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SC Preface

This thesis, suggested by a term problem by Capt. J. Henry and Mr.

R. Ringo, AFIT-SE, GCC-69, concerns the use of optimal control techni-

---------- -- for sensitivity-- --- minimization for a non-thr-et e0-0

vehicle. A simulation of an optimal implicit guidance scheme including

a Kalman filter is accomplished to verify the results.

We wish to express our appreciation to Lt. Col. Roger W. Johnson,

AFIT-SE, our sponsor and advisor. This topic was originally suggested

by Lt. Col. Johnson based on the results of his doctoral dissertation

(Ref. 1). His continued assistance and encouragement proved invaluable

throughout this investigation. We are also indebted to Lt. Col. R. A.

Hannen, AFIT-SE, for his advice and instructiLn in the fields of

optimal control and state estimation. Discussions at considerable

length with Capt. T. R. Filiatreau, a contemporary student and co-

author of a thesis on Kalman filtering applied to orbit determination,

are also gratefully acknowledged.

Finally, to our wives, Judith Holdeman and Barbara Wynne, who

typed, edited, and translated the thesis while their husbands were at

the computer center, we express our deepest appreciation and thanks.

Without their continued assistance and understanding, this thesis

would not be.

Any errors or aversites in the body of this thesis are the com-

plete and total responsibility of the other author.
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C Abstract

The objective of this thesis is to minimize the terminal position

error of an entry vehicle. To do this, the concept of minimizing the

position sensitivity coefficients is employed. With this in mind, two

purposes are established: first, to investigate a set of optimal solu-

tions minimizing a criterion functioo of sensitivity coefficients; and,

second, to form a suboptimal guidance law for these trajectories.

The trajectories are generated by using a type of control which in-

cludes parameters describing the vehicle configuration and attitude.

This is called a lumped parameter control. Due to the use of a lumped

parameter control, a Valentine's procedure is employed to restrict the

range to a set of realistic design values. A closed-loop optimal

implicit auidance scheme includinii a Pe-ae I AmAfnr ia -Aw il a aiim,,-

lation of selected trajectories to test the validity of the feedback

gains determined for the trajectories.

The minimum sensitivity coefficient trajectory appears to be one

in which the vehicle first levels out to nearly horizontal flight and

then dives to achieve the desired terminal flight path angle. The

values of the radius and flight path angle sensitivity coefficients for

this type of trajectory are about an order of magnitude lower than for

other types considered, while the maximum velocity sensitivity coef-

ficient remains about the same.

For most of the cases considered, there appears to be a definite

relationship between the sensitivity coefficients and range angle and

rate of change of flight path angle. For all cases but one, the flight

path angle sensitivity coefficient is nearly a linear function of

VIII
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range angle.

The simulation results using a set of feedback gains and assuming

noisy observations drives the system to within 5 u, 2 ups, and 0.2 dog

j ~at the terminal point with initial errors of 5000 a, 100 ups, and 1.0

dog in position, velocity, and flight path angle respectively.

I..
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SYNTH1ESIS OF A SUBOPTIMAL GUIDAFCZ LAW TO MINIMIZZ

1H1 TERMINAL ERROR OF AN ENTRT VEfICLI

I. Tntuv~Aat.4 nn

Background

When a vehicle enters the earth's atmosphete, any error in its

position vector or velocity vector will cause a subsequent position

error at the desired terminal point. The quantities which describe

the sensitivity of the position error at the terminal point are called

sensitivity coefficients or influence coefficients. One method of

minimizing the position error at the terminal point is to minimize

these sensitibity coefficients. A trajectory which minimi';ed the sens-

itivity coefficients in also the trajectory which provides the minimum

position error at the terminal point. This concept was first consider-

ed by Johnson in his dissertation (Ref. 1).

Purpose

The basic objectives of this thesis are as follows:

A. To synthesize and analyze a set of optimal open-loop

trajectories for an entry problem which will minimize a function of the

sensitivity coefficients described above.

B. To generate a set of suboptimal feedback gains which

will drive the vehicle to the desired terminal point in the presence

of small errors in the vehicle position and velocity vectors at any

time during entry.

In theory, the use of a set of feedback gains would a•pear to

invalidate thi objective of minimizing the sensitivity coefficients,

since with perfect measurements and an optimal feedback scheme, the

H
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terminal conditions would be analytically satisfied. However, In prac-

C. tic*, neither of the two assumptions are valid. First, consider the
I..

anvironmmnz the m;asurem are ax-raciuu rom an inamil;n smms-

meat Unit, which is in turn adjusted by the overall attitude of the

vehicle. Errors from the environment, then, can be additive, and, at

present, must be compensated for. Consider, also, the feedback scheme;

the ideal controller would require some nonlinear relationship between

the control vector and the position and velocity vectors. Since, in

an entry, control must be applied in near real time, the nonlinear

relationship is impractical. Thus a linear relationship, valid for a

small region about a nominal trajectory, is used, and the errors In-

herant in an approximation are, again significant. In practice, then,

there is ample motivation to seek a trajectory where the influence of

The open-loop controller which achieves the desired optimal tra-

jectory is defined to include all possible parameters of the non-thrus-

ting entry vehicle controller and all the parameters which describe

the vehicle configuration. This is done for the purpose of allowing

the vehicle designer maximum flexibility in choosing a combination of

parameters which meet the control requirements and which also fall

within reasonable design limits. This type of control is called

lumped parameter control.

Assumptions

It is assumed that the entry control vector synthesized yields a

planar trajectory with respect to a spherical, non-rotating earth.

Since the control used here is a lumped parameter control, it is nec-

2
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essary to restrict the range of control to realistic design limits.

The specific limits used herein are given in Chapter III.

in construcv.1tig, L4ai e""! mnl a-heme, it is assumed that

* linear relation between the control vector and the vectors for posi-

tion and velocity can be used. It is further assumed that the use of

the position and velocity vectors alone in the feedback scheme, with no

use being made of the sensitivity coefficients, is sufficient to drive

the vehicle to the desired, terminal conditions. It is necessary to

make this assumption because the errors in the sensitivity coefficients

cannot be computed onboard the vehicle.

Approach To The Problem

The optimal open-loop trajectory and the control required are

found by. first variation optimization techniques based on the calculus

of variations. Using this trajectory and control as a set of nominal

values a set of linear perturbation equations are solved to refine the

values such that the terminal conditions are percisely satisfied.

Tese linear perturbation equations are solved using a second variation

optimization technique based on the calculus of variations.

Once an open-loop trajectory and control are generated that

satisfy the terminal conditions, a set of linear perturbation equations

are solved to produce a set of feedback gains for the trajectory. In

order to observe the effects of implementing the feedback contral in a

practical situation with measurement errors and noise present, a com-

puter simulation is accomplished using the previously determined

nominal optimal control and the feedback gains. A Kalman filter is

( therefore applied to the nonlinear trajectory state equations of motion

3
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the TEl £E:EE? no
to estimate the position and velocity vectors in the presence of notm,

The techniquis used in both the open- and closed-loop optimization

outline for the implementatinn of the Kalman filter, and a method for

analytically generating the initial error covariancw matrix for the

filter are presented and discussed. The model equations to be used

for the problem of minimizing sensitivity coefficients, and a trans-

formation of independent variables is accomplished in Chapter 11Y. In

Chapter III, the derivation of the lumped parameter control is also

presented in depth. The application of the techniques given in Chapter

II to the equations from Chapter III is found in Chapters IV and Vt.

In Chapter IV, the open-loop equations are derived using the optimal

theory from Chapter II, and some computation difficulties occurring

d•ir"n! thp An• ranf1 'tlnn" nF nnfml1l nn-an-1nnn Plnrv4thm. -. a4ra tq rwaaoA.

In Chapter Vt, a closed-loop simulation algorithm, implemonting the

theory for the Kalman filter is presented. Also in Chapter VI, a deri-

vation for the closed-loop feedback scheme is presented. The results

of the open-loop part of this thesis are presented and observations

made in Chapter V, while the results for the closed-loop part are

presented and discussed in Chapter VIII, and recommendations concerning

this problem as well as areas of further study are given in Chapter IX.

. ...... : ;. . .-
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1I1. Optimzation Techniques

The purpose of this chapter is to present a summary of general

optimal control techniques and of optimal state estimation techniques.

atu Pnntryagin maximum principie and the necessary conditions for opti-

mality associated with it will be discussed as well as numerical

methods for satisfying these necessary conditions to determine an open-

loop control. The general equations for an optimal linear feedback

control will be derived and the limitations of this control will be

discussed. The equations for a Kalman state estimator applied to a

nonlinear system will be summarized and a general computational algo-

rithm presented.

Statement Of The General Optimal Control Problem

The mathematical model describing the dynamics of a controllable

process can generally be expressed as a set of first-order, nonlinear,

vector differential equations as follows:

"_- (,.,t) (2-1)

where the vector x includes all the quantities which are necessary to

describe the dynamics of the system (e.g., position, velocity, and

flight path angle for an entry vehicle), and the vector u includes all

the system control variables (e.g., lift control and drag control for

an entry vehicle). The vector x is referred to as a state vector. The

initial conditions on the state vector are denoted as follows:

_i(tO)A. x 0  (2-2)

5
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The final conditions are denoted by:

X(tf) A.! 5f (2-3)

"The problem under consideration is that of choosing a control,

from some acceptable class of controls, which best satisfies some sei-

acted criterion. The criterion selected is in general to minimize some

function of the state variables and the control. This function will be

referred to as the criterion function and will be defined as a scalar.

The control which minimizes the criterion is the optimal control and

is denoted u.* The selection of the criterion function is a vital

part of the problem since it specifies the desired performance of the

system. The general criterion function treated here is called the

Lagrange form and is expressed as follows:

S= f tf$ 0 (. ).,_u(T),-t]d-c (2-4)

The next section discusses the conditions under which J is a minimum

(or a maximum). The variab~e 0 is some function of the states and

controls. The derivation of the conditions is descussed in additional

detail in references 10 and 11.

Summary Of The Pontryakin Maximum Principle

The function Ois assumed to be continuous and differentiable

through the second order with respect to the components of the state

vector x and with respect to the components of the control vector u.

By using Lagutange multipliers as adjoint variables, the criterion func-

tion is augmented as follows:

J ftf {OLX.(T),~.R(T), ii +XT(T)f[at(C),ua(T),T] -(i dT *25
( 0

0

6
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.C It should be noted that this equation is basically no different from

the original criterion function, Eq(2-4). Since the factor multiply-

"ing the Lagrange multiplier in ii 5 2- •- 4A_-_t4iallv equal to zero
from Iq(2-1). 3from

From Eq(2-5), a scalar function called the Hamiltonian is defined

as follows:

,: •[~t) ,u~e),•Ct) t] - Lx(t) ,_!(t) ,t1 +4_. t)1[x(t) ,_a(t) ,t] (2-6)

Substituting this into Eq(2-5) gives:

J - ftf(H.(•.() ,u(r) ,•(T),T] - AT(r)I('0)) dT (2-7)

to

When Eq(2-7) is integrated by parts, the result ist

j - .T(T()x(r)lt +/tf (H[(,L u(_), .(T),Ar_ .] - _.(T)x(.r))dT (2-8)
-- -- t 0

When P0(2-R) in mindmiand. the ortoinal etrtterinn function is

minimized and the state vector equality constraints, Eq(2-1) are sat-

isfied. In order to minimize Eq(2-8), a small variation is made in

both the state vector and the control vector and the limit is taken as

the small variation approaches zero.

When the small variations in state and control are made, the

following equation is obtained (dropping functional notation):

S tf -fT . 7 "

t0 0

When the limit is taken as the small variations approach zero,

each of the terms in Eq(2-9) must approach zero. This gives the fol-

lowing necessary conditions for optimality:

C;]
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16 zT( - l t f * 0 (2-10)
t

SA-- (2-11)

"x=-•H f(U t) (2-12)

'H o0 (2-13)

where Eq(2-10) is the transversality condition (i.e., boundary condi-

tion), Eq(2-11) is the set of adjoint equations, Eq(2-12) is the ori-

ginal set of state equations, and Eq(2-13) is the gradient equation.

This set of equations constitutes the necessary conditions for opti-

mality, but they are not sufficient. Solution of these equations

leads to a local extremum which may be either a maximum or a minimum

but cannot be considered a global minimum.

The transversality condition, Eq(2-10), must be considered for

two separate cases. When the initial or final condition on any com-

ponent of the state vector x is specified, the first variation of the

component at that point is identically zero. When the initial or

final condition on any component of the state vector is unspecified,

the corresponding adjoint variable at that point must be identically

zero and the first variation in the state component is then unconstr-

ained. This is illustrated in Table 1.

Table I. Constraints On Variables

State, x Specified Unspecified

Adjoint, X Unconstrained 0

Variation, 6x 0 Unconstrained

8
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•.C Open-Loop Optimal Methods

First Variation Gradient Technique. The gradient procedure dis-

cussed here inherently satisfies the state and adjoint differential

- equations, and satisfies the gradient equation, Eq(2-13), by an iter-

ative procedure. The procedure also inherently satisfies the trans-

versality conditions. From Eq(2-9), and assuming that Eq(2-lO)

through Eq(2-12) are satisfied, the fol1,ing relationship may be

obtained:

f ftf .jiO dT (2-14)
to

The objective of this procedures then, is to drive the gradient

to zero. To achieve this goal, a gradient 3H/ýu is computed and a

, , change in control du calculated. The new control is then used to

compute a new gradient and the process is repeated until 8u approaches

zero. When 6u is sufficiently small, the.gradient in near zero end

the last necessary condition of optimality is considered satisfied.

The sign of the required change in control can be found from the

sign of the gradient, but the magnitude is more difficult to determine.

The magnitude is generally determined by searching over a range of mag-

nitudes until one is found which minimized the criterion function.

The gradient technique is derived and described in more detail in ref-

erences 7 and 11.

Assuming that all state oqnapofients are specified at the initial

time and unspecifiýd-'i the final time, a typical computation algori-

thm for imaplementing the gradient technique is as follows:

Step 1. Guess an initial control versus time, U.

S 2. Integrate the state equations forward from the

9



given initial conditions and store the final values.

Step 3 Using zero as the final condition on the adjoints

and the final conditions on the states from step 2, integrate the

state and adjoint equations backward and store the computed gradient

versus time. The sign on the gradient provides the sign for the con-

trol change.

Step 4. Perform a one-dimensional search over different

magnitudes of du until a du it found which minimizes the first vari-

ation of the criterion function (SJ).

Step 5. Construct a new control versus time, w -

-old + 6u.

Sta• 6. Go back to step 2 with the new control values and

continue until the gradient is sufficiently small or until the change

in either the control or the c.riterion fiinettnn ip miffri•ttly MU~ll.

First Variation Terminal Error Function Technique. The gradient

algorithm described above always satisfies the state, adjoint, and

traneversality equations and works to satisfy the gradient equation.

The terminal error function technique always satisfies the state, ad-

joint, and gradient equations and works to satisfy the traneversality

equation.

At each end of the problem, there are 2n boundary conditions

where n is the number of states. Of these, n conditions are specifi-

ed and n are unconstrained. For the a that are specified, two vectors

are formed, z and zD, where z is the actual value of the states or

adjoints at the boundary and _D is the desired or specified value. A

( inew criterion function, q, is defined as follows:

10
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where Q is called the terminal error function. When this function is

minimized, the transversality conditions are considered satisfied.

Slu'Lite uLatu mizd adon qaiu n Lt radient•; equaLlon are

always satisfied, every solution is an optimal control for the part-

icular end conditions achieved.

To implement this technique, the states and adjoints are integrat-

ed simultaneously from either end of the problem. The integration is

performed using the given boundary conditions for those variables

which are specified and estimated or guessed values for those varia-

bles at the other end of the problem, the estimated values are changed

and the process is repeated until the integration terminates with the

desired boundary conditions. This is equivalent to transforming the

two-point-boundary-value problem (TPBVP) into either an initial value

problem or a final value problem.

A necessary condition for the use of this method is that the

control be completely removed from the problem. For this to be done

the second partial of the Hamiltonian with respect to the control vec-

tor must be non-singular. That is:

132HI1 , 0 (2-16)

If the determinant is not zero, the control can be expressed as:

au - h(,At) (2-17)

A substitution for the control in the state equations can be accompli-

shed.

"Once the unconstrained boundary conditions are estimated and the

boundary conditions at the other end of the problem are found to be in

11
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c •error, a gradient is computed for the criterion function with respect

to the estimated boundary conditions, E1 , as follows:

VQi - Q(Ei + AEi) -Q(Ei) (2-18) 1 1
AE4

The computation of this gradient provides a search direction for the

change in boundary conditions which will satisfy the boundary condi-

tions at the other end.

A computational algorithm for the terminal error function pro-

cedure is as follows:

Step 1. Construct a terminal error criterion function, Q,

corresponding to om end of the problem.

Step 2. At the opposite end of the problem, guees the n

unspecified values.

5:cy 3. _"wSLkLe buch nthe state and aajoint airrerentiaL

equations using the specified and guessed boundary conditions ao a

starting point.

Step 4. Determine the value of Q.

Step 5. Numerically differentiate Q with respect to the

guessed boundary conditions to form Vq.

Step 6. Perform a one-demensional search over the guessed

boundary conditions in the direction of -VQ to minimize Q.

Step 7. With new guessed boundary conditions from Step 6,

go back to Step 3 and continue until Q is sufficiently small.

The only difference between this method and that of the second

variation is that in the terminal, error function, a linear search is

performed based on the first variation equations; whereas, in the

second variation procedure, numerical perturbation differential

12
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c equations are solved during the integration of the state and adjoint

equations to determine the necessary changes in the guesses. The ter-

minal error function technique described here is due to Trushell and

Birta given in uerui-uacs a. I

Second Variation Technique. In the open-loop optimal control

technique based on the second variation of the Hamiltonian, it is as-

sumed that all necessary conditions for optimality are identically

,satisfied with the exception of the boundary conditions. This tech-

nique transform a two-point-boundary-value problem (i.e., a problem

in which some conditions are known and some are unknown at each end of

the trajectory) into an initial-value or final-value problem (i.e., a

problem in which all of the conditions are known at either one end of

the trajectory or the other).

Since the gradient is defined to be identically zero, it in as-

sumed here that the control vector can be expressed as an explicit

analytical function of the stats and adjoint variables. Based on this

assumption, the control function can be substituted into the state and t

adjoint differential equations to completely remove control from the

problem. Then, once the boundary conditions have been satisfied, the

final open-loop control. versus time can be computed from the functional

relationship.

Based on these aisumptions, the state and adjoint equations are

integrated starting at either end of the trajectory. Errors in known

values at the and indicate the initial unknown boundary conditions are

in error and must be changed. The entire purpose of this procedure is

( )to determine the magnitude of these unknown boundary conditions such

13
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PC that the known boundary conditions at the other end of the trajectory

at-r satisflaA. This is done bv solving a set of Derturbation differ-

[( ential equations simultaneously with the state and adjoint differential

equations. The solution to this set of perturbation equations provides

the sensitivity of errors in the specified values at one end of the

trajectory to changes in the estimated values at the other end. Theme

sensitivities are then used in a Newton-Raphson procedure to change

the estimated values.

The sensitivity quantities provided by this method will be refer-

red to in this thesis as boundary value partials to avoid confusion

with the position sensitivity coefficients ihich are being minimized.

The boundary value partials are sensitivity coefficients, but the-

S• sensitivity coefficients being minimiLzed relate deviations in position

•l..•.n= ~-' C=.T.CZet., ..... ... in Ctare --C== thQ --t.r -I-'-'..,%-

as, the boundary value ratios relate errots in all of the known state

and adjoint variables at one end of the trajectory to changes in the

unconstrained state and adjoint variables at the other end.

To illustrate the Newton-Raphson procedure, an example is consi-

dered in which the first q states of a total of n states aro ,•Pstmsd

to be specified at the initial point and allin states ai, 1 . .

at the final point. Two separate cases must be considered, iOT 3ý16

example. One case deals with the procedure when backward Iw. tiration

is selected to satisfy the initial boundary conditions, the other with

the procedure when forward integration is selected to satisfy the

final boundary conditions.

In the case of backward integration for this case, the unconstr-
(.

ained adjoints at the final point are iteratively adjusted to satisfy

14
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[ C the specified boundary conditions at the initial point. The specified

boundary conditions at the final point are satisfied because these

conditions are used to begin the oaceward integration. The Newton-

flapheon equation for this case may be aepnrPnaeA ant

t•) xltal (2-19)

a(f)

which may be rewritten as:
-l

a,(t°)
6•(t) -• 6- t-°--1(2-20)

aW to) _(to)]

where =t(t0) a q-vertnr nf thA divlM•tlni nf hoh infeal at•atM

[Z(tO)] from the specified values.

6_(to) = an (n-q) vector of the deviations of the initial ad-

Joints .[A(to)] from zero. These adjoints are specified

to be zero at the initial point because the correspond-

ing states are completely unconstrained.

6X(tf) - the necessary change: in the unconstrained adjoint var-

iables at the final point to satisfy the initial

boundary conditions.

Eq(2-20) may be written in terms of an iterative equation as follows:

~~(t0  1~._(tf)n+l- _(tf)n + /----i -. : L (2-21)

0- 3Att 0)

1.5
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where *0 is the vector of specified initial states, *(to) is the vec-

C tor of actual initial states from the backward integration and w(to)

is the vector or actual initial adjoints. The quantities in the matrix

. to be inverted may be derived by performing a Taylor series expansion

on three of the necessary equations of optimality. These equations

are

, f(x,u) (2-22)

--- 3
_ ai~(2-23)

ax

and -. 0  (2-24)

The partial derivatives of these three equations with respect to A.(t d

are:

S1.

Perorrn a a r seie 1xaso nteetre qalegv

aA(tf)] dt L a(tf) J aL(tf I xt (-6

dn rA aGt
and -L-] A~I -(2-26)

[ HG

Performing a Taylor series expansion on these three equati-as gives:

dW I (2-28)Ut)

1.6

• , .+. :: . ' . • ,b• . . *j: .;, • ', . ,,.

; . , , , :. , ., ,
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c and:

where the final conditions are specified as:

[ _x(tf) 1 (2-31)

and IaX(tf)J 1 - (2-32)

The last equation can be solved for [Su(t)/.OA(tf)] analytically and

substituted into Eq(2-28) and Eq(2-29) to eliminate the quantity from

the equations. The solution to Eq(2-28) and Sq(2-29) provides the

boundary value partials to be used to form the Newton-Raphson matrix

in Eq(2-21). An algorithm for implementing this method is presented

In the case of the forward integration for this example, the

unspecified states and adjoints at the initial point are iteratively

adjusted to satisfy the specified states at the final point. The

Newton-Rsphson equation for this case is:

d.(tf) I t[ 1 (2-33)

which my be rewritten an:

where for this case:

6x(tf) - an n-vector of the deviations of the final states from

the specified values.

17
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"f c l_(%) " a q-vector of the necessary changes to the unconstrained

initial adjoints.

8kj(t0 ) an (n-q)-vector of the necessary changes to the unspec-
ified initial states.

The recursive equation for this case is:

[ I~) Lx(tf) 8X(tf) 1

t I~I g-Ito ai~o) LX g(t f)] (2-35)

The perturbation equations for the terms in the matrix in the above

equation will not be presented here but have the same form as the

equations derived for the case of backward integration presented

earlier.

In order to satisfy control constraints for a bounded control

cedure is used (Ref. 2). In Valentine's procedure, a new constraint

is added to the problem and is of the form:

!Euu (2-36)

It is assumed that the control constraint is:

AL S1J& i--T (2-37)

or u- BL (0 (2-38)

and AT - a_.•O (2-39)

These two inequalities e•an be combined as:

(ul - BL) (BTl - ud)

. =. (2-40)

*,,-.

(Ui EJ) ( Tj U

11 'A

I ... . ..; '-. • • - -- .. , • . .. -- • .. . . . . . .. .. .. . . . . .. .
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This constraint is added to the Hailtonian with a new Lagrange multi-

nlia.• ij. Tf tha n~ Ilnm41l"nninn 4I Aa,4nnfA ._ 1-h an.

I~~ 1' - H~ u+j i) (2-41)1
To satisfy the original problem, the new term must always be identic-

ally zero. When a particular control component is on one of the

boundaries then that component of w(u is zero. If the control com-

ponent is not on a boundary, then the multiplier must be identically

zero. A new gradient equation isE formed as:

- +T (2-42)

r T
orL (2-43)

1' a 4,,A& rb" nia[l •o-t . , a 4,

on a boundary, y must be computed such that the gradient equation in

zero. The fact that:

T (2-44)

Is not a sufficient condition for:E DT
W -0 

(2-45)

For this reason, when a control u is on a boundary,p is computed
j

from the corresponding gradient equation:

K -- " " 2 (2-46)
j LJ + Tj 2uj

19
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When the control is on the lower boundary,

CI
- BLi

SI. and

•ulS1 .e~L) o(2-48)

which implies that p is negative on the lower boundary. When the

control is on the upper boundary

414 1 B (2-49)

3BT - BLI

and

"-uI1BLJ 10 (BTi - BLj) z 0 (2-50)

which implies that u is nevative. Then pj iu alwoys "pit'vn when the

control is on either boundary. The term in the numerator is positive

because the original gradient equation, with no constraints, is of

the form

uj - hi 4 ) - 0 (2-51)

when the control is on the lower boundary:

Ui w BLj (2-52)

But h1 (x.A) is the value the control would be if no boundary were

present and is consequently less than BLj. This implies that

uj - hjx,,) is greater than zero. When the control is on the upper

boundary

uj - B (2-53)

But, in this case, hj L,_) is larger than the boundary and uj-h4•_ A

20
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is less than zero.

When the control is on a boundary, then changes in control at that

Doint are not functions of changes in either the state or adjoint var-

lables at to or tf and.

au j(t)" 0 Buj (t)]

A(tf) "o al(tf)i

(2-54)

.0 (t) -oj (t)l

at that point.

When the control is not on a boundary, then'

YJ - 0 (2-55)

and the control is computed as if the boundary on control did not

exist.

Au algurltiam !or implementing the secona variation proceaure with

control inequality constraints and using backward integration follows.

The method for forward integration is similar.

Step 1. An initial set of estimates are made for the ter-

minal adjoint. variables.

Step 2. The control is computed at tf from the gradient

Eq(2-43). If it is within bounds go to Step 3; otherwise, go to Step

5.

Step 3. The state and adjoint equations-are integrated

backward for one increment of time.

Step 4. The control is computed at this point from

Eq(2-43). If it is within bounds go to Step 6; otherwise go to

Step 5.

21
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c Step 5. Let the control equal BT or BL and compute from

Bq(2-47). Set [Duj(t)/a2X(tf)] equal to zero and go to Step 7.

Step 6. Set P - 0 and continue.

Step 7. Solve the perturbation equations backward in time

to the same point as the states and adjoints.

Step 8. If the initial time has been reached go to Step 9;

otherwise go to Step 3.

Step 9. Compute new estimates of the terminal adjoints

from Eq(2-22) by inverting the nxn matrix and go back to Step 2 and

continue until the boundary conditions converge to within a tolerance

of the specified values.

.Suboptimal, Closed-Loop Control Methods

The. basic purpose of using a closed-loop control in conjunctiod

with an optimal problem is to form a practical, near optimal, guidance

law for use in a real time adaptive controller. If this suboptimal

law is used with perfect measurements,.the feedback elements derived

herein will satisfy the final boundary conditions established in the

optimal solution. The solution of the open-loop optimal control

problem determines a nominal trajectory and 'control set which satisfy

the boundary conditions at both ends of the trajectory. However,

when the optimal control is applied as a forcing function during a

mission, the actual initial conditions may not be identical to the

nominal initial conditions for the optimal trajectory. Also, due to

perturbations along the trajectory, the actual, trajectory may deviate

from the nominal optimal trajectory by a small amount. For a mission

( such as entry into the earth's atmosphere, there still exists a

22
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c• requirement to reach a particular target with a set of specified final

states. An optimal closed-loop control scheme corrects for these dev-

iationa by continually computing a naw optimal trajectory to arrive at

the specified boundary conditions. However, the computation of an

optimal control at every point in time to satisfy th• final boundary

conditions requires the complete solution of the original optimal

control problem from the actual initial conditions at each point to the

final point.

An alternative to solving the entire problem at each point is to

define a linear functional relationship between small deviations in

the states from the nominal and small changes in control from the

nominal to achieve the desired final boundary conditions. This func-

tional relationship is only valid in a linear range about the nominal,

but allows a practical comoensation for RmR11 rronra. ThiR ftmetinna1

relationship is given in reference 1 as:

6u(t) S.J A W(t)] 8x(t) (2-56)

where Su(t) is the required change in control vector to correct for

small errors 6_x(t) in the state vector. The matrix is computed from

quantities available from the original solution of the optimal open-

loop control problem. It should be noted that the change in control

generated does not immediately correct the trajectory to the nominal.

Instead, it allows the states to follow a neighboring path to the

specified final conditions. This is illustrated in Figure 1. In order

to accomplish this, the matrix [_u(t)/ _x(t)] is computed backward in

time, relating all variables to the final specified condttions. This
matrix is referred to as the feedback gain matrix.

23



=i¶,rZ /70-10

Indepen dernt Var/able

Figure 1. Neighboring Trajectory for Linear
Feedback Scheme

TLu block diagram in Figure 2 Illustrates an example of the

implementation of a linear feedback scheme.

g~w ~red+ 1, PhySIC4 X ~ 1

In Com~paar'

Figure 2. Block Diagram for~ Implementing Feedback Gains

24
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c The quantity which must be derived is the relationship for the

feedback gain matrix. The equation for defining this matrix as derived

by Johnson in Reference 1 is:

• r!-•.Qa1. _ [ - 1 (2f l rt) 1-3-t [-i ' I l - 5 1_I
[a-XmtJ L a,-(t)J tLazt) [axI tIjI 3tf)JI [3.(tfJ J
where G(t) is the gradient and

1 1A( -tf) and t 12)t)

are computed by solving the perturbation equations, Eq(2-28), Zq(2-29),

and Eq(2-30) in the previous section. This equation is only valid for

the case in which the states are specified at both ends of the trajec-

tory. It is not practical to force the change in control to be a

function'of errors In the n~jo4wit. v1rarafsh ain- 0-how-

be generally computed during an actual entry mission.

The algorithm for computing the feedback gains simply consists of

integrating the three perturbation equations backward in time, substi-

tuting the quantities into Eq(2-58), and storing the resulting gain

values at each point in time. It should be noted that these gal.-

values cannot be computed from forward integration because the final

specifted boundary conditions do not directly enter into the integra-

tion.

Optimal State Estimation

* The optimal state estimator used in this thesis is the discrete

Kalman filter. The Kalman filter is a minimum variance, unbiased,

linear estimator. The classical least squares es~timator is a special

25
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F case of the Kalman filter. When no plant noise is present and the

.K plant; differential equations are uncoupled, the Kalman filter and the

unwaighted least squares estimator are equivalent. The dliscrece Lai-

-=-a -fitor U e-xpre'ssed -as a. et nf recu,,evd@ @qa.aioans Just as the

Ki least squares estimator can be. A derivation of the filter equations

will not be precented here but is wall described in Ref. 5, 12,

and 13.

When the plant and observation noise are independent, white

Gaussian vectors and the plant and observation equations are linear,

the Kalans filter provides the optimal layesian estimate of the state

vector. When the noise is not Gau ,sian, the Kalman filter still

provides the optimal linear estimate of the state vector. When the

plant or observation vector equations are non-linear, the optimal

... 4 * ,& * .o I.oI - . .

ived for each problem individually whether the noise vectors are white

Gaussian vectors or not. For most non-linear problems, the most

practical approach is to linearize the equations and apply the Kalman

filter to the small deviations within a linear range. The following

basic procedure is generally followed in applying the Kalman filter to

a non-linear set of equations:

A. The nou-lineax plant and observation 'quations are

linearized either abcut a pracomputed nowinal sat of values of the

state vector or about the current optimal linear estimates of the state

vector. In this thesis, only linearization about the current optimal

linear estimates are considered.

B. The Kalman filter is applied to the linear set of

deviations from the nominal or estimated states to form the optimal

26
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c estimates of the deviations,,

C. The optimal estimates of the deviations are added to

the precomputed nominal states or to the best estimate of the states

I given A! I nfo-'Matfon eXcept the Curr.t oba.rvatAon vactor valu,

This provides the optimal linear estimate of the state values.

The system model (i.e., plant model, message model) equation and

the observation equation are defined an follows:

2x - _f•,•,.• (2-58)

'" .&(,-n (2-59)

where x - state vector to be estimated

y_ - observation vector

S- control vector

= Gaussian white system noise

In order to establish a discrete, recursive set of equations, the

system and observation equations are written in the following discrete

form:
xi+l - (2-60)

or xi+l iti + ' If(x(,li,.Ai) Z. _L..I,.u..i) (2-61)

and zi - s.~xini) A.i R(ini) (2-62)

where H is the integration step size for a linear approximation. When

the discrete system and observation equations are expanded in a Taylor

series about the optimal estimates ., ii and •i the following

equations are obtained:

27
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fc - I. (2-63)

i • i " , ( * iL i ) + - -)

+ Oi .(,, - •[- &-6,4]aebi.

If and a have zero mean then

0- Ci) - _ (2-65)

and . -0(..)- (2-66)

vhere E(.) is the expected value of the quantity in the parentheses.

If the control vector is assumed to be a forcing function (i.e., not

a function of the states) then:

(2-67)

When these relations are substituted into Eq(2-63) the final linear-

ized equations can be expressed as:
_Xil1 -F(•,O,,) +,[• -(L2L a -4)

xi'i

a tF- ._0(268

28
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Ii" (l, ) -[ - • (-P -- + (2-69)

The Kalman filter may be used with these equations In two ways.

Both are equivalent. One method involves applying the linear filter

equations to the deviations from the optimal estimate to find the op-

timal estimate of the deviations and then adding the result to the

best estimate of the states. The other method consists of modifying

the filter equations to include the best estimates of the states. The

latter procedure will be followed here. The best estimate ofxi+1

given only yi and all preceding observations is denoted x(i+l Ii). The

beat estimate may be computed by solving Eq(2-58) as:

i(J I i) - _ [ i) o_.ij ]I j .1 i+l (2-70)

where, the integration begins at:

M(i i) - -i (2-71)

and ends when j - i+l.

The recursive relations to be computed for the filter are as

follows:

A. Kalman Gain:

Ki+l r(i+lli)Gx(i+l)T[G (i+l)r(i+lli)G1 (i-l) + W1.l]-J (2-72)

B. Best Estimate Of Error Convariance Given y&:

r(i:+lIi) - F1xiriF +i (2-73)

This quantity may be computed by propagating over small intervals with

29
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"the state transition matrices Fx and F at the sawe time x(+lli) ,

is computed.

Sri~ Ex -z y+,Gx(i+,) r (i+11 i) (I x:L+,G(i+,) ]T

+ Ki+lV±+lKi+l T  (2-74)

D. Optimal Estimate:

Ili+i - x(i+lI i) + Ki+l X -~ -q -(i+lI i) .0] (2-75)

In the four sets of equations abovet

1j+1 - Kalman gains at measurement point (i+1).

Fr(i+ll ) - Best estimate of error covariance at measurement

point (1+1) given yi"

- Error covariance at measurement point (1+1)

given Yt+1

x(i+l 1) - Best estimate of state vector at measurement point

(1+1) given yi"

ii - Optimal estimate of state vector at measurement

point (1+1) given xt+I

Gx(i+l) -

Fxl~ ~ a = Ai X i

v -EvLXT)

where

( Vi ~(ici.w ]
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where

A specific algorithm for implementing the Kalman filter will be pre-

sented in Chapter VI on Optimal Implicit Guidance. These equations

will form the basis for the optimal estimation in the entry guidance

lav formulation.

Initial Estimate Of The Error Covariance Matrix. In this sec-

tions a set of equations will be derived for computing the initial

error covariance matrix, ro0 when certain assumptions are satisfied.

It %fill be shown that it is not, in general, necessary to guess an

initial estimate rO. It may be computed instead. It is assumed here

that the problem begins at the first measurement point. Theoretically,

for a linear system and linear observations, given a long enough

sequence of measurements, any estimate of the initial error covariance

matrix should produce the same steady otate errors. In actual practice

with non-linear systems, given non-linear observations and a finite

sample tiima, this does not occur. This is illustrated by Elliott and

Filiatreau in Ref. 17. They investigated the effects of variations in

the Initial estimate of the error covariance matrix in conjunction

with an orbit determination problem.

The steady state errors are sometimes critically dependent on the

initial estimate of r0. If the estimate is much smaller than the in-

itial observiti.a ,jof!s# iil, natrix, W(O), 'the variables may not
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Sreach steady state values at all. If the estimate is larger than W(O),

the variables in some cases reach steady state values in a much shorter

time than for lower estimates. When the estimate is much larger than

* UW(O), the reference cited above indicates a tendency for the variables

also not to reach steady state values as in the case in which the

estimate is much smaller than W(O).

The equation for the optimal estimate, Eq(2-75), is:

E =(i+l i) + Ki+l [1i+l - _(a(i+lI i) ,)o (2-76)

For the initita observation point this equation becomes:

• X_ + KO. (Z (2-77)

where x0 is defined as the best estimate of the initial state vector

given no observations, and i is the optimal estimate of the initial

state vector given the initial observation. Thus, 10 can be based

A. x0 is an arbitrary a priori estimate of the initial

state vector.

D. K0 is an arbitrary a priori estimate of the initial

Kalman gain matrix. The value of K0 will be determined by the con-

fidence level of the a priori x_ as compared to the confidence level

of the observation vector 10 as given by W(O).

The equation for the initial Kalman gain from Eq(2-72) is:

K0 - rOGx(o)T(Gx(o)rOGX(O)T + W(O)1-i (2-78)

where ro0 is defined as the best estimate of the initial error covari-

ance matrix given no measurments. The optimal estimate of the initial

error covariance matrix given the first measurement will be denozed rO.

* Solving Eq(2-78) for r0 gives:

( ro- [r - xG.(O)]-oW(O)G(o)- (2-79)
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The equation for the optimal estimate of the Initial error covariance

matrix, r0 , from Eq(2-74) is:II, r0 - (i- icG1(o)]r0 [i - KOG (0)]T + %-V(O)K0T (-G

Substitutibg Eq(2-79):

r, " [I - K0 GX(O)][TKOGx(O)- 11%W(O)Gx()-T[I-.qGX(O)]T+IW(O)q(2-81)

or:

ro -_oW(O)Go( [I __ KoGX(o)]T + KoW(O) KoT (2-82)

Slmplifying this equation givea:

K0 W(O){G (O)- - G (o)-([Gx(O)]1 + XOT) (2-83)

or:
rorro K W(a)G (o)-7 (2-84)

where:

L.(0) ix O (2-85)

matrix, rOs once has been computed using arbitrarily selected

values for x0 and K0 .

A special solution of this problem will now be -considered in

which:

Ka 1 (2-87)

and:

_o _(o ,_) (2-88)

In the case in which the observation vector is a linear function of the

state vector or:

zi "xi + .11 (2-89)

.Eq(2-88) is satisfied by any value of xO and Eq(2-85) and Eq(2-84) give

Gx(O) - 1 (2-90)
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and:
IC dr 0  W(O) (2-91)

i '6- _ .l. , ,, .a.w.4.i, .lkj ,,a 4. IT t' s ,!a!n. ' 4.,h wi11 hoa ,nnl4a In

the optimal implicit guidance simulation for this thesis.

Eq(2-84) provides a relationship which allows the fo1loving

initial estimate algorithm to be constructed:

Stay 1. By some arbitrary method, select an x0 and IC0

such that:

+ KO -G(x,) (2~-92)

provides the desired relationship for i0 (such as j-0 and K-f)

Stay 2. Evaluate:

(2-93)

and invert the matrix to form C (MrT.1.

Step_3. Compute the initial error covariance matrix

from:

F0 - KW(O)G,(O)-T (2-94)

This method of estimating the initial error covariance matrix

and a further development of the case to which it is applied are

presented in Chapter VI. The following chapter shall develop the

model equations for the optimal open-loop control problem.
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III. Derivation Of Basic Entry Equations

In this chapter the basic equations of motion for an entry body

will be established along with the equations for the position sensi-

tivity coefficients to be minimized. The lumped parumeLei uua•,Lo Cork-

taining parameters for vehicle configuration and attitude will be

defined and the characteristics and effects of the atmosphere will be

discussed.

State Vector Equations Of Motion

Figure 3 below shows the geometry and sign conventions to be used

for the entry problem. The motion of the entry vehicle can be descri-

bed by a set of four coupled differential equations. The solution of

these equations provides position with respect to the center of the

earth (r), valnetty (v). Areal v•lnritv (w)l and ranfe annlp' (a). 1?nr

V0

En kryPO In rermtnidl

4( ®

Figure 3. Entry Geometry
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this problem a transformation of the independent variable is made such

that the range angle, o, is the Independent variable instead of time.

* This reduces the number of equations to three. A transformation is

I also made from the areal velocity, w, to flight path angle,Y.

, Alnb equations of motion for a pianar trajectory with respect to a

spherical, non-rotating earth with ablation effects neglected as

developed by Johnson in reference 1 aroe

(3-1)

S- v- •3-D-€•• L~nV (3-2)

r

M vsin(y) (3-4)
r

Where r - displacement with respect to the center of the earth.

v - velocity.

y - angle of the velocity vector measured from the local verti-

cal. This is always a positive quantity.

o a range angle. The range angle is a positive quantity and

assumed to be a monotonic function of time.

w - areal velocity. This quantity is defined by the relation

.w - rvcoe(y).

D - drag. The drag is dependent on the coefficient of drag and

the square of the velocity and is normalized to be drag

force per unit mass.

L - lift. The lift is dependent on the coefficient of lift and

the square of the velocity and is normalized to be lift

force per unit mass.
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u - universal gravitational constant times the mass of the earth.

This quantity is the ecrth's gravitational constant.

The areal ve•ccity, vw is used to improve the stability of the

-deA1 fra 1 h• . v.s.4 rat4 4in . Snc only, -m Ahi P A-€rm mJw4-inm_

variation in yis expected, it is not necessary to use the areal valoc-

ity. Also the computation of w onboard an entry vehicle would require

a continual computation of (cosy ) throughout the flight. The quantity

y , is available onboard from the gimbhl resolvers in the Inertial

Measuring Unit (IHU). For these reasons a new set of equations will be

derived to replace w with y

The relationship between w and yis:

w - rvcosy (3-5)

When the time derivative of v is computed, the result is:

S- ikvcosy + rkcosy rvisiny (3-6)

Substituting the equations for k and ' from Eq(3-1) and Eq(3-2) gives:

S- vos - Pwcosy - rDcosy - rvtsiny (3-7)

r vr 2

or

tan 0 *s woa cs : (3-8)
r yr v rv

Substituting for * from Eq(3-3) and for v from Eq(3-5), combining

terms and dividing by siny gives:

v-vsiny _ L (3-9)
r rzv v

A new set of state equations may now be written as follows:

t vcosy (3-10)

S- - -D (3-11)
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J- veiny~ + us!aV IL (3-12)
r YI

The independent variable in the above equations in time, which is

monotonic and measurable. It is assumed that range angle is also mono-

tonic. To simplify the model equations, the independent variable,

time, is replaced with range angle a. It is important, however, to

compute time versus range angle, to be able to revert to a time base

at the conclusion of the problem.

Dividing Eq(3-11) through Eq(3-13) by 8 yields the following set

of dynamic equations:

r'~ rt (3-14)rAdo" tany

v' A . = _ (3-15)
do rvtany veiny

y, dX.- + r -- L- (3=16)
do rv 2  v 2siny

To determine the time, t, at any point on the trajectory, the recip-

rocal of Eq(3-13) can be used, which is:

tI dt~ r (-7

Introducing state space notation to the model equations derived

above gives:

x!T. [x ,x 2,x] 3 [r,vyj (3-18)

. 3
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Substituting Iq(3-18) into Eq(3-17), the dyuamic equations of

state are:

X' - U .X (3-19)

I = - Xlx2tanx xsinx (1

X( - - I + U 03 (3-21)
x2 x~sinx3

Eq(3-19) through Eq(3-21) are the state equations of motion which will

be used throughout the report.

Sensitivity Coefficient State Equations

This report is concerned with the minimization of position sensi-

tivity coefficients, which Siva the sensitivity of the position error

at the terminal point to an error in the position or velocity vector

at any point along the trajectory.

The matrix differential equation describing all the sensitivity

coefficients for the three states described in Eq(3-19), Eq(3-20) and

Eq(3-21) is:

,d [ A " (1f) 1 ~ "d ax(f]. [L"0)] (3-22)
dol x~ o) [x (o) ax(o)J

This equation has been derived by Johnson (Ref. 2). In state space

notation, Eq(3-22) may be written as:

BF, WFI aF
x4 x 5 x 6  X Xx 5 X6  Wx ax 2 ax 3

d 7x exx9 7 -x Fa, x 9
x 7  , 7 9axl Bx2 3x3  (3-23)

-. 10 11 l X121j x1o •ixlOXlIlf U 4
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The partials of F , I , and F from lIq(3-19), Iq(3-20), and 4(3-21)

aram

.9 (3-24)

t-0o (3-25)

WA2

Mx . - -X1 (3-26)

M1, - D LD (3-27)
axI x2x 2 ssx 3  x2sinx3 3x1

-2. 7  + x ' , L (3-28)
3X2 xxxitanx 3  x ix x2sinx3  3X2

*= ; + x Dcosx. (3-29)
ax l lz'23 X2 8ins2x3

IF L _ 3L (3-30)

Oz 112 xT2sinx3  xsn 3  XIl
_1 . _ 2p + 2xL -

0L (3-x31)

ax, "sinxq xOsin'x.,•(-

q - x-Lcosxq (3-32)
313 Xjsin2zX3

Nine sensitivity coefficients result from the solution of Eq(3-23)

through Eq(3-32). These describe the sensitivity of errors in all

three states at the terminal time. In this report, however, only the

position error is considered. Position is determined by the radius

and the range angle. Since the range angle is the independent variable

for the model, there is no range angle error at the terminal point, by

definition. Therefore, only the sensitivity coefficients relating the

err-r in radius, x, , at the terminal point, to errors in the three

states during the flight are considered. In Eq(3-23), each row of the

matrix on the left hand side is uncoupled from the remaining rows,

such that for errors only in position- the following equation suffices:
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d ax"f 1]( 3x2(of) 8x I(of) (3-33)
_______ d ax ~ 'ax 2?o '3x(0

Baseed on this and Eq(3-23):

ax-I ?X2 ;•X3

"d" [x 4 . x5 2 x6 -- [ x 5, x. x6  2 2 3f2 (3-34)
axI ax2 ax 3

3f 3 j8f 'f3

L 3X' BX2 3xz

where the partials are defined in Eq(3-24) through Eq(3-32).

Led, Parameter Control Eguations

The design of a passive control restricts the control available

to atmospheric forces. In this section the equations for drag and

-lift shall be functionally separated into two parts. The first part

shall contain parameters related to vehicle configuration and attitude

and shall be defined as a lumped parameter control. The second part

shall contain parameters related to mach number.

The equations for lift and drag are;

D ACL(m,) vcs2 C (3-35)
= 2

SCL'(M) _____

L x (3-36)m 2

where p - density

v - velocity

Cpa . coefficient of pressure at the stagnation point, a func-

tion of mach number

A - cross-section area perpendicular to velocity vector

41
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.S - planform area perpendicular to both the velocity vector

and the radius vector

a - mass (a constant)

C!(cs a a drao coeffiieiant whidh 42 a f"--tin" .f 1,.•11`0._ nITV * -- . -- _ - 1 - - -- -

attack, a

C'(a) - a lift coefficient which Is a function of angle of

attack, a

Two controls will be defined as follows:

Aba)
uD . ea)(3-37)

UL SCL(,) (3-38)

The values which the controls are allowed to take on are limited

by practical considerations of vehicle design, thus the lumped control

problem is a bounded control problem. The boundaries are as folloý%,:

2.76 x 10- 5 _, uD 1 2.22 x 10-3

-1.6 uD < uL < 1.6 uD

These boundaries on the controls correspond to:

250 _ d : 20,000 Kg/meters 2

-1.6 < L/D < 1.6

Substituting the control relations into Eq(3-35) and Eq(3-36) gives:

D- Pv2c ps(339
2 uD

L = 2 uL (3-40)

The term Cps, the coefficient of stagnation pressure in the above equa-

tions is a function of mach number, which in turn is a function of

altitude, pressure, density, and velocity. This term is derived using

.12
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c the following aesumptionsa;

A. Perfect Ges

B. Isentropic Flow

C. Adiabatic Flow 1
D. The shock in J.ocaiLy norma.

In Fig. 4 below, Pol and P 0 2 are the stagnation pressures at I
points 1 and 2; P1 and P2 are the pressures at the two points, and M

is mach number. Using assumptions A, C, and D, the following

P, P, . JPAI

Figure 4. Shock Wave Geometry

C4
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relations are obtained (Ref. 15):

c p- %nC02 P 4' .i (3-41)

I
and .. L2L ('-'_.r + (3-42)

From assumption B:

- .I (3-43)

Multiplying Eq(3-42) and Eq(3-43) together and substituting the

result for the quantity P02/P1 In Eq(3-41)

2sY2Y i (3 44)

For air, Y-1.4, which when substituted into Eq(3-44) provides'

the final relation for

. 238,87872MS f 1 j 10(o"
Ps 7(2.8M2 -0.4)2 [2(2.8M2 -0.4 7-

The above equation is valid for velocities above Mach 2. The

density p is interpolated numerically from the 1959 ARDC Standard

Atmospheric Tables.

Substituting the expressions of Eq(3-39) and Eq(3-40), for drag

and lift respectively, into the state equations, Eq(3-19) through

(3-21) the final state equations are:

x 1 _._x_ F, (3-46)
1 tanx

3

" (4
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"-2 XX 2 tanx3  2sinx 3  'D a-2

I, xOpcp

x- -1+ - 2si L A F 3  (3-48)
1;ý2 3

-x -" x2 '-x F4 (3-49)
4 4x S• •F axF

- BF x2-3 -x F (3-50)
2 2 2

3 ;F 3F -x F (-51
X6 "-•x4-x- -XSixý -• dX 6 (-1

3 3 3~

These are the basic model equations to be used in the optimal

"iontrol problem to be discussed in the following chapter.
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:IV. The axiaLm Principle Applied To The &yLv Problem

vieIn Chapter II, it w is establh hed that an arbitrary criterion

could be satisfied along with a set of non-linear plant equations pro-

vided a set of necessary optimal conditions are net. In Chapter III$

mathematical model equations were derived for the entry problem. The

quantities to be used in the criterion funntion, the position sensi-

tivity coefficients, were also explained in concept and derived in

Chapter III. In this chapter, the criterion function is established

for the entry model along with a set of necessary optimal conditions

such that the model equations are satisfied.

Criterion Function

The criterion function is a scalar valued function which contains

all the elements to be minimized. For this problem, the criterion

function must contain a convex function of the errors at the terminal

point due to errors at any point of the entry trajectory. 7he posi-

tion influence coefficients, as developed in Chapter III, describe

these errors, and therisfore serve as elements of the criterion func-

tion. The remaining aeLements of the function are the lift and drag

control quantities. Since control requires an expenditure of energy,

it is generally minimized with respect to zero. In this problem, the

control vector is in a lumped-parameter form containing parameters

defining the vehicle configuration and a variable function of angle of

attack, It is desirable to minimize the control quantities about

nominal mean values to satisfy practical limitations on the vehicle

( configuration. This allows for control deviations from the nominal

46
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c •design values as well as determines the optimal control based on tra-

Jectory considerations. The criterion function is:

J & - 1XRY + VSV I do (4-1)

where: Y - x5 , (4-2)
x6  UL ]

and R and S are positive definite diagonal weighting matrices,

Necessary Conditions For Optimality

The necessary conditions for optimality are established by form-

ulating the Hamiltonian and applying the appropriate conditions. The

state vector X 1neludem the Rftte of the ontry nna1 ane 01P rmnctPlnn

.influence coefficients derived in Chapter III. The minimization

problem is stated as:

minimize J- Of tda subject to x' f(-x,,U (4-3)
2 0

The state equations from Chapter III are:

X1 W_____- tan x, F1  (4-4)

-a •x X uD •,F 2  (4-5)
-2 xx2tanx, x 2 sin x 3  L (

X, + 1X CLx, 46

1 2 2 sin2x3
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,4 _X F F2 _ x6 IF3 F 47

DFI -F
2  aF3

- =4 - X2 1X2 -a6 aX2 -5
**L+ ~ ax2  !II

DFI x F2 DF3x6 _ -x4 - x (4-9)

The complete equations of the necessary conditions for cptimality

are not developed here, but are included ip Appendix A. For the dev-

elopment in this section, a set of equations only at a functional

level is given.

Given the formulation of the minimization problem in Eq(4-3), the

Hamiltonian is as follows:

6

where Fi - state derivatives

Xi - adjoint variables

With the Hamiltonian defined, the four sets of necessary condi-

tions may be stated for the entry problem by referring to Eq(2-10)

through Eq(2-13) in Chapter IL.

The State Equations. ThL •,te equations have been stated in

Eq(4-4) through Eq(4-9), and are given by:

"8H7 X! " Fi (4-11)
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Adloint E:uations. The adjoint equations are derived fhom:

ax - (4-12)

These are expa~'e~d as follows: ~, ,,) (-3

Iaxi 3X , -axi 2xi 3xi

jXjRkk +X +XS-Dxj X6x~jS 4,5,6; K - J-3) (4-14)

Gradient Equations. The gradient equations are derived from:

-- g(ui,x,,o) - 0 (1 - 1,2) (4-15)
ui-

They are expanded as follows:

SUD 811 (u- MUD) + X 2  + A + a +: + (4-16)
i~F 4 2"1 +X~u LBU d1

CUD" $2 2 (ui2 - MUD)' + X3-M+ + X !i +36 (4-17)aU2  a,12 9u2  8u2

Transversality Conditions. The transversality (boundary) condi-

tions are established according to:

6xX 0 (4-18)

This leads to the following table:
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Table II. Boundary Conditions For The Entry Problem

f Xj 
0  4 Of ] J

(i - 1,2,3) specltied speciried

(i = 1,2,3) unconstrained unconstrained

Xj

- 4,5,6) unconstrained specified
(1,0,0)

(j - 4,5,6) 0 unconstrained

When all four conditions are satisfied, the optimal problem is

solved. To accomplish this, the numerical procedures described in

Chapter II are usad. The application of the algorithms to the optimal

entry problem is discussed in the following section.

Second Variation Equations

The complete perturbation equations for the second variation pro-

cedure are not presented here but are included in Appendix A. For the

entry problem, it is assumed that position, velocity, and flight angle

are specified at the initial point and the sensitivity coefficients

are unspecified. It is also assumed that all six states are specified

at the terminal point. Thus for backward integration, iterative esti-

mates are made on all six terminal adjoint values. The Newton-Raphson

equation for this case is:

50



GGC!EE/ 70-10

i1 XIrx(CO)] [ x I (a g)ILax1 (np) 3x(0) ax1(ap) ax1@(p) axi(Ofl) ] ftXcf)
I ax, ~~~~%(Of) a2af 3X3(Of ) DA4(ayf) "S(f)DX(of)

OX2(Cn) X2(!Op) 3X2 (0 )- ax2(Cp) aX2(00) 3X2(00) X(a,

I. U, x 1 ( aX2(cf) 3A(Of;)A (aA[f) aA5kOf) dA 6kaf) -

A-A 0n 0) AN .4 2xo ) axl-n)Dx(a ) Dxq(o n) axA (an)toN

9X7OA) DX(; 94' aXýcof) DX5(ofT a\;(oi)

6X4(00)( p) a 4 a0  ~ 4( p X4 a ) U~ ( O 6X4(Cf)
axl1(cf) BX2(f) DX3 (of) ax4(0f 350f ) Xr6(af)

D ý5(aOd DX5(O) DX5(00) 9X5 (00) B2k5 (00) -aXS(aO) 65

axl(ac) DA2 (cf) aA3(af ") 4 (of a~5(of aL6(f)

or -A7
1

For fo~rward integra tion, the Newton-Raphson equation is:

6x ) aX,(cf) Ix (%O f) 9x1 (of) IaX1 (O) 3X1 (Or) ax (of)-
f Xi(0) aX2(00) BX3(O0)I3X4(c 0) BX5(00) ax6 (oo)

6x 2 (af aX2 (Oyf ) axP(cf) BX2(of D2(0f) a xL2(0f 3X2(of) 8A)
f) ax I(00  aX2(a0) " 3(00) 1 x4(o0) ax5(o0) ax,(G,) 20

SX3(f) x3 (cf) DX3(af) 3x3(cf)1 DX (Of) aX3(00) ax 3 (cf) 6X300)

3XI(OO "A20 0 ) DX3 (O0 )1 aX4(O0) 3X50o0) 9X6(00)

6x4(Of) ax 4 (af) DX4 (af) DX4(of) IaX400f DXI,(Cf) _______ 6400
al aA 2(a0) a)3 (O)IXN(ad N a( 0 ) Nax5 d ~

ax5(f lx(f a 5 a ax5(~ x(f x(f
X5 XfI (C) DX2 (00 ) aX3(00) IaX4( 0) ax5(CO0) Nx(o 0  S 5 ( 0

6X6(a ) BX6 (cf) BX6 (cf) DX6(0f) 12(600 axO(af DX6(af) ( 6

XDf a 00o) DX2(00) aX 3 (O0 )I3X 4 (O0) Bx5 (00 ) aX6 (a 0) 6()

B-
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C or 6ALS~ B16sx(af)
C 6x

These equations are equivalent to Eq(z-33) and Eq(2-34) in Lhapter LL.

Numerical Application Of The Optimization Algorithms

The application of the numerical optimization techniques of Chap-

ter II to the problem derived in the previous section is shown in flow

chart form in Fig. 5, on the following page. A discussion of the sol-

ution flow is presented, with the considerations given for the choice

of each algorithm.

General Discussion Of Algorithms. To start the solution, the

gradient technique is employed. The determining factor for this

choice is that since the gradient is not defined to be zero, the larg-

est convergence envelope is obtained. A set of controls are chosen to

initialize the gradient and the algorithm proceeds until the criterion

for convergence is satisfied. At this point, the state and adjoinlt

values at the boundaries are stored for use as initial estimates in

the terminal error function technique.

The terminal error function technique is used as an intermediate

technique due to the complexity of the problem. The preliminary

investigation into other problems where both first and second varia-

tion techniques were used brought out one major common problem. The

convergence of the gradient had to be accurate to almost ten signfi-

cant figures before convergence could be obtained in the second varia-

tion technique. The complexity of the problems surveyed appeared to

be less than the complexity of the problem under discussion here,
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therefore, the apparent solution wai to develop an intermediate tech-

C nique which has all the characteristics of the second variation but

none of the perturbation equations. These contain the higher order

effects, and are the most sensitive to an incompletely converged con-

trol. The method of converging to the boundary conditions improves

the rate of convergence from a distance, but is sluggish when the de-

sired conditions are nearly attained. This property complements the

second variation convergence property very well.

The boundary conditions on one end of the problem are employed as

ait initial guess for the terminal error function, these are refined in

an iterative fashion until the second variation technique accepts

them. The complementary convergence property is employed if the con-

vergence in the second variation appears sluggish. An arbitrary indi-

cator of this is the weighting value with the Newton-Raphson matrix.

The second variation procedure is used to refine further the

boundary conditions. The procedure will, in general, converge in fewer

iterations than the other techniques since it is a second order method.

However, linear assumptions are made and the initial estimates to

start the procedure must be accurate enough to prevent divergence.

When the method converges, the convergence is generally to within

eight significant digits in less than thirty iterations.

Some numerical considerations unique to each of the techniques

are discussed in the following sections.

First Variation Numerical Considerations. During the thesis,

there occurred several areas where the computational solution was in-

hibited or assisted by the numerical method used. Here, some of the

"major numerical considerations shall be discussed.

54

I .....;_ • , _



GGC/EE/70-10

In the gradient algorithm there exists a problem in the integra-

tion. In a typical optimal conLrol problem, there are two integrations

performed, one forward for the states, and one bacttwaras tor cne

"ad.4onts. Here, there are four integrtnn. These are necessitated

because of the sensitivity coefficients under consideration, and the

nature of an entry. The functional relationship is a cumulative one,

such that all sets of equations functionally related to the one being

integrated must be integrated simultaneously. The table below indic-

ates the four distinct sets of equations, the order in which they are

integrated, and the location of the boundary conditions.

Table III
Known Boundary Conditions For Gradient Algorithm

Integration Equation Known

Order Set Boundaries

1 State Initial

2 Sensitivity Final
Coefficients

3 Sensitivity Initial
Coefficient Adjoint

4 State Adjoints Final

The method of successive integratiott sweeps is extremely time

consuming, therefore to cut down a large amount of this time, the

alpha search in the gradient uses only the first two integration

sweeps. From these sweeps the cost can be fully determined, and the

alpha search can proceed in minimum time. There is a pitfall, which

occurred often, enough to warrent a check in the computation scheme.

The adjoint equations are never consulted during the alpha search,
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and sometimes overflow the computer due to the large changes in the

c~ntrol. This occurs primarily in the sensitivity coefficient adjoint

equations, which are third order equations. When r-hii OuAtULLO, U.1

nearest valuc of alphn, for wrh. h a gradient could be calculated, is

used. With this part of the algorithm streamlined, a great amount of

computation time is saved.

In the terminal error function, the major problem area in In the

convergence. This problem occurs as a direct result of the functional

relation discussed in the gradient algorithm. The convergence is in

general slow when all criterion elements are balanced, such that each

boundary condition error carries a similar weight. The convergence is

much improved by converging on each element in turn, saving the

adjoint variables until last. The terminal error function in this

problem converges very quickly to the state boundaries, at the expense

of the adjoint boundaries. This convergence problem will be further

discussed when the results are presented.

Second Variation Numerical Considerations. In using the second

variation method, the computer time required becomes of primary con-

cern. In the entry problem presented in this report, it is necessary

to solve 162 differential equations. For integration of a trajectory

with 100 integration intervals using a fourth order Runge-Kutta inte-

gration scheme, approximately one and one-half minutes of computer

execution time on an IBM 7040 is required. If 30 to 40 iterations

with the Newton-Raphson matrix are required, a total execution time of

about 45 to 60 minutes results. This problem is the most difficult to

overcome. If all nine position sensitivity coefficients are included
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in the problem, it is necessary to solve 24 state and adjoint equations

and 576 perterbation equations resulting in a large time ircrease.

Depending on the nature of the state and adjoint equations, the

second variation procedure may converge in fewer iterations using back-

ward integration than using forward integration. However, in order to

reduce the terminal velocity by several thousand meters per second and

the terminal flight angle by saveral degrees while holding the initial

conditions constant, it is more desirable to use forward integration.

This allows the Newton-Raphson procedure to slowly lower the terminal

conditions.

For the entry problem considereo, the second variation procedure

may be started without initial estimates from either the gradient or

terminal error function procedures. This requires a visual examine-

tiv= cf thc- -cr~trl c-utc- -:t th.---------- t-.-----*--- -.-h

er signs on each variable estimatad to cause the trajectory to proceed

in the desired direction. The magnitudes can be determined by testing

the program with any arbitrary magnitudes and subsequently reducing

the estimated values until no overflow condition exists in the com-

puter. This does not produce an acceptable trajectory, but does pro-

duce a beginning trajectory to allow the final conditions to be satis-

fied by the Newton-Raphson procedure. The magnitudes of the estimates

for one example case are presented in Appendix B. This hueristic

approach is not mathematically based but allows maximum use of engin-

eering judgement to start the procedure.

The Newton-Raphson matrix for the entry problem is a 6x6 matrix

and must be inverted with double presion arithmetic in the computer to

allow convergence. No measures of ill-condition for this matrix have

5.'
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been computed, but the elements for the entry problem range from

10+14 to 10-19. It is possible that the matrix is highly ill-condit-

ioned becuse of this. However, on some of the trajectories considered
bacma- inte-g-rat-io produced ,,.n%,eroo nop n s,41h+ln 1i- 8 m I" Ino_-
tion, 10-8 mps in velocity, and 10-5 deg in flight angle.
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C V. Trajectory Solutions

In order to analyze the form and magnitude of the -ensitivity co-

efficients, a set of solutions ta the optimal entry problem iiJ prod-

uced, each of which minimized Li•e betilLiviLy eoefficients &for a giv*n

set of parameters and control con.straints. In this chapter, the re-

sults of these solutions are presented and discussed.

The optimal problem is cast into the following four general forms:

A. Unconstrained control with a drag control bias

B. Unconstrained control without a drag control bias

C. Constrained control with a drag control bias

D. Constrained control without a drag control bias

Within each of these forms, the boundary conditions are varied to pro-

duce variations in the lift and drag controls and in the trajectories.

The bias value represents the results of defining an arbitrary vehicle

configuration. The concept of designing the controls to contain all

the vehicle parameters is deocribed in Chapter III. The bias chosen

is the mean of the control boundaries. For the drag control element

the bias value is:

MuD ,,L +u 0.00014688 (5-1)

2

The lift control is bounded symmetrically about zero; thus, no

bias is necessary.

The trajectory solutions are presented in the first portion of

this chapter, and are discussed in the latter portion. Seven cases

(" are considered.
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oc Unconstrained Control Solutions

Four trajectories are discussed here, each with a different con-

trol and terminal boundary value limitation. The first two cases do

not include the arbitrary configuration bias parameter. The second

two include a defined contiguration and also an attempt to achieve

nearly horizontal flight with a terminal velocity of about Mach 5 at a

terminal altitude of 10 Km.

Case 1. Free Terminal Velocity And Flight Path Angle And A Range

Angle Of 1.71 Degrees. In the first trajectory considered, the

following boundary conditions are defined:

Range Angle Radius-(r) Velocity (v) Flight Angle (y)

00 120 Km 7420 mps 120 degrees

a f 9 Km unconstrained unconstrained

The results for this trajectory are shown in Fig. 6 through Fig.

9. The me¢ximum change in flight angle for this trajectory is 0.13 deg.

and its terminal value is 119.88 deg. The velocity increases monoton-

ically from the initial value to a terminal value of 7563 mps (meters

per second). The reason, for the nearly constant acceleration are

found by examining the values of the lift and drag controls. As the

vehicle enters the most dense portion of the atmosphere, the controls

begin to change from the zero level. The drag control becomes more

negative so as to cause constant acceleration of the vehicle. The

trajectory for this case has a nearly constant flight path angle indi-

cating that the velocity sensitivity coefficient, [ar(of)/fv(o)], is

minimized by forcing the trajectory to be as near a s+-raight line in

K. space as possible. For a fixed of, the control for this type of

60
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trajectory produces smaller sensitivity coefficients than for most of

the other cases. Hiowever, iALt nuLuv. UI L•,i• taj .

practical use because a thrust capability is required to produce the

negative drag profile.

Case 2. Specified Terminal States And A Range Angle Of 1.71

Degrees. The second trajectory considered is constrained to meet ter-

minal boundary conditions on all three states. The conditions are

as follows:

Range Angle Radius (r) Velocity (v) Flight Angle (y)

o0 120 Km 7420 mps 120 degrees

9 Km 6500 mps 119.88 degrees -D

The results of this case are shown in Fig. 10 through Fig. 13. N

0

profiles for the two cases are similar. The effect of the lower vel-

ocity at the terminal point is reflected in the drag control. The

drag control for this case is positive throughout the trajectory.

Above the altitude of 12.3 Km, the control is below the range of most

practical non-thrusting entry body controllers.

In this trajectory the controls do not deviate from zero until

the dense portion of the atmosphere is entered, at approximately 35 1Cm,

and uearly all of the controlling is done in the last one-sixth of the

trajectory. This is reflected in the velocity profile, which remains

nearly constant until the end of the trajectory. The drag control is

dominant in this case as shown by the lift to drag ratio. The form

and magnitude of the sensitivity coefficients is similar to that of

Case 1.
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C f The maximum deceleration for this case is 138 G's during the

final portion of the trajectory. The high terminal velocity and low

drag profile in this case limits its practical use. I
Case 3. Specified Terminal States With A Control Mean And A

Range Angle Of 3.16 Degrees. The two trajectories discussed previously

are limited due to drag control values below the boundaries of a non-

thrusting controller. To eliminate this limitation, two additional

elements are considered. First a drag control bias is placed in the

criterion function to allow for drag control about a constant value.

Second, the terminal conditions of the problem are changed such that

a reasonably flat terminal flight angle and a terminal velocity of ap-

proximately Mach 5, are obtained.

The trajectory for this case has the following boundary conditionsa

Range Angle Radius (r) Velocity (v) Flight Angle (y)

O 120 Km 7240 mps 108.0 degrees

a 8.1 Km 1650 mps 98.9 degrees

As shown in Fig. 14 through Fig. 17, the controls are relatively con-

stant until the vehicle enters the most dense portion of the atmos-

phere when large changes begin to occur in the velocity and y profiles.

The controls reach maximum values at the maximum dynamic pressure

point which is at 10.5 Km. The lift to drag ratio is also a maximum

at this point. The changes in control are reflected in the sensitiv-

ity coefficients, especially in the velocity sensitivity coefficient.

A secondary objective of this trajectory is to reduce the amount

of deceleration of the vehicle by obtaining a flatter trajectory and

by inducing additional drag throughout the entry. This reduction in

66
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drag deceleration in this case is offset by the lift spike shown in

the graph of the controls resulting in a high total deceleration at

the end of the trajectory. Also, during the highest deceleration, the

drag control falls below acceptable limits, and even becomes negative.

The negative drag requires a thrusting vehicle, and thus limits its

use. Once again the two control elements do not change significantly

from the initial values until the last portion of the trajectory in the

most dense part of the atmosphere. The maximum deceleration is 101 G's

which occurs at approximately the point of maximum dynamic pressure.

Case 4. Specified Terminal States With A Control Mean And A

Range Angle Of 3.32 Degrees. In the previous case, the sensitivity

coefficients appear to be simply a function of the range angle. To

investigate this relationship, as well as to generate a flatter tra-

,ectory, an additional case is defined. The boundarv conditions for

this case are defined as follows:

Range Angle Radius (r) Velocity (v) Flight Angle (y)

0O 120 Km 6780 mps 107.0 degrees

I _ 8.1 Km 1650 mps 98.8 degrees

The results of this case are shown in Fig. 18 through Fig. 21. The

trajectory obtained is similar to that of Case 3. The controls for

these two cases differ only slightly in both form and magnitude. The

sensitivity of radius with respect to velocity for this case rises

sharply; whereas, the sensitivity of the radius with respect to flight

angle and the sensitivity of radius with respect to radius appear to

continue to vary linearly with range angle as in the first three

cases.
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For the secondary objective of reducing the decelerations it is

shown that along with the increase in one sensitivity coefficient a

lower maximum deceleration is attained. The maximum deceleration for

this trajectory is 97.0 G's occuring again at approximately the point

of maximum dynamic pressure.

Solutions With Lift And Drag Control Constraints

All of the four previous cases satisfy the necessary conditions of

the optimal entry problem. However, none satisfy the practical re-

quirement that the controls remain within physical limits. Even in the

cases with a drag control bias, the control boundaries were violated.

To correct for this, Valentine's procedure for a bounded control

solution is used for the entry problem in the second variation opti-

mization method.

Two trajectories are determined in the following cases; one which

employs the drag control bias, and one which does not. In both cases

the control constraints are as follows:

2.76x10-5 < uD 2.20x10-3

-1. 6 uD 5 uL -. 6 uD

The lift constraint simply limits the lift to drag ratio.

Case 5. Specified Terminal States And A Range Angle Of 2.0 Deg-

rees. This trajectory is bbtai. ed by an investigation of the effects

of lower starting altitude, velocity, and flight angle on the sensi-

tivity coefficients. The conditions for this case are as follows:

Range Angle Radius (r) Velocity (v) Flight Angle (y)

00 115 Km 6115 mps 115.5 degrees

I c) Km 5000 mps 114.5 degrees
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An the Fig. 22 through Fig. 25 show, this trajectory results in

large changes of the flight angle during the entry. These changes are

raflaereal hv t.ha antrntl curves. which show that nearly all the maneu-

vering is done by the lift control, while the drag control remains on

the lower boundary. The lift control begins to significantly deviate

from zero at about the midpoint of the trajectory. However, this does

not significantly affect the velocity and flight angle until the last

quarter of the trajectory. At this point, lift becomes the dominant

control, and begins to directly affect the flight angle, y. Referring

to the graph o! the lift to drag ratio, dominant lift control does not

occur until the lift to drag ratio approaches unity. The lift control

reduces the flight angle to well below the terminal value and the 'rag

control increases at the very last of the trajectory to satisfy the

-Perminal vo1lneity rnnditinn "Ati tn divo• n rho irmnal flcihe anelP

condition.

The drag control remains on the lower boundary until the terminal

phase of the trajectory. With drag remaining at a minimum for nearly

all of the trajectory, the lift control maneuvers the flight of the

vehicle.

The effect of the control constraint is evident by the smooth

changes in the flight angle. The lift control is more uniformly dis-

tributed during the flight than in the previous cases. The lift and

drag controls are within acceptable practical limits throughout the

1* trajectory.

This trajectory resembles those of Case 3 and Case 4 with respect

to the form of the sensitivity coefficients. In each of these, the

CA sensitivity coefficients appear to be smooth curves until changes in
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the flight angle occur. At that point the radial and velocity sensi-

tivity coefficients change significantly. This effect shall be dis-

I !I
This trajectory is the most practical yet discussed. However,

due to the high terminal velocity and the high deceleration resulting

from the high drag control at the last of the trajectory, its use is

also limited. The maximum deceleration is 83 G's and occurs at the

terminal point of the trajectory.

Case 6. Specified Terminal States With A Control Mean And A

Range Anale Of 2.06 Degrees. This case contains similar boundary

conditions to those of Cases 3 and 4, but with a smaller total range

angle. The boundary conditions for this case are as follows:

Range Angle Radius (r) Velocity (v) Flight Angle (y)

120 Km 7667 mps 118.4 degrees

a 8.1 Km 1600 mps 97.0 degrees

The trajectory for this case is very similar to those found in

Cases 3 and 4. The results are illustrated in Fig. 26 through Fig. 29.

The effect of the control constraint is evident by examining the por-

tion of the trajectory during which the flight angle changes. The use

of the Valentine procedure keeps the controls within bounds; however,

this alone is not a sufficient practical constraint. The rate of

change of the lift to drag ratio caused by the sudden change in the

magnitude of the drag control cannot be duplicated in any practical

vehicle.

The sensitivity coefficients generally resemble those from Cases

3 and 4; however, there are some notable differences between these.
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First, due to changes in flight angle earlier in the trajectory than

previously noted, the radial and velocity sensitivity coefficients

bevin rn Apuirnt r., af =.Je1 ~~z...... rr~.-- .LA

Case 5. Second, they appear to be displaced by a constant value fromI..
the extrapolated end points of the smooth curves. The flight angle

sensitivity coefficient remains a nearly linear function of range

angle. There is also in each instance where a flight angle change

occurs an abrupt changu In slope in the flight angle sensitivity coe-

fficient curve. In Cases 3, 4, and 6, the change is from a positive

slope to a less negative slope, while in Case 5 the change is from a

positive slope to a more negative slope. A more detailed discussion of

these tendencies and other aspects of the minimum sensitivity coeffic-

ients will be presented in the last section of this chapter.

This trej~r'h'ry Fq %impractical due t-- th' rata ^f ^%qnne' mfth

lift to drag ratio. The maximum deceleration is 162 G's. This occurs

at the point of maximum control change, which is past the point of

maximum dynamic pressure. It is evident that to produce a practical

trajectory, it is not only necessary to constrain the change in con-

trol, but also the rate of change of control.

Solution With Drag Control Constraints Only

It has been previously noted that when drag control dominates the

entry trajectory, as it does when a drag control bias is used, the

changes in slope of the sensitivity coefficients are opposite to the

changes in slope when a bias is not used. These changes in slope

occur only when the flight angle changes radically during the trajec-

(, tory. Before discussing the one remaining case, it should be noted
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that the sensitivity coefficient equations are final value equations
C

and are integrated in reverse time. For this reason changes in the

sensitivity coefficients are more easily interpreted by considering

* •them beginning at the final range angle and ending with the initial

range angle. Use will be made of this interpretation method in the

discussion of Case 7.

A iCase 7. Specified Terminal States, Drag Control Constrained;

Range Angle Of 1.86 Degrees. The results of the trajectory for this

case are illustrated by Fig. 30 through Fig. 33. The boundary condi-

tions are as follows:

Range Angle Radius (r) Velocity (v) Flight Angle (y)

00 120 Km 6700 mps 120.3 degrees

a 9 Km 5000 mps 114.5 degrees

The trajectory states shown in the figures resemble those of Case

5, with two significant differences. First, the amount of maximum

change in the flight path angle is twice that of Case 5 due to the

dominance of the lift control. Second, the maximum velocity change is

increased by 700 meter/second.

The lift and drag profiles of the two cases are similar if magni-

tudes are ignored. In this case the lift control. does not deviate

significantly zero until near the last quarter of the trajectory.

The drag control remains on the lower boundary until the last integra-

tion interval of the trajectory. Thus, this trajectory consists

predominately of lift control.

The form and magnitude of the radial and flight: angle sensitivity

coefficients for this case are different from those of all the other

80
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cases considered. The radial sensitivity coefficient, ([r(cf )/fr(o)],

has a value of unity at the terminal point and, examining the coeffi-

cient backward in range angle, decreases to a value of about -0.05 and

remains at this value until the initial range angle of zero is reached.

The flight angle coefficient, [Dr(of)/Y(o)], starts with a value of
zero at the terminal point, decreases to about -23000 and then increas-

es to about -9000 at the initial point. The velocity sensitivity coe-

fficient, [3r(of)/3v(o)] for this case is similar in form to those of

Case 5 . The coefficient increases from zero at the terminal point to

a value of about +4.6 and remains at this value until the initial range

angle is reached.

This trajectory results in significantly lower range and flight

angle sensitivity coefficients than for any of the other cases. The

velocity senst,,14y roaffic.... fý,r this cace ic h±&her th=n f=. =11

other cases except Case 4.

The maximum deceleration for this trajectory is 188 G's at the

terminal point of the trajectory. This large deceleration is primar-

ily due to the change in control during the dive maneuver during the

last part of the trajectory.

Discussion Of Tretecr,,ry Solutions

In the previous section, seven solutions to the optimal problem

formulated in Chapter IV were presented. In each case, different

parameters were varied to allow for the maximum variation among the

solutions. Although the solutions varied, there were some general
trends which were noticeable throughout. In this section, several

-, observations will be presented and substantiated.. The observations
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vwll concern the curves formed by the integration of the sensitivity" C
coefficients. As the observations shall be substantiated by examples

from the cases, a summary of the salient points from each case arc

Observation 1: The sensitivity coefficient solutions may be sep-

arated into two distinct portions during each trajectory. This obser-

vation is substantiated by the appearance of a break point in the

three sensitivity coefficient curves in all cases after Case 2. Ref-

erring to Case 3, there is a smooth curve down to the last quarter of

the trajectory, then the curves diverge significantly. The first

portion of the trajectory shall be defined as the non-aerodynamic por-

tion. The second part shall be defined as the aerodynamic portion.

Observation 2: The non-aerodynamic portion of thie trajectory in

PharArteriz~id by a drag damin.-•!a, i" mell c.tnnee in flight angle.

This observation is substantiated by Cases1 and 2 which ais non-aero-

dynamic trajectories. Both of these exhibit a drag dominance in the

lift to drag ratio, and have a small change in flight angle. All

other cases exhibit this same tendency throughout the non- aerodynamic

portion.

Observation 3: The sensitivity coefficient curves,' i% 6e'non-

aerodynamic portion are either functions of range angI, -f' -As*ant.

This tendency is common throughout the cases. This obder-.tt.v- shall

be substantiated for each sensitivity coefficient. The -i.;iial sensi-

tivity coefficient [3r(af)/ar(a)], in each case is a near constant with

respect to range angle. For example, in Case 6, the value is .7 from

c0 to the break point. The velocity sensitivity roefficient,
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[ar(of)/av(o)], in all cases, excluding Case 7, is observed to be some

C exponential function of range angle. In Case 7, the value appears to

rCMUJLU UIC~E k;U1znLaU~tj 1IUW=V=&, L&LUU Ciz a, @L&U W,.S~

second function which determines the magnitude of the expontial func-

tion of range angle. This function remains constant throughout the,

non-aerodynamic portion of the trajectory. The flight angle sensi-

tivity coefficient, [(r(of)/ay(o)], is a linear function of range

angle. In all cases, except Case 7, the slope is positive. In all

cases, however, there is a definate linear relation to range angle.

It is apparent, from the cases which both have different slope change

at the break point, that there is some function which sets the value

of -•O[Br(af)/ay(c)] equal to a constant at the break point. Since

the sensitivity coefficients are integrated in reverse time, as final

value equatinns, the conditinna fnr tbs i'nne.qt,* 'IY1 ,e of

(3r(af)/3r(a)], the constant multiplier in Wr/av and the first deriva-

tive of ([r(af)/3y(o)] are set at the break point as final values for

the reverse time integration. These conditions shall be further dis-

cussed after the observations concerning the aerodynamic portion of

the trajectory have been stated.

Observation 4: The aerodynamic portion of the trajectory is char-

acterized by changes in both flight angle and velocity; and dominance

by the lift control.

This observation is substantiated by the fact that in each case

which has two distinct portions of the trajectory, the break point of

all of the sensitivity coefficient curves occur at a given range angle.

at that range angle, in the profile of velocity and flight angle for

(, the same case, a similar break point can be found. In forward time at
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the break point, the velocity and flight angle profiles diverge from

their previously near constant state. Also at the range angle, for the

same case, the lift drag ratio passes through approximately ... "'Inis5

ahnwR a•dpfin'itp Anlnnep hy lift intil tha 1ant pRrt of the aero-

dynamic portion of the trajectory.

Observation 5: In the aerodynamic portion of the trajectory, the

(ar(cf)/3r(o)] and ([r(of)/3y(a)] curves are a function of the rate of

change of velocity and Y. The Car(af)/ay(o)] curve is a function of

the rate of change of lift with respect to a.

The first part of this observation is substantiated by correlating

the curves for [ar(af)/3r(a)] and [3r(af )/3(a)] with the velocity and

flight angle curves. For example, in Case 6, when 3y/aa)]mO, there is

also a zero slope achieved by the [ar(of)/ar(o)] and [ar(of)/3v(o)]

curves. Also in thiR anmA e.p, hprp 4 u An Ph1 vilnEthv t0nI,

at a range angle of 1.96, and a corresponding pulse in both the radial

and velocity sensitivity coefficient curves. Additional examples are

found by correlating the curves of Cases 3 and 4.

The second part of this observation is substantiated by correlat-

ing the lift curve slope and the Car(of)/DY(o)] curve. For example,

in Case 7, which best shows the correlation, the slope of the flight

angle sensitivity coefficient curve undergoes a change, here from a

positive slope to a negative slope at the same range angle that lift

undergoes a slope change. In other cases the [ar(of)/ay(o)] slope

change is not as dramatic as in Case 7, however the slope change can

be closely correlated in a similar fashion with the lift slope.

Observation 6: There exists some relation between the aero-
I'

dynamic portion of the trajectorLes and the conditions during the
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non-aerodynamic portion for the following:

1. The constant that describes the radial sensitivity coef-

iicienc Ldr(of)/ar(o) J.

2. The rMsAnt ,.,h4.w.41 multiplies thecx'onnentia function9

that describes the velocity sensitivity coefficient [ar(af)/Dv(o)].

3. The slope (sign and magnitude of the first derivative) of

the linear function which describes the flight angle sensitivity coef-

ficient [ar(of)/ay(o)].

Observation 7: There exists some relation between the control

boundaries and the aerodynamic portion of the trajectory.

Observation 6 and 7 are existential only and are substantiated by

the different cases. For observation 6, it is necessary only to note

the variations in the aerodynamic portion among Cases 3 through 7, with

respect to tho -i•i'diaalc pvLLLju o. LuLe j.A.UWLy. 1V UUMWLaUL-

iate observation 7, a comparison of the senaitivity coefficients for

Cases 3 and 4 with those for Cases 5, 6, and 7 shows some relation

exists. No further extrapolations can be made for observations 6 and

7 due to a lack of data for correlation.

These observations are intended as a basis for conclusions to be

drawn concerning the general problem of minimizing the sensitivity co-

efficients. These shall not be drawn here, but shall, be drawn follow-

ing the implicit guidance simulation presented in the succeeding chapt-

ers.

8
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.i VI. Optimal Implicit Guidance Simulation For The Entry Problem

In the guidance of astronautical vehicles, there are two basic

-'ýhch Ca 'W uou. Cut: jPnillusphy is cajied expilciC

guidance and the other implicit guidance. These auidance. ahilosophies

are described in considerable detail in reference 2. This chapter will

define implicit guidance and optimal implicit guidance and will outline

the procedures for simulating the optimal implicit guidance philosophy

on a high speed digital computer. The purpose of such a simulation is

to investigate the validity and limitations of the solution to the

optimal open-loop and closed-loop control problems in a practical situ-

ation with arbitrary initial errors in the trajectory states and white

Gaussian distributed, zero mean observation noise present.

Definition Of Optimal Implicit Guidance

In order to define implicit guidance, it is desirable to also de-

fine explicit guiiance. In the philosophy of explicit guidance, it is

assumed that an approximate closed form solution of the guidance equa-

tion exists which will explicitly relate the current control vector to

the terminal boundary conditions. This involves, for the entry prob-

lem. the solution of a set of transcendental equations at each control

point. A Newton-Raphson algorithm is generally used to solve these

transcendental equations. However, since this must be done at each con-

trol point, a significant amount of computer time is necessary. For

this reason, another scheme, which determines the control vector as an

implicit fanction of the terminal boundary conditions is generally

used.

(. In implicit guidance, it is assumed that a nominal trajectory and

89
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control are computed before the beginning of the mission (or simulation

iii this case). The procedure then consists of applying a linear theory

to errors or deviations from the nominal trajectory in order to satisfy

the terminal boundary conditions. In optimal implicit guidance the I
nominal trajectory and control are the precomputed open-loop optimal

trajectory and control. The linear theory in optimal implicit guidance

consists of applying a set of precomputed linear feedback gains to the

deviations from the nominal trajectory so that a neighboring optimal

path is followed to the specified terminal botndary conditions. When

the actual values of the states are observed with observation noise

present, a Kalman filter (described in Chapter II) may be used to

obtain optimal estimates of the actual values of the states at each

control point. This philosophy is illustrated in the block diagram in

Figure 34, below. In the diagram, I is the observation noise vector.

6•r -o7

Figure 34. Optimal Implicit Guidance Block Diagram
Assumptions

The optimal implicit guidance philosophy is based on the following
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assumptions:
A. The deviations of the actual states from the nominal

states are within the linear range of the fe'.fback gains.

R. Thp nnminA nl p•4-.a. c•^nrv I a"A *"ulacto., r t--

uous and not adjacent to any boundaries. If this assumption is not

made, the required change in control computed from the feedback gains

could cause either the control or the states to exceed boundary

limitations.

C. The observation noise vector consists of white Gaussian

noise with a known mean and covariance matrix.

D. The vehicle dynamics can be described by a set of non-

linear, coupled, first-order differential equations with deterministic

coefficients.

Entry Feedback Equations

The linear feedback scheme uses the following equation:

8u (6-1)

where the matrix ([u(a)/ax(a)] is derived such that the trajectory

follows a neighboring path to the specified terminal conditions. If

all six states of the entry problem are considered, then the matrix is

of dimension 2x6 as there are two control components. However, onboard

a practical vehicle, the errors in the sensitivity coefficients cannot

be computed. For this reason, the feedback scheme uses errors in the

states only. It is assumed, and shall be demonstrated that with no

measurement error, the feedback scheme will satisfy the position,

i( velocity, and flight angle terminal-conditions. If there are errors
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in measurement, the use of a minimum sensitivity coefficient nominal

trajectory will aid in minimizing these errors. This, however, shall

not be demonstrated.

The equations for the entry problem are:

aIu.cy) r uv(O) VuD(°) 6X (a;
auD ~a) -%(d 3x3(0(a
aUL(o) •U.(O) 3 ,L(o) 12(a) (6-2)
auL(Q) OuL2 @) Bx(a)

6uL(F)J axId (a N a X Cl a)

where the 2x3 matrix above is found from:

[3u~ga) 1u [3G(o)l- ([IGo (6-3[)a~IA.al3~ "
= ( u _ _ (I ) I (-0(- I

and where: t

1 j (6-4)

aG( )() B(o) a(a)

axI(Q) Nx (o) X3( 0)

[I H 7aG 2(a) 3 G2a0) OG2(o)

((-e

3A()J G•() "20o)"0

92
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C [3X(o) 3aX(a) UA1(a)
ax1 (af) aX2 (of) aS(of)

O'X-(a) aX'(a)-.a (fi-71[^-(-f). - 02( f) "22(U.f) "3 I (af)

3) 3 (a) "A30o) OaY(U)

3A ~I(Of) aX2 (af) •A 3 (0f)

ax, (a) ax, (oY) axj (47)

aX,(of) ax2(of) a"3(0f)

O_.____ ax 2 (G) Bx2 (o) ax2 (o)
((: a.,f) ) •(A(f) aA'(if) ,A3 (0) (6-)

ax3 (o) ax 3 (o) ax 3 (o)
3AX(of) na2(of) 3 A3(of)

'UD and KID arr. the weighting factors on control in the criterion func-

tion and the elements of the matrices are found by choosing the proper

elemupnts from thp snm~~ f,^ t~hp jrt-eA%,ht4....4119 apNHn¶ 4 "i (¶Afim

IV and Appendix A. The matrices above are written out to show that

they are not the 6x6 matrices from the perturbation equations but only

3x3 partitions of those matrices.

Disital Computer Simulation

For the entry problem, two simplifying assumptions are made in

addition to those made in the previous section. These are as follows:

A. No system (i.e., plant or message) noise is present.

System noise could be considered by including several additional terms

in the filter equations.

* B. The observation vector is a linear function of the

state vector and contains linear-additive zero mean noise with a con-

stant covariance matrix.
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cl The purpose of this section is to present the algorithm used to

simulate the optimal implicit guidance scheme on a high spead digital

computer. Fig. 35 shows the basic indexing method used for simulating

th•e true (i.e., nominal) system and for applying the Kalman filter.

ADAV. V4.AN AJV4**vW r*%V .

I I .wI-I

1 I11 I .I-I.1-I I I I I I I I I II

i,/-nh

Figure 35. Simulation Indexing Method

In order to simulate the guidance scheme, the problem must first

be put iuto discrete form for the digital computer. In the algorithm,

presented below, it is assumed that the gain matrices, control values

and nomianl states for each point of the trajectory are put out on

binary tape by the program which generates them.

Step 1. Based on a priori knowledge, estimate the constant

observation noise covariance matrix, W.

Step 2. Based on the first observation, yi(i - 0), and

some arbitrary scheme, estimate the initial optimal estimate •. For

linear observations, Ao is estimated from

Lzo (6-9)

Otep 3. Compute the initial error covariance matrix, rO.

For linear observations, this is

r o - w (6-10)
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c This is computed rather than estimated since the equation which defines

_ specifies the initial Kalman gain matrix, K0 (see Chapter II on

initial error covariance).

Step 4. Using the precomputed values of control and the

known initial nominal trajectory condlitlo s, integrate the state equa-

tions forward in time to the terminal range angle to define a new

nominal trajectory. This is done because when the discrete control

values are used as forcing functions in the state equations. A linear

interpolation must be used in the Runge-Kutta integration routine,

resulting in a slightly different nominal trajectory from the precom-

puted one.

Step 5. Simulate the initial observation with

-"true + o (6-11)

where !!0 1AAn !nlnoIawrpimnt- vpr suav Vr.,asa-wun ,in 4 ap irmojInv.

Stea 6. Integrate the true state (from true to the (i+l)

observation point using a step size h by solving:

ktrue F(•true.u) (6-12)

where u unom + (6-13)

and du- [gain]Sx (6-14)

and ax - _xtrue - nom (6-15)

It is assumed here that the gain at any point will be associated with

the complete interval immediately following that point.

Step 7. Simulate the observation noise at the (i+l)

observation point as:

i+l - -true + -i+l (6-16)

Step 8. Propogate optimal estimate St and error covariance
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r.to (1+1) observation point to form the best estimates x(i+lji) and

r(±+1 1) given everything except Yi+l" The subscript j will denote the

intervals between i and (i+l). A step size of H is used for these

WUW&49%iW . T--tO 4ceps in this prouedure are as follows.,

A. .I-0

B. Define x(JIJ) " ft and r(jlj) - r,

C. Solve the following equations to obtain the best

estimates at the (J+l) subinterval:

A(j+l,J) -- Ex(.(,ij)'-) ] x H + 1 (6-17)
"x(i J)

r(j+llj) - A(J+lj)r(jlj)A(J+l,j) T  (6-18)

is I (J+11 )-ý)•L(J+1 i) ,_.-j+z ] (6-19)

where •,j•..- fSAln~lj+l~.i+I (6-2.0)

- W -j+l + •-Xj+1 (6-2i)

6xi- X(J+l Ii) - 4, (6-22)

D. Go back to C with j-j+1 noting that r(jlj)-r(jlj-1).

Continue the solution until the (i+l) observation point is reached.

At this point:

a(i+lIi) - Z(J+l J) (6-23)

and
r(i+iji) - r(j+llj) (6-24)

Step 9. Compute the following quantities at the (i+l)

observation point:

A. Kalman Gain Matrix:

Ki+l - r(i+lli)[r(i+lli) + wf-1  (6-25)
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c B. Error Covariance Matrix:

ri+i - [i-Ki+l]r(i+lli)(I-Ki+1 ] T + I ci+r(i+1Ii)x[+, (6-26)

S.C. Optimal Estimate:

1i+1 - K(i+I i+l) - _(i+lIi) + Ki+ij i+l - x(i+l i)) (6-27)

Step 10. Compute the observation error and estimation

errors with respect to the nominal by:

AY.+1 A zi+ -of

AAi+l A-.i+i -A,+,

Step 11. 1 - i+l

Step 1,2. Go back to Step 6 and continue until the final

ranse an-&le is. reached.

9(.7
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C VII. Simulation Results[ Simulation results for two of the open-loop trajectories consid-

*red in Chapter V are. selected for presentation here. These are for

Case 1 end Case 7. Since no graphical analysis can be performed

directly on the estimated states because of the magnitudes of the

numb~ers involved, only deviations from the nominal optimal trajectory

are presented. The observation and estimation error quantities are

defined as follows:

Az(o) A. Y(o) - x*(cj) - Ltru*a() -x*(a) I + X(a) (7-1)

and
A(o) A. xM() - A*(a) (7-2)

These* are the errors in the observation vector and in the optimal esti-

mate with respect to the nominal optimal trajectory.

* For each case, two basic sets of results are presented. These

are as follows:

A. Initial trajectory errors of +1000 m, +50 mps, and

+-0.2 4eg. (+0.4 deg. for Case 7) in r, v, and y respectively with

observation noise present.

B. Initial trajectory errors of -1000 m, -50 mps, and

-0.2 deg. (-0.4 deg. for Case 7) in r, v, and y respectively with

observation noise present.

C. Initial trajectory errors of +5000 m, +100 mps, and

+1.0 deg. in r, v, and y respectiv.aly both with and without observe-

* ~tion nois'e precent.

D. Initial trajectory errors of -5000 m, -100 ups, and

-1.0 deg. in r, v, and y respectively with observation noise present.
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The gain matrix elements for each trajectory are presented in

Figures 36 and 37 and ir. Figxres 63 and 64.

The unconstrained control results for the cases with terminal

velocities of 1650 mps and 1600 mps are not considered here because of

large amplitude, high frequency vaviations in the gain matrix elements

during the final portion of the trajectory. Due to the discrete na-

ture of the optimal implicit guidance scheme, a smaller integration

step size would be necessary to produce usable gains for these cases.

It should be noted that the trajectory of Case 7 is generated with

Valentine's procedure in the second variation program for a drag con-

trol constraint. This fact violates the assumption made in the pre-

vious chapter that the control quantities could not be adjacent to any
boundaries. However, since this trajectory produces the lowest sensi-

Hviy Pn~ffj.'44m"#-w, 4t 4P -^rtht'ila to c:± the ;rzpartiza in

a feedback loop.

Fig. 38 through Fig. 62 show the errors with respect to the

nominal trajectory and the error covariance matrix (r) elements for

Case 1. Fig. 65 through Fig. 89 show the corresponding quantities for

Case 7. In the graph., sigma is the same as the range angle and has

no relation to the standard deviation of the noise.

In all examples, the graphs show that the feedback gains have no

effect on velocity and flight angle until the last few points in the

trajectory. In Case 1, 100 gain values are used and in Case 7, 150

gain values are used. Virtually all the effect of the gain values oc-

curs during the last two-tenths of a degree of range angle. If the

last gain value is not used, observations have shown that the terminal

values are in error by as much or more than the initial error values.
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The flight angle Is the most sensitive to initial co-dition errors

from the nominal. This state variable is brought to near the terminal

St4.w41,h h,. 1p 't.,n &,A4n vnlimia. tn to thin n•int. the fliaht

angle error is allowed to deviate by large amounts from the nominal.

The flight angle error also appears to be the moat sensitive to

the addition of obscrvation noise. This is shown by a comparison of

the errors with and without noise present. Overall, the flight angle

is most sensitive to any errors in state.

The position and velocity errors at the terminal poitit are rela-

tively insensitive to the initial condition errors and to noise. In

all the examples presented, the largest error in terminal position is

about four meters and the largest error in terminal velocity is about

six meters per second. Terminal position error appears to be almost

completely insensitive to the magnitude of the initial errors.

A comparison of the graphs with positive and negative initial

condition errors shows that the linear range of the feedback gains is

very nearly the same on either side of the nominal trajectory with only

a slightly higher peak error occurring in the flight angle when nega-

tive initial condition errors are present. The error curves with

errors on both sides of the nominal are nearly mirror images.

The error covariance curves for the examples without noise present

a:e shown for purposes of comparison. The same initial error covar-

lance estimate is used in both cases along with the same noise covar-

iance W. When no noise is present, the off-diagonal terms of the error

covariance matrix simply reflect the coupling between the state equa-

tions and the validity of the linearizing assumptions. A comparison

of these elements with and without noise present shows that the off-
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diagonal terms have vary nearly the same form. This indicates thatC
the off-diagonal ters for this set of equations han very little rel-

dynamics of the problem.
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(.2 VIII. Conclusions

The basic objectives of this thesis, to investigate a set of

optimal solutions and to produce a suboptimal feedback scheme, have

hamn n .,nmnl.4nhed. Th&e eonneninnA drAr., frnm th. aniaF44i innt.- AnA

closed-loop results presentation, as well as conclusions concerning the

general problem are presented in this chapter.

Open-Loop Problem

The following conclusions are made concerning the open-loop re-

sults in Chapter V.

A. The amount of lift dominance at the end of the trajec-

tory, and the length of range angle to go when the lift becomes domin-

ant is a deciding factor in minimizing sensitivity coefficients. This

fonelmln ltin niinnnrt"Pi hv ' nh -•vrnnnn ; nntii 0 Aiq,.iiqaPr1 nt- f-ho end

of Chapter V.

B. The appearance of minimum control for the first portion

of the trajectory, stems from the presence of control in the criterion

to be minimized.

Closed-Loop Problem

The following conclusions are made concerning the closed-loop

results in Chapter VII.

C. The implicit guidance law simulation indicates that

control for the trajectories tested can be maintained even with large

initial condition errors, and will drive the vehicle along a neigh-

boring trajectory to the boundary conditions with little error. In

this simulation, the flight angle seems to be the most sensitive to

144

Z- I

., . . , -, .. , ..



initial errors in the stateZ . For the cases in which the velocity
C ~drops to loom than 1700 raps at the terminal point$ the feedback gains

°,.v,1=1 ....... .uuas"- 1,11p xxwusuuy concenr during rhe Last of tne flight that

the sampling rate is not high enoush to allow the pains to ha wead.

D. Th5 position error is least susceptible to both pertur-

bation, and observation noise. This is attributable to the fact that

the nominal trajectory is a minimum position sensitivity coefficient

trajectory. This confirms the concept of minimizing sensitivity coef-

ficients to achieve minimum terminal position error.

General Problem

The following conclusions are made concerning the overall problem:

E. The use of a passive, non-thrusting control in a

classic optimal control problem is impractical unless it can be removed

from the criterion function. In this problem, the cost of control was

a deciding factor for the optimality of the trajectories.

F. The use of l1L, a.ad drag for control requires a dense

atmosphere, and thus a flat trajectory in the dense region, to achieve

a well controlled entry.

G. The minimum sensitivity coefficient trajectory is one

in which the vehicle begins a nominal entry angle, levels out to nearly

horizontal flight, and then, during the last part of the trajectory,

dives to meet the terminal angle condition. This appears to confirm

conclusion F, and is illustrated by Case 7.

H. For each of the trajectories additional constraints,

other than those contained here in, should be employed to make the

trajectory usable. This is due, in part, to the type of control used,
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which works only during, at best, the last quarter of the trajectory.

For some trajectories, additional elements are necessary to achieve the

magnitude and rate of change of magnitude necessary in the optLimi

146
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IX. Recommendat ions

•ne recuouRndatluua IvULM•UL LSSU 5;.az .. r.

I coefficient minimization for an entry trajectory and suggestions for

areas of further study are presented in this chapter.

Sensitivity Coefficient Minimization

The general problem of sensitivity coefficient minimization for an

entry trajectory is highly dependent on the lift-to-drag ratio and the

length of the trajectory during which control is exerted. The follow-

ing recommendations are made in this area:

A. This problem should be eliminated as a problem in" ~I

classical optimal control theory and cast as a parameter sweep problem.

The purpose of this is to sweep only within a range of practical entry

B. The parameters to be considered in the sweep include.

1. Lift-to-drag ratio

2. Rate of change of lift-to-drag ratio

3. The range angle arc for which the lift control is

allowed to dominate the trajectory.

Suggestions For Areas Of Further Study

In light of the recoumendations given above, the following areas

are suggested for further study:

A. For the parameter sweep problem:

1. Use numerical analysis to describe, in a least

square sense, smooth functions identified during

the non-aerodynamic portion .of the trajectory.
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C, 2. Also use numerical techniques to attempt to iden-

tify functions which may be used to describe the

changes in the sensitivity coefficients during

the aerodynamic portion of the trajectory.

3. Identify, using the relationships determined in 1

and 2 above, a relationship which describes the

sensitivity coefficients throughout the trajec-

tory.

4. Investigate the use of a hybrid computer for the

parameter sweep problem and determine its value in

solving an optimal control problem of this type

with the primary objective of obtaining a prac-

* tical controller. NOT REPRODUCIBLE

freedom to determine the effects of cross-range motion on the sensi-

tivity coefficients.

C. Investigate the present problem with constraints incl-

uded on the following variables to achieve a practical controller:

1. Drag control for deceleration constraints

2. Lift-to-drag ratio for configuration constraints

3. Rate of change of drag control for maneuvering

capability constraints.

4. Rate of change of lift-to-drag ratio for maneu-

vering capability constraints.

5. Vel,'city for heating constraints

"6. Rate of change of velocity for deceleration

constraints.

148
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7. Rate of change of flight angle for deceleration

cons train ts.

IZ. L4aL 15Lv u lawl 5U1.UUIICC g u I 1pe luYeULl

I *gated to determine the most practical method of implementing it and the

simplest suboptimal estimation technique which can be used in an actual

entry trajectory.
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C Appendix A

eOen-Loop2_ptimal Control Equations For The Entry Problem

The purpose of this appendix is to present the detailed equation'

Lur boah first and second variations of the optimal entry problem.

They are presented in order of development.

S rA rcs

X, (A-I)

W 3

4; +l~ '~ - CUI4 (A-3)

'- X4 X.- r., - x# rsf (A-4)

XS' X4 T X. s . - r., (A-)

X- r (A-4)

whe re r(A-)

A'do o (A-7)

0 (A-8)

(A-0)

X -a x c, C4 > Ca e,d (*-40)

X " A" td"'"(3 " ."Sit " X" X4 s•.'""
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Appendix B

Parameters for a Sample Traiectot

I I .The purpose of this appendlx Is to prejent some sample parameters

to be used In starting a trajectory solution. The general criterion

function for the entry problem is (no control bia* included):

1 fJ Mi f KX2 + K X2 + K X2 U2 + K U2 ] do(-)
00(44 6+K D UL L(A1

For one particular case, that of Came 7 presented in Chapter V, the

parameters after convergence are as follows:

K4 - 1.0 X 10-10

•K5 - 1.0 X :0-10
K6 " 1.0 X 10-10

KUD-M 1.0 X 103

KUL- 1.0 X 103

S~No. Intervals - 150

A1(OO) -- 0.21064992 x10 11  A1(Of) "-0.53273489 x 10-l1
A2(00) -=-0.21462654 x1O-10 A2(0f) - +0.26407696 x 10-11

X300) - +0.59012141 x10 0 6  A3(Of) - -0,56110516 x 10-07

A40uf) - -0.59956528 x 10-10

X5(af) - -0.54781552 x 10-11

A6(of) - 0.83000869 x 10-15
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