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ABSTRACT 

A Z-transform algorithm, developed for the spectral analysis of signals, allows 
one to get closer to the poles of a signal and effectively reduces the signal's band- 
width and sharpens its peak point. It can give a high resolution, narrow-band fre- 
quency analysis with frequency spacing Af <.1/T, where T = total lengthofthe 
analysis interval. This algorithm also enhances (1) the signal poles that lie on cir- 
cular or spiral contours that begin at almost any point in the Z-plane and (2) the 
angular spacing of points in an arbitrary constant. Since this algorithm takes advan- 
tage of high-speed convolution, it is almost as fast as and more flexible than the 
Fast Fourier Transform (FFT). 
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SPECTRAL ANALYSIS OF SIGNALS BY USING 
THE Z-TRANSFORM ALGORITHM 

INTRODUCTION 

A Z-transform  algorithm  is   applied  to   the   spectral   analysis   of 
signals whose poles and zeros   are   either on or off  the imaginary axis 
of a complex S-plane,    This algorithm is  flexible and  can  be applied 
either   on  or   off  the   imaginary  axis and can  enhance   the  poles in the 
spectral analysis of signals.   It is also useful in evaluating high reso- 
lution,   narrow-frequency-band spectra. 

The signals that are to be analyzed by using the digital technique are 
consideredatdiscrete values of t,  usually nAt,   where  n=0,  1, 2,  .   .   ., 
and   At   is a fixed positive number usually referred  to  as   a   sampling 
period.    In Fig.   1,    a continuous   function  of time,    f(t),    is shown,    and 
its values at   t = nAt   are indicated. 

Let   At   be the fixed positive  number   and  let   f(t)    be   defined for 
t > 0.   The Z-transform of   f(t) is the function 

IX) 

FCZ) =   2    f(nAt) Z-"    , (1) 
n =0 

where 
Z = complex variable. 

For finite sum,  we can write 

N-l 
F(z) =   S     f(nAt) Z-°    . (2) 

n=0 

If   Z = e^   \   where   S =  o" + jco,    then Eq. (2) stands for the Laplace 
transform  of  a  train  of  equally spaced impulses   of magnitude   f(nAt). 
The Laplace transform  of  a  train  of  impulses   repeats   its   value   in  a 
horizontal   strip of the  S-plane   of width   2Tr/At   in every strip parallel 
to it. The Z-transform maps each such strip into an entire Z-plane or, 
conversely,    the   entire   Z-plane   corresponds   to  any  horizontal   strip 
of the  S-plane,   e. g. , the regions     - <«   < a < oo      and   -u/At <, co <.TT/At, 



where S - <T + joo. The jcj axis of the S-plane along whichwe generally 
equate the Laplace transform with the Fourier transform is the unit 
circle in the Z-plane, and the origin of the S-plane corresponds to 
Z = 1. The interior of the unit circle of a Z-plane corresponds to the 
left half of the S-plane, and the external corresponds to the right-half 
plane. Straight lines in the S-plane correspond to a circle or a spiral 
in the Z-plane,   as shown in Fig.   2. 

Usually the Z-transform.s are computed along the path corresponding 
to the  jcj axis;  i.e.,   the unit circle   on  the   Z-plane   gives   a  discrete 
equivalent of the Fourier transform. 

There   are   many  applications   of  the   Z-transform  on   and  off  the 
unit circle,i'2   e.g.,   spectra, filtering, interpolation,   etc.   This report 
presents   the   spectral  estimation  of   signals  for which  one  has   some 
a priori knowledge of the locations   of poles by using the Z-transform 
algorithm.   Moreover,    this   report investigates the effect of additive 
white noise on the Z-transforna algorithm when signal spectrums are 
evaluated. 

THEORETICAL APPROACH 

For convenience, the equation for the finite sum(Eq.   (2)) is written 
again^''^ : 

F(z^)=''2'f(nAt) z;"   . ,    (3) 
n =0 

Let 

Z^ = AW'', k =0,1,2,. .., M-1    , (4) 

where  M  is  an  arbitrary   integer   and  both A   and  W  are   arbitrary 
complex numbers: 

, A^A,.''^d, ': r    {5) 

and 

W=Woe'2'^0o    , (6) 

The starting point of the contour is deternnined by A,   and the reso- 
lution is determined by  W   (Fig.   3). 

If   A = 1,   W =e-'2"'/'^   ,   and   N = M,   then  Eq.    (3)   corresponds   to 
the discrete Fourier transform.   If   N    is a power of two,   the algorithm 
can be implem.ented as a Fast Fourier Transform (FFT). 



The general Z-plane contour begins with point   7. - K   and, depending 
on the value of  W,    spirals in or out with respect to its origin. If W,,   = 1, 
the contour is an arc of a circle.   The angular   spacing of the   samples 
in the Z-plane is   ZTTCJ) 

Since  A   and  W   are   arbitrary complex numbers,   we see that the 
points 

S^ =SQ +k(ACT+jA(u) = J-(lnA-klnW)    , (7) 

where 
k =0, 1, 2,. . .,M-1 and . • . ; 

lie on an arbitrary straight-line segmentof arbitrary length and arbitrary 
sampling density. 

The contour Z^ = AW"'', where k= 0, 1, 3, . . ., M-1, is con- 
siderably more general than that to which the FFT applies (Fig. 3). It 
is seen from Eq. (3) that the computation of a Z-transform along the 
general contour requires NM multiplication and additions, since the 
special symmetry of e'^'^'"'^ , which is exploited in deriving the FFT, is 
absent in more general cases. However, by manipulating the role of 

W° /2   in calculation, it can be shown that the computations can be reduced. 

Substituting the value of   Z^   - AW"'',   we see that Eq.   (3) yields 

■     , F(ZJ=   ^     f(nAt) (AW-T° 
n=0 (8) 
N-l 

=   S     fn A—W''    ,   ' 
, n =0 where 

fn =f(nAt)    , 

n = 0, 1, 2,. . . ,N-1, and 

k =0,1,2,. . .,M-1   • 

Substituting the value of   nk = n^   + k^   - (k - n)V2   for the exponent of 
W   in Eq.   (8)^we get 

.            ■      ,^ ,    f^-^           „     n^+k^-Ck-n)' 
F(Z.)=   2    ftiA "W  

■■'■   -■" ■■ ■ '' n=0 2 ■■ 



r 
=   2    fn A-" W'""/2 w*" "  W" 

n=0 
1 w;nV2  w^ ^^   m"^''-"^ '^ 

N-1 
S 

n=0 

fnA-^w'''/^   (w-^''-")'/^)   (w'''/^' 
(9) 

Let 

Y    =fn A"" W"^/2,n ^0,1,2,. . .,N-1    , (10) 

„-nV2 

and 

V^ =W'"'^,n =0,1,2,. . .,N-1    . (11) 

Now convolving   Y^,    with   V„ ,   we can write 

N - 1 , 

Sk=   ^    Y_,V k=0,l,2,...,M-l     . (12) 
n =0 

Multiplying Eq.   (12) by   W       ',    we can write 

F(Z^)=g, W>''/2,k= 0,1,2,.. .,M-1    , (13) 

which is evaluated as follows: 

'  2/ 
a. The input signals in sequence are multiplied by     A""W"   ^   to 

get   Y   ,   which requires   N   multiplication. 

b. The symbol   g^    is the convolution of    Y^    and   V^     . This con- 
volution is equivalent to multiplying the Fourier transform^ of   Y_^    and 
V   .    The    g,^    is evaluated by   taking the inverse FFT of the product of 
the individual FFT of   Y„    and   V^, .   These operations take approximately 
a time proportional to    (N + M)    log    (N + M).^ 

kV2 
c. The next step is to m.ultiply g^^ by W to get F(Z|^), which 

requires only M multiplication. (The whole operation is summarized in 

Fig.   4.) 

SPECTRAL ANALYSIS OF SIGNALS 

The advantage   of the   Z-transform   algorithm   over the   FFT is the 
algorithm's   ability to   evaluate the   Z-transform  at points inside   and 
outside the unit circle.    By evaluating the transform, that is outside the 



unit circle,   one can get closer to the poles and the zeros of the signal, 
thus effectively reducing the signal's bandwidth and sharpening its peak 
point.   This will be demonstrated by the simulated examples  1 and 2. 

Example  1: 
4 

f{t) =   S    A.e "' cos277f.t,     0 <t <T =78msec, 
i= 1 ' 

= 0 T <t <128msec, 

where 
A. = 1, i = 1, 2, 3, and 4 

aj=-0.0038 f^=50Hz 

a^ =-0.0164 f2 = 200 Hz 

Oj = -0.023 £3 = 300 Hz 

a^=-0.029 f^=370Hz 

and    l/At = sampling frequency = 1 kHz. 

The signal   f(t) is shown in Fig.   5. For this example,   only the pole 
positions of the upper half of the S-plane are shown in Fig.   6. 

In Example 1, the Z-transform of 128 sample datapoints is evaluated 
on two spirals   outside the unit circle;    one spiral is on the unit circle 
and the other is inside the unit circle. Figure 7 shows the four contours 
as they would appear in the S-plane.    The Z-transform is evaluated at 
51  equally   spaced points,    from   0   through   500 Hz   (frequency spacing 
Af =  10 Hz),    that  have   a  corresponding  value   of   d;)^ = -l/lOO.    The 
evaluation of the magnitude response of simulated signals without noise 
on contours  1,   2,   3, and 4 of Fig. 7 is  shown in Figs.   8A through 8D, 
respectively. Figures 8A and 8B show that peak values at higher domi- 
nant frequencies   are   smaller than the   peak values at lower dominant 
frequencies   because the   signal poles   are farther   away at higher fre- 
quencies   than  at   lower   frequencies.    Figure 8C shows   that   the  peak 
values at all dominant frequencies   are   almost equal.    This is due to 
the fact that the gradient of contour 4 of Fig.   7 relative to contour 3 is 
constant.  As expected,   Fig,   8D shows that the sharpening of magnitude 
response in the region of the poles is quite pronounced and higher com- 
pared with Figs.    8A,    SB,    and   8C since the poles   are  very  close   to 
contour   4.    For   comparison,   a  direct FFT   of   simulated   signals   is 
evaluated and shown in Fig.   9.   The resolution or frequency spacing is 
Af = l/NAt ^ 7, 8 Hz,   whereas the frequency  spacing in the   case of a 
Z-transform is  10 Hz. 



To see the effect of noise on the Z-transform algorithm, white noise 
is added to the signal.   Now,    the Z-transforna of the comiposite signal 
(signal plus noise) is evaluated, as mentioned above, on the same con- 
tours at signal-to-noise ratio    (S/N)   = +8.87 dB   and at S/N = -0.6dB. 
The S/N   is defined as 

S ,      average signal power 

N average noise power 

Figures lOA through lOD and 1 lA through 1 ID, which show the magni- 
tude   response   of composite   signals   at   S/N = 8. 87 dB   and   -0. 6 dB, 
respectively,    indicate that the magnitude response in the pole regions 
is more pronounced. Since the noise is white, its effect is noted by the 
bias   increase   of  the  whole   spectrum.   For   comparison,   direct  FFT 
evaluation of composite signals is shown in Figs.   12A and 12B. 

Example 2: One very useful advantage of the Z-transform algo- 
rithm is that it enables   evaluating high  resolution,  narrow frequency 
band spectra efficiently, whereas the frequency resolution in the stand- 
ard FFT technique is limited by the total length of the signal.   However, 
if one   requires   resolution,    Af,   where   Af <_ l/NAt   and where   At = 
sampling period  and   N = number   of sample points, then the number of 
sample points,   N,   must be increased.   In other words,   the small  Af 
implies a large value of N. 

Often, however, a high resolution for a linaited range of frequencies 
and low  resolution for   the   rest of the   spectrum  is   desired,   i. e. ,   a 
detailed view of the   spectrum in the passband and only a general view 
outside the passband. 

The following simulated results will show that the Z-transform algo- 
rithm allows (1) independent selection  of initial frequency or starting 
point and (2) frequency   spacing   that is   independent  of  the   number   of 
time samples.    (For the standard FFT,   the frequency   spacing is not 
independent of the  number of  time samples.)   Hence,   high resolution 
can be obtained over a narrow frequency range. 

To illustrate these points,   a signal in the form of 
5 

f(t) =   2   cos277-f.t,  0-<t<T = 78msec, 
i= 1 ' 

= 0 T <t < 128msec    , 



where 

1 = 230 Hz 

2 = 240 Hz 

3 = 250 Hz 

4 = 260 Hz 

= 270 Hz 

is generated as shown in Fig.   13. 

The FFT for 128 points of this signal is calculated at various S/N's, 
as shown in Figs. 14A, 14B, and 14C. In all cases, most of the signal 
energy is located between ZOO through 300 Hz. 

To investigate the passband and the transition  regions more   care- 
fully,    the Z-transform  algorithm was  used to give a 2-Hz   resolution 
from 200 through 300 Hz,   as shown in Figs.   15A,   15B,   and 15C.    The 
contour is the same as in the case of the FFT.    To achieve this   reso- 
lution,   one would require 500 time-samiple  values instead of only the 
128 points that have   been used  in the   Z-transform  algorithm.    This 
shows that this algorithm is a powerful tool for  the close examination 
of small frequency bands. 

CONCLUSION 

Signal siraulation  results  show that the Z-transform algorithm can 
enhance the signal poles, which, in turn, sharpen the peak of the domi- 
nant  frequency  and  reduce  the   bandwidth.    The algorithm provides a 
number of output points that  are   independent  of the  number   of  input 
points;   i. e. ,    the   output points may be larger or  smaller than the input 
points.  It also has the  added  advantage of enabling one to   start at an 
arbitrary point in the Z-plane.   This algorithm will be  very useful for 
a close look at the filter passbands. 
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