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ABSTRACT
“ /.«;un f"
/ We present, “the qualitative features of a first~order, hard-core lattice model

for fraciure- and- embrittlement. The specific statistical mechanical technique used
involves the evaluation of the classicai configurational partition function using the
cell-cluster approximation scheme. ‘Me.outtine 1 fhe phllosophy behmd stil?fq e
geometric approach, precedent for it, and some consequences of |f. We-have_sketched....
the formalism of the statistical mechanics of closed-packed lathces of hard-core

t oL DG Lfﬁz,xx

systems whlch we employ V\Mio specific calculations that are currently
in progress using this formalism and cc{@t on other prospects for study which are

inclusive within the domain of applicuﬁ*{lity of the model.“\’%\

.,
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PREFACE

This technical report presents a qualitative description of our firsi~order
mode| for fracture and embrittlement. We feel that we shall be able to describe
many of the features of fracture and embrittlement from the viewpoint presented
--- a lattice theory for which we consider systems of interacting u ~dimensional
hard particles. This report presents the basic viewpoint only, The viewpoint is,
we feel, a useful one. We have, however, accumulated some quantitative results
which are consequences of the model. However, due to the extraordinary complex-
ity of this class of solid~state phenomena it is presumptuous to entertain that ;ur
approach will be more than a contribution to this fascinating subject. Nevertheless,
we hope that ot some later time we may be able to write a similar technical report
which presents a complete statistical mechanical theory for frocture and embrittle-

ment.
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1. INTRODUCTION

This paper is concerned with the presentation of a viewpoint which we feel has
promise in being able to characterize features of the mechanism operating in aclass
of problems of engineering and materials importance. We su-gest that the global
features of fracture , failure, and embrittlement which are manifested in a wide varie-
ty of materials r;:nging from metallic to polymeric and from amorphous to crystalline
are the result of o geometric denovement involving large numbers of particles. Thus,

we shall censider fracture and embrittlement to be a coopzrative, many-body effect,

As such, this class of problems is related to other highly complex and incompletely
understood cooperative manifestations such as melting, crystallization and condensa-
tion phenomena.

Qur remarks will be generally addressed to the phenomenon of fracture; however,
we shall consider also specific derivative manifestations such as liquid-metal embrittle-
ment as an example of an snvironmentally-influenced materials failure phenomenon,

A natural way to proceed with the characterization of fracture as o cooperative
effect is to obtain first a convincing description of the phenomenon using classical statis~
tical mechanics. This viewpoint then admits quantum-mechanical features to be of
second order and superimposed on a correct classical description. While a general

dynamical theory is necessary in order to describe uniquely non-equilibrium behavior

such as crack-tip propagation such time-dependent phenomena wiil not be considered
in this paper.

Undoubtedly specific quantum-mechanic..! effects do play a role in fracture and

embrittlement particularly with regard to the interaction of an "embrittling” liquid metal
with the host-metal substrate, However, we contend that the noture of this interaction

is, in itself, not catastrophic. Rather, we suggest that in the presence of an external or

internal stress fractu-e, failure, and embrittlement occur because of an ampiification
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and propagation of unstable geometric configurations of atoms. A liquid metal would thus
serve to destabilize an otherwise stable (geometric) crystalline configuration by entry into
and destabilization along a grain boundary. Geometric destabilization merely implies
that when the integrity of an otherwise stable crystalline array is compormised by the dis-
ordering effect of a liquid "array" of atoms (admitting diffusion as aiding and abetting
this disordering process but not controlling it) then in the presence of a sufficiently large
internal or external stress field the material will collapse inasmuch as a disordered sub-
stance cannot sufficiently accommodate such modes of instability.

The propagation of a geometrically unstable center or nucleus (an array of atoms
having a density characteristic of aliquid) under the influence of an external stress field
(generally, but not necessarily, along a grain boundary) readily simulates crack-tip propa-
gation. Again, the quantitative features of this propagation will not be considered here
and we will restrict ourselves to properties of equilibrium lattice configurations.

A central property of a lattice as far as this program is concerned is its "stability"
both in the absence of and in the presence of an externalstress. We will thus try to ascertain

some measure of relative crystalline stability for several geometrically different types of

lattices.

Our approach of considering the statistical mechanics of fracture and embrittlement
rather than the continuum mechanics of the problem is perhaps wosth a few comments. Con-
tinuum mechanics generally has been considered by engineers to be a more useful approach to
fracture than statistical mechanics because a great deal has been learned about metals and
solids by considering their "microstructure” in contrast to their atomic structure. Of course,
it must be recognized that continuum mechanics and statistical mechanics are simply different
levels of description. Continuum mechanics and particle (statistical) mechanics are dual
physical constructs. Our viewpoint is that atomic structure and interactions do indeed play

a very significant role in fracture and embrittlement, neither of which being specifically

accounted for by continuum mechanics but both being central to statistical mechanics.

I
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Induced plasticity due to a martensitic transformation is an example of how a change in
atomic structure gives rise to an effect able tobe characterizedon the level of conti-
nuum mechanics, We emphasize that on the continuum level it is not necessary to consi-
der "quantum-mechanical interactions" or interactions at all (other than the unique
continuum type of "interaction”, the action-at-a-distance, stress). For example, the

apparent unique features of a martensitic transformation are its structural or geometric

aspects rather than the nature of carbon-iron interactions. In our words, quantum-
mechanical features are of second order. Nevertheless, these structural or geometric
aspects are within the domain of particle and statistical mechanics and it is to these
features at this level that we shall direct our attention. The power of statistical mecha-
nics lies in being able to characterize bulk behavior, including "microstructure”, from
a knowledge of interparticle interactions. Our goal is to model fracture and embrittle-

ment phenomena using purely-repulsive, classical potentials of interaction. While bulk

solid-staie behavior is many body in nature, our calculations necessarily must be small-N

calculations. As suchthey are but approximations to true many-body behavior. We shall
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not be interested herein in whether or not the thermodynamic limit exists for such quantities.

Inasmuch as tiquid-metal embrittlement is an unusually complex phenomenon in terms

-
i+

N
SR A Bt 4

of the number of parameters that are operating in a given engineering environment an

"

S

v,

attempt to model the phenomenon on the basis of hard~particle interactions possessesseveral

Py

advantages. First, the nature of the interparticle interaction is fixed. Second, the lattice

configuration and particle density are able tobe varied in a controlled manner. Third,

impurities and lattice imperfections may be carefully controlled; they may be completely

AR e it i

excluded or "induced" in any proportion.

We expect that a sufficient concentration and molecular arrangement of lattice
dafects must play a role in fracture phenomena. In the next stages of our program we

intend to model such defects also. However, the early stages of this program are addressed
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to crystals that have perfect crystalline order. It has been shown in other statistical
mechanical-type calculations' 2 that the small defect population at melting is
proportional to exp(-PV/NkT). As such, this number has virtually no effect on the
bulk thermodynamic properties of a solid and justifies the use of a highly structured
model such as we employ.

The contents of this paper are as follows. In section 2we outline the formalism
of classical statistical mechanics by which we can quantitatively consider variousstable
and unstable lattice configurations. In section 3 we consider the geometric features
inherent in our model using the formalism developed in section 2. In section 3 we
further speculate on the mapping of features of this geometric model into the phenome-
nology of fracture and embrittlement. In section 4 we outline other relevant phenomena

which may be embedded within this model.

2, CLASSICAL STATISTICAL MECHANICS OF HARD-CORE SYSTEMS

A. Introduction

Knowledge of the classical configurational partition funcﬁon,QN , allows a
computationof various macroscopic properties and presumes the nature of the intermolecular
interaction governing the bulk matter of interest, As our program is involved with
various solid-state phenomena as observed mazroscopically we are interested inbeing
able to reproduce these properties in the simplest way possihle in order to delimit the

" necessary conditions predicating the phenomena. We can thus take advantage of

developments generated by a school of statistical physics which has considered various
manifestations of systems of particles governed by classical, purely-repulsive forces.
Such forces are of interest for several reasons. First, the many-body problem, the
problem of ascertaining the consequences of the interaction of a number of particles

of O(N), is perhaps the ceatral problem of theoretical physics, if not of all physical
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science. The many-body problem is unlikely ever to be completely solved in

=

closed form for realistic potentials of interaction . Using simple, mathematically

tractable potentials such as the hard-sphere potential, it is possible, however, to

ascertain some of the features of the interaction of a small number of particles. In

) fact, for one-dimensional hard. spheres (rods). there are several famous exact results
for the many-body problem. That is, it is possible to evaluate the classical parti-
tion function and reduced distribution functions and various ensemble-averaged

properties upon which they depend for an infinite number of particles interacting

(along a line) in one dimension. Exact results are, in fact, a characteristic of
one~dimensional problems.
Another reason for our interest in hard-sphere potentials is the fact that they

yield an easily visualize.' geometric description of the interaction of such particles.

It is this ready g=ometric visualization that will provide the basis for our first-order
model and for further discussion. Section 3 discusses the geometric features of our
approach in more detail.

Further, it is a consequence of the hard-sphere potential that it provides for a
description of a solid (a dense lattice-packing of hard particles) interacting with

purely anharmonic forces. The hard=sphere potential is purely anharmonic because

it corresponds to the complete absence of either independent or coupled harmonic

interactions. Most of solid=state physics, and virtually all of lattice dynamics are
based upon the harmonic approximation with, perhaps, low-order corrections for
anharmonicity . Real solids are undoubtedly something betwezn the purely harmonic
and purely anharmonic extremes. It is of considerable interest, therefore, toexplore

in further detail the full implications of anharmonicity from the opposite side of the

B e R R R R

spectrum as represented oy the harmonic approximation.
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There is yet another reason for interest in purely-repulsive potentials that is
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undoubtedly a reflection of the collective nature of the interaction of particles
having such potentials. Systems of hard particles display many very fascinating
properties such as an order-disorder melting phenomenon (Kirkwood melting) .

The attempt to show the existence of a hard-sphere solid~fluid phase transition
through computer experiments by the Monte-Carlo method and Molecular Dynamics,
was a preoccupation of several groups of statisticalphysicists for a considerable
portion of the last decade 3 . This work stimulated interest in the feasibility of
large machine calculations for such many-body problems. The existence of a
Kirkwood melting in two and three dimensions in the total absence of attractive
forces coupled with thz fact thot in one dimension the hard-particle equation of
state is exact and shows no phase transition suggests that these systems possess pro-
found physical and mathematical characteristics. Thus, there is considerable
interest in additional detailed characterization of the properties of hard-particle
systems. Even though the many-body problem [N = 0 (1020) | cannot be studied
in its entirety, we are still interested in the "thermodynamics" of small systems

[N = 0(]02) ] and the corresponding N-dependence of the physical parameters

calculated on the basis of hard-core interactions.

B. Lattice Models
There is an extensive literature on the application of statistical-mechanical

techniques to lattice models of |iquids.4 Because of the difficulty of formulating
a satisfactory theory of liquids it was presumed for several decades that liquids
might be able to be successfully characterized from the point of view of disordered
solids. Indeed, there appears to be a great similarity. However, it is probably
fairly well recognized by now that lattice models, in general, overcorrect for any
"solid-like nature" of liquids and as such are not going to be successful other than

in some qualitative features. It is not surprising to realize that lattice models, on




the other hand, are generally quite good for a description of ordered solids and

crystals. That lattice models quantitatively display many of the important features
of solids has stimulated great interest in the use of such models to reproduce
solid-state behavior of apparent great complexity. Unfortunately, there is avery
small body of literature on the statistical mechanics of crystalline lattices. Our
interests in fracture and embrittlement fall within this category. however. in that
we are attempting to apply standard statistical mechanics to crystalline lattices
under conditions that we feel will model the elastic and plastic response of such
lattices.

(1) Cell Model

The cell modei or cell theory is a first~order lattice theory for which it is
assumned that a lattice is covered with non-interacting particles. Each particle is
confined to its own cell and moves independently within it. It is an "Einstein-type"
model in the sense that correlations between particles are completely neglected.
When a molecule moves within its cell it has a "free volume" available to it which

is just the single-particle configurational volume given by

Q, =/:&.fexp [-R¥a (1) ] dR,

8= VkBT and R is the region of configuration space accessible to a single

where
particle, say particle 1. The usual cell mode! presumes single occupancy of each
cell. The "cell theory" then approximates the N-particle configurational partition

function as

QT Q= v/

such that
N 3N
Zy = Q; /A
where A= (hz':'/zﬂm)l/2
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The correct partition function (for no interaction) is

_ N 3N
Zy=V /NI

The ratio of the correct to the cell partition function is

N 2 3N N N

N e

Z, , cell NTIS Y L RNTR NS UL

ZN , correct Y

For hard particles it has been shown ® that the thermodynamic pressure is
exact in the limit of close packing, V —3V_ , where V_ s the close-packed
volume. The "free" volume is the "thermodynamic" volume,V, less the volume
of the particles and is thus the only volume on which the partition function can
depend. For this reason the cell-model pressure is correct but the entropy is not
even though it is surprisingly good. By knowing such limiting, high<density pro-
perties for hard-core models it may be possible to express thermodynamic properties
away from close packing in a power series in free volume similar to the familiar
low-density power series in inverse free volume. A rigorous series development
of the high-density thermodynamic properties is thus of great interest.

It is possible to extend cell theories beyond single occupancy to include
multiple occupcmcy.7 However, inasmuch as we are interested in high density,
multiple occupancy is excluded to any great degree due to hard-core repulsions.
We are especially interested in single occupancy inasmuch as it is known that for
hard squares and cubes the single-occupancy cell theory becomes exact at close
packing. For one~dimensional hard rods this is also true but there is no proof of
exactness for disks and spheres at close packing although undoubtedly the higher-

dimensional formulations are exact also in this limit,
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(2) Cell-Cluster Theory
: In the cell~cluster theory as developed by Salsburg and Stillinger]’ 8 the exact
: partition function is able to be expressed in terms of sets of correction factors which
correct the cell-model result and take into account the correlated motion of larger and -
larger sets of contiguous particles. The correction factor through each order is.exact
as the entire scheme is based on the product representation for the partition function.
For example, for rigid disks we may write the following identity for QN , the N-
“ particle canonical-ensemble configurational partition function:
N .. (P
N T ;; i GO i
ERTCING
x| B . Qu Q@ @ QP
% i(l(k = ] ll 1 l LN )
: Qii (P) Qik(P) Qik(P)
3 = };{Tr\(i P}y, @)
XAWY o @ { Y @)}
‘- The Q's are n-particle configuration integrals referring to sets of movable disks in a
; field of (N-n) disks fixed upon their lattice sites. For example (see Section 2.C),
2 N
o Q. =f I A (ij) dr,
3 1 ® i=1 i
3 *i
g N
3 an Q.. = f A (ii)[ T Ak A (ik)] dr, dr,
1 Q k=1 to

1,0
: where AGp = 0 i <a

= 1 rii > a

in general,
[T n
Qn,t (v +1) TrYn,t

- s
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The Y's are correction factors showing the manner in which the product representa-

tion for Qy, is composed of contributions from single particles, pairs, triplets, etc.,
each term successively correcting the result obtained through the previous order.

An equivalent way of considering successive corrections to the cell-model result
is by formulating a series expansion of the Helmholtz free en‘erg)u8 For example,

if Ayis the Helmholtz free energy of the cell model we may approximate AN as

~

AN NA]

for a system of N particles. Correcting this first-order result for the effect of pair

interactions included in Q2 gives

AN = NA; + 3NW

where W, is the pair correction term and 3N is the number of nearest neighbor pairs

on a hexagonal 2-dimensional lattice. A general recursion relation for successive

“corrections corresponding to distinct types of connected lattice subfigures (clusters) is:

n-1
_ v
Wy = A" }ljzjl}jv Cot” Wy ,n>2
Wo 1 = A1~ 2W 4
Wit T4

Thus, for a macroscopic system of N particles the free energy is

N
A/ NKT =,§12t: g )W, |
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where Ng(n,t) is the number of different ways that the cluster (n,t) can be formed,
A cluster is classified according to the number of sites n and topological configu-
ration t .

Thus, by calculating the functions Wn or, equivalently, Qn 4 + We may
4 4

t
construct an asymptotic expansion for the free evergy from which we are able to
ascertain relative lattice siabilities and other bulk solid-state properties related to

fracture and embrittlement. This procedure is outlined in more detail in the next

section,

C. Geometrical Interpretation and Evaluation of Configuration Integrals

In order fo carry out thz program inherent in the cell-cluster approximation

scheme we must evaluate integrals of the form

Qn = f .a. f exp (—RUN) dB] dBn

The integrations are over convex regions ® into which configuration space is
divided, these regions being the Voronoi polytopes associated with the set of points
{ B'P } ; such sets are specific orderings of lattice sites with the concommitant
association of particles with sites. The intermolecular potential Uy is taken to be

a sum of pair potentials:




The Boltzmann factor exp(~ 2 UN) is then able to be written as a product of step

functions
exp(—qUN) = il<li A(Rii_c)
where Ax) =1 , x> 0
0 , x< 0

Thus, we may write

LT (R S TWYCHEL SO

Rii is the distance between centers of an (if) pair . In terms of the displacements
of 2-dimensional rigid particles (disks) from their lattice sites, Ly eee I, o we

may write

The argument of the step function simplifies considerably in the limit of close pack-
ing. In the high-density limit the hypercylindrical step-function bounds are repluced
by theirtangent hyperplanes which define Voronoi polytopes, R , of content Pn(2) .
Fig. 1 illustrates the general construction of such convex regions. In Fig. 2 we

show the Voronoi polygons in two dimensions for Q] through Q 4 which have step-

function bounds of the form

ALRG/RD o Rt - ) -9

As an illustration of the integration procedure we may express the integrals for Q, os
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Q2 = fdx] /dx2/dx3fdx4J(x],x2,x3,x4)

J (x], Xo 1 Xq 4 x4) = A(]—x]—xz) A('l~x3 -x4) AQl+ X1 +x2)
A(]+x3 + x4) Al - x + x3)

This corresponds to a polynomial integration of a function having the general form

/BN Bn- 1 /.B] M )
K = dx f dx . dx T_A(S

n n-1 T m=) m
ANCTAN-T A

where N

- 2
Sm = a )+ i ai(v)xi

There are numerous ways to formulate a systematic integration procedure for the
evaluation of such integrals. There are several types of computer algorithms which
have been developed by the Salsburg group at Rice University for this specific class
of problems.9 They are all algebraic methods and yield exact analytical results in
contrast to numerical infegration procedures. The algorithms are referred to as the
Bounds Pair Method, the geometric Simplex Method, and a generalized Integration-
by-Parts. The most fruitful and least cumbersome of these techniques is an integration-
by-parts using exponential polynomials. Dr. llene Burnstein of our group has revised
an earlier version of the exponential polynomial algorithm for use on the 1IT 1108,

The program is written in standard 1108 Algol.

3. GEOMETRIC MODEL OF FRACTURE AND EMBRITTLEMENT

A. Fracture

The high degree of regularity of solids in general and of nearly -perfect crystals
in particular would lead us to expect that it should be possible to model equilibrium
and dynamical solid<tate behavior in terms of a lattice theory. Moreover, a lattice

containing particles interacting with purely-repulsive potentials, by the very nature
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of the interaction, gives rise to a geometric description of this interaction as outlined
in Section 2. -

That a geometric model is physically plausible may be perceived by the following

observations. There is ample reference in the metallurgical engineering and engineering

mechanics literature to the physically geometric manifestations of fracture and failure.

For example, the development of high-strength trip steels is qualitatively explained by the
originators of these materials as being due togeometric factors.]o "Necking down" may be
inhibited by a martensitic transformation duringstraining enhancing the plasticity of the steel. The
martensitic transformation from a face-centered cubic to a body-centered tetragonal crystal

structure is a major geometric change.

Further, plastic flow itself is a manifestly geometric phenomenon. In a subsequent
technical report we consider a family of two-dimensional arrays that constitute a continuous
sequence of uniformly strained laitices. | For these lattices we have determined
bounds on the relative free energies in order to ascertain the relative stabilities of various
equilibrium geometric configurations.

The processes leading to the formation of dislocations'Z and point defects are also
obvious geometric events of considerable importance to the phenomenology of fracture and
failure . We intend to model lattice defects in subsequent work of this program.

Additional precedent for considering the geometric aspects of fracture is provided
by the fascinating bubble raft simulation of a crysfal.]3 It is recognized that o bubble

raft provides an excellent experimental model for the short-range repulsive forces which

govern fracture at small strains.

Another geometrical approach to fracture, quite different from ours, is due to
Kondo.]4 He has considered fracture and fatigue from the point of view of both Riemannian-
and non-Riemannian differential geometry and has derived from that viewpoint the basic

equationsof yielding.




In order to outline our first~order geometric model consider a regular two-

dimensional triangular lattice, Fig. 3 . Consider first a perfect lattice at high
density; i.e., one for which all lattice sites are occupied by hard particles (herein
disks) in a defect-free close~packed state. We then consider a region ® of Euclidean
2-space containing N rigid 2-spheres. |t is convenient to subject the enitre system
to periodic boundary conditions whereupon the region ® remains invariant in shape
under compression if the size of R is chonged accordingly.w At close packing R

is a minimum , however, free translation of any particle  of the system as a whole

is allowed due to the periodic boundary conditions. While it is convenient to perform
calculations in Euclidean space the 2N-dimensional configuration space for the N

disks is defined as the product of the regions ai for each particle i; i.e.,
R =0 %,

At close packing there are (N-1) | 2-dimensional domains CRi contributing to TR to
which the N-particle system has access due to free translation. The content of [R
increases away from close packing to give accessible regions which are 2N-dimensional

hyperprisms the boundaries of which are the hypersurfaces:

where o is the diameter of a hard particle (disk).

The classical configurational partition function for a canonical ensemble of N rigid

2-spheres, as shown in section 2 may then be written as

N
QN = -{K:dl'] ....édiN ;<Z;=1 A('ri -ri' - o)
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x <0
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Macroscopic solid=state properties and fracture characteristics may be obtained from a

knowledge of QN from the fundamental relation

e = —
N!/\3N

The determination of QN , or an opproximation io it, ic central to our approach and

to this type of statistical mechanics. It is not possible to obtain Qy exactly for hard~core
systems other than one-dimensional hard porticles (i.e., 1-spheres; we do not consider

hard squares or cubes). The configurational partition functions we obtain arise from

two approximation procedures. We consider the approximation scheme inherent in the
cell-cluster theory which was outlined in Section 2. The cell-cluster theory considers

a sequence of Qn functions forsmall n as a series approximation to Q'\. Convergence

of the series for n — @ has been demonstrated for 1-spheres only but we witl presume
such convergence properties for 2-spheres as well,

The cell-cluster theory is successful by virtue of its application in the limit of
close packing. Away from close packing the scheme is an approximation in the sense
that the hypercylindrical bounding surfaces of the cell boundaries are not validly re-
placed by their tangent hyperplanes. Nevertheless, the contents of the polytopes so
constructed may be able tobe evaluated. We consider lattices away from close packing

but construct limiting polytopes us a bound to the exact free areas. There are several

ways of constructing such polytope bounds and we shall consider these next.

(1) Hexagonal ClosePacked Lattice

In Fig. 2 we have shown polytopes constructed for a regular hexagonal
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(2)

lattice. They are constructed as shown in Fig. 1 ot close packing upon bi-

secting the lines drawn between the centers of adjacent particles. The polytopes
so constructed cover the lattice densely.]6 They are analogous in many ways
to WignerSeitz cells but are a generalization to N-dimensional spaces. An
irregular lattice, however, may be densely covered by Voronci polytopes as
well. In fact a non-lattice or random structure may be so portitioned into
such regions.l7
Niggli Close Packings

Our evaluation of the free energies of Niggli close packings correspond=-
ing to a plastic deformation of the regular hexagonal lattice is based upon the
construction of the polytopes shown in Fig. 4 . The polytopes for such pack-
ings considerably away from the densest packing are but bounds to the exact
free volume. The bounds represented by Fig. 4 are a natural extension of
the subfigures constructed at high density .

It is possible to approximate the exact regions in yet another way. if
the polytopes which represent single-particle cells are replaced by circular
(2-dimensional) orspherical (3-dimensional) cells theboundsso constructed
are not as good as the polytope bounds. However, they are much easier to
evaluate and it is possible to consider higher-order subfigures under this
approximation. Hoover, et al. 2 performed a Monte Carlo calculation for
32 hard spheres restricted to such spherical cells and the results are especially
good ai high density although poorer at low densities. Circular cells forour
Niggli disk calculations simplify the analysis considerably. Fig. 5 shows
such circular cells and the pair subfigures that arise under this approximation.

With such a set of equilibrium latticesplastically deformed from the

hexagonal lattices we are able to simulate the global deformation regime of

»
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a stress-elongation curve. The question remains as to how to characterize
an unstable lattice. We may employ the standard thermodynamic definition

of stability. We thus consider the thermodynamic stability of these lattices

under varying conditions of geometry and defect concentration as giving rise
to a quantitative means for predicting the conditions under which fracture
will take place. It is presumed in the engineering materials literature that
structural instabilities give rise to failure and fracture. These instabilities

are governed by the condition

Such instabilities arise of the ultimate tensile strength corresponding to the
strain ot maximum load after which a material fails under unstable local strain.
These instabilities must be related to the thermodynamic lattice instabilities
which we are considering. With our program we hope to be able to quantify
this relationship. The thermodynomic stability criterion in terms of the

Helmholtz free energy , A=A(T,V,N) , is (for constant T and N)

?a

oV
From our approximations fo QN using the cell-cluster scheme we are able to
calculate such derivatives for various lattice configurations. We can then

order configurations of particles according to their stabilities as a function

of geometry and defect concentration.
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Embrittlement

Our geometric model for embrittlement is an extension of our model for
fracture. It is thus a lattice model for which we consider various packings and
coverings of U -spheres. With embrittlement we have one additional feature,
the presence of a low-density grain boundary between regular crystalline arrays.
We may consider the equilibrium properties of such configurations by ascertaining
the configurational partition function again through use of the cell-cluster approximation
scheme. It is natural to couple the cell-cluster approach with the tunnel model
of Barker.4 The tunnel model is an "almost one-dimensional” model obtained
by considering a single row of a lattice of particles. The particles (4 ~spheres)
in the row or tunnel are considered to be dynamically correlated whereas particles
in neighboring rcvs are fixed upon their lattice sites. The neighboring particles,
constrain the motion of the particles in the tunnel. The computation of the
tunnel-model partition function involves finding the largest eigenvalue of @
degenerate integral operofor.]8 A "tunnel" simulates many of the properties
that are possessed by grain boundaries. The environment of a tunnelmay consist
of ordered arrays of dislocations. We may consider a tunnel containing a
density of particles of the order of the density of a liquid. The particles (disks)
in the tunnel may interact with the lattice particles in such a way as to form
a stable transverse crystalline array (disk covering) which holds the crystal
together, see Fig. 6. On the other hand, the tunnel particles may aggregate
in such a way as to form a low-density zone in the tunnel, see Fig. 7. The
rigid-sphere crystal can then collapse around such a tunnel which represents a
geometric instability. Under a tensile force the crystal may separate in order to
achieve a stable equilibrium configuration. Under a compressive force the final

equilibrium configuration may be vastly different than the stressed configuration.
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The role of an embrittling liquid metal which presumably enters through a grain
boundary merely serves the purpose of forming and maintaining a manifestly liquid-
density region for which the elastic properties are vastly different from the bulk
crystal, The quantitative details of stability and transport along a grain boundary

are to be investigated in future work of our program.

4, PROSPECTS FOR EXTENSION OF MODEL

A qualitative , first-order geometrical approach to the statistical mechanics of
fracture and embrittlement has been outlined in the previous sections. We now wish to
survey some additional specific problems which may be considered and attacked from
this point of view. The entire formalism outlined here needs considerable amplification
and quantification of details in order to be a valid "theory". We are pleased, neverthe~
less, to be able to offer this approach to those interested in this fascinating and techno-
logically important subject.

A. It is necessary to consider the considerably more complicated cases presented
by imperfect lattices containing zero-,one-, two-, and three~-dimensional defects. We
are specifically interested in the instabilities generated by zero-dimensional vacancies
and interstitials. Dislocations are topologically more difficult but of considerable im-
portance and may be modeled by lattice theories such as we have presented.

B. We must be able to model grain boundaries in such a way as to be able to ascer-
tain their effect on embrittlement. It is apparently recognized in the solid-state
literature 19 that large-angle grain boundaries contain an alternation of "coincidence
sites" and areas of liquidlike structure, thereby lending support fo our principal thesis
that liquidlike manifolds are unstable to tensile forces and lead to embrittlement. We

are currently investigating hexagonal close-packed grain boundary models of the type
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proposed by Bishop and Chalmers2Y for fec crystals, It is possible to enumerate the
lattice subfigures for such models and thus to ascertain the relative stabilities of
lattices with grain boundaries of various densiﬁes.zl

C. It is apparently well recognized also that the mobility of dislocations in
close-packed metallic planes inhibits low-speed crack propagation by some sort of
energy dissipation mechanism. The geometric nature of thismechanismshould be able
to be formulated in terms of a lattice theory. Dislocations are immobile in the high-
density limit and their effect on free energy and elastic properties should be able to
determined.

D. Whereas we have been considering only the equilibrium properties of
high-density crystals a nonequilibrium theory is also of great interest especially with
regard to crack propagation and strain-rate effects. Such a theory would involve
ascertaining properties of the appropriate Liouville operator constrained to the regions

(Q of configuration space.,

3 E. The meaning and varieties of crystalline stability as they relate to fracture
must be extended. Gur appraoch is but a first attempt at providing a quantitative
understanding of such a many-body effect.

F. The explicit effect of strain on a lattice may be included within the con-

figurational partition function by incorporating the strain tensor within the Boltzmann

factor. A comparison of the results of such explicit distortions with those implied by

considering Niggli packings” is of interest.

w'
H

£
13
&
?‘2




ol

e
S
'

1.

13.

14,
15.

REFERENCES

F. H. Stillinger, Jr., Z. W, Salsburg, and R. L. Kornegay, J. Chem. Phys.
43, 932 (1965).

W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, J. A. Barker, and
B. C. Brown, J. Chem. Phys. 52, 4931 (1970).

B. J. Alder arnd W. G. Hoover, "Numerical Statistical Mechanics ," Chap. 4
and W. W. Wood, "Monte Carlo Studies of Simple Liquid Models," Chap. 5 in
Physics of Simple Liquids , H. N. V. Temperley, J. S. Rowlinson and G. S.
Rushbrooke, eds., Wiley/North-Holland, New York, 1948.

J. A. Barker, Lattice Theories of the Liquid State, Pergamon, Oxford, 1963.

J. E. Lennard-Jones and A, F. Devonshire, Proc. Roy. Soc. London 163,
53 (1937).

W. G. Hoover and B. J. Alder, J. Chem, Phys. 45, 2361 (1966).
D. R, Squire and Z, W. Salsburg, J. Chem. Phys. 35, 486 (1961).

W. G. Rudd, Z. W. Salsburg, A. P. Yu, and F. H. Stillinger, Jr., J. Chem,
Phys. 49, 4857 (1968).

W. G. Rudd, Z. W. Salsburg, and L. M. Masinter, J. Comp. Phys. 5, 125 (1970).
V. F. Zackay, ed., High-Strength Materials, John Wiley & Sons, New York, 1965.

C. G. Miller and R. D. Larsen, to be published.

P. Haasen, "Dislocations," Chap. 2 in Physical Chemistry, An Advanced Treatise,
Vol. X,ed. H. Eyring, D. Henderson, and W. Jost, Academic Press, New York,
1970.

L. Bragg, Proc. Roy. Soc. A, 190, 474 (1947) and F. A. McClintock and
W. R. O'Day, Jr. in Proc. of First Int. Conf. on Fracture, Sendai, Vol. 1,
p. 75 (1965).

K. Kondo, in Proc. of First Int. Conf. on Fracture, Sendai, Vol. 1, p.35 (1965).
F. H. Stillinger, Jr. and Z. W. Salsburg, Stat, Phys. 1, 179 (1970).

22




4
B
B
£
£
g
53
i‘:
B
g
Eg:
B

)
¥

16. R. Collins, "Statistical Geometry and Thermodynamics of Liquids," in Phase
Stability in Metals and Alloys, ed. P. S. Rudman, J. Siringer and R. |. Jaffee,
McGraw-Hill, New York, 1967; p. 499.

17. A. Ben-Naim and F. H. Stillinger, Jr., Bell Telephone Laboratory Technical
Memorandum, MM69-1514-36, 1969.

18. W. G. Rudd, J. Chem. Phys. 48, 619 (1968).
19. P. Haasen, ibid., p. 102,

20. G. H. Bishop and B. Chalmers, Scripta Met. 2,133 (1968) .
21. C. G. Miller and R. D. Larsen, to be published.

w & -
4 aFf




Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

2a
2b
2c
2d
2e

4a

4c

7

LIST OF FIGURES

Construction of Voronoi Polyhedra

Singlet and Pair Cell Clusters, Triangular Lattice
Triplet Subfigures, Triangular Lattice
Quadruplet Subfigures, Triangular Lattice
Quadruplet Subfigures, Continued

Quadruplet Subfigures, Continued

Triangular Lattice with Parallelopipedal Unit Cell Basis Set {ai}

Niggli Close Packing of Rigid Disks, | . Asymmetric Pentagonal Polytopes
Singlet Cell of Niggli Packing |

High Density Approximation to Pair Subfigures of Niggli Packing |
Circular Cell Bound to Pair Subfigure of Niggli Packing |

Tunnel Model Approximation to Grain Boundary. High Density Lattice

Hexagonal-Packing Grain Boundary Model, 38.2° Boundary




i

i

N

Riiaiaate st

¢l

SRR IGITT

=
e
£

b=

CONSTRUCTION OF VORONOI POLYHEDRA

FIGURE 1




/ X

SINGLET AND PAIR CELL CLUSTERS, TRIANGULAR LATTICE

FIGURE 2a




g
i
I
,t
|

,.,,,,M,‘
RrigaRl St .',,'“.,xl.,

{151 g i
jHkE

T—— .
AR KAk vk

v ——
LR S R R

3,1

53
-

3,2

s e et ke bt i i
ity i o B e ) it
e G A I p T 3 TR i

33

s TRIPLET SUBFIGURES, TRIANGULAR LATTICE

FIGURE 2b

R A S A s

S




bz

ket

| 4,2

4,3

QUADRUPLET SUBFIGURES,TRIANGULAR LATTICE
FIGURE 2c




FIGURE 24




—— .
/ |
/ .M
-
' m,.
" .
( o !
Lt .
\ 5
\ 0} :
-— | - T
\
Y

4.6

i " il lasaid " ik %




e e ks ————

TRIANGULAR LATTICE WITH PARALLELOPIPEDAL UNIT

CELL BASIS SET {a;}

FIGURE 3




NIGGLI CLOSE PACKING OF RIGID DISKS, I
ASYMMETRIC PENTAGONAL POLYTOPES

FIGURE 4a




SINGLET CELL OF NIGGLI PACKING, I

FIGURE 4b




HIGH DENSITY APPROXIMATION TO PAIR
SUBFIGURES OF NIGGLI PACKING, 1

FIGURE 4c




CIRCULAR CELL BOUND TO PAIR SUBFIGURE OF
NIGGLI PACKING, I.

FIGURE 5




GRAIN
BOUNDRY

/

TUNNEL MODEL APPROXIMATION TO GRAIN BOUNDARY
HIGH DENSITY LATTICE

FIGURE 6




SEm T

T SRS

L 3NOId

AMVANNOE o2'8€ “13A0W AYMVANNOS NIVHO ONIMOVL TWNOOVX3H

e

i

I

mw‘ |

i

| m__ m

d S

; il
. WW«M

_ _w_ “

i B

3 mmwi
d i

i _«M_f

i i

m |
!

} # .

L L

i1

fr

i

i

s e




