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FOREWORD

This report covers work done during the period September 1968 through
August 1969 by Louisiana State University, Baton Rouge, Louisiana, under
contract F08635-68-C-0107 with the Air Force Armament Laboratory, Eglin
Air Force Base, Florida. Program monitor for the Armament Laboratory was
Lt. Jerry L. Edwards (ATAD). Project Director for Louisiana State Univer-
sity was Dr. Adrain E. Johnson, Jr., Department of Chemical Engineering.

The report consists of four volumes as follows: Volume I - MOD6DF
Systems Simulation, Volume II - Missile Simulation, Volume III - Effects
of Parameter Variations on the Capability of Proportional Navigation
Missile Against an Optimally Evading Target in the Horizontal Plane, and
Volume IV - Formulation and Optimization of Warhead Kill Probabilities.

Information in this report is embargoed under the Department of State
International Traffic In Arms Regulations. This report may be released to
foreign governments by departments or agencies of the U. S. Government
subject to approval of the Air Force Armament Laboratory (ATAD), Eglin AFB,
Florida 32542, or higher authority within the Department of the Air Force.
Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

THOMAS P. CHRISTIE
Chief, Analysis Division
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ABSTRACT

The work conducted at Louisiana State University on a class of prob-
lems arising in the evaluation of weapons and in the analysis of the best
methods for their use is reported. The destructiveness of a specified
weapon against a specified target is measured by the ratio of the number
of targets destroyed to the number of weapons used.

This report describes the methods developed for the analytical eval-
uation of average kill probabilities for single weapons and proposes the
optimization of pattern parameters for multi-weapon attacks on discretely
defined target complexes for future investigation.

An acceleration algorithm for minimizing a convex objective function
subject to linear constraints is also presented in detail.

This document is dubject to special export controls and each trans-
mittal to foreign governments or foreign nationals may be made only
with prior approval of the Air Force Armament Laboratory (ATAD),
Eglin AFB, Florida 32542.
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SECTION I

INTRODUCTION

This is a report of the work conducted at Louisiana State University
on a class of problems arising in the evaluation of weapons and in analyz-
ing tne best methods for their use. The effectiveness (destructiveness)
of a weapon against a specified target can be measured, at least in part,
by the ratio of the number of targets destroyed to the number of weapons
used. The number of weapons required to destroy a target depends on two
primary factors: the probability that the target is destroyed if the
weapon hits it and the probability that the weapon will hit target. If,
in addition, weapons are used in groups, the results also depend on the
firing pattern employed. The multi-weapon case was not considered by the
researchers in the work performed to date. This report concentrates on the
methods developed for calculating the probabilities of destroying targets
with single weapons.




SECTION II
LETHAL AREA

The simplest case of measuring the destructiveness of a weapon against
a target occurs when the weapon must hit the target in order to destroy it,
but always destroys the target if it hits it. 1In this case, the probability
that a single weapon will destroy the target is just the probability that
it hits a certain area, called the Lethal Area. The size of the lethal
area is, consequently, a measure of the destructiveness of the weapon
against the target. If the weapon has a proximity fuse, it is no longer
necessary to hit the target to destroy it, for the proximity fuse will
convert a near miss into a destructive explosion. If the charge is suffi-
cient so that an explosion within the radius of action R of the proximity
fuse will destroy the target, then the lethal area is increased to the area
included within a curve surrounding the cross section of the target at a
distance R from its boundary. 1In the three-dimensional case, one would
not have a lethal area defined in this manner, but a lethal volume instead.

If a single hit is not enough to destroy a target, the probabilities
Pi of destroying the target if it is hit i =1, 2, ..., N times with prob-~

abilities Fi must be determined. In this case, the probability of de-

stroying the target is
N
P, =T P.F, (1I-1)

The Pi probabilities are sometimes called damage coefficients. If all the

damage ccefficients are equal to each other, and the probability of a hit
is F for all firings, then, the probability of destroying the target with
N weapouns is, simply,

Po=1-(1-¢eR) (11-2,
In other words, the probability of destroying the target with any one hit
is always the same, regardless of how many previous hits have occurred.
This may be interpreted as meaning that only when a vital spot is bhit will
the target be destroyed and that hits elsewhere on the target will only
damage, but not destroy, the target. This vital spot hypothesis serves
to reduce the number of unknown quantities Pi and Fi to two, P and F, and

has been found to give satisfactory results in many cases, such as AA hits
on aircraft. When the vital spot theory can be applied, the lethal area
of a target is defined as the product of the effective area of the target
and the probability P that a hit on this area will destroy the target. focr
example, the probability of sinking a merchant vessel with a torpedo hit
is about 1/3. Consequently, P = 1/3 and the lethal area is 1/3 of the
ship's length.




In real life situations it is necessary to consider the variation of
the probability of destroying the target as a function of the coordinates
2f the point at which the hit is made. In such instances, the damage
probability becomes a damage function P, (x,y) where x and y are coordi-
nates centered on the target in a plane normal to the weapon 8 trajectory.
[n this case, the lethal area may be computed as

L=[[p, (xy) dxdy. (11-3)
A

where the integration is over all the area for which P, (x, y) > 0.

Formulas for one-dimensional targets are obviously derived from (II-3).

Fandom Bombardment

The lethal area serves to evaluate the destruction level attained by
weapons delivered at random over an area A. For any given target within
the area A, the probability that a given weapon will hit the element of
avea dxdy is simply dxdy/A. The probability that this weapon will destroy
the target is therefore

e e [fp, ) EH - L (11-4)

If N weapons are fired, the probability that a given target is destroyed
is
N
) _ L
P = 1 (1 A) (I1-5)

However,
1/x
e = lim (1 + x) (I1-6)
x~0

Therefore, as the number of weapons increases, i.e.,

(11-7)

N - =,

one can show that, -
(N) e NL/A (11-8)

This represents the expected fraction of all targets destroyed in the
area A.




Weapons Aimed at Small Targets

If weapons are individually aimed at a target whose dimensions are
small when compared to the errors in aiming, ithe variation over the tar-
get in the probability of hitting an element of area dxdy can b. neglected
and the lethal area is an adequate measure of destructiveness.

The bombing errors x and y along the range and deflection directions
are usually assumed to be normally distributed with standard devictions o

and Oy, respectively. Then, the probability of hitting a target element

dxdy is
2
- -1 I S A -
P (x, y) dxdy = (21 oxay) EXP { 2 (52 + Gsz} dxdy . (I1I-9)

Near the target, i.e., at x =y = 0,
p,(0, 0) dudy - (2m 0, ) "1 dxdy. (11-10)
Consequently, the probability of destroying the target with a single

weapon is

PP = Ve (6 v) £ (x, ) dxdy

v

- rp fx,y) dxdy , -
'»r 21-pxo'y (I1-11)

where f(x, y) is the probability density function of hitting the target.

Hence,

p(V) | pp fx, y) dxdy ~ L
ke v 2mc o 2n0_ o
X'y Xy

(II-12)
If N weapons are fired independently at the target, the probability of
killing the target is

(N} L N -1
P L - (1 - 570 o ) (11-1
X'y

(98]

)

Since by assumption L is small compared to oL and Gy, equation (II-13) be-
comes

PiN) 1 - e -NL/Zwoxay. (11-14)
Equation (1]-14) is derived following the same reasoning used to obtain
equation (11-8),




Weapons Aimed at Large Targets

When the target dimensions are such that the assumptions for small
targets are no longer valid, the variation over the target of the prob-
ability of hitting an area element dxdy must be considered, and the lethal
area concept is no longer usetul.

Again, let f(x, y) dxdy be the probability of hitting an area element,
thzrn, the probability that the target is destroyed by a single weapon is

pil) = [ p (x, ) dxdy (11-15)

and further progress hinges on the ability to evaluate this integral. Once
elevated, ho ever, one has, once more, the result that the expected number

of shots required to destroy the target is i/Pil), and the probability of
destroying the target with N weapons is
I I N (11-16)
k
which if Pél) is small, can be written, as before,
(1)
I I (11-17)

When pt(x, y) is constant over the target area, equation (II-15) repre-

sents the probability of hitting the target, multiplied by P> and, if the
probability density function f(x, y) is not too complex, the integration
can sometimes be carried out. This, however, occurs seldom in practice,
and it is precisely the evaluation, in closed form, of the integral type
given by equation (II-15) that has been the primary concern of the re-
searchers involved in Task 301.

Fragment and Blast Sensitive Targets

A fragment and blast sensitive target is one in which the major dam-
age mechanism is due to fragmentation and blast effects rather than to a
direct impact by the weapon. In this case the damage function p _(x, y)
is the kill probability for a warhead given that it has detonate& at {xX,y);
f(x, y) is the probability density function for the warhead detonating at

(%, v).

In this case the integration is carried over the entire xy plane. It
is with integrations of this type that the investigation reported here was

primarily concerned.




SECTION III
ANALYTICAL EVALUATION OF AVERAGE KILL PROBABILITY

The evaluation of the average kill probability integral given by
equation (II-15) has formerly been accomplished by numerical techniques;
programs written by Martin Marietta Company are available for this purpose.
Such techniques involve random samplings of the damage function employing
Monte Carlo procedures.

In order to investigate the nature of the damage functions, regression
analysis was applied to numericaily defined damage functions generated by
computer programs developed for the Air Force Armament Laboratory by Martin
Marietta Company. The regressed functions had to possess the property of
having high coefficients of correlation as well as being integrable in
closed form when convoluted with the probability density function £(x, y)
whizh was assumed bivariate normal with zero coefficient of correlation,
i.e.,

2 2
1 1 YT A
f(x, y) = m EXP {_ E L s X) + —O_h) ] } s (111-1)
Xy X y

where My and uy are weapon biases due to aiming and ballistic errors in

the range and deflection directions, respectively. p_ and uX are the co-
ordinates of the weapon's mean point of impact for a ﬁarget entered at
the origin of the coordinate system.

The damage function P, (x, y) depends upon the target definition as
well as upon the following weapon parameters:

1. Height of Burst

2, Terminal Velocity

3. Elevation Attack Angle

4, Fragment Mass or Masses

5. 1Impact Pattern Dimensions

The numerically defined damage functions are best described in polar

coodinates; for this reason it was necessary to transform all mathematical
functions to this system, thereby giving

1 1l . rcos® -y 2
f(r, 8) = 3;;—3— EXP { - 7 {( X )
X'y Oy
r sin § -
A A
T - > T3} (111-2)
'y
6




e O

where x =r cos O,

r sin ©. (II1-3)

and y

The damage function which prov.d best suited for regression and
analytical integration is of the form

p, (r, 8) = EXp [ A (@)% +8(8) r+c ] (11I-4)

2
where A (8) = a 8" + a, 6 + a,,

B(e)=b1 62+b26+b3,
(I11-5)
and C = Constant
s
Consequently,
P = fi P(%; ¥) £ (x, ¥) dxdy
2q @
= f [ p.(r, 8) £(r, &) r dr 48
o o
20 @ [ o (9 + B(8)T]
= ‘n“r ‘f e r dr d€ 3 (III'6)
o o
where _
2 2
= _ 1  cos’® sin ©
al@) = A(®) - 5 ( =t
X y
B(8) = B(8) + W, cos e + by sing , (I11I-7)
1
and 1] = 70 EXp [ C - % uxz - % AL
Xy y

The complexity of the functions required that a Maclaurin series expansion
of P, (r, 8) f (r, ©) be generated in order to integrate them in closed

form. This was accomplished as described in Appendix I, with the integra-
tion along the coordinate axes performed from 0 to L and from 0 to 80;

where L is a limiting value of the radius where the regressed equation




for pk(r, ®) applies, and 90 is one full cycle (360° angle). Both r, and

60 must be smaller than unity to speed up convergence.

The following
result was obtained:

80 ro
Pk = I I pt(r, 8) £ (r, 8) rdrdd =
[o] o
1 1 i-(3-2) j+1
€-30e 3 bal gr2 o -1 r, (8)
2o o i=1 ' i-
x Oy
g°(i-i)r, 301},
(11I-8)
where
[o] n o ° m-1, .
Bar,ne- L= ) (& (m-1)r, (n-1)8Pr ,k8™C 1 28 (m-2)r(n-k)@
k=0
o
P2r,k8}][1-s_(0) J+s _(0)s_(0), for m>0, n>0, (111-9)
(o]

Pmr, ne = [2b s, (2) +bys (1) +bys (0)] sm (1)

' 1 1
+ [bays  (2) + 2a,5 (1) + (224 = 2, 5;;-)sn(0)]sm(2)

+ {uxcos (%f) + uycos [ (E%L)w]} o (1)

1 n -
20y 7o ) cos ( E") } s, (2), (I1I1-10)

form=1, 2; n >0,




0
~~
[
~

(]

1 for k = j

= 0 for k # j (III-11)

[2]
=~
>
<5
~
!

Typical :&tput from the regression program is given in Appendix II.
Future Work

The Macliaurin expansion solution is not satisfactory due to its slow
convergence to ?k' Nevertheless, the average kill probabilities evaluated

following this ﬁ ocedure are more reliable than the numerically computed
ones because they are obtained from the consideration of a larger number
of sample points and also because of the upgrading of information about
the nature of the age functions achieved by the method developed.

To overcome the
cedure is proposed fo

isadvantages of slow convergence, the following pro-
future, continued research in this field:

I. Evaluation of Damage Functions
R. Snow and M. Ryan (Snow, 1968, p.5) has assumed the damage
function P, (x,y) of equation (3) to be of Gausian form:

\ 2 2
(Equation &)  p,(x, y\\= D(x, y) = D_ exp (-no[;‘T + {;—2 )
\ (1) 2

\

A
Based vpon this assumptioR they have developed many useful closed
form relationships for calgulating fractional coverage to areal
targets.

Preliminary work on this task\ indicates that the symetry suggested

by this form may not be supported by the numerical functions, par-
ticularly for low elevation angles of attack. Also, for detonations
of high height of burst (HOB) which are out of the blast range of

the target, the damage function takes on lower values near the origin
of coordinates due to the relatively small fragmentation densities

in the polar zone nearest the nose\of most ballistic weapons.

In order to evaluate the validity o

the Gausian damage functioq,the
following study is proposed.

1) Test the hypothesis that the damage\function is of the form
given in equation A against the altexnative that it is not.

2) Study modifications of the form given\in equation A to explain
the unsymmetrical cases described above'and test the hypothesis
that the damage function is of the form given by equation A
against the alternative that it is of the modified form.




II. Optimization

The explicit formulation of damage functions for single weapon
single target element cases makes possible the study of more
complex cases of multiple weapon attacks on multiple element

targets, by integrating the same damage function with different
density functions.

One problem that has not formerly been treated is that of opti-
mizing the pattern parameters of a multiweapon attack on a dis-
cretely defined target complex. It is proposed that optimization
techniques for optimizating these pattern parameters, using

damage functions described in Part I above, be studied by this
task.

Optimization Algorithm

During the summer of 1969, the principal investigator collaborated
with other L.S.U. personnel in teaching a course in Systems Optimization
Theory at Eglin Air Force Base. In part as a result of this experience,
the principal investigator developed an acceleration algorithm to minimize
a convex objective function subject to linear constraints. A paper de-
scribing the algorithm has been submitted for publication in the Journal
of the Operations Research Society of America and is included in this re-
port as Appendix II1. It is anticipated that the algorithm will prove
to be relevant to the work for Task 301, because the researchers expect
that the average kill probability function will be convex and that the
ballistic constraints will be expressible as linear inequalities.

Reference

Snow, R., and Ryan, M., A Simplified Weapons Evaluation Model .
Report No. RM-5677-PR, The Rand Corporation, December, 1968.
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APPENDIX I
MATEHMATICAL DEVELOPMENT

Consider tne average kill probability integral,

_g v (7(, 3) {{z,g)cﬂz&j

21 a0

=°{f 7% (r0) Flr,e) rdrde ;

Fea)- s, e LYY ()]

Wox oL
72 (r,e) = EXP {[A(e)r +B(e)r+ C]}

7% (%,9) =
where Ale)= a,6* +a,6 +a, ;
B@) = b: e* "'bae +A3 J
C = Constant:
and r2= Xa’-f-lj’“ = X=r Cee 6, t):f“M' o .

exe {-L [eme )y (o= ]},

Thetefore,p (r,e) = 20 6y, 0%

but 6‘@9-Hx\z= r"CQO"Q—Z. Hxrce g +sz.)

aine-Hy) = rioi?e - ZHyraine + Hy*

and
r ceo § - HX
Hence, -4 [(——-——-——-"—)z 4 [roes- Hy
Ox a5,

9
= ‘}i_ {Ei?.’ [_'r"cm"e -2 Hx rCmo-}Hgl]

+ o—_';a'i Lr‘m‘e-ZerMea +N3‘]}.

AT e T

11




¢ (o) = Ale)- (52 1 22le),
.B(e) = B(S)* HXQDOG‘O-NLJM&G,
# = C - £ Hx? -F Hy* => CONSTANT.

2N oo

Then, // 72 (O, s)f[re)r&rJe =

2_77'04 2 ( )r+5]
=(zmaox, f:j) f [d@r*+EE rdrde

o

= (@mox ij e? {lw_é

Let (2763 65)'e? - y

oo [A(s)r“’f-,é’(s)f‘]
e rcﬂrcﬁ@

2T
Then,
1/7;(7;6) ;[(r,e) rdrde =

27 <o

N ?// e Co () T2 +.8(0)r] rdrde

Consider a Taylor series expansion of a function of two variables

about point (ro , 90)’

9 (r,e) = 200 Ai—————*_(;"'ea
izo ¢}

A=[(rr) 3 *(e-8,) :;i,]

1f o= e° = O, obtain the Maclaurin expansion

or g (r‘, 9) as follows:

12
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s e
= Al 5 (0,0) :
3 (r, 9) = Z *‘L—;ag—o where the operator :
t=o . !
- Y <2 ‘

Now consider the function

e[d(e)rz +B(e)r] - err o) !

z

/] .
Where f(f‘,e):. (Q.,91+a,29+a3 -26}’" (',eo’*e —20'5‘ m’e)r

+(b,62+b, 6 ¥by + Hx come + H3me)r

=vr*+8f¢
Y A
Let @4 = -zL;-; ) ag = 'zo‘sl J
b4- HZ > b5= Hj
Then, f{—t:f’(r) = 2r+ S
2
L = P = R
ort
83
| ;;% - ﬂar) =0
! o _
g’ —;‘E-f(*,)=0for nz3
r
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o . .

+(2b,0+by-bgaine +bs cano)r

= [Za..e'i- Qg - (a.,,,- 0..5) 2 CeA GMGJY"
+L2b 0 +by - byain® +bsceno]r

2
g—g‘ T Fae [za,~ (a4-ag)2 Cain®o+ con?o)] r?
+L2b -bacove-b, sinolr
= Lz.o..-Z(a.Aq.—a.s)(l-Zm'A‘a)JTg
+L2b, ~bacend-bgainelr

83

232 Py = LR (ayg-a5)(-4ane con®)lr?
+ [ ba aino - bs eselr

= [8(as~25)ninccoolr?

+ [benine-boemolr

"

5—07'. = fre0) = [8(«14— o.,)(c—z.»;«.‘e).]r’*
+[b,ecene + bsanolr

% _ ]
a; - 5’(5'9);- [:32.(a4- as)ms coosjr‘?-

+ [byane +byesnolr

b .
aa:G = 0ted) = [-32(a,-ay) (1-2ainte)]r*

+ [-b, cen©-bg s ©]°
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N D e

P _ :
= P(re) = [128(a,-ag)(an o cng)lrt

267
+ [by nin & - b, connlr

= [128 (o 4-a5)(1-2 an®O) ] r?

+*+Lba cswo + b, s lr

3 Fr -

e

+Lbyeeno +tbhonino]r

for n= 4,8, 12, /6, 20, ...
a"‘f— - [_ (4',") -2 2
aem.‘ ne) z (QJ- a:)("ZM G)Jr

+[-b,con0-bs acnoldr

nz6, 10, 14, 18, 22,...

for

"
-2 - n .
"'ﬁ-ne) ‘["2. (a.‘,—a,)wecmelr’-

o™
+ [banino + bseomoIr
n=s,9 13, 17, 21, ...
EX- .
6™ Otas) = L27 (as-ag) ane Cood Jr?

+ [by aine -bsescolr

n=3,7 11,115,119 23,..

for
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Further,
a“‘ .‘..:_t ‘_‘)
EL - Graey = ) T (L2 a2 ) (-2 0k 0)]2
+[bscoco+bysanolr]
for mn=4,0,8,10,12,14, ...
e e .
Son = Baw™ ED T J[27 (a4 a5)aino conol
+ [benino-bsconolry
for 72 = \315’7' ?’ //' /3’.,_
Now, P (o0,0) =0

?(0,0) * 8(0)=b,+hs
Pear) (0,0)= 2 (o) = Z(o.,+0~4)
Frary @) % Biypy ©) = = Tty ()= ©

Py (0,0) = 0346, (0,0) = ... = Tt o (0,0)= 0

Computing Mixed Partial Derivativesd J® (f', 9)

2
gr§9 - 70(1',9) - Z[Z“-e*az—(aras)zcoosmdr
+[z2be+b,-bsaneth;cne]
o d
S 55t Pz = 2[2a,-2@4a,)(-2an2ed]r

+ [Zb.-b4 csoe’bsmln.e]
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aﬂ*j{-’
- R
droe” = Tewo © (’) {2,[2 (s a")wewe]r
+Lb4fuﬁﬁ-9—55 C@QGJ}
for -2 = 3) 5, 7) q; Il
a“"é _ “a-% (,.__l)
Jroa™ Flrne ™ Gy * } 2[2 ag- a;)(i-zmzeﬂr

+[b4w9+ b; MG]}
‘(1424,(")8) IO, ’2..’

for

——"f FPiar,e ™ 2(2a,0 vo - (as- 0~5)£¢.9°9M9]

cgzra
>te

STise* = Z[;a,-Z(a.,—as)(l-z.m‘e)]

= f(gr,ze) -

nta
=)
57‘1%» = Blarned - * {Z[z (a,,-af)weng}

for v =3,5791,...

3"""';) _ n-
ar*;g"‘ = ﬁznno) (-—I) §ZC Z.‘ (0-4‘ as)(”ZMZB ]}

n = 466/0,2

for

“+7

Zr""fe“: dD(mr,ne) = O for m=3, .
ae“)(o,o) = b, tbs
ﬁr’m(o.m = 2b,~ba .
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n-3
(N * (- = ",...
&, e)(o,o)-(:) (-b,) for n=3,5791l,

3

n-4
f(r ne) (O’O) = (.') * (ba-) for n= 4, 6,8, 10,12, -..
P(zr,e) (0,0) = Zaz

ﬁ&r. 2O) (0;0) Z [Za,'2(0.4-a5)] =4(a,- agq+ As)

fizr no (0,0 O ftor n=38,5,7,9,1,...

Rzrne (0,0) = ' B [2%a,-a )]} =NF 2oy @)

for ns 4,(9,8,10112,...

f)(mr,ns) = QO for mz 3, all,» .,

Summary
-—> (O)O) = O
— fo(r) (O,O) = b3 + bq.

2,4 (0,0) = 2(ay+a,)

— f(mr) (O)D) = O for > 23

18
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s

—> Plro) (0,00 = b, + bs
(0,0) eb, - bs
-n*F (b,) for n=3,57.9,4,...

I

—a P(r.20)

"

—> Tirne (0,0)
—> B ne (0,0 = (T (by) for n=4,6,8,10,2,...
—» Fare (0,0) = 24,

e 5F2r26(00) = 4(a,-a4+A,)= e +6) 2 @2
—» Fizrney (0,00= O for n=3,519,1l,..

— Flarn® (0,0) = (-l)% 2" (aq4-Qg) for n=4,6,810,2,..

— ~f>(vnr‘,no) (0,0) = O for m 23, »n =l

o
tet  flar, 2o (0,0) = f’,,,,, a®

o
The formulas for "f:nr,ne can all be condensed into the following

expression:

o

ﬁr,no = { [2ba, R +bya, ) +byanlol]a,, )

t[4a, (D) +2a, 0. N+ (2a3+ 04+ as) & n (0)] s, (2)
+[{bscea(37) + b, o LM} 2 (1)

H2 o adeee(3 M}, @) F L5, 0]} L1200

Where A, G)=1 k=) DISCRETE UNIT
. . STEP FUNCTION

s, (i)=o0 R#J
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Now consider the partial derivatives of Llr, 6

j(r,s) = e

with respect to r and ® .

wmn

Define 3___.2 -

g=¢e"

f
9. er =97,
TR R T

%rzjzr ﬁ M jf f;r +grf;r *} sr
=3zr'f‘r ¥ Z?rﬁf +jf:3'

5"":2"’: +5zrﬂ" * zju'fi".* z?}ri",.jrﬂf*‘g'zr
=5, 0 350 T35 % T 0 i

20
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s~ <o =

W At e Yy,

%" G T O B 35 o T8 Ty
t35 1233 o T5 T G5

=?'4rﬁ 42;'73;- +6§;rf3r+4?;ﬁf ?’r;'r

?wr;. ?(:nw)rﬁ * (”:-9 ?'(m-z)r 7:r * (#2- ) ?21"‘3)ff3r
+..+ ml)?;_ “_')r+ ('rn-l)?,f”r

for n =

2 3 Therefore,
= for »rt > .
But rimr (0]

° we -l ¢ o Zl
B ?:m-')rﬁ * ( ’ )?(m-:)r er for

Similarly,

I, S + (™ )j( N + (7% )g‘ 98 V26
ne Yn-Ne’® -
:z} 3; ﬁ-n-,)e ! n-,);'ﬁa

° 2
But f = Q for -
ne

® =zQ for w2/
Thereforgj‘ne

21




To obtain mixed partial derivatives, consider,

g.- 7o~

Fre Fo¥e " Gro

??;za: ?'zefr * 3?92&,9"?‘9 ﬂ,e +§'fr,za
= %gﬁ + ‘e?;fr‘g + ?’ﬁ,zo

Fr30 " F3607 T FroVre T #Felre T £ G W ze
6 Frzo T G Frse

=2'soﬁ +32}9ﬁ9 + 35‘.D’qw +§f".3‘9

?r,no = 5”'°ﬁ * (T) g(ﬁ-l)e ’af.d 4 (Z) 36!-1)9 f’f,la
ot (’;:) 3-8 7?,(1-;)9 * (:)?’fr,ﬁa

for ot 21

Therefore,

g’:,no= E'; (:) ‘(*ft)e ‘ﬂ:ko for w2 2/

also,?zr = [?,-f’r] + [%Uir]

% o™ (Gno? * 6.P0] (9Bt G Faco]
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T Ry, e ot e

- Deezo [?r,goﬁ- tGelrot Grolre * 5;_#.29]
* Lgolor * GoTars " Folive ™ 5ol
' = [9, 0Pt 28,0 B0 ™ G, Fr20]

+14,0Rr * 2900 * G806l

= [37'“ /A . 3n(n-'\9?r.e+(g)§r,(u—z)e77.10 ..
+ 6 Irefrcane * (2) 9, 7’:,1&9]
* [‘gue ﬁr ¥ (7) ?(n-n)e 7°zr,a N (:)3(n-¢)e Frr,20 t.-
+ ("f')ﬁaﬁc(n-')e + (:)2 zo"’ne] for w2zl

iﬂ‘m o

The:efore,

?ar,no B kz: (:) ?'f',(ﬁ')')e ’oﬂke‘r éo(:)j(ﬂ-k)o 7:;; ke

o

for 2 =]

Finally,

gzr,ne N l.zgo(k) [j:,(n-k)e ﬁ '39+j:n-&)a f:f. 59]

for v 2 |

In general,

?:r ) ﬁ(:‘")' U),. * (m'-.) 30(»'-:.)!‘ 6):1'

for n 2l

E 23
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From which

. - ,,Zo (i) [??-—or.rn-&)o ?P;,Le

5ﬁqne

* (M: -9 j(:-l) r, (n-k)® ﬁ:, beo ]

for - =1, n =l

Summary

(I) 2" =_Z ( m=n=0)

° ° ° -l o -
&) gmr - 9(#-:),.Pr + ( ! )g(-m-z)r'?f;r for o =1

(6) go =0 for n =l

ne

g e E O FernsSine
- + ( mn— |) 3;~m—ﬂf, (n-h)o f;r, he}

for m2}, n =)

Where

0o (B 2@ rbya, (rby, (] 2 ()
+[4a,n (2)+2aen,0)
+(Ray- 757~ E%‘?)D“(O)]Aam (=)
+[{Hr e (M Ham[(‘%')ﬂ]} R o (1)
+ 52"(?:?? "z_c'r;'_)w (332, (2]
:"li [l-—A,..(j)} [1-8pm (0)]
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1nd Aﬁ ())z-/ for /?=J

A,’.(J) = O for AFJ

The expressions fore can be condensed as follows:

mr,n®

I. Notice (4) reproduces(z)forn'z o

o _ - n ° -
ﬁmr,no‘- Aum (o) “n (O) * [hz;o (k) {?&.-o)l‘, (=-k)o ff‘, ke

+ (-ﬂ:-)gzn-z)r,(n—k)e ﬁ:,he}][’ A (]

for e =0

Test:
For M ~9, m=0

g" = OK.

For " =0, 7 #0

2 9= O OK.
=
For m#0,2=0
o _ e o »e - o
jmr ﬁtn-,)r‘fr +( ! )j(,,,-z), P:r OK.

For on #0 , < A0
g""p‘ﬂ0= *zs; (h) szm-l)f,(-u-*)a fr: [ Y)
+ (#1-9 Gm-2I7, (a-K) O -f;:.'*’ } oK.
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Now, the Maclaurin expansion of g (r,8) 1is given by,

4
2"3’ [+ e;,%-] g (0,0)
(s0 iy

3(r,9) =

Y 9t _ o . () o )
But [rdr *969] 9(0’0)-éir Y +(')§(a-hr,9 Y &
+(8) gy, avge YO F
+(15,).}:_‘ (-ne re + ({) G0 O
i .
- A G- ;
= Y
:,2:-;(3) g(i‘j)'r, 39 e .

Consequently,
{

- =23 - £ N ia)_j
g(r;e) = “20 i [jZSO(J)g(t'-J)Y',JG r eJJ

2T oo

Now, ff g(", 9) Y'Jr‘(ﬂs can be computed.
o o

For practical and obvious reasons, the integration along the Y coordinate
will be performed from O to Yo, where Y,is some limiting value radius
where the regressed equation forfz(r, &) applies. Also, the integration
on @ will be carried out from Oto &, where 6, is one full cycle (360°
angle). Both fe and ©,must be smaller than unity, to speed up convergence
This is accomplished by proper scaling of the coordinate system.

/
/

%
Therefore f/j(r" o) r‘lrﬂg =
° o

S, 7, )
= ’ -___/_ S () o (i-j) J
O//gi,[g; (J)j(‘~_J)r‘J‘ Y o ]r/rJo
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* ;E‘x"w‘mf&ﬂm’mw«r P

e izo Jzeo
/ '2., | 1 rc—(J-:)
- 4
= -_ o _— e de
° '}:o 4 ! ["E‘:o (J g(‘ J)CJS L‘Q’.z)
_ o ‘L { L r[r() -2) I+l
- 2 i [ (J)
izo . J:O <‘ J)f’ Je [L (J-‘)](j*'\

Observe that, consistent with notationm, » =4 ) and 7=y,

Therefore, .
e N

ojo/}(r;e)r&mﬂe =

i~(3-2) 3,..
2 ir [ ( )[ i-(-2) Gi+) :i~'nr.39]

-(;-ﬂ it
L &

[Mrz)](;u) ?Q'-.i)r. J 6]

== 5 [s ()

¢=o Jso

+ t-b ¢7 °
2 ¢l [2 -—-——'—-— ?[i-j)r'je]

izo G- G]G0

PR ST Y

= ZL((O) oo & +2 "7[ ( Eﬁw_——ﬁ_‘% G o
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1)
i

But g°=j and j" =0 = for =0 (r-j)

n®
S, r,
Then, //
2; (’;69 Y'cﬂ”‘céng =
& o
tl;z) ‘H, _‘
i ixl " (;z.)](,u) ?'“‘J)f Je
Finally:
8,
° §C-LH< - FHyY o
V£ (rne)f(r6)rdrdo= & o 0,
I Aoy 0y

- L~l . c-(;- ;+l
* ‘2-' “ [ ﬂ—(; z)](.m) (‘ l)" 49]}

Where

> n o (-4
jv:r,,ga B [go(*) {?(n-;)r, (n-Jo)® v)", ke T

-1 . |
* ( ! )?(;n-z\r;(n-ﬁ)e‘]lo", ,!9}] D‘*om(o)] t0,,(c) 2, (o)

for - = o, wn >0
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o~

f

mrno

[2b,8,(2)+ byan() +bya,(0)]a,, (1)

“ "'[44 an(2)+2a, a, (l)+(?a3 zo“ “..)A (o\]a (2)

+{Hx coa(%ﬂ‘) + st[(‘%‘)ﬂj}nm ()

W e DN "')} A,

for 2=/ 2 ; =20
and A* (S):‘- I for 'sz

A, ()= O for bk
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APPENDIX II
RESULTS OF REGRESSION ANALYSIS

Curves of the form given in equations 21 and 22 were fit to numerica-
ly defined damage functions for weapon-target case 152,

The damage functions used are listed in Table II-I along with the
corresponding goodness-of-fit ratios (GOF) and sums of the squares of
the deviations of the curves from the observed data (E(y-y)z). The good-
ness-of-fit ratio is defined as the ratio of the variance explained by the
explicit relationship to the variance of the numerically defined function
(the number one renresents perfect correlation).

For high height of burst (HOB) the values from the numerical functions
are ver- small ang almost randomly scattered. Curves fit to such data will
have small L(y-y)° since the deviations from the zero base are swmall to be-
gin with; the same curves may have very poor goodness-of-fit since they ex-
plain very little of the variance present in the data. It is possible
that there is no relat;onship between such data points (complete randomness);
small values of B(y-y)~ are still possible.

The ninety-degree elevation angle of attack (ANG) cases can be fit with
symmetrical surfaces. The goodness-of-fit ratios for these cases are larger
than those for lower elevation angles of attack.

This regression analysis was based on 3060 data points. The sums of

the squares of the deviations (Z(y-y)z) in Table IT-1 are over that number of
points.
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TABLE II-I.

Terminal Conditions

HOB

ot

I R R T

W o o & & P> SR SR DN NN N YN
QO O O O O O O O O O O O 0O O O 0O o o o v o e

.40
.40
.40
.90
.90
.90
.10
.10
.10

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

ANG

45

70
70
90

45
45

70
70
90

90
45
45

45

70
70

90

45

45
70

.00
45.
45,
70.
.00
.00
.00
90.
90.
.00
.00
45,
70,
.00
.00
.00
90.

00
00
00

00
00

00
00

00

.00
.00
.00
.00
70.

00

.00
.00
90.
.00
90.

00

00

.00
45.

00

.00
.00

VEL
700
1000
1300
700
1000.
1300.
700.
1000.
1300.
700
1000
1300.
700
1000
1300
700
1000.
1300
700
1000
1300
700
1000
1300.
700.
1000.
1300.
700.
1000.
1300
700,

.00
.00
.00
.00

00
00
00
00
00

.00
.00

00

.00
.00
.00
.00

00

.00
.00
.00
.00
.00
.00

00
00
00
00
00
00

.00

00

(Weapon-Target Case 152)
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GOF

.933629
.874630
.955912
.958644
.962145
.960273
.997513
.995336
.994256
.795667
.786459
.777634
.767283
.821736
.826441
.807875
.837392
.892173
.663889
.653946
.650797
.618090
.669085
.709352
.972755
.967214
.961912
.571082
.539971
.272525
.513242

SUMMARY OF RESULTS OF REGRESSION ANALYSIS

Regression Curves

O 0O O O 0O 0O O 0 0 0O 0 0 0 0 o0 0 0 0 0 0 0 000 oo o o o o o

S(y-n)2

.39671E
.75235E
.26579E
.24414E
.22360E
.23510E
.15603E
.26659E
.31494E
.13674E
.16873E
.20675E
.15696E
.16674E
.21226E
.29011E
.27062E
.23002E
.14383E
.18524E
.23304E
.17297E
.21498E
.26624E
.20575E
.28898E
.38102E
.75003E
.10604E
.21975E
.10193E

02
02
02
02
02
02
01
01
01
02
02
02
02
02
02
02
02
02
01
01
01
01
01
01
01
01
01
01
00
00
00



HOB

80.
80.
.00
80.
.00
120.
.00
.00
.00
.00
.00
.00
.00
.00
120.

80

80

120
120
120
120
120
120
120
120

00
00

)

00

00

ANG

70
70
90
90
90
45
45
45
70
70

70.
.00
.00
.00
.00

70
90
90
90

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

00

VEL

1000.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
1300.
.00
.00
.00

1300
700
1000
1300
700
1000
1300
700
700
1000

700
1000
1300

00

00

TABLE II-I (CONCLUDED)

o 0O O O O O O o O O O ¢ O O o

GOF

.544083
.604326
.945677
.950072
.956756
.514104
.435045
.429930
.521283
.521283
.529390
.549753
.924258
.928711
.932487

o O O O O O O O O O O O o o o

E(y-y)2

.13480E
.17633E
.10548E
.12186E
.13884E
.11593E
.18436E
.23478E
.14438E
.14438E
.18597E
.24629E
.56311E
.68378E
.81306E

These results and the actual regression coefficients are available
from the researchers in punch card coded form.
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APPENDIX III

ACCELERATION ALGORITHM TO MINIMIZE A CONVEX OBJECTIVE
FUNCTION SUBJECT TO LINEAR CONSTRAINTS
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ABSTRACT

An acceleration algorithm to minimize a convex objective function
(one that is never underestimated by a linear interpolation between two
points) subject to linear constraints is presented in detail and an ex-
ample problem is given. It reduces the number of changes in the state set
and the number of iterations required by the general differential algorithm
for linear constraints in converging to the minimum. It can also be used
to maximize a concave objective function (one whose negative is convex) sub-
ject to linear constraints.
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L T S,

INTRODUCTION

An objective function y (Q) is convex if it is never underestimated
by a linear interpolation between two points, §1 and ;2. That is, for
every o satisfying

o< o<l (1)
it is true that
y (ex, + [1-0] %)) s ay(x) + [1-0] y(x,). 2)

The adjective "strictly'" is added if the function is never exactly equal
to the linear interpolation between the two points, i.e., if the < sign
is replaced by the < sign. A concave function is one whose negative is
convex (Zukhovitskiy and Avdeyeva, Reference 2).

If a non-linear function is to be minimized subject to linear con-

straints, i.e., a problem of the form:

%1
Min. y (x), where x = . 3)
*N
subject to,
X 20 form=1, ..., N
and N (4)
g akn X > bk; k = 1, ..., K,

n=1
The following differential algorithm, given by Wilde and Beightler
can be used (Reference 1, pp. 65-66):

1. Let vy be the most negative decision derivative and vy the most
positive decision derivative for which the corresponding
decision variable dh is positive.

2. If there are no negative A set vy to zero. If all positive A
have corresponding dn equal to zero, set Yy to zero.

3. If both v, = 0 and vy = 0, a stationary point has been found.
Notice that when both vy and Y are zero, the Kuhn-Tucker
necessary conditions, i.e., non-negativity and complementary

slackness, are satisfied.
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4. Tf either v, or v, is not zero, compute

vV = vy + vh (5)

5. If V < 0, increase di' If V > 0, decrease d, , holding all other

h’
decision variables constant, but permitting the state variables
to readjust, until

6. I. Some state variable, say sp becomes zero, or

I1. v, becomes zero; where r = 1 if V0, and r = h if V > O,

or
III. dh becomes zero.
7. In case (I), dr replaces sp in the state set; in cases (II) and

(IITI) no change in the set of states occurs.
8. Clearly, for any change, adr, the value of the objective function

y always decreases since

Ay = drvr adr < 0. (6)

The greatest difficulty in the application of the preceding algorithm
occurs in step 7, case (I), when the variables dr and sp are interchanged,
i.e., when a change in the state set becomes necessary, because a new set

of constrained derivatives must be computed as follows:

- K
voo= - L or g, sraN (D
Yy r k=l % k
_ By . . . . . . .
where, v, = &d 19 the constrained partial derivative of the objective
r
function y with respect to the decision variable dr;
—%%— is the unconstrained partial derivative of the objective function
r y with respect to the decision variable dr;
A
—:ﬁ— is the unconstrained partial derivative of the objective function
k

y with respect to the state variable 8.5 and
Y p is a constant coefficient obtained from the following linear

equation relating the state variable Sk to the decision variables

d , n=1, ..., N, -
n N
S = ﬂ - AN

K K o d , k=1,..., K; (8)

n=1 kn n )

B is a constant term in the expression for s

k k’
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Acceleration Algorithm

When the objective function is convex, the following minimization
algorithm can be used to reduce the number of changes in the state set
and to decrease the number of iterations required for convergence. The
same algorithm can also be used to maximize concave objectives subject to
linear constraints.

I.
I1.

III.

Iv.

Compute minimum point x° for unconstrained objective function.

Check the constraint set to ascertain: -

1. If all the_constraints are loose at x°, the minimizing
policy is x* = x°., STOP.

2. If one or more constraints are tight or violated at x°,
CONTINUE,

1. Let the slack variables of the constraints that are tight
and/or violated at x° be in the decision set d.

2. Let_the slack variables for the constraints that are loose
at x° be in the state set s.

3. Complete the state and decision sets with the structural
variables of the problem.

Set the decision variables to zero,

a = 0. 9)
Use the differential algorithm for a non-linear objective function
subject to linear constraints to find the minimizing policy and
verify that the point obtained satisfies the sufficiency con-
ditions for a minimum.

The algorithm guarantees that no changes in the state set will
occur provided that all the loose constraints at x° remain loose
at x.%* Since the decision variables are set to zero initially,
they can only increase in value to satisfy non-negativity. That
means that all the slack variables for the tight and violated
constraints at x° will be zero at the beginning of the algorithm,
thus making these constraints tight initially. Since the decisions
are manipulated at will and cannot go negative, the initially
tight constraints can either remain tight, if the corresponding
slacks remain at zero, or go loose, if the corresponding slacks
increase, and unless one or more of the loose constraints at x°
is tight at x *, no changes in the state set will be required and
the number of iterations for convergence to the minimum is con-
siderably reduced.
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Illustrative Problem and Conclusions

Application of the acceleration algorithm will be illustrated with

the following problem involving a quadratic (convex) objective function:

_ 2 2
Min. y = 2x1 2xlx2 + 2x2 - 6xl (10)
subject to -
X)s Xy > 0; (11)
3x +ex, < 63 (12)
and :
-xl+4x2 < 2. ‘ (13)

Step I. To compute the minimum point for the unconstrained objective

function set,

ay
= =4xl—2x2—6=0,
1
(14)
3y
T =4x2—2xl=0,

from which

Y xl" . 2
x (xzo) —(1 . (15)

The differential quadratic form is positive definite, that is,

3x
=T = .= ) N 4 =2 1
ix~ H 2x (-)xl, ax, <_2 4> (ax2>

8x)2+3 8x2>0

B

= 4 (.>xl -

for dxl, axz + 0.
This guarantecs that x° is in fact a global minimum.
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Step II. A check of the constraint set reveals that constraint

(:2) is violated and constraint (13) is tight at x°.

Step III. Therefore, after the introduction of slack variables, the

problem becomes:
Min = 2s 2 _ 2s.s, + 2s - 68
- ¥ 1 152 2 1

subject to $1s Sy» dl’ d2 > 03

3sl + 452 + d1 =6,

(]
1]
-

and -s, + 452 + d

1 2

with dl = X33 2

(=9
]
»
=
[}
[
]
>
[
-
[
[
1
»
N

Solving for $1 and 8,y in terms of dl and d2 obtain

Because of the form of equatiomn (8),

= 1. S
Bl=l’ all-b’ ulz 4
s -3 . ol .3
2 4 721 16 > "22 16.
Therefore, from equation (7),
=Sy _ 3y 3y 3y
¥1 7 %4, T ad) (0gy os; T a1 Bsz)

1
=25 (52 + 13 4) - 17 dy);

3y

&y .y o
22 882 )

3y
and v, = - (a +
2~ sa, " ad, 12 3s;
-1 (<68 -174d, +37d,)
64 1 2"

Step IV. Set d1 = d2 = 0.
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(22)
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Step V.

(1-1)

(2-1)

(3-1)

(4-1)

(5-1)

(6-1)

Having dl = d2 = 0, obtain,

[

from equation (20), s =1

from equation (21), s, =

from equation (23), v, = =

17
from equation (24), Vo = " 65t

The differential algorithm requires,

v, = Vv, = - a7 v. =0
i 2 64 > 'h ‘
Both vy and Yh are nol zero, therefore

the minimum has not yet been found.

Since v, = v, = - L7 compute
nee vy TV 647 “OP
17
VEv vy, T E

Because V < {0, increase di = d2.

The increase in d2 is constrained by:

Case (1)

Sk + Ask2 >0 for k=1,..., K,

but
6sk
Ask2 = (EE;) Adz = -0, Adz.
Therefore, 3
s 2
Ad2=2i2>0{u:2}= _g_ = b
16
Case (II)
+ éVZ Ad, = 0
V2 T x4 2~
2
Therefore,
17
16 68
Adz'-* 37 =37.
64
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(25)

(26)

@n

(28)

(29)

(30)

(3L

(32)
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Case (III) Since dz is initially set at zero and is to be

increased, this case does not apply.
’ From the results above, Ad2 = Sé < 4, (33)

(7-1) No state change was needed, and the new values of the

~J

decision and state variables, and of the constrained

derivatives are:

dl =0 remains constant;
- 68 _ 68 |
dy =0 +3535 =373
4 . 68 4
‘ =1-C1) 35 =57
o =3 388 15 (34)
27 4 167 37 37°
213 17, 68 _ 12
ittt
17 37 | 68
Va 16t (63770
) 198
The vzlue of y at this point is y = - (35)

4 dy

%11 %12 8
@21 @22 8,
V1 V2 y
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Therefore,
0 68
37
L . 54
16 16 37
U 15
16 16 37
12
37 0 - 12%

Now the differential algorithm is applied all over again.
(1-2) The new values of decision and state variables as well as of the
decision derivatives are given in the tableau.

(2-2) v, T 0 and vh =0 (36)
(3-2) Since both v, = 0 and Vi =T 0, the minimum has been found at
54
x* sk —
< = = % = 37
= xb = sh 15 (37)
37
and y* (Q*) B -1}

37 (38)

The problem converged to the solution in one iteration and no changes
in the state set were necessary.

" The same problem was solved by Wilde and Beightler (Reference 1, pp.
76-78) using the differential algorithm alone, without acceleration. Three
iterations involving twe changes in the state set were required to con-
verge to the minimum.
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