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SUMMARY

The effects of transverse shear deformations upon the classical buckling
load of fiber-reinforced cylindrical shells under uniform axial compres-
sion have been analyzed. A stability determinant which upon evaluation
yilelds an expression for the buckling load has been developed using a
modified form of the Reissner variational principle. The buckling loads
predicted by the stability determinant, with transverse shear effects
neglected, have been calculated and shown to agree with previously
published results for boron-epoxy and glass-epoxy cylinders. Inclusion
of the transverse shear effects in the two cases investigated shows
little reduction in the classical buckling loads. For general appli-
cation, charts are presented to give stability criteria for fiber-
reinforced composites as a function of the geometric and mechanical
properties. Effective transverse shear rigidities, established by experi-
ment, must be developed in order to estimate realistically the reduction
in buckling load from the charts presented. For the determination of
natural frequencies of fiber-reinforced shells, with transverse shear
effects included, a frequency equation in determinant form is presented.
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FOREWORD

The work reported herein constitutes a portion of a continuing effort be-
ing undertaken at Stanford University for the U.S. Army Aviation Materiel
Laboratories under Contract DAAJ02-68-C-0035 (Task 1F162204A17002) to
establish accurate theoretical prediction capability for the statie and
dynamic behavior of aircraft structural components utilizing both con-
ventional and unconventional materials. Previous contracts supported
investigations which led, in part, to the results presented in references
2, 3, 4, and 5. '
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INTRODUCTION

Due to their high strength-to-weight ratios, fiber-reinforced composites
are increasir~ly being used for structural applications. In the anal-
yses to determine the structural characteristics of fiber-reinforced
beams, plates, and shells, the structural members have been assumed to
be infinitely rigid with respect to transverse shear deformations. The
objective of the present analysis is to investigate the effect of re-
laxing the rigid-transverse-shear assumption.

The usual fiber-reinforced composite structure is lamineted from thin
layers, each having unidirectional fiber reinforcement. For a given
layer, the ratio of the inplane shear rigidity to the extensional
rigidity is much lower than the corresponding ratio in a homogeneous
isotropic material. Therefore, transverse shear deformations during
bending in laminated fiber-reinforced structures can be expected to be
much more significant than shear deformations in homogeneous isotropic
structures. 1In the present study, an analysis which includes the effect
of transverse shear deformation on the elastic stability of fiber-
reinforced circular cylindrical shells subjected to uniform axial com-
pression is developed. Applications are made to the special cases of
boron-epoxy and glass-epoxy materials.

The analysis is based upon the use of the Reissnerl variational prin-
ciple. First, the indirect variational procedure is used to establish
the governing equations and the general boundary conditions for the
problem. Then, to calculate buckling loads, the direct variational
approach (Rayleigh-Ritz method) is applied. The general buckling cri-
teria results are given in the form of a stability determinant, and the
specific problem solution results are given in the form of charts. The
nature of the development is such that with very little additional effort
the natural frequency equation for fiber-reinforced shells with trans-
verse shear effects included can be obtained; the frequency equation is
presented in an appendix.



GENERAL THEORY

PROBLEM STATEMENT

The general problem considered here is the investigation of the effect
of transverse shear deformations on the buckling loads of circular
cylindrical shells made of i'iber-reinforced composite materials

under uniform axizl compression. The shell geometry and coordinate
system used are defined in Figure 1. The fiber reinforcement within
each lamina is unidirectional; however, the orientation of a given layer
with respect to adjacent layers can be arbitrary. Also, the thicknesses

~

of each of the layers may differ. The shell wall is shown in Figure =.

REISSNER FUNCTIONAL

In the present analysis, a variational procedure is applied to the
Reissnerl form of the potentiel energy. As shown by Mayers et al?’B’L’:,
the Reissner formulation and modified forms thereof are demonstrated to be
better alternatives to the potential energy principle for the nonlinear
analysis of plates and shells. To facilitate the extension of the pres-
ent analysis to nonlinear problems and to preserve continuity, a modi-
fied Reissner principle is used for the present linear analysis. For a
thin plate or shell in which normal stresses in the direction perpen-
dicular to the surface are neglected, the Reissner functional becomes
(see retference 1)

- Ftav (1)

u’’ = /.,g € +0¢ + 7 + T v + T v
I >lIo Yy Xy Xy X2 X2 yz y2z
v

where F’ 1is the complementary energy density and is defined by

g T
2 i " Xy xz Tyz
F* = e do_+ . :
j~ £l j. yy ]- 7Xydrxy + j~ "x28xz * j 7yszyz (2)
0 0 0 0 0
In the linear elastic case,
F’ = = EllE.. & Olel F I s ok T g h T (3)
T 21xx vy Xy’ xy Xz’ X2 yz'yz
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REISSNER FUNCTIONAL — PLATES AND SHELLS

The strains can be expressed in terms of the reference-surface strains

and the relative rotations (corresponding to the Kirchoff-Love assump-

tions) as

= eo - Z

€x = % K.

0

= -2 4

“y vy T %y (%)
= 9 ZK

"xy "xy Xy

After integration through the thickness, the Reissner functional becomes

0 0 0
U’ = IN - M + N - M + N - M
1- xfx T % T ey TN T Yy T Ty

$ QT+ QT fF‘dz ldA (5)
h

vwhere the following usual definitions of the stress resultants apply:

Nx = jhkdz

N = ¢ dz
y = J%

N = T dz

Xy Xy

M = ];a dz
X X

M = 20 dz (6)
y .I. y

=
"

T d
Xy jzxyz

’P

szdz
Y [ Tyz32

represent average transverse shear strains.

and vhere ;;z and 7.,
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CONSTITUTIVE LAW

Discussions of the linear-elastic law for laminated anisctropic plates
and shells can be found in references 6, 7, 8 and 9., Assumption of a

state of generalized plane stress gives the stress-strain relations for
th

the k layer as
o'x(k) €y |
(k) (k)
a, = IC l € (D
Tx:r(k) Txy |

where the symmetrical matrix [C(k)] represents the elastic coefficients
associated with the kP
the elastic properties of the lamina referred to a set of elastic axes
and the orientation of the elastic axes with respect to the coordinate

system of the reference surface in the structure.

lamina. The elastic coefficients depend upon

The stress resultants can now be related to the reference-surface strains
and the relative rotations and twist by

0
Nx ex Kx
0
N = [A - 8
b (A] ¢ (D] Ky (8)
0
N
Xy "xy “xv
0
My €x “x
Mt = (D] Q4o (9)
y y
0
M
Xy "xy “xv

The reference surface constitutive law is given now by equations (8) and (9)

B



where _A] , [D], and [D*] are 3 X 3 matrices whose elements
depend upon ihe physical and geometric propertiecs of the laminae (see
Appendix VI). Coupling of the reference-surface straeins and the loads
with the bending moments and the relative rotations and twist due to the
nonsymmetrical arrangement of the laminae relative to the reference sur-
face is produced by (D,. The details of the evaluation of the ele-

ments of the various matrices are given in references ¢ through 9.

The transverse shear forces and average transverse shear strains are

assumed to be related by

o = MW7, sd Q = MW7, (20)

where Ex and Sy are the effective transverse shear rigidities.

STRAIN-DIS PLACEMENT RELATIONS

For a cylindrical shell, using the Donnell10 approximation, the reference

surface strains for small deflections are given by

0 _ ou

€ T X

0 vV W

Ey = '67 - .ﬁ (ll)
€O _ u . Qv

xy - Jy &

In a manner analogous to that of Libove and Batdorfll, the relative ro-

tations and the relative twist are given by the relations

2 fa—
dw 0
o =) == i (12)
Y 3y Yy
. . o w _ a7xz Bzxz
&/ xdy dy | ox



in which the terms involving derivatives of ;¥z and 7yz

transverse shear strains) are corrections to the usual curvature terms

(the average

introduced to account for the effects of transverse shear deformations.

MODIFIED-REISSNER FUNCTIONAL

In a manner similar to that of references 2, 3, L4, and 5, the Reissner
functional of equation (5) is now modified so that the force resultants,
the reference surface displacements, and the average transverse shear
strains are the only variationally independent quantities. The bending
and twisting moment resultents and the transverse shear force resultants
are elimineted from the Reissner functional tnrough the use of appropri-

ate constitutive relations.

To achieve the modification, equation (8) is inverted and substituted
into equation (9) with the result that

0
€X NX Kx
Ol mrde Ve aad « (13)
y y ¥
70 N «
Xy xy xy
MX Nx ’X
M ral {m (a ] (1%)
= J - e s
Y - g b g
M N s
xy Xy Xy

where [a] , [d’], [d] , and [d'] are 3 X 3 matrices which are de-
fined in terms of [A] , [D], and (D] in Appendix VI. The comple-
. mentary energy per un.t surface area is calculated by integrating
equation (3) across the thickness; by applying the definitions of
equations (6); and by eliminating the transverse shear resultants,
reference-surface streins, and bending moments through the use of
equations (10), (13), and (14). Such a procedure — the same as that

 —— et e e e



used by Khot9 for evaluating the strain energy — yields

f Flaz = 3 |a'llN)2c + aeeNfr + a'66N£xy * 2a'12NxNy + 2a16NxNx;y + ea.26Nnyy

A ¥ o

WS O +2 odr
* )% 225y 66" xy * dl2K ¥ dl”K oy T 26Xy xy

- =2
+ thy + Gyhyyz (15)

The potential associated with the applied axial compression load is
given by (see reference 12)

‘{l Nx(x2 IdA (16)

<:
l\)ll—‘

Combination of equations (5), (10), (11), (12), (1%), (15), and (16)
gives the following modified form of the Reissner total functional to be
used in the variational procedures of th: remainder of this analysis.

v W ou ov 1, 1_ 5
U’ +v’ ffo—+N — -=J+N —_+ — +-th7xz Ghyz
ox ay R oy Ox 2 2 VY

: <82w a7n>
- N N + N —  —
dyaNy + 4ol + 4Ny ~

- (dEINx bi d22Ny ad d26ny) ? - %

yz
S (d61N + d62N + d66ny) (2 oy - . - 3

P - -
ow Byxz dy )

1l
- -2- (a'llec + aEEfo + a66Nzxy + 2&12NxNy + 2al6NxN + 2a.,.6 )

" _ _ 2 _ _ 2
+i d;l(ﬁ . ay"’) + dy <ﬁ . %'_\ + d (2 v Vxa a7y2>
2 % o 2\oy°> oy / 3y Iy  x

(Continued)




oV flxa)
oy ox

v ¥ Z
(72
é? ax
<2 -

+2* 2-3‘{&
“16 ox dy
2 —
+2d* (a_:-zﬂ)(
o P axdy
il ow
+;ff Nx (.—5 ld.xdy
A o\ dx

EULER EQUATIONS

(17)

An indirect variational approech to the problem results in the establish-
ment of the governing equations (Euler equations) and the associated

boundary conditions of the surface.
are given in Appendix I; the resulting Euler equations are

< O ¥ O

éo

oN. ON
-—x-'l*-J = 0
dx oy
oN oN
—l-f-—ﬂ = 0
dy ox
N
x
(a] Ny + [a‘]
Ny
9

The details of the indirect approach

(18)

(19)

—— ' ——




Q’( =] — + 'ﬂ
% dy
20
oM M (%0
Q.y = =iy X
dy ax
o) o] 2,
a‘MX G“Mxy M N v
2+2 + 2y=-—X+Nx—2 (°1)
X XAy dy R o X

which apply to flat (R »-~) and circularly curved plates as well as
to circular cylinders. Equations (18) represent equilibrium in the

x- and y-directions, respectively. Equation (19) represents stress-
displacement compatibility. Equations (20) represent moment equilibrium
about the x- and y-axes, respectively. Finally, equation (21) repre-
sents equilibrium in the direction normal to the reference surface.

10



METHOD OF SOLUTION

ASSUMED SOLUTION FUNCTIONS

The generalized displacements and forces satisfying the compatibility
conditions derived in Appendix II and Appendix III and, at least, the

geometric boundary conditions (simple supprort for the present problem)

are assumed to be

. mrx oon BAY
w = W sin T sin D
S . mIX oo By
Vo = I‘x cos = sin 5 (22)
= = {n nay
s Py sin I cos 5
3 mIX o BY max oon DY
u = ul sin T cos D +u2 cos T sin b
(23)
i, WX s BIY ube SN o'
v = vl sin T cos b +v2 cos I sin b
- in BIX oip BIY
Nx = Nxo + N3 sin = sin >
Ny = N, sin == sin < (24)
) mIx o Ry
ny = N2 cos I cos 5

x,r‘y’

dependent quantities in the direct variational procedure.

where W , Yoy, vy, V5, Ny, N2 » and NS become the in-
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STABILITY DETERMINANT DEVELOPMENT

Substitution of the assumed functions int.o equation (17), integration
over the prescribed limits, and subsequent variation with respect to
the 9 independent quantities yields a set of 9 linear homogeneous
equations. The determinant of the coefficients of the homogeneous
equations establishes the condition for equilibrium in the buckled
state. An expression for the applied axial load, Nx , required for
equilibrium in the buckled shape as a function of the shell geometric
and elastic properties, the number of circumferential waves (N) |,
and the buckle aspect ratio (u) results when the determinant is
evaluated. For a given shell, the buckling load corresponds to the
lowest value of Nxo for all the possible combinations of N and u.
The stability determinant as well as the details of the buckling load

calculation is given in Appendix IV.



RESULTS AND DISCUSSION

The primary result of the present analysis is the establishment of the
stability determinant given by equation (40) in Appendix IV. When the
shell geometry and composite material construction are defined, the
axial buckling load for a circular cylindrical shell made from any
number of arbitrarily orientated fiber-reinforced layers can be deter-
mined through numerical evaluation of the stability determinant.

Specifically, the effects of transverse shear deformation on the axial
buckling load of fiber-reinforced shells made of two different matrix-
fiber combinations have been calculated using equation (40). Both of
the shells considered have a 6.0 in. mean radius and are laninated from
0.012 in. thick layers with all fiber reinforcement oriented in the
longitudinal direction. The lamina elastic properties for the two
cases studied are the same as those used by Khot8’9 and are listed

below.

Boron-Epoxy Composite

6 2 _
B, = 40.0 x 10° 1b/in. = Cll(l"'le"el)
6 2
Epy = 4:5x10°  1b/in." = Cyp(1-v,,v,))
Vip = 0.25 Vo = 0.028
¢ = L.5x10® 1w/in? =¢
66
Glass-Epoxy Composite
E. = 7.5x10° 1v/1n2 =¢, (1-v,v..)
11 11221
6 2 _
E,p = 3.5x10 1v/in.” = 022(l'v12V21)
V12 = 0.25 V21 = 0.18
6 = 1.25x10° 1/in.? = cg

The axial buckling loads for the cases of infinite shear rigidity (no
transverse shear effect), along with the reductions in the axial buckling

13
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loads due to finite transverse shear deformations, are shown in
Figures 3 and 4 for boron-epoxy and glass-epoxy composites, respec-
tively. The axial buckling loads given in Figures 3 and . for the
cases of 3-layer shells are the same as those calculated by Khot8 on

the basis of infinite transverse shear rigidity of the medium.

1k
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CONCLUDING REMARKS

For a first approximation to the effects of transverse shear deformation
on the buckling load of axially compressed boron-epoxy and glass-epoxy
fiber-reinforced shells, the effective shear rigidities (Ex and Ey)
can be assumed to have values between the shear modulus of the epoxy
matrix (about 200,000 lb/in.z) and the inplane shear modulus of the
composite layer (1.25 X 106 I.b/i.n.2 for glass-epoxy and 1.5 X lO6
lb/in.2 for boron-epoxy). Figures 3 and 4 show that in this range of
values, the buckling loads calculated with transverse shear deformations
included are less than 7 percent below those calculated with the
assumption of no transverse shear deformation. Actual effective trans-
verse shear rigidities can best be determined by experiment.

Due to the similarity in the formulation of the free lateral vibration
problem and the buckling problem to which most of the preceding pages
have been devnted, a frequency equation which may be used to establish
the effects of transverse shear deformation on the natural frequencies
of circular cylindrical fiber-reinforced shells has been developed in
Appendix V. For given materials, natural frequencies can be established
by finding the eigenvalues of the determinant (equation 47) in a pro-
cedure similar to that used for the buckling problems.

17
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APPENDIX I

EULER EQUATIONS AND BOUNDARY CONDITIONS
DERIVED FROM THE VARIATIONAL PRINCIPLE

The vanishing of the first va.ria.t}on of equation (17) with respect to

Nx,Ny,Nw,u,v,w,7xz,a.nd ;yz gives

du sV ov w
5(U’’ +V*°) “N—+5N —+N—-—15w+5N — o o
xx Y3y R oy R

osu vV . du v
+N —+N — + BN — +—1]+Ghy & _ +Ghy b5
Xy Sy AN S ox X Txz 7xz y 7yz 7yz

beaw 867

(ayy ¥y + 4y + gy’ 5+ (Al + dpally +

2 = 2l = o
w  Jy 0w 87 w9y

d,,8N —-—E-d BN Xl a N | — - X2
x(8x2 ax) (a;? ax) 10 "3’(ax2 3

826\1 857
(i + Qpglly + doglly) = + (M + dglly + dilyy) —E

2 - 2 - 2 -
oW  dy w9y dw dy
- sN [ — - —2 - &N [ —= - =2} - 5N - _Lz)
- x(ayE Sy ) d22 y(ay2 o d26 y§ >

826\'\ 867xz
- (4N, + dgoN, + d66Nw) 2 Sgy p+(dg N, + Aoy, + dgeN o ) —a—y—

o8y
—aZ
+ (g N, + N+ d66ny)( = )

32 &, O : )
-[2 - - = d . .8N +4..5N +d, 5N
Sy 1 5 3x 61 x 62"y 66 xy

(Continued)
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&t alleE’Nx )

'.'22Ny6Ny - 6 N SN .IZN SN ‘12
- B NBN o - By BN N - e, N EN - 8NNy
2 - 2 2 - -
Lo Bw-ayxzbsw-d;law Byxz 357xz
i sz ox Bxe Bx ox ox
ot 2 \2 2 S~ -
L o w ) ayﬂ) o Bw ) d; o w ) a'yyz ab'ylz
2\ Yy | 2\ %2 o | o
Pw o o \d%w 3% ¥, W\ 7,
+2d*62 S yz) 'd26 PP - S 1 __’E
6\ my & axdy My dy ox /) o

e g Ty | 7,
Ox3y oy ox

ox

2 = 2 2 - 2 -
o“w 67 o sw 857 . d;z d :w _ 867?> d : _ dy
S By ox oy oy oy

2 -
l;_ "z\e Bw-857 -6542)
Ox dx /\ My dy ox

2 - ’ 2 =)
o dw ) Bbyxz . Ow ) dy ) a'yyz
»®  x My dy  ox
3w ] a;yz) , 328w ) 37, ) 557yz

£ dy dxdy oy ox

2 - - - -
O Bw levz) (2 Ow ) ayxz ) Byyz)
8y2 oy oxdy dy ox

(Continued)
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- N, — — } dxdy

= 0 (&)

After integration by parts, regrouping of terms, and application of
equations (11) and (12) along with the constitutive relations (10)
and (1L4), equation (25) becomes

. ENX 3N .| 2N SN
S(U" + V') = -jf —-+—xy sudxdy _[j :—X+_}(X svdxdy
dx dy oy ox

+J} € ~ a.lle - al2Ny - al6ny -d Kx - dgle - d6ley| 6Nxdxdy

- = = v - - - ) s,
+f j ey 8‘12N>: a22Ny a'261\xy dlEKx 22% do2'<xy ,LNydxdy

+/f exy - aléNx - 8.26Ny - a66ny - dl6Kx - d26(y - d66nyl 5nyd.xdy
oM. M M. oM
1 X ST AN~ A v
# -— - 5y, dxdy + = - 3y, dxdy
L e | e
3% M °M N 8w
S e D D B, S
< ox Oxdy oy R 0 ox
b L L b L b b L
+ f N bu }dy + f ,N e ”dx + f N ov ldx + f,nyav dy
0 0 0 0 0 0 0 0
(Continued)
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aee—

+
O—tt O~~———°0 Ot O'—_°°

T L .
_ CW L W
Msly -—\ dy+[ME~ T = — | [ jax
X Xz ] Xy Xz 3x /
o) 0 0
. b b < . L
_ oW = w
N R e dX+fM % -'—II
vy \'v2" 5 | Ty T Y
7o 0 Yio
w oM oM L
-Nx—+—+—xx sW dy
O0ox ox oy 0
oM oM 0 .
N AU 5 A RN ’ ax = 0 (26)
oy 3% 0

For the above expression to vanish for the specified arbitrary states
of stress and displacement consistent with the geometric boundary con-

ditions, each of the terms must vanish independently.

The first eight

terms of equation (26) lead to the Euler equations and the remaining
terms establish the boundary conditions, as follows:

< O ¥ O

ao

Inplane equilibrium:

3N SN
__x.+_ﬂ = 0
ax y
(27)
N N
_l.pﬂ: 0
oy ox
Constitutive relation:
N, "x
- [a N § + [d 28
(a] = (4] Ky (28)
N
xy v
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or

or

or

or

or

or

or

or

or

or

Moment equilibrium:

M M
Qj( = _X_ + _x_}:

% oy

oM M
Q - iy

oy x

Lateral equilibrium:

M M N
2 +—L = - Ly n
Axdy dy R

Boundary conditions:

u=20 at x =0

wu=0 at y=0
v=0 at y=0
v=0 at x=20
?xz-a‘)'(%o at x =0

%‘:—(:0 at y=O

Txz ~

- ow

7}’2-5:0 at y=0
- ow

7}'2-5;—0 at x=0

w=0 at x=0

at y=0

2k

X

(o]

(29)
3w
Z (30)
s x =1L
» ¥=0b
, ¥y=b
r x=1L
’ x=1L
y  ¥y=0D
y,  ¥=b
£ x =L
F x=1L
, ¥=b
(31)



APPENDIX II

COMPATIBILITY OF THE RESULTANT LOADS Nx i Ny ;

N

Xy

From Appendix I, » equilibrium conditions for the x- and y-directions

are given by equations (27) as

oN ON
X, a0
ox oy
ON oN
X+ X _ 9
dy oy

A constitutive relation is given by equation (8) as

0]
N, €x Ky,
0]
N = (A - D
y (A] €y (D] Ky
0
N
X "xy “xy
and equations (11) and (12) give
0 du
€ = —
ox
o ov W
€. = — - -
y dy R
ou Jdv
eo Tl m— o ——
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Substitution of equations (11) and (12) into (8) and subsequent sut

stitution of the result into equations

form

where

the

e A 0oL L Vxz - L5;yz
L2u + L6v = Llow - L 187yz
"L's" are linear operators defined as follows:
o =
A, — + 2A + A
11 8x2 16 Sy 66
52
A, — + (A, +A,)
33 a3 a3 a3
D,, — + (D,, +2D,,) ——= + 3D +D.,, —
52 52 62
D +2D,, =—— + D
11 oo . 16 axdy 66 < 2 By
= ( ) ’
D,, —5 + (D,, + D +D,, —
16 ax2 12 66 axdy 26

26

27) yields =quations of the

(32)

(Continued)



2 B 3
Yo = R T3+ 2y — thy—
ox oOXCy 3
\3 33 | 3 33
L, = gDz +3D,, ——=+ (2D,, + D +D,, —
52 52 82
iy 1= D — 4+ 2D + D —
e 66 ax2 26 3xdy 22 ay2
A o A 3
Ly = L+ -
R ox R ¢y
A 3 A o
L = L7+L6 = fms (33)
R ox R oy )

Solution of the simultaneous equations (32) gives ror the reference-

surface displacements

G <L6L9 B LELIO) v - (L6Lh - L 5) Txz ~ (L6L5 - LQLS) vz

(34)
AV = (LlLlo s L2L9) w - (LlL5 - LELh) Vg = (L1L8 X L2L5) R
where

n

A B L1L6 - L2
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APPENDIX III

REFERENCE-SURFACE STRAIN COMPATIBILITY

Elimination of the reference surface-displacements between the strain-
displacement relations given by equations (11) results in the following
strain compatibility expression:

0 B0 %

—

(9%
4V
E 4

(35)

&
o
oY
»
o
]
Q/
%
oY
<
|
]
)
oY
>
o

Consideration of the equilibrium conditions for the x- and y-directions
given by equation (18) allows the definition of the Airy function
¢(x,y) such that

%o
3%

N, = = (36)
a%

ny =';a;

With the constitutive relation given by equation (13) and the relations
(36), the compatibility equation (35) becomes

1%y * 2% gy T 2060 yy * 222% 00 T 2226%

: ) Bhw Bb'w Bhw
+ a0 = (242, - 42, - d7)) ———= - & - a2
567 vy 66 22 11 Bx26y2 12 éyﬂ 21 axﬂ
( e ( ) Sik Ty
as, - 247 + (g - 2a2 + (dr, -
26 616663 61 - 2%’ T3 e Sy
(Continued)
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APPENDIX IV

BUCKLING LOAD CALCULATION

DIFRECT VARIATIONAL METHOD

Substitution of the assumed trigonometric functions given by equations
(22), (23), and (2%) into the functional (17) and use of the following

integrations

L
mnX max
fsin TCOSde = 0
0
L
2 mux L
fcos Td.x = 3
0]
L
myx m| L
fsin de:ll-(-l) -
0
L
mrx
) fcos de_o
0

as well as corresponding integrations with respect to y, yields

U +V .--N3u2(

2
MERCY (ﬁg)e 1 - apmn (2) 2 g (3) B
2
- dleNlrx(ﬁ.E) lIfP' *+ 45N W (g_ﬂ) II:_b = 4y N,y (?’) lI;ﬁ
* %2“1“(2_’!)2 P - "22“1r‘y(ir:ﬂ)lin2 - Ggglo2W (iﬂ)(g)%
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2 2
R nx nx g mx) g% fmrtonn
uKL—) +d66\b_f 2 +‘d66(b N/t i\ T i5 ) Iy
ms nn _ ;o Y - 20b
=) Nl+|d66kb—) Ny +{-dy (T N3J 0 (39b)

Lb * n:r\3 5 tglt_z o _ ¥ m_112 nn lw
- 4 (5] -2 \T (B 2\ b
mt *fmn\ nx = *.nzt"2 a |_ny;2 r
\r')*":z\i',\b—irx“‘ Gh¥dp 5~ ' * 6T y
I o - 2y . 3
'b_)lN1+ e\ T )‘N2+ 1 (5 :‘Ne] 0 (39¢)
5 (U’2+vVv’’) = 0 (39d)
!

5u2(U,'+vll) = iﬁ[.— (%) N3+{.l;—ﬂ)N2 ]= 0 (39E)
5v1(U"+V") = ii[- (g—ﬂ)Nl+\£ﬂ)N2 ]= 0 (39r)

5 (U’ +V’’) = 0 (39)
V2
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5N3(U” + vr l)

8 (UII + v/l)
N

Through the use

NS, Nl, N2, and

= %[[m(iﬁfwa(? - () %
-t () 1y - (8F) e - '12“"11’] S

=7II£H 12(1,)2 tan\v 2“"’12\%"') T
(nn) T _) vy - 8 Nl-‘l2N3 3(:91)

B | - 2 (B (B) ¥ + el B) e+ 26 (B
+ (-:—n)ua +(££) vy - 36632] = 0

(393)

of equations (39e), (39f), (39h), and (391) to eliminate

v)» the system of equations (39) is reduced quite readily

to a set of linear, homogeneous equations in terms of W, I‘x, I"y, and N2’
A non-trivial solution of the set of f ur equations exists only if the
determinant of the coefficlents vanishes; that is,

I ) o G+ s+ @)
—_—— - - + e{==<+ (v +
a+p + 2y +N2 }\x(a+7) ).y 4 ,N2 4
( ! 2
-3+ ) AR My 7 AV
=0
-xy(t3+7) 3 S . +12 B e
w2y ‘
1
-lF+ (v +€) AV )_yg K
(40)
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where the various nondimensional parameters are defined as follows:

w
Hi

Ch
d12 + dL
11

v =]
R
-4, - (1) 4, +4d
. e 21 * %6
i R
2 2 |
d;y (2ayy + (MW7) apy +uTay, + e \
e = b ~ (L’l)
R™ '
* 1/2
L 4
e R°h G
X
* 1/2
- i,
y Rh G

(Continued)
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APPENDIX V

VIBRATION PROBLEM

The governing equations for the free lateral vitration of the circular
cylindrical shell can be derived using the following form of Hamilton's

variational principle:

_/t (U’ =T°*)dt = O (L2)

In equation (he), U’’’ represents the Reissner form of the strain
energy and T’’’ represents the kinetic energy. 1In this case, both
U’ and T‘’ are functions of time. With the assumption of harmonic
motion, the time dependence of equation (42) is eliminated and the

variational principle is stated as
S(UII - Tll) - 0 (L}S)

For the fiber-reinforced shell, U’‘ '« given in equation (17). When
the radial (lateral) motion of the shell is assumed to predominate,

2
pw )
T = = —— ZZW dxdy (k)
2

where « 1is the natural frequency and p 1is the mass density of the

T’’ is given by

shell per unit reference surface area. The functional for the vari-

ational procedure is express.d as

ou v W du  ov 1_
[[N—+N(—-—)+N (—+—)+—Gh7
A Y\dy R Ny B/ X

Ull - Tlr

+
|
(o]
=2

~

(Continued)
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11 % 127y 16 xy ax2 )
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XZ

Sy oy bx

2 —) -
0w oy Byyz)

- (AN + AN+ d N ) (2

(allNi + agng, + 8‘66N2)w + 28’12NxNy + 2al6NxN + 28, 6N N_)

[
[NO R I ol

2 2

A - o - 2 — -
N *<§ 5_7&)+d* a_f-ilxz)+d* LSV e Ty
X 5y2 dy 66 Oxdy dy ox

’—J

n

2

)

L (v & ) (a v )
+ 24 - -
12( ax2 ox /\dy oy
2 - 2 -
s 2d (5w-57xz>(26w -57 -ayyz)
16 8x2 ox Oxdy oy ox
v .\ Fw ¥ >
+2d26< 2-Jz)\2 ey yz) dxdy
3y dy Oxdy dy ox
pw
r— [A[ v dxdy (45)

Variation of the functional given by equation (45) with respect to
N, s Ny ’ ny y U, vV, W,y i | 7yz ylelds the Euler equations and
associated boundary conditions for the vibration problem. If Nx is
set equal to zero, the boundary conditions and the Euler equa.tiong,
except for the lateral equilibrium equation, are identical to those

established in Appendix I for the buckling problem. The lateral
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equilibrium equation for the vibration problem becomes

- N o)
Y. A QX = ==L Fv (46)
B I R R

With the use of the assumed generalized displacements and forces given
by equations (22), (23), and (24) with N set equal to zero, the

direct variational procedure yields a freq&ency equation in determinant
form as

* 1, M
(48 + 27) + - (@ +y) - (e + ) -—+(v+e)]
N5u2 X y N2
= 2
- xx(a +7) ;1-2- A0 Aoy ? WY
1 =0
-2 (B + 7) )\x}\ Y 2
y y F*‘}\ B A€
l il y y
- 55 + (v + e)‘ Y Ay € K
L i
(47)
where
L LR
w = *
4y
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APPENDIX VI

DEFINITIONS OF MATRICES

~

[ a o, Ay

[A] = Ao Ao Ax

he  Rp A

where
s Zcm(hku - By)
k=1
,
-
Dy D5 Dig
[D} = | D), Do Do
[ P16 P2 Deg |
where
1 2 2
Di.j 2 Ci,j(hkﬂ' by )
k=1
B 7
2 P s
*
D =1Dp D5 Dag
[ P15 P Pes
where
* 1 3 3
Dij T3 Z Cij(hk+l - Iy
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[D){a) = (& I}

[D*]-[D][e][D] = [D*)-[D][d"]
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