.

2. THE SCOPE OF THIS STUDY

The time-dependent method suggested by the present author in reference 1 is generalized to realize the objectives of this study. Stability arguments are used to establish a differencing scheme that can be considered to be exact for practical purposes. A general body oriented coordinate system is used that is applicable to the desired class of body geometries. Computational procedures are introduced that greatly improve the computer efficiency of the time-dependent method. Extensive comparison with available exact solutions and experimental data is accomplished to demonstrate the accuracy of this method. A FORTRAN IV computer code and instructions for its use are included.

SECTION II

THE BLUNT BODY PROBLEM

1. DESCRIPTION OF THE PROBLEM

The blunt body problem is described by a set of nonlinear partial differential equations. These equations are elliptic in form in the subsonic region of the flow field and hyperbolic in the supersonic region. The mixed elliptichyperbolic form of these equations presents a formidable mathematical problem. In the supersonic region, the hyperbolic equations can be solved using the method of characteristics, once a starting line is established by a different numerical method. The machod of characteristics has been generalized to three-dimensional flows, but with limited success. Solution of the elliptic equations in the subsonic region requires imposing boundary conditions at an unknown boundary, namely, the detached bow shock. The mixed elliptic-hyperbolic form of the governing equations has usually resulted in the use of two or more numerical techniques to describe the flow field. While a unified numerical solution is preferable to this matching procedure, a practical unified computational method for treating reentry vehicles of current interest has not been available. These other features can be identified as desirable characteristics for a blunt body solution. The solution should be direct, i.e., the body shape should be specified exactly. The governing equations should be treated in their entirety without simplifying assumptions, i.e., the numerical method should be exact. Finally, a practical computational method must allow efficient utilization of the computer to avoid excessive cost in generating solutions.

2. INVERSE TECHNIQUES

The inverse technique (Ref. 2 and 3) circumvents the problem of the unknown bow shock location by solving the flow field behind a specified bow shock. The body shape associated with this shock shape is computed during the solution. When solutions for specific body shapes are required, the shock shape is changed after each solution to achieve an approximation of the desired body shape through an iteration process. Clearly, the exact body shape cannot be achieved. Also, the body shape is extremely sensitive to the shock shape used. Small changes in shock shape can induce large changes in body shape or even preclude the existence of a solution. Consequently, this method is generally limited to body shapes for which the shock shape is well-known. Usually, only the subsonic portion of the flow field is treated due to the difficulty of obtaining convergence when the supersonic afterbody region is included.

3. THE METHOD OF INTEGRAL RELATIONS

The method of integral relations (Ref. 4) provides a direct solution to the brunt body problem. This method employs polynomial approximations to the flow field profile to reduce the governing equations to ordinary differential equations. The flow field is divided into strips to establish these ordinary differential equations. The number of equations that must be solved increases as more strips are used to improve the approximation. Further complication is introduced by the existence of movable saddle point singularities at the sonic line. The large number of equations that must be integrated through these singularities has generally limited the method to 1 or 2 strip approximations. An auxiliary assumption is required, typically that the maximum entropy streamline wets the body. This assumption is of questionable validity when three-dimensional effects are considered. Despite its limitations, the method of integral relations has provided some of the most accurate blunt body solutions reported to date.

4. THE TIME-DEPENDENT TECHNIQUE

The unsteady form of the governing equations are hyperbolic in form throughout the entire flow field. Consequently, the unsteady blunt body problem is a well-posed initial value problem. Several investigators (Refs. 1, 5-17) have employed the unsteady equations to advance the solution in time, asymptotically approaching the steady flow solution. Consequently, the unsteady equations become a means to an end. The additional complication of considering transient flows is justified by the relative simplicity of this problem as compared to the steady flow case. Additional terms must be introduced into the governing equations to stabilize an explicit finite difference scheme. If the influence of these terms on the solution is negligible, the method can be considered exact. The method is direct and, in principle, can provide a unified solution. In addition, it is easily generalized to treat complex body shapes, nonequilibrium flows and three-dimensional flow problems.

SECTION III

THE TIME-DEPENDENT METHOD

1. BACKGROUND

The time-dependent method was suggested by von Neumann and Richtmyer (Ref. 5) for treating flow problems involving shock waves. Their numerical method was motivated by the fact that shock waves tend to thicken in the presence of dissipative effects. Artificial dissipative terms are introduced into the governing equations to spread the shock to a finite thickness. Then, a differencing scheme can be established for the entire flow field which requires no special shock point computations. Lax and Wendroff (Refs. 6-8) developed more sophisticated differencing schemes using the conservation form of the governing equations. While these differencing schemes were motivated by mathematical rather than physical reasoning, the stabilizing terms used are, in effect, dissipative terms. Godunov, Zabrodin and Prokopov (Ref.9) applied the time-dependent method to the blunt body problem. Their method uses the one-dimensional Riemann problem to model the wave interaction between computational cells and at a discontinuous shock boundary. Burstein (Ref. 10) applied various differencing schemes to unsteady multidimensional flows. Bohachevsky, Rubin and Mates (Refs. 11, 12) used this technique to consider blunt body flows including bodies with corners, nonequilibrium flows and angles-of-attack. Moretti, Abbett and Bleich (Refs. 13, 14) introduced a onedimensional unsteady characteristics technique to treat shock and body points for flows in two and three dimensions. This technique can be considered to be a generalization of Godunov's method where multidimensional effects are included through constant weighting terms. In reference 1, the present author suggested a differencing scheme which partially decouples the magnitude of the stabilizing terms from the finite difference mesh sizes used. This permits selecting the mesh sizes based on numerical accuracy requirements. Subsequently, the magnitude of the stabilizing terms can be established to properly model the inviscid flow problem.

2. ADVANTAGES

The governing equations for unsteady flow are hyperbolic in form. This results in a well-posed initial value problem. The unknown bow shock boundary is allowed to move in time until the proper steady-state profile is achieved. Since the procedure is applicable to the entire flow field, a unified solution procedure can be established. The method is direct and can be considered exact if the in-

fluence of the stabilizing terms is negligible. The method is easily programed for the computer, even when complex reentry phenomena are considered. While the time-dependent method is still in the early stages of development, no inherent limitations have been identified that would preclude its use for a practical computational method for generating exact, direct, and unified blunt body solutions.

3. COMPUTATIONAL ACCURACY

Time-dependent solutions reported in the literature often predict the correct surface pressure distribution. However, enthalpy and density distributions are usually in serious error. The errors are caused by the influence of the stabilizing terms and by the methods used to impose surface boundary conditions. It is believed that an exact solution can be achieved if a differencing scheme is developed that allows the magnitudes of the stabilizing terms to be specified arbitrarily small. In addition, a technique is required to achieve exact computations at points on the body surface. Since a solution to the blunt body problem requires the use of different mesh sizes throughout the flow field, the magnitudes of the stabilizing terms should be independent of the mesh sizes used. While a partial decoupling was achieved in reference 1, it is apparent that complete decoupling must be realized to obtain a practical computational method.

4. COMPUTER EFFICIENCY

Time-dependent methods reported in the literature have required extremely long computation times and extensive computer storage. As a consequence, no solutions for slender high performance vehicles of practical length have been reported. Even the relatively efficient numerical solution reported in reference 14 exhausted the storage of the IEM 7094 computer while treating the flow about an extremely short sphere-cone vehicle at angle of attack. The authors of reference 14 suggest that the consideration of more nodes on a larger computer would result in computation times too long for practical computation. The reduced computational field for axisymmetric problems will alleviate the computer storage problem. However, the computation time required to achieve a steady state increases with the body length. Consequently, an attempt to treat practical high performance vehicles with available time-dependent schemes must result in impractically long computation times. A significant reduction in the computer storage and computation times required by available time-dependent methods must be achieved to realize the full potential of this powerful technique.

SECTION IV

DESCRIPTION OF THE TECHNIQUE

1. THE COORDINATE SYSTEM

A body oriented coordinate system (Ref. 17) was selected for this numerical method. Body oriented coordinates allow a better finite difference nodal distribution than more conventional coordinate systems. As an example, the cylindrical coordinate system of reference 13 may be considered. The nodal spacing across the shock layer is reasonably good near the stagnation point of a blunt body, but the afterbody region for slender bodies must be treated with a very coarse mesh size in the axial direction. It is also apparent that a cylindrical afterbody cannot be treated with the transformed coordinate system of reference 13. The body oriented system is generally preferable for a numerical solution intended to treat a broad class of body shapes. The details of the coordinate system used in this study are illustrated in figure 1. The s coordinate is measured along the body surface from the stagnation point. The n coordinate is measured normal to the body surface with n = 0 on the body surface.

Figure 1. Body Oriented Coordinate System

It is easily shown that

$$r(s,n) = \int_{0}^{s} \sin\theta ds' - n \cos\theta \qquad (1)$$

$$z(s,n) = \int_{0}^{s} \cos\theta ds' + n \sin\theta \qquad (2)$$

The curvature of the body is given by

$$K(s) = -\frac{d\theta}{ds}$$
(3)

Defining

$$\kappa = 1 - Kn \tag{4}$$

the curvature of any line of constant n is given by K/κ . The metric tensor for this system can be expressed as

$$G = \begin{bmatrix} \kappa^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r^2 \end{bmatrix}$$
(5)

These coordinates can be applied to smooth bodies, only, and are restricted to bodies whose curvature is continuous. It will be shown later that the latter restriction can be relaxed by properly staging the solution. Consequently, bodies with discontinuous curvature, such as sphere-cones, can be treated with the present technique. It is convenient to introduce the following transformations

$\xi = s$	(6)
$\eta = n/n_{s}(s)$	(7)
t = t	(8)

where $n_s(s)$ is the value of n at the shock and t is the time. Transformations of this type were applied in references 1 and 13 with considerable success. The principal merit is the simplification of the finite difference solution. It was shown in reference 1 that this type transformation can lead to serious errors unless applied with extreme care. The domain of solution is shown in figure 2.

Figure 2. Transformed Coordinate System

It is generally possible to use a constant number of nodes in the η direction in the finite difference solution while maintaining a reasonably good node distribution. This greatly simplifies the numerical logic. Using equations (6) through (8) it is easily shown that

$$\frac{\partial}{\partial s} = \frac{\partial}{\partial \xi} - \frac{\eta}{n_s} \frac{\partial n_s}{\partial s} \frac{\partial}{\partial \eta}$$
(9)

$$\frac{\partial}{\partial n} = \frac{1}{n} \frac{\partial}{\partial \eta}$$
(10)

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial r} - \frac{\eta}{n} \frac{\partial n}{\partial t} \frac{\partial}{\partial \eta}$$
(11)

where $\frac{\partial^n s}{\partial t}$ is the shock velocity component in the n direction. Equations (9) through (11) allow solution of the governing equations for the (s,n) coordinate space in the (ξ,η) coordinate space.

2. THE GOVERNING EQUATIONS

The governing equations for adiabatic inviscid flow in the (s,n) coordinate space are

$$\kappa r \rho_{t} + (r \rho u)_{s} + (\kappa r \rho v)_{n} = 0 \qquad (12)$$

$$\kappa_{u} + u_{s} + \kappa_{u} + \frac{1}{\rho}P_{s} = Kuv \qquad (13)$$

$$\kappa v_{t} + uv_{s} + \kappa vv_{n} + \frac{\kappa}{\rho}P_{n} = -K_{u}^{2}$$
(14)

$$\kappa S_{t} + uS_{s} + \kappa vS_{n} = 0 \tag{15}$$

where the subscripts imply partial differentiation, ρ is the density, P is the pressure, S is the entropy and u and v are the s and n velocity components, respectively. Equation (12) is singular at s = 0 and is replaced by

$$\kappa^2 \rho_t + 2\kappa(\rho u)_s + (\kappa^2 \rho v)_n = 0 \qquad (16)$$

Equation (16) is obtained from equation (12) by evaluating the limit as s approaches zero using L'Hospital's rule.

$$K' = K/K$$
(17)

 $\rho' = \rho / \rho \tag{18}$

$$P' = P/P_{e}$$
(19)

 $S' = (S - S_{o})/C_{v}$ (20)

 $\mathbf{x}' = \mathbf{K}_{\mathbf{Q}} \mathbf{x} \tag{21}$

$$q' = q/(p_{o}/\rho_{o})^{1/2}$$
 (22)

$$t' = K_{o} (P_{o} / \rho_{o})^{1/2} t$$
 (23)

where x refers to a general spatial coordinate and q refers to a general velocity component. It is easily shown that equations (12) through (16) remain valid for these nondimensional variables. The prime notation will be omitted in the remainder of this report, and all variables will be assumed to be nondimensional. To complete the set of governing equations, an appropriate state solution is needed. For a perfect gas, the appropriate form is

$$P = \rho^{\gamma} EXP (S)$$
 (24)

3. FINITE DIFFERENCES FOR INTERIOR POINTS.

For interior points, i.e., points not on the shock or body surface, central difference approximations are employed for the spatial partial derivatives

$$f_{\xi} = [f(\xi + \Delta \xi, \eta, r) - f(\xi - \Delta, \eta, r)]/2\Delta \xi$$
⁽²⁵⁾

$$f_{\eta} = \left[f(\xi, \eta + \Delta \eta, r) - f(\xi, \eta - \Delta \eta, r)\right] / 2\Delta \eta$$
(26)

and a forward difference approximation is employed for the partial derivatives in r.

$$f_{r} \leftarrow \left[f(\xi,\eta,r+\Lambda r) - f(\xi,\eta,r)\right] / \Delta r$$
⁽²⁷⁾

It is known that equations (25) through (27) result in an unconditionally unstable finite difference scheme when applied to equations (12) through (15). Von Neumann (Ref. 5) showed that stability could be achieved by including stabilizing terms in the governing equations. Denoting equations (12) through (15) by

 $g_{+} = f(s, n, \rho, u, v, P)$ (28)

where g is ρ , u, v or S, the stabilizing terms are added in the form

$$g_t = f - \Phi$$
 (29)

where

$$\Phi = \mu^{\left(\xi\right)}_{g\xi\xi} + \mu^{\left(\eta\right)}_{g\eta\eta} \tag{30}$$

In reference 1, μ (ξ) and μ (η) are equal and are given by

$$\mu^{(\mathbf{x})} = \frac{\nu \left(\Delta \mathbf{x}\right)^2}{\Delta t}$$
(31)

where ν is a constant and x refers to ξ or η . Using equation (31), it was shown in reference 1 that the appropriate stability criterion is

$$\Delta t \leq \frac{\sqrt{\nu} \Delta x}{(q+a)}$$
(32)

where Δx is the smallest spatial mesh size, q is the corresponding velocity component and a is the sound speed. An outline of these calculations from reference 1 has been included in appendix I. Although this stability analysis is extremely simplified, equation (32) proved to be extremely accurate in predicting the time step allowable for stable computations (Ref. 1). The impressive success of equation (32) in the numerical method of reference 1 prompted an attempt to exploit the simple stability analysis further to obtain a more sophisticated numerical method. First, equation (32) is inverted to predict the minimum value of ν allowed for stability,

$$\nu \geq \left[(q+a) \Delta t / \Delta x \right]^2$$
(33)

Then equation (31) and (33) are combined to yield

$$\mu^{(\mathbf{x})} = (\mathbf{q} + \mathbf{a})^2 \Delta \mathbf{t}$$
(34)

Clearly, this decouples the magnitude of the stabilizing terms from the spatial mesh size. Equation (34) is now applied in the ξ and η directions to yield

$$\Phi = \Delta t \left[\left(u+a \right)^2 g_{\xi\xi} + \left(v+a \right)^2 g_{\eta\eta} \right]$$
(35)

which results in the magnitude of Φ being completely defined and minimized for any specified value of Δt . Equation (35) is applied at each node, independently in each coordinate direction, on each time iteration. As a result, the magnitudes of the stabilizing terms are minimized for all points and are proportional to Δt . The Courant-Friedricks-Lewy (CFL) stability criterion (Ref. 18) must be satisfied

$$\Delta t < \frac{\Delta x}{q+a}$$

(36)

Consequently, any value of Δt between zero and CFL limiting value can be used. The stabilizing term effects can be reduced by decreasing Δt , but the computation time required to reach a steady state will increase accordingly.

4. FINITE DIFFERENCES FOR BODY POINTS.

For nodes on the body surface, the velocity component normal to the body must vanish. A popular technique for satisfying this requirement is known as the reflection principle (Refs. 1,11,12). Basically, this involves assigning values for the flow parameters at a dummy set of nodes inside the body. The values are identical to those at nodes above the body surface except for the normal velocity component which is assigned the negative of its value above the surface. Then the differencing scheme used at interior points is applied at the body point. It is difficult to assess the accuracy of this scheme. 'A more appealing approach would be to develop a stable differencing scheme for the body points which does not rely on empirical schemes. This would allow an assessment of the error in terms of the finite difference errors of the various derivative approximations. It is shown in appendix I that a backward difference at the body surface should be stable when $\mu^{(\eta)}$ vanishes. This proved to be true in practice and is the basis for the body point solution presented here. Equation (25) is used to approximate the partial derivative in ξ . The partial derivatives in η were represented by forward differences (Note: this is equivalent (to a backward difference in n).

$$f_{\eta} \rightarrow [f(\xi,\eta+\Delta\eta,r) - f(\xi,\eta,r)]/\Delta\eta$$

(37)

(38)

At body points, $\mu^{(\eta)}$ was allowed to vanish, i.e.,

$$\Phi = \Delta t (u+a)^2 g_{FF}$$

and the velocity component normal to the body was required to vanish on the body surface. With these exceptions, the differencing scheme for interior points was applied for the body points. Comparison between this technique and the reflected boundary condition logic is given in the presentation of results. It will become apparent at that time that this approach is considerably more accurate.

5. FINITE DIFFERENCES FOR THE STAGNATION STREAMLINE.

For axisymmetric flow, points on the stagnation streamline, like the body points, are characterized by the vanishing of one of the velocity components. The stability arguments of appendix I should also apply to these points. Consequently, the procedure for interior points are modified by allowing $\mu^{(\xi)}$ to vanish such that

$$\Phi = \Lambda t (v+a)^2 g_{\eta\eta}$$
(39)

The partial derivatives in ξ all vanish at s = 0 except for u_{ξ} . Since a forward, backward and central difference approximation for u_{f} are all identical at S = 0, it is of little concern as to which is applied. The velocity component, u, is required to vanish. The differencing scheme for interior points is modified to include equation (39) and applied at these points. Special attention is required at the stagnation point where the velocity vanishes. Equations (15) and (16) must be solved for entropy and density. The stability arguments of appendix I now indicate that both $\mu^{(\xi)}$ and $\mu^{(\eta)}$ can vanish, i.e., $\Phi = 0$. Then, equation (16) is solved using a forward difference approximation for the partial derivative in η . Equation (15) must be treated with care. The procedure used for equation (16) cannot be applied since equation (15) would then be degenerate. The proper value of entropy behind a steady normal shock could be imposed and held constant with advancing time. This would preclude the consideration of transient phenomena such as time varying free-stream conditions. An averaging procedure using entropy values at adjacent nodes was attempted, but resulted in longer computation times to achieve the steady-state solution. For steady-state solutions, the assignment of the value of entropy at the node upstream of the stagnation point at each time step proved to be a successful approach. However, for transient solutions, this proved to be unreliable, usually resulting in the generation of indefinite values in actual computation. A procedure that allows transient problems while providing rapid convergence to the steady-state solution is as follows:

$$S(0,0,r+\Delta r) = \mu S(0,0,r) + (1 - \mu) S(0,\Delta \eta, r)$$
(40)

where

$$\mu = \left[\frac{S(o, o, r) - S(o, \Delta\eta, r)}{S(o, o, r) + S(o, \Delta\eta, r)}\right]^2$$
(41)

When the values of entropy at $\eta = 0$ and $\eta = \Delta \eta$ are essentially equal, the stagnation point entropy is assigned a value approximately equal to its upstream value. When these values of entropy are quite different, the value is held approximately constant with a weak dependence on the upstream value. Since viscous effects predominate in this region in the physical problem, this procedure appears to be a reasonable way to obtain realistic transient solutions.

6. COMPUTATIONS FOR THE SHOCK POINTS.

The shock points were treated with a quasi-one-dimensional unsteady characteristics technique suggested by Moretti and Abbett (Ref. 13). This technique assumes that the variation in the flow variables normal to the shock are the relevant quantities for determining the shock behavior, while variations in the flow variables parallel to the shock can be assigned constant values for use as weighting functions. The method is quite similar to Godunov's method (Ref. 9) as applied in reference 16 except for the use of these constant weighting functions. The equations of motion are written for the shock fixed Cartesian coordinate system shown in figure 3, where β is the local angle between the shock and the free stream velocity vector. Denoting the x and y velocity components by V and U, respectively, the governing equations are

 $\rho_{\rm t} + V \rho_{\rm x} + \rho V_{\rm x} = -A \tag{42}$

$$V_{t} + VV_{x} + \frac{1}{\rho}P_{x} = -B$$
(43)

$$S_{i} = constant$$
 (44)

where the y momentum equation has been omitted since the value of U is known from M and β . A and B are defined by

 $A = (\rho U)_{y}$ (45)

$$B = UV_{y}$$
(46)

and will be treated as constants. In appendix II it is shown that the relevant characteristics can be defined by

$$\frac{\mathrm{d}x}{\mathrm{d}t} = V + a \tag{47}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} = \mathbf{V} - \mathbf{a} \tag{48}$$

Figure 3. Shock Fixed Coordinates

and the compatability equation associated with equation (48) is

$$\frac{dP}{dt} = \left[\rho a \frac{dV}{dt} + (B-A \frac{a}{\rho})\right]$$
(49)

It is shown in appendix II that application of this method on the symmetry axis requires that A be multiplied by 2. The problem can be visualized as a onedimensional Riemann problem with equation (49) replacing the usual Reimann invarients. The physical phenomena is illustrated in figure 4 where W_s refers to the shock velocity in the x direction. The problem is solved by an iteration procedure. The shock parameters are established from the Rankine-Hugonoit relations

Figure 4. Shock Wave x-t Diagram

once satisfactory agreement between the Rankine-Hugonoit pressure prediction and the pressure prediction of equation (40) has been achieved. The Rankine-Hugonoit relations are applied in the form

$$\dot{m} = \left[\frac{\gamma+1}{2}P_{s} + \frac{\gamma-1}{2}\right]^{1/2}$$
(50)

$$\dot{m}V_{s} + P_{s} = \dot{m}V_{\infty} + 1$$
(51)

$$W_{c} = V_{m} - \dot{m}$$
 (52)

$$\rho_{\rm s} = \frac{\dot{\rm m}}{\rm V_{\rm s} - \rm W_{\rm s}}$$
(53)

Where a perfect gas has been assumed and the subscript, s, refers to a quantity behind the shock. The velocity component in the y direction is unchanged across the shock

$$U_{s} = U_{s}$$
(54)

where the subscript • refers to a free stream value. The entropy behind the shock is computed from the equation of state

$$S_{c} = \ln (P_{c}) - \gamma \ln(\rho_{s})$$
(55)

The iteration procedure is diagramed in figure 5. Starting with the shock parameters at point 0 (Fig. 4) as an initial guess, point 2 is located by

$$\mathbf{X}_{2} = \mathbf{W}_{2} \Delta \mathbf{t} \tag{56}$$

and the flow variables at 2 are assumed identical to their values at 0, initally. Point 4 is located from equation (48) in the form

$$X_{1} = X_{2} + (V_{2} - a_{2}) \Delta t$$
 (57)

Then, the point 4 is redetermined from

$$x_4 = x_2 + \frac{1}{2} (v_4 - a_4 + v_2 - a_2)$$
 (58)

and an iteration on equation (58) is performed until successive values of X_4 agree to an acceptable degree. Using the known solution at time t_0 , the values of A and B are determined at 4, averaged with their values at point 0 and used to solve equation (49). The pressure at 2 is compared with the pressure predicted by equation (49). If they agree within an acceptable error, the shock parameters are computed from equations (50) through (55) and the iteration loop is terminated. If the agreement is not satisfactory, a new pressure at point 2 is computed as the average of the resident value and the value predicted by equation (49). Other shock parameters required are obtained from equation (50) through (53) and the entire iteration loop is repeated. The value of the shock angle, β , is held constant throughout the iteration procedure, equal to its value at t_0 .

$$\beta = \theta - \tan^{-1} \left[\frac{1}{\kappa_{s}} \frac{\partial n_{s}}{\partial \xi} \right]$$
(59)

Figure 5. The Shock Point Iteration Scheme

The evaluation of the shock slope through the term containing the derivative of n with respect to ξ can be a source of serious error. When a central difference approximation is employed, the slope at any point is evaluated independently of the value of n_s at that point. If the initial guess for the shock shape is not carefully specified, a discontinuity in the predicted shock shape will often result. The present numerical scheme proved to be sufficiently reliable to avoid fatal errors in actual computer computations when this occured, but computation times were increased by factors of 20 to 30. The necessity of requiring extremely accurate initial guesses for shock shape would greatly complicate the program operation. The problem arises at regions where the shock curvature is large such as the supersonic region on a hemisphere. The actual difference approximation provides a reasonable value for the shock slope despite the fact that the shock is discontinuous at the point under consideration. The use of a Lackward difference approximation eliminated this problem, but proved to be inaccurate. To obtain sufficient accuracy while eliminating discontinuities in the shock, an average of two backward differences and one forward difference is employed.

$$\frac{dn}{d\xi} = \left[n_{s}(\xi + \Delta\xi) + n_{s}(\xi) - 2n_{s}(\xi - \Delta\xi) \right] / 3\Delta\xi$$
(60)

Satisfactory results are obtained at all points with this approximation while discontinuities in the shock are avoided. Introducing a dependence on the local value of n_s in the finite difference approximations acts as a damping influence on the computation. Moretti and Bleich (Ref. 19) experienced this problem for very blunt elliptical bodies. The shock shapes predicted in the reference are very similar to the type predicted with this method using the central difference approximation. It is probable that equation (60) could be used in their solution to avoid this difficulty.

7. POINTS ON THE UPSTREAM BOUNDARY.

Solution for nodes on the upstream boundary are treated by extending the solution linearly in ξ one extra mesh width. The interior point logic is then applied in its entirety. It is noted in appendix I that this is equivalent to employing backward differences for the partial derivatives in ξ and allowing $\mu^{(\xi)}$ to vanish. Since the linear extension logic was numerically faster and simpler, it has been adopted for this numerical method.

8. SELECTION OF THE TIME STEP.

The proper choice of a value of Δt for numerical computations requires that the quantity $\mu^{(x)}$ in equation (34) be small relative to the dynamic terms in the equations of motion, i.e., the effect of the stabilizing terms must be negligible. A simple estimate for the magnitude of the dynamic terms is given by the freestream velocity. It is reasonable to require

$$\mu_{o} = \frac{\mu^{(\mathbf{x})}}{q}$$
(61)

where μ_0 is a constant whose magnitude is small relative to unity. Using freestream values for velocity and sound speed in equation (34) and combining that equation with equation (61)

$$\Delta t = \frac{\mu_0^{q} q_{\infty}}{(q_{\infty} + a_{\infty})^2}$$
(62)

Equation (62) has been used to predict Δt for a range of free-stream Mach numbers from 1.5 to 500. The percent error resulting from the stabilizing terms was essentially equal in all cases, indicating that equation (62) is a proper expression for computing Δt . The computer code makes an additional check to ensure that the Courant-Friedricks-Lewy stability criterion, equation (36), is satisfied. A typical value for the constant, μ_0 , is 0.04.

9. SEGMENTED SOLUTIONS

A computational procedure has been developed that avoids the problems of long computation times and excessive computer storage requirements. When the steady-state flow over typical high performance blunt bodies with relatively long afterbody regions is considered, e.g., sphere-cones with axial lengths in excess of 50 nose radii; the procedure used will be referred to as the segmented approach. The flow field is computed in a series of discrete segments marching back along the body. The steady-state solution is obtained for each segment before proceeding to the next. The solution at the end of each segment is used as a constant starting line for the next segment. The computations on each segment are terminated at the downstream boundary with the linear extension procedure described previously. The lengths of the segments is arbitrary except for the first, which must include the subsonic region and terminate in supersonic flow. The nodal spacing along the body and the number of nodes across the shock layer can be changed for each segment before starting the solution at that segment. Typical slender blunt bodies may require 5 nodes across the shock in the stagnation region while as many as 40 may be required far back on the afterbody. The number of nodes considered along the body can vary. Generally, far downstream on the afterbody a coarse nodal spacing using one computational node in the streamwise direction is the optimum choice for minimum computational time. An empirical expression to predict the physical time required for essentially steady-state solutions, $r_{\rm f}$, is

 $r_{f} = (C_{1} + C_{2}L) / (u_{o} + a_{o})$ (63)

where C_1 and C_2 are constants, L is the streamwise length of the segment and u_0 and a are the velocity and sound speed at the body on the upstream boundary of the segment. This expression has been used for segments of widely varying values of L and has always predicted proper values for r_{f} . Equation (63) permits the segmented approach to be used in the solution without complicated input instructions. In practice, computations proceed until r exceeds r_f . Then the shock velocity at all points is checked to insure that all values are less than 10^{-3} . If any shock velocity is greater than that value, further iterations are performed. As a result, the input instructions to the computer code are minimal. Since the exact number of iterations to be performed for a given problem is not known in advance, an accurate estimate of computer time is difficult. To avoid wasting large amounts of computer time due to a time limit termination, flow data for each segment is stored in sequential files on a magnetic tape. A simple restart option allows renewing computations at the first incomplete segment with little waste of computer time. A solution for a sphere-cone vehicle with a 10° cone half-angle and axial length of 50 nose radii was performed in under 6 minutes on the AFWL CDC 6500 computer using the segmented approach. To resolve the afterbody flow, 17 nodes across the shock layer were required. A mesh size of 0.15 was required to resolve the flow in the stagnation region. Without the segmented approach these two quantities would have had to remain constant throughout the flow field. Using the maximum value of the denominator in equation (63) to ensure the estimate of computation time would be a minimum, equation (63) and the known computational efficiency of the computer code resulted in a predicted computational time of 72 hours for the same computer code, without the segmented

approach, on the same computer. The estimate is probably less than the time which would actually be required due to the use of the maximum value of the denominator in equation (63). It is easy to understand why time-dependent solutions for this type of vehicle have not been reported previously.

SECTION V

PRESENTATION OF RESULTS

1. INVESTIGATION OF THE STABILIZING TERM EFFECTS

A value of the parameter μ_0 must be selected empirically. A comparison of the predicted stagnation point pressure, P_0 , with the known stagnation pressure behind a normal shock, P_{t2} , was accomplished for this purpose. The error in P_0 and the number of iterations required for an approximate steady state are shown in figure 6 for a range of values of μ_0 . The case considered was Mach 4 flowover a sphere with 5 nodal points across the shock layer. The errors shown in figure 6 include both stabilizing term effects and finite difference errors. Since the finite difference errors should be approximately constant for all values of μ_0 , the relative values of the errors indicate the effects of the stabilizing terms. For values of $\mu_0 > 0.05$, the Courant-Friedricks-Lewy (CFL) stability limit was exceeded, causing the computer code to ignore the specified values of μ_0 . Based on the results presented in figure 6, a value of $\mu_0 = 0.04$ was selected and used for all other cases presented in this report. The error in stagnation point pressure is 0.53 percent for this value of μ_0 . This should be adequate for most applications. Since the computation time required varies approximately as the inverse of μ_0 , requiring greater accuracy will greatly increase the computation time while accepting larger errors will not greatly reduce it. The importance of the stabilizing term effects is further demonstrated in figures 7 and 8, where the entropy and total enthalpy distributions on the body predicted by the present technique and the method of reference 1 are compared. The method of reference I was selected for this comparison since it was shown (Ref.1) that accurate pressure distributions can be predicted with that method. It is seen that the present method predicts constant entropy on the body while the method of reference 1 shows considerable variation in that quantity. The error in total enthalpy on the body is less than 0.5 percent for the present method, while reference 1 predicts errors greater than 8 percent for this quantity. Clearly, the validation of a time-dependent technique cannot be accomplished by examining pressure profiles only.

2. UNSTEADY FLOW

By assuming an initial shock shape extremely close to the body surface, an approximate description of the flow over a body started impulsively from rest can

Figure 6. Investigation Of The Stabilizing Term Effects

Figure 8. Surface Total Enthalpy Profiles For A Sphere In Mach 4 Flow

be achieved. Figure 9 illustrates the results of this procedure for a sphere in a Mach 30 flow. It is seen that the shock propagates out from the body and stabilizes to its steady-state profile after about 500 iterations. The stabilization of the shock shape has been used as a criterion for specifying an approximate steady state. This case demonstrated that this criterion is not sufficient since the flow field parameters had not stabilized after 500 iterations. Figure 10 illustrates the shock velocity at various times for this case. A reliable specification for achieving steady state flow was found to be the requirement that all shock velocities be less than 10^{-3} .

3. BLUNT BODY FLOW AT VARIOUS MACH NUMBERS

Many available solution procedures are extremely reliable for a limited Mach number range while experiencing difficulty at low and high Mach numbers.

Figure 11 illustrates shock shapes predicted for flow over a hemisphere at Mach numbers ranging from 1.5 to 500. No difficulties were encountered for any of these cases. Shock shapes predicted by the method of reference 13 are also shown. Since the shock point calculations for the present method are based on the method of reference 13, it is useful to ensure that both give the same results.

4. VALIDATION OF THE METHOD FOR BLUNT BODY FLOWS

To establish the accuracy of the present method for blunt body flows, the 3 strip integral relations solution of Belotserkovskii (data caken from reference 16) was used as a standard. Figure 12 illustrates the surface pressure distribution for a sphere in a Mach 4 flow. It is seen that the present method and Belotserkovskii's solution are in excellent agreement. Also shown are several time-dependent solutions reported in the literature. The solution by Moretti and Abbett (Ref. 13) is in excellent agreement with the present method in the subsonic region but predicts higher surface pressures in the supersonic region than either the present method or the integral relations solution. Solutions by the Codunov method reported by Godunov, Zabrodin and Prokopov (Ref. 9) and Masson (Ref. 16) are also shown. The solution by Masson is seen to agree very well with Belotserkovskii's results and the present method. It is concluded that the present method and Masson's method provide the best predictions of the timedependent methods presented. Figure 13 illustrates the surface density distribution predicted by the present method, Belotserkovskii and Masson. Agreement between the present method and Belotserkovskii's solution is excellent. It is seen that Masson's solution does not predict the correct density distribution. It is concluded that the accuracy of the present method is superior to other reported time-dependent methods and equivalent to the method of integral relations.

5. AFTERBODY FLOWS

To validate the present method for afterbody flows, comparison with the NASA inverse scheme-method of characteristics program (Ref. 3) was accomplished. Since the surface entropy has been shown to be constant and correct, comparison of the predicted surface pressure distributions is sufficient to establish validity. Figures 14, 15 and 16 show the comparison of predicted surface pressures for sphere-cone vehicles with various cone half-angles and Mach numbers of 4, 6 and 10. Agreement between these methods is seen to be excellent:

Shock Shapes For Flow Over A Hemisphere At Several Mach Numbers Figure 11.

v

30

et.;

Figure 12. Comparison Of Time-Dependent Methods With An Integral Relations Solution

Figure 14. Surface Pressure Distributions For Sphere-Cones In Mach 4 Flow

Figure 15. Surface Pressure Distribution For Sphere-Cones In Mach 6 Flow

Surface Pressure Distribution For Sphere-Cones In Mach 10 Flow

35 ·

6. ARBITRARY BODY SHAPES

The previous solutions for sphere-cone vehicles employed internal relations in the computer code to define the body geometry. To validate the numerical computations used to define an arbitrary body shape from input data, ellipsoidcylinder vehicles were considered for comparison with reference 3. Figure 17 shows a comparison of surface pressures between these methods. It is concluded that the arbitrary body shape logic provides accuracy equivalent to reference 3 for those cases where comparison is possible.

7. APPLICATION TO TYPICAL REENTRY VEHICLES

Since the accuracy of the present method has been established for the relatively simple problems normally used to demonstrate the capability of a computational method, it remains only to attempt a practical reentry problem. The AFWL version of the NASA computer code of reference 3 and the present method were used to generate a solution for a sphere-cone vehicle with a 10° cone halfangle in a flow with a Mach number of 20. The solution was carried downstream 50 nose radii measured along the symmetry axis. The surface pressure distribution comparison is shown in figure 18. Some disagreement is seen in the strong expansion region. Additional reduction of the stabilizing terms and a solution not using the segmented approach were attempted but had no significant effect on the predictions by the present method. It was concluded that this minor disagreement could not readily be explained. A comparison of the surface Mach number predictions is shown in figure 19. Except for the local disagreement in the strong expansion region, the solutions appear to be equivalent. To further investigate the local disagreement, a comparison of surface pressure distribution predicted by the NASA program and the present method are compared to experimental data reported in reference 19. Figure 20 shows that the present method agrees better with the experimental data than the NASA solution. This closer agreement is undoubtedly fortuitous, but does indicate that the local disagreement between the two computational methods is insignificant when compared to experimental data. The solution shown in Figures 17 and 18 represents the only known solution for a practical high performance reentry vehicle generated with a time-dependent method. The solution was generated in less than 6 minutes on the CDC 6600 computer and required only 40,000 octal locations for storage. As previously noted, the computation time required to treat this problem without the segmented approach is estimated to be in excess of 70 hours on the same computer.

SECTION VI

THE FORTRAN IV COMPUTER CODE

1. MACHINE ROUTINES

The computer code employs 3 machine routines available on the CDC 6600 computer. When a different computer is used, these routines may not be available. Substitute routines should be provided, as required, for the following routines:

INT (X) - a FUNCTION routine which converts the floating point variable, X, to integer form.

FLOAT (I) - a FUNCTION routine which converts the integer variable, I, to floating point form.

SKFILE (FILE, N) - a SUBROUTINE which skips N files on a magnetic tape unit specified by the Hollerith argument FILE. To simplify the replacing of this routine, calls to it are contained only in the dummy routine, SUBROUTINE SKIP. 2. DIMENSIONED VARIABLES

The variable dimensions currently contained in the computer code allow up to 15 nodes along the body and 40 nodes across the shock layer. To change these dimensions, new values for IMAX and NMAX should first be supplied in a DATA statement in the main program, where

> IMAX - specifies the maximum number of nodes along the body permitted by the dimension sizes.

NMAX - specifies the maximum number of nodes across the shock layer permitted by the dimension sizes.

Then, the following COMMON statements should be modified consistent with the values of IMAX and NMAX:

COMMON/1/V(IMAX, NMAX, 4), D(NMAX, 4), P(3, NMAX)

COMMON/2/ RB(IMAX), ZB(IMAX), TH(IMAX), CTH(IMAX), K(IMAX), NS(IMAX), WS(IMAX)

COMMON/11/ MAXIT, ISTOP, ITD, TIME, SI(IMAX), NST(IMAX)

COMMON/SPLINE/ C(4, IMAX)

SUBROUTINES INTERP and INTEG contain a dimensional variable which should be dimensioned X(IMAX).

3. THE MAIN PROGRAM

A. PURPOSE

The main program is designated as PROGRAM BLUNT. It's major functions are:

- a) Initialize constants and some of the case data variables.
- b) Define values for the control variables to select the proper options.
 - c) Accomplish checks to determine if any errors were sensed while

reading the input data. When errors are sensed, an error message is printed, the case terminated, and the next case started.

d) Performs all flow field computations except for points on the shock and on the body surface.

- e) Schedules the flow field data output as requested by the user.
- f) Schedules the storing of the flow field data on magnetic tape.
- B. VARIABLE LIST
 - AMACH1 M_
 - AMUO μ_0 , equation (62)
 - AVN parameter used to introduce the stabilizing terms relative to the n coordinate.
 - AVS parameter used to introduce the stabilizing terms relative to the s coordinate.
 - Al A, equation (49), evaluated at the shock.
 - **ENOSE** nose bluntness parameter
 - Bl B, equation (49), evaluated at the shock.
 - CDEL $\cos(\beta \theta)$

 $CN - (\kappa^2 \rho V)_n$ $CS - 2(\rho u)_s$

CTH - array of $\cos \theta$ values

$$\begin{array}{ccc} c1 & -u/(2\Delta\xi)\\ & \partial n \end{array}$$

C2
$$-\frac{\eta s}{\partial s} \frac{u}{\chi(v-W\eta)}$$

$$\begin{array}{rcl} C3 & -\chi(v-W_{s}\eta)/(2n_{s}\Delta\eta)\\ C30 & -\frac{1}{2} \end{array}$$

 $2n_s\Delta\eta$

D

- array used for temporary storage of flow field parameters at $\tau + \Delta \tau$.

DBET $-\beta - \theta$

DELS - length of a body segment measured along the surface.

DET $-\Delta\eta$ DE2 $-2\Delta\eta$

DKAP - $\Delta \kappa = K \Delta \eta$

DN - An

 $DR - \Delta r = \Delta n \cos \theta$

DRSM	r at $\xi - \Delta \xi$	
DRSP	r at $\xi + \Delta \xi$	
DT	Δr	
DTO	0.9 / (q + a). Used for CFL stability check.	
DT1	the value of $\Delta \tau$ evaluated from equation (62).	
DUM	dummy variable used for intermediate computations.	
DXI	Δξ	
DX2	2Δξ	
DX3	3Δξ	3
ERR	array specifying acceptable errors in convergence on n and P	
	for shock iteration procedure.	
ETA	η	
GAMA	(y+1)/2	
GAMB	(y-1)/2	
GAML	. у	
HT1	total enthalpy.	
I	index specifying body station in DO loops.	
IGEOM	control variable. Specifies method for selecting the number	
	of streamwise nodes to be used.	
IM	• I - 1	
IMAX	maximum number of streamwise nodes allowed by the dimension	
	sizes.	
IMIN	value of I at which computations should start on the current	
	segment.	
INTAP	- the magnetic tape unit number to be used for flow-field input	
	(when required).	
IP	- I + 1	
IPR	- array specifying iteration numbers or times when flow field	
	output is to be provided.	
IPRINI	- iteration number when next flow field output is to be provide	d.
ISEG	- segment number.	
I STOP	- error indicator.	
IT	- index on major iteration DO loop.	
ITD	- total number of iterations performed for the current segment.	
JPR	- array used for temporary storage of IPR.	
K	- array containing values of K.	

KAP	•	K
KBAR	-	$(K(\xi+\Delta\xi) + 2K(\xi) + K(\xi-\Delta\xi))/4$
KGEOM	-	control variable defining the option to be used for geometry
•		calculations.
KSEG	-	index used to suppress the check on NSEG (see NSEG).
KZERO	-	body curvature at $S = 0$. Used to nondimesionalize all length
		parameters.
L	. –	specifies first index in the P array corresponding to I.
LM	-	specifies first index in the P array corresponding to IM.
LP	•	specifies first index in the P array corresponding to IP.
LPLUS	-	array used to specify LP. $LP = LPLUS$ (L).
M	-	dummy index.
MAXI	-	total number of streamwise nodes employed to treat current
		segment.
MAXIT	-	total number of iterations to be performed.
MAXN	-	the total number of nodes across the shock layer.
MI	-	MAXI - 1
MN	_	MAXN - 1
Ml	-	used for temporary storage of M.
N	-	index specifying nodes across shock layer in DO loops.
NCASE	-	case number (see section VII).
NFILE	-	number of the first segment to be treated (see section VII).
NGEOM	-	control variable specifying method for selecting MAXN.
NM	-	N - 1
NMAX	. –	total number of nodes across the shock layer allowed by
		dimension sizes.
NMIN	_	MAXN - 2
NOPT		control variable specifying method to be used in selecting MAXIT.
NP	_	N + 1
NPR	۰. ح	index used to select proper value of IPRINT from the IPR array.
NS		array containing values of n .
NSEG	_	s total number of segments to be treated.
NTAP	-	control variable specifying the method to be used for assigning
		initial conditions.
ΟΤΑΡ		magnetic tape unit number on which flow field data should be
		stored.
·		

÷

	P	-	array containing values of P at the 3 body stations required
			for local computations.
	PI	-	π
	PI2	-	π/2
	PN	-	<u>9P</u>
	DC	_	<u>əp</u>
	PT2	_	as. total pressure behind a normal shock
•	P1	-	p
	PQA		ompirical constant used to assign initial conditions
	01		empilical constant used to assign initial conditions,
	Q1 D	-	
	K	-	
	RB	-	array containing values of r at the body stations.
	RGAS	-	gas constant.
	RHO1	-	P.
	RN	-	scale factor used for dimensional output (see section VII).
	RSM	-	r at $(\xi - \Delta \xi)$
	RSP	-	r at $(\xi + \Delta \xi)$
	SDEL	-	sin $(\beta - \theta)$
	TCHECK	-	estimated value of r for steady state, equation (63).
	TCRIT	-	array containing constants used in equation (63).
	TDEL		tan (β-θ)
	TH	-	array containing values of θ at all body stations.
	THETC	-	cone half-angle.
	TIME	-	
	TPR	-	arriv containing values of r when output should be provided.
	T1	_	T
	v		array containing values of o, u, v and S at all nodes.
	VA	_	array containing the values of averages used to introduce the
			stabilizing towns
	VTC		La AVG AVN Weed to compute evenes at and to VA
*	V15	-	1.0 - AVS - AVN. Used to compute averages stored in VA.
	VK	۔ ٤	KV
	VMIN	-	array used to store streamwise derivatives required for shock
			computations.
,	VN	-	array containing values of derivatives with respect to n.
	VS	-	array containing values of streamwise derivatives.

to r?
ations.
*

ENTER MAIN PROGRAM

SET ERROR INDICATOR.

START POINT FOR ALL CASES.

PRINT TITLE.

INITIALIZE BODY GEOMETRY CONSTANTS AND RECOVER THE MACH NUMBER READ ON THE PREVIOUS CASE.

RECOVER PRINTOUT ARRAY READ ON PREVIOUS CASE,

CHANGE UNITS ON θ_{c} TO DEGREES.

LOAD CASE DATA.

SAVE MACH NUMBER.

STORE
$$\frac{\gamma+1}{2}$$
 AND $\frac{\gamma-1}{2}$
FOR SHOCK COMPUTATIONS.

COMPUTE NONDIMENSIONAL FREE STREAM SOUND SPEED.

COMPUTE GAS CONSTANT FOR USE IN DATA PRINTOUT.

WAS A FREE STREAM VELOCITY READ RATHER THAN A MACH NUMBER ?

COMPUTE FREE STREAM MACH NUMBER.

COMPUTE FREE STREAM VELOCITY.

COMPUTE TOTAL ENTHALPY

STORE VALUE OF MAXIT READ IN CASE DATA.

REWIND INPUT MAGNETIC TAPE UNIT.

STORE PRINTOUT ARRAY.

NEW CASE, RESTART OR ADDITIONAL ITERATIONS ?

LOAD THE SPECIFIED NUMBER OF NODES IN THE ξ AND η DIRECTION.

MAXN < 5?

STORE MAXN-1, MAXI-1 AND MAXN-2.

COMPUTE An.

SHOULD SPHERE NOSE BE TREATED WITH ONE OR THO SEGMENTS ?

TWO SEGMENTS WILL BE USED.

ONE SEGMENT WILL BE USED.

CONVERT 9 TO RADIANS.

WAS THE NUMBER OF SEGMENTS TO BE TREATED SPECIFIED ?

NO. COMPUTATIONS WILL STOP WHEN THE TOTAL LENGTH, ZRN, HAS BEEN TREATED.

ARBITRARY BODY SHAPE OPTION.

COMPUTE CONSTANTS FOR STAGNATION PRESSURE CALCULATION.

> COMPUTE STAGNATION PRESSURE BEHIND A NORMAL SHOCK. PERFECT GAS.

EMPIRICAL CONSTANT USED TO ESTIMATE INITIAL BODY PRESSURE.

RESTART OR ADDITIONAL ITERATIONS ?

NO. NEW CASE. INITIALIZE CONSTANTS FOR FIRST SEGMENT.

SET UP BODY GEOMETRY FOR FIRST SEGMENT.

WAS DATA ERPOR SENSED IN SUBROUTINE GEOM ?

INITIALIZE FLOW FIELD PARAMETERS FOR FIRST SEGMENT.

SET Δn AT S = 0.

An REQUIRED TO BE < 0.2

NTAP <0, UNSTEADY FLOW CASE, DOES NOT EMPLOY AUTOMATIC NODAL SPACING OPTION.

SET NODAL SPACING ACROSS SHOCK LAYER.

STORE INPUT ARRAY ON MAGNETIC TAPE.

RESTART OPTION.

THIS OPTION REQUIRES INTAP = OTAP.

PRINT ERROR MESSAGE.

SET ERROR INDICATOR.

READ VEXT CASE.

LOAD DATA FOR RESTART.

WAS DATA ERROR SENSED IN RESTART ?

GO TO 9 TO COMPUTE PT2.

ADDITIONAL ITERATIONS TO BE PERFORMED ON A CASE STORED ON MAGNETIC TAPE.

OPTION REQUIRES INTAP # OTAP.

W. ...

PRINT ERROR MESSAGE.

SET ERROR INDICATOR.

READ NEXT CASE.

LCAD DATA FROM MAGNETIC TAPE.

ERROR INDICATOR < 1 ? IN THIS CASE, IT SIGNIFIES THE END OF THE CASE.

GO TO 9 TO COMPUTE PT2.

COMPUTE CONSTANT, DTO, FOR USE IN CFL STABILITY CRITERION, EQUATION (36).

EQUATION (62).

COMPUTE CFL STABILITY LIMIT BASED ON $\Delta \xi$.

DOES DT1 EXCEED THIS LIMIT ?

YES. SET DT1 = DT.

SET TPR ARRAY FOR USE IN STEADY STATE FLOW OPTION.

ſ

INITIALIZE SEGMENT NUMBER.

RESTART OPTION ?

START OF SEGMENT COMPUTATIONS.

INCREMENT SEGMENT NUMBER.

SET UP INITIAL DATA FOR PRESENT SEGMENT.

EQUATION (62).

COMPUTE CFL STABILITY LIMIT BASED ON $\Delta \xi$.

· (*)

DOES DT1 EXCEED THIS LIMIT ?

YES. SET DT1 = DT.

ERROR INDICATOR < 1 (THIS MEANS AN INPUT ERROR WAS SENSED OR THE CASE WAS COMPLETED).

NOPT	>	0	:	NUMBER OF ITERATIONS
				SPECIFIED.
NOPT	=	0	:	NO ITERATIONS. JUST
				PRINT FLOW DATA.
NOPT	<	0	:	STEADY STATE FLOW
				SOLUTION.

COMPUTE BODY PRESSURE AT START OF SEGMENT.

COMPUTE BODY SOUND SPEED AT START OF SEGMENT.

ESTIMATE TIME REQUIRED FOR STEADY STATE SOLUTION, EQUATION (63).

SET MAXIT TO ALLOW SUFFICIENT ITERATIONS FOR A MEANINGFUL CFL STABILITY CALCULATION BASED ON $\Delta \eta$.

ESTIMATE ITERATION NUMBERS FOR WHICH PRINTOUT SHOULD BE PROVIDED.

INITIALIZE PRINTOUT INDEX.

SET CONTROL VARIABLE FOR PRINTOUT.

ARE INITIAL CONDITIONS TO BE PRINTED ?

PRINT FLOW FIELD DATA.

STORE 345.

START OF ITERATION LOOP.

COMPUTE Δn AT START OF SEGMENT; $\Delta n = -n \Delta \eta$.

COMPUTE Δr AT START OF SEGMENT; $\Delta r = \Delta n \cos(\theta)$.

COMPUTE Δr AT SECOND NODE ALONG THE BODY FOR THIS SEGMENT.

INITIALIZE INDEX FOR PRESSURE AT ξ .

INITIALIZE INDEX FOR PRESSURE AT $\xi + \Delta \xi$.

COMPUTE PRESSURE ARRAY AT ξ .

COMPUTE PRESSURE ARRAY AT $\xi + \Delta \xi$.

COMPUTE CFL STABILITY LIMIT BASED ON Δn . EQUATION (36)

SHOULD Δt BE REDUCED BASED ON μ_{O} ?

INCREMENT TIME.

IMIN = 2 WHEN THE SEGMENT UNDER CONSIDERATION DOES NOT INCLUDE THE STAGNATION STREAMLINE.

COMPUTE SHOCK VELOCITY ALONG THE NORMAL COORDINATE.

STORE FLOW VARIABLES AT THE SHOCK.

COMPUTE CONSTANT FOR USE IN EVALUATING PARTIAL DERIVATIVES WITH RESPECT TO n.

SET NODAL INDICES FOR STAGNATION STREAMLINE COMPUTATIONS.

COMPUTE AVERAGE BODY CURVA-TURE FOR STAGNATION STREAM-LINE DIFFERENCES.

SET B, COS (B), TAN (B), AND SIN (B) FOR NORMAL SHOCK COMPUTATIONS.

STORE $\frac{\partial \rho}{\partial \xi}$, $\frac{\partial u}{\partial \xi}$, $\frac{\partial v}{\partial \xi}$ AND $\frac{\partial s}{\partial \xi}$ AT THE FIRST NODE INSIDE THE SHOCK.

INITIALIZE n.

COMPUTE $\Delta \kappa = K\Delta n$.

COMPUTE κ AT $\eta = \Delta \eta$.

COMPUTE $\frac{\partial \kappa^2 \rho v}{\partial n}$ for use in equation (16).

COMPUTE $\frac{\partial \rho u}{\partial s}$ FOR USE IN EQUATION (16).

COMPUTE $\frac{\partial \rho}{\partial t}$ AT THE STAGNATION POINT.

COMPUTE $\rho(\tau + \Delta \tau)$, EQUATION (16). SET u=0.

EQUATION (41).

COMPUTE $S(\tau + \Delta \tau)$, EQUATION (40).

INITIALIZE K.

START LOOP ON N FOR POINTS ON THE STAGNATION STREAMLINE.

INCREMENT n.

INCREMENT K.

COMPUTE LOCAL SOUND SPEED.

COMPUTE MINIMIZED STABILIZING TERMS.

STORE A USEFUL PARAMETER.

STORE INDICIES FOR THE NODES AT $\eta + \Delta \eta$ AND $\eta - \Delta \eta$.

COMPUTE $\frac{\partial \rho u}{\partial \xi}$

COMPUTE $\frac{\partial \kappa^2 \rho v}{\partial n}$

24 D0 25 N = 1,MAXN D0 25 M = 1,4

SET IM TO INSURE PROPER FLOW VARIABLE STORAGE IN SUBROUTINE SHOCK.

$$\kappa = 1 - Kn_s$$

COMPUTE CONSTANTS FOR SHOCK CALCULATIONS.

COMPUTE SHOCK PARAMETERS.

SET U = O AT THE SHOCK.

COMPUTATIONAL STARTING POINT WHEN IMIN = 2

STORE STARTING LINE PARAMETERS.

SET SHOCK VELOCITY COMPONENT NORMAL TO THE BODY TO ZERO FOR THE CONSTANT STARTING LINE.

START OF LOOP TO TREAT POINTS NOT ON THE STAGNATION STREAMLINE.

COMPUTE INDICIES FOR NODES AT $\xi + \Delta \xi$ AND $\xi - \Delta \xi$.

COMPUTE An.

COMPUTE AVERAGE CURVATURE FOR FINITE DIFFERENCES.

24

SET INDICIES FOR THE PRESSURE ARRAY.

ANT T

COMPUTE PRESSURE FOR NODES AT $\xi + \Delta \xi$.

COMPUTE $3 \ltimes \Delta \xi$ at the shock.

1

SHOCK SLOPE, EQUATION (60).

COMPUTE CONSTANTS USED IN SHOCK TRANSFORMATIONS.

COMPUTE $\frac{\partial \rho}{\partial \xi}$, $\frac{\partial u}{\partial \xi}$, $\frac{\partial v}{\partial \xi}$ AND $\frac{\partial a}{\partial \xi}$

AT THE FIRST NODE INSIDE THE SHOCK FOR USE IN SUBROUTINE SHOCK.

COMPUTE & AT BODY SURFACE.

EQUATION (33).

COMPUTE STABILIZING TERM COEFFICIENTS FOR BODY

INITIALIZE n.

COMPUTE CONSTANT USED TO EVALUATE PARTIAL DERIVA-TIVES WITH RESPECT TO n.

COMPUTE CONSTANT USED TO EVALUATE PARTIAL DERIVA-TI:VES WITH RESPECT TO S.

STORE Δr FOR $\xi - \Delta \xi$, ξ AND

COMPUTE $\Delta \kappa = K\Delta n$.

BODY POINT COMPUTATIONS.

COMPUTE NEW SHOCK POINT LOCATION FOR $\xi - \Delta \xi$.

COMPUTE SHOCK VELOCITY COMPONENT NORMAL TO THE BODY.

INITIALIZE r AT $\xi+\Delta\xi$, $\xi-\Delta\xi$ AND ξ , AND κ .

START OF LOOP TO TREAT POINTS ALONG THE NORMAL COORDINATE AT ξ .

INCREMENT n, r AND K.

COMPUTE SOUND SPEED.

EQUATION (33) FOR ξ COORDINATE.

EQUATION (33) FOR n COORDINATE.

COEFFICIENTS FOR THE STABILIZING TERMS.

COMPUTE USEFUL PARAMETERS.

COMPUTE INDICIES OF NODES AT $n+\Delta \eta$ AND $n-\Delta \eta$.

COMPUTE PARTIAL DERIVATIVES FOR U, V AND S.

COMPUTE AVERAGES TO INTRODUCE STABILIZING TERMS FOR ρ , U, V AND S.

INCREMENT r AT $\xi + \Delta \xi$ AND $\xi - \Delta \xi$.

 $-\frac{\partial u}{\partial t}$, $-\frac{\partial v}{\partial t}$ AND $-\frac{\partial S}{\partial t}$.

COMPUTE FLOW PARAMETERS AT $\tau + \Delta \tau$.

END OF LOOP ON N.

COMPUTE CONSTANTS FOR SHOCK CALCULATIONS.

COMPUTE SHOCK PARAMETERS.

END OF LOOP ON I.

TRANSFER VALUES OF ρ FOR THE DOWNSTREAM SEGMENT BOUNDARY FROM TEMPORARY STORAGE.

LINEAR EXTENSION FOR ρ . ABSOLUTE VALUES USED TO INSURE INITIAL GUESS WILL NOT INTRODUCE NEGATIVE VALUES.

COMPUTE NEW SHOCK POINT LOCATION AT DOWNSTREAM SEGMENT BOUNDARY.

LINEAR EXTENSION OF SHOCK.

SHOULD PRINTOUT BE PROVIDED ?

PRINT FLOW FIELD VARIABLES.

COMPUTE TOTAL NUMBER OF ITERATIONS PERFORMED ON THIS SEGMENT.

WAS THE NUMBER OF ITERATIONS TO BE PERFORMED SPECIFIED ?

HAS THE ESTIMATED TIME FOR STEADY STATE BEEN EXCEEDED ?

INITIALIZE I.

INCREMENT' I.

1 1

IS THE MAGNITUDE OF THE SHOCK VELOCITY GREATER THAN 10⁻³ ?

ARE THERE MORE POINTS IN THIS SEGMENT ?

STEADY STATE ACHIEVED.

STEADY STATE NOT ACHIEVED.

-

SET MAXIT FOR 100 MORE ITERATIONS.

SUPPRESS EXTRA PRINTOUT.

START ITERATION LOOP.

ESTIMATE THE NUMBER OF ADDITIONAL ITERATIONS REQUIRED FOR STEADY STATE.

CONVERT TO INTEGER FORM.

EVALUATE NEW PRINTOUT ARRAY.

INITIALIZE PRINTOUT CONTROL INDEX.

IS IPR(7-M)> 0 ?

RESET NPR.

SET PRINT CONTROL VARIABLE.

START ITERATION LOOP.

SEGMENT COMPLETED.

WRITE FLOW FIELD DATA ON MAGNETIC TAPE.

ſ

SET IPRINT FOR FINAL PRINTOUT.

FINAL PRINTOUT FOR THIS SEGMENT.

HAVE ALL SEGMENTS BEEN TREATED ?

WRITE INDICATOR ON TAPE TO SIGNIFY END OF CASE.

ENDFILE TAPE.

SET ERROR INDICATOR.

READ NEXT CASE.

END.

	- *){, 20, 1 3	EJATCINETT,	JUT JT, FAPE1,	TAPE?,T	APES=LHPUT)		BLUN	1
		· • • • • • • • • • • • • • • • • • • •						SLUN	2
	141, 000	STAR SOLVES	INE TIME-DEP	ENDENT	INVISUID F	LUW		OL UN	3
	+ 103110.45	FOR AXISYA	METATC REDNT	900152	OF ARUITRA	RY SHAPE		BLUN	4
	FEALVE 91	2054 420110	SPEEDS. (AFM	12-13-70	-15)			BL UN	5
								BLUN	6
	C 120N /1	/ V(15,4)	1,)(41,41_F(3	(, 40)				BLUN	7
	C) # / ?	/ 23(15),23	(15), TH(45), 0	(TH(15),	K(15), NS(1	5),HS(15)		BL UN	3
	004804 73	/ /////////////////////////////////////	41M, MAXN, MN, 6	HIN				BLUN	3
	COMMON /4	/ IDDINT, NP	R, KULDH, TPR (B	J,KS=G				BLUN	1 2
	11410N /5	/ DXI,DET,J	X2, DE2, DT					BLUN	11
	C 1440N /6	/ 01.VS1.HT	1.41.41					BLUN	12
	COMPON 17	/ I.IP.14.L	·LP·LH					BLUN	13
	C)::*04 /9	/ VHTH(4) .K	162.22]					BLUN	14
	C14414 /9	/ ISEGATO.	JELS X75PD. BA	IOSE				BL UA	15
	COMMON /1	PL VS(L) VI	161 - VA(4) - VT(4				RELIN	16
	CONMON /1	1/ MAYTT, T.	TCD. TT). TTME	ST(:5)	NST(1)			-11 11 J	17
	COMPON /1	2/ 1051 015		511177					1.4
		27 J 21 21 95 J2						2. 14	12
		SZ AVDAAVNA	VIS	2.00 5.00					1 7
	1004504 71	RPUI7 54-1,		2 < N, 1 6 4	(1)(2),01,4		J 9 5 L 92		21
	* P * (2) • 1993	(5), INTAP, U	TEP, NOPT, NEAS	SE INFILE	, MS+0, 10t.	M, NGEUM, II	аР	SL UN	21
	COMPCH ZC	CASIN PIPI	2,, 544, 6444, -	2645				HE UN	22
	CONTON ZA	1.14x , 1	1 <i>C</i> ×				6	BLUN	23
	COMMON NO	PES/ PT2, PJ	1					BLUN	24
	OIGENSION	LPLUS(3),	JF3(5)					3L UN	25
	INTEGED D	140						BLUN	26
	>TAL NS, K	. < AP, KPAR, K	ZERC, H1, NST					BLUN	27
	DATA PI.P	17/7.141592	65359,1.57675	6326798	51			JL UN	23
	DATA (LPL	US(4),H=1, j	1/2,3,1/					BLUN	29
	DATA (JPR	(1) . "=1.5)/	-5,-3,-5,-5,-	551				JLUN	30
	2113	AHUDI	3.34/.	-	10211(1)/	2.0/.		BLUN	31
		TC2TT(2)/	1].2/.		64.11/	1.4/.		3L UN	32
	*	NSE 37	٩/.		Til	1.9/.		AL UN	33
	•	P1/	1.37.		24711	1.3/.		AL UN	234
		211	1 0/			0.9/.			75
		502(1)/	1 05-35/		622(2)/	1 05-78/		Gr tha	36
			1.00.000			1.00-1979			30
		1114-7	27,		UT AUT	17,		SL UN	37
	• ·	NOPTZ	-17,		HETTEN	1/,		BLUN	35
		HI TO	37,		IG=JM/	0/,		SL UN	39
	*	1'5EC47	S/,		I IAX/	15/,		BL UN	43
	+	NMAXZ	49/,		NCASE/	1/-		BLUN	41
	13109=5							BLUN	42
	רים ביון אין אין אין אין אין אין אין אין אין אי							BLUN	43
	T 14 T 21 = 1		,		- U			SL UN	44
	DELS=3.7	4						BLUN	45
	~K75 77=1.3							BLUN	45
	21255=1-2		10,					9L UN	47
	X19=3.0		A.	N	-			BL UN	44
	K366±3		16	0				31.114	47
	A 44C-41 = 11			POR				BL. UN	51
	77 2 4-1	5		Un				-1+ 11M	51
,	TO 7 4 14 1 - 14	2.2.41		010				31 114	51
	1 · · (• J + J P	(1)		0	1			DC UN	-7 -2
					•				

THE TO = THE TOMING / PT	חנניי	5 *
1411 14TA (JETOP)	91_UM	54
111 - 2 + 1 7 - 1	BEUN	55
Think = (Think + 1 + 1)/?	PLUN	55
22112 = (2221 - 1.38/7.9	71, 1.**	37
111 = 7327 (5241)	りしじり	5 P
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	っしじや	59
TE (1440 41.LT. 0.9) AMACH1=520T (0H01+AMACH1+AMACH1/(CAM1+01))	PLUN	61
01=5/10H1+V31	91.UH	61
-T!= 7441/(GAM1-1.3)+71*01/2.0	2LUN	67
11 Y T = NOOT	97.0H	53
יייידאר איד ארא איד איד איד איד איד איד איד איד איד אי	PLUN	64
10 3 11=1,5	°LU*'	65
(*) 55] = (1) 50	אטיר	65
TE (1747-1) 4,17,12	RLUM	67
HAY TET GEOM	PLUM	69
1241=16-04	5 L UN	63
TE (MAXM.LT.1) MAXN=5	0L UN	7.)
i= ~ J X + 1 - 1	マリンド	71
·I=·*****	っししい	77
1 · M 7 51 - M + 1 - 1	ULUP:	77
77- 56 7 67 (4.1)	21.01	74
777=1.3/27	きょした	75
DED=DET+DET	o Liter	75
TE (70%) 9, 4, 5	31_68	77
TE (THET), GT. 73. 3. 07. 1410-1. LT. 2. 1) (C TO F	91.04	79
KGCOHE 7	ግር ሀቶ	23
0710=1,4726F	REUM	97
57 TJ 7	51 UH	81
"FLS=(3).1-THETC)*PI/103.0	າມາກ	32
2000 M = 1	っしした	93
THETO=TH"TC#FI/197.7	11 11	84
15 (NS-5.LT.1) KSFG=50333	FLUM	85
(n f) a	310*	35
205 D.1 = 3	9LUM	a,7
XSH=1/11/41/41/11	PEUM	99
77-1.21(3411-1.3)	910M	33
01/11= 72 * 73 * 1	PLUN	07
つてつ=((^&M&#WSF)##NUM)#((G&M&/(G&M&FFG&MP))##ZZ)</td><td>°LU"</td><td>91</td></tr><tr><td>777=484/16.3-7.3</td><td>AC 16</td><td>92</td></tr><tr><td>TT (290.17.1.2) (99=1.1</td><td>αLΩN</td><td>CT</td></tr><tr><td>TE (1749.01.3) 50 TO 14</td><td>32.01</td><td>94</td></tr><tr><td>TTMFal.)</td><td>7204</td><td>95</td></tr><tr><td>· · · = 1</td><td>7 L I M</td><td>ġ,</td></tr><tr><td>T 34 G = 1</td><td>יי ט גיי</td><td>47</td></tr><tr><td>11L 570% (T)</td><td>-1<u>0</u>-</td><td>Ç A</td></tr><tr><td>TE (TRTAP.1) 50 TO 1</td><td>-1 UM</td><td>33</td></tr><tr><td>THE INTEAL (N)</td><td>710"</td><td>1]]</td></tr><tr><td>77=1.157/781055</td><td>ינטי</td><td>• 11</td></tr><tr><td>· F (· · · · · · · · · · · · · · · · ·</td><td>31.CM</td><td></td></tr><tr><td>TE (MTAD.ED.A) GALL NYERH (NR(MI),1.MAXI,72.N)</td><td>7.01</td><td>104</td></tr><tr><td></td><td>1,01</td><td>134</td></tr><tr><td>CO 10 14</td><td>41_U</td><td>100</td></tr><tr><td>TE (T TAR, F), (TAR) 60 TO 11</td><td>71.04</td><td>195</td></tr><tr><td></td><td>-10.</td><td>111</td></tr></tbody></table>		

	131021	
		31,011,133
		11UN 117
1 7	(1977) 1,1,9	9LUN 111
•	$\frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$	"LUP 111
	537NT 44	
		1.01-111
+ 7		*LUN 114
•		-LUN 115
1 %		9LUP 116
14	1 = J • 37 (51+V\$1) ·	PLUN 117
	$21 = 0.1 = 0.1 + 0.1 / ((0.1 + VS_1) + + 2)$	4LUN 119
		41UN 119
• •		
•	TSEC-NET -	
1.5	TSEC-TSEC.	
• •		
	11 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
	TE (TETOD) + + + =	RLUN 170
17	TE (NOT) + 2 (4 - 2)	3LUN 134
19		31 UN 131
•		
	$T_{HE}^{-}(T_{T}) = T_{T}^{-}(T_{T}) + T_{T}^{-}($	ALLN 171
	"AYTT=TUT(0, 2+TOUCOK(D=1))	BLUN 135
	00 10 H-1 =	PLUN 176
13		71111 137
27	HD0=1	71 LINI 1 78
-		RI L'N 133
	IF (TRATATED 1) CALL ONDOUT	PLUN 149
	7X7=7X2+7XT	PLUN 141
21	00 74 TT=1. 44VTT	9104 142
	ON = -NS(1) + OT T	91 UN 143
	JP=JN#014(1)	PLU11 144
	() 2 CP == NS (2) # PET# CTH (2)	9LUN 145
	L=1	PLUN 145
	L°=?	PLUN 147
	CALL STATE (1-1-MAYN)	ALUN 148
	CALL STATE (7.10, MAXN)	91UN 143
	יד=חדן+קא	7LUN 151
	TE (371.LT.97) 3T=971	3LUN 151
	TIMESTIME +DT	aLUN 152
	IF (IMIN. TG. 2) 50 TO 24	PLUM 157
	352=45(1)	7LUN 154
<i>,</i>	00 22 M=1,4	3LUN 155
22	$(** \nabla X_{v1}, *4) = V(1, ** \nabla X_{v1}, M)$	BLUM 156
	77=1.0/(15(1)+052)	PLUN 157
	I=1	7LUN 158
	TP=2	PLUN 157
	T = 2	?LLM 161
	LM=2	3LUN 151
		21112 162

<pre><>12=1.5*(K(T=)+K(T))</pre>	31.64	67
ר_י_ז הו	PLUN 1	£.4
TT-L=1.1	PLUN 1	6,5
T] [] =] ,]	n[]+i 1	166
201 L = J • J	PLLN 1	
V~I~(1)=).)	9LUM 1	51
······································	31.04	
(, (=) ,) · · · · · · · · · · · · · · · · ·	11LUF	171
(1) (1,) =) .]		172
	PLUM	177
JK10=-KJ70+12 (1) +JE1	71 111	174
	3L UM	175
	PLUM	176
$V_{\mathcal{A}}(1) = V(\mathcal{A}_{\mathcal{A}} 1_{\mathcal{A}} $	91.64	177
21111=22.11+22.11+2.11+2.11 214 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	aL UM	179
	ALUN	179
77-1411-1-4)-4(1-2-4))/(4(1-1-4)+V(1-2-4))	3LUN	180
VTC = 77#77	っとしせ	1 31
1.44=1-7-715	3101	182
(1, 4) = 4 + 1 + 1 + 1 + 2 + 4 + 2 + 5 + 2 + 5 + 2 + 2 + 4 + 2 + 2	21 UH	1 47
 	でしじや	184
00 23 N=2 MY	37 Ob	195
~7A=FTA+ 3FT	PLUN	185
KJ0= (J0+)KJC	71.04	18/
7)//=/70//// (F (L+N) + V (1 + N+ 1))	PL CF	1 9 9
77=()(1,)+3)+3()*77/74		1 5 3
2111=77#77		121
1.1.1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	31.1.1	197
1V* = 7. 17 # 4 VN	71 1 1	197
) J*=V(T, 1, 3) + 6 (T) + 5 * 3	31.01	134
M D = 11 + 1	PLLM	195
	DUUS	195
	NKAPLUN	197
	PLLM	199
(1) (1)	7182	199
(1)(7) = (7 + (1)(7 + 7) - 7) - 7 (7 + 10 + 7))	3L UN	211
$V_{1}(L) = C_{3} + (V(T_{N}P_{N}L) - V(T_{N}N_{N}L))$	⊐∟し*'	201
$y_{1}(+) = Ay_{1} + (y_{1}, N) = (1) + V(T, NM, 1)) + VIS + V(T, 3, 1)$	ອບປາ	212
1A(7) = 44 1+ (4(1, MC, 3) + V(1, NM, 3)) + VIS+ V(1, 3, 3)	<u>⇔⊺</u> , ('••	201
13(L) = 111: # (V (I, ND, L) + V (I, NM, L)) + VIS# V (I.N.4)	356.	7]4
yT(1)=105+00+01/KAP)/KAP+65(1)+ETA+VN(1)	3EUM	200
yT (7) = 3'14441(1)+334(C(L,NC)-9(L,NM))/V(I,M,1)		205
· ててんり ニマリ・テレジ (4)	01.111	20.4
へ (1)。 !) = Y 2 (1) + V T (1) + D T		202
·· (• · • • • • • • • • • • • • • • • •	21.111	211
> (**, *) = VA (3) - VT (3) + 7 T	RE LIN	211
つ (* 。4) = 23 (4) - 7 (4) = 37	71 1191	217
	31 Lth	213
(1)=(1)=(1)=(1)	RUN	214
11=V(+,M1XN,1)=V(2,M0+N,2)/(K-PTU+L)	PLUM	215
	31.01	216
[は」[」 ○ 410 [く - ヽ く + ∃ ノ	aLUM	217

		PLUN	21 8
ר	DO 25 M-1 MAXA	BLUM	213
•		7164	251
	D (P = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	1.UM	221
•	111 9 17 - V 1 9 9 7 7 1174 - 7 0	PLUM	222
7.5	7 7 7 1 - 7 MT	ヨレビヤ	222
		PLUN	224
		7104	225
	1 - 1 - 1 - 1 - 1	ALUM	226
	NG= 1711 - 0-1	PLUN	227
		RLUM	229
		ALUN:	220
		AUT	230
		PLUN	231
		31.0 1	232
		PLUN	233
	THEL=(4((())+K(())+K(())-K(())-()(())))	91.64	234
) DFT = ATAN(1) FL)	91.111	235
	20FE=208(03ED)	RELN	236
	STEL = TTEL + CTEL	RELEM	221
	$V^{(1)}$ ((1) = (V(1C, $V^{(1)}, V^{(1)}, V^{(1)}, V^{(1)}, V^{(1)})$	BLUN	279
	$y_{1}, y_{2} = (v_{1}, v_{1}, 2) - v_{1}, y_{1}, 2) / v_{2}$	BLUN	239
	VMTN(3) = (V(TE, N, 3) - V(IM, NS, 3))/(32)	1/21 111	241
	V'(TN(4) = (VSOUND(P(LP, MN), V(TP, MN, 1)) - VSU(JN)(P(LP, PU), V(CH, NK, 1))	01.10M	241
	¥,, ¥,2	01 UN	242
	1)1"= YS01117 (P(L,1), V(I,1,1))	21.111	243
	77=(/(I+L+2)+DUM)*DT/OXI	01.1141	21.1.
	AVS=77+77	21.111	245
	VIS=1.7-4VS	DILH	245
	145=3.5#14S	200	243
	ΞTΔ=3.0		21.9
	77°=1.0/(NS(T)*7E?)	~ 71_1N	243
	771=(NS(TP)-NS(IM))/7X2		253
	075H=09		251
	10=000	311.0	271
	775P=-NS(TP)+0FT+0TH(TP)	- LUY	257
	7KNP=K9N2#0N	70.00	253
	CALL PORY (DN, CKAP, DP)	01.1.1	255
	17(I4)=V3(IM)+65H#DT	01.110	256
	45H=W5(T)#COEL	71.11	- 757
	シクロニック (ナマ)	0.13	27
	75427B(T4)	21.124	200
	0±0P(Ţ)		361
	K 30 = 1 . 0		1 264
	07 73 N=2, MM	96 C.P	1 363
	TTA=STA+JFT	171.14	761
	9C + 9E		1 261
	KAP=KAP+JKAP	91.05	1 765
	0UX=VS0UH0(P(L+N)+V(T+N+1))		1 765
	77=(V(T+!+2)+3LM)#7T/(KAF#7XT)	- 10 m	1 367
,	4VS=77+77	31.07	1 200
	77=(195(Y(I,N+3))+7UM)*77/8N	21.1.1	1 701
	& V"=77*Z7	HLUM	v ~53
	VTS=1.9-AVS-4VN	"LU	
	AV5=7.5+4V5	41.01	
	2VM=7.5#4V4	200	120

	1821 # 4 · H * - 1 A * 4 3 · ·	-1. U I	.,.
	17=43044(1.1.3)-744	PLUN	274
	^ ? = (? * ? ?	DUITH	275
		91.11	275
	-1-V(1,1,-)/-X-	PLU+	>77
		PLUM	273
		PLIM	272
	1 27 4 = 7	PLU.	287
	V = V = (T = N = M) + V = (T = N = M)	PL UN	231
, ,	$VS(H) = C1 \neq (V(T = M, M) + V(T M, M, M)) + C2 \neq VM(M)$	TILUN	282
	10 24 W=1	PLUN	293
, ,	UNIND - SUCTION, MINNEY (MINNEY) - SUCTION, MINNEY (VITAND, MINNEY) - SUCTION, MINNEY (VITAND, MINNEY (VITAND, MINNEY (VITAND, MINNEY) - SUCTION, MINNEY (VITAND, MINNEY (VITAND, MINNEY) - SUCTION, MINNEY (VITAND, MINNEY (VITANDD, MINNEY	- ALUN	2 A 1.
		PLUN	285
	100-200+1200	PLUN	286
	2011-20M-720M	AUTE	287
		AL UM	749
	40(4) - (00044/10 N 1) + 4(10 N 2) - 05M+4(14, 3, 1) 74(1M, N, 2)) /032-77*0	11110	789
	(1) = (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	D1 191	291
	$ = \frac{1}{2} + \frac$	(TPLUK	221
	i = (i = (i = 0) + (i =	AL UN	292
		0.19	207
		31 I M	204
	$\frac{2}{2} \left[\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right] \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right]$	21.1.1	205
	75=(7([0,1])-*([4,1])/(V(1,N,1)+1X2)-2/*PN	10 L U.S.	2.37
	YK=K(T) ≠ Y(I, Y, 2)	01 UN	707
	y + (2) = y + (2) + y + (2) + p + p + y + (1 + m + 2)		202
	V + (2) = V + (3) + V + (2) + V + V + V + (1 + N + 2) + K + 2 + 2 + N	-LOP	202
	$V^{+}(4) = V^{-}(4) + V^{+}(4)$		700
	77=777447		7.14
	00 20 H=1,4		° J I
	((TM, ``, ``) =) (* , M)		202
20	('', 1) = V (M) + V (M) + 27		
7 -		BLUM	194
	KUE=1 - 1-12 (I) + KUDD	PLUP	115
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- PLON	<]/
71	10(11) = (V(TP, X2X1,M) - V(TM, MAX1,M))/DUM	BLUM	799
	77=V(T.43XN,7)400FL-V(T,MAXN,7)450EL	≏LUM	203
	11=Z7#VR(1)+V(T,M1KN,1)#(VS(7)#30FL-VR(3)#S07L)	⊐LUN	313
	91=77+(V7(2)+575L+V5(7)+00EL)	of Cw	711
77	ntle (1.0).	PLUN	312
	て ** = は* 【 ー 1	っししい	212
	10 77 N=1, "AYN	9LUM	714
	v((T, 1, 1) = 0(N, 1)	21.01	715
	$v_{1}(v_{\Delta}v_{1}, v_{1}, 1) = 1 = 1 = 5 (O(N, 1) + O(N, 1) + O(N, 1) + V(IN, N, 1))$	7665	716
	10 77 4=7.4	ALTH	317
	V ("T. ". ") = 7 (N. ")	PLUN	718
7 2	11: V & Y T . 11 . V) = 7 (N . M) + 7 (N . M) - V (T M . N . M)	91.13K	1212
	NS(MT)=NT(MT)+6SH40T	2601	. 251
	$12(M^{+}X^{+}) = 12(M^{+}) + N2(M^{+}) - 12(1^{+})$	4LUP	1 221
2.	TE ITT. CO. TORTNED CALL OMPOUT	266	1 322
	TTO TTO A MAXIT	3164	. 723
	TE (MORT ST. 1) SC TE 41	PLUN	: 774
	T= (TTMT+TC+FCK) RA_R5_R5	ALCH	1 725
-		nLu	776
-		911	1 327
· ·			-

	(* (****)****(*).,*.1.E=**) (C TO 77	3LUN 328
	10 C .11.131 60 10 36	9LUN 329
		ALUN 333
7	V.	BLUN 331
	T. T.N." -1	9LUN 332
	Provide the second s	RLUN 333
Ŧ	· (**===********************************	3LUN 334
	$\gamma = \tau + \tau + \tau (1/2)$	9LUN 335
		BLUN 336
: "	T()()=1)(()+()+()+((()+)-)() ()	9LUN 377
	B A A A A A A A A A A A A A A A A A A A	BLUN 374
	1 1 1 4 7 4 7 1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	ALUN 370
. 3	[((122(7-1).((1.))) =====7-14	9LUN 340
	· > +; += + - = (11-=)	9LUN 341
	5 1 - 1 I	BLUN 342
· · ·	e e la la traca (teal)	BLUN 347
	T = 1 + 1 = 7	BLUN 344
	C () () () () () () () () () (BLUN 345
	15 (1856-8556) 18,47,47	BLUN 346
47		BLUN 747
	W TT (OTCO) ISTOP	BLUN 343
	- >	BLUN 349
	1 100-1	9LUN 350
		3LUN 351
r		9LUN 352
47	FORMAT (////40%.194-2000 IN INPUT DATA/40%.34HRESTART OPTI	ON REQUIBLUN 353
	+ 155 TATA PEDTAR /4 18 + 1540 156 TEPHI (ATED)	9LUN 354
·• '•		UIRES INBLUN 355
	+T "D NE OTED/40X . 15HCASE TEPMINATED)	3LUN 356
1.5	FORATCHAL///////25X, 39HATEL TINE-DEPENDENT FLOW FIELD PODG	RAP FOR BLUN 357
	*1/TSVH4FT710 PLUIT 3007 3/258,2744FWL-TR-70-16, 7.H. AUNGI	EP) BLUN 353

-

BLUN 353 BLUN 359

4. SUBROUTINE BODY

A. PURPOSE

This subroutine solves the governing equations at nodes on the body surface, except for the stagnation point. The special body point logic developed in section IV is employed.

B. VARIABLE LIST

All variables used in this subroutine have been defined in the description of the main program.

C. FLOW CHART

ENTER SUBROUTINE BODY.

COMPUTE κ AT $\eta = \Delta \eta$.

COMPUTE r AT $\eta = \Delta \eta$.

COMPUTE (KrpV).

COMPUTE (rou)₃.

COMPUTE ρ_{τ} .

COMPUTE us.

C DAI

COMPUTE S.

8 ...

COMPUTE AVERAGE VALUE OF ρ TO INTRODUCE THE STABILIZING TERM.

COMPUTE AVERAGE VALUE OF u TO INTRODUCE THE STABILIZING TERM.

COMPUTE AVERAGE VALUE OF S TO INTRODUCE THE STABILIZING TERM.

COMPUTE P.

COMPUTE U.

COMPUTE S.

TRANSFER ρ , U AND S AT S- Δ S AND τ + $\Delta \tau$ FROM TEMPORARY TO PERMANENT STORAGE. 2.

SOLVE FOR P AT T+AT.

SOLVE FOR u AT T+AT.

SOLVE FOR S AT T+AT.

RETURN.

END STATEMENT.

L.
2
►.
-
•
.
•

	Y J LE	Auro	1000	AUDE	ンロン	70.76	とじい	1 1116	I Auit	1 70.5	rny 1	3CDY 1	וייץ 1	1 1056	SCDY 1	3004 1	1 2000	SCCV 2	2 7070	5 7620	30.54 2	1007 2	1201 2	3004 2	גררע 2	2 101	1-54 2	ניע 3	1,07 3	E YCO	5 AJ	
	1				5) (č								, er	cxu/11c						-	-	-		-	-	15	-	-	-		-	
	SUJCX 1 -C				1) 24 (21)									1. ~ 1. ~ 1.										ه							50ª	
	135 YUS				.K(12)*N									+1(14+1+1)		3		.1.1)	([]]	.1.4)					L	. /	/					
	CA THE JI	•	÷	([7.2] c	(11)415.			VT (4)					1 / UN	171 199-(24		0		1: A + SIA+	T) V # STV + 1	LIV*SIV+		-									e 6.	
	LICON BHI	۲ ۲		. 1 : 4] . 4] .	5), TH (15	, JF 2, CT	7,LW	.). VA.(4).		Ma			*V([,?,])V*	1 * 1 (I b * (.(1)	1,211/18	1.41)/14	(T.M. 1, 1))	(C.1. MI)	((1,1,4))	1×2	1.1.11112				1				8 e. 4	v	
	STATET :	IUC NULL		(15,41,41	1162, (21):	(I, JET, DX)	1-, IM, L, I	15 (4) • VN (1	V. NVA. 2VI		¢	,	** (1,2,1)	* V(IP,1,1	- 21 (1) NA	HI) - (5 (MI) - (h.	(TP,1,1)+/	15,1,2)+/	IP,1,4)+1	111111111	1+ (2) SA+ ((+) 5/+ (, 1)	· (.4)	TO+(1)TV-	10×(c)11.	TC+(4) TV.	•	••	•,
,	INITICE P	MOVIL IN		V 11 10	se Icl NU	10 121 10	1 / / HL	1 1611 inc	ILII NC	10. X. X40	0 t X L + U .	2(i+ (1) ue	√(((*2.2-= ((al)cc) = (+ (1)'SA) = () = (V(TP, 1)) = (V(I),	1: +215= () 1) + L / V = () - AV 5 + (V (0 ([u , 1] - D) = V ('T , 1 , ⁷) = V([,1,2	,1,1)=7(1	1)(=(c,1,	1; C= (7, 1,	t) = V A(1) -	-(2) = \ C (c	- (+: (+) - (+)	Nc	• •	
	1-1-1	л н Т		ž c r	1	MICU	MINUU	とうつい	れいしじ	14-0	1=22	= Illivi	1:11	1151	VT (1	c) s A	7357	1:00	1012	7914	1=50	VTIP	VT C4	VCTM	VITH	W11V	711.	, 11,	. 17.0	HLJC	L N L	
5. SUBROUTINE COEFF

A. PURPOSE

This subroutine generates coefficients for a cubic fit of the data supplied under the arbitrary body shape option. Conventional curve fit techniques such as least squares or spline fit techniques were found to be inadequate for this application. The present curve fit procedure requires that the user supply a fairly complete description of the body geometry at all data points supplied (r, z, θ , and K). It is recognized that approximate methods may be required to generate this data for many body shapes of interest. However, this data is often known explicitly, but is not easily specified at equal intervals along the body, e.g., an ellipse. If was decided that an accurate technique should be incorporated into the program, leaving the choice of more approximate schemes to the user when that becomes necessary. The cubic fit is accomplished using arrays which specify the values of x, y and $\frac{dy}{dx}$ at a number of points. The relevant constraint relations for a cubic fit can be expressed as

$$y_{j} = \sum_{i=1}^{4} c_{ij} x_{j}^{(i-1)}$$
 (64)

(65)

$$\left(\frac{dy}{dx}\right)_{j} = \sum_{i=2}^{4} (i-2) C_{ij} X_{j}^{(i-2)}$$

At end points of the array of X_y values, the values of y_j and $(\frac{dy}{dx})_j$ at 2 adjacent points are used to generate the coefficient c_{ij} . Defining the matrixes

$$\begin{bmatrix} \mathbf{B}_{ij} \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 1 & 2x_2 & 3x_2^2 \end{bmatrix}$$
(66)

$$\begin{bmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ (\frac{d\mathbf{y}}{d\mathbf{x}})_{1} \\ (\frac{d\mathbf{y}}{d\mathbf{x}})_{2} \end{bmatrix}$$
(67)

a matrix, [A], is generated from [B] by replacing the ith column with $[Y_j]$ and the determinants |A| and |B| are used to generate C_{ij}

$$C_{ij} = |A_{ij}| / |B_{ij}|$$
(68)

For interior points, the values of y at 2 adjacent points are used with the local value and slope to define $\begin{bmatrix} B_{ij} \end{bmatrix}$ by

$$\begin{bmatrix} \mathbf{B}_{ij} \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 0 & 1 & 2x_2 & 3x_1^2 \end{bmatrix}$$
(69)

where the point under consideration is presumed to be X_2 . Using

Equation (68) supplies the desired cubic coefficients for the interior points.

B. VARIABLE LIST

- [^_{ij}] A - [B_{ij}] B - [^C_{ij}] С DET - B DETC - A **DYDX** - array containing values of $\frac{dy}{dx}$. - index for DO loops. Ι - index for DO loops. J - index for DO loops. K - index of last interior point. MN - index specifying the location of the point under consideration N in the input arrays. NEX - integer exponent used in loading arrays. - index of first point to be considered. NL NM -'N - 1 - index of first interior point. NN NP -N + 1NPTS - number of points to be considered. - index of the last point. NU - array containing values of X. X - array containing values of Y. Y - [Y_j] YC

ENTER SUBROUTINE COEFF.

COMPUTE TOTAL NUMBER OF POINTS TO BE CONSIDERED.

WERE AT LEAST 2 POINTS PROVIDED ?

PRINT ERROR MESSAGE.

SET ERROR INDICATOR.

RETURN.

SET INDICES FOR FIRST POINT.

LOAD THE YC ARRAY FOR THE FIRST POINT.

SET b₁₁ AND b₂₁.

LOAD COLUMNS 2 TO 3 OF ROWS 1 AND 2 OF THE B ARRAY FOR THE FIRST POINT.

LOAD REMAINING TERMS IN THE B ARRAY FOR THE FIRST POINT.

COMPUTE DETERMINANT OF B.

LOAD A ARRAY FOR THE FIRST POINT.

LOAD YC ARRAY INTO THE A ARRAY FOR COMPUTATION OF Ck

COMPUTE DETERMINANT OF A.

COMPUTE C_k's FOR THE FIRST POINT.

WERE ONLY 2 POINTS PROVIDED ?

.

ł

START LOOP FOR INTERIOR POINTS.

LOAD YC ARRAY.

COMPUTE EXPONENT.

LOAD COLUMNS 2, 3 AND 4 OF ROWS 1, 2 AND 3.

.

LOAD REMAINING TERMS.

,

in.

COMPUTE DETERMINATION OF B.

er, fa

LOAD A ARRAY FROM B ARRAY.

LOAD YC VALUES INTO THE KTH COLUMN OF THE A ARRAY.

END OF DO LOOP OVER ALL INTERIOR POINTS.

START COMPUTATIONS FOR THE LAST POINT.

LOAD YC FOR LAST POINT.

COMPUTE EXPONENT FOR THE JTH COLUMN.

COMPUTE C, FOR THE LAST POINT.

RETURN.

END

C. 0171716

1.1

٤.

Π,

COFFE CHESSITT OF SCIFE (NL.NU, X.Y. OVOX) COLEE 2 COFFE THIS SOUTHE COMPUTES THE CORFEICIENTS FOR & CUPIC FIT WHERE 7 THE VALUE OF THE FUNCTION AND ITS SLOPE AT THE POINT UNDER CREFE 4 TOMOTOTONTION AND ITS VALUES AT THE THO ADJACENT POINTS APE USED. COFFE 5 PORFE 5 COFEE 7 COMPAN /11/ TOUMHY, ISTOP COFFT 3 00" 10" / TOLINE/ 0(4,15) CLEEL THTHETON X(15), Y(15), CYGX(15), YC(4), P(4,4), 8(4,4) q CCEFE 10 1+11-11-11+1 20FFF 11 IF (MOTS. CT. 1) 60 TO 1 OCEFE 12 אן זויזרר COFEE 17 TST09=-1 -----14 Incliture NOT REPRODUCIBLE 1= COFFE 11=11L 00000 1P=1+1 15 COFFE 17 YC(1) = Y(N) CLEEL 4.9 Y7(7)=Y(12) CCEFE 12 Y (() X (Y) = (Y) Y () 3755F 27 YC (4) = 7Y 1Y (110) nriere 21 1(1.1)=1.1 OFFFF 22 -(-,1)=1.7 17 -7 J=7.4 DOFFE 23 COEFE 24 *** ¥= J-1 CCEEE 25 7(1, J)=X(N) ##NEX JOEFF 25 7 (7, J) = Y () 9) **NEX 00ETE 27 r;=,1)=],) CLEEL 28 7(7,7)=1.7 30FFF 20 7(7,7)=7.1#¥(N) CCEFE 20 n(7,4)=7,7*X(N)*X(N) COFFE 31 7 (4.,1)=7.7. ----- ---************ B (4, 3) = 7. "+Y (10) CREFF 37 COFFE 74 7 (4,4) = 7,] + Y (NE) + Y (NP) CORFE 35 CALL TETLA (P. CET) CCEFE 36 77 5 K=1,4 MAREE 77 17 3 I=1+4 COFFE 38 ~~ 3 J=1,4 COFEE 39 1(T, J)=P(T, J) OTFFF 41 CO 4.7=1.4 SCEFE 41 • A (T, <) = Y ? ([) TCEFE 47 CALL DET44 (A.DETC) POPER 43 C(K, Y) = PTTC/PET CCEFE 44 ***:=***!-1 MEFE 45 TE ("""". E3. 2) 60 TO 11 POFFE 45 1N=NL+1 39555 47 TO IT NEMN, MA STEFE 48 19="1+1 CCEFE 49 114=1-1 TREE 51 V~(!) - V(!!V) OFFEE ST V^; ?) = V('1) CCEE 57 V7(7)=V(MF)

		• 1				
	Y~(4)=')Y'''Y('!)			COFFE	53	
	۲ • ۱ • = ۱ • ۲			COTTE	54	
	0. 5 J= 7. 4	- -	•	COFFE	55	
	NTY = J−1			COFFE	56	
	*(! . J) = * (NM) **NEX		1	CCFEE	57	
	"(", J) = X (N) # #NEX		/	CCEEE	5.8	
٤,	?(?,J)=X(NP)++NEX	6		COFFE	52	
	-1(4,7)=2.]#X(N)	a		COFFE	61	~
ſ	"(4,4)=".]+X(N)+X(N)			COFFE	61	
	CALL DET44 (C.DET)			COFFE	62	
	10 9 K=1,4			COFFE	63	
,	00 7 I=1,4		G.	COFFE	64	
	07 7 J=1,4	·		COFFE	65	
7	4 (T, J) = 7 (I, J)			COFFE	66	
	30 B T=1,4	- 01.		COFFE	67	
,8	\$ (I,K)=YC(I)	tig.		COFFE	68	
	DALL DET44 (1, CETC)			COFFE	60	
9	C(K,N) = D = TC/DET			COFFE	71	
13 1	CONTINUE	S		COLEE	71	
11 1	Y7(1)=Y; 44)	•		COLEE	70	
•	$Y_{C}(2) = Y(11)$			COLEE	77	
	YC (3) = 0Y 7X (4N)			CCEEE	21.	
	Y7(4) =9Y7X(NU)	P ³		COLEE	75	
I	00 1? J=2,4			COFFE	75	
	25 Y = J-1			OCEFE	77	
	P(1+J) #X(MN) ##NEY	- 10 (1941)		CCEEE	74	
1 7	-12, J) =Y (N U) ##NFX			ACCCC.	70	
	7(7,1)=7.7		a	CCELE	4 T	
1	R[7,7)=1.1			CCEEE	9.4	
	Q(7,7)=7, J#X(Ph)			COSE	01	
	3(7.4)=7.)+X(PA)+X(MN)			TOFFE		
	1(4,7)=7.9+X(NL)	¢.		COFFE.	a.	
	R(4,4)=7,9+X(NU)+X(NU)	1		COLEE	94	
	CALL DET44 (B.CET)		· · · ·	CORFE	22	
	77 15 K=1.4			CCEEE	97	
	0° 17 T=1.4			CCCCC		
	70 17 J=1.4			COFFE	20	
17	$\Delta(\mathbf{T},\mathbf{J}) = \Theta(\mathbf{T},\mathbf{J})$			CCEEF	07	
	10 14 T=1.4			CCCCC	9.	
1 4	$\Delta(T, 4) = Y_{2}(T)$	An approximate in the second se	1	CCCCC	91	
	CALL DET44 (A.CETC)			CCCCC	31	
15	C(K.NU) = DETC/CET	,		COFFE	<u>,</u>	
	2=TIJ2N	,		20000	44	
C	54 - S			CCCCC	15	
1:5	FOPMAT (//30%-25HERROD TN	SUPPOLITINE COSES/104 77440000		COLEE	35	
	* IS LESS THAN THOULTY ISHO	ASE TERMINATEDI	0. P.1415	CCCC	97	
	FNU			COFFE	94	
		•		CLEEP	ňď	

6. SUBROUTINE DATA

A. PURPOSE

This subroutine loads all of the input data except for the arbitrary body shape data. It sorts the input data by matching alphanumeric specifications on the data cards with known variable names and with special alphanumeric flags signaling the start and end of a data packet. Consequently, the number of cards provided and the order of these cards are arbitrary. Since the computer code does not alter the values of the input variables, only variables whose resident values are to be changed need be input by the user. This simplifies the input data required for multicase runs. The principal reason for including a sorting routine of this type was to greatly simplify the input data required without imposing unnecessary restrictions on the numerical method. In addition to the empirical constants required for the numerical method, several option control variables had to be included. For example, to apply this method as a practical computational technique, a restart option had to be included since the exact number of iterations that will be required cannot be specified in advance. Also, if a steady state is not realized for a problem, an option to recover the data and perform additional iterations should be available. Other input controls considered desirable are specifications for additional flow field outputs, dimensional output, and nodal geometry. A a result, 23 input variables were required for a completely general computational method. Most of these variables have been supplied initial resident values in the main program which will be adequate for the majority of the problems encountered. Consequently, while the capability of inputting values for all 23 variables is available, the input required is usually quite brief, typically 3 to 5 cards. It is easily seen that without a routine of this type, a general input capability would be very complicated.

B. VARIABLE LIST

Ι

ÍV

K

ENFILE - alphanumeric word LAST in AlO format. Used to check for the end of the data packet.

- index for an implied DO loop in a print statement.

IERR - error indicator. Called ISTOP in the main program.

array containing all integer variables in COMMON block /INPUT/.
array used for temporary storage of the values of input integer variables.

- index used for various applications.

M

- T array containing the alphanumeric names of all allowed input variables.
- TITLE alphanumeric word TITLE in AlO format. Used to identify the first card in a data packet.

TLE - array used to read and print an alphanumeric title.

- V array containing all floating point variables in COMMON block /INPUT/.
- VAR variable used to read the input variable name from data cards.

ZZ - variable used for temporary storage of the values of input floating point variables.

ENTER SUBROUTINE DATA.

SET ALPHANUMERIC TITLES OF THE CASE DATA VARIABLES.

FIRST CASE ?

START A NEW PAGE.

ERROR SENSED IN PREVIOUS CASE ?

1

READ TITLE CARD.

ENDFILE ENCOUNTERED ?

TERMINATE JOB.

. .

49

WAS TITLE INDICATOR CORRECT ?

PRINT ERROR MESSAGE.

۲. Ga

PRINT TITLE.

READ CASE DATA CARD.

LAST CARD IN THE CASE ?

INITIALIZE INDEX, M, TO SEARCH TABLE OF VARIABLE NAMES FOR THE PRESENT VARIABLE.

INCREMENT M.

IS M WITHIN THE ALLOWABLE NUMBER OF CASE VARIABLES?

VARIABLE NAME COULD NOT BE MATCHED WITH AN INPUT VARIABLE. PRINT ERROR MESSAGE.

DOES VARIABLE NAME READ MATCH THE NAME STORED IN T(M) ?

FLOATING POINT VARIABLE. STORE IN PROPER COMMON LOCATION.

۰.

IPR(6) ARRAY WAS READ. STORE IN PROPER COMMON LOCATION.

đ

INTEGER VARIABLE. STORE IN PROPER COMMON LOCATION.

.

PRINT INPUT DATA.

SET ERROR INDICATOR.

RETURN.

START PROCEDURES TO BYPASS ERRONEOUS DATA.

SET ERROR INDICATOR.

.

7. LISTING

0

30T5 THE STAR (TESS) ATTO ATT THE PARTINE LOADS THE CASE PATA. CPT? DETE --- 1-- 1:11 TET(3).77, 14-321: DETE 11 F 1270 T (27), K(6) THE nere (*(*),*=1,73)/ 2TEr ,1347/PK ,1JHM ,13HTHETA + 1 JUCAMHA 11216 ,17HP1 ·13F5F01 .194TCOTT? #+nutgott1 3110 104520011 ,13HT1 . .13440 ·11401 TETA .13HTNT40 .10HOTAP 114100 2274 ,1"HHETLE +13-MCTG . 19HNCACE TIXAMATT 7115 ,1 THNTLO .17HMAXN 1 TYAMART 2315 ,17HLACT 1 STA TITLE, ENFIL/194TTLE OSTA-TE ([EPR.LT.]) 57 17 TATA TE (TE22, NE. 3) 2214T 23 2519 (5,16) (TLE (4), 4=1, 8) 3736 DETE TE CEMPETLE 51 1.º DATS CTOD · ATA TE (TLE(1).SC.ITTLE) SO TO 3 NOT REPRODUCIBLE DETS 07117 17, TLF(1) PATE 50 TO 13 TATA DOTNT 18. (TLE(M), M=2.8) STER 7 >FA 1 13, VA2, 12, (K(M), "=1, F) £., DETA IF (717. FR. FAFIL) 50 TO 12 ATEC 4-1 ATC(M=**+1 ς, JATA IF (4.11.74) 50 TO 5 DOINT 27, VAR ATEC. 01TA GA TA 17 7075 3172 TE (VAD-T(M)) 5.7.5 ¢ TE (1-14) 3, 5, 11 SATE 7 7:15 1111 = 17 ~ -- +- 4 ATTE 1111 3 IV(M) = K(M)TT.C 11 50 T3 4 ATAC 14(4-8)=<(1) ATEC 11 SC 73 4 31 8.C COT 11 21 D.C.T.S. 12 27. ((T(T+9), TY(T)), I=7.15) 3785 N=1,5) , ((M, IV(M)), M=1,5) ATEC DOTHT 74, ((T("),V(")), "=1,1") ATSC TTOP=1 2T1C DETURN ATAC *=00=1 ATSC 13 2=19 (3,14) (TLT (M), M=1, A) ATEC 14 TE (ENDEILE F) 1.15 3TEC TE (TEE(1).FC.TITES ON TO T ATED **1**5 50 70 14 211C ~

1

י ד

> (+) 5

5

7

.

9

1)

11

17

13

14

15

15

17

13

13

21

21

22

23

24

25

25

27

29

20

77

31

77

77

<u>7</u>.

7 2

- -

3,7

22

20

42

41

42

47

44

4=

45

47

4 9

40

51

51

1.4	FORMAT CAATON	
17	STA CIHI, 734, 19HEROOD IN INFUT DATA (734 SALTE STA	51
	" 1/314, 4H2EAD, 17, 3H10H-A10, 14 25HDATHED THE THE CAPD NOT SENFEDERA	74
	*ASE TEOMINATERS	55
1 -	FORMAT (1/25X, 13HCASE TITLE - ZALAN 94TA	55
10	FOPMAT (410, F10, 4, 6T10) 75TA	57
י כ	FOPMAT (/30X,1CHERODO IN INDUT DATA (30)	5.8
	TAME WAS ENCOUNTEREDIZITY I SHTUE NAME TAR THE PRET VARIABLE HOATA	59
	TED) TEDING TOTAL NAME WAS, 18, 417/738, 15H34SE TEDHTNADATA	61
21		61
	**************************************	62
? 2	F7944T (/15X-7(10X.410 T10)) 7214	67
זי	FOOMAT (/15X 3(10X SHTED) TO AND SHE AND SHE AND SHE	64
24	FORMAT (/15X, 7(11X, A12, 542, 20), 4X, 117))	65
25	EADWAT (1H1/////)	66
	CNP	67
	ΔΥΣ	69

7. DETERMINANT SUBROUTINES

A. PURPOSE

 $\sqrt{2}$

SUBROUTINE DET44 computes the determinant of a 4 X 4 array. It accompliplishes a standard expansion by minors using the explicit determinant solution for a 3 X 3 array contained in SUBROUTINE DET33.

B. VARIABLE LIST

A - 4 X 4 array for which the determinant is to be evaluated.
B - 3 X 3 array containing various minors of the A array.
DET - value of the determinant evaluated in both routines.
DET1 - determinant of the first minor.
DET2 - determinant of the second minor.
DET3 - determinant of the third minor.
DET4 - determinant of the fourth minor.
I - index used to load arrays.
J - index used to load arrays.
J - index used to load arrays.

JJ - index used to load arrays.

C. FLOW CHART

V STATISTICS STATISTICS - SA

ENTER SUBROUTINE DET44.

LOAD 3X3 ARRAY FOR THE FIRST MINOR.

EVALUATE FIRST MINOR.

EVALUATE THIRD MINOR.

LOAD 3X3 ARRAY FOR THE FOURTH MINOR.

EVALUATE FOURTH MINOR.

EVALUATE DETERMINANT.

RETURN.

END.

ENTER SUBROUTINE DET33.

EXPLICIT SOLUTION FOR A 3X3 DETERMINANT.

RETURN.

END.

	SUBROUTINE DET44 (A,DFT)		02144 05144	
			DE TEE	J 🏴
	THIS ROUTINE SOLVES & 4X4 UPIFRMINANI.		05144	t (
			JE 744	ţ
	CURRENT VELERAT VOJU VIMENTON ALA AN		DE 744	G
			DE 744	~
			74) 30	Ø
			DE T44	
			0E744	10
			0E 744	11
	CALL DET33 (DET1)		14130	12
			0E 744	4
			DET44	4
	CALL DET33 (DET2)		0E 744	1
			DE 744	16
			DET44	1
	CALL DET33 (DET3)		DE 744	4
			02144	₽ ₽
			06.744	20
			DE 744	₩
	DET=A(1,1)*DFT1-A(2,1)*DET2+A(3,1)*DET3-A(4,1)*DET4		06744	
	RETURN			
	CNB			2
/			0c T 3]	
			DE 133	
	THIS ROUTINE SOLVES & 3X3 DETERMINANT.		0E T 33	• •
			DE 133	aru
	COMMGN /DETERM/ 9(3,3) DET=P(1,1)*(A(2,2)*9(3,3)-B(2,3)*B(3,2))-B(2,1)*(d(1,2) *,3)*9(3,2))+9(3,1)*(B(1,2)*B(2,3)-B(1,3)*B(2,2)) PFTURN	-9(3,3)-	8(10ET33 0ET33 0ET33	
			DE 133	J.

D. LISTING

8. SUBROUTINE DMPOUT

A. PURPOSE

This subroutine prints the flow-field data for each segment. Printed outputs are provided as requested by the user through the input variable IPR, and after the last iteration for each segment. The output is printed in dimensional form (except for entropy) based on the values of Pl, Tl, RHOl and RN supplied in the input data. When all of these variables are unity, nondimensional output is provided. The normal velocity component, the coordinate A and the shock velocity are defined positive outward from the body in the printed output. The printed output is set up to include as many streamwise stations per page as possible, based on a maximum of 60 lines per page.

B. VARIABLE LIST

All variables previously defined in the description of the main program have been omitted from this list.

DAI	-	each station.
DS	-	1s
IND	-	control variable specifying when a value of DAT should be
		included on a given printed line.
IPAGE	-	number of streamwise stations which have been printed on the
		present page.
м	-	index used in print statements.
NPAGE	-	number of streamwise stations which can be printed on each
		page.
NST	•	array used to store the pressure coefficient at each body
		station for later output.
PREFIX	-	array containing the alphanumeric names of body parameters.
Q	•	$\left[P_{\omega}\rho_{\omega}\right]^{1/2}$
QSQ	-	$u^2 + v^2$
SI	-	array used to store the values of the ratio of local pressure
		to total pressure on the body for later output.
VS	-	array used to store dimensional values of output values as they
4		are evaluated for later output.
ZZ	` •••	dummy variable used for intermediate computations.

ENTER SUBROUTINE DMPOUT.

COMPUTE TOTAL NUMBER OF ITERATIONS PERFORMED ON THIS SEGMENT.

WAS THE MAXIMUM NUMBER OF NODES ACROSS THE SHOCK LAYER EXCEEDED IN SUBROUTINE GEOM ?

INCREMENT NPR.

ARE ANY VALUES OF IPR UNUSED ?

LOAD ITERATION NUMBER FOR NEXT PRINT.

COMPUTE THE NUMBER OF STATIONS WHICH CAN BE PRINTED ON EACH PAGE. INITIALIZE IPAGE.

COMPUTE SCALE FACTOR FOR DIMENSIONAL VELOCITIES.

COMPUTE DIMENSIONAL AS.

INITIALIZE S.

COMPUTE PRESSURES.

STORE P/P.

INITIALIZE IND.

14.7

COMPUTE LOCAL BODY PARAMETERS.

INCREMENT IPAGE.

START A NEW PAGE ?

NEW PAGE.

INITIALIZE IPAGE.

INCREMENT S.

official sector

INCREMENT n.

COMPUTE p.

COMPUTE U.

COMPUTE V.

STORE S.

PRINT BODY PARAMETERS AND FLOW FIELD DATA.

PRINT FLOW FIELD DATA.

NEW PAGE FOR SHOCK AND BODY PARAMETERS ?

PRINT HEADING FUR SHOCK AND BODY PARAMETERS.

INITIALIZE S.

INCREMENT S.

COMPUTE Y AT THE BODY.

-

COMPUTE Z AT THE BODY.

COMPUTE K AT THE BODY.

COMPUTE 0.

COMPUTE Y AT THE SHOCK.

COMPUTE Z AT THE SHOCK.

COMPUTE SHOCK VELOCITY.

PRINT SHOCK AND BODY PARAMETERS.

RETURN.

•

. END

END OF SUBROUTINE DMPOUT.

3. 1.1.11 Mag.

דן המאר הידיור האייר אייר אייר אייר אייר אייר אייר אי		
	JYENY	1
THTO ON ITINE FOTNES THE FLOW ETCLO ONTO	74601	2
- THE FLORE FLORE	JAEUI	7
COMMON /1/ V(15-43.4) D(4) () D(2 ())	0*50H	i 4
22447×122 PR(15) 70(15) TU(15) 020(15)	0M540	5
COMMON /3/ MANT MT THTAL MANN MANN MANN (15), K(15), KS(15), WS(15)	CHECU	6
COMMON /// TERINI NEE COOM	UHEU	7
COMMON VEV DET DET DET DET	04200	9
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	7₩FCU	3
20 1/2 /3/ 31,951,911,41,91, 2099304 /0/ 1556 972 05:0	DYPOU	11
COMMON AND AND ADD DE D	7+601	11
COMMON (14 (MANTE TOTO), US, UN, C, CSC, 27	J*FOU	12
CONMON (11) WAXI1, ISTOD, JTD, TTME, SI (15), NST (15)	JAEUI	12
#27/21 TOTAL TARGET, AMAGET, THETC, ZRN, TOPIT(2), F1, GHC1, RN, AHUN, T1,	FINERU	14
CANNON SOUDD LATAP, CTAP, NCPT, NCASE, NFILE, NSES, IGECH, NCEDM, NTAP	NVENI	15
COMMIN / CONCT/ DI, DI2, GAMA, CAME	CMECH	1 5
1 mm 1 m / m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	BABON	4.7
$\frac{1}{10} \frac{1}{10} \frac$		1 .
1114 (DDEFIX (M), H=1,4)/5H OD=, EH 70=, SHTHETE=, EH K=/		
251L NS, 8, NST	DMECH	11
i=1bo[wt+11J	DYECH	21
PPINT 5, ISEC, I, TIME		21
LE ([ST02.6T.1]]) PRIME 7		27
<pre></pre>	DECOU	2
TE (100, [1,7] IP2[IT=IP2 (NP2)	38500	
T=44X1:+7	DEFOU	20
NP455=61/I	DECOU	25
1245=1	Jaci (I	21
3=6321 (21/24-1)	DECU	29
Γ = JX I = DY	CHECU	24
VS(1)=XIJ+2H	,- FI ()	51
$10 4 I = I \times I N, \times I$	OFFOU	51
CALL STATE (T,1, MAXN)	DMEOU	37
SI(I) = P(1,1) / FI2	9460	33
["In=]	JECH	34
74T(1)=??(I) + = N	Servio	36
<u>21 (2) = 79 (I) # 64</u>	Jerli	36
<u> 247 (7) = 74 (1) + 189.9/07</u>	98-09	37
∩ 4 T (+) = < (Ţ) / ₹N	UNE PUT	23
TPAG==TPACE+1	AVECU	ςς
TE (TONSE-NOMEE) 0,0,1	7€=nÿ	47
Dotit a	ON CONT	4 1
108 GE = 1	Jerty	47
VS(1)=VS(1)+CS	n⊭=ny ,	47
DOINT 3, A2(1)	JAECI (i 4 i 4
NST (T) = 2, 3* (F(1,1)-1, 2) / (21+21)	J₩Ery (45
IN=-NS(I) *DET + EN	JAEUN 1	45
YS(2)=-NY	JAEUN 1	47
77 4 N=1.MAXN	JABUN (49
TNJ=INJ+1	3₩20U :	40
359 = V(T, N, 2) = V(T, N, 2) + V(T, N, 3) = V(T, N, 3)	ויחשער	5 1
77=HSP(P(1.N).V(T.N.1))+1.5#000	JAEJA	51
······································	ງ⊻ຄາງ β	52

	VC(2)=VS(2)+CV	JYENU.	51
	Ru(1)=N(1,1140HU1	,, eoij	- 4
	17(~)=9(T,M,7)*3	DACUII	55
	10,T1=+2(T,1,3)#0	JACUN	55
	10(-)=1(I.N.4)	Juchij	37
	······································	NECH	59
	V2(A)=2027(050)/VSOUND(P(1.N),V(1.N.1))	JUENI	39
	VS(2)=TE4D(VS(7),VS(7))	DAEU-1	51
	VS(1))=135(27/HT1-1.))	04200	51
	IT (IND. ST. 4) CO TO 3	ງະະດຸບ	£ 7
	22111 17, POEFIX(IN7), TAT(IND), (VS(4), 4=2, 10)	ANECU .	63
	G.? T.)	georg	54
7	77117 11, (VC(M), 4=7,13)	JAEUN	55
•	C OPET TAL JE	THERI	55
	TE ([P1GT#(M1+A+2)+M1+T_GT_53) PRINT #	nvenij	67
	05141 12	7+501	59
	A2(1)=XIJ+5A	OMENI	63
	ON 5 TETVIN, MI	nvenij	71
	12(1)=12(1)+22	GHECH	7:
	VS(2)_22(T) #01	JABUN	12
	45(2)=77(2)+2N	JAEUI	72
	$\gamma \Gamma(4) = \langle (7) / 2 \rangle$	DAEU1	7 .
	1 (T) = T 4 (T) = 1 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A	JAEUN.	75
	15:5) - 12:2) - 25 (1) + 2 (4) + 2 (7)	וירזאר	1=
	13171=18(7)+NS(T)#3N#STH(TH(T))	TAEUI	,,,
	VS (H) = - HS (I) ♥?	24=01	73
· .	(1)12.(T)12.(P.1=4.(P.1=4.(V)2V). T1. CC	JAEUN	79
	DETION	JABUA	97
2		0.4500	81
2	CODMAT (141.20%.144SEGMENT NUMBER.13.11%.164TTEMATTEM NUMBER.15.1	THEOU	97
	**,SHTTME=,S12,4)	DAECH	37
7	FORMAT (3)X. 32HEXCEPTED MAXIMUM NUMBER OF NODES IN NORMAL DIRECTI	10#20U	84
	ENILLUX SZANDAIATA NANUES MUZ ACED)	JAEUN	45
4	EUDATT (1-1)	TAEUI	45
G	500417 (/4x.245=.F3.2.7X.14N.11X.34240.9X.140.11X.14V.3K.34(5-01)	VOMEN'S	97
	*CV.5Y.147.11X.14M.11X.14T.4X'.FHDF/H1)	THECH	4.9
1 1	T 2 4 3 T (1 X . 4 F . F 7 . 2 . 1 X . 4 F 1 2 . 4 . F 8 . 5)	INTERI	40
	CODMAT (15x, 4417, 4. F3, 5)	ויחיר	- 1
1.2	FORMAT (///.71.2545400K AND 2004 640401105//44.145.114.2400.134.	OVERU	91
-	THAT 114.144.54.54THETS. 14.2455.114.2475.114.2485.114.2400.44.	JACUI	G.2
	Ψ/μο/ο)		ว์จ
• 7	EDDM11 (10E12.4)	34 60.1	34
-		NVECI	35

NOT REPRODUCIBLE

9. SUBROUTINE GEOM

A. PURPOSE

This subroutine computes the body geometry parameters and the initial guess for the shock shape. An option for generating these parameters for a sphere-cone vehicle is available. Currently, other body shares must be specified with data cards. These geometry data cards are read in this routine. A computed GO TO statement selects the proper option based on the value of a variable KGEOM. Explicit computations for body shapes other than sphere-cones could be incorporated by using additional values of this variable (currently, values of 1 to 3 are used). When the body geometry is read from data cards, several options are available. The data can be read in at specified equal intervals along the body or at a series of representative points. In the latter case, curve fit routines accomplish the necessary integrations and interpolations to specify the data at equal intervals along the body. The initial shock shape can be input or computed using empirical relations. The number of nodes to be used along the body and across the shock layer can be specified for each segment. These specifications will be ignored if these quantities were defined in the input read in SUBROUTINE DATA. The body curvature can be changed between segments at the common segment boundary. If no specification for the number of nodes to be used along the body is provided, the number of data cards provided is used as the value for this quantity. An error check is accomplished to ensure that the number of points provided for a segment has not exceeded the dimension sizes. The segment number for which a current set of data cards has been provided is checked with the number of the segment under consideration. Data are skipped until the correct segment number is located. This allows the complete geometry data packet to be included in a restart. even though the first few segments will not be required. If a segment number greater than the value of the segment under consideration is used, it is considered as a data error. All data errors result in an error message and termination of the current case. An subsequent case will then be treated.

B. VARIABLE LIST

All variables previously defined in the description of the main program have been omitted from this list.

- A array used for body shape computations under the arbitrary body shape option.
- ANS

- variable used for temporary storage of the value of n at the end of a segment previously completed.

BLANK	-	alphanumeric blank under AlO format. Used to check for discon-
		tinuities in body curvature.
С	-	array used to store cubic fit coefficients for each data point
		under the arbitrary body shape option.
DNS	-	change in n between body stations.
DR	-	change in r at the body between body stations for a sphere-cone.
DUM	-	dummy variable used for intermediate computations.
DZ	ċ	change in Z between body stations for a sphere-cone vehicle.
IC	-	body station index at which integration with respect to r should
		be replaced with integration with respect to Z.
IP	-	dummy index used for various applications.
IST	-	index of the downstream boundary body station for the previous
		segment.
KSH	-	control variable specifying whether the initial shock shape has
		been specified on the data cards.
м	-	dummy index used for various applications.
NPTS	-	number of data cards to be read for the current segment.
NST	-	array used for temporary storage of an initial shock shape
		specification as provided on the data cards.
SI	-	array used for body shape computations under the arbitrary body
	6	shape option.
SUM	+	result of a numerical integration.
ZZ	-	dummy variable used for intermediate computations.

ENTER SUBROUTINE GEOM.

SAVE INDEX OF THE DOWNSTREAM BOUNDARY OF THE PREVIOUS SEGMENT.

IS THE VALUE OF ξ AT UPSTREAM BOUNDARY OF THE LAST SEGMENT NEGATIVE ?

WHAT GEOMETRY OPTION ?

SPHERE-CONE; SPHERE TREATED WITH A SINGLE SEGMENT.

HAS THE FIRST SEGMENT BEEN COMPLETED ?

WAS THE NUMBER OF NODES ALONG THE BODY PER SEGMENT SPECIFIED IN THE CASE DATA ?

COMPUTE MAXI.

COMPUTE $\Delta \xi$.

ARE DIMENSIONED VARIABLES LARGE ENOUGH FOR THE VALUE OF MAXI ?

COMPUTE MINIMUM ALLOWABLE VALUE OF $\Delta \xi$.

SET MAXI TO MAXIMUM VALUE.

COMPUTE INDEX OF DOWNSTREAM BOUNDARY NODE.

INITIALIZE BODY PARAMETERS FOR STAGNATION POINT.

INITIALIZE & FOR SEGMENTS OTHER THAN THE FIRST.

2

START DO LOOP TO COMPUTE BODY GEOMETRY FOR A SPHERE.

INCREMENT ξ .

CURVATURE.

θ.

^zъ.

r_b.

 $\cos(\theta)$.

END OF LOOP.

SPHERE-CONE VEHICLE WITH SPHERE TREATED WITH 2 SEGMENTS.

INITIALIZE XIO FOR SEGMENT 2.

SAVE SHOCK SLOPE AS COMPUTED AT THE DOWNSTREAM BOUNDARY OF SEGMENT 1.

INITIALIZE BODY GEOMETRY PARAMETERS FOR UPSTREAM BOUNDARY OF SEGMENT 2.

COMPUTE SEGMENT STREAMWISE LENGTH.

COMPUTE THE NUMBER OF NODES REQUIRED TO GIVE THE SAME VALUE OF $\Delta \xi$ AS USED FOR SEGMENT 1.

EXCEEDED MAXIMUM NUMBER OF NODES ALLOWED ?

USE MAXIMUM NUMBER.

COMPUTE $\Delta \xi$, MI, MAXI AND THE CHANGE IN NS PER EACH $\Delta \xi$ BASED ON LINEAR EXTRAPOLATION.

CONICAL AFTERBODY.

INCREMENT XIO.

COMPUTE SHOCK SLOPE FOR UPSTREAM STARTING LINE.

HAS THE INPUT AXIAL LENGTH BEEN EXCEEDED ON PREVIOUS SEGMENT ?

CASE COMPLETED.

WRITE INDICATOR ON OUTPUT TAPE UNIT TO SIGNIFY END OF CASE.

ENDFILE OUTPUT TAPE UNIT.

SET ERROR INDICATOR TO TERMINATE CASE (NO ERROR).

RETURN.

CASE INCOMPLETE.

WAS MAXI SPECIFIED IN THE CASE DATA ?

ESTIMATE THE OPTIMUM NUMBER OF NODES FOR THIS SEGMENT.

USE MAXIMUM OF 6 NODES.

MUST HAVE AT LEAST 3 NODES.

ESTIMATE OPTIMUM VALUE OF $\Delta \xi$.

 $\Delta \xi > PREVIOUS VALUE$

 $\Delta\xi \leq 4.0.$

COMPUTE SEGMENT LENGTH.

 $\Delta Z = \Delta \xi \cos \theta$.

COMPUTE Z/RN AT THE END OF THE CURRENT SEGMENT.

EXCEEDED SPECIFIED VEHICLE LENGTH ?

REDUCE MAXI.

ALLOWABLE VALUE ?

USE 3 NODES TO FINISH CASE.

COMPUTE $\Delta \xi$ REQUIRED TO COMPLETE CASE.

REQUIRE $\Delta \xi \ge 0.1$.

COMPUTE INDEX OF NODE AT DOWNSTREAM BOUNDARY; Δr , ΔZ AND Δn , BETWEEN NODES.

ASSIGN BODY GEOMETRY PARAMETERS AT UPSTREAM STARTING LINE.

COMPUTE BODY GEOMETRY PARAMETERS AT REMAINING POINTS.

START SHOCK GEOMETRY COMPUTATIONS (ALL OPTIONS).

COMPUTE $2\Delta\xi$.

UNSTEADY FLOW OPTION.

SHOCK SPECIFIED AS A CONSTANT DISTANCE FROM THE BODY OF 0.01.

Ling : .5.

ESTIMATE SHOCK SHAPE FOR FIRST SEGMENT, STEADY STATE OPTION.

#

ESTIMATE SHOCK STANDOFF DISTANCE.

ESTIMATE Δn_{s} BETWEEN NODES.

INITIALIZE 5.

INCREMENT ξ .

ESTIMATE SHOCK SHAPE FOR SEGMENT 1.

FINAL SERIES OF COMPUTATIONS FOR ALL OPTIONS.

SET SHOCK VELOCITIES TO ZERO.

EXTEND BODY GEOMETRY PARAMETERS TO ADDITIONAL DOWNSTREAM NODE.

154

RETURN.

•

0

ENTRY POINT FOR SHOCK COMPUTATIONS WHEN STEADY STATE INITIAL SHOCK SHAPE IS TO BE ESTIMATED.

COMPUTE AVERAGE BODY CURVATURE OF THE SEGMENT.

FIRST SEGMENT ?

1

ESTIMATE An BETWEEN NODES.

IS ESTIMATED VALUE SMALLER IN MAGNITUDE THAN HALF OF THE VALUE PREDICTED BY THE SHOCK SLOPE ?

ESTIMATE SHOCK SHAPE FOR OTHER POINTS.

ARBITRARY BODY SHAPE OPTION.

READ FIRST DATA CARD FOR THIS SEGMENT.

CORRECT SEGMENT NUMBER ?

SEGMENT NUMBER READ, M, WAS LESS THAN THE CURRENT SEGMENT NUMBER.

CLEAR UNNEEDED DATA CARDS AND RETURN TO 28 TO READ NEXT SET OF DATA CARDS.

FATAL ERROR. SEGMENT NUMBER READ WAS GREATER THAN THE CURRENT SEGMENT NUMBER.

PRINT ERROR MESSAGE.

SET ERROR INDICATOR.

RETURN.

1

CORRECT SEGMENT NUMBER READ.

SET IM TO READ GEOMETRY DATA FOR I = 1, MI.

WAS A NOSE BLUNTNESS PARAMETER PROVIDED ?

LOAD NOSE BLUNTNESS PARAMETER.

SAVE SHOCK LOCATION FOR UPSTREAM STARTING LINE.

SEGMENT NUMBER # 1.

SAVE SHOCK SLOPE AT DOWNSTREAM BOUNDARY OF PREVIOUS SEGMENT.

NEED DATA FOR I = 1 ?

CHANGE CURVATURE AT I = 1?

ASSIGN BODY GEOMETRY PARAMETERS FROM DOWNSTREAM BOUNDARY OF THE PREVIOUS SEGMENT TO THE UPSTREAM BOUNDARY OF THE CURRENT SEGMENT, SET IM TO READ DATA FOR I = 2, MI.

ARE DIMENSIONED VARIABLES LARGE ENOUGH TO HOLD ALL THE POINTS REQUIRED ?

PRINT ERROR MESSAGE.

SET ERROR INDICATOR.

RETURN.

WAS MAXI SPECIFIED IN CASE DATA ?

USE VALUE PROVIDED IN CASE DATA.

IS MAXI UNSPECIFIED ?

SET MAXI = NPTS.

DIMENSIONS LARGE ENOUGH FOR THIS VALUE OF IMAX ?

SET ERROR INDICATOR.

PRINT ERROR MESSAGE.

RETURN.

SET INDEX.

READ BODY GEOMETRY DATA.

SET CONSTANTS TO COMPUTE NONDIMENSIONAL GEOMETRY PARAMETERS AT CONSTANT INTERVALS OF ξ .

O IN DEGREES ?

SET MAXN NEGATIVE TO INDICATE THIS VALUE SHOULD BE USED.

HAS DATA BEEN PROVIDED AT EQUAL INTERVALS OF ξ ?

SET IC TO AVOID SINGULAR DERIVATIVES.

IS IC WITHIN THE SPECIFIED NUMBER OF POINTS ?

IS $\theta > 0.1$?

HAVE LESS THAN 2 POINTS BEEN ALLOCATED FOR INTEGRATION WITH RESPECT TO Z ?

HAVE ANY POINTS BEEN ALLOCATED ?

. •

REQUIRE AT LEAST 2 IF ANY WERE USED.

ARE ALL INTEGRATIONS TO BE PERFORMED WITH RESPECT TO Z ?

LOAD tan $(\frac{\pi}{2} - \theta)$

COMPUTE CUBIC COEFFICIENTS FOR INTEGRATION WITH RESPECT TO r.

ERROR IN SUBRCUTINE COEFF ?

RETURN.

$$COMPUTE \sqrt{1 + (\frac{dz}{dr})^2}$$

COMPUTE
$$\frac{d}{dr} \sqrt{1 + (\frac{dz}{dr})^2}$$

COMPUTE CUBIC COEFFICIENTS FOR INTEGRATION WITH RESPECT TO r.

ERROR IN SUBROUTINE COEFF ?

INTEGRATE FOR ξ AT I.

STORE E.

ARE ALL INTEGRATIONS TO BE PERFORMED WITH RESPECT TO r ?

COMPUTE COEFFICIENTS FOR A CUBIC FIT OF Z VS r.

ERROR IN SUBROUTINE COEFF ?

RETURN.

COMPUTE
$$\frac{d}{dz} / 1 + (\frac{dr}{dz})^2$$

COMPUTE CUBIC COEFFICIENTS FOR INTEGRATION WITH RESPECT TO Z.

ERROR IN SUBROUTINE COEFF ?

RETURN.

INTEGRATE FOR & AT I.

STORE E.

START INTERPOLATION.

COMPUTE CUBIC COEFFICIENTS FOR Θ VS ξ .

ERROR IN SUBROUTINE COEFF ?

RETURN.

COMPUTE DELS AND $\Delta \xi$.

1

INTERPOLATE FOR θ AT ξ .

ERROR I ; SUBROUTINE INTERP ?

RETURN.

LOAD K AT E.

LOAD θ AT ξ .

COMPUTE CUBIC COEFFICIENTS TO INTEGRATE FOR RB(I).

X

ERROR IN SUBROUTINE COEFF ?

RETURN.

INTEGRATE EQUATION (1).

STORE RB(I).

LOOP TO LOAD PARAMETERS FOR SOLVING EQUATION (2) FOR ZB(I).

COMPUTE CUBIC COEFFICIENTS FOR SOLVING EQUATION (2).

ERROR IN SUBROUTINE COEFF ?

RETURN.

SOLVE EQUATION (2).

STORE ZB(I).

ENTRY POINT TO NON-DIMENSIONALIZE THE BODY GEOMETRY.

SEGMENT NUMBER > 1 ?

SAVE K(1) AND SET XIO FOR FIRST SEGMENT.

COMPUTE COS (0) AND NON-DIMENSIONALIZE K, RB AND ZB.

NONDIMENSIONALIZE DXI, DELS AND XIO.

WAS THE SHOCK SHAPE READ IN ?

STORE SHOCK SLOPE AND NS AT THE CONSTANT STARTING LINE.

BODY GEOMETRY DATA WAS INPUT IN EQUAL INCREMENTS OF S.

SET UP VALUES OF BODY GEOMETRY PARAMETERS.

IS THE SHOCK SHAPE TO BE ESTIMATED ?

NO. PROVIDED IN INPUT DATA. SET INDICATOR.

ARE DIMENSION SIZES LARGE ENOUGH FOR THE NUMBER OF POINTS SUPPLIED ?

NO. SET ERROR FLAG.

PRINT ERROR MESSAGE.

RETURN .

SEARCH FOR CORRECT INPUT SHOCK VALUE.

INTERPOLATE FOR POINT OF INTEREST.

SET n.

SET DOWNSTREAM VALUE OF n .

SEGMENT NUMBER > 1/ ? »

RECOVER UPSTREAM VALUE OF n .

7. LISTING

0000

5

	· · · · · · · · · · · · · · · · · · ·	
CUMPAUTINE GECH (IST)	GECH	1
THIS POULTING GEDEOONS THE DODY WHO SHOW	GEON	2
FOR SACH RODY SECHENT	GEOMETRY CALCULATIONS GEOM	3
FUR LAGH TUNY SEGMENT.	GEOM	4
COMMON 121 DELLES ERLES ENLES	GECM	5
604494 // Re(15),29(15),TH(15),CTH(15),K(15),NS(15),NS(15) GECM	5
TOPMON / S/ MAXI, MI, IMIN, MAXN, PH, KHIN	GECH	7
COMMON 747 ICEINT, NPR, KGECN	GECM	5
COMMON /5/ DXI,DET,DX2,DE2,DT	GEOM	. 9
COMMON /5/ C1,VS1,HT1,A1,B1	GECM	19
COMMON 191 ISEC, XID, DELS, KZEPC, BNOSE	GEOM	11
COMMON /11/ MAXIT, ISTOP, ITD, TTHE, SI(15), NS	T(15) GECM	12
COMMON /INPUT/ GAM1, AMACH1, THETC, ZRN, TCRIT	(2) .P1 .RHO1 .RN . AMUR . T1 .FGFCM	13
+27(2), 102(6), INTAD, CTAD, NOPT, NCASE .NETLE .N	SEG.TGECH.NGEON.NTAE GECH	16
COMMON. /CONST/ PI.PI2. GAMA. GAMB	GEON	15
COMMON / YESH/ IMAX. NMAX		17
COMMON /SPLINE/ C(4.15)	GECH	10
DIMENSTON ACT)	GECH	17
DATA BLANK/176	GECM	15
INTEGED OTAD	GECM	19
PEAL NS. 4.47ESC NCT	GECM	23
EONTHALENCE /A CTUN	GECM	21
TET-MT	GECM	55
	GEOM	23
$\begin{bmatrix} I & I \\ I & I \end{bmatrix} \begin{bmatrix} I & J \\ I & J \end{bmatrix} \begin{bmatrix} I & J \\ I & I \end{bmatrix} \begin{bmatrix} I & J \\ I & I \end{bmatrix} \begin{bmatrix} I & I \\ I & I \end{bmatrix} \begin{bmatrix} I & I \\ I & I \end{bmatrix}$	- GECM	24
69 13 (1,25,9), KGEOM	GECM	25
1F (ISEG.GT.1) GO TO 11	GECM	25
[* ([GEOM) 3, 2,4	GECH	27
77=756577.15+2.5	GECM	28
44XI=IVI(ZZ)	GECH	29
ZZ=FL9AT (MAXI-2)	GECM	30
PXT=JELS/7Z	GECH	31
IF (MAXI, LE. THAX) GO TO 3	GECH	32
22=FL7AT(144x-2)	GECH	33
חיז=זרנ 22</td <td>GEOM</td> <td>34</td>	GEOM	34
MAXT=TMAX	GEOM	33
MT=MAXI-1	GEOM	76
XI"=-OXI	GEON	37
K(1)=1.]	GEON	
20(1)=].]	GECH	37
79(1)=1.1	GECH	34
TH(1)=212	GEUM	41
CTH(1)=1.01	SECH	41
77-9 3	GECM	42
	5 E CM	43
	GECM	44
$27 = X \pm 1$	GEOM	45
	GEOM	46
//=//+/1X1	GEOM	47
K(I)=1.7	GECM	48
TH([)=P[2-27	GECM	49
29(1)=1.)-305(72)	GEOM	51
28(T)=SI'1(ZZ)	GECH	51
CTH(I)=COS(TH(I))	GECH	52
	SE CH	50

180

Ŀ

}

		4					
	17 13					Gann	27
4	17 (10=5-2) 2.11.11					65.04	51
1.7	YT7=1=L3					50 PH	55
	115=(117(ITT)-NS(IST-1))/1XT	-			1	SECH	
	TH(1)=TH(IST)				/	0200	57
	<(!)=1.7					CE 04	5
	77(1)=77(IST)					CECH.	27
	77(1)=77(TST)					0500	23
	NS(1)=NS(IST)		۶			55.50 55.50	51
	0TH(1)=0TH(TST)					CC CH	61
	DELS=PTP-THETT-DELS	4				350.00	
	77=9565/ 141					CC CH	C ;
	I=TNT (27)					DECT.	61
	TF (T.LT.1) T=1					CEON	60
	TE (IGENH.GT. 1) I=IGENH-2					0000	67
	TE (1.57.1444-2) J=1444-2					195 CF	6.
	1XT=DELS/FLOST(I)					0004	61
	MT=I+1					C.C.M	C 1 70
	"AXI=I+?					CECH	7 '
	JAC=34C=3AC					0205	71
	50 TO 6	,				CECH	77
11	YTO=XTO+DELS					CE CH	71.
	TNS=(NS(TST)-NS(TST-1))/DXT					GECH	75
	IF (78(IFT)+7.071-ZRK) 13.1	3.12				CE CH	74
1 ' -	TSTOP=-1					GERY	77
	HOLLE (JLVD) IZLUD					GEOM	72
	END FILE OTAP			\		CE CH	70
	rsr0=1			\		SECH	81
	PETIJOH					GECH	9.1
1 2	TE (15574.6T.0) 67 TO 14					SECH	82
	MAXT=TNT(4.9/CYI)					GECH	AZ
	TE (MAYL. ST. 6) MAXI=5	* ±				GERH	44
	TE ("AYT.LT. ?) MAXI=?					GECH	85
	ריזא=אויר					SECH	85
	IF ()UM.GT.DXT) DXI=DUM					GEOM	87
	TF ()XI.GT.4.7) 9XT=4.9			1.00		SERM	AA
1.4	27=FL 94T (MAX [-2)			4		GEON	80
	DFLS=ZZ#OXI					GC OM	q1
	DZ=DXT*CTH(IST)	1				GECH	01
	0114=29 (TST)+72+07					G=CN	92
	IF: ()UM-77N) 16,16,15			•		GEOM	50
15	MAXI=MAXI-1			٠		GECH	94
	IF (MAXI.GT.3) GO TO 14	•	'y			GEON	95
	MAXT=3	-	4			GECM	96
	DXJ=(ZRN-ZB(IST))/CTH(IST)		Millionaujo a saspera			GECH	07
	IF (DXI.LT.9.1) DXI=9.1	-			•	GEOM	93
	DFLS=DXI					GECM	99
16	MI=MAXI-1					GECH	100
	DP=DXT+SIN(THETC)					GECH	1 11
	N7=9XT#CTH(TST)	-1-4 -				GECH	102
	IXCHONCENCE					GEOM	103
	NS(1)=NS(IST)			·		GECH	1.76
	99(1)=99(IST)					GECH	105
•	79(1) = ZP(1ST)					GECH	106
	K(1)=1.]		ى ا	5		GEOM	117
				•			

		6-64 134
		GECH 103
	10 17 T-7.4T	GECH 117
	7.4-7-1	G=04 111
	11 	GECH 112
		GECH 113
1.1		5=CM 114
		5-CM 115
		SFC" 115
1 1	<(1)="."	55C* 117
14	זאר+זאן = ראר	55 CM 114
	1= (uttp) 10, 2=, 25	6= CM 113
1.3		GTOM 121
2.1	·1C [] = -] .]]	6= CM 121
	(n 1) 27	CECH 122
21	1114=144CH1 644CH1	CTCH 123
· · ·	77=(5447#74/4+1.1)/(5444#004)	1-0-125 C20M 125
1	17(1)=-7.48+(22++1.957)+(KZEOC++0.157)	GEG# 124
	TUM= SOPT (TELS/ANS)	650H 127
	045=) 14+:]. 24+]. 24/AHACH1+NS(1))	5-1- 120
	77=7.7	1.51 1.21
	10 27 1=2.41	GEC4 124
	77=77+N¥T	25 CM 153
	VS(T)=US(1)-"AC#((77/0=LC)##7)	SECM 133
	TO DY TELEMANT	GECH 131
		GEOM 132
•		55CH 133
`}		GECM 134
		GECM 135
		SECH 135
	DA(MIA) = 20(() [) + () [) + () [) + () () () + () () + () () + () () +	GECH 137
	$\sum_{i=1}^{n} \left(\frac{1}{n} + \frac{1}{n} +$	6FCM 138
	. H (A 3 A 1) = 1 H (A 1) + 1 H (A 1) - 1 H (1 A 1)	55CH 139
	46(M4AI)=N2(h1)+N/(H1)+42(T2)	GECH 147
	U.A. (14 A.) = 30 < (A (MAX [))	G=C# 141
	x (nBA1) = x (A1) + x (A1) - x (IA)	SECH 142
	อราบาท	5-CH 144
	20 25 T= 2.HT	CECH 147
2.7	117=X(1)	SECH 145
2 =	145=145+K(I)	55CH 446
	1N==145/FLOAT(MI)	C=CH 147
	TE (TSES.ED.1) 53 TO 21	CECH 148
	77=845++3.25	. 0704 L4J
	n(1)= ¥7)+7.5#0ELS	55UM 147
	115=215/2.3	GELP 173
	11-+1NS+(1.]+(2.1+Z7-1.0)/3UH)	G-L- 171
	TE TANS ST. ANSI ONSEANS	GEUM 154
	00 77 1=7.WI	5-54 154
~ •	117(T) = NS(T-1)+CNS	6404 194
*	CO TO 23	5504 155
	2540 57. M.NETS. MAXT. TO. KSH. ANS. 042.77	55 CM 155
· · · ·	YE (4-TREG) 20132.31	GERM 157
·· · · · · · · · · · · · · · · · · · ·		55CH 158
		GECH 159
77		GECM 161
	5 (1) 1 2 B	SECH 161
		3-6-101
7.	70THT 46	GF CH 16?

182

Q

	267UDN			G	ECH 1	63
				3	FCH 1	64
	14=0 2005-2006 CT 1 11 20065-2005			5	FCH 1	65
	[F (44), 1, 1, 1, 00037-40	2		G	ECM 1	66
	TE (TEEL OF 1) ONS= (NS(TST)=NS(TST=1))/DXI			G	FOM 1	67
	TE (THTH EO 1 CO 77, NE BLANK) 60 TO 37			í G	FOH 1	65
	TR (1110-13-1-53 22.00 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -			G	FCH 1	69
				C	FCH 1	70
				0	SECH 1	71
	V/4 V - V / TCT V # V / CDN			0	SECH 1	7?
				(GECH 1	.73
	TE (NOTEATH LE THAY) GO TO 34			(SEOM 1	74
	DOTNT 62. NDTS, TSEG, TH, THAY			!	SECH 1	75
				(GECH 1	76
					GEON 1	177
	TE (TEENH ET D) HAVISTERENH				GFCH 1	78
	TELMANT IT 1) PAYTENPTS		A Ê	1	GFON 1	179
	T (MAA 0 L / 0 L / / MAI - Nº / 3		•		GERN	187
	TE (MANT LE TWAY) GO TE 35				GECH S	181
	[F [[AA1.[]]]	:	6		GF OM 1	1 5 2
	1)101				GECH	183
	DETION	4	1	<	SECH	184
	NO 76 THE NOTS				GEON	155
					GFCĤ	186
	DCAD (4	<i>t</i> •			GFCH	187
	YTA-/YTA-NEL CI/K7EDA				GECM	1 3 9
			•		GECH	189
	NOTC-NOTCATW				GECM	190
	- TM-TM44		1		GEON	191
	11-11TI 00 27 T-TM_NPIS				GECM	192
	TE (TH(T) GT_0.0) TH(T)=TH(T)*PI/180.0	*			GECM	193
					GECM	194
	TE (TO GT A) NAYN=-TP		5		GECM	195
	T = (1 + 10 + 10) + 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10		6		GECM	196
			*1		GEOM	197
	11,=U TC=TC+4				GECM	195
	TE (TE LT NOTS AND TH(TE) GT 1.1) GO TO 38				GECM	199
	TE (NOTS-TE IT. 2. AND NOTS-TE NE. 1) IC=NPTS-2				GECH	5J)
					GECM	201
	IF (104-341) CC 10 42				SECH	202
	A / T \ - T A M / D T - T + (T \)			<u>^</u>	GECM	233
9	A(1) = TAN(-1) - TT(1)			1	GECM	204
	TE TETAD IT IN DETIDN				GFCM	205
	DO ID THE TO				GEOM	236
	10,49 I=L,10 NC(T)-CODT(1 348(T) #8(T))				GECH	207
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	4			GF CM	208
	2411 20005 (4.12.22.NS.A)		¢		GEOM	598
	TT ATCTOD IT AN OFTIION				GECH	211
P	LF 11310F-LI-11 TEIUTH				GEOM	211
	TM-T_4				GECM	212
	LT=1-L CALL THIEC (TH & DD CIM)		C m _		GFOM	213
	UCTTALUCTINIASING SUPP		~		GEOM	214
1	NULLEWSLIDITSUN NSLLIEWSLIDITSUN	1			GFCH	215
_	LF ([J+EU+N-12) 00 10 40				SEOM	216
2	13 45 E=LI99772 A/TX-TAM/TH/TXX				GECM	217
5	A()/=/A4((7())/			•	4 ¹	

			GECH 218
2	CALL COFFE (IC, NPTS, 24, 44, M)		GEON 219 "
	TE (ISTOP.LT.1) PETURN		SECH 220
	TO 44 TETC, NPTC		GENH 221
	NS(I) = SOT(1, C+A(I) + A(I))		GENH 222
44	(T) = A(T) = (2, 3) = C(3, 1) + 6 + 1 = C(4, 1) = 20 + 177 = 3 + 07		GECM 223
	CALL COFFF (TC, NPTS, 79, NS, A)		GECH 224
	IE (ISTOP.LT.1) RETURN		GECM 225
	12=13+1		SECH 226
	nn 45 I=IC,NETS		GECM 227
	[4=]-1		GECH 228
	CALL INTEG (IM, I, 78, SUM)		GECH 229
45	MG(I)=NG(IN)+SNM		GECH 231
46	00 47 T=1,NPTS		GEOM 231
47	A(T)=-K(T)		GECM 232
	CALL CREFF (1,NPTS, WS, TH, A)		GECH 233
	TE (TSTOP.LT.1) RETURN		GECH 234
	77=FL04T(#I-1)		GECH 235
	DELS=WS(NPTS)-WS(1)	5	GECH 2.36
	nxt=7FLS/22		GECH 237
	ST(1)=WS(1)		GECH 238
	00 48 I=7,HT		GECH 239
	ST(T)=SI(T-1)+CXI		GFON 241
43	TALL INTERP (65, SICI), ACTO, ACTO, APIS)		SECH 241
e"	IF (ISTAP.LT.1) RETURN		GECH 242
	79 49 T=2,4I		GECH 243
	$\langle (T) = -K(T) \rangle$	0	GECM 244
69	TH(T) = A(T)		SE 04 245
	115(1)=-C75(TH(1))*K(1)		GECH 246
	1(1)=STN(TH(1))		GECH 247
	nn 59 I=2+HI		GECH 245
	$\Delta(I) = SIN(TH(I))$		GEOM 249
	DIN=205(TH(I))*((I)		GECH 250
51	4U(1=-1)UM		GEON 251
	CALL CREAR (1, MT, SI, A, NS)		GECH 252
	TE (ISTOP.LT.1) RETURN		GECH 253
	DN 51 I=7,HI	•	GEON 254
	THET-1		GEON 255
	TALL INTEG (IP, I, SI, SUM)	Ψ	GEOM 256
51	0A(T) = 0B(IN) + 5UM		GEAN 257
	NS(1)=COS(TH(1))		GECH 259
	A(1) = A(1) = K(1)		GECH 259
	10 5? I=?.NI		GEON 260
	VS(T) = COS(TH(T))		GEON 261
52	A(T)=4(I)*K(I)		GEON 262
r · · ·	CALL COFFF (1, MI, SI, NS, A)		CECH 263
4	TE (TSTOP.LT.1) RETURN		CEON 264
	00 51 I=7.HI		CECH 265
			650H 266
.4.	CALL INTES (IM.I.SI, SUM)		CCOM 267
	71:11=73:11)+SUM	•.	CECH 260
	1F (TSEG.GT. 1) GO TO 55		CCC1 260
5 6	K7FP1=K(1)	Þ	COM 271
	YT1=-NYT		CECH 274
	DO 56 TEL.MT		CECH 272
و. دم	c_{T}		UTUT CIE
	Present the second s		

Cla

6+CH 773 (*)=<(*)/<**** `+(T)=<7770477(T) COM. 274 **(1)=*** >1+2*(*) SECH 275 ***- <******* COM. 775 SSOM 277 · [- · · · [= + <75 20 SICH 278 COM 279 111 = 745#3¥I C.C.O.M 240 U = Ch 241 • · · (•) - 24 ÷ SEPH 747 ^ ¥] = 3 ¥ ? 7.2 MM 787 SECH 744 17-1070 NOT REPRODUCIBLE SECM 243 "1*I=MT+1 5=0" x T] = (X []+]EL S) / < ? = P] 246 GS CH 247 >FLS=>XT#FLO3T(MT-1) STOP 244 TF ((< 4. VE. 1) KSH=-5 TE (MANTILE TIAN) GO TO 54 G-CM 243 12707=-1 20CM 201 GER# 291 DUTHE 55 1- UN 202 DETION CEL AUST <u>זאר + זאר = יאר</u> 5- CM 294 77=877 35.04 295 17-MT-1 SECH PGE ייי=ר=ייניי 297 GECM 12 61 TETHIN.IS COR 200 T 11 = T GECH 293 IF (KRH. "C.-F) SO TO FO 6-CM. 700 77=77+947 Gat" 101 1=1 55.04 332 4=141 5, 3 SECM 337 1 1= 4-1 REAM 15 (45(4)-27.LF.1.1) SC TC 59 304 WIM=(MST(M)-NST(IM))+(27-NS(M))/(NS(M)-HS(IM)) COOM 315 SECO 785 11 19:11) =-ARS (197, (TM)+00H) #KZER0 15(11*) =- 475 (NST (NPTS)) + K2FRC SECH 297 A. Ct. 7]] TP (1956.61.1) 45(1)=4NS SEDM 710 50 17 22 710 5=0* C CECH 311 FROMAT (9511.4) 64 TOCHAT (1/374, FRHTHE WUMBER OF POINTS PROVIDED FOR THE BODY SHAPE GEON 312 27 *: YOF TO STORAGE/ROX, TID, 1X, TEMPOINTS WEDE DEAD FOR STORENT PLADEDE 717 *. TWAIN, TID, 18. JAHPOINTS WERE REQUIRED TO STORE VALUES OF POFOEDIGEDM 314 THE SEGMENT/302, 110, 18, 27HIS THE TOTAL NUMBER ALLOWED/208, 15HCASE TREEM 715 GEOM RIE += >+T 111 [] 9=CM .717 ECOMAT (3717,2513.4,413) 57 ENDMAT (141//////298, 774EPRCP IN DATA INDUT FOR BODY GEOMETRY/218, SECH 319 ¢ 1. ASTHDOON SEGMENT NUMBED READ HAS GREATER THAN THE SEGMENT BEING TOFSEON 313 6-04 721 TATEDIZIY, 154345E TERMINATED FORMAT (11394,47HEXPERDED THE MAXIMUM NUMBER OF FORES ALONG THE ACSECH 721 6.5 5514 322 + 14/ 314, 1 THEASE TERMINATERS GECH 171 =NO

10. SUBROUTINE INITIAL

A. PURPOSE

This subroutine provides initial conditions at all nodes to start the solution. The shock jump conditions are applied to the shock shape point parameters. At body points, the surface boundary condition, an empirical pressure distribution (similar to modified Newtonian theory), conservation of total enthalpy and the known body streamline entropy supply the parameters. Intermediate points are treated by interpolation between the shock and body based on a variation proportional to η^2 .

B. VARIABLE LIST

All variables previously defined in the description of the main program have been omitted from this list.

MN	-	(M	S	i	n
----	---	----	---	---	---

			0	
CRET	-	COS	R	

DUM - dummy variable used for intermediate computations.

M - dummy index.

MAXNST - specifies the number of nodes to be used across the shock layer (may be negative).

PB - pressure on the body.

SBET - $\sin\beta$

- Ul component of the free-stream velocity parallel to the shock.
- V1 component of the free-stream velocity normal to the shock.
- V2 component of the velocity at a shock point normal to the shock.
- ZZ dummy variable used for intermediate computations.

C. FLOW CHART

. . 2

ENTER SUBROUTINE INITIAL

INSURE THAT THE INDEX OF THE SHOCK NODES IS POSITIVE.

UNSTEADY FLOW INITIAL CONDITIONS.

COMPUTE SIN 0.

COMPUTE U

COMPUTE V_

COMPUTE THE SQUARE OF THE MACH NUMBER NORMAL TO THE SHOCK.

IS AME < 1.0 ?

SET AMN = 1.01.

COMPUTE P AT THE SHOCK.

COMPUTE V AT THE SHOCK.

COMPUTE U AT THE SHOCK.

COMPUTE S AT THE SHOCK.

MODIFIED NEWTONIAN BODY PRESSURE.

COMPUTE S AT THE BODY.

COMPUTE p AT THE BODY.

COMPUTE V AND U AT THE BODY.

INITIALIZE n.

INCREMENT η AND COMPUTE A SCALE FACTOR, η^2 .

COMPUTE ρ , U, V AND S AT REMAINING NODES ACROSS THE SHOCK LAYER.

RETURN

STEADY STATE INITIAL CONDITIONS

COMPUTE K AT THE SHOCK.

8.

COMPUTE SHOCK GEOMETRY FOR STAGNATION POINT.

COMPUTE SHOCK GEOMETRY FOR OTHER POINTS.

COMPUTE THE SQUARE OF THE MACH NUMBER NORMAL TO THE SHOCK.

COMPUTE o AT THE SHOCK.

COMPUTE VELOCITY COMPONENT TANGENT TO THE SHOCK.

COMPUTE VELOCITY COMPONENT NORMAL TO THE SHOCK.

COMPUTE S AT THE SHOCK.

COMPUTE SIN 0.

ESTIMATE BODY PRESSURE.

CHOOSE MAXIMUM ENTROPY FOR BODY POINTS.

COMPUTE o AT THE BODY.

SET V = 0 AT THE BODY.

SET U AT THE BODY TO CONSERVE TOTAL ENTHALPY.

INITIALIZE n.

INCREMENT η AND COMPUTE SCALE FACTOR, η^2 .

COMPUTE ρ , U, V AND S AT REMAINING POINTS ACROSS THE SHOCK LAYER.

SET VALUES OF ρ , U, V AND S AT LAST BODY STATION NODES.

RETURN.

END OF SUBROUTINE INITIAL.

the state of the second st			
(in the second second second		IV IA I	1
		TATT	,
and the second sec	γεινές ειν είναι ετεξή	TNITT	7
		TNITT	4
		1/1/1	,
11 3.41,41, 31,41,41,41,41,41,41,41,41	1)	17111	5
/// 3=(15), 2=(15), TH(17), CTH((15) + K (15) + * * (15) + 48 (15)	TNITI	7
ALL ALL OT TALL OF TALL OF XALL WE WE WE	• 1•.	TATT	3
100 421 /5/ 341.9FT, 342,002,9T		INIT	Ģ
20000 / 1/ 01, VS1, HT1, 51, 91		TNTT	10
CO. MJ. VIND IL CANT " THTO " THELU " SANT	1.TCPIT(2).Ft. GHO1.PX, 1400, Tt	CTATT.	11
>>(?),I>>(6),INTAP,OTAP,(OPT,NOASE,	IFTUE USER INFOR NCERM, YTAD	TNETT	12
JULIA VICALLY DI DI L'UNT' L'ANT' L'AND		TATT	1 2
ננסינום אבשינוט (E2 בכל הטהונט	le-	TATT	14
DEAL MG.K.KAP		TATT	15
USENETARS (HAERST)	۰	TATT	16
····=·································).	TATT	17
IF (11120) 1, 2, 2		TAITT	4.0
" ? I=1. MAYT	MED.	TATT	10
TH=TTM(TH(T))	RO	TATT	14
1=01+07+(T)	Ollo	TATT	21
V1=01+CT4	°C/p		21
144 - (V1 / VS1) ##2	°/r	181.1	1
TE LAMN IT & FA ANHEA DA	,		-
VIT MAYN 1) = CAMARANN//CAMBR WAAT DA		INITI	24
717 MAXN. 23 - 41 / 47 MAXM. 43		INIT	52
$V(T_{1}) = V(T_{1}) = V(T_{1}) = V(T_{1})$		INTAL	26
77-158948891-5893175898		18 11 1	
VIT 15 VIL () - ALCC (77) - CAMARAL OC (VIT		INITI	29
V() , () ,	· · · · · · · · · · · · · · · · · · ·	TNTTT	SS
service states and the service of th	· .	INTT	30
/(),(),()=V(),===========================		TAITI	31
V::,1,1,1)=, PAP +P::+V:[,1,4)))+V:[,],J/G	, ,	INTTT	22
		TAITI	3.5
V(1,1,7)=01		TNITI	74
	•	TNITI	35
17 2 4 = 2, 44	•	INTT	35
	1. A.	INITI	37
77===*1*=*1		TAITI	3.
77 7 7=1,4	1	INITT	30
V(I, ", ") = V(I, 1, H) + (V(T, H) + V(I, 1)	, , w)) #77	TNITT	41
5-1:132	· · · ·	TNITI	41
JO 6 I=UMIN, MI		TAITT	47
×30=1.J-NS(J)*K(J)		INITT	42
TE (T.GT.1) GC TO 4 <		INTT	44
77= ĵ. ĵ	~ ~ ~	INITT	45
SP4L=3.1	and the second s	TNTTT	46
227L=1.)	. 4	TATTT	47
SHET=1.1		TATTT	4.9
Cart=1.1		TATT	43
50 TO 5		TATT	=1
TPTL=(NS(T-1)-NS(T+1))/(K3P+D(2)		TNTTT	51
ZZ=ATAN(TREL)		TATT	52
		Too T . 1	26

		TATTT 53
nneL=nns(22)		TATTT 54
ROFLET IFL COFL		TATTT 55
0UM=TH(I)+77		TATTT 36
73FT=005 (DUM)		TATTT 57
cart=st(104)		TATTT SA
1MF = (1M9UHT42661 1445		TATTT 20
TE (100.LT.1.)1) 44N=1.11		TATTT 60
V (T, M1 X Y, 1) = CAMA # AMN / (GAMA # AMN + 1 . 0)		TWITE CA
U1=01+09ET		INLUL DI
12=01=53=7/V(T, 44XN, 1)		INTEL 62
1:1.44x11.2) = U1 *CCFL+V2*SDEL		INITE 64
VIT. 4144. 3) = V2+COFL-U1+SOFL		INITI 64
DINE (GANTERANN-GAMA) / GAMA D		INIVI 65
VIT . 45 XN . 6) = \$1 CG (JUM) - GAN1 * ALOG (V(I, MAXN, 1))		INITI 65
CTH = (TN(TH(T)))		INITI 67
0		INITI 65
117 1 41 - V (1 - MAXN-4)	a k	INITI 69
W/T 4 41-W/1 4 43		INITI 79
W(:,1,4)-*CI,1;4/		INITT 71
		INITI 72
V(1) 1,)) =) =)		INITI 73
		INITI 74
.V(),1,1,1=5391(1/)		INITI 75
FTA=0.0		INITI 75
10 6 N=2, WN		INITI 77
£TA==TA+)FT		INITI 78
77=FTA++7		INITT 79
70 6 M=1,4	,	INITI 81
V(1, N, M) = V(1, 1, M) + (V(1, MAXN, M) = V(1)1) = V(1)		INITI 81
∩y m =1.1		TNITT 8?
IF (IMIN.E2.2) DUM=1.0		TNITT 83
37 7 N=1, MAXN		TRITT 84
V(1, N, 7) = DUM*V(1, N, 2)		TNTTT 85
n 7 H=1,4		TATTT 86
V(MAXI,N,H) = V(MI,N,H)		TNTTT A7
OCT () 24		TATTT AR
		TACLT OF

. CN

ß

11. SUBROUTINE INTAPE

A. PURPOSE

This subroutine loads data and initial conditions from a magnetic tape unit. This type of initialization is used for restarting an unfinished case or for performing additional iterations on a completed case.

B. VARIABLE LIST

Most of the variables in this routine are read from magnetic tape, only. Their definitions can be determined by matching their locations in the various common blocks with the corresponding variables in the main program.

IRD - control variable specifying the type of read operation.

=0 - read data in COMMON/INPUT/.

>0 - read data required for a specific segment.

ITAP - variable used for temporary storage of the input tape unit number.

M - variable indicating the end of a case, when a negative value is read.

ENTER SUBROUTINE INTAPE.

SAVE THE INPUT TAPE NUMBER.

READ END OF CASE INDICATOR

END OF CASE.

RETURN.

THIS FILE CONTAINS DATA FOR ANOTHER SEGMENT.

WHAT TYPE OF DATA IS TO BE READ ?

READ INPUT DATA AND CONTROL VARIABLES.

RECOVER INPUT TAPE NUMBER.

RETURN.

¥73

READ FLOW FIELD AND SEGMENT GEOMETRY.

RETURN.

END OF SUBROUTINE INTAPE.

D. LISTING

TATAO CATNJ CATAJ TATAP INTAP LITAP TATAD INTAP IN TAD CATVJ TAP TNTAP TATAP TNTAP CATNI TNTAP TAP TAP CATAI CATNT TATAD TATAP INTAD TATAP LITAD THIS POUTINE READS THE FLOW FIELD DATA FORM TAPE PFAD (ITAP) F,L,C,FS,MAXIT,KGFCM,KSFG,A,RNDSE V (15,40,4),7(40,4),P(3,40) READ (ITAP) V,G,DFL,GS,ITD,TIME,MAX TCUP(2), KGFCM, A(5), KSEG /11/ MAXIT, ISTOP, ITO, TIME ISEG, GS(3), BNDSE /INPUT/ F(13), L(15) CTMMON . CONST / TUME2, C(3) SURROUTIVE INTAPE (IRD, M) 15L (5) 6(1)3) MAX(C) (1) 23 [F ([PD) 3,3,4 PFAD (ITAP) M FF (4) 1,2,2 141 111 121 191 101 121 161 L (7)=ITAP [TAP=L (7) NUMMUU 2FTU 2N RETURN DETURN NCHHUU NCMMCO NUMMUU NOMMON NUMMUU NCMMOU NCHMUU NUMMON CING t one NM

 13

5

~ ~ ~ ~ ~ ~

5

ŝ

52

らっ

54

12. SUBROUTINE INTEG

A. PURPOSE

This routine uses the coefficients for a cubic fit generated by subroutine COEFF to integrate the function between 2 adjacent values of the independent variable.

B. VARIABLE LIST

- C array of cubic coefficients generated in subroutine COEFF.
- I index of the point in the X array corresponding to the upper limit of integration.
- IM index of the point in the X array corresponding to the lower limit of integration.

SUM - value of the integral.

X - array containing the values of the independent variable.

XM2 -	$[X(IM)]^2$
X143 -	[X(IM)] ³
XM4 -	[X(IM)] ⁴
XP2 -	$[x(1)]^{2}$
XP3 -	[X(I)] ³
XP4 -	$[x(1)]^4$

P. LISTING

(MIN, Y, T, MI), DATAT DATATIOCCUS	TATEG	-	
	TNTEG	C '	
THE POLITINE INTERPATES A FUNCTION USING THE SPLINE COFFICIENTS	LAFG	٣	
	TATES	5	
	じょくい	Ľ	
COMMON / 201 TVC / 7 (2)	TA TEG	c	
	TNTEG	~	
	INTEG	æ	
	INTEG	σ	
	INTEG	1	
	IN TEG	11	
	TA TEG	c 1	
	TATES	1	
XM4=XM3+X(1M) 	+ INTEG	14	
	TATEG	12	
	LATEG	16	
	TATEG	17	

205

cene

13. SUBROUTINE INTERP

A. PURPOSE

This subroutine interpolates between data points for the values of a function and it's derivative, using the cubic fit coefficients generated my subroutine COEFF. An input table of independent variable points is searched to locate the point closest to the desired point of interpolation. If the table is exceeded by a significant amount, an error message is printed and the current case is terminated.

B. VARIABLE LIST

- array of cubic fit coefficients. С - difference between the values of the independent variable at DEL the last 2 points. DYDX - $\frac{dy}{dx}$ - index specifying the location in the input array, X. 1 -I - 1. IM ISTOP - error indicator. NPTS - number of points in the input array, X. - array containing the input table. X - value of the independent variable at which y and $\frac{dy}{dx}$ are to be CX

YC - value of y at XC.

determined.

ENTER SUBROUTINE INTERP.

INITIALIZE I.

INCREMENT I.

DOES I EXCEED THE TABLE SIZE ?

IS X(I) < XC?

STORE I - 1.

IS XC CLOSER TO X(I) THAN TO X(IM) ?

COMPLTE TC.

COMPUTE DYDX.

RETURN.

EXCEEDED TABLE SIZE.

CHECH TO SEE IF XC EXCEEDS THE TABLE BY A SIGNIFICANT AMOUNT.

SET I TO USE THE LAST POINT IN THE TABLE.

209

END

END OF SUBROUTINE INTERP.

RETURN.

SET ERROR INDICATOR.

PRINTS ERROR MESSAGE.

2

50 **G**. ~ æ σ TFR EYINTED LATED TATED IN TED CJINI LIFP LILLO LN TFO C JI VI INTE? INTER LIFP CJLNI TATED CJL V ATFP C 1 L S IN TEO LIFR CJIVI TCD TATEP TATEP TATFO d JINI TAFP TATEP LIFT FOPMAT (141,17%,264E9PDP IN SURPOUTINE INTEOP/1941A14 RAFGE A THIS SOUTING INTERPOLATES FOR THE VALUE OF A FUNCTION USING JYDX=C [2,1]+XC+(C(3,1)+C(3,1)+3.0*XC+C(4.1)) YG=C(1,1)+XC*(C(2,1)+XC*(C(3,1)+XCFC(4,1))) SUADJUTINE INTERD (X, XC, YC, DYPX, NPTS) 3, THE SPLITE CONFERICIENTS FROM COFFF. re (χς-χ(netς).gt.0.gt+ηfl) g^ tc IF [XC-X(IM).GT.X(I)-XC) 6C TC 2 CEEDEN/19X,144JOB TEPMINATED) COMMAN /11/ TCUMMY, ISTOP COMMON / SPLINE/ 3(4,15) F (X(I).LT.XC) 50 TC 1 F (1.61.NPTS) CO TO 3 (1-510) x (ND15) - x (ND15-1) (SI)X NUISHJALU 1-= 0121 r **n** OFTU2N RETURN SIGN= M= J - 1 GN T0 TNTGG 1+[= WI=1 CN L 0" 05 nc Ċ ς.'

210

4

J. LISTING

14. SUBROUTINE LOAD

A. PURPOSE

This subroutine loads data from a magnetic tape for use as initial conditions. The principal purpose of this option is to allow additional iterations to be performed on a previous case which did not achieve a steady state. It is also useful when unsteady flows are being considered, allowing the solution to be advanced in time in stages to obtain printed outputs at the desired intervals. Also, if the supplied initial conditions are inadequate for a particular problem, this option will allow different initial conditions to be supplied by the user without requiring alterations of the computer code. Case data variables that may be changed from the values used on the previous case are saved before the read operation and are recovered before returning to the main program. Two error checks are accomplished when this option is used. / First, the number of iterations to be performed must have been specified (the steady-state option is not permitted - see section VII). Also, the input and output magnetic tape unit numbers must be different. This requirement has been included to prevent an accidental write operation which could erase data acquired on a previous run, possibly a multicase run which required extensive computer time. When either error is sensed, an error message is printed and the case is terminated. The case and segment numbers where computation should start are supplied in the input data (see section VII).

B. VARIABLE LIST

Variables previously described in the description of the main program have been omitted from this list.

- CH array containing values of floating point variables in COMMON block /INPUT/ that are to be used rather than the values read from magnetic tape.
- I DO loop index.
- ICH same application as CH for integer variables.
- IST array used for temporary storage of the ICH array.
- M indicator written on the tape that specified when the last segment has been completed.
- N variable specifying the number of cases and the number of files to be skipped.

ST - array used for temporary storage of the CH array.

ENTER SUBPOUTINE LOAD.

SAVE ALL INTEGER CASE DATA VARIABLES WHICH MAY BE CHANGED UNDER THIS OPTION

SAVE ALL FLOATING POINT VARIABLES WHICH MAY BE CHANGED UNDER THIS OPTION.

IS THE CASE TO BE LOADED THE FIRST CASE STORED ON THE TAPE ?

COMPUTE THE NUMBER OF CASES TO BE SKIPPED.

SKIP OVER N CASES.

READ VARIABLE USED TO SIGNAL THE END OF A CASE.

213

SKIP 1 FILE ON THE TAPE.

.

ARE THERE MORE FILES FOR THE CURRENT CASE ?

CORRECT CASE HAS BEEN LOCATED.

READ CASE DATA PREVIOUSLY USED FOR THE CASE.

RECOVER THE OUTPUT MAGNETIC TAPE UNIT NUMBER.

WRITE THE CASE DATA ON MAGNETIC TAPE.

COMPUTE THE NUMBER OF SEGMENTS TO BE SKIPPED.

SHOULD COMPUTATIONS START AT THE FIRST SEGMENT ?

SKIP AN END OF FILE MARK.

READ FLOW FIELD DATA.

STORE DATA ON THE OUTPUT TAPE.

FIRST SEGMENT TO BE TREATED HAS BEEN LOCATED.

.

SKIP AN END OF FILE MARK.

READ FLOW FIELD DATA.

RECOVER INTEGER CASE DATA VARIABLES.

RECOVER FLOATING POINT CASE DATA VARIABLES.

RECOVER REMAINING CASE DATA VARIABLES AND SET REQUIRED CONSTANTS.

ERROR IN CASE DATA ?

PRINT ERROR MESSAGE.

SET ERROR INDICATOR-

ARBITRARY BODY OPTION ?

ALL DATA FOR THIS CASE WAS READ. CHANGE ERROR INDICATOR.

RETURN.

END

END OF SUBROUTINE LOAD.

. + T - T T - (r)

		LAN	;
	1 11 21 47 17 19427 THE FLOW STOLD DATE FROM THE PARTY	6 7 5 7	2
^	The state of the s	LCAT	7
-		6000	'.
	1111 111 1115 11 11 2117 1 CIT 12	LIAN	-
		1707	5
		LCAD	7
		LCAD	q
	0.2 (4.2) / / / / / / / / / / / / / / / / / / /	LCAR	ر .
	Den Alexie - Alexie	LCAR	1 ?
		LCAN	11
		LTAT	12
		1.000	17
		LCAR	14
	DOWNER ATTORNEY, ISTOR, ITO, TIME	LCAP	15
	201100 (200) / 1044(6) . 0 - (7) . TOH (11) . SEG. JOTON . MOROM . MTAU	1000	16
	THEFT AND A MEN	1 - 40	17
		1	1 4
		1 7 40	10
:	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	1 2 40	21
	[1] 5 P= J C H (7)	L C AC	21
	1159±TCH(A)	I T AT	27
		1740	27
	10 8 5 ° = 1 7 H (17)	1 - 45	24
	"FILT=ICH(11)	1000	25
-		1 2 00	22
2		1	27
	15 (NC475.EC.1) SO TO 5	I CAD	28
		1 - 10	22
7		1000	27
•		1 7 45	31
	741L (KIP (INT2P,1)	1 7 4 7	72
,		1.747	77
-		I CAP	74
)	- FLL 「N「ネービ」()。M) 1 () () - つまれの	LCAD	75
		LCAR	76
		1745	27
		1.00	39
		L ~ 17	30
		LTAR	47
		LOAD	41
		LCAR	42
,		LCAR	43
		LOAD	44
	7 HUL	LCAR	45
,		LCAC	45
	1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LCAR	47
د	$-1 \cdot i$	LCAD	4 4
	/ · · / - · · / / / / / / / / / / / / /	LAAA	47
	TCH())=100T	LCAD	51
	MAXTT=NODT	LCAN	51
		LAD	52

	LCAD	25
	TCH(11)=NFILE	54
	NTAP=2 LCAD	55
	IF (NOPT) 10, 11, 11	56
1)	PPINT 12 LCAD	57
	ISTOP=-1	58
11	DUM(5)=CH(1)/(CH(2)+CH(5))	59
	RETURN	61
С	LCAD	61
1?	FORMAT (//JUX, 19HERROR IN INPUT DATA/JJX, 25HNTAP=? REDUIRES NCPT. GLCAD	62
	*F.J/3JX,15HJASE TERMINATED) LCAD	63
	END	64

15. SUBROUTINE NMESH

A. PURPOSE

This subroutine establishes the nodal spacing across the shock layer. The nodal spacing used is selected according to the following order of priortiy:

(1) The value, if any, specified in the case data.

(2) The value, if any, specified in the body geometry data.

(3) Empirical relations depending on the flow conditions, the initial guess for shock shape and the body bluntness parameter.

The number of nodes selected is checked against the maximum number allowed by the dimension statements. If too many have been selected, the maximum number allowed is used. If this occurs, it will be indicated by a printed message in the output for the segment. The flow field variables are interpolated from the old nodal geometry to the new nodal geometry using first and second control differences in a truncated Taylor series.

B. VARIABLE LIST

Variables previously defined in the description of the main program have been omitted from this list.

- ANS value of n_s to be used to establish the nodal geometry under option (1).
- D array used for temporary storage of the interpolated flow field variables.
- DE variable used to store the value of $\Delta \eta$ used in the old nodal spacing.
- DEL $-\frac{\eta-\eta_0}{2\Delta\eta}$, used for interpolation.

DEL2 - $\frac{1}{2} \left[\frac{\eta \eta_0}{\Delta \eta} \right]^2$, used for interpolation. 11 - index of the first streamwise station t

Il - index of the first streamwise station to be considered.

12 - index of the last streamwise station to be considered.

- K index for nodes across the shock layer in the old nodal geometry.
 KM K-1
- KP K+1
- M index specifying the proper flow parameters in the D array.
- NST number of nodes across the shock layer used in the old nodal geometry.

- VE variable containing a term required for the first central difference.
- VE2 variable containing a term required for the second central difference.

4

ZZ - dummy variable used for intermediate calculations.

C. FLOW CHART

ENTER SUBROUTINE NMESH

WAS MAXN SPECIFIED IN THE CASE DATA ?

WAS MAXN SPECIFIED WHEN THE BODY GEOMETRY DATA WAS READ ?

ESTIMATE MN.

IS MN < 4 ?

REQUIRE MN > 4.

223

COMPUTE MAXN AND NMIN.

HAVE DIMENSIONS BEEN EXCEEDED ?

COMPUTE A NEW $\Delta \eta$.

IS THIS $\Delta \eta$ SMALL ENOUGH TO PROVIDE THE REQUIRED $\Delta \eta$?

0

INCREMENT MN.

SAVE THE RESIDENT VALUE OF Δn AND COMPUTE THE NEW VALUE.

STORE SHOCK CONDITIONS AT THE NEW N = MAXN LOCATION.

INITIALIZE n.

INCREMENT n.

ESTIMATE THE VALUE OF THE INDEX OF THE NODE IN THE RESIDENT NODAL GEOMETRY CLOSEST TO THE REQUIRED VALUE OF n.

IS K > NST ?

IS K < 2 ?

COMPUTE KP AND KM.

COMPUTE n_N - n_K

$$\frac{\text{COMPUTE}}{2 (\Delta \eta)^2} \frac{(\eta_N - \eta_K)^2}{2 (\Delta \eta)^2}$$

$$\frac{\text{COMPUTE}}{2\Delta n} \frac{\eta_N - \eta_K}{2\Delta n}$$

COMPUTE $f(\eta + \Delta \eta) - f(\eta - \Delta \eta)$

COMPUTE $f(\eta+\Delta\eta) - 2f(\eta) + f(\eta-\Delta\eta)$

 $f = f_0 + f_\eta \Delta \eta + \frac{1}{2} f_{\eta\eta} (\Delta \eta)^2$

TRANSFER P, U, V AND S FROM TEMPORARY TO PERMANENT STORAGE.

COMPUTE 24n.

RETURN.

228

•	SUBROUTINE NMESH (ANS, 11, 12, DEL, NST)	NMESH 1
	THE SOUTHE SANDUTES THE SSARES WINDES AT MARTE THE WARKA	NPESH 2
-	THIS POULINE JUMPULES THE PROPER NUPPER OF NCOES IN THE NORMAL	NPESH 5
-	DIRECTION TO BE EMPLOYED BASED ON DATA FROM RESET.	NPESH 4
C		NMESH 5
	COMMON /1/ V(13,43,4),0(43,4),P(3,43)	NMESH 6
	COMMON /3/ MAXI, MI, IMIN, MAXN, MN, NMIN	NMESH 7
	COMMAN /5/ AXI, DET, DX2, DE2, DI	NHESH 8
	COMMON /11/ MAXIT, ISTOP, ITO, TIME	NMESH 9
	COMMON /INPUT/ A(13), IV(13), NGEOM	NMESH 10
	COMMON /MESH/ IMAX, NMAX	NMESH 11
	MN=NGEOM-1	NMESH 12
	IF (NGEOM.GT.O) GO TO 3	NPESH 13
•	IF (MAXN.LT.D) GO TO 9	NPESH 14
	77=-4NS/0FL	NPESH 15
	MN=TNT (77)	NHESH 16
•	TE (MNITTIG) WA-L	NHESH 17
•		NHECH IN
		NECH 40
		NPESH 19
	IF (TAXN.GI.NPAX) GU TU 8	NPESH 20
	ZZ=FLOAT(MN)	NPESH 21
	DE=1.0/77	NPESH 22
	IF (4NS#DE+DEL) 2,3,3	NMESH 23
2	MN=MN+1	NMESH 24
	GO TO 1	NPESH 25
3	ZZ=FLOAT("N)	NEESH 26
	OF=DET	NHESH 27
	DET=1.0/22	NMESH 28
	DC 7 [=][,]2	NESH 29
	70 4 M=1.4	NMESH 30
4	D(MAXN, M) = V(T, NST, M)	NRESH 31
	FTETT	NHESH 32
	00 6 N=2-HN	NHESH 33
	ETA-ETAADET	NNECH ZI
		NHECH 2C
		MMECH 37
		AFESH JC
	1 (K.05.NSI) K=NSI-1	NPESH 37
	IF (K.LT.7) K=2	NESH 38
	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	NPESH 39
	KM=K-1	NMESH 40
	ZZ=FLOAT(KH)	NPESH 41
	DFL=FT4-7ZPDE	NMESH 42
	DEL 2=DEL TOEL / (DETDE2)	NMESH 43
	DELEDELTIEZ	NHESH 44
	DO 5 M=1,4	NMESH 45
	VE=V(I,KP,H)-V(I,KH,M)	NPESH 46
	VF2=V(T.KP.H)-2.0=V(T.K.H)+V(T.KH.H)	NMESH 47
5	D(N. 4) = V(T.K.P) + VE*DEL + VE2*DFL2	NMESH 48
6	CONTINUE	NEESH 49
	11 7 N=7. MAXN	NPECH
	DD 7 M=1.4	NNECH E4
7		NNECH ES
	A / T & J / J / J / J / J / J / J / J / J / J	Incan 30

the second se	HARCH 37
	NAECH 54
JC 11. 2.1	NIMESH 55
1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUECH EG
• 1TA - 211-1	1/#E \$ 14 57
	NHECH 54
	HAECH 20
·	VALUH EJ
	**F74 61
and the fact that - I	NAECH 57
· · · · · · · · · · · · · · · · · · ·	NAECH 63
I= (12×1-44×) וו3	NHESH 64
	APP 1P 04

16. SUBROUTINE OTAPE

A. PURPOSE

This subroutine performs all output operations to the magnetic tape unit specified for storing the flow field data. By isolating the READ and WRITE statements in subroutines, access to this logic from several locations in the computer code is possible, and it is easily assured the binary read and write operations are consistent. A control variable, IWR, specifies whether case data or flow field data are to be written on tape. This argument should not be negative since it is written on the tape. A negative value would be interpreted as the end of a case if the data were later recovered from tape.

B. VARIABLE LIST

Most variables in this routine are written on tape only. Their definitions can be found in the description of the main program by matching locations in the various COMMON blocks. The control variable, IWR, has been described above. OTAP is the magnetic tape unit number on which the data is to be stored.

ENTER SUBROUTINE OTAPE.

.....

WRITE INDICATOR ON TAPE.

IS THIS ENTRY TO WRITE FLOW FIELD DATA FOR A SEGMENT ?

WRITE CASE DATA AND CONSTANTS.

ENDFILE OTAP.

RETURN.

233

WRITE FLOW FIELD DATA FOR THIS SEGMENT.

50

1

ENDFILE OTAP.

RETURN.

END

END OF SUBROUTINE OTAPE.

CT APE OT APF CTAPE OTAPE CTAPF OT APE JIADE LAPF **JTAPE** JIAPF JCATC JUVLU CIADE CIAPE CI AFF CIAPF UT APF JAFF OT APE J I AFF CIAPE JTAPE OT AUF TAPF WRITE (NTAP) F.L.,C,FS,MAXIT,KFEOM,KSEG,A,ANDSF THIS POLITINE WAITES THE FLOW DATA DN TAPF. V (15,40,4),7(40,4',P(3,4) G (135) WPITS (DTAP) V,G,DEL,GS, ITD, TTME,MAX TPUM (2), KGECM, A (6), KSES /11/ MAXIT, ISTOP, ITO, TIME ICEC, GS(3), ANCSE /TNPUT/ F(13), L(15) CCNST/ DIM(2) . C(3) FOUTVALENCE (L (9), OTAP) (AMI) Javiu at. IIficanhs 20 1FL (3) F ([Wº.51.]) 50 MAX (5) T A R (2)53 END FILF OTAP FNN FILF CTAD NTEGES OTAP (dviú) Silem 111 10 121 141 12 š 6 NCHHO NCHAC NEUTAS NCMHOC Nellan NUMHUU NCHMOU NCHMOU ILUMNO: NUMMUU NOWWOU NCHICO CN

5

Ø

N

D' LISTING

0 C C

17. SUBROUTINE RESET

A. PURPOSE

This subroutine schedules the calculation of initial conditions and body geometry parameters for all segments except the first. This data may be generated by calls to other routines or read from magnetic tape, depending on the option specified in the input data (see section VII). A maximum value of $\Delta \eta$ is computed for use in subroutine NMESH. It is based on the signs of the pressure gradient and the normal velocity component of the first node above the body on the previous segment. If the number of nodes across the shock layer has been specified in the input data, this quantity will be ignored.

B. VARIABLE LIST

Variables previously defined in the description of the main program have been omitted from this list.

- DUM array containing the value of ξ at the starting line of a segment and the segment length, measured along the body.
- IST index of the last streamwise node on the previous segment.
- M dummy index.
- NST number of nodes across the shock layer used on the previous segment.
- ZZ dummy variable used for intermediate computations.

ENTER SUBROUTINE RESET.

INITIALIZE VARIABLES FOR A NEW SEGMENT.

NEW CASE ?

SKIP AN END OF FILE MARK.

READ FLOW FIELD DATA FROM TAPE.

END OF CASE ?

YES.

RETURN.

SET ERROR INDICATOR.

SET SHOCK VELOCITY TO ZERO.

RETURN .

NEW CASE.

COMPUTE BODY PRESSURE AT MI - 1.

COMPUTE BODY PRESSURE AT MI.

COMPUTE P90.

IS P90 < 1.0 ?

REQUIRE P90 \geq 1.0

IS V POSITIVE AT THE FIRST NODE ABOVE THE BODY AT THE END OF THE LAST SEGMENT ?

WHAT IS THE SIGN OF THE PRESSURE GRADIENT ?

FINE NODAL SPACING REQUIRED.

COARSE NODAL SPACING ALLOWABLE.

WILL An BE > 0.2 ?

REQUIRE $\Delta n < 0.2$

SAVE THE VALUE OF MAXN

COMPUTE BODY GEOMETRY FOR THE NEXT SEGMENT.

ERROR SENSED IN SUBROUTINE GEOM ?

240

NO ERRORS.

ESTABLISH NODAL SPACING ACROSS THE SHOCK LAYER.

TRANSFER THE VALUES OF THE FLOW PARAMETERS AT THE END OF THE PREVIOUS SEGMENT TO THE I = 1 LOCATION IN THE ARRAY, V.

COMPUTE INITIAL CONDITIONS FOR OTHER NODES.

RETURN.

END OF SUBROUTINE RESET.

		- N. 1
	SURPOUT THE WERET	1 17250
~		17557 2
-	THIS POUTINE SETS UP THE TRITTIAL DATA FOR ALL SECMENTS	7 7722C
^	TELES LAE LINCA"	225FT 4
^		DESET 3
	00"47" /1/ V(15,49,4),7(49,4),P(3,49)	PREFT S
		PESET 7
	CONNIN NAN ABRE MA TAL' NOXA NN' WMIN	P TJ275
	77"M7" /4/ TOLM(7), K3F74, 1(4), KSEG	DESET O
	201404 / J/ DEL (5)	7177356
	COMPNY /2/ EC(7)	11 T173C
	00MM3V /0/ ISEC, 394(2), K75PC, 5N0SE	2ESET 12
	COMMIN /11/ MAYT, ISTOR, TTO, TTHE	DESET 13
•	COMMON ATUPUTA SAML. AMACHI, THETO, ZON, TOPIT (2), PI, OHOL PN, AMUR.	TI FRESET 14
	POP(P), TOP(6), INTAD, OTAP, NODT, NOASE, METLE, MSES, TOFOM, NOCOM, NTAE	DE 55 T 15
	COMMON VOONSTV DUMM (3)	DECET 15
	רפס, כדב ואבסיו ייראיירה	71 T127C
	PFAL NS. 4. 47550	DECET 19
	T * 1 T P = 7	DECET 10
	*******	95557 21
	11-1	2555T 24
	TE (1747. NE.) 50 TO 4	25557 22
	CALL SKT > (INT 12. 1)	25557 27
	77=PS(MT)	35557 34
	74LL THTAPE (1.1317P)	25 C C T 25
	TF ([5100) 1.7.7	25555 22
1	OFTION	25557 27
>	DO 7 T=1.M1VT	2555T 235
т	WS(T)=0.7	25557 25
	C1 C1 C1	25557 70
4	T=MT-1	25557 34
	CALL STATE (1.1.1)	
	111 TTATE (NT. 2.1)	7707777
	[7] = 7] / (1, 3+ 1 N(1) + 11 N(2))	
	IF (290-1.1) 5.5.5	3-5657 7-
Γ,	P37=1.7	DICET I
6	TE ("(MT. 2. 7) (T. 1. 1) GO TO 3	2 SET 30
	15 (7(7,1)-7(1,1)) 7,8,8	DECET TO
7	77=0.157/3895=	0.007 10
		25557
a	77=1,1/31285	21 41
3	TE (77, 37, 1, 2) 77=0.7	21 41
	197 = 14 KN	5.611 47
	C311 (FE34 (TST)	5.cr ; 4.
	TE (ICTOD) 1.1.1.1	31911 44
• -	2011 HUTCH INCIMIN TOT YET 77 NETN	Je er 1 44
•	20 44 H-4 WAVA	DESET 45
		36 2F . 71
	1/ (* . ··· /) - · / (T C T . · · · · · · · · · · · · · · · · · ·	DECET 44
• •		35 CC4 43
	ባሬ ር	SECLA 24
• •		DESET 51
•	$\gamma = 1 + \gamma = 1$	>=5=1 5>
	、 /	3:5LT 57
		JESET 54
		3" CFT 3"

LTSTINC 1.

18. SUBROUTINE RESTART

A. PURPOSE

This subroutine recovers data stored on magnetic tape to restart an unfinished case. Since it is difficult to estimate the computation time required for a particular problem, this capability is necessary. Should the job be terminated prior to completion, computations can be resumed with very little loss of computer time. The magnetic tape is searched for the correct case, the case data input is read and files are skipped until the flow field data for the last completed segment is read. Computations resume for the next segment.

B. VARIABLE LIST

Variables previously defined in the description of the main program have been omitted from this list.

J - variable read from magnetic tape. A negative value indicates the end of a case.

L - array containing all integer variables in COMMON block /INPUT/.

M - dummy variable in a subroutine call statement.

C. FLOW CHART

ENTER SUBROUTINE RESTART.

SAVE CASE DATA VARIABLES WHICH ARE TO BE CHANGED FROM THEIR VALUES ON TAPE.

IS THE UNFINISHED CASE THE FIRST ONE STORED ON THE TAPE ?

DO LOOP TO SKIP ALL CASES PRIOR TO THE UNFINISHED CASE.

READ END OF CASE INDICATOR.

WAS THIS THE LAST FILE OF THE CASE ?

SKIP END OF FILE MARK AND RETURN TO 1 TO READ ADDITIONAL FILES.

LAST FILE IN THIS CASE.

SKIP END OF FILE MARK.

CORRECT CASE HAS BEEN LOCATED.

READ CASE DATA AND CONSTANTS FROM TAPE,

SKIP FILES TO THE ONE CONTAINING THE LAST SEGMENT COMPLETED.

ULISTING . C

SURROUTINE DESTART

12

CCC

THIS POUTINE READS THE DATA FROM TAFE TO RESTART AN UNFINISHED CASE.

V(15,43,4),0(40,4),P(3,40) ICUM (21, KGEOM, A (6), KSEG , TIME MAXTT, ISTOP, ITD INPUT/ F(13), L(15) SKTP (INTAP, NFILE) SEC. DUM (4) CONST / DUMM (5) CC CALL SKIP (INTAP,1) SKIP. (INTAP, 1) 42X (6) SKIP (INTAP,1 G (105) JEL (5) INTAPE (1,M) (1) 53 INTAPE (1,M) F (N3455.E0.1) INTEGEP OTAP CATNI) J) 7,2, 111 11 NCASE=L (10) NFTLE=LT11) 141 I=1,N L (10) = NCASE (II) =NFTLE 121 ic' 151 (1) J=011 5 5 L (7) = TNTAD GTAP=L (S) (8)=UTAD V=NCASE-1 NCMMOD COMMON NOMMOU NOMMOS COMMON NCMMUU NUMHUU NOMMOU NOMMOU NUMMUC 112)=1 Nantaa P) C CALL 2FAD SALL CALL CALL ິຍ LAL. Li

END

0 S S S S 12 JC 12535 2E ST 1 95571 7525 1235 ITS 39 PCST DE STO 2851 QEST ! PESTI REST REST 2FSTI REST AFST RESTI REST RESTI DE ST 1 REST REST 20.51 REST REST RECTI PESTI 35 ST 1235 JISSO REST PEST. RESTI 97STA REST 2FST1 25.57

247

19. SUBROUTINE SHOCK

A. PURPOSE

This subroutine performs all computations for nodes at the shock using the method presented in section IV.

B. VARIABLE LIST

Variables previously defined in the description of the main program have been omitted from this list.

> - weighting function, equation (45). A - sound speed at the node defined by N. AA AE at the node defined by N. ANS $-W_{e}\Delta r$ - average of the sound speeds at points 2 and 4 (Fig. 4). AS' ATSTAG- Assigned a value of 2.0 at the symmetry axis, and a value of 1.0 at all other points. AX at the node defined by N. - value of A at the shock. Al - sound speed at point 2 (Fig. 4). A2 - sound speed at point 4 (Fig. 4). A4 - weighting function, equation (46). B B1 . - value of B at the shock. - difference in η between the node defined by N and other points DE at which interpolation is required. - distance parallel to the shock, used to compute A and B. DS - intermediate value of DS, used to ensure that DS is non-zero. DSO DTZ-- Ar/2 - dummy variable used for intermediate computations. DUM - difference in ξ between the node defined by N and points at which DX interpolation is required. N - NP-1 - number of nodes across the shock layer. Identifies the node at NP the shock. NM - NP-2 NPLUS - distance between points 2 and 4 (Fig. 4). PE at the node defined by N. $\frac{\partial r}{\partial F}$ at the node defined by N. PX

P2	- pressure at point 2 (Fig. 4).
P3	- intermediate value of P2.
P4	- pressure at point 4 (Fig. 4).
RE	$-\frac{\partial \rho}{\partial \eta}$ at the node defined by N.
RHO	- average of the values of ρ at points 2 and 4 (Fig. 4).
RX	$-\frac{\partial \rho}{\partial F}$ at the node defined by N.
RO	- value of ρ used to compute A.
UE	$-\frac{\partial U}{\partial \eta}$ at the node defined by N.
UU	- U at the node defined by N.
UX	$-\frac{\partial U}{\partial F}$ at the node defined by N.
UO	- value of U used to compute A.
V1	- free-stream value of U.
U 4	- value of U at point 4 (figure 4).
VE	$-\frac{\partial V}{\partial \eta}$ at the node defined by N.
VV	- value of V at the node defined by N.
VX	$-\frac{\partial V}{\partial F}$ at the node defined by N.
VO	- value of V used to compute B.
V1°-	- free-stream value of V.
V 2	- value of V at point 2 (Fig. 4).
V 4	- value of V at point 4 (Fig. 4).
WSH	- local shock velocity.
ZZ	- dummy variable used for intermediate computations.

COMPUTE FREE STREAM VELOCITY COMPONENTS PARALLEL TO AND NORMAL TO THE SHOCK.

COMPUTE SOUND SPEED AT N.

δρ δη AT N.

 $\frac{\partial P}{\partial \eta}$ AT N.

1

au AT N.

av AT N.

<u> ap</u> at N. δε

 $\frac{\partial U}{\partial \xi}$ AND $\frac{\partial V}{\partial \xi}$ AT N.

an AND av AT M.

an AT N.

U AND V'AT N.

COMPUTE V AT THE SHOCK.

STORE P AT THE SHOCK.

STORE P AT THE SHOCK.

COMPUTE a AT THE SHOCK.

3

COMPUTE X.

STORE X.

COMPUTE $\Delta \xi$ AND $\Delta \eta$ BETWEEN X. AND THE POINT (I,N)

COMPUTE a AND V ...

COMPUTE NEW X.

IS THE DIFFERENCE BETWEEN SUCCESSIVE VALUES OF X TOO LARGE ?

EQUATION (49)

ca⁴

DO TWO SUCCESSIVE VALUES OF SHOCK PRESSURE AGREE WITHIN THE ALLOWED ERROR ?

AVERAGE THE TWO VALUES.

IS THE SHOCK PRESSURE < 1.0 ?

SOLVE RANKINE-HUGONIOT RELATIONS.

COMPUTE NEW VALUE OF NPLUS.

END

COMPUTE S AT THE SHOCK.

50

RETURN.

D. LISTING

~	SUPPOUTTNE SHOCK (ATSTAG)	SHOCK	1
<u>_</u>		SHOOK	>
ĩ	THIS PADILINE TREATS THE SHOCK NODES USING THE METHOD SUGGESTED	SHOCK	3
2	AV MUSETTI AND ABBETT, ATAA J. NC. 4, 2136-2141 (1956).	SHCCK	4
<u>را</u>		SHCCK	5
	JUMP 14 /1/ V(15,4),4),9(4),4),P(3,4))	SHUCK	6
	COMMON / 7/ DE(15), ZB(15), TH(15), CTH(15), K(15), NS(15), NS(15)	SHCCK	7
	COMMON /T/ MEXT, WI, IMIN, ND, N, NM	SHOCK	- 5
	19MM9N /5/ 9XI,0ET,9X2,9F2,8T	SHCCK	9
	COM JN /5/ 01, VS1, HT1, A1, 91	SHCCK	1)
	COMMON /7/ I,IC,IM,L,LP,LM	SHOCK	11
	COMMON /A/ RX,UX, XX, AX, KEAR, C20	SHOCK	12
	COMMON /12/ DEET, COEL, SOEL, TOEL	SHOCK	13
	COMMON /INPUT/ GAM1, AMACH1, THETC, ZRN, TOPIT(2), P1, RHC1, RN, AHUD, T1	FSPOCK	14
	* > (?), IPR (6), INTAP, OTAP, NCPT, NCASE, NFTLE, NSEG, IGFCM, NGEDM, NTAP	SHCCK	15
	COMMON /CONST/ PI,PI2,GAMA,GAME	SHOCK	16
	PEAL NS, <, KAP, NPLUS, KAAR	SHCCK	17
	77=C9ET+TH(I)	SFCCK	15
	J1=01+COS(ZZ)	SHCCK	19
	V1=0L*SIN(ZZ)	SFCCK	23
	44=VSOUND(P(L,N),V(I,N,1))	SHCCK	21
	pr=(?(L,NP)-P(L,NH))/JF2	SHCCK	27
	?E=(V(T,NP,1)-V(I,NM,1))/DE2	SHOCK	23
	UF=(V(T,NF,2)-V(T,NM,2))/DE2	SHECK	24
	VE=(V(I,NP,3)-V(I,NM,3))/DE?	SHCCK	25
	PX=(P(LP+N)-P(L4+N))/DX2	SECCK	25
	ZZ=UX	SHOCK	27
	UX=77+COFL-VX+SOEL	SECCK	25
	VX=VX#JDEL+77#SDEL	SHCCK	29
	27=UF	SHECK	30
	US=77+00EL-VE+SDEL	SECCK	31
•	VF=VE#CDFL+Z7#SDFL	SHOCK	32
	AF= (VSOUND (P(L,NP), V(T, HP, 1)) - VSCUND (F(L, HM), V(I, NM, 1)))/DE?	SHCCK	33
	UU=V(I,N,?)*CCEL-V(I,N,3)*SCEL	SECCK	34
	VV=V(I,N,2)#S0EL+V(I,N,3)#C0EL	SHOCK	35
	V2=V(I,NP,2) #SCEL+V(I,NP,3) #CCEL	SECCK	36
	PP=P(L,NP)	SEDIK	37
	DT2=7.5*DT	SHECK	38
	P?=V(T, NP, 1)	SHOCK	39
	42=VSOUND (P2, 72)	SHOCK	41
	4NS=NS (I) +D+	SHOCK	41
	DUM=445-(V2-62) +0T	SHOCK	42
1	1°LUS=701	SHOCK	47
	72=NPLUS*CDEL	SHOCK	44
	<\$P=1.]- 4R+(NS(I)+Z7)</td <td>SHCIK</td> <td>45</td>	SHCIK	45
	7x=NPLUS#SDEL/K4P	SHOCK	46
	DE=DET+72/NS(1)	SHOOK	47
	44=84+4F+DE+6x+DX	SFOCK	44
	V4=VV+VF=BE+VX=DX	SFUCK	49
	DUM=4HS-(V2-82+V4-44) #DT2	SHCCK	50
	ZZ=NPLUS+DUM	SHCCK	51
	IF (22+77.GT.ERR(1)+DUM+DUM) 50 TO 1	SHOCK	52

P4=P(1,1)+PF#0F+DX#0X שהתיאבני שרויבצי U4=U1+UFFBE+UXFDX 1XL*05X*10°L-20-=.50 125=13-151 DA=023+0JEF1K#= 15=1=+15#50=L/NS(I) 111=111+115#75+614#74 13=VV+VE*DE+6X*3X P=V(1,4.1)+=E+3E+2X+PX 1=(24+(114-00)+64+(24-20))/05 7=94+(84-83)/05 4=(4+44/24+41+32/22)+415746 n=n+31 PHA=7.5*(P4+92) 15=1.5=(44+42) 77=04+(V7-V4+(E-4)+0T2)+RH0+A5 77=07/22-1.3 IF (77+27.LT. 50 (7)) 50 10 3 P?=3.5*(??+03) TF (P2.LT.1.3) GC TC 2 CALL PANHUG (11, P7, 47, 454, 97) 17=151117 (27, 37) 77=445 SHS=434FAT DUM=UPLUR+ANS-77 50 Th 1 V?=V1 P7=1.3 70 4 M=1.4 1 2 V(I4, 4P, 4)=3(10, 4) CALL PANHUG (V1, P3, V2, WS(I), 9(NP, 1)) 9(NP, 2) = Y24505L+V1#C75L 7 ("P, 3) = V2+005L-U1+50EL ~ ("P, 4) = ENTROS (P7, 7 (NP, 1)) ייכנידיכ END

2

7

24

2

SHOCK 57 SEDOK 54 SHOCK 55 SHOCK SE 5+034 57 SHOCK 5P SHOCK 59 SHOCK 61 SHOCK ST SHCEK 62 SHC04 67 SHOCK 64 SHOCK 65 SHOCK 66 SHCCK 67 SHOCK 69 SHOCK 69 SHOCK 71 SHOCK 71 SHOCK 72 SHOCK 73 SHOCK 74 SECCK 75 SHOCK 75 SHOCK 77 SHOCK 79 SHORK 19 SHOCK BT SHOCK 31 SHOCK 32 SHCCK 83 SHOCK 34 SLOCK AS SHOCK BE 54074 37 SHOON DA SHOCK BA SHOCK 91

.

.

20. SUBROUTINE SKIP

A. PURPOSE

This subroutine has been included to isolate a call to a CDC machine routine which skips files on a magnetic tape. This machine routine requires a Hollerith argument which might not be accepted by the equivalent routine available to the user. Provisions for skipping files only on tapes 1 and 2, have been provided. This could easily be generalized to apply to other tape numbers.

B. VARIABLE LIST

NTAP - magnetic tape unit number. NSKIP - number of files to be skipped.

ENTER SUBROUTINE SKIP.

IS NTAP = 2 ?

SET ARGUMEET TO SKIP FILES ON TAPE 1.

SET ARGUMENT TO SKIP FILES ON TAPE 2.

SKIP NSKIP FILES.

RETURN.

END OF SUBROUTINE SKIP.

ð

ĥ -SA œ σ 5 11 10 £ SKIP SKIP SKIP **dI** XS SKIP SkIP SKIP SKIP SKIP **dI XS** SKIP dI XS 3125 THIS IS A DUMMY ROUTINE. IT IS USES A COC MACHINE POUTINE to skip files cn a magnetic tape unit. Ntap=tapf nummer, nskip= numbe? of files to af skipped. SURROUTINE SKIF (NTAP, NSKIP) FILE=5LTAPE2 34LL SKFILE (FILE,NSKIP) 24LURN End **4**-1 IF (VTAP.EQ.2) 60 T0 File=5Ltapei 60 10 2 -nconc

D. ITSTING

21. EQUATION OF STATE ROUTINES

A. PURPOSE

These routines provide the required equation of state computations. Perfect gas equations of state are used. Real gas properties could be incorporated into the various routines. The routines available are:

SUBROUTINE STATE - computes the sound speed from values of density and entropy.

FUNCTION VSOUND - computes the sound speed from values of density and pressure. $\space{0.5mm}^{\diamond}$

FUNCTION TEMP - computes the temperature from values of density and pressure. Used only for printed output.

FUNCTION HSP - computes the enthalpy from values of density and pressure. Used only for printed output.

> FUNCTION ENTROP - computes the entropy from values of density and pressure. SUBROUTINE RANHUG - solves the Rankine-Hugonoit relations for the shock.

B. VARIABLE LIST

Variables previously defined in the description of the main program have been omitted from this list.

- ENTROP entropy.
- HSP enthalpy.
- MDOT mass flux, m
- P pressure.
- P2 pressure behind a shock.
- RGAS gas constant.
- RHO density.
- RHO2 Density behind a shock.
- TEMP temperature.
- VSOUND sound speed.
- V1 free-stream velocity component normal to the shock.
- V2 velocity component normal to the shock and behind the shock.

C. FLOW CHART

END OF SUBROUTINE STATE.

ENTER FUNCTION VSOUND.

COMPUTE SOUND SPEED.

RETURN.

END OF FUNCTION VSOUND.

ENTER FUNCTION TEMP.

COMPUTE TEMPERATURE.

RETURN.

END OF FUNCTION TEMP.

ENTER FUNCTION HSP.

COMPUTE SPECIFIC ENTHALPY.

RETURN.

(END)

END OF FUNCTION HSP.

ENTER FUNCTION ENTROP.

COMPUTE ENTROPY.

RETURN.

- #

>

END OF FUNCTION ENTROP.

¹⁾ ENTER SUBROUTINE RANHUG.

COMPUTE m.

° C

COMPUTE V AT THE SHOCK.

COMPUTE W.

COMPUTE o AT THE SHOCK.

RETURN .

END OF SUBROUTINE RANHUG.

FUNCTION HSP (F, RHO) HCE HCD THIS POUTINE COMPUTES THE STATIC ENTHALOW USING & PERFECT GAS PELATICH (USED ONLY FOR PRINTCUT). HSP HSP HSP COMMON /INPUT/ GAM1 HSP HSP=5441+P/((5441-1.))+RH9) HSP PETUDN нср FND HCD

FUNCTION TEMP (P.RHD). TEND 1 TEND 2 THIS POUTINE COMPUTES THE TEMPERATURE USING A RERECT GAS RELATION (USED ONLY FOR PRINTOUT). TEND 7 TCHO 4 TEMP 5 COMMON /CONST/ PI,PI2, GAMA, GAMP, REAS TENE F. ********************** TCHO 7 יירוידשכ TEND 5 C Yn TEMD ņ

VSCUN 2 THIS PHITINE COMPUTES THE SOUND SPEED USING THE DEPERT SAS VCLIM 7 PELATTON. VSCUN 4 VECUN 5 COMMON / THPUT/ GAM1 VSCUN 5 4501147=5381 (GE#1+P/RHD) PU22V 7 PETURN .A.COH 9 FHIL VECUN. 9

USING A PEPEET GAS EQUATION RE-STATE.		STATE	14
•		STATE	5
^^ **?* /1/ V(15,47,4),5(47,4),P(3,47)	~	STATE	Ę
COMADM / TNOUT/ 64M1		STATE	7
00 1 H=1 . MAN		STATE	3
<pre>>(L,')=(Y(I,N,1)**GA™1)*FXP(V(I,K,4))</pre>		STATE	à
or thán		STATE	11
C YO		STATE	11
1			

1

2

7

1

1

2

3

4

5 5

7

8

9

VSCUN

	CUPONITTRE STORE (I,L,MAXN)	STATE
•		STATE
	THIS POLITYE TOMPLITES POESSUPE, GIVEN DENSITY AND ENTODOY,	STATE
	USTNO A PEPEET GAS EQUATION OF STATE.	STATE
•		STATE
	00 MOV /1/ V(15.41.4).0(41.4).0(3.41)	STATE

- LISTING

ſ

1

200

0

¢

С

0000

r,

ń.

0

0

FUNCTION VSCLAS (P, PHC)

FUNCTION ENTRES (P.RHO)	S	FNTPO	1
		ENTPO	2
THIS ROUTINE COMPUTES THE ENTROPY. GIVEN THE EPESSUPE	ANJ	ENTRO	3
DENSITY. USING A DERFECT GAS FOUNTION (USED IN SHOCK).		ENTPO	4
		ENTON	5
COMMON /INPUT/ GAMI		ENTRO	6
FNTPPP=ALPG(P)-GAMI#ALCG(QHC)		ENTPO	7
PETURN		ENTPO	
EN0		ENTRO	9
		PANHI	1
STHADULINE RANFOR (ATTAC) ACONTHUCCI		PANHI	2
THTO DOUTTHE COLVES THE DANATHE-HUGCNIGT DELATIONS FOR	2	ZANHU	3
HANNAL CHOCK ICTNC DEDEECT CAS DELATIONS .		RANHU	4
The set of		SANHU	5
COMMON ACCHETA OT DIZ CANA CANA		ZANHU	6
CAL MOAT		RANHU	7
HOT-SODT (CARABO2+CAND)		RANHU	8
		RANHU	9
		RANHU	11
$w = v_1 - v_1 v_1$		PANHU	11
		PANHU	12
5 1 U T T		RENHU	13

c c c c

с с с

SECTION VII

COMPUTER CODE USER'S INSTRUCTIONS

1. INPUT DATA

The computer code provided in section VI performs most of the decision making and scheduling required to apply the numerical method developed in section IV. Since a certain degree of uncertainty is always involved when applying a timedependent method to the blunt body problem, a very general input capability has been incorporated. Should the internal logic or empirical constants prove inadequate for a particular problem, the user has several options available to over-ride the internal logic with direct input parameters. It should be noted that the internal logic has been adequate for all problems considered in this study. To avoid unnecessarily complicated data input while retaining the general input capability, all problem constants, empirical constants and control variables/ are loaded by a sorting routine, SUBROUTINE DATA. These data will be referred to as case data variables. An aribtrary number of these variables may be input in any order. The principal advantage of this data loading procedure is that initial resident values supplied for most of the case data variables by a DATA statement in the main program can be used. Consequently, the case data input required is usually quite brief, typically 2 to 4 variables, while up to 23 variables can be input if necessary. Case data input is also simplified for multicase runs, since only variables whose resident values are to be changed need be included in the case data input. Some caution is required when relying on resident values from a previous case. The computer code accomplishes numerous error checks while loading the input data. When an error is sensed, the case under consideration is terminated with a printed error message and a search for the first data card of the next case is initiated. This will usually salvage a multicase run, but some case data variables may not have been loaded. Thus, reliance on a resident value loaded in a previous case could result in solving the wrong problem. Since the case data input is usually quite brief, some repetitions of data input for subsequent cases is advisable on long multi-case runs. Also, when relying on resident values from a previous case, the user must be aware of the source of these values. Usually, the resident values originate from the DATA statement mentioned previously and card input. However, under certain options described later in this section,

many case data variables are loaded from magnetic tape. When sphere-cone vehicles are to be considered, the case data completely specify the problem. Other body shapes are considered by inputting body geometry data. Basically, this data consists of values of r, z, Θ and K at points on the body surface. The body geometry data input is described in more detail later in this section.

2. CASE DATA INPUT

The computer code first loads the case data in SUBROUTINE DATA. The case data packet organization is as follows:

First card: FORMAT (8A10)

Field 1 (columns 1-10) - the word TITLE, left justified in the field. This signals the start of the case data.

Fields 2-8 (columns 11-80) - an alphanumeric title which will appear on the printed output.

Cards 2, 3, . . . : FORMAT (A10, E10.4, 6110)

Field 1 (columns 1-10) - the variable name, left justified in the field. The order in which variables are input is arbitrary.

- Field 2 (columns 11-20) the value of the variable if it is floating point form.
- Field 3 (columns 21-30) the value of the variable if it is integer form.
- Fields 4-8 (columns 31-80), 10 per field) additional integer values for the dimensional variable, IPR(6).

Last card: FORMAT (A10, E10.4, 6110)

Field 1 (columns 1-10) - the word LAST, left justified in the field. This signals the end of the case data.

The complete list of case data variable names and their definitions will now be given. An (I) and (F) will be used to signify integer and floating point variables, respectively. Initial resident values will be specified when they have been provided.

M

- (F).

- >0 free-stream Mach number.
- <0 free-stream velocity. The absolute value will be used with the values of Pl and RHO1 (below) to compute the free stream Mach number. Consequently, the units of these 3 variables must be compatible.</p>

- Z/RN (F). Specifies the body geometry option to be used. Initialized to 0.
 >0 Specifies the axial length, in nose radii, for a sphere-cone vehicle. No body geometry data will be read.
 - ≤ 0 Arbitrary body geometry data will be read.
- THETA (F) cone half-angle (degrees). Used only when Z/RN>0.
- GAMMA (F) ratio of specific heats. Initialized to 1.40.
- NTAP (I) specifies the type of initial conditions to be used. Initialized to 0.
 - >0 initial shock shape assigned close to the body and at a constant distance from the body. Used to model a transient flow essentially starting impulsively from rest. Should not be used when NSEG >1.
 - =0 initial shock shape selected empirically. Attempts to approximate the steady state shock shape as the initial profile.
 - =1 restart option (discussed below).
 - =2 load option (discussed below).
- MAXIT (I). specifies the iteration procedure to be used. Initialized to -1.
 - <0 steady-state solution using equation (63) and the requirement that the non-dimensional shock velocities be $<10^{-3}$ as criteria for a steady state.
 - =0 no iterations are performed, but a complete printed output is provided. Useful for checking initial conditions or for obtaining dimensional output for a completed case.
 - >0 specifies the number of iterations to be performed for all segments. This option is required when NTAP=2.
- NSEG (I). specifies the number of segments to be considered. Must be input when the body geometry is read in. A value greater than 0 will over-ride the axial length specification provided for the spherecone vehicle option. Normally should be ≤0 for this option. Initialized to 0.
- IPR (I).-dimensional variable providing up to 6 additional printed outputs. Since a printed output is provided after the last iteration, specifying that iteration number here will give 2 identical printed outputs and should be avoided. A negative value, or a value less than a preceding value will suppress further printed output except for the final. IPR(1)=0 will result in printing the initial conditions. All values initialized to -5.

- MAXIT 0 iteration numbers, in ascending order, at which printed outputs should be provided.
- MAXIT=0 no effect

P1

- MAXIT<0 numbers between 0 and 10, in ascending order, specifying times when additional printed outputs should be supplied, where a value of 10 corresponds to the predicted time for steady state generated by equation (63).
- (F).- free-stream pressure. Initialized to 1.0 (thus will give nondimensional output).
 - M>O used only to supply dimensional printed output.
 - M<O same as above plus used to compute the free-stream Mach number (see discussion of M, above).
- RHOL (F).- free-stream density. Same application as Pl and units must be compatible with Pl. Initialized to 1.0 (thus, will give nondimensional output).
- Tl (F).- free-stream temperature. Used only to provide dimensional printed output. Units must be compatible with Pl and RHO1. Initialized to 1.0 (thus, will give nondimensional output).
- RN (F).- all length parameters are multiplied by this scale factor to provide dimensional printed output. Units are arbitrary. Normally, RN would be equal to the radius of curvature at the stagnation point. Initialized to 1.0 (thus, will give nondimensional output).
- MU (F).- constant, μ_0 , in equation (62) specifying the magnitude of the stabilizing terms. Initialized to 0.04.
- MAXI (I). specifies the number of nodes to be used per segment in the streamwise direction. A value >0 will over-ride other possible specifications for this quantity (see body geometry data for an exception). Normally, an empirical specification (sphere-cone vehicles) or a specification supplied in the body geometry input would be used. Initialized to 0.
- MAXN (I). specifies the number of nodes to be used across the shock layer. A value >0 will over-ride all other specifications of th ; quantity and the empirical specification generated by the computer code. Normally, this specification is not used. Initialized to 0.
 INTAP - (I). specifies the magnetic tape unit number to be used for input of initial conditions. Used only for NTAP>0. See discussion of

tape handling, below. Initialized to 2.

- OTAP (I). specifies the magnetic tape unit number to be used for storing the completed solutions for all segments. See discussion of tape handling, below. Initialized to 1.
- NCASE (I). specifies the case number to be used in supplying initial conditions, where the cases are considered to be numbered in ascending order starting with 1 as they apear on the tape. Used only when NTAP>0 (see discussion of Restart and Lead options). Initialized to 1.

NFILE - (I). must be equal to 1 unless NTAP>0. Initialized to 1.

- NTAP=1 : Specifies the number of the last segment completed for an incomplete case. Restart initiates on the next segment.
- NTAP=2 : Specifies the segment number at which computation should start. All segments following this one will also be treated.

TCRIT1 - (F). constant, C_1 , in Equation (63). Initialized to 2.0.

TCRIT2 - (F). constant, C₂, in Equation (63). Initialized to 10.0.

ERRORN - (F). convergence criterion for the iteration on n in the shock point computations. Initialized to 10^{-5} .

ERRORP - (F). convergence criterion for the iteration on P in the shock point computations. Initialized to 10^{-8} .

3. BODY GEOMETRY DATA INPUT

The body geometry data are loaded by SUBROUTINE GEOM when the case data variable Z/RN ≤ 0 . These data cards are arranged in packets, one for each segment considered, and are supplied immediately after the case data cards. An exact specification of the body geometry at each point for the present coordinate system is supplied by values for r, z, θ and K. It is recognized that not all of these parameters will be known for some problems of interest. However, it has been left to the user to select approximate numerical techniques for generating these parameters when necessary. This computer code supplies an exact solution for known body geometrics. Since explicit expressions for arc length are seldom available, even for analytical body profiles, numerical procedures have been incorporated to generate the required parameters at equal spaced intervals along the body, based on their values at a representative series of points. For example, it is easy to define all of the required parameters at any point on an ellipse, but considerably more difficult to compute their values at equally spaced intervals along the body. Since the geometry specifications for the representative series of points are exact, extremely accurate numerical integrations and interpolations are possible to obtain the equal spaced data. When computations start at a segment other than the first, NTAP>O, all body geometry data packets can be included. The computer code skips the data for all segments up to the one at which computations start. Specifications for the number of nodes to be used along each coordinate direction can be specified for each segment considered. An initial shock shape can be read in. This option has been included since the user could encounter a problem for which the empirical relation used to generate initial shock shape is inadequate. The required parameters can be input at equal spaced intervals along the body, for direct use in the numerical solution, or at a representative series of points on the body. Each body geometry packet is arranged as follows:

Card 1 : FORMAT (5110, 2E10.4, A10)

Field 1 (columns 1-10) - M. The segment number.

- Field 2 (columns 11-20) NPTS. The number of data cards to follow for the current segment. If no additional specifications for the number of nodes to be used along the body are provided, the value of NPTS will be used as this specification. Also, see field 7 of this card.
 - Field 3 (columns 21-30) MAXI. The total number of streamwise nodes to be used. Specifications of this variable in the case data will over-ride the present input. Also, see field 7 of this card.
 - Field 4 (columns 31-40) IP. The number of nodes to be used across the shock layer. Specification of MAXN in the case data will over-ride the present input. If no specification for this parameter is supplied, the computer code will determine one empirical based on the variable input into field 6 of this card.

Field 5 (cloumns 41-50) - KSH.

- KSH = 0. Empirical relations used to determine initial shock shape.
- KSH ≠ 0. Initial shock shape supplied on the following data cards.
Field 6 (columns 51-60) - BNOSE. A nose bluntness parameter. Used to establish the nodal spacing across the shock layer when it is determined empirically. The usual definition applies, e.g., for an elliptical nose BNOSE is the ratio of the semi-major axes squared. A value ≤ 0 is ignored. For each case, BNOSE is initialized to 1.0. For downstream segments where nose bluntness effects have damped out, BNOSE should be set to 1.0. Field 7 (columns 61-70) - DX2.

> $DX2 \leq$ - The body geometry data to follow will be specified for a representative series of body points, not necessarily equally spaced along the body. Numerical procedures will be used to obtain equally spaced data.

DX2 >0 - The body geometry data to follow will be specified for points equally spaced along the body with a nodal spacing equal to the value read in this field. The number of streamwise nodes to be used will be established by the value of NPTS. Other specifications for this parameter will be ignored. Thus, the body geometry data will be used directly in the numerical solution.

Field 8 (columns 71-80) - 22. Any entry into this alphanumeric field will signify a discontinuity in body curvature at the upstream boundary of the segment. In this case, the body geometry data on card 2 will be identical to the data on the last card for the previous segment, except for the new value of body curvature. If this field is blank, no data for the upstream boundary should be input since all parameters will be saved from the previous segment.

Cards 2, 3 . . . , (NPTS+1): FORMAT (8E10.4)

- Field 1 (columns 1-10) RB(I). The body radius, measured normal to the symmetry axis, for the 1th point.
- Field 2 (columns 11-20) ZB(I). The value of Z, measured from the stagnation point along the symmetry axis, for the Ith point.
- Field 3 (columns 21-30) TH(I). The angle, Θ , between the symmetry

axis and a tangent to the body for the Ith point.

TH(I) >0 - units are degrees.

TH(I) <0 - units are radians.

Field 4 (columns 31-40) - K(I). The body curvature at the Ith point.
Field 5 (columns 41-50) - NST(I). The initial value of n at the Ith point (must be <0 when used). Ignored if KSH = 0.</p>

The above data packets are repeated for each segment, 1 to NSEG. The maximum values of NPTS and MAXI (Fields 2 and 3 of Card 1) are limited by the dimensioned variable sizes (currently 15 streamwise nodes are available). MAXI must not exceed this value since it includes the additional downstream node used for linear extrapolation and, for segments other than the first, a node for the constant upstream starting line. In establishing NPTS, more care is required. When $DX2 \leq 0$ (card 1, Field 7), the total number of body geometry data points (including the upstream boundary point for segments other than the first) must not exceed 15. When DX2 > 0, the value of MAXI will be established from NPTS. Therefore, the total number of body geometry data points (including the upstream boundary point for segments other than the first) must not exceed 14. That is, all body geometry points input will be actual computation points. Thus, an additional point will be required for the linear extrapolation at the downstream boundary. Should the user exceed the dimension sizes, the case will be terminated with a printed error message.

4. MAGNETIC TAPES

The computer code employs two magnetic tape units. The tape unit number specified by the case data variable INTAP is used as the source of initial conditions when NTAP >0. The tape unit number specified by OTAP is used to store the flow field data for each segment as soon as the solution at that segment is completed. The computer code rewinds tape unit number INTAP immediately after loading the case data. Tape unit number OTAP is never rewound by the computer code. Thus, for multi-case runs, the 2 tape unit numbers normally should not be equal. However, when NTAP ≤ 0 , the computer code does not treat this situation as an error since it is often useful to have INTAP = OTAP. When NTAP >0, the computer code terminates the case if the following restrictions are violated:

NTAP = 1 : Requires INTAP = OTAP NTAP = 2 : Requires INTAP **#** OTAP

5. RESTART OPTION

When the case data variable NTAP = 1, the computer code will restart an unfinished case using the data stored on magnetic tape. The case data variables NTAP, INTAP, OTAP, NCASE and NFILE will retain the values present after the case data was loaded. All other case data variables will be read from magnetic tape for the unfinished case. As previously noted, INTAP = OTAP is required. This means the data up to and including the last segment completed (NFILE) will be skipped on the tape and the remainder of the solution will be loaded on the same magnetic tape. The option to restart an unfinished case is a necessity for a time-dependent method. When a steady state solution is being generated, it is difficult to estimate the computation time required, since it is quite dependent on the body geometry and reentry conditions. Recognizing that the computation time allotted by the user or available to him may not be sufficient, the restart option has been incorporated to prevent excessive waste of computer time.

6. LOAD OPTIONS

When the case data variables NTAP = 2, the computer code loads all initial conditions from magnetic tape unit INTAP. All data for the case up to but excluding segment number NFILE is transferred to tape unit number OTAP with no computation. As previously noted, INTAP # OTAP is required. The case data variables NTAP, MAXIT, IPR, INTAP, OTAP, NCASE, NFILE, P1, RHO1, T1, RN, MU, ERRORN and ERRORP retain the values present from the case data input operation. All other case data variables are read from magnetic tape. The above list of variables includes all of the case data variables the user can change without altering the basic problem stored on magnetic tape. The variable MAXIT ≥ 0 is required, i.e., the number of iterations to be performed on each segment must be specified. The principal purpose of this option is to allow the user to perform additional iterations on a case when a satisfactory approximation to the steadystate flow was not realized on a previous attempt. Rather than starting the case over with new values of TCRIT1 and TCRIT2, the user can use the previous solution as an initial guess for additional iterations. It should be noted that none of the cases attempted in this study required use of this option. Other applications for this option can be identified. By setting MAXIT = 0 and specifying Pl, RHOl, Tl and RN, dimensional output can be obtained from the nondimensional data stored on magnetic tape for a completed case while no iterations will be performed. Also, this option could be used to input initial conditions, should the empirical methods provided for this purpose prove inadequate for a particular problem.

7. SEGMENT LENGTHS

The choice of the length of the segment to be used can significantly affect the computation time required for the problem. The length of the first segment will, generally, be specified by the location of the sonic line, since the downstream segment boundary must lie in supersonic flow. The lengths of other segments are arbitrary. It should be apparent that the use of shorter segments will reduce the computation time required for the problem. If a segment is treated with a single computational node (MAXI = 3), the length of the segment will have little effect on the computation time. It is easily shown that this is the optimum choice for the number of nodes per segment. Even for this optimum choice, reasonably short segments are recommended to provide greater numerical accuracy. Also, should the case require more computation time than was allotted by the user, shorter segments will result in more efficient restarts. That is, shorter segments require less computation time per segment. Consequently, less computation time will be lost when a restart is necessary.

8. PRINTED OUTPUT

The computer code provides a comprehensive printed output. After the case data is loaded, the case title and all case data variables are printed. After computations for a segment are completed, and at intermediate iterations when requested by the user, complete flow field outputs are provided by SUBROUTINE DMPOUT. This printed output may be nondimensional or dimensional (see case data variables P1, RHO1, T1 and RN). The following nomenclature applies to the printed output:

TIME	-	nondimensional time.	
S.	-	streamwise distance.	
N	-	distance normal to the body, directed away from the body.	
RHO	-	density.	
U	-	streamwise velocity component.	
V	-	velocity component normal to the body and directed outward from the	e
. 7		body	
(S-S1)/CV	-	nondimensional entropy.	
P	-	pressure.	
Μ	-	Mach number.	
T		temperature.	
DH/H1	-	error in total enthalpy.	
RB	-	body radius.	
THETA	,-	θ	
к	-	body curvature.	
ZB	-	value of Z at a body point.	*

RS - shock radius.
ZS - value of z at the shock point.
WS - shock velocity, directed outward along the normal coordinate.
CP - pressure coefficient at a body point.
P/PO - ratio of the body pressure to the stagnation pressure behind the normal shock.

When the nodal spacing normal to the body is computed by the computer code, the computed number of nodes can exceed the dimension sizes of the arrays. When this occurs, the maximum number allowed will be used and a printed message will appear in the standard output. Currently, up to 40 nodes across the shock layer can be used. This number has been found to be adequate for typical problems even when the empirical relations predict that more are required. When this number of nodes is exceeded by the empirical determination, the shock layer is quite thick and the gradients of the flow parameters normal to the body are, generally, quite small.

9. SAMPLE PROBLEMS

Input data and computer outputs for 2 sample problems are provided on the following pages. The first problem considers a Mach 6 flow about an elliptically blunted cylinder with a nose bluntness parameter of 2.25. This case utilizes the arbitrary body shape option. The second case considers a Mach 4.0 flow about a sphere-cone vehicle with a cone balf-angle of 40° . The internal logic for sphere-cone geometry is used for this case. These 2 cases were run as a single multicase job.

TITLE	SAMPLE PRORL	EM 1 - ELLIPSE-CA	LINDER - B/A=1.5	1	
NSEC		3			
LAST		3			
	1 15	10	2.25		
].	0. 3.	3390E 314.4444E-0	01		
9.4533E-	321.3831E-033.	7549F+014.4592E-0	01		
1. 19035-	017.97622-034.	515 *E+014.5039E-1			
2.1361c-	011.10375-023.	2595E+014.5902E-0	01	•	
3.79155-	013.2299E-023.	0147E+014.6707E-0	01		, — .
4.7263E-	J15.3950E-027.	7513E+014.5393E-0	01		
5.0723E-	J17.4255E-027.	4755E+015.0320E-1	01		,
6.5176E-	011.9255E-017.	1954E+315.2767E-0	01		
7.55372-	011.3641E-015.	8732E+015.5849E-1	01		
3.3184E-	011.7644E-015.	5337E+015.9718E-0	01		•
3.4533E-	012.23615-016.	1579E+016.4601E-0	01		· · · · · · · · · · · · · · · · · · ·
1.33935+	012.79332-015.	7327E+017.0524E-1	J1		the state
1.1345E+	003.45792-015.	2373E+017.8872E-	91		1
1.2290E+	004.2667E-014.	6397E+018.9507E-	01		
1.3235E+	0.35.29416-013.	8550E+011.0397E+0	0 0		
	2 14	6			
1.3475E+	005.60785-013.	6254E+011.0949E+1	0 0		8
1.3696E+	905.9216E-013.	3923E+011.1299E+	0 0		
1.3495E+	006.23535-013.	1354E+311.1745E+	00		
1.4J73E4	036.54935-012.	8473E+011.2181E+	00		
1.4243E+	006.3627E-012.	6363E+011.2504E+	20		
1.439JE+	707.1765E-012.	3821E+011.3008E+	90		\bigcirc
1.472964	007.4902E-012.	1252E+311.3388E+	00		1
1.453464	997.80396-011.	867/E+U11.3/39E+			
1.473264	000.47145-011.	760464044 437654	20		
1.47145	JUD.43145-J11.	07475+041 435454	00		
1 407121	130.74912-911. 130.95845-018	071154031 675654	00		•
1 437164	119.37255-015	3877EA001 . 4800EA	20		
1.510164	111.10116+011.	1-5000E+	00		
1.77032	3 15	6		CH	ANGE K
1.510064		0.			-
1.510184	001-02565+010-	0.	9		
1.500164	041.0571E+000.				
1.50010	031.3857E+003.	0			
1.50095	071.1143E+000.	0.			
1.50000	001.1429E+000.	0.			
1.500754	JJ1.1714E+009.	. 0.			
1.500JE4	031.2003E+000.	0.			
1.500064	JJ1.2296E+999.	. 0.			
1.530364	001.2571E+993.	. 0.			
1.500364	011.28575+010.	0.			
1.57916	031.3143E+000.	. 0.			
1.300 JE	011.34292+000.	. 0.	ø		
1.570324	-JJ1.3714E+90J	. 0.			
1.519764	+031.4000E+000.	• 0.	1. I.		
TITLE	SAMPLE PROT	EM 2 - SPHERE-CO	NE VEHICLE		
3	4.3				
21514	1.4	/			
THETA	40.0	1			
NSEG		J			
LAST					. /

AFWL TIME-DEPENDENT FLOW FIELD PROGRAM FOR AXISYMMETRIC BLUNT BOJIES AFWL-TR-70-16, R.H. AUNGIER

S

CASE TITLE - SAMPLE PROBLEM 1 - ELLIPSE-CYLINDER - B/A=1.5

1.000E-05 1.000E+00 1.0006+01 ŝ 1 7 . ERRORN TCRIT2 1 PR (6) IPR(3) THETA MAXIT NTAP NSEG RN 1.000-+00 1.000c+UU 2.000c+00 2 6.000c+00 5 TCRIT1 1PR(5) IP2 (2) NFILE RH01 OTAP MAXN 11 Σ 4.000E-02 1.000E-08 1.0006+30 1.400E+00 5 5 : ERLORP IPR (4) IP9(1) GAHMA NCASE INTAP NY/Z TXAM Ş id

flmE= 2.53156+Ju

.

NUTER L LEVALION NUTER 2025

111/10				· 5 7 7 7 4 .	. 91035			.0110.		****		1H/HC	.0.0 Lu	21000.			.0.435		140-0-	1/0/0.	.0000	26000.	- 00 · ·	14/40	.0u031	- 30 J22		F 2010.	.00044	16000.	26000.	~~~~		26000.		11/10		10000		100042	.01453	F\$700	10000	01000	52000 ·		
	0+C170C+00		1-1911-+00	1.1/12-+13	5. Lojst + JU	3-12231+00	0.110 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6. Joy+ + 44	6.35126+40	1. 43326400	7.44J6c+u0	- /	5.1/136+00	0.1/202+UU	0.107JE+00	3.14 542 + 44	1.12ubt+00	3.13525+J0	4.053n++JU	4. J2 Job + 00	7.94202+00	7.9396E+UU	1.944/2+00	-	5.11<3E+00	6.101/1+JJ	00+3636+00	8-15/61+34	6.0303t+00	d.U115E+UU	7. 48236+00		7.46456+00	7-42136+00		1		2-96336+00	7.94322+00	7.31976+00 .	7.3922L+00 4	7.46076400	7.78426400 .	7.73672+00	/.6674E+U0 .	7.5790E+00 .	
5	1.211412	6-3324C-02	9.10.36-02	1.30.11-31	1.06324-01	2.2/056-01	2.00964-01	2.94396-11	3.24046-01	3.65436-41	4.44106-31	E	1.20/3-01	1.20475-01	1.44.96.41	1.9239-01	2.0/ 396-01	2.35/46-01	2.95.505-01	3.28426-01	3.03166-01	3.49416-01	4.32156-01	£	2.32/56-01	2.43096-01	2.55/94-01	2.944.25 - 01	3.1207-01	3.36456-01	3.62376-01	3-90014-01	4.5295E-01	4.87086-01	70-3/16706	E .	3.06/6L-UI	3-4490-01	4.04136-01	4.14056-01	4.30+76-01	4.6127E-01	4.60645-41 5.1340c-41	5.42576-01	5.73006-01	6.4714E-01 6.4114E-01	
d	+ + 0 40/E • 0 1	4.08136+U1	4 . UD 306 + U1	4 . 0402L + U1	10+30600+	4.57416+01	4.470A6+U1	4.41905+01	4.35156+41	4.27616+01	4.18336+01	a.	4 .0354E+01	4 • • • • 1 • • • • • •	4.0636E+U1	4.58716+01	10+36/54.4	4 • 52196 + 01	4 - 427 4F + 01	4 . 3640E+U1	4.29965+01	4.2227E+01	4.1618E+01	a	10+36605**	4.50655+01	4 • 5038E + 01	4 • 4 9 1 9 E 4 0 1	++++93E+01	4.4131E+41	4.3797E+01	4 • 3339E + 01	4.21/1E+01	4 . 1454E + 01		d	4.207024UI		4.2904E+01	4-26085+01	4 .2647E+01	4.24246+01	4.6133E7U1	+.13326+01	4.0807E+01	4.01946+01 3.4665E+01	
(S-S1,/CV		L. 407 34 444	1-4073-400	1.4.07.3.40.0	1.4073.400	1.40/36+30	1.4073.400	1.40734+00	1.4073.400	1.4.27 3. +00	1.4073_400	12-51/104	1.4073-400	nn+::60n+	1.4061.400	1.4056-+00	1.40546+00	1-40516400		1.40410+00	1.40376+00	1.40346+00	1.4030c+00	12-51/104	1.40736+00	1.40564+03	1.40401.400	1-4009-400	1-3494-400	1.39796+00	1.04446+00		1.39156+00	1.3898.+00	7 • 2 00 n - 1 n n	12-S11/CV			1.3977.+00	00+11100 -7	1-3910L+00	1.33756+00	1. 36006 +00	1.37616+00	1.3720c+00	1.36345400	
>	-1.49/3/-41	-2.21436-41	-3.30695-41	10-3-651	-5.48/5E-U1	- (- 0, 0, 0, 6-01	-8./8245-01	-4. JU43E-U1	-1.10536+00	-1.22246+00	-1.34/05+00	7	-0.	-1. 46465 -01	-3.22306-01	-4.30356-01	->. 3662E-01	-0.4802E-01	-A.71846-41	-9. 3724E-U1	-1.106UE+JU	-1.2281E+UJ	-1.3396E+00	>	- 0.	-1.05516-01	-2.13825-01	-3.19896-41	-5.33056-01	-6.406JE-U1	-7.4945E-01	-8.54675-31	-1.00996+00	-1.20986+00		>			-3.11266-01	-4.14485-01	-5.1764E-01	-6.21685-01	-4.33406-01	-9.4312E-01	-1.05536+00	-1.27946+03	
כ	•			•	•			•••	۰.	•	•	7	4. Jay 16 - J1	4.101 36 - 01	4. C 300L - U 1 4. 71 3 3 C - U 1	4.40452-01	4.49201-01	4. 594 7E = 01	4./944L-01	4.404 SE - 01	5. 30741-01	5.11446-01	j.2145E-U1	2	7.9421L-01	6.1369L-01	8. 3392E -01	8.27266-01	9. UD6/E-01	9.25756-01	9.51/36-01	10-3/88/-500 1 - 700-7- 400	1.03266+00	1.0651L+00			1.21205101	1.26425+00	1.29756+00	1.32496+00	1.36254+00	1.39426+00	1.47556400	1. > 1052+00	1.55496+00	1.54626+03	
OHO	9 • / 6 6 4 6 • 10	5./030c+04	9.h9366+UU	0.+31(+1)	5 • 5 ¢ 5 ¢ • 5 0 0	5.57496+00	5.2316+00	5.4717E+00.	2.4187E+JO	5.3515c+00	9.26 8 32+JJ	OHY	5.6/16E+J0	010126400	5.65066+40	00+363E0.4	5.000/E+JU	5-5414F+40	5.49742430	00+365+4.4	5 . 3 A62E + 0 0	5.31656+00	5.2650E+U0	0HX	5.5569E+00	5.562/E+JU	5.5566E+JU	5.55246+00	5.53052+00	5.51476+00	5.4465E+00	5.49156+30	5.35666+00	5.7001E+30	2.6236644U	RHO	00100000	5.39336+00	5.40136+00	5.40536+00	5.4037E+00	5.3970E+00	5.3662E+00	5.34106+00	5.30806+00	5.2336E+00	
-	1.13131-12	2.267ct - 12	5. 39 146 - 12		2 - 1/010 - 12 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	/ - 1191t - 12	9.05146-02	1.01526-31	1.13136-91	1 3+4+5 - 1	1.32765-01	z	d.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.41496-32	4.55496-32	5.0998t-J2	0.53485-02	9.11976-12	1. J200E- 11	1.14JUL-31	1.25406-01	1.3610E-01	z	0.	1.14/05-92	2.29405-32	4.5840E-02	5.13496-32	6.98196-02	6.0244E-32	9.1/54E-U2 1.0323F-01	1.14/06-01	1.26175-01		z		2.33166-02	3.49736-02	4.06316-02	5.42496-32	0.9947E-J2	9.3263E-02	1.04926-01	1.1658E-01	1.3999E-J1	
	•••	10.01	1.0.1									• 0 •	P0 •	•	11									.10	.16											• 25		14.21	1.12								
	- 4 - 7 - 4 - 7	HETAE	-									. S	***											S=	Rida	=P7	HLIAS	2								=S=		HETAE	×								

7

284

İ

										5
2ª		-	OHY	-	2					
× 3=	• 32	•0	5.27316+00	Ind der Carl				•	-	1 ち / ちつ
2 1=	50.0	1.184/5-13				1.4475440	3.4679E+41	4.41236-0	1.121-2+14	. 1 1
Tut TA-			D. 43/07.0	10+16666.1	-1.12926-41	1.44105+00	5 - 4609E + 01	11-1275 L.C.	1.1.271.410	
	24.40	<	9 . 1 3996+0 J	1.09ulf+0u	-2.JJ33E-01	1.2458.40.0	1 1101 45 401			
*	1.23	7. 2604E-J2	2.1672E+JD	1. / 3nut +0.				1-70001.c	つう キント シント・	
		4.13476-02	3.191Ar + 00	1.74.145.00				1-12/26-0	/•/+1+2+33	
		5.44 345 - 12	21125400		79-3466 0.4	10+ 10000 - 1	4 • U013E + U1	0-36306.c	1.130 1.400	ustr6.
				1+1632+1		1.3767_+00	3. 39046+ 41	0-1930L-U	County to be	
			DISTISTIC	1.9/ 451 + 0.1	-0.172/L-01	1.3700c+00	3.98006+01	0-16491-0	7.52.7.600	
		1.361/6-16	5.2372E+00	1. 33506 + 00	-1.45526-41	1.36312+04	3.46965+01	6-11-4-0		
		9.20346-02	0.2419E+00	1.44/96+30	-4. 34146-01	1.7562.+00	3.94706401			• • • • • • • •
		1. J6 346 - J1	5.24345+00	2.14+16+0.	-4.43645-01	1.3491.410	1.41745404			
		1.134/E-71	5.23216+00	2.19175 +04	10044601.1-			n-30004-0		
		1.30755-31	0.21596+00	2.15476+14	-1.110-6400		10-3200000	1230 L-0	1.4102493	10100.
		1.4204[-]]	004362124			10+12+00+1	3.13+26+01	1.572bc-U	1.52122+00	5 / 5 7 5 .
				PP 1 1 P 2 9 9 9	-1.6119E +UJ	1.32626+03	3.79165+01	1.92126-0	1.23,124,3	
	14	7	Untr							•
B.d.			044		>	13-S11/CV	a		•	11/11
142				<-123/2+0N	.0.	1.40736+30	3. J540E+41	Lu-Jule - al	1 mo/c./	
TAL TAL		21-36-62-1	00+305+1.**	2.1041 +00	-9.54436-12	1.39752+00	3. 34126+01	0-14900-0	Low De tout	
	21.0	20-30114.2	+-3101E+00	2.20302+00	-1.92156-01	1.34/46+00	3.u120±+01	10-11-01		
	1.54	3.11556-02	4.30446+10	2.24365+00	-2. J23JE-01	1.3745-+ 14	1.151.461			
		4.4540E-32	4.41446+00	2.20041+00	-3./U23E-01	1.3694.400	T. DELAFADI			
		6.14256-12	4.4549E+00	2.13234440	-4.35456-41	1.1604.400				-2010-
		1.431 UE - 92	4.19926+00	2.38326+00	-50445-01	1.7517-400		1-12-01-1	1. 34226434	141 C .
		8.0694£-J2	5.J35/E+00	2.4.31.34 +0.3	-6-24414-01		2.01.205 + 0.1	1-90/09-1	1.35 36412	1-0-6.
		9.40/96-32	5.06846400	2.4447640.			3.0/026+01	1-34446-01	1.34+26+00	+c000.
		1 - 1 1 4 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			10-31961-1-	1.3317.+04	3.07+8E+01	8.110 Uc - ul	1.24316+44	
			0012106000	10+1rosc+2	-1.9/346-01	1.3207.+03	3.0646E+01	5.41J7L-01	1.14/ 5: +30	a distribution of the second sec
		10-36163.1	9+154 9E+UU	C+1211c+2	- 3. 961 JE - U1	1.309/_+00	3.04096+41	4.1332c-41	Vallat Feud	- 0 - 1
		1.30235-71	9.1452c+00	2. 18144 +00	-9.43746-01	1.2956.+00	3.01956+41	9.14/1-11		
		1.48025-01	2.1641E+30	2.17412+00	-1.08156+UJ	1.24156+00	3.24/1F+01	4.5441-01		
		:								
-		-	CHA	2	>	12-511/CV	a	Į.		
	1.5.		4.1053E+00	2.04306+00	-n.	1.40734+00	2.95025+01	A. 6. 23 01		
= 67	.13	1.31356-12	+.1927E+00	2.00/ JE+03	-3.42936-42	1.3459. + 1.1	1 Jate 10		1 + 1 90 4 5 + 0 0	.04156
HETA=	56.35	2.02696-32	4 • 2 40 9E + 0 0	2.64345+00	-1.6204E-U1	1.38445+00	15745401		1.107CE+44	.1206.
*	1.61	3. 34.346-42	4.3618E+00	2.71046+44	-2. 36pdE-d1	1.3727.+44	10752017	10-X0100	1 + 1 + C 3 C + U U	14200.
		5.25346-32	4.44145+00	2.15244+00	- 3 - 1 6 4 9 - 0 1	1.7604-10			(• 11 < 0 C + 10	
		6.56736-92	4.21946+10	2.40.491.400	-T. ANIAL - II	. 3460 400	2042626102	0.0144-01	1.07032+4J	1.265.
		7.48.46-12	4 .59865 +00	2.46.36 43.4		11-150-0-1	2.11/42+01	9.0222-01	1. J 3. J b E + U J	20510.
		4.1942-02	10-200 CT	00131302000	10-3//10-4-	1. 5320 - +00	J.2073E+U1	9.20036-01	0. 37425440	+62FC.
			101306101	004300000	10-36465.4-	1.7152_+00	3.23226+01	9.58416-01	0. 10 adE + uu	
			1047C002440	3+ 1 + 40 + 1 n	-0.J964E-01	1.296664.00	3.25246+01	10-7005.5	0. 12//2+00	
			0043654044	10+1+01+0	-0.74135-01	1.2762.+00	3.26776+41	1. 13. 3. + 1 1	0.1311.+00	11111
			00430006+4	5. 2U 57L + JU	-7. 29141-01	1.25442+00	3.21/66+01	1.0/ 436+30	0.0.7 44c + 0.0	
			00434620.0	J. 50032+13	-3. 733/E-U1	1.2313.+00	3.20195+01	1.12/36+ 33	0 - 7 - 5 - 6 - 0	
		70-3301011	111111111111111111111111111111111111111	J. 41 J 34 + 00	-9.18346-01	1.20736+00	3.263AE+01	1.17346+00	0.41,21.440	
H S	15.		010	÷						
-1=	.5.	0.	1.54264410		>	12-511/04	2	Ŧ	-	14/20
=07	.14	1.40411-02	5.12306+10	UNA 3066 7 10		1-4373c+00	2.44/66+01	1-01-5-400	0.31302+30	.00215
HE TA=	4 5 . 5 4	2.40411-12	7.45766410			1	2.3334E+41	1.42426+00	0.14/36+40	
×	1.94	4.21221-12	1 074 25 4.40		-1.14/26-41	1.2/34-400	2.0114E+U1	1.0233c+0 u	6.11032+04	
		5. n1521 - 12		014 30 20 2 10 1 10 1 10 10 10 10 10 10 10 10 10 10	-1.40/16-01	1	2.07936+01	1.04300+00	0.7+146+JQ	.0.112-
		1.42.11.4.12	004364604	3. 24 3 4 F 4 U U	-1. JU34E-U1	1.33/04+00	2.14205+01	1.06346+00	0.0 Jule + 0.1	0.174
		1.43425-13		3+ 31 UUL + UU	-2.41335-01	1.21/3_+JD	2.74766+01	1.441/2+40	0.03/26+40	-11.1.4
		1. 42461 - JC	4.5371E+UU	2. 134 11 +00	-2.4505E-01	1.2952.+00	2.44446+01	1.11406+00	6. 20/4L+UJ	
				10+3570+00	-3.27405-01	1.2/10-+00	2.8937E+01	1.15346+00	0.4343440	
		1 21 27 201	4.7151E+UU	3. 2444[+0.]	-3.68436-01	1.246dc+00	2.93416+01	1.19036+30	0.59432+04	
		1.40414-01	4 42945 400	3.0316t+0J	-4-10/16-01	1.2213_+00	2.3639E+U1	1.23J2c+0u	6. 303 JI + UU	.0.1.0
		1		3. 1 1 3 6 1 1 U	-4.54146-01	1-1954-+00	2.39052+01	1.27112+00	0.20-1C+UJ	00121
		1 - 14401 - 11		0. + 1++DE • 0	-+-4/156-01	1.1692-+00	3.J2126+01	1.31236+03	6.10%C+UJ	
		11 - 36 6 6 9 1		3. 39461 + 44		1.1+30-+03	3.J131E+01	1.324/c+00	3.9561L+00	00000-

н :Л	. 9.	z	OIT	J	>	12-511/01	a	T	-	11/10
H T Y	÷ 5 •	J.	2 + 0 4 92 C + 0 U	3. 94226+40	- 0 -	1.4073_+00	1.59/86+01	1.3464600	0.33146+33	. 40041
=1.7	. 24	1.0/ 126-12	2.44616+00	3. 344 31 +03	5.41206-02	1.3465-+30	1./336E+01	1.31004+30	U. J J L S C + U J	.000.
I HE TA =	11.00	3. 52 446 - 22	3.04246+00	3. 30241+03	1.0/556-02	1.36656+0J	1.16596+01	1.291 4.00	0.1362L+00	61.LO.
4 Y	2.34	5.43766-02	3.22246+30	3.78376+03	1.1010E-02	1.34640+00	1.47485+01	1.23476+00	6.144 1£+00	.0410.
		0.110AL-U2	3.40246+09	3.19/46+00	3.1369E-02	1.3232-+00	2.JA52E+01	1.24336+00	6.121/c+UU	. 302
		A. 39606-02	3.580 PE+00	3. 31126+03	1. 19256-02	1.2972-+00	2.16236+01	1.30546+24	0+] 4+ » C + U J	. 0. 501
		1.40756-31	3./6326+30	3.45.91+00	1.20952-02	1.26686+30	2.27+22+01	1.324564 30	0.14136+00	***70.
		1.17546-31	3.95066+30	3.30-36+00	6.59526-62	1.2340-+00	2.36195+01	1.35006+00	5.3/3/L+JQ	514n0.
		1.34346-31	4.1+16E+U0	3.3634E+00	5.64136-42	1.207uc+JJ	2.44476+01	1.34496+04	5.30236+0.	Locle.
		1.51136-J1	4.14226+00	4.44375+30	4.12236-02	1.1/426+99	2.52736+01	1.41246+00	3 · 3 2 1 / L + U U	c.c.00.
		1.07925-J1	4.03926+00	4.12346+00	3.02146-02	1.14046+440	2.00045+01	1.45024+03	5./243L+0U	10000
		1.44/16-01	4.70416+30	4.21296+00	2.30066-42	1.10562+00	2.00/96+01	1.49416+04	2.0+12E+UU	.0.234
		2.015JL-11	4.95UJL+JO	4. 32466+44	-1.44016-U2	1.0690-+00	2./334E+01	1.25/26+00	2.96236+UQ	.00.0.
				SHUCK	AND TODY PA	RAME TERS				

9 0	1. 52416+ 00	1.40104+40	1./2005+30	1.06146+Ju	1.55436+11	1.36906+34	1.13106+30	9.31596-J1	5.94376-11
SI	-2.1505E-00	-2.21106-00	-2.2794E-00	-2.4307E-00	-2. > 7366-00	-2.6317E-06	-3.1874E-Jo	-3.5425E-UD	- 4. 59116-00
25	-1.3576E-01	-1.32996-01	-1.2231E-01	-1.0492E-01	-1.92236-02	-4.6020E-02	-4.87536-03	4.99986-02	1.09406-01
S¥	-1-1400E-1+	9.28256-02	1.8544E-01	2.7761E-01	3.6951E-J1	4.61246-01	0.529UE-01	b.4316E-01	1.4555E-01
THETA	9. 0006+01	4.52346+01	3.04/76+01	1.54046+01	6.49191+01	6.362JE+01	5.0433£+01	4.4595E+01	5.866JE+01
¥	1. JOJOE+ JO	1 - 0126c+ 30	1.05146+00	1.12146+00	1.22316+00	1:3404E+00	1-610/E+JU	1.925JE+JU	2.33436+40
67	0.	3. 34 31 E-03	1.3434E-02	3.04026-02	5.47456-02	4.6746E-02	1.2/165-01	1.76376-01	2.3528E-01
79	ů.	d.1614E-02	1.026/E-U1	2.42336-01	3.2053E-01	3.950/E-U1	4.660/E-01	5.31/36-01	5.86206-01
S		.17UbE-02	.6341E-01	.45126-01	.2042E-01	.06536-01	.91236-01	./19+6-01	.53056-01

-

•_

7

		5LG 1-1NT	NUMJER 2	וורא	ATION NUMBER	146	1146 - 7.4	11-71/61		
s.	1/.	7	017	J	>	12/115-51	3	τ	-	
* l: }*	-9-		2.15436+00	4.3345L+0J	-0-	1.4.173-+30	1.11906+31	1.4.1.6.6.4.4		
= P 7	+2 •	1. 22 + 44 - 12	2.25486+40	4. 302JE +03	1.28056-01	1.3400L+UU	1.25336+01	1.545 4.40		
Hc IA=	30.45	5. 14 32E - 32	2.43106+44	+. 2323L+UU	1, 1/946-01	1.57144400	1.58206+01	1.50111-400	2+5+3 1. 40	
14	2.63	4.57346-12	2.52396+19	4.1852L+JJ	2.523JE-U1	1.3242-400	1.445555401	1.4744.410	2.0 2.0 C 2.0 C	
		21-14240-0 7.0211E-12	10+12010-2	4.15491+00	3.23426-41	1.30+56+00	1.04356+01	1.4/33.400	5./137L+UU	
		9.14/56-32	3.19+56+00	+ 1544 +01	3.4983E-01	1.2/402+00	1./9266+01	1.+1436+03	011224090	12010.
		1.06/21-11	3.3334E+00	4.13171+03	3./30bE-U1	1.24946+00	1.36295+01	1.44264.10	5.0474L4J	12211
		11-3/612-1	3.51496+00	4.21146+00	3.95612-01	1.2204=+UJ	1.46994+41	1.21.36+44	2+0400+04	• 5 7 7 7 °
		1.3/211-01	3.03446+00	4.24/45+03	4.169UE-U1	1.19146+00	2.15:00 + 01	1.53126+33	1,100,000	
		1	3.4911L+00	4.24431+03	4.35926-31	1.1632-403	2.13/26.01	1.07246.00	0.100LC	
		1.0//01	4.0653E+J0		4.941/2-31	1.1070.400	2.24525411		3 4 7 / L + L]	
		1.44765-01	4.6968E+UJ	6. 454 4c + JJ	4.4245E-11	1.0791-401	2 • 3669E+u1	1.04156+0.0	J. 522/L+UJ	
		2.13445-11	4.65136+30	4. 23246+43	5.15616-31	1.03756+00	2.4504E+01	1.03412400	2.23445+44	Falul.
		2.20096-01	4.35966+03	4.34036+03	4.316-41	J. 9324-01	2.46476+01	1.15156+00	3.141 Jc+ul	• • • • •
		Z	CHR	. 0	>	12-511/04	c	Z	•	11/20
110			1.40986+00	4. 30096+44	-1.	1.4075-400	1.003a£+00	1.43346+00	4./0716+00	
1 1		1.42 195 - 12	1.70976+90	4.7421E+0J	2.46536-41	1.34066+00	d.511AE+00	1.30.46+00	00+7+4/6+4	
HETAE	21.03	3.05312-32	1.93705+00	4.01296+03	4.51946-01	1.3714-+00	J. 9491E+03	1.12416+04	3.157 Jc+UU	
**	5.36	5.48966-32	2.13226+00	4. 321AL+04	10-30129.4	1. J>10E+UU	1.11466+01	1.00406+00	5.22/3L+UU	
		7.31456-42	2.11956+00	4.45/36+00	6.4605E-01	1.3274.+00	1.22546+01	1.03036+3J	2.2323c+ul	
		3.14946-32	2.44936+00	4.41941+00	7.08/36-01	1.34256+84	1.52626+01	1-64226+00	5.30626+00	
		11-34/60-1	2.0//16+00		1.59145-01	1.21515104	10431034+1	1-0-2005 - 0 0		
		1.24096-11	2.45402400	6. 1990E • 0 0	4.42bbt-01	1.21/01+00	1.99565+01	1-65-01-94	5.26212400	
		1 + 40 1 4C - 11	3.24855400	4 - 4 3 4 4 F + U 0	8./814E-01	1.1379.+00	1.07404+01	1.0/04-44	5.2245L+u0	.Juck
		1.42496-91	3.39466+00	4.47356+01	9.1200E-31	1.15586+00	1.7542E+01	1.04556+40	9+1/4+6+00	+2crn.
		2. 41246-31	3.59/36+39	4. > 311L+UJ	4.45dJc-U1	1.11546+00	1.4369E+01	1.13124+40	2+1003t+0J	10-00-
		2.1954E-31	3.83356+00	4.60491 +00	9.64405-01	1.07300+00	10+3/816-1	1.78446+44	9 • 109 25 • UU	.0211.
		2.37166-01	4 . 1 J 1 3E + U 0	nn+3/60/**	1.42212.400		10-34966-1			
		2.74446-11	4.72146+00	4.45256+00	1.48856+00	4.8924c-01	2.13746+01	2.01426.01	4.32/11+400	*
	1			:	-	HUT 13-31	d	1		1
2	54.	z	CHA .			101110-01	1 41 256 40.0	2 244444		
-		0. 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1. 200550-1	00436746.4C		1.3697.404	195544	2.03404400		
= 41 34		4.35916-12	1.49726+00	4. 36131 + 0.1	1.68246-01	1.3047-+04	0. 314 9L + U J	1.9/41.4.1	+.01 10L+UJ	12216.
=	3.21	6.53276-32	1./1235+00	4.12246+03	9.53536-01	1.3445-+00	6.145AE+UU	1.9446+00	4./v/2E+40	.1110.
		A./1026-02	1.41906+00	4.72564+01	1. JAZUL+0J	1.3109.+00	4.294/E+00	1.0014.400	+ 4 4 3 0 [+ 6]	1000.
		1. udanf - 11	2.1140E+00	4.60231+00	1.18616+03	1.28636+00	1.13496+61	1.03436404		
		1. 10656 - 11	2.51656+00	4.0203t +UU	1.27232700	1 217- 400	101364011	1.41/1.403		
		1.92426-11	2.91666.400	4.01251 +10	1 - 421 - 4 - 1 - 1	1.1/44.+00	1.42256 + u1	1.35286+00	4.45/1c+UJ	
			101-36 151-5 7 - 41 3 - 41 0	1.04.11.4.00	1.441/1944	1.13624+00	1.41336+01	1.67916+0]	6	-10:0
		2.17/11-11	3.1/496+40	4.a744[+0]	1.56246+04	1.0910-+04	1.20406+01	1.91056+00	+./3136+44	.0
		2.34,36-01	3.44216+00	4.12406+00	1.03465+UU	1.03941+00	10+3+464.1	1.30+26+04	++03ult+UJ	. 01 10
		2.01316-11	3.73436+30	10.11101.4	1.14852+43	3.8298L-J1	1.09346+01	2.4193.400	** 22036 * 40	.55.C.
	*	2.4.37 HL - J1	4.1452L+00	4.34/72+03	1.77794+30	3.2506-01	1./8435+01	2.01/01.00		.0.03
		3.04406-01	4.3865t+UU	4.49/JL+UJ	1.4501E+JU	8.6544c-41	1.9241E+01	2.1940L+0 C	4.201 15460	
		1 1. CO3 .C							•	

14/40 1	3062L+33 .01233	3401E+00 .63323	141.5+30 .11230	04670 004 12 Cm		10100 00401505	5033c+30 • 04513	51436+00 .00071	+9/2E+00 .0u//3	155+2+00 .01837	349+E+00 .00303	1.20r+40 .04665		100000 00130LFT	08545+00 •00841	30085+00 .04/44	A3/46+44 .04414				
£	2.09166+00 J.J	2.36324+00 3.6				2.0441E+0U 4	2.31466+30 4.5	2.00502+40 4.5	2-4112-+30 +	2.0111401				2.16356+UU 4.	2.22524+00 4.	2.29.52+04 3.	2. 36 3 16 400 3.				
a	2.07536+00	L0+30474-8	6 8230541		2 • 4004E + C C	V.JO66E+QJ	1.4324E+0J	A.4016F+00	1.62666+4.1		100000000	101000000	1. 131E+01</td <td>1.2965E+U1</td> <td>1.37556+01</td> <td>1.46655 401</td> <td></td> <td>4 - 7 - 4 - 7 - 4 - 4 - 4 - 4 - 4 - 4 -</td> <td>1.041.064</td> <td></td> <td></td>	1.2965E+U1	1.37556+01	1.46655 401		4 - 7 - 4 - 7 - 4 - 4 - 4 - 4 - 4 - 4 -	1.041.064		
15-511/04	1.44732+04	114 1001		1.00410+00	1.34320+00	1.312/c+00	1.2743.+00	94041400			1.1940240	1.10375400	1-04//-+00	9. 8556E-01	0.216201			1.00100-01	1.116/6-01		RAMETERS
2			2 • 01 C 4 C + 0 1	1.26135+00	1.5064E+00	1.4/2/E+00	1032504			2.9090E+UU	2 • 100 + E + 9 0	2.1895E+U0	2.2763L+0J	2. 16695+00		C+4330Er4V	2.52955.400	2.0041E+UU	2.0661E+0J		AND HODY PA
-		5- 1437E400	5.444469	<pre>>.1654E+UU</pre>	4.35.57c+00	1044644		+ · / 2016 + U.1	4.6644£+UU	4. 3237E+04	4.61/46+00	4.0241L+00	4.64036+00			4.72116+00	4.77.36+00	4.414JE+00	4.924UE+00		NUCT S
	DHY	6.10495-01	9.24226-01	1.1656E+00			1.573UETUU	1.76166400	1.94956+00	2.1404E+U0	2.3406E+00	2.5568E+30	2.79661+03		3.064/E+UU	3.3669E+40	3.6970E+00	4.09396+00	4.4384E+00		
	z	•	2.446UC-02	5.44206-02		000000000000	1.17446-01	1.47306-01	1./6765-31	2.46226-91	2.350#E-01	2.65146-31	2 94405-01		3.24065-01	3.53526-01	3.8236E-01	4.1244E-01	4.41906-31		
		.67	c 4 .	- 0.0		5.30															

THE TA 3.04296+01 2.10746+01 1.09536+01 -1.33446-06
2.0//2E+00 3.014/E+00 3.26/4E+00 3.3750E+600
2. 82376-01 3.33966-01 3.44426-01 4.45746-01
20,20/3E-01 0.4509E-01 0.6158E-01 0.6158E-01 0.671/E-01
S 7.1092E-U1 7.692UE-U1 8.2544E-U1 8.9276E-U1

6.3594E-U2 4.4324E-U2

1.1761E-J1 4.2069E-J2 L

2.5619E-04 7.7719E-04 -4.5285E-04

2.35146-01 3.26736-01 4.45746-01

9.0180E-U1 9.8227E-01 1.1090E+Uu

1

ŝ

2.3924

036-04

7

288

S= RH= Zd= Zd= THE TA= K=

 $\begin{array}{c} \mathbf{1} \\ \mathbf{2} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{$ (5-54) (5-54) (5-54) (5-54) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-355) (5-4) (5-4) (5-55) (5-4) (5-55) (5-4) (5-55) (5- Construction
 Cons
 Construction
 Construction
 Construction
 Construct > $\begin{array}{c} 5 & c \\ 5 & c \\ 5 & c \\ 6 & c \\ 5 & c \\ 6 & c \\ 7 & c \\$ 2.4.12
4.4.14.12
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14.14
4.4.14. . 51 . 51 * \ * 7 0 3 • • • • • •

11/11 .0132

++9334 - 11

= 2411 ı

216

10:1054

ITLKATION

NU-1454

31 U 15NT

5= 2J= 2J= 74= 54=

>

S≈ Rd= 2d= 1HLTA= - н - ¥

255772 3.25772 3.25064 4.25064 4.25064 4.2506 4.2506 4.2506 4.2506 4.2506 4.2506 4.2506 4.000 4.4777 4.000 4.4000 4.40000 4.40000 4.40000 4.40000 4.40000 4.40000 3. #1265 + JJ 3. #12255 + JJ 3. #5445 + UJ 3. #9765 + UJ 3. 72065 + UJ 3. 57465 + UJ 3. 57465 + UJ 3. 53455 + UJ 3. 545555 + UJ 3. 545555 + UJ 3. 545555 + UJ 3. 555555 + UJ 3. 555555 + UJ 3. 555555 + UJ 3. 5555555 + UJ 3. 555555 + UJ 3. 55555 2.68444.40 ** 00 119 1.2916E+ ٥. Control C 95746 1134646-01 19296-01 19296-01 199996-01 199996-01 199996-01 199996-01 199996-01 199996-01 199996-01 199996-00 199996-00 199996-00 199996-00 199996-00 199996-00 199996-00 199996-00 199996-00 199966-00 199966-00 19996-2.5410E+00 2.5747E+00 2.5717E+00 1.2017E+01 1.2017E+01 1.2017E+01 1.2017E+01 1.2017E+01 1.7544E+00 1.7544E+00 2.10555+00 2.10555+00 2.51565+00 2.51566+00 2.51566+00 2.51566+00 2.51566+00 2.5747E+00 3 3 .21336+00 4.2666E+00 RHO 2.73476-02 5.20406-02 5.20406-02 1.35736-01 1.35776-01 1.4466-01 1.4466-01 2.23476-01 2.23476-01 2.23456-01 2.23456-01 2.23456-01 2.23556-01 2.23556-01 2.23556-01 2.45556-01 -1.00 1.02 .67 S= R8= 24= 14= HI

+ . JJUE+J1 1.0346+01 3.37472-5 1.3396+34 1.000E-35 5 20 14496-00 TCR112 fE) er I (0)}el ERRORN THFTA HAXIT NTAP NX N SE G 6.22224-0 CASE FITLE - SAMPLE PROBLEM 2 - SPHERE-CONE VENICLE 2.000c+00 1.0004+00 ++ 100C+01 1.0006+00 51 5 45 1.14376+Uu 1.17736+Uu 1.20996+Uu 1.24U96+Uu SHOCK AND BODY PARAMETERS (7) HdI 111471 (4)24] NFILL NXAN 10-1 UTAP r 11 THETA 4.000E-02 1.000-+00 1.0046-36 1.4006+00 5 ·1.400c+00 ŝ 2 å ÷ ERVORP (1).4] [*] ? d] INTAP NCASE 4 1MA MAXI N\$12 P 10 0.999999 . 0 2 000 0000

0005E+30

04/41 04/41 04/452 04/4752 04/476 04/476 04/476 04/476 04/476 · 01000 • 01000 • 01000 • 01000 • 01000 • 01000 3.53/2E+00 3.5JJ2E+00 3.4041E+00 3.4119E+00 3.4526E+00 3.2542E+00 3.2842E+00 3.2842E+00 \$.7514E+U0 3.72U2E+U0 3.6654E+U0 3.6341E+00 3.5821E+00 3.5134E+00 3.5134E+00 3.5134E+00 3.94522+00 3.913+2+00 3.891/2+00 3.4522E+00 3.40022E+00 3./441c+00 3./441c+00 4.04426+00 4.13.56+10 3. / 49 16-01 3.94166-01 4. 26836-01 4. 03636-01 5. 22406-01 5. 83/76-01 6. 4/826-01 5.6667c-01 >.9011E-01 6.2202c-01 6.6348c-01 7.2130c-01 7.711bc-01 8.3403c-01 8.20416-01 8.65146-01 9.19206-01 9.81616-01 1.05196+00 9.6032-01 9.87476-01 1.02336400 1.06436400 1.12116400 1.17976400 1.24/36400 M 1.62276-01 1.86466-01 0, 7.22006-02 1.49276-01 2.14746-01 2.644076-01 3.56226-01 3.56226-01 1 2.91 436 - 03 2.96 4 46 - 01 2.96 4 26 - 01 3.95 4 26 - 01 4.221 46 - 01 4.221 46 - 01 4.37 5 00 - 31 Ż π 1.69235401 1.70645401 1.71375401 1.71475401 1.69375401 1.66375401 1.65375401 1.4159E+01 1.450AE+01 1.4620E+01 1.4820E+01 1.5066E+01 1.5066E+01 1.5022E+01 1.4865E+01 1.1549E+01 1.2072E+01 1.2575E+01 1.2940E+01 1.3433E+01 1.3458E+01 1.3458E+01 2.11776+U1 2.11776+U1 2.10+56+01 2.49966+01 2.49966+01 2.49366+01 1.453366+01 1.453366+01 1.453366+01 2.J5586+01 2.J5586+01 2.J2956+01 1.99546+01 1.94976+01 1.42776+01 1.42776+01 1.40904401 1.90746401 1.90354401 1.90354401 1.48136401 1.44726401 1.74706401 ۵. ۵. ۵. 2 (S-51//CV 7.90016-01 7.69426-01 7.4/936-01 7.25356-01 7.01356-01 7.01356-01 6.49636-01 (S-S11/CV 7.90016-01 7.56766-01 7.26746-01 6.94056-01 6.60336-01 6.25681-01 5.90336-01 7.90016-01 7.7186-01 7.64376-01 7.51476-01 7.51476-01 7.30066-01 7.23916-01 7.23916-01 (S-51/CV 7.90016-01 7.90016-01 7.90016-01 7.90016-01 7.90016-01 7.90016-01 7.90016-01 (S-S11/CV 7.90016-01 7.86556-01 7.87146-01 7.85816-01 7.85816-01 7.8526-01 7.81306-01 /.//65276-01 /.71526-01 /.65276-01 /.58816-01 /.52086-01 (S-S1,/CV /.9JJ1_-U1 /.8333c-J1 (S-S11/CV 96 -9.1762E-02 -1.6618E-01 -2.6566E-01 -3.4390E-01 -4.1901E-01 -1. -1.2425E-U1 -2.5319E-U1 -3.6910E-U1 -4.8458E-01 -7.1504E-01 -1.6/246-01 -3.46/26-01 -5.366046-01 -6.761/6-01 -1.31246-01 -0. -1.55746-01 -3.25306-01 -4.81906-01 -6.41226-01 -8.04866-01 -8.04866-01 -0. -1.45//E-01 -2.9514E-01 -4.3373E-01 -5.7358E-01 -7.1727E-01 IT-RATION NUMBER -0. -1.5246-01 -1.75246-01 -5.51746-01 -5.18316-01 -6.35256-01 -8.55256-01 -1.13536+00 > > 97 7 2.1344E+00 2.1849E+00 2.2454E+00 2.2454E+00 2.4946E+00 2.4946E+00 2.4946E+00 2.5927E+00 4.9543t-01 9.2034t-01 9.6224t-01 1.0040t400 1.0522t400 1.0522t400 1.1066t400 L 1.33186+00 1.37446+00 1.47356+00 1.54256+00 1.54256+00 1.5625400 1.69186+00 1.69186+00 1. /4096+00 1. /9146+00 1. 91/36+00 2. 09496+00 2. 19496+00 2. 19496 4. 03/06-01 4. 74946-01 4. 36166-01 4. 39066-01 9. 16466-01 5. 34076-01 5. 34076-01 5 7 3.26516+00 3.44616+00 3.63016+00 3.79276+00 3.94936+00 4.09016+00 4.20126+00 RHJ 3.78216+00 3.89976+00 4.02086+00 4.11776+00 4.20606+00 4.27386+00 4.322666+00 4.322666+00 RHO 4.2897E+00 4.354AE+00 4.4174E+00 4.4500E+00 4.4557E+00 4.4520E+00 4.4520E+00 PHO 5.03446+J0 7.03446+J0 4.94116+D0 4.91146+J0 4.3576+J0 4.72502+00 4.57146+U0 + .92785+00 + .91605+00 + .949416+00 + .84456+00 + .84456+00 + .65494+00 * .55335+33 4.0122640 4.0123640 4.0129640 4.505926400 4.56679240 4.5767240 PHa CH A OHA NJ4462 4.1057E-02 A.3714E-02 1.2557E-01 1.6743E-01 2.0928E-01 2.5114E-01 2.5114E-01 0. 3.73796-92 7.47586-92 1.12146-91 1.49526-01 1.49526-01 2.24276-01 J. 5.1//>-J? 6.3>+9t~]? 9.53246-02 1.27106-01 1.56876-01 1.90656-01 0. 3.40356-02 6.40716-02 1.02116-01 1.36146-01 1.70186-01 2.04216-01 u. 8. J5/3t - J2 6. 11465-U2 9. 17145-02 1. 2229t - J1 1. 529t - J1 1. 43445-U1 SELL ACNT 0. 2.96526-72 5.32036-12 4.46496-32 1.18572-01 1.46166-01 1.4746-01 z z z Z -54 56.61 1.0U 23 23 24 23 23 23 20 -1--1--10-11-67 S= RB= ZB= THETA= K= S# R4= 2d= THETA= K= S= RU= ZJ= THETA= K= 5= Rb= 28-1 ME TA= K= S= 54 24= 24= 7= 8=

292

;

.

1.2246490 1.2246490 1.2246490 1.31396490 1.31396490 1.37316400 1.4540440 2+00 1.194 8.5763£+00 9.3211£+00 1.0033£+01 1.00637£+01 1.1159£+01 1.1159£+01 1.12649£ ۵ (S-S11/CV 7.90016-01 7.504AL-01 7.504AL-01 6.6648L-01 6.2144L-01 5.22356-01 SHOCK AND SUDY PARAMETERS -3.2730E-02 -4.0467E-02 -1.1734E-01 -1.5973E-01 -1.9595-01 2.5545403 2.57416403 2.57416403 2.55406403 2.55406403 2.55406403 2.55406403 2.55408 2.63986+30 2.861866+30 3.128466+00 3.360566400 3.593666400 3.593666400 4.33356430 RHO 0 4.9523E-U2 9.9045E-U2 1.4857E401 1.9809E401 2.4761E-01 2.4714E-11 2.9714E-11 r_{i} z ł • 0. 01 1. 01 S= 88= 26= 71674= 73=

1014		10 6.J32/E-J1	10 6./343E-U1 11 5.4414E-J1	11 ** 07046-01
0.0 1	1.74556+1	1.42176+1	1.1775+J 9.4184E-1	6.1040E-J
SH SH	-7.4016E-0/	-9.26426-07	-1.1032E-Jo -1.3157E-Ob	-1.7336E-Uo
25	-1.70946-01	-9.136/E-02	-2.2866E-02 0.5364E-02	1.6622E-01
SY F	1.71526-31	2.000000000000000000000000000000000000	6.7275E-01 8.3175E-01	9.9366E-UL
THETA 3.30001401	1.166/E+01	0.500UE+U1	5.6667E+U1 +.8333E+01	4.0000E+U1
. 000.05 400.	1.00016+00	1.04406+00	1.0000E+00	1.0040E+U0
.67	1.05546-02	9.36925-02	2.52976-01	3.5721E-01
4d	1.44935-01	4.2262E-U1	5.6440E-01	7.6644E-010
s	.4544E-01	.36336-01	.81/4E-01	.72665-01

		SE UME N	IT NUMBER 2	146.	ATTON NUMBER	318	1 .3411	.72016+44		
	1.02	z	Она	,	,	15-511/64	a	r	+	14/40
-PH		.0	2.19786+00	2.45304+00	-0-	7.90016-01	9.30326+00	1.13/24+0	3. 32726+03	14500.
244	14.	8.1624L-02	2.9632E+JO	2.0+1/2+01	-1.5:624-01	1.10201-01	9.36>35+03	1.25/ 4.+0	3.1000L+00	.04452
THE TAN	10.04	1.6.3256-01	1.19666+00	2.60436+03	-2.5/206-01	6.417Jc-01	9.05/56+00	1.37064-00	1 3.J2314+UU	1/4/0.
			1.42956.00	2. 36/21+04	10-16122.2-	100579-5	1.02+86+01	1.484.56+4	6.43 Jut + JU	99570.
;	:	3.26446-41	3.92616+00	3.1+174+00	-3./2046-01	4./1916-01	1.U877E+01	1.600 2.00	2.1703E+40	.0000
:			010		,	15-511/04	•	Ŧ		14/40
			2.946.75+0.4	2.19216+05	-0-	7.90014-01	4.6145E+0J	1.100240	1 3.376+E+UU	c+100.
					10-3/401-1-	10-36560-7	9.57556+00	1.26456+0	3.15436+00	20110.
			T. LOATEAD		10-3460.1-	b.1609c-01	9.4297E+00	1.42006+4	2.34336+00	e+110.
		2.60141-01	1.46715+00	3. 10461 +00	-4.101.65-01	5.24146-01	9.62976+04	1.5061c+0	2.111.5+44	P6500.
	;	3.46916-01	3.79965+00	3. 30116+00	-9.0096E-01	4.24346-01	9.40766+00	1.74/64+0	2.607+4+00	recre.
:			-		,	(S-S11/CV	a	Ŧ	-	TH/HO
				01036040 C		7.900101	9.96306+00	1.04476+0	3.391JE+00	
-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-1-1 AA95-01	6.9219c-01	9.46196+03	1.25434+0	3.15234+00	12110.
			TOTAL SACAT		-1.1444F-01	5.90176-01	9.54116+00	1.464540	2.40366+00	10210.
				101111111	10-9-9-9-1-		CU+ 30995.9	1.66206+0	2.06932+00	76500.
2	;	3.91406-01	3./17 36+00	3.36566 .00	-5.85586-01	3.95346-01	9.53296+00	1.03+26+0	2.51464+40	
			-		,	12-511/04	•			TH/HO
				9. 16045 +0 0	-0-	7.90014-01	1.00726+01	1.07486+0	3.+01ot+00	.0012.
					10-34500.1-	6- 409101	1.0078E+01	1.2646+0	3.1+/JE+00	
			1 101 101 101 101	0 4 1 1 4 U 4	-2.9AA3E-01	5.66614-01	9.73986+03	1.+9426+0	2.3/226+40	.0110.
			1.64915400	1. 25 115 400		4.6177c-01	9.3959E+0J	1.70936+0	2.03//2+04	11400.
	:	3.74116-31	3.66426+40	3.42154.01	-0.19536-01	3.84106-01	9.11386+00	1.40/96.0	2.4/3/6+40	
				SHOCI	ANU TOUT PA	RAME TERS				
							:	•		
S		P Y	2.9	4	THE TA	×5	25	A STATE	CP	
1.0161		4.5453E-U1 4				21886+0.1		.34956-00	+ 1016-31 +	
					00001+01 1-	32376+0.4	-5890E-01 2	.23445-00		./ 290E-J1
1	00	1.1400E+00 0	1.02446-01 0		.0000E+01 1.	4266E+04 5	0- 10-31+29"	. 4 0 3èE - Ue	* 11-3+00**	./ 8046-11

-3

4.41546-J1 4.03856-J1 4./2906-J1 4./8046-J1

.... 4.6403E-01 5.4305E-01 6.9146E-01 8.0244E-01 2.5 4.53J2E-01 1.0405E+00 1.1400E+00 . . . 4 . . 1.0181E+00 1.1036E+00 1.3090E+00 1.4544E+00

,											
		Selet	HENT NUHBE	r 2	Ité	HALION NUME	JE. 4 326	1 1.45 1	11.15.1		
*	1.6.1	7							00437644		
-1.2	1.24			DH	5	>	(5-511/04	a	:		
74=			566.2	66+J0	2.33096+00	-0.	7-9001.00		2	•	11/10
		3.0440E	-02 3.266	56+00	2.06365403	-1.03165-0		10+31620+1	1.00246+00	3.41 3/ . + 40	
I HC LAE	10.04	1. 42 496 -	- 21 3.504	56+30	1.01.16 4.0.1		10-3+660.0 1	1.J245E+01	1.27216+01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	.0	2.8434E -	-01 J.n50	91 + 00			1 5-44046-01	3.9714E+0 J	1.51.1.1.00		
		3.45/86-	-31 3.6/3	AFADD	1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-4.58965-0	1 4.3353c-01	4.2013t+0J	1.442.4741		
						-6.3027E-J	1 3.84596-01	9.34576+00	1.4/45+00		• Uu Soc
S=	1./2	7.	0	c						16+36 24++3	• • • • • • •
-PA	1.33	.0				>	(S-SL//CV	2	2		
28=	1.03	9.94 195 -		00130	2. 30 346 + 0 0	-0.	7.90016-01	1.44.395+01	1.1.1.24.40.1		14/40
I HETA=	10.04	1.94946-	11 7 600	00.30	2.0/3dE+UJ	-9.7414E-0	2 6.5426-01	1		3.4304E+CU	
		2.94 12F		+ - + U U	3. 44316 + 0.0	-2.65196-0	1 5.23536-01	1.31416+01	41/00/17 40 0	5.12726+10	-1212
		1.07746			3. 32+66+00		1 4.21Jac-01	4.66166 400	0047166647	<- 36 Jot + Ug	.71001
		- 10 / 16	199*1 16.	96+00	3.+2236+00	-6.219/E-J	1 3.8330 -01	10434760°6	1./0456+0]	2. 24112+00	16200.
=5	1.84	Z		9					1-3-4540	2.4/112+60	[[[
-0.0			¥	ę	2	>	12112-51	c			
-94			3.076.	16+00	2.27625+03	-0-			£	•	DH/HI
	1.14	1. 12595-	01 3.3612	00+3	2.095/6+00	-4. 12A25-11	10-31004-11	1.06256+01	1.03006+90	3.457 JE+UD	
	0.04	- 36161.2	01 3./103	00+3	3.44546+00	-2.61415-0	10-10+0+-0	1.15076+01	1-2932c+00	3+20/++30	
*	•	3.07/HE-1	41 3.4217	E+00	3.34466+0.1		1 2.036/01	1.13/3E+01	1-26+06+00	2. 19.71.00	1 1 1 1 1 1
		4.10 386-	101.8 11	6+00	3.40+96+00	-b-0264F-0	10-12-01	9.8229E+0J	1.77/86+00	2.5/132+00	- 6-114
			•					9.2271E+00	1.55126+04	2.49236+04	
	19.1	2	HY I		2	>	(S-S11/CV	9			
-7.0.2			1.1069	C+00	2.25/11+00	-1.	7-9301-01		E .	-	14/40
THE TAR		1-10106-1	142++5 10	E+00	2.11332+00	-8.79486-02	6-3504r-01		1. J 2 4 4 4 4 9 J	3.46/0[+44	.1100.
		-112316-1	11 3.1923	E+00	3.11/26+00	-2.4524E-U1		10.32300.1	1-30+96+00	3.091/E+U0	+TETD.
	•	5.10466-1	11 3.4421	E+00	3.35436+30	-4.16/56-01		10+34140+01	1-34/16+03	2.11235+44	.0./3.
	1	4.24022-9	11 3.7213	E+00	3. 38+01 +00	-5-414AF-01	10-101000	9. 405 5E + U J	1./829.+00	2.30/16+00	1201D.
			•				10-11/04.00	7. 3548E+U0	1.83.12+00	2.5152:440	
¢	•										
	•				SHOCK	AND UNA					
							AKARE LERS				
S		44	67			THE TA					
1+366661		23356+00	9.14336-0		• *	1 11+1000	52901+111 1	25	5.	сь сь	(P.)
1-830664	10 1.	+2196+u0	1-13/16-10	••		1 10+4600	.b31/E+UJ /./	0046-01 -1.3	0.526-JU 1.2 9426-94 4.4	odle-Jl 4.3	11-3/00
2.33625+3	10 1.5	51+0E+00	1-2-156-1		•	10016+01 1	.7348E+00 8.1	334E-01 -3.2	/ 25E-un n. 1		11-3/40
				;		10012+01 1	· 83422+ JJ 74. 1	1616-11 5.0	· · · / · · · · · · · · ·		10-2000

4 + 303/5 - JL 4 + 324/5 - JL 7 + 14056 - JL 7 + 14056 - JL

1.201)L-J1 1.42/3L-J1 7.244J5-J1 3./201L-J1

-1.5032E-Ju -1.3942E-Ju -3.2/35E-uo 3.05225-J/

/./004E-01 8./334E-01 9./261E-J1

1.52906+UJ 1.6317E+UJ 1.7348E+OJ 1.4342E+JJ

SHOCK AND BODY PARAMETERS

S R4 2.2339E+00 1.6410E+U0 1.4U00E+00 0.

THETA RS 25 MS CP P/PO 4.0000E+01 1.9829E+UJ 1.1132E+00 3.6455E-JV 4.760JE-J1 5.1316E-U1 4

.01315

. 3>0+€+00 • 6570E+00 • 36JoE + 00

.13726+0

1.02166+00 ..26/26+0 1010+0 .6944E+0

L.u011E+010724E+0

7.9001-01 6.5152E-01 12/115-51

5.17446-0

-6.941/E-02 -1.6323E-01

3.0230E+00

3.1147E+30 3.4197E+00 .7624E+00

RHO

z

TIME 3.4110E-01

174

ITERATION NUMBER

.

SEG FENT NUMBER

>

1101 11/10

.0000

2.550/2+04

1.79402+00

1.04/7E+01 1.0053E+01 9.5710E+00

4. 2837.-01 3. 93186-01 4. 07446-01

3.2627E+00 -2.3964E-01 3.3640E+00 -4.3246E-01 3.3530E+00 -5.4975E-01

3.94336+00 3.9261E+00 3.7522E+00

6.4246E-02 1.7850E-02 2.6774E-01 3.5649E-01

2.23 1.64 1.40

S= R5= 28= 1461A= K=

SECTION VIII

CONCLUSIONS

1. THE DIFFERENCING SCHEME

The differencing scheme developed in this study incorporates a complete decoupling of the magnitude of the stabilizing terms from the finite difference mesh sizes used. Consequently, different mesh sizes for each coordinate direction and variations in mesh size can be employed. The mesh sizes can be selected based on finite difference accuracy requirements without regard to the stabilizing term influence. Since the stabilizing terms can be specified arbitrarily small, the ability to achieve a valid mathematical model of the inviscid flow problem is ensured. The stability arguments used to establish the differencing scheme should be applicable to any coordinate system. Thus, the differencing scheme is not limited to the blunt body problem. It should be useful for any problem for which the time-dependent technique is applicable.

2. SURFACE BOUNDARY CONDITIONS

The technique developed for treating points on the body surface is exact in the limit of standard finite difference approximations. This technique is applicable to any point for which a streamline and a coordinate line are coincident, in particular, the body points with a body oriented coordinate system. This technique has significantly improved the accuracy of the blunt body solution. Since the general class of body shapes required to realize the objectives of this study can be achieved with body oriented coordinates, this exact method has been employed. However, definite restrictions on the magnitude of a negative body curvature result from this technique. The restriction to smooth body contours is fairly academic, since any finite difference solution for a body with corners will necessarily assume a finite curvature at the discontinuities (e.g., see Ref. 11).

3. COMPUTER EFFICIENCY

The segmented computation procedure developed greatly enhances the computer efficiency obtainable with a time-dependent technique. The computer storage required is minimal regardless of the body length. Computation times are reduced by factors in excess of 1000 when typical high performance vehicles are considered. It has been shown that even the relatively simple axisymmetric flow problem requires the type of computation time reduction realized by this procedure if a unified time-dependent solution is to be economically feasible. An equivalent threedimensional solution without this type of improved computer efficiency would certainly be impossible with the computers currently available. This procedure should enable the aerodynamicist to employ the time-dependent technique as a practical solution procedure for complex problems such as nonequilibrium and three-dimensional flows. Certainly, this procedure or another equally effective approach is required to transform the time-dependent method from an interesting theoretical solution to a useful computational method.

4. THE BLUNT BODY SOLUTION

A practical computational method has been presented to treat axisymmetric blunt body flows. The computer code presented can consider a very general class of body geometries, sufficient to satisfy the objectives of this study. Since additional stabilizing terms are introduced into the governing equations, reference to this technique as an exact solution may be properly questioned. However, the differencing scheme assures that the effect of these terms can be made negligible relative to the numerical errors. Consequently, this question is rather academic. For practical purposes, the present technique is a direct, exact and unified solution procedure. This is believed to be the first technique reported which contains all of these features and still may be employed as a practical computational method. Extensive comparison with other computational methods has been accomplished. The present method is clearly more accurate than other timedependent techniques reported. In fact, the accuracy is comparable to other methods currently regarded as standard solution procedures. A calculation for a typical high performance reentry vehicle has been presented. The computation time and computer storage required was quite reasonable. This is believed to be the first reported solution for a problem of this magnitude generated with a unified time-dependent method.

APPENDIX 1

STABILITY CONSIDERATIONS

In reference 1 it was shown that useful results could be obtained from a stability analysis of a simple linearized one-dimensional momentum equation of the form

$$u_t + Ku_x = \mu u_{xx}$$
(71)

Employing a forward difference approximation for the partial derivative with respect to time and appropriate first and second central difference approximations for the spatial partial derivatives, the von Neumann (Fef. 5) stability analysis was used. In this analy 42, u is replaced by

$$u - u + (\delta u) EXP (at - i\beta \Lambda x)$$

where the second term introduces an error into u.

The differencing scheme will be stable if the errors decay exponentially in time, i.e.,

 $|e^{at}| \leq 1$ (72)

The details of the analysis are given in reference 1. only the results of that analysis will be given here

$$\frac{\kappa^{2}(\Delta t)^{2}}{(\Delta x)^{2}} \sin^{2} \emptyset + \left[1 - \frac{2\mu \Delta t}{(\Delta x)^{2}} (1 - \cos \emptyset)\right]^{2} \leq 1$$
(73)

where

 $\emptyset = \beta \Delta \mathbf{x} \tag{74}$

It is easily seen that if μ vanishes, the central difference scheme must be unstable for a finite, positive Δt , i.e.,

$$\frac{\kappa^2 (\Delta t)^2}{(\Delta x)^2} \sin^2 \emptyset \le 0$$
(75)

Using a special relation for μ

$$\mu = \nu \frac{(\Delta x)^2}{2\Delta t}$$
(76)

(77)

It was found (Ref. 1) that

 $\Delta t \leq \frac{\sqrt{\nu}\Delta x}{K}$

should result in a stable differencing scheme where ν is a constant and

 $0 < \nu < 1$

K was replaced by (u+a) to agree with the Courant-Friedricks-Lewy (CFL) stability criterion, which must always be satisfied. Experience with this expression showed that is was extremely accurate when applied to the multidimensional flow problem. The impressive success of this analysis in reference 1 prompted the attempt to generalize equation (77) discussed in section IV. The computational results presented in section V clearly demonstrate the validity of using this analysis.

2. A STABILITY ANALYSIS FOR BACKWARD DIFFERENCES.

A similar stability analysis will now be presented where u is approximated by a backward difference

$$u_{x} \leftarrow \left[u(x,t) - u(x - \Delta x,t)\right] / \Delta X$$
(79)

Introducing this difference approximation into equation (71) it is easily shown that

$$\left|1 - \frac{2\mu\Delta t}{\left(\Delta x\right)^2} \left(1 - \cos \theta\right) - \frac{K\Delta t}{\Delta x} \left(1 - \cos \theta + i \sin \theta\right)\right| \le 1$$
(80)

is the appropriate stability criterion.

By taking the absolute value of this complex expression, it is easily reduced to

$$\Delta t \leq \frac{\Delta x}{\frac{2\mu}{\Delta x} + \kappa}$$
(81)

In this case, if μ vanishes, a stable differencing scheme is still possible when K is positive. This accounts for the success of linearly extending the solution in the supersonic region to terminate the solution domain (Refs. 1, 11-15). It is easily shown that this procedure results in a backward difference in the streamwise coordinate with no stabilizing terms relative to that direction, i.e., the second derivatives vanish. The question of stability is more complicated when K vanishes. However, to achieve agreement with the CFL stability criterion, equation (81) must be written

$$\Delta t \leq \frac{\Delta x}{\frac{2\mu}{\Delta x} + u + a}$$

(82)

(78)

If μ and u vanish, we expect

$$\Delta t \leq \frac{\Delta x}{a}$$

will result in a stable differencing scheme. This will permit a backward difference approximation, together with the requirement that the normal velocity component vanish on the body, to be used to impose surface boundary conditions. Similar arguments using a forward difference approximation for u result in

$$\Delta t \leq \frac{\Delta x}{\frac{2\mu}{\Delta x} - K}$$

(84)

which allows μ to vanish when K is negative. As a result, the artificial dissipative terms could vanish in the streamwise direction at the stagnation streamline for axisymmetric flow.

APPENDIX II

THE UNSTEADY SHOCK PROBLEM

1. THE METHOD OF GODUNOV

Time-dependent blunt body flows with discontinuous shock waves were considered by Godunov (Ref. 9) using the one-dimensional Riemann problem to describe the wave interactions near the shock surface. Reference 16 contains an excellent description of this approach. The relevant wave phenomena are illustrated in figure 21. W_s is the shock velocity and V_s is the flow velocity behind a normal shock wave. The left running disturbance is the bow shock. The right running disturbance definded by $\frac{dx}{dt} = V_a$ may be either a shock or a finite expansion wave. The wave defined by $\frac{dx}{dt} = V_s$ is an entropy line. The shock jump conditions are expressed by

$$\dot{m} = \left(\frac{\gamma + 1}{2}P_{s} + \frac{\gamma - 1}{2}\right)^{1/2}$$

$$\dot{m}V_{s} + P_{s} = \dot{m}V_{\infty} + 1$$
(85)
(86)

where \dot{m} is the mass flow across the wave, the subscripts s and \bullet refer to conditions behind the shock and in the free stream, respectively, and nondimensional variables with a perfect gas equation of state have been used. The Godunov method relies

on two independent solutions for P_s based on independent jump relations for right and left running waves. An iteration procedure is used to obtain acceptable agreement between the two predictions for P_s . The validity of the method appears questionable for the general blunt body problem. Specifically, when the stagnation streamline for a spherical body is considered, this method does not model the problem correctly. This region is characterized by increasing pressure and decreasing velocity as the body is approached from the shock. In the limit of a steady state flow, the flow inside the shock is isentropic. Then, m across the right running disturbance is given by

$$\dot{n} = -\delta(\gamma P \rho)^{1/2} \frac{1-\zeta}{1-\zeta} \delta$$
(87)

(88)

where

$$\delta = \frac{\gamma}{2\gamma}$$

 ζ is the ratio of the pressures behind and in front of the wave and P and are the pressure and density in front of the wave. Since ζ is less than unity, m must be negative. Then, equation (86) requires that the velocity in front of the right running disturbance be greater than V_s. This is not in agreement with the physical situation where V decreases with increasing X. To avoid this difficulty, some attempt to consider multidimensional effects is required.

2. THE METHOD OF MORETTI AND ABBETT

A method that includes multidimensional effects in an approximate manner was suggested by Moretti and Abbett (Ref. 13). The governing equations in the shock fixed coordinate system shown in figure 3 are

<u>əp</u> ət +	$rac{\partial \mathbf{x}}{\partial \mathbf{x}} +$	V	<u>96</u>		-	<u>əpu</u> əy	ę	(8	39)
9 v +	$+ \frac{v_{\partial x}}{x_{6}} +$	$\frac{1}{\rho}$	<u>95</u>	-	-	u		(9	<i>•</i> 0)

and S is presumed constant inside the shock. The right hand terms in equations (89) and (90) are considered to be constant

$$A = \frac{\partial \rho u}{\partial y}$$
(91)
$$B = U \frac{\partial V}{\partial y}$$
(92)

For a rectilinear shock, A and B would vanish. It is reasonable to expect constant values for A and B to adequately model the curved shock problem. Multiplying both sides of equation (89) by $\frac{a}{\rho}$

$$\frac{a}{\rho} \frac{\partial \rho}{\partial t} + V \frac{a}{\rho} \frac{\partial \rho}{\partial x} + a \frac{\partial V}{\partial x} = -A \frac{a}{\rho}$$

and rearranging equation (90)

$$\frac{\partial \mathbf{V}}{\partial \mathbf{t}} + \mathbf{V} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} + \frac{\mathbf{a}^2}{\rho} \frac{\partial \rho}{\partial \mathbf{x}} = -\mathbf{B}$$
(94)

where

$$\frac{\partial \mathbf{P}}{\partial \mathbf{x}} = \left(\frac{\partial \mathbf{P}}{\partial \rho}\right)_{\mathbf{S}} \frac{\partial \rho}{\partial \mathbf{x}} = \mathbf{a}^2 \frac{\partial \rho}{\partial \mathbf{x}}$$
(95)

for isentropic flow. Adding and subtracting equations (94) and (95)

$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \pm \mathbf{a}) \frac{\partial \mathbf{V}}{\partial \mathbf{x}} \pm \frac{\mathbf{a}}{\rho} \left[\frac{\partial \rho}{\partial t} + (\mathbf{V} \pm \mathbf{a}) \frac{\partial \rho}{\partial \mathbf{x}} \right] = - (\mathbf{B} \pm \mathbf{A} \frac{\mathbf{a}}{\rho})$$
(96)

The + notation should be used consistently through the remaining equations. Defining

$$\frac{d}{dt} = \frac{\partial}{\partial t} + (V \pm a) \frac{\partial}{\partial x}$$
(97)

Equation (96) can be expressed as

$$\frac{dV}{dt} \pm \frac{a}{\rho} \frac{d\rho}{dt} = -\left[B \pm A\frac{a}{\rho}\right]$$
(98)

This indicates that the directional derivative defined by equation (97) is the significant operator. This operator corresponds to a derivative along the characteristic directions

$$\frac{dx}{dt} = V \pm a$$
(99)
Noting that

$$\frac{d\rho}{dt} = \left(\frac{\partial\rho}{\partial P}\right)_{S} \frac{dP}{dt} = \frac{1}{a^{2}} \frac{dP}{dt}$$

for isentropic flow

m

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \rho \mathbf{a} \left[\frac{\mathrm{d}V}{\mathrm{d}t} + (\mathbf{B} - \mathbf{A}\frac{\mathbf{a}}{\rho}) \right]$$

is obtained. Equation (101) represents the compatability relation associated with the characteristic directions specified by equation (99). The pressure predictions from the Rankine-Hugonoit shock jump relations and from equation (101) can be used in an iterative scheme to obtain the conditions behind a normal shock. It is easily seen that a clear parallel exists between this approach and the method of Godunov, the difference being that multi-dimensional effects have been considered in an approximate manner.

304

(93)

(100)

(101)

3. APPLICATION ON THE SYMMETRY AXIS

When the method of reference 13 is applied on the symmetry axis, equations (91) and (92) must be modified. The unsteady shock problem in axisymmetric flow becomes a three-dimensional problem at this point. It is easily shown that if

$$A = \frac{\partial \rho u}{\partial x} + \frac{\partial \rho W}{\partial z}$$
(102)

$$B = U \frac{\partial V}{\partial y} + W \frac{\partial V}{\partial z}$$
(103)

where z is perpendicular to x and y and W is the velocity component along z, all equations developed above are valid at the symmetry axis. For axisymmetric flow, the second term in equation (102) is equal to the first term and the second term in equation 103) vanishes. Consequently, the only modification required is to multiply equation (91) by 2 when computations are performed on the symmetry axis.

REFERENCES

- Aungier, R. H., <u>A Time-Dependent Numerical Method For Calculating The Flow</u> <u>About Blunt Bodies</u>, AFWL-TR-68-52, AF Weapons Laboratory, Kirtland AFB, NM, August 1968.
- Garabedian, P. R. and Lieberstein, H. M., "On The Numerical Calculation of Detached Bow Shock Waves In Hypersonic Flow," <u>J. Aeronautical Sci.</u> 25, 109-118 (1958).
- 3. Inouye, M., Rakich, J. V., and Lomax, H., <u>A Description of Numerical Methods</u> and Computer Programs for Two-dimensional and Axisymmetric Supersonic Flow over Blunt-nosed and Flared Bodies, NASA TN D-2970 Moffett, Calif., August 1965.
- 4. Beiotserkovskii, O. M., "The Calculation of Flows Past Axisymmetric Bodies with Detached Shock Waves," <u>Vychislitel'nyi Tsentr Akad. Nauk SSSR</u> (1961).
- 5. Von Neumann, J. and Richtmyer, R., "A Method for the Numerical Calculation of Hydrodynamic Shocks," J. Appl. Phys. 21, 232-237 (1950).
- Lax, P. D., "Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation," <u>Commun. Pure Appli. Math. 7</u>, 159-193 (1954).
- 7. Lax, P. D. and Wendroff, B., "Systems of Conservation Laws," <u>Commun. Pure</u> <u>Appli. Math. 13</u>, 217-237 (1960).
- 8. Lax, P. D. and Wendroff, B., "Differencing Schemes for Hyperbolic Equations with High Order of Accuracy," Commun. Pure Appli. Math. 17, 381-398 (1964).
- 9. Godunov, S. K., Zabrodin, A. V., and Prokopov, G. P., "A Computational Scheme for Two-dimensional Nonstationary Problems of Gasdynamics and of the Flow from a Shock Wave Approaching a Stationary State," <u>Zh. Vychislitelnoi</u> <u>Mat. i. Mat. Fiziki 1</u>, 1020-1050 (1961).
- 10. Burstein, S. Z., "Numerical Methods in Multidimensional Shocked Flow," AIAA J. 2, 2111-2117 (1964).
- 11. Bohachevsky, I. O. and Rubin, E. L., "A Direct Method for Computation of Nonequilibrium Flows with Detached Shock Waves," <u>AIAA J. 4</u>, 600-607 (1966).

- 12. Bohachevsky, I. O. and Mates, R. S., "A Direct Method for the Calculation of the Flow About an Axisymmetric Blunt Body at Angle of Attack," <u>AIAA J. 4</u>, 776-...2 (1966).
- 13. Moretti, G. and Abbett, M., "A Time-dependent Computational Method for Blunt Body Flows," <u>AIAA J.</u> 4, 2136-2141 (1966).
- 14. Moretti, G. and Bleick, G., "Three Dimensional Flow Around Blunt Bodies," AIAA J. 5, 1557-1562 (1967).
- 15. Abbett, M. J. and Fort, R., "Three-dimensional Inviscid Flow About Supersonic Blunt Cones At Angle of Attack," SC-CR-3728, Vol. III, Sandia Laboratories, Albuquerque, NM, 1968.
- 16. Masson, B. S., <u>Two-dimensional Flow Field Calculations by the Godunov Method</u>, Aeronutronic Report No. U-4137 (1967).
- 17. Hays, W. D. and Probstein, R. F., <u>Hypersonic Flow Theory</u>, Vol. I (Academic Press Inc., New York, 1966).
- 18. Courant, R., Friedricks, K. O. and Lewy, H., "Uber die Partiellen Differenzengleichungen der Mathematischen Physik," <u>Math. Ann.</u> 100, 32 (1928).
- 19. Bushnell, D. M., Jones, R. A., and Hoffman, J. A., <u>Heat Transfer and Pressure</u> <u>Distribution on Spherically Blunted 25[°] Half-angle Cone at Mach 8 and Angles</u> of Attack Up to 90[°], NASA TN D-4792 (1968).

This page intentionally left blank.

DOCUME	NT CONTROL DATA - I	R&D			
Security classification of title, body of abstract a	nd indexing annotation must be	entered when the	overall report is classified)		
ORIGINATING ACTIVITY (Corporate author)		28. HEPORT SE	CURITY CLASSIFICATION		
Air Force Meanone Laboratory (W.FF)	l	Inclassified		
Vistland Air Force Bace New Mexic	o 87117	26. GROUP			
Kirtland All Force base, New Mexic	0 0/11/		•		
A COMPUTATIONAL METHOD FOR EXACT, FLOW OVER BLUNT BODIES OF ARBITRAR	DIRECT, AND UNIFIE Y SHAPE (PROGRAM E	D SOLUTIONS BLUNT)	FOR AXISYMMETRIC		
DESCRIPTIVE NOTES (Type of report and inclusive date	:=)				
May 1969 to December 1969	*		~		
AUTHOR(S) (First name, middle initial, last name)					
Ronald H. Aungier, Capt, USAF		·			
REPORT DATE	78. TOTAL NO	OF PAUES	7b, NO. OF REFS		
July 1970	318	8	19		
. CONTRACT OR GRANT NO.	98. ORIGINATO	R'S REPORT NUM	BER(S)		
	AFLIT	8-70-16			
. PROJECT NO. 5791	AT WL-11				
Task 27	95. OTHER RE	PORT NO(S) (Any o	ther numbers that may be assigned		
d.					
transmittal to foreign governments	s or foreign nation	hals may be	made only with prior		
of the technology discussed in the supplementary notes	AFB, NM 8/11/.	DISTIDUTION	is limited because		
of the technology discussed in the supplementary notes	AFB, NM 87117. report. 12. SPONSORU AFWL (1 Kirtla	NG MILITARY ACT WLEE) nd AFB, NM	is limited because		
of the technology discussed in the SUPPLEMENTARY NOTES	AFB, NM 87117.	DISTRIBUTION NG MILITARY ACT WLEE) nd AFB, NM	is limited because		
approval of AFWL (WLEE), Kittland of the technology discussed in the supplementany notes a ABSTRACT (Distribution Limitation Statement	AFB, NM 87117. report. 12. SPONSORI AFWL (1 Kirtlan t No. 2)	NG MILITARY ACT WLEE) nd AFB, NM	is limited because		
approval of AFWL (WLEE), Kittland of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (1 Kirtlas t No. 2) is presented that	provides di	is limited because 87117 .rect, exact, and		
approval of AFWL (WLEE), Kittland of the technology discussed in the supplementany notes (Distribution Limitation Statement A time-dependent numerical method	AFB, NM 87117. 1 report. 12. SPONSORI AFWL (1 Kirtlan t No. 2) is presented that	provides di	is limited because 87117 rect, exact, and		
approval of AFWL (WLLE), Kittland of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (1 Kirtlan t No. 2) is presented that c flows about blun	provides di t nosed bodi	is limited because 87117 .rect, exact, and .es of essentially		
approval of AFWL (WLLE), KITTAIN of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlas t No. 2) is presented that c flows about blun g scheme used ensu	provides di t nosed bodi res that the	is limited because 87117 .rect, exact, and .es of essentially e required stabilizin		
approval of AFWL (WLEE), KITTAIN of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin	AFB, NM 8/11/. report. 12. SPONSORI AFWL (Kirtlat t No. 2) is presented that c flows about blun g scheme used ensu	provides di t nosed bodi res that the	is limited because 87117 87117 .rect, exact, and les of essentially e required stabilizin odent of the finite		
approval of AFWL (WLLE), Kittland of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencing terms can be specified arbitraril	AFB, NM 87117. report. 12. SPONSORI AFWL (Kirtlas t No. 2) is presented that c flows about blun g scheme used ensu y small and comple	provides di t nosed bodi res that the tely indepen	is limited because 87117 erect, exact, and les of essentially e required stabilizin ident of the finite		
approval of AFWL (WLEE), KITTAIN of the technology discussed in the supplementary notes A supplementary notes A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (I Kirtlay t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to	provides di t nosed bodi res that the tely indepen	is limited because 87117 erect, exact, and es of essentially required stabilizin ident of the finite curate than other		
approval of AFWL (WLEE), KITTAIN of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlan t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to a computational	provides di t nosed bodi res that the tely independent	is limited because 87117 87117 erect, exact, and les of essentially e required stabilizin ident of the finite curate than other are introduced to		
approval of AFWL (WLEE), KITTIAN of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlas t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational	provides di t nosed bodi res that the tely indepen be more acc procedures a	is limited because 87117 87117 erect, exact, and les of essentially e required stabilizin ident of the finite curate than other are introduced to		
approval of AFWL (WLEE), KITTAIN of the technology discussed in the supplementary notes A construct (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlay t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the	provides di t nosed bodi res that the tely indepen be more acco procedures a time-depend	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin ident of the finite curate than other are introduced to dent method. Extensi		
approval of AFWL (WLLE), Kittland of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlan t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the	provides di t nosed bodi res that the tely indepen be more acc procedures a time-dependent	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin ident of the finite curate than other are introduced to dent method. Extension		
approval of AFWL (WLLE), Kittland of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o comparison with standard computat	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlay t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods show	provides di t nosed bodi res that the be more acc procedures a time-dependent	is limited because 87117 87117 erect, exact, and les of essentially e required stabilizin adent of the finite curate than other are introduced to dent method. Extensi present method is		
approval of AFWL (WLEE), Kittland of the technology discussed in the supplementany notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o comparison with standard computat comparable in both numerical accu	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtland t No. 2) is presented that c flows about blun g scheme used ensured y small and completed method is shown to s. Computational btainable with the ional methods shown tracy and computer	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin ident of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of AFWL (WLEE), Kittland of the technology discussed in the supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o comparison with standard computat comparable in both numerical accu	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlan t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods show tracy and computer	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 87117 erect, exact, and les of essentially e required stabilizin, ident of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of AFWL (WLEE), KITTIAN of the technology discussed in the . SUPPLEMENTARY NOTES . ABSTRACT (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o comparison with standard computat comparable in both numerical accu code and instructions for its use	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtlay t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods show aracy and computer are provided.	provides di t nosed bodi res that the be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 erect, exact, and les of essentially e required stabilizing ident of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of AFWL (WLEL), Kittland of the technology discussed in the 'supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o comparison with standard computat comparable in both numerical accu code and instructions for its use	AFB, NM 8/11/. 1 report. 12. SPONSORI AFWL (Kirtland t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods shown tracy and computer are provided.	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin adent of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of AFWL (WLEL), Kittland of the technology discussed in the 'supplementary notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencing terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency of comparison with standard computat comparable in both numerical accu- code and instructions for its use	AFB, NM 8/117. 1 report. 12. SPONSORI AFWL (Kirtlas t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods shown are provided.	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 87117 erect, exact, and les of essentially e required stabilizin adent of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of AFWL (WLEL), KITTIAN of the technology discussed in the supplementany notes (Distribution Limitation Statement A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencing terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency of comparison with standard computat comparable in both numerical accu- code and instructions for its use	AFB, NM 8/117. I report. 12. SPONSORI AFWL (Kirtlan t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods show tracy and computer are provided.	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin ident of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of ArWL (WLEE), Kittland of the technology discussed in the issupplementany notes A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencin terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency o comparison with standard computat code and instructions for its use	AFB, NM 8/117. 1 report. 12. SPONSORI AFWL (Kirtlan t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods show tracy and computer are provided.	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin ident of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of ArWL (WLEE), Kittland of the technology discussed in the isoupplementany notes A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencing terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency of comparison with standard computat comparable in both numerical accu- code and instructions for its use	AFB, NM 8/117. report. 12. SPONSORI AFWL (Kirtland t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods shown tracy and computer are provided.	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 erect, exact, and es of essentially e required stabilizin ident of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		
approval of AFWL (WLED), Kittland of the technology discussed in the supplementany notes A time-dependent numerical method unified solutions for axisymmetric arbitrary shape. The differencing terms can be specified arbitraril difference mesh sizes used. The reported time-dependent technique enhance the computer efficiency of comparison with standard computat comparable in both numerical accu- code and instructions for its use	AFB, NM 8/117. 1 report. 12. SPONSORI AFWL (Kirtlan t No. 2) is presented that c flows about blun g scheme used ensu y small and comple method is shown to s. Computational btainable with the ional methods show tracy and computer are provided.	provides di t nosed bodi res that the tely indepen be more acc procedures a time-depend s that the efficiency.	is limited because 87117 87117 arect, exact, and as of essentially required stabilizin adent of the finite curate than other are introduced to dent method. Extensi present method is A FORTRAN IV comput		

1.11

1.0

	LINI		LINK		LINK C		
KEY WORDS		ROLE	**	ROLE		ROLE	WT
					1		
Reentry vehicles							
Blunt body problem							
Axisymmetric flow							
Inviscid flow							
Fluid mechanics							
Hypersonic flow							
Time dependent solution							
				1.			
							2
		1.1					
					1		
1							
			2				
		-					
						10.00	1
			-	Inclass	4 64		

Security Classification