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SUMMARY 

The effects of transverse shear deformations upon the classical buckling 

load of fiber-reinforced cylindrical shells under uniform axial compres- 

sion have been analyzed.    A stability determinant which upon evaluation 

yields an expression for the buckling load has been developed using a 

modified form of the Reissner variational principle.    The buckling loads 

predicted by the stability determinant, with transveme shear effects 

neglected, have been calculated and shown to agree with previously 

published results for boron-epoxy and glass-epoxy cylinders.    Inclusion 

of the transverse shear effects in the two cases investigated shows 

little reduction in the classical buckling loads.    For general appli- 

cation, charts are presented to give stability criteria for fiber- 

reinforced composites as a function of the geometric and mechanical 

properties.    Effective transverse shear rigidities, established by experi- 

ment, must be developed In order to estimate realistically the reduction 

in buckling load from the charts presented.    For the determination of 

natural frequencies of fiber-reinforced shells, with transverse shear 

effects Included, a frequency equation In determinant form Is presented. 
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FOREWORD 

The work reported herein constitutes a portion of a continuing effort be- 

ing undertaken at Stanford University for the U.S. Army Aviation Materiel 

Laboratories under Contract DAAJ02-68-C-0035 (Task 1F16220UA17002) to 

establish accurate theoretical prediction capability for the static and 

dynamic behavior of aircraft structural components utilizing both con- 

ventional and unconventional materials.    Previous contracts supported 

investigations which led,  in part, to the results presented in references 

2,  3, k, and 5. 
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IKTRODUCTION 

Due to their high strength-to-weight ratios, fiber-reinforced composites 

are increasir~ly betpg used for structural applications.    In the anal- 

yses to determine the structural characteristics of fiber-reinforced 

beams, plates, and shells, the structural members have been assumed to 

be infinitely rigid with respect to transverse shear deformations.    The 

objective of the present analysis is to investigate the effect of re- 

laxing the rigid-transverse-shear assumption. 

The usual fiber-reinforced composite structure is lamineted from thin 
■ 

layers, each having unidirectional fiber reinforcement. For a given 

layer, the ratio of the inplane shear rigidity to the extensional 

rigidity is much lower than the corresponding ratio in a homogeneous 

Isotropie material. Therefore, transverse shear deformations during 

bending In laminated fiber-reinforced structures can be expected to be 

much more significant than shear deformations in homogeneous Isotropie 

structures. In the present study, an analysis which includes the effect 

of transverse shear deformation on the elastic stability of fiber- 

reinforced circular cylindrical shells subjected to uniform axial com- 

pression is developed. Applications are made to the special cases of 

boron-epoxy and glass-epoxy materials. 

The analysis is based upon the use of the Reissner varlatlonal prin- 

ciple. First, the indirect varlatlonal procedure is used to establish 

the governing equations and the general boundary conditions for the 

problem. Then, to calculate buckling loads, the direct varlatlonal 

approach (Rayleigh-Ritz method) is applied. The general buckling cri- 

teria results are given in the form of a stability determinant, and the 

specific problem solution results are given in the form of charts. The 

nature of the development is such that with very little additional effort 

the natural frequency equation for fiber-reinforced shells with trans- 

verse shear effects included can be obtained; the frequency equation is 

presented in an appendix. 
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GENERAL THEORY 

PROBLEM STATEMENT 

The general problem considered here is the investigation of the effect 

of transverse shear deformations on the buckling loads of circular 

cylindrical shells made of fiber-reinforced composite materials 

under uniform axial compression.  The shell geometry and coordinate 

system used are defined in Figure 1.    The fiber reinforcement within 

each lamina is unidirectional; however,  the orientation of a given layer 

with respect to adjacent layers can be arbitrary.    Also, the thicknesses 

of each of the layers may differ.    The shell wall is shown in Figure 2. 

RE ISSUER FUNCTIONAL 

In the present analysis,  a variational procedure is applied to the 
1 2  ^   '    : 

Reissner    form of the potential energy.    As shown by Mayers et al.'^'   '  , 

the Reissner formulation   and modified forms thereof  are deBonstrated to be 

better alternatives to the potential energy principle for the nonlinear 

analysis of plates and shells.    To facilitate the extension of the pres- 

ent analysis to nonlinear problems and to preserve continuity, a modi- 

fied Reissner principle is used for the present linear analysis.    For a 

thin plate or shell in which normal stresses in the direction perpen- 

dicular to the surface are neglected,  the Reissner functional becomes 

(see reference l) 

U' / la €    + o- e    + T    ,      + r    y      + T    v      - F' I dV (1) 
,/   I x x        y y       xy xy        xz xz        yz yz | v   ' 
V 

where    F'    is the complementary energy density and is defined by 

F 

a
v cr        r

YV T           T 
> ?         V XZ           yz 

' =    e da + / e da +         y    dr +     f  y    dr     +    f   y    dr        (2) 
J     x   x J      y    y       J    ' xy    xy J      xz   xz   /  yz yz v ' 
0 0 

In the linear elastic case, 

2 Ix x       yy       xy'xy        xz'xz       yz'yzj K->f 



REFERENCE SURFACE 
OF THE SHELL 

Figure 1.    Sign Convention and Geometry. 

REFERENCE 
SURFACE 

Figure 2.    Element of Shell Wall. 
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REESSKER FUNCTIOML - PIATES AMD SHEIIS 

The strains can be expressed in terms of the reference-surface strains 

and the relative rotations (corresponding to the Kirchoff-Love assump- 

tions) as 

0 
ex   =    ex " ZKx 

e     =    e0 - ZK {h) 
y        y       y 

0 
xy 'xy xy 

After integration through the thickness, the Reissner functional becomes 

K xy xy 
u"   "   /IVx-Vx + V?-Vy + Nxy4-M> 

+ VxZ 
+ Vyz " /F'dz K (5) 

h 

where the following usual definitions of the stress resultants apply: 

»x ■   J'x** 

"y "   /ffydz 

V =    fr    dz 
j xy 

M 
X 

m    jza dz 

My 
-      jl(T dz 

V - I17*?** 

Sc '   Ir*ziz 

% ■ /v* 

(6) 

and where   y^    and   *,   represent average transverse shear strains. 



CONSTITUTIVE LAW 

Discussions of the linear-elastic lav for laminated anlsotroplc plates 

and shells can be found In references 6, 7, 8 and 9. Assumption of a 

state of generalized plane stress gives the stress-strain relations for 

the kth layer as 

(k) 

OO 
xy 

n (7) 

xy ' 

.(k) where the symmetrical matrix [C  ] represents the elastic coefficients 

associated with the k   lamina. The elastic coefficients depend upon 

the elastic properties of the lamina referred to a set of elastic axes 

and the orientation of the elastic axes with respect to the coordinate 

system of the reference surface in the structure. 

The stress resultants can now be related to the reference-surface strains 

and the relative rotations and twist by 

N 

^v 
1A1 { 

h0 Sc 
0 

£y 
■ - [D]   . 

"y 
0 

l7xy ' L  xy ' 

(8) 

'  M 1 
x 

lM. xy 

[D] 

xy 

[D*] { 

V 

(9) 

The reference surface constitutive law is given now by equations (8) and (9) 



where [A] , [D] , and [D ] are 3x3 matrices whose elements 

depend upon the physical and geometric proper:it-i? of the laminae (see 

Appendix VI). Coupling of the reference-surface strains and the loads 

with the bending .tioments and the relative rotations and twist due to the 

nonsymmetrical arrangement of the laminae relative to the reference sur- 

face is produced by [D].   The details of the evaluation of the ele- 

ments of the various matrices are given in references 6 through 9» 

The transverse shear forces and average transverse shear strains are 

assumed to be related by 

0  = hG T   and  0  = hG T (10) ^x     x xz       >     yyz 

where    G      and   G     are the effective transverse shear rigidities, x y 

STRAHJ-DISPLACEMENT RELATIONS 

For a cylindrical shell, using the Donnell     approximation, the reference 

surface strains for small deflections are given by 

0 
ex 

ou 

0 bv     w 
=   Sy " R 

0 bu ,  ^v 

(11) 

In a manner analogous to that of Libove and Batdorr" , the relative ro- 

tations and the relative twist are given by the relations 

Sc 

• 2           — 
ö w      by 'xz 

bx2       bx 

ö2w      b' 
Ky by2       by 

**y 

ö w       by 
=    2 — 

bxby       by 

6 

bx 

(12) 



in which the terms involving derivatives of   ~       and   7        (the average 

transverse shear strains) are corrections to the usual curvature terms 

introduced to account for the effects of transverse shear deformations. 

MODIFIED-REISSNER FUNCTIONAL 

In a manner similar to that of references 2,  3, k, and 5, the Reissner 

functional of equation (5) is now modified so that the force resultants, 

the reference surface displacements, and the average transverse shear 

strains are the only variationally independent quantities.    The bending 

and twisting moment resultants and the transverse shear force resultants 

are eliminated from the Reissner functional through the use of appropri- 

ate constitutive relations. 

To achieve the modification, equation (8) is inverted and substituted 

into equation (9), with the result that 

1 y. 

X V ' V 
0 
y 

- =    [a]   ■ Ny 
■+ [d']. Ky 

yJ 'v 1 xy' 

(13) 

r MX1 

M 

*■   xy ^ 

r^"; dj   " 
N 1/ 

X 

"y 
■ -    Ld ]   - Ky 

N    . 
xy 'v 

(1^ 

where [a] , [d'] , [d] , and [d ] are 3x3 matrices which are de- 

fined in terms of [A] , [D] , and [D ] in Appendix VI. The comple- 

mentary energy per un±t  surface area is calculated by integrating 

equation (3) across the thickness; by applying the definitions of 

equations (6); and by eliminating the transverse shear resultants, 

reference-surface strains, and bending moments through the use of 

equations (10), (13), and (Ik).    Such a procedure - the same as that 



used by Khot for evaluating the strain energy — yields 

JF'dz = | la^ + a22^ + ^ + 2a12NxNy + 2^*^ + 2^^ 

il x   22 y   66 xy    12  x y   ID x xy    26 y xy 

+ G h"2 + G h~2   | x 'xz        y 'yzI 

The potential associated with the applied axial compression load is 

given by (see reference 12) 

(15) 

V"    = I/I \A¥J I- (16) 

Combination of equations  (5),   (10),  (11),  (12),   (lU),   (15), and (16) 

gives the following modified form of the Reissner total functional to be 

used in the variational procedures of tha remainder of this analysis. 

rr       du /öv     w\ /öu     öv\     1        „    1 
U" + V"    =    //N   —+ N|— --I+M     I — + — )+-G h?    +-G h^ 

ij    Xöx       Aöy     R/      ^W      OX/     2   ^7«  2  y7 

^Vx + ^y + ^e1 

(Ö w  Ö7 \ 

^6lNx + d62Ny + V N ) 2 *£- _Z£) 
3(7 \ öxöy  öy   öx / 

- - (a,,!«2 + a^-N2 + a.^N2 + 2a10N N + 2a..N N  + 2a,,N N ) „  11 x  22 y   66 xy   12 x y   T.6 x xy   26 y xy 

1 
+ — 

2 

y       bo xy 

2 

xy 2b y xy 

2 
/ö-ir     ^X *  /^ v     c^\ /   Ö w       07^     ä7   \ 

^1^-17/ +d22w" ay/ + d66\2^;-v^r/ öxöy       öy öx 

(Continued) 



ä2v 

öxöy 

v2 
d w 

2 •';   xo\dx/ 
idxdy 

ö7 xz 
öy dx 

 ö"x»  ^y» 

öxöy  öy   öx 
Idxdy 

(17) 

EULER EftUATIQNS 

An indirect variational approe«h to the problem reeult« in the establish- 
tnent of the governing equations (Euler equations) end the associated 
boundary conditions of the surface.    The details of the indirect approach 

are given in Appendix 1; the resulting Euler equations are 

öN       ON 

Ox öy 

ON       ON 

hy        öx 

•    0 

=    0 

(Iß) 

[£x f^l 
0 

e 
y 

■ = [«] • Hy 
c 

^■1 

f <_ 

^xy ' 

(19) 



«x   ■ 5x         hy 

s ■ c'y         dx 

(20) 

ö2M ^ M o2M N ^2w 

öx" öx^y        cty R o c>x 

which apply to flat    (R _»-o)    and circularly curved plates    as well as 

to circular cylinders.    Equations  (18) represent equilibrium in the 

x- and y-directions, respectively.    Equation (19) represents stress- 

displacement compatibility.    Equations (20) represent moment equilibrium 

about the x- and y-axes, respectively.    Finally, equation (21) repre- 

sents equilibrium in the direction normal to the reference surface. 

10 



METHOD OF SOLUTION 

ASSUMED SOLUTION FUNCTIONS 

The generalized displacements and forces satisfying the compatibility 

conditions derived in Appendix II and Appendix III and, at least, the 

geometric boundary conditions (simple support for the present problem) 

are assumed to be 

w   =   w   sin£^sin£WZ 
L 0 

— _ nwx    .    mty /„-x 
yxz = rxcos^rsin b (22) 

.    mitx        n^: =    r   sin —=— cos — 
yz y L b 

u   =   u.  sin ^ cos n^ + u   cos E** sin DgZ 
J. L D 2 L b 

v   =   v1 sin M2S cos B2Z + ^ cos 2™ sin m 
(23) 

N     =   N     -f N, sin ^ sin ^ x xo       3 L b 

Ny   =   ^sin^sin^ {2k) 

w w nwx n^y N_      =    N-   COS -r—  COS  -r*- 
xy d L o 

where   W ,  rx , P   , ^ , Ug , v1 , v2 , ^ ,   N2 , and N3 become the in- 

dependent quantities in the direct variational procedure. 

11 

■ | 

■ *'-*-***iimnu*:.i^tii.n.^ ~JIM^ 



STABILITY DETERMIKAMT DEVELOBOT 

Substitution of the assumed functions into equation (IT), integration 

over the prescribed limits, and subsequent variation   with respect to 

the 9 independent quantities yields a set of 9 linear homogeneous 

equations.    The determinant of the coefficients of the homogeneous 

equations establishes the condition for equilibrium in the buckled 

state.    An expression for the applied axial load,    Nv      , required for 

equilibrium in the buckled shape as a function of the shell geometric 

and elastic properties, the number of circumferential waves    (N)    , 

and the buckle aspect ratio    (u)    results when the determinant is 

evaluated.    For a given shell, the buckling load corresponds to the 

lowest value of   N„      for all the possible combinations of   N   and   u. xo 
The stability determinant as well as the details of the buckling load 

calculation is   given in Appendix IV. 

12 



RESULTS AMD DISCUBSIOW   

The primary result of the present analysis is the establishment of the 

stability determinant given by equation (kO)  in Appendix IV. When the 

shell geometry and composite material construction are defined, the 

axial buckling load for a circular cylindrical shell made from any 

number of arbitrarily orientated fiber-reinforced layers can be deter- 

mined through numerical evaluation of the stability determinant. 

Specifically, the effects of transverse shear deformation on the axial 

buckling load of fiber-reinforced shells made of two different matrix- 

fiber combinations have been calculated using equation (hO).    Both of 

the shells considered have a 6.0 in. mean radius and are laminated from 

0.012 in. thick layers with all fiber reinforcement oriented in the 

longitudinal direction. The lamina elastic properties for the two 
A q 

cases studied are the same as those used by Khot '^ and are listed 

below. 

Boron-Epoxy Composite 

E.^   =   1+0.0 xlO6   lb/in.2   " Cud-v^i) 

E22   =   1+.5X106     lb/in.2   =^1'V12V21) 

vi2    =   0.25 v21 = 0.028 

G   =   1.5 x 106     lb/in.2   = C 66 

Glass-Epoxy Composite 

[ E:L1 = 7-5 xlO6  lb/in.2 = ^(1-v^v^) 

E22 = 3-5 XlO6  lb/in.2 = C^Cl-v^v^) 

v12 = 0.25     v21 = 0.18 

G = 1.25 x 106 lb/in.2 = C^ 

I 
■ 

The axial buckling loads for the cases of Infinite shear rigidity (no 

transverse shear effect), along with the reductions in the axial buckling 

13 



loads due to finite transverse shear deformations, are shown in 

Figures 3 and k for boron-epoxy and glass-epoxy composites, respec- 

tively.    The axial buckling loads given in Figures 3 and k for the 
Q 

cases of ^-layer shells are the same as those calculated by Khot c 

the basis of infinite transverse shear rigidity of the medium. 

Ik 



9 12 15 
NUMBER OF LAYERS 

Figure 3.    Stability Criteria,  Including Transverse Shear Effects,  for 
Boron-Epoxy Cylindrical Shells  (R = 6.0 in., h.  = 0.012 in.) 
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Figure 4.    Stability Criteria, Including Transverse Shear Effects, for 
Glass-Epoxy Cylindrical Shells (R - 6.0 in., h   ■> 0.012 in.) 
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COWCLUDIWG REMARKS 

For a first approximation to the effects of transverse shear deformation 

on the buckling load of axially compressed boron-epoxy and glass-epoxy 

fiber-reinforced shells, the effective shear rigidities (G  and G ) x      y 
can be assumed to have values betveei. the shear modulus of the epoxy 

2 
matrix (about 200,000 lb/in. ) and the inplane shear modulus of the 

6     2 6 
composite layer (1.25 x 10 lb/in. for glass-epoxy and 1.^ x 10 

lb/in. for boron-epoxy). Figures 3 and h  show that in this range of 

values, the buckling loads calculated with transverse shear deformations 

Included are less than 7 percent below those calculated with the 

assumption of no transverse shear deformation. Actual effective trans- 

verse shear rigidities can best be determined by experiment. 

Due to the similarity in the lormulation of the free lateral vibration 

problem and the buckling problem to which most of the preceding pages 

have been devoted, a frequency equation which may be used to establish 

the effects of transverse shear deformation on the natural frequencies 

of circular cylindrical fiber-reinforced shells has been developed in 

Appendix V. For given materials, natural frequencies can be established 

by finding the eigenvalues of the determinant (equation hj)  in a pro- 

cedure similar to that used for the buckling problems. 
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EULER EQUATIONS AMD BOUNDARY CONDITIONS 

DERIVED FROM THE VARIATIONAL PRINCIPLE 

The vanishing of the first variation of equation (l?) with respect to 

N ,N tN.jU.v.w.y  , and y        gives 

6(U" + V") = j / 
Ö6U     öu    Ö5v  N 

N   + 6N — + N ^ 6w + 6N 
xöx    xöx  yöy  R      J 

(ÖV  w \ 

löy  R/ 

ö&u     $5v      /^u  öv\ _ _  _   _ _ 
+ N    + N    + 6N  ( — + — )+ G hv 6-v  + G hy &" 

xy äy 
xy Ox xy $y ox/ x'xz'xz  y'yz'yz 

ö25w 

- (Vx + ^y + ^xy'  - + (dllNx + ^y + \^ 

bby xz 

-til*** 
'ö w  ^xz\ 
ÖX     ÖX / 

d^&N 
ö w  Ö7 

^   ÖX 

2 
xz d,^&N ^^u?'ir   ^^ ÖX     ÖX / 

ö26w 0&7, 
" (^x + ^y + ^xy) ^ + ^A + ^y + d26Nxy) ^f 

ö w  Ö7, 

^M^-fJ-^y \öy2  öy / 

- (d,.N + d,0N + d^N ) 2 v 61 x  62 y  66 xy \ 

'Ö67 

) 

ä26w\ 

— i^»x ^^V ^V V ay 
xz 

+ (d.,N + d.-N + d.,N ) ( XZ v 61 x  62 y  66 xy' l 

Ox 

., I 2 » S  (d af + d SN + d^5N_) 
öxöy  öy   öx ) 

^l^'x T "62^ T tt66uwxy; 
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"lA^x ' ^y^y " a66V5Nxy " W^y " «la^y 

" -lA^xy " Wxy * »26^% " ^ö^xy 

+ d 11 
X ÖX    / ÖX \ ÖX 

a2w   07^ \ ^7^ 

ÖX   /    ÖX 

+ 4 
d w      07     \   c 6w 

yz 
22 

öy£ 

^2 
0 w 

^y  I   Sy' 

Ö7 

N2 o w 

21 ^ 

hyyz Ö67, 

by /   by 

+ 2d 66 öxöy 

xz 

öy öx  /öxöy       66V    öxöy      öy 
5E 

/    öy 

N2 o w Ö7 

^ö öxöy 

xz Ö67. 

'ö2w Ö7 

^'i? 
xz 

ÖX 

Ö2BW 

Ö7 
^z 

ÖX    /      ÖX 

öBT. 

H 

-Z£ 
0/ öy 

'ä25ir     Ö67 xz 

/W2      dy ) 

■K 

he 
ö^w 

i7 
'ö &w 

öx£ 

07 \ /xz ] 

öx ; 

Ö&7 
'xz 

ö 6w     Ö57, 
xz Ö57 £Z 

öxöy       öy 

ö w by xz 

ÖX 

07 

öxöy       öy öx 

^2 o w 

^\ 

Ö7 

öy öy 

+ d, 26 

'ö2&w 

tf 

Ö57. 

öy 
H 

ö26w 

öxöy 

v2 ö w 

Ö67 „      ÖB7. xz 1L 
öy 

ö7 

öxöy 

xz 

öy 

öx 

öx 
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dxdy 

(-0 

After integration by parts, regrouping of terms, and application of 

equations (11) and (12) along with the constitutive relations (10) 

and {lh),  equation (25) becomes 

,(U" + V") = - / [ x +  xy rudxdy -/ / _Z + -J2L 
hy ox 

r^cbcdy 

+ I / U    - a-nN    - ainN    - a^/iN     - d.n<    - d-^/c    - d../<       DN dxdy JJ|x       11 x        12y        16 xy       llx        21 y        blxyl      x 

// + "   |ey " V1^ " a22Ny " a26Kxy " d12^ " d22 AT    - d 0*c       5N dxdy ^y       D2 xy I    y     -^ 

+jj |exy " al6Nx " a26Ny " a66Nxy " dl6^x " d26V " ^6^1 "V^^ 

// äx öy 
6rx2tody + /[ 

«y 
 Z EL 

öy öx 
57yzdxdy 

// 

öSl ö"~M ö M       N ö w 

äx dxöy        dy R o ox 
&wdxdy 

[   Nx6u       dy + j 

0' 

N    &u 
xy dx + 

/ 
0' 

N &v 
y 

dx + 
/ 

N    &v 
xy dy 
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0 

L 

+ 

0 

b 

*.! 
o 

L , 

0 

M - /" CW 1 

M t    y 
y     yz 

^ / 

CW 

öy/0J 

dy +/ 
0 0 

b b 

dx + 

0 

M    5    7 xy   I 'xz 

/ 

c*w 

3X/r 

öw \ 

öw      ÖM       ÖM 
Nx   — + --2i + —Ä 

o öx     $x $y   . 
6w 

M    5    > i 

^ I yz   ^y/o 

dy 

dx 

dy 

ÖM ÖM b 

._y + -J2 5w 
^y ^x   . 0 

dx   =    0 (26) 

For the above expression to vanish for the specified arbitrary states 

of stress and displacement consistent with the geometric boundary con- 

ditions, each of the terms must vanish independently.    The first eight 

terms of equation (26) lead to the Euler equations and the remaining 

terms establish the boundary conditions, as follows: 

Inplane equilibrium: 

äN       ON 
__* + —SL 
bx by 

oN        cN 
_Z + -JSL 

?y ex 

=    0 

=    0 

(27) 

Constitutive relation: 

'x 

0 

17 

■ =    [a] 

xy ' 

f N 1 x 

N 

IN   J xy' 

+    [d']  , 

U, 3«yJ 

(28) 

23 



Moment equilibrium: 

ex hy 

% 

^M        bU 

^y ^x 

(29) 

Lateral equilibrium: 

ä2M ö2M          d2M 
x     0       xy      j/ 

^xc c>x^y ^i 

N ö^w 

R Xo ^x 
(30) 

Boundary conditions: 

N -= 
X 

0 or u s 0 at x = 0 

**,- 
0 or u B 0 at y = 0 

N = 0 or V 0 at y = 0 
y 

»xy- 
0 or V = 0 at x = 0 

Mx = 
0 or ~xz 

a 0 at x = 0 

%' 
0 or ~xz 

= 0 at y = 0 

My = 0 or V 
aw 

= 0 at y = 0 

V- 0 or V 
äw 

"Sy 
= 0 at x = 0 

N, Sx + Sc = 0     or w = 0     at      x = 0 

V0 or w = 0     at      y = 0 

x = L 

y = b 

y = b 

x = L 

x = L 

y = b 

y = b 

x = L 

x = L 

y - b 
(31) 
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APIENDIX ii 

COMPATIBILITY OF THE RESULTAMT LOADS    N    . N    .AND    N     x -»-   y ^    xy 

From Appendix I,      J equilibrivun conditions for the x- and y-directions 

are given by equations (27) as 

ON       c)N 
-JL + -JSL 
öx öy 

=    0 

ÖN        ON 

öy öy 
=    0 

A constitutive relation is given by equation (8) as 

N 1 
x 

N 

V 

■ = [A] 

M°l l^] 
0 

ey 
• -     [D] • Ky 

0 
^XyJ 'Kxyi 

and equations  (11) and (12) give 

"xy 

ÖU 

ax 

ÖV w 

öy " R 

ÖU 

äy + 

ÖV 

Ox 

^2 
'xz 

^ ÖX 
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v2 
o w      dy 
 XI 

2 

0  W        J> xz 
XJr 

^y :'X 

Substitution of equations (ll) and (12) into (8) and subsequent sub 

stitution of the result into equations (27) yields aquations of the 

form 

hu + L2V   =   L9W " L^xz " Vyz 

I^u + L6v    =    ^QW - L57xz - V 
yz 

(32) 

where the    "L's"    are linear operators defined as follows: 

h = 

öx£ 

,2 

Aii r2+ ^16   + A 
öx^y 

%66 ^ 

A16 7T + (A12 + ^6) — + A26 "2 bx öxöy öy 

ö3 ö3 

öx 

.3 

11 ^ -"I2 -%' ^2 + 3D16 ^ + D26 - 

> 

.3 

Dll-2 + 2Dl6 —+ D66-2[ 
dx dxdy oy 

L-   =   ID16 7T + ^12 + ^ — + D' 
ox öxoy 

26 TT 
dy 
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o2 

ox oxöy       cc öy 

Dlt' o + 3D26 7 , , 2 +  (2D^ + Dto) -^r- + D, 

3 

^66 T "i2' r^ 
ox öy       22 ^3 

Ln      = 
c Ö2 ^2 

D66 -2 + 2D26 ^ + D22 -2 ox c dx^y        ^ öy2 

L,.^ i+^ i 
^x        R      oy 

R     ox       R     öy J 
(33) 

Solution of the simultaneous equations (32) gives tor the reference- 
surface displacements 

AU    =    (L6L9 " L2L10) - "  (^h - h^ "xz -  V5 - ^2^) V 

Av    =     (L^^ - L2L9) w -   (L^ - ^) 7x2 .   (Li^ . L2L  ) 

(54) 

5' 7yz 

where 

A    =    L^-L^ 
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APPEMDIX III 

REFERENCE-SURFACE STRAIN COMPATIBILITY 

Elimination of the reference surface-displacements between the strain- 

displacement relations given by equations (11) results in the following 

strain compatibility expression: 

.20.20.20 .     .2 
oe        de        de Idw 
-r*-?—^ = 2 W 
Zyd       Zx öxdy R   bxd 

Consideration of the equilibrium conditions for the x- and y-directions 

given by equation (18) allows the definition of the Airy function 

<t(x,y) such that 

Nx = rr X öy2 

*' - i? (36) 

Ö2« 

Nxy ="^ 

With the constitutive relation given by equation (13) and the relations 

(36), the compatibility equation (35) becomes 

"ll^yyyy + ^'xxyy " 2ÄL6^xyyy + a22*>xxxx " 2a26^xxxy 

(Continued) 
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APPENDIX IV 

BUCKLING LOAD CALCUIATION 

DIBECT VARIATIONAL METHOD   

Substitution of the assumed trigonometric functions given by equations 

(22), (23), and (2,0 into the functional (17) and vise of the following 

integrations 

f   .  2 mux , L j sin   — ax   =   I 

0 

L 
f    .      mux mitx . _ /  sin   -=— cos -=— dx   =    0 

0 

L 
f       2 awx . L 
j cos    — ^   =   2 
0 

/8ln   ^dx   .   |l-(-l)n|^ 

0 

L 

/ 
mjtx . _ cos   -=— dx   =   0 

L 

as well as corresponding integrations with respect to   y,  yields 

+ ^w (^f ^ - ^r, (21) ^ . ^w (^ f » 
o 

- di2Nirxlr) r+ ^IY lb-) r ■ d2iN3ry [r)r 

.   „ .. / n« f Lb      .   „ _   / nn \ Lb      .   „ ,-. / mn W nn \ Lb 
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d66Vx(rif + d66Vy(r)r 

^¥3 r 

+ ld66 \L   /   \b   / x\b   /       ^y \L   i 
2 2 1 

x   L    U ^V ^L   /  U   /+ 2rxryib     [T 

+ d;w
2   2«f   Hif^./wr    artf/n^Lb       *    rwfmrf.mnMb 

^2  \L / \b / r   ^"VU / U /r   di2rxwi~] lir/ir 

T^vy\ L / lb   r  2 V^ ir/ r (' 

The variation of U" + V" with respect to the free parameters gives 

^ 
411 . L / 

2 

6W(U" + V") = J£ 

2    2 
+ 2di2ir; I-' - Nxolr/ 

^ii U /    2d66 U Jiri - ^ (r; ir J 

2 «.2 
•■ n: 

66 \L"i   !b" 
*   ! mit .   ■■■ n« 

+ 

dl I 221   . 2d*   ' ^ r   ^ I üü Pr?      1221       n,t       J        mn ,   , nit 
22U       ^66 U ; ^b"j- ^[D \r 

! mit f 2 
N1 + 2d^ I**]    »£: 

bfc 'VL   / vb   / N„ 

(39a) 
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Lb 
5    (U" +V")    =    F 

3,2 2 

^ilr) -2d66v- [-J -di2[r  [—, w 

Gxh + d11 lr) + d66i- rx + d66lrHri + di2ir.ilb") 

-^[f) N1 + l66 
1 mt N2 + 

H     i El N, =    0 (39b) 

Lb 
6r(U" + V")    =    r 

7 2 2 
*    .mit     . m 
l66 VlT     lb 

.*   ' rutv, / "w \       *   , nut \ 1 nn 1 d66lr lrl + ^ir-U ,• 

l66\L  I 

rx + 

"12 \L b 

2 

-Mr) N1 + "a* ^lib"' N. =    0 

w 

y 

(39c) 

6    (U" + V")    =    0 (39d) 

6    (U" + V")    = 
"2 

Lb 
r (r)-3 + ^)-2 

=    0 (39e) 

6    (U" + V") 
Vl 

r [r}h + [rh = 0 (39f) 

6    (U" + V")    =    0 
V2 

(39g) 
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Lb 6N (U" + V")    =    f- 
3 

i
2i(r)ry-(r)^-'i2"i-'u»: (S9h) 

■ ^ (r) ry nf) yi - "sA - V"3 0 
(391) 

&N2(U" + V")    =   f 

=    0 

(39J) 

Through the use of equations (39e),  (39f),  (39h), and (391) to eliminate 

1L, N., N > and v., the system of equations (39) is reduced quite readily 

to a set of linear, homogeneous equations In terms of   V, T , T , and N_. 

A non-trivial solution of the set of f ur equations exists only If the 

determinant of the coefficients vanishes; that is, 

H- *) 
(a + ß + 27) + -£-     - xx(a +7)     - XyO + r) 

- xx(a + 7) 7^a Vy? 

- xy(ß + 7) >-Jyl i^6 

1 
— + (^ + ?) r V V 

?+(v + ?) 

V 

V- 

= 0 

(^0) 
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where the various nondimensional parameters are defined as follows; 

2  » 
.r d  + d 

1 

v = 

'11 

(lAr) d^^ + d 

ii 

d10 + d 

11 

d11 - u d12 + d66 

d22 - (1//) d21 + d66 

R 

dll [2al2 + (1^2) ail + ^a22 + a66 ]     \ 
(^1) 

11 
Vl/2 

2 - 
R h G 

11 
^1/2 

2 _ 
R h G 
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APPENDIX V 

VIBRATION PROBLEM 

The governing equations for the free lateral vibration of the circular 

cylindrical shell can be derived using the following form of Hamilton's 

variational principle: 

■ f2 

/      (U" - T")  dt    -    0 (42) 
^1 

In equation (te),    U"    represents the Reissner form of the strain 

energy    and   T"    represents the kinetic energy.     In this case, both 

U"   and    T"    are functions of time.    With the assumption of harmonic 

motion,  the time dependence of equation (U2)  is eliminated and the 

variational principle is stated as 

5(U" - T")    =    0 (U3) 

For the fiber-reinforced shell, U" '<! given in equation (17). When 

the radial (lateral) motion of the shell is assumed to predominate, 

T" is given by 

T" = 1 / w2 ^^ (^ 

where cu is the natural frequency and p is the mass density of the 

shell per unit reference surface area. The functional for the vari- 

ational procedure is expressed as 

U" - T" 
A 

ÖU     / ÖV  w \      / bu.       ÖV \ 
N— + N( 1+N   — + — )■ 

öu    / öv  w \     / öu  öv \  ! _ _p 
1+ - G h-y 

2 x xz 

1-   -2 
+    - G hy 

2 y yz 
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36 
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- (d21Nx+i22Ny 
+ d56

Nxy)l^ 

'ö v  Ö7. 

öy   öy 

/ d w   by hy     ' 

61 x   62 y   66 ^ \ öxöy   hy öx , 

- I (all^ + ^2«? + *66^ + 2a12NxNy + 2al6NxNxy + 2a26NyV) 

1 
+ — 

2 

d2*      ö7 * / Ö^  Ö7xz \   W Ö W O w  07 
^2 
o w Ö7    Ö7 

\öy   öy 
+ d66 ' 2 

xz 

öxöy   öy öx 

2    —    2    — 
„/äw  öy \/öw  07 

+ 2<2 -"—  -"-^ 12\öx2   öx /Uy2   öy 

öS  Ö7 
+ 2d 

xz ö w öy    Ö7 ^z   yz 

\ äx   öx / \ öxäy   öy   öx 

'ö^T  öy  \ ■  ö W   07    Ö7 
+ 2d., 1-^ - —Ü|J2 — 26 l72   v 

\öy   oy cöy  öy 

xz    yz 

öx 
dxdy 

2 
u 

2    A 

pa5   /" /" 2 +  j / w dxdy 0*5) 

Variation of the functional given by equation (1+5) with respect to 

Nx ' Ny ' Nxy ' u ' v ' w ' "xz ' "yz V±elds the Euler equations and 
associated boundary conditions for the vibration problem. If N  is 

set equal to zero, the boundary conditions and the Euler equations, 

except for the lateral equilibrium equation, are identical to those 

established in Appendix I for the buckling problem. The lateral 
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equilibrium equation for the vibration problem becomes 

"M M 
+ d. 

xy 

o 
TV, 

'xjy 

N 
- -JU 

R 

o 
pO) w (^6) 

With the use of the assumed generalized displacements and forces given 

by equations (22), (23), and {2k)  with N   set equal to zero, the 

direct variational procedure yields a frequency equation in determinant 

form as 

CO 

(a-fß + 2>) + -T- 

- xY(a + 7) 

^r       - X (3 + r) 2              xv 

1 

1         2 

- xy(e + >)     - 

XxV7 

1 
+ (v + G) 

XxV 

- xy(ß + 7) 

M                        1 

XxV i+xv0 x
ye 

- ?+(v + £, XxV xye K 

^ 

where 

a) 
pa.V 

11 

= 0 

(^7) 
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where 

APPENDIX VI 

DEFINITIONS OF MATRICES 

where 

^11    he 

[A] = 
12 

^6 

22 

^26 

he 

^26 

%6 

k=l 

(^8) 

• 

[D] = 

11 

12 

D 
12 

22 

D 16 

J26 

D16   D26   D66 

(^9) 

DiJ"lL
ciXr^) 

'ij  2 ^ ~ij' 
k=l 

where 

Dn    D 11    i2 

D 12 

Jl6 

22 D 26 

D16   D26   D66 

k=l 

(50) 
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[a] 

U'] 

[d] 

[d*] 

=    [A]- 

=   [a][D] 

=    [D][a] - [ä'f 

=    [D*]-[D][a][D] =  [D*]-[D][d/] 

(51) 

(52) 

(53) 

(5M 
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li.  AMTRACT  

The effects of transverse shear deformations upon the classical buckling load of 
fiber-reinforced cylindrical shells under uniform axial compression have been 
analyzed.    A stability determinant which upon evaluation yields an expression for 
the buckling load has been developed using a modified form of the Reissner 
variational principle.    The buckling loads predicted by the stability determinant, 
with transverse shear effects neglected, have been calculated and shown to agree 
wit** previously published results for boron-epoxy and glass-epoxy cylinders. 
Inclusion of the transverse shear effects in the two cases investigated shows 
little reduction in the classical buckling loads.    For general application, charts 
are presented to give stability criteria for fiber-reinforced composites as a 
function of the geometric and mechanical properties.    Effective transverse shear 
rigidities, established by experiment, must be developed in order to realistically 
estimate the reduction in buckling load from the charts presented.    For the 
determination of natural frequencies of fiber-reinforced shells, with transverse 
shear effects included, a frequency equation in determinant form is presented. 

PMM   € M •**    •«»LAC«» oe *MMt I«T«. I JAM M, mmem i* 
, M»VM14/J   MMM-eTe ran ARMV use. 

■acwfUrHaaalflecil 



Unclassified 
l«cuf><y CI«««Uie«tIeir 

Composite Construction 
Fiber Reinforced Materials 
Buckling 
Vibration 
Variatlonal Methods 
Transverse Shear Effects 
Circular Cylindrical Shells 
Axial Compression 

Unclassified 
EcS5r SääSSeäSää' 


