UNCLASSIFIED

AD NUMBER

AD875216

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; 17 AUG 1979.

O her requests shall be referred to Naval
Underwat er Systens Center, New London, CT.

AUTHORITY

NUSC [tr 23 Aug 1974

THISPAGE ISUNCLASSIFIED




UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

New London Laboratory
Naval Underwater Systems Center
New London, Connecticut 06320

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2b., GROUP

3. REPORT TITLE

SPECTRAIL ANALYSIS OF SIGNALS BY

USING THE Z-TRANSFORM ALGORITHM

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Research Report

5. AUTHORI(S) (First name, middle initial, last name)

Azizul H. Quazi

6. REPORT DATE

17 August 1970

7a8. TOTAL NO. OF PAGES 7b. NO. OF REFS

27 2

8a. CONTRACT OR GRANT NO.

b, PROJECT NO.

B-613-00-00

S 2303-11560

%9a, ORIGINATQR'S REPORT NUMBER(S)

NL-3001

9b. OTHER REFPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

of the New l.ondon Liaboratory.

This document is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only with prior approval

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Department of the Navy

13. ABSTRACT

T = total length of the analysis interval.

A Z-transform algorithm, developed for the spectral analysis of signals,
allows one to get closer to the poles of a signal and effectively reduces the
signal's bandwidth and sharpens its peak point. It can give a high resolution,
narrow-band frequency analysis with frequency spacing Af < 1/T, where

This algorithm also enhances (1) the

signal poles that lie on circular or spiral contours that begin at almost any
point in the Z-plane and (2) the angular spacing of points in an arbitrary con-
stant. Since this algorithm takes advantage of high-speed convolution, it is
almost as fast and more flexible than the Fast Fourier Transform (FFT).

DD o 1473 (PAGE 1)

S/N 0102-014-6600

UNCLASSIFIED

Security Classification




UNCLASSIFIED

Security Classification

14. REY TORES LINK A LINK B LINK C
ROLE wWT ROLE wT ROLE wT
High-Speed Convolution
Z-Transform Algorithm
FORM
DD 1 NOV 651473 (BACK) UNCLASSIFIED

(PAGE 2)

Security Classification




U0134721 -

Title: Spectral Analysis of Signals by Using the Z-Transform Algorithm. e
AD Number: AD0875216

Corporate Author: NAVAL UNDERWATER SYSTEMS CENTER NEW LONDON CT NEW LONDON LAB
Personal Author: Quazi, Azizul H

Report Date: August 17, 1870

Media: 28 Page(s)

Distribution Code: 01 - APPROVED FOR PUBLIC RELEASE

Report Classification: Unclassified

Source Code: 405918

From the collection:

Technical Reports



e vy

A\

LIBRARY )

) TEGUNICAL REPORT SECTIOR
NAVAL POSTERADYATE SCHOOL
MONTEREY, CALIFCRNIA $8840

NO FORN
_NUSC Report No. NL-3001

Spectral Analysis of Signals by Using
The Z-Transform Algorithm

AzizuL H. Quazt

Information Processing Division

17 August 1970

New London Laboratory
 NAVAL UNDERWATER SYSTEMS CENTER |

This document is subject to special export controls and each transmirttal to . o
foreign governments or foreign nationals may be made only with prior approval
of the New London Laboratory.

Znel [ to USKUSL fer /Qﬁ_%:?ﬁ,g



REVIEWED AND APPROVED: 17 August 1970

Z(/ A,'L?ﬂ ( U/h]("z

W. A. Von Winkle
Associate Technical Director
for Research
New London Laboratory

Correspondence concerning this report should be addressed as follows:

Officer in Charge

New Londen Laboratory
Naval Underwater Systems Center
New London, Connecticut 06320



NO FORN

ABSTRACT

A Z-transform algorithm, developed for the spectral analysis of signals, allows
one to get closer to the poles of a signal and effectively reduces the signal’s band-
width and sharpens its peak point. It can give a high resolution, narrow-band fre-
quency analysis with frequency spacing Af <1/T, where T = total lengthof the
énalysis interval, This algorithm also enhances (1) the signal poles that lie on cir-
cular or spiral contours that begin at almost any point in the Z-plane and (2) the
angular spacing of points in an arbitrary constant, Since this algorithm takes advan-
tage of high-speed convolution, it is almost as fast as and more flexible than the
Fast Fourier Transform (FFT).
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Manager, Lt, Cmdr, R, Levin, NAVSHIPS PMS-394,

The algorithm described in this report is particularly useful for spectral analysis
of active sonar signals where high resolution is essential. It has also the ability to
evaluate high-resolution spectra over a passband that can be located anywhere within
the total band of interest,

Benjamin F, Cron, Research Associate in the Acoustic Research Branch of the
Ocean Sciences Division, was the Technical Reviewer for this report,
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SPECTRAL ANALYSIS OF SIGNALS BY USING
THE Z-TRANSFORM ALGORITHM

INTRODUCTION

A Z-transform algorithm is applied to the spectral analysis of
signals whose poles and zeros are either on or off the imaginary axis
of a complex S-plane. This algorithm is flexible and can be applied
either on or off the imaginary axis and can enhance the poles in the
spectral analysis of signals. It is also useful in evaluating high reso-
lution, narrow-frequency-band spectra.

The signals that are to be analyzed by using the digital technique are
considered atdiscrete values of t, usually nAt, where n=0,1,2,. ..,
and At is a fixed positive number usually referred to as a sampling
period. In Fig. 1, a continuous function of time, f(t), is shown, and
its values at t = nAt are indicated.

Let At be the fixed positive number and let f(t) be defined for
t> 0, The Z-transform of f(t) is the function

F(2) = §;0 tahdd) Z-0 (1)

where
Z = complex variable..

For finite sum, we can write

N-1
F(z) = 3 f(aAv) Z7° . (2)
n=0

If 2 = eSAt, where S = o+ jw, then Eq. (2)stands for the Laplace
transform of a train of equally spaced impulses of magnitude f(nAt),
The Laplace transform of a train of impulses repeats its value in a
horizontal strip of the S-plane of width 2w /At in every strip parallel
to it, The Z-transform maps each such strip into an entire Z-plane or,
conversely, the entire Z-plane corresponds to any horizontal strip
of the S-plane, e.g., the regions -o < g <« and -Tr/AtgooS_Tr/At,



where S = ¢ + jw. The jw axis of the S-plane along whichwe generally
equate the Laplace transform with the Fourier transform is the unit
circle in the Z-plane, and the origin of the S-plane corresponds to
Z =1, The interior of the unit circle of a Z-plane corresponds to the
left half of the S-plane, and the external corresponds to the right-half
plane. Straight lines in the S-plane correspond to a circle or a spiral
in the Z-plane, as shown in Fig. 2.

Usually the Z-transforms are computedalong the path corresponding
to the jw axis; i.e., the unit circle on the Z-plane gives a discrete
equivalent of the Fourier transform.

There are many applications of the Z-transform on and off the
unit circle,b»2 e.g., spectra, filtering, interpolation, etc. This report
presents the spectral estimation of signals for which one has some
a priori knowledge of the locations of poles by using the Z-transform
algorithm. Moreover, this report investigates the effect of additive

white noise on the Z-transform algorithm when signal spectrums are
evaluated.

THEORETICAL APPROACH

For convenience, the equation for the finite sum (Eq. (2))is written

again®?:
N-1
F(z))= % faA0 Z7" . (3)
n=0
Let
Z,=AV'k=0,1,2,...,M-1 , (4)

where M is an arbitrary integer and both A and W are arbitrary
complex numbers:

A=A,el?G, (5)

and
V=W, eiz"é)o . (6)

The starting point of the contour is determined by A, and thereso-
lution is determined by W (Fig. 3).

If A=1, W=e 2N | and N =M, then Eq. (3) corresponds to
the discrete Fourier transform, If N is a power of two, the algorithm
can be implemented as a Fast Fourier Transform (FFT).



The general Z-plane contour begins withpoint Z = A and, depending
on the valueof W, spirals inor out withrespect to its origin, If W, = 1,
the contour is an arc of a circle. The angular spacing of the samples
in the Z-plane is 21r¢0.

Since A and W are arbitrary complex numbers, we see that the
points

sk=so+k(Aa+jAm)=Ait(1nA—k1nw) , (7)

where
k=0,1,2,...,M-1 and

. 1
So =00+]m0=ElnA ,

lie on anarbitrary straight-line segmentof arbitrarylengthand arbitrary
sampling density.

The contour Zk = AW-k, where k=0,1,3,. .., M-1, is con-
siderably more general than that to which the FFT applies (Fig. 3). It
is seen from Eq. (3) that the computation of a Z-transform along the
general contour requires NM multiplication and additions, since the
special symmetry of ¢!V | which is exploited in deriving the FFT, is
abszent in more general cases. However, by manipulating the role of
wo’/2 in calculation, it can be shown that the computations can be reduced,

Substituting the value of Zk = AW, we see that Eq. (3) yields

N-1
F(z)= % f(aAd (AW™H)"
0

n=

(8)

N-1 K
=3 fmnAT" W™ |
where _ =0
fﬂ=f(nAt) ?
n=0,1,2,...,N~1, and
k=0,1,2,...,M~1 -

Substituting the value of nk = n? + k? - (k- n)2 /2 for the exponent of
W in Eq. (8) we get

n24+k? — (k -n)?
2

N-1
F(Z)=3 fmA™"W
0

n=



_ r
S e amnwel g2 g emn)z

i

n=0
=N2°1 fn A= w2 (W-(k—:;)'z/ﬁ) <‘x>k2/2'.) ) bz
n=0 ;
Let
Yn=an'“W“2/2,n=0,1,2,...,N—l , (10)
and
VH=W'"2/2,,n=0,1,2,...,N—l . (11)
Now convolving Y_  with V , we can write
N-—-1.
gk=n2=o YV, _ k=01,2,...,M-1 . (12)
Multiplying Eq. (12) by W<l e can write
F(Zk)=ngk2/2,k=0,1,2,...,M—1 , (13)

which is evaluated as follows:

12
a. The input signals in sequence are multiplied by A™"W*" /2 to
get Y , which requires N multiplication,

b, The symbol g, is theconvolutionof Y and V_ . This con-
volution is equivalent to multiplying the Fourier transform of Y and
V.. The g, is evaluated by taking the inverse FFT of the product of
the individual FFT of Y, and V_ . These opei‘ations take approximatel
a time proportional to (N+M) log (N+M).2 '

2

c. Thenext step is tomultiply g, by wk /2 to get ¥F(Z, ), which
requires only M multiplication. (The whole operation is summarized in
Fig, 4.)

SPECTRAL ANALYSIS OF SIGNALS

The advantage of the Z-transform algorithm over the FFT is the
algorithm's ability to evaluate the Z-transform at points inside and
outside the unit circle., By evaluating the transform that is outside the



unit circle, one can get closer to thepoles and the zeros of the signal,
thus effectively reducing the signal's bandwidth and sharpening its peak
point. This will be demonstrated by the simulated examples 1 and 2,

Example 1:
f(t) = 2 Ae % cos2nfr, 0 <t<T =78msec,
—(; ' T <t <128msec,
where

A;=1,i=1,2,3,and 4

a, = -0.0038 fl =50 Hz

a, = -0.0164 fz =200 Hz

a; = -0.023 f3' =300 Hz

a4=—0.029 f4 =370 Hz

and 1/At = sampling frequency = 1 kHz,

The signal f(t) is shown in Fig. 5, For this example, only the pole
positions of the upper half of the S-plane are shown in Fig. 6.

In Example 1, the Z-transform of 128 sample datapoints is evaluated
on two spirals outside the unit circle; one spiral is on the unit circle
and the other is inside the unit circle, Figure 7 shows the four contours
as they would appear in the S-plane, The Z-transform is evaluated at
51 equally spaced points, from 0 through 500 Hz (frequency spacing
Af =10 Hz), that have a corresponding value of dy = -1/100. The
evaluation of the magnitude response of simulated signals without noise
on contours 1, 2, 3, and 4 of Fig, 7 is shown in Figs. 8A through 8D,
respectively. Figures 8A and 8B show that peak values at higher domi-
nant frequencies are smaller than the peak values at lower dominant
frequencies because the signal poles are farther away at higher fre-
quencies than at lower frequencies. Figure 8C shows that the peak
values at all dominant frequencies are almost equal. This is due to
the fact that the gradient of contour 4 of Fig. 7 relative to contour 3 is
constant. As expected, Fig. 8D shows that the sharpening of magnltude
response in the region of the poles is quite pronounced and higher com-
pared with Figs. 8A, 8B, and 8C since the poles are very close to
contour 4. For comparison, a direct FFT of simulated signals is
evaluated and shown in Fig. 9, The resolution or frequency spacing is
Af = 1/NAt = 7.8 Hz, whereas the frequency spacing in the case of a
Z-transform is 10 Hz,



To see the effectof noise on the Z-transform algorithm, white noise
is added to the signal. Now, the Z-transform of the composite signal
(signal plus noise) is evaluated, as mentioned above, on the same con-
tours at signal-to-noise ratio (S/N) = +8.87 dB and at S/N=-0.6dB.
The S/N is defined as

average signal power

S
— =10 log -
N average noise power

Figures 10A through 10D and 11A through 11D, which show the magni
tude response of composite signals at S/N = 8,87 dB and -~0.6 dB,
respectively, indicate that the magnitude response in the pole regions
is more pronounced. Since the noise is white, its effect is noted by the

bias increase of the whole spectrum. For comparison, direct FFT
evaluation of composite signals is shown in Figs, 12A and 12B.

Example 2: One very useful advantage of the Z-transform algo-
rithm is that it enables evaluating high resolution, narrow frequency
band spectra efficiently, whereas the frequency resolution in the stand-
ard FFT technique is limited by the total length of the signal, However,
if one requires resolution, Af, where Af < 1/NAt and where At =
sampling period and N = number of sample points, then the number of
sample points, N, must be increased. In other words, the small Af
implies a large value of N,

Often, however, a high resolution for alimited range of frequencies
and low resolution for the rest of the spectrum is desired, i.e., a
detailed view of the spectrum in the passband and only a general view
outside the passband.

The following simulated results will show that the Z-transform algo-
rithm allows (1) independent selection of initial frequency or starting
point and (2) frequency spacing that is independent of the number of
time samples, (For the standard FFT, the frequency spacing is not
independent of the number of time samples.) Hence, high resolution
can be obtained over a narrow frequency range,

To illustrate these points, a signal in the form of

5
f(t) = = cos2mfit, 0 <t <T =78msec,

i=1

=0 T <t <128msec ,



where

f1 = 230 Hz
f2 = 240 Hz
f3 =250 Hz
f4 = 260 Hz
f, =270 Hz

is generated as shown in Fig, 13.

The FFT for 128 points of this signal is calculatedat various S/N's,
as shown in Figs., 14A, 14B, and 14C. In all cases, most of the signal
energy is located between 200 through 300 Hz.

To investigate the passband and the transition regions more care-
fully, the Z-transform algorithm was used to give a 2-Hz resolution
from 200 through 300 Hz, as shown in Figs. 15A, 15B, and 15C, The
contour is the same as in the case of the FFT. To achieve this reso-
lution, one would require 500 time-sample values instead of only the
128 points that have been used in the Z-transform algorithm. This
shows that this algorithm is a powerful tool for the close examination
of small frequency bands.

CONCLUSION

Signal simulation results show that the Z-transform algorithm can
enhance the signal poles, which, in turn, sharpen the peak of the domi-
nant frequency and reduce the bandwidth, The algorithm provides a
number of output points that are independent of the number of input
points; i.e., the output points may be larger or smaller than the input
points, It also has the added advantage of enabling one to start at an
arbitrary point in the Z-plane. This algorithm will be very useful for
a close look at the filter passbands,
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ABSOLUTE VALUE OF FFT
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Fig. 12. FFT Absolute Magnitude of Simulated Signals at S/N =8.87 dB and S/N =-0.6 dB,
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