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ABSTRACT

The stepwise multiple regression technique is used in a model building
process to develop predictors of temperature, salinity, and sound velocity as
functions of geographical location, time, and depth. Models which give
reasonable results are obtained through successive trials using higher order
terms of the independent variables. The model for sound velocity yields values
which are nearly identical to the Wilson sound velocities contained in the
ocean station file and values computed using a modified version of the
MacKenzie equation.

The distribution of residuals resulting from comparisons of the Wilson
equation sound velocities to those obtained from the regression model (both
computed from actual temperature and salinities) shows that 98% fall within
the range of +2 m/sec. A comparison of the regression model sound velocity
values computed from regression predictions of temperature and salinity with
the Wilson values shows that 88% of the residuals fall in the range of
+12 m/sec.

The results, which are valid for the 4' square centered at 37.5' North
latitude and 69.50 West longitude, are discussed in terms of the statistical
significance of the distribution of the residuals. Since the physical character-
istics of the area selected are rather complex, the application of this technique
to other parts of the ocean is recommended.

This work was performed under NAVOCEANO Contract No. N62306-68-
C00241 by Dr. Billy E. Gillett, Department of Statistics and Applied Mathematics,
University of Missouri in Rolla, Missouri.
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I. INTRODUCTION

In the field of oceanography, there is a real need for

accurate numerical procedures for determining sound velocity

in sea water based on certain ocean variables such as lati-

tude, longitude, temperature, salinity, and day-of-year.

Although the technique of stepwise multiple regression

readily lends itself as a tool of analysis in the develop-

ment of polynomial prediction equations of the form

n
y E 8xi where x. = f(z , z , ... ,zn)

i=o 
1 2

where the 8i are the coefficients to be determined and the

zi are the independent variables in the model, no reliable

numerical method exists which eliminates the need for on-

location measurements of certain variables such as temper-

ature, salinity and pressure. Once the values of these

variables are known, however, one may use one of a number of

well known reliable equations for computing sound velocity.

Two such equations utilized in this study are those of H. V.

Mackenzie1 and Wayne D. Wilson. 2

It is the purpose of this study to adequately predict

sound velocity at any location within a given range of

latitude and longitude without going to that particular

location to measure variables such as temperature and

salinity. In order to do this, however, it is required that

temperature and salinity be predicted to a certain degree of

accuracy. This will involve examining a number of classes
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of models.

The problem of developing prediction equations for

temperature, salinity, and sound velocity is further com-

plicated by other factors, most of which are uncontrollable.

Some of these factors are time series autocorrelation in

the data, errors due to instrumentation, missing data, land

masses, underwater streams or currents, temperature inver-

sions, and sparse data, to mention a few. All of these

factors have their individual effects on the generalized

regression development. The effects of some of these

factors will be discussed in the following chapter. It is

hoped, of course, that errors due to these factors will

occur randomly.

When dealing with oceanographic problems, the handling

of data becomes an obstacle. While the data for a given

square (x0 by x0 ) is relatively sparse, the total amount of

data for this square is extremely voluminous. Consequently,

most of the conclusions of this study are based on data from

the 40 by 40 square 360 - 40°N latitude and 680 - 720 west

longitude. The convention used is as follows: North lati-

tude is positive; west longitude is negative.

The execution time for the stepwise multiple regression

procedure when a large model is under consideration is quite

long. For purposes of economy the goal is to determine a

model with as few terms as possible which does an adequate

job of predicting. This requires extensive trial and error

model refinement.
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Stringent accuracy requirements are needed to qualify

the regression analysis as an acceptable subsystem to the

more extensive, overall "Ocean Station Display System" and

the "quick look" facility utilizing a cathode ray tube, now

under development by Mr. Richard Bolton. The regression

equations, which are surfaces when plotted, can be instru-

mental in the display of temperature, salinity, and sound

velocity contours in the graphic display system.

Initially, a simple model will be considered at each

of the depth planes in the 40 by 40 square 360 - 400 N

latitude and 680 - 72 0 W longitude. This will yield a set

of regression equations for temperature, salinity, and sound

velocity for each depth plane consisting of terms not re-

jected by the predetermined accuracy criterion.

A more general regression situation is then considered

where an equation is developed using depth as one of the

independent variables. This results in the development of

one equation for each of the dependent variable temperature,

salinity and sound velocity, which is general for all depth

planes.

Many general regression models involving as many as six

independent variables with up to tenth order cross products

were tried. The process of developing the models involved

trial and error addition and deletion of cross products of

the various independent variables. Several interesting

combinations were tried and the models which produced the

best results are discussed in the latter part of Chapter III.



The primary objective of this study is to develop

equations which may be used to predict temperature and

salinity using only controllable variables which may be set

by the user. Once these values are known, they may be used

in some sound velocity equation such as Wilson's, Macken-

zie's, or the regression sound velocity equation.

Once the temperature and salinity equations are devel-

oped, five sound velocity calculations are possible for

each observation card. Given latitude, longitude, and

depth, a temperature and salinity may be calculated from the

respective regression equations. This allows calculation

of sound velocity from Mackenzie's equation and the regres-

sion sound velocity equation using the predicted temperature

and salinity. Two more sound velocities may be obtained at

this observation by evaluating these two equations using the

observed temperature and salinity rather than the predicted.

Comparison of these four values with Wilson's sound velocity

value for the same data is made to determine the adequacy of

the regression equations.

The comparisons made are as follows: Wilson's -

Mackenzie's, Wilson's - regression sound velocity, and

Mackenzie's - regression sound velocity, using the observed

temperature and salinity. The same comparisons are made

using the predicted temperature and salinity.

A comparison is made between the general regression

equation where depth is an independent variable and the case

where equations for temperature, salinity, and sound velocity



are built at each depth plane.

The reliability of the Mackenzie and Wilson equations

will be discussed in Chapter II and the modification to

Mackenzie's equation needed to obtain agreement with

Wilson's equation will be discussed in Chapter III.

Data was made available on punched cards by Mr. Richard

Bolton by programs to decode the "Rapid Access Tape Format

Oceanographic Station Data" system developed and provided

by Mr. Walter E. Yergen. 3

The cards consist of 3720 observations for latitude,

longitude, depth, temperature, salinity, day-of-year, and

Wilson's sound velocity value computed from these variables

using a procedure described in Chapter II.

In order to develop more meaningful models, a decision

was made to investigate a 40 by 40 square in the North Atlantic

Ocean rather than several 2 by 2 squares in the same area.

It was felt that if adequate prediction equations could be

built for this area, then certainly the same equations

would be adequate for each of the four 2 by 2 squares con-

tained in the 4° by 4 square. Since excellent prediction

equations were obtained for the 40 by 40 square, 360 - 400

north latitude and 680 - 720 west longitude, the remainder

of the study was devoted to investigating 20 by 20 squares

around this 40 by 40 square.
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II. REVIEW OF LITERATURE

Many sound velocity tables have been developed for

both distilled water and sea water. N. H. Heck and J. H.

Service 4 published a set of tables in 1924, which were based

on a systematic calculation scheme. In 1927, D. J.

Matthews 5 published a table of sound velocity calculations

for distilled water and sea water. In 1939, Matthews

published a revised edition of his tables after the improved

set of tables of Kuwahara 6 were introduced in 1938. The

revised edition of Matthews was in close agreement with

Kuwahara, but the Kuwahara tables are considered to be the

better of the two.

The Kuwahara tables motivated the development, by

several individuals and organizations, of equations to

represent this data. Three of the better known and more

reliable equations developed to represent the Kuwahara

tables are those of H. V. Mackenzie, Wayne D. Wilson, and

V. A. Del Grosso. The Mackenzie and Wilson equations will

be discussed in some detail since they are used as support

in the substantiation of results in this study. Results

of Del Grosso's study are used in the modification of

Mackenzie's equations to reduce residuals at upper depths.

The basic Mackenzie equation of form

VTSD = V + AVT + AVS + AVD + AV + AVTsD (i)TSD 0,35,0 T S D 4 S l

is readily seen to be a function of Temperature (T),

Salinity (S), Depth (D), and Latitude (4, absolute value of).
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The equation consists of 6 parts:

1. Reference velocity, V 0,35)0 computed at 00 C, 35%

salinity, and zero depth.

2. Temperature dependence, (AV T).

3. Salinity dependence, (AVs).

4. Depth dependence, (AVD).

5. Latitude dependence (AV ).

6. Interaction dependence due to simultaneous change of

T, S, D (AVTSD).

AVTSD is broken into three parts AVTS, AVSD, and

AVTD for further analysis where

a. AVTS = Temperature - salinity interaction

b. AVSD = Salinity - depth interaction

c. AVTD = Temperature - depth interaction

where

1. V 1445.5 M/S (2)
0,35,0

2. AVT = 4.6374 T - 5.383x10-2 T 2 + 2.543x0-4 T 3  (3)

3. AVS = 1.307(S-35) (4)

4. AVD = 1.815xl0- 2 D - 5.291lx0 1- 2D3  (5)

5. AV = 1.5xlO- 6D(O-35) +0.94xl 10- 2D (0-35)2

-2.94x10-' 8D 3 (0-35) 3-l.214x10- 3 (0-35) (6)

6. VTSD VTS + VSD + VTD (7)

where

a. AVTS = (S-35)[-l.07xl0-2T +(5.0xl0 5-- 4.lxlO-OD)T 2 ]

b. AVSD = (S-35)(3.36xl0-D-4.55xl0 9-D 2 )

c. AVTD = D(-l.9xl0- 6T 2 +6.35x10-eT 3 +4.lxlO-T4)

+T(6.95x10- 6 D -5.27x10- 9D2 +2.7xlO- 14 D3 )
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summing the results (2) - (7) give the result (1).

The Mackenzie equation agrees with the Kuwahara tables

to within .1 M/sec everywhere, but it should be noted that

the equations were developed to fit this particular data.

This is not to say that the equations will not be useful

in data reduction for other areas, but one should not be

disappointed in finding larger residuals between Mackenzie's

values and actual readings or between Mackenzie's values and

Wilson's values for the same data.

Mackenzie's equations are flexible and provision is

made for modification if necessary. There is evidence in

the analysis to support the fact that the depth dependency

factor and/or the latitude dependency factor need modifica-

tion. Experimentation with this problem will be discussed

in the following chapter.

The formulation of Wilson's equation 2 displays the same

basic form as Mackenzie's equation; that is,

V = 1449.22 + AVT + AVp + AVS + AVsTP (8)

The main differences are that V is a function of temperature,

salinity and pressure, where pressure is a function of

depth. The equations were developed in a controlled labor-

atory environment. The development was restricted in the

assumption that 99.5% of all sea water falls in the ranges

of -3 0 C < T < 300 for temperature, 1.033 kg/cm2 < P < 1000.0

kg/cm2 for pressure, and 3 3 0 /oo < S < 370/oo for salinity.

The equations were developed over 581 laboratory measured

sound speeds for fifteen temperatures, eight pressures, and



9

five salinities. The method of least squares was applied,

using a 20x20 matrix to arrive at the coefficients.

The breakdown of equation (8) is as follows:

1. 1449.22 = reference velocity computed at T=00 C,

P=0.0 kg/cm2 , and S = 350/00 (parts/1 0 0 0). (9)

2. Temperature contribution

.AVT = 4.6233T - 5.4585x10- 2 T 2 + 2.822x10-4T3  (10)

-5.07xl0-7 T4

3. Pressure contribution

AVp = .160518P + 1.0279x10 5-p 2 +3.451x10-9P 3  (11)

-3.503xl0- 1 2 p4

4. Salinity contribution

AVS = 1.391(S-35) -7.8x10- 2 (S-35) 2  (12)

5. Interaction contribution for simultaneous changes

AVSTP = (S-35)[-l.197xl0- 2 T +2.6lxI0o-p

-l.96xl0- 7 p2 -2.09xl0- 6T PJ

+p [-2.796x10- T + 1.3302xl0-ST 2

-6.44 x 10-OT 3 2 (13)

+P 2 [-2.391x10- 7T 2 +9.286x0 1 0-'T 2 ]

-1.745 x 10-1 0 P 3T

Summing the results (9)-(12) give the result (8).

In order to use equation (8) pressure must be expressed

as a function of depth. Ultimately, pressure is, in fact,

a function of depth, salinity, gravitational attraction,

and temperature.

Wilson 2 specifies that pressure may be found by divid-

ing depth into incremental layers and summing the product
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of average density in each layer times the thickness of the

layer. This is expressed as P i =Egeit where ge is the

acceleration due to gravity at latitude 0 and at the mean

depth of the layer, k i is the average density of the layer

and t is the thickness of the layer.

A more complete approach for determining pressure at

depth Di is outlined by Walter Yergen. 8 The development is

based on the assumption that as initial conditions, the

surface pressure is equal to the mean standard atmospheric

pressure of 10.1325 decibars and that the initial gravita-

tional attraction g0 may be computed as a function of Lati-

tude (0) according to

g = .980616-2.5928xi0- 3 cos(2e)

+6.9x10- 6 cos 2 (2e) decimeters

cm2  (14)

and that the change in g between depths is given by

S= go +1.101 x 10- 7 (Di-D _I ). (15)

Since pressure is a functicn of density, and density is

not explicitly given, an approximated density ki at Di is

attained by successive iterations k. , z i kin*

In theory the iteration should stop when the difference

Ik i j+1-i,ji < 6 where e is some predefined tolerance.

Then ki for Di is taken to be kij.

The determination of pressure (Pi) at depth Di is an

iterative procedure of successive alternating approximations

between pressure (P) and density k in the sequence

P. Pi2 k1i2' P in' kin'

This requires that an initial density k0 be known, andO
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initial pressure, P0 which is assumed to be 10.1325 decibars.

The first approximation to the true pressure at Di is taken

to be P. =P.11 1-1

Once the first density approximation, Iii, is computed,

then equation (16) is used to compute the first approxima-

tion to the true pressure.

P = P-(£ +£..) +.(Di-Di ), k=l. (16)

where i =(gi-+gi) and gi is from (15).

Now that £i.L£ij Po, Pi,, are known, a second approxi-

mation to the true density, Ii., is computed. For £ik at

depth Di where k > 2, the following expression is used,

Pik = (l+10-st )/R (17)

where at and R are functions of temperature, salinity, and

the previously computed P i,k- according to the following

relations

10-lot = (3.118633x10- 6 + 4.5317157xl0- 3 T

-5.4593903x10-4T 2 -1.4385354x 1 0-*T 4 )/(67.26+T)

+a0 (.001-4.7867xl0- 6T +9.8185x1O-eT 2

- 1.0843x10- 9 T3 ) +a2 (1.803xl0- 6 T
0

-8.164x10- 1 °T 2 + 1.667x10- 1 T3 ) (18)

where a0 -9.3445863x10- 2 +.81487658S -4.8249614x10-4S 2

0

+6.7678614x10- 6 S 3  (i9)

and R = l-[4.886x10- 6P/(1+l.83x10 5-P))

+P[-22072xl0-7+3.673xlO-
8 T - 6.63xl0-1 0 T 2

+4xl0-1 2 T3 + a0 (1.725x10- 3 -3.28x10- 10 T

+4x10- 1 2 T 2 ) +U 2 (-4.5x10-1 1 +10-1 2 T)]
0

.-T)2 [.E-6.6 8X10- 4 -l.2406'4xl 10 2T +2.1~4x1O 14ZT 2
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+a (-4.248x10-1 3 +l.206x10- 1 4 T-2xlO- 6 T 2 )

+G 2 (l.8x10 5-- 6x10-17T)] + p 3 1.5xI0-1 7 T (20)
0

where, for the second approximation to density k P= P. .
i ,2 11

Now find P. by using (16) with k = 2. This back and1,2

forth iteration is continued until P in-P £. The

data, however, is somewhat inaccurate and warrants no more

than three iterations as a best approximation to the true

pressure at D.. Hence P. is used in (10), (11), (12), (13)
1 13

for finding sound velocity. Note that since the above

pressure is in decibars, the conversion P .101971P. must
13

be made before use in Wilson's equation. If the velocity is

desired in feet per second Vfeet/sec V meters/se.(3.28083)

yields the desired result.

Wilson and Del Grosso concluded from careful laboratory

measurements that the reference velocity, V , used by

Kuwahara in constructing the Kuwahara tables is low by about

3 m/sec, particularly at upper depths where pressure is

lower. A comparison of Wilson's predicted values and the

values predicted by Kuwahara, substantiates this 3 m/s

differential from 0 to 100 kg/cm2 pressure. The reference

velocity in Mackenzie's equation (8) will be low by 3 m/s

also since the equation was constructed to fit the Kuwahara

tables. The 3 m/sec differential in Kuwahara's values at

atmospheric pressure is concluded to be a result of slightly

erroneous data on the compressibility of water. 7

Comparing the results of Mackenzie's and Wilson's

equations when applied to oceanographic data, onbpr
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than that for which the equations were developed, substan-

tiates the 3 m/s difference at near atmospheric pressures

and below. Wilson's equation predicted values almost con-

sistently 3 m/s higher than Mackenzie for this data, par-

ticularly for depths to 500 meters. Beyond this depth there

is, roughly, a linear decrease in the differences of sound

velocity predicted by the two equations at the same temper-

ature, salinity, depth observation. The two equations, at

2000 meters are in excellent agreement. Figure 1 shows,

roughly, the plot of residuals from depth 0-2500 meters.

Differences (m/s)

4'

3

2

I

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Depth (x 100 meters)

Figure 1. Plot of the residuals between Wilson's
values and Mackenzie's values for the
same data. (r. = w. - m.)

1 1 *1

The values yielded by Wilson's equations are used

extensively in checking the results of this study since these

values are considered to be good for most applications in the

physical sciences. 2 Mackenzie's equation$ however, is easier

to use since there is no pressure dependency term. The

modification to Mackenzie's equation, to be discussed in the

following chapter, is warranted on the basis of its ease
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of use and by the fact that, for the areas considered, the

differences from Wilson's values were no greater in absolute

value than .9 meters/second for all depths. Both equations

are used, however, in checking the results of the regression

equations developed in this investigation.

Data deficiencies are always an impediment in the solv-

ing of oceanographic problems. C. J. VanVliet has made a

rather extensive empirical study on the effect of random and

nonrandom missing data on regression and autocorrelation

analyses of time series data.10 The time series analysis is

to isolate trend or a gradual increase or decrease in a sys-

tem over a long period of time, oscillation or a variation

about the trend which occurs with a pattern of regularity

over a period of time, and random elements or unpredictable

variations in a given variable.

Van Vliet considered the surface temperature variable

in his analysis. The Monte Carlo method was employed to

simulate missing data situations, random and nonrandom. The

regressiop and autocorrelation coefficients were computed

for each time series analysis.

A determination of the sensitivity of coefficient

variability due to random and nonrandom missing data was

made for different series lengths. The conclusion was that

if the missing data is random, a smaller sample size is

used, and the change in the variability of the regression

coefficients is predictable by the amount of reduction in

sample size. The random deletion of data increases both
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regression and autocorrelation coefficient variability.

For nonrandom missing data, or an excessive number of

longer sequences of missing data, the increase in the

variance of the regression coefficients is roughly twice the

increase for random missing data. For nonrandom missing

data the increase in variance of the autocorrelation coef-

ficients is roughly 1.2 times the increase attributable to

random missing data. The above suggests that the auto-

correlation coefficients are less sensitive to the effects

of nonrandom missing data than the regression coefficients.

E. R. Anderson, using regression and autocorrelation

techniques, determined that in order to eliminate short term

variability and reliably estimate sea-surface temperature, a

time series record of 8 to 10 years is needed. "' Anderson

developed a regression model considering latitude, longi-

tude, and day of year as independent variables. 9 This model

was found capable of estimating seasonal variation of sea-

surface temperature off the west coast of the United States,

in water depths of greater than 100 fathoms, to a standard

deviation of less than 10F. Anderson's model: T = Fs

(Latitude, Longitude, day-of-year).

T = 5 + a D + $ D2 + D 3 + D 4 + S D5  (day-of-
s I Y 2 Y 3 Y 4 Y 5 y year)

L + 5 L2 +5 L3  (latitude)
+ a 7 a a

+8 L + o L2 +0 L' (longitude)
9 0 10 0 11 0

+8 L D + 8 L D3 + L D' (latitude-
12 a y 13 a y a y day)

L D + 5 L D3 + S L D3  (longitude-
s 0y 16 0 y 17 o y day)
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+ 6 L L + L L L2 + L L 32 (latitude-
18 a o 19 a o 20 a o longitude)

+ 6 L 2 L + L L3 L
2 1 a o 22 a o

where L = latitudea

L0 = longitude

D = Day-of-yeary

It should be pointed out that the present study is

primarily a search for adequate models to represent temper-

ature, salinity, and sound velocity and the data used is

primarily from one area and one season. The seasonal

variation, therefore, will not be as pronounced as in

Anderson's study. The terms of Anderson's niodel, however,

are incorporated into one of the more complex temperature

models to be discussed in Chapter 3. This model is also

expanded to include depth as an independent variable. It

is hoped that this technique will help in explaining varia-

bility of temperature to depths of 500 meters.
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III. DISCUSSION

The extremely dynamic character of the ocean environ-

ment is a formidable obstacle in the search for stable

techniques for predicting ocean variables. The oceano-

graphic problem, then, becomes one of searching for
"adequate" models to use in reduction of available data.

This chapter presents the results of a preliminary

inquiry into the feasibility of eliminating the need for

"on-location" measurements of temperature and salinity by

building multiple regression models to predict these vari-

ables as functions of geographic location, time, depth, and

day-of-year.

The regression development consists of a systematic

consideration of polynomial models of the form

N
y E ai X i +C

i=1

where

X f(Z 1, Z 2 .,Zn n1 1 2 ' 'n

such that: Z. are independent variables,

and: ai are powers of the independent variables

and: c is the error.

The models tried vary in complexity, from second order

models with only two independent variables (latitude and

longitude), to tenth order models with 6 independent vari-

ables (latitude, longitude, depth, temperature, salinity,

day of year). The investigation proceeded from producing

models for individual depth planes to a general regression
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situation for which depth was an independent variable. The

final, more involved model, for temperature, contains the

terms of the model described by E. R. Andersong to account

for seasonal variation in temperature.

Mackenzie's equation proves to be a valuable tool for

comparing regression results with some existing standard;

however, Figure 1 reveals a deficiency in predicting par-

ticularly at depths to 1500 meters. The nearly linear de-

crease in the magnitude of the residuals, r. = wi-mi, where

w. is Wilson's value and m. is Mackenzie's value at observa-1 1

tion i, suggests a slight modification in the depth depend-

ency term is in order. The reference velocity is taken as

that of Del Grosso', V = 1448.5, and an amount .0012D0,35,0

is subtracted from the depth dependency term. That is, now:

AVD= 1.815x10-2D-5.291x10- 1 2 D3 -l.2x10-3D = 1.63xl0- 2 D

-5.291x102 D3

Notice that at upper depths the change in the depth depend-

ency term is negligible, but since the reference velocity

is 3 m/s greater, Mackenzie's equation predict.s very close

to Wilson's. As depth increases, the depth dependency

change becomes more pronounced, until at 2500 meters the

effect of the higher reference velocity is cancelled (i.e.,

.0012(2500)=3), and Mackenzie's equation is predicting as it

was originally.

Figure 2 shows a plot of the residuals after modifica-

tion of Mackenzie's equation and Figure 3 shows the

distribution of residuals by means of a histogram, after



19

this modification.

The magnitude of 3718 of the 3720 residuals obtained

were of the order Irij<0.9. The two residuals whose value

was greater than 1.0, were found at a zero salinity reading.

Clearly, for this area, Mackenzie's equation is much im-

proved, and will be very beneficial for comparing to regres-

sion sound velocity predictions.

Residual (m/s)
14-

.75-

1 2 3 4 5 6 7 8 10 11 12 B 14 15 16 17 1819 2 2122 2 24 25 C:

Figure 2. Residuals Versus Depth After Modification

-25.-m.

of Mackenzie's Equation (r. w -

Figure 2 represents a plot of the average residual

(ri= wi - mi) at depth Di. The plot does not show the

residuals which reached larger values (e.g., > .5). For this

reason the distribution is shown in Figure 3 as a histogram.

The plot is shown as number of residuals against magnitude

of residual. For example, the number of residuals from 0.0

to 0.1 is 428. Alternating positive and negative residuals

lower the value of the average r.i at D. iin Figure 2.lowr hevale f he veag 1iatD
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After modification, Mackenzie's equation was checked on

a 1° by 10 square of data from 380-39° N latitude and 6 9 0- 7 0 0

W longitude. This run substantiated the validity of the

modification, for all the residuals (w -in.) here fell in

the range of -. 5 m/s to .9 m/s.

Number From To Number
-. 7 -.6 5

700 -. 6 C -. 38

-. 5 -. 4 44600-.4 -. 3 63

-. 3 -. 2 96
500 .2 -.1 221

_.1 0 283
400 0 .1 428

.1 .2 403
300 .2 .3 531

.3 .4 597
200 .4 .5 738

0. .6 259
100 .6 .7 5

.7 .8 3
- - - - - - - - - - - - - - - - -. 8 .9 4

-- ,----------.1 .i .2 .3 . i .56,6 ,7 .8 .9 ota 3718

Figure 3. Histogram of residual distribution of
r. = w.-m. for the same data in the 40 x4°
square 360400 N latitude 680-720 W longi-
tude.

Throughout the remainder of this discussion, w. and m.1 1

will represent Wilson's and Mackenzie's sound velocity,

respectively, as before, and Bi will represent the sound

velocity yielded by the regression equation.

The stepwise multiple regression procedure was utilized

in building polynomial models involving two to six independ-

ent variables and various higher order cross products of

these variables in ascending order of complexity. The

greatest significance is attached to the more complex models
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toward the end of the study and therefore the most compre-

hensive analysis is reserved for those models described on

pages 31 - 34.

The set of data used is from the 40 by 40 square 380 -

400 N latitude, 680 - 720 W longitude, consisting of 3720

data points over 20 depth planes of 0, 10, 20, 30, 50, 75,

100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1200,

1500, 2000, 2500 meters.

Some arbitrary criterion must be established for

measuring how well the regression equations appear to be in

the analysis. This may be achieved in several ways. This

investigator will use three common criterion for determining

goodness of fit. First, and probably most important, is the

R2 ratio or percent of variation explained by the regression

equation; second, the standard error of the regression

equation; and third, plots of the residuals (deviation from

actual value) against the dependent variable (9). Ideally,

we wish to increase R2 as we decrease the standard error of 9.

The stepwise procedure requires a significance level

for the deletion of non-significant terms from the model and

the addition of significant terms. In most of the ensuing

models, an F level of 2.65 is used for adding and deleting

variables in the model building process. This figure repre-

sents F(l,v 2 ,.90) where v 2 Ž 120 degrees of freedom.

When plotting the residuals (yi - 9i) against 9, four

common patterns may appear signifying certain conditions of

the prediction equation over the range of the dependent
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variable. Figure 4 shows the general shape of these pat-

terns. Variations of shape, slope, and combinations of more

than one are possible.

r

range range - .rane range

A. B. C. D.

Figure 4. Possible patterns of residual plot of yi-9i
against 9.

Interpolation of the cases is as follows: 1 2

A. Residuals fall in a horizontal band indicate no

unaccounted for effects over the range of the

dependent variable 9. This indicates a normal

regression situation and good fit.

B. Residual plot forms a fan pattern indicating the

variance is not constant but increases with increas-

ing values of the dependent variable. This implies

weighted least squares analysis should be used

instead.

C. Band with slope greater than zero indicating that a

linear term is needed in the model.

D. Nonlinear band indicates linear and quadratic terms

are needed in the model.

This type of analysis will be applied to more significant

models.
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Second Order Model - Two Independent Variables

The second order model was the simplest of all models

tried. The purpose was to determine if temperature, salinity,

and sound velocity are functions of geographic location

(latitude and longitude). Temperature, salinity and sound

velocity are used as independent variables. Depth is not

an independent variable here, consequently the model is

applied to the data at each depth plane for each dependent

variable.

Model 1 used here is as follows:

a +a Z +0 Z2+0 Z +$ Z Z +0 Z2Z +$ Z2+0 Z Z2+O Z2ZI
0 1 1 2 1 $ 2 4 1 2 5 1 2 6 2 7 1 2 a 1 2

where: Z = latitude1

Z = longitude2

Figure 5 shows the R2 and corresponding standard error aT

of T for each depth plane when temperature is the dependent

variable. Figures 6 and 7 show plots of the R2 statistic

and corresponding standard error, for each depth plane,

where salinity and sound velocity are the dependent vari-

ables, respectively.

An examination of the residuals from the resulting equa-

tions and the plots in figures 5, 6, and 7 reveal deficien-

cies in Model 1. The residuals (actual - predicted) are

generally in the ranges of +5 0C for temperature, t+80/00 for

salinity, and +50 meters per second for sound velocity. These

residuals are too large in comparison to the magnitude of num-

bers being predicted and indicate an obvious need for more

independent variables and/or higher order cross products in

the model.
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A further check was performed on the results of Model 1

by evaluating Mackenzie's equation using the temperature and

salinity yielded by the regression equations rather than the

true temperature and salinity. The sound velocity obtained

by Mackenzie's equation in this manner was then compared to

.Wilson's sound velocity value and then to the sound velocity

predicted by the regression sound velocity equation for the

same data. Mackenzie's equation utilizing the calculated

temperature and salinity displayed severe differences from

Wilson values. In many cases the differences were 800

m/sec! The differences between Mackenzie's prediction and

the regression equation prediction were even more severe.

Some of the differences here reached 900 m/sec. The inade-

quacy of Model 1 was substantiated, and a more expanded

model was tried.

Much of the inadequacy of Model 1 and the rather wild

results obtained in the analysis is attributable to missing

data resulting from such things as instrument failure or bad

weather. To eliminate as much of the effect of missing

data as possible, a~screening is implemented so that if a

zero temperature or salinity reading is encountered, it is

essentially eliminated from the discussion. Figure 6 shows

the effect of screening out bad data.

Second Order Model - Four Independent Variables

In this facet of the study the regression model was

expanded to include four independent variables, latitude,
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longitude, day of year, and time of day.

The introduction of additional independent variables

greatly increases the possible combinations of cross prod-

ucts which could be considered to enter the model. A

judicious choice was made and the resulting model was:

6+6 Z +ý Z2+ý Z Z +6Z Z +6 Z Z +6Z +6 Z2

0 1 1 2  1 3 1 2 4 1 3 5 1 4 6 2 7 2

+ Z Z+ + Z Z + z +Z Z 2 + Z Z + z + Z 2

8 2 3 9 2 4 10 3 11 3 12 3 4 13 4 15 4

+6 Z Z Z +6 Z Z Z +6 Z Z Z +6 Z Z Z Z +E (Model 2)
16 1 2 4 17 1 3 4 18 2 3 4 19 1 2 34

where Z = day-of-year, Z = time-of-day, Z = latitude,1 2 3

Z = longitude.

Higher order terms were arbitrarily avoided at this

point to minimize the complexity of the problem in the early

stages. Notice, however, Z2 , Z2, Z2 , Z2 have been included.
1 2 3 4

Seven depth planes were chosen for the analysis; 0, 10,

20, 50, 100, 500, 1500 meters. Model 2 was applied to the

data at each depth plane for each of the dependent variables
A A A

temperature, salinity, and sound velocity. T, S, SV were

determined at each depth plane with the 90% F of 2.65.

Table I shows the R2 statistic and corresponding standard

error for each regression equation at each depth plane con-

sidered.
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A A ADepth (T) (S) (SV)
in a2 T S) R2  a

meters t s sv

0 .666 3.07 .378 13.09 .596 53.1

10 .721 2.92 .346 13.75 512 62.£

20 .813 2.56 .736 .61 627 53.E

50 .806 3.15 .705 .62 .640 64.5

100 .774 2.57 .751 .37 .627 60.4

500 .812 2.98 .813 .35 .756 50.9

1500 .552 .39 .185 .073.265 31.4

Table I. The R2 and corresponding standard error for
all equations developed using Model 2 at
depth planes indicated.

The residuals associated with the regression equations

at the various depth planes still showed excessively large

deviations from the observed values. Residual patterns were

similar to those of Model 1. The residuals for the equa-

tions derived from Model 2 still were generally in the range

of +50C for temperature, +80/o for salinity, and +50m/sec

for sound velocity. Calculation of Mackenzie's equation

using the calculated temperature and salinity and comparing

to Wilson's and the regression sound velocity for the same

data showed no significant improvement over results from

Model 1. Further comment on this particular model is

deferred until more comprehensive models have been discussed.

In the general regression situation it was desired to

create a model which involves as many significant independ-

ent variables and cross products as possible while at the
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same time containing as few terms as possible to do a

responsible job of predicting.

Depth should have a significant relationship to

salinity and sound velocity. This introduces the general

problem of developing regression equations for temperature,

salinity, and sound velocity over all depth planes.

A reassessment of the basic problem reveals two un-

answered questions. First, is it possible to develop

regression equations to adequately predict temperature and

salinity values, which could then be used in an existing

equation, such as Wilson's or Mackenzie's equation, to yield

a sound velocity value near the true value without the need

for "on-location" measurements of temperature and salinity?

Second, if adequate temperature and salinity equations can

be developed, could a regression equation for sound velocity

then be used, utilizing these predicted values, to produce

sound velocities close to the true reading without relying

on existing methods such as Mackenzie's or Wilson's equa-

tion? The-most important aspect in either case is eliminat-

ing the need for actual measurement by instruments.

There are at least two procedures which may be used in

developing the desired regression equations for temperature,

salinity and sound velocity. First, one large model may be

used, changing only the dependent variable. Second, an

individual model for each dependent variable may be used.

It was concluded, after extensive model testing, too

voluminous to present here, that the individual character
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of the dependent variables temperature, salinity and sound

velocity require individual models.

Thus the models presented in the ensuing discussion

were built according to procedure two, and yield better

results than those models tested by procedure one. It

should also be pointed out that the temperature, salinity

and sound velocity models presented in the following dis-

cussion are the culmination of an extensive trial and error

model building process. These are the models which produced

the most significant results.

S = Salinity = F (latitude, longitude, depth)

= 0 +ý Z + 0 Z2+0 Z Z +0 Z Z +8 Z Z +0 Z0 1 1 2 1 3 1 1 3 2 2 4 1 3 5 2
+a Z 2 +a Z Z +a Z +a Z 2 +a Z 3+0 Z3+$ Z 3

6 2 7 2 3 8 3 9 3 10 1 11 2 12 3

+ Z4 +$ Z4 +0 Z 4 +a Z5 +0 Z5 +a Z 5 +8 Z:
13 1 1 42 1 53 16 1 17 2 1 83 191 (model3)

+a Z4Z4++ Z4Z4+0 Z8+0 Z4ZZ+a z 8+0 z 3z 2

2 1 0 2 2 1 3 22 2 23 2 3 24 3 25 1 3

+a Z3 Z2 +0 Z6 +0 Z5Z 2 +0 Z6 +8 Z1 0 +0 Z5Z5

26 2 3 27 1 28 1 2 29 2 30 1 31 1 2

+a Z5Z5+8 Z10+a ZSZ 5+8 Z10+8 /Z +8 /Z 2
32 1 3 33 2 34 2 3 35 3 36 3 37 3

+a /Z 3 +e
38 3

where Z = latitude, Z = longitude, Z = depth. Application
1 2 3

of this model to the.available data yielded the following

prediction equation.

S = -1.096Z +.1635x10-'Z Z -lx1O-z2÷.253x10-Z
1 1 3 3 3

+.959xi Z+.614xI0-1Z3Z .848xI0-O 2Z3

+.976xlO-gZ 3 Z 3+.62xlO0-Z 6 -. 196xl0- 2 3Z 5 Z 5

1 2 2 1 3

+.733x10- 25 Z5 Z5 +.8xl0- 3 3Z1 0 -9.6133/Z +8.6/Z 3 +68.57
2 3 3 3 3

The prediction equation represents a relatively good

statistical fit to the salinity observations on cards.
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Nearly all residuals (S. -S.) fall in the range -1.5 to 1.5,1 1
A

and R2 = 64.14 with the standard error of S = .7375.

The temperature model is more complex since it in-

volves two more independent variables than the salinity

model, and incorporates the terms of Anderson's model 9 to

account for seasonal variation. The model is expanded to

include depth and day of year as independent variables.

T = Temperature = F (latitude, longitude, depth,

salinity, day of year)

= 0 +$ Z +$ Z2 +a Z Z +0 ZZ +$ Z Z +$ Z Z
0 1 1 2 1 3 1 2 4 1 3 5 14 6 1 5

+a Z +a Z 2 +a Z Z +a Z Z +a Z Z +0 Z
7 2 8 2 9 2 3 10 2 4 1 2 5 12 3

+0 Z2 +a Z Z +a Z Z +a Z +a Z2 +0 Z Z (Model 4)
13 3 14 3 4 15 3 5 16 4 17 4 18 4 5

+a +Z Z2 +a Z 3 +a Z3 +$ z 3 +a z 3 +0 Z3
19 5 20 5 21 1 22' 2 2 3 4 2 4 25 5

+0 e Z4++ Z 3 Z +a Z4+0 Z4++ Z4+0 Z Z3

26 27 1 2 28 3 29 4 30 5 31 1 5

+a Z Z3 +a Z Z3+a Z5 +0 Z5+a Z Z5+$ Z Z5
32 2 5 33 1 2 34 4 35 5 36 1 5 37 2 5

+0 ln(Z ) +0 e Zl+ Z Z2+$ /Z 2 +0 Z 2 Z
38 3 39 40 1 2 41 4 42 1 2

+a Z /Z +C
43 4 3

where Z = latitude
1

Z = longitude2

Z = depth3

Z = salinity4

Z = day-of-year
5

e = error term

Notice that some experimental cross products are

included in the model. It is interesting to note that some

of these odd terms entered the resulting regression equation

at high levels of significance. Applying this model to the
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data resulted in the following prediction equation for

temperature.
A

T = -34.96 + .19xl0-3Z Z + .246xl0- 2 Z Z -. 018Z Z
1 3 1 5 2 4

-. 162xl0-4 Z 2 + .477xl0- 3 Z Z -. 3599xl0- 4 Z Z
3 34 3 5

-. 884xl0- 2 Z Z + .492xl0- 2 Z 3 -. 187x10- 3 Z 3

4 5 1 2

+.78xl0-8Z 3 + .l 4 66xlO-"eZ4 + .746xl0 4 Z3 Z3 1 2

-. 13x10"-lZ 4 -. 513xl 07 Z Z3 -. 584x10-1 2 Z Z5
3 2 5 1 5

+ 5.62 ln(Z ) -. 423Z /Z
3 4 3

This equation represents a good fit to the 3720 temper-

ature observations on cards. For this set of data, R2 .9484
A

and the standard error of T = 2.32. The vast majority of

residuals (Ti -Ti) fall in the range +20C from the observed

value.

Finally, the sound velocity model used to fit the 3720

sound velocity observations is a function of five independ-

ent variables.

SV sound velocity a F (latitude, longitude, depth,

temperature, salinity)

= • +I Z +a Z2 +8 Z Z +8 Z Z +8 Z +8 Z Z0 1 1 2 1 3 1 2 4 2 3 5 , 1 6 1 5
+8Z +8 Z2+8 Z Z +8 Z Z +8 Z Z +8 Z

7 2 8 2 9 2 10 11 2 12 3

+8 Z2 +8 Z Z +8 Z Z +8 Z +$ Z2+a Z Z
13 3 14 3 4 15 3 5 16 4 17 4 18 4 5

+8 Z +a Z2 +8 Z Z Z +8 Z Z Z +8 Z Z Z
19 5 20 5 21 1 2 3 22 1 2 4 23 1 2 5

+8 Z Z Z +8 Z Z Z +8 Z Z Z +8 Z Z Z (Model 5)
2+ 1 3 4 25 1 3 5 26 1 4 5 27 2 3

+8 Z Z Z +8 Z ZZ +8 Z Z Z+8 Z Z2Z
.28 2 3 5 29 2 4 5 30 3 4 5 31 1 2 3

+8 Z Z Z Z +8 Z Z Z Z +8 Z Z Z Z
32 1 2 4 5 33 1 3 4 5 34 2 3 4 5

+8 Z Z Z Z2 +E
3 5 1 3 4 5

where Z latitude1
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Z 2 longitude2

Z = depth3

Z = temperature

Z = salinity5

and temperature will be a function of day-of-year.

Applying this sound velocity model to the available

data yielded the following prediction equation:
A

SV = (4894.08 + .0222Z 2 + .112Z Z -.1127Z +.373xl0 -Z 2

1 1 2 3 3

+.65xlO-1 Z Z -. 103Z 2 +3.58Z +.015Z 2 -. 0052Z Z Z
3 5 4 5 5 1 24

+.59xl1- 4 Z Z Z +.685xl0-6 Z Z Z +.799xl0-sZ Z Z Z
1 3 4 1 2 3 1 2 4 5

-. 226xl0- 7 Z Z Z Z2 )/3.281
1 3 4 5

This sound velocity equation is a very good fit to the

data with R2  .9935 and 98% of the residuals (SV. -SV.)

fall in the range of +2 m/sec. The standard error of

SV 2.9 m/sec.

The method by which these equations were derived

presents an interesting possibility. A sound velocity value

could be computed knowing only latitude, longitude, depth,

and day-of-year, since

Salinity = F(lat, lon, depth)

Temperature = F(lat, lon, depth, -alinity, day-of-year)

Sound velocity = F(lat, lon, depth, -e-perature, salinity)

There are now five sound velocity values for each

latitude, longitude and depth.

1. Wilson's value (given in initial data)

2. Mackenzie's value computed using the observed tem-

perature and salinity.
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A

3. The regression equation value (SV) using the

observed temperature and salinity.

4. Mackenzie's value computed using the predicted

temperature and salinity.

5. The regression equation value using the predicted

temperature and salinity.

For each of the 3720 latitude, longitude, and depth

observations, these five sound velocity values were obtained.

With these five sound velocities, six comparisons were made

for each data point.

1. r =w.-m. (Wilson's - Mackenzie's) using
11 lobserved

2. rwB =wi-Bi (Wilson's - Regression S.V.) (tempera-ture and

3. rmB =mi-Bi (Mackenzie's - Regression S.V.) salinity

4. rw =w.-m.
5 rwB I I using the predicted temperature5.r• wi and salinity

6. rmB =mi-Bi

Six corresponding residual distributions were developed

according to the magnitude of the residual. The purpose of

the distributions is to determine how many of the residuals

are more than 30 m/sec high, 29-30 m/sec high, . . ., 29-30

m/sec low, more than 30 m/sec low. Table II shows the six

residual distributions and their densities.

Using the observed temperature (T) and salinity (S),

Wilson and Mackenzie show hardly any difference as would be

expected after modification of Mackenzie's equation.

Using the observed (actual) T and S the residual dis-

tribution for w.-B. shows 98% of the residuals are in the1i 1
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range +2 m/sec. This indicates a good fit to the Wilson

values.

The third distribution, M - B, using the observed

T and S, indicates that the regression equation is a close

duplication of Mackenzie's equation; that is, only 81 of

3720 predictions differ by more than +2 m/sec. This is an

interesting point, for the regression equation for sound

velocity is much simpler in form than Mackenzie's equation.

The fourth distribution is obtained by comparing the

Wilson sound velocity values with the Mackenzie values

computed from a predicted T and S. The resulting residual

distribution takes on the shape of a normal distribution,

which is slightly skewed to the left. Figure 8 shows the

distribution by means of histogram of magnitude against

number. It is felt that the resulting distribution enhances

the feasibility of predicting sound velocity given only lati-

tude, longitude, and depth, and be at least 70% sure of

being within 9 meters/sec of the true sound velocity.

The fifth residual distribution of Table II is obtained

by evaluating the regression sound velocity equation using

the predicted temperature and salinity and comparing the

results with Wilson's value from the card (i.e., obtain all

w.-B.). The residual distribution here is almost identical1 1

with distribution 4. The histogram of figure 8 adequately

represents distribution 5 as well as distribution 4.

Distribution 6 compares the sound velocity predictions

of Mackenzie's sound velocity equation to those of the
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Residual Distributions

:or the observed T and S For predicted T and S
1 2 3 '4 5 63ize of Residual12345

W-M W-B M-B W-M W-B M-B

<-3 2 2 0 530 528 0
3 0 3--29 0 0 0 30 39 0
2 9 2 8 0 0 0 30 29-28 -27 0 0 0 1 1
27 - 26 0 0 0 12 12

-26 - 25 0 0 0 11 11 0
25 - 2 4 0 0 0 15 19 0
24 23 8 0 0 17 16

-23 2 2 0 0 15 16
22 21 0 0 0 24 20 0
21 - 20 0 0 0 16 22 0
20 19 0 0 0 17 14 0
19 18 0 0 0 18 19
18 17 0 0 0 20 16
17 16 0 0 0 16 26
156 15 0 0 0 29 2 3
165 14 0 0 0 27 28 0
1 4 13 0 0 0 35 35
13 120 0 38 32
12 11 0 0 47 53
11 10 0 0 0 63 52 0
1 0 9 0 0 0 4 9 57 0

i 8 0 0 6 6 71
7 00 8 5 81

7 6 5 9
5 5 1 ?o46 9 6

-5 4 0 1 1 1 02 .9
4-3 0 0 1 102 10 4

2 2 0 6 126 146 122 S
1 0 172 284 127 133 2 1
0 698 0 2 2105 147 1 48 210

? 1 3 0 20 1 6 9 184 1 1 68
2 0 2 1 5 1 5 10

1 -- 8 1 4 1 2? 129
4 5 2 1 5 3 1
22 3 1 1

2 - 2 1 0 8 6 3 4
1 13 0 1 1 5 69

18 00 9 a 0

13 14 ? 0 1I2 5

19 19 0 0 0 2 4

?: 120 6 3 25

13 140 0 1 5

S• 3 0 0 0 14 4

23 24 0 0 2 85
16 1003 41i 7 ! 83 2 8

2 8 2 9 0 0 0 24 04
2 9 3 0 0 0 0 1 0 0

>302 0 0 0 1 1 0

Table II. Residual distribution densities for sound
velocity equations.
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regression sound velocity equation using predicted tempera-

ture and salinity values. If distribution 3 is compared with

distribution 6 in table II, it is clear that the regression

sound velocity equation predicts very nearly the same as

Mackenzie's sound velocity equation.

The nearly normal residual distribution obtained by

using the modified Mackenzie equation with the predicted

temperature and salinity and the results obtained when these

sound velocity values are compared to Wilson's values for

the same data, underscores the random error in the data from

which the temperature, salinity and sound velocity equations

were developed.

Final analysis involved computing a predicted temper-

ature and salinity from their respective regression equa-

tions for use in the regression sound velocity equation.

The predicted sound velocity from the regression equation
A

(SV) was compared to Wilson's value for the same data at

each observation, forming 3720 residuals (Wilson's sound

velocity - regression sound velocity). A plot of these

residuals against SV for each respective observation reveal-

ed a pattern as shown in figure 9. That is, the regression

sound velocity equation shows no unaccounted for effect over

the range of the dependent variable and indicates a reason-

ably good fit, as previously noted in the explanation of

figure 4. It was observed that 88% of the residuals fell

within this horizontal band from +12 m/s to -12 m/s (i.e.,

no indicated lack of linear or quadratic terms in the sound



39

CO)
z
0

i-

w

0

0

M) CD

sr'

0 0
iL

CL 0
o LU
-J a-

z j 0
:o F-

-1 M
LL 0-

'cfl

IL

Z c4
c-c
D ul LLZ~~~ I C r

10 rr 0 P-V Lf



40

r. = w. - SV.
1 1 1

+12 4--
1470 r/s 15L0 m/s SV

- 1 2 -- - - - - - - - - - - - - - - - - - - -

Figure 9. Residual Pattern - plot of residuals against
A

SV.

velocity model). This residual pattern is what would be

expected if the error is random. The analysis presented

concerning models 3, 4, and 5 indicates that the error in

predictions is random, though large. The predictidn of

sound velocity without costly instrument measurements of

temperature and salinity may require that wider tolerances

for error be considered acceptable. For example, based on

time and cost saved on instrumental measurements of temper-

ature and salinity, a 90% certainty of being within 5 m/s

of the true sound velocity value might be considered adequate.

It is felt that the results of this study are signifi-

cant enough to warrant application of models 3, 4, and 5 to

additional oceanographic data, particularly in squares

surrounding the 40 by 4°0 square used in this investigation.
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IV. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The problem of determining adequate models for predicting

temperature, salinity, and sound velocity has been considered.

Sound velocity values yielded by Wilson's equation

described on pages 9 - 12, are considered good enough for

use in most scientific work. 2 The Wilson equation, however,

is rather complex and requires an excessive amount of cal-

culation. Mackenzie's sound velocity equation, described on

pages 6 - 8, is more appealing to use than Wilson's equation

because of its simplicity of use. The modification to the

reference velocity and depth dependency term, as described

on page 18, gives Mackenzie's equation the capability of

predicting sound velocities to within +1 meter/second of

Wilson's equation for all data considered. Distribution 2 of

Table II on page 37 shows this result. The Mackenzie equa-

tion was therefore concluded to be a convenient and accurate

equation from which sound velocity predictions (m.) could

be obtained to compare with the regression sound velocity

predictions (SVi). Distribution 3 in Table II is formed by

considering mi - SVi for all i, when the observed salinities

and temperatures are used in each equation. In contrast, dis-

tribution 6 uses the predicted salinities and temperatures in

each equation.

Two approaches to the problem of developing prediction

equations were used in this investigation. The distinguish-

ing factor between the two approaches is whether depth is

included as an independent variable.
/
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Model 1 shown on page 23 and Model 2 shown on page 28

were the primary models considered in the first approach.

Depth is not an independent variable in Model 1 or Model 2,

therefore a prediction equation for each of the dependent

variables temperature, salinity, and sound velocity at each

depth plane results.

The results of Models 1 and 2 are discussed on pages

23 and 29 respectively. For each dependent variable, plots

of R2 against depth plane, and a against depth plane for

Model 1 appear on pages 24, 25, and 26. In general, all

measures of adequacy as described on page 21, and an exam-

ination of residuals (actual - predicted) for each question,

fail to substantiate the regression equations yielded by

models 1 and 2 as adequate for predictive purposes.

The second approach used in the study was to consider

the general situation where depth was included as one of the

independent variables. Clearly, this resulted in only one

regression equation for each dependent variable temperature,

salinity, and sound velocity which represents the data over

all depth planes. Data manipulation and analysis of results

is much faster if one equation can be found to represent

the data over all depth planes, rather than over only one

depth plane.

Within the second approach, there were two ways to

build the models. First a large model of the form Y = iXi

+ c could be designed. In using this model, only the

dependent variable would be changed. This model would
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therefore be used three times. Secondly, three individual

models of form

n n n
Y E a.X. + E, Y = E b.X. + E, Y E c.X. + C
T i=l 1 S i=l I I SV i 1l

for temperature, salinity, and sound velocity, respectively,

could be developed.

It was concluded in an extensive trial and error model

building process, in the search for suitable regression

models, that the individual character of the dependent

variables required individual models, rather than one large

model from which all equations could be derived. The

salinity model (model 3), temperature model (model 4), and

sound velocity model (model 5) shown on pages 31, 32, and

33, respectively, are the models which gave the best results

in the analysis applied.

The salinity equation, obtained from model 3, is a

function of latitude, longitude, and depth. The temperature

equation, obtained from model 4, is a function of latitude,

longitude, depth, salinity, and day-of-year. The final

temperature model also included the terms of the model pro-

posed by Anderson 9 for predicting sea surface temperature

which also accounts for seasonal variation. The sound

velocity equation, obtained from model 5, is a function of

latitude, longitude, depth, temperature, and salinity.

When using the prediction equations to arrive at a

sound velocity, the following procedure was used.
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Salinity may be calculated from values of latitude,

longitude, and depth. These are independent variables whose

values may be chosen by the user. Once the salinity value

is known, and a particular day of year is specified, then

a temperature value may be computed. Now both salinity and

temperature are defined. These are the only two values

that must be known to compute a predicted sound velocity

value from either Mackenzie's modified sound velocity equ-

ation or the regression sound velocity equation.

For purposes of comparison, the following five sound

velocity values were found at each observation of latitude,

longitude, depth, temperature, and salinity: Wilson's sound

velocity value, Mackenzie's sound velocity and the regression

sound velocity using the observed temperature and salinity,

and finally Mackenzie's sound velocity and the regression

sound velocity using the predicted temperature and salinity.

An assumption that Wilson's sound velocity values

were the most accurate, provided a standard of comparison

for the sound velocity calculations from Mackenzie's equation

and the regression equation. For example, using an observed

temperature and salinity, a sound velocity value was cal-

culated from Mackenzie's equation. This sound velocity

value was then subtracted from Wilson's value calculated

from the same data, and the difference (w. - m.) was observed.1 1

This was performed at each of the 3720 data points.

Distribution 1 of Table II was formed to see how these

residuals were distributed about Wilson's predictions. If
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the residual happened to be of magnitude .9 m/sec, the count

of all residuals falling in the interval 0 - 1 m/sec was

increased by one. Distribution 4 Table II was formed in

the same manner using Mackenzie's equation with predicted

temperature and salinity. Similar distributions (No. 2 and

No. 5 - Table II) were formed regarding the regression sound

velocity predictions for observed, as well as predicted

temperature and salinity. Two additional distributions

(No. 3 and No. 6 - Table II) compare Mackenzie's sound veloc-

ity predictions to the regression sound velocity predictions

for observed then predicted temperature and salinity, res-

pectively. The six distributions described above are summar-

ized in Table II and reveal some interesting points about

the sound velocity equations and their predictive abilities.

When using the observed (instrumental) temperature and

salinity in calculating sound velocity from a given equation,

Wilson's, Mackenzie's and the regression sound velocity

equations all predict sound velocity values very close to

one another as distributions 1, 2, and 3 of Table II point

out. The regression sound velocity equation resulting from

model 5, however, is simpler in form and easier to use than

Wilson's equation or Mackenzie's equation.

The residual distributions (No. 4 and No. 5 - Table II),

obtained by using predicted temperatures and salinities in

computing sound velocity values from Mackenzie's equation

and the regression sound velocity equation, are encouraging

in that they are nearly normal about Wilson's sound velocity
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predictions as shown in figure 8. This form of residual

distribution underscores the random error in the data from

which the regression equations were developed, and enhances

the feasibility of predicting sound velocity without the

need for on location, instrument measurement of temperature

and salinity.
A

Figure 9 shows a plot of the residuals (w. - SVi)
A

against the dependent variable predictions (SVi) for distri-

bution 5, according to the analysis described on pages 21

and 22. Figure 9 differs from figure 8 in that figure 8 is

a plot of number of residuals versus magnitude of residual;

figure 9 is a plot of magnitude of residual versus magnitude
A

of the dependent variable value (SVi). This plot extends

over the entire range of the dependent variable. The plot

in figure 9 is that of case A of figure 4, page 22. The

residual pattern is roughly a horizontal band, indicating

no significant unaccounted for effects (linear or quadratic)

,in the model over the range of the dependent variable. Since
AA

the plot of (wi - SVi) versus SVi, for all i, is a horizontal

band, the prediction equation (SV) is predicting as would be

expected if the errors in the raw data for which SV was

developed, were random.

The regression sound velocity predictions obtained

by using predicted salinities and temperature, are not as

good as might be desired or needed for use in scientific

work. Distribution 5 of Table II shows 528 cases where the

regression sound velocity equation predicted values 30 m/sec
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previous runs. In addition, the residuals were quite stable.

These results substantiated the thought that models 3, 4,

and 5 would produce acceptable results if the bad data were

removed. Based on these results, it appears feasible that

the need for on-location observations of salinity and temp-

erature might be eliminated in the future.

In future work on this topic, some data screening de-

vice should be implemented to filter out obvious errors be-

fore the final prediction equations, particularly for salinity

and temperature, are developed. This would improve the pre-

dictive ability of the salinity and temperature equations

and thus improve the regression sound velocity predictions.

One such data screening device, which might be used in
9

future investigations, is suggested by Anderson . He pro-

poses that a regression equation be fit to all raw data

available as was done in this study. The residuals (observed -

predicted) would then be examined. If the residual is +2

standard deviations from the mean, that data will be used in

further analyses, if not, that data point will be eliminated

from further consideration. A regression equation is then

fit to the remaining data. This procedure has the facility

of immediately identifying erroneous data or gross instru-

ment error.

An alternative to the above data screening procedure

would be to compute the mean and standard deviation of the

data set in question, then eliminate all data which falls
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outside +2 or +3 standard deviations from the mean. A

regression equation could then be fit to the remaining data.

A number of 20 by 20 and 40 by 40 squares adjacent to

the area 36° - 40 N latitude and 68 - 72 W longitude were

examined. The resulting prediction equations were quite

similar in form to those determined for the original square.

However, the coefficients of the independent variables were

obviously somewhat different. In general, the prediction

equations for salinity, temperature and sound velocity in

the surrounding areas produced results that were quite good.

for future study on this topic, analysis similar to

that discussed in Chapter III of this study, should be per-

formed on several additional 2 x 2 or 4 x 4 squares sur-

rounding the area 360 - 40 0 N latitude and 680 - 72 0W longitude.

Based on the results from a number of surrounding squares

that were examined in this study, the resulting regression

equations should be similar to the ones resulting from models

;3, 4, and 5 described in Chapter III. These regression equa-

tions could then be examined for patterns and possibly

generalized equations for salinity, temperature, and sound

velocity would become evident which could be applicable to a

much expanded oceanographic area.

Physical characteristics of the oceanographic environ-

ment are difficult to represent with rigid equations, as is

possible in many areas of the physical sciences, because of

their dynamic character. The laws of nature, however, are

characterized by certain patterns and this environment will

eventually be represented too.
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