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NESTED BOUNDS FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS 

by 

Christian Fabry 

ABSTRACT 

For a particular class of ordinary differential equations, an 

iterative procedure is described that gives a sequence of 

nested pairs of lower and upper bounds for the solution. 

Simple conditions are found under which the bounds converge 

to the solution.  The method is used to study equations of 

Lanchester's type, which have applications to the deterministic 

description of situations in naval warfare. 



INTRODUCTION 

The dynamics of combat in general, and situations in naval 

warfare in particular, can be described deterministically by 

means of differential equations usually called Lanchester 

equations, Lanchester being among the first to investigate 

such descriptions of combat [Ref. 1]. 

For those equations to provide useful mathematical models, it 

is desirable that information concerning the qualitative 

behaviour of the solutions can be obtained without too much 

effort.  Indeed, even if particular solutions can always be 

found by numerical integration, it is of more fundamental 

interest to be able to predict, for instance, the effect of 

parameters and initial conditions on the final result of the 

combat or on the value of the variables at a given time. 

The qualitative behaviour of the solutions id studied here 

through the determination of successive lower and upper bounds. 

The first steps of the iteration, obtained by hand computation, 

will provide bounds for the variables (which might represent, 

for instance, force levels) that depend explicitly on the 

parameters.  It is then easy to find, for instance, bounds for 

the time required for enemy or own forces to fall below a given 

value. 

Besides its usefulness in a qualitative analysis, the procedure 

developed here can sometimes be adapted for implementation on 

digital computers in order to determine, by rapidly converging 

approximations, the exact solution.  This is justified when the 

successive linear differential equations can be replaced by 

successive algebraic equations; an example of such a situation is 

given below. 



Although this work has been inspired by the consideration of 

equations of Lanchester's type, the results are by no means 

restricted to such equations, as appears clearly from the 

hypotheses made on the equations.  On the other hand, it must be 

mentioned that this note is not concerned with the elaboration 

of models.  For these, the reader is referred, for example, to 

B.W. Conolly [Ref. 2] and to K.M. Mjelde and R.R. Wiederkehr 

[Ref. 3], who analyse situations related to the defence of 

merchant shipping against submarines.  Although the work of 

K.M. Mjelde and R.R. Wiederkehr is also concerned with the 

study of the qualitative behaviour of the solutions of Lanchester 

equations, its emphasis differs somewhat from our own, which 

gives greater weight to the mathematical aspects of the problem. 



1,     STATEMENT OF THE PROBLEM AND NOTATIONS 

Let us consider a system of differential equations in vector 

notation: 

i   =   Ax + i{t,z)   > ■ ^^^ 

y, Y tE  (the n~dimensional euclidian space),  A  is an nxn 

matrix, ±     is the derivative of  ^  with respect to  t. ' 

Systems of type [1]  will be investigated in this work, with the 

important restriction that the elements  a^^^  of  A  will be 

assumed to be non-negative, except those on the main diagonal, 

which can be of either sign;  a^j s 0 (i 7^ j).  If a given 

system does not satisfy those conditions, an appropriate 

transformation might force it to do so.  A class of particularly 

simple transformations of that kind is considered in Appendix A. 

Another possibility would be to include in  Y(t,x)  the linear 

terms  a. .  y.  having an unacceptable sign.  However, this will 

in general make our method less efficient. 

As vectors in  E   will often be compared, it is useful to 

introduce the following notations, for  x^Zj^-^^n 

(1 s i < n), 

(1 <; i ^ n), 

(1 s i < n), 

(1 ^ i < n). 

z < _z if y± < z . 
1 

z <. z^ if y± 
^ z . 

1 

z > X if ^i 
> X . 

X 

z > X if ^i 
^ X . 

X 



2.     RELATIONS BETWEEN SOLUTIONS OF DIFFERENTIAL EQUATIONS 

Theorem 1 

If  a. . s 0 (i 7^ j)  and if  G(t)  is any function satisfying the 

relation 

I[t,x(t)] < G(t)       for  t > 0, [2] 

the solutions of the differential equations 

i  =  A£ + Y(t,2) .  Z(0) =a ■■          [3] 

z  =  Az + G(t) ,  z(0) - b > a [4] 

are such that 

y(t) < z(t)            for  t s 0. [5] 

PROOF,  Let us consider the set S^ of values t s Q  for which 

y^(t) ^ z^(t)  and let  S = ^U^^ S^ . 

If  S  is not void, it has an infimum  ? > 0  and 

a. j(fc) < z(t)    ,  for  0 s t < §   , 

b. 3i : y^C?) = Z-i^C?) 

Then, 

YiCl)  =  (A^)^ + Y. (5,;^) < (Az). + G^(|)  -  z^(?) 

and a positive number  6  exists, such that 



y^Ct)  - y^(§) z^(t)   -  z^(§) 
< t - ? t - I for     I- b   ^  t  <   I 

Consequently, 

y^Ct) > z^(t)    for  § - 6 ^ t < §  ; 

the contradiction with [6]  shows that  S  must be void. 

Corollary 1 

If the condition  b > a^  is replaced by the less stringent 

condition  b ^ a,,  a similar result is obtained, conclusion [5] 

being replaced by 

j(t) < z(t)      for  t > 0   . .   [7] 

PROOF.  If  a. = b.  for some  i(l ^ i^ n), 

y^(0)  =  (Aa)^ + Y^(0,a) < (Ab)^ + G^(0)  =  z^(0)  . 

Consequently, for a sufficiently small positive number e. ,  the 

relation  y.(t) < z.(t)  is valid for  0 < t ^S. . More generally, 

a positive number € exists such that 

2;(t) < z(t)      for  0 < t ^ e   . ; 

Then, by Theorem 1, 

^(t) < z(t)      for  t s e 

and Corollary 1 is proved. 



Corollary 2 

If condition [2]  is replaced by • 

i 

I[t,y(t)] s G(t)        for  t ^ 0   , [8] 

conclusion [7] must be replaced by 

^(t) ^ z(t) for  t s 0   .    I [9] 

PROOF.  Let  e   be a monotonically-decreasing sequence tending n 
(n) toward zero.  Because of Corollary 1,   the solution z/      (t)  of 

the equation 

^(n)  ^  A z^"^ + G(t) +e^ h  ,   z^'^ho)=a , 

where all the components of  h  are equal to 1,  is such that 

j{t)   ^  z*-"^(t) for  t > 0 

By the continuity of the solution with respect to a parameter, 

the relation 

_2:(*^)   ^ ^(^) fo^ t s 0  . 

is established for the solution  z_(t)  of 

z  =  Az + G(t) ,       z(0)  =  a. 



If lower bounds are considered instead of upper bounds, similar 

results are obtained.  For instance, the following theorem can 

be proved. 

Theorem 2 

If  a. . s: 0 (i 7^ j)  and if  F(t)  is any function satisfying 

the relation 

F(t) ^ Y[t,y(t)] for  t s 0 

the solutions of the differential equations 

i  =  A£ + Y(t,x)  ,      z(0) = a , 

X = Ax + F(t) , x(0) = a , 

are such that - . 

x(*) ^ Z(*) fo^  t ^ 0 

f 



3.     NESTED BOUNDS 

Let us assiome that,  for  t ^ 0,  "a priori" lower and upper 

bounds  X   (t)  and  z^   (t)  are known for the solution  _J[;(t) 

of [3];  those bounds could be obtained, for instance, from 

simple inspection of the equation.  Assuming that  Y(t,^) is 

continuous, it is possible to deduce, from  x   (t)  and 

z^   (t), lower and upper bounds  F   (t)  and  G   (t)  for the 

function  Y[t,_^(t)]: i 

E}^\t)     =   . .      iaf     ,     lLt,^itn [10] 

G'-'^^t)  =   . .      «^P . .    Y[t,.x(t)]            [11] 
x^°^(t) ^ ^it) ^  z^°^t) 

Because of Corollary 2 and Theorem 2, the solutions  x   (t) 
(1) ~ and z_        (t)  of the equations 

^(1)  == AJ^)   +F(«)(t) ,  x(l>(0)  =:  a   ,            [12] 

z^l)  ^  A z^l) +G(0)(t) ,  z^l^O)  =  a               [13] 

are new bounds for ^(t) , i.e. 

x^-'-^(t) ^ z^t)   ^ z*'-'-^(t)       for  t ^ 0 

Moreover,  if 

x^O) ^A x^°) +F(0)(t) ,   x^0)(0) ^a   ,   ^       [14] 

i(°) ^ Az(°) +G(«)(t) ,   z(0)(0) ^ a   , [15] 



the new bounds will lie between the "a priori" ones: 

x^^^t) ^ J^\t)   ^ £(t) ^z^^^t) ^z^°^t)   . [16] 

This results from the application of the type of argument used 

in Theorem 1 and Corollaries 1 and 2 to equations [12] and [14] 

and to equations [13] and [15]. 

It must be noticed that, with the conditions [14] and [15], it 

is no longer necessary to assume that  x   (t)  and z/      (t) 

are bounds for j(t),  as this results from [16],  Because of 

the relations [16], new bounds can be found for  Y[t,^(t)]  that 

lie between  F^°^(t)  and  G^°^(t): 

L^^^i^'f   =     (1) ^""^        (1)      llt,zit)-]     , 

G^''^(t) =       (1)      ^"^    (1)   I[t,z(t)] 

(2 ) (■ 2 ") 
Then the solutions  x  ^(t)  and zr      {t)      of the equat xons 

^   > 

are new bounds for  ^(t)  and satisfy the inequalities 

because 

x^^) . Ax^^) +F(0)(t)   , 

z(2) ^A z(2) +G(0)(t)   . 

10 



An iterative procedure is thus initiated which, at each step, 

gives new bounds for the solution  £(t)  of equation [3])  the 

new upper (lower) bound being smaller (larger) than the previous 

upper (lower) bound.  This procedure is explicitly defined by 

the equations: 

4^"^  =  A x^"^ + F^^-^ht)  ,      x^"^0)  =  a   ,   [17] 

.(n)  ^  A z^'^^ + G^"-^^t)  ,      z^"^0)  =  a   ,   [18] 

together with the equations 

x^^-^Ut) ^;^(t) ^ z^"-l^t) 
,. ■ " [19] 

G^n-l)(t)  -   , ,s       «^P      .   -,^      Y[t,i^(t)] 

[20] 

(n=l, 2, ....) 

If the definition of  F^" ~ "^(t)  is changed to 

F^"-^^t)  =   .   ,. i^f      . ^    Y[t,£(t)]  , 

z^"M"b) being determined before  F     -^(t) ,  a modified procedure 

is obtained that will converge more rapidly than the initial one. 

It must also be noticed that, as long as  x  -^(t) ^ ^(t) ^ z   (t), 

it is possible to determine a sequence of nested bounds, even if 

the conditions [14] and [15] are not satisfied.  For that purpose, 

it is sufficient to replace definitions [19] and [20] by 

11 



(n  = 1,   2   . ...) 

where    5^""l>(t)     =    max   [x^" " ^^ (t),      x^"-2)(t)]      , 

I^"-^^t)     =    min   lJ^~^\t),     ^(--2)(t)] 

(n  =  2,   3 ) 

and x(0)(t)     =     J^ht)   ,       i(0)(t)     =     z(0)(t)      . 

12 



4.    CONVERGENT SUCCESSIVE BOUNDS 

The nested bounds of the previous paragraph need not necessarily 

converge to the solution of equation [3]«  However, convergence 

in this sense can be ascertained if the function  Y(t,^) 

satisfies a Lipschitz condition.  Although the notations in the 

next theorem are those of equations [17] to [20], the result is 

valid for all the iterative procedures discussed above. 

Theorem 3 

The sequences   x   (t)  and  z^   (t)  ,  defined by equations 

[17] to [20], converge to the solution ^(t)  of [3]  if a     ! 

constant  L  exists such that 

for  ;^i, 2.Z   ^ E ,  t SO  ( || x II ^^ ^^y convenient norm defined 

for  X P' E ) . — ^ n ; 

PROOF.  The sequence of function  x   (t) being non-decreasing 

and bounded above,converges to a function that will be denoted by 

x*(t).  Similarly, the sequence  z^   (t) converges to a function 

£^^(t).  Because  Y(t,2;)  is continuous in j,  we have 

A X-"- + F-«-(t)    ,    x*(0) =  a  , X""- 

where  P-^Kt)  =   „., >. ^ '^75\    -r^\  Y[t,y(t)1 

and   ^-"- -    A z-'«- + G-^Kt)    ,    z-'^O) =  a 

with   G.-(t)  = ^,(^) ^J-P) ^^^^^^     I[t,5l(t)] 

13 



The difference  f^ = £-"- - x---  satisfies the relation 

* 
£  =  A f + G-;Kt) - F*(t) ,   f(0) = 0 .   . [21] 

Butj because of the Lipschitz condition, 

G--(t) - F--(t) s L II f II h   , ^ 

where  h  is a vector having all components equal to 1;      using 

then Theorem 1 to compare equation [21] and equation 

i   =AA,+ L||x((h  , X{0)     =     0  . [22] 

it is found that 

f(t) ^ A (t)  = 0   . 

However, by definition,  f(t) s= 0  and, therefore,  f(t) =0  or 

x^(t)  =  z*(t)  = £(t) 

14 



5.    APPLICATION TO LANCHESTER-TYPE EQUATIONS 

5.1   Example Used 

As an illustration of the method discussed above, properties of 

the solutions of the system 
j. 

x==-ax-3xy    , x(0) = xo > 0  , [22] 

y  =  -= a' y» P' xy   ,      y(0) = y^ > Q , [23] 

will be studied;  the parameters a,  Q,^ ,  P, |S'  are assumed to 

be positive. 

This system is a variant of models proposed by B,W. Conolly 

[Ref« 2] to describe situations in naval warfare.  The terms 

-ax  and -Q:' y could correspond to losses that either cannot 

be attribiited to the opposite side (such as losses due to ship- 

wrecks or due to obsolescence) or do not, at least within certain 

limits, depend on the level of the opponent forces appearing 

explicitly in the model.  On the other hand, the terms - gxy 

and - 3' xy  could correspond to losses proportional to the 

number of encounters between units of the forces represented by 

x  and units of the forces represented by  y. 

The development of the method proposed here is in fact not 

justified by its application to such a simple problem, but 

rather by the systematic treatment it provides for a class of 

differential equations, of which the system [22], [23] is only 

a simple example.  The study of that example will show however 

which type of properties can be examined by this method. 

15 



5.2    Dependence on Parameters and Initial Conditions 

A conditional relation will be established between  x(t)  and 

y(t)  that gives some indication on the effect of the parameters 

and the initial conditions.  In order to establish that relation, 

the transformation of variables 

^0 yo 

is used, the system [22], [23] being rewritten as 

X  =  -a X- PYO  XY   ,    X(0)  -  1, 

Y  =  -a'Y-p'xoXY   ,    Y(0)  =  1. 

Using   Theorem  1,   it   is   found  that 

X(t)    ^ Y(t)        or     ^iiil <   ^^^       for     t   ^  0, 
^0 ^0 

if 

a > a'     and   |3 To > 0' XQ  . 

Similarly, if  a 2: a'   the relation 

gy (T) > r  X(T) . . [24] 

implies the relation 

gy (t) > p^x(t)  for  t s T 

Possible values of T  for which [24]  is satisfied could be 

determined using the bounds that will be obtained below. 

16 



5.3     Bounds for the Solution ' 

Bounds will now be determined for the solution  x(t),  y(t)  of 

the system [22], [23],   It appears immediately from the 

equation that 

0 ^ x(t) s XQ  , 
I 

0 ^ y(t) ^ Yo  ; 

from this, it is easy to find improved bounds: 

-(a +p yo)t _a't 
XQ e s x(t) ^ XQ e       , [25] 

-(a' + P'xo)t _^ ,t 
yo e ^  y(t) ^ yo e       ,.. [26] 

Moreover, if 

^^ e-(«+P yo)t ^ ^^   , 

^-(a' + 3'xo)t __ 
yo e ^-  ■ ----- > y 

/I ° 1 '^°\ r 
I.e.,  if   t s min ( ^ , o   In — ,  r-;—r-^,   In -r— )        1271 ' Va + p y0   x;^ ^ a ' + 3' XQ   y 1 y      •- ' ^ 

we have  Xj s x(t) ^ XQ  ,  yi ^ y(t) s yg  and, consequently. 

^^ e-<'»+5y = >* s x(t) s x„ e-^'^ + fy')*  , [28] 

New bounds have thus been found that are valid as long as  t 

satisfies condition [27] 

17 



5.4     Bounds for the Time Required to Reach a Given Level 

When studying LanChester equations, it is important to estimate 

the time required for some variables to fall below a given value. 

Bounds for that time are determined here in relation to the 

example considered.  For instant,  if  T  is  defined by 

X(T) — XJ,  it results from the inequalities [28] that 

^0            1           XQ 
In    s T s -—r-7 ' •^n   

a + iSYo   xj     a + p y^    x^ 

provided that  yj^  satisfies the relation 

^-?^^;rTV^^n^    . [30] a' + 3' xg   y^   a + P yi   x^ 

In other words, if [30] is satisfied, x  reaches the level  x^ 

before  y  reaches the level  y^^ .  On the contrary,  y  reaches 

yj  before  x  reaches  Xj  if 

In —^   ^  —-—-— In  —^ 
"■ -^ " "     X. a ' + 0' xj  Yj  a + gYo  -1 

Consequently, the value  yCx^)  taken by  y when  x  equals 

Xj  is such that 

a+0yo    xj     y(x,^)  Q;+3y(xi)   X;^ 



5*5    Numerical Determination of Successive Bounds 

If YQ   ^  -g-  and XQ ^ -rj-   ,     the bounds defined by [25], [26] 

satisfy the conditions [14]? [15]•  Starting with those bounds, 

it is then possible to generate, by iteration, a sequence of 

nested bounds that can be defined in the following ways 

x(0\t)  =  xo e-^«+0yo)t   ^ 

(0).. ^ -(a ' + 3' Xo)t y   (t)  =  yo e ^    I-  0/  ^ 

i(»): = ., .(n) . M<"-^*y*"-^),x<"'(o)=.„ ,     [31] 

(n = 1, 2, 3, .... )  . 

( n       \ ( 9     \ 
The functions  x    (t), y    (t)  are lower bounds for  x(t), 

y(t),  whereas the functions  x       (t),  y       (t)  are 

upper bounds.  The differential equations [31]? [32], can easily 

be transformed into algebraic equations.  Indeed, let us assume 

that 

„(n-l) /   -.v 

j 

i =1 

(n-1).,-.     V        (n~l)  -^.''----'t x^     (t)  = 2J     a.     -^ e  1 

--(n -1) /   , x 
/   ^^        N        f        TV   ,, (n-1), 
^"-l^t)  = L      b.^"-l^ e-^i     ^ y    .  , ^ 

i =1 
f 

or that 

[N^--I3 (n-l) 
(n-l)(^) ^in-l)(^)  -S c/--l^ e-^a-     '(^) 

3=1 ' 
> 

19 



where the coefficients  c.     "^  and exponents  V-:^'^   ^      can 

easily be deduced from  a^^^ " ^\ b . ^'^ " ^^ X^"" ~^\     ^i^" " ^^ 

Then, if 

(n-1) 
V. 7^ a , a' i\/.) ,      we have 

3=1       Vj"-  -a 

(n)     N^")-l     c/"-l)    -v.("-l)(t)    . .  _^,^ 

j = 1   V .    - a ' 

where  N^"^^ =     [N^^-^^f + 1 , 

) 

/  \ i\    — X       c . 

A^"^  = x„ -  Z    3  i .^^    P   (n-l) 
J =1     V^.      -< 

0 _ 

The above described procedure has been applied to the system 

i  =  -0.2 X - 0,1 xy, x(0) = 1  , 

y  =  - 0.2 X - 0.2 xy, y(0) = 1  . 

Starting with the lower bounds 

x(0)(t)  = e-°-3S  y(0)(t)  =:  e-0-4t 

20 



three iterations have been performed, the results of which are 

represented in Figs. 1 and 2,  The following relations are shown 

to hold between the approximate solutions obtained by the second 

and third iterations: 

lim    x^^^(t)  ^^  0.69 

t-»"    x*^^^(t)       0.72     '     "^ 

lim    y^^^t)  ,.^  0.38 

t-»»    y^^^(t)       0.45 

On the other hand, it can be proved that, for  OstslO,  the 

difference between  x^ "^(t)  and the exact solution  x(t)  is 

less than  3 x 10 >     whereas the difference between  y^ -^(t) and 

the exact solution  y(t)  is less than  6 x10 

The same method has been applied to the system 

X  =  0.001 X - 0.005 xy,   x(0) = 1  , 

y  =  0.05  y - 0.02  xy,   y(0) = 1  , 

where the terms  + 0.001 x  and  +0.05y  could, in biological 

models, correspond to birth processes.  The iterations have been 

initiated with the lower bounds  x = 0,  y = 0  in which case it 

is not possible to obtain a sequence of nested bounds valid for 

all  t^O.  However, considering for instance the variable  x,  it 

is shown that, after three iterations, an approximation is obtained 
— 3 

whose error is less than  3 X10    for  0^t<10;  the three 

iterations for  x  are represented in Fig. 3« 

2X 
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FIG. 1    THREE SUCCESSIVE APPROXIMATIONS FOR THE SOLUTION   x(t)  OF THE SYSTEM 

x=   -0.2x- 0.1 xy  ,      x(0) = 1    , 

y =   -0.2x-0.2xy   ,        y(0) = 1     . 

y'l 

0 I 2 3 4 5 6 7 8 9 10 

FIG. 2   THREE SUCCESSIVE APPROXIMATIONS FOR THE SOLUTION  y(t)  OF THE SYSTEM 

X-   -0.2x-0.1xy    ,      x(0) -   1    , 

y =«     -0.2x- 0.2 xy    ,        y(0) -   1    . 

22 
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FIG-3   THREE SUCCESSIVE APPROXIMATIONS FOR THE SOLUTION   x(t)   OF THE SYSTEM 

x=     0.001 X - 0.005 xy    ,       x(0)  =   1    , 

y =     0.05y - 0.02xy    , y(0)  =   1    .   ■ 
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CONCLUSIONS 

It has been shown above that the solution of a differential 

equation could be approximated by successive lower and upper 

bounds.  This integration procedure could be, in principle, 

applied to any differential equation, provided that "a priori", 

bounds are known.  However, as with the somewhat similar Picard 

integration method, an appreciable number of iterations can be 

performed only in favourable cases (essentially when the 

successive approximations can be expressed as sums of 

exponential functions). 

If our method has rather limited possibilities of use for 

integration, it offers, on the contrary, a widely applicable 

approach to the qualitative study of the solutions.  Indeed, 

uniformly valid bounds can provide information concerning the 

value of the variables at any time and also concerning their 

asymptotic behaviour.  Those bounds, obtained algebraically, will 

also show the effect of the parameters and initial conditions on 

the solution. 
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APPENDIX A 

MATRICES WITH POSITIVE NON-DIAGONAL ELEMENTS 

An important restriction has been put on the elements of the 

matrix  A  in equation [l]j  indeed, the non-diagonal elements 

a. .(iT^j)  have been assumed to be positive.  If this is not so, 

the above described method cannot be applied;  however, simple 

transformations might exist that would transform a given matrix B" 

into a matrix A with positive non-diagonal elements.  Simple 

transformations of a particular type will be considered hereunder, 

namely transformations that when applied to a vector  y^E  , will 

change the sign of some components of  y,  leaving the others 

unchanged.  In other words, we are concerned with transformation 

matrices T = diag (ax ^ ...., a )  where a. = ±1 .  We want to 

establish conditions under which such a matrix  T  exists that 

transforms a given matrix  B  into a matrix  A = T B T  with 

positive non-diagonal elements, i.e. with elements  a. . s 0 (i 7^ j) 

Theorem A.l For a given matrix  B,  a transformation matrix 

T = diag (CCi, ...... a ),      (Ct. =±1),  exists that transforms 

B  into a matrix  A = T B T  with strictly positive non-diagonal 

elements if, and only if, the elements  b. .  of  B  are such that 

^Ik Kl   ^11   ^  ^ ^""^     k ^ 1, I   j^ 1,      k 7^ ^ ; 

bi, b, T > 0 Ik  kl 
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Necessary Condition %        By hypothesis, 

^Ik ^k-t ^11  ^  ^       ^^"^     k 7^ 1, 1^1,     k ^ I     ; 

consequently 

«r 4 °=r \u \i ^11 > 0 

and  b^j^ bj^^ b^^ > 0   for  kT^l,  -t?^l, k ^ I     , 

Similarly, 

^Ik «kl =* 0 

or 

^1 «k  ^Ik ^ki > 0 

Sufficient Condition  :  Let 

a^ = 1 ,       OL^     =     sgn (b^j^) (k 7^ 1) 

Then, 

^Ik ^     ®^" ^'^Ik^ ^Ik ^  ^       (k 7^ 1) 

=  sgn (hj^^)   hj^^  >  0       il^  1) 

^k^  =  ^S" ^^Ik^ ^Sn (b^^) bj^^ 

=  sgn (b^j^) sgn (h^^)   bj^^ > 0   (k ^ 1, ^ 7^ 1, k 7^ -t) 
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If we want to find a transformation  T  such that the non-diagonal 

elements of  A = TBT  are positive  (a..^0, ±  ^  j)   ,  the ■ 
conditions 

^jk \l  ^l3   ^   ^ ^°^ k^j,   l^j,kj^l      , 

and   b ., b, . s 0 ■    ., 
jk  kj :„ >1J 

are necessary and sufficient. 
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