UNCLASSIFIED

AD NUMBER

AD875062

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1970. Other requests shall be referred to Air Force Rocket Propulsion Laboratory, STINFO, Edwards AFB, CA 93623. Export Control.

AUTHORITY

afal ltr dtd 18 dec 1989

THIS PAGE IS UNCLASSIFIED

AD875062

AFRPL-TR-70-92

Aerotherm Report No. UM-70-14

USER'S MANUAL AEROTHERM CHARRING MATERIAL THERMAL RESPONSE AND ABLATION PROGRAM VERSION 3

> Volume 1 - Program Description and Sample Problems

> > April 1970

Air Force Rocket Propulsion Laboratory Director of Laboratories Edwards, California 93523 Air Force Systems Command United States Air Force

Project Officer, Robert J. Schoner/RPMCH

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 93523.

 (o_j)

AFRPL-TR-70-92

Aerotherm Report No. UM-70-14

April 1970

USER'S MANUAL

AEROTHERM CHARRING MATERIAL THERMAL RESPONSE AND ABLATION PROGRAM VERSION 3

Volume I - Program Description and Sample Problems

> Prepared Under the Sponsorship of

Air Force Rocket Propulsion Laboratory Director of Laboratories Edwards, California 93523 Air Force Systems Command United States Air Force

Project Officer, Robert J. Schoner/RPMCH

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 93523

FOREWORD

This report is one of two computer program user's manuals prepared by Aerotherm Corporation under USAF Contract F04611-70-C-0012. Included herein is Volume I of the manual for Version 3 of the Aerotherm Charring Material Ablation code. This volume describes the problems solved by the code and presents an input (card format) user's guide and sample problems. The report was first published as Aerotherm Report No. UM-70-14. The work was administered under the direction of the Air Force Rocket Propulsion Laboratory, Motor Component Development Branch with Mr. R. J. Schoner as project officer.

Mr. M. R. Wool was program manager and principal investigator. Significant additional assistance was also provided by Dr. C. B. Moyer.

This technical report has been reviewed and is approved.

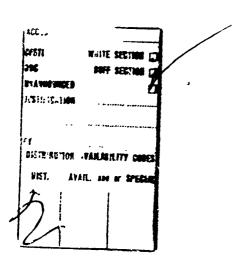
R. J. Schoner Project Engineer, AFRPL

1

ABSTRACT

This two-volume report describes a Fortran IV computer code which computes the transient thermal and ablation response of a charring institution material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders, spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material, several charring back-up materials, and a multiple non-charring material back-up structure.

An unusual feature of the code is the very general heated surface boundary condition, which can account for


- Simple specified temperature and recession rate
- Specified heat flux with no recession
- General thermochemical erosion model incorporating complete chemical erosion computations, both equilibrium and non-equilibrium, for any material exposed to any environment

The code has seen extensive use for thermal performance studies of ablating heat shields, rocket nozzles, and spacecraft structures.

Volume I of this report contains descriptions of the problem treated, the equations solved, the input information required of the program user, and the program output information. It also provides a card-by-card user's input guide and a number of sample problem input and output listings. Volume II of the report contains supplemental information on the specific Fortran IV codings. It includes program listings, flow charts, and definitions of Fortran variable names.

iii

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsnever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data. is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

TABLE OF CONTENTS

• • • • • • • • •

the set acres

ł

٦

۰.

Section					Page
1	INTRO	DUCTION	AND GENER	AL PROGRAM DESCRIPTION	1-1
2	PROCE	EDURES IN-DEPTH 2.1.1 2.1.2	I SOLUTION Decomposi In-Depth	tion (Pyrolysis or Charring) Energy Balance	2-1 2-1 2-1 2-2
		2.1.3 2.1.4	Specifica Computati	on Procedure General Pattern	2-3 2-5 2-5 2-6
		Backwall Ablating	Condition Boundary J Surface	Condition Boundary Conditions	2-6 2-7
		2.4.1 2.4.2	Surface R Option 3,	Specified Surface Temperature and ecession Rate Specified Input Heat Flux with	2-7
		2.4.3		ace Recession Rate (Cooldown Option) General Convective Heating and	2-7
				mical Erosion Option General Description and Basic	2-8
			2.4.3.2	Energy Equation	2-8
•			2.4.3.3	Input Data	2-11
			2.4.3.4	Energy Balance Equation Automatic Program Adjustments to Input Values of Time-Dependent Con- vective Heat Transfer Coefficient	2-12
				°e ^u e ^C H	2-13
			2.4.3.5 2.4.3.6	Fissure Model Option for Surface Energy Balance Accounting for Condensed Phase	2-18
		_		Removal (Melting or "Failing")	2-19
3		S GUIDE			3-1
		3.1.1 3.1.2 3.1.3	Internal- Output In	Heading Information Decomposition Kinetic Data terval Specification and General	3-1 3-1
		3.1.4 3.1.5	Nodal Dat	aterial Decomposition Data (Optional)	3-2 3-4 3-5
		3.1.6 3.1.7 3.1.8 3.1.9 3.1.10	Pyrolysis Material Pyrolysis Surface T	Heat Transfer Conditions; Char and Zone Criteria Property Tables and f-Function Tables Gas Enthalpy Table Time-Dependent Boundary Conditions Thermochemistry Data (Option 1 Only)	3-6 3-7 3-9 3-10 3-11

v

		3.1.10.1 Introduction	3-11
		3.1.10.2 Ratio of Mass to Heat Transfer	
		Coefficient, View Factor Surface	
		Option Flags	
		3.1.10.3 Surface Thermochemistry Table	3-13
3.2	Program	Output	3-18
	3.2.1	Input Data (Except Surface Thermochemistry	
		Tables	3-18
	3.2.2	Surface ThermocheLastry Tables	3-18
		3.2.2.1 Edge Enthalpy Table	3-18
		3.2.2.2 Surface Thermochemistry Table	3-18
	3.2.3	Regular Output	3-19
		3.2.3.1 Introduction	3-19
		3.2.3.2 General Information	3-19
		3.2.3.3 Ablation Rates	3-20
		3.2.3.4 Recessions and Recession Rates	3-20
		3.2.3.5 Surface Energy Flux Terms	3-20
		3.2.3.6 Interior Energy Terms	3-21
		3.2.3.7 Nodal Datà	3-22
		3.2.3.8 Char Swell Information	3-22
	3.2.4	Thermocouple and Isotherm Output	3-22
		3.2.4.1 Listed Output	3-22
		3.2.4.2 Punched Output	3-23
3.3	Dumps	-	3-23
	3.3.1	Introduction	3-23
	3.3.2	Too-Small-Time-Step Dump	3-23
	3.3.3	Too-Many-Surface-Iterations Dump	3-23
	3.3.4	Unacceptable-Surface-Thermochemistry-Table Stop	3-24
	3.3.5	Sense Switch Diagnostic Dumps	3-24
3.4	Miscell	aneous	3–25
	3.4.1	Running Time	3-25
	3.4.2	Storage Requirements	3-25
	3.4.3	Tape Requirements Fortran Deck Make-Up	3-25
	3.4.4		3-26
	3.4.5	Stacking of Jobs	3-26
SAMP	LE PROBL	EMS	4-1
REFE	RENCES		R-1
APPE	NDIX A -	SOME SUGGESTIONS FOR SELECTING NODAL SIZES	

APPENDIX B - ESTIMATION OF EXECUTION TIME

4

vi

LIST OF SYMBOLS

and service and a second with the construction of the second second second second second second second second s

فالأحمد والمحم مناداتكما كمطاعفه فالمليب بالترقيق

١

•

GENERAL		
А	area	ft ²
A	coefficient in Equation (8) for T_{w}	Btu/ft ² sec F
A BW	area of back wall of ablating material	ft ²
A _s	area of surface of ablating material	īt²
a	radius exponent giving variation o.º area with radius, A ~ r ^a	
В	coefficient in Equation (8) for T_w	Btu/ft ² sec
Bi	pre-exponential factor, Equation (2)	sec
В'	$\dot{m}/\rho_e u_e C_M = (\dot{m}_g + \dot{m}_c)/\rho_e u_e C_M$	
B¦	dimensionless ablative mass flow rate of fail- ing (melting or mechanically removed) material, ${}^{m}{}_{f}{}^{/\rho}{}_{e}{}^{u}{}_{e}{}^{C}{}_{M}$	
B† g	dimensionless pyrolysis gas rate $\dot{m}_{g}/\rho_{e}u_{e}C_{M}$	
b	constant in burning rate equation, Section 2.8.3.4	various
с _н	Stanton number corrected for transpiration (blcw- ing) $C_H/C_H = \zeta/(e^{\zeta} - 1)$ and for radius ratio effects o	
с _н о	Stanton number not corrected for transpiration (blowing) or for radius ratio effects, i.e., as input	
° _{H1}	Stanton number corrected for radius ratio effects but not for blowing	
с _м	mass transfer Stanton number	
с _р	specific heat	Btu/lb ^O F
^E a	activation energy, Equation (2)	Btu/lb mol
F	view factor	
Fi	empirical function of temperature	
$f_{1}(x), f_{2}(x)$	functions of plastic mass fraction x, discussed in Section 2.1	
H	recovery enthalpy	Btu/lb
h	enthalpy (sensible plus chemical)	Btu/lb
h^{T}	enthalpy of formation at temperature T	Btu/lb

۵

h _c	convective transfer coefficient	Btu/ft ² sec ^O F
hg	pyrolysis gas enthalpy	Btu/lb
ħ	defined as $(\rho_p h_p - \rho_c h_c) / (\rho_p - \rho_c)$	Btu/lb
к	proportionality constant in Equation (21)	
ĸ	mass fraction of species i in a mixture	
k	thermal conductivity	Btu/ft- ^O F-sec
m	mass flow rate per unit area from surface	lb/ft ² sec
mg	mass flow rate of pyrolysis gases out of surface per unit surface area	lb/ft ² sec
^m g _x	local in-depth mass flow rate of pyrolysis gases through node or control volume	lb/sec
n	burning rate exponent, Equation (17)	
р _с	chamber pressure	lb/ft ²
⁴ chem	chemical energy rate term defined by Equation (11)	Btu/ft ² sec
q _{cond}	rate of energy conduction into the ablating material	Btu/ft ² sec
q _{rad} in	rate of radiant energy input to the ablating surface	Btu/ft ² sec
^q rad out	rate of radiant energy emission from the ablating surface, equal to $Fort_{w}$	Btu/ft ² sec
g _{sen}	convective flux term defined by Equation (10)	Btu/ft ² sec
R	universal gas constant	Btu/lb mol ^O R
r	radius	ft
r*	throat radius	ft
ŗ	propellant burning rate	ft/sec
r _c ,r _p	char and pyrolysis density criteria	
rs	radius of heated surface	ft
S	distance from original location of receding surface to current surface location	ft
ŝ	rate of change of S	ft/sec
Т	temperature	° _R
т'	"new" temperature computed during a computa- tional cycle	° _R
T _w	wall (surface) temperature	°R

viii

^u e	velocity of gases at edge of boundary layer	ft/sec
x	coordinate normal to ablating surface, fixed to receding surface, also virgin plastic mass fraction defined by Equation (5)	ft,
У	coordinate normal to ablating surface, origin fixed in space relative to back wall	ft
^z i	diffusion driving force = $\frac{K_{i}}{F_{i} \sum_{j} \frac{K_{j}}{F_{j}}}$	
2 * 1	modified Z _i discussed in Reference 2	
GREEK		
ά	thermal diffusivity k/pCp	ft ² /sec
Γ	volume fraction of resin in plastic, see Equation (1)	ft ³ /resin/ ft ³ material
δ	nodal thickness, char and pyrolysis line depths	ft
ε	emissivity	
۶ ¢	volume fraction of undecomposed plastic in given volume	
ζ	² \m/\rho _e ue ^C H _o	
θ	time	sec
λ .	blowing reduction parameter; see ζ and C _H	
ρ	density	lb/ft ³
۵C р	defined as $\begin{bmatrix} \varepsilon_p \rho_p C_p + (1 - \varepsilon_p) \rho_c C_p \end{bmatrix}$	Btu/ft ^{3 O} R
ρ _ο .	initial density	lb/ft ³ resin or lb/ft ³ rein- forcement
°r	residual density in charred material	<pre>lb/ft³ resin or lb/ft³ rein- forcement</pre>
σ	Stefan-Boltzmann constant	Btu/ft ² sec ^O R [*]
τ	char thickness	ft
Ψi	decomposition reaction order for i th compo- nent Equation (2)	
SUBSCRIPTS		
А	denotes one pyrolyzing component of resin	
В	denotes second pyrolyzing component of resin	

ix

٥

٦.

с	denotes reinforcement
c	denotes char, also see h _c , p _c
e	denotes outer edge of boundary layer
f	denotes failing (removed by melting or mechanical action
đ	denotes pyrolysis gas
i,j	species indexes
inj	Cenotes material injected into the boundary layer in gas form
n	nodal index
NL	last node of ablating material
0	see C _H
Ó	original, initial
P	denotes virgin plastic, denotes "in absence of swell"
r	denotes recovery enthalpy; denotes residual density
S	denotes sensible enthalpy; also denotes "at heated surface"
swell	denotes "with swelling effect"
w	denotes wall (heated surface)
x	see m ^g x
1,2	see f ₁ , f ₂ , C _{H1} , also nodal index
1,3 -	denote Options 1 and 3

x

*

ļ

SECTION 1

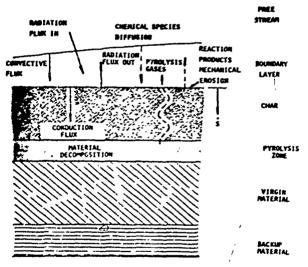
INTRODUCTION AND GENERAL PROGRAM DESCRIPTION

1.1 PURPOSE OF THIS DOCUMENT

This report is Volume I of a two volume user's description of the Aerotherm Charring Material Thermal Response and Ablation computer program, Version 3 (CMA). It has as its chief goals the description of the preparation of the necessary input data for the program and the specification of various operational details of the program such as array sizes and tape numbers used. As supplementary information, this volume includes a very brief description of the computations performed. This description is not intended to be complete, but merely serves to give the user some feel for the calculations as well as a better understanding of the input requirements.

Users interested in a more complete description of the program itself are referred to Reference 1. An earlier version of this program is described in detail in Reference 2. This user's manual pertains specifically to what will be termed Version 3 of the CMA code. It differs from the earlier Version 2 edition described in Reference 3 chiefly in the added capability to treat charring back-up materials. Hence, an alternate designation '(CMA/CBM or CBM)is used occasionally in this manual.

Volume II of this user's manual contains detailed information about Fortran IV codings. These include Definitions of Fortran variables, Flow Charts of Fortran routines, and Listings of Fortran routines.


1.2 GENERAL DESCRIPTION OF THE CMA PROGRAM

The Charring Material Thermal Response and Ablation Program, Version 3, is an implicit, finite-difference computational procedure for computing the onedimensional transient transport of thermal energy in a three-dimensional isotropic material which can ablate from a front surface and which can decompose in-depth. Decomposition reactions are based on a three component model. The program permits up to eight different back-up materials of arbitrary thickness, five of which may char. The back wall of the composite material may transfer energy by convection and radiation. The ablating-surface boundary condition may take one of three forms:

- Option 1 General convection-radiation heating with coupled mass transfer, using a transfer coefficient approach, including the effects of unequal heat and mass transfer coefficients (non-unity Lewis number) and unequal mass diffusion coefficients. Surface thermochemistry computations need not presume chemical equilibrium at the surface, but can account for kinetic effects, and can also consider thin layer melting or failing.
- Option 2 Specified surface remperature and surface recession rate.
- Option 3 Specified radiation view factor and incident radiation flux, as functions of time, for a stationary surface. <

Any combination of options may be used for a single computation. Option 3 is appropriate to cooldown after termination of convective heat input and is often useful in conjunction with Options 1 and 2.

The following sketch illustrates the general physical problem treated by the CMA code.

As the material is heated, the original virgin material (or rather one or more components of the original composite virgin material) pyrolyzes and yields a pyrolysis gas, which percolates away from the pyrolysis zone, and a porous residue, which for most materials of interest is a carbonaceous char, possibly reinforced with refractory fibers or cloth.

Superimposed on this basic problem may be a number of even more complex events. The pyrolysis gases percolating through the char may undergo further chemical reactions among themselves, and may react with the char, either eroding it or depositing additional residue upon it ("coking"). The char itself may collapse or fragment from mechanical or thermal stresses, and the refractory reinforcements may melt or suffer mechanical damage. Finally, various constituents of the residue structure may react chemically with each other, changing the nature of the char, and various mechanical forces may remove material from the surface.

Despite these complexities, it is found that the "simple physics" described by

virgin plastic + char + gas

underlies a wide range of problems of technical interest, and for a great many materials, such as carbon phenolic, graphite phenolic, and wood, constitute all the events of interest. Such events as coking, mechanical erosion, melting, and subsurface reactions (other than pyrolysis) are less common and generally characterize specific problems.

The CMA Code, Version 3, treats the basic pyrolysis or charring event for a main insulation material. This material may be backed-up by a number of charring back-up materials, which in turn may be backed-up by noncharring structural elements. The CMA code will treat cracking or fissuring of the char, as well as surface mechanical removal or melting of the char structure.

SECTION 2

PROGRAM FEATURES, CAPABILITIES, AND COMPUTATIONAL PROCEDURES

2.1 IN-DEPTH SOLUTION ASPECTS

The in-depth solution procedure is the controlling feature of the code and accounts for most of the computing time. This procedure is basically a transient heat conduction calculation which is coupled to a pyrolysis rate calculation (and to boundary conditions discussed in Section 2.4 below). The following subsections discuss important aspects of the in-depth solution.

2.1.1 Decompositon (Pyrolysis or Charring)

Since many decomposing char forming materials appear to behave as three independently pyrolyzing components, the program uses a three-component decomposition model for the main material and for any decomposing back-up material.

The resin filler is presumed to consist of two components which decompose separately, while the reinforcing material is the third component which can decompose. The instantaneous density of the composite is given by

$$\rho = \Gamma \left(\rho_{\mathbf{a}} + \rho_{\mathbf{B}} \right)_{,} + \left(1 - \Gamma \right) \rho_{\mathbf{C}}$$
(1)

where A and B represent components of the resin, and C represents the reinforcing material, Γ is the volume fraction of resin and is an input quantity (Section 3.1.2). Separate Γ values may be entered for any decomposing back-ups. Each of the three components can decompose following the relation

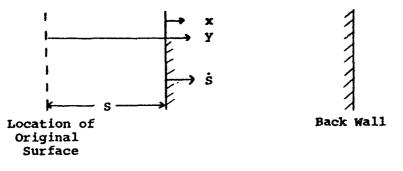
$$\frac{\partial \rho_{i}}{\partial \theta} \Big|_{Y} = -B_{i} \exp \left[\frac{\rho_{i} - \rho_{r_{i}}}{\rho_{o_{i}}} \right]$$
(2)

where ρ_{r_i} is the residual or terminal density of component i, and ρ_{o_i} is the original density of component i. The values $\rho_{o_i} \quad \rho_{r_i}, B_i, \psi_i$, and B_{a_i} are input parameters for i = A, B, C for the main material. A separate i = A, B, C set of pyrolysis data may be entered for each decomposing back-up.

The decomposition event is computed explicitly. That is, "old" temperatures are used in Equation (2) to compute the decomposition rates and the new nodal densities.

2.1.2 In-Depth Energy Balance

For the purpose of writing the in-depth energy balance differential equation, we introduce the x coordinate system tied to the receding surface, as shown in the following sketch. In this system, we have the energy equation of the form


$$\rho C_{\mathbf{p}} \left(\frac{\partial \mathbf{T}}{\partial \theta} \right)_{\mathbf{x}} = \frac{1}{\mathbf{A}} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{x}} \left(\mathbf{k} \mathbf{A} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{x}} \right)_{\theta} + (\mathbf{h}_{g} - \mathbf{\bar{h}}) \left(\frac{\partial \rho}{\partial \theta} \right)_{\mathbf{y}} + \dot{\mathbf{S}} \left(\rho C_{\mathbf{p}} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{x}} \right)_{\theta} + \frac{\mathbf{m}_{g}}{\mathbf{A}} \left(\frac{\partial \mathbf{h}_{g}}{\partial \mathbf{x}} \right)_{\theta} \right)$$
(3)

in which the individual terms have physical meanings which may be interpreted as follows (from left to right): rate of storage of sensible energy, net rate of thermal conduction, pyrolysis energy rate, convection rate of sensible energy due to coordinate system movement, and net rate of energy convected with pyrolysis gas passing a point.

In this equation, the local specific heat and thermal conductivity are formulated from input temperature functions for both virgin plastic and char, C_{pp} , C_{pc} , k_p , and k_c (see Section 3.1.7 below). In partially pyrolyzed sones ($\rho_c < \rho < \rho_p$), the specific heat is formulated with a special mixing rule

$$C_{\rm p} = xC_{\rm pp} + (1 - x)C_{\rm pc}$$
 (4)

where the weighting variable x is based on the convenient fiction that partially pyrolyzed material is a simple mixture of pure virgin plastic and pure char.

The quantity x is defined as the mass fraction of pure plastic in this imaginary mixture which yields the correct local density:

$$\kappa = \frac{\rho_{\rm p}}{\rho_{\rm p} - \rho_{\rm c}} \left(1 - \frac{\rho_{\rm c}}{\rho} \right) \tag{5}$$

The thermal conductivity k will be weighted in the same manner unless the user provides specific information on a more complex x weighting in the input data. That is, the user may input functions of x for the following equation for the thermal conductivity of partially degraded plastic:

$$k = f_1(x)k_p + f_2(x)k_c$$
 (6)

References 4 and 5 present an account of the rationale for the use of f-functions, along with recommended values.

The pyrolysis gas enthalpy is an input temperature dependent function (see Section 3.1.8 below). The quantity $\overline{h} \stackrel{\Delta}{=} (\rho_p h_p - h_c \rho_c)/(\rho_p - \rho_c)$ is computed from temperature dependent h_p and h_c values determined from the input temperature dependent C_{pp} and C_{pc} values and input enthalpies of formation ΔH_{fp} and ΔH_{fc} .

Determination of the local cross-section area A will be discussed in Section 2.1.3 below.

The other quantities in Equation (3), T, ρ and \dot{S} are dependent quantities discovered during the solution process (except that in some boundary condition options \dot{S} may be input).

2.1.3 Nodal Coordinate Layout and Body Shape Specification

The basic solution procedure of the CMA code is of the finite difference type. The following sketch illustrates a typical material section that is to be analyzed. Nodal* positions are specified by tabulating the thickness of successive nodes (see Section 3.1.5 below). The program permits a thermal contact resistance between adjacent nodes, and thus between adjacent materials (see Section 3.1.5 below). Nodes are numbered sequentially from the surface. A total of 100 nodes is permitted.

As used here, the term node refers to a finite region in the slab wall, not to a discrete point or plane.

In harmony with the shifting x-coordinate system introduced in Section 2.1.2, nodal coordinates are tied to the heated surface. Any surface recession causes the last (deepest) node in the ablating material to shrink. If surface recession proceeds far enough, this node is dropped from the rear surface of the ablating material and the number of nodes reduced by one. Computation ceases when only one node of the main material remains.

<u>n = 1</u>	Ablating surface
<u></u>	
• n = 2	
• n = 3	
	Last node in main ablation material
• n _{NL}	(consumed as surface recedes).
• n _{NL} +1	First node in backup material
•	
•	Last node in network
Back wall	

Sketch of Nodal Network

The nodes are used for all energy balance calculations.

Since decomposition rates depend exponentially on temperature the decomposition calculations in the main material proceed on the basis of a "nodelet" network using small nodes a fraction as large* as the specified nodal layout used in energy balance calculations.**

The decomposition events are computed for each nodelet. The total density change for each node is taken as the sum of the nodelet density change rates.

The program permits the specification of a number of geometries:

l. Plane

2. Cylindrical or annular, with heated surface either inner or outer

[&]quot;Usually one-tenth, although the number of nodelets per node may be selected by the user (see Section 3.1.3 below).

^{**}The nodelet device is not used in charring back-up materials, which generally pyrolyze rather slowly.

- 3. Spherical or spherical shell, with heated surface either inner or outer
- 4. General "thermal stream tube" geometry, area varying as depth to any power
- 5. General "thermal stream tube" geometry, area varying arbitrarily with depth.

The distinction between these five options is indicated by the user according to the input rules given in Section 3.1.5 below.

2.1.4 Computation Procedure

2.1.4.1 General Pattern

As in all finite difference procedures, each step of the solution is made over an incremental time step $\Delta\theta$. Each computational step has three main events: internal decomposition, internal therefy balance, and surface boundary energy balance. Computation of the three events gives "new" values of nodal densities, pyrolysis gas flow, nodal temperatures, and surface temperature and ablation rate. The program is then ready for the next step.

The pyrolysis event is computed for each nodelet in the main material from Equation (2), summed over the three components. Summation over all nodelets in a node gives the nodal $\partial \rho / \partial \theta$ and contribution to m_g . Note that "old" known nodal temperatures (interpolated into the nodelet locations) are used in the pyrolysis calculation.

The internal energy balance equation then is computed "implicitly" for each node, using "new" temperatures in the heat conduction terms. The energy balance is linked explicitly to the decomposition events, however, since the pyrolysis gas fluxes used in the energy balance are derived from the explicit decomposition calculation. The energy balance is also linked explicitly to the surface boundary condition through the use of an "old" surface recession rate in all convection terms involving fluxes of solids. All other links to surface events are implicit.

The "implicit" formulation of the in-depth nodal energy equations yields a tri-diagonal set of equations which is solved for the unknown temperatures in two passes of direct elimination. The first pass eliminates one unknown from each equation and leaves the equation for the first node (at the heated surface) with only one unknown. In surface boundary condition Option 2, this temperature is specified and so is known. In Options 1 and 3, the first node equation is non-linear and so the first nodal temperature must be discovered by an iterative procedure. This will be discussed in Sections 2.4.2 and 2.4.3.

2--5

In any case, once this nodal temperature is determined, the second elimination pass determines the other unknown nodal temperatures and the entire in-depth calculation is ready for a new time step.

2.1.4.2 Limitations on Time Step Size

Experience shows that the implicit solution procedure of the CMA program is almost always stable regardless of time step size, and thus has an important advantage over explicit procedures for which stability considerations severely limit the allowable time step size.

However, in order to assure a smooth progression of the solution, limitations must be imposed upon the time increments. The user may specify as input (see Section 3.1.3 below) a maximum allowable time step not to be exceeded under any circumstances. Certain other limits are computed automatically and may reduce the solution time step $\Delta\theta$ below this value:

- Time steps are sized to limit the change of surface temperature during one step to approximately 50[°]R
- At the initiation of a problem, or when discontinuities are noted in the surface boundary condition option, the time step is reduced to 0.01 seconds, with subsequent values limited to twice the preceding value of the time increment.
- Time steps are limited so that recession during a time step, $\dot{S}\Delta\theta$, does not exceed the thickness of the smallest nodelet in the system.
- After all these limits have been applied, the time step is reduced so that the time remaining to the next printout time is divided into an integral number of time steps of the current size (so that no sudden reduction in time step is required in order to match a printout time).

2.2 INITIAL CONDITION

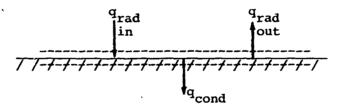
As initial conditions, the user may specify the temperature of each ode and in addition may call out each node in a charring material as either virgin plastic or pure char. This allows studies of pre-charred materials and re-start problems. Section 3.1.5 below describes the necessary input rules.

2.3 BACKWALL BOUNDARY CONDITION

Heat transfer from the backwall of the system is treated with a simple temperature-potential convective transfer plus a radiative term, both

communicating with a "reservoir" at temperature T_{res} . The convective coefficient, backwall emissivity (or emittance), and T_{res} are all input constants (see Section 3.1.5 below).

2.4 ABLATING SURFACE BOUNDARY CONDITIONS


The ablating surface boundary conditions may take one of three forms at any instant, as determined by the user in the make-up of the time dependent boundary condition input table (see Section 3.1.9 below). The two simpler options will be described first, even though for historical reasons these are denoted "Option 2" and "Option 3". The general thermochemical ablation boundary condition, denotel "Option 1", is discussed last.

2.4.1 Option 2, Specified Surface Temperature and Surface Recession Rate

In this option, surface temperature and recession rate are specified by the user as input functions of time. All surface energy balance and surface thermochemical considerations are bypassed. Section 2.1.4.1 above describes how this specified temperature can be inserted into the in-depth solution procedure after the first pass of direct elimination.

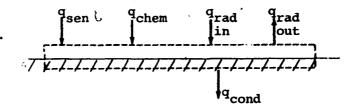
2.4.2 Option 3, Specified Input Heat Flux with Zero Surface Recession Rate (Cooldown Option)

The following sketch illustrates the surface energy balance situation for this option. Equation (7) is the appropriate surface energy balance equation

 $\left[\alpha_{w} q_{rad} - F_{3} \sigma \varepsilon_{w} T_{w}^{*} - q_{cond} \right] = 0$ (7)

In this equation, α_w is the surface absorptance and is assumed to equal ε_w , the surface emissivity, which is computed from input temperature dependent property tables (see Section 3.1.7 below). If the surface material is partially pyrolyzed, ε_w is computed according to the mixture rule of Equation (4). The term q_{rad} is an input time dependent heat flux specified in the boundary condition time tables (see Section 3.1.9 below). F₃ is an input view factor for

Option 3 calculations. It may depend on time (see Section 3.1.9 below). The term q_{cond} represents the rate of heat conduction into the material. It is the "mechanism" which joins the surface energy balance equation to the first nodal energy balance (since q_{cond} appears in the nodal energy balance equation) and thus to the in-depth solution procedure, as discussed in Section 2.1.4.1 above. The first pass of the elimination process for the in-depth tri-diagonal system reduction leaves the nodal energy balance equation for the first node as


$$\mathbf{A}_{\text{cond}} = \mathbf{A}\mathbf{T}_{\mathbf{w}}' + \mathbf{B}$$
(8)

Equation (8), when substituted into the surface energy balance equation (7), yields a non-linear equation in T_w which the CMA program solves iteratively by the Newton-Raphson method.

2.4.3 Option 1, General Convective Heating and Thermochemical Erosion Option

2.4.3.1 General Description and Basic Energy Equation

In this option, events at the heated surface are determined by convective heating and by surface thermochemical interactions with the boundary layer gases. The sketch below illustrates the surface control volume and the

Sketch of Surface Energy Balance Control Volume and Energy Fluxes in Option 1

energy fluxes of interest. The surface energe balance equation employed is of the convective transfer coefficient type. In the CMA/CBM program, this energy balance equation takes the following form:

$$\underbrace{\stackrel{\rho_{e}u_{e}C_{H}(H_{r} - h_{ew})}{q_{sen}}}_{q_{sen}} + \underbrace{\stackrel{\rho_{e}u_{e}C_{M}}{\left[\sum (Z_{ie}^{*} - Z_{iw}^{*})h_{i}^{Tw} - B'h_{w}\right] + \dot{m}_{c}h_{c} + \dot{m}_{g}h_{g}}_{q_{chem}}$$

$$\underbrace{\stackrel{+\alpha_{w}q_{rad}}{q_{rad}} - \underbrace{F\sigma\epsilon_{w}T_{w}^{*}}_{q_{rad}} - q_{cond} = 0 \qquad (9)$$

The last three terms in Equation (9) are the same as in the Option 3 boundary condition previously discussed in Section 2.4.2 above. The other terms in this equation require some further comments.

Before commencing a term by term discussion of Equation (9), however, it will be useful to describe the general nature of this transfer coefficient expression. Like all such expressions, Equation (9) is an approximation, the usefulness of which depends mainly on the validity of the transfer coefficient approach. A discussion of this subject is far beyond the scope of the present document. It may be observed here that transfer coefficients have successfully correlated both data and "exact" solutions in simple heat or mass transfer problems, and in combined heat and mass transfer problems for unity (or near unity) Lewis number. Equation (9) attempts to extend the transfer coefficient approach to both non-unity Lewis number and unequal mass diffusion coefficient problems, still allowing for chemical reactions and net mass transfer effects. This approach was suggested in Reference (6). Its validity is discussed in References 1 and 7.

In Equation (9), the term q_{sen} represents the "sensible convective heat flux." Physically, this is the convective heat flux which would occur for a frozen boundary layer and a non-catalytic wall in the absence of mass transfer;* it excludes all chemical energy contributions. (The term q_{sen} is perhaps more usually written in the form

$$q_{sen} = \rho_e u_e C_H (H_{s_r} - h_{s_w})$$
(10)

but, since generally it is more convenient for the user to input H_r rather than H_s , q_{sen} in Equation (9) has been written in a modified form in which H_r appears. This form has the additional advantage that the driving force for energy transfer involves only edge gas states. The derivation of the modified form from Equation (1) is given in Reference 1 and Reference 6.

The transfer coefficient $\rho_{e}u_{e}C_{H}$ and the recovery enthalpy H_{r} are time dependent variables input by the program user in appropriate time tables (see Section 3.1.9 below). The transfer coefficient is automatically modified from the input value to account for various effects, as discussed in Section 2.4.3.4 below. The quantity $h_{e_{W}}$ is part of the input thermochemical data discussed below.

More generally in the presence of chemical reaction it is the diffusive heat flux from the gas to the wall even in the presence of net mass transfer, provided the boundary layer is frozen and the wall is catalytic.

The term q_{chem} represents the net of a number of fluxes of chemical energies at the surface. The Z*-difference term represents transport of chemical energy associated with chemical reactions at the wall and in the boundary layer; it is the chemical energy parallel to the sensible convective heat flux term. The Z* driving forces for diffusive mass transfer include the effects of unequal diffusion coefficients; for equal diffusion coefficients the Z*'s reduce to 'he familiar m...' fractions K. The $\check{m}_c h_c$ and $\check{m}_g h_g$ terms represent energy fluxes arriving at the surface from within the solid material and the B'h_w term represents energy leaving the surface in the gross motion (blowing) of the gas adjacent to the surface.

The source of the various terms in q_{chem} can better be visualized after a slight regrouping of terms. Observing that $B' = B'_g + B'_c$, and bringing the \mathring{m}_ch_c term inside the brackets, we have

$$q_{chem} = \rho_{e} u_{e} C_{M} \sum_{ie} (z_{ie}^{*} - z_{iw}^{*}) h_{i}^{T_{w}} - (B_{c}^{*} + B_{g}^{*}) h_{w} + B_{c}^{*} h_{c} + \dot{m}_{g} h_{g}$$
(11)

Of the quantities in this q_{chem} expression, the convective mass transfer coefficient $\rho_{c} u_{e}^{C} C_{m}$ is obtained from the input time dependent values of $\rho_{e} u_{e}^{C} C_{H}$ (after any of the adjustments described in Section 2.4.3.4 below), by multiplying $\rho_{e} u_{c}^{C} C_{H}$ by an input constant value C_{M}/C_{H} (see Section 3.1.10.2 below). The quantity m_{g} will have been determined previous to the energy balance calculations in each time step in the decomposition section of the code (see Section 2.1.4.1 above). The quantity B'_{g} may be found as its definition $B'_{g} = m_{g}/\rho_{e} u_{e}^{C} C_{M}$. The enthalpy h_{c} is obtained from integrations of the input temperature dependent specific values $C_{p_{c}}$ (see Section 3.1.7 below). The pyrolysis gas enthalpy is obtained from the input temperature dependent h_{g} table (see Section 3.1.8 below).

Remaining quantities not yet discussed are B_{C}^{*} , T_{W} (which does not appear explicitly but which is necessary to evaluate the temperature dependent values of the quantities h_{c} and h_{g}), $h_{e_{W}}$, $\sum Z_{ie}^{*}h_{i}^{W}$, $\sum Z_{iw}^{*}h_{i}^{W}$, and h_{W} . The quantities T_{W} , $\sum Z_{iw}^{*}h_{i}^{W}$, and h_{W} are input by the user as the dependent variables in a table with three independent variables: P, B_{g}^{*} , and B_{C}^{*} . Similarly, the quantities $\sum Z_{ie}^{*}h_{i}^{TW}$ and h_{e} are input as the dependent variables in a table with P and T as independent variables. These tables are typically generated by the thermochemistry codes described in Section 2.4.3.2 below. Further discussion of these tables is given in Section 3.1.10.3.

The code surface energy balance solution procedure may be summarized as follows:

- 1. Look up H_r , $\rho_e u_e C_H$, P, and q_{rad} in input functions of time tables
- 2. Correct or adjust $\rho_e u_e C_H$ for various effects
- 3. Compute $\rho_e u_e C_M = C_M / C_H (\rho_e u_e C_H)$
- 4. Compute $B'_{q} = \dot{m}_{q} / \rho_{e} u_{e} C_{M}$
- 5. Assume B'
- 6. With P, B', B', look up in input surface thermochemistry tables values of T_w , $\sum Z_{iw}^* h_i^w$, h_w
- 7. With ρ and ook up in input edge gas thermochemistry table values of $\sum z_{i,e}^* h_i^w$, h_{e_i} .
- 8. With T_w, look up in input property tables values of ϵ_{w} , h_c, h_g
- 9. Obtain values of A and B in expression $q_{cond} = AT_w + B$ from indepth nodal energy balance solution routine
- 10. Construct Equation (9), noting departure from zero, if any
- 11. Adjust B' guess to reduce departure from zero
- 12. Go to Step (6) and continue

This procedure converges on a new B_C' value in very few iterations. The same procedure is used with T_w as the independent variable and B_C' as a dependent variable in portions of the table where B_C' varies slowly or not at all with T_w (see Section 3.1.10.3 below for input rules and suggestions).

2.4.3.2 Use of Thermochemistry Codes to Generate Input Data

Section 2.4.3.1 above makes it clear that the CMA code requires some complex tabular thermochemical input if the Option 1 boundary condition is to be used. These tables are generated by any one of a number of separate computer codes. The most recent such code is designated the Equilibrium Surface Thermochemistry Code, Version 3 (EST3). It is a general open and closed system thermochemical equilibrium code specifically constructed for this purpose. It is described in Reference 8. A generally similar code which differs from EST3 only in added detail is designated ACE and is described in Reference 9. An older version of EST3 was designated EST2 and is described in Reference 10. To obtain the necessary input tables for CMA, the user selects sets of values for the pressure P, the dimensionless gas rate B_{α}^{t} , and the dimensionless char rate B_{C}^{*} . He specifies the elemental composition of the environment gas, the char, and the pyrolysis gas, and he supplies some general species thermochemical data for all molecules he wishes considered in the system. Finally he specifies an unequal diffusion coefficient if he believes unequal diffusion effects will be important. The thermochemistry code then computes all the dependent quantities of interest at each table point in the P x B_{C}^{*} x B_{C}^{*} matrix of independent variable values, namely, T_{W} , $\sum z_{iW}^{*}h_{i}^{T_{W}}$, and h_{W} , and punches this information out on punched cards. Similarly, the tables of $\sum z_{ie}^{*}h_{i}^{W}$ and h_{e} values for the frozen edge gas are prepared as functions of P and T, and punched out on cards. All these cards form part of the card input deck (see Section 3.1.10.3 below).

2.4.3.3 Simpler Forms of the Surface Energy Balance Equation

As noted in Section 2.4.3.1 above, for equal diffusion coefficients the Z_{i}^{*} driving forces reduce to the simple mass fractions K_{i} . If in addition to equal diffusion the user specifies that $\rho_{e} u_{e} C_{M} = \rho_{e} u_{e} C_{H}$, then since $\sum_{i \in h_{i}}^{T_{W}} = h_{e_{W}}$ and $\sum_{i \in h_{i}}^{T_{W}} = h_{w}$ by definition, Equation (9) simplifies to the more familiar form

$$\rho_{e} u_{e} C_{H} (H_{r} - (1 + B') h_{w}) + \dot{m}_{c} h_{c} + \dot{m}_{g} h_{g} + \alpha_{w} q_{rad} - F_{1} \sigma \epsilon T_{w}^{*} - q_{cond} = 0$$
(12)

In this expression h_{e_W} and $\sum_{i \in h_i}^{T_W} do$ not appear, hence the frozen edge gas table is not necessary and need not be included in the input (see Section 3.1.10.3 below).

If ablation and pyrolysis do not occur, Equation (12) assumes a still simpler form

$$\rho_e u_e C_H (H_r - h_w) + \alpha_w q_{rad} - F_1 \sigma \varepsilon T_w^* - q_{cond} = 0$$
(13)

Section 3.1.10.3 below will make it clear that this equation can be handled by the CMA code through the mechanism of "non-ablating" surface thermochemistry tables. Equation (13) can be reduced to a temperature driving force, if this is desired

 $h(T_r - T_w) + \alpha_w q_{rad} - F_1 \sigma \varepsilon T_w^* - q_{cond} = 0$ (14)

provided that the user enters T_r instead of H_r and h instead of $\rho_e u_e C_H$ in the boundary condition time tables (see Section 3.1.9 below), and T_w instead of h_w in the surface thermochemistry tables (see Section 3.1.10.3 below).

سر روهم

2~12

2 4.3.4 Automatic Program Adjustments to Input Values of Time-Dependent Convective Heat Transfer Coefficient $\rho_{a} u_{c} C_{H}$

2.4.3.4.1 General remarks

The CMA program user may call for several automatic adjustments to be made to the values of the convective transfer coefficient input in the functions-of-time table. This section describes these adjustments and the order in which they are applied in the program.

One adjustment, pertinent to the exposed throat ablative materials in rockets, is the "radius ratio correction." This adjustment accounts for the effect of pressure decay and throat radius change on the throat transfer coefficient, provided, as will be explained below, that the trends of the effects are given by the Bartz equation (Reference 11). A refinement to this basic correction includes the additional effect of pressure on the burning rate of a solid propellant. A second refinement on the throat radius ratio correction allows in an approximate manner for the effects of char swelling.

A second correction allows for the reduction in transfer coefficients due to the transpiration or blowing effect of the pyrolysis gases and thermochemically eroded char being injected into the boundary layer.

A final modification distinguishes the convective mass transfer coefficient $\rho_e u_e C_M$ from the heat transfer coefficient $\rho_e u_e C_H$ by referring to an input constant ratio C_M/C_H .

2.4.3.4.2 Radius ratio correction, burning rate correction, and char swell correction

Radius ratio and burning rate corrections

If the user is analyzing a solid propellant rocket throat ablation problem, and calls for the throat radius ratio correction according to the input procedures described in Section 3.1.10.3 below, the program, will, at every time step, automatically reduce the input time table value of $C_{\rm H}$ to account for the effects of the increase in throat radius resulting from ablation. The correction is derived by noting that for a solid rocket motor

$$p_{c} \propto \left(\frac{1}{r^{*}}\right) 2/(1-n)$$
 (15)

where

P_C

- chamber pressure

r* - nozzle throat radius

n - burning rate exponent of the solid propellant when the burning rate $\dot{\mathbf{r}}$, is represented by $\dot{\mathbf{r}} = bp_c^n$

From the simplified Bartz equation

$$h_{c} \propto \frac{p_{c}^{0.8}}{r^{*0.2}}$$
 (16)

where $\mathbf{h}_{_{\mathbf{C}}}$ is the convective heat transfer coefficient. Combining these two equations gives

$$h_{c} \propto \left(\frac{1}{r^{*}}\right)^{\frac{1.6-0.2n}{1-n}}$$
(17)

For n = 0, this equation reduces to

$$h_{c} \propto \left(\frac{1}{r^{\star}}\right)^{L\theta}$$
(18)

and would represent the correction in the convective heat transfer coefficient for a constant mass flow rate. This is usually termed the radius ratio correction.

The CMA program refers the time table values of $C_{\rm H}$ to the initial condition. This, if $C_{\rm H_O}$ represents the input heat transfer coefficient at a given time, the program will reduce the input value according to

$$C_{H_{1}} = C_{H_{0}} \left(\frac{r_{1}^{\star}}{r^{\star}}\right)^{\frac{1.8-0.2 n}{1-n}}$$
 (19)

ŝ.

if the radius ratio correction has been called for.

Char swell correction

It has been determined empirically that certain phenolic materials swell or thicken during or following charring. The amount of swell has in some cases (References 12 and 13) appeared to be roughly proportional to the thickness of the charred material:

$$S_{swel} = K\tau_{char}$$
 (20)

where K is a proportionality constant.

The char thickness (τ_c) is here defined as the char depth below the original surface $(\delta_c)^*$ minus the surface recession predicted in the absence of swelling (S_p)

$$S_{swell} = K(\delta_{c} - S_{p})$$
(21)

Therefore, if swell occurs, the correct recession would be given by:

$$S = S_{p} - S_{swell} = S_{p} - K(\delta_{c} - S_{p})$$
 (22)

or

$$S = S_{p} + (S_{p} - \delta_{c})K$$
⁽²³⁾

Furthermore, surface recession rate would be given by:

$$\dot{S} = (1 + K)\dot{S}_{p} - K\dot{\delta}_{c}$$
 (24)

For a given value of K, these terms are computed in the CMA code and output in an auxiliary output block. In addition, if adjustments in heat transfer coefficient by a radius ratio correction are being computed as is often the case with prediction of rocket nozzle throat response, the corrected (after swell) value of recession is utilized in the radius ratio correction calculation. Otherwise this char swell formulation is not used in the thermal response calculations.

2.4.3.4.3 Blowing rate correction

 $\zeta \stackrel{\Delta}{=} \frac{2\lambda \dot{m}_{inj}}{\rho_e u_e C_{H_1}}$

The CMA program will automatically reduce the transfer coefficient to account for the familiar blowing effect according to the equation

$$C_{\rm H} = C_{\rm H_1} \frac{\zeta}{{\rm e}^{\zeta} - 1}$$
 (25)

where

The distance δ_c is defined as the distance between the original location of the heated surface and the present location of a line of density $\rho_c + r_c(\rho_p - \rho_c)$, where r_c is a user-selected input constant (see Section 3.1.6 below).

m = amount of material injected into the boundary layer, as discussed below

 λ = an input number, discussed below

$$\rho_e u_e C_{H_1} = \cdot$$
 transfer coefficient as input and reduced, if required,
by the radius ratio and/or burning rate effect discussed
in the section immediately above.

further details of this correction scheme will be discussed below.

Values for λ

With $\lambda = 0.5$, this scheme gives the "classical" blowing correction often expressed as (References 14 and 15)

$$\frac{C_{\rm H}}{C_{\rm H_{\rm I}}} = \frac{\ln (1 + \dot{m}_{\rm inj} / \rho_{\rm e} u_{\rm e} C_{\rm H})}{\dot{m}_{\rm inj} / \rho_{\rm e} u_{\rm e} C_{\rm H}}$$
(27)

which is useful for a wide range of problems.

Other values of λ allow the user to fit blowing correction curves of C_H/C_{H_1} versus B_{inj}^* or B_{inj1}^* to account for special effects, in the few cases where these are known with confidence, such as molecular weight effects* or variable property effects. In view of the uncertainties, it is recommended that $\lambda = 0.5$ be used for laminar flow. A value $\lambda = 0.4$ appears to correlate constant properties turbulent data somewhat better. The parameter λ may be made a function of time, if desired, to simulate transition effects. A value of $\lambda = 0$ suppresses the blowing correction.

Options for minj

The symbol \dot{m}_{inj} represents the rate of mass injected into the boundary layer which is effective in changing velocity profiles and reducing diffusion events. The CMA program allows three general choices for \dot{m}_{inj} :

1. All mass transfer is effective in reducing blowing

$$\dot{m}_{inj} = \dot{m}_{c} + \dot{m}_{g}$$

2. If part of m_c represents failing species, and this failing component m_{fail} appears on the surface thermochemistry cards (an ACE output option), then these fail rates can, at the option of the user (see Section 3.1.10.3 below) be read in,

These are known to be important in some simple injection problems but with many chemical reactions taking place the situation is somewhat obscure.

and

stored, and deducted as appropriate when computing injection rates for the blowing correction

$$\dot{m}_{inj} = \dot{m}_c - \dot{m}_f + \dot{m}_g$$

3. It can be assumed that the pyrolysis gas is injected into the boundary layer through cracks and fissures rather than evenly over the heated surface; in this case the gas injection presumably plays no role in the blowing reduction, in which case

or

 $\dot{m}_{inj} = \dot{m}_{c} - \dot{m}_{f}$

if Option 2 above is being used. This fissure model is discussed in more detail in Section 2.4.3.5 below.

The CMA program automatically computes the injection rate m_{inj} according to the first option above unless the fail option has been invoked according to the input rules discussed in Section 3.1.10.3 below and unless the fissure model has been called for as described in the same section.

Blowing correction applied to C_{H_1}

Note that the blowing correction is applied to the value of $C_{\rm H}$ after it has been adjusted to account for the radius ratio (including burning rate and char swell) effect.

. 2.4.3.4.4 Computation of convective mass transfer coefficient $\rho_{o}u_{o}C_{M}$

After $\rho_e u_e C_H$ has been computed from the input time dependent value $\rho_e u_e C_{H_o}$ and corrected, if called for, for radius ratio and mass transfer effects, a mass transfer coefficient $\rho_e u_e C_M$ is computed by multiplying $\rho_e u_e C_M$ by an input constant ratio C_M/C_H . See Section 3.1.10.3 below.

2.4.3.4.5 Possible future additional corrections

The automatic adjustments to input values of $\rho_{e}u_{e}C_{H_{O}}$ presently included in the CMA program include the largest and most important corrections the user is likely to desire. A small temperature correction might occasionally be of interest but has not yet been added to the program. A molecular weight effect in the blowing correction must for the present be accounted for by adjusting λ ; this probably will yield adequate accuracy until more is known about

(1) the desired molecular weight effect, and (2) the molecular weight of the pyrolysis gas component of the injected material.

2.4.3.5 Fissure Model Option for Surface Energy Balance

Equation (9), which is repeated here for reference, includes the energy efforts associated with injecting the pyrolysis

$$\rho_{e}u_{e}C_{H}(H_{r} - h_{e_{w}}) + \rho_{e}u_{e}C_{M}\sum_{ie}(z_{ie}^{*} - z_{iw}^{*})h_{i}^{T_{w}} - B'h_{w} + \dot{m}_{c}h_{c} + \dot{m}_{g}h_{g}$$

$$+ \alpha_w q_{rad} - F \sigma \varepsilon_w T_w - q_{cond} = 0.$$

gas rate m_g into the surface from below with enthalpy h_g and "blowing" a corresponding flux away from the surface with enthalpy h_w (included in the B'h_w, term). However, some ablative materials crack or fissure during heating and sometimes it is desired to explore the effects of assuming that the pyrolysis gas follows these fissures to the surface and is blown out through the boundary layer without participating to any great degree with the boundary layer events. Specifically, in the "fissure model", the $m_{g}h_{g}$ injection energy term in the surface energy balance is matched by an equal $m_{g}h_{g}$ outflow term as the gas passes across the surface without interacting. By the same token, the blowing term B'h_w now becomes (B' - B'g)h_w, since the B'g blowing effect has been isolated and identified with enthalpy h_{g} rather than h_{w} ,

Thus, the "fissure model" surface energy balance equation is

$$\rho_{e} u_{e} \dot{C}_{H} (H_{r} - h_{e_{w}}) + \rho_{e} u_{e} C_{M} \sum (Z_{ie}^{*} - Z_{iw}^{*}) h_{i}^{T_{w}} - B_{c}^{*} h_{w} + \dot{m}_{c} h_{c}$$

$$+ \alpha_{w} q_{rad} - F \sigma \varepsilon_{w} T_{w}^{*} - q_{cond} = 0$$
 (29)

Suitable programming has been implemented in the current CMA code to allow utilization of this model with only minimal adjustment of imput data.

(28)

The user may call for this surface energy balance type by punching the fissure model flag in the lead card for the surface thermochemistry tables (see Section 3.1.10.3 below).*

When using this model, the user generally makes two other modifications to the usual input. First to harmonize the in-depth calculations with the idea of the pyrolysis gas rising up cracks and fissures, pyrolysis gas thermal pick-up in the char is suppressed by artifically "flattening" the gas enthalpy-temperature relationship (see Section 3.1.8 below) for temperatures above the pyrolysis temperature (i.e., $C_{pg} = 0$ in this temperature range). Second, the surface thermochemistry tables are prepared for $L_g = 0$ so as to exclude a any surface thermochemical effects of the pyrolysis gases. Since the interpolation routine requires two B'_g values for a given pressure, the $B'_g = 0$ table is duplicated and the duplicate is assigned a second, artifical B'_g value.

2.4.3.6 Accounting For Condensed Phase Removal (Melting or "Failing")

The surface energy balance Equation (9) does not show an energy term corresponding to condensed phase removal (as in thin layer melting or failing) but failing is detected by the ACE surface state program and the associated energy effect is automatically accounted for in the surface thermochemistry tables. The ACE User's Manual, Reference 13, describes the melting or failing features of that code and provides detailed instructions for implementing them. The EST3 code cannot account for failing.

Ľ

This flag also causes B_{g}^{*} not to be included in the blowing reduction calculation for the transfer coefficients (see Section 2.4.3.4 above).

SECTION 3

USER'S GUIDE

This part of this report provides

- Detailed user oriented input instructions for the CMA code
- An explanation of the program output
- Miscellaneous specific information

3.1 INPUT FORMAT

The input to the Charring-Material Thermal Response and Ablation Program, Version 3, can conveniently be divided into ten parts. All ten portions of the deck must be present for most runs. These individual parts will be described in the following subsections.

3.1.1 Title and Heading Information

The first three cards of the data deck are used to transmit title and heading information to the output. The first 72 columns of each of these cards may be used for the title, the alphameric information in columns 61 through 72 of the third card being used as a page heading on all pages after the first.

3.1.2 Internal-Decomposition Kinetic Data

These three cards supply the constants used in Equation (2).* They are supplied according to the following format.

Column	Format	Data	Units
ĭ	11	Alphabetic character A, B, or C referring to the material components. These must be on the first, second and third cards of this set in order	
11-20	F10.5	Initial density of component i, $ ho_{0}$	lb/ft ³
2130	F10.5	Residual density of component i, ρ_{r_i}	lb/ft ²
31-40	F10.3	Pre-exponential factor, B_i , of Equation (2)	sec ⁻¹
41-50	F10.5	Density factor exponent, ψ_i	

Reference 4 cites relevant data for many materials of interest.

Column	Format	Data	Units
51-60	E10.3	Activation energy factor $(E_{a_i}/{}^{o}R)$	°R
61-70	F10.5	Minimum temperature of reaction zone	°R
71-79		Not read	
80		(Third card only) Number (0 to 5) of decom- posing (pyrolyzing) back-up materials in this problem	

In this table, the minimum temperature of the reaction zone is included only as a means of reducing computational time. Thus, if a nodal temperature is below this value, the program will bypass the fairly complex densitycolculation procedure. Also for the case of a non-decomposing reinforcing material, the value of this temperature can be sort to a ridiculously high value, thus assuring no decomposition.

3.1.3 Output Interval Specification and General Program Constants

Two cards are used to provide the program with the values of certain general constants, to establish the time intervals for which output will be obtained, and to specify thermocouple and isotherm output, if desired. (If thermocouples and/or isotherms are called for, additional cards are needed, as described.)

First Card

Column	Format	Data	Units
1-2	12	Number of nodelets per node (blank implies 10)	
3-5	13	Total number of nodes (maximum of 100)	
6	11	A non-zero punch in this column will cause thermocouple and isotherm output, normally listed with regular output, to <u>also</u> be punched as cards	
7-8 _/	12	Number of thermocouples for which output is desired. (The depths of these thermocouples are specified on additional cards of this group.) Punches here will cause thermocouple temperatures as a function of time to be out- put at the end of the regular program output.	
9-10	12	Number of isotherms for which output is de- sired. (The temperatures of these isotherms are specified on additional cards of this group.) Punches here will cause isotherm depths as a function of time to be output at the end of the regular program listing.	

- 3-2

First Card (concluded)

Column	Format	Data	Units
11-20	F10.5	Initial value of time	sec
21-30	F10.5	Final value of time	sec
31-40	F10.5	Initial output time interval	sec
41-50	F10.5	Second output time interval	sec
51-60	F10 /5 ,	Third output time interval	sec
61-70	P10.5	Maximum time step permitted under any circum- stances. If unpúnched, this limit will be set equal to 5.0 seconds	Sec
71-80	F10.5	Blowing-rate parameter, λ	
Second C	ard	· ·	
Column	Format	Data	Units
1-10	F10.5	Time of transition from initial to second output time interval	sec
11-20	F10.5	Time of transition from second to third out- put time interval	sec
21-30	F10.5	Minimum thickness of last ablator node. When because of surface recession, the last node of the ablation material shrinks below this value, it is combined with the adjacent abla- tor node. A value equal to the second node's thickness is usually appropriate	in -
31-40 41-50 51-60	F10.5 F10.5 F10.5	Heat of formation of the virgin plastic, the char, and the pyrolysis gas, respectively. These are evaluated at the datum temperature given in columns 71-80	Btu/lb
61-70	F10.5	Volume fraction or mass fraction of the vir- gin plastic which is occupied by resin. If mass fraction, it is input as a negative number	~
7180	F10.5	Datum temperature for heats of formation given in columns 31-50. For Option 1 computations, this must be the same temperature as used in the EST program for generating the surface thermochemistry data deck.	°R

Additional Cards as Required

Column	Format	Data	Units
1-80	8(F10.5)	If thermocouple and/or isotherm output have been called for, these cards specify thermo- couple depths in inches below the original surface and isotherm temperatures in degrees Rankine. Isotherm temperatures must begin on a new card. The total number of thermocouples and isotherms may not exceed 20. If no ther- mocouples or isotherms are called for, these card(s) are omitted.	in and/or ° _R

3.1.4 Back-Up Material Decomposition Data (Optional)

If the problem includes decomposing (pyrolyzing) back-up materials, a four card set of pyrolysis data must be included for <u>each</u> such decomposing back-up material. Each four card set has two subgroups:

o First Subgroup:

Back-Up Material Decomposition Kinetic Data (3 Cards)

Three cards in the format of the three kinetic data cards for the main material, except that column 80 of Card 3 is not read. Groups 4a (three cards) and 4b (one card) are placed together as a four-card unit. There will be one such four-card unit for each decomposing back-up material.

o Second Subgroup:

Enthalpies of Formation, Resin Volume, Or mass Fraction, En Enthalpy Reference Temperature (1 Card)

This card follows the same format as the second card of Section 3.1.3 except that general data on that card not pertinent to the back-up material is not needed and is not read:

Column	Format	Data	Units
1-30	ad lib	• Not read	
31-40 41-50	F10.5 F10.5	Heats of formation of virgin plastic and char, respectively, evaluated at the datum tempera- ture given in columns 71-80	Btu/lb
51-60	ad lib	Not read	
61-70	F10.5	Volume fraction or mass fraction of the virgin plastic back-up which is occupied by resin. If mass fraction, it is input as a negative number	
71-80	F10.5	Datum temperature for heats of formation.	°R

3.1.5 Nodal Data

A set of cards equal in number to the number of nodes is used to provide certain information with regard to the initial state of the nodes, their thickness, and the contact resistances between them. In addition, the first card of this set is used to specify the geometric nature of the exposed surface, that is whether it is a flat plate or an internal or external radius. The format for these cards is shown in the following table.

Column	Format	Data	Units
1-2	12	Material number, 1 for main material virgin plastic, 2 for main material char, 0 for main material pyrolysis zone (can not be input), 22-31 for charring back-up materials (see dis- cussion below), and 3-10 for non-charring back- up materials	
3-12	E10.0	Initial temperature of the node	° _R
13-22	E10.0	Initial cross-sectional area of the node in any units or normalized on any convenient reference such as the surface area. This data is required only for "general" geome- tries; for planar, cylindrical, and spherical geometries, and for shapes for which the area varies as a power of the radius the specifica- tion of individual nodal areas is not required and these columns should be left blank	Arbitrary
23-32	E10.0	Initial thickness of the node (For suggestions on the selection of nodal thicknesses, see Appendix A.)	in
33-42	E10.0	<u>First card only</u> . 0 for planar surface; posi- tive value of internal radius or negative of value of external radius for all non-planar axisymmetric geometries (including spheres and shapes with $A \sim r^a$)	in
		Second card only. Exponent on radius giving nodal cross-sectional area variation for spherical and other "regular" geometries. Sphere requires 2.0. No entry needed for planar and cylindrical geometries. Must be blank is "general" geometry option is used	in
43-52	E10.0	Contact resistance between this node and the next node.	ft²sec- ⁰ R/Btu
53-80	38X	NOT USED	

<u>3</u>-5

The number of nodes may not exceed 100. Note that for a restart calculation, the nodes that make up the precharred depth in the main material are called out as material 2.

In the list of nodes, any decomposing back-up material nodes will appear between the last node of the main ablating material and the first node of non-charring back-up (if any). Material numbers of the charring back-ups must be assigned as follows:

	Virgin	<u>Char</u>
lst charring back-up	22	23
2nd charring back-up	24	25
3rd charring back-up	26	27
4th charring back-up	28	29
5th charring back-up	30	31

The rules here differ from those for non-charring back-ups in that one charring back-up must be distinguished from another if it has a different location. For example, the fourth back-up may happen to be identical to the first, but it still receives a different material number.

3.1.6 Back Wall Heat Transfer Conditions; Char and Pyrolysis Zone Criteria

Heat transfer at the back wall is characterized by a convective heat transfer coefficient, an emissivity, and the temperature of a "reservoir" to which heat transfer takes place from the back wall. This card allows the specification of these three quantities. Blanks serve to specify an insulated back wall.

Two additional entries define char edge density and pyrolysis zone edge density according to the following definitions:

 $\rho_{char} = \rho_{c} + r_{c} (\rho_{p} - \rho_{c})$ edge $\rho_{pyrolysis} = \rho_{c} + r_{p} (\rho_{p} - \rho_{c})$ edge

The user inputs values for r_c and r_p . Typical values are $r_c = 0.02$ (defining the char edge as occurring where the density is $\rho_c + 0.02(\rho_p - \rho_c)$) and $r_p = 0.98$. If no entries are made for r_c and r_p , 0.02 and 0.98 will be assumed.

For char swell corrections, a value of $r_c = 0.5$ is suggested (see Section 2.4.3.4 above).

Column	Format	Data	Units
1-10	F10.5	Back wall convective coefficient	Btu/sec-ft ^{2 O} R
11-20	F10.5	Back wall emissivity	
21-30	F10.5	Reservoir temperature	° _R
31-40	F10.5	Char zone criterion r _c	
41-50	F10.5	Pyrolysis zone criterion r	
60	11	One punch calls for output of thermal con- ductivity in place of enthalpy in standard output block	

3.1.7 Material Property Tables and f-Function Tables

In these tables are presented the requisite thermodynamic data for the main material virgin plastic (material no. 1), the main material char (material no. 2), any charring back-up materials, and the various non-charring back-up materials (materials 3 through 10, as required) specified in the nodal data table. These data are input as functions of temperature according to the following format.

Column	Format	Data	Units
1-2	12	Flag, nominally zero, +1 marks terminal card of last material property table, -1 marks terminal card of other intermediate material property tables.	
3-12	F10.5	Temperature (independent variable)	° _R
13-22	F10.5	Specific heat	Btu/lb- ^O R
23-32	F10.8	Thermal conductivity	Btu/ft-sec- ⁰ R
33-42	F10.5	Emissivity	

Separate tables must appear for the main material virgin plastic and the main material char, in that order. If the main material does not char, a "char" table must still be included. If charring back-up materials have been included in the problem, then paired tables must be given for the virgin plastic and char properties of all such back-ups, with the table pairs appearing in the same order with which such back-ups appear in the nodal list (see Section 3.1.5 above. If a charring back-up is duplicated, duplicate tables must be included

in the proper order. Tables for decomposing back-ups follow the two tables for the main charring material and precede any tables for non-charring back-ups.

Any necessary property tables for non-charring back-up materials follow these charring material tables. Preceding each such table, a single lead card" is used to specify the back-up material identification number and density. These data are given in the first ten columns with the following format.

Column	Format	Data	<u>Units</u>
1-2	12	Material identification number (ranging from 3-10, inclusive)	
3-10	F8.4	Material density	lb/ft ³

If the emissivity for materials 1 and 2 is input as zero, it is automatically presumed to be 1.0 for any Option 3 computations. (The user may desire to input a zero emissivity for radiation equilibrium problems under Option 1.)

The number of temperature points in each table may not exceed 30 or may not be less than 2. The tables must be ordered on either ascending or descending temperatures.

For all charring materials, material properties for partially degraded or charred material are formed from weighted averages of the plastic and char properties for the relevant nodal temperatures according to the mixture rules presented in Section 2.1.2 above. If the user wishes to employ the so called "f-functions" for this purpose (see Equation (11) of Section 2.1.2 above, the $f_1(x)$ and $f_2(x)$ values are input along with the other material properties tables described in this section. Each f-function table follows the following special rules:

• An f-function table is flagged by a lead card of the following format

Column	Format	<u>Data</u>	Units
1-2	12	Identification flag which must be between 3 and 10 and which must not duplicate the identification number of a previously read non-charring back-up property table	
3-10	F8 4	Must be blank or zero	

COLUMN	Format	Data	Ţ
11-16	611	Material assignment numbers for the follow- ing f-function table. If this table is assigned to the surface material, column 11 must be blank. If the same f-function table is to be assigned to one or more charring back-up materials, these assignments follow in columns 12-16 in any order with imbedded or following blanks being ignored. Note that for the material assignments in columns 11-16 of the lead card, the surface material is designated as zero (or blank) and the charring back-up materials are designated 1 through 5 in the same order as they appear in the nodal data cards. If column 11 is not blank, the f-function table will not be used for the surface material.	-

• The actual f-function table follows the lead card and has the following format

Column	Format	Data	<u>Units</u>
1-2	12	Flag, as above, for last card of table	~
3-12	F10.5	x (independent variable)	
13-22	F10.5	f ₁ (x)	[.]
23-32	F10.5	f ₂ (x)	

- The f-function tables may be distributed anywhere among the non-charring back-up properties tables.
- If any charring material, main or back-up, is not assigned an f-function table, the thermal conductivity of partially charred substance for this charring material will follow the simple linear form of Equation (14).

3.1.8 Pyrolysis Gas Enthalpy Table

This table specifies the variation of pyrolysis gas enthalpy with temperature. These values are added to the heat of formation of the pyrolysis gas as specified on the program constant cards (see Section 3.1.3 above). This table is presented on card pairs, the first of which presents a set of temperature (up to 8), the second containing the corresponding enthalpy values. The first column of the temperature card is used as a flag, nominally blank but containing an integer to mark the last pair of cards. The format for this card pair is given as (I1, F9.5, 7F10.5/8F10.5), implying a basic field length of

Units

ten columns for both temperature and enthalpy, with the exception of the first temperature which is restricted to columns 2 through 10. The temperatures should be given in ascending sequence with the exception of the last card pair which may have from one to eight entries). The total number of temperature points in the table may not exceed 30 and may not be less than 2.

Note that no pressure dependence of pyrolysis gas enthalpy may be accounted for. Also note that only <u>one</u> pyrolysis gas is allowed, and hence the gas given off by any charring back-ups must be the same as the pyrolysis gas of the main material, as would be the case, for example, for carbon phenolic backed by silica phenolic.

3.1.9 Surface Time-Dependent Boundary Conditions

The table of time-dependent boundary conditions is used to specify alternative sets of time-varying dependent variables for the various options. The table must be ordered with the time values increasing.

The table may be thought of as consisting of a number of sub-tables each sub-table representing one option. The switch from one option to another requires a repeated time entry, the first card representing the last entry of the earlier table and the second card representing the start of the next table.

The total number of time values in the table is limited to 30. Each sub-table must have at least 2 entries, hence the number of sub-tables cannot exceed 16. (The most common problem has only 2, representing an Option 1 or Option 2 calculation followed by cooldown, Option 3.)

The format for the time-tables is as follows:

Column	, Format	Data	Units
1	11	Flag, nominally blank, punched to indicate the last card of the time table. In any Option 1 calculations are to be done, this flag must be a one (which calls for reading the surface equilibrium tables). If no Op- tion 1 calculations are to be done, this flag must be a two.	
2-10	F9.5	Time (independent variable)	sec
11-20	F10.5	Option 1: Recovery enthalpy, relative to the same chemical base state as used with the heats of formation.	Btu/lb
	۰.	Option 2: Surface temperature	. ⁰ R
		Option 3: Radiation view factor	

3-10

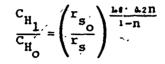
Ņ

Columns	Format	r	Data	Units
21-30	F10.5	Option 1:	Radiant energy flux to the surface '	Btu/ft ² -sec
		Option 2:	Surface-recession rate	mils/sec
		Option 3:	Radiant energy flux to the surface	Btu/ft ² -sec
31-40	F10.5	Option 1:	Heat-transfer coefficient	lb/ft ² -sec
		Option 2:	Blank	
		Option 3:	Must be blank	
41-50	F10.5	Option 1:	Pressure	atm
51-60	F10.5	Option 1:	Blowing reduction parameter (if a function of time; blank entries will be filled by constant value entered in column 71-80 of the first card of Section 3.1.3 above).	

3.1.10 Surface Thermochemistry Data (Option 1 Only)

3.1.10.1 Introduction

As discussed in Section 2.4.3 above, problems involving use of the surface thermochemistry option (Option 1) require the input of an arry of surface mass and energy data particular to the option and the material being analyzed. These data include the specification of the ratio of mass transfer coefficient to heat transfer coefficient, the radiation view factor, and surface thermochemical data. The cards containing this input are described below. Problems not involving Option 1 calculations do not need the surface thermochemistry data deck.


3.1.10.2

Ratio of Mass to Heat Transfer Coefficient, View Factor, Surface Option Flags

A single card serves to specify the ratio of the convective mass transfer coefficient to the convective heat transfer coefficient (C_M/C_H) , the surface radiation view factor, and a number of control flags. (The view factor on this card will only be used for Option 1 computations. For Option 3 (cooldown) computations, a separate Option 3 view factor is input as a function of time in the functions-of-time tables. In Option 1 problems with "radiation equilibrium", the radiant energy flux to the surface may be input as zero, requiring then that the Option 1 view factor be input as zero.)

Column	Format	Data	Units
1-10	F10.0	C _M ∕C _H	- <i></i>
11-20	F10.0	Option 1 view factor	
21-29	F9.0	Burning rate exponent n used in throat prob- lems to adjust input convective transfer co-	

efficient $\rho_e u_e C_{H_o}$ according to

 C_{H_1} is then adjusted to account for blowing effects. Applies to inner radius heating problems (nczzles) only. See Section 2.4.3.4 above. 1.72

(30)

One punch calls for radius ratio correction on input convection transfer coefficient $\rho_e u_e C_{H_O}$ according to Equation (30) above. Note: Input of n > 0 calls for Equation (30) and will override $\log z_{erk}$ in this column. Applies to inner radius heating problems (nozzles) only.

One-punch calls for reuse of previously input surface tables. No more input is 1 read. Note: Ratio of C_M/C_H (columns 1-10) must be the same for this calculation as for previous one if this option is to be used.

One-punch reads B_{f}^{*} in "new format" surface thermochemistry tables (as discussed below) and uses $B' - B_{f}^{*}$ in blowing correction to $\rho_{e} u_{e}^{C} C_{H_{O}}$ or $B' - B_{f}^{*} - B_{f}^{*}$ if fissure model is

being used, set column 60 below), no punch reads "old format" surface tables or ignores B_f' in "new format" tables and uses B' in

blowing correction to $\rho_e u_e C_H$ (or B' - B' in fissure model).

One-punch invokes "fissure model": exludes B_g^i from blowing correction on $\rho_{eue}C_{H_O}$ and from surface energy balance; see Section 2.4.3.5 above.

61-70

51-59

60

Char swell proportionality constant K in Equation (21), section 2.4.3.4.2

3-12

30

31-39

40

50

11

9X

11

11

9X

I1 /**

F10.0

Blank -

Blank

3.1.10.3 Surface Thermochemistry Table

3.1.10.3.1 Introduction

This table supplies the necessary input data for the surface energy balance computations in Option 1. (This energy balance is discussed in Section 2.4.3 above.)

Most commonly the deck of cards which make up the surface thermochemistry table is generated by the Equilibrium Surface Thermochemistry (EST) program or the Aerotherm Chemical Equilibrium (ACE) program. The user's manual for these programs (References 8 and 9) describe this table in complete detail. On occasion, the user may desire to construct his own surface thermochemistry table, and so the following sections include brief descriptions of the organization and format of these tables. The main emphasis, however, will be on the communication between thermochemistry programs and the Charring Material Ablation program, since this is of the most general interest.

3.1.10.3.2 Edge enthalpy data

57-58

12

Equation (9) of Section 2.4.3 shows that if diffusion coefficients are <u>not</u> equal or if the ratio C_M/C_H is <u>not</u> unity, then the surface energy balance requires dat about the edge gases of the boundary layer. These data are provided in a special "edge table". The independent variables for this table are pressure and temperature. Dependent variables are h_{e_H} and the sum $\Sigma Z_{ie}^* h_i^W$

The $e_{i} = e_{i}$ enthalpy data are entered on the cards as follows:

	¢)	·
<i>:</i> ``	Column	Format	Data	<u>Units</u>
•	1-8	F8.5	Pressure	atm
,	9-24	16X	Blank	• , *
çı ,	25-33	F9.4	Temperature	^O K (^O R if Megative, in which case enthalpies be- low are Btu/lb)
,	34-38 3947	P5.3 `'P9.3	Unequal diffusion exponent Summation $\sum_{i=1}^{T} h_i^w$	cal/gr (Btu/lb if tem- perature is en- entered with minus sign)
¢	48-56	F9.3	h _{ew}	cal/ĝr (Btu/lb if tem- perature is entered with minus sign)

-1 (flag signifying that this card is part of the edge gas table)

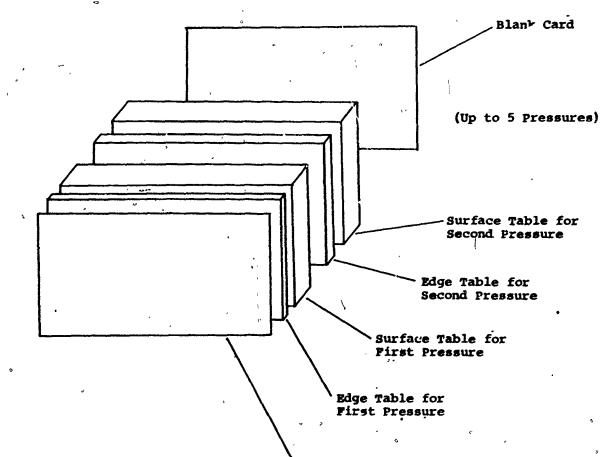
<i>*1</i>		۲	
Column	Format	Data	Units
59-66	2A4	Unused, but may contain alphameric infor- _ mation	
67-78	2A6	Problem identification (not read)	
79-80	2X	UNUSED	

Note that although the EST and ACE programs will provide a data deck using ${}^{O}K$ and cal/gr, in those rare cases in which a user wishes to supply his own deck and prefers to work in ${}^{O}R$ and Btu/lb, he may do so simply by introducing a minus sign as a flag in front of the temperature entries.

The table length is limited to 5 pressure sets (it may have only 1 pressure set) with noc more than 30 nor less than 3 temperature entries in each set. The series of temperature values may be different for each pressure set. The table has been organized as a series of sections, each representing one pressure and each preceding the corresponding pressure group of the surface thermochemistry deck as described below. The temperature entries within each section must be ordered, either ascending or descending. Similarly, the pressures must be ordered either ascending or descending. (Deck generated by the EST and ACE programs will have been automatically ordered properly.) The sketch shown on the following page demonstrates the thermochemical data tables make-up.

3.1.10.3.3 Surface thermochemistry table

This table is comprised of a series of sections of up to 29 cards each. The sections represent <u>one</u> pressure and <u>one</u> pyrolyses gas rate. Each section consists of two subsections. The first contains the ablating cases; here the char ablation rate is the third independent variable and the surface temperature is a dependent variable. The second subsection represents surface temperatures too low for ablation; in this subsection surface temperature is the independent variable.


Thus one table has three independent variables: pressure, pyrolysis gas rate, and either surface temperature or ablation rate, depending on whether the surface temperature is high enough for ablation.

The table has either two or three dependent variables, according to whether the surface temperature is high enough for ablation. Two dependent variables always present are the summation $\sum_{iw}^{T_w} h_i^w$ and h_w , the enthalpy of the wall gases. The third dependent variable is the surface temperature, but it is dependent only in those cases for which the surface temperature is high enough for ablation. (Otherwise, the surface temperature functions as an independent variable.)

SKETCH OF SURFACE THERMOCHEMICAL TABLE MAKE-UP

. •

The following sketch illustrates the make-up of the surface thermochemistry table for CMA input.

Lead Card for C_{M}/C_{H} and View Factor

, oʻ

The EST and ACE programs generate separate groups for each pressure, one at a time. These groups must be ordered on pressure (either ascending or descending) by the user to make up the surface thermochemistry deck. With each pressure group the pyrolysis gas rates \mathcal{P}_{α}^{1} will be ordered in descending order. Within each gas rate section, non-zero char rate entries will be grouped ahead of the zero char rate entries. The non-zero char rate entries will not be ordered in any particular way on the char rates; any necessary ordering is made automatically by the Charring Material Ablation program as it reads the data. The zero char rate entries are ordered with descending temperatures.*

(Users providing their own thermochemistry decks must ensure that the pressures and gas rates are ordered, but the ordering may be either ascending or descending in each case. Within each gas rate section, non-zero char rate entries must precede the zero char rate entries but need not be ordered. Char rates may not be duplicated in a given table. Zero char rate entries follow and must be ordered with descending temperatures. These cards are identified as zero char rate cards by a flag in columns 57-58, as described in the format specification below.)

The number of pressure groups may not exceed 5 (and may be only 1); the number of pyrolysis gas rates in each pressure group may not exceed 20 and may not be less than 2. The sequence of gas rate values must be the same in the different pressure sections, 'Within each gas rate group the number of char rate entries, including the zero char rate (independent surface temperature) cards, may not exceed 30 and may not be less than 2. The series of char values may be unique for each section.

(The ^OR-Btu/lb option described for the edge tables in Section 3.1.10.3.2 may be used for these tables also.)

The card format for the surface thermochemistry data is as follows:

low are Btu/lb)

Column	Format	Data	Unit
1-8	F8.5	Pressure	atm
9-16	F8.5	Gas rate $m_g / \rho_e u_e C_M = B'_g$	
17-24	F8.5	Char rate $\dot{m}_c / \rho_e u_e C_M = B_c'$	·
25-33	F9.4	Surface temperature	O _K (^O R if negative in which case enthalpies be-

Limitations in the EST and ACE chemistry routines sometimes require that these "zero char rates" not be zero, but some small number, for example, 0.0001. This causes no difficulty in CKA.

Column	Pormat	Data	Units
34-38	F5.3	Unequal diffusion exponent	17 AP AP
39-47	F9.3	Summation $\sum_{iw}^{T} h_i^{w}$	cal/gr (Btu/lb if tem- perature is entered with minus sign)
48-56	F9.3	Enthalpy of wall gases h _w	cal/gr (Btu/lb if tem- perature is entered with minus sign)
57-58	12	0 for assigned-temperature entries in the thermochemistry program (no abla- tion); > 0 for standard surface thermo- chemistry with ablation (temperature is dependent)	,
59-60	2X	Blank	
61-66	A6	Chemical symbol of surface species (EST program prints such symbols arranged alphabetically and truncated from right end if necessary.)	
67-78	2A6	Problem identification (not read)	
79-30	12	UNUSED	***

The ACE program can account, as one of its options, for mechanical removal or failing of candidate surface species at defined temperatures. The energy associated with this failing can be (and is) accounted for by the ACE-CMA program combination; this is accomplished by ACE by suitably modifying the h_w output term on the punched card thermochemistry table (thus h_w does not represent the enthalpy of the wall gases if failing is occurring).

The actual value of the dimensionless failing rate $B_f = \dot{m}_f / \rho_e u_e C_M$ may or may not appear on the punched surface thermochemistry card tables, depending on whether or not the ACE user has called for the appropriate card output format. This "new format" differs from that cited above in columns 61-80:

	•	Alternate Card Format - Surface Tables	
Column	Format	Data	<u>Units</u>
1-60	As descr	ibed above	
61-68	274	Chemical symbol of surface species	
69-78	E10.3	$B_{f}^{*} = m_{f}^{\prime} \rho_{e} u_{e}^{c} C_{M}$	
79-80	2X	Blank	

The CMA user may call for the CMA program to read these B_f^i entries and to allow for them in the blowing correction to C_{H_O} by punching a one in column 50 in the lead card for the surface thermochemistry tables, as described in Section 3.1.10.2 above.

3.1.10.3.4 Termination card

The surface thermochemistry data deck must be terminated by a <u>single blank card</u>. Output decks of the EST and ACE programs may not have such a card, in which case the user must supply it.

3.2 PROGRAM OUTPUT

3.2.1 Input Data (Except Surface Thermochemistry Tables)

Program output begins with an output of the input title and heading information, internal decomposition kinetic data, output interval specifications and general program constants, nodal data, material property tables, pyrolysis gas enthalpy table, and time dependent boundary conditions table.

All this output is fully labeled and is printed exactly as input by the user. Examples of these outputs are included in Section 4.

3.2.2 Surface Thermochemistry Tables

3.2.2.1 Edge Enthalpy Table

If there is an edge enthalpy table, it is output exactly as input.

y 3.2.2.2 Surface Thermochemistry Table

This table is output re-ordered with increasing char rates in each section and with a new computed term in place of the input enthalpy terms. For each entry in the surface equilibrium tables the program computes the quantity*

$$\left[\sum_{i}^{T} (z_{ie}^{*} - z_{iw}^{*})h_{i}^{T} - B'h_{w} + \frac{\dot{m}_{c}h_{c}}{\rho_{e}u_{e}C_{M}} + \frac{\dot{m}_{g}h_{g}}{\rho_{e}u_{e}C_{M}}\right] = \frac{q_{chem}}{\rho_{e}u_{e}C_{M}} = chem_{prod}$$

and then outputs it as the dependent variable of interest in the output surface equilibrium table. This term occurs directly in the surface energy balance, Equation (9) of Section 2.4.3 above. In the output, this quantity is labeled CHEM PROD. It has the units $(Btu/ft^2-sec)/(lb/ft^2-sec) = Btu/lb$ and can be thought of as the chemical energy release per pound of $\rho_e u_e C_M$, where $\rho_e u_e C_M$ can be thought of as the "scrubbing flux" or "Reynolds flux."

"If edge tables are omitted, only the last three terms are included.

In the output table, the quantity $\rho_e u_e C_M$ is abbreviated to CM.

3.2.3 Regular Output

3.2.3.1 Introduction

At each output interval, as specified by the user, the program prints out the current values of ablation rates, nodal temperatures and densities, and other supplementary information, as described below. Samples of the regular output are given in Section 4.

3.2.3.2 General Information

The first line of output shows the current values of a number of miscellaneous quantities:

Heading

TIME STEP

發

Total number of computational cycles (steps) required to reach the indicated value of output time. Note that the initial time is numbered as 1.

SURF ITER

PROB OPTN

SURFACE RAD (IN)

H WALL

balance during the previous cycle. Current problem option (1, 2, or 3)

Number of iterations required for the surface energy

Current value of surface radius for axisymmetric geometries; current location of surface for planar geometries, measured from original location.

Option 1: Enthalpy of frozen edge gases at the wall temperature.

Option 2: Blank

Option 3: Enthalpy of pyrolysis gases at the wall temperature

H EDGE

HEAT COEFF

The input edge enthalpy as determined by linear interpolation in the functions-of-time table.

The current value of the convective heat transfer coefficient $\rho_{e}u_{e}C_{H}$ as linearly interpolated in the functions-of-time table and corrected for the effect of transpiration (blowing) according to

$$C_{H}/C_{H_{1}} = \zeta/(e^{\zeta} - 1)$$
 where $\zeta = 2\lambda m/C_{H_{1}}$ and $C_{H_{1}}$

is the heat transfer coefficient before being corrected for blowing; as well as for any radius ratio effect.

СН/СНО

The ratio $C_{\rm H}/C_{\rm H}$, indicates the amount of blowing correction.

3.2.3.3 Ablation Rates

The output labels are interpreted as follows:

Heading	Data
B PRIME	The parameter $B' = \dot{m}/\rho_e u_e C_M$,
B PRIME G	Parameter B' based on gas flow alone: $m_{g}^{\rho}/\rho_{e}u_{e}C_{M}$
M DOT CHAR	Current char removal rate \dot{m}_{c} , lb/ft^2sec
M DOT GAS	Current pyrolysis gas flow rate at the surface m_{g} , lb/ft ² sec.
M CHAR	Total char removal up to current time, based on a unit area of the original surface, lb/ft ² .
M GAS	Total pyrolysis gas generation up to current time, based on a unit area of the original surface, lb/ft ² .

3.2.3.4 Recessions and Recession Rates

A single output line gives the current locations, as measured from the <u>original</u> location of the surface, of the ablating surface, the char line [defined as the line of density $\rho_c + r_c (\rho_p - \rho_c)$], and the pyrolysis line [defined as the line of density $\rho_c + r_p (\rho_p - \rho_c)$], as well as the current rates of movement of these lines. The values r_c and r_p are also printed for convenience.

3.2.3.5 Surface Energy Flux Terms

Two lines of output give the current values of the surface energy flux terms in Equation (9) of Section 2.4.3, based on one square foot of the present surface, and the integrated values of these terms based on one square foot of the <u>original</u> surface.

The headings and data are related as follows:

CONVECTED IN

Heading

			Data
^q sen	=	$\rho_e u_e C_H (H_r \rightarrow$	he)*
q _{rad} in	Ŧ	^α w ^q rad	
q _{rad} out	=	JET"	

RADIATED OUT

CHEMICAL GENERATION

CONDUCTION AWAY

If edge tables are omitted, hew is set to zero for output purposes.

qchem

q_{cond}

3.2.3.6 Interior Energy Terms

Two lines of output show terms which describe how the input energy of q_{cond} is "accommodated" or "partitioned" in the solid material. Part of it is consumed in decomposing the plastic, part is consumed in sensible enthalpy changes of the solid, and part is "picked-up" by the pyrolysis gases as they pass through the char.

These terms are given by the energy equation (3) of Section 2.1.2 when these terms are integrated over the total extent of the ablating material. The headings and the terms are related as follows.

The pyrolysis gas pick-up represents the energy picked up by all the pyrolysis gas during its passage through the char layer. The decomposition absorption is simply the energy absorbed in isothermally decomposing the virgin plastic. The loss at the rear face is the energy passing out the back wall of the <u>ablation</u> material (not the back up materials). Two terms give the total rate of storage in solid materials. This quantity could in fact be represented by only one term

 $\int_{-}^{} \overline{\rho C_{p}} \frac{\partial T}{\partial \theta} \Big|_{V} \frac{A dx}{A_{s}}$

but it is more useful to divide into the two parts as indicated. For problems gwith a steady state temperature profile (in x), the "Storage in Solid" term

 $\int \rho C \left(\frac{\partial T}{\partial \theta} \right)_{X_{i}} \left(\frac{A \cdot dx}{A_{s}} \right)$

goes to zero. In general, the relative sizes of the "Storage in Solid" term and the "Convection with Solids" term indicate the nearness of the approach to a steady state.

Heading

PYROL GAS PICK UP

 $-\int \dot{m}_{g} \frac{\partial h_{g}}{\partial x} \Big|_{\theta} \frac{dx}{A_{g}} = (\dot{m}_{g}h_{g})_{W} + \int h_{g} \left(\frac{\partial \rho}{\partial \theta}\right)_{V} \frac{A}{A_{g}} \frac{dx}{A_{g}}$ $-\int (h_{g} - \bar{h}) \left(\frac{\partial \rho}{\partial \theta}\right)_{V} \frac{A dx}{A_{s}}$

 $-\int \dot{s} \overline{\rho C_p} \frac{\partial T}{\partial x} \int_0^\infty \frac{A dx}{A_p}$

Data

DECOMP ABSORPTION

CONVECTION WITH SÒLIDS

STORAGE IN SOLID

 $\int \overline{\rho C_p} \frac{\partial T}{\partial \theta} \frac{A \, dx}{A_u}$ $-k \frac{A_{BW}}{A_{S}} \left[\frac{\partial T}{\partial x} \right]_{\theta} BW$

LOSS AT REAR PACE

The second line of output gives time-integrated total values of these energy rate terms, based on one square foot of the original surface.

3.2.3.7 Nodal Data

This output gives the current temperature, density and enthalpy* of all the nodes, as well as material number specifications, where material number 1 designates main material virgin plastic, defined as having a density equal to or greater than ($\rho_p - 0.1 \ \text{lb/ft}^3$), material number 2 designates main material char, defined as having a density equal to or less than ($\rho_c + 0.01 \ \text{lb/ft}^3$), material number 0 designates reacting char-plastic mixture with intermediate density, numbers 21-31 designate charring back-up material numbers according to the table of Section 3.1.6, and material numbers 3-10 designate non-charring back-up materials.

3.2.3.8 Char Swell Information

If the user has called for char swell corrections (Sections 2.4.3.4 and 3.1.10.2), two lines indicate the net surface recession and current surface recession rate as affected by the char swell effect.

3.2.4 Thermocouple and Isotherm Output

3.2.4.1 Listed Output

If thermocouple and/or isotherm output have been called for, this data will be listed at the end of the regular output, giving thermocouple temperatures in degrees Rankine and isotherm locations in inches from the location of the original surface.

In both cases the output data are determined by a curve fitting routine which extrapolates beyond the physical boundaries of the system, so that the user must himself detect when thermocouples have ablated away and lost their meaning and when isotherms are fictitiously found outside the material boundaries.

Modal thermal conductivity may be output instead of enthalpy. The relevant flag punch for conductivity is in column 60 of the "back wall conditions card" described in Section 3.1.6 above.

3.2.4.2 Punched Output

If punched output of thermocouple and isotherm data is called for as described in Section 3.1.3 above, the data will be punched on cards in the order: time, surface temperature, thermocouple temperatures (in the input order), isotherm depths (in the input order). The format is (8F10.4/10X7Fi0.4).

3.3 DUMPS

o

3.3.1 Introduction

To prevent the execution of computations that are wasteful or probably erroneous, the program provides two emergency stops with dumps of diagnostic information.

3.3.2 ... Too-Small-Time-Step Dump

One such dump occurs if the program selects a time step as small as 10^{-6} seconds. Computation ceases and the program prints out in a single line values of the current time (which will, of course, not in general correspond to a regular output time), the time increment $\Delta\theta$, the previous time increment for comparison, the amount of problem time from the previous time-table double entry (shift of option) or discontinuity, change in surface temperature during last computation step, the critical recession distance parameter (equal to one-fifth of the thickness of the first node or one-tenth of the minimum allowable last node thickness, whichever is smaller ($\Delta\theta$ is restricted so that recession during the computation step will not exceed this amount), and the surface recssion rate (ft/sec) computed most recently.

Once this data has been output, the program sets the problem time equal to the final time, thus forcing an output of all the <u>current</u> values of the standard output quantities, followed by a termination of computation.

3.3.3 Too-Many-Surface-Iterations Dump

The program allows 51 iterations to find an acceptable surface energy balance. If a balance has not been obtained after 51 iterations, the program writes the diagnostic message "Iteration.Stop" and a block of diagnostic data. Since stops of this kind are complex in nature, and generally involve the surface thermochemistry tables data deck, the dump data must usually be communicated to the program authors for analysis.

3.3.4 Unacceptable-Surface-Thermochemistry-Table Stop

A series of checks built into the input routine serve to detect common errors in the make-up of the surface thermochemistry tables. Discovery of an error stops the reading process and the program prints out a single line:

Bad Surface Equilibrium Table of Type -

Five error types are detected as follows:

Type	
0	Current section of independent temperature entries (no ablation) is not in descending order in tempera- ture
1	Char rate in no-ablation subsection has been set greater than a char rate in the ablation subsection. Although the "zero-char-rate" can differ from zero, they must not exceed an actual ablation rate entry.
2	Edge table has been omitted even though the diffusion coefficients are not equal (unequal diffusion exponent \neq 0).
3	Edge table has been omitted even though $C_{M}^{}/C_{H}^{} \neq$ 1.
4	Inconsistent unequal diffusion exponent (this must be uniform for all tables).
5	Have called for radius ratio and/or burning sate exponent correction to C_{H} although this is r ' an internal radius geometry.

3.3.5 Sense Switch Diagnostic Dumps

Sense switch calls built into the Charring Material Ablation Code provide diagnostic dumps of certain data during program execution. Usually such dumps are of interest only to the program authors, although for reference these dumps are summarized here:

Sense Switches

1

3

Dump when On

Writes another version of each surface thermochemistry table immediately after the regular output of this table; presents final forms of energy terms as actually used in surface energy balance computations; useful for analysis of sufrace energy balance failures

Dumps nodal numbers of decomposing backups, after regular output of input data, for checking purposes; also dumps at each standard output time various density and pyrolysis rates for nodes in charring back-up materials

Supplies standard output for each time step, regardless of formal output time specifications

Outputs diagnostic heat conduction quantities in charring back-ups each time step, only used for detailed analysis 1.0

3.4 MISCELLANEOUS

4

5

3.4.1 Running Time

Computation time depends, of course, on the problem being computed, but typical computations for charring materials run roughly in real time on the IBM 7090/7094. Appendix B presents a method for estimating run times.

3.4.2 Tape Requirements

Internal program assignments are as follows:

Tape Unit 3: Scratch used during execution Tape Unit.5: Input Tape Unit 6: Output Tape Unit 7: Punch

3.4.3 Fortran Deck Make-Up

The Charring Material Ablation program source deck is in Fortran IV (or Fortran 63).

The program consists of the following units:

1. Main Program

Drives INPØUT and CBM routines

2. Subroutine CBM

Computes all time dependent results

3. Subroutine* INPØUT

Reads in all input data and outputs same data in front of standard computed output

- Subroutine LCØUNT Counts lines, turns and numbers pages
- 5. Subroutine LØØK

Table look-up with linear interpolation

6. Subroutine SLØPQ

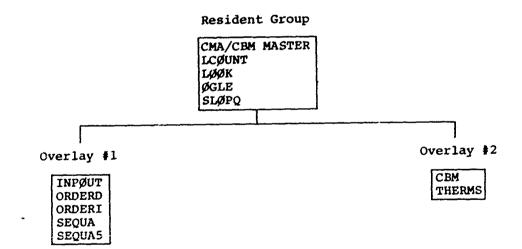
Quadratic curve fit and slope finder

7. Subroutine ØGLE

Table look-up with cubic curve fit

Subroutine ØRDERD
 Ordering routine

- 9. Subroutine ØRDERI Integer Array Ordering Routine
- 10. Subroutine SEQUA Crders according to results of ØRDERD


11. Subroutine SEQUA5

Orders up to 5 Dependent Variable Arrays according to results of ORDERD

3.4.4 Storage Requirements

With "standard" dimensions on subscripted variables, the Charring Material Ablation program generally fits within the 32,000 words of CDC and Univac equipment. The program will not fit the 32,000 words of the IBM 7090/ 7094 machine by several thousand words. Simple dimension cutting is usually adequate to effect a fit in most cases. In others, a special overlay version of the code exists, although only minor improvements can be realized in this way since most storage requirements are for data.

The first level overlay structure has the following form:

3.4.5 Stacking of Jobs

A series of data decks representing different problems may be stacked for sequential computation.

SECTION 4

۰*.*

SAMPLE PROBLEMS

This section presents input listings and selected output page listings for four sample problems illustrating various features of the CMA Version 3 code. The following table summarizes the essential features of each problem. As it happens, these examples are all from rocket nozzle technology, although the CMA code is equally useful for ablating exterior heat shield analysis, various combustion problems, and, of course, simple transient heat conduction studies.

CMA/CBM SAMPLE PROBLEMS

Sample Problem	Description	Comment
No. l	Transient thermal response at the throat location of a carbon phenolic nozzle exposed to an aluminized solid propellant. Nodal network includes steel shell back-up. Heat transfer coefficient is corrected for radius change and burning rate as a function of time.	This problem shows the effect of burning rate correction on the convective heat transfer coeffi- cient. In addition, the input of f-functions is demonstrated although only a linear variation is used. Finally, since no de- composing back up materials are present, this problem shows that the CMA/CBM code will do all prob- lems that the CMA, Version 2 code could do.
No. 2	Identical surface boundary conditions as Sample Problem No. 1, but the nodal network contains seven silica phen- olic nodes which decompose when sufficiently heated.	This problem demonstrates the in- put and output for the CMA/CBM solution of a nodal system contain- ing a decomposing back-up material. Also the temperatures of three thermocouples and the depths of two isotherms are computed and output, and the nodal thermal con- ductivity is output instead of enthalpy.
No. 3	Identical surface boundary conditions and nodal net- work as Sample Problem No. 2, but the radius in this prob- lem is corrected for char swell.	The effect of char swell on the predicted recession is demon- strated in this problem.
No. 4	Identical to Sample Problem No. 2, except that the "fissure" model is utilized to describe pyrolysis gas terms. (This requires a change in the surface thermo- chemistry model and the py- rolysis gas enthalpy table.)	The effect of "fissure" model on the prediction is demonstrated.

CHA/CH 1490	N ANALY	SIS AT INL ACF IS FAR	ATIVE THEO HON PHENOL	IC AT A CO	DEGREE LAYUP	T POCKE	T HGTOR	
	TPANSFI	20.25		CTED FOP 9 1.400+04	298186 RATE F 3+00 1+74		PLE NO. 1 1000.0	
à		40.75		.480.09		0.04	400.	
۲		94.50	44.50	0.0	C+0	0.0	20000.	
1+1	3 2 2.0	0.7	120.0	9.5 -375.5	2.0	5.0 0.0	1.0	0.3750 536.
	.0 1	. CA	1.4					
51	· · · · · ·	· · · ·	9.020	1 16				
ł	530.0		0.020	1.17				
• i	510.0		0.040					
1	530.0 530.0		0.440					
3	530.0		0.060 0.100					
1	530.0		0.100					
1	530.0 510.0		0.100					
i	530.0		-0.i					
1	530.0		0.150					
1	530.0 530.0		0.150 0.2					
1	530.0		0.2					
1	530.0		0.250					
י	530.0 0.0	0.0	0.250 530.0	•	•			
	530.0	0.210	1.480-04	0.630			IN.60 DEG	
	400.0	0.340	2.130-04	0.630 0.630			IN+60 CEG IN+60 DEG	
	1160.0	0.472	2.470-04	0.630			1N+60 DEG	
	2000.0	0.484	2.470-04	0.630	484926	VIRG	IN+60 DEG	LAYUP)
	3000.0	0.493	2.470-04	0.630			IN.60 DEG 14.60 DEG	
	4000.0	0.498	2.470-04	0.630			IN+60 DEG	
- }	6000.0	2,500	2.470-04	0.630	MX4926	(VIRG	IN+60 DEG	LAYUP)
	530.0	0.210	2.470-04	0.630		6 (CHAR 6 (CHAR		
	1500.0	0.472	2.540-01	0.630		(CHAR		
	5000.0	0.494	1:240-04	0.630	MX4928	(CHAR	+60 DEG	LAYUP
	000.0	9.493 5.498	7.190-04	0.630		CHAR		
	5000.0	0.500	2.000-01	0.630	41492/	CHAR	+60 DEG	LAYUPI
-1	A000.	0.590	.750-03	0.630	484926	CHAR	+60 DEG	LAYUP)
	\$00.0	0.110	0.00696					
-1	500.0 5300.0	0.110	0.00694 0.00694					
	500.0 5300.0 0.0	0.110	0.00694					
- 1 4	500.0 5300.0 0.0 9.0	0.110 0.0	0.00696					
-1 4 •1	500.0 5000.0 0.0 1.00 1.00	0.110 0.0 1.0 1800.0	0.00694 1.0 0.0 2700.0	3660+0			6309.0	
-1 4 •1	500.0 5300.0 0.0 1.00 1.00 7 <i>6</i> - 0	0.110 0.0 1.0 1800.0 -512.2	0.00694 1.0 0.0 2700.0 195.6	2289.0	3600.0 .	00.0	6308+0 6152-0	
-1 4 •1	500.0 5300.0 0.0 1.00 1.00 7.0 7.0 0.0	0.110 0.0 1.0 1800.0 -513.2 1947.0 1947.0	0.00694 1.0 0.0 2700.0					
-1 -4 -1 -1	500.0 5300.0 0.0 1.00 74r.0 74r.0 0.0 10.0	0.110 0.0 1.0 1800.0 -615.2 1947.0 1947.0 1947.0	0.00694 1.0 0.0 7700.0 195.6 504.0 904.0	2289.0 0.8588	3600.0 . 9			
-1 -1 -1 -1	500.0 5300.0 0.0 1.00 74r.0 0.0 10.0 0.00	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 .05	0.00694 1.0 0.0 7700.0 195.6 55.6 55.6 904.0 904.0 0.	2289.0 0.8588 0.7233	3600.0 · 9 29.2 29.2			
-1 4 1 1 -1 4 1 4 1 3 120	500.0 5300.0 0.0 1.00 74r.0 74r.0 0.00 10.0 0.000	0.110 0.0 1.0 1800.0 -615.2 1947.0 1947.0 1947.0	0.00594 1.0 0.0 7700.0 195.6 564.0 904.0 0. 0. 0. 0.625	2289.0 0.8588 0.7233 C.7238	29+2 29+2 29+2	96.0		
-1 4 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 5300.0 0.0 1.00 74-0 0.0 10.0 10.0 0.0000 0.0000	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 1947.0 55 -05	0.10694 1.0 0.0 7700.0 195.6 404.0 904.0 7. 0. 0. 3500.1	2289.0 0.8588 0.7235 C.7238	1600.0 29.2 29.2 29.2 29.2 29.2	-1		
-1 4 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 5300.0 0.0 1.00 74-0 0.00 10.0 0.000 0.000 0.000 0.002 .20	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 1947.0 55 -05	0.00694 1.0 0.0 2700.0 195.6 504.0 904.0 9. 0. 0. 0. 3500.1 3000.4	2249.0 0.4588 0.723, C.7238 0 0.0 914 0 0.0 671	3606.0 .9 29.2 29.2 29.2 29.2 .106 914.100	-1		
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	5309.0 5309.0 6.0 1.09 74c.0 74c.0 74c.0 0.0 10.9 0.090 0.090 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 1947.0 55 -05	0.00694 1.0 0.0 7700.0 195.6 424.0 904.0 0. 0. 3500.4 3000.4 2500.4	2249.0 0.4568 0.7235 C.7238 0 0.0 914 0 0.0 914 0 0.0 434 8 0.0 202	3606.0 29.2 29.2 29.2 29.2 29.2 .1v6 914.100 .985 671.98 .119 436.11 .668 202.666	-1 -1 -1 -1		
-1 +1 -1 -1 -1 -1 -1 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24	500.0 5300.0 0.0 1.00 1.00 3.00 0.00 0.00 0.0000 0.000000 0.0000 0.0000000 0.0000 0.0000 0.0	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 1947.0 55 -05	0.00694 1.0 0.0 7700.0 195.6 404.0 904.0 0. 0.625 3500.1 3000.1 2500.1 1500.1	2249.0 0.4568 0.723, C.7238 0 0.0 914 0 0.0 671 0 0.0 434 8 0.0 202 0 0.0 -20	3606.0 29.2 29.2 29.2 29.2 29.2 119 434.100 .985 671.98 .119 434.116 .668 202.66 2763 -20.763	-1 -1 -1 -1 -1		
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	5309.0 5309.0 6.0 1.09 74c.0 74c.0 74c.0 0.0 10.9 0.090 0.090 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 .05 .05 1.0	0.00694 1.0 0.0 195.6 500.0 195.6 500.0 0.0 0.0 2500.0 1500.1 1500.1 1500.1 500.4	22A9.0 0.4558 0.7233 0.7238 0.7238 0.00 914 0.00 914 0.00 914 0.00 914 0.00 914 0.00 920 0.00 -230 0.00 -230 0.00 -245	3600.0 29.2 29.2 29.2 29.2 29.2 110 914.100 .985 671.985 .119 434.110 .668 202.666 .763 -20.765 .356 -231.356 .062 -465.022			
-1 4 4 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	500.0 5300.0 0.0 1.00 74.0 0.00 74.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.20 20 20 20 20 20 20 20 20 20	0.110 0.0 1.0 1800.0 -512.2 1947.0 1947.0 1947.0 .05 .05 .05 1.0	0.00694 1.0 0.0 7700.0 195.6 904.0 904.0 904.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	22A9.0 0.4558 0.723, 0.723, 0.7238 0.00 914 0.00 671 0.0.0 434 0.00 434 0.00 -23 0.00 -23 0.00 -23 0.00 -485 10. (054	1600.0 29.2 29.2 29.2 29.2 29.2 .106 914.100 .085 671.98 .119 436.11 .668 202.666 .763 -20.765 .355 -231.355 .072 -405.022 .193 2055.133	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	6152.0	
-1 5 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2	500.0 5300.0 6.0 1.00 70c.0 70c.0 70c.0 10.0	0.110 0.0 100 1800.0 -513.2 1947.0 1947.	0.00644 1.0 0.00 195.6 46.0 904.0 0.625 3500.1 3000.1 1000.1 1000.1 1500.1 1500.1 1500.1 1500.1 1500.1 1500.2 100.0 1500.2	22A9.0 0.4558 0.723, 0.723, 0.0.0 914 0.0.0 91	3600.0 29.2 29.2 29.2 29.2 100 914.100 985 671.98 119 436.110 668 202.666 763 -20.763 135 -231.356 072 -405.022 193 2054.133 988 1697.988		6152.0 0. 0.	
-1 4 4 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	500.0 500.0 500.0 1.0 1.0 70.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 1.0 1.0 	0.00644 1.0 0.0 7700.0 195.6 404.0 904.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	2289.0 0.8588 0.723, C.7238 0 0.0 914 0 0.0 914 0 0.0 914 0 0.0 571 0 0.0 434 0 0.0 207 0 0.0 -231 0 0.0 -231 0 0.0 -231 10. (055 10. (055 10. 1. 7 00. 1. 1.	1600.0 29.2 29.2 29.2 29.2 29.2 100 914.100 985 671.985 109 436.11 666 202.666 773 -20.765 107 205.023 103 205.113 988 1607.986 1087.986 1063.100		6152.0 0. 0. 0. 0. 0.	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 5300.0 0.0 1.0 7ar.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 100.0 -512.2 1447.0 1400.0 1447.0 1447.0 1447.0 1447.0 1447.0 1447.0 1447.0 1400.0 1400.0 1447.0 1447.0 1447.0 1400.0 1447.0 1447.0 1447.0 1400.0 1400.0 1447.0 1447.0 1400.0 140	0.00644 1.0 0.0 195.6 195.6 904.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2249.0 0.4558 0.723, 0.723, 0.7238 0.00 914 0.00	3600.0 29.2 29.2 29.2 29.2 29.2 106 914.100 .985 671.98 .119 434.110 .668 202.666 0.72 -405.022 .193 2054.19 .988 1607.964 .100 1403.100 .521 1228.521		6152.0 0. 0. 0. 0. 0. 0.	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	500.0 500.0 500.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 1.0 1.0 1.0 0.15.2 1.0 1.0 1.0 0.05 0.05 1.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0 0.0	0.0064 1.0 0.0 2700.0 195.6 404.0 904.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	2249.0 0.4508 0.723; C.7238 0 0.0 914 0 0.0 914 0 0.0 914 0 0.0 434 # 0.0 209 0 0.0 -231 0 0.0 ~45 8 0.0 ~45 10. 105 10. 105 60. 1278 90. 1278	1500.0 29.2 29.2 29.2 29.2 29.2 110 436.11 466 202.666 107.94 109 436.11 466 202.666 107.94 109 205.12 109 205.12 109 1463.10 463.10 571 1228.521 1058.668 1025.661		6152.0 0. 0. 0. 0. 0.	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	500.0 500.0 500.0 1.0 1.0 500.0 1.0 500.0 5	0.110 0.0 1.0 1.0 1.0 1.0 1.0 1.0	0.00644 1.0 0.0 195.6 404.0 904.0 904.0 195.6 1000.1 1500.1 1500.1 1500.1 1000.1 500.1 1000.2 1000.2 1	2289.0 0.8588 0.723, 0.7238 0.7238 0.00 914 0.00	1500.0 29.2 29.2 29.2 29.2 29.2 110 436.11 466 202.666 119 436.11 466 202.666 107.98 193 2054.13 988 1677.984 193 2054.13 988 1677.984 193 2054.13 988 1677.98 100 1463.16 101 225.666 102 665.107 668 1025.666		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 5300.0 5300.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.110 0.0 1.0 1.0 1.40.0 1.447.0 1.447.0 1.447.0 1.447.0 1.447.0 1.40.0 1.4	0.00644 1.0 0.00 195.6 904.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2289.0 0.8588 0.723, C.7238 0 0.0 914 0 0.0 914 0 0.0 071 0 0.0 434 0 0.0 237 0 0.0 -231 0 0.0 -231 0 0.0 -231 0 0.0 -231 0 0.0 -231 0 0.0 1278 00. 1278 00. 1278 00. 1278 00. 2944 00. 250 00. 2445 00. 2455 00. 2455 00. 2455 00. 2455 00. 2455 00. 2455 00. 2555 00. 2455 00. 2555 00. 2555 0000	1600.0 29.2 29.2 29.2 29.2 29.2 29.2 .106 914.100 .945 671.985 .119 436.11 .668 202.666 .073 -20.765 .072 -405.022 .988 1697.988 .605.103 .668 1023.666 .109 685.106 .810 -253.681		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 4 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	500.0 500.0 500.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 1.0 1.0 1.0 1.0 1.0 1.0	0.00644 1.0 0.0 195.6 904.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	2249.0 0.4558 0.723, 0.723, 0.7238 0.00 914 0.00	1500.0 29.2 29.2 29.2 29.2 29.2 110 436.11 466 202.666 119 436.11 466 202.666 107.98 193 2054.13 988 1677.984 193 2054.13 988 1677.984 193 2054.13 988 1677.98 100 1463.16 101 225.666 102 665.107 668 1025.666		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 5300.0 5300.0 1.0 1.0 736.0 0.0 10.7 3.00 10.7 3.00 10.7 3.00 10.7 3.00 10.7 3.00 3.0	0.110 0.0 100.0 -512.2 1447.0 1400.0 1400.0 1400.0 1400.0 1447.0 1447.0 1400.0 140	0.00644 1.0 0.00 195.6 195.6 904.0 0.0255 0.0255 0.0255 0.0255 1500.1 1500.1 1500.1 1000.1 1000.1 1000.1 10209.274 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 0320.0001 0500.0001 0200.0001 01500.00000 01500.00000 01500.000000000000000000000000000000000	2249.0 0.4558 0.723, 0.723, 0.723, 0.7238 0.00 914 0.00 9	360.0 29.2 29.2 29.2 29.2 29.2 29.2 110 434.10 668 202.666 119 434.11 668 202.666 0.75 -231.355 0.75 -251.355 0.75 -455.022 103 165.103 688 1025.666 109 665.105 .780 -230.816 .780 -230.816 .780 -331.766 .306-1305.337		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 1.0 500.0 5	0.110 0.0 1.0 1.0 1.0 0.1.0 1.0 1	0.00644 1.0 0.0 195.6 404.0 904.0 904.0 904.0 195.6 1000.1 1500.1 1500.1 1500.1 1000.1 1	2249.0 0.4558 0.723, 0.723, 0.7238 0.0.0 914 0.0.0 914 0.0.0 871 0.0.0 434 0.0.0 434 0	1500.0 29.2 29.2 29.2 29.2 29.2 29.2 110 436.11 466 202.666 110 436.11 466 202.666 107.96 465.102 465.102 466 1025.666 109 685.100 466 1025.666 109 685.102 468 1025.666 109 685.102 410 463.102 410 463.102		6152.0 0. 0. 0. 0. 0. 0. 0. 203.0 203.0 0. 203.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 5300.0 5300.0 1.0 1.0 74.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.110 0.0 100.0 -512.2 1447.0 1400.0 1400.0 1400.0 1400.0 1447.0 1447.0 1400.0 140	0.00644 1.0 0.00 195.6 904.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2249.0 0.4558 0.723, C.7738 0 0.0 914 0 0.0 914 0 0.0 914 0 0.0 671 0 0.0 671 0 0.0 434 0 0.0 434 0 0.0 434 0 0.0 434 0 0.0 435 0 0.0 435 10. 1697 00. 11278 00. 1025 00230 001305 50. 1014 -2. 1342 50. 1142	1500.0 29.2 29.2 29.2 29.2 29.2 29.2 110 53.671.98 119 53.671.98 119 53.671.98 119 53.671.98 119 53.072 155 -231.355 167 2054.13 168 1677.984 169 1657.984 169 1657.984 169 665.107 1668 1025.668 1079 665.107 1679 1812.521 1679 1812.937.78 336-1392.376 134.1342.24 947 1142.941 134.244 134.245 134.255 134.255 135.255		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 74.0 0.0 10.0	0.110 0.0 100 1400.0 -419.2 1447.0 1400.0 1400.0 1400.0 1400.0 1447.0 1447.0 1400.	0.00644 1.0 0.00 195.6 904.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2249.0 0.4558 0.723, C.723, C.723, C.723, 0.0.0 914 0.0.0 914 0.0.	1600.0 29.2 29.2 29.2 29.2 29.2 29.2 110 436.11 668 202.666 107 43 -20.763 .103 202.665 .002 -405.022 .103 2055.103 .068 1057.944 .100 1463.106 .571 1228.521 .100 685.103 .100 685.1000 .100 685.		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.110 0.0 1800.0 1417.0 1447.0 1400.0 1400.0 1400.0 1447.0 1400.0 14	0.00644 1.0 0.00 195.6 904.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	2249.0 0.4558 0.723, 0.723, 0.723, 0.723, 0.00 914 0.00 9	3600.0 29.2 29.2 29.2 29.2 29.2 29.2 110 434.10 668 202.666 202.667 119 434.11 668 202.666 0.72 -405.022 193 2054.19 0.78 1637.964 .100 1403.100 .781 128.521 .668 1023.666 .892 248.892 .818 -255.81 .109 655.102 .892 105.316 .306-1305.316 .374 1342.244 .434 907.433 .753 682.753 .126 435.122		6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 500.0 1.0 500.0 5	0.110 0.0 100 100 -512.2 147.0	0.00644 1.0 0.0054 195.6 904.0 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.0255 0.000 0.0255 0.029.274 0.239.2471 0.239.2471 0.239.2471 0.239.2471 0.239.2471 0.239.2471 0.200.000 0.200.000 0.200.000 0.200.000 0.2500.0000 0.2500.0000 0.2500.0000 0.2500.0000 0.25000.0000 0.25000.0000	$\begin{array}{c} 2289.0\\ 0.8588\\ 0.723,\\ 0.7738\\ 0.7738\\ 0.00001\\ 0.00001\\ 0.00001\\ 0.00001\\ 0.00001\\ 0.000001\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.0000\\ 0.000$	3600.0 29.2 29.2 29.2 29.2 29.2 29.2 110 434.10 668 202.666 202.667 119 434.11 668 202.666 0.75 -201.355 0.75 -201.355 102 -465.022 .103 1657.964 .100 1453.100 .571 1225.661 .571 1225.661 .109 685.100 .872 248.89 .109 685.100 .872 248.89 .107 182.94 .107 182.94 .244 1342.244 .244 1342.244 .126 435.126 .126 43	1 1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 1407.0 1447.0 1400.0 14	0.00644 1.0 0.00 195.6 40.0 904.0 0.625 3500.1 1000.1 2500.1 1000.1	2249.0 0.4558 0.723, 0.7238 0.7238 0.7238 0.0.0 914 0.0.0 914 0.0.0 914 0.0.0 434 0.0.0 435 0.0.0 1425 0.0.0 145 50. 145 50. 429	1500.0 29.2 29.2 29.2 29.2 29.2 29.2 110 436.11 466 202.666 110 436.11 466 202.666 107.97 193 205.13 988 167.984 100 1463.160 466 1025.666 109 685.100 668 1025.666 109 685.100 668 1025.666 109 685.107 128.250.811 244 1342.244 947 1162.943 124 1342.244 1947 1162.943 124 1342.244 1947 1162.943 125 687.751 126 435.122 414 145.414 270 42.722	1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.110 0.0 100 100 -512.2 147.0	0.00644 1.0 0.0054 195.6 904.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2249.0 0.4558 0.723, C.7738 0.00 914 0.00 -230 001305 0.00 -1305 0.00 -250 0.00 -250 0.0	3600.0 29.2 29.2 29.2 29.2 29.2 29.2 29.2 110 434.110 668 202.666 202.667 119 434.110 668 202.666 0.75 - 203.135 675 - 203.135 102 - 465.022 .103 1657.944 .100 1453.100 .571 128.521 .668 1025.661 .572 - 248.89 .109 685.100 .872 - 248.89 .109 685.100 .336-1305.317 .244 1342.244 .434 907.433 .126 435.126 .414 145.414 .454.414 .454.4145.414 .454.414 .454.414 .454.4145.414 .454.4145.4145.4145.4145.4145.4145.4145	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.110 0.0 100 1400.0 -519.2 1447.0 1447.0 1447.0 1447.0 1447.0 1447.0 1447.0 1447.0 1447.0 1467.0 140.0 1	0.00644 1.0 0.0054 195.6 904.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	$\begin{array}{c} 2289.0\\ 0.8588\\ 0.723,\\ 0.7738\\ 0.00914\\ $	360.0 29.2 29.2 29.2 29.2 29.2 29.2 106 914.100 119 436.115 666 202.666 107 436.115 666 202.666 1072 405.022 103 2054.13 2055.13 2054.13 2055.13 205	1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 100.0 -512.2 1447.0 1400.0 140	0.00644 1.0 0.0054 195.6 904.0 0.0 0.0 195.6 904.0 0.0 195.6 195.6 195.0 195.0 1000.1 1500.1 1500.1 1000.1 1000.1 1000.1 1000.0 10209.274 03209.274 0200.000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.0000 0500.00	$\begin{array}{c} 2289.0\\ 0.8598\\ 0.7233\\ 0.7233\\ 0.7233\\ 0.7233\\ 0.7233\\ 0.7233\\ 0.7233\\ 0.0000\\$	360.0 29.2 29.2 29.2 29.2 29.2 29.2 29.2 10.6 916.108 119.35.110 668.202.666 017.3-2.076 103.2054.103 078.1637.984 109.1637.984 109.1637.984 109.1637.985.103 688.1023.668 109.685.105 689.253.818 109.685.105 109.244.893 818.077.917.353.105 244.1342.244 107.135.105.274 245.135.125 246.455.274 2720.2726 246.455.274 2720.2727 246.455.274 2720.2727 246.455.274 2720.2727 246.455.274 2720.2727 246.455.274 2720.2727 246.455.274 2720.2727 246.455.274 2720.2727 246.455.274 2720.2727 2720.	1 1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 100.0 -512.2 1447.0 1400.0 140	0.00644 1.0 0.0054 195.6 904.0 0.025 3500.1 3500.1 1500.1 1000.1 1000.1 1000.1 1000.1 1000.1 1000.1 1000.1 1000.1 1000.0 10209.274 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03239.2471 03249.27708 10257.7081	2249.0 0.4558 0.7233 C.7233 C.7233 C.7233 0.00 9144 0.00 914 0.00 91	3600.0 29.2 29.2 29.2 29.2 29.2 29.2 29.2 110 434.10 668 202.666 202.667 119 434.11 668 202.666 107 - 465.022 103 2054.10 988 1607.964 107 165.10 688 1025.668 107 165.10 689 125.668 107 165.10 689 125.66 107 165.10 685.10 780 -230.86 107 165.10 685.10 685.10 780 -230.86 107 165.10 685.10 685.10 685.10 780 -230.86 107 165.10 685.10 685.10 780 -230.85 126 455.12 414 145.41 434 907.43 126 455.12 414 145.41 435.12 416 157.10 127 118.23 107 157.10 127 118.23 128 499.641 128 499.641	1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0	0.110 0.0 100 100 100 101 101 101	0.00644 1.0 0.0054 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0	2249.0 0.4558 0.723, 0.723, 0.7238 0.00 914 0.00	1500.0 29.2 29.2 29.2 29.2 29.2 29.2 29.2 10.5 10.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 10	1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0	0.110 0.0 100 -512.2 1447.0 1447.	0.00644 1.0 0.0054 195.6 904.0 0.0255 0.0255 0.0255 0.0255 0.0255 0.0205 0.0205 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0	$\begin{array}{c} 2289.0\\ 0.8588\\ 0.723,\\ 0.7738\\ 0.7738\\ 0.000914\\$	3600.0 29.2 29.2 29.2 29.2 29.2 29.2 29.2 110 434.10 668 202.666 202.667 202.666 202.607 405.022 103 2054.103 988 1607.98 571 128.521 668 1025.668 102 665.100 685.107 685.105.681 107 185.208 107 182.94 434 907.43 126 455.126 414 145.414 143.497.43 127 43.52718 407.135.127 107-135.10 127 178.127 666 99.641 470 13.877 108.65.882 20.72	1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	500.0 500.0 500.0 1.0 1.0 70.0 70.0	0.110 0.0 100 100 100 101 101 101	0.00644 1.0 0.0054 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0	$\begin{array}{c} 2289.0\\ 0.8588\\ 0.723,\\ 0.723,\\ 0.7738\\ 0.00914\\ 0$	1500.0 29.2 29.2 29.2 29.2 29.2 29.2 29.2 10.5 10.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 10	1 1 1 1	6152.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	

.

•

--

. 🧐

.. S.

INPUT, SAMPLE PRUBLEM I

29,20000 0.10000 0.000101095.31170.	-884.688 -854.688 :	C*	e.
29,20000 0.10000 0.000101000.00000.	-1045.958-1045.958 0	AL203+	Ö.
29.20000 0.10000 0.00010 500.00000.	-13/4.827-1374.827 0	41203+	ċ.
29,20000 0.06000 0.35.003446.34560.	1674.303 1674.303 1	(•	ō.
29.20000 0.06000 0.200001191.95550.	1111.021 1111.021 1	C+	0.
29.20000 0.06000 0.150003028.23220.	859.936 859.936 1	Č+	ō.
29,20000 0,06000 0,100002731,50620.	531.322 531.322 1	Č+	ŏ.
29.20000 0.06000 0.080002506.35480.	344.891 344.891 1	Č+	ŏ.
29.20000 0.06000 0.070002314.54540.	211.524 211.524 1	Č+	ŏ.
29.20000 0.06000 0.065002151.65580.	109.606 109.606 1	Č•	ò.
29.20000 0.06000 0.060041325.71120.	-461.918 -461.918 1	č•	ò.
29.20000 0.06000 0.050001241.34840.	-583.601 -583.801 1	ċ.	ò.
29.20000 0.06000 0.034301151.88170.	-758.859 -758.859 1	Č+	ŏ.
29.20000 0.06000 0.000101018.34140.	-1033.389-1033.389 1	C+	ö.
29.20800 0.06000 0.000101000.00000.	-1061.054-1061.054 0	AL203+	ŏ.
29.20900 0,06000 0.00010 500.00000.	-1384.661-1384.661 0	AL203+	ö.
29.20003 0.93500 0.356083448.08240.	1645.678 1645.678 1	C.	0.
29.20000 0.03500 0.200003179.22710.	1063.164 1063.164 1	Č+	0.
29.20000 4.03500 0.150002998.60670.	799.242 799.242 1	C.	
29.20000 0.03500 0.100002646.98070.	440.337 440.337 1	Č.	0.
29.20600 0.03500 0.00002326.98750.	206.774 206.774 1	C+	0. 0.
29.20000 0.03500 0.075002166.44010.	106.992 106.992 1	C+	
29.20000 0.03500 0.070601337.17750.	-452.619 -452.619 1	Č•	0.
29,20000 0.03500 0.069001245.53300.	-578.870 -578.874 1	č•	e. 0.
29,2000 0.03500 0.050001194.91830.	-670.321 -670.321 1	Č.	
29,20000 0.03500 0.00010 899,26350.	-1195.571-1195.571 1	C+	0.
29,20000 0.03500 0.00010 500.000(0.	-1391.193-1391.193 0	Č+	.
29.20000 0.02000 0.35000 1449.20720.	1628.023 1628.633 1	č•	0.
29.20400 0.02100 0.20000 3170.86300.	1033.320 1033.320 1	Č+	å.
29.20000 0.02000 0.150002978.39280.	760.809 764.809 1	č•	.
29.20006 0.02000 0.100002562.78380.	374.825 378.825 1	Č+	ō.
29.20000 0.02000 0.00002322.05570.	78.164 78.164 1	č•	
29,20000 0.02000 0.075001328.44640.	-465.197 -465.197 1	č•	ø.
29.20800 0.02000 0.070001275.99870.	-533.272 -533.272 1	Č.	0.
29.20000 0.02000 0.060001215.23460.	-632.586 -632.586 1	C.	••
29.20000 0.02000 0.050001170.94980.	-718.460 -718.460 1	č•	0. 0.
29.20000 0.02000 0.00010 685.98190.	-1350.252-1350.252	č.	
29.20436 8.42468 8.44618 548.44800.	-1395.265-1395.265	41203+	0. 0.
24.2000 0.00010 0.350003450.80590.	1604.023 1604.023 1	C*	ŏ.
29.26 '40 0.00010 0.200003158.75570.	992.289 992.289 1	C+	
29.2000. 4.00010 0.150002946.10120.	707.221 707.221 1	Č.	0. 6.
29.20000 0.00010 0.160002472.02610.		C+	
29,20000 0.0010 0.092502306.33350.		C •	0.
29,20000 0.00010 0.007502119.58270.	175.096 175.096 1	C+	0.
29.20809 0.00010 0.045001914.41820.	-56.221 -56.221 1	C+	0 .
29.20000 0.00010 0.042501330.25980.			0.
	-466.518 -466.518 1	C+	0.
29,20000 0.00010 0.070001299.59884.	-503.670 -503.670 1	C*	0.
29.20000 0.00010 0.060001181.20300.	-698.006 -698.006 1	C+	•.
29,20000 0.00010 0.050001140.60500.	-780.959 -780.959)	C+	e.
29.20800 0.00010 0.00014 600.47750.	-1384.243-1384.243 1	C+	0.
29.20000 0.00010 0.00010 500.00000.	-1400.A55-1408.855 f	AL203+	0,

INPUT, SAMPLE PROBLEM 1 (CONCLUDED)

AEHOTMERM CMARRAING MAIEFIAL IME/MAL MESPONSE AND AELATION PHOMAM Page Sample No. . . щем Ттемм гнамить: матеміац Тнеммац и билье амо ангатточ Рицьнам

٧.4

MUMAL UEPTH CONI.HESISTAVCE (14:46) (56F1-5-UE6/HU) .000000* * -.000

RELATIVE THICKNESS AREA (INCHES)

10.0411. 11900611. 3 1230.51

TEMPERATURE # (ULS.HANKINE) 530.00

HATL çz

N00E

0000*

--0000 --00000

173000 .0.0000 080000

530.00 30.06 530.00

0000 0000 00000--

0000**

\$50000

.10000

.1600+01 1700.01

---REACTION AINETIC CONSTANTS---

---II'L INCREMENT INFORMATION---

"INAL TIME (55C) 120.00 INITIAL TIME SEC: .000

0JTPUI INTERVAL # .500 SEC FROM INITIAL TIME UNTIL 2.000 SEC 0JTPUI INTERVAL # 2.000 SEC FROM 2.000 SEC UNTIL 10.000 SEC . 0UTPUI INTERVAL # 5.000 SEC FROM 10.000 SEC UNTIL FINAL TIME

WAXIMUM TIME STEP 41.00 SECOND.

4-4

HESERVOIR Tempenature 530.00

BACK WALL CONVECTION · BACK WALL Coef BTU/FTSO-SEC-DEG R · EMISSIVITY • 0000

 530.00
 1800.01
 10000
 650000

 530.00
 1922.01
 19000
 775000

 530.00
 705.01
 15000
 775000

 530.00
 705.01
 15000
 775000

 530.00
 2755.01
 15000
 110000

 530.00
 2455.01
 20000
 110000

 3
 530.00
 2455.01
 250500
 110000

 3
 530.00
 2275.01
 250500
 1125000

 3
 530.00
 2275.01
 250500
 11775000

 3
 530.00
 2275.01
 45000
 1125000

 3
 530.00
 2275.01
 45000
 1125000

 3
 530.00
 2275.01
 45000
 1175600

 3
 530.00
 2745
 400-10
 4775000

 3
 530.00
 2755.01
 45000
 11705815
 0000

 3
 530.00
 145.11%
 4000
 4775000
 4000

 3
 530.00
 245.1
 4000

ITINI •

530.000 - 1100 510.000 - 1170 510.000 - 1170 510.000 - 220 530.000 - 220 500 - 200 500 - 2

~*******

6AS -00

,

PLASTIC -376.50

•••

DECOMPOSING BACK-UP VIRUIN MATERIALS 22+24+26+28+30+ CHAR HATERIALS 23+25+27+29+31

SPECIFIC HEAT

MATERIAL NO. 1 TEHPERATURE

HATERIAL NO. 2 , _ CHAR

MATERIAL NO. 1 VIRGIN PLASTIC

---MATERIAL THERMAL PHOPERTY UATA---

ENTHALPY DATUM TEMPERATURE = 536.000 DEG MANATNE

MATERIAL NOS. 3 THROUGH 10 . Hack-up

 OENSITY
 09.362
 UB/CU FT

 CUNDU/TIVITY
 SENSIBLE
 EHISIL

 (HIVF1-SEC-DLG)
 (HIVLB)
 6.000

 0002430
 75.24
 6.000

 0002470
 75.24
 6.000

 0002470
 75.24
 6.000

 0002470
 75.24
 6.000

 0002470
 75.24
 6.000

 0002470
 75.24
 6.000

 0002470
 104.28
 6.000

 0002470
 1073.78
 6.000

 0002470
 1073.78
 6.000

 0002470
 1073.78
 6.000

 0002470
 1073.78
 6.000

 0002470
 1073.78
 6.000

 0002470
 2564.28
 6.000

 0002470
 2564.28
 6.000

 0002470
 2564.28
 6.000

(d1u/F1-SEC-DLG) •000180 •008130 •008470 •008470 •008470 •008470 •0082470 •0082470 •0082470

(RTU/L8-0£6) • 1600 • 1600 • 1500 • 1600 • 1600 • 1600 • 1600 • 16000

(DEG R) 510.00 800.00 800.00 11500.00 1200.00 2000.00 5000.00 5000.00

. 60

OUTPUT. SAMPLE PROBLEM 1

AEROTHERM CHARRING MATERIAL THERMAL RESPUNSE AND ABLATION PROGRAM Page 3 Sample No. 1 Sample No. 1

<pre>m 70.864 L@/CU FT SENSIBLE EMISSIVITY ENTHALPY</pre>			• 456.000 LB/CU FT
- 70.86 Sensible Futhal Py	(87U/L8) -1.92 148.48	11011 11012 15052 15052 15052	
DENSITY Cumouctivity	(81u/FT-SEC-DEG) •0002470 •0002530	.0002580 .0001540 .001140 .0011400 .0013400	0EM5LTY COMDUCTIVITY (MTU/FT-SEC-DEG)+ •0009400
SPECIFIC HEAT	(8TU/L8+0EG) • 2130 • 4300	00000000000000000000000000000000000000	SPECIFIC HEAT (8TU/L8-DEG) 1100 1100
MATERIAL NO. 2 TEMPERATURE	(DEG R) 530.00 1000.00	- NF 4 5 9	MATERIAL NO. 3 Temperature (Deg R) 500.00 500.00

TABLES OF OPTIONAL MASS-FRACTION FUNCTIONS FOR THERMAL CONDUCTIVITY K = FILXINKP + F2LXINKC

F-FUNCTION TABLE NO. 1 ASSIGNED TO MAIN MATERIAL

1.0000 F2(X) F1 (X) ×

.0000 .0000

4-5

+500.00 3400.00 ---RE3IM DECOMPOSITION DAS SENSIULE ENTMALPY---Dege 41 990-00 1800-00 2709-00 1600-00 TUV/LB1 -1782.00 -930-20 195.60 2289-00 1800.00 -930.20 \$300.00 \$152.00 TEMPENATURE (DEG k) 900-00 Entmaley 18tu/L81 -1782-00 TEMPENATURE (DEG R) 5400-00 Entmalpy (BTU/L8) 4696-00

1

	BLOWING		PARAMETER			.375	•						
:	PRESSURE		(ATH)			29.20000							
CONDITIONS	HEAT												
	RADIATION	HEAT RATE	(BTU/50 FT-	SECUNDI	90**06	90**06	104.00	RADIATION	HEAT RATE	(BTU/50 FT-	SECUNDI	0.	• • •
THE DEPENDE	RECOVERY	ENTHALPY	(810/6)		1441.00	19~1.00	1947.00	VILV	FACTOR			.05	- 05
	PROB	NIdo				-	-	FROB	0PTN			-	~
	1146	(SEC)			•••	10.00	60.00	114	(SEC)			60.00	120 00

OUTPUT, SAMPLE PROBLEM 1 (CONTINUED)

CH/CH0 = PHI/(EXP(PHI)-1.) *HERE PHI = 2.•BHP•M 001/CH0. BRP IN TA'ILE

•

ĺ

almotherm charring mailfial thermal response and arlation phogram page 3 Sample No. 1 Sample No. 1

t

2291.Jb .0400 **69**9.04

----SUMFACE EQUILINATION DATA---

• - 29.2000 ATH

EDGE ENTH AT T-4ALL -729.01	SURFACE SPECIES Co	
16 10 10 10 10 10 10 10 10 10 10 10 10 10	CHEN. PROD (87U/L8)	
-	0 ATH N-001- CHAR/CH	
EDGE LMTM AT T-WALL 364.09 -37.37		
TLMFERATUME (DEG R) 3640.00 2700.00 1800.00	PRESSURA SUMFACE SPECIES	
EDGE ENIM TEN AT T-WALL 1605.39 1209.57 281.41	-5888 CHEM. PROU (810/LE) 1984.61	
	2.5 3	
TEMPERATURE (DEU R) 0100.00 5500.00 4500.00	M-D01-GAS/GM = TEMP M-D01 (DE0 H) CHAR/(908.00 -001	2700.00 2900.00 2600.00 5700.00

PRESSURE - 29.2000 ATM H-DOT-GAS/CH = .2000 -

4-6

ø

8900 8900 9900 900 900 900 900 900 900 9	SPECTES SPECTES Co Co Co Co
CMEN.PMOD (FTU/LB) 627.29 627.29 523.49 228.91 -278.91 -1343.69	CHEM. PROD (87U/LG) 569.05 291.03 291.03 291.03 291.03 -26.03 -26.03
CHARCOT CHARCOT 0560 0560 0560 0560 0560 0560 0560 056	00 ATH CHAUGT 00500 10000 1500 1500
	2000 7645 1050 R) CH 1050 R) CH 5095.05 5521.30 5771.16 5521.30 5771.16
SURFACE SPECIES CONTRACE	PRESSUME SUHFACE SPECIES C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
CHER, PROU CHER, PROU LB37, 53 LB44, 73 LB44, 73	-1000 CHEN. PROU (MTU/LH) 1815-18 1815-18 1312-83 1222-83 1222-83
CI 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 - 1 - 000 -	1111100
100000 1000000	M-001-0AS/CM TEMP M-0 (DEG M) CMAM 900.00 0 1800.00 0 1871.55 0 2090.59 0 2180.49 0 2180.49 0

.

OUTPUT SAMPLE PROBLEM 1 (CONTINUED)

TY [NHALPY FT) (HTU/LD) 362 -374-21 362 -374-21 162 -374-21 62 -374-31 62 -374-21 6 CH/CH0 .0000 LOSS AT Hear Face .000 .000 CONDUCTION AMAY 4000 4000 AEROTHERM CHARRING MATERIAL THERMAL RESPONSE AND ABLATION PROCEAN Aero Same 202 Same 202 M CHAR M GAS * (LU/ORIG 50 F1) .000000 .000000 0000000 /0000000 (86°) \$1\$170HAd 5108A0 -INTENIOR ENERGY TERMS----RATES (BTU/SB FT TURFACE RATES (BTU/SB FT TURFACE ---RECESSIONS/RECESSION RATES (1N) / (1N/SEr) CHAN (.02) .000000/ .000000 TIME SUMP PROB SUMFACE . .0000 SECONDA . TIME SUMP PROB SUMFACE . H WALL H EDAE SEEP ITER OPTH ARD (IN) (BTULLB) (BTOLLB) 1 0 1 1.1500 .00 1445/00 ---ABLATION RATES---W PHIME B PRIME G M UOT CAAR M DOT QAS (LA/50 F1-56C1 045 .00000 .00000 .000000 NODE MAT #1 TH \$0L 10+ ----104160----CURRENT RATES (870%50 AND INTEORATED VALUES (RADIATED VALUES (ENTHALPY ABSORPTION N 000 CURPENT I SURFACE •000000/ •300000 DENSITY .00000 .00000 CONVLCTED IN .000 .000 PYROL DAS PICK UP .000 .000 TEMP (DEG NODE MAT RATE TQTAL RATE TOTAL SURFACE SPECIES CONCONCENT CONCENT CONCONCENT CONCENT CON SURFACE SPECIES Co Co Co Co Co SURFACE SPECIES C. C. C. C. C. CHEN. PROD (BTU/LB) 466.24 341.78 341.78 12.05 -324.27 -324.27 CHEN. PROD (#TU/L#). (#TU/L#). (#TU/L#). 220.94 320.94 120.94 134.03 -134.03 CHEN. PHOD (BTU/LB) 490.64 355.63 23.05 -317.56 M-DOT-CHAR/CM .0800 M-001 CHAR/CH .0700 .0700 .1200 .1200 M-001-CHAR/CM .0800 .1000 .1000 = 29.2000 ATM = 29.2000 ATM - 29.2000 ATM 10.10 E TEM (DEG R) 1833.74 4449.01 5341.11 5707.55 TEM (DEO R) 4160-18 4511-44 4916-71 5745-82 5745-82 5745-82 FRESSURE -Surface Species PAESSURE SURFACE SPECTES **33335** 88888

CHEN. PROD (RTU/LR) 1800.64 1972.88 1972.88 936.28 786.01 499.80

TEM (DEG R) 900-00 1619-67 2150-45 2261-46 2261-46 2260-45 2895-39

.0700

.0250

H-DOT-045/CH =

H-001-CHAR/CH

AEROTHERM CHARRING MATERIAL THERMAL RESPONSE AND ABLATION PROGNAM Page S Sample No. 1

4-001-045/CH = +0600

CMEM.PROU (87U/L8) 1506.23 1552.46 1552.20 1167.30 793.57 528.65 M-D01-CHAR/CM .0001

TENP (DEG R) 900.00 1800.00 1833.01 2073.39 2239.43 2339.43 2339.43 2339.43 2339.43 2339.43 2339.44 2339.44 2339.44 2339.44

CHEN.PROD (STU/LE) 1797.29 1828.56 1114.58 1004.81 1004.81 M-DOT-GAS/CM . .0200 CHAROOT CHAROOT CHAROOT CHAROOT COROOT COROOT COROOT COROOT COROOT COROOT COROOT COROOT CHAROOT COROOT CHAROOT COROOT CHAROOT TEMP (DEG H) 900.00

4-7

	PRESSURE = 29.2000 ATM	ROD SURFACE TEMP N-D01- CHM-MPROU SURFACE Lei SPECIES IOEG R1 N-D01- CHM-MPROU SURFACE Lei SPECIES IOEG R1 CHM-MPROU SURFACE A C JBIS.25 OBTS ATZ-MP C A C AI31.40 COTS ATZ-MP C A C AI31.40 JBIS.25 OBTS ATZ-MP C A C AI31.40 JBIS.25 JBIS.25 JBIS.25 C<
	8.2000 A	0
:	PRESS	
801.54	.0001	CHEN.PROD (HETU/LB) 1792.84 1792.84 1893.91 1893.91 1893.47 1894.47 1895.43 857.43 517.23
.0750	H-DOT-GAS/CH	CIN CU CU CU CU CU CU CU CU CU CU
07.1465	M-D0T-GA	TEMP (DEG H) 900.00 1080.00 2053.09 2126.17 23399.26 23399.26 23399.26 23399.26

OUTPUT. SAMPLE PROBLEM 1 (CONTINUED)

****** лну/ну • • • • • • .0.021. COMUCTION ANAY ENTHALP AEHOIMERM CMARRING MATEMIAL THLMMAL MESOUNSL AND ABLAIIUN PHUGHAM Page Sample No. . W/OHIG 58 FII (84.) 2121JOHT4 (84.) 2121JOHT4 TEMP DENSITY EN (DCG R) (LU/CU FT) (F 530+30 89+362 530+30 89+362 530+30 89+362 530+30 89+362 MEAT COLFT LUNSO FT-JECT 220 BTORADE N SOLIU .921+03 .472-03 ---RELESSIONS/RECESSION HATES---(1N) / (1N/SE-) ----SUÄFACE ENERUY FLUX TENNS---Cumeny Rates (Bluyso Flu ung See And Integnatev Values (Bluyung Se And Integnated Raugated Sym 1.00000 SECUNUS -N WALL N EDAE (STU/LM) (STU/LM) 1217.95 244/.04 CHAK (.02) . 725+0>. W PHIME D PHIME 0 M UOT CHAR H 301 645 11M/50 F1-55C1 .45732 .11447 .003301 .054477 -261-01 NODE N.T * 9 7 8 7 20.145 570.03 TIME SURF PHONE SUFFACE STEP ITEN OPTN RAD ITIN STEP ITEN OPTN RAD ITIN 5067231/ .0107193 PYROL 045 PICK UP .250+03 .321+03 50.022. 50.022. CONVECTED 111 ê 0101 HODE MAT RATE TOTAL AATE Total

HEAT COEFF CM/CMO ILB/SQ FT-SEC1 94285 ENTIMUTY (BTU/LD) - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 579.21 - 577.21 - 5 AEHOTMERM CHAMMING MATERIAL THEMMAL RESOUNDE AND AMLATION PADOMAM Pade Sample No. 1 COMDUCTION AVAY • 940-03 • 753-03 LOSS AT HEAR FACE -.863-05 -.264-05 165040. M CMAM M GAS 114/0410 50 77) .015750 .00023 PTHOLYSIS (.94) 510440E IN 504 IU 405-03 ---RELESSIONS/RECESSION RATES---(1N) / (1N/SE/) ---SUMFACE ENERGY FLUA TENNS--CUMRENT RATES (871//50 FT -UMFACE AND INTECNATED VELUES (871/0010 5 ANDIATED VALUES (871/0010 5 930 -0-1-0-NODE MAT ENTHALPT 1N 570-03 DEMSTTY ELG/CU_FT) 71.4/75 71. 5URFACE •0026437/ •0044137 +5251. 3593. C0.201 CONVECTED PYROL BAS 5000 33 BHING B HOC MAT MATE TOTAL RATE TOTAL

OUTPUT. SAMPLE PROBLEM 1 (CONTINUED)

ENTHALPY (BTU/LH) -362.62 -373.64 -377.32 -378.08 -378.08 -378.08 LOSS AT HEAN FACE 141-02 .397-02 2 CH/CH0 ŝŝ PAGE 14 . 1 . . . CONDUCTION AMAY • 369+03 • 115+05 M CHAR N GAS (LB/ORIG SO F1) 1.113484 ,811107 PYHOLYSIS / .98) .5032318/ .0128019 AEROTHERM CHARPING MATERIAL THENHAL RESPONSE AND ABLATION PROGRAM FEMP DENSITY EA EG R1 (LH/CU FT) (1 EG R1 (LH/CU FT) (1 E4.69 89.362 44.69 89.362 33.12 89.362 33.12 89.362 33.12 89.362 33.12 89.362 33.10 485.000 HEAT COLFF (LB/50 FT-SEC) .3595 510RAGE 1N 50L1U .751.02 0EG NODE MAT .334.01 .123.01 ARSOMPTION WITH SULIDA TEMP DENSITY ENTHALPY N TEMP DENSITY ENTHALPY N 570.00 R1 (18/U/LB) 570.00 70.900 2473-00 77.902 2473-00 77.972 1900.95 2203-00 71.028 1750.64 2003.67 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77.230 454.05 2003.77 77 77 2003.77 77 2004.77 77 2004.77 77 2005.77 77 200 2237-02 1988-95 1726-24 1356-57 1356-57 -198-22 -198-22 1N 1N 2000 •203003 • 570403 •70104 • 123405 C0.010. .146-02 77.230 20811. 5251C. PYROL 0AS PICK UP .154+03 . CONVECTED NODE MAT RATE TOTAL RATE TOTAL

<u>*</u> PAGE 14 SAMPLE NO. 1 AEROTHERM CHARRING MATERIA! THERMAL RESOUNSE AND ABLATION PROGHAM

TIME SURP PROB SUFFACE N WALL N EDGE WAI COFF CH/CHO STEP ITE OPTH ADD (11) (01/41) (12/56 FT-8EC) (04/CHO 128 3 1 1.2041 1.107.70 1047.00 (...4743 0...4743

N CMAR N DAS (Le/ORIG 50 FT) .591677 .549702

---ABLATION RATES_--B PHIME B PRIME G M UGT CMAR M DDT 045 (LL/26 F1-5CC) 4.5 .29705 .11900 . .050584 .034214

196) SISANGAR (.68)

---RECESSIONS/RECESSION RATES-(1N) / (1N/RE) Sufface (1N) / (1N/RE) .0946596/ 0085658 ,1816450/ 0004475

۱

(i)

OUTPUT. SAMPLE PROBLEM 1 (CONTINUED)

4-9

T TEMP DENSITY ENTMALPY (DCG R) (DF/CU F) (01//LB) (S35.75 (DF/CU F) (01//L

21212 212 21

559.20

DEMSITY (LW/CU FT) 71.001 71.001 71.017 71.124 71.124 71.382 74.640 89.362 89.362

LOSS AT HEAR FACE -.314-05 -.824-04

STORAGE STORAGE SOLID SOLID SOCIO

0+952

PTROL OAS

ENTMALPY NODE MAT (BTU/LB) 24J5.47 9 1

HOC MAT RATE

CONDUCTION AMAY .474.93 .698.84

CHEMICAL 06NERATION -.628+02 -.286+03

.305.04

50.03 592.04

RATE TOTAL

CONVECTED 20.102

ENTMALPY (BTU/LB) 386.25 -129.50 -279.34 -342.33 -364.79 CH/CHU 61426. t COMUUCTION AWAY .246+03 .262+05 LOSS AT HEAK FACE .128-01 .172-02 :: SAMPLE NO. 1.806242 aerotherm chamming maitwial ingmmal mesiumse and abiation program page M CMAH M GAS (LO/UNIG SO FT) 2.673523 1.80624 • PYROLYSIS (.94) .94801177 ~0103161 STOHAGE IN SOLID •531+02 ---INTENIOK ENERGY TEMAS---CURRENT ANTES (BUU/SO FT CURFACE-SEC) AND INTEGRATED VALUES (BTU/OR1G SO FT) INTEGRATED VALUES (BTU/OR1G SO FT) ABSOMPTION WITH SOLLOC IN SOL NOUE MAT .751.02 DENSITY ENTHALPY N 1 (LOCUP FT) (BUTULB) 2 (10,097 2371.52 10,907 2377.52 10,907 2377.52 10,912 2052 45 10,914 1952.45 71,010 10,014 .119.04 . .107-03 10 137-02 PYROL GAS 5870.15 5585.48 5255.18 4915.38 4517.22 3749.82 CONVECTED TEXP ĩ 10E0 RATE TOTAL D HODE MAT RATE TOTAL

CUMDUCTTON AMAY .323+03 .156+05

CHENICAL GENERATION -.634-02 -.183-04

.342+8+

.199.05

CONVECTED 14 .158-03

RATE

4-10

----SUMFACE EMERIOF FLUX TEMNS---CURRENT RATES (810/56 FT 40HFACE-SEC) AND INTEGRATED VALUES (810/04H5 56 FT) ANDIATED HADIATED CHEMIC IN 001 06HEMIC

H CHAR M GAS (LB/ORIG 50 FT) 1.567173 1.088958

---AULATION RATES---8 PAIME & PRIME 6 M UOT CAAR M OUT 6A5 1(12/20 f1-261 .0216-12 .0216-2

PTHOLYSIS . 981

\$UHFACL .2399879/ .0059314

אנאטואניא לאשטאייי אאונאנאן והלאסגן איזאטאיי אאנאווטא אייניאא אין אונאאיי ארטיי אנג אאאנ איי איזא אייי

OUTPUT, SAMPLE PROBLEM 1 (CONTINUED)

Ç,

ENTHALPY (874/48) -334.17 -342.11 -342.11 -373.99 -373.33 -379.44 -379.44 -379.43 -370.43 -370.44 -370

UENSITY 10 UENSIT

NODE MAT

40.614.

NAME OF COLUMN

1Emp (066 A) 5744.50 5385.56

HADE HAT

85

PICK P

252252

DEMS17Y ENTALLY DEMS17Y ENTALLY 70,949 2000 70,949 2000 70,949 2000 70,949 2000 70,940 2000 71,020 1551,220 71,020 1551,220 71,020 1551,220 71,020 1551,220 71,020 1551,220 71,020 1551,220 70,012

2780.10 2780.10 2780.10 2780.10 2780.10 2780.10

LOSS AT REAR FACE •238-01 •113•00

117 [NIMALPY 1 F1) (BTU/LB) ដ CONDUCT 10N A44.7 -.963-00 .260-05 LUSS AT REAN FACL .525501 .142403 PAGE 3 2.173855 ---HECESSIONS/RLCESSION MATES---(1N) (1N) (105E) PYROLYSIS (.98) CHAN (.022) PYROLYSIS (.98) 300 .8166857 .0008498 1.12587677 .0031283 ---AHLATIUN RATES---d Phime B Prime G M 001 Calan M CD1 Cals M CHAR H GAS (1870 1875) (1875 67562) (1870 18 56 71) 00000 00000 000000 000001 2.673045 2.17365 AEROTHERN CHARRING NATERIAL THERMAL RESOUNSE AND ABLATION PROGRAM 1 75MP DENSITY (UEG R) (LU/CU FT) 2130.48 71.409 1750.48 74.978 1364.45 84.918 DEMSITY ENTMALPY NODE MAI 11 70/00 1014-12 0 117 12 70/00 1014-12 0 117 10 70/00 1013-12 0 117 10 70/00 1013-12 0 117 10 70/02 970-13 12 0 13 10 70/03 970-13 15 1 01 10 70/03 917/03 15 1 51 TIME SURF PROU SURFACE STEP ITER OPTN RAD (IN) 203 3 3 1.5371 SURFACE •38706437 •000000 CCMVECTED 10 137+05 PYROL CAS PICK UP .853+01 .119+05 7649 (016 8) 2823.47 2821.63 2821.63 2823.63 2823.63 2823.52 2823.52 2823.52 2823.52 NODE MAT 00 RATE TOTAL RATE TOTAL

PAGE 25 AEROTHERM CHARPING MATERIAL THEMMAL HESOUNSE AND ABLATION PRUGRAM

HEAT COEFF CH/CHU HEAT COEFF CH/CHU (L8/SG FT-SEC) .00000

- 65.0000 SECONDE -H WALL H EURE (BTU/LW) (BTU/LW) J125.65 .00

1.911224

---AWLATION MATES---W PRIME & PRIME G M UOT CAR N DOT 0.5 M CMAR M 0AS (1870) (1870) (1870) (1870) (1871) .00000 .000000 .000000 .0131A3 2.673445 1.91122

PYROLYSIS (.98) .9943477/ .0080042

.3870633/ .0006000

OUTPUT, SAMPLE PROBLEM 1 (CONTINUED)

4-11

PYROL 045 PICK UP .543-82

RATE TOTAL

15.40

N DE NAT

(DEG

TIMP DENSITY ENTHALPY (DEC R) (LUCU FT) (RTU/LA) (2014.0) 73.16.1 1982.33 85.221 -6.11 1982.33 85.282 -289.40 700.52 85.362 -289.41 700.52 85.362 -355.41 535.41 486.000 -000

EMP DENSITY ENTHALPY W O P) (LEACU F) (ENTUALP) 2-01 70-904 1666-53 4-12 70-904 1666-79 4-12 70-919 1641-45 4-67 70-919 1641-45 4-67 70-919 1641-45 1-22 70-933 1530-49 5-55 710-933 1530-49

41-2-01 4134-12 4091-28 4014-87 361-25 3561-22 2985-65

LOSS AT REAR FACE .172.01 .271.02

NODE MAT

1N .000 .137.05

MATE TOTAL

CONVECTED

ABLATION PHOGHAM Page 36 Sample NU. 1 **NN**

.0000

H CHAR H UAS ILB/URIG SO F11 2.673845 2.301115

---ABLATION AATES---B PHIME B PAIME G N UOT CAAN N UOT LOS (1875) F135EC1 .00000 .00000 .002150

PTROLTSIS (.96) 1.20080797 -0017621

300FACE .30706337 .0000000

CH2/H2

HEAT CUEFF HEAT CUEFF (LUNSU FT-SLC) 00000

AEHUTMENM CMARKING MATEMIAL THEMMAL RESOUNDE

ANLATION PHOUMAM Pace 3. Sample No. 1 THEWMAL HESOUNSL AND ALMUTMERM CMARMING MATERIAL

.00000 M CHAR N GAS 1 (LE/ORIG SO F1) 2.67,3845 2.209.376 ---ANLATION MATES---N PHINE 8 PRINE (N UNI CMAR N DOI 0.5 118/58 F1-5EC1 .00000 .0027*3

PYROLYSIS (.94) 1.1806-78/ .002604 SURFACE . Ju 706.137 .0000000

CONDUCTION ANAY -.589-00 .260-05 .137.05 CONVL CTED RATE TOTAL

ENTHALPY (870/LB) 599-56 413-01 80-08 -173-38 -376-37 LOSS AT MEAR FACE .734-01 .315-0.1 T TFMP DEMSITY E TOTO P1 (LW/CU FT) (1996-20 71-122 1724-12 73-495 1724-12 73-495 1724-12 99-192 1051-35 490-000 591-35 490-000 591-35 490-000 591-35 490-000
 DEMSITY
 ENTHALEY
 MODE MAI

 1) (LUCCU FT) (RUVLB)
 0
 0

 1) (LUCCU FT) (RUVLB)
 0
 0

 10
 70,000
 054.65
 0

 10
 70,001
 054.65
 0
 11

 10
 70,001
 054.65
 10
 12

 10
 70,001
 054.55
 10
 14

 10
 70,001
 054.55
 10
 14

 10
 70,021
 054.55
 10
 15
 7

 10
 70,021
 054.55
 10
 15
 7
 7

 10
 70.621
 054.55
 12
 7
 7
 7
 7

 10
 70.621
 054.55
 12
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 (DLG R) 1E He NODE MAT

ENTMALPT (811/18) 513.35 513.35 619.31 100.54 -153.09 -1308.61 -153.09

T TEMP DEMSITY E TEMP DEMSITY E 1942-28 141/CU FT) (1704-10 71.106 1704-10 71.106 1125-68 87.545 1125-6

4637 106 P (100 P (100P

::

LOSS AT HEAH FACE .741.01

PYROL GAS PICK UP .252-01 .121-05

PATE Total

HODE HAT 00

CUNUUCT TUN ANAT -.492-00 .200-05

.137.05

RATE TOTAL

CONVECTED IN

OUTPUT, SAMPLE PROBLEM 1 (CONCLUDED)

4-12

RATE TOTAL

INPUT, SAMPLE PROBLEM 2

4-13

		NOLIC DECO						P=29 AT	2
		20.25	0.0 1	.400+04	3.0	0 1.54	0+04	1000.0	-
5 C		60.75 94.50	32.40 4 94.50	.480+09 0.9	3.0			60 0. 90000.0	
•	191 3 2	0.0	120.0	0.5	2.	0	5.0	1.0	0.37
	2.0	10.0	0.04	-376.5	٥.	0	0.0	-0.345	53
		1.68 1060.	1.4						
A		24.250		.140085	3.			1000.	
8		60.750		.448+10	3.			600.0	
с		129.00	129.0	0.0 -4607.0	0. -5280.		0.0	90000. -0.315	536
1	530.0		0.020	1.15					
1	530.0 530.0		C.048 8.040						
i	530.0		0.040						
1	530.0		0.060						
1	530.0 530.0		0.100						
i	530.0		0.100						
1	530.0		0.150						
1 22	530.0 530.0		0.150						
25	530.0		0.040						
55	530.0		0.040						
25 25	530.0 530.0		0.100						
55	530.0		0.100						
55	530.0		0.200						
3	530.0 530.0		0.250						
2	0.0	0.0	530.0	.			1		
	530.0 800.0	6.210 0.360	1.888-04 2.138-04	0.630 0.630				N+69 DEG N+69 DEG	
	1160.0	8.360	2.470-04	4.639				NIGO DEG	
	1500.0	8.472	2.470-04	0.630		HX4926	(VIRGI	NIGO DEG	LAYUP)
	2000.0 3000.0	8,484 8,493	2.470-04 2.470-04	0.630 0.630				N+60 DEG	
	4000.0	4.498	2.470-04	8.630		NX4976	(VINGI	NIGO DEG	LAYUP)
	5000.0	0.500	2.470-04	*.63				NIGO DEG	
-1	6000.0 530.0	0.500 0.210	? . 470-04 2 . 470-04	0.630 0.630		NX4926	(CHAR	+60 DEG	
	1000.0	8.438	7.530-04	9.639		MX4926	{CHAR	168 DEG	LAYUP)
	1500.0 2000.0	0.472 8.484	2.580-04 3.240-04	0.630 0.630		4X4926 NX4926		+68 DEG	
	3000.0	*. 493	7.190-04	4.634		484926		+60 DEG	
	4000.0	8.448	1.340-03	8.638		MX4926	{CHAR	+60 DEG	LAYUP)
-1	5000.0 6000.	0.500 0.500	2.000-03 2.750-03	0.630 0.630		4X4926 HX4926		+60 DEG	
•	530.0	0.260		••••			10-144		
	800.0	0.275	0.000109						
	1160.0	0.310 0.472	0.000110 0.000110						
	2000.0	8.484	0,000110						
	3060.0	0.493	0.000310						
-1	4000.0	0.493	0.0001100						
	530.0	0.210	0.000318						
	1000.0	0.430 0.472	000330 0.000335						
	2000.0	8,484	4.000356						
	3000.0	0.493	0.000383						
	3500.0 4008.0	\$.495 \$.498	0.000395 0.000427						
-1	5400.0	0.500	0.000582						
3	486.00	0.110	0.00694						
-}	5000.0	0.110	0.00694						
4	0.0								
-1	0.0	8.0 1.0	1.0						
5	0.001								
	0.0	0.0	1.0						
	0.600	4.9 8.4	1.0						
_	0.90	0.4	+.+						
•1	1.00 900.0	1 0	2780.0	3448.0	4580.			6300.0	
•	-1782.0	-430.2	195.6	2289.0	3400.	6 469	15.0	6152.0	
	0.0	1947.0	984.0	0.8588	29.	2			
	10.0 60.000	1947.0 1947.0	904.0 904.0	8.7238 0.7238	29. 29.	2			
	60.000	.05	0.		6.78	-			
1	120.	.05	0.					•	
	0.607 29.20	1.0	0.625 3500.0	0.0 914	.106	914.106-	-1		
	29.20		3000.0	0.0 671	.985	671.985-	-1		
	29.20 29.20		2500.0 2000.0			434.1]94 282.668-			
	29.20		1500.0	0.0 -20	.763	-20.763-	-1		
	29.20 24.20			0.0 -23	• 356 -	231.356-	-1		
	27.20		2000						

¥

>0.0000 0.50000	0.150013239.26709.	1557.984 1557.984 1	c•	٥.
	9.100003165.21060.	1403-100 1403-100 1	¢•	٥.
	0.050001069.66700.	1224-521 1224-521 1	2 4 C 1	0.
24.25000 0.50000	0.300102934.29580. 3.000102500.00009.	1025.669 1025.668 1 685.109 645.109 0	i	0. 0.
24.20000 3.50000	0.000102000.00000.	298.492 298.892 0	c +	ē.
24.20000 0.50000	0.000101500.00000.	-250.418 -250.818 0	NL 203+	0.
29.2000 0.50000	0.000101000.00000.	-937.780 -933.780 0	120 ··	C.
29.20000 0.50000	0.00010 500.00000.	+1305.336-1305.336 0 1818.074 1419.079 1	41.203*	0.
24.20000 0.20000	0.150001419.01650.	1362-264 1362-266 1	ε• 	0. 0.
29.20000 0.20000	0.150003136.66150.	1142.947 1142.947 1	ċ•	ō.
29.20000 0.20000	0.140002981.30240.	907.434 907.434 1	C+	0.
29.21000 0.20000	0.050002714.33590.	602.753 602.753 1	C •	0.
29.25100 0.20100 29.25000 0.20000	0.030002525.79420.	435.126 435.126 1 145.414 145.414 1	C* C*	o. o.
29.20000 0.20000	0.007501952.70850.	47.720 42.720 1	č•	ŏ.
29.20000 0.20000	0.005001264.38790.	-494,248 -494,248 1	Č+	0.
29.20000 0.20000	0.000101252.80290.	-552.718 -552.718 1	C =	0.
29.20000 0.20000	0.000101000.00000.	-1012.490-1012.490 0	AL203+	0.
29.20000 0.20000	0.00010 500.00000.	-1353.107-1353.107 0	AL203+ C+	3.
29.20000 0.10000	0.350003443.87980. 0.200003207.53360.	1182.973 1182.973 1	č•	0.
29.20000 0.10000	0,150003067.38430.	949.646 949.646 1	č•	ö.
29.20000 6.10000	0.100002A30.5A750.	656.888 656.888 1	Č+	0.
29.20000 0.10000	6.050002170.40020.	138-870 138-870 1	C+	0.
29.20000 0.10000	0.040001272.99140.	-528.689 -528.689 1	C+ ('+	0.
29.20000 0.10000	0.030301214.70890. 0.010101133.71570.	-629.431 -629.431 1 -799.809 -799.809 1	(* (*	0. 0.
29.20000 0.10000 29.20000 0.10000	0.000101095.31170.	-884.688 -884.688 1	c +	ŏ.
29.20000 0.10000	0.000101000.00000.	-1045.958-1045.958 0	A: 203+	0.
29.20000 0.10000	0.00010 500.00000.	-1374.827-1374.827 0	AL 203+	٥.
29.20001 0.06000	0.350003446.34560.	1674.103 1674.303 1	C.	0.
29.20000 0.06000	0.200003191.95559. 0.150091024.23220.	1111.021 1111.021 1 #59.936 #59.936 1	C+ C+	0. 0.
29.20000 0.06000	0.100002731.50620.	531.322 531.322 1	C+	0.
29.24000 0.06000	0.040002506.35480.	344.491 344.891 1	č•	ò.
29.20000 0.06000	0.070002314.54540.	211.524 211.524 1	C•	0.
29.20000 0.06000		109.606 109.606 1	C+	0.
29.20000 0.06000 29.20000 0.06000	0.040001325.71120.	-461.918 -461.918 1 -583.801 -583.801 1	C* C*	0. 0.
29.20000 0.06000	0.030001151.A8170.	-758-859 -758-859 1	Č•	ŏ.
29.20000 0.04000	0.000101018.34140.	-1033.389-1033.359 1	Č•	0.
29.20000 0.05000	0.000101000.00000.	-1061.054-1061.054 0	AL203+	0.
29.20000 0.06000	0.00010 500.00000.	-1384.661-1384.661 0	AL203*	0.
29.20000 0.03500 29.20000 0.03500	0.350003448.08240. 0.200003179.22710.	1645.678 1645.678 1 1063.164 1063.164 1	C+ C+	0. 0.
79.20000 0.03500	0.150072998.60670.	799.242 799.242 1	C+	ö.
29.20000 0.01500	0.100002646.98070.	440.337 440.337 1	Č+	0.
29.20000 0.03500	0.080007326.98750.	206.774 206.774 1	C+	0.
29.20000 0.03500	0.075007166.44010.	106.992 106.992 1	C•	0.
29.20000 0.03500	0.070001337.17750.	-452.619 -452.619 1 -578.870 -578.870 1	C* C*	0.
29.20000 0.03500		-670.121 -670.321 1	č•	ő.
29.20000 0.03500	0.00010 449.76350.	-1195.571-1195.571 1	C+	υ.
29.20000 0.03500		-1391-193-1391-193 0	C+	٥.
29.20000 0.02000		1628-023 1628-023 1	C+	0.
29.20000 0.02000	0.200003170.86300. 0.150002978.39280.	1033.320 1033.320 1 760.409 760.409 1	C• C•	0. 0.
29.20000 0.02000	0.100002582.78380.	378-8/5 378-825 1	č•	0.
29.20000 0.02000	0.040002129.85570.	78.164 78.164 1	C-	0.
29.20000 0.02000	0.075001328.44640.	-465.197 -465.197 1	C+	0.
29.20000 0.02000	0.070001275.99470.	-533.272 -533.277 1	Č+ C+	0. 0.
29.20000 0.02000 29.20000 9.02000	0.040001215.23460. 0.050001170.94980.	-632.586 -632.586 1 -718.460 -718.460 1	C+	0.
29.20000 0.02000		-1350-252-1350-252 1	č•	ò.
29.20000 0.02000	0.00010 500.00000.	-1395.265-1395.265 0	AL203+	0.
29.20000 0.00010	0.350003450.80590.	1604.023 1604.023 1	C*	0.
29.20000 0.00010 20.20000 0.00010	0.200003158.75570. 0.150002948.10120.	992.289 997.289 1 707.221 787.221 1	C+ C+	0. 0.
20.20000 0.00010	0.100007472.02610.	284.658 284.658 1	C.	ŏ.
29.20000 0.00010	0.042502306.33350.	175.096 175.096 1	C•	0.
29.20000 0.00010	0.047502119.58270.	62.729 62.729 1	C*	0.
29.20000 0.00010	0.045031914.41820.	-56.221 -56.221 1	C*	0.
01000.0 00005.05 01000.0 00005.05	0.042501330.25040. 0.040001299.59080.	-466.518 -466.518 1 -503.670 -503.670 1	C+ C+	0. C.
	0.060001101.20300.	-698.006 -698.006 1	C+	ŏ.
	0.050001140.60500.	-780.959 -780.959 1	Č+	0.
29.20000 0.00010	0.00010 600.47750.	-1384.243-1384.243 1	¢•	٥.
29.20000 0.00010	0.00010 500.00000.	-1400.855-1400.855 0	AL 203+	٥.

• •

INPUT, SAMPLE PROBLEM 2 (CONCLUDED)

OUTPUT, SAMPLE PROBLEM 2

MATERIAL NOS. 3 THRUUGH LU Back-Up JEHOTHEMM CMANNING MAIENIAL THEMMAL HESPUNSE ANU AGLATION PROGRAM Pace & Sample No. 6 NUVAL DEPTH CONT.RESISTANCE (INCRES# (50FT-S-ULG/BTU) .000000* --0000 RESERVOIM 11.42441025 530.00 ..0000 .0000 18 3 530-00 2615-01 25000 1-52500 - 25000 1-525000 - 25000 1-2225-01 252000 - 25125-01 252000 - 25121 21212 645 •00 ---HEAT UF FORMATIUN UP MATERIAL CUNSITIVENTS->-IBTU/LU) PLASTIC CHAK UAS 445 - UD ---MATEHLAL THENNAL PHOPENTY UATA---005. ENTHALPY DATUM TEMPERATURE = 536.000 DEG RANKINE ENTMALPT DATUM TEMPENATURE = 336.000 DEG MANNINË BACK WALL Emissivity • 000 DECOMPUSING BAUN-UP NO. 1 KELATTVE TRICKNESS MATENIAL NU. 2 Char 00-PLASTIC CHAN -4401.00 -5240.00 10. ģ MACH MALL CONVECTION Coef BIU/FISG-SEC-DEG R .0000 PLASTIC -376.50 MAIL TENDENALUKE MATERIAL NU. I VINULN PLASTIC NOUL FINAL TIME (SEC) 120.00 AENOTHERM CHAMMING MAIEMINE INEMMAL MENDINSE AND ABLATION PHOGHAM Page 1 CML/CAM AMMLISIS AT AULAIJAE THWUAI OF A SULIU PROPELLANT HOGGET MUTOR Thhuat Sufface is caredon phemulic at a 00 deukee latur angle, 9=29 atm Silica Phemulic Decomposing Barg-up atl attm F-FUNCTIUNS SAMPLE MD. 2 UNHU/1114 С UAMMA (DA LAFI-LA/1) NHUUA(NHOA-MHUMA)/NHOOA) 00514) • UAMMA (BOTAVI-LE/1) NHOOA(NHUOANUA)/NHOOB)00518) • 1]-UAMMA)(BC®EXPI-LE/1) NHOOE(RHOC-RHORE)/RHOOE)005515) : T REAC TEACILUT NETUS TTUT 1/3EC) T31 (2006 A) QUIPUL INTERVAL R ASIA SEL FRUM.INTIAL-LINE WHILL 2-868-545 GUTAUT INTERVAL = 2-000 565 FROM 2-000 565 UNTL 10-009 565 Output INTERVAL = 5-000 565 FROM 10-000 565 UNTL FINE (066 R) • 15+0+05 • 3480+85 HEACTIUN RHOO RMOR 11 4 51 E HEACTIUN RHOO RMOR 1144C) 951 E 12.25 12.0 110 1144C) 100 156 4 20.72 12.48 0.46042 3.00 158 5 20.72 12.48 0.40042 0.00 8 514 JOLUME FAACTION WANN F JALINAS FAACTION ---DECOMPUSING BACK-UP KINETICS---NEACTION RHOD DECUNPOSING AAGACUP MOA.1 NEACTION RHOD RHUR (1/2C) 120/01/11 (1/2C) 71 MAXIMUM 11ME STEP =1.00 SECONDS INITIAL TIME (SEC) .000 4-15

È

ULI UMPUSIMU BACA-UP VIMUIN MAIEMIAL> EZYE4+ED+EB+SO. CAAN MAIEMIAL> EJ+EY+EI+EU

PAGE SAMPLE NO. VENSITY = «80.000 LU/CU FT voluvitivits voluvito svuds400 PAGE + 4500.00 3620.0U HLOWING REDUCTION PARAMEIEN .175 CH/CH0 = PHI/(EXP(PHI)-1.) MHENE FHI = 2.00000 UDI/CHO. 34P 14 TABLE ALHUTHLHH CHARHING MAILHIA. IMLMAAL VESPUNSE AND ABLATION PROGRAM TABLES OF OPTIONAL MASS-FRACTION FUNCTIONS FOR IMERMAL CONDUCTIVITY RABLES OF OFTINIARS FOR A STATUS AND A STAT 3600.00 PHESSUME 29.20000 29.20000 24.20000 (H1H) ---IIME DEPENDENT BUUNDARY CONDITIONS---MEAT PH COEFF (LU/SO FT-SECUND) 2700.00 0000.1 .7236 .7236 12(2) 00000 00000 00000 00000 F2(A) F-FUNCTION TANLE NO. I ASSIGNED TO MAIN MAINALAL F-FUNCTION TABLE NO. 2 ASSIGNED TU Decomposing Bach-1," NO. 1 1844.00 -934.20 RAULATION HEAT RATE (BTU/SU FT-SELOND) 944.00 944.00 944.00 Radiafion Heat Rate (BTU/50 FT= SELUNU .0000 11111 F1 (X) TEMPEMATURE (DEG R) 904.00 Entmalpy (81U/Lb) -1782.00 PROB C'RECOVERY OPIN ENTMALPY (BTU/LB) (1947.00 1947.00 1947.00 1947.00 VILW Factor SPEC1115 MLAT (HTU/L8-5Lu) -1100 -1100 ÷÷ .0000 × × PA08 OPTN ~ ~ MATENIAL NO. J TEMPERATURE 1014 m) 500.00 500000 .00 10.00 60.c0 11ME tSEC1 60.0U 120.00 TIME (SEC) OUTPUT. SAMPLE PROBLEM 2 (CONTINUED) ; ALMUTALIM CMARMINU MAILAIAL INCMMAL MLSPUNSE AND ABLAIIUN PRUGAAN Page 3 Sample NO. 2 LU/CU FT EMISSIVITT = TO-664 LU/CU FT ENTRALE 2005104 ENTRALET ENTRALET 1010/101 - 91.506 LB/CU FT SEMSLALE UENSIIT # 84.364 CUMUUCTIVIT SENSIBLE ENIMALPT 510/11-SEC-UEUI (BUU/LB) -1.92 373.99 312.99 1101.94 2.095.98 2.095.98 15.24 20.40 24.40 24.29 24.29 24.270 11.27 20.28 20.20 308.86 547.486 1036.36 1529.36 2025.86 LENSINE ENTHALPY LEIUZLED CNTHALPY (BTU/LB) 1348.48 CUNDUCTIVITY DENSITY DENSITY (BTU/FT-SEC-DEG) Lafu/E <u>T-SEC-U</u>45) •002313 •002313 •002334 •002344 •0022000 •0022000 UENSITY COMDUCTIVITY (81U/FT-\$EC-UEG) • 0003380 • 0003356 • 0003356 • 0003356 • 0003950 • 0003950 • 0003950 • 0003950 (314/71-5EC-UE4) • 401021384 • 40102139 • 401022470 • 40102470 • 40102470 • 40102470 • 40102470 .0001070 .0001090 .0001090 .0001109 .0001109 .0001109 SPECIFIC HEAT 0005-0515-0516-0516-0516-SUECIFIC NEAL SPECIFIC HEAT tututa-uc61. 2100 4730 4930 4930 4930 4930 5000 5000 (87U/L8-DLG) PECIFIC HEAT (RTU/LE-DEG) • 2100 • 4300 • 4720 • 4720 • 4920 • 4980 • 4980 • 5000 HATERIAL NO. 2 TEMPERATURE AATERIAL NO.23 TEMPERATURE. 1020,00 530,00 1540,00 1540,00 2080,00 2080,00 3000,00 5000,00 1044 8) 548 80 808 80 808 80 1198 00 1198 00 1290 80 2800 80 2800 80 2800 80 2800 80 2800 80 MALERIAL NU. TEMPERATURE (UEG #) 510.00 510.00 1155-00 1255-00 1255-00 1255-00 1250-00 120-00 120-00 120-00 120-00 (DEG R) 540.00 1000.00 1500.00 2000.00 3500.00 3500.00

ł

i

.....

•

CH/CHU 1 TEMP DENSITY CONDIMIUN 1 TEWP DENSITY CONDIMIUN 104.704 104.704 000107 530.45 104.704 000107 530.40 104.704 000107 530.40 104.704 000107 530.40 104.704 000107 530.40 104.704 000107 530.40 446.400 0009944 AERUTHERM CHARRING MATERIAL THEFMAL RESPUNSE AND AULATION PROGRAM Pace is Sample Mor 2 <11.00. CONDUCT ION A4A7 • 74•03 • 698•08 M LMAN M GAS (L8/08[0 Su F1) .591677 .499701 PYRULYSIS (.98) 3300100/ .0177266 HEAT CUEFF HEAT CUEFF (LU/50 FT-SEC) 4743 STORAGE 14 SOLIS CHEMICAL GENERATION -.628+02 -.246+03 ---SUMFACE EMERGY FLUX TEMMS---CURRENL MATES INTVISO FIL SUMFACE-SECS AND INTEGRATEU VALUES (NUUMIO SO FT) CONVECTED RADIATED HAULATED CHMIC. ---AULATIUN MAIES---B PMIME B PRIME 6 M UOT CARA V DOT 645 118/50 F1-56C1 45 40765 211991 4050504 4034239 0UT .317-03 .305-04 AI TEMP DEMSITY CONDITIVE (0.5645.07 (197.5C f) 0.5645.07 (197.5C f) 0.5945.07 (197.5C f) 0.5945.07 (197.5C f) 0.5945.07 (197.5C f) 0.5945.07 (197.5C f) 0.2591.65 (197.5C f) 1.265.07 (197.5 NI E0+0/2. E1+062. 40+542. +0+7E+. 19911: 29795. NCDE MAI • 9 RAIE TOTAL RATE TOTAL ****

SUMFACE SPECIES CO CO CO CO CO CO AENOTHEMM CMARKING MAICHIAL (MEMAAL MESPUNSE AND AULATION PRUGAAM Paue 5 Sample Mor 5 TEMPERATURE EDEE ENTH (DES R) AT T-HALL 908-00 -729-84 : 1 RATIO OF MASS TO MEAT TRANSFER COEFFICIENTS = .002 UNGENIAL DIFFUSION FRENDRATT = .000 NOMINAL SUBFACE VIEW FACTOM = .000 IFISSUME MODEL NOT USED FOR NAJ 1.000 FISSUME MODEL NOT USED FOR NAJ 1.111AL/R CURRENT).00-E.X. WET TRANSFERCIENT MULTIPLIED AT (14 INITIAL/R CURRENT).00-E.X. IN THIS PROBLEM NASS TERT ROUAL TO .0-E.200 IN THIS PROBLEM NASS TERT ROUAL TO .0-E.200 IN THIS SPOOLEW NASS TERT ROUAL TO .0-E.200 IN THIS PROBLEM NASS TERT ROUAL TO .0-E.200 IN T CHEN. PROD (61U/LS) (61U/LS) 104.00 144.00 144.00 144.00 144.00 CHEM. PHOU (BTU/LB) 627.29 523.48 523.48 523.49 523.49 524.21 -274.07 -378.07 ** * **** * * * : 1 TEM N-UDT-(DE6 R) CHAR/CH SE23-0 0000 S877-30 1000 S877-30 1000 S871A-30 1000 S871A-30 1000 S871A-30 1000 S871A-30 1000 N-D01-CHAR/CH • 8189 • 0599 • 1908 • 1500 • 1500 JH+DDIT+&AS/CM_H ...+2000. ... ENESSURE #...29.2000.ATH. MIA BARKARY N JAURE 204 ---SURFACE EGUILIBRIUM UATA>--EDGE ENTH AL T-MALL 364-60 -37-37 -37-37 CHEM. PROU SURÍACE (1810/LB) SPECIES 1908-61 1908-61 1908-61 1912-10 1711-06 1711-06 067-10 0 SURFACE SPECIES **ů** (3838 CMEK.PROJ (87U/LU) 1837-58 1837-58 1837-59 -8872-01 -812-01 -817-01 i ł H-001-CHAK/CH . 88951 . 88951 . 88951 . 88951 . 89951 . 89955 . 8199 -100-H P = <9.2000 ATM 164 (DEG R) 909-00 1800-00 1800-00 1800-00 1800-00 2319-10 2319-10 2319-10 1055 H) 1000-00 2788-00 ł

Į

4-17

OUTPUT. SAMPLE PROBLEM 2 (CONTINUED)

Addition and a second

ļ

CH/CH0 1286.9.

HEAT COEF

M CMAK M CAS (LU/OHIC SQ F1) 2.094-89 1.051891

0710000 /91609A4

---RECESSIONS/HLCESSION MATES---(11) / 11/24/ Sufface (18) --001705/ 000448 (708190/ 01994/0 .

<u>،</u>

ĘJ

SAMPLE NO. 2 ABLATION PHOURAM **A**NU AEROTMERN CHARRING MAILRIAL THEMMAL RESDUNSE

> RESPORSE AND ABLAILON PROGRAM וחנקהאנ ALMUTHER CRAMING MALENIAL

PAUL 20

M LMAK M GAS (Lu/Uriu SQ F1) 1.507194 1,0087242

CONDUCTION ANAY - 323+63 - 154+65 LOSS AT HEAR FACE +71+01. PTHOLYSIS (.94) .8440501/ .0124473 5047 4Cc •23447817 •0054247 PYROL GAS CONVLCTE U TOTAL TOTAL 4-18

CONDUCT 10H AVAY -210-03 -259-05

20.101.

TOTAL

COMMCTED

LUSS AT HEAR-FACE -523-02 -104-04

6 30 FT) 510RA0E 1N 50L 10 .830-02

NODE M.I

RATE TUEM

TAN JOHN

OCMAITY COMOLATUY ILA/CU FT) SC F ILA/ ; LT TEW DEMAITY COMDIBIUM 1000 N1 (1970 F1 56 F1 8 5194-50 1 5194-50 1 5195-50 1 519

TEKU

NODE MAT

HODE MAT --

OUTPUT. SAMPLE PROBLEM 2 (CONTINUED) : i i

.

T TLMP QLASTTY COMPIRIUM (UCC 01) (ULYCU FT) 5C F) (1240-65 102-006 - 000094 1104-95 1024-076 - 000010 1104-95 1024-708 - 000109 555-07 1024-708 - 000107 555-07 1024-708 - 000107 551-05 1024-708 - 000107 551-05 1024-708 - 000107 551-05 1024-708 - 000107 551-05 1024-708 - 000107 551-011 - 486.000 - 008440

SICA A A A A A 22424592

DEMAITY -COMD (MIU/ N (LW/CU FT) FT 5C F) 7.940 002243 7.940 002243 7.940 002243 7.9415 002243 7.9415 002343 7.9415 002343 7.9415 000342 7.9416 000342 7.9416 000342

***** 232424232

EACM JUTPUT BLOCK SHOWS TH. TIME IN SELONDS: IME CUMMENT SUMFACE IEMPEMATURE. The temperatures of 3 themhocouvels: And the uepting im Inches of 7 isutherms within the main adlating matemial. THE FIMST BLOCK SMOMS A SAAPLE 11ML AND SUMFACE TEMPERATURE. THE SPECIFIED Usefms of the Themuccuples (1) and) and the isutariam temperatures. The aranucmert of This block complexions io the annanucment of the unipul vala. DELLUNAL OUTPUT UP THÈRMULUUHLE TERFEMATURES ANU/OR ISUTHENO. C Sapule NO. C Deptas measureu frum original sunface Tèmèles "Jaes in Ulurees aamine. 1.4004 511.0000 1404.0000

ALMUTMENN CMARMING MALEMIAL TREMMAL RESPONSE AND ABLAFION PHUGHAN

<u>ن</u>اري

ł 00000. CH/CHO LOSS AT NEAR FACE 172-02 COND (BTU/ ALMOTMERM CMARRING MATERIAL THEMMAL RESOUSE AND ABLATION PROURAM PAGE 31 Samble: No.: 8 076900. 076900. .00037 .00037 M CMAR M 045 (LB/ORIG 50 FT) 2.698857 1.656183 PYHOLYSIS (. 44) DENSITY 5 CHENICAL GENERATION 510449E 14 504.10 - 201-02 -+53+04 ---RLLESSIONS/RLLESSION RATES---(11) / (11/5E-) Caak (92) (92) *998475/ 000050 90.0000 SECONDE -H WALL H EDAE (#TU/LB) (#TU/LU) 1465.14 [00 ---ABLATION RATES---B PHIME B PRIME 0 H UUT CARR H 007 045 (La759 F1-362) 045 .00000 .000000 .000000 NODE NIT 105-01 CUNVECTION WITH SOLIDE. 70.40 TT CONDIGIUN .000 .40**8-05** ABSONPTION .338-01 TIME SURF PROS SURFACE SIEP, ITCH OPTH MAD (IN) 275 - 3 1.5402 70.445 DENSITY SURFACE -3982171/ -0098000 PTROL 045 PICK UP .421-42 IN •000 •137-05 CONVECTED 1131 ŝ RATE TOTAL

.2150 1040 1040 247 1846. 417 1004 • 32 \$601.66 atcl.40 1400 152 2+52-26 1-20 0091.15 0000.1 120.0000 2744.5/7 530.000 OUTPUI UATA 5000

.0000

1014. 8708.

1228. 200 3, .49.

200

5564. . . 7 .

OUTPUT. SAMPLE PROBLEM 2 (CONCLUDED)

NODE HAT RATE TOTAL

٠,

• 4-19

•	HAR SWELL	AND BURNIN	G RATE COM	RECTION D	6 HEAT 141	AYUP ANGLE	PLE NO. 3	
		28.25 68.75		400+04 489+09	3.00	1.540.04	1000.0	
		94.50	94.50	0.8	0.0	0.0	90680.0	
	191 3 2	0.0	120.0	0.5	2.0	5.0	1.0	0.37
	2.0	10.0	8.04 1.4	-376.5	0.0	0.0	-0.345	51
		1336.						
		20.250	0.8 9	140+05	3:0	0.154+05	1000.	
		68.750		.448.10	7.0	0.368+05 0.0	600.0 9000 0 .	
		129.00	129.0	0.0 -4807.0	-5280.0	0.0	-4.315	53
1	530.0		0.021					
1	538.0		4.848			•		
1	530.0 530.0		0.040					
i	530.0		8.064					
1	530.0		0.100					•
ŗ	510.0		0.100					
1	530.0 530.0		0.100 0.150					- ù
i.	530.0		0.150					
?	530.0		0.020					
2	530.0 530.0		0.040					
2	530.0		4.190					
2	5,4.0	1	0.100					
2	530.0		0.100					
3	530.0 530.0		0.200 0.250					
ś	\$30.4		8.758					
			530.0			1		
	530.0 A00.0		1+888-04 2-130-04	4.630 8.630		14926 (VIRG 14926 (VIRG		
	1160.0		2.478-84	0.630		14926 (VING		
	1500.0	0.477	2.470-04	8.638		14926 IVI96		
	2480.0 3080.0	0.484	2.478-84 2.478-84	₩.630 / #.630		X4926 (VIRG X4926 (VIRG		
	4040.4		2.478-84	0.630		14926 (VIRG		
	5000.0	0.500	2.478-84	8.630		X4926 (V]RG	1N+60 DEG	LAYUP
-1	6080.0	0.500	2.478-84	8.630		14926 (VIRG		
	530.0 1900.0			0.630 C.630		14926 (CHAR 14 926 (CHA R		
	1500.0	0.472	7.588-84	8-638		X4926 (CHAR	+60 DEG	
	2000.0	0.484	3.240-04	0.630		14926 (CHAR		
	3000.4			0.630 0.630		14926 (CHAR 14926 (CHAR	+68 DEG-	
	5080.0			0.630		14926 (CHAR		
-1	6000.		2.750-01	0.638	· · ·	84926 ICHAR	+69 DEG	LAVIP
	530.0		0.008109					
	1140.0		0.000110					
	1500.0	0.472	0.000110					
	2008.0		4.686110 9.990110					
	4000.0			•				
-1	5000.0	0.508						
	530.0							
	1000.0							
	2080.	0.484	8.138356					
	3000./	0.491	0.000383					
	3580-							
-1	5888.							
3	486.69							
-1	500.							
-								٠.
	0.		1.0				•	
-1	1.		+.+					
٩	*.001 0.		1.7					
	•.3	5 9.0	1.0					
	0.68	0 0.4	9,0					
	0.0							
. *	980.0	140.0	>700.1	3690.9	4500.0	5400.0	6398.0	
		-930.2	195/6	2289.0	3600.0	4696.0	6152.0	
•1	-1782.9				29.2			
	0.0	1947.6	984.0	8.4588 0.7238				
	-1787.9 0.0 19.0 60.000	1947.0 1947.0	984.0 984.0 984.0	0.7238	29.2 29.2			
1	0.0 19.0 40.000 40.093	1967.0 1967.0 .05	0.430 0.	0.7238	79.2			
	0.0 19.0 40.000	1947.0 1947.0	\$\$4.0 964.0	0.7238	79.2		0.315	

ł

INPUT, SAMPLE PROBLEM 3

4-20

OUTPUT, SAMPLE PROBLEM 3

0ECOMPOSING BACK-UP VIRGIN MATERIALS 22,24,26,28,30, CMAR MATERIALS 23,25,27,29,31 SAMPLE NO. 3 MATERIAL NOS. 3 THROUGH 10 Back-UP CONT.4.5151ANCE PAGE AEROTHERM CHARMING MATERIAL THEMMAL RESPUNSE AND AHLAFFUN PHUGHAM RESERVOIN TEMPERATURE 530.00 TEA PROP. TU RADIUS +1.00 TOR NODE (INCHES) .0400 TO EACH ABLATING NODE ---HEAT OF FORMATION OF MATEMIAL CONSTITUENTS->-• • • NAL DEPTH GAS GAS ---MATERIAL THERMAL PROPERTY DATA---ENTHALPY DATUM TEMPERATURE . 536.000 DEG RANKINE ENTMALPY DATUM TEMPERATURE = 536.000 DEG RANKINE BACK WALL Emissivity •000 DECOMPOSING BACK-UP NU. 1 / .0 CHAK -5280.00 (810/L8) AST ABLAT MATERIAL NO. 2 Cmar ---NUDAL DATA>--CHAR RELATIVE BACK WALL CONVECTION - CQEF RTU/FT50-SEC-DEG R • 0000 HININUM THICKNESS OF L THERE ARE 10 NODELLTS PLASTIC -4807.00 PLASTIC -376.50 EMPERATUR HATERIAL NO. 1 VIRGIN PLASTIC MATL TINIT NC4N92 30 PAGE 1 FINAL TIME (SEC) 120.00 CMA/CEM ANALYSIS AT ABLATIVE TMMOAT UF A SULIU PMOPELLANT ROCKET MOTOR Then tsum source is carron premolic at a 60 Gener Lavup andle: P afm CHAM SWELL AND BUWING MATE CORRECTION ON MEAT TRANS COEF SAMPLE NO. 3 DAHO/DIIME = GAMMA (BAEZPI-EA/Î)RMODA((RMOA-BMORA)/RMODA)••PSIA) • GAMMA (вческрі-Евліннові((RMOB-BMORB)/RMOOB)••PSIB) •(]-GAMMA) (всескрі-Еслінморсі(нмос-янокс)/RMOOC)••PSIC) ALDQTHERM CHAPPING HAILHIAL THERMAL RESPONSE AND ABLATION PHOGRAM T REAC 90000 Ü OUTUT INTERVAL = .500 SEC FROM INITIAL TIME UNTLL 2.000 SEC Outout Interval = 2.000 SEC FROM 2.000 SEC Unitl 10.000 SEC Output Interval = 5.000 SEC from 10.000 SEC Unitl Final Time 5000 C 94.50 94.50 0000 000 0000 8651N VOLUME FRACTION ---DECOMPOSING BACK-UP KINETICS------REACTION KINETIC CONSTANTS---3.00 .1400.05 3.00 .4480.10 3.00 .0000 .00 ---TIME INCREMENT INFORMATION------REACTION KINETIC EQUATION---P51 DECOMPOSING BACK-UP NO. 1 RHOR & PSI (1/SEC) .1400+05 .4480-10 (1/SEC) A 20.25 .00 ... 6 60.75 40.50 ... 7 129.00 129.00 ... Resin Volume Fraction. Gamma 00-2C 32-40 REACTION RHOO RHUR (LO/CU F1) HEACTION RHOO RHUN 20.25

4-21

INITIAL TIME (SEC) . 300

HAXIMUN TIME STEP =1.00 SECONDS

4500.00 BLOWING REDUCTION PARAMETEN 222 AEHOTHERM CMARRING MATEMIAL THEMMAL RESPUNSE AND ABLATION PHOUMAN 25. 24. 24. 544016 M0. 544016 M0. 1 Cumuccitity • 480.000 LUCU F1 1 (410/F156-024) • 0089400 • 0089400 CH/CHO = PHI/(EXP(PH1)+1.) WHEHE PHI = 2. BHPPH DOT/CHO. BRP IN TABLE TABLES OF UPTIONAL MASS-FMACTION FUMCTIUNS FUM IMEMMAL CONDUCTIVIIY K = FI(A)=KP + F2(A)=KC 3600-00 24.20000 24.20000 29.20000 PRESSURE (HTH) ---RESIN DECOMPOSITION GAS SENSIBLE ENTHALPY------TIME DEPENDENT BOUNDARY CONDITIONS---RADIATION MEAT PR TELN MATE COEFF TELN MATE COEFF SECUND 5 50 904-00 57238 29 904-00 57238 29 904-00 57238 29 Hadiation 77338 29 Hadiation 575 Hadi 2700.00 1.0000 000000 F2(X) f2(X) F-FUNCTION TABLE NO. 2 ASSIGNEU TO DECOMPOSING BACK-UP NO. 1 F-FUNCTION TABLE NO. 1 ASSIGNED TO MAIN MATCHIAL 1840.00 -940.20 6300.00 .0000 L F1 (X) 000000 + 1 (X) 1947.00 1947.00 1947.00 1947.00 7164 SPECIFIC MEAT (HTU/LB-DEG) .1100 .1100 .1100 RECOVERY Enthalpy (BTU/LB) 5400.00 TEMPEMATURE (DEG H) 900.00 Entmalpy (8tu/L8) -1782.00 \$5. / 0000-. 1500 . 1500 . 1500 . 10000 × × PR08 0P1N ТЕМРЕМАТИРЕ (ОЕС Р) Емтиагру (өти/гө) PROB OPTN **.**ت MATERIAL NO. J TEMPLHATURE (Dég r) 500.000 S000.00 60.00 120.00 .00 10.00 60.00 11ME (SEC) TIME (SEC) arnoinewa Charainu mairmial infimmal mesponse and Ablallon Phoummare Pace 3 Sample Mo. 3 IVCU FT LB/CU FT LB/CU FT È # 108.708 5
SENSIBLE
ENTMALPT
(BTU/LB)
-1.00 91.540 1 SENSIBLE ENTHALPY (BTU/LB) 373.98 612.98 1101.48 1348.48 1596.73 2995.73 547.86 1036.38 1529.35 2025.86 DENSITY A DENSITY CUMBUCITYITT DENSITY CUNDUCTIVITY OENSITY CUNDUCTIVITY 1410/FT-\$LC-ULG) •0082130 •0082130 •002270 •002270 •002270 •002270 •0022470 •0022470 •0022470 (810/FT-SEC-DEG) 0001090 0001100 0001100 0001100 0001100 0001100 0001100 (BTU/FT-SEC-DEG) • 0003390 • 0003350 • 0003350 • 0003350 • 0003820 • 0003820 • 0005820 (111/1/1-1555-046) 0002470 0002433 00024540 0002140 0002140 0002140 0002140 (810/L8-0L4) 2100 4300 4723 4440 4440 4980 5000 141U/LB-06 G) .2100 .2100 .2100 .2100 .2100 .2100 .2100 .2100 .5000 SPECIFIC HEAT SPECIFIC HEAT (ATU/LB-DEG) 2400 2750 2750 2120 4720 4846 4930 4846 4930 4840 4930 SPECIFIC HEAT (NTU/L4-DEG) .2100 .4300 .4720 .4720 .4930 .4930 .4930 .4930 .4930 .5900 SPECIFIC HEAT MATERIAL NO.23 TEMPLRATURE MATERIAL 40. 2 TEMPERATURE ATERIAL NO.22 TEMPERATURE

4-22

OUTPUT, SAMPLE PROBLEM 3 (CONTINUED)

HATEHLAL NJ. TEMPEHATUME

CDE6 #) 5 10.00 5 10.00 1 1 500.00 2 0000.00 2 0000.00 5 0000.00 5 0000.00 5 0000.00 5 0000.00

Ser.

OUTPUT. SAMPLE PROBLEM 3 (CONTINUED)

AEROTHERM CMARRING MATERIAL THERMAL RESPUNSE AND ABLATION PROGRAM Page 5 Sample No. 3

)

ļ

いんかいたい だいふかいかい ちょういいい ちょうちゅう

The set of the set of

The second share one

ž

Į The state of

-

SUMFACE TABLES ARE THE SAME AS IN PREVIOUS PROBLEM

ł

----SUNFACE EQUILIBRIUN-DATAS---

RATIO OF MASS TO HEAT TRANSFER COEFFICIENTS = .602 UNEQUAL DIFFUSION EXPONENT = .000 UNEDIAL DIFFUSION EXPONENT = .000 Sissure Model Not use factors = 1.007 (OPTION 1) HEAT TRANSFER COEFFICIENT MULTIPLED BY (A TIMITAL/A CURRENT).0057, WHENE EX = 1.16-.201/11.-W1 AND N IS THE BUNNING RATE EXPONENT. CHAR SHELE = .1300 CAMI THICRMESS

4-23

Q

÷

N PHUGHAM PAGE 15 PAGE 15 SAMPLE NO. J AEHOTHERM CMABRING MAIEHIAL IMEMMAL RESPONSE AND ABLATION PRUGHAM Page

CH/CHU

IBBCV.

.5068

M CMAR M GAS (Lb/Orig 50 F1) .035517 .506503

PTHOLTSIS (.981

SURFACE RECESSION AFTEN SWELL (1NLMES) = Surface recession rate w17h Swell (1ncmes/sec) = P DENSITY COND (BTU/ R) (LG/CU FT) FT SC F) .000387 .000240 .000200 .000141 .000141 2496 SUMF PROB SUMFACE 11EK OPTN RAD (1N) 3 1 1.252V 88.901 94.362 89.362 89.362 89.362 89.362 1.014 75.140 CP511. 50505. 200-03 103.03 PYROL GAS CONVECTED (DEG R) 5924-55 5924-55 5924-55 592-92 1020-92 558-01 558-01 1640 533.62 NODE MAT 00 ~~ 0000-114 114 114 RATE TOTAL RATE Total • > 으 COND (BTU/ FT SC F1 .000107 HEAT COEFF CH/CHO 101000. 101000. 101000. .00000 LDSS AT Rear Face •000 •000 CONDUCTION ANAY • 000 • 000 .000107 .000107 .000107 alwuimewa chamainu maitmial themal Hespunge and Ablation phouram Page Sample no. M CMAR M GAS (18/0816 50 F1) .000000 .000000 0000000 . 1000000 . 000000 .000000v... ---Sufact firent functions----Cument rails ubuyger i Sumface-Sect and infegated values ubuyger 30 ft) and infegated values ubuyger unit ormation 000 .000 DENSITY ••••• â SURFACE RECESSION AFTER SWELL (INCHES) " Subface recession hate with Swell (Inches/Sec) = ; ទីខ្លួន NODE MAI 22 ----104100----DENSITY COND (BTU/ **89.**362 84.352 89.352 90.362 PYROL 6AS PICK UP .000 .000 530.00 530.00 530.00 CONVECTED 530.00 ã 8 TENP 530.00 ş 530.00 530. NCOE MAT - -RATE TOTAL RATE TOTAL • •

.000107 .006940

.0769

1010

104.708 105.708 105.708 104.708 104.708 104.708 104.708 104.708

******** -----

TY - CONDISTUR

UENSIIY R) (LU/CU

.000100

\$ 16 HP

ΰ

NODE MAT

LOSS AT HEAR FACE .391-01 .705-01

OUTPUT, SAMPLE PROBLEM 3 (CONTINUED)

4-24

٩

OUTPUT. SAMPLE PROBLEM 3 (CONCLUDED)

COND (H TU/) FT SC F) • 000365 • 000356 • 000356 • 000364 • 000109 • 000109 • 0009440 • 0009440 PAGE 37 SAMPLE NO. J CH/CHU .00000 -.846-00 .268+05 LUSS AT HEAN FACL •131-02 •408-04 CONDUCTION AVAY H CHAR M GAS (LB/URIG SQ FT) 3.094211 1.657128 PYROLYSIS (.93) .7980205/ .0000000 1 1 1 8750 F1) 91-761 92-805 92-805 104-904 108-708 108-708 108-708 T TEMP DENSITY (DEG R) (LU/CU F1) 2324-15 91.715 2222-12 91.715 22293-17 92.405 2049.77 92.405 273.202 104.904 878.37 108.704 .3288 IG SO FT) CHEMICAL GENERATION --517-04 -580 631.64 542.70 541.20 AEROTHERM CLARRING MATERIAL THEMMAL PESPONSE AND SURFACE RÉCESSION AFTEK SWELL (INCHES) * Surface recession rate with swell (inches/sec) * ---SURFACE ENERGY FLUX TERMS---Current Rates (81UVSO FT SUNFACE: and integrated Values (81U/ONLO S) andiated Hadiated Hadiated MI TEMP DENSITY CONDIGIU/ NODE MAT (DEG R) (LG/CU FT) FT SC F) (D 0 2733.95 70.901 .000613 12 0 23 0 2733.95 70.903 .000613 13 0 22 0 2794.605 70.903 .000605 14 0 20 0 2504.57 70.903 .000605 14 0 20 0 2613.36 70.921 .000569 17 22 0 2 2594.73 70.921 .000569 17 22 0 2 2594.73 70.961 .000510 19 3 5 ---ABLATION RATES---B PRIME G M DOT CMR M DOT GAS (18/50 FT-56C) .00000 .000003 .249-00 5 .000 .153.05 ROL GAS 1CK UP •644-03 •953+04 CONVECTED PYROL SURF SURF 11ER RATE TOTAL NODE MAT • • • • • RATE TOTAL 11ME 57EP 299

ABLATION PROGRAM

. En estas

IT TEAP DENSITY CONDIGIUS (066 01) (187/01 FT SC F) 2411-97 (187/01 FT SC F) 2411-97 (197/01 FT SC F) 1445-57 (198-700 000109 551-45 (198-700 000109 551-45 (198-700 000107 551-12 (198-700 000107 530-12 (198-700 000940 AEROTHERM CMARRING MATERIAL THERMAL RESPONSE AND AULATION PROGRAM 262 25 2 Sample No. 3 2 Sample No. 3 61769. COMDUCT TON AVAY . 229.03 . 270.05 LOSS AT Rear face 120-03 .147-04 1.654282 M CMAR M GAS (LB/ORIG SQ FT) 3.097767 1.65428 PYROLYSIS (.98) .7963537/ .0000672 нел собб нел собб (LU/SQ FT-SEC) .2203 1700. CHEMICAL 66NERATION -.902.U2 -.517.04 510RAGE IN SOLID .166.02 .649.03 ----SUMFACE ENERGY FLUX TERNS---CURRENT RATES (81V/SA FT SUMFACE-SEC) AND INTEGRATED VALUES (81V/OH16 SO FT) AND INTEGRATED VALUES (81V/OH16 SO FT) RADIATED RADIATED CHEMIC SUPPACE RECESSION AFTEN SWELL (INCMES) * Supface recession rate with Swell (Incmes/Sec) * ---PECESSIONS/WECESSION WATES-(IN) (TATA/SEC) CMAN (.02) 114 .7943337/ 0000672 60.0000 SECONJT - -Н ¥ALL H ЕЗА⁵ (BTU/L®) (BTU/L®) 1452.84 1941.00 DENSITY COND(0)U/ NODE MAT (L0/CU F1) -F1 SC F) 70-932 -002407 12 n 308-01 ž IN •570+03 70.929 919.0 SURFACE •4398004/ •0054314 PYROL 645 PICK UP .901-00 PROB 0PTN NTN .153-05 LE CONTRACTION CONTRACTICON CONTRACTION CONTRACTICO CONVECTED TIME SURF 1 STEP ITER 1 HODE MAT RATE TOTAL RATE TOTAL

4-25

	173048 40	20.15	0.0	E PROBLEM P	3.00	1.54	0+04	PLE NO. 1000.0	•	
		40.75	32.40	4.480+89	3.00			600.		
	101 7 2	94.50 0.0	94.50 120.0	0.0	0.0 2.0		0.0 5.0	90000.0	0.1750	
	2.0	10.0	0.04	-376.5	0.0		0.0	-0.345	536.	
	1.0	1.08	1.4							
	531.	1000.		0.140.05				1000		
		20.250 60.750	0.0 40.50	0.448+10	3.0			1000.		
		129.00	129.0	0.0	0.0		0.0	90000.		
	_		•	-4807.0	-5280.0	•	0.0	-0.315	536.0)
1	530.0 530.0		0.020	1.15						
1	530.0		0.040							
i	\$30.0		0.940							
1	530.0		0.060							
!	510.0		0.100							
1	530.0 530.0		0.100							
i	\$10.0		0.150							
1	530.0		0.150							
2	530.0		0.020							
2	530.0 530.0		0.041							
2	530.6		0.140							
2	530.0		0.100							
2	530.0		0.140							
2	530.0		0.200							
ŝ.	530.0		0.256							
	0.0	0.0	530.0				1			
	530.0		1.880-04			#X4926	(VIAGI	N+60 DEG N+60 DEG	LAYUP	
	1160.0		2.470-04					N+60 DEG		
	1500.0	0.472	2.470-04	0.630		MX4926	(VIRGI	N+60 DEG	LAYUP)	
	2000.0		2.470-04			MX4926	(VIRGI	N+60 DEG	LAYUP)	
	3000.0		2.478-84			MX4926	(VIRGI	N+60 DEG	LAYUP)	
	5000.0		2.470-04					N+60 DEG N+60 DEG		
1	6000.0		2.470-04			484926	IVIRGI	N+60 DEG	LAYUPI	
	530.0		2.478-04			HX4926	(CHAR	+60 DEG	LAYUP	
	1000.0					484926		+60 DEG		
	1500.0		2.580-04			MX4926 4X4926	(CHAR	+60 DEG		
	3000.0	0 403	7.198-04			414926		+60 DEG		
	4600.0		340-01	0.630		4X4926	(CMAR	+60 DEG	LAYUP)	
	5080 .	* ¥130V	2000-0			MX4926		+60 DEG		
•1	600#. 5,10.0	0.260	2.750-03			484926	(CHAR	•60 DEG	LAYUP	
	400.0		0.000109							
	\$160.0		0.600110							
	1500.0		0.000110							
	2000.0 3080.0		0.000110							
	4000.0	0.493	0.000130)						
1	5008.4									
	510.0 10 90.0		0.000318							
	1590.0		0.000335							
	2000-0	9.484	8.880354							
	3000.		0.096383							
	3500.0		0.000395							
1	5000.0		4.448542							
i	476.00									~
	500.0		8.00694							
1	5000.0	0.110	0.00694						`	×
	0.0		1.0							
1	1.6		0.0							
5	0.001									
	0.15		1.0		5		-			
	0.400	0.4	0.0	•	•					
	0.90	0.4	<u>م</u> ر ۸							
1	402.0	6300.0	0.0							
	0.0	0.0								•
	9.7	1967.0	904.0	0.8588	29.2					
	10.0	1947.0	904.0	0.7238	29.2				•	
	A0.000 A0.007	1947.0 .05	904.0	0.7238	24.7					
	120.	.05	č.							
	0.607	1.0	0.625				1			
	29.20		3500.	0 0.0 914	.106 9	14.106-				
	29.20		3000. 2500.	0 0.0 671		71.985- 34.119-				
	29.20		2000.	0 0.0 202		02.668-				
	29.27		1500.	0.020	•763 -	20.763-	1			
	29.20		1000.	0 0.0 -231	.356 -2	31.356-	1			
	29.20	0020 0.3500	500.		.022 -4 .023 16	05.022-	·1 1 C*	۰.		
					AAAF3 10.			¥.	-	

4-26

50.50000	0.00050	0.150002948.10120.	707.221	707.221 1	C.	0.
29.20000	0.00020	0.100007472.02610.	284.658	284.658 1	Ċ+	0.
29.20000	0.00020	0.092502306.33350.	175.096	175.096 1	C+	0.
29.20000	0.00020	0.087502119.58270.	62.729	62.729 1	Č+	0.
29.20000			-56.221	-56.221 1	Č+	ŏ.
		0.082501330.25080.		-466.518 1	č•	ö.
29.20000		0.080001299.59080.	-503.670		C+	
						0.
29.20000	0.00070	0.060001181.20300.	-698.006	-698.006 1	C+	0.
29.20000	0.00020	0.050001140.69500.	-780.959	-780.959 1	C+	0.
29.20000	0.00020	0.00010 600.47150.	-1384.243-	1384.243 1	C+	0.
29.20000	0.00020	0-00010 500-0000.	-1400.855-	1400.855	AL2730	•
29.20000	0.00010	0.350003450.80590.	1604.023	1604.023 1	C+	0.
29.20000	0.00010	0.200003158.75570.	992.289	992.289 1	Č+	0.
29.20000	0.00010	0.150002948.10120.	707.221	707.221 1	Č+	0.
29.20000		0.100002472.02610.	284.658	284.658 1	Č+	ö.
· 29.20000		0.092592306.33350.	175.096	175.096 1	Č+	ō.
29.20000		0.087502119.58270.	62.729	62.729 1	Č+	ŏ.
29.20000			~56.221	-56.221 1	č•	ö.
29.20000	0.00010	0.082501330.25080.	-466.518	-466.518 1	Č+	0.
29.20000	0.00010			-503.670 1	Č+	ě.
29.20000		0.060001101.20300.		-698.006 1	č•	ō.
29.20000						
	0.00010		-780.959		¢•	0.
50000		0.00010 600.47750.	-1384.243-	1384.243 1	C•	0.
50000	0.00010	0.00010 590.00000.	-1400.855-	1400.855 0	AL203#	0.

South States

Production of

- and the a set

"and not

Served Sub-Served & S. S. S. S.

about the and draw draw

and subject of the second

7.4 F

.

.

ź

ŝ

-United Co

and the set of the second

-

۰.

2

INPUT, SAMPLE PROBLEM 4 (CONCLUDED)

١

OUTPUT, SAMPLE PROBLEM 4

DECOMPOSING BACK-UP VIRGIN MATERIALS 22+24+26+26+30+ CHAR MATERIALS 23+25+27+29+31 MATEVIAL NOS. 3 IHROUGH 10 BACK-UP 645 • 00 00. • 45 ---HEAT OF FORMATION OF MATERIAL CUNSTITUENTS->-(BTU/LB) ---MATERIAL THERMAL PROPERTY DATA---ENTHALPY DATUM TEMPERATURE = 536.000 DEG RANKINE ENTHALPY DATUM TEMPERATURE = 536.000 DEG RANKINE DECOMPOSING BACK-UP NO. 1 ••• -5280.00 MATERIAL NO. 2 Char CHAR CHAR PLASTIC -376.50 PLASTIC -4807.00 MATERIAL NO. 1 VIRGIN PLASTIC

FINAL TIME (SEC= 120.00

٠,

OUTPUI INTERVAL = .500 SEC FROM INITIAL TIME UNTIL 2.000 SEC Outpui interval = 2.000 SEC FROM 2.000 SEC Until 10.000 SEC Output interval = 5.000 SEC FROM 10.000 SEC UNTIL FINAL TIME

MAXIMUM TIME STEP =1.00 SECONDS

INITIAL TIME (SEC) .000

CUNT.RESISTANCE .0000 •0000 0000 0000 RESERVOIR TLMPLRATUHE 530.00 --0000 000 NODAL DEPTH 000000 0000 000000 20000 0000 525000 .30000 BACK WALL Emissivity .000 RELATIVE THICKNESS 04000 .02000 (INCHES 50+01 ŝ 0.00 ē BACK WALL CONVECTION COEF BTU/FTS0-SEC-DLG R .0000 TEMPERATURE (DEG.RANKINE) 530.00 8 •1N11

Q,

NOOR DAHO/UTINE = GAMMA (BA*LAD(-EA/I)AHGSA(HHOB-RHORA)/RHOGA)**PSIA) • GAMMA (B&*EXP(-EB/I)HHOGB(HHOB-RHORU)/RHOGB)**PSIB) • GI-VAMMA)(BC*EXP(-EC/I)RHOUC(18P+OC-RHORC)/RHOGC)**PSIC) T HEAC (DEG R) T REAC
 ALECTION
 MHOO
 MHUH
 M
 MS1
 E
 T HAC

 ILTACUFT3
 (1/2451)
 (1/2451)
 (056 R)
 (050 R)
 (056 R)
 <t ACTION (LU/CU FT) (1/5EC) (DEG R) (DEG R) A 20.25 .00 .1400-05 3.00 .1560-05 1000. H 60.75 40.50 .4480-10 3.00 .3560-05 600. C 129-00 29-00 .0000 90000 RESIN VOLUME FRACTION, GAMM = .423(MASS FRACTION = .315) E (DEG R) ---DECOMPOSING BACK-UP KINETICS-------EACTION KINETLE CONSTANTS------HEACTION KINETIC EQUATION---REACTION RHOO DECOMPOSING BACK-UP NO. 1 Reaction Rhoo Rhom b 2 14/CU f1) (1/SEC) PSI A 20.35

4-28

CMA/CGM ANALYSIS AT AULATIVE TMADAT UF A SOLIU PHOPELLANT ROCKET MUTOR THADAT SUMPARE IS CARHON PHEMOLIC AT A 60 DEGREE LAVUP ANGLE: P#29 ATM FISSUME MODEL APPLIED TO SAMPLE PHUGLEM NO. 2 SAMPLE NO. 4

AEROTALMM CMARPING MATERIAL THERMAL RESPONSE AND ABLATION PHOGRAM Page 1

PAGE 2 SAMPLE NO. 4 AEROTHERM CHAPPLING MATEMIAL THEMMAL RESPONSE AND ABLATION PROGRAM

BLOWING REDUCTION PARAMETER 517 515 AEROTHERM CHARRING MATERIAL THERMAL RESPONSE AND ABLATION PHODRAM Aerother Sample No. 4 Sample No. 4 SAMPLE NO. SAMPLE NO. 0ENSITY = 405.000 LB/CU FT 18/UVLT1525-0E(5) 00059400 0005400 CH/CHO = PH1/(EXP(PH1)-1.) WHERE PH1 = 2.000Per. 001/CHO. BHP IN TABLE TABLES OF OPTICANE, MASS-FMACTION FUNCTIONS FOR THERMAL CONDUCTIVITY \mathbf{x} = $\mathcal{E}_1(\mathbf{x}) \bullet \mathbf{k} = \mathcal{E}_1(\mathbf{x}) \bullet \mathbf{k}$ HEAT PHESSURE COEFF (ATH) SECOND) 29,20000 4588 29,20000 7238 29,20000 7238 29,20000 29.20000 24.20000 29.20000 PRESSURE ---RES'~ DECUMPOSITION WAS SENSIBLE ENTMALPY---1.0000 1.0000 f. 57 F2(X) : "FUNCTION TABLE NO. 2 ASSIGNED TO DECOMPOSING MACK-UP NO. 1 F-FUNCTION TABLE NO. 1 ASSIGNED TO MAIN MATER: N. ---SUMFACE EQUILIERIUM DATA>--RADIATION HEAT RATE (BTU/SQ FT-SECUND) 944.00 964.00 994.00 994.00 Radiation Heal Rate 00°00£9 SECOND 1,000 J f1(X) 0000 F1 (X) TEMPERATURE (DEG R) 900.00 Entmalpy (BTU/LB) .00 RECOVERY Enthalpy (BTU/LB) 1447.00 1947.00 1947.00 1947.00 VIEW SPECIFIC HEAT (97U/L8-3E6) .1100 .1100 ŝŝ .00001 ••••••• ••••••• × × 990 091N PRUB OPTN ~~ o MATERIAL NO. 3 Temperature (Deg R) ' 500.00 S000.00 1 [HE (SEC) 10.00 60.00 11ME \$0.00 120.00 OUTPUT. SAMPLE PROBLEM 4 (CONTINUED) PAGE 3 LB/CU FT Emissivity LB/CU FT EHISSIVITY LB/CU FT LB/CU FI 91.536 L
 56NSIBLL
 6NTHALPT
 (BTU/LB) 89.362 (SENSIBLE ESTATBLE (BTU/LB) -1.7] 103.708
 56M518LE
 6NTHALPY
 (BTU/L8)
 -1.60 70.854 \$ENSIGLE ENTHALPY (BTUALPY (BTUALPY (BTUALP) 373.95 373.95 1101.46 1505.95 2595.95 1036.36 1101.48 1348.48 1596.73 2095.73 DENSITY CONDUCTIVITY DENSITY CONDUCTIVITY DENSITY CONDUCTIVITY 187U/FT-SEC-DEG) •0002130 •0002130 •00022470 •00022470 •00022470 •00022470 •00022470 (81U/FT-SEČ-046) 0002530 0002550 0002560 00021240 00021340 00021340 00021340 00023500 (810/FT-SEC-UEG) 0001107 0001100 0001100 0001100 0001100 0001100 0001100 DENSITY CUNDUCTIVITY HTU/FT-SEC-UEG) .0003180 +0004270 +0005820 0001350 0001350 0142000 0142000 SPECIFIC MEAT (\$TU/L8-DLG) • 2300 • 4300 • 4720 • 4720 • 4930 • 5980 • 5000 SPECIFIC HEAT SPECIFIC HEAT (97U/L8-066) . 2600 . 2750 . 1100 . 4720 . 4930 . 4930 . 4930 . 5000 SPECIFIC HEAT (1710/LB-DEG) -3600 -3600 -4720 -4720 -49300 -49300 -49300 -49300 -49300 -49300 -49300 -49300 -49300 -(PTU/LB-DLG) • 2100 • 4300 • 4320 • 4930 • 4950 • 4950 • 4950 • 5000

AEROTHERM CHARRING MATEMIAL THERMAL RESPUNSE AND ABLATION PROGRAM

MATERIAL NO. TEMPERATURE

1055 H) 530.00 530.00 11.00.00 1500.00 1500.00 2000.00 4000.00 5000.00

(05 0 8) 530 00 1500 00 1500 00 1200 00 2000 00 5500 00 5500 00

MATERIAL NO. TEMPERATURE

4-29

MATERIAL NO.22 TEMPERATURE

1066 R) 510.00 510.00 1100.00 12500.00 12500.00 2200.00 5000.00 5000.00

MATERIAL NO.23 TEMPERATURE

afnotherm cmanning material informal mesounse and ablation prounam pace 5 Pace 5 Sample NO. 4

4 - 49.2000 AIH
 4 - 49.2000 AIH
 5 - 49.2000 AIH
 5 - 49.2000 AIH
 5 - 40.2000 AIH
 5 -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PHOU SUMFACE 2400 SUMFACE 240 SPECIES 240 C 240 C 31 C 31 C 31 C 31 C
144 144 144 144 144 144 144 144 144 144	CHEM.PHOU (MTU/LM) *74.24 *754.94 176.27 316.21 -364.31 -364.31 -364.31
1000 1000 1000 1000 1000 1000 1000 100	000 11 04 04 04 04 04 04 04 04 04 04 04 04 04
41514 41514 41514 41514 4151 4151 5005 500 500 500 500 500 500 500 500	PRESSURE 29.2000 ATM SURFACE TEMP H-UG SPECIES 10E6 M - U-U- 29.2015,22 - 08 4151,420 - 08 4151,450 - 08 4151,450 - 08 4151,450 - 101 C - 5106,58 - 120 C - 5206,58 - 12000,58
000000	PRE SSURE SURF ACE SPECIES C C C C C C C C
22.02 12.02 12.02 10	.0001
	114400000
600 60 60 60 60 60 60 60 60 60 60 60 60	H-D01-045/CH 16MP 16MP 10E0 H) CMARCI 1080-00 1080-00 2021261.17 21261.17 21264.45 21264.45 2020 21264.45 2020 20

OUTPUT SAMPLE PROBLEM 4 (CONTINUED)

PAGE 1+ AEROTHERA CHARRING MALERIAL THEMMAL MESPONSE AND ABLATION PROGRAM

Сн/сно

.9532

-SEC)

HEAT COEFF

- 10.0000 SECONDS -H WALL H EDGE (BTU/LB) (BTU/LB) 1384.86 1947.00

TIME SUAF PROB SURFACE STEP 11ER OPTN RAD (1N) 123 1 1.2719

<u>_</u>`?

AEROTHERM CHARRING MATEMIAL THERMAL MESPUNSE AND ABLATION PROGRAM AEROTHERM CHARRING MATEMIAL THERMAL WESPUNSE AND ABLE DO . A Sammer Do .

----104100----

١,

CH/CHO .00000 M CHAR M GAS 4La/Orig SQ^F1) •000000 •000000 -SEC)

PTROLYSIS (.98) 5 ---RCESSIUNS/RECESSION RATES-(IN) / (IN/SEC) (IN) (.02) (OD .000000/ .000000) SURFACE • 0000000/ • 000000

----SUMFACE ENERGY FLI CURRENT RATES 14TU/50 1 AND INTEGRATED VALUES 14 RADIATED PADIATED 000. CONVECTED IN • 000 • 000 RATE TOTAL

4-31

CONDUCTION AWAY

:::

COND (BTU/) FT SC F) .000107 LOSS AT REAR FACE .000 .000 DENSITY L TONAOE IN SOLID LS (BTU/ORIG SQ LVECTION ST 4 SOLIDS IN ---INTERIOR EMERGY TERMS---47 Rates (Btu/SQ FT Sumface Tegrated Values (Btu/Orig S HAT 100 200 ABSORPTION WI COND (BTU/ 89.362 89.362 89.362 89.362 89.362 89.362 89.362 89.362 89.362 89.362 89.362 DENSITY CURPS AND INT PYROL GAS PICK UP TEMP 000 33 NODE MAT RATE TOTAL

OUTPUT, SAMPLE PROBLEM 4 (CONCLUDED)

H CHAR H GAS (LB/ORIG SQ FT) .758408 .576524 PYROLYSIS (.98) ---RECESSIONS/RECESSION RATES-(1N) / (IN/SEC) [1N] / (IN/SEC) CMAM (02) .144[457/-.000038] ---ABLATION RATES---B PHIME B PRIME 6 N 001 CMR N 001 GAS (LANSO FT-SEC) .36617 .1.4669 .257366 .039433 SURFACE •1218793/ •0097448

.360.03 CONDUCT LON 10.465. 570+03 .194.03

---SURFACE ENERY FLUX TEHN, CURRENT RATES (810/50 FT SUNFA IND INTEGRATED VALUES (810/00H10 RADIATED RADIATED AUTOR CONVECTED IN FATE TOTAL

ERGY TERHS ... -INTERIOR EN CURRENT RATES AUTU

DENSITY 5704/6E IN SOLID 138-03 8 5 5 5 SG FT SCHFACE S (87U/0416 S (VECTION 4 SOLIDS 1 168-03 269-04 VODE HAT 3 ABSORPTION DENSITY PYROL 645 PICK UP • 000 • 000

LUSS AF 1:EAR FACE •691-01 •120+00

COND (BTU/

22

TEMP 066 R) 763.61

Y COND (BTU/ FT) FT SC F) 4753.11 4158.50 2945.05 050

NODE MAT

RATE TOTAL

REFERENCES

- Moyer, C. B. and Rindal, R. A., "Finite Difference Solution for the In-Depth Response of Charring Materials Considering Surface Chemical and Energy Balances." Aerotherm Corporation Final Report 66-7, Part II, March 14, 1967 (also NASA CR-1061, June 1968).
- McCuen, P. A., Schaefer, J. W., Lundberg, R. E., and Kendall, R. M., "A Study of Solid-Propellant Rocket Motor Exposed Materials Behavior." Vidya Division, Itek Corporation, Palo Alto, California, AFRPL-TR-65-33 (AD-462 331), February 26, 1965.
- 3. Aerótherm Corporation, Mountain View, California, User's Manual, Aerotherm Charring Material Ablation Program, Version 2, Second Edition, January 1969.
- Rindal, R. A., Clark, K. J., Moyer, C. B., and Flood, D. T., Experimental and Theoretical Analysis of Ablative Material Response in a Liquid - Propellant Rocket Engine. Aerotherm Corporation, Mountain View, California, NASA CR-72301, September 1, 1967.
- 5. Baker, D. L., Wool, M. R., and Schaefer, J. W., "A Dynamic Technique for Determining the Thermal Conductivity of Charring Materials." Eighth Conference on Thermal Conductivity, October 7-11, 1968, Thermophysical Properties Research Center, West Lafayette, Indiana.
- 6. Kendall, R. M., Rindal, R. A., and Bartlett, E. P., "A Multicomponent Boundary Layer Chemically Coupled to an Ablating Surface." AIAA Journal, Vol. 5, No. 6, June 1967, pp. 1063-1071.
- Bartlett, E. P. and Grose, R. D., "An Evaluation of a Transfer Coefficient Approach for Unequal Diffusion Coefficients." Aerotherm Corporation, Mountain View, California, Report 69-50, June 30, 1969.
- Aerotherm Corporation, Mountain View, California, User's Manual, Aerotherm Equilibrium Surface Thermochemistry Program, Version 3, Aerotherm Report UM-70-]3, May 1970
- 9. Powars, C. A. and Kendall, R. M., "User's Manual, Aerotherm Chemical Equilibrium (ACE) Computer Prøgram, Aerotherm Corporation, Mountain View, California, May 1969.
- 10. Aerotherm Corporation, Mountain View, California, User's Manual, Aerotherm Equilibrium Surface Thermochemistry Program, Version 2, June 1966
- Bartz, D. R., "A Simple Equation for Rapid Estimation of Rocket Nozzle Convective Heat Transfer Coefficients." Jet Propulsion, Vol. 27, No. 1, January 1957, pp. 49-51.
- Schaefer, J. W., Dahm, T. J., Rodriguez, D. R., Reese, J. J. Jr., and Wool, M. R., "Studies of Ablative Material Performance for Solid Rocket Nozzle Applications." Aerotherm Corporation, Mountain View, California, Report No. 68-30, NASA CR-72429, March 1, 1968.
- 13. Wool, M. R., Moyer, C. B., Powars, C. A., Reese, J. J. Jr., Rindal, R. A., "Rocket Engine Ablative Material Phenomena." 'Aerotherm Corporation, Mountain View, California, Draft Final Report, Contract NAS3-10291, April 1, 1970.
- 14. Spalding D. B., Convective Mass Transfer, Edward Arnold, Ltd., London, 1963.
- 15. Kays, W. M., <u>Convective Heat and Mass Transfer</u>, McGraw-Hill Book Co., New-York, 1966.

R-1

APPENDIX A

SOME SUGGESTIONS FOR SELECTING NODAL SIZES

£

0

APPENDIX A

SOME SUGGESTIONS FOR SELECTING NODAL SIZES

A.1 GENERAL REMARKS

Experience with particular problems will always be the best guide in selecting the sizes of the finite difference nodes within the heated material. Nevertheless, it is possible to set down some very rough guidelines for nodal size which require only a preliminary stimate of the overall character of the solution history rather whan detailed experience with closely related problems. The following subsections describe how such preliminary estimates can be turned into moderately useful nodal size assessments.

A.2

NODAL SIZES RELATED TO TIME CONSTANT INFORMATION

Most transient problems have some identifiable time constant which can be used to select a nodal size. This time constant is either the basic resistance times capacitance time constant of the system (usually, of course, the chief resistance is found in the ablating material itself, since the outer heat transfer conductance is very high in most ablation problems) or some time constant associated with a transient boundary condition. The second case is the simpler of the two to visualize: obviously, we want the time constant of the nodal zones to not be significantly larger than the time constant of the boundary condition, $\theta_{\rm cb}$. The time constant of a node is simply

$$\theta_{\rm cn} \approx \frac{\rho C_{\rm p} \delta A}{k A / \delta} = \frac{\delta^2}{\alpha}$$
 (A-1)

where ρ , C_p , and k are evaluated at the nodal temperature. Thus, the first nodal size criterion is simply

 $\frac{\delta^2}{\alpha} \approx \theta_{\rm Cb} \tag{A-2}$

 $\delta \approx (\alpha \theta_{\rm cb})^{\frac{1}{2}}$ (A-3)

or

For problems with relatively steady boundary conditions, Equation (A-3) will not yield useful results and one must consider the "natural" time constant of the ablating material, i.e., the first case mentioned above. For a problem with negligible recession and steady boundary conditions, no single set of nodes can be appropriate for the entire problem history. If we let θ_i stand for the time around which interest centers, then the standard similarity solution for the transient temperature in a constant properties slab initially at constant temperature T_i with steady surface temperature T_o impressed at $\theta = 0$ shows that the dimensionless temperature $(T - T_i)/(T_o - T_i)$ has decayed to less than 0.1 at $x/2(\alpha \theta_i)^{\frac{1}{2}} \approx 2$. If we want 10 or so nodes distributed over this region, then

$$\delta = \frac{x}{10} \approx \frac{4(\alpha\theta_{i})^{\frac{1}{2}}}{10} = 0.4(\alpha\theta_{i})^{\frac{1}{2}} \qquad (A-4)$$

which naturally enough is similar to the result of Equation (A-3), even though two different time concepts are involved.

A.3

NODAL SIZES RELATED TO SURFACE RECESSION RATE INFORMATION

If (as is usual) the problem has surface recession S, then some additional time step considerations must be made. If S and T_w are constant values impressed at time zero for a constant properties slab initially at T_i , the simple analysis shows that the in-depth temperature profile as measured from the heated surface ultimately attains a steady shape

$$\frac{\mathbf{T} - \mathbf{T}_{i}}{\mathbf{T}_{o} - \mathbf{T}_{i}} = e^{-\mathbf{S}\mathbf{x}/\alpha}$$
(A-5)

This profile decays to 0.1 for $Sx/\alpha \approx 3$; if we want, say, 10 nodes in this interval then

$$\delta = \frac{x}{10} = \frac{3\alpha}{10\dot{s}} = 0.3\alpha/\dot{s}$$

However, a slightly tighter criterion than this derives from a basic accuracy study of the particular finite difference equations used in CMA. This study, reported in Appendix B of Reference A-1 below, indicated that for good in-depth accuracy one should satisfy the restriction

$$\delta \approx 0.1\alpha/\dot{S} \qquad (A-7)$$

*≯ A−2 A final result of interest may be obtained by noting that the constant \hat{s} , constant T_w problem described here does have a transient beginning and approaches the steady state only as a limit. References A-2 and A-3 show that this limit, as measured by the closeness of approach of q_{cond} to its steady state value is reached to within a few percent at

$$\approx \alpha/\dot{S}^2$$
 (A-8)

It is very interesting to observe that if we consider the time given by Equation (A-8) as the "time of interest" and substitute it into the time constant result (A-4), we obtain the result

A

δ

which harmonizes rather remarkably with Equation (A-6), derived from steady state profile considerations.

A.4 CONSEQUENCES OF SELECTING INAPPROPRIATE NODE SIZES

The selection of node sizes much smaller than necessary generally merely increases the computing time to far above what could be achieved with more reasonable nodal sizes. In theory, extremely small nodal size could introduce excessive numerical round-off error problems, although this has never been observed in practice with the CMA program.

The choice of too large nodes usually results in a non-obvious lack of accuracy for the entire prediction, especially for the in-depth temperature profile. Important problems should be computed with two different choices of nodal sizes for a check of the accuracy attained. Gross violations of restriction (A-7) sometimes cause drastic and obvious oscillations in the in-depth predictions.

A.5 REMARKS ON NODELETS

2

As noted in Section 2.1.1 above, the pyrolysis events in the CMA program are computed in a grid of "nodelets" finer than the nodal grid used for the energy calculations. The number of "nodelets" per node may be selected by the user. Experience to date has not been sufficient to lay down any general rules for selecting the number of nodelets per node in various applications. Ten appears sufficient, although many problems seem to do well with fewer. The number of nodelets per node often has an appreciable effect on computation time (see Appendix B below), and for an extensive series of calculations it is worthwhile to minimize this number (by experiment) to reduce costs.

A.6 SUMMARY

The user confronted with an ablation problem outside the range of his prior experience can draw upon several rough guides to select nodal sizes. Locally throughout the material, nodal thicknesses should satisfy the basic thermal profile penetration relation

$$\delta \approx 0.4 (\alpha \theta_i)^{\frac{1}{2}} \qquad (A-10)$$

where θ_i is a representative real time of principal interest and α is evaluated locally throughout the material. For example, suppose the user is studying nozzle ablation during a 60 second rocket firing and specifies output every 10 seconds. The "real time of interest" to the user is evidently about 10 seconds, since the first output will occur then. The user would set θ_i equal to 10 seconds in Equation (A-10), and select α values for the char for estimating nodal spacing near the surface. Values of α for the virgin plastic would be used for estimating the nodal spacing deeper in the material.

For time varying boundary conditions with a "time constant" or time scale of $\theta_{\mbox{cb}}{}'$

$$\delta \approx (\alpha \theta_{\rm cb})^{\frac{1}{2}}$$
 (A-11)

if this variation is to be "followed" accurately by the in-depth solution. For example, suppose the user is analyzing heat shield ablation during a reentry for which the "heating pulse" rate rises from zero to a maximum in 60 seconds and then decays again in an additional 100 seconds. Speaking in very approximate terms, the "time constant" of such a pulse represents the time required for the pulse to rise about half way from "trough" to peak or to sink roughly half way from peak to trough. This gives time constants of 30 and 50 seconds; the user would naturally select the shorter one for use in Equation (A-11).

Finally, if recession is important, nodal sizes should also satisfy

$$\delta \stackrel{\leq}{\approx} 0.1 \alpha/\dot{S}$$
 (A-12)

to preserve accuracy of the solution.

Most generally users prefer to grade the nodal sizes within the general limits set by these guidelines, beginning with smaller nodes near the heated surface and expanding to rather large nodes (even violating these guidelines) in regions where the thermal pulse does not penetrate, or just begins to penetrate. It is recommended that the user make the first node half the thickness of the second node in all cases, since the program assumes the first node is in fact a half node with only half the usual number of nodelets.

REFERENCES FOR APPENDIX A

٤.

SET YU

2

- A-1. Moyer, C. B. and Rindal, R. A., "Finite Difference Solution for the In-Depth Response of Charring Materials Considering Surface Chemical and Energy Balances. Aerotherm Corporation, Mountain View, California, Aerotherm Report 66-7, Part II, March 14, 1967 (also NASA CR-1061, June 1968).
- A-2. Rindal, R. A., Flood, D. T., and Kendall, R. M., "Analytical and Experimental Study of Ablation Material for Rocket-Engine Application," Vidya Division, Itek Corporation, Palo Alto, California, NASA CR-54757, May 15, 1966.
- A-3. Baer, D. and Ambrosio, A., "Heat Conduction in a Semi-Infinite Slab with Sublimation at the Surface." Space Technology Laboratories, Inc., Pasadena, California, TR-59-0000-00610, February 24, 1959.

A-5

APPENDIX B

. 5

ĺ

.

ESTIMATION OF EXECUTION TIME

.

...

7

APPENDIX B

ESTIMATION OF EXECUTION TIME

Estimates of computer run time can generally be made by determining the required computation time per time step and multiplying this by the estimated number of time steps needed (equal to problem time divided by time step size). The following sections will discuss this approach. A quicker estimate, adequate for some purposes, may be obtained from the simple empirical statement that most CMA problems consume computer time at a rate of about 20 to 30 percent of the real problem time. This estimate applies to charring problems of about 50 nodes with recession rates less than about 25 mils/sec.

B.1 ROUGH ESTIMATES OF COMPUTER TIME PER TIME STEP

"Typical" problems of the type cited above have been observed to require about 50,000 µsec to 100,000 µsec per time step on Univac 1108 and CDC-6600 machines, and about 500,000 µsec per time step on the IBM 7094 machines.

B.2 REFINED ESTIMATES OF COMPUTER TIME PER TIME STEP

A refined estimate of the computer time required per time step can be obtained from a count of arithmetic operations. The following table of the number of operations in each section of the Charring Material Ablation program provides a useful estimate of execution time as a function of the number of nodes, the number of nodelets per node, and so on.

The input subjoutine and all other operations, such as output, not performed each time step, have not been included. Only floating arithmetic is considered.

As an example, with the average operating times for the IBM 7094 (add and subtract = 14 s, multiply = 7 s, divide = 12 s, expf = 188 . logf = 226 s), this table yields the following floating arithmetic time escin te per time step.

	Add .	Subtract	Multiply	Divide	Expf	Logf
Miscellaneous Nodal Computa- tions, per Node	32	36	64 ·	25 [°]	0	Ŏ
General Decompo- sition, per De- composing Node	22	15	13	, 3	0	0.
Component Decompo- sition, per Com- ponent for each Decomposing Nodelet	1	3	4	3	3	2
Surface Calcula- tions, per Iteration	25	39	50	10	1	0

TABLE OF FLOATING OPERATIONS FOR ONE TIME STEP

 $T = [(1136 \cdot I + 645)J \cdot P + 1700]N + K(1534) \mu sec/step$

where

T = execution time for a single time step (μ sec)

I = number of decomposing components in the material.

J = number of nodelets per node

F =fraction of nodes decomposing

N = total number of nodes

K = number of iterations in surface energy balance

In this equation, F should be an average value for the fraction of nodes actively decomposing during the problem (usually between 1/3 and 1/2). A study of numerous problems reveals that K averages very close to 3.

* The resulting total time must be multiplied by a factor to account for "administrative" arithmetic such as DO loop indexing. Experience with this program on the 7094 suggests a factor between 1.4 and 1.5

B.3

DETERMINATION OF NUMBER OF TIME STEPS REQUIRED

To estimate total execution time, the time per time step T may be multiplied by the total number of time steps, a number approximately determined by the user in the choice of the maximum time step allowed (see Section 3.1.3

B-2

above). For some problems, however, a built-in limit based on the recession rate turns out to be smaller. This limit prevents the time step $\Delta\theta$ from allowing more than the thickness of one nodelet to ablate during a time step; thus

$$\Delta \theta \stackrel{\leq}{=} \min (2\delta_1, \delta_2, \delta_3, \delta_4, \dots, \delta_{\mathrm{NL}_{\min}}) / \mathfrak{s}_J$$

where the δ 's are the nodal thickness in the main charring material and $\delta_{\text{NL}_{\text{min}}}$ is the minimum allowed thickness for the last ablating node (Section 3.1.3, p. 3.3 above).

B.4 OTHER CONSIDERATIONS

55

Additional machine time will be consumed by input and loading operations, overlay or special tape handling (if necessary), and output operations, the details of which are peculiar to individual computing facilities.

B-3

Aerotherm Corporation Mountain View, California Aerotherm Corporation Mountain View, California Aerotherm Corporation Mountain View, California Aerotherm Corporation Multiple and Content of the second of t	(Security classification of title, body of obstract and inde	zing annotation must be entered when the everall report is classified;
Mountain View, California Menuntain View, California Mercer for a contract of the second and shall be second and Sample Problems Outcomerve events (Are events and shall be second User's Kanual Dr. Carl B. Moyer Mitchell R. Wool Mercer oare April 1970 Contract of second and be second and be second POAG11-70-C-0012 Mitchell & Subject to special export controls and each trans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO). Edwards California 9352 Destination material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, 'including planes, cylinders Spheres, and more general thermal and ablation material, several charring back-up materials, and amyltiple non-charring material back-up structure.	ORIGINATING ACTIVITY (Corporate suffer)	a. REPORE SECURITY CLASSIFICATION
ABOUNT WILL User's Manual - Aerotherm Charring Material Thermal Response and Sample Problems Determined and additionation and some Determined and additionation and addition additionation and addition additionation additionationa		
User's Manual - Aerotherm Charring Material Thermal Response and Ablation Program, Version 3 - Volume I - Program Description and Sample Problems Detering Manual Autoent (Manual Autoent) (Marram, alds which determine Mitchell R. Wool Mitchell R. Wool	Mountain View, California	
Ablation Program, Version 3 - Volume I - Program Description and Sample Problems Discriminus motion induction dates) User's Manual Autroshift/formers.addite Math. Lawrence) Dr. Carl B. Moyer Mitchell R. Wool Mitchell R. Wool	REPORT TITLE	
Sample Problems Determine the set of the set	User's Manual - Aerotherm Charri	ing Material Thermal Response and
Descrive using for a frager and declarity dates User's Manual Arronting/fight mass, side indict, bet among Dr. Carl B. Moyer Mitchell R. Wool Mitchell R. More Mitchell		Jume I - Program Description and
User's Kanual Automany first mass attemption and the first mass Dr. Carl B. Moyer Mitchell R. Wool	-	
Automorphic and adde which two among Dr. Carl B. Moyer Mitchell R. Wool	DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Dr. Carl B. Moyer Mitchell R. Wool Mercant Jave April 1970 CONTRACT OF SEART JAC. FOA611-70-C-0012 Muthod Second Se		· · · · · · · · · · · · · · · · · · ·
April 1970 April 1970 CONTRACT OR GRANT YOU FOAGLET NO CONTRACT OR GRANT YOU FOAGLET NO CONTRACT OF REPORT NUMBER FOAGLET NO CONTRACT FOAGLET NO CONTRACT This document is subject to special export controls and each +rans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINPO), Edwards, California 9352 FORMATION STATEMENT This two-volume report describes a Fortran-IV computer code which computes the transient thermal and ablation response of a charring insulation material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material, several charring back-up materials, and amyltiple non-charring material back-u structure.		
April 1970 31 15 CONTRACT OF SEALUTION POAG11-70-C-0012 MMM DM-T0-14 (Vol. I) Controls and each +rans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 MARCE Recent Activity Air Force Rocket Propulsion Labora Edwards Air Force Base, California 10 20 20 20 20 20 20 20 20 20 2	Mitchell R. Wool	<u>`</u>
April 1970 15 CONTRACT OF SEAAT 700 POA611-70-C-0012 MMM December 2012 MMM December 2	• • •	
CONVENCE ON GRANT NO. PO4611-70-C-0012 MMM RADIGOTION STATEMENT This document is subject to special export controls and each *rans- mittal to foreign governments or foreign nationals may be made only with prior approval of APRPL (REPORT/STINFO), Edwards, California 9352 NUPPLEMENTARY NOTE This two-volume report describes a Fortran-IV computer code which computes the transient thermal and ablation response of a charring insulation material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material back-u structure.		
AFRPL-TR-70-92 Minimum of the subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 MUTLING NEWLY MOVES Air Force Rocket Propulsion Labora Edwards Air Force Base, California Assumate This two-volume report describes a Fortran IV computer code which computes the transient thermal and ablation response of a charring insulation material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material, several charring back-up materials, and amyltiple non-charring material back-us structure.	-	
AFRPL-TR-70-92 AFRPL-TR-70-92 Ditement is subject to special export controls and each trans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 NUMELING NEWLYS Air Force Rocket Propulsion Labora Edwards Air Force Base, California Assence This two-volume report describes a Fortran IV computer code which computes the transient thermal and ablation response of a charring insulation material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material, several charring back-up materials, and amultiple non-charring material back-us structure.	F04611-70-C-0012 mem	UM-70-14 (Vol. I)
AFRPL-TR-70-92 Minimum of the subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 MUTLING NEWLY MOVES Air Force Rocket Propulsion Labora Edwards Air Force Base, California Assumate This two-volume report describes a Fortran IV computer code which computes the transient thermal and ablation response of a charring insulation material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material, several charring back-up materials, and amyltiple non-charring material back-us structure.	PROJECT NO	
AFRPL-TR-70-92 AFRPL-TR-70-92 This document is subject to special export controls and each trans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 THERE AND AFRE AND AFR	, , , , , , , , , , , , , , , , , , ,	
Contransurion statement This document is subject to special export controls and each trans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 DUPPLEMENTARY MOTES This two-volume report describes a Fortran IV computer code which computes the transient thermal and ablation response of a charring insulation material structure. The program is for one-dimensional bodies, but can treat a variety of shapes, including planes, cylinders spheres, and more general thermal "stream tube" bodies. The program can treat complex systems including a main ablating material, several charring back-up materials, and amultiple non-charring material back-u structure.	ž ·	this report)
This document is subject to special export controls and each +rans- mittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (REPORT/STINFO), Edwards, California 9352 Dependent of the second of the s	L	// AFRFL·IR·/U·92
		Air Force Rocket Propulsion Laborat Edwards Air Force Base, California
	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several
2	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several
3	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several
2	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several
	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several
2	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several
	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several amultiple non-charring material back-up
	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several amultiple non-charring material back-up
D 1000 1473 REPLACES DO FORM 1472, 1 JAN 64, WHICH 18	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several a multiple non-charring material back-up
D 1000 1473 REPLACES DO FORM 1475, 1 JAN 64, WHICH 18	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several a multiple non-charring material back-up
D 100 1473 REPLACES DO FORM 1075, 1 JAN 64, WHICH 18	computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several a multiple non-charring material back-up
D 1473 DECLETE DO ANNU VIE.	This two-volume report describes computes the transient thermal a insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclu- charring back-up materials, and	Edwards Air Force Base, California s a Fortran IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several a multiple non-charring material back-up
	This two-volume report describes computes the transient thermal insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclue charring back-up materials, and structure.	Edwards Air Force Base, California s a Fortran-IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several a multiple non-charring material back-up
Security Classification	This two-volume report describes computes the transient thermal insulation material structure. bodies, but can treat a variety spheres, and more general therma can treat complex systems inclue charring back-up materials, and structure.	Edwards Air Force Base, California s a Fortran-IV computer code which and ablation response of a charring The program is for one-dimensional of shapes, including planes, cylinders al "stream tube" bodies. The program ding a main ablating material, several a multiple non-charring material back-up

4.	curity Classifica			LIN	K A	LIN	K P	LIN	ĸc
	/	KEY WOR	D\$	ROLE	WT	ROLE	#T	ROLE	w1
Char Chem Chem Equi Fort Heat Resi Rock Soli Surf Ther Ther	dary layen ring ablat ical equil istry librium co ran comput transfer rogeneous n degradat et nozzle d Propella ace Reacti mal decomp mal respon mochemist	tors librium omputer co ter progra Chemistry tion analysis ant ions position nse	um () , ', ', ', ', ', ', ', ', ', ', ', ', ',					-	
USCI.		(computer			·				
	•								
			,						
	•	,	,	1					
`									
			•						
			-						
			·.			ŀ			
			. /						
•		·	/ · · ·			Į			ł
-		· ·	/ .						
						ł		1	
		2	1						
		•							
			, ,						
	٥			1		1			

Security Classification

..,