UNCLASSIFIED

AD NUMBER

AD875085

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUN 1970. Other requests shall be referred to Ait Force Institute of Technology, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFIT ltr, 22 Jul 1971

THIS PAGE IS UNCLASSIFIED

RANGE NAXIMIZATION CF AN AIR-TO-SURFACE MISSILE

THESIS

GGC/EE/70-5

Albert I. Chatmon

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Dean of Engineering, Air Force Institute of Technology (AFIT-SE), Wright Patterson AFB, Ohio 45433.

RANGE MAXIMIZATION

OF AN

AIR-TO-SURPACE MISSILE

THESIS

Presented to the Faculty of the School of Engineering of

the Air Force Institute of Technology

Air Unliversity

in Particl Fulfillment of the

Requirements for the Degree of

Master of Science

by

Albert I. Chatmon, B.S.E.E. Graduate Guidance and Control

June 1.970

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Dean of Engineering, Air Force Institute of Technology (AFIT-SE), Wright-Patterson AFB, Chio 45433.

ĩ

* .

Preface

This presentation is an application of optimal control theory to determine approximations of the angle-of-attack history that maximizes the range of a typical air-to-surface missile trajectory. I attempted to approach the problem as simply and as practically as possible, thus hoping to enhance further the use of optimal control techniques by the practical engineering world.

I wish to express my appreciation to my sponsor, James P. McCarthy, Aerospace Engineer, Aeronautical Systems Division and my advisor, ht. Col. R. A. Hannen, for their guidance and helpful suggestions in preparing this paper. I would also like to express my appreciation to Capt. Thomas E. Moriarty, Guidance and Control Engineer, Aeronautical Systems Division, for his efforts in getting me interested in the problem, and my ex-neighbor, Lt. Steve Faught, formerly of the Digital Computation Division of the Aeronautical Systems Division, for his help in writing the "Calcomp" computer program used to make the graphs in this presentation.

Albert I. Chatmori

ii

Contents

<u> Prèfa</u> çe	القام ما والما مع	道道 -
Lift of	Flgures	v
List of	Tables	vi
List of	Symbols	vî.i
Abstrac	t e e e e e e e e e e e e e e e e e e e	îx
Į.	Introduction a go a	l
ÏI.	The Equations of Metron	24
	Thrust and Mass and a contract of the second s	_ 5
III.	Formulation of the Oplimal Control Problem	9
	Cost Function Maximum Principle Necessary Conditions	9 9 11
IV.	Aerodynamic Derivatives	12
	Curve Fitting Data	14 14
v.	The Conjugate Gradient Technique	2Q
	The Conjugate Gradient Algorithm	27 27
VI.	Results and Discussions	2 <u>3</u>
	The Final Time	23 23 24 25 30 30
VIĮ.	Conclusions	37
VIII.	Recommendations	38
۔ یں- عود مرد	Objective Constraining Control	38 39 39 40

	Int Nur The	er ner e C	va ic on	ă al tr	Maji .Me ol	cin etr Sy	11: 10: 7 S1	za ds te:	ti m	.011 • •	•	• •	• 2 •	•	• -•; •	•	• •		•	•u • •`	•	• •	'40 41 42
Bibliogra	iphy	,	•	•	•	, ,	•	è	•	۲	•	••	•	•	•	•	•	•	•	•	•	•	43
Appendix	A:	Co	mp	ut	er	Pr	0	gr	am	L	•	•	•	ì	•	•		•	.4	•	•	•	44
Appendix	в:	Ţh	e	Dr	ag	ar	ıd	.L	j ſ	t	Çc	bef	'1' i	c'i	·24	, <u>'</u> ;	F.		tj	l òr	15	•	<u>5</u> 6
Appendix	Ç:	Γă	gì	an	gita	ìņ	٦D:	if	fe	re	nt	Ìa	ti	or	Ţ	'oı	1011	1.:		•	•	•	58
Appêndix	D:	Pő F1	ly tt	noi 1n	ni: 8	al	Ŀ	ea •	st	. 8	iqu •	lar •		•	ur ,	∵v∈ •	•		•	•	●	•	۰6 <u>0</u>
vita .	• •	•	, *	^ •	•		,	•	•,	• =	•	•	•	•	•	•	•	•	•		•	٠	δŻ

iv

GGC/EE/20-5

List of Figures.

Figu	re	Page
1	Free Body Diagram of Missile	4
2	Thrust Profile of Missile	7
3	Mass of the Missile	8
4	Atmospheric Density	16
5	Curve Fit of the Velocity of Sound	17
6	Curve Fit of C _{Do}	18
7	Curve Fit of CLot Per Degree	19
8	Run (14) Control History	29
9	Angle-of-Attack Control History	31
10	Velocity vs. Time	32
11	Altitude vs. Time	3Ž
12	Altitude ws. Range	33
13	Range ws. Time	33
14	Path Angles vs. Time	34
15	Pitch Rate vs. Time • • • • • • • • • • • • • • •	34
16	The Gradient vs. Time	35
17	The Hamiltonian vs. Time	.35
1B	The Lift and Drag Forces Acting on the Missile	56

4.

GGC/EE 70-5

List of Tables

Table																	Page
I.	Errors	in	Curve	Fits	•	e	•	•	٠	•	•	•	•	•,	•	•	14
II.	Invesți	igat	ion Re	esults	:	•	•	•	•	٠	•		•	•	٠	•	26

vì

GGC/EE/XÒ-5

Symbols

d		angle of attack; the control variable (deg)
þ	-	quotivent of the inner products of the gradient of the (1+1) th iteration and the i th iteration
с _{Dэ}	••	parasite drag coefficient
c_L	••	lift curve slope coefficient at trimmed flight conditions (per degree)
D	•••	drag (pounds)
∆t	ź-	time interval of the Runge-Kutta integration formula
F	••	thrust (pounds)
G		gravity constant
B	-	gravity (ft/sec ²)
8	-	flight path angle (deg)
Ħ	-	Hamiltonian
h	÷	altitude of the missile (feet)
Hu	-	the gradient
Igp	-	specific impulse (seconds)
J	-	the objective (ft. or mi)
Ř		first guess of the k-parameter
k	-	the parameter used to adjust the control variable per iteration
L		lift (pounds)
λ		adjoint state
M		Mach number
M		nass of the vehicle (slugs)
^{ĨI} ọ	-	initial mass of the vehicle (slugs)

vii

mp		mass of the missile propellant (slugs)
p	-	conjugate gradient search direction
đ	-	dynamic pressure (slugs/(ft-sec ²))
R	•	penality weighting function (ft/sec or mi/sec)
2°	••• ³	range of the missile (ft or mi)
Re	•••	radius of the earth (ft)
£		density (slugs/ft ³)
S	e •	reference surface area (ft ²)
t	-	time (seconds)
t _f	í.	fixed final time (seconds)
0		pitch angle
V	-	velocity of the missile (ft/sec)
٧ _s		speed of sound (ft/sec)
Ŵp	7	weight of the missile propellant (pounds)
Wo	-	initial weight of the missile (pounds)
x	-	state variable

2

Abstract

Pontryagin's Maximum Principle, coupled with the conjugate gradient iterative technique, is employed in determining estimates of the two-dimensional, maximum range trajectory of an air-to-surface missile. Angle of attack is used as the control parameter.

The motion of the vehicle is described by four state equations including standard atmospheric data, and lift and drag data obtained from wind tunnel test. In the adjoint equations Lagrangian differentiation formulas are used to approximate the derivatives of lift and drag with respect to velocity and altitude.

Two quadratic cost functions are investigated--one involving a linear range term and the other a quadratic term. Both include à quadratic penalty function involving a weighting function and the square of the control.

RANGE MAXIMIZATION OF AN AIR-TO-SURFACE MISSILE

I. Introduction

Maximizing the range of currently operating air-tosurface missiles, thus giving the launch vehicle more escape time and/or distance, is one problem that is of particular interest to the U.S.A.F. Despite the current activity in applying optimal control techniques to missile trajectory problems, little has been done in applying such techniques to practical air-to-surface missile problems. This paper treats the use of such a technique in maximizing the range of a typical, two dimensional, air-to-surface missile trajectory.

The conjugate gradient method is the iterative technique used in this investigation. It is chosen because of the speed in which it converges, and the relative ease in setting up the problem and including control constraints. The major shortcoming of this method is that either the final time must be known or time must be treated as a state variable and another monotonely increasing variable, whose final value is known, used as the independent variable in the state and adjoint state equations. In this problem time and range are the only monotonely increasing variables, and neither end condition is known. Therefore, time is used as the independent variable and "educated guesses" are made

on the final time. These "educated guesses" are actually obtained by first simulating trajectories of constant control histories and then making corrections as more information is obtained from analysis.

The control variable is the angle of attack which determines the thrust vector and the aerodynamic forces acting on the missile, thus determining the range of the trajectory. The angle of attack is a very practical control variable since it can be measured and controlled fairly easily, and its derivatives are not present in the state or adjoint state equations. A control constraint in the form of a penalty function is used in this presentation. This constraint insures that the pitch rate of the vehicle remains small by limiting the angle of attack. Also, limiting the angle of attack insures that the vehicle operates in the linear regions of the lift and drag coefficient curves.

A listing of the digital computer program, including appropriate comments, is included in this paper. To avoid storing the atmospheric and aerodynamic data on tapes, polynomial least squares curve fits of the data are used. This definitely shortens the amount of computer time required for each iteration and reduces the amount of necessary storage. The fourth order Runge-Kutta formula is used to integrate the state and adjoint state equations, while the expanded Simpson's formula is used to integrate

the penalty function.

Of interest in all such missile problems is the evaluation of the adjoint state equations, which requires finding the partial derivatives of lift and drag with respect to the state variables, velocity and altitude. In deriving these derivatives it is assumed that (1) the vehicle is operating in the linear regions of the lift and drag coefficient curves, and (2) the parasite drag coefficient is independent of atmospheric density. Lagrangian five-point differentiation formulas are used to estimate the derivatives of atmospheric and aerodynamic data.

Chapter II treats the non-linear equations of motion of the missile. Chapter III then formulates the optimal control equations using the plant equations of Chapter II and Pontryagin's Maximum Principle. The aerodynamic derivatives used in the adjoint equations are derived in Chapter IV, which is included especially for control engineers. The conjugate gradient technique is presented in Chapter V. The results, conclusions, and recommendations are presented in Chapters VI, VII, and VIII respectively.

II. Equations of Motion

In forming the equations of motion, the missile is treated as a variable point mass acted upon by thrust, gravity, lift, and drag. Since the range of the missile is comparatively short, the earth is considered flat, and the effects of the earth's rotational rate are neglected.

Fig. 1. Free body Diagram of Missile

 $\langle \cdot \rangle$

The reference coordinate system has its x-axis along the surface of the flat earth, its y-axis vertical, and its origin below the point of initial thrust. Fig. 1 depicts the free body diagram of the missile. The fixed

x-y coordinate system is the reference coordinate system
translated only, such that the missile is located at the
origin. The motion measured in the x-y coordinate system
is the same as the motion measured in the reference system.
The equations of motion are:

$$\dot{m}\dot{V} = F\cos(\alpha) - D - Mg\sin(\delta)$$

$$m\dot{V}\dot{x} = L - Mg\cos(\delta) + F\sin(\alpha)$$

$$\dot{h} = V\sin(\delta)$$

$$\dot{r} = V\cos(\delta)$$
(2)

where

(2)

(3)

(-)

 $\left| \boldsymbol{y} \right\rangle$

{?)

[7]

$$D = q^{5} \left[l_{p_{0}} + 6 l_{a} d^{2} \right]$$
(2)

$$L = 95 [C_{L} \mathcal{L}^{2}]$$
(3)
$$g = \frac{G m_{E}}{|R_{E} + h_{1}|^{2}}$$
(4)

Appendix B contains a discussion and analysis of Eqs (2) and (3).

The state variables are defined as

$$\overline{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} V \\ Y \\ h \\ r \end{bmatrix}$$
(5)

where all the variables are functions of time.

Thrust and Mass

Thrust can be written as a function of time - Fig. 2 is a graph of thrust versus time. The specific impulse I_{sp} (Ref 10: 152) is defined in Eq (6) as

$$I_{sp} \stackrel{=}{=} \frac{\text{Thrust (F)}}{\text{weight rate flow of the propellants (W)}} (6)$$

where

$$\dot{W} = \dot{m}\rho g \tag{7}$$

Using Eqs (6) and (7), the mass of the missile can be

$$m = m_0 - \int_0^t \frac{F}{g_e I_{sp}} dt$$

(8)

where M_0 is the initial value of m - specifically

$$M_0 = \frac{W_0}{g_0} \tag{9}$$

where W_{0} is the initial weight of the rocket. Fig. 3 is a graph of m versus time. For this particular missile \dot{W}_{0} is 3000 (lbs) and E_{sp} is 240 (sec).

Equations of thrust and mass as functions of time are located in the computer program (Appendix A).

E CONTRACTOR OF THE			<u>Îra</u> lia		uistan			-	-11-11-	
										8
				+++++++++++++++++++++++++++++++++++++++	· · · · · · · · · · · · · · · · · · ·	·				
										(* * * * * * * * * * * * * * * * * * *
				==		· · ·				8
										8
									-/-	<u> </u>
			田出	비파						調問
			191		रेनम	1-1-1-1				Ö
		1							1	
						. 57 Hit			<u>Litter</u>	544
			+ ⊥ ⊥ ⊥ + ↓ ↓ ↓	出班						- O E E
			出し		副王					0
			1-1/		UT HE					Ň
										S
										9
										- <u>ˈˈ</u> ;ɔ
			ĒL		المحمد في المحمد عند المحمد عند المحمد عند المحمد عند المحمد عند المحمد عند المحمد عند المحمد المحمد المحمد الم المحمد عند المحمد المحمد عند المحمد عند المحمد المحمد المحمد المحمد المحمد المحمد المحمد عند المحمد عند المحمد ع					.n'.
									田三	
			EF							
			Ē							ΞΣ.
]		8-
	[- C
			E							
			EÆ					1=1=:		
			目信							<u>s</u>
			듣				() ()			
			11							
			E.							8=+
				••••••••••••••••••••••••••••••••••••••			14 - 1 - 1 - 1 - 1 - 1			P
	1-00-091 Y1		0:02	I CON	100	100	1 U U= 1111		UU	U
الالا الالا المستحد المتعاد المتشار	A.I		°r⊷{ -{	4-3015	ליםשו וו	1	CINL-	1		1. the

7

The second second second second second second second

¢. _**;** F1S. 2. Thrust Profile of the Missilê

Fig. 3. Mass of the Missile

aal.	1	<u></u>			•		n II	<u></u>	Fitt	<u>111</u>	EL I	;;;1:	F#F	संक	ΠΠ	HE	तम	1111	Ħ	नगे	Hin	1111	HI.
						<u> </u>	<u> </u>		크	凹	扟	111	<u>111</u>		<u>#</u> #				11	핅	Щ	g	
			EI-						Η	用	μIJ	毌		ĦЦ	世			田井	詽	間	[[]]		12
			<u>t</u> }			靍	1.	TITT		审	HH.	Ħ	ĦF.	HTH	THE	THE	THE	HH I	EA	HT.		=	HH
****			<u> </u>			+		<u>-11</u>	<u>[]]</u>	<u></u>	17	H	<u>1 </u>	<u>1111</u>							指	<u>+</u>	
	<u> </u>	<u> </u>		三	-7.		ΠH	井井	###	曲	詌	詌井	†		###	田	曲日		邗		詽詞	<u>;;</u> [[]	田
	E		1.1	T - 1			HI.	H		TH	Ħ	井	Ħ	詽	詽	聑	HH		Ħ		ΞI	H ++	
		+++		<u>}</u>		• • •	<u>++++</u> +-++	<u>+++</u>	詽	詽			Ħ		E	詽					田	8	副
itte.			-14	<u></u>		H	ļЩ	цĦ	田	11				<u>III</u>					1		Ш		
-11	· · · · •		1-1-1	; <u>_</u> ;1	ΞĦ	Щ	詽	컢井	冊	詽	詽	#		ΕĒ	詽		ĦШ			Ш	₩]	I CL	뒷
							ΗŪ	:##	ΠĒ						莊	耕井			ΗÍ	ΗŤ	詽	Ħ	51
11:4	븨	++++	: ; ; ; ; ;	11:5	<u>+</u>	44	圳	***		井井					111	詽					IJ		21
			ĦF	Η	毌	詽		臣	扭	田	Ħ	Щ		##					田	Ħ	影	H	<u>3</u> 1
	Ц.			Ξī	· · · · ·	<u>+</u> F	15	ı#r	H.		Ħ	田		Hi		ΗH					浙	-0-1	L.
					1111	14	111	+++++		╏╬╬╄ ┨╺┝┥┲╴	┿┿┿┶ ┿╃┯╄	<u> - - +</u> ++				****	╪╪╪╬		 	带		TCV	쁥
HIII	**** *** *		*•±±	<u></u> -+		聑	莊	甘甘	ĦĦ	Ш	H		Щ	14	Ħ	H	H	H	ΞĒ	团		34	囲
	Ē					<u>1</u>	=	==	1	Ħ				井	14		圳	詽		井井	世	H <u>H</u>	2
曲		 					111							-Hi								1111	
	Ξ.			:#=	+ + +	-11	<u>+</u>	# ##	1111			讎		Ì╄┥ <u>┇</u> ╪ ┥╷┿╡	144		X			HH		<u>ig</u>	
田						臣		50	E	HH					ΠH		詽			井		4	郌
THE	+				-1			HII!	 	拼		lii:	hiii	THE		TT	+			ĦĦ	HH	ŦĦ	ШĦ
<u> </u>	++++	<u> </u>		<u></u>	1144	1	-11=		EI.	HH H		1111	H							₩	Ħ	↓ ↓ ↓ ↓	
	1.					1,11	H±			Щ		田		┟╧╬╪	曲	井井	4			譁	田	ЦЩ.	##
IIII	ĦI.	-=1	53	-1112		-1	11	147 H	ΗH	HH.		Real Provide State	ΠH		Hit	茁		Ш		世		HH I	
	Щ.						++++								¦ ‡‡‡							0	
Ш	臣			1==	Ett	臣] #	ΗŒ	EZ.	Ш	Щ	田		H	FE	Ħ	##	ΠĮ	Ш	ŧΗ	匣	믱	₩
臣						==		12		H.					li#	井	詽		Шŧ	曲	Ш	100	詽
				=			12			Ħ			Ħ2		H	Ħ			Ħ	Ħ		1÷1	Ħ
1	цп 				1==	Z				1田		H	14	1	, HH	Щ	曲				Щ	H	
				E	Z		HE -	E					Η				田			ШŦ	H	田	Ħ
	==		1		1-			1:17		田	H=r				<u>tiii</u>	Ш;	in i		Ħ	H	E.	-Q	===
HH H	===	E	1		T	=		<u> </u>				1						∓⊥⊾∓ ++}÷				E S	
	0*9	6			0	8-			00-	归			90	1Æ	ل	ĽΞC	0-1	9#	逬	臣	2 0 -1	S.	
									IS.	JÆ	IS-			ßS	ΠW	田	团	556	M	H			
++++	<u>[</u>			E-				1	1		+++-	HE-		Etb	<u>++++</u>	1+++ ^c	<u> 14 ++ </u>	++++	-111		++++	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	++++ - , , ,

8.

III. Formulation of the Optimal Control Problem Cost Function

The first consideration is the cost or objective function which must be realized before the optimal control problem can be set up. The most obvious cost functions are

Sec. 3

(10)

 $(11)^{i}$

$$\mathbf{J}=\mathbf{X}_{\mathbf{j}}(\mathbf{k}_{\mathbf{j}})$$

and

 $J = \frac{1}{2} \left[\chi_4(t_4) \right]^2$

since the objective of this investigation is to maximize range. However, as will be discussed in Chapter V, some penalty on control is needed. Therefore

$$J = \chi_4(t_4) - R \int_0^t \chi_2^2 dt$$

and

 $J = \frac{1}{2} \left[X_{4}(t_{4}) \right]^{2} - \int_{0}^{t} \frac{1}{2} dt$

are used.

Maximum Principle Necessary Conditions

It is desired to maximize J subject to

$$\overline{X} = \overline{f}(\overline{\chi}, \alpha, m, F, D, L, g, t) \quad (12)$$

where Eq (12) represents Eq (1). For this problem the

GGC/EE/90-5

Maximum (1) $\frac{1}{\chi} = \frac{\partial H}{\partial T}$ $(2) \dot{\overline{\chi}} = -\frac{\partial H}{\partial \overline{\chi}}$ (3) $H_{\rm H} = 0$ (fixed final time) (4) $\frac{\partial \overline{J_1}}{\partial \overline{\chi}}\Big|_{\pm \pm \pm c} = \overline{\lambda}(t_4)$ $H = -\frac{1}{2}\alpha^2 R + \frac{\lambda_1}{m} \left[F \cos(\alpha) - D - mg \sin(\kappa_2) \right]$ + $\frac{\lambda_2}{\chi_m} \left[L + F \sin(\omega) - mg \cos(\chi_2) \right] + \lambda_3 \left[\chi_1 \sin(\chi_2) \right]$ + 2 X, (05 (X2) $\dot{\lambda}_1 = \frac{\lambda_1}{m} \frac{\partial P}{\partial X_1} - \frac{\lambda_2}{m} \left[\frac{\partial (L/X_1)}{\partial X_1} - \frac{F}{X^2} \sin(\alpha) + \right]$ $\frac{mq}{\chi_{1}^{2}} \cos(\chi_{2}) - \lambda_{3} \sin(\chi_{2}) - \lambda_{4} \cos(\chi_{2})$ $\dot{\lambda}_2 = \lambda_1 g \cos(\chi_2) - \lambda_2 \frac{g}{\chi_1} \sin(\chi_2) - \lambda_3 \chi_1 \cos(\chi_2)$ + 51N (X2) $\lambda_3 = \frac{\lambda_1}{m} \frac{\partial D}{\partial X_2} - \frac{\lambda_2}{m X_1} \frac{\partial L}{\partial X_3}$ $\dot{\chi}_{\mu} = \dot{0}$ $H_{u} = -R\alpha - \lambda_{1} \left[\frac{F}{m} \sin(\alpha) + \frac{2RS}{m} C_{L} \alpha^{2} \right]$ + $\lambda_2 \left[\frac{F}{mX}, \cos(\alpha) + \frac{95}{mX}, C_{L_{\alpha}} \right]$ $J_{1} = X_{4}(t_{4}) \quad OP' \frac{1}{2} [X_{4}(t_{4})]^{2}$

where

Using necessary conditions (1), (2), and (3), it can be shown that

$$\frac{dH}{dt} = A CONSTRNT (13)$$

where the Hamiltonian is not a function of time on the optimal trajectory. (Note: in this problem the Hamiltonian is not a function of time where thrust is constant.)

Boundary Conditions

ŀ

All other final conditions including final time are unspecified. To avoid adding another penalty term to the cost function the only end condition $x_{j}(t_{f}) = 0$ is relaxed.

Necessary condition (4) is used to derive the end conditions of the costates:

$$\begin{aligned} \lambda_{t}(t_{f}) &= 0 \\ \lambda_{2}(t_{f}) &= 0 \\ \lambda_{3}(t_{f}) &= 0 \\ \lambda_{4}(t_{f}) &= 1 \quad \text{or} \quad X_{4}(t_{f}) \end{aligned}$$
(15)

1-1

IV. Aerodynamic Derivatives

In order to solve the costate equations, it is necessary to find the partial derivatives of lift and drag with respect to velocity and altitude. (In the λ_1 equation lift is divided by velocity.) Using Eqs (2) and (3)

$$\frac{\partial \left(\frac{1}{X_{1}}\right)}{\partial X_{1}} = qs \left[C_{Ld} \frac{\partial}{X_{1}^{2}} + \frac{\partial}{X_{1}} \frac{\partial}{\partial X_{1}}\right]$$

$$\frac{\partial D}{\partial X_{1}} = qs \left[\frac{\partial C_{D_{0}}}{\partial X_{1}} + d^{2} \frac{\partial C_{Ld}}{\partial X_{2}}\right] + (X_{1} \leq C_{D})$$

$$\frac{\partial L}{\partial X_{2}} = \frac{qs C_{Ld}}{X_{1} (C} \frac{\partial C}{\partial X_{3}} + d^{2} \frac{\partial C_{Ld}}{X_{1}} \frac{\partial C_{Ld}}{\partial X_{3}}$$

$$\frac{\partial D}{\partial X_{3}} = qs \left[\frac{\partial C_{D_{0}}}{\partial X_{3}} + d^{2} \frac{\partial C_{Ld}}{\partial X_{3}}\right] + \frac{\chi}{2} X_{1}^{2} \leq C_{D} \frac{\partial C}{\partial X_{3}}$$

$$\frac{\partial D}{\partial X_{3}} = qs \left[\frac{\partial C_{D_{0}}}{\partial X_{3}} + d^{2} \frac{\partial C_{Ld}}{\partial X_{3}}\right] + \frac{\chi}{2} X_{1}^{2} \leq C_{D} \frac{\partial C}{\partial X_{3}}$$

(17)

where C_{Do} and C_{Do} are functions of Mach number. Since Mach number is a function of velocity and altitude, and atmospheric density is a function of altitude, (Ref 4: 477)

1.2

$$\frac{\partial C_{P_0}}{\partial X_1} = \frac{\partial C_{D_0}}{\partial M} \frac{\partial M}{\partial X_1}$$

$$\frac{\partial C_{D_0}}{\partial X_3} = \frac{\partial C_{D_0}}{\partial M} \frac{\partial M}{\partial X_3}$$

$$\frac{\partial C_{L_d}}{\partial X_1} = \frac{\partial C_{L_d}}{\partial M} \frac{\partial M}{\partial X_1}$$

$$\frac{\partial C_{L_d}}{\partial X_2} = \frac{\partial C_{L_d}}{\partial M} \frac{\partial M}{\partial X_3}$$

where

and the second

$$\frac{\partial C_{P_o}}{\partial C} = 0 \qquad (18)$$

This assumption implies that parasite drag is directly proportional to atmospheric density if velocity is constant. <u>Wind tunnel and flight tests have shown that this assump-</u> tion is valid.

By definition Mach number is the ratio of the true air speed to the speed of sound, therefore

$$\frac{\partial M}{\partial X_{1}} = \frac{1}{V_{s}}$$

$$\frac{\partial M}{\partial X_{3}} = -\frac{M}{V_{s}} \frac{\partial V_{s}}{\partial X_{3}} = -\frac{X_{1}}{V_{s}^{2}} \frac{\partial V_{s}}{\partial X_{3}}$$
(19)

where V_s is a function of altitude. Substituting Eq (19) into Eq (17),

$$\frac{\partial C_{D_0}}{\partial X_1} = \frac{1}{V_s} \frac{\partial C_{D_0}}{\partial M}$$

$$\frac{\partial C_{D_0}}{\partial X_3} = -\left[\frac{\partial C_{D_0}}{\partial M}\right] \left[\frac{X_1}{V_s^2}\right] \left[\frac{\partial V_s}{\partial X_3}\right]$$

$$\frac{\partial C_{L_d}}{\partial X_1} = \frac{1}{V_s} \frac{\partial C_{L_d}}{\partial M}$$

$$\frac{\partial C_{L_d}}{\partial X_3} = -\left[\frac{\partial C_{L_d}}{\partial M}\right] \left[\frac{X_1}{V_s^2}\right] \left[\frac{\partial V_s}{\partial X_3}\right]$$
(20)

.13

Curve Fitting Data

A set of equations approximating atmospheric density (Ref 2: 15) are available in the computer program (Appendix A). Fig. 4 is a graph of density versus altitude. V_s , C_{Ds} and C_{Lx} were approximated by using the piecewise, polynomial, least-squares, curve-fit method (Appendix D). The curve fits are graphed in Figs. 5, 6, and 7. The curves with the asterisk are the curve fits; the curves without the asterisk represent the given data points. Data for the speed of sound were obtained from Ref (8: 4). C_{DO} and $C_{Lec.}$ data were obtained from wind tunnel tests. Table I shows the maximum deviation in percent between the ordinate of the given data points and those of the curve fit. The curve fit polynomial equations are also located in the computer program (Appendix A).

Table I Errors in Curve Fits

Dependent Function	Maximum Deviation in Per Cent	Value of the Abscissa
Vs	.18	3.5 x 10 (ft)
ĊL	1.3	3 (Mach No.)
C _{Do}	2.1	l (Mach No.)

Differentiating the Data Curves

In order to solve Eq (20) and then Eq (16), it is necessary to find the partial derivatives of V_s and ℓ with respect to altitude, and those of $C_{L,\alpha}$ and C_{Do} with respect

÷.

to Mach number. An approximation of these derivatives is obtained by using the average of a set of five, five-point, Lagrangian differentiation formulas. A derivation of the formulas is located in Appendix C. The approximations for the errors in the formulas are assumed negligible.

It is now possible to solve Eq (16) if the velocity and altitude of the vehicle are known.

11. 260 11 T <u>_</u> 1111 ----11 Ŧ 4 -11 1. FEE [2003 Ŧ 1 14 11 ÷ ĩ 1 11 Ŧ 1.1 -1-1 1 , T - 4 1 न म \$ 1 山 Ħ ŦĘ 1 E.H. Ŧ, tt: 1 5 H <u>in</u> ΞĒ <u>____</u> -----1180.00 ΠŢ -4+ ļ;‡ 1 ÷... in‡ ď + Ę ----------10,00 ┅┥┯╸ ┾┍┷┇ ŧ -•• X ŦŦ -----÷ . O -----------10 SO IO ISNE 0 -----10-Ő= 00 SOF 0 SI 0: ---<u>52</u> 018N Ź UX-J U

4. Atmospheric Density FAG.

詽 īШz 1 ÷ 367000000 :.! :.: . . Hiμī 用相 f ·58 11 ħΈ 西田 81 σĦ 0节 毌 ĨŌ. 0 Zh 20 曲出 Η Η-F;

Fig. 6. Curve Fit of

<u>18</u>

			<u></u>	1207	<u></u>		:42.7			<u> </u>		I							4-1-4-4-	रतन			
HHH	E	FE	773		보보		归		<u></u>				H	3	理	井					Ξ.	••••	
1 1 1 1 1 1 1					1 7							1777		<u>p=</u>]	<u></u>	r ===	17.7			· · · · · ·	(E)T	0	
	F=}	-1	-177	· • • • •	<u>1 71</u>			- 7	2					j, j	1			- c	1	-44	<u>; </u>		
		E 9)										1-7-1	=F:	<u> </u>			<u>=</u>	4-	4		扭出	$r\omega$	
<u></u>					7			7						3				12			÷•••	<u> </u>	
Ţ		;	1	H-1	<u> </u>	÷.,,	17.4	노태		1	144	<u></u>							۰.	日田	<u> </u>	54	
															_			12	C.			7	
		4	tr	4 - 1 L	٠ ٠ , ٤٠		÷			- 11	<u>11</u> 1		<u> </u>	ΞĿ.		11		12	5	<u>, an</u>	프	Est	<u>[]]</u> ;
			1.		1.4		+			-+ •		:17,	ŦĦ	ΞŤ	- 1-	θŦŦ		₽ ÷?	بيين ا		20	:0	
11-1	끜		Ţι¢	<u>-</u>	. <u></u> .	-EE	• + • • • •			-16	-		17 12			itti		19	0.4		rii,	-0	
	<u> </u>	i TT	<u> </u>	*****		+ 1	<u>1</u>	111		1.1	5#	144	TIT		111	int;			Ĩ		70	1.00	ΗH
			11.1					<u>_r</u> '			TIT			Ξ×.									
2=		<u>;</u> =1	;;;; ;	تبتقد	11	<u>t</u>	75				123		1	취문	Ξ			8. V	71			222	
	11						مەرمەم مەرمەم							-7-	11			-					H
	<u>+</u> t	T T		1 1-	+++	7-1-			172	1. F		++++	++++++++++++++++++++++++++++++++++++++	÷.[44J-4- 1 J - 1	747		ŦŦŦ	中主		幵	i di la	
	H	<u></u>			-17		a ca		117		<u></u>			- 1	++				+1++		÷11	O	<u>, , , , , , , , , , , , , , , , , , , </u>
	井	护门	15	<u>_</u>	ΗE		<u>H</u>	끈감		E-1	11-	==	ΗÐ		ΞĐ	-11	HI	Ŧ.	귀분		17-1	$-\mathbf{O}$	212
547=	 	iit :		TT	117	EFT			Errit	1.5.5		11.1		-1-1-	<u>r 1</u>	开开		111	H		<u>1</u> 11	1	ΞĒ
HI. T	田	 	보다	<u>+</u>	111		THI	<u> </u>	· · · ·	ويلي الحديثة الع المروج عن ال	++	tit			<u></u>	tit	<u>-1.1.4</u>	<u> 出</u>	1-1-				
i ji	<u>+</u> +		EE				<u>++</u> +-					-11	1	ŦŔ	1.5		171	14	#==		문표	31	
	ŢΠ					,	1				111		-j-				-1	<u></u>	<u> –</u>	<u> </u>			Lid -
<u></u>	÷	<u></u>	<u>+-1</u> +				<u> </u>	<u></u>	1		<u>H</u>	En:	nt=		Ľ.,			Hit	ЩI				
	ŤΞ									1		1					ŦŦ			E.F.		0	2
<u>, i i</u>	##	╤┰╤╪		i			住宅	÷Ξ		111		- 6	-f-							EŦ	1	٢Ö	Z
		 71			HT.	E				<u> </u>		E/E	Œ	<u>it</u> r	Ent	-	He	1. IT		1===	+	m	=]
	##	파	πE		E2.							<u>j=</u>	·								<u>1</u>	ΕΞ.	ΞJ
	it.	Eht	17;-r	4			<u></u>		<u>F≓</u>	1	— ,	1	+++-		-=			<u> ==</u>		191			
	<u> </u>	112		1.11		1					/]		1	<u> </u>				5
E	Ħ	<u></u>	thi	1				1			1	1-1-1		==			TIT;						
	<u></u>	<u></u>													F==			 ,	+++++			0	+++-
		<u></u> -		Ē						EE-	/		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						1	1==	E	-0	
						<u>j</u>		j <u> </u>	İ ====	Ēź	É.E	E	TTT:			1		EE	F			N	
ШË		<u></u>		===	•++	{ <u> </u>			ti -	EF-	<u>i</u> r	. : : :					<u> </u>		11-1-	<u> </u>			
	÷.			[<u>;</u>		<u> </u>			<u> </u>	1:4=				t. <u></u>	1-1-		1		÷•••	1			
				<u>E 3</u>	=					$l' \equiv$	ļ	11		1		(<u> </u>		1		1			
<u>trait</u>	H			-	-			1===	<u>.</u>	1								1			<u> </u>		
E:==			É	1		1====	1	1==	1	:N=	1	1	<u></u>			=	1=			1=			
High	77			1	<u>t</u>	1	<u>t</u> ==	1	<u>†</u>	1.2	¥	t =	E	=		+++-			1		E	<u>-</u> ō-	E
First		;			<u>; </u>	1	1-	<u>í</u>	<u>+</u>	í	E)	1==-	Ì==	<u> </u>	<u>i</u>	ΈE			1	·/		-	
田田	<u> </u>							1	1	1	1		1223					JIII	14		<u> </u>		
	<u> </u>				==	==	1			1===	13	1==	1			1:	1		1	1			
世世	 			1==	E.	Į	L==		1=		j=,	Ξ.		ļ	1	1==	Ţ				1		
		E				Ť.					1=:1			HE			1	1=	E		1		
	11					=	1		÷-		岂	(===	+	53	1			1					
Free							+	-=	1	1		122	1		<u>+</u>	<u> </u>	TT	1	1	<u> 1.'</u> 1;	1-1-1-1 1-1-1-1	<u>-0</u>	
		=				-				1	<u> </u>	1-			1				1	d	1	10	<u> </u>
BER	50	10	1	1	191	10		Ē.	15	101		<u> </u>	180	TO E			. fil	.;0Ξ			100	<u>_</u> 0	E-E
ti::		fur	1	1	in.	1	1		+	1		HHF	EIF	==	192			1=	-				1
E	1	1		1-5	1:3		1:22	127		1-1-1-	1		1	1771			1	i stri		: <u> </u>			1

Fig. 7. Curve Fit of $C_{L\alpha}$ Per Degree

V. The Conjugate Gradient Technique

Now that the optimal control problem has been formulated, some iterative technique must be used to solve it. In this paper the conjugate gradient method (Ref 7) is used. In general this method is able to converge quickly to a near optimal solution from poor initial guesses on control.

The Conjugate Gradient Algorithm

- (1) Choose and arbitrary of
- (2). Set $\dot{p}_0 = Hu(\alpha_0)$ where i = 0
- (3) Find k_i such that $J(\alpha_i + k_i p_i)$ is maximized with respect to k_i
- (4) Set $\alpha_{i+1} = \alpha_i + k_i p_i$
- (5) Set $\operatorname{Hu}_{i+1} = \operatorname{Hu}(\mathcal{A}_{i+1})$
- (6) Test the gradient for convergence; if there is convergence, stop.
- (7) Set $Q_1 = \langle Hu_{i+1}, Hu_{i+1} \rangle / \langle Hu_i, Hu_i \rangle$ (inner product)
- (8) Set $p_{i+1} = Hu_{i+1} \beta_i p_i$
- (9) Repeat starting with Step (3).

It is desired to find d_{i+1} such that Hu_{i+1} is zero for all time. Because this problem is non-linear and nonquadratic, the conjugate gradient method does not find the optimal control in five iterations. Therefore, it is necessary to set some arbitrary tolerance on convergence and/or stop the program using some other condition such as the number of iterations or computer execute time. (The gradient in Step (7) is treated as an n by 1 vector where

 $n = \frac{t_{f}}{\Delta t} + 1.0$

The Linear K-Search" Algorithm

The linear K-search is the method used to perform Step (3) of the conjugate gradient algorithm. It is assumed that J is a linear function of α and therefore, $J' = \frac{\partial J}{\partial k_i} = p_i^T Hu(\alpha_i + k_i p_i)$. In this problem J is definitely not a linear function of α , but it is assumed that $p_i^T Hu$ is a good approximation of J.

Let
$$K' = \frac{2\{J(\alpha_i + [P_i^{\dagger}P_i]^{-1}P_i) - J(\alpha_i)\}}{P_i^{\dagger}H_{u_i}}$$
 and

consider p, and Hu, n by 1 vectors.

- (1) Initial guess of k: (i) Let K = K' if $0 < K' < (p_i^T p_j)^{-1}$ (ii) Let $K = (p_i^T p_j)^{-1}$ if K' is elsewhere
- (2) Evaluate $J(\alpha_i + nKp_i)$ where (n=0,1,2,4,8,...,a,b)and $p_i^T Hu(\alpha_i + bKp_i) < 0$; therefore $aK < k_i < bK$
- (3) Interpolating k,:

(1) Let $k_{i} = K \left\{ b - \left[\frac{J'(b) + U - Z}{J'(b) - J'(a) + 2} \right] (b - a) \right\}$ where $Z = \frac{3 \left[J(a) - J(b) \right]}{K(b - a)} + J'(a) + J'(b)$ $U = \left[Z^{2} - J'(a) J'(b) \right]^{2}$ $J(a) = J(\alpha_{i} + a K p_{i})$ $J'(a) = p_{i}^{T} H_{U}(\alpha_{i} + a K p_{i}) = \frac{JJ(a)}{J(aK)}$

(11) Set
$$d_{1+1} = d_1 + k_{1+1}$$
 if $J(a)$ and
 $J(b) < J(k_1)$
(111) If notther $I(a)$ here $\overline{I(a)}$ is less the

(111) If neither J(a) nor J(b) is less than $J(k_i)$, return to Ster 2) using $n = a + \frac{b-a}{5}$ where $(j = 1, \dots s', b' \dots 5)$ and $a'K < k_i < b'K$

With the exception of Step (3-111), this linear search is the linear search method of Fletcher and Reeves (Ref 3). The equivalence to Step (3-111) in Fletcher and Reeves divides the interval into two subintervals at k_i and tests the sign of $J(k_i)$ to determine which subinterval to use in Step (3-1). The Fletcher and Reeves method is less cumbersome, but Step (3-111) seemed more reliable in this problem.

.22

VI. <u>Results and Discussions</u>

The maximum range obtained in this investigation is sensitive to the guesses of the fixed final time, the weighting function R, and initial control. The selection of values for these three parameters determines whether a local or global maximum range is obtained. A trial-anderror method is perhaps the only way of etermining reasonable estimates for the optimal values of these parameters.

The Final Time

Some idea of the values for the fixed final time was obtained by computing trajectories with constant angles of attack. The values used were 0.05, 0.1, 0.15, and 0.2 radiap.. Judging from their impact time, it was decided to work with $t_f = 300$ seconds.

The Weighting Function

In order to get some idea of the best magnitude of the weighting function, conjugate gradient computer runs were made with R and α_0 equal to zero for all time, and t_f equal to various values above 300 seconds. In general these runs were unstable, i.e., on many iterations control would greatly exceed 20°, the flight rath angle would continuously increase, and/or the range would be negative. However, on the more stable runs the values of the gradient gave an 23

indication for the necessary magnitude of R. For cost $J_1(\mathbb{F}_2)$ the gradient had magnitudes around 10^4 and 10^5 (10^{11} and 10^{12}) during thrusting, while during glide the magnitudes were around $10^3(10^6)$ and lower. Also, the angle of attack would exceed 20° during thrusting, specifically during the first 10 to 15 seconds, and as expected would remain well below 20° during glide. In order for the penalty function to have some affect on the gradient during thrust, the magnitude of R would have to be comparable to that of the gradient. The function used in this presentation was

$$R = R_o \left[u(t) - u(t-t_r) \right]$$
(21)

where R_0 is some number in the neighborhood of 10^4 and 10^5 , u(t) is the unit step function and t_r is the approximate complete burnout time of 30.00 seconds. (In the following discussions t_r will take on different values.)

The Initial Guess on Control

Once some idea of the magnitudes of R and t_f had been obtained, the next step involved checking the sensitivity of the conjugate gradient method to various initial guesses on control. Four guesses (0.0, 0.1), 0.15, and 0.2 radian for all time) were tested by using J_1 and varying R_0 and t_f until what appeared to be the best sample runs for each of the four values was obtained. On the basis of the sample runs $\alpha_0 = 0.15$ radian appeared to be the best choice.

- 24
However, each of the four guesses had one major fault: the conjugate gradient method did very little in optimizing control as time approached t_{f} , consequently, at final time large negative flight path angles were obtained. Therefore, the initial guess on control was chosen to be

$$\alpha_0 = \begin{cases} 0.15; \ t < 315 \\ 0.001(t-315) + 0.15; \ t \ge 315 \end{cases}$$
(22)

 c'_0 was increased linearly as time approached t_f so that $\check{f}(t_f)$ would be increased, thus increasing range. The time of 315 seconds was chosen in Eq (22) because in that neighborhood the flight path angle reached critical negative values. It must be mentioned that many other functions for c'_0 where t > 315 seconds could have been used, and even the use of t = 315 seconds as the break point is questionable.

Results of Sample Computer Runs

Using J_1 , Eqs (22), (21), and the intervals $1 \times 10^4 \le R_0 \le 1 \times 10^6$ and $300 \le t_f \le 380$; sample runs were made to determine smaller intervals for R_0 and t_f . If the run were unstable, then R_0 was increased by an amount that was somewhat proportional to the amount of instability. If the altitude at time t_f were large, then t_f was increased so as to decrease $h(t_f)$. Table II on the next page depicts the results of some of the more significant runs. In the table

_25

c 3	Çoments	Unstäble; large	<u>s grautus</u> . Slivsht improvément in	zradiont	Slight improvement in	gradiont	Slower converging than	. Run 3	No inprovement in	<u> </u>	Gredient acout the same		Gradient about the	same	No improvement jn	gradient	Unstable; gradient larger	than (2) through (8)	Gradient slightly	smaller than (9)		Small'er ranges as run	continued		The start of leader of the start of the star	unsuapie, iarge gradient	a
:	$r(t_{f})$		<1. view	136.12	• २	136.92	3	130.78	1 (,	136.35		135:51		136.83		135.98		143.76		18.111	121.38		143.24		JC.CHT	144.05	
lts	(t.) x 102		0.10	9.03	4	8.85	,	8.41		8.66		8.35		8.32		7.55	r	8.21		8.46	; ; ;		8.42		1420	S. 28	
ble II ation Resu	(tf)		-14.02	-14.34	-	-13.12		11.21		-12.30		-11.34		-11.30	x	-10.58	c	-13.12		-12.62			-12.38		C4-2T-	-13.02	
าห⊻คระไว้ย มี			3.08	5.97		5.33		2.64	t.	4.34	ι ς	3.80		3.96	-	1.53) - -	3:55		5.16	, . ,		5.52		24.6	4.5	
	[teration]	<u>,</u>	2	۲ د		33		7		35	,	36				19 [,]		7		<u>,</u> 12	• • •		гН	- 4 0	<u> </u>	. N	
	t. F.		360	UY2		360		365		365	-	370		370		380		360		360	360 A		360		200	360	
	بر د		<mark>ک</mark> ر ا	C°C		30		30		<u>00</u>		30		30		30		TO		P	C F	i i	Ŕ		9	01	
	RO	5	4.5×10	501-4	->+++>	20128		72402	Υ ν	Sx10		کمانع	,	⁶ x10	~ 1	82102		. <u>لایان ا</u>	u ,	exio	-20L~1			Ϋ́ς	3 ×10	ر ایدان 2	
	Type	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sample	Complate	2007701100	Complete		Sample	· ·	Complete	5	Cound at a	2227201122	Complete		Complete.	222-24-24-20-2	AComplete		3Complete	Somnle	0701000	Semulo	č	Sample	Samnle	
	Run			ç		ú	Ļ	4		1.5		Ý		5		¢	26	0		JO			С Г.		13	., L	

a sample run was one with a computer-execute-time limit of four or five minutes. These runs were used to determine if a complete run using the sampled guesses was warranted. A complete run was forty-one conjugate gradient iterations.

Using the above procedure the intervals were narrowed to $4.5 \ge 10^5 \le R_o \le 9 \ge 10^5$ and $360 \le t_f \le 380$. Runs (1) through (8) of Table II depict the results obtained using R_o and t_f within those intervals. Run (1) obtained the maximum range, however, it was unstable and the gradient of the maximum-range trajectory was very large. Runs (2) through (8) were attempts to stabilize the method and hopefully increase the maximum range obtained. In these runs stability was obtained, however, the range obtained in Run (1) was never equaled or improved and very little improvement was made on the gradient. Also, varying t_f did very little to improve range maximization. In fact Run (3) with $t_f = 360$ seconds was never improved as t_f was increased. Therefore, all succeeding runs were made with $t_f = 360$ seconds.

The next step involved decreasing t_r over the interval $5.0 \le t_r \le 30$, while varying R_0 over the interval 1 x $10^5 \le R_0 \le 8 \times 10^5$. The best results were Runs (9) and (10) where the maximum range obtained was 143.76 miles. Still the gradient was large during thrust. At this point in the investigation it was discovered that the mass of the vehicle

was being treated as a function of altitude, i.e., in the computer program "g" of Eq (4) was also being used as "g_o" of Eq (9). Although this error affected the range of the trajectory by tenths of a mile, the value of the best R_o was greatly affected. A comparison of Runs (9) and (11) gives an indication of the affects of the correction. Runs (11) through (14) used the correct value for "g_o".

Using a modified history of the control obtained in Run (9) as the initial guess (this control affected a range of 143.26 miles, t = 360 sec.) various runs were made in an attempt to improve the range. Runs (12) through (14) are samples of those runs. Because of the results of Runs (2) through (8), no complete runs were made and $t_r = 10$ seconds was used. As can be seen very little improvement was made on the maximum range. Further, the gradient was not improved.

At this point it was decided to use J_2 and the control history obtained in Run (14) as the initial guess on control. A graph of this control history is depicted in Fig. 8. Using $t_f = 360$ seconds, R was varied from 0.1 X 10^{12} to 0.1 X 10^{14} using the same scheme that was used with J_1 . No improvement on the range was obtained. Most of the runs were unstable; however, the more stable runs were unable to search effectively in the increasing range direction. Consequently, the conjugate gradient approach was abandoned even though the optimal trajectory had not been obtained.

28[°]

	1														`						
1	1.	* <u>= =</u>				2172	117	: c:::		F _11			11,1			THE	7712				
	X-++	111:		4 m	1.1			27		1.1.1	1	<u>т</u> ,	·-+‡7			772.		:2	TE.		<u></u>
4-1/	12 3.			3	$\tau_{\tau} \tau_{\tau}$	1 44	1	·	181 m 1 m			3331				1			envá-	[
ŦZ I	2131	-	-		<u>[</u>]-1]	4.11	11.1	$-\overline{-}$			<u>H</u>	+1					41	Ô	57 C.		and l
-/		واستعتد				+ ++	1						12.11					-0			
41,11			4.1		2	-				i E		1		27:1	1 E -	1:::1		-			
						1	4				-I.,	+		1.1	<u> </u>	1					<u>-</u>
1	****				F	1.11	المد المرا		τ, μ	1		11.	A 8 644		144				L		
		<u> </u>				1			- <u>- </u> - <u>-</u> -		1.1.1	- 1 - 4		1			1.1.7	11		-	
acks .	-			ПЛ		ز و 🗝			NEI		7177	1		1:214	1	111.	1.11			IT	
		····				2214			1	م ال فيتر المسيح ا		111	TIT	111		the	<u>++++</u>	70	nda :		=
	- 1			1					言い		.,			1.7.4		(****		\sim			7.7
	11	L, T,	· - • · · · ·	1		5-55	323			N.I.T	بېلې	11.		111	HE!	++	<u> </u>	O	nc		
															Err			- 0			
	<u></u>						TET:		111	£13	No Li		ttt	1. i. 1	687	in the	itra	E C	ti :		177
. +	<u></u>				in n	<u></u>	±±±r			<u>+</u>		<u> </u>			<u> • • • • •</u>			<u>}</u>	····		<u>-1</u>
2.1		***		a de la constante da la consta	17 M		<u>, 1, 1</u>	722		12.44		1	규보	TIT	;;;;;;	拙井			÷		4tt
+		1-11		2117.	124	22		ir,r			1		1.1.1	711	1.1		3.4	211			
								A	1-11-1-					+		1444					
					<u></u> -		-HT		+	<u>7</u> .53		Ţ		There	H		1	-O			
											121				i i i i i i	1		0	<u> </u>		-
	- <u>1</u>		-	un:E	+++++++++++++++++++++++++++++++++++++++	1					111	ĿΗ	6	1111	titt	int			ш_		÷π
	- 1		-			1 Aug- 40							1		a		1		Ω	· · · · · · · ·	-,-
. هم. هم. مرد بر هم			;;	in ar	(1.11	1111		1.12	11-1	111-2		lurr:	11:00	122	1.2			
4 1				1	it it		1	(* ; ; ; ;	- 11-						日本	12:22		2:22			二日
	i inter	1		121					1+1-			TUT		+	HH.	1.1.1.1			11-1-		
	1.1.2		11	57-F-			1.1	177	++++	1		TIT.		141	ITH '	11.7	1	111		II	
				==												1.					
		++-+	+1:-		111-	-1-	.F.F.÷	ГЩŦ	111I				21.2		HH	111		6			227
·			11-1:	<u> </u>	<u>1771</u>	<u></u>		1		1.1	44-	4-++	<u></u>		1.51		<u></u>	ă			المنيد
		111	alafakan Nabar		1	t:±		1111	111	πr			1-1-1-	i=i	1-4	1 :::		::::I¥.			
	+	出生				177	1,	1212	出社	hτ	1:11		} !⊒.	- 2,7	571	1221	中に	tO			727
÷				÷÷									3		1 4-1-4-4-	1997		ဗ္			- -
74	344	1117 1			4	1111		[++	172	1-1-1-1		티디고				5			
-			±۲.													Litt.					
1		UΤΞ		<u></u>	EE					1272			÷	+++	1					i !:	<u> </u>
'I	-	<u> </u>										 ,									
17	12:22	1.1.1.	1.572	23	<u>11</u> :	1217	± III	1	TTTT		it 222	1:=:			tarî.	1		<u>ئىت د</u> ا	· · · · · · · · · · · · · · · · · · ·	i===#2	
		14.5.					11	1.11				结合	****		1	<u></u>					
****	·		·		1						111	h				1.1		-21			
		13212	1111	عتنتا				1.772	1	[int	1212		17,		1						
_																		-0-		}	
					1::::	Hitt		단관	1	1	123	150	11	==1	H	1 		-00			
	<u> -</u>		<u> </u>	1				1	1		11==							. ق. ۇ بېيىت مەرىيە مەر			
							<u></u>			12:22	12				4422		· · · · · · · · · · · · ·				اعجو
+ + +					, <u></u> -	{	<u>1. 4 1</u>	1===	<u>tite</u>	1		,	1177		<u>htt</u>		1777-	1111		た ニーピ	74-
																i 					
7-11					<u>First</u>			12	1			}		ĵ							-11-
		T			<u> </u>		1		1	E		<u> </u>			<u></u>						
			5		1]	1	1	<u>+</u>	<u> </u>		1		1	1-+		t	22			
	1		1-2				1		<u>ست ما</u>		12.00			<u></u>		<u> </u>			، کی ا	1	
	1000		1172		10.1			1			1===		5-	10	1	===	-	0	1272		
HTT.	ĮŪ∷t	jc=	j	jaal	비브			1: I	in: I	15=	1::	1	100:	jS=:	1:====	1.1.1	JUU	U=		1=00	JE
							<u> </u> ;		m	วัตา	1	រភាព	मिन	H-	110	<u> </u>	ະາກ	THE	- ==	j-	
		1	1		1				1	,u)	<u>ب ايت</u>	アント	it: t	<u> U</u> ==	ЧDЫ	122	1:1:1	YU,		ti:	1
			2				ه مصدر به	S		1	g					244-44	-			· · · · · · · · · · · · · · · · · · ·	

ė,

Fig. 8. Control History Run (14)

29[;]

Two Modifications

Using the control history of Run (14), two modifications were made -- (1) different constant control values were simulated for the time region t > 65 seconds, and (2) the conventional technique of flying the minimum drag-tolift-ratio trajectory during glide was simulated. As a result the trajectory was improved. The control history of Run (14) obtained a total range of 147.64 miles at t = 385.73 seconds (control was held constant at 11.46° after t = 360 seconds). In modification one $\ll = 0.2$, 0.225, 0.25, and 0.275 radian were used. $\measuredangle = 0.25$ obtained the best range -- 156.79 miles at t = 450 seconds.

The necessary condition for modification two is that

$$\frac{\partial (L/D^3)}{\partial \alpha} = 0 \tag{23}$$

(24)

Substituting Eqs (2) and (3) into Eq (23),

$$L_{LD} = \sqrt{\frac{C_{Po}}{C_{Lo}}}$$

where $\boldsymbol{\alpha}_{\mathrm{LD}}$ satisfies Eq (23). Using the trajectory obtained in modification one and $\boldsymbol{\alpha} = \boldsymbol{\alpha}_{\mathrm{LD}}$, two trajectories were simulated -- the first used $\boldsymbol{\alpha} = \boldsymbol{\alpha}_{\mathrm{LD}}$ for all of the glide, and the second used it for t > 65 seconds. The best range obtained was 154.27 miles where $\boldsymbol{\alpha} = \boldsymbol{\alpha}_{\mathrm{LD}}$ for t > 65 seconds.

<u>fine Best Trajectory Obtained</u>

The best control history (Fig. 9.) in this investigation obtained a range of 156.79 miles. This history is

Fig. 13. Range vs. Time

×,

Fig. 15. Pitch Rate vs. Time

<u>3</u>4

Fig. 16. Gradient vs. Time

2

GGC/EE/20-5

well within the limit of 20° since its maximum point is 16.91° . The control programs of runs in Table II that reached at least 140 mfles had the same general shape. Those trajectories that fell below 140 miles had control histories with Parger minimum values; consequently, higher altitudes were obtained. As expected the range is very sensitive to the angle of attack during thrust and slightly thereafter.

Figs. 10, 11, 12, 13 and 14 are graphs of the state variables. Fig. 14 includes a graph of the pitch angle θ . Fig. 15 is a graph of the pitch rate. The maximum acceleration, 4.37g₀, and the maximum pitch rate, 0.047 rad/sec² occur around 20 seconds. Both values are quite collerable for equipment design purposes. The pitch angle at final time is equal to -2.64° and remains within -3.7° and -2.25° for the last 50 seconds of flight. This is quite adequate for line-of-sight and line-of-sight rate steering. The velocity at impact is Mach 0.6.

Figs. 16 and 17 are graphs of the gradient and the Hamiltonian. Both graphs indicate that the optimal trajectory has not been obtained. Note that as time approaches final time the gradient is small and the Hamiltonian is almost constant. These facts indicate the reason that the conjugate gradient method is inactive in this region. Also evident is the influence of the interval, $19.44 \leq t \leq 30.35$, where the Hamiltonian is a function of time. In these graphs $H_0 = 0$.

VII. Conclusions

A cost function including an integral penalty function to constrain control can be used to obtain an approximation of the range-maximizing, angle-of-attack control history of an air-to-surface missile trajectory using non-linear equations of motion and the conjugate gradient method.

The major shortcoming is the necessity of having to guess values for the weighting on the penalty function, the initial guess on control, and the final time. The maximum range obtained is greatly dependent upon these guesses. Another shortcoming is the inability of the method to optimize control as time approaches the guessed final time. Finally, the most obvious drawback is that the exact optimal trajectory is not obtained.

VIII. Recommendations

Although the approach used in this investigation is one of the simplest ways of setting up the problem, obviously, other ways might lead to better results. With the exception of the last two subsections, all of the following recommendations discuss possible ways of improving the results of this paper. The subsection "Numerical Methods" treats possible ways of decreasing the computer execute time necessary for each gradient iteration, and the last subsection "The Control System" treats a possible area of further investigation.

<u>Objective</u>

As with all optimal control approaches there are a number of ways of setting up the problem. As suggested by Lasdon, Mitter, and Waren (Ref 7) end conditions can be treated using penalty functions in the objective. Since it is desired that $x_3(t_f) = 0$, the objective can be written as

 $J = -R_1 \left[X_3(t_*) \right]^2 + \left[X_4(t_*) \right]^2 - R_1 \left[X_2 d^2 dt \right]^2 + \left[X_4(t_*) \right]^2 - R_1 \left[X_2 d^2 dt \right]^2 + \left[X_4(t_*) \right]^2 + \left[X_4(t_$

where R_1 is a weighting function. Thus, the use of this objective tends to maximize the range while minimizing the altitude at time t_f . However, this approach is very sensitive to the values used for the final time t_f and R_1 . Of course trial-and-error methods would have to be used to determine reasonably good values for t_f , R_1 , and R.

-38

A better objective would be

$$J = R_1 \left[X_3(t_5) \right]^2 + \left[X_4(t_5) \right]^2 - R \int_0^{t_5} X_5 d^2 dt \qquad (27)$$

.....

which tends to maximize range as well as altitude at final time. This approach is less sensitive to final time.

Constraining Control

The problem of constraining the control can be handled by introducing a fifth state and dropping the penalty integral term of Eq (10). Since it is desired that $\ll_{\min} \ll \ll \leq$ \ll_{\max} , then the fifth state equation can be

$$\chi_{5}^{2} = R_{1} \left[(d_{max} - d) (d - d_{min}) \right]$$
 (28)

This keeps the objective as simple as possible, but adds another state variable and adjoint state variable to the problem. Again, "brute force" techniques will have to be used to determine R_{1} .

Method of Second Variation

A more sophisticated optimal computational scheme is the second variation method (Ref 9: 414). The conjugate gradient method essentially searches for the first order effects of the control on the objective. By considering second order effects as well, the second variation method converges much more rapidly than the conjugate gradient method (Ref 7: 138). However, the second variation algorithm is much more complex and very sensitive to the initial

.39

guess on control. (In general if the initial guess on control is not close to the optimal, the second variation method will diverge.) Of interest is the use of the angleof-attack history obtained by this investigation as the initial guess on control in the second variation method.

Two Control Variables

Another sophisticated approach is the use of the conjugate gradient method in solving an optimal control problem involving two control variables, specifically the angle of attack and the thrust-vector angle. (The thrust-vectorangle is measured from the x -axis of the missile to the thrust vector. In this paper the thrust-vector angle is zero for all time.) During thrusting, the gradient becomes a 2 X 1 vector and the conjugate gradient k-parameter becomes a 2 X 2 matrix. After thrusting, the problem simplifies to a one-control-variable problem. Most, if not all, of the matrix subroutines needed to program this two-controlvariable approach are stored on the 7044/7094 computer system library of the Digital Computation Center; WPAFB, Ohio.

Interval Maximization

One major fault in the approach used in this investigation is the tendency for the conjugate gradient method to make little or no effort to iterate toward an optimal trajectory in the region where time approaches the final time.

Maximizing over smaller and smaller intervals of time seems to be a way of solving this problem. First maximization is attempted over the entire range of time (t_0, t_f) as was done in this paper. Then some time t_1 is chosen where t_1 represents the time beyond which the conjugate gradient method appeared to fail. Next maximization is done over the interval (t_1, t_f) . Then a larger t_1 is chosen and maximization is repeated over that smaller time interval.

Numerical Methods

As previously mentioned, a set of Legrangian differentiation formulas is used to calculate the approximations of the derivatives of the data. Using these formulas in the computer program is somewhat cumbersome and time consuming. A more efficient way is to use curve fits of the approximations of the derivatives. However, curve fitting the derivatives is a more delicate operation than curve fitting the given data points. (An effort to curve fit the approximations of the derivatives with polynomials resulted in curve fits that are not as accurate as those obtained in Chapter III and consequently, are not used in this presentation.) Judicious use of a combination of least square curve fits such as the polynomial and the exponential may result in curve fits with satisfactory accuracy.

In this presentation the fourth order Runge-Kutta integration formula Eq (1A) is used to integrate the entire missile trajectory. Although very accurate and quite stable,

this method is somewhat cumbersome and time consuming. Other methods, such as the Adams-Bashforth predictor-corrector method, can be just as accurate, but far less time consuming. The Runge-Kutta formula can be used to determine the first four integration points and then a faster method can be used to determine the succeeding points. Of course a more sophisticated integrating subprogram is necessary, but computer execute time is reduced.

The Control System

Once the optimal angle-of-attack history has been obtained a further investigation treats the design of a practical control system that flys the missile along the optimal trajectory. In designing such a control system, open or closed loop, some of the aspects that must be considered are the desired accuracy, the weight of the control system, the space available on board the missile, the cost, the type of control system, the possible use of other control variables besides angle of attack, and the fact that the system will have to operate in real rather than standard atmospheric conditions. Finally, one decision that must be made is whether to use classical, optimal, or stochastic control design techniques. All three have their own advantages and disadvantages.

Bibliography.

- 1. Denham, Walter F. "Range Maximization of a Surface-to-Surface Missile with In-Flight Inequality Constraints." Journal of SpaceCraft and Rockets, 1, No. 1: 78 - 83 (January 1964).
- 2. Dommasch, D.O., S.S. Sherby and T.F. Connolly. "The Atmosphere" in <u>Airplane Aerodynamics</u>. New York: Pitman Publishing Corporation, 1951.
- 3. Fletcher, R. and C.M. Recves. "Function Minimization By Conjugate Gradients." <u>The British Computer</u> <u>Journal</u>: 149 - 154 (July, 1964).
- 4. Hart, William L. "Advanced Partial Differentiation" in <u>Calculus</u>. Boston: D.C. Heath and Co., 1955.
- 5. Kelly, Louis G. "Curve Fitting and Data Smoothing" in <u>Handbook of Numerical Methods and Applications</u>. Reading, Mass.: Addison-Wesley Publishing Co., 1967.
- 6. --- "Differentiation and Integration" in <u>Handbook</u> <u>of Numerical Methods and Applications</u>. Reading, Mass.: Addison-Wesley Publishing Co., 1967.
- 7. Läsdon, L.S., S.K. Mitter, and A.D. Waren. "The Conjugate Gradient Method for Optimal Control Problems." <u>TEEP Transactions on Automatic Control</u>, <u>AC-12, No.2.</u>: 132 - 138 (April, 1967).
- 8. Morrison, Richard B. and Melva J. Ingle (Ed.). "Atmospheric Properties" in <u>Design Data for Aeronautics and</u> <u>Astronautics</u>. New York: John Wiley And Sons, Inc., 1962.
- 9. Sage, Andrew P. "Direct Computational Methods in Optimum Systems Control" in <u>Optimum Systems Control</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1968.
- 10. Warfare Systems School. Spare Handbook. Maxwell Air Force Base, Alabama: Air University, July 1967.

Appendix A

Computer Program

The following computer program, written in Fortran IV, takes on the average less than 0.5 minutes of execute time $(t_f = 360; t = 5)$ to perform a conjugate gradient iteration on the IBM 7044/7094 II Direct Coupled Operating System of the Digital Computation Division: Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The program is composed of twelve subprograms:

(1)	MAIN	-	performs the conjugate gradient algo- rithm
(2)	NÉWCON	-	performs the k-search, consequently finding the new guess on control
(3)	GRADNT	-	computes the gradient
(4)	EQUAT	-	uses the Lagrangian formulas to differ- entiate the aerodynamic data; contains the state and adjoint state differen- tial equations
(5)	FMAS	-	contains the equations for the mass of the missile
(6)	FTHRUS	ž	contains the equations of thrúst
(7)	FRHO	-	contains the equations approximating atmospheric density
(8)	FVS		contains the polynomials approximating the velocity of sound
(9)	FCLA		contains the polynomials approximating the $C_{L \propto}$ curve of the missile
(10)	FÇDÚ	-	contains the polynomials approximating the C _{Do} curve of the missile
(11)	INTEG	~	uses Runge-Kutta fourth order formula to integrate the state and adjoint
			11.11

state equations; calculates the objective

(12) PRICE - uses the expanded Simpson integration formula to integrate the penalty function

The Runge-Kutta formula used is

 $\overline{X}_{n+1} = \overline{X}_n + \frac{1}{6} (\overline{K}_1 + 2\overline{K}_2 + 2\overline{K}_3 + \overline{K}_4)$ (1A)

where

$$\overline{K}_{1} = \Delta t \left[\dot{X} (t_{n}, X_{n}) \right]$$

$$\overline{K}_{2} = \Delta t \left[\dot{X} (t_{n} + \underbrace{\xi}_{2}, X_{n} + \underbrace{K}_{2}) \right]$$

$$\overline{K}_{3} = \Delta t \left[\dot{X} (t_{n} + \underbrace{\xi}_{2}, X_{n} + \underbrace{K}_{2}) \right]$$

$$\overline{K}_{4} = \Delta t \left[\dot{X} (t_{n} + \Delta t, X_{n} + \overline{K}_{3}) \right]$$

The Simpson integration formula is

$$\int_{t_0}^{t_n} f(t) dt = \frac{At}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 4f_{n-1} + f_n) \quad (2A)$$

where

Ĺ

.

 $f_n = f(t_n)$ $t_{n+1} = t_n + \Delta t$

\$19J09 MAP SINFTC MAIN COMMONZTOOZ DTIME . NETER . NSTATE . SAREA . COST . FPIH, FCONTR . XVOST . RO . TI DINENSION X (2,100) (CONTR (100) (TIME (100) (DEDU(100) (DEDU1(100)) 15(100) (A(100) (0(400) READ(54100) NOTEP INSTATE I TERIDT HE TOLITIARO FORMAT(311+3F10+6+F1042) 150 10%=0 SAREA#2+18 NSTAT2=NCTATE%2 NSTAT1=NSTAT3+1 NSTEP3=NSTEP+3 READ(5+101) (X(1+))+I=1+NSTATE)+(X(1+NSTEP3)+I=NSTAT)+NSTATE) 101 FORMAT(4015.00) TINE 61) = 0.0 NSTEP1=NSTEP+1 DO 11 1=2(NSTERI 12 TIME(I)=TIME(1-1): + DTIME CONTP(1)=15+61/57+2558 CONTP(2)=14+37/37+2938 CONTR(3)=10.37/37.2958 CONTR(4)=7.57 /57.2958 CONTP(5)= 0+77/57+2958 CONTP(6) =-1.99/37.2058 CONTR(7) = 1.05/57.2958 CONTR(8)= 4+65/37+2958 CONTR(9)= 6.63/57.2958 CONTE(10)=7.62/57.2958 CONTR(11)=0+10/57+2958 CONTR(12)=8.35/57.2959 GONTR(13)=8:48/57:295P CONTR(14)=8.61/J7.2938 DØ 301=15+100 30 CONTR(1)=0.25 CALL INTEGITIME + X + CONTR) CAPL. GRADNT (TIME+X+CONTR+DHDU) COST=2.0*(COST+XVOST) COST=SQRT(COST)/5280+ XVOST=XVOST/5290 ***2 WRITE(6+107) COST+XVOST FORMAT(14H INITIAL COST=+1PE15+8+15H INITIAL XVOST=+1PE15+8) 107 XVOST=XVOST*5280+**2 COST=COST*5280. COST=0.5*COST**2~XVOST DO I I=16NSTEPI DHDU1(I)=DHDU(I) S(1)=DHOU(1) 1 CALL NEWCON (TINTAX (CONTRAS) DHOU) 9 108#108#1 WRITE(6+102) IJK VELOCITY PATH AN 102 FORWAT (15H1 I TERAT LON NO++15//90H TIME 1 G ALT I TUDE RANGF CONTROL GRADIENT/69H 15 TOFGT 3 M I''' イロミダブノウト ZECT (FT/SEC) ኛቸጥን DO 2 1=1(NSTEP1 X(2+1)=X(2+1)×57+2953 46 X(4+1)=X(4+1)/5280+ CONTR(1)=CONTR(1)*57+2958

WRITE(6,103) TIME(1)+X(1+F)+X(2+1)+X(2,F)+X(4+F)+CONTR(1)+DHDU(1) FORMAT(H8+2+4X+F9+2+4X+F7+2+4/4F10+2+4X+F8+2+4X+F7+2+10X+1PE15+9) 103 X(2+1)=X(2+1)/57+2958 X(4+1)=X(4+1)%5280+ CONTR(1)=CONTR(1)/57.2965 IF(TIMF(I).GT.FTIM) GO TO TO 2 CONTINUE 10 COST=COST/5280+##2 WRPTE(6+108) COST 100 FORMAT(//11H TRUE COST=+ F8+2) COST=COST%5280.***? FCONTR=FCONTR#57.2055 RANGE=2.0×(COST+XVOST) PANGE=SCRT (RANGE)/5280. WRITE(6+104) RANGEL FIMIFCONTR 12H FINAL THME= FS. 2, 32H VALUE OF CONTRO FORMAT(7H RANGE=+ F0.24 104 1L AT FINAL TIMERAF8.2) FCONTR=FCONTR/57.2958 XVQST=XVOST/5280+**2 WRITE(6,106) XVOST :06 FORMAT(7H XVOST=+1PE15+8) XVOST=XVOST#5280 +##2 Ċ С TEST FOR CONVERGENCE С 12 TGRAD=0.0 DO 3 J=14NSTEP1 DH=ABS(DHDU(1)) IF (DH.GT & TGRAD) TGRAD=DH З WRITE(S.105). TGPAD+TOL 105 FORMAT (44H MAX. ABSOLUTE VALUE 01 THE GRADIENT IS:1PE15.8/ 119H THE TOLERANCE IS(1PE15.6) IF(IJK.GT.ITER) GO TO 4 IF (TOL . GE . TGRAD) GO TO 4 Ç Ċ FINDING NEW SEARCH DIRECTION С DH=C. DH1=0. DO 5 1=14NSTEP1 DH=DHDU(한) **2+DH 5 DH1=DHDU1(1)**2+DH1 BETA=DH/DH1 DO 8 1=1 (NSTEP1 S(I) = DHOU(I) + PETA + S(I) 3 DHDU1(I) = DHOU(I)GO TO 9 4 STOP END SUBROUTINE NEWCON (TIME (X (CONTR (Sa DHDU) COMMON/TOO/ DTIME INSTEP INSTATE SAREA COST FTIMIFCONTRIXVOST POINT DIMENSION X(6,100% CONTR(100) +TIME(100) +DHDU(100) +S(100) -DC-131 1=1, NETEP114 131 WRITE(6+130) THE(1)+S(1) 130 FORMAT(F10.2.5X.1PE15.5) 47 С ESTIMATE OF ORDER OF MAGNITUDE OF ĸ

GGC/EE/70-5

TCOST = COST XK=0∙ö NSTEPP=MSTEP+1 /DTCOST=040 DO 1 JELINSTEPT DTCOST=DTC95T+S(1) *DHDU(4) XK=XKFS(T)**2 XK=1.0/SOPT(XK) DO 2 1=1 NSTEP1 S CONTR(I) = CONTR(I) + XK+S(I) CALL INTEG (THE AX, CONTR) WRITE(SAT21) TOOST, COST FORMATUZZTE TOOST=+1PELE+8 +4X+5H COST=+1PE15+8//) 1.51 H=2.0%LCOST-TEGST)/DTCOST IF (0.0.GE.HOOR.H.GE.XK) H=XK C. Ċ. PATERVAL WHERE FINDING THE DERIVATIVE OF THE COST PASSES Э: THROUGH ZERO Ċ 00 4 J=1+NSTEP1 Ž; CONTR(1)=CONTR(1)-XK*S(01) DO 6 1=1,20 DO 20 K=1. NSTÉPI 20 CONTR.(K) = CONTR(K) +2 +0**(1-1)#H*5(K) WRITE(6+105) T 1:05 FORMAT(22H TWO IS RAISED TO THE (13,0H -1 POWER) CALL INTEGLIIME, XICONTR) CALL SPARNT'LT HEAXACONTR (DHDU) DCOST=0.C DO 5 K=1 NSTEPT 5 DCOST=DCOST+S(K) *DHOU(K) WRITE(6,107) COST, TCOST FORMAT(/6H COST=+1PE15+8+7H TCOST=+1PE15+8/) 1.07 DO 21 K=1+NSTEP1 21 CONTR(K)=CONTR(K)-2.0**(I-1)*H*S(K) IF (DCOST+LT+0+0) GO-TO-7 IF (1+50.+20) WRITE (61100) 100 FORMATIONH TPOUELE IN SEARCHA IF (1.EQ.20) STOP TCOST=COST 5 DTCOST=DCOST Ĉ Ċ CUSIC INTERPOLATION OF Ć 7 A=2.0**(1-1)*H B=Ò∙C IF(I+NE+1) R=2+0**(I+2)#H NCI≈Ò Z=DCOST+DTCOST+3.0*(COST=TCOST)/(B=A) Ċ V=Z**2=DCOSF#DTCOST W=SGRT(W) XK=P+(P+A)*(FTCOST+M+Z)/(DTCOST+DCOST+2.0*W) WRITE (G. 101) XX.A.B ĴÔĒ FORMAT(44 XK=+1PE15+8+3X+3H A=+1PE15+8+3X+3H 8=+1PE15+8/// DO 10 1=1 NSTEP1 -CONTR(I) = CONTR(I) + XK#S((I) 10.

÷		-				
	· · · ·	-		-	-	
٠.	IF (NCI . EQ. 1) 60 TO 13		-		-	~ -
· ·	STORESCOST		-			· -
	CALL INTEG (TIMELX CONT	'R) -	-		_	-
•	COSTXK=COST	-			a.,	
			-		-	_
· · · ·		1701000	-		Ĵ	-
×	TEACORT FT CONTRACTOR	CIRCEDFIDUP TODAT IT ACT	-	0 10		-
-	TH (CUSTAL RACUSTXK-AND a	I COSTALTACOS	51.XK) GO T	0.15		-
•	TDEL=P				-	
· ·	DO 22 I=1 NSTEP1	•	n.			
22	CONTR(I)=CONTR(I)-XK*8	5(I)				
, ² 15	DO 25 1=145	-		•	-	
-	#AC=I					
	DEL=B+FAC#(A+B)/5+0					
	00 25 K=14NSTEP1					
26	CONTR(K)=CONTR(K)+DEL*	8(K)				_
	CALL INTEG (TIME, X, CONT	R)	•		-	÷
	CALL GRADNT (TIME . X . CON	TR + DHDU)				
e	DCOST=0+0					.
	DO 28 RETINSTERT		• • •			•
28	DEOST=DCOST+DHDUKKA*S				-	
 	DO 29 K=1 ANSWED		۰ - ۲ -		-	
20	CONTRACTOR AND A CONTRACTOR	CIXN.	-			
2			20		-	
~			3U -			
-						-
ÔÉ		-		*		
20		•				
JU _	A=UEL			-		
۵,	B=TDEL	· · ·			- ⁻	
Ĩ,	NCI=1					
.1 2	GO» TO '9'	_	÷.,		-	. *
12-	GOST=COSTXK	-		× .		
	RETURN	۲. –	•	-	-	-
-	and a summit minute of a sum	rm 1.7	~			
.13	CALL INTEG(TIME X CONT					-
.13	CALL INTEG (TIME X CONT CALL GRADNT (TIME X CONT	VTR DHDU):	-	-	-	-
. 13	CALL INTEG (TIME X CONT CALL GRADNT (TIME X CON RETURN	VIR, DHDU):		-	-	-
. 13	CALL INTEG(TIME)X CONT CALL GRADNT(TIME)X CON RETURN END	UTRIDHDU):	· · · ·	-		-
13 STBFT	CALL INTEG(TIME(X CONT CALL GRADNT(TIME)X CON RETURN END C GR		· · · ·	-	- - -	
13 SIBFT	CALL INTEG(TIME(X,CONT CALL GRADNT(TIME)X,CON RETURN END C GR SUBROUTINE GRADNT(TIME				•	
.13 STBFT	CALL INTEG(TIME)X CONT CALL GRADNT(TIME)X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE	NTRIDHDU)		IMA ÉCONTRAN	WOSTADOAT	
.13 STBFT	CALL INTEG(TIME) X CONT CALL GRADNT(TIME) X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) + CON	INTRIDHDU) EIIXICONTRIDHE EPINSTATEISAF	20) REA+COST+F1	IM (ÉCONTR)X	(VOST . RO . T	. →
13 STBFT	CALL INTEG(TIME) X (CONT CALL GRADNT(TIME) X (CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (84400) (CON NSTEP1=NSTER+1	NTRIDHDU) EIXICONTRIDHE EPINSTATEISAP NTRCIOQIITIME	DU) REA + COST*+ FT E(100) + 한번DU	104ÉCONTR•X	₩0ST+R0+T	- - - - - - -
stert	CALL INTEG(TIME) X CONT CALL GRADNT(TIME) X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8+100) CON NSTEP1=NSTEP+1	KTRIDHDU) EIXICONTRIDHE EPINSTATEISAP VTR(100)ITIME	DU) REA+COST+FT E(100)+아버DU	1M(ÉCONTR), 2(100)	VOST +RO + T	- - - - - - - -
stert	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (84400) CON NSTEP1=NSTEP+1 DO(1 1=1+NSTEP1 TIMETIME(1)	KTRIDHDU) EIXICONTRIDHE EPINSTATEISAP NTR(100)ITIME	DU) REA+COST+FT E(100)+9404DL	1M(ÉCONTR,X 1(100)	VOST , RO , T	i →
stert:	CALL INTEG(TIME) X CONT CALL GRADNT(TIME) X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) CON NSTEP1=NSTEP+1 DO(1) I=1 (NSTEP1 TIMETIME(L))	KTRIDHDU) SIRIDHDU) SIXICONTRIDHE EPINSTÄTEISÄR VTR(100)ITIME	00) REA + COST:+ FT E(100) - + 아버머니	IM FCONTR ,X	VOST • RO • T	i →
sibrt:	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) CON NSTEP1=NSTEP+1 DO(1 1=1+NSTEP1 TIM=TIME(L) IF(TIM+GT+TI) R=0.0	KTRIDHDU) SIRIDHDU) SIXICONTRIDHE SPINSTATEISAP NTRIIOQIITIME	DU) REA + COST+ FT E(100) + 아니머니	IM (ÉCONTR) X	VOST .RO .T	i
sTBFT:	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X(8+100) CON NSTEP1=NSTEP+1 DO(1 I=1+NSTEP+1 DO(1 I=1+NSTEP1 TIM=TIME(I) IF(TIM+GT+TI) R=0.0 IF(TIM+LE+TI) R=R0	NTRIDHDU) EIXICONTRIDHE EPINSTATEISAF NTR(100)ITIME	DU) REA + COST:+ FT E.(100) - + 아내DL	IM (ÉCONTR) X J (100)	VOST .RO .T	i -
sTBFT:	CALL INTEG(TIME(X,CONT CALL GRADNT(TIME)X,CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME,NSTE DIMENSION X(8+100) CON NSTEP1=NSTEP+1 DO(1 I=1+NSTEP+1 DO(1 I=1+NSTEP1 TIM=TIME(I) IF(TIM+GT+TI) R=0.0 IF(TIM+LE+TI) R=0.0 X3=X(3+1)	NTR, DHDU) E.X.CONTR, DHE EP, NSTATE, SAF	DU) REA + COST:+ FT E.(100), + 아내DL	IM (ÉCONTR) X	VOST .RO .T	i →
13 SIBFT	CALL INTEG(TIME(X,CONT CALL GRADNT(TIME)X,CON RETURN END C GR SUBROUT,INE GRADNT(TIME COMMON/TOO/ DTIME,NSTE DIMENSION X(8+100) CON NSTEP1=NSTEP+1 DO(1 I=1+NSTEP+1 DO(1 I=1+NSTEP+1 TIM=TIME(L) IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0	(20.9E6+X3)**	DU) REA + COST*+ FT E(100) + 아버DU	14 ÉCONTR • X	(VOST • RO • T	i →
SIBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUT INE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) CON NSTEP1=NSTEP+1 DOC1 I=1 (NSTEP1 TIMETIME(1) IF(TIM.GT.TI) R=0.00 IF(TIM.GT.TI) R=0.00	(20.9E6+X3)*	DU) REA + COSTN+ FT E(100) + 아버머니	IM FCONTR .X	(V0ST+R0+T	i
13 SIBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X(8+100) CON NSTEP1=NSTEP+1 DOC1 I=1+NSTEP+1 DOC1 I=1+NSTEP1 TIM=TIME(1) IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 X3=X(3+1) GRAVTY=1+41002019E16/0 XMASS=FMASS(T+IM) THRUST=FTHRUS(TIM)	(20.9E6+X3)*	DU) 2EA + COST:+ FT E(100) + 아버머니	14 (ÉCONTR • X 1(100)	₩0ST+R0+T	i
13 SIBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 400) CON NSTEP1=NSTEP+1 DOC1 I=14NSTEP1 TIMETIME(L) IF(TIM.GT.TI) R=0.00 IF(TIM.GT.TI) R=0.00 X3=X(341) GRÁVTY=1041002019E16/0 XMÁSS=FMÁSS(TIM) THRUST=FTHRUS(TIM) RHO=FRHO(X3)	(20.9E6+X3)**	DU) REA + COST + FT E(100) + ФЧDL	14(ÉCONTR.) 1(100)	(VOST • R⊙ • T	i →
SIBFT:	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 +100) + CON NSTEP1=NSTEP+1 DO(1 I=1+NSTEP+1 DO(1 I=1+NSTEP+1 TIM=TIME(L) IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=R0 X3=X(3+1) GRÁVTY=1041002019E16/1 XMÀSS=FMASS(TIM) THRUST=FTHRUS(TIM) RHO=FRHO(X3) VS=FVS(X3)	(20.9E6+X3)*	DU) REA+COST+FT E(100)+9ЧDL	IM FCONTR , X	(VOST •R⊙ • T	i
13 SIBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) + CON NSTEP1=NSTEP+1 DO 1 I=1+NSTEP1 TIM=TIME(L) IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 X3=X(3+1) GRÁVTY=1+41002019E16/0 XMÁSS=FMASS(T-IM) THRUST=FTHRUS(T-IM) RHO=FRHO(X3) VS=FVS(X3) XM=X(1+I)/VS	(20.9E6+X3)*	DU) REA+COST+FT E(100)+9ЧDL	IM FCONTR .X	(VOST •R⊙ • T	i -
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 +100) + CON NSTEP1=NSTEP+1 DO 1 I=1 + NSTEP1 TIM=TIME(L) IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 X3=X(3+1) GRÁVTY=1.41.002019E16/ XMASS=FMASS(T.IM) THRUST=FTHRUS(TIM) RHO=FRHO(X3) VS=FVS(X3) XM=X(1+I)/VS CLA=FCLA(XM)	(20.9E6+X3)*	DU) REA + COST:+ FT E(100) + PHDL	IM (ÉCONTR .) 2(100)	(VOST • RO • T	i
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CON RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 +100) + CON NSTEP1=NSTEP+1 DO 1 I=1 + NSTEP1 TIMETIME(L) IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 X3=X(3+1) GRÁVTY=1:41:02019E16/ XMASS=FMASS(T.IM) THRUST=FTHRUS(TIM) RHO=FRHO(X3) VS=FVS(X3) XM=X(1+1)/VS CLA=F,CLA(XM)	(20.9E6+X3)*	DU) REA + COST + FT E(100) + 9 HDL	IM (ÉCONTR .) 2(100)	(VOST • RO • T	
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CONT RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) + CON NSTEP1=NSTEP+1 DO 1 I=1+NSTEP1 TIM=TIME(L) IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 X3=X(3+1) GRÁVTY=1+41002019E16/1 XMASS=FMASS(TIM) THRUST=FTHRUS(TIM) RHO=FRHQ(X3) VS=FVS(X3) XM=X(1+I)/VS CLA=F,CLA(XM) -G=SAREA*RHO*XX010FIDX#27	(20.9E6+X3)#	DU) REA + COST:+ FT E(100) + 9 HDL	IM (FCONTR)	VOST •RO • T	
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CONT RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 +100) + CON NSTEP1=NSTEP+1 DO(1 1=1+NSTEP1 TIM=TIME(L) IF(TIM+E=TI) R=0+0 IF(TIM+E=TI) R=0+0 IF(TIM+E=TI) R=0+0 X3=X(3+1) GRÁVTY=1+41002019E16/1 XMASS=FMASS(TIM) THRUST=FTHRUS(TIM) RHO=FRHQ(X3) VS=FVS(X3) XM=X(1+1)/VS CLA=FCLA(XM) -Q=SAREA*RHO*X*(10:1)X*27	XTR, DHDU) E, X, CONTR, DHE EP, NSTATE, SAF XTR(100), TIME (20, 9E6+X3) #1	DU) REA + COST+ FT E(100) + PHD(IM (ÉCONTR) X	VOST • RO • T	
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CONT RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 +100) + CON NSTEP1=NSTEP+1 DO 1 I=1+NSTEP1 TIM=TIME(L) IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 IF(TIM+GT+TI) R=0+0 X3=X(3+1) GRÁVTY=1+41002019E16/ XMASS=FMASS(TIM) THRUST=FTHRUS(TIM) RHO=FRH0(X3) VS=FVS(X3) XM=X(1+1)/VS CLA=FCLA(XM) -G=SAREA*RHO*X*(1001)X*27 THE GRADIENT EQUATIO	<pre>KTR,DHDU) E+X+CONTR+DHE EP+NSTATE+SAF KTR(100)+TIME (20+9E6+X3)++ K2+0 DN</pre>	DU) REA + COST++ FT E(100) + PHDL +2	14, ÉCONTR , X	VOST . RO . T	
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CONT RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4100) CON NSTEP1=NSTEP+1 DO 1 I=1.NSTEP1 TIMETIME(I) IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.G	KTR, DHDU) E, X. CONTR, DHE EP, NSTATE, SAF NTR(100) TIME (20.9E6+X3) #	20) 2EA • COST:• FT 2(100) • 0 HDU	IM (ÉCONTR) X	(VOST,R0,T	i →
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CONT RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4000) CON NSTEP1=NSTEP+1 DO 1 I=1 (NSTEP1 TIMETIME(1) IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.	(20.9E6+X3) **	DU) REA + COST*+ FT E(100) + PHDL *2	14 (ÉCONTR • X	(VOST.RO.T	
13 STBFT	CALL INTEG(TIME X CONT CALL GRADNT(TIME X CONT RETURN END C GR SUBROUTINE GRADNT(TIME COMMON/TOO/ DTIME, NSTE DIMENSION X (8 4000) CON NSTEP1=NSTEP+1 DO 1 I=1 (NSTEP1 TIM=TIME(1) IF(TIM.GT.TI) R=0.0 IF(TIM.GT.TI) R=0.0 IF(TIM.	(20.9E6+X3)*	DU) REA + COST + FT E(100) + PHDL +2	IM FCONTR .X	(VOST.RO.T	

GGC/12E/70-5

		*****	<u></u>	A-14 m		-
1			きく (* 1:)・)・4 じしょ)	AseCONE ECCE	9**2.0*04	ZXMASS_
	14X(641)*(G*CLA+1HRUS1*	COS(CONTRAC	$(1, 1) \in (X, \mathbb{C})$	1 + 10 %XMAS	Sata a	
	2-R*CONTR(I)	•		-		-
	DO 2 I=1 NSTEP1 4	-		-		_
2	WRITE(64100) TIME(1)4	DHDU (H)	-		•	· · · ·
100	FORMAT(F10+2+5X+19E15+	81)	-	-	-	
Υ.	RETURN			-		
	END.	-				
						,
	SUBRUUTINE EQUATOTXIUX		-			-
	COMMON/TOO/ DTIME INSTE	PANSTATE S	AREATCOS	T4™T IM4FC	ONTE SXVO	Sate 1000 T F
	DIMENSION TX(20) DXDT(20)+Y(10)]	- 7		•	
	X1=TX(1)	L-		-	÷ .	- <u>-</u>
^	X2=TX(2)	3	<u>.</u>	-	,	
	X3=TX(3)	5		•	-	
	$X_{4}=TX(A)$		-			
_		~	-	÷	·	
		· · · · ·		-	-	• 1.5
	X6=1X(6)			Â	л н	
• .	_{ X7 ² = ⁺ ⁺ X ₂ ('7 ₂) ² ² ²	, .	· · · · · · · · · · · · · · · · · · ·			
-	X8=TX(8)					
	<pre>_ GRAVTY=1.41002019E167(</pre>	20.956+X3)	**2			
	THRUST=FTHRUS(TIM)				-	
	XMASS=FMASS(TIM)			-		· ·
	RHO#FEHO(X3)					
	VerEVELXEN					
~ _		1.			~	<u>م</u>
			-			
		•				-
	-0=54REA*RH0*X1**2/2,•0			-	-	· ·
	Drag= (CDO+CLA*U**2) *C		-			
·	XLIFT=GLA#U#Q				<u>, </u>	Î
Ċ	-		-			
C	FINDING THE DERIVATIVE	ES OF RHO	Ne °VS+	CLA AND	i Ćbo.	- -
c :		-		•=		• • • •
•	DO 2 K-112	. · . ·		_	-	· ·· · · ·
		- . V.2. AND. V2.	1 7 . 6 . 57 44			
			1250000047			r
						· <u>-</u> .
	1F (X+FQ+2+AND+1+605+L)	• X3 • AND • X3	3.• L.T.* 1 • 7 -	5) DVSDR	=0•0	
•	IF (K+E0+2+AND+1+6E5+L1	r•x3•and•x3	3•LT•1•7ë	.5) 90 т	02	
	IF (K.EQ.3.AND.X4.LT.1)	0) DCLADA	4=000			
	IF (K.EQ.3.AND.XM.LT.1)	0) GO TO) <u>≥</u> :	-	-	
- -	IF K.EQ.4AND.XW.LT.O	GODODA ('D'	4≐0•0		-	
-	TF (K+EQ+4+ÂND+XA+LT+0)	(6) SC TO 2	2			····· ·
	IF (KELE+2) DELTAX=ZEO		-			
~ >		-			-	
					-	1
						· ·
	FACT = I	· · · · · · · · · · · · · · · ·				· .
v	IF (K.LE+2) XT=X3+DEL	TAX*{=ACT-	5≦•0)	-	- <u>,</u> •	
	IF (K.GE.3) XT=XM+DEL	TAXX (FACT-S	5 • Q }	-	-	
	IF(K•EQ•1) Y(I)=FRHO	(XT)			1	*
	- IF(K.E0.2) Y(I)=F(VS()	KT)	-		• .	-
	IF (K. FQ.3) Y.(I) =FCLA	(XT)	-	•		-
.1	FICKATOAA) YOTASTODO	(XT)		-		-
` •	$\frac{1}{1} \frac{1}{1} \frac{1}$	(Å)=34.4V2.	714 1 2	.0.1 - 2	1-1-1-24-1-0	
			<u>المراحدة محمدة مع من مراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ا</u>	1.51 7 - C . 5-7 .		<u></u>
		Je TT (D) +18)	• ***I. (\$) ***5 •) 76 Y 6 / J 45 Y 6 2	:1.77=(12+3	NUCLIAN.
	9YDX=DYCX+(Y(3)+8+*Y(4	4)+3•*Y(6)+	-¥(7)5)%(4	21#DELTAX	0	-
	DYDX=DYDX∻(÷Y(?)∻6∙∛Y	(3)~18•#Y@	4)+1Q_•*Y((5)+3•**(6	5):)/(12•)	DELTAX)
	0Y0X=CY3X+(3+*Y(t)-16	•*Y(2)+36•*	XX(3)-45.	*Y(4)*25	**(5))/	Ľ .
			-		-	7.
				-		

GGC/EE/70-5 1(11: *DELTAX) DYOX=DYOX/5+0 BRHODH=DYDX IF(K.5Q.1) DVSDH#DYDX IF (K.EQ.2) IF (K. FO. 3) DOLADM=DYDX DCDODM=DYDX 1F(K.E0.#44) LIFT ANÐ DRAG WePata DERIVATIVES 07 THE PARTIAL ĎÐÐV=04 (ĎCD0D4/VS+U+42+DCEÅD1/VS)+RH0+X1+3APEA+3F4C/G DEVOV=0*(CEA#U/X1##2+U*OCEAD*1/ (VS*X1))* DLDH=G% (CLA#UADDHQDHZ (X1 TRHO)~U#DCLADH#DVSDHZVS*72) DDDH4Q%(-X1#DCD00C"#DV5FHZV5#X2-U#X2#DCLADM#DV5DH#X1/V54#20+ - IDRAG*ORHODH/RHO THE DIFFERENTIAL EQUATIONS OF THE STATE AND ADJOINT HSTATE DXDT(1)=THRUST*COS(U)/XMASS+DRAG/XMASS+GRAVTY*S1H(X2) DXDT(2)=XLIFT/(XMASS*X1)+THRUST*SIN(U)/(X4ASS*X1)+G7/VY*COS(X2) 1/%1 DXD#(3)=X1*S1N4X21 DXDT(%)=X1*COS(X2) DXDT(5)=X52DDDV/XLASS+Y6%(DLVDV2XMASS+THRUST*SIN(U)>/(XMASS%X1*#2) 1+6PAVTY*CŐS(X2)/X1**2)-X7*SIN(X2)~X8*COS(X2) DXDT(5)=X5*GRAVTY*COS(X2)+X6*GRAVTY*SIN(X2)/X1-X7*X1*COS(X2) + 1X8*X1*SIN(X2) DXDT (7)=+X5*DDDH--X6+DLDH/X1-)/XMASS DX07(8)=0.0 RETURN JEND SIRFIC FMAS DECK FUNCTION FMASS (TIM) GRAVTY=32+25-2 A FUNCTION OF TIME AND GRAVITY MASS A'S. IF (0.0.LE.TIM _..AND.TIM ..LT. 19.44) FMASS=(1734:-51.25*TIM 0/GRAVTY TE (19:44.LE.TIM .AND.TIM .LE.28.4) FMASS=737.7/GRAVIX 1-(1.60347E+3*TIM #*8-3.21977E-1*TIM **7+29.1634*TIM **6-1.472139 2E3*TIM **5+4.61362E4*TIM **4-9.19163E5*TIM **3+1.126781E7*TIM **2 3-7.977601E7*TIN 1/(-240.*GRAVTY) - -1.01276465E6/GRAVTY IF (TIM + GT+28 4) FMASS#512+10246/GRAVTY ſFŇÁSS=FŇASб1266•/QRAVŤY SETURN. SND \$13FTC~FTHAU J FUNCTION FTHRUS (TIM) THRUST . AS FUNCTION Α OF TIME 1F(TIM (LF.19-44) FTHRUS=1.23E4-

JF-(T14)+95+19+44+ARD+T1M+LE+30+35)FTFRUSE1+28275E52471M **7 1-2-295845#TTH **6+1-74950622#TTM **5-7-360599E3+TTM **4+1-845449EC 2*T1M **3~2•#57499E6*T1M **2+2•273562E7*T1M -7•977601E** ĨĔ(JIIM "GT•30•35) FĨHRUŠ≒Q•Ô RETURN

```
∉€.MĎ
```

ĉ

Ċ

2 Ć.

Ç.

Ċ Ĉ

Ċ.

51

AND

X-1

XЗ

NAH 17

```
GGC/EE/70-5
```

SIRFTC FRH FUNCTION FRHC(X3) C С RHO AS A FUNCTION xз ೧೯ С 1F(X3.LT.0.0) FPHO=+4.800153E-1: *X: \2*T. T00927E-13*X3**2 1+6.960857F+3+X3+2.3768998-3 IF(X3 *LT: • 2923255) FRH0= • 23785-5 (1+0-*1) 5-54X3) **4.256 .EQ. . 3533285) FRHO= . 7277-3 1F(X3 TEMP=1.432 + (X3 --.3858265)/.co.st g IF(X3 •GT.•3532283) FRHO= (1.00%*57 7 F-3)/ ()(7678/0) RETURN END SIBFIC FVOS FUNCTION FVS(X3) С С A FUNCTION VS AS OF XЗ C IF(X3+LT+0+0) FVS=8+888654H-13*X3*3+447744778-6%X3*#2 1-3:649881E-3:X6+1:116809E3 1F(0..LE.X3 .AND.X3 .LE.4.F4) EVS = 4.F7-9725+174X3 **4 1-2+378208E+12*X3 ***3+3+0145930+35X3 ***2+1+03760-0+K-3*X3* 2+1.116911F3 IF (4.020.LT.X3 AND.X3 (LT.G. OE4) VD CT.SHATE2 IF (G.E4.LE.X3 AND. X3 LT. 1. FS) TVS #2. (7391E-22*X3) **5 1-0.802145E-17×X3 28446.645408E-10/X1 2845-1060405565+74X3 ***2 2-2-1477395-3*X5 41-11632953 1F(X3 .EQ.1.75) FVS =1.0045E3 1F(1:E5.LT,X3 ...AND.X3 ...LE.2.E5) FVS #10000065065-10*X3 **44 1-1+238934E-12*X3 **3+3+3+200607E+7*X3 ***2+3+17329E+2%X3 22.05709983 1F(1.+6E5+LT+X3) •AND(X3 +LT+1+7ES) FVS =1+405763 IF(X3.GT.2.E5) FVS=1038. RETURN NOT REPRODUCIBLE END SIBFTC FCL FUNCTION FCLA(XM) С С CLA AS A FUNCTION OF MACH NUMBER Ċ IF (0. .LE .XM .AND.XM .LE. 1.00) FCL4=1.003-1 IF (1.0.LT.XM .AND.XM .LT. 1.6) FCL4=-5.733715E=2#XM **4 1+1•736429E-1*X% **3-1•468177E-1*XM **2+3+511789E-2*XM 2+1.0255055-1 •AND•X州 •LE•6•0》 学纪16-204010255-44XM IF (1.5.LE.XM **4 1+4+54F568E-3*XM ***3-2+637706E-2*XM ***2+++5977888=2*XM 29.0930178-2 FCLA=FCLA*57+2958 RETURN END SIBFTC FCD FUNCTION FODO(XM) e С CDD AC FUNCTION OF MACH - NUMPER A С IF (O.C.LE.XM s AND • XM 4LE.0.6) FCDD =: 182 IF (O.S.LT.XM AND > XM *LE*1*15) FCD0 =-11*28990*XM **4

```
GGC/EE/70-5
```

```
1+39$75C7*XM ***3*46*03444*XM ***3*24301167*XM **4*492402-
                       FCD0=5.7312912-0 X***4
     JF (1. 15 CLIAXM)
     1-7.159816E-2#XM
                        **3#3.375729FF; X** * 20-78710667E-1%%A
     2+0.9904876
      1F (4.472+LT+XM)
                       FCD0=0-194
      RETURN
      Et 10
stafte inte
      SUBROUTINE TINTEG (TIME TX, CLOT-1)
      COMMON/TOO/ DTIME, NSTERAMOTATE, CC FA, COST, FTIM, FCONTR, XVOST, RQ3 TI
      DIMENSION X(84100) + CONTRATED) + T (100) + F(10+4) + TX(10) + DXDT(10)
      M=1
      NEG=0
                                   fraid Su
      STORE=1.0
      NSTEP1=NSTEP+1
      DO 14. IND=1-12
      DO 10 JU-1-INSTEP,
      TEAMDYEQ. -- ANDY STORE -L TTO . OF 50 TO 75
C
                                FORWER
    COMPUT-ING RUNGE-KUTTA
Ĉ
Ĉ.
     X(N+1) = X(N) + (K+0 + 2*K+1 + 2*K+2 + K+3)/5
      「FUIND。EQ。注) J=JJ-
      TE (IND, EO, 1) J1=JJ+1-
       IF (IND . EQ. 1) H=DTIME
      TF(IND.EQ.2) J=NSTER1-(JJ-1)
                                                  NOT REPRODUCIBLE
                    JI=NSTEP14JJ
      JF (IND + EQ+2)
      AF(TWD.EQ.2) HETTIME(J1) AT INE(J)
   FINDING
              K-0-
C
      FTIME=TIMEON
      DO 1 K=1 NSTATE
 1:
      TX(K)=X(K(J)
      CONTRO=CONTR(J)
      CALL EQUATITY (DXDT) FTTME ( CONTROL
       DO 2 K=MINSTATE -
 2
      FICKIN)=DXDT-(KI)#H
     FINDING KH1
      FTIMETTINE(J)+0.5*H
      1.5 ( IND. EQ. 11) J2=J+4
       IF (IND # 20 - 21 - J2= U-1:
       CONTRO=CONTROUCH + (FTIME+TIME(J2)) / (CONTROUCH (J2)) / (TIME(J))
      1-TFM在(J2-)外
       DO 3 K=1 NSTATE
       TX (K)=X (K) J)+0.5%F (K).1-
       CALL EQUATION, DXDT'SFT LES, CONTROL
      DO 4 KEMINSTATE
       F(K)2)=DXD平(%)*+
   ELNDING_KA2
       DO 5 KELINSTATE
       TX(K)=X(K),J)+0+5#E(K)25
       CALL EQUATITX DXDIT FT FMELCONTROL
```

GGC/RE/70-5

DO 6 K=MINSTATE F(K+3)=DXCT(K)*8 6 С F1N0186 K+3 С C FTIMESTIME(J) + H JF (IND, EG, 1) CONTRO=CONTR(J+1) JF (IND. EQ. 2) COUTPO=CONTR (J-1) DO 7 K=1ANSTATE TX(K)=X(K+J)+F(K+3) .7 CALL EQUAT(TX) DXDT/FT LIE (CONTRO) DO S KEMANSTATE 8 F(R+4)=DXDT(K)#H Ċ. FINDING X(NSL) Č. С DO 9 K=MINSTATE , X(K,J)()=X(K,J)+(F(K,1)+2,0); (K,2)+2,0); (K,3)+F(K,4))/6.0 9 STORE=X(3+JF) CONTINUE 1 Ĉ. GO TO (15.14) IND DO 26 I=14NSTATE 25 SCO 26 JEJJANSTEP 25 X(IAJ&L)=X(IAJ) С APPROXIMATE Ċ EVALUATING THE FINAL TAINE ē DO-16 JI=21NSTEP1 15 1F(X(2)1).LE.0:0) GO TO 17 16 GONTINUE WRITE (\$1100) FORMATIC//29H INGREASE THME OF INTED ATION//) 100 TNS=NSTEP FTTM#TNS#DTIME COST=X (4) NSTEP1) FCONTR=CONTR(NSTEP1) GO TO 22 -17 FTIM=TIME(J19-4(TIME(J1-1)-TIME(.(1-9))*X(3(J1)/ 1 (X(3+J1-4) +X(3+J1))* FINAL APPROXIMATING COST AND CONTROL AT TIME C <u>ر</u>ً ۽ 1=4 =X(114, J1ーホ)+(X(114, J1+1)-X(14, J1-1))》を(FŤ1所-TIME(J1-1)-)/ COST 1 (新田田田(山)-东北市 一丁丁州田(山)-山)) =CONTRUITIO+(CONTRUIT+))-CONTRUIT-1))+(FTIM-TIME(J1-b)) FCONTR 1 (*1881,01+10 #71886,01+5)) 1(J1-1)) FCONTRECONTRULIAL)+(CONTRULI)+CONTRULIALS * (FTIM-TIME (J1-1))/(TTME CONTR (J1)=FCONTR NSTEP1=J1 NSTEP=NSTEP1,-1 M=NSTATE41 22 NSTATE=2*NSTATE N3=NSTEP43 X(3+N3)=1+0 DO 12 IFMINSTATE

Ð

and the state of the state

يت اللغاء

-	-			-				
- t-2	YUSUND MODINEY (1	1 N 3 Y	¥ _				-	
14	CONTINUE -	-	-	-	-		2	~
	NSTATE NSTATE/2	2						-
· · ·	XVOST PRICE (CON	- גהדו						
-	COST=0+5*COST#*	2-XVOST		•				
· ، ،	DO 30 1=1ANSTER	21 . 4						
30	WD17F(5,103) T	MET PART	1.1.1.1.1.1.1.1.	111213.1		CONTRA	1)	
.	ANTENATURY (SATI).	X(7.7\.	1911400	p== 7 3 / (+	1 4 1 1 2 4 4 4 7	1.00.1011	. /	
10.3	FORMAT(10(51027	24 2X ())						
a, 9 •2	PETURN	2 Y LINE X Y Y						
	ENA	-	-					-
C1'26'T	י הטאיר השרע							
	FUNCTION DETCEN	CONTRAL	- <u>-</u>					
	COHMONIZADOZ DTI	NG LNGTED	NETATION		T. ST'IM. ST	CONTO		
	DIMENSION CONTE	57.100. 57.100.	914.21751 7.	Contract to go CI	1 4 . 1 1	CONTRACT	v031 mQ	
<u>^</u>	NATI ZONTMERO	CTODY.						
	- 194 194 194 194 194 0 - 54 56			· ,	. •	*	-	
	GOTOF-A. CADACON					1.	-	
÷		1133 I J-882	7115°8 51175		-	,	-	· ·- ·
	PRICEPRICE CM	Darka Cossill-as	12.)-3.32			~ ×		-
	DU I I HAANAA		-	-				,
~ x	PAUEIMI Atventaroetve		-	÷ .				
			-					
	The CITWE CITY T	H=0.0			-			
•	IF (TIMOLESTI)	NEKO Keko	* 0					
	PRICE=PRICE+R*C	CONTR(1)*	*2	~	- ·			
		in a a	- -					
	TH CLIMAGIATIL	R=0.40-	~	*			-	
	IF (TIM+LE+TI)	R=R0=						
A 1								
1	PRICE=PRICE+2.0	D&RACON145	(1+1)**2					
3 *	PRICE=PRICE+2. PRICE=PRICE#DTI	omrzcontra Imezsijo	2 (10417) 1					
1.	PRICE=PRICE+2. PRICE=PRICE#DII RETURN	o&r∕contra Ime∕s∳o	1 1 1					
1	PRICE=PRICE+2*(PRICE=PRICE#DI RETURN END	DARACONIA IMENS 0	1 (1041) 882 1 1					
1	PRICE=PRICE+2*(PRICE=PRICE#DTI RETURN END	I₩Ë\S¥O	"(1∻1) #*2					
1	PRICE=PRICE+2+C PRICE=PRICE#DTI RETURN END	IWE\S∙0	"(1+1)**2 			•		
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	IWE\S∙O	"(1++1)***2 -				· ·	
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	IWE\S∙O	"(1+1) **2			•	• • •	
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	DWRZCON IW IMEZS 0	"(1:+1) #*2			• • • • •	· · ·	
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	Dera Contes IME∕S∙0	"(1++1)***2 		•	• • 1.		-
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	Dwka Con Ing Ing≦∖3≢0 ("(1:+1) **2		´ :	•		
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	Dwk∕Contes IME∕S∳O	"(1:+1) **2	· · ·				
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	I₩E\3∙0	"(1+1) **2		• • <u>-</u>	• • · · · .		· ·
Y	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	I₩E\3∙0	"(1:+1) **2		^			
1	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	IWE\S∙O	"(1:+1) **2		´ :	• • 7		
1	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	IWE\S∙O	"(1:+1) **2	· · · ·		** .		
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	IWENS 0	"(1:+1) **2		•	•		
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	IWE\3∙0	"(1:+1) **2		.	• • • • •		· · ·
1	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	0∞KYCON IK IMEY3∙0	"(i+1)**2			•		· · ·
	PRICE=PRICE+2. PRICE=PRICE#DTI RETURN END	I₩E\3.0	"(i+1)**2					· · · · · · · · · · · · · · · · · · ·
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	I₩E\3.0	"(1:+1) **2				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	I₩E\3.0	"(1:+1) **2		^ :			· · ·
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	I₩E\3.0	"(1:+1) **2					•
1	PRICE=PRICE+2 (PRICE=PRICE#DTI RETURN END	IWE\S €O	"(1:+1) **2					
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	IWE\S €O	"(1:+1) **2		• • -	•		
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END	IWE\S €O	"(i + 1) * * 2		• • •			
1	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END		·(1:+1) **2		- - -			
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END		·(1:+1) **2		• • •			· ·
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END		·(1:+1) ***2		·			
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END		·(1:+1) ***2		•			55
	PRICE=PRICE+2.(PRICE=PRICE#DTI RETURN END		·(1:+1) ** 2		·			55

ĵ

Appendix B

The Drag and Lift Coefficient Equations

In Fig. 1B, x_B and y_B are the body axes of the missile. L and N are the lift and normal force vectors, respectively; D_0 and D_1 are parasite and induced drag, respectively. All other drag components are assumed negligible.

(1B)

(2[,]B)

(3B)

(4**B**)

(5B)

Fig. 1B. The Lift and Drag Forces Acting on the Missile

From the diagram it can be seen that

= F (05 (x) :

 $D_i = F \sin(\alpha)$

If & is small

Di & Fa

+ ≈ F

and therefore,

Di & La

The total drag D can be written as

$$D = D_0 + D_1$$

Substituting Eq (2B) into Eq (3B)

$$p = p_{0} + L \alpha$$

The nondimensional form of Eq. (4B) is

$$C_{\rm D} = C_{\rm Po} + C_{\rm L} d$$

The lift coefficient can be written as

$$C_{L} = C_{Lac} \qquad (63)$$

where C_{Lec} is the trimmed lift curve slope at a given Mach number. Substituting Eq (6B) into Eq (5B).

$$C_p = C_{p_0} + C_{L_{a_1}}^2 \tag{7B}$$

Note that the use of an aerodynamic moment equation is not necessary since only trimmed flight conditions are used to

57

define the lift and drag coefficients.

Appendix C

Lagrangian Differentiation Formula

Assume the function F(x) can be represented by the Lagrange interpolation polynomial (Ref 6: 48)

(ner)

$$f(x) = \sum_{k=0}^{n} l_{k}(x) f_{k} + E(x)$$
(10)

where

2

$$E(x) = \pi(x) \frac{f(x)}{(n+1)!} = \pi(x) f[x_0, x_1, \dots, x_n, x]$$

$$l_k(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0)(x_k - x_0)(x_k - x_{k+1}) \dots (x_k - x_n)}$$

$$\pi(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

$$f_k = f(x_k)$$

n+1 = number of points used in the approximation

 $f(x_{o}, x_{1}, \dots, x_{k}, x) \text{ is the divided difference of the}$ $(k+1)^{\text{th}} \text{ order.}$ $f[x_{o}, x] = \frac{f(x) - f(x_{0})}{x - x_{0}}$ $f[x_{o}, x_{i}, x] = \frac{f(x_{i}, x] - f[x_{o}, x_{i}]}{x - x_{0}}$

 $f[x_{0}, x_{1}, \dots, x_{k}, x] = \frac{f[x_{1}, \dots, x_{k}, x] - f[x_{0}, x_{1}, \dots, x_{k}]}{x - x_{0}}$

The x_i 's (1=0, 1,...k) are spaced equally apart.

By differentiating Eq (1C) \ddot{r} times, the rth derivative of f(x) can be approximated as

$$f^{(r)}(\chi) = \sum_{k=0}^{n} \mathcal{I}^{(r)}_{k}(\chi) f_{k} + E^{(r)}(\chi)$$
(2C)

Assuming $E^{(r)}(x)$ is small and therefore can be neglected, Eq. (2C) becomes

$$f^{(r)}(x) = \sum_{k=0}^{n} l_{k}^{(r)}(x) f_{k} \qquad (3c)$$

which is the general form of the Lagrangian differentiation formula with the error term neglected. To obtain the five formulas used in this paper, set r = 1, n = 4, and $x = x_1$ ($i = 0, 1, \dots, 4$) in Eq (3C). These formulas are located in the "Equat" computer subprogram (Appendix A).

59-

Appendix D

Polynomial Least Squares Curve Fitting

The Legendre's principle of least squares: given exact or equally reliable data, assume that the best approximation of curve fitting is one for which the aggregate of the squared error over the entire domain is least (Ref 5: 63).

The exact values of f(x) are known at discrete points corresponding to x_0, x_1, \dots, x_m over the interval (x_0, x_m) . It is desired to approximate f(x) in the form

$$f(x_i) = \sum_{k=0}^{n} a_k x_i^k \quad (i=0,1,-\cdots,m); n \le m_{(1D)}$$

Define the error r(x) as

$$f(x_i) = f(x_i) - \sum_{k=0}^{n} a_k \chi_i^k$$
 (2D)

If the a's are determined such that

$$R = \sum_{i=0}^{m} r^{2}(x_{i}) = \sum_{i=0}^{m} \left[f(x_{i}) - \sum_{k=0}^{n} Q_{k} y_{i}^{k} \right]^{2} \quad (3D)$$

is minimum, then the best approximation in the least squares sense is obtained. The minimum of R can be obtained by ordinary calculus:
GGC/EE/70-5

$$\frac{\partial R}{\partial a_j} = \frac{\partial}{\partial a_j} \left[\sum_{k=0}^m r^2(\chi_j) \right] = 0; \quad (j=0,1,\cdots,n)$$
(5D)

Eq (5D) represents the normal equations. Substituting the a's obtained from Eq (5D) into Eq (10) yields the fitted polynomial.

To increase the accuracy of the curve fit, the range of the independent variable is normalized over $-1 \le x_1 \le 1$ by applying Eq (6D),

$$\chi'_{i} = \frac{2\chi_{i} - \chi_{m} - \chi_{o}}{\chi_{m} - \chi_{o}}$$
 (6D)

The following equation yields the coefficients associated with the unnormalized independent variable (Ref 5: 69).

$$a_{j} = \sum_{i=0}^{n-j} (2^{i}) a_{j+1} (i^{j+i}) q^{i} k^{j+i} (7D)$$

$$n = degree of the polynomianal
k = \frac{1}{\chi_{m} - \chi_{0}}$$

$$\binom{n}{i} = \frac{n(n+i) - \cdots (n-i+i)}{i(i-i) - \cdots 2 \cdot 1}$$

$$\binom{n}{i} = n \quad ; \quad \binom{n}{o} = 1 \quad ; \quad \binom{i}{i} = 1$$

$$y = \chi_{0} + \chi_{i}$$

$$\binom{n}{i} = 1$$

.)

GGC/EE/70-5

<u>Vita</u>

Albert Ivory Chatmon, son of Saxfield and Emily K. Chatmon, was born on 12 October 1946, in Washington, D.C. In June 1964 he graduated from McKinley High School, Washington, D.C. where he studied in the pre-college engineering curriculum. In June 1968 he graduated from Howard University, Washington, D.C. as a distinguished R.C.T.C. graduate receiving the degree of Bachelor of Science in Electrical Engineering. He was commissioned a Second Lieutenant in the Regular U.S.A.F. He is a student member of the American Institute of Aeronautics and Astronautics and the Institute of Electrical and Electronics Engineers, an E.I.T. member of the Ohio Society of Professional Engineers, and a member of the Air Force Association.

62

Permanent mailing address: 1758

1758 Kilbourne Place, N.W. Washington, D.C. 20010

•	T DE LE D	DOCUMENT CONT	ROL DATA - R 8	D		
Securi	ty classification of sittle, body o	l abstract and indexing i	nnotation must be e	tered when the overa	Il report is classified)	
Air Fo	rce Institute of	Technology	(AFIT-SE)	Unclass	sified	
Wright	-Patterson AFB,	Ohio 45433		2b. GROUP	**	<u> </u>
REPORT TIT	LË	~		· .		
Range	Maximization of	an <u>A</u> ir-to-S	urface Nis	silc	••••	
DESCRIPTIV	E NOTES (Type of report and inc	lusive dates)	AFIT Thesi	s		
AUTHOR(S) (First name, middle-initial, last n	unie)				
Alber	t I. Chatmon	.* •				
REPORT DAT	C		78. TOTAL NO. OF	PAGES 76.	NO. OF RUFS	<u> </u>
<u> </u>	June 1970	·····	5		10	
. CONTRACT OR GRANT NO.		-	ATT TO THE	REPORT NUMBER	и. 50 г	
6. PROJĘCT ΝΟ.			LAELE THES	18 990/15第7	ſ≈ ∪) .	-
		_	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned			
			une reportj	N/A		
	·	<u></u>	<u>.</u>		· · · · · · · · · · · · · · · · · · ·	
UISTRIBUT		the second second	•	يه مکه بن از		
SUPPLEME	NTARY NOTES	<u>-</u>	12. SPONSORING	ILITARY ACTIVITY		<u>,</u>
	1		Aeronaut	ical System	ms Division	
			Wright-1	atterson A	FB, (ASBEF)	
ABSTRACT	· · · · · · · · · · · · · · · · · · ·		<u> 0n10 4</u>		· · · · · · · · · · · · · · · · · · ·	
		*		•		-
-	Pontryagin	's Maximum P	rinciple, (oupled wit	h the	
-		ont itopotiu	e technique	, 1S emplo	yed in vimum	-
-	conjugate gradie	EIIO - TOCTGÓTA	- too dimos	STOUAL MA		
	conjugate gradie determining esti	imates of the	e two-dimento-surface	missile	Angle	
	conjugate gradie determining esti- range trajectory of attack is use	imates of the of an air- ed as the con	e two-dimen to-surface itrol paran	missile. Neter	Angle	
·	conjugate gradie determining esti- range trajectory of attack is use -The motion	imates of the of an air- of the con of the vehi	e two-dimen to-surface itrol paran cle is desc	missile. neter. ribed by f	Angle our state	
·	conjugate gradie determining esti- range trajectory of attack is use -The motion equations includ	imates of the of an air- of the vehi ling standar	e two-dimen to-surface trol para cle is deso l atmosphe	missile. neter ribed by f ic data, a	Angle our state nd lift	
	conjugate gradie determining esti- range trajectory of attack is use -The motion equations includ and drag data of	ing standar	e two-dimen to-surface itrol param cle is desc l atmosphen wind tunno	missile. neter. ribed by f ic data, a l tests.	Angle our state nd lift In the	
	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation	imates of the of an air- of the vehi- ling standar otained from nate the der	e two-dimen to-surface trol para cle is des l atmospher wind tunne different vatives of	missile ribed by f ic data, a l tests. iation for lift and	Angle our state nd lift In the mulas are drag with	
	conjugate gradie determining esti- range trajectory of attack is use —The motion equations includ and drag data of adjoint equation used to approxim respect to veloc	imates of the of an air- of the vehi- of the vehi- ling standar otained from ns Lagrangian nate the der oity and alt	e two-dimen to-surface itrol param cle is desc l atmosphen wind tunno different ivatives of tude.~	missile. neter. bribed by f ic data, a il tests. iation for lift and	Angle our state nd lift In the mulas are drag with	
	conjugate gradie determining esti- range trajectory of attack is use -The motion equations includ and drag data of adjoint equation used to approxim respect to veloc	imates of the of an air- of the vehi- ling standar otained from nate the der oity and alt	e two-diment to-surface trol parameters cle is desc l atmosphered wind tunned different tvatives of tude.~	missile peter. Fibed by f ic data, a l tests. iation for lift and investigat	Angle our state nd lift In the mulas are drag with ed one	
	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim respect to veloc -Two quadration	imates of the of an air- of an air- of the vehi- ling standar otained from ns Lagrangian nate the der oity and alt tic cost fun	e two-diment to-surface itrol paraticle is desc d atmosphent wind tunned different ivatives of tude.~ ctions are rm and the	missile ribed by f ic data, a l tests. lation for lift and investigat other a qu	Angle our state nd lift In the mulas are drag with ed one adratic	
, -	conjugate gradie determining esti- range trajectory of attack is use -The motion equations includ and drag data of adjoint equation used to approxim respect to veloc -Two quadration involving a line term. Both include	imates of the of an air- of the vehi- of the vehi- ling standar btained from nate the der bity and alt tic cost fun ear range te lude a quadr	e two-diment to-surface trol parametric cle is desc d atmosphere wind tunned different tvatives of tude.~ ctions are rm and the atic penalt	missile ribed by f ic data, a l tests. lift and investigat other a qu y function	Angle our state nd lift In the mulas are drag with ed one adratic involv-	
, - , -	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim respect to veloc -Two quadrat involving a line term. Both incl ing a weighting	imates of the of an air- of an air- of the vehi- ling standar otained from ns Lagrangian nate the der oity and alt tic cost fun ear range te lude a quadr function an	e two-diment to-surface trol paral cle is desc l atmospher wind tunne h different tvatives of tude.~ ctions are rm and the atic penalt	missile ribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
- -	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim- respect to veloc -Two quadration involving a line term. Both incl ing a weighting	imates of the of an air- of an air- of the vehi- ling standar, otained from nate the der oity and alt tic cost fun- ear range te lude a quadr function an	e two-diment to-surface itrol parameters cle is desc d atmosphere wind tunno different ivatives of tude.~ ctions are rm and the atic penalt d the squat	missile ribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
- -	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim- respect to veloc -Two quadrat involving a line term. Both incl ing a weighting	imates of the of an air- of an air- of the vehi- ling standar otained from ns Lagrangian nate the der oity and alt tic cost fun ear range te lude a quadr function an	e two-dimen to-surface itrol paral cle is desc l atmospher wind tunno h different ivatives of tude.~ ctions are rm and the atic penal d the squar	missile missile pribed by f ic data, a it tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim respect to veloc -Two quadrat involving a line term. Both incl ing a weighting	imates of the of an air- ed as the con of the vehi- ling standar otained from nate the der oty and alt tic cost fun- ear range te lude a quadr function an	e two-diment to-surface trol parametric ele is desc i atmosphent wind tunned different ivatives of itude.~ ctions are rm and the atic penalt d the squat	missile ribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
	conjugate gradie determining esti- range trajectory of attack is use - The motion equations inclue and drag data of adjoint equation used to approxim- respect to veloc - Two quadrat involving a line term. Both incl- ing a weighting	imates of the of an air- of an air- of the vehi- ling standar btained from nate the der bity and alt tic cost fun ear range te lude a quadr function an	e two-dimen to-surface trol parametric cle is desc l atmospher wind tunne h different ivatives of tude.~ ctions are rm and the atic penal d the squar	missile neter. Fribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
D Form	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim- respect to veloc -Two quadrat involving a line term. Both incl ing a weighting	imates of the of an air- ed as the con of the vehi- ling standar otained from ns Lagrangian nate the der oity and alt tic cost fun- ear range te lude a quadr function an	e two-dimen to-surface trol paral cle is desc l atmosphen wind tunno n different tvatives of tude.~ ctions are rm and the atic penal d the squa	missile missile ribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
D FORM	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim- respect to veloc -Two quadrat involving a line term. Both incl- ing a weighting	imates of the of an air- of an air- of the vehi- ling standar of the der of the a quadr function an	e two-dimen to-surface itrol parameters cle is desc l atmosphered wind tunned h different ivatives of itude.~ ctions are rm and the atic penal d the squared	missile neter. Fribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (
D FORM	conjugate gradie determining esti- range trajectory of attack is use -The motion equations inclue and drag data of adjoint equation used to approxim- respect to veloc -Two quadrat- involving a line term. Both incl- ing a weighting	imates of the of an air- ed as the con of the vehi- ling standar otained from ns Lagrangian nate the der oity and alt tic cost fun ear range te lude a quadr function an	e two-dimen to-surface itrol paral cle is desc l atmosphen wind tunno h different ivatives of tude.~ ctions are rm and the atic penal d the squa	missile missile pribed by f ic data, a l tests. iation for lift and investigat other a qu y function re of the c Security CI	Angle our state nd lift In the mulas are drag with ed one adratic involv- ontrol. (

A. KEY WORDS	1. First	К.А	LINKU		LIN &	
	NOLE	<u>wr</u>	ROLE	Wr	ROLE	
	10	j. :			° ⊂f	
Air-to-Surface Missile Trajectory			l'			
		· -			1. J. ·	
Conjugate Gradient Method	-	<u>اً</u>	r - [,		
and the second s	£		f (, i i	i	
Maximum Hange Erajectory			Ë.			
Out two (Contract						
Opermat Constor			₹ <u> </u>	•		
Trajectories				2 T	£ •	
		t zi -		il i C i i		
Ancle of Attack	-			· · ·		
tire or the course				3	t -	
					7.	
	1	r				
	1. C-				ŝ I	
			ľ.	*	· · · ·	
•			¹			
••• •		6				
			k	Į.		
· • • • • • • • • • • • • • • • • • • •	1	4 4 4	1	ŀ	1	
·	¥			ļ		
s			, ·	,	· .	
	,] .		
· · · ·	犯上了	- •	1	1	· -	
	1	· -		ĺ	1	
-		ς		ľ		
	ŀ.	-				
				,		
÷ -1	<u>_</u>				· ·	
				4		
the second se	1		£ ;	1.		
	1. 2.7."	1	ļ, •	1	•].	
	1 25				ł	
• • • •		· :	÷ ۲		-	
				ļ.	í.	
		· · ·	·	ļ	• [·	
		·	1		ŀ	
			1		1	
	1			· ·	-	
	1 : .		1.	. :	1	
	: · · · ·		:*		ľ	
	1		.	ł		
	1	ŕ	-		l	
		1		7	1	
	سنحساس	تەسىمە		alannay m		

, i

* _-*____