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FOREWORD

This report covers work done during the period September 1968 through
August 1969 by Louisiana State University, Baton Rouge, Louisiana, under
contract F08635-68-C-0107 with the Air Force Armament Laboratory, Eglin
Air Force Base, Florida. Program monitor for the Armament Laboratory was
Lt. Jerry L. Edwards cATAD). Project Director for Louisiana State Univer-
sity was Dr. Adrain E. Johnson, Jr., Department of Chemical Engineering.

The report consists of four volumes as follows: Volume I - 1MOD6DF
Systems Simulation, Volume II - Missile Simulation, Volume III - Effects
of Parameter Variations on the Capability of Proportional Navigation
Missile Against an Optimally Evading Target in the Horizontal Plane, and
Volume IV - Formulation and Optimization of Warhead Kill Probabilities.

Information in this report is embargoed under the Department of State
International Traffic In Arms Regulations. This report may be released to
foreign governments by departments or agencies of the U. S. Government
subject to approval of the Air Force Armament Laboratory (ATAD), Eglin AFB,
Florida 32542, or higher authority within the Department of the Air Force.
Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

THOMAS P. CHRISTIE
Chief, Analysis Division
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ABSTRACT

The work conducted at Louisiana State University on a class of prob-
lems arising in the evaluation of weapons and in the analysis of the best
methods for their use is reported. The destructiveness of a specified
weapon against a specified target is measured by the ratio of the number
of targets destroyed to the number of weapons used.

This report describes the methods developed for the analytical eval-
uation of average kill probabilities for single weapons and proposes the
optimization of pattern parameters for .nulti-weapon attacks on discretely
defined target complexes for future investigation.

An acceleration algorithm for minimizing a convex objective function
subject to linear constraints is also presented in detail.

This document is dubject to special export controls and each trans-
* mittal to foreign governments or foreign nationals may be made only

with prior approval of the Air Force Armament Laboratory (ATAD),
Eglin AFB, Florida 32542.

(The reverse of this page is blank)



TABLE OF CONTENTS

Section Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1

II. LETHAL AREA ................. ..................... 2

III. ANALYTICAL EVALUATION OF AVERAGE KILL PROBABILITY , 6

Appendices

I. MATHEMATICAL DEVELOPMENT ...... ............... .. ii

II. RESULTS OF REGRESSION ANALYSIS ..... ............ .. 30

III. ACCELERATION ALGORITHM TO MINIMIZE A CONVEX 33
OBJECTIVE FUNCTION SUBJECT TO LINEAR CONSTRAINTS. ..

References ................ .......................... 42

LIST OF TABLES

Il-I. Summary of Results of Regression Analysis ......... .. 35

v
(The reverse of this page is blank.)



SECTION I

INTRODUCTION

This is a report of the work conducted at Louisiana State University
on a class of problems arising in the evaluation of weapons and in analyz-
ing tne best methods for their use. The effectiveness (destructiveness)
of a weapon against a specified target can be measured, at least in part,
by the ratio of the number of targets destroyed to the number of weapons
used. The number of weapons required to destroy a target depends on two
primary factors: the probability that the target is destroyed if the
weapon hits it and the probability that the weapon will hit target. If,
in addition, weapons are used in groups, the results also depend on the
firing pattern employed. The multi-weapon case was not considered by the
researchers in the work performed to date. This report concentrates on the
methods developed for calculating the probabilities of destroying targets
with single weapons.



SECTION II

LETHAL AREA

The simplest case of measuring the destructiveness of a weapon against
a target occurs when the weapon must hit the target in order to destroy it,
but always destroys the target if it hits it. In this case, the probability
that a single weapon will destroy the target is just the probability that
it hits a certain area, called the Lethal Area. The size of the lethal
area is, consequently, a measure of the destructiveness of the weapon
against the target. If the weapon has a proximity fuse, it is no longer
necessary to hit the target to destroy it, for the proximity fuse will
convert a near miss into a destructive explosion. If the charge is suffi-
cient so that an explosion within the radius of action R of the proximity
fuse will destroy the target, then the lethal area is increased to the area
included within a curve surrounding the cross section of the target at a
distance R from its boundary. In the three-dimensional case, one would
not have a lethal area defined in this manner, but a lethal volume instead.

If a single hit is not enough to destroy a target, the probabilities
P. of destroying the target if it is hit i = 1, 2, ... , N times with prob-1

abilities F. must be determined. In this case, the probability of de-
1

stroying the target is

N
Pk = E P.F. il-l)

k = .1 1 (lii=l

The P. probabilities are sometimes called damage coefficients. If all the
1

damage coefficients are equal to each other, and the probability of a hit
is F for all firings, then, the probability of destroying the target with
N weapons is, simply,

Pk = i - (I - PF)N (11-2)

In other words, the probability of destroying the target with any one hit
is always the same, regardless of how many previous hits have occurred.
This may be interpreted as meaning that only when a vital spot is hit will
the target be destroyed and that hits elsewhere on the target will only
damage, but not destroy, the target. This vital spot hypothesis serves
to reduce the number of unknown quantities P. and F. to two, P and F, and

I I

has been found to give satisfactory results in many cases, such as AA hits
on aircraft. When the vital spot theory can be applied, the lethal area
of a target is defined as the product of the effective area of the target

and the probability P that a hit on this area will destroy the target. Eor

example, the probability of sinking a merchant vessel with a torpedo hit

is about 1/3. Consequently, P = 1/3 and the lethal area is 1/3 of the

ship's length.
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In real life situations it is necessary to consider the variation of
the probability of destroying the target as a function of the coordinates
of the point at which the hit is made. In such instances, the damage
probability becomes a damage function p (x,y) where x and y are coordi-
nates centered on the target in a plane normal to the weapon's trajectory.
In this case, the lethal area may be computed as

L = Pt (x,y) dxdy. (11-3)

A

where the integration is over all the area for which Pt (x, y) > 0.

Formulas for one-dimensional targets are obviously derived from (11-3).

r andom Bombardment
The lethal area serves to evaluate the destruction level attained by

weapons delivered at random over an area A. For any given target within
the area A, the probability that a given weapon will hit the element of
area dxdy is simply dxdy/A. The probability that this weapon will destroy
the target is therefore

(1) pt(x,y) dxyL
P -M A - . (11-4)

If N weapons are fired, the probability that a given target is destroyed
is

(N) L NvPN k z • (11-5)

However,
1/x

e = lim (1 + x) (11-6)
x-O

Therefore, as the number of weapons increases, i.e.,

N - O, (11-7)

one can show that, (N) -NL/A

k ie (11-8)

This represents the expected fraction of all targets destroyed in the
area A.

3



Weapons Aimed at Small Targets
If weapons are individually aimed at a target whose dimensions are

small when compared to the errors in aiming, t:he variation over the tar-
get in the probability of hitting an element of area dxdy can b%- neglected
and the lethal area is an adequate measure of destructiveness.

The bombing errors x and y along the range and deflection directions
are usually assumed to be normally distributed with standard deviztions ax

and a , respectively. Then, the probability of hitting a target elementY
dxdy is

2 2
y) dxdy = (2lr ay)- EXP {- Ex 2 + y }7) dxdy . (11-9)
tx y 2a2 'x y

Near the target, i.e., at x = y = 0,
-i

Pt (0, 0) dxdy - (2ax' y a ) dxdy. (11-10)

Consequently, the probability of destroying the target with a single
weapon is

(1)p = jk pt(x, y) f (x, y) dxdy

= f(x,y) dxdy

x y

where f(x, y) is the probability density function of hitting the target.

Hence,

l L f(x, y) dxdy L (11-12)
k =J 27r, 7 - 27a a(

xy xy

If N weapons are fired independently at the target, the probability of
killing the target is

p(N) L N (11-13)
k 2 7L (12 o

xy

Since by assumption L is small compared to 0 and ay, equation (11-13) be-

x y
comes

P(N) -NL/2e y. (11-14)
Vk

Equation (11-14) is derived following the same reasoning used to obtain

equation (11-8).
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Weapons Aimed at Large Targets

When the target dimensions are such that the assumptions for small

targets are no longer valid, the variation over the target of the prob-

ability of hitting an area element dxdy must be considered, and the lethal

area concept is no longer usetul.

Again, let f(x, y) dxdy be the probability of hitting an area element,

tL-r, the probability that the target is destroyed by a single weapon is

p(1l) = S Pt(X' :( ) dxdy (11-15)

and further progress hinges on the ability to evaluate this integral. Once

elevated, ho .ever, one has, once more, the result that the expected number

(1)
of shots required to destroy the target is i/PkI , and the probability of

destroying the target with N weapons is

~(N) = (1))N
p = I - (I - PIk (11-16)

whic' if p l) is small, can be written, as before,
k

P(N) i - e kNP k (11-17)
k

When pt(x, y) is constant over the target area, equation (11-15) repre-

sents the probability of hitting the target, multiplied by Pt' and, if the
probability density function f(x, y) is not too complex, the integration

can sometimes be carried out. This, however, occurs seldom in practice,
and it is precisely the evaluation, in closed form, of the integral type

given by equation (11-15) that has been the primary concern of the re-

searchers involved in Task 301.

Fragment and Blast Sensitive Targets
A fragment and blast sensitive target is one in which the major dam-

age mechanism is due to fragmentation and blast effects rather than to a

direct impact by the weapon. In this case the damage function p (x, y)

is the kill probability for a warhead given that it has detonateA at (x,y);

f(x, y) is the probability density function for the warhead detonating at

(x, y).

In this case the integration is carried over the entire xy plane. It

is with integrations of this type that the investigation reported here was

primarily concerned.
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SECTION III

ANALYTICAL EVALUATION OF AVERAGE KILL PROBABILITY

The evaluation of the average kill probability integral given by
equation (11-15) has formerly been accomplished by numerical techniques;
programs written by Martin Marietta Company are available for this purpose.
Such techniques involve random samplings of the damage function employing
Monte Carlo procedures.

In order to investigate the nature of the damage functions, regression
analysis was applied to numerically defined damage functions generated by
computer programs developed for the Air Force Armament Laboratory by Martin
Marietta Company. The regressed functions had to possess the property of
having high coefficients of correlation as well as being integrable in
closed form when convoluted with the probability density function f(x, y)
which was assumed bivariate normal with zero coefficient of correlation,
i.e.,

2 2

f(x, y) EXP? o • L(-- ) + )] (III-i)
M ,2 a axy x y

where 4x and 4 y are weapon biases due to aiming and ballistic errors in

the ringe and deflection directions, respectively. p and are the co-
ordinates of the weapon's mean point of impact for a farget 6entered at
the origin of the coordinate system.

The damage function pt (x, y) depends upon the target definition as
well as upon the following weapon parameters:

1. Height of Burst

2. Terminal Velocity

3. Elevation Attack Angle

4. Fragment Mass or Masses

5. Impact Pattern Dimensions

The numerically defined damage functions are best described in polar
coodinates; for this reason it was necessary to transform all mathematical
functions to this system, thereby giving

f(r, )EXP (r cos 2 ox 2

xy a

(' ,) (III-2)

y
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where x = r cos 9,

and y = r sin6. (111-3)

The damage function which provcd best suited for regression and
analytical integration is of the form

Pt (r, e) = EXP [ A (G)r 2 + B (e) r + C ] (111-4)
t2

where A (e) =aI e2 + a e2 + a3

B (e) = b1  e + b2 e + b3 5 (111-5)

and C = Constant

I
Consequently,

Pk ff Pt(x' y) f (x, y) dxdy

-rf Pt (r, 9) f(r, e) r dr de

0 0

2r co [ (8)r2 + ý(e)r]

f f S 5 e r dr de, (111-6)
0 0

where
a() A()-i cos29 sin2 eae(a) - A(8) Co e o + ii2

2 o72 7x y

•(6) = B(e) + px cos e + Py sin, (111-7)

and I 2mtcx EXP [ C - - 2 a

The complexity of the functions required that a Maclaurin series expansion

of Pt (r, e) f (r, e) be generated in order to integrate them in closed

form. This was accomplished as described in Appendix 1, with the integra-

tion along the coordinate axes performed from 0 to r and from 0 to S0;

where r0 is a limiting value of the radius where the regressed equation

7



for pk(r, 8) applies, and 0 is one full cycle (3600 angle). Both r and
0 0

0 must be smaller than unity to speed up convergence. The following

result was obtained:

eo ro
P k J f pt(r, 9) f (r, 8) rdrde -

0 0

- 1 i-(j-2) j+l

e (C - 4X2 - 1 iy r0 r 0i (8o0 )

S2 + T2!=1 [ 0 j i-(j-2)j+l)
21T cy y ~ j=0 (

0 0

(III-8)

where

gmr,n@m IE ( k) ýg°(m-l)r,(n-k)SPr , kO+( I- )g* (m_2)r(n-k)e

k=O

0
P2r,ke}][l-s m(0)]+s m(O)s n(0), for m>O, n>O, (111-9)

0
Pmr, nO = [2blIS (2) + b 2 sn (1) + b 3 sm (0)] sm (1)

+ [4alsn (2) + 2a 2 sn (1) + (2a 3 -2 2a )Sn(O)]Sm(2)
x y

+ +yCOS [ (-(n)+]} sn (1)

+ 2n cos !!r) ) sm (2), (111-10)

y x

for m = 1, 2; n > 0,

. °



and

J\(i) = 1 for k = j

Sk(j) = 0 for k # j (111-ll)

Typical o-tput from the regression program is given in Appendix II.

Future Work

The Macl'urin expansion solution is not satisfactory due to its slow
convergence tO\P Nevertheless, the average kill probabilities evaluated

following this p0ocedure are more reliable than the numerically computed
ones because they are obtained from the consideration of a larger number
of sample points " d also because of the upgrading of information about
the nature of the age functions achieved by the method developed.

To overcome the isadvantages of slow convergence, the following pro-
cedure is proposed fo future, continued research in this field:

I. Evaluation of Dmage Functions
R. Snow and M. Iyan (Snow, 1968, p.5) has assumed the damage
function Pt (x,y) of equation (3) to be of Gausian form:

2 2
(Equation A) pt(x, yA = D(x, y) = D exp (-Do[_-- + Y 2R 2R

R (1) (2)

Based upon this assumptio they have developed many useful closed
form relationships for calhulating fractional coverage to areal
targets.

Preliminary work on this task\ indicates that the symetry suggested
by this form may not be suppo ed by the numerical functions, par-
ticularly for low elevation an es of attack. Also, for detonations
of high height of burst (HOB) w ich are out of the blast range of
the target, the damage function akes on lower values near the origin
of coordinates due to the relativ ly small fragmentation densities
in the polar zone nearest the nose of most ballistic weapons.

In order to evaluate the validity oo the Gausian damage function the
following study is proposed.

1) Test the hypothesis that the damage function is of the form
given in equation A against the alte native that it is not.

2) Study modifications of the form given in equation A to explain
the unsymmetrical cases described above and test the hypothesis
that the damage function is of the form given by equation A
against the alternative that it is of the modified form.

9



Il. Optimization

The explicit formulation of damage functions for single weapon
single target element cases makes possible the study of more
complex cases of multiple weapon attacks on multiple element
targets, by integrating the same damage function with different
density functions.

One problem that has not formerly been treated is that of opti-
mizing the pattern parameters of a multiweapon attack on a dis-
cretely defined target complex. It is proposed that optimization
techniques for optimizating these pattern parameters, using
damage functions described in Part I above, be studied by this
task.

Optimization Algorithm

During the summer of 1969, the principal investigator collaborated
with other L.S.U. personnel in teaching a course in Systems Optimization
Theory at Eglin Air Force Base. In part as a result of this experience,
the principal investigator developed an acceleration algorithm to minimize
a convex objective function subject to linear constraints. A paper de-
scribing the algorithm has been submitted for publication in the Journal
of the Operations Research Society of America and is included in this re-
port as Appendix III. It is anticipated that the algorithm will prove
to be relevant to the work for Task 301, because the researchers expect
that the average kill probability function will be convex and that the
ballistic constraints will be expressible as linear inequalities.

Reference

Snow, R., and Ryan, M., A Simplified Weapons Evaluation Model
Report No. RM-5677-PR, The Rand Corporation, December, 1968.
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APPENDIX I

MATEHMATICAL DEVELOPMENT

Consider the average kill probability integral,

F== f Y%,y ) #lz,-,) ,-c , (J

(, ) E XPA•-,,)L r-(

where j(6) C, + o + ;

i3(e) = , eOZi 06#eA/3,

Z Constant:

and

Therefore,(O EX? + Li$4rl~ $1}

but (r + V ) -r' t = r Z 14% Zr cm +

and (r+AV,-A- & r .4) e - 2. r ,-Ar -9 + .

Hence, C0. . f(1 4 , ) ( i " "

6-V ~i Lr Z 14QO' A;, G'~ rr+f4



d3(e) +A(e)+ (Sof / .ca.-L,

L9 
J

a- = ( H%2  -± 14L- CONSTANT.

(,"7-r r-xr r
Li? ~

Th en, f / •(r.,ebC1(,-.)r,-•,r<•0

Let (7r C. 6 Y't {

Then, JffJ) ftr 0) r-('rd

e Cd (e)r +r(e)rr] rerc•e

Consider a Taylor series expansion of a function of two variables

about point (ro, 0o),

~~ (.0 S AL(roe)

If r0  obtain the Maclaurin expansion

or • Cr, e) as follows:
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=00 whre the operator

Now consider the function q

Where 'Q(r,) r

+ +r• ++ +49

Then,

9r.

0 for)-t 3
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xaI+ lxz7 (Q* 05) z COO &ejýeJrL

+LzLbe *bx - 64A't i-L coo elr

-as)Z

+ L 4 16 COO &I Q Yr

+~e) L8a4-CO , a)(u.,i&vo)rL

G -- D AD

+ L 4 9 ~ 5 ~~
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4 ?'9 C e)-- L a- -cL,)gi "' ri -

4- L bz4  uO e +) a,)r

E +J 5 ~s.~

for v~4,8 , £,

W---L ~- ( *(e) [ 2• - (0-4- 0.) (/-,e . ,t,.2e.] rZ

for G = , 108,I14, 18, 22,...

aE-Z (0-4-) a, ,) -z,.T

+ + + 6- cm- J_ )]r

for lz• 36 9, II, /7, , 2 3,..

+ +- coo r
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Further,

,•®• {f•'-,1.e) (- )

+ L6 4 c&4 + 6~ .1 er3

for iy- 4 6,, G, 4 Z,.14,

IL-

22~ IL Cz') ~L (a 4 0ý,Als)dv C04erL

for z ,3,J ,7, 5 , ii, 1,...

ENo_._w 0 (0, ) --- 0

p,(,,, (o, o)-,

•o•)(o,oYr-() l r, (o) V r) (0) = 0

&(G) (o, o) = r(A, 0 (0o o1-..0-•(.,) ('o, o)= 0

Computing Mixed Partial Derivativescf2 (r, e)

= Z L(r e) L• e, e+ a-,a-a,,) z CooeSc^e]r

+ + ~ 6.- b 4  q~ +5 C!ob ]

P3".= E Z a,-(o.--_. ) (- ue)]eJr
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S.. 
... .LL ~ e L~ .. ....II3. . . . ._

for -
, ,.

for ., v 4 1 8 , ( 0) 0 ) 1 7 . .

C-,)") z

for 
" 2 C-, e a O}, x G.

for J , 5o 71

til, elV-

a9a

I) -•a,Fta rsa(t ,:o
for (O 1Q)0

4) e
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:0 o,o) =(-0 j (-b() for , 3,5, 7, II,...

"--4

o (0,0) = (-i- (b 4 ) for 4, (o, 0,

10xrs (o0,o) a,

fr,, ,go) (0,o) = Z•.Ez,- (0- 4,- 5 )J z 4(a,- a,4 +a.s)

•r,-,t,) (0,o0) = 0 for 3 ,•S, 7,//, J,...

r,. o) (o,0) = (-,)• 5)

for ,.= 4,•(•, s, Io I,...

& .• 0) = 0 for • ? 3, a ly•.

Summary

0)

__ a r) (o,o): for
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P(0,0)(~o = e

0_• r eof.) (0,o) b, + b64.

.~ ~ (0,0) &i) (b,) for I,

t•rWIO) (o,o) -(.|)i (64) for

--•d•*(, (o,o0) Z a•2

tea,20 (0,0) =4 (0-1- a, + a)= 4 0L.+(-1) ZI(PL4 -a.ý

... �.. L .rt,*) (0,) (0 0 for ,. :3,5,9, II,...

- O tar,-n, (oo) = (-'t a ( a. •) fo•r•- 4 , ,

~&rn)(0,0) 0 for w71-3,r

0

The formulas for .elr, ne can all be condensed into the following

expression:

4 .+() --

+ 4 a., (1) -P Za 0 ,(It) (zco.• + •4 - a. •-a. (o)]

+ f b 4ca.(WY'IiT) + 6, cea LU}l ( r]I AWWi ( I)

J::3

Where .A (j) = DISCRETE UNIT

STEP FUNCTION
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Nov consider the partial derivatives of 9)

with respect to r and

Define a 'WA4A :

e 0

rf~ r

-. j .ifru +arr -P
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3 r

& -.. +i :.-I)r , *.• (a : (V. -I ,, -)(

for r I

But =0 for ,, ,3 Therefore,

+3t r

Similarly,

.. . + t e,) . ) r

But = 0 for Tefr

00
1' ff or -

Therefor r1
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To obtain mixed partial derivatives, consider,

= ÷eS o i + ff 9  ,

for r

Therefore,

re~d,61 + g-
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+ 2 +

The:t r fore, _ tI~t6

Finallyllý I

fo 46 r fo n2

In enefral,

for f

Fialy
at cn) + -A~g los* 26



From which+ O )( 'I)
00

for -,t ?~,YLI

Surmmary

63 0 for -a YorLi

for Y

Where

+ , Z(TiU-' C-04~ )c.(I IT) 3A., (2)
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,idfor J?

A,,4) 0 for A/J

The expressions for. can be condensed as follows:

I. Notice CI) reproduces(z)forp = 0

it 0:7 + ( ,) 4 ,•. ( ) A., ]L'-• (+)J

for -•, r

Test:

For "2
0 1

* =_1 OK.

For r = OI O s - 0

= 0 OK.

For 0 , -0

- ip-a tr OK.

For 0

+6e,) OK.
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Now, the Maclaurin expansion of • C€e) is given by,

ad);._, r.- + a) (0. 0

19) = 'ENow / • r',•9)Y[r• can~ becompued

w Eere +he rerese eution=* f r **(#, ) aplis.Al o, h nerto

(300

Butwil br~ e ried (outfrmO to whr e J•.is rn fulccl* 30
Consequently,

19)O

Now, , f (r ec be r than be computed.

0 0

For practical and obvious reasons, the integration along the r coordinate

will be performed from 0 to Iro, where Y is some limiting value radius

wYr th erse qainfr(rtG) applies. Also, the integration

on 0 will be carried out from 0 to G. where e9,is one full cycle (360 0

angle). Both I* and e~must be smaller than unity, to speed up convergence.

"This is accomplished by proper scaling of the coordinate system.

Therefore JJr&V, e) rt e

60jr"% JJrd~rdo'
S ' -)r. j.
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Sz2 -io Ei -4

observe that, consistent with notation, i-j and •=

Therefore,&. ro
ffS5f& Cý 6) r (r-(

jof

-ji G.- )
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But 0 and a 0 for

"~ Io<
*0 4

-Th-n, '-rJ-.r •, .]

Finally:

Js/ r 1. (r 'e ) r( )e J 7o e r 
+

""4= ": [C-aJ(.i-s) i (-~fJO

Where

6 -o -i,( -e e+

for~

for -r • Ov tQ2
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APPENDIX II

RESULTS OF REGRESSION ANALYSIS

Curves of the form given in equations 21 and 22 were fit to numerical-
ly defined damage functions for weapon-target case 152.

The damage functions used are listed in Table II-I along with the
corresponding goodness-of-fit ratios (GOF) and sums of the squares of

the deviations of the curves from the observed data (E(yy) 2 ). The good-
ness-of-fit ratio is defined as the ratio of the variance explained by the

explicit relationship to the variance of the numerically defined function

(the number one represents perfect correlation).

For high height of burst (HOB) the values from the numerical functions
are ver" small ang almost randomly scattered. Curves fit to such data will

have small E(y-y) since the deviations from the zero base are small to be-

gin with; the same curves may have very poor goodness-of-fit since they ex-

plain very little of the variance present in the data. It is possible

that there is no relat onship between such data points (complete randomness);

small values of 1(y-y)- are still possible.

The ninety-degree elevation angle of attack (ANG) cases can be fit with

symmetrical surfaces. The goodness-of-fit ratios for these cases are larger

than those for lower elevation angles of attack.

This regression analysis was based on 3060 data points. The sums of

the squares of the deviations (F(yy) 2 ) in Table IT-I are over that number of
points.
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TABLE II-I. SUMMARY OF RESULTS OF REGRESSION ANALYSIS
(Weapon-Target Case 152)

Terminal Conditions Regression Curves

HOB ANG VEL GOF P(y-y)2

1,40 45.00 700.00 0.933629 0.39671E 02

1.40 45.00 1000.00 0.874630 0.75235E 02

1.40 45.00 1300.00 0.955912 0.26579E 02
1.90 70.00 700.00 0.958644 0.24414E 02

1.90 70.00 1000.00 0.962145 0.22360E 02

1.90 70.00 1300.00 0.960273 0.23510E 02

2.10 90.00 700.00 0.997513 0.15603E 01

2.10 90.00 1000.00 0.995336 0.26659E 01

2.10 90.00 1300.00 0.994256 0.31494E 01

20.00 45.00 700.00 0.795667 0.13674E 02

20.00 45.00 1000.00 0.786459 0.16873E 02

20.00 45.00 1300.00 0.777634 0.20675E 02

20.00 70.00 700.00 0.767283 0.15696E 02

20.00 70.00 1000.00 0.821736 0.16674E 02

20.00 70.00 1300.00 0.826441 0.21226E 02

20.00 90.00 700.00 0.807875 0.29011E 02

20.00 90.00 1000.00 0.837392 0.27062E 02

20.00 90.00 1300.00 0.892173 0.23002E 02

40.00 45.00 700.00 0.663889 0.14383E 01

40.00 45.00 1000.00 0.653946 0.18524E 01

40.00 45.00 1300.00 0.650797 0.23304E 01

40.00 70.00 700.00 0.618090 0.17297E 01

40.00 70.00 1000.00 0.669085 0.21498E 01

40.00 70.00 1300.00 0.709352 0.26624E 01

40.00 90.00 700.00 0.972755 0.20575E 01

40.00 90.00 1000.00 0.967214 0.28898E 01

40.00 90.00 1300.00 0.961912 0.38102E 01

80.00 45.00 700.00 0.571082 0.75003E 01

80.00 45.00 1000.00 0.539971 0.10604E 00

80.00 45.00 1300.00 0.272525 0.21975E 00

80.00 70.00 700.00 0.513242 0.10193E 00
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TABLE I1-I (CONCLUDED)

HOB ANG VEL GOF E(y-y)2

80.00 70.00 1000.00 0.544083 0.13480E 00

80.00 70.00 1300.00 0.604326 0.17633E 00

80.00 90.00 700.00 0.945677 0.10548E 01

80.00 90.00 1000.00 0.950072 0.12186E 01

80.00 90.00 1300.00 0.956756 0.13884E 01

120.00 45.00 700.00 0.514104 0.11593E 01

120.00 45.00 1000.00 0.435045 0.18436E 01

120.00 45.00 1300.00 0.429930 0.23478E 01

120.00 70.00 700.00 0.521283 0.14438E 01

120.00 70.00 700.00 0.521283 0.14438E 01

120.00 70.00 1000.00 0.529390 0.18597E 01

120.00 70.00 1300.00 0.549753 0.24629E 01

120.00 90.00 700.00 0.924258 0.56311E 00

120.00 90.00 1000.00 0.928711 0.68378E 00

120.00 90.00 1300.00 0.932487 0.81306E 00

These results and the actual regression coefficients are available
from the researchers in punch card coded form.
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APPENDIX III

ACCELERATION ALGORITHM TO MINIMIZE A CONVEX OBJECTIVE
FUNCTION SUBJECT TO LINEAR CONSTRAINTS
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ABSTRACT

An acceleration algorithm to minimize a convex objective function
(one that is never underestimated by a linear interpolation between two
points) subject to linear c'instraints is presented in detail and an ex-
ample problem is given. It reduces the number of changes in the state set
and the number of iterations required by the general differential algorithm
for linear constraints in converging to the minimum. It can also be used
to maximize a concave objective function (one whose negative is convex) sub-
ject to linear constraints.
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INTRODUCTION

An objective function y (x) is convex if it is never underestimated

by a linear interpolation between two points, x and x 2 . That is, for

every ot satisfying

o < 0()

it is true that

y (ex 1 + [I-Ci' x2) < eyy(x 1 ) + [I-rv y(x 2 ). (2)

The adjective "strictly" is added if the function is never exactly equal

to the linear interpolation between the two points, i.e., if the < sign

is replaced by the < sign. A concave function is one whose negative is

convex (Zukhovitskiy and Avdeyeva, Reference 2).

If a non-linear function is to be minimized subject to linear con-

straints, i.e., a problem of the form:

Min. y (x), where x (3)

N

subject to,

x o for n = 1, ... ,N
n

and N (4)

F akn x n bk; k =1 ... K5

n=l k

The following differential algorithm, given by Wilde and Beightler

can be used (Reference 1, pp. 65-66):

1. Let vi be the most negative decision derivative and vh the most

positive decision derivative for which the corresponding

decision variable dh is positive.

2. If there are no negative vm, set vi to zero. If all positive vn

have corresponding dn equal to zero, set vh to zero.

3. If both vi = 0 and vh = 0, a stationary point has been found.

Notice that when both vi and vh are zero, the Kuhn-Tucker

necessary conditions, i.e., non-negativity and complementary

slackness, are satisfied.
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4. Tf Pethpr vi or vh is not zero, compute

V = Vi + vh (5)

5. If V < 0, increase di. If V > 0, decrease dh, holding all other

decision variables constant, but permitting the state variables

to readjust, until

6. I. Some state variable, say s becomes zero, orp
II. vr becomes zero; where r = i if V - 0, and r = h if V > 0,

or

III. dh becomes zero.

7. In case (I), d replaces s in the state set; in cases (II) andr p
(III) no change in the set of states occurs.

8. Clearly, for any change, d r, the value of the objective function

y always decreases since

&y = dv )d < 0. (6)
J r r

The greatest difficulty in the application of the preceding algorithm

occurs in step 7, case (I), when the variables d and s are interchanged,r p
i.e., when a change in the state set becomes necessary, because a new set

of constrained derivatives must be computed as follows:

v8 K .... ;N (7)
r Pd = d 2 Crkr 's(r rk=l k

where, v r is the constrained partial derivative of the objective
r

function y with respect to the decision variable dr;
ý is the unconstrained partial derivative of the objective function
)dr

y with respect to the decision variable dr;

is the unconstrained partial derivative of the objective functionAS k
y with respect to the state variable sk; and

•kr is a constant coefficient obtained from the following linear

equation relating the state variable sk to the decision variables

d , n=l ..... N,
n N

S = k k - 7 kn dn2 k =1,..., K; (8)
n=l

Pk is a constant term in the expression for sk.
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Acceleration Algorithm

When the objective function is convex, the following minimization
algorithm can be used to reduce the number of changes in the state set
and to decrease the number of iterations required for convergence. The
same algorithm can also be used to maximize concave objectives subject to
linear constraints.

I. Compute minimum point x° for unconstrained objective function.
I1. Check the constraint set to ascertain:

1. If all the constraints are loose at x0 , the minimizing
policy is x* = x°. STOP.

2. If one or more constraints are tight or violated at X0 ,
CONTINUE.

III. 1. Let the slack variables of the constraints that are tight
and/or violated at x° be in the decision set d.

2. Let the slack variables for the constraints that are loose
at x' be in the state set S.

3. Complete the state and decision sets with the structural
variables of the problem.

IV. Set the decision variables to zero,

S= 6. (9)
V. Use the differential algorithm for a non-linear objective function

subject to linear constraints to find the minimizing policy and
verify that the point obtained satisfies the sufficiency con-
ditions for a minimum.

The algorithm guarantees that no changes in the state set will
occur provided that all the loose constraints at x0 remain loose
at x.* Since the decision variables are set to zero initially,
they can only increase in value to satisfy non-negativity. That
means that all the slack variables for the tight and violated
constraints at x° will be zero at the beginning of the algorithm,
thus making these constraints tight initially. Since the decisions
are manipulated at will and cannot go negative, the initially
tight constraints can either remain tight, if the corresponding
slacks remain at zero, or go loose, if the corresponding slacks
increase, and unless one or more of the loose constraints at x0

is tight at x *, no changes in the state set will be required and
the number of iterations for convergence to the minimum is con-
siderably reduced.

p
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Illustrative Problem and Conclusions

Application of the acceleration algorithm will be illustrated with

the following problem involving a quadratic (convex) objective function:

Min. y = 2x12 - 2xIx2 + 2x2 - 6x1 (10)

subject to -

X1 , x 2 > 0; (11)

3xI+4x 2 < 6; (12)

and

-x 1 +4x 2 < 2. (13)

Step I. To compute the minimum point for the unconstrained objective

function set,

ay

- = 4x 2 x2 6 - 0,
ax 2

(14)
ay

x 4x 2 - 2x, = 0,

from which

The differential quadratic form is positive definite, that is,

HX X = (:)X l, dX 2) ( - 2 4 (- ; x 2

1 , 2 2,2I2O2 ) 0, (16)

for dx1 , 3X2 # 0.

This guarantees that x° is in fact a global minimum.
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Step II. A check of the constraint set reveals that constraint

(12) is violated and constraint (13) is tight at x°.

Step III. Therefore, after the introduction of slack variables, the

problem becomes:

i 2 2S2 2s2 6

Min. 1= 2s1 2 - + 1 6s (17)

subject to s1 , s2, d1, d2 - 0;

3sI + 4s2 + dI = 6; (18)

and -s1 + 4s 2 + d2 = 2,

with dI = x 3 ; d 2 = x 4 ; sl = xl; s2 =x2 (19)

Solving for s1 and s2 in terms of dI and d2 obtain

s= 1 - 1 1 d (20)
3 1 3

s 2  I ( +d1 +-d 2 ). (21)

Because of the form of equation (8),

1• = 1

=1; a11 =4' ; 1 2 = 4

3 1 3 (22)

2= 4 a2 1  16 ' a2 2  16.

Therefore, from equation (7),

v =y (ya11  D
I 6d1  ad1  11 asI 21as2

16- (52 + 13 d1 - 17 d2 ); (23)

and v2 ay a-y- -- -(12 -- + D2 8 2

2  6d 2  ad2  12 as1  22 a 2

1 (-68 -17 d1 + 37 d2 ) (24)64

* Step IV. Set dI -d = 0.
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Step V. (1-1) Having d M d - 0, obtain,

from equation (20), sI = 1;

3
from equation (21), 32

(25)
13

from equation (23), v 1 3 16'

from equation (24), v2 = - 17

(2-1) The differential algorithm requires,

17
vi = v 2  - Vh 0. (26)

(3-1) Both vi and vh are noL zero, therefore

the minimum has not yet been found.
17

(4-1) Since v v - 1
i 2 64 omut

V =v + v - 17 (27)
i h 64'(7

(5-1) Because V < 0, increase di = d2.

(6-1) The increase in d2 is constrained by:

Case (1)

sk + ASk 2 " 0 for k 1,..., K, (28)

but 6Sk

Ask 2 = \-- 2  Ad =- k2 Ad2 " (29)

Therefore, 3
Ad min Sk }

Ad 2.= S a4. (30)
k2 k2 6

Case (II)

(•v 2

v2 + 6 2 Ad 0. (31)

Therefore,

Ad2  ) 68
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Case (III) Since d2 is initially set at zero and is to be

increased, this case does not apply.

From the results above, 6d = 8- < 4. (33)

2 37(3

(7-1) No state change was needed, and the new values of the

decision and state variables, and of the constrained

derivatives are:

dI 0 remains uonstant;

d 0 68 = 6837

I11 (_ 4)68 54
3716 37 37'

ý8 (34)3 3 68 i__34

s2 4  (6) 37  = 37'

13 17 68 12
16 + 64 37 37

16 37 68

The value of y at this point is y = - (35)37 .(5

The results can be displayed in a tableau with the following format:

011  a12  s1

` 2 1  2 2  2

v 1  y
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Therefore,

0 68

4 4 54

16 16 37

1 3 15

16 16 37

12 - 198
37 0 19

Now the differential algorithm is applied all over again.
(1-2) The new values of decision and state variables as well as of the

decision derivatives are given in the tableau.
(2-2) v. = 0 and v = 0 (36)i h

(3-2) Since both v. = 0 and vh = 0, the minimum has been found at

X* * 54
x*= x× = s = 15(37)

37 198 ý l (37)

and y* (x*) = 198 (38)
37

The problem converged to the solution in one iteration and no changes

in the state set were necessary.

The same problem was solved by Wilde and Beightler (Reference 1, pp.
76-78) using the differential algorithm alone, without acceleration. Three

iterations involving two changes in the state set were required to con-
verge to the minimum.
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