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ABSTRACT

A We- present/,the qualitative features of a first-order, hard-core lattice model

for fraciure- and embrittlement . The specific statistical mechanical technique used

involves the evaluation of the classicai configurational partition function using the

cell-cluster approximation scheme. ^Ase.oMtine the philosophy behind such aS. .k - -- *;- -:i ...••

geometric approach, precedent for it, and some consequences of it. We-ha~vesketched_
A

the formalism of the statistical mechanics of closed-packed lattices of hard-core

systems whichre emplo. y0 lto specific calculations that are currently

in progress using this formalism and c mert on other prospects for study which are

inclusive within the domain of applicaIllit7 of the model

I~ \



PREFACE

This technical report presents a qualitative description of our first-order

model for fracture and embrittlement. We feel that we shall be able to describe

many of the features of fracture and embrittlement from the viewpoint presented

Sa lattice theory for which we consider systems of interacting U -dimensional

hard particles. This report presents the basic viewFoint only. The viewpoint is,

we feel, a useful one. We have, however, accumulated some quantitative results

which are consequences of the model. However, due to the extraordinary complex-

ity of this class of solid-state phenomena it is presumptuous to entertain that our

approach will be more than a contribution to this fascinating subject. Nevertheless,

we hope that at some later time we may be able to write a similar technical report

which presents a complete statistical mechanical theory for fracture and embrittle-

ment.

ii
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1. INTRODUCTION

This paper is concerned with the presentation of a viewpoint which we feel has

promise in being able to characterize features of the mechanism operating in a class

of problems of engineering and materials importance. We suigest that the global

features of fracture, failure, and embrittlement which are manifested in a wide varie-

ty of materials ranging from metallic to polymeric and from amorphous to crystalline

are the result of a geometric denouement involving large numbers of particles. Thus,

we shall cc-nsider fracture and embrittlement to be a cooperative, many-body effect.

As such, this class of problems is related to other highly complex and incompletely

u,•derstood cooperative manifestations such as melting, crystallization and condensa-

tion phenomena.

Our remarks will be generally addressed to the phenomenon of fracture; however,

we shall consider also specific derivative manifestations such as liquid-metal embrittle-

ment as an example of an environmentally-influenced materials failure phenomenon.

A natural way to proceed with the characterization of fracture as a cooperative

effect is to obtain first a convincing description of the phenomenon using classical statis-

tical mechanics. This viewpoint then admits quantum-mechanical features to be of

second order and superimposed on a correct classical description. While a general

dynamical theory is necessary in order to describe uniquely non-equilibrium behavior

such as crack-tip propagation such time-dependent phenomena will not be considered

in this paper.

Undoubtedly specific quantum-mechanic,. effects do play a role in fracture and

embrittlement particularly with regard to the interaction of an "embrittling" liquid metal

with the host-metal substrate. However, we contend that the nature of this interaction

is, in itself, not catastrophic. Rather, we suggest that in the presence of an external or

internal stress fractu'e, failure, and embrittlement occur because of an ampiification
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and propagation of unstable geometric configurations of atoms. A liquid metal would thus

serve to destabilize an otherwise stable (geometric) crystalline configuration by entry into

and destabilization along a grain boundary. Geometric destabilization merely implies

that when the integrity of an otherwise stable crystalline array is compormised by the dis-

ordering effect of a liquid "array" of atoms (admitting diffusion as aiding and abetting

this disordering process but not controlling it) then in the presence of a sufficiently large

internal or external stress field the material will collapse inasmuch as a disordered sub-

stance cannot sufficiently accommodate such modes of instability.

The propagation of a geometrically unstable center or nucleus (an array of atoms

having a density characteristic of a liquid) under the influence of an external stress field

(generally, but not necessarily, along a grain boundary) readily simulates crack-tip propa-

gation. Again, the quantitative features of this propagation will not be considered here

and we will restrictourselves to properties of equilibrium lattice configurations.

A central property of a lattice as far as this program is concerned is its "stability"

both in the absence of and in the presence of an external stress. We will thus try to ascertain

some measure of relative crystalline stability for several geometrically different types of

lattices.

Our approach of considering the statistical mechanics of fracture and embrittlement

rathe, than the continuum mechanics of +he problem is perhaps worth a few comments. Con-

tinuum mechanics generally has been considered by engineers to be a more useful approach to

fracture than statistical mechanics because a great deal has been learned about metals and

solids by considering their "microstructure" in contrast to their atomic structure. Of course,

it must be recognized that continuum mechanics and statistical mechanics are simply different

levels of description. Continuum mechanics and particle (statistical) mechanics are dual

physical constructs. Our viewpoint is that atomic structure and interactions do indeed play

a very significant role in fracture and embrittlement, neither of which being specifically

accounted for by continuum mechanics but both being central to statistical mechanics.
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Induced plasticity due to a martensitic transformation is an example of how a change in

atomic structure gives rise to an effect able tobe characterized on the level of conti-

nuum mechanics. We emphasize that on the continuum level it is not necessary to consi-

der "quantum-mechanical interactions" or interactions at all (other than the unique

continuum type of "interaction", the action-at-a-distance, stress). For example, the

apparent unique features of a martensitic transformation are its structural or geometric

aspects rather than the nature of carbon-iron interactions. In our words, quantum-

mechanical features are of second order. Nevertheless, these structural or geometric

aspects are within the domain of particle and statistical mechanics and it is to these

features at this level that we shall direct our attention. The power of statistical mecha-

nics lies in being able to characterize bulk behavior, incl uding "microstructure", from

Sa knowledge of interparticle interactions. Our goal is to model fracture and embrittle-

ment phenomena using purely.-repulsive, classical potentials of interaction. While bulk

solid-stam'te behavior is many body in nature, our calculations necessarily must be small-N

calculations. As suchthey are but approximations to true many-body behavior. We shall

nolbe interested herein in whether or not the thermodynamic limit exists forsuch quantities.

Inasmuch as liquid-metal embrittlement is an unusually complex phenomenon in terms

of the number of parameters that are operating in a given engineering environment an

attempt to model the phenomenon on the basis of hard-particle interactions possesses several

advantages. First, the nature of the interparticle interaction is fixed. Second, the lattice

configuration and particle density are able tobe varied in a controlled manner. Third,

impurities and lattice imperfections may be carefully controlled; they may be completely

excluded or "induced" in any proportion.

We expect that a sufficient concentration and molecular arrangement of lattice

defects must play a role in fracture phenomena. In the next stages of our program we

intend to model such defects also. However, the early stages of this program are addressed
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to crystals that have perfect crystalline order. It has been shown in other statistical

mechanical-type calculations 1 '2 that the small defect population at melting is

proportional to exp(-PV/NkT). As such, this number has virtually no effect on the

bulk thermodynamic properties of a solid and justifies the use of a highly structured

model such as we employ.

The contents of this paper are as follows. In section 2we outline the formalism

of classical statistical mechanics by which we can quantitatively consider various stable

and unstable lattice configurations. in section 3 we consider the geometric features

inherent in our model using the formalism developed in section 2. In section 3 we

further speculate on the mapping of features of this geometric model into the phenome-

nology of fracture and embrittlement. In section 4 we outline other relevant phenomena

which may be embedded within this model.

2. CLASSICAL STATISTICAL MECHANICS OF HARD-CORE SYSTEMS

A. Introduction

Knowledge of the classical configurational partition function,QN , allows a

computationof various macroscopic properties and presumes the nature of the intermolecular

interaction governing the bulk matter of interest. As our program is involved with

various solid-state phenomena as observed macroscopically we are interested inbeing

able to reproduce these properties in the simplest way possible in order to delimit the

necessary conditions predicating the phenornena. We can thus take advantage of

developments generated by a school of statistical physics which has considered various

manifestations of systems of particles governed by classical, purely-repulsive forces.

Such forces are of interest for several reasons. First, the many-body problem, the

problem of ascertaining the consequences of the interaction of a number of particles

of 0(N) , is perhaps the central problem of theoretical physics, if not of all physical



5

science. The many-body problem is unlikely ever to be completely solved in

closed form for realistic potentials of interaction . Using simple, mathematically

tractable potentials such as the hard-sphere potential, it is possible, however, to

ascertain some of the features of the interaction of a small number of particles. In

fact,, for one-dimensional hard. spheres (rods), there are several famous exact results

for the many-body problem. That is, it is possible to evaluate the classical parti-

tion function and reduced distribution functions and various ensemble-averaged

properties upon which they depend for an infinite number of particles interacting

(along a line) in one dimension. Exact results are, in fact, a characteristic of

one-dimensional problems.

Another reason for our interest in hard-sphere potentials is the fact that they

yield an easily visualize, geometric description of the interaction of such particles.

It is this ready geomefric visualization that will provide the basis for our first-order

model and for further discussion. Section 3 discusses the geometric features of our

approach in more detail.

Further, it is a consequence of the hard-sphere potential that it provides for a

description of a solid (a dense lattice-packing of hard particles) interacting with

purely anharmonic forces. The hard-sphere potential is purely anharmonic because

it corresponds to the complete absence of either independent or coupled harmonic

interactions. Most of solid-state physics, and virtually all of lattice dynamics are

based upon the harmonic approximation with, perhaps, low-order corrections for

anharmoo'icity. Real solids are undoubtedly something between the purely harmonic

and purely anharmonic extremes. It is of considerable interest, therefore, toexplore

in further detail the full implications of anharmonicity from the opposite side of the

spectrum as represented by the harmonic approximation.

There is yet another reason for interest in purely-repulsive potentials that is
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undoubtedly a reflection of the collective nature of the interaction of particles

having such potentials. Systems of hard particles display many very fascinating

properties such as an order-disorder melting phenomenon (Kirkwood melting) .

The attempt to shuw the existence of a hard-sphere solid-fluid phase transition

through computer experiments by the Monte-Carlo method and-Molecular Dynamics,

was a preoccupation of several groups of statisticalphysicists for a considerable
3

portion of the last decade . This work stimulated interest in the feasibility of

large machine calculations forsuch many-body problems. The existence of a

Kirkwood melting in two and three dimensions in the total absence of attractive

forces coupled with the fact that in one dimension the hard-particle equation of

state is exact and shows no phase transition suggests that these systems possess pro-

found physical and mathematical characteristics. Thus, there is considerable

interest in additional detailed characterization of the properties of hard-particle

systems. Even though the many-body problem [N = 0 (1020) 1 cannot be studied

in its entirety, we are still interested in the "thermodynamics" of small systems

[N = 0(10 2) and the corresponding N-dependence of the physical parameters

calculated on the basis of hard-core interactions.

B. Lattice Models

There is an extensive literature on the application of statistical-mechanical

techniques to lattice models of liquids. 4  Because of the difficulty of formulating

a satisfactory theory of liquids it was presumed for several decades that liquids

might be able to be successfully characterized from the point of view of disordered

solids. Indeed, there appears to be a great similarity. However, it is probably

fairly well recognized by now that lattice models, in general, overcorrect for any

"solid-like nature" of liquids and as such are not going to be successful other than

in some qualitative features. It is not surprising to realize that lattice models, on
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the other hand, are generally quite good for a description of ordered solids and

crystals. That lattice models quantitatively display many of the important features

of solids has stimulated great interest in the use of such models to reproduce

solid-state behavior of apparent great complexity. Unfortunately, there is a very

small body of literature on the statistical mechanics of crystalline lattices. Our

interests in fracture and embrittlement fall within this category, however, in that

we are attempting to apply standard statistical mechanics to crystalline lattices

under conditions that we feel will model the elastic and plastic response of such

lattices.

(1) Cell Model

The cell model or cell theory is a first-order lattice theory for which it is

assumed that a lattice is covered with non-interacting particles. Each particle is

confined to its own cell and moves independently within it. It is an "Einstein-type"

model in the sense that correlations between particles are completely neglected.

When a molecule moves within its cell it has a "free volume" available to it which

is just the single-particle configurational volume given by

Q1 = .fexp [- 1 jr l) I d•R

where I =/kBT and O•is the region of configuration space accessible to a single

particle, say particle 1. The usual cell model presumes single occupancy of each

cell. The "cell theory" then approximates the N-particle configurational partition

5
function as

Q QN IN= (V/N)N

such that
ZN= QN/AN I

where A- (h2P/2rrm)1/ 2

11
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The correct partition function (for no interaction) is

ZN -vN/N! 3 N

The ratio of the correct to the cell partition function is

ZN, correct VN A 3N NN eN

ZN, cell N!A 3N (V/N)N N! (2N-) 1 2

For hard particles it has been shown 6 that the thermodynamic pressure is

exact in the l imit of close packing, V -- TVo , where Vo is the close-packed

volume. The "free" volume is the "thermodynamic" volume, V, less thevolume

of the particles and is thus the only volume on which the partition function can

depend. For this reason the cell-model pressure is correct but the entropy is not

even though it is surprisingly good. By knowing such limiting, high-density pro-

perties for hard-core models it may be possible to express thermodynamic properties

away from close packing in a power series in free volume similar to the familiar

low-deinsity power series in inverse free volume. A rigorous series development

of the high-density thermodynamic properties is thus of great interest.

It is possible to extend cell theories beyond single occupancy to include

7multiple occupancy. However, inasmuch as we are interested in high density,

multiple occupancy is excluded to any great degree due to hard-core repulsions.

We are especially interested in single occupancy inasmuch as it is known that for

hard squares and cubes the single-occupancy cell theory becomes exact at close

packing. For one-dimensional hard rodsthis is also true but there is no proof of

exactness for disks and spheres at close packing although undoubtedly the higher-

dimensional formulations are exact also in this limit.
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(2) Cell-Cluster Theory

In the cell-cluster theory as developed by Salsburg and Stillinger 1 ' 8 the exact

partition function is able to be expressed in terms of sets of correction factors which

correct the cell-model result and take into account the correlated motion of larger and

larger sets of contiguous particles. The correction factor through each order is-exact

as the entire scheme is based on the product representation for the partition function.

For example, for rigid disks we may write the following identity for QN ' the N-

particle canonical-ensemble configurational partition function:

T(P) QiT (P)Qik(P) Qjk(P)

•ITT Yi (P)} I Tl Vii (P)ý

X I TYYijk (P) I ... i YI ... N (P) I

The Q's are n-particle configuration integrals referring to sets of movable disks in a

field of (N-n) disks fixed upon their lattice sites. For example (see Section 2.C),

N
Q 1 Ji1 A (ij) dr.

and=Q A (ij)[ Tr A (ik) A (jk)] dr. dr.

where A(ij) = 0 r.. < a'I -

- 1> a

In general, , +l)nTQn,t"= (ii + n1"n,t

- il --- I- n-- - -•. . . .
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The Y's are correction factors showing the manner in which the product representa-

tion for QN is composed of contributions from single particles, pairs, triplets, etc.,

each term successively correcting the result obtained through the previous order.

An equivalent way of considering successive corrections to the cell-model result

is by formulating- a series expansion of the Helmholtz free energy.8 For example,

if A1 is the Helmholtz free energy of the cell model we may approximate A N as

AN NA1

for a system of N particles. Correcting this first-order result for the effect of pair

interactions included in Q2 gives

AN = NA1 + 3NW2

where W2 is the pair correction term and 3N is the number of nearest neighbor pairs

on a hexagonal 2-dimensional lattice. A general recursion relation for successive

corrections corresponding to distinct types of connected lattice subfigures (clusters) is:

n-i
W =A -E •".•Cn,t, WI V ,n>2

n,t n,t i=

W 2,1 = A2 , 1 - 2W 1, 1

W = A 1 1

Thus, for a macroscopic system of N particles the free energy is
N

AN/NkT (t n,t
n=1 t W'
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where Ng(n,t) is the number of different ways that the cluster (n,t) can be formed.

A cluster is classified according to the number of sites n and topological configu-

ration t

Thus, by' calculating the functions Wn,t or, equivalently, Qn t we may

construct an asymptotic expansion for the free elergy from which we are able to

ascertain relative lattice siabilities and other bulk solid-state properties related to

fracture and embrittlement. This procedure is outlined in more detail in the next

section.

C. Geometrical Interpretation and Evaluation of Configuration Integrals

In order to carry out the program inherent in the cell-cluster approximation

scheme we must evaluate integrals of the form

C Q .f exp (14 dR ... dRn N)jRI ~

The integrations are over convex regions OZ into which configuration space is

divided, these regions being the Voronoi polytopes associated with the set of points

R ; such sets are specific orderings of lattice sites with the concommitant

association of particles with sites. The intermolecular potential U N is taken to be

a sum of pair potentials:

UN ==i'i=N i (r)

'•.i(r) 0 , r

r 7
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The Boltzmann factor exp(- • UN) is then able to be written as a product of step

functions

exp(-UN i A(Ri

where A(x) 1 x> 0

0 , x< 0

Thus, we may write

"•n = f I. f .II.A(R.. -CT) nI dR.

R.. is the distance between centers of an (ij) pair . In terms of the displacements

of 2-dimensional rigid particles (disks) from their lattice sites, r1 ... , we

may write

n= f'"-f.Tr A R.. +r.-n, -•) =Tr1 dR.

The argument of the step function simplifies considerably in the limit of close pack-

ing. In the high-density limit the hypercylindrical step-function bounds are replaced

bytheirtangent hyperplanes which define Voronoi polytopes, ik, of content p (2)
n

Fig. 1 illustrates the general construction of such convex regions. In Fig. 2 we

show the Voronoi polygons in two dimensions for QI through Q4 which have step-

function bounds of the form

A I(R. /R..) "(R."+r. - r.) +O1

As an illustration of the integration procedure we may express the integrals for Q as

F2
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Q2 f dx1 fdx2 fdx 3fdx 4iJ(xi1 x2 ,x 3 , Y4

J (xI, x2, x3, x4) = A(1-xl-x 2 ) A(1-x 3 x4) A(]+ x1 +x2)

A(1+x 3 + x4) A(1 - x + x3)

This corresponds to a polynomial integration of a function having the general form

BN B lM

K ~dxf dxni 1  dx1  TrIA (Sm)
n fA n-1 1Z m

where N

Sm = ao ( + ai xi

There are numerous ways to formulate a systematic integration procedure for the

evaluation of such integrals. There are several types of computer algorithms which

have been developed by the Salsburg group at Rice University for this specific class

of problems.9 They are all algebraic methods and yield exact analytical results in

contrast to numerical integration procedures. The algorithms are referred to as the

Bounds Pair Method, the geometric Simplex Method, and a generalized Integration-

by-Parts. The most fruitful and least cumbersome of these techniques is an integration-

by-parts using exponential polynomials. Dr. Ilene Burnsteinof our group has revised

an earlier version of the exponential polynomial algorithm for use on the lIT 1108.

The program is written in standard 1108 Algol.

3. GEOMETRIC MODEL OF FRACTURE AND EMBRITTLEMENT

A. Fracture

The high degree of regularity of solids in general and of nearly -perfect crystals

in particular would lead us to expect that it should be possible to model equilibrium

and dynamical solid-state behavior in terms of a lattice theory. Moreover, a lattice

containing particles interacting with purely-repulsive potentials, by the very nature
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of the interaction, gives rise to a geometric description of this interaction as outlined

in Section 2.

That a geometric model is physically plausible may be perceived by the following

observations. There is ample reference in the metallurgical engineering and engineering

mechanics literature to the physically geometric manifestations of fracture and failure.

For example, the development of high-strength trip steels is qualitatively explained by the

originators of these materials as being due to geometric factors.1 0 "Necking down" maybe

inhibited by a martensitic transformation duringstraining enhancing the plasticity of the steel. The

martensitic transformation from a face-centered cubic to a body-centered tetragonal crystal

structure is a major geometric change.

Further, plastic flow itself is a manifestly geometric phenomenon. In a subsequent

technical report we consider a family of two-dimensional arrays that constitute a continuous

sequence of uniformly strained lattices. For these lattices we have determined

bounds on the relative free energies in order to ascertain the relative stabilities of various

equilibrium geometric configurations.

12The processes leading to the formation of dislocations and point defects are also

obvious geometric events of considerable importance to the phenomenology of fracture and

failure. We intend to model lattice defects in subsequent work of this program.

Additional precedent for considering the geometric aspects of fracture is provided

13by the fascinating bubble raft simulation of a crystal. It is recognized that a bubble

raft provides an excellent experimental model for the short-range repulsive forces which

govern fracture at small strains.

Another geometrical approach to fracture, quite different from ours, is due to
14

Kondo. He has considered fracture and fatigue from the point of view of both Riemannian-

and non-Riemannian differential geometry and has derived from thc.t viewpoint the basic

equations of yielding.

-!J
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In order to outline our first-order geometric model consider a regular two-

dimensional triangular lattice, Fig. 3 . Consider first a perfect lattice at high

density; i.e., one for which all lattice sites are occupied by hard particles (herein

disks) in a defect-free close-packed state. We then consider a region Q of Euclidean

2 -space containing N rigid 2 -spheres. It is convenient to subject the enitresystem

to periodic boundary conditions whereupon the region 0. remains invariant in shape

under compression if the size of dý is changed accordingly.15 At close packing

is a minimum, however, free translation of any particle of the system as a whole

is allowed due to the periodic boundary conditions. While it is convenient to perform

calculations in Euclidean space the 2N-dimensional configuration space for the N

disks is defined as the product of the regions •. for each particle i ; i.e.,

At close packing there are (N-i) ! 2-dimensional domains 0•. contributing to VR to

which the N-particle system has access due to free translation. The content of CR

increases away from close packing to give accessible regions which are 2N-dimensional

hyperprisms the boundaries of which are the hypersurfaces:

r. - r. = T

where a is the diameter of a hard particle (disk).

The classical configurational partition function for a canonical ensemble of N rigid

2-spheres, as shown in section 2 may then be written as

N
= cr 1  E.fr A (Jr, r. aN i<j=
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where
A(x) = 0 x < 0

= 1 xŽ>0

Macroscopic solid-state properties and fracture characteristics may be obtained from a

knowledge of QN from the fundamental relation

-RAN QN
e

N !A3N

The determination of QN ' or an opproximation 'o it, is central to our approach and

to this type of statistical mechanics. It is not possible to obtain QN exactly for hard-core

systems other than one-dimensional hard particles (i.e., 1-spheres; we do not consider

hard squares or cubes). The configurational partition functions we obtain arise from

two approximation procedures. We consider the approximation scheme inherent in the

cell-cluster theory which was outlined in Section 2. The cell-cluster theory considers

a sequence of Q n functions for small n as a series approximation to QN* Convergence

of the series for n -+-4 has been demonstrated for 1-spheres only but we will presume

such convergence properties for 2-spheres as well.

The cell-cluster theory is successful by virtue of its application in the limit of

close packing. Away from close packing the scheme is an approximation in the sense

that the hypercylindrical bounding surfaces of the cell boundaries are not validly re-

placed by their tangent hyperplanes. Nevertheless, the contents of the polytopes so

constructed may be able tobeevaluated. We consider lattices away from close packing

but construct limiting polytopes as a bound to the exact free areas. There are several

ways of constructing such polytope bounds and we shall consider these next.

(1) Hexagonal Close-Packed Lattice

In Fig. 2 we have shown polytopes constructed for a regular hexagonal
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lattice. They are constructed as shown in Fig. 1 at close packing upon bi-

secting the lines drawn between the centers of adjacent particles. The polytopes

so constructed cover the lattice densely. 16 They are analogous in many ways

to Wigner-Seitz cells but are a generalization to N-dimensional spaces. An

irregular lattice, however, may be densely covered by Voronoi polytopes as

well. In fact a non-lattice or random structure may be so partitioned into

such regions. 
17

(2) Niggli Close Packings

Our evaluation of the free energies of Niggli close packings correspond-

ing to a plastic deformation of the regular hexagonal lattice is based upon the

construction of the polytopes shown in Fig. 4 . The polytopes for such pack-

ings considerably away from the densest packing are but bounds to the exact

free volume. The bounds represented by Fig. 4 are a natural extension of

the subfigures constructed at high dens~ty .

It is possible to approximate the exact regions in yet another way. If

the polytopes which represent single-particle cells are replaced by circular

(2-dimensional) orspherical (3-dimensional) cells the bounds so constructed

are not as good as the polytope bounds. However, they are much easier to

evaluate and it is possible to consider higher-order subfigures under this

approximation. Hoover, et al. 2 performed a Monte Carlo calculation for

32 hard spheres restricted to such spherical cells and the results areespecially

good at high density although poorer at low densities. Circular cells forour

Niggli disk calculations simplify the analysis considerably. Fig. 5 shows

such circular cells and the pair subfigures that arise under this approximation.

W~th such a set of equilibrium latticesplastically deformed from the

hexagonal lattices we are able to simulate the global deformation regime of
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a stress-elongation curve. The question remains as to how to characterize

an unstable lattice. We may employ the standard thermodynamic definition

of stability. We thus consider the thermodynamic stability of these lattices

under varying conditions of geometry and defect concentration as giving rise

to a quantitative means for predicting the conditions under which fracture

will take place. It is presumed in the engineering materials literature that

structural instabilities give rise to failure and fracture. These instabilities

are governed by the condition

-- 0
3x

Such instabilities arise at the ultimate tensile strength corresponding to the

strain at maximum load after which a material fails under unstable local strain.

These instabilities must be related to the thermodynamic lattice instabilities

which we are considering. With our program we hope to be able to quantify

this relationship. The thermodynamic stability criterion in terms of the

Helmholtz free energy , A = A(T,V,N) , is (for constant T and N)

c2 A > 0

From our approximations to QN using the cel l-c luster scheme we are able to

calculate such derivatives for various lattice configurations. We can then

order configurations of particles according to their stabilities as a function

of geometry and defect concentration.
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B. Embrittlement

Our geometric model for embrittlement is an extension of our model for

fracture. It is thus a lattice model for which we consider various packings and

coverings of u-spheres. With embrittlement we have one additional feature,

the presence of a low-density grain boundary between regular crystalline arrays.

We may consider the equilibrium properties of such configurations by ascertaining

the configurational partition function again through use of the ce Il-cluster approximation

scheme. It is natural to couple the cell-cluster approach with the tunnel model

of Barker. 4 The tunnel model is an "almost one-dimensional" model obtained

by considering a single row of a lattice of particles. The particles (u-spheres)

in the row or tunnel are considered to be dynamically correlated whereas particles

in neighboring rcms are fixed upon their lattice sites. The neighboring particles,

constrain the motion of the particles in the tunnel. The computation of the

tunnel-model partition function involves finding the largest eigenvalue of a

18
degenerate integral operator. A "tunnel" simulates many of the properties

that are possessed by grain boundaries. The environment of a tunnelmay consist

of ordered arrays of dislocations. We may consider a tunnel containing a

density of particles of the order of the density of a liquid. The particles (disks)

in the tunnel may interact with the lattice particles in such a way as to form

a stable transverse crystalline array (disk covering) which holds the crystal

together, see Fig. 6. On the other hand, the tunnel particles may aggregate

in such a way as to form a low-density zone in the tunnel, see Fig. 7. The

rigid-sphere crystal can then collapse around such a tunnel which represents a

geometric instability. Under a tensile force the crystal may separate in order to

achieve a stable equilibrium configuration. Under a compressive force tha final

equilibrium configuration may be vastly different than the stressed configuration.
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The role of an embrittling liquid metal which presumably enters through a grain

boundary merely serves the purpose of forming and maintaining a manifestly liquid-

density region for which the elastic properties are vastly different from the bulk

crystal. The quantitative details of stability and transport along a grain boundary

are to be investigated in future work of our program.

4. PROSPECTS FOR EXTENSION OF MODEL

A qualitative, first-order geometrical approach to the statistical mechanics of

fracture and embrittlement has been outlined in the previous sections. We now wish to

survey some additional specific problems which may be considered and attacked from

this point of view. The entire formalism outlined here needs considerable amplification

and quantification of details in order to be a valid "theory". We are pleased, neverthe-

less, to be able to offer this approach to those interested in this fascinating and techno-

logically important subject.

A. It is necessary to consider the considerably more complicated cases presented

by imperfect lattices containing zero-,one-, two-, and three-dimensional defects. We

are specifically interested in the instabilities generated by zero-dimensional vacancies

and interstitials. Dislocations are topologically more difficult but of considerable im-

portance and may be modeled by lattice theories such as we have presented.

B. We must be able to model grain boundaries in such a wayas to be able to ascer-

tain their effect on embrittlement. It is apparently recognized in the solid-state

literature 19 that large-angle grain boundaries contain an alternation of "coincidence

sites" and areas of liquidlike structure, thereby lending support to our principal thesis

that liquidlike manifolds are unstable to tensile forces and lead to embrittlement. We

are currently investigating hexagonal close-packed grain boundary models of the type
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proposed by Bishop and Chalmers20 for fcc crystals. It is possible to enumerate the

lattice subfigures for such models and thus to ascertain the relative stabilities of

lattices with grain boundaries of various densities. 2 1

C. It is apparently well recognized also that the mobility of dislocations in

close-packed metallic planes inhibits low-speed crack propagation by some sort of

energy dissipation mechanism. The geometric nature of this mechanism should be able

to be formulated in terms of a lattice theory. Dislocations are immobile in the high-

density limit and their effect on free energy and elastic properties should be able to

determined.

D. Whereas we have been considering only the equilibrium properties of

high-density crystals a nonequilibrium theory is also of great interest especiallywith

regard to crack propagation and strain-rate effects. Such a theory would involve

ascertaining properties of the appropriate Liouville operator constrained to the regions

(1ý of configuration space.

E. The meaning and varieties of crystalline stability as they relate to fracture

must be extended. Our appraoch is but a first attempt at providing a quantitative

understanding of such a many-body effect.

F. The explicit effect of strain on a lattice may be included within the con-

figurational partition function by incorporating the strain tensor within the Boltzmann

factor. A comparison of the results of such explicit distortions with those implied by

considering Niggli packings 1 1 is of interest.

rk.
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