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Preface

)

;

This thesis, suggested by a term problem by Capt. J. Henry and Mr.

R, Ringo, AFIT-S5E, GGC~69, concerns the use of optimal control techni-

ues for sensitiviry cceificient minimization for = non-thruating

entry
vehicle. A simulation of an optimal implicit guidance scheme including
a Kalman filter is accomplished to verify the results.

We wigh to express our appreciation to Lt. Col. Roger W. Johnson,
AFIT-SE, our sponsor and advisor. This topic was originally suggested
by Lt. Col. Johnson Lased on the results of his doctoral dissertation
(Ref. 1). His continued assistance and encouragement proved invaluable
throughout this investigation. We are also indebted to Lt. Col. R. A.
Hannén, AFIT-SE, for his advice and instructica in the fields of
optimal control and state estimation. Discussions at considerable
length with Capt. T. R, Filiatreau, a contemporary student and co~-
author of a thesis on Kalman filtering applied to orbit determination,
are also gratefully acknowledged.

Finally, to our wives, Judith Holdeman and Barbara Wyanne, who
typed, edited, and translat;d the thesis while their husbands were at
the computer center, we express our deepest appreciation and thanks,
Without their continued assistance and understanding, this thesis
would not be.

Any errors or oversites in the body of this thesis are the com-

plete and total responsibility of the other author.
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Abs tract

The objective of this thesis is to minimize the terminal position
error of an entry vehicle. To do this, the concept of minimizing the
position sensitivity coefficients is employed. With this in mind, two
purposes are established: first, to investigate a set of optimal solu-

- tions minimizing a criterion functiov of sensitivity coefficients; and,
second, to form a suboptimal guldance law for these trajectories.
The trajectories are generated by using a type of control which in~-
cludes parameters describing the vehicle configuration and attitude.
This 1s called a lumped parameter control. Due to the use of a lumped
parameter control, a Valentine's procedure is employed to restrict the
range to a set of realistic design values. A closed-loqp optimal
implicit gsuidance scheme including a state eatimator {a waed fn a aimm
lation of selected trajectories to test the validity of the feedback
gains determined for the traiectories.

The minimum sensitivity coefficient trajectory appears to be one
in which the vehicle first levels out to nearly horizontal flight and
then dives to achieve the desired terminal flight path angle. The
values of the radius and flight path angle gensitivity coefficients for
this type of trajectory are about an order of magnitude lower than for
other types considered, while the maximum velocity sensitivity coef-
ficient remains about the same.

For most of the cases considered, there appears to be a definite
relationship between the sensitivity coefficients and range angle and
rate of changeﬁof‘flight path angle. For all cases but oné, the flight

path angle sensitivity coefficient is nearly a linear function of

VIII
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range angle.
The simulation results using a set of feadback gains and assuming

noisy observations drives the system to within 5 m, 2 mps, and 0.2 deg

I v at the terminal point with initial errors of 5000 m, 100 mps, and 1.0 l

deg in position, velocity, and flight path angle respectively,

i o e 0T U T T
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FYNTHESIS OF A SUBOPTIMAL GUIDANCE LAW TO MINIMIZE
THE TERMINAL ERROR OF AN ENTRY VEHICLE

I. TIntrodnction

Background

When a vehicle enters the earth's atmnapheré. any error in its
position vector or velocity vectur will cause a subsequent position
error at the desired terminal point, The quantities which describe
the sensitiviiy of the position errcr at the terminal point are called
sensitivity coefficients or }nfluence éoefficients. One method of
minimizing the position error at the terminal point is to minimize
these sensitibity coefficiuﬁtl. A trajectory which minimi‘ed the sens-
itivity coefficients is also' the trajectory which provides the minimum
position error at the te:minal point. This concept was first consider—

ed by Johnson in his dissertation (Ref. 1}.

Purpose
The basic objectives of this theuis are as follows:

A, To synthesize and analyze a set of optimal open-loop
trajectories for an entry problem which will minimize a function of the
sensitivity coefficients described above.

B. To generate & set of suboptimal feedback gains which
will drive the vehicle to the desired ﬁerminal point in the presence
of small errors in the vehicle position and velocity vectors af any
time during entry. _

In theory, the use of a set of feedback gains would aypear to
invalidate thc objective of minimizing the sensitivity coefficients,

since with perfect measurements and an optimal feedback scheme, the
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tarminal conditions would be analytically satisfied. However, in prac-
tice, neither of the two assumptions arza valid. PFirst, consider the
snvironmenc; ﬁhc WEASUTCMONIS BIC SXLTACECU LIUR &0 LOEIGiml Fessuie—
mant Unit, which is in turn adjusted by the overall attitude cf the
vehicle., FErrors from the environment, then, can be additive, and, at
present, must be compensated for. Consider, also, the feedback scheme;
the ideal controller would require some nonlinear relationship between
the control vector and the position an& velocity vectors. Since, in
an entry, control must be applied in near real time, the nonlinear
relationship is impractical., Thus a linear ralntiunship, valid for a
small region about a nominal trajectory, is used, and the errors in-
herant in an approximation are, again significant. In gractice, them,
there is ample motivation to seek a trajectory where the influence of
thoca ::fé:: sz the sorminal pooiticn will Lo udaladucd,s

The open-loop controller which achieves the desired optimal tra-
jecéory is defined to include all possiblé parameters of the non-thrus-
ting entr§ vehicle controller and all the parameters which describe
the vehicle configuration. This is done for the purpose of allowing
the vehicle designer maximum flexibility in choosing a combination of
parameters which meet t@e control requirements and which also fall
within reasonable design limits., This type of control is called

lumped parameter control.

Assumptions

It 15 assumed that the entry control vector synthesized ylelds a
planar trajectory with respect to a spherical, non-rotating earth.

Since the control used here is a lumped parameter. control, it is nec-

g
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essary to restricc the range of control to realiatic design limits.
The specific liwits used herein are given in Chepter III,

In construcciung tis ssadbzcl sanrral achema. it 1is assumed that
A linear relation between the control vector and the vectors for posi-
tion and velocity can be used. It is further assumed that the use of
the position and velocity vectors alone in the feedback scheme, with no
use being made of the se;sitivicf coefficients, is sufficient to drive
the vehicle to the desired terminal conditions. It is necessary fo
make this assumption because the errors in the sensitivity coefficients

cannot be computed onboard the vehicle.

Approach To The Problem

The optimal open-loop trajectory and the control ;equired are
found by first variation optimization techniques based on the calculus
of variations, Using this trajectory and control as a set of nominal
values a set sf linear pefturbation equati&ns are solved to refine the
values such that the terminal conditions are percisely satisfied.

Tiiese linear perturbation equations are solved using a second variation
optimization technique based on tﬁﬁ.calculus of variations.

Otce an open~loop trajéctory and control are generated that

satisfy the terminal conditions, a set of linear perturbation equations

are solved to produce a set of feedback gains for the trajeotory. In
order to observe the effects of implementing the feedback contreol in a
practical situation with measurement errors and noise present, a com~
puter simulation is accomplished using the previcusly determined
nominal optimal control and the feedback gains. A Kalman filter is

therefore applied to the nonlinear trajectory state equationa of wotion
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to estimate the position and velocity vectors in the presence of noiss.

The techniqués usad in both the open- and closed-loop optimization
FESLlsm ars prsssatad ia Lidel L Chapiers Ii. Alwo in Ch-pénr i1 an
outline for the implemantntio; of the Kalman filter, and a method for
analytically generating the initial error covariancu matrix for the
filter are presented and discussed. The model equations to ba used
for the problem of minimizing sensitivity coefficients, and a trans-
formation of independent variables is accomplished in Chapter IZIY. In
Chapter III, the derivation of the lumped parameter control is also
presented in depth. The application of the techniques given in Chapter
II to the equations from Chapter III is found in Chapters IV and VI.

In Chapter IV, the open-loop equations are derived using the optimal
theory from Chapter II, and some computation difficultigs occurring'
during the appliratinn nf antimal anen=innn algnrithme are Aiannaasd.
In Chapter VI, a closed-loop simulation algorithm, implementing the
theory for the Kalman filter is presented. Also in Chapter VI, a deri~
vation for the closed-loop feedback scheme is presented. The results
of the open-loop part of this thesis are presented and observations
made in Chapter V, while the results for the closed-loop part are
presented and discussed in Chapter VIII, and recommendstions concerning

this problem as well as areas of further study_are given in Chapter IX,
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.(3 . 17, Optimization Techniques

The purposs of this chapter is to present a summary of'genaral
optimel control techniques and of optimal state estimation techniques.

The Fontryagin maximum principle and the necessary conditions for opti-

melity associated with it will be discussed as well as numerical
methods for satisfying these necessary conditions to determine an open-

loop control. The general eaquations for an optimal linear feedback

control will be derived and the limitations of this control will be
discussed. The equations for a Kalman state estimator applied tc a

nonlinear system will be summarized and a general computational algo-

rithm presented.

Statement Of The General Optimal Control Problem

The mathematical model describing the dynamics of a controllable
process can generally be expressed as a set of firstforder. nonlinear,
vector differential equations as follows: ‘

x = fxut) (2-1)
where the vector x includes all the quantities which are necessery to
describe the dynamics of the system (e.g., position, velocity, and
flight path angle for an entry vehicle), and the vector u includes all

the system control variables (e.g., lift control and drag control for

an entry vehicle). The vector x is referred to as a state vector. The

initial conditions on the state vector are denoted as follows:

x(tg)4 x° (2-2)

. e
. "
Py

e en
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The final conditions are denoted by:
x(ep) 4 xtf (2~3)

The problem under consideration is that of choosing a Eontrol,
from some acceptable class of controls, which beat satisfies some sei-
ected criterion. The criterion selected is in general to minimize some
function of the state variables and the control. This function will be
referred to as the criterion function aﬁd will be defined as a scalar.
The control which minimizes the criterion is the optimal control and
is denoted !f. The selection of tha criterion function is a vital
part of the problem since it specifies the desiiéd performance of the
aystem. The general criterion function treated here is called the |

Lagrange form and 18 expressed as followsa:
te : .
J= It $[x(1) ,u(T),tldv (2-4)
0

The next section diacusses the conditions under which J is a minimum
(or a maximum), The variab’e ¢ is some function of the states and
controls. The derivation of the conditions 1is descussed in additional

detail in references 10 and 11.

Summary Of The Pontryagin Maximum Principle

The function ¢is assumed to be continuous and differentiable
through the second order with respect to the components of the state
vector x and with respect to the components of the control vector u.

By using Lag)ange mu;tipliers as adjoint variables, the criterion func-

tion 1is augmented as follows:

J= f:f {¢x(7) ,u(1),7] ,-'-LT(r)[.f.[L(r) yu(t),T] - _g(r)]} dr (2~5)
0 .
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(: It shoyld be noted that this squation is basically no different from
‘ the original criterion function, Eq(2-4). Since the factor multiply~
ing the Lagrange multiplier in Tigi(z—35) iz idantically oquni to zero
from Eq{Z-1).
From Eq(2-5), a scalar function called the Ham’ltonian is defined
as follows:
HIx(t),u(t),A(),t] = o[x(t),u(t),t] +AT(t)£lx(t) ,u(t),t] (2-6)

Substituting this into Eq(2-5) gives:

.
k
£
i
1
2

J . !:ftumo (1) ACT) 1] = AT()X(D)} dr (2-7)
0

When Eq(2-7) is integrated by parts, the result is:

3= - RO 4 i 00,400 ,1) - x| @y
0 0

When Raf2~8) is minimizad. the original eriterion function is
nminimized and the state vector uquality constraints, Eq(2-1l) are sat-
igsfiad. In order to minimize Eq(%-a), a swall variation is made in

both the state vector and the control vector and the limit is taken as
the small variation approaches zero.

When the small variations in state and control are made, the

following equation is obtained (dropping functional notation):
83 = [8xT(-1)1|E +jtf{exT[-3ﬁ + i] souf & yar 0 (2-9)
= t ty = tlax = = .3u
0
When the limit is taken as the small variations approach zero,

each of the terms in Eq(2-9) must approach zero. This gives the fol-

lowing necessary conditions for optimality:




—
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(857D 11t = 0 (2-10)
Ae-H - (2-11)
RN -

i‘. - '%'E - i@!bﬂ» t) ‘ (2-12)
=0 (2-13)

vhere Eq(2-10) is the transversality condit}on (i1.e., boundary condi-

tion), Eq(2-11) is the set of adjoint equations, Eq(2-12) is the ori-

ginal set of state equations, and Eq(2-13) is the gradient equation.

This set of equations constitutes the necessary conditions for opti-

mality, but they are not sufficient. Solution of these equations

leads to a local extremum which may be either a maximum or a minimum

but cannot be consideréd & global minimum. | . R
The transversality condition, Eq(2-1Q), muast be considered for

two separate cases, When the initial or final condition on any com-

ponent of the state vector x i; specified, the first variation of the

component at that point is identically zero. When the initial or

final condition on any component of the state vector is unspecified,

the corresponding adjoint variable at that poiﬁc must be identically

zero and the first varlation in the state component is then unconstr-

! ained. This is fllustrated in Table I.

Table I. Constraints On Variables

State, x Specified Unspecifled
| Adjoint, A Unconstrained 0
( Variation, éx 0 Unconstrained
» -
‘ 8
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Open-Loop Optimal Methods
First Variation Gradient Technique. The gradient procedure dis-

cussed here inlierently satisfies the state and adjoint differential
squations, and satisfies the gradient equation, Eq(2-13), by an iter-
ative procedure. The procedure also inherently satisfies the trans-
versality conditions. From Eq(2-9), and assuming that Eq(2~10)

through Eq(2-12) are satisfied, the follcwsing relationship may be

obtained:
tE, v 3H
(] -_f 6_1_1- ﬁ dt (2'14) b
to -

The objective of this procedure, then, is to drive the gradient
to zero, To achieve this goal, a gradient 3H/2u is computed and a
change in control 6u calculated. The new control is then used to
compuﬁe 2 new gradient and the proceas is repeated until Su abproacges
zero, When‘Qg is sufficiently small, the.gradient is near zero and
the last necessary condition of optimality is considered satisfied.

The sign of the required chaﬁge in control can be found fron the
sign of the gradient, but the magnitude is more difficult to datermine.
The magnitude is generally determined by searching over a range of mag-
nitudes Qntil one is found which minimized the criterion function.

The gradient technique 18 derived and described in morae datailwigwtefw

arences 7 and 11. .

Asguming that all utateﬂgompbﬂéhts
time and unspeciﬁigd'iiﬂthe final time, a typical computation algori-
’p‘

thm for‘;mpiaignting the gradient technique is as follows:
r el

r’"
" Step 1. Guess an initial control versus time, u.
7

Step 2. Integrate the state equations forward from the

L 4
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given initial conditions and stors the final values.

Step 3. Using zero as the final condition on the adjoints
and the final conditions on the states from step 2, 1ntegrafo the
state and adjoint equations backward and store the computed gradient
versus time. The sign on the gtadient provides the sign for the con-
trol change,

Step 4. Perform a one-dimensional search over different
magnitudes of Su until a Su is found which minimizes the firast vari-
ation of the criterion function (8J).

Step 5., Construct a new control versus time, u,,., =
U514 + Su. |

Step 6, Go back to atep 2 with the new control values and
continue until the gradient is sufficiently small or un.til the change

in either the control or tha eritarion finatinn ia rufficiantly amall,

First Variation Terminal Error Function Techniquea. The gradient
algorithm described above always satisflies the state, adjoint, and

transversality equations and works to satiafy the gradient equation.
The terminal error function technique always ratisfies the state, ad-
joint, and gradient equations and works to satisfy the transversality
equation.

At each end of the problem, there are 2n boundary conditions
where n is the number of states. Of these, n conditions are aspecifi-
ed and n are unconstrained. For the a that are specified, two vectors

are formed, 2z

and zp, where z is the actual value of the states or
adjoiuts at the boundary and ;5 is the desired or specified valua, A

new criterion function, Q, is defined as followss

10

S 4 . ' . : % R N )




Q= [z - zp)"z - zp) (2-15)
where Q 1s called the terminal error function. When this function is
minimized, the transversality conditions are considered satisfied.
Since ihe siaie and adjoini equaiious and the gradient equaiion are
always satisfied, every solution is an optimal control for the part-
icular end conditions achieved.

To implement this technique, the states and adjoints are integrat-
ed simultaneously from either end of the problem, The integration is
performed using the given boundary conditions for those variables
which are specified and estimated or guessed values for those varia-
bles at the other end of the problem, the estimated values are changed
and the process 1s repeated until the integration terminates with the
desired boundary conditions. This is equiﬁalent to transforming the
twofpoint-boundnry—value problem (TPBVP) into either an initial value
problem or a final value problem. l

A necessary condition for the use of this method is that the
control be completely removed from the problem. For this to be done
the second partial of the Hamiltonlan with respect to the control vac-
tor must be non-singular. That is:

32H -
'?g' $0 (2-16)

If the determinant is not zero, the control can be expressed as:
u = h(x,At) (2-17)
A substitution for the control in the state equations can be accompli-
shed.
Once the unconatrained boundafy conditions are estimated and the

boundary conditions at the other end of the problem are found to be in

11




TL_TE T

GGC/EE/70-10

arror, a gradient is computed for the criterion function with respect

to the estimated boundary conditions, By, as follows:

« QCEt + AEj) -Q(E4) (2-18)
ABy

vQ
The computation of this gradient providea a nenfch direction for the
change in boundary conditions which will satisfy the boundary condi-
tions at the other end.
A computational algorithm for the terminal error function pro-

cedure is as follows: |

Step 1. Comstruct a terminal error criterion functiom, Q,
corresponding to ou end of the problem.

Step 2. At the opposite end of the problem, guezs the n

unspecified values,

-
- -

Siep 3. Iuiegraire boch che state and agjoint dirrerentiai
equations using the specified and guessed boundary conditions a3 a
starting point. ’ | .

Step 4. Determine the value of Q. \

Step 5. Numerically differentiate Q with respect to the
guessed boundary conditions to form VQ. ’

Step 6. Perform a one-demensional search over the guessed
boundary conditions in the direction of -VQ to minimize Q.

Step 7. With new guessed boundary conditions from Step 6,
go back to Step 3 and continue until Q 1is sufficiently small.

The only difference between this method and that of the second

variation is that in the terminal error functipn, a linear search is

performed based on the first variation equations; whereas, in the

second variation procedure, numerical perturbation differential

12
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equations are solved during the integration of the state and adjoint
equations to determine the necessary changes in the guesses, The ter-
minal error function technique described here is due to Trushell and

Birta given in Refereuce &,

Second Variation Technique. In the open-loop optimal control
technique based on the second variation of the Hamiltonian, it is as~
sumed that all necessary conditions for optimality are identically

 satisfied with the exception of the boundary conditions. This tech-
nique transforms a two-ﬁoint-boﬁndary-value problem (i.e., a problem
in which some conditions are known and some are unknown at each end of
the trajectory) into an initial-value or final-value problem (i.e., a
problem in which all of th; conditions are known at either one end of
the trajectory or the other).

Since the gradient is defined to bae identically zero, it is as-
sumed here that the control vector can belexpressed as an explicit
analytical function o{ the state and adjoint variables. Based on this
assumption, the control function can be substituted into the state and
adjoint differential equaticns to completely remové control from the
problem, Then, once the boundary conditions have been satisfied, the
final 0pen—106p control versus time can be computed from the functional
relationship.

Based on these antsumptions, the state and adjoint equations are
integrated starting at either end of the trajectory, Errors in known
values atlthe end indicate the initial unknown boundary conditions are
in error and must be changed. The entire purpose of this procedure is

to determine the magnitude of these unknown boundary conditions such

13 -
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that the known boundary conditions at the other end of the trajectory
are satiafied. Thia is done by solving a set of perturbation diffar-
ential equations simultaneously with the state and adjoint differential .

equations. The solution to this set of perturbation equations provides

the sensitivity of errors in the specified values at one end of the

33 trajectory to changes in the estimated valuea at the other end. These
sensitivities are then used in a Newton-Raphson procedure to change
the estimated values.

;1 _ The sensitivity quantities provided by this method will be refer-

: red to in this thesis as boundary value pnrtiils to avoid confusion

s with the position sensitivity coefficlents which are being minimized.

; ' The boundary value partials are sensitivity coefficients, bﬁt the -

. - sensitivity coefficients being minimiaad'relnte d;viatiqnl in position
slans thé tynioctory vz orzorc 4n ctates at tha tezudasl psist, wheze
as, the boundary value ratios relate errors in all of the known state
and adjoint variables at one end of the trajectory to changes in the
uncoustrained state and adjoint variables at the other end. ‘

To illustrate the Newton~Raphson procedure, an example is consi-

| dered in which the first q states of a total of n states are.rss-med

to be specified at the initial point and all.n states aéﬁ;§§ﬁui$$£&
at the final point. Two separate cases must be considérg&-fdmlthaﬁ.
example. One case deals with the procedure when backwardlﬂutﬂgration
is selected to satisfy the initial boundary conditions, the other with
the procedure when forward integration 1s selectedlto satisfy the

' final boundary conditions.

A In the case of backward integration for this case, the unconste-

ained adjoints at the final point are iterative1§ adjusted to satisfy

14
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the specified boundary conditions at the iniﬁial point. The specifiad
boundary conditions at the final point are satisfied because these

conditions are used to begin the backward integration. The Newton-

Raphson equation for this case may be exnresraad an:

a(t,) |
f!é.(.fn ) ) G (2-19)
Gm(ta) w(to) | '
ax(cf)
which may be rewritten as:
-1
ay(ty)
zt s
8a(tp) = A S¥(k) » (2-20)
au(ty) duw(tq) _
A (tg)

vhere 6!“:0) = a g-vectar of tha deviatiana of the initial aratea
[x(toﬂ from the specified values. .

‘Qg(to) = an (n~q) vector of the deviations of the initial ad-
Joints [A(ty)] from zero, These adjoints are specified
to be zero at the initial point because the correspond-
ing states are completely unconstrained,

Q&(tf) = the necessary change- in the unconstrained adjoint var-
iables at the final point to satisfy the initial
boundary conditions.

Eq(2-20) may be written in terms of an iterative equation as follows:

ay(ty) -1
o_,n
Alegatt = agegn + [ 2XER | |3 () (2-21)
du(ty) 0- W (ty)
3A(te)

15
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where V0 is the vector of specified initial states, P(tg) is the vec-
tor of actual initial states from the backward integration and w(ty)

is the vector or actual initial adjoints. The quantities in the matrix
to be inverted may be derived by performing a Taylor series expansion

on three of the necessary equations of optimality. These equations

are
x= £(x,0 (2-22)
A = (2-23)
M, -
and A ] (2-24)

The partial derivatives of these three equations with rosfcet to Ajtt)

are:
) |, _afamw | Jaraw] - (2-23)
| aaep] 4t (kg ] [9Ep |
K d [a 3 o
A | a4 faw | [ | 2-26)
laacep)] dae laaep]  anep |axte)) |
o [ | [asew ]
and . ey (o] “feacep]” (2-27)

Performing a Taylor serles expansion on these three equati ns gives:

d_|ax(e) |.|2Ew] axct) |,.|aE(xu au(t) (2-28)
dt aA(tf) ax(t) a_utf) au(t) aA(t:f)

d_ 8A(t)T 3A0e,u, 0 fHax(e) fofa8Geu, Dl aA(t akgxlu,azl au(L)J
de[aa(tg) | | ax(t)  [A(tg)] | 2A(t) |ax(tf) | du(e) J Aty

(2-29)

16
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and:
la_q(;.g,»]fmt) ] JaQQ.E.A)HaA(t) IJ"Q(I:E'D"'@B(")_]_ o ¢2_20%
x| | am Jacp]| ww Jacp] T T

where the final conditions are specified as:

x(tf) | ' (2-31)
| 2A(tg) |

and

r -

aleg) | -
_,a}.(tf)_ 1 (2-32)

The last equation can be solved for [3u(t)/3A(tg)] analytically and

substituted into Eq(2-28) and Eq(2-29) to eliminate the quantity from .

the equations. The solutioﬁ to Eq(2-28) and Eq(2-29) provides the
boundary value partials to be used to form the Newton—Raphson matrix
in BEq(2-21). An algorithm for implementing this method is presented
ét the c#d cf thiz 5:;:1::.

In the case of the forward iantegration for this example, the
unspecified states and adjoints at the initial point are iteratively
adjusted to satisfy the specified states at the final point. Thi

Newton-Raphson equation for this case is:

sty |t axceo [ saceg) PRI
x 3wz ) ! 28Ceg) || S¥Cey)

which may be rewritten as:
-1

5u(tg) o) 8x(te) | (2-34)

[emsep] axte) ! ance )
(
\ )
where for this case:

Gg(tf) = an n-vector of the deviations of the final states from

the specified values.

17
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éu(ty) = a q~vector of the necessary changes to the unconstrained

initial adjoints.

53;_(:0) = an (n-q)-vector of the necessary changes to the unspec-
1fied initial states.

The recursive equation for this case 1s:

n+l
%SEQZ] .
Bty

acep]” | [ st | ey
¥(tg)

-1
a(t £ - 2-35
2ty iamo)} G-l 3

The pexturbation equations for the terms in the matrix in the above

equation will not be presented here but have the same form as the

equations derived for the case of backward integration presented

earlier.
' In order to satisfy control constraints for a bounded control
pretlem da thi sidiad vasdablovw wsilivd, Veieniiue's ousisainl pau-

cedure is used (Ref. 2). In Valentine's procedure, a new constraint
is added to the problem and is cf the form:
vw2o (2-36)

It is assumed that the control constraint is:

By 2u S By (2-37)
or u-53 20 (2-38)
and Bp-u20 (2-39)
These two inequalities can be combined as:
(111 = BLI) (BTI - ul)
N . . (uj - B‘Y‘j) (BTJ - uj)

: 18
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This constraint is added to the Hamiltonian with a new Lagrange multi-
plier. u. Tf tha now Hamiltanian 1a donnted U/ thone

H = H + pTw(y) . (2-41)
To satisfy the original problem, the new term must always be identic-
8lly zero. When a particular control component is on one of the
boundaries then that component of w(u) is zero. If the control com—
ponent is not on a boundary, then the multiplier must be identically

zero. A new gradient equation 1la formed as:

NE '
! —all-:- - _a.l!. + Mu -
Sag gt e u-o (2-42)
. n(w]” .
ox G' =G+ [ _a: p=o0 (2-43)

Whare 2 {a thae ﬂ‘!“ls‘.'?‘“ svoa-l-ni- withaut ranoteainte T a nantenl de

on a boundary, i must be computed such that the gradient equation is

‘zero. The fact that:

LuW =0 . (24

is not a sufficient condition fox:

T
[ﬂ] p=0 (2-45)

En

For this reason, when a control u.1 is on a boundary,lﬁ is'computed

from the corresponding gradient equation:

-3
g, = .gu.’! (2-46)
3 By + By - 2uy _

19
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When the control is on the lower boundary:

oM _
ByT = L) (2-A7)
I Bry = Byy
and
B 20 5 (B, -B )20 (2-48)
uy BLJ - T Ly —

which implies that u ] is negative on the lower boundary. When the

control is on the upper houndary.

uy - -—%Etl!-‘u- . (2-49)
3 Bpy - Bry

and

BT:I - BLJ) 20 . {2=50)

Sy, 20 5
Iy
which imial:les that uJ is negative. Then M ir always negarive when the

control is on either boundary. The term in the numerator is positive

because the original gradient equation, with no constraints, is of

the form
uy - hj(;.A) =0 (2-51)
when the control is on the lower boundary:
uj = BLJ . (2-52)

But h 5 (x,A) is the value the control would be if no boundary were

present and is consequently less than B This implies that

L3’
uy = h jQ:_,A) is greater than zero. When the control is on the upper
boundary

u, = BTj (2-53)

But, in this case, hj(g,A) is larger than the boundary and uj—hj(:_c_,_y

20
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is less than zero. ' -
When the control is on a boundary, then changes in control at that

pbint are not functions of changes in either the state or adjoint var-

iables at tj or t. and.

£
1 r 1
L] B O
\. 3a(tg) "1 axteg)
: i ] (2-54)
duy(t) duy(t)
Aj "0 ~TL_ -0
at that point.
When the control is not on a boundary, then’
TEY | (2-55)

and the control is computed as if the boundary on control did not
exist.

An uigoritim for implementing the second variation procedure with
control inequality conmstraints and using backward integration follows.
The method for forward integration is similar.

Step 1. An initial set of estimates are made for th; ter-
minal adjoint.varisbles.

Step 2. The control ia computed at tg from the gradient
Eq(2~43). If it ie within bounds go to Step 3; otherwise, go to Step
.. .

Step 3. The state and adjoint equations.are integrated
backward for one increment of time.

Step 4. The control is computed at this point from
Eq(2-43). If it is within bounds go to Step 6; otherwise go to

Step S

21 g
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Step 5. Let the control equal Bi or By and compute from
Bq(2-47). Set [Buj(t)/QL(tf)] equal to zero and go to Step 7.

Step 6. Set yu = 0 and continue, ‘

Step 7. Solve the perturbation equations backward in time
to the same point as the states and adjoints.

Step 8. If the initial time has been reached go to Step 9;
otherwise go to Step 3.

Step 9. Compute new estimates of the terminal adjoints
from Eq(2-22) by inverting the nxn matrix and go back to Step 2 and
continue until the boundary.conditions converge to within a tolerance

of the specified values.

- Suboptimal. Closed-Loop Control Methods

The. basic purpose of using a closed-~loop control in conjunction
with an optimal problem is to form a practical, near optimal, guidance
law for use in a real time adaptive contr;ller. If this suboptimal
law is used with perfect measurements, the feedback elements derived
herein will satisfy the final bphndary conditions estahlished in the
optimal solution. Tﬁe Qolution of the open-loop optimal control
problem determines a nominal trajectory and control set which satisfy
the boundary conditions at both ends of_the trajectory. However,
when the optimal control is applied as ; forcing function during a
mission, the actual initial conditions may not be identical to the
nominal initial conditions for the optimal trajectory. Also, due to
perturbations along the trajectory, the acﬁuhl\trajectory may deviate

from the nominal optimal trajectory by a small amount. For a mission

such as entry into the earth's atmosphere, there still exists a

L i
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requirement to reach a particular target with a set of specified final
states. An optimal closed-loop control scheme corrects for these dev-
iations by continually computing a new optimal trajectory tb arriva at
the specified boundary conditions. However, tha computation of an
optimal control at every point in time to satisfy tho final boundary
conditions requires the complete solution of the original optimal
control problem from the actual initial conditions at each point to the
final point.

An alternative to solving the entire problem at each point is to
define a linear functional relationship between small deviations in
the states from the nominal and small changes in control from the
nominal to achieve the desired final boundary conditions. This func-
tional relationship 18 only valid in a linear range about the nominal,
but allows a practical compensation for amall errora., Thia fimetrional

relationship is given in reference 1 as:

su(t) -[%l;{%] sx(t) (2-56)

where Su(t) is the roquired change in control vector to correct for
small errors §x(t) in the state vector. The matrix is computed from
quantities available from the original solution of the optimal open-
loop control problem. It should be noted that the change in control
generated does not immediately correct the trajectory to the nominal.
Instead, it allows the states to follow a neighboring path to the
specified final conditions. This is illustrated in Figure l. 1In order
to accomplish this, the matrix [3u(t)/ 3x(t)] 1s computed backward in
time, relating all variables to the final specified condifions. This

matrix is referred to as the feedback gain matrix.

23
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nominal path —

Independent Variable

Figure 1. Neighboring Trajectory for Lineax

Feaedback Scheme

The block diagram in Figure 2 illustrates an exampls of the

implementation of a linear feedback scheme.

e e S R S

u"+; stored

in computer

Physical
| System Dynamics

X(#)

1
sum) ||ou
X (+)

XXt Stored
In Computer

Figure 2. Block Diagram for Implementing Feedback Gains
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The quanticy which must be derived is thc relationship for the
feedback gain matrix. The equation for defining this matrix as derived
by Johneon in Reference 1 is:

au(t) e | e | | | | |aaw || e 1™
{_3_;_-({')-} ) _[ :_g_(z)} {[:;(t)} [:_A_(c)} {a_x_(:f)} Il:_:l(t.t)j }

(2-57%
\="eds

vwhere G(t) is the gradisnt and

BA(e) ax(t)
acp| ™ |y

are computed by solving the perturbation equations, Eq(2-28), Eq(2-29),

nﬂd Eq(2~30) in the previous section. This equation is only valid for
the case in which the states are specified at both ends of the trajac-
tory. It is not practical to force the changs in control to be a
function of arvors in the adinint wvarishiee afnre thaea ayrrare cannot
be generally couputed during an actusl entry mission.

The algorithm for computing the feedback gains simply consists of
integrating the three perturbation equations backward in time, substi-
tuting the quantities into Eq(2-58), and storing the resulting gain
values at sach point in time. It should be noted that these gain
values cannot be computed from forward integration because the final
speci fied boundary conditions do not dirsctly entsr into the integra-

tion.

Optimal State Estimation

The optimal state estimator used in this theais is the digcrete
Kalman filter. The Kalman filter is a minimum variance, unbiased,

linear estimator. The classical least squares estimator is a special

25
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" g

Q case of the Kalman fflter. When no plant noise is present and the

plant differential equations are uncoupled, the Kalman filter and the

Wt En
-

unwaeighted least squares estimator are equivalent. The discrete Kai-

L NE

ecursiva aquations just as the
least squares estimator can be. A derivation of the filter aquations
will not be precented here but is well described in Ref. 5, 12,
and 13.

When the plant and observation noise are independsnt, white
Gaussian vectors and the plant and obsarvation squations are linasar,
the Ralman filter provides the optimal Bayesian estimate of the state

vector. When the noise is not Gau sian, the Kalman filter still

provides the optimal linear estimate of the state vector. When the
M . | plant or observation vector equations ars non-linear, the optimal
! 2&7;;1&# sstiuate is avea U7 o weoa Ldacan Siltor whadh wust b dex
ived for iach problem individually whether the noise vectors are Jhitc
Caussian vectors or not. For most non-linear problems, the most

practical approach is to linearize the equations and apply ths Kalman

filter to the small deviations within a linear range. The following

basic procedure is generally followed in applying the Kalman filter to
4 non~-linear set of equations:

A. The non-linea: plant and observation ~quations are
linearized either abcut a precomputed nowinal sct of values of the
state vector or about the current optimal linear estimates of the stats
vector. In this thesils, only iinearization about the current optimal
linear estimates are considered.

B. The Kalman filter is appliad to the linear set of

) (:i deviations from the nominal or estimated states fo form the optimal

26
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C estimates of the deviations.

C. The optimal estimates of the deviations ara added to
the precomputed nominal statea or to the best =stimate of t;he states
given all information ewce
This provides the optimal linear estimate of the state values,

The system model (i.e., plant model, message model) equation and

the observation equation are defined as follows:

x= £x,5,W (2-58)
X = g0 (2-59)
vhere X = state vector to be estimated

y = cbservation vector
u = control vector
L = Gaussian white system noise

PRAS-A AP R A Ay

In order to establish a discrete, recursive set of equations, the '

system and observation equations are written in the following discrete

form:

E—iﬂiﬁ = £(xq0Eqomy) (2-60)
or Xi4q® X4+ Ho£0x1,54504) 4 F(xe,54584) (2-61)
and ¥, = 8(x4,04) & 6(x1,04) (2-62)

where H is the integration step size for a linear approximation. When
the discrete system and observation equations are expanded in a Taylor
series about the optimal eatimateq &) §;,8; and g, the following

equations are obtained:

27




X",
.

GGC/EE/ 7010
AP(X1 0 H,41) :
-F +H= -
Xy = Fxq.E400) [ 2% (=, .%1).

ra.ﬂlx.,r.'u.)w
+ .;‘:.1_"".1% (5 - -&i)

| %y |
51754

r -
; 3P(xy,84>1)
W 3

d L 21 d 4 =@
i =1 =1

u, - §) (2-63)

~ s

G(x4,
¥y = S(rydy) + [_______a_(zsi m’] & -2

% %
g =
: 36(x4,04)
. B ['_T—‘] (g - 8 (2-64)
. 4 LYl P} .

If £ and n have zero mean than

£ ~¢p -0 (2-65)
and ﬂi = E(ﬂ'l.) =0 . (2-66)

where E(*) is the expected value of the quantity in the parentheses.

1f the control vector is assumed to be a forcing function (i.e., not
a function of the states) then:
When these relations are substituted into Eq(2-63) the final linear-

ized equations can be expressed as:

a aF(%i,£1,1 )
X " B 00u,) + ["L_':f_L] & - %)
By

? +[ az(x: 1 :_5._‘ :“ﬂ )] 51 (2"68)
' 28
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15 = 63;,0) +EELL) (g - 8 +ZELDD) ey
axy g
xs=Rs n4=0

The Kalman filter may be used with these equations in two ways.
Both are squivalent. One method involves applying the linear filter
equations to the deviations from the optimal estimate to find the op-
timal estimate of the deviations and then adding the result to the
best estimate of the states. The other method consists of modifying
the fi_lt:er equationi ‘to include the best estimates of the states. Tha
latter procedure will be followed here. The best estimate of x;4;
glven only y, and all prece&ing observations is denoted _:_g(i+1|i). The

best estimate may be computed by solving Eq(2-58) as:

54l = fxl0,08] tsism (2-70)
where, the :lng:egrat:l.on beging at:

x(1]1) = & ' (2-71)

and ends when j = {+1,
The recursive relations to be computed for the filter are as
follows:
A. Kalman Gain:

Kipl = T [0D6 () TG (41 r (|06 (14T + w1t 2-72)

B. Best Estimate Of Error Convariance Given yj:

r(itl|i) = F TyFy +Yy (2-73)

This quantity may be computed by propagating over small intervals with

29
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the state transition matrices Fy and F at the same time x(!+1|1)
is computed.

€. PFrror Covariance Given vi.st

Typr = [T = KyggGpu(i+l) T (14 1) (T - Kyyg G (14T

+ 1‘1+1W1+1x1+11 ' (2-78)

D. Optimal Estimate:
%g4q = XOAH] L) + Ky yo4 - Slx(141]1),0] (2-75)

In the four sets of equations abovst
Ki41 = Kalman gains at measurement point (1+1).
“T(i+1|1) = Best estimate of error covariance at measurement
point (i+l) given Yy

) 4 " Error covariance at measurement point (i+l)

glven ¥, 4

_:5(1+1|1) = Best estimate of state vector at measurement point
(1i+1) given ¥y
3_1 = Optimal estimate of state vector at measurement
point (i+l) given yy41.
G 0
Gy (i+l) = a“(f 2
M4 Jx = s
F aF(x4.0 244) 3
xi x4
Xy =2y
= E T
Vi (vivy )
- where
aF(x u
vy - _( 1’51'..1)] 51
i £4=0




w = I 3_9,(_&[!,&1)'
- . a'ni 4
. 040

o4

A specific algorithm for implementing the Kalman filter will be pre-
sented in Chapter VI on Optimal Implicit Guidance. These equations
will form the basis for the optimal estimation in the entry guidance

lav formulation.

Initial Estimate Of The Error Covariance Matrix. In this sec-

tion, a set of equations will be derived for computing the initial

error covariance matrix, Ty, wvhen certain assumptions are satisfied,
It will be shown that it is not, in general, necessary to guess an ‘
initlal estimate I'j. It may be computed instead. It is assumed here
that the problem begins at the first measurement point. 'Theoretically,
for a linear system and linear observations, given a long enough
sequence of measurements, any estimate of the initial error covarlance
matrix should produce the same steady state errors. In actual practice
with non-linear systems, given non-linear observations and a finite
sample t:ime, this does not occur. This is illustrated by Elliott and
Filiatreau in Ref. 17. They investigated the effects of variations in
the initial estimate of the error covariance matrix in conjunction
with an orbit determination problem. 2
The steady state errors are sometimes critically dependent on the
initial estimate of I';, If the estimate is much smaller than the ia-

itial observatisn agnilse conrisn.© matrix, W(0), 'the variables may not

k1
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_ rveach steady state valuéu at all. If the estimate is larger than W(0),

the variables in some cases reach steady state values in a much shorter
time than for lower estimates. When the estimate is much larger than
W(0), the reference cited above indicates a tendency for the variables
also not to reach steady state values as in the case in which the
estimate is much smaller than W(0).
The equation for the optimal estimate, Eq(2-75), is:
Xyyp = 24 + Ry, g - SGx(+]D,0) (2-76)
For the initiai observation point this equation becomes:
%-g+%%-gf@1 (2~77)
where x7 1s defined as the best estimate of the .1nitill stata vector
glven no observationa, and i:o is the optimal estimate of the initial
state vector given the initial obsaervation. Thus y x° can be based
only on : priczd information. Ths followiag ascumptisus ave asw wadss
A, 50 is an arbitrary a priori estimate of the 1n:|.tia'1
state vector,
B. Ko is an arbitrary a priori estimt.:a of the initial
Kalman gain matrix. The value of K will be determined by the con-
fidence level of the a priori _50 as compared to the confidence level
of the observation vector y, as given by W(o).
The equation for the initial Kalman gain from zqcz-iz) is:

Ky = [96,(0)TI6(0)106,(0)T + W(0)]™} (2-78)
where I'0 is defined as the best egtimate of the initial error covari-
ance matrix given no measurments. The optimal estimate of the initial
error covariance matrix given the first measurement will be denoced ro,
Solving Eq(2-78) for I'0 gives:

10 = [I - K46, (0)17 K W(0)G,(0)~T (2-79)
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The equation for the optimal estimate of the initial error covariance

matrix, Iy, from Eq(2-74) is:
M0 = (I - K G (0)I[I - kG, (0)17 + Ky u(0)Ky T (2-80) '

Substitutiug Eq(2-79):

To = [T = X G,(0)][I-K, Gx(0) 171 K W(0) G, (0)~T(1-K, G, (0) 174K, W(0I K] (2-81)

or:

it

e UMty SRR

. Ty . 31T T -
I’o Ko W(O)Gx(O) (1 KOGx(O)] + Ro w(0) Ko (2-82)
Simplifying this equation gives:
r, = K W06, 0T - 6,07 Tk 6,01 + k)T (2-83) }
or:
- -7 -
I‘o KOW(O)Gx(O) (2-84)
where: _
- | 86(x,0 _
Gy (0) "‘Hz 40 (2-85)

Wn(7-8h) defines theo o zrer sivariancs ;

|41
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0

matrix, I, once X, has been computed using arbitrarily selected

values for x? and K.

A special solution of this problem will now be ‘considered in 5

which:
Ko A1 ' (2-87) {
and: : ' ¥ .
x" = 6(x%,0) (2-88)

In the case in which the observation vector is a linear function of che
state vector or:

Yy = xg +ny (2-89)
.Bq(2-88) is satisfied by any value of x? and Eq(2-85) and Eq(i-BA) give

6, (0) = I (2-90) o
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) and: ]
} Iy = W(0) (2-91)
g Tha sneniel nnes daasvihad ahove {e the one whish will ha snnliad in
3
[{ . the optimal implicit guidance simulation for this thesis.
£
& Eq(2-84) provides a relationship which allows the following
B
initial estimate algorithm to be constructed:
Step 1. By some arbitrary method, select an _:5_“ and Ko
such that:
30 =+ xo[xo - 6(x ,0)] (2-92)
provides the desired relationship for X; (such as x’=0 and K,=I)
Step 2. Evaluate:
T
T 6(x,9)
0)" = 2-93
. G, (0) [ x| e (2-93)
and invert the matrix to form G‘(O\'T.
' Step 3. Compute the initial error covariance matrix '
from:
- ~T . -
Ty KOH(O)GX(O) (2-94)
This method of estimating the initial error covariance matrix
and a further development of the case to which it is applied are
presented in Chapter VI, The following chapter shall develop the
model equations for the optimal open-loop control problem.
i
]
(.
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In this chapter the basic equations of motion for an entxy body
will be established along with the equations for the pesition sensi-

tivity coefficients to be minimized. The iumped parumeier coniiol <oR-

taining parameters for vehicle configuration and attitude will be

GGC/ EEF 10-10
III. Derivation Of Basic Entry Equations
.l

defined and the characteristics and effects of the atmogphere will be

discussed.

tate Vector Equaticns Of Motion

Figure 3 below shows the geometry and sign conventions to be used
for the ehtry problem. The motion of the entry vehicle can be descri-
' bed by a set of four coupled differential equations, The solution of

. these equations provides position with respect to the center of the

T T

‘ earth (r.\., vatoelty (v), areal velocity (W), and ranas angle (a). Far

Al

P e S e S

Enf'ry

Point rerminal

Altitude

R i T Wwenk)

L DA T St

Figure 3. Entry Geometry
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this problem a transformetion of ths independent variabls is made such

c that the range angle, ¢, 18 thé independent variable instead of time.

This reduces the number of equations to three. A transformation is
. also made from the areal valocity, w, to flight path angla,y.
e vquaiions of motion for a planar trajectory with respsct to a
spherical, non~rotating earth with ablaﬁion effecte neglected as

developed by Johnson in reference 1 are:

. )
i r (3"1)
Vo= - YD (3-2)
W v2-~% -Drcos(y) +Lrsin(y) _ (3-3)
¢ = y8in() ' (3-4)

r
Where r = displacement with respect to the center of the earth.

v = velocity.

y = angle of the velocity vector measured from the local verti-
cal. This 1s always a positive quantity.

o = range angle. The range angle is a pouitiQe quantity and
assumed to be a monotonic function of time.

w = areal velocity. This quantity ia defined by the relation
-w = rvcos(Y). |

D = drag. The drag is dependent on the coefficient of drag and
the square of the velocity and is normalized to be drag
force per unit masa.

L = 1ift. The 1ift is dependent on the coefficient of lift and
the square of the velocity and is normalized to be lift

force per unit mass.
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¥ = universal gravitational constant timas the maas of the earth.
This quantity is the ecrth's gravitational constant.
The areal velccity, w, is used to improve the stability of tha

A Ael '~
Lo vt -] -

L1
=

y £
variation in yis sxpected, it is not necessary to use the areal veloc-
ity. Also the computation of w onboard an entry vehicle would requira
a continual computation of (cosy ) throughout the flight., The quantity
Y s 1ls available onboard from the gimbal resolvers in the Inertial
Measuring Unit (IMU). For these reasons a new set of equations will be
derived Eo raplace w with Y .
The relationship between w and Yisz.

W = ryvcosy (3-5)

When the time derivative of w is computed, the reﬁult is:

% = tvcosy + ricosy - rvysiny (3-6)

Substituting the equations for + and ¥ from Eq(3-1) and Eq(3-2) gives:

[ 3

% = MVCOSY _ LWCOBY _ ,poogy - rvisiny (3-7 1
r vr? :
or
= Wcosy _ pwcony _ Decosy _ ¥ _ 3-8
atay = 535 - N - N T )

Substituting for & from Eq(3-3) and for w from Eq(3-5), combining

terms and dividing by einy gives: {

 w — velny _ usiny _ L 3-
v r r<v v (3-9)

A new set of state equations may now be written as follows:

£ = veosy : (3-10)
b= -E5 oD _ ‘ (3-11) 1
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) = - yainy iny _ L -
oot g L 12
i g = z2iox {5-15)

The independent variable in the above squations is time, which 1s

____w,_,_

monotonic and measurable. It is assumed that range angle is also mwono-

tonic, To simplify the model equations, the independent variable,
time, is replaced with range angle 0. It is important, however, to
compute time versus range angle, to be able to revert to a time base
at the conclusion of the problem.

Dividing Eq(3-11) through Eq(3-13) by & yields the following set

of dynamic equations:

. rpdta | 3-14
{ . t A'du tany (3-14)
3
i . .
| do rvtany vsiny
y'AiY---l"'—n—"—d*—‘ . {3-16)
do rvZ  visiny

To determine the time, t, at any point on the trajectory, the recip-

rocal of Eq(3-13) can be used, which is:

' d -
o Sy

Introducing state space notation to the model equations derived

above gilves:

2T x 5%, %, ] 8 (r,v.y] (3-18)

38
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Substituting Eq(3-18) into Eq(3-17), the dynamic equations of
state are:

x.D
X = - '3-20)
2 X X,tanx,  x,sinx, AF, ( )

' - R xL
o T X, %2 2g1nx
1%z %3 3

4&F; (3-21)

Eq(3-19) through ﬁq(3—21) are the state edhations of motion which will

be used throughout the report.

Sensitivity Coefficient State FEquations

This report is concerned with the minimization of position sensi-
tivity coefficients, which give the seusitivity of the position error
at the terminal point to an error in the position or velocity vector
at any point along the trajectory.

The matrix differential equation describing all the sensitivity
coefficients for the three states described in Eq(3;19), BEq(3-20) and

Eq(3-21) is:

4|3 ] ox (ap)|] () (3-22)
do | 3x (o) x (o) 3x(a)
This equation has been derived by Johnson (Ref. 2). In state space

notation, Eq(3-22) may be written as:

Xy X5 Xg [ Xy %5 Xg | g_:}%%%?
i X, Xg % ln < | X, Xy % -2% %% %25 (3-23)
[ *10%11%13) [ ¥10%n¥iz) | '?r:% a’1:2 'g% :
39

e




e e iy otte At aac o mams = cwne o e w e e e st v tman mm Som

c6e/xR/70-10

The partials of ¥, ¥, and P from Eq(3-19), Eq(3-20), snd Eq(3-21)

are:
) T |
X1 tanx, (3-24)
Bl =0 (3-25)
oxg
KL/ R -
3x3 sin?x, (3-26)
. M --D ____x 3D (3-27)
X}  xfxptanx; x,sinxy x,sinxy 9x;
. + —XaD ‘X, ab (3-28)
%, x xjtanxy x5sinxg xpeinxz 8x;
L + X, Deosx (3-29)
x4 X)X 8in%x;  x,8inxy
oF, . -_ L . T A -
-3-;4 x5x Celnx, xieinr, 9%, @ 30
1 172 2 3 2 3 1
2y w20y 2L x, 3L (3-31)
ax, xx§  xisinx; xfsinx, dxa
9F; _ x;Lcosx; ('3_32)

ax3  x§sinx,

Nine sensitivity coefficients result from the solution of Eq(3~23)
through Eq(3-32)., These describe the sensitivity of errors in all
three states at the terminal time. In this report, however, only the
position error is conaidered. Positicn is determined by the radius
and the range angle. Since the range angle is the independent variable
for the model, there is no range angle erroxr at the terminal point, by
definition. Therefore, only the sensitivity coefficients relating the
err~r in radius, x; , at the terminal point, to errors in the three
states during the flight are considered. In Eq(3-23), each row of the
matrix on the left hand side 1is uncoupled from the remaining rows,

such that for errors only in position, the followlng equation suffices:

40
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d | 9%, (o) ax,(og) 3x, (og) ax,(og)
W [—_L__a_:_c_(a) J' - [ale(a) ' Ty (@) @) (3-33)

Based on this and Eq(3-23):

[ 3f, 3F, Of,]
T T 3%

>3] X3
d | - - i, 352 i, -
HF [ Xy, X5, xsl [ Xy X5 85] -ax—l -a?; E (3 34)

ofy 3f; fy
L %%) 2%, 3qxy)

vhere the partials are defined in Eq(3-24) through Eq(3-32).

Lumped Parameter Control Equations

The design of a passive control restricts the control available
to atmospheric forces. In this section the equations for drag and
.11ft shall be functionally separated into two parts. The first paré
shall contain parameters related to vehicle configuration and attitude
and shall be defined as a lumped parameter countrol, The second part
shall contain parameters related to mach number.

The equations for lift and drag are:

AC 2c
Bla) . Pvichy

D= - 3 (3"35)
scy 2¢
L Sl evCy (3-36)
m 2
vhere p = density

v = vyelocity
Cps = coefficient of pressure at the stagnation point, a func-~
tion of mach number

A = cross-sectlion area perpendicular to velocity vector

41
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S = planform area psrpendicular to both the velocity vector
and the radius vector

%™ mass (a coustant)

céﬂﬂ) = a drag coafficient which {s a functian of ansla of
attack, a
ci(n) = a lift coefficient which is & function of angle of

attack, s

Two controls will be defined a#s follows:

wpa 2@ (3-37)
wa 2O . (3-38)

The values which the controls are allowed to take on are limited

by practical considerations of vehicle design, thus the lumped control

problem is a boundad control problem, The boundaries are as follow.:
2.76 x 1075 < uy < 2.22 x 1073
=1.6 up < yp, £ 1.6 yp

These boundaries on the controls correspond to:

250 < ¥ < 20,000 Kg/meters?

—m-—
-116 _S_ IJ/D i 1'6

Substituting the control relations into Eq(3-35) and Eq(3-36) gives:

2
= pv-C 8 -

2
L= 2Dy, : (3-40)
The term Cps, the coefficlient of stagnation pressure in the above equa-
tions is a function of mach number, which in turn is a function of

altitude, pressure, density, and velocity. This term is derived uaing
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the following assumptions:

A,
B.
C.

D,

In Pig. 4 below, Py; and Py, are the stagnation pressures at

points 1 and 2; P, and P, are the pressures at the two points, and M

Perfect Gas

Isentropic Flow

Adiabatic Flow

‘ihe shock is Jocalily normal

is mach number. Using assumpticns A, C, and D, the following

Y g

Shoek

/ 5

s

Pea
)

En+ry Bodj

\ T~

Figure 4. Shock Wave Geometry
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relations are obtainnd (Ref. 15):

P
P (-4
DR J
P PV b — S BT
=02 = £Y - ———t 1 -
and Fz 1+ (M 1)] [ (v~l)H§+ZJ (3-42)

From assumption B:

o

- [ 1+ J%lu}] I (3-43)

Multiplying Eq(3-42) and Eq(3-43) together and substituting the
result for the quantity Py,/P, in Eq(3-41)

1
O s 2o b

c_ =2 1Y+
) -
o] PV

For air, Y=1.4, wvhich when substituted into Eq(3-44) provides

the final relation for Cp..

o _238.87872M5 1 + _10° -
Cos 7(2.5@-0.4)2[2(2.8#-0.4')'] ™ (3-43)

The above equation is valid for velocities above Mach 2. The
density p 1is 1interpolated numerically from the 1959 ARDC Standard
Atmogpheric Tables.

Substituting the expressions of Eq(3-39) and Eq(3-40), for drag
and 1lift respectively, into the state equations, Eq(3-19) through

(3-21) the final state equations are:

x} = —HL A F : (3-46)

b4




GGC/BE/ 70-10
C -l - _._."__ — LXZDEIII. -a A ©
R ~2 xle tanx3 Zsinx3 “D = “2
' * mel
x3 = -1+ xlxzz - 2eli.nxsl e AT,
' mooy 2Fy _9F 3Py
Xy xkaxl x53xl Xg ax, o E
‘o _. 9P __ 9F,  3F
X5 T TR, X % X, A Fg
' oo JF - aF —. aF F
Xg xk?ft x53x3 *g X3 . 4 Fg

nontrol problem to be discussed in the following chapter.

LT

45
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~

(3-48)

(3-49)

(3-50)

(3-51)

These are the basic model equations to be used in the optimal
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IV, The Maximum Principle Applied To The Ent:xy Problam

In Chapter EI, it was established that an arbitrary criterion
could be satisfied along with a set of non-linesr plant squations pro-
vided a set of necessary optimal conditions are met., In Chapter 1II,
mathematical model equations were derived for the entry problem. The
quantities to bs used in the criterion function, the position sensi-
tivity coefficlents, were also explained in concept and derived in
Chapter III., In this chapter, the criterion function is established
for the entry model along with a set of necessary optimal conditions

such that the model equations are satisfied.

Criterion Function

The criterion function 18 a scalar valued function which containe
all the elements to be minimized. For this problem, the criterion
function must contain a convex function of the errors at the terminal
point due to errors at any point of the entry trajeactory, The posi-
tion influence coefficients, as developed in Chapter.III, degcribe
thase arrors, and thercfore serve as clements of the criterion func~
tion. The remaining e.ements of the function are the lift and drag
control quantities, Since control requires an expenditure of energy,
it is generally minimized with respect to zero. In this problem, the
control vector is in a lumped-parameter form containing parameters
defining the vehicle configuration and a variable function of angle of
attack, It is desirable to minimize the control quantities about
nominal mean values to satisfy practical limitations on the vehicle

configuration. This allows for control deviations from the nominal

46
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0 design values as well as determines the optimal control based on tra-

Jectory considerations. The criterion function is:

+ V'sV ] do (4-1)

RS

R

%

te e e T

[ xM] [UD -M ]
where: Y= | xg H = Up (4-2)
Xgl U = My

.

and R and S are positive definite diagonal weighting matrices.

Necegsary Conditions For Optimality
The necessary conditions for optimality are established by form
. ulating the Hamiltonian and applying the appropriate conditions. Th.e
state vector X includen the atate of the entry mndal and rhe pnattinn
“influence coefficients derived ian Chapter III. The minimization

problem is stated as:

. s .
minimize J = -%- faf ¢do subject to x' = f(x,u) (4-3) !
0 .
The state equations from Chapter III are:
x
! - l -
! *1 T Tan X, & l“‘1 (4=4)
o ep— g AF (4=5)
2 X x,tanx, xzsin Xy D = 72
: Crx
: x'...l.,.__l"__a__TL_l_.,._.u AF, (4-6)
3 XX x2 gin x, L _
2 2 3
(. .-
47
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. 3F, _ . 9F, 3F3
™ - —. - ———— ——— F -
T T T s %, Xg %, AFy (4-7)
wl = .E.F_l. - 31“_2. - - 3_1:‘3 A B )
T T TRu ok, Sk, e ax, =S v
x' = ey -?ﬁ- - % —B-E:-z- - x ..a—F.-s- A F (4..9)
6 L QX3 5 a)C3 6 BX3 6

The complete equations of the necessary conditions for cptimality
are not developed here, but are included ip Appendix A. For the dev-
elopment in this sectlon, a set of equations only at a functional
level is given.

Given the formulation of the minimization problem in Eq(4-3), the

Hamiltonian 1s as follows:

Heo+ 8 3 Fy - (4=10)
i=1 =+
where Fy =~ state derivatives

Ay = adjoint variables

With the Hamiltonian defined, the four sets of necessary condi-

tions may be stated for the entry problem by referring to Eq(2~10)
through Eq(2-13) in Chapter II.

The State fquatlons. The - ute equations have been gtated in

Eq(4-4) through Eq(4-9), and are given by:

—Q-IL = ' - -
W x§ Fy (4-11)
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Adjoint Equations. The adjoint equations are derived from:

Y (4-12)
axi
These are expanded as follows:
Al m A 2EL g By BFayy OBy A et (1 =1,2,3) (4-13)
i ax. 9x Ix ax 9% ax ]
i 1 i i i i
2! - 3Fy ., 9F5 ., 0Fg - . K= {- -
A5 ijkk “‘uaxj +A53xj "'Aeaxj (jm~=4,5,6; K= §-3) (4~14)

Gradient Equatioms. The gradlent equations are derived from:

M. w g(u,x0,0) =0 (4= 1,2) (4-15)
3“1

They are expanded as follows:

- - 8Ly 9Ey ofg ., 9Eg -
G“D Syp (up = My ) + Myer *+ Mg + xm—l’» *A63u; (4~-16)
9F T,
- - WRLE RPN I S )i | 4-17
GuD S22 (u2 MuD )+ 33u2 A“auz Buz S3u ( )

2

Transversality Conditions. The tramsversality (boundary) condi-

tions are established according to:

o
[ka] f. 0 (4~-18)

%

This leads to the following table:

49
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Table IL. Boundary Conditlons For The Entry Problem

99 9f
B |
(1 =1,2,3) specitied speciried
'y
A
(1 = 1,2,3) unconstrained | unconstrained
*3
(1 = 4,5,6) unconstrained specified
(1,0,0)
A
|
(3 = 4,5,6) ] unconstrained

When all four conditions are satisfied, the optimal problem is
solved. To accomplish this, the numerical procedures described in
Chapter II are us~d. The application of the algorithms to the optimal

entry problem is discussed in the following section.

Second Variation Equations

The complete perturbation equations for the second variation pro-
cedure are not presented here but are included in Appendix A. For the
entry problem, it 1s assumed that position, velocity, and flight angle
are specified at the initial point and the sensitivity coefficlents
are ungpecified. It is also assumed that all six states are specified
at the terminal point. Thus for backward iIntegration, iterative esti-
mates are made on all six terminal adjoint values. The Newton-Rephson

equation for this case is;:
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[ F M 1 [ 3 x3(09)3xy (og) 9x)(0og) 3x1(op) 3x3(up) 3x3(0g) | T
i C S, () 3, (0g) Dhg(ag) 9h3(g) hy(og) Ihs(ag) BAg(og) Shi(og)
| 4 ' PN dx2(gp) 3xp(ag) 3xp(op) 3xp(og) 3xp(og) xp(00) | |42, (a,)
; |’ “r v A (og) 3X,(0g) 3rg(ag) 94, (0¢) 9A(Tg) UAS(Of) I ==
Ik e Axalnp) Axalag) 3xalag) 9xa(oq) 3xa(ag) 3xa(gp) 1.la
, *¥*3(%) 3X1(0p) BXy(0g) dx3(ug) 3, (og) 3hs(ag) dglog) A /
! S (00) 3y (0g) hy(og) Bhy(og) My(og) Ay(og)
: A y(og) 3A4(ag y(op 3(99 y(og 499
j 824 (o0) 33, (ag) Bhp(0g) Dhg(ag) 0hy(0g) Ihg(ag) drg(op) Sxylog) ?
Mc(an) 9Ae(0q) Mc(og) 9As(oy) 3Ac(ay) 3Ag(og) :
A 5\Y 0 50 530 had!] S\VY0 S\Y0 S5\ )
5(90) Ay (0p) r,(0g) rg(og) DA, (og) MAg(og) TAg(ug) 5(0¢g) ‘
{GA (o,) dg(og) drg(ap) Brg(og) 3As(og) drg(og) 3Agldg) 53 (02)
| 5070 LBai (o) arploy) AMg(og) (o) AAs(op) Mglag 1 L 6+t
1 - A -
| ' -1 | 8x(00)
or §A(o = A el uintl
F | . SA(og) [QL(UO)

These equationa ave equiwvalent tn Bnl(?2-10} and Fa(2=70) in Chanter TT.

For forward iﬁtegration, the Newton—-Raphson equation is:

| 'GxI{Gf)} 9%, (of) 8x,(0¢) 3x,(ag) 3%, (o) 3x,(of) axl(of)} r5*1<do)l
: 3 (0g) 3a(0g) d3(og)!3xy(op) 3x5(q) 3xe(dg)

3x2(0f) 3xa(cf) sz(cfllaxz(Of) ax2(uf) 3x2(0f) §1,(0.)
3%, (o) 9A,(0,) 3A3(00):8x“(00) 3x,(9,) 9%g(0,) 2%

: ' 5x2(af)

3x§(df) Ix3(oe) 3X3(0f)|QX3(Gfl dx3(of) 9xa(of) §13(0g)
ar;(gq) 9Ay(ag) 3A3(uo)|3x“(oo) 3x5(0y) axg (o)

{ 6x3(cf)
3x,, (o) 3x,(0¢) ax, (og) |3, (og) 3x,(og) 3x,(0f)
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st(of) st(oo)
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Thege equations are equivalent to Eq(2-33) and Eq(Z-34) 1in Chapter Ll.

Numerical Application bf The Optimization Algorithms

The application of the numerical optimizatiqn techniques of Chap-
ter II to the problem derived in the previous section is shown in flow
chart form in Fig. 5, on the following page. A discussion of the sol-
ution flow is presented, with the considerations given for the choice
of each algorithm.

General Discussion Of Algorithma. To start the solution, the

gradient technique is employed. The determining factor for this
choice is that since the'éradient is not defined to be zero, the larg-
est convergence envelope is obtained. A set of controls are chosen to
initialize the gradiemnt and the algorithm proceeds until the criterion
for cénvergence is satisfied. At this point, the state and adjoint
values at the boundarles are étored for use as initial estimates in
the terminal error function technique,

The terminal error function technique is used as an intermediate
technique due to the complexity of the problem. The preliminafy
investigation into other problems where both first and second varia-
tion techniques were used brought out one major common problem. The
convergence of the gradient had to be accurate to almost ten signfi-
cant figures before converg;nce could be obtained in the second varia-
tion technique. The complexity of the problems surveyed appeared to

be less than the complexity of the problem under discussion here,
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therefore, the apparent solution was to develop an intermediate tech-
nique which has all the characteristics of the second variation but
none of the perturbation equations. These contain the higher order
effects, and are the most ‘sensitive to an incompletely converged con-
trol. The method of éonverging to the boundary conditions improves
the rate of convergence from a distance, but is sluggish when the de-
sired conditions are nearly attained. This property complements the
second variation convergence property very well. '

The boundary conditions on one end of the problem are employed as
au initial guess for the terminal error function, these are refined in
an 1terative fashion until the second variation technique accepts
them. The complementary convergence property is employed if the con-
vergence in the second variation appears sluggish. An arbitrary indi-
cator of this 1s the weighting value with the Newton-Raphson matrix.

The second varlation procedure 1s used to refine further the
boundary conditions. The procedure will, in general, converge in fewer
iterations than the other techniques since it 1s a second order method.
However, linear assumptions are made and the initial eatimates to
start the procedure must be accurate enough to prevent divergence.
When the method converges, the convergence.is generally to within
eight significant digits in less than thirty iterations.

Some numerical considerations unique to each of the techniques
are discussed in the following sections.

First Varlation Numerical Considerations. During the thesis,

there occurred several areas where the computational solution was in-
hibited or assisted by the numerical method used. Here, sbme of the

major numerical considerations shall be discussed.

54

-
.




C

GGC/EE/70-10

In the gradient algorithm there exists a problem in the integra-
ticn. In a typical optimal conitrol problem, there are two integrations
performed, one forward for the stutes, and one backwards for the
adjointe., Here, thare are four Integratriona. These are necessitated
because of the sensitivity coefficients under consideration, and the
nature of an entry. The functional relationship is a cumulative one,
such that all sets of equations functionally related to the one being
integrated must be integrated simultaneously. The table below indic~
ates the four distinct sets of equations, the order in which they are

integrated, and the location of the boundary conditions.

Table III
Known Boundary Conditfons For Gradient Algorithm
Integration Equation Known
Order Set Boundaries
1 State Initial
2 Sensitivity Final
Coefficients
3 Sensitivity Initial
Coefficient Adjoint
4 State Adjoints Final

The method of successive integratiou sweeps is extremely time
consuming, therefore to cut down a large amount of this time, the
alpha search in the gradient uses only the first two integration

sweeps, ¥From these sweeps the cost can be fully determined, aund the

alpha search can proceed in minimum time. Theve 18 a pitfall, which

occurred often enough to warrent a check in the computation scheme.

The adjoint equations are never consulted during the alpha search,
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and sometimes overflow the computer due to the large changes in thé
cintrol, This occurs primarily in the sensitivity coefficient adjoint
cquntions; which are third order equations. When this vccuris, the
neairest valuc of alpha, for vhich a gradient could be calculated, is
used. With this part of the algorithm streamlined, a great amount of
computation time is saved.

In the terminal error functlon, the major problem area is Iin the
convergence, This problem occurs as a direct result of the functional
relation discussed in the gradient algorithm. The convergence 1is in
general slow when all criterion elements are balanced, such that each
boundary condition error carries a similar weight. The convergence is
much improved by converging on each element in turn, saving the
adjoint variables until last., The terminal error function in this
problem converges very quickly to the state boundaries, at the expense
of the adjoint boundaries. This convergence problem will be further
discussed when the results are presented.

Second Variation Numerical Considerations. In using the second

variation method, the computer time required becomes of primary con-
cern. In the entry problem presented in this report, it is necessary
to solve 162 differential equations. For integration of a trajectory
with 100 integration intervals using a fourth order Runge-Kutta inte-
gration scheme, approximately one and one-half minutes of computer
execution time on an IBM 7040 is required. If 30 to 40 iterations
with the Newton-Raphson matrix are required, a total execution time of
about 45 to 60 minutes results. This problem is the most difficult teo

overcome. If all nine position sensitivity coefficients are included
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in the problem, it 138 necessary to scive 24 state and adjoint equations
and 576 perterbation equations resulting in a large time ircrease.

Depending on the nature of the state and adjoint equationé, the
second variation procedure may converge in fewer iterations using back-
ward integration than using forward integration. However, in order to
reduce the terminal velocity by several thousandvmeters per second and
the terminal flight angle by s2veral degrees while holding the initial
copditions constant, it is more desirable to use forward integration.
This allows the Newton~Raphson procedure to slowly lower the terminal
conditions,

For tﬂe entry problem considerea, the second variation procedure
may be started without initial estimates from either the gradient or _
terminal error function procedures. This requires a visual examina-
tion cf éha sontrel cguaobticns with the purposoco of deotormining the prope
er signs on each variable estimatad to cause the trajectory to proceed
in the desired direction. The magnitudes can be determined by testing
the program with any arbitrar; magnitudes and subsequently reducing
the estimated values until no overflow condition exiasts in the com—
puter., This does not produce an acceptable trajectory, but does pro-
duce a beginning trajectory to allow the final conditions to be satis-
fied by the Newton~Raphson procedure. The magnitudes of the estimates
for one example case are presented in Appendix B. This hueristic
approach is not mathematically based but allqws maximum use of engin-
eering judgement to start the procedure.

The Newton-Raphson matrix for the entry problem is a €x6 matrix
and must bhe fnverted with double presion arithmetic in the computer to

allow convergence. No measures of ill—condition‘for this matrix have
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been computed, but the elements for the entry problem range from
1M1 o 10719, 1t 1s possible that the matrix is highly 1ll-condit-

ioned because of this. However, on some of the trajectories considered

tion, 10”8 mps in velocity, and 10”5 deg in flight angle.
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V. Trajectory Solutions

In order to analyze the form and magnitude of the ~“ensitivity co-
efficients, a set of solutions t> the optimal entry problem i3 prod-
—n f-«

uced, each of which minimized tihe seusiilvity coefficlents for a given

set of parameters and control constraints. In this chapter, the re-

sults of these solutions are presented and discussed.
The optimal problem is cast into the following four general forms:
A. Unconstrained control with a drag control bias
B. Unconstralned control without a dfag control bias
C. Constrained control with a drag control bias
D. Constrained control without a drag control bias
Within each of these forms, the boundary conditions are varied to ptro-
+ duce variations in the 1i1ft and drag controls and in the trajectories.
The bias value represents the results of defining an arbitrary vehicle
configuration. The concept of designing the controls to contain all
the vehicle parameters is described in Chapter III. The bias chogen
is the mean of the control boundarigs. For the drag control element

the bias value is:

u +u
My _l'm_‘*_’si._f'lia = 0.00014688 (5-1)

The 1ift control is bounded symmetrically about zero; thus, no

R it

bias is necessary.

S

EEEEE IR A G E

The trajectory solutions are presented in the first portion of
this chapter, and are discussed in the latter portion. Seven cases

( are considered.
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Unconstrained Control Solutions

Four trajectories are discussed here, éach with a different con-
trol and terminal boundary value limitation. The first two cases do
not include the arbitrary configuration bias parameter. The second
two include a defined contiguration and aiso an actempc.to achieve
nearly horizontal flight with a terminal velocity of about Mach 5 at a
terﬁinal altitude of 10 Km.

Case 1. Free Terminal Velocity And Flight Path Angle And A Range

Angle Of 1.71 Degrees. In the first trajectory considered, the

following boundary conditions are defined:

Range Angle Radius- (r) Velocity (v) |Flight Angle (y)
9, 120 Km 7420 mps 120 degrees
O¢ 9 Km unconstrained| unconstrained

The results for this trajectory are shown in Fig. 6 through Fig.
9. The meximum change in flight angle for this trajectory is 0.13 deg.
and its terminal value is 119.88 deg. The velocity increases monoton-
ically from the initial vaiue to a terminal value of 7563 mps (meters
per second). The reasons for the nearly constant acceleration are
found by examining the values of the lift and ;rag controls., As the
vehicle enters the most dense portion of the atmosphere, the controls
begin to change from the zero level. The drag control beéomes more
negative so as to cause constant acceleration of the vehicle, The
trajectory for this case has a nearly constant flight path angle indi-
cating that the velocity sensitivity coefficient, [ar(of)/av(o)], is

minimized by forcing the trajectory to be as near a straight line in

space as possible. For a fixed og, the control for this type of
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trajectory produces smaller sensitivity coefficients than for most of
the cther cases, However, tiue naiurc vi tus trajcctery
practical use because a thrust capability is required to produce the

negative drag profile.

Case 2, _Specified Terminal States And A Range Angle Of 1.71

Degrees. The second trajectory considered is constrained to meet ter-

minal boundary conditions on all three states. The conditions are

as follows:

Range Angle Radius (r) Velocity (v) | Flight Angle (y)

% 120 Km 7420 mps 120 degrees

9 Km 6500 mps 119.88 degrees

9¢

The resulga of this case are shown in Fig. 10 through Fig. 13.
Thiag frn&@ﬂtﬂry vesamhlae tha nravinue nnca 4n that tha £lishe annla
profiles for the two cases are similar. The effect of the lower vel-
ocity at the terminal point is reflected in the drag control. The
drag control for this case is positive throughout the trajectory.
Above the altitude of 12.3 Km, the control is below the range of most
practical non-thrusting entry body controllers.

In this trajectory the controls do not deviate from zero until
the dense portion of the atmosphere is entered, at approximately 35 Km,
and uearly all of thie controlling is done in the last one-sixth of the
trajectory. This is reflected in the velocity profile, which remains
nearly constant until the end of the trajectory. The diag control is
dominant in this case as shown by the 1ift to drag ratio. The form

and magnitude of the sensitivity coefficients is similar to that of

Case 1.
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The maximum deceleration for this case is 138 G's during the
final portion of the trajectory. The high terminal velocity and low
drag profile in this case limits its practical use.

Case 3, Specified Terminal States With A Control Mean And A

Range Angle Of 3.16 Degrees. The two trajectories discussed previously
are limited due to drag control values below the boundaries of a non-
thrusting controller. To eliminate this limitation, two additional
elements are considered. First a drag control bias is placed in the
criterion function to allow for drag control about a constant value.
Second, the terminal conditions of the problem are changed such that

a reasonably flat terminal flight angle and a terminal velocity of ap-
proximately Mach 5, are obtained.

The trajectory for this case has the following boundary conditions:

Range Angle Radius (r) Velocity (v) | Flight Angle (y)
ag 120 Km 7240 mps 108.0 degrees
ge 8.1 Km 1650 mps 98.9 degrees

As ghown in Fig. 14 through Fig. 17, the controls are relatively con-~
stant until the vehicle enters the most dengse portion of the atmos-
phere when large changes begin to occur in the velocity and y profiles.
The controls reach maximum values at the maximum dynamic pressure
point which is at 10.5 Km. The lift to drag ratio 1s also a maximum
at this point. The changes in control are reflected in the sensitiv-
ity coefficients, especially in the velocity sensitivity coefficient.
A secondary objective of this trajectory is to reduce the amount
of deceleration of the vehicle by obtaining a flatter trajectory and

by inducing additional drag throughout the entry; This reduction in
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drag deceleration in this case 1s offset by the 1lift spike shown in

the graph of the controls resulting in a high total deceleration at

the end of the trajectory. Also, during the highest deceleration, the
Arag control falls below acceptable limits, and even becomes negative.
The negative drag requires a thrusting vehicle, and thus limits its
use, Once again the two control elements do not change significantly
from the initial values until the last portion of the trajectory ia the
most dense part of the atmosphere. The maximum deceleration is 101 G's
which occurs at approximately the point of maximum dynamic pressure.

Case 4. Specified Terminal States With A Control Mean And A

Range Angle Of 3.32 Degrees. In the previous case, the sensitivity

coefficients appear to be simply a function of the range angle, To
investigate this relationship, as well as to generate a flatter tra-
1ectory; an additional case i3 defined. The boundarv conditions for

this case are defined as follows:

Range Angle Radius (r) Velocity (v) | Flight Angle (¥)
90 120 Km 6780 mps 107.0 degrees
O¢ 8.1 Kn 1650 mps 98.8 degrees

The results of this case are shown in Fig., 18 through Fig. 21, The
trajectory obtained is similar to that of Case 3. The controls for
these two cases differ only slightly in both form and magnitude. The
gsensitivity of radius with respect to velocity for this case rises
sharply; whereas, the sensitivity of the radius with respect to flight
angle and the sensitivity of radius with respect to radius appear to
continue to vary linearly with range angle as in the firs£ three

cases,
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] For the secondary objective of reducing the deceleration, it is

c: shown that along with the increase in one sensitivity coefficient a

Lot lower maximum deceleration is attained. The maximum deceleration for
this trajectory is 97.0 G's occuting again at approximately the point

of maximum dynamic pressure.

Solutions With Lift And Drag Control Constraints

All of the four previous cases satisfy the necessary conditions of

: the optimal entry problem. However, none satisfy the practical re-

é quirement that the controls remain within physical limits., Even in the
cases with a drag control bias, the control boundaries were violated.
To correct for this, Valentine's procedure for a bounded control

; solution is used for the entry problem in the second variation opti-

) mization method.

Two trajectories are determined in the following cases; one which
employs the drag control bias, and one which does not. In both cases
the control constraints are as follows:

2.76x107° S up $ 2.20x10"3

- < <
1.6uD 3 = 1.6uD

L
The 1ift constraint simply limits the lift to drag ratio.

Case 5, Specified Terminal States And A Range Angle Of 2.0 Deg-

rees, This trajectory is obtai:ed by an investigation of the effects

of lower starting altitude, velocity, and flight angle on the sensi-

L tivity coefficients. The conditions for this case are as follows:

;

; ) Range Angle | Radius (r) Velocity (v) | Flight Angle (¥)
: g, 115 Km 6115 mps 115.5 degrees
-y (, e 7 Km 5000 mps - 114.5 degrees
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An the Fig. 22 through Fig. 25 show, this trajectory results in
large changes of the flight angle during the entry. These changes are
raflactad hy tha rontral curvaes, which show that nearly all the maneu-
vering ir done by the lift control, while the drag contrcl romains on
the lower boundary. The lift control begins to significantly deviate

from zero at sbout the midpoint of the trajectory. However, this does

not significantly affect the velocity and flight angle unfil the last
quarter of the trajectory. At this point, 1ift becomes the dominant
control, and begins to directly affect the flight angle, y. Referring
to the graph ¢f the lift to drag ratio, dominant 1ift control does not
occur until the lift to drag ratio approaches unity. The lift control
reduces the flight angle to well below the termiﬁal value and the 'rag
control increases at the very last of the trajectory to satisfy the
rnrminnf velarity condition and ta dive to the terminal flight angle

condition.

The drag control remains on the lower boundary until the terminal
phase of the trajectory. With drag remaining at a minimum for nearly
all of the trajectory, the lift control maneuvers the flight of the
vehicle.

The effect of the control constraint is evident by the smooth
changes in the flight angle. The lift control is more uniformly dis-
tributed during the flight than in the previous cases. The lift and
drag controls are within acceptable practical limits throughout the
trajecto;y.

This trajectory resembles those of Case 3 and Case 4 with respect
to the form of the sensitivity coefficlents. 1In each of £hese, the

sensitivity coefficients appear to be smooth curves until changes in
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the flight angle occur., At that point the radial and velocity sensi-

This trajectory is the most practical yet discussed. Howevef,
due to the high terminal velocity and the high deceleration resulting
from the high drag control at the last of the trajectory, its use is
also limited. The maximum deceleration is 83 G's and occurs at the
terminal point 6f the trajectory.

Case 6. Specified Terminal States With A éontrol Mcan And A
Range Angle Of 2.06 Degrees. This case contains similar boundary
conditions to those of Cases 3 and 4, but with a smaller total range

angle. The boundary conditions for this case are as follows:

Range Angle Radius (r) Velocity (v) | Flight Angle (y)
9, 120 Km 7667 mps 118.4 degreea
of 8.1 Knm 1600 mps 97.0 degrees

The trajectory for this case is very similar to those found in
Cases 3 and 4. The results are illustrated in Fig. 26 through Fig. 29.
The effect of the control constraint is evident by examining the por-
tion of the trajectory during which the flight angle changes. The use
of the Valeantine procedure keeps the controls within bounds; however,
this alone is not a sufficient practical constraint., The rate of
change of the lift to drag ratio éaused by the sudden change in the
magnitude of the drag control cannot be duplicated in any practical
vehicle.

The sensitivity coefficients generally resemble those from Cases

3 and 4; however, there are some notable differerices between these.
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Firat, due to changes in flight angle earlier in the trajectory than

previously noted, the radial and velocity sensitivity coefficients

begin ta Adaviata from a emonth curwe carlier In the (ajsiiony thaa La

Case 5. Second, they appear to be displaced by a constant value from

the extrapolated end points of the smooth curves. The flight angle

sensitivity coefficient remains a nearly linear function of range

angle, There is also in each instance where a flight angle change
occurs an abrupt changc in slope in the flight angle sensitivity coe-
fficient curve. In Cases 3, 4, and 6, the change 18 from a positive
slope to a less negative slope, while in Case 5 the change is from a
positive slope to a more negative slope., A more detailed discussion of
these tendenéies and other aspects of the miniuum sensitivity coeffic-
ients will be presented in the last section of this chapter.

Thié trajartory ia {fmpractical due tn the rate nf oshonge nf the
1ift to drag ratio. The maximum deceleration is 162 G's. This occurs
at the point of maximum control change, which is past the point of
maximum dynamic pregsure. It is evident that to produce a practical
trajectory, it is not only necessary to constrain the change in con-

trol, but also the rate of change of control.

Solution With Drag Control Constraints Only

It has been previously noted that when drag control dominates the
entry trajectory, as it does when a drag control blas is used, the
changeés in alope of the sensitivity coefficients are opposite to the
changes in slope when a bias is not used. These changes in slope
occur only when the flight angle changes radically during the trajec-

tory. Before discussing the one remaining case, it should be noted
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that the sensitivity coefficient equations are final value equations
and are integrated in reverse time. For this reason changes in the
sensitivity coefficients are more easily interpreted by considering
them beginning at the final range angle and ending with the initial
range angle. Use will be made of this interpretation method in the

discussion of Case 7.

Case 7. Specified Terminal States, Drag Control Constrained;

Range Angle Of 1.86 Degrees. The results of the trajectory for this

case are illustrated by Fig. 30 through Fig. 33. The boundary condi-

tions are as follows:

Range Angle Radius (r) Velqecity (v) | Flight Angle (y)
dg 120 Km 6700 mpa 120.3 degrees
of 9 Km 50C0 mps 114.5 degrees

The trajectory states shown in the figures resemble Ehose of Case
5, with two significant differences. First, the amount of maximum
change in the flight path angle is twice that of Case 3 due to the
dominance of the lift control. Second, the maximum velocity change is
increased by 700 meter/second.

The 1ift and drag profiles of the two cases are similar if magni-
tudes are ignored. In this case the lift contro) does not deviate
significantly zero until near the last quarter of the trajectory.

The drag control remains on the lower boundary until the last integra-
tion interval of the trajectory. Thus, this trajectory consists
predominately of 1ift control.

The form and magnitude of the radial and flight angle sensitivity

coefficients for this case are different from thdse of all chq other
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cases conadiderad. The radial sensitivity coefficient, lar(of)lar(a)],
has a value of unity at the terminal point and, examining the coeffi~
clent backward in range angle, decreases to a value of about -0,05 and
remaina at this value until the initial range angle of zero is reached.
The flight angle coeffilcient, [8r(of)/ay(o)], starts with a value of
zerc at the terminal poilnt, decreases to about -23000 and then increas-
es to about -9000 at the initial point. The velocity sensitivity cce-
fficient, [ar(cf)lév(o)] for this case is similar in form to those of
Case 5 , The coefficient Increases from zero at the terminal point to
a va;ue of about +4.6 and remains at this value until the initial range
angle is reached,

This trajectory results in significantly lower range and flight
angle sensitivity coefficients than for any of the other cases. The
vglocity.senairi"*fy enaffictent for thig coce ic higher thop £2x 211
other.cases except Case 4, |

The maxiﬁum deceleration for this trajectory is 188 G's at the
terminal point of the trajectory. This large deceleration is primar-
ily due to the change in control during the dive maneuver during the

last part of the trajectory.

Discussion Of Trafjectory Solutions

In the previous section, seven solutions to the optimal problem
formulated in Chapter IV were presented. In each case, different
parameters were varied to allow for the maximum variation among the
solutiona. Although the solutions varied, there were some general
trends which were noticeable throughout. 1In this gection, several

observations will be presented and substantiated., The observatious
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will concern the curves formed by the integration of the sensitivity
coefficients. As the observations shall be substantiated by examples

from the caseas, a summary of the salient points from each case arc

Observation 1: The sensitivity coefficient solutions may be sep-
arated into two diétinct portions during each trajectory. This obser-
vation is substantiated by the appearance of a break point in the
three gsensitivity coefficient curves in all cases after Case 2. Ref-
erring to Case 3, there is a smooth curve down to the last quarter of
the trajectory, then the curves diverge significantly., The first
portion of the trajectory shall be defined as the non-aerodynamic por-
tion. The second part shall be defined és the aerodynamic portiom.-

Observation 2: The non-aerodynamic portion of thé trajectory 1is
ﬁharavt@}ized by a drag dominenas, snd gmell chongee in flight angle.
This observation is substantiated by Caseai and 2 which ar2 non-aero-
dynamic trajectories. Both of these exhibit a drag dominance in the
11ft to drag ratio, and have-a small change in flight angle. All
other cases exhibit this same tendency throughout the non- aerodynamic
portion,

Observation 3: The senaitivity coefficient curves,{iﬁ Qhé’non—
aerodynamic portion are either functions of range angiu;rbn-voaﬁggnt.
This tendency is common throughout the cases. This oﬁsafwatinm éhall
be substantiated for each sensitivity coefficient. The ruilal sensi-
tivity coefficient [3r(cf)/3r(0)], in each case 1s a near comstant with

respect to range angle. For example, in Case 6, the value is .7 from

gy to the break point. The velocity sensitivity coefficient,

AR I O ——
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[ar(uf)lav(o)]. ir all cases, excluding Case 7, is observed to be some
exponential function of range angle. In Case 7, the value appears to

- . . . B - - - B __ 4 &£ Lt chiins mmcmamca- -
remuin near consiaui; huwever, Liom Cascs 5 and § thers appsars o bz

1 1)

second function which determines the magnitude of the expontial func-
tion of range angle, This function remains constant throughout the
non-aerodynamic portion of the trajectory. The flight angle sensi-~
tivity coefficient, [3r(sg)/dv(0)], is a linear function of range
angle. 1In all cases, except Case 7, the slope is positive. In all
cases, however, there is a definate linear relation to range angle.
It is apparent, from the cases which both have different slope change
at the break point, that there is ‘gome function which sets the value
of~3§[ar(of)/37(o)] equal to a constant at the break point. Since -
the sensitivity coefficlents are integrated in reverse time, as final
value eqﬁations, the conditiana for tha snnatant walne of
[ar(of)/ar(o)], the constant multiplier inlarlav and the firat deriva-
tive of [ar(of)léy(o)] are set at the break point as final values for
the reverse time integration. These conditions shall be further dis-
cussed after the observations concerning the aerodynamic portion of
the trajectory have been stated.

Observation 4: The aerodynamic portion of the trajectory is char-
acterized by changes in both flight angle and velocity; and dominance
by the 1ift control. '

This observation is substantiated by the fact that in each case
which has two distinct portioms of the trajectory, the break point of
all of the sensitivity coefficlent curves occur at a given range angle.

at that range angle, in the profile of velocity and flight angle for

the same case, a similar break point can be found. In forward time at




their previously near constant state, Alsc at the range angle, for the

same case, the 11ft drag ratlo passes through approximately .3. 1Inis

GGC/EE/70-10
the break point, the velocity and flight angle profiles diverge from

showa a dafinita dominanca by 141ft wntil rha 1ast part of the aaero~

e

dynamic portion of the trajectory. .
Observation 5: 1In the aerodynamic portion of the trajectory, the

[3r(og)/dr(0)] and [dr(og)/8v(0)] curves are a function of the rate of

[ W,J»..:_.Luc-

change of velocity and y. The [3r(of)/8y(o)] curve is a function of
the rate of change of lift with respect to g.

The first part of this observation is substantiated by correlating
the curves for [3r(os)/3rx(o)] and [ar(of)lay(a)] with the velocity and d
flight angle curves, For example, in Case 6, when [3y/30]=0, the-re. is ‘8
also a zero slope achieved by the [Br(af)lat(o)] and [ar(of)lav(a)]
curves, Also in this same came there 48 a pnlas in tha velarity cnrve

at a range angle of 1.96, and a corresponding pulse in both the radial

L elem D et ome s o a i

and velocity sensitivity coefficient curves. Additional examples are

found by correlating the curves of Cases 3 and 4. : !
The second pa;.-t of this observation is substantiated by correlat-

ing the lift curve slope and the [3r(oy)/3Y(0)] curve. For example,

in Case 7, which best shows the correlation, the slope oﬁ the flight 7

angle seneitiv?ty coefficient curve undergoes a change, here from a

positive slope to a negative slope at the same range angle that 1lift ¥

undergoes a alope change, In other cases the [ar(of)lay(o)] slope

change 1s not as dramatic as in Case 7, however the slope change can

be closely correlated in a similar fashion with the lift slope.

Observation 6: There exists some relation between the aero- i

dynamic portion of the trajectories and the conditions during the

A -y
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non-aerodynamic portion for the following:

1. The constant that describes the radial sensitivity coef-
ficient iar(of)/ar(a)].

2. The conatant which multiplisg
that describes the velocity sengitivity coefficient lar(af)lav(a)].

3. The slope (sign and magnitude of the first derivative) of
the linear function which describes the flight angle sensitivity coef-
ficient [9r(op)/dv(0)]. |

Observation 7: There exists some relation between the control
boundaries and the aerodynamic portion of the trajectory.

Observation 6 and 7 are existential only and aré substantiated by
the different cases. For observation 6, it is necessary only to note
the variations in the aerodynamic portion among Cases 3 through 7, with
rcapect .to the aci-aciodyuamle pucllon of L.'uu tvajeclory. Iu subsLuanL—
iate observation 7, a comparison of the sengitivity coefficients for
Cases ) and 4 with those for Cases 5, 6, and 7 shows some relation
exists, No further extrapolations can be made for observations 6 and
7 due to a lack of data for correlation.

These observations are intended as a basis f&r conclusions to be
drawn concerning the general problem of minimizing the sensitivity co~
efficients, These shall not be drawn here, but shall be drawn follow-
ing the implicit ﬁuidance simulation presented in the succeeding chapt-

ers.
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VI, Optimal Implicit Guidance Simulation For The Entry Problem

In the guidance of astronautical vehicles, thece are two basic
philsozsehics which can Le used. Oue puilusopny is called expiicit
guidance and the other implicit guidance., These guidance philosophies
are described in considerable detail in reference 2. This chapter will
define implicit guidance and optimal implicit guidance and will outline
the procedures for simulating the optimal implicit guidance philosophy
on a high speed digital computer. The purpose of such a simulation is
to investigate the validity and limitations of the solution to the
optimal open-loop and closed-loop control problems in a practical sicu-

ation with arbitrary initial errors in the trajectory states and white

Gaussian distributed, zero mean observation noise present.

Definition Of Optimal Implicit Guidance

In order to define implicit guidance, it is desirable to also de-
fine explicit guiAdance. In the philosophy §£ explicit guidance, it ia
assumed that an approximate closed form solution of the guidance equa-
tion exists which will explicitly relate the current control vector to
the terminal boundary conditions. This involves, for the entry prob-

lem, the solution of a set of transcendental equations at each countrol

polnt. A Newton-Raphson algorithm is gencrally used to solve these
transcendental equations. However, since this must be done at each con-
trol point, a significant amount of computer time is necessary. For
this reason, another scheme, which determines the control vector as an
implicit {unction of the terminal boundary conditions is generally
used.

In implicit guidance, it is assumed that a nominal trajectory and
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control are computed before the beginning of the mission (or simulation
iu this case). The procedure then consists of applying a linear theory
to errors or deviations from the nominal trajectory in order to satisfy
the terminal boundary conditions. In optimal implicit guidance the
nominal trajectory and control are the precomputed open-loop optimal
trajectory and control. The linear theory in optimal implicit guidance
consists of applying a set of precomputed linear feedback gains to the
deviations from the nominal trajectory so that a neighboring optimal
path is followed to the specified terminal boundary conditions. When
the actual values of the states are observed with observation noise
present, a Kalman filter (described in Chapter II) may be used to
obtain optimal estimates of the actual values of the stateé'at each
control point. This philosophy 1s illustrated in the block diagram in

Figure 34, below. 1In the diagram, w is the observation noise vector.

wir)
*
Yo VEHICLE EQuar Theg Y
” .
“ L OF Mor/od *
(o) )| 8% o) KALMAN
Xl) + FILrER
%)

Figure 34, Optimal Implicit Guidance Block Diagram
Assumptions *

The optimal implicit guidance philosophy is based on the following
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assumptions:

A, The deviations of the actual states from the nominal
states are within the linear range of the fe~-back gains. 1
R. The nominal gned

al control and trajectory ars contin-

1405

uous and not adjacent to any boundaries. If this assumption is not

)
) N : . et B b R T et -
R ‘F’f.—:“_._—‘;-r‘—‘-_'*‘ -

made, the required change in control computed from the feedback gains
could cause either the control or the states to exceed boﬁndary
limitations.

C. The observation noise vector consists of white Gaussian
noise with a known mean and covariance matrix.

D. The vehicle dynamics can be deseribed by a set of non-
linear, coupled, first-order differentiai equations with deterministic

coefficients,

Entry Feedback Equations

The linear feedback scheme uses the following equation:

du(a)

Su(o) = ['s'z‘ca)'l §x(0) ' (6-1)
where the matrix [3u(o)/3x(c)] 1s derived such that the trajectory
follows a neighboring path to the specified terminal conditions., If
all six states of the entry problem are considered, then the matrix is
of.dimenaion 2%6 as there are two control components. However, onboard
a practical vehicle, the errors in the sensitivity coefficients cannot
be computed. For this reason, the feedback scheme uses errors in the
states only. It is assumed, and shall be demonstrated that with no
measurement error, the feedback scheme will satisfy the positionm, -

velocity, and flight angle terminal-conditions. If there are errors
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: ( in measurement, the use of a minimum sensitivity coafficient nominal

O trajectory will aid in minimizing these errors. This, however, shall

;o

. not be demonstrated,

The equations for the entry problem are:

T W T——
.

9% (0) 3% (0) 3x3(0)
§x, (o) (6-2)

auL(o) du (o) auL(q)
3%, (0) 3x, (o) 8x3(c) 5‘3(0)_

Suplo) rnn(a) dup@@) 3up@) 8x) (o)
GUL(U

where the 2x3 matrix above is found frow:

o) 36(0)|~1]]36¢a) 3G6(0) |3 l0) | ax() -1
3x(0) w@] @] ey ax(of) Mg (6-3)

and where:

- 1
' L) P B (6-4)
' ' du(o) 0o 1
: I Kug

: 36,(a) 3G, (9) 3G, () 4

i 16| L | WO @) x@) -5
9x(9) 363(0) 3G(9) 3G (9)
.381(0) 3x2(0) QX3<U).
| 3G, (0) 3G, (v) 3G, (0) |
(6~6)

[a_qw | M@ ey R@

9A(0) 3G,(0) 3G,(a) 3G,(0)
(o) Ag(e) 3r3(9) |
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C [\ (o) 3 (0) 3 (o)
3x,(of) alz(of) 3A3(of)
) [2 | || 2@ 2o K@ |
l OAkOf) J 0—\1(Uf) OAz(Uf) w\a(of) - -

A3(0) N (o) Ag(9)
i axl(of) akz(of) 3A3(of)4

x1(0)  Ix (o)  9xy(0)
M1(0g) Ay(ag) OA3(ag)

3x(a) _ 3X(0) Axp(o)  3Axa(0) 6-8)
(o) M1(0g) ha(vg) M3(ag) (
ax3(o) 9x3(0) Ix3(g)
axl(of) L2P) (Of) 313(0f)J

K“D and K“D arc the weighting factors on.conttol in the criterion func-
tion and the elements of the matrices are found by choosing the proper
elementslfrnm the anlutinna tn tha parturharian aquatiane in Chuprar
IV and Appendix A. The matrices abova are'written out to show that
they are not the 6x6 matrices from the perturbation equations but only

3x3 pﬁrcitiona of those matrices.

Digital Computer Simulation
For the entry problem, two simplifying assumptions are made in

addition to those made in the previous section. These are as follows:
A. No system (1.e}, plant or message) noise is present,
System noise could be considered by including several additional terms
in the filter equations.
B. The observatioﬁ vector 1s a linear function of the
state vector and contains linear?additive zero mesn noise with a con-

stant covariance matrix.
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The purpose of this section 1s to present the algorithm used to
simulate the optimal implicit guidance schems on a high spesd digital
computer. Pig., 35 shows the basic indexing method used for simulating

the true (i.e., nominal) system and for applying the Kalman filter.

» 3
3 A s WraRVAL mor Simvearwe resc sTATE, iy ;
L1 lllldﬁkLilllJl i'llll
I |~ # || l

H = INTERVAL Ao COMPITVE SOIT FIranTT, aa 48D

H=nh

Figure 35. Simﬁlation Index:lt_mg' M‘tﬁod '

In order to simulate the guidance scheme, the problem must first
be put iuto discrete form for the digital computer., In the algorithm,
presented below, it is assumed that the gain matrices, control values
and nomizal stat.es for each point cf the trajector_y are put out on
binary tape by the program which generates them.

Step 1. Based on a priori knowledge, estimate the constant
observation noigse covariance matrix, W.

Step 2. Based on the first observation, y, (i = 0), and
some arbitrary scheme, estiwate the initial optimal estimate %g. For
linear observations, %) 18 estimated from

%) & o (6~9)
ftep 3. Compute the initial error covariance matrix, lp.
For linear observations, this is

g =W _ (6-10)
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This is computed rather than estimated since the equation which defines
%, specifies the initial Kalman gain matrix, Ky (see Chapter II on
initial error covariance).

3tep 4. Using the precomputed values of control and the
known iaitial nominal trajectory conditio s, integrate the state equa-
tions forward in time to the terminal range angle to define a new
nominal. trajectory. This 1is dorne because when the discrete control
values are used as forcing functions in the state equations. A linear
interpolation must bYe used in the Runge-Kutta integration routine,
resulting in a slightly different nominal trajectory from the precom-
puted ona. |

Step 5. Simulate the initial observation with

ST S 7 (6-11)

where ga.is an independent sevn mean fanaafan nniee wartnr,

§£gg_é. Integrate the true st;te {(from Egrue) to the (1+1)

observation point using a step size h by solving:

itrue - E(Etrue'&) (6~12)
where u~ w00 4 sy (6-13)
and éu = [gain]sx ‘ (6-14)
and 5x = !frue - xhon (6-15)

It is assumed here that the gain at any point will be associated with
the complete interval immediately following that point.

Step 7. Simulate the observation noise at the (i+l)
observation point as:

" pbrue -
Lipn ™ 241 t ¥4 (6-16)

Step 8. Propogate optimal estimate,gi and error covariauce
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ry to (1+1) observation point to form the best estimates 5(i+lii) and
I'(i+l 1) given everything except Yi41° The subscript j will denote the
intervals between 1 and (i+l). A step size of H 1s used for these
Suviiitcivaiss 1ne sceps in this procedure are as followe:

A, =0

B. Define x(§|j) = &, and I(4|§) = T,

2
C. Solve the following equations to obtain the best

egtimates at the (j+1) subinterval:

AL, 4) = AE[x(3])>u4]) U+ (6-17)

x(3 3)
P39 = AQHL DT DA, DT (6-18)
2" (41| D=Elx(I+1] ) uyy, ] (6-19)
whare
6211_1. - [gain]j_‘_lﬁijﬂ. (6~20)
By N33 Sy (6-21)
sxy = x(a41p) - (6-22)

D. Go back to C with j=j+l1 noting that I(j|J3)=r¢3|3-1).
Continue the solution until the (i+1) observation point is reached,
At this point: .
2(441]1) = x(3+1]9) (6-23)

and :
r(i+1]1) = r(3+1|3) (6-24)

Step 9. Compute the following quantities at the (r+1)
observation point:
A. Kalman Galn Matrix:

Kppy = TEH[D[TA]D) +w)7 (6-25)

i
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B. Error Covariance Matrix:
Pypp = [TKpyg IPC4LID) (K17 + K417 (141 | 1)K gy (6-26)
C. Optimal Estimate:
Ry4p = X(HL|141) = x(iH]D) + Ryyq (2441 = x(141]1)) (6-27)

Step 10. Compute the observation error and estimation

errors with respect to the nominal by:

Ay441 A Yy41 - X191
’ nom
. Axi41 A R4 ~ 2R

Step 11, 1 = i+l
Step 12. Go back to Step 6 and continue until the final

range an'gln 1s. reached.
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VII. Simulation Resylts

Simulation results for two of the open~loop trajectories consid-

ered in Chapter V are selected for presentation here. These are for
Case 1 and Case 7. Since no graphical analysis can be performad
directly on the estimated states because of the magnitudes of the
numbers involved, only deviations from the nominal optimal trajectory
are presented. The observation and estimation error quantities are

defined as follows:

4y(0) 4 y(o) - x*(o) = [xFTU%(g) - x*(o)] + w(o) (7-1)
and )
ax(o) A x(o) - x*(o) - - (7-2)

These are the errors in the observation vector and in the optimal esti-
mate with respect to the nominal optimal trajectory.

For each case, two basic sets of reaults are éreaented. These
are as follows:

A, Initial trajectory errors of +1000 m, +50 mps, and
+0.2 deg. (+0.4 deg. for Case 7) in r, v, and Y respectively with
observation noise present.

B. Initial trajectory errors of -1000 m, -50 mps, and
~0.2 deg. (0.4 deg. for Case 7) in r, v, and Y respectively with
observation noise present.

C. Initial trajectory errors of +5000 m, +100 mps, and
+1.0 deg. in r, v, and ¥ respectivaly both with and without observa-
tion noise present.

D. 1Initial trajectory errors of -5000 m, ~100 mps, and

~1.0 deg. in r, v, and y respectively with observation noise present.
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The gain matrix elements for each trajectory are presented in
Figures 36 and 37 and ir. Figures 63 and 64.

The unconstrained control results for the cases with terminal
velocities of 1650 mps and 1600 mps are not considered here because of
large amplitude, high frequency vaviations in the gain matrix elements
during the final portion of the trajectory. Due to the discrete na-
ture of the optimsl implicit guidance scheme, a smaller integration
step size wouid be neceasary to produce usable gains for these cases.

It should be noted that the trajectory of Case 7 ia generated with

Valentine's procedure in the second variation program for a drag con-
trol comstraint. This fact violates the assumption made in the pre-
vious chapter that the control quantities'cOuld not be adjacent to any
boundaries. H&wevar. since this trajectory produces the lowest sensi-
riwﬁry,néeff1¢4an*-, 1¢ 4o wortheile to cmamins the sxocportica in

a feedback loop. |

Fig. 38 through Fig. 62 show the errors with respect to the
nominal trajectory and the erxor covariance matrix (I') elements for
Case 1. Fig. 65 through Fig. 89 show the correaponding quantities for
Case 7, In the graphs, sigma is the same as the range angle and has
no relation to the standard deviation of the noise.

In all examples, the graphs show that the feedback gains have no
effect on velocity and flight angle until the last few points in the
trajectory. 1In Case 1, 100 gain values are used and in Case 7, 150
gain values are used. Virtually all the effect of the gain values oc-

curs during the last two-tenths of a degree of range angle. If the

last gain value is not used, observations have shown that the terminal

values are in error by as ﬁuch or more than the initial error values.
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Figure 46.

Case 1.2 - Off-Diagonal Error Covariance Terms

Figure 47,
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Case 7.3 - Diagonal Error Covariance Terms

Figure 78.
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Case 7.3 - Off-Diagonal Error Covariance Terms

Figure 79.
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Case 7.4 - Off-Diagonal Errvor Covariance Terms

Figure 84.
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The flight angle is the most seunsitive to initial coadition errors
from the nominal. This state variable is brought to near the terminal
sanditinn wirh thae Tsat run gain valuas. Up to this noint. the flight
angle error is allowed to deviate by large amounts from the nominal.

The flight angle error also appears to be the most sensitive to
the addition of obscrvation noise. This is shown by a comparison of
the errors with and without noise present. Overall, the flight angle
is most sensitive to any errors in state. .

The position and velocity errors at the terminal poiut are rela-
tively insensitive to the igitial.condition errors ana to noise, In

all the examples presented, the largéét error in terminal position is

-about. four meters and the largest error in terminal velocity is about

b

six meters per second. Terminal position‘airor appears to be almost
completely insensitive to the‘mngnftu&eléf'the initial- arrors.

A comparison of the graphs with positive and negative initial
condition errors shows that th; linear range of the feedback gains is
very nearly the same on either side of the nominai trajectory with only
a slightly higher peak error occurring in the flight angle when nega-
tive initial condition errors are present. The error curves with
errors on both sides of the nominal are nearly mirror images.

The error covariance curves for the examples without noise present
a:e shown for purposes of comparison. The same initial error covar-
iance estimate is used in both cases along with the same nolse covar-
iance W. When no nolse is present, the off-diagonal terms of the error
covariance matrix simply reflect the coupling between the state equa-
tions and the validity of the linearizing assumptions. A comparison

of these elements with and without noise present shows that the off-
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diagonal terms have very nearly the same form, This 1naicat¢| that
the off-diagonal terms for this set of equations has very little rel-
-:4---‘:4- oa s wadaa m. ma Lo i 3o

-a - i - - P e - - - at _
SeSTRSaLy WO aS GCasls wnS) appeal W ue piculiiiieiely uue Lw e

dynanmics of the problem.
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VIII, _Cong¢lusions

The basic objectives of this thesis, to investigate a set of

optimal solutions and to produce a suboptimal feedback scheme, have

haan accomplished. The conclusiona drawn from the anscific napen- an

closed-loop results presantation, as well as conclusions concerning tha

general problem are presented in this chapter.

Open-Loop Problem

The following conclusions are made concerning the open-loop re-
sults in Chapter V,

A, The amount of 1ift dominance at the end of the trajec;
tory, and the length of range angle to go when the lift becomgs domin-
ant is a deciding factor in minimizing qenaitivity coefficients. This
connTnsiﬁn 18 mupnarted hy ahrervatinna 5 and A dfarnased at the end
of Chapter V.

B. The appearance of minimum control.fArlthe first portion
of the trajectory, stems from the presence of conﬁrol in the criterion

to be minimized.

Closed-Loop Problem

The folloﬁing conclusions are méde concerning the closed-loop
results in Chapter VII.

é. The implicit guidance law simulation indicates that
control for the tgajectories tested can be maintained even with large
initial condition errors, and will drive the vehicle hlong a neigh-
boring trajectory.to the boundary conditions with little error. In

this simulation, the flight angle seems to be the most sensitive to
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initial errors in the ststes, For the cases in which the velocity
drops to less than 1700 mps at the terminal point, the fesedback gains
“ontaln auch ulgh frequency content during Che last of the flight, that
the sampling rate is not high enough to allow the gaina to he used.

D. Tha position error is least susceptible to both pertur-
bation, and observation noise. This is attributable to the fact that
the nominal trajectory is a minimum position sensitivity coefficient
trajectory. This confirms the concept of minimizing sensitivity coef-

ficients to achieve minimum terminal pesition error.

" General Problem

The following conclusions are made concerning the overall problem:
, E. The use of a passive, non-thrusting control in a
classic optimal coatrol problem is impractical unless it can be removed
from the criterion function. In this problem, the cost of control was
a deciding factor for the optimality of the trajectories.

F. The use of 1if. aad drag for control requires a dense
atmosphere, and thus a flat trajectory in the dense region, to achieve
a well controlled entry.

G. The minimum sensitivity coefficient trajectory is one
1n-which the vehicle begins a nominai entry angle, levels out to nearly
horizontal flight, and then, during the last part of the trajectory,
dives to meet the terminal angle condition. This appears to confirm
conclusion F, and is illustrated by Case 7.

H. For each of the trajectories additional constraints,
other than those contained here in, should be employed to make the

trajectory usable. This is due, in part, to the type of control used,
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vhich works only during, ac¢ best, the last quartar of tha trajectory.

For some trajectories, additional elements are necessary to achieve the
magnitude and rate of change of magnitude neceasary in the optimai ]

A nal }
SH=XCL. , 1
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IX. Recommendations

11}
H
.

ine recommendaiiuns cuuceiinlig thée gemeival probls
coefficient minimization for an entry trajectory and suggestions for

areas of further study are presented in this chapter,

Sensitivity Coefficient Minimization

The general problem of sensitivity coefficient minimization for an
entry trajectory is highly dependent on the lift-to-drag ratio and the
length of the trajectory during which control is exerted. The follow-
ing recommendations are made in this area:

A. This probleﬁ should be eliminated as a problem in
classiéal optimal control theory and cast as a parameter sweep problem.
The purpose of thia is to sweep only within a rénge of practical entry
contrallére.

B. The parameters to be considered in the sweep include:

1, Lift-to-drag ratio
2. Rate of change of 1ift-to-drag ratio
3. The range angle arc for which the 1ift control is

allowed to dominate the trajectory.

Sugpeations For Areas Of Furthex Study

In light of the recoumendations given above, the following areas

are suggested for further study:
A, For the parameter sweep problem:

1. Use numerical analysis to descriﬁe, in a least
square sense, smooth functions identified during

the non-aerodynamic portion of the trajectory.

147




GGC/EE/70-10

| 2
- C

3.

Also use numerical techniques to attempt to iden-
tify functions vhich may be used to descrxibe the
changes in the sensitivity coefficienta during
the aerodynamic portion of the trajectory.
Identify, using the relationships determined in 1
and 2 above, a relationship which describes the
sensitivity coefficients throughout the trajec-
tory. |

Investigate the use of a hybrid computer for the
pafametet sweep problem and determine its value in
solving an optimal control problem of this type

with the primary objective of obtaining a prac-

tical controller. NOT REPRODUCIBLE |

[y

. Rynand tha nracant nenhlam ¢a {nnluda thran doasvans 34
T M g o Lam T AnoLuct T pagayet

freedom to determine the effects of cross-range motion on the sensi-

tivity coefficients.

C. Investigate the present problem with constraints incl-

uded on the following variables to achieve a practical controller:

£ 1.
2.

3.

Drag control for deceleration constraints
Lift-to-drag ratic for configuration constraiats
Rate of change of drag control for mineuvering
capability constraints.

Rate of change of lift-to-drag ratio for maneu-
vering capability constraints.

Velocityrfor heating constraints

Rate of change of velocity for deceleration

constraints.,

!




’ simpleat suboptimal estimation technique which can be used in an actual
entry trajectory. ‘ B
| ) 149
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7. Kate of change of flight angle for deceleration
constraints.
Ds  Tuai e vpiiesl lmpilcii guidance sciieme be invesii—

. gated to determine the most practical method of implementing it and the
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Appendix A

Open-Loop Optimal Control Equations For The Entry Problem

* The purpose of this appendix is to present the detailed equatione
T for boin firui: and second variations of the optimal entry probleni.
They are presented in order of development,
: Srares
. (a-1)
tan X3
! . 4 X Cl
= - - : (A-2
x‘ X,Kz f‘anx, ) X& S”"X3 ' ) .)
‘. X '
x - - + # - L -
3_-7 1 X Xg" X:S:’n Xs cu, (A-3)
X4" ~ Xy Tu—=Xs T2y =X 73 ‘ L (A
X; ] X4 ’;z x‘ ru & ru .
X4" = X4 7a = Xs 73 =Xe Tas (4-6)
; Whe re 7y = A (A-7)
; ' Fan X3
r Ta= O (»-8)
X
Ty 2 ———3t— (a-9)
” Sin Xy
' To L e Uy —K ity (hei0)
U K EKy tanKy Ky SinXy 0 Xy Sinng P
( T2 % + Xe Clp - —= Cualls (A-11)

X, Ka" tan Xs ,\v:.s‘,'n X3 e X2 SinXs

m- = -7 o T s T
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’;‘ - A A, Coglgg Caa (A-la
X, Xy Sint A3 Ko Sin Ay

Tye——tl Ly - X, (A-13)
X, X" Xl SI.I)XJ Xz Sl'f’ X.,

Bl 2Ky K cow -

X, Xz’ Xl S//?Xs ‘ XZ‘S"”X3
o
and C = #-Z——ﬂi (A-15)
a 3
C..a X2 Crs 8P _ poXa ICes 4 -16)
X 2 X 23> oM X, #
Cas OX " SCas (a-17)
xt 3 /OX2 Cps vﬁ-:— y”,
&
whera . 238,87672 4 [ ] _ 10 (A-18)
_ Cos 7(2.8m*0.4)" la(2. am‘-a 4) M2
g_c_,i __2Ces, s8,87872m" ] [ l (A-1%)
M (2.8M*0.4) z(za 0.6(2.8M"% 04)
M Bk (A-20)
a
CRITERION
G .
J =z jo kx,'uc,.x,'wk‘ x,‘+K¢°a,‘+x¢‘a,_‘]do- (A-21)
HamiLronian

H o= 5 [k # Kok ok X Ky U Ky 42 2,5, 47,5,
+ AJF.! - 34 [X4 Tu *XJ'EI *X 7.;/]

- As [xsrgz *Xe 7,;2] - Ag [x4 Tis # Xs oy # X 7;3] (A-22)
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Tsn ® X% 3 T Ta.. Coll, -
'

CosLC“ " J,Ca.sﬁra Cor o

I\ldlﬂ AJ A‘um 43

S
"

JJ__ CKM‘I 179
X‘ Slﬂ .’

7;.,=‘ x, E —,ﬁcm ,—S’fzcum
- m%,;x—acuual. mcu /93
Tt ety Gl +-x—"—'-§-‘-’,—‘€-i—‘§-—c,,,u,.
T, = O ‘
Tea® ©
Taz = O
M K tenks | X anxs Cloo = X,_S/,'nxa x o
- Z}%"—X';mezdo + Xg"J:nX Cx Us
Targ = — -)ﬁxa — K‘_g;f,‘x‘ Clp * #Cu“@
B TS:)IETC"“" o ) \
e x = Xf'éSz'n X3 x-f‘_?jzz)sc:- “o+ ZE%? sl
e SET t itaw 4 T N e
-~ mc’““ Ue + 5 SinXs Cor Ut
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(A-36)

(A-37)

(A-38)
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Aoroinrs
Av= mLA T + ATy + A3 Ty — Ay [xdT;u +Xs Teu +Xe Ta 2
= A [)(4 Tiay +Xs Tga, 4% 75&,]‘3‘ [Xq T #4s Tony "h\" 733y ]} (a-22) ,[
32."("17/:: FA Tag A3 Tay - 34[&]-111. +Xs o HA 7;"]
) |
T As [X,; Taz VX520 * X 73:.:.] a3 [X4 Yoo *Xs 7amy * X 7;2” (4-29 i
i\,‘--(ar + Ay Tos + A3 73y —24[& Tus ¥ Toy * X% T3 m] ‘
- ;[X, +Xg Taes X ’5:3]"36 [X4 u*xf?l-aa *&7;”]} -24) I
[

Agm <Ky Kyt 2g Ty # ATy * ATy . (4-25)

Apn—Keke # A0 To # AcTee # AT (a-24)

where w = O (4-28)

s = © (4-29)

Ty = = S/m Ex (4-30)

n"Xs
Taw & — 20 — P C _— _._._EL__C_ (A'al)
w X,SXg tan X3 Xy S:'nxa n o Xa S'./Uﬁ .wu‘lo

B> — + Cally + —; XZJ Clp
3 5171 Xs

X2 tan Xy xa smx

— X

- e, U A-32) -
T Cre Us (A-32)

(74
Cona %0 = S
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- _gg__+_3__4' Crz & —-4—5'——
Taaa X, X3* Xy S7n X3 ol SinXs cl

T = — .ﬂ,'_%l-l-cm + 7%7_%3—&;&‘
) "N 3 )

Sin Xa
S
" Sin *Xa
Tas = o
T = 2 X Cos X3
138 S/n“Xs

P — g —LosXa cut —‘x"—@f'&'c U
4 X, %Xy Sen Xy X2 Sin*Xs ot e

7" —
228 = ,\,x‘z.‘i/n’&; & Indx | Xzél
a
r=__§,4&.§.2§.&L_Ll_—§——XC°"x"C — ALy,
a3 X, X2 Srn3Xs Xy Sin" X3 b = xsinxs
Cos &! 5, Cos X3 U
7;'3 = X;‘.S,ﬂ X Cl, + X 517)‘){3 Cx) Uy

Tug = — -—-———K‘-‘a X, Cos X3 cu, + HEeifacy, U
s,n X‘ Slﬂ XJ )

gg‘ Cos 5 _.1——
T = — ' 2. Ca cu
a8 Xz Sin2Xs ¢ X2 S Xy ¢

X0 90 SCes 98
SR

where C - —
Rixkt a; ax' M 6x'

dCas O

- o oCas éa +_XJ: oLAs
Cura.™ XaCps S/ = ﬁ_— 23 oM sf

X, 3% oM GX

Can = PCps + é%&' %Cﬁa_
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C GRAVIENT

Ky, Uy — Ay —E1C +x4—£-f—-[c+x Cx,]

AJOlnA_q AZOITTAZ L :
- ;\J_ v (, _X C — A‘ X rv\- C(Ccsvy\\.a) ‘_O -2- G (A-J'a) |
;.. XESin X l 2 "‘J X, Sin *Xy '
Ka Ue — Ag —XC— + 2 ——’5‘—-—[C+XC]
. e T 3 X! Sin Xy A X"sz{, e
: m: ( g,: ,)
3 "A:—a—)s'—‘-— IZC chx;] As clc =0 2 Gz (A-57)
d Xa SrnXa -Sm
f Dsrivarives or GRADIENT
:
: - Ko
. F »
| —i] . {A-60)
Ku,
26L & gaij
5 =6/
. GAJ ' (A 6)
GAll =0 (A-62)
GAl2 = — —KC (A-63)
X;Sl'n Xa
GAi3= O . (a-e4)
GAid = — K& ’c+ x,c,,,] (A-65)
X& Sin Xa
GUS = — —gfke [c-xzcu.] . (4-6¢)
X., Sin X3
5 GAl6 = — _,g,x£c(Cos x;) (A-67)
Xa 51‘02X3
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GxH =

GXIZ =

GXI13 =

GA2i= O (r-68)
GA22 = O (a-¢9)
623 = — —XC . ~ (A-70)
X2 Sin Xy ’
6GA24 = _..:J.IAL— {C +.X, Cx(] (a-7)
K‘ S'.,, Xa ]
GAzs » — —gtufe_ [zc x,zc..] | (A-72)
X‘ S/inXy
GA26 = M_C_(.CQJJI)- ' A-T3
X“Sl.ﬂz ' ( ')
96L 4 aXif : (A-714)
X : ‘ ‘

- —Bk |+ X, CXII . YO F Y "X:Clm:l]

X2 Sin Ky Xy $/n Xy

——A‘-&‘-— €+ X Cu =X, X ~XC ] M[CMC ] (A-75
X; Sin X; t Gy ¢ ;C.mu, Lx2 x‘s'h‘&‘ 1oxp )

:19)'(: [C - Xa Cu] _M— C + X Cg[ - X;Cu, -X,Xz.cxm.]
X; SlﬂXj X S'”x-’
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GX2l = — -—.a‘—[{' + X, ('...] + _;.\_ifj_lljr 4._)(.{‘.....}

Xy Sinxy L ”) X" Sin X, T
. 1
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X2 Sin X3 X3 Sm"‘Xs

159



GGC/EE/70-10

DERIVArIVES OF A’
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o o
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POX = O (A-08)
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Appendix B

Parameters for a Sample Trajectory

The purpose of this appendix I8 to present some sample parameters
to be used In starting a trajectory sclution. The ‘general criterion

function for the entry problem is (no control biat included):

1 ¢
J= K X2 + KeX2 + K X2 +K U2 4K U2 ] do A-1
'Z'fdoluu s%s + KX + K, Up “LL] (a-1)
Por one particular case, that of Case 7 presented in Chapter V, the

parameters aftar convergence are as follows:

K, = 1.0 x 10710
.Ks = 1.0 x 10710
K¢ = 1.0 X 1074V

Eyp = 1.0 % 10°
Ky = 1.0 103
No. Intervals = 150
Ap(og) = =0.21064992 x10™11 M(a,) = -0.53273489 x 1o-11
Ap(0g) = ~0.21462654 x10710 Ap(0g) = 40.26407696 x 10711
A3(og) = +0.59012141 x10706 Ay(ag) = -0.56110516 x 10707
Ay(og) = =0.59956528 x 10710
AS(Uf) = -0.54781552 x 10”11
Ae(og) = 0.83000869 x 10715
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