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ABSTRACT

The stepwise multiple regression technique is used in a model building
process to develop predictors of temperature, salinity, and sound velocity as
functions of geographical location, time, and depth. Models which give
reasonable results are obtained through successive trials using higher order
terms of the independent variables. The model for sound velocity yields values
which are nearly identical to the Wilson sound velocities contained in the
ocean station file and values computed using a modified version of the
MacKenzie equation,

The distribution of residuals resulting from comparisons of the Wilson
equation sound velocities to those obtained from the regression model (both
computed from actual temperature and salinities) shows that 98% fall within
the range of +2 m/sec. A comparison of the regression model sound velocity
values computed from regression predictions of temperature and salinity with
the Wilson values shows that 88% of the residuals fall in the range of
+12 m/sec.

The results, which are valid for the 4° square centered at 37.5° North
latitude and 69.5° West longitude, are discussed in terms of the statistical
significance of the distribution of the residuals. Since the physical character-
istics of the area selected are rather complex, the application of this technique
to other parts of the ocean is recommended.

This work was performed under NAVOCEANO Contract No. N62306-68-
C00241 by Dr, Billy E. Gillett, Department of Statistics and Applied Mathematics,
University of Missouri in Rolla, Missouri.
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I. INTRODUCTION

In the field of oceanography, there is a real need for
accurate numerical procedures for determining sound velocity
in sea water based on certain ocean variables such as lati-
tude, longitude, temperature, salinity, and day-of-year.

Although the technique of stepwise multiple regression
readily lends itself as a tool of analysis in the develop-

ment of polynomial prediction equations of the form
n
y = f B.X. where x; = f(zl, z s ...,zn)

where the Bi are the coefficients to be determined anq the
z, are the independent variables in the model, no reliable
numerical method exists which eliminates the need for on-
location measurements of certain variables such as temper-
ature, salinity and pressure. Once the values of these |
variables are known, however, one may use one of a number of
well known reliable equations for computing sound velocity.
Two such equations utilized in this study are those of H. V.

! and Wayne D. Wilson.?

Mackenzie
It is the purpose of this study to adequately predict
sound velocity at any location within a given range of
latitude and longitude without going to that particular
location to measure variables such as temperature and
salinity. In order to do this, however, it is required that

temperature and salinity be predicted to a certain degree of

accuracy. This will involve examining a number of classes



of models.

The problem of developing prediction equations for
temperature, salinity, and sound velocity is further com-
plicated by other factors, most of which are uncontrollable.
Some of these factors are time series autocorrelation in
_the data, errors due to instrumentation, missing data, land
masses, underwater streams or currents, temperature inver-
sions, and sparse data, to mention a few. All of these
factors have their individual effects on the generalized
regression development. The effects of some of these
factors will be discussed in the following chapter. It is
hoped, of course, that errors due to these factors will
occur randomly.

When dealing with oceanographic problems, the handling
of data becomes an obstacle. While the data for a given
square (x° by x°) is relatively sparse, the total amount of
data for this square is extremely voluminous. Consequently,
most of the conclusions of this study are based on data from
the 4° by U4° square 36° - LO°N latitude and 68° - 72° west
longitude. The convention used is as follows: North lati-
tude is positive; west longitude is negative.

The execution time for the stepwise multiple regression
procedure when a large model is under consideration is quite
long. For purposes of economy the goal is to determine a
model with as few terms as possible which does an adequate

job of predicting. This requires extensive trial and error

model refinement.



Stringent accuracy requirements are needed to qualify
the regression analysis as an acceptable subsystem to the
more extensive, overall "Ocean Station Display System" and
the "quick look" facility utilizing a cathode ray tube, now
under development by Mr. Richard Bolton. The regression
_equations, which are surfaces when plotted, can be instru-
mental in the display of temperature, salinity, and sound
velocity contours in the graphic display system.

Initially, a simple model will be considered at each
of the depth planes in the 4° by 4° square 36° - 40° N
latitude and 68° - 72°W longitude. This will yield a set
of regression equations for temperature, salinity, and sound
velocity for each depth plane consisting of terms not re-
jected by the predetermined accuracy criterion.

A more general regression situation is then considered
wheré an equation is developed using depth as one of the
independent variables. This results in the development of
one equation for each of the dependent variables temperature,
salinity and sound velocity, which is general for all depth
planes.

Many general regression models involving as many as six
independent variables with up to tenth order cross products
were tried. The process of developing the models involved
trial and error addition and deletion of cross products of
the various independent variables. Several interesting
combinations were tried and the models which produced the

best results are discussed in the latter part of Chapter III.



The primary objective of this study is to develop
equations which may be used to predict temperature and
salinity using only controllable variables which may be set
by the user. Once these values are known, they may be used
in some sound velocity equation such as Wilson's, Macken-
zie's, or the regression sound velocity equation.

Once the temperature and salinity equations are devel-
oped, five sound velocity calculations are possible for
each observation card. Given latitude, longitude, and
depth, a temperature and salinity may be calculated from the
respective regression equations. This allows calculation
of sound velocity from Mackenzie's equation and the regres-
sion sound velocity equation using the predicted temperature
and salinity. Two more sound velocities may be obtained at
this observation by evaluating these two equations using the
observed temperature and salinity rather than the predicted.
Comparison of these four values with Wilson's sound velocity
value for the same data is made to determine the adequacy of
the regression equations.

The comparisons made are‘as follows:‘ Wilson's -
Mackenzie's, Wilson's - regression sound velocity, and
Mackenzie's - regression sound velocity, using the observed
temperature and salinity. The same comparisons are made
using the predicted temperature and salinity.

A comparison is made between the general regression
equation where depth is an independent variable and the case

where equations for temperature, salinity, and sound velocity



are built at each depth plane.

The reliability of the Mackenzie and Wilson equations
will be discussed in Chapter II and the modification to
Mackenzie's equation needed to obtain agreement with
Wilson's equation will be discussed in Chapter III.

Data was made available on punched cards by Mr. Richard
Bolton by programs to decode thé "Rapid Access Tape Format
Oceanographic Station Data" system developed and provided
by Mr. Walter E. Yergen.?

The cards consist of 3720 observations for latitude,
longitude, depth, temperature, salinity, day-of-year, and
Wilson's sound velocity value computed from these variables
using a procedure described in Chapter II.

In order to develop more meaningful models, a decision
was made to investigate a 4© by 4© square in the North Atlantic
Ocean rather than several 2° by 2° squares in the same area.
It was felt that if adequate prediction equations could be
built for this area, then certainly the same equations
would be adequate for each of the four 2° by 2° squares con-
tained in the y© by uo square. Since excellent prediction

(o]

equations were obtained for the 4© by 4° square, 36 - 40°

north latitude and 68° - 72°

west longitude, the remainder
of the study was devoted to investigating 2° by 2° squares

around this 4° by 4O square.




IT. REVIEW OF LITERATURE

Many sound velocity tables have been developed for
both distilled water and sea water. N. H. Heck and J. H.
Service" published a set of tables in 1924, which were based
on a systematic calculation scheme. In 1827, D. J.
‘Matthews® published a table of sound velocity calculations
for distilled water and sea water. In 1939, Matthews
published a revised edition of his tables after the improved
set of tables of Kuwahara® were introduced in 1938. The
revised édition of Matthews was in close agreement with
Kuwahara, but the Kuwahara tables are considered to be the

better of the two.

The Kuwahara tables motivated the development, by
several individuals and organizations, of equations to
represent this data. Three of the better known and more
reliable equations developed to represent the Kuwahara
tables are those of H. V. Mackenzie, Wayne D. Wilson, and
V. A. Del Grosso.’ The Mackenzie and Wilson equations will
be discussed in some detail since they are used as support
in the substantiation of results in this study. Results
of Del Grosso's study are used in the modification of
Mackenzie's equations to reduce residuals at ubper depths.

The basic Mackenzie equation of form

Vegp © Vo,ss,o + AV + AV AV, + AV¢ * MVpep (1)
is readily seen to be a function of Temperature (T),

Salinity (S), Depth (D), and Latitude (¢, absolute value of).



The equation consists of 6 parts:

1.

where

. AV

a. Av
b. AV

c. AV

Reference velocity, V° s5.0° computed at 0°C, 35%
3 b

salinity, and zero depth.

. Temperature dependence, (AVT).

Salihity,dependence, (AVS).

. Depth dependence, (AVD).

Latitude dependence (AV¢).

Interaction dependence due to simultaneous change of

).

T, S, D (AVpgn

AV is broken into three parts AVpgs AVgp, and

TSD

AV for further analysis where

D

a. AV Température - salinity interaction

TS

b. AV,, = Salinity -~ depth interaction

SD

c. AV Temperature -~ depth interaction

D

v = 1445.5 M/S (2)
0535950

AVp = 4.8374 T - 5.383x10°2 T2 + 2.543x10™ *T3 (3)

AV. = 1.307(S-35) (4)
= 1.815%10 2D - 5.291x10 '2p? (s)

= 1.5x10° °D(¢-35) +0.94x10"'2D (¢-35)2
-2.94x%1071®D%(¢-35)%-1.214x10" ¥ (4-35) (6)

© U m

Vesp T Vrs v Vsp Y Vpp (7)

(S-35)[-1.07x10" 2T +(5.0x10™ %-4.1x10"%D)T?]

TS
(S-35)(3.36%x10  °D-4.55x10 °D?)

1"

SD

D(-1.9x107 ®T? +6.35x10 °T® +4.1x10°'°T")

TD _
+T(6.95%10" 8D -5.27x10"°D? +2.7x10 '“D?)




summing the results (2) - (7) give the result (1).

The Mackenzie equation agrees with the Kuwahara tables
to within .1 M/sec everywhere, but it should be noted that
the equations were developed to fit this particular data.
This is not to say that the equations will not be useful
'in data reduction for other areas, but one should not be
disappointed in finding larger residuals between Mackenzie's
values and actual readings or between Mackenzie's values and
Wilson's values for the same data.

Mackenzie's equations are flexible and provision is
made for modification if necessary. There is evidence in
the analysis to support the fact that the depth dependency
factor and/or the latitude dependency factor need modifica-
tion. Experimentation with this problem will be discussed
in the following chapter.

The formulation of Wilson's equation? displays the same
basic form as Mackenzie's equation; that is,

V o= 1449.22 + AV + AVp + AV + AVoqp (8)
The main differences are that V is a function of temperature,
salinity and pressure, where pressure is a function of
depth. The equations were developed in a controlled labor-
atory environment. The development was restricted in the
assumption that 99.5% of all sea water falls in the ranges
of -3°C < T < 30° for temperature, 1.033 kg/cm? < P < 1000.0
kg/cm? for pressure, and 33°/,, < S < 37°/,, for salinity.
The equations were developed over 581 laboratory measured

sound speeds for fifteen temperatures, eight pressures, and



five salinities. The method of least squares was applied,

using a 20x20 matrix to arrive at the coefficients.

The breakdown of equation (8) is as follows:

l‘

1448,22 = reference velocity computed at T=0°C,

P=0.0 kg/cm?, and S = 35°/,, (parts/i1q000). (9)

. Temperature contribution

AV, = 4.6233T - 5.4585x10 2T? + 2.822x10°"T? (10)

-5.07x10°7 T*

Pressure contribution

AVP = .160518P + 1.0279x10 °P? +3.451x10" %P3 (11)

-3,503x10" 12p*

Salinity contribution

AVg = 1.391(5-35) -7.8x107%(S-35)% ' (12)

Interaction contribution for simultaneous changes

AV = (8-35)[-1.197x107 23T +2.61x10"*P

STP
-1.96x10" 7P2 -2.09%10 T P]
+P [-2.796x107*T + 1.3302x10° °T2
-6.44 x 10”873 ] (13)
+P2[-2.391x1077T2 +9.286x1071°T2] |

-1.745 x 10”1op3T

Summing the results (9)-(12) give the result (8).

In order to use equation (8) pressure must be expressed

as a function of depth. Ultimately, pressure is, in fact,

a function of depth, salinity, gravitational attraction,

and temperature.

Wilson? specifies that pressure may be found by divid-

ing depth into incremental layers and summing the product
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of average density in each layer times the thickness of the
layer. This is expressed as Pi =Z§6Eit where gg is the
acceleration due to gravity at latitude 6 and at the mean
depth of the layer, ii is the average density of the layer
and t is the thickness of the layer.

A more complete approach for determining pressure at
depth D; is outlined by Walter Yergen.® The development is
based on the assumption that as initial conditions, the
surface pressure is equal to the mean standard atmospheric
pressure of 10.1325 decibars and that the initial gravita-
tional attraction g, may be computed as a function of Lati-
tude (6) éccording to

g, = .980616-2.5928%x10" % cos(28)

decimeters
cm? (1u)

+6.9x10 %cos?2(28)

and that the change in g between depths is given by

- -7¢n _
g; = g, *1.101 x 10 (D, Di—1)' (15)

Since pressure is a functicn of density, and density is

not explicitly given, an approximated density li at Di is

L3 . . . 9 2 . .

attained by successive iterations 2i1’ L. in

12

In theory the iteration should stop when the difference

|2. ., ~2. .| < € where ¢ is some predefined tolerance.
1,J¥1 1,3 - :

Then zi for Di is taken to be zij'

The determination of pressure (Pi) at depth D is an
iterative procedure of successive alternating approximations
between pressure (P) and density £ in the sequence

L. . L . e . .
10 iy Pipe Miypo > Pins *in

This requires that an initial density 20 be known, and
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initial pressure, P, which is assumed to be 10.1325 decibars.
The first approximation to the true pressure at Di is taken

to be P. =P, .
1l 1l-1
Once the first density approximation, lil, is computed,
then equation (16) is used to compute the first approxima-
tion to the true pressure.
. - . + .1- 2, . -‘. o™l =1,
Poy Pl_1 5 ( 1-1+21,k) gl(Dl D1—1)’ k=1 (16)

where éi = %(gi_1+gi) and g. is from (15).

Now that 2i’2i1’ Po’ Pix’ are known, a second approxi-
mation to the true density, 2i2, is computed. For 2ik at
depth D. where k > 2, the following expression is used,

Py = (1+#107 %0 /R (17)

ik

where oL and R are functions of temperature, salinity, and
the previously computed Pi . according to the following
b4 .

relations
10'30t = (3.118633x10°° + 4.5317157x10 °T
-5.4593903x10 *T? -1.4385354x10°1°T*)/(67.26+T)
+0 (.001-4.7867x10"°T +9.8185x10  8T?
- 1.0843x10° °T%) +0 (1.803x107 8T
-8.164x10°1°T2 + 1.667x10 11T3) (18)
where o _ = -9.3445863x10° % +.81487658S -4,8249614x10 *S?
+6.7678614x10 653 (19)
and R = 1-[4.886x10 ®P/(1+1.83x10™ °P)]
+P[-22072x1077+3.673x10 T - 6.63x10 *°T2
+4x10°1273% + co(1.725x10'3-3.28x10'1°T

+4x10°1272) +og(-u.5x10'11+1o'12T)]

+p2[-6.68x107 1" ~1.24064x107 12T +2.14x10” ¥’
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+o_(-4.248x10717+1.206x10" " T-2x1071°T?)

+02(1.8x1071°-6x10717T)] + P1.5x107 7T (20)
where, for the second approximation to density li,z’ P= Pi;'
Now find Pi’2 by using (16) with k = 2. This back and
forth iteration is continued until lPin—Pi,n—ll < €. The
"data, however, is somewhat inaccurate and warrants no more
than three iterations as a best approximation to the true
pressure at D.. Hence Pi3 is used in (10), (11), (12), (13)
for finding sound velocity. Note that since the above
pressure is in decibars, the conversion P = .101971Pi3 must
be made before use in Wilson's equation. If the velocity is
desired in feet per second eret/sec = Vmeters/sec'(3'28083)

yields the desired result.

Wilson and Del Grosso concluded from careful laboratory
measurements that the reference velocity, Vo,ss,o’ used by
Kuwahara in constructing the Kuwahara tables is low by about
3 m/sec, particularly at upper depths where pressure is
iower. A comparison of Wilson's predicted values and the
values predicted by Kuwahara, substantiates this 3 m/s
differential from 0 to 100 kg/cm? pressure. The reference
velocity in Mackenzie's equation (8) will be low by 3 m/s
also since the equation was constructed to fit the Kuwahara
tables. The 3 m/sec differential in Kuwahara's values at
atmospheric pressure is concluded to be a result of slightly
erroneous data on the compressibility of water.’

Comparing the results of Mackenzie's and Wilson's

equations when applied to oceanographic data, other
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than that for which the equations were developed, substan-
tiates the 3 m/s difference at near atmospheric pressures
and below. Wilson's equation predicted values almost con-
sistently 3 m/s higher than Mackenzie for this data, par-
ticularly for depths to 500 meters. Beyond this depth there
'is, roughly, a linear decrease in the differences of sound
velocity predicted by the two equations at the same temper-
ature, salinity, depth observation. The two equations, at
2000 meters are in excellent agreement. TFigure 1 shows,

roughly, the plot of residuals from depth 0-2500 meters.

Differences (m/s)

: ——

i -] i [ [ 3 i [ — - [l | Il [] Il 1 ] i [ H
L] T L LS L Ll

! ! e 2] L] L} ) 1 T Ll L 1 ¥ L) L] ¥ L]
1 2 3 & 5 6 7 8 91011 12 13 14 1516 17 18 13 20 21 22 23 24 25
Depth (x 100 meters)

Figure 1. Plot of the residuals between Wilson's
values and Mackenzie's values for the

same data. r. = W, - .
(rg = w - mp)

The values yielded by Wilson's equations are used
extensively in checking the results of this study since these
values are considered to be good for most applications in the
physical sciences.? Mackenzie's equation, however, is easier
to use since there is no pressure dependency term. The
modification to Mackenzie's equation, to be discussed in the

following chapter, is warranted on the basis of its ease
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of use and by the féct that, for the areas considered, the
differences from Wilson's values were no greater in absolute
value than .8 meters/second for all depths. Both equations
are used, however, in checking the results of the regression
equations developed in this investigation.

Data deficiencies are always an impediment in the solv-
ing of oceanographic problems. C. J. VanVliet has made a
rather extensive empirical stqdy-on the effect of random and
nonrandom missing data on regression and autocorrelation
analyses of time series data.!® The time series analysis is
to isolate trend or a gradual increase or decrease in a sys-
tem over é long period of time, oscillation or a variation
about the trend which occurs with a pattern of regularity
over a period of time, and random elements or unpredictable
variations in a given variable.

Van Vliet considered the surface temperature variable
in his analysis. The Monte Carlo method was employed to
JSimulate missing data situations, random and nonrandom. The
regression and autocorrelation coefficients were computed
for each time series analysis.

A determination of the sensitivity of coefficient
variability due to random and nonrandom missing data was
‘made for different series lengths. The conclusion was that
if the missing data is random, a smaller sample size is
used, and the change in the variability of the regression
coefficients is predictable by the amount of reduction in

sample size. The random deletion of data increases both



15

regression and autocorrelation coefficient variability.
For nonrandom missing data, or an excessive number of

longer sequences of missing data, the increase in the

variance
increase
data the

ficients

of the regression coefficients is roughly twice the
for random missing data. For nonrandom missing
increase in variance of the autocorrelation coef-

is roughly 1.2 times the increase attributable to

random missing data. The above suggests that the auto-
correlation coefficients are less sensitiQe to the effects
of nonrandom missing data than the regression coefficients.
E. R. Anderson, using regression and autocorrelation
techniques, determined that in order to eliminate short term
variability and reliably estimate sea-surface temperature, a
time series record of 8 to 10 years is needed.!! Anderson
developed a regression model considering latitude, longif
tude; and day of year as independent variables.®? This model
was found capable of estimating seascnal variation of sea-
surface temperature off the west coast of the United States,

in water depths of greater than 100 fathoms, to a standard

Anderson's model: T = F

deviation of less than 1°F. s

(Latitude, Longitude, day-of-year).

T, = Bu + BlDy + BZD; + 331); + sun; + BSD; (day;zg;)
+85La + B7L; +BaL; (latitude)
*B L, + B1oLé +811Lg (longitude)
+812LaDy + B”LaD; + LaD;’ (latitgg;-)-
+8 LD, + B”LOD; + B”LOD; (1ongi§;§1’§,-
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+8 LL +8 LLZ+pg LIL? (latitude-
18 & © 19 & © 20 & © longitude)
+ 8 L2L + 8 L3L
21 ¢ O 22 a o
where L_ = latitude
Lo = longitude
Dy = Day-of-year

It should be pointed out that the present study is
primarily a search for adequate models to represent temper-
ature, salinity, and sound velocity and the data used is
primarily from one area and one season. The seasonal
variation, therefore, will not be as pronounced as in
Anderson's study. The terms of Anderson's nicdel, however,
are incorporated into one of the more complex temperature
models to be discussed in Chapter 3. This model is also
expanded to include depth as an independent variable. It
is hoped that this technique will help in explaining varia-

bility of temperature to depths of 500 meters.
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ITI. DISCUSSION

The extremely dynamic character of the ocean environ-
ment is a formidable obstacle in the search for stable
techniques for predicting ocean veriables. The oceano-
graphic problem, then, becomes one of>searching for |
‘"adequate" models to use in reduction of available data.

This chapter presents the results of a preliminary
inquiry into the feasibility of eliminating the need for
"on-location" measurements of temperature and salinity by
building multiple regression models to predict these vari-
ables as functions of geographic location, time, depth, and
day-of-year.

The regression development consists of a systematic

consideration of polynomial models of the form

N .
Y = _§ Bi Xi +e .
1=
where
ai az o
Xi = f(ZI s 22 s o e .,Zn )

such that: Zi are independent variables, |
and: a; are powers of the independent variables
and: € is the error.

The models tried vary in complexity, from second orderib
models with only two independent variables (latitude and
longitude), to tenth order models with 6 independent vari-
ables (latitude, longitude, depth, temperature, salinity,
day of year). The investigation proceeded from producing

models for individual depth planes to a general regreséion
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situation for which depth wés an independent variable. The
final, more involved model, for temperature, contains the
terms of the model described by E. R. Anderson®? to account
for seasonal variation in temperature.

Mackenzie's equation proves to be a valuable tool for
_comparing regression results with some existing standard;
however, Figure 1 reveals a deficiency in predicting par-
ticularly at depths to 1500 meters. The nearly linear de~
crease in the magnitude of the residuals, r, = Wi-m., where
W is Wilson's value énd m. is Mackenzie's value at observa-
tion i, suggests a slight modification in the depth depend-
ency term is in order. The reference velocity is taken as
that of Del Grosso!l, Vo,ss,o = 1448.5, and an amount .0012D
is subtracted from the depth dependency term. That is, now:
AVL= 1.815x10° *D-5.291x10 ' *D’ -1.2x107°D = 1.63x10 2D

~5.291x107}2p°
Notice that at upper depths the change in the depth depend-~
ency term is negligible, but since the reference velocity
is 3 m/s greater, Mackenzie's equation predicts very close
to Wilson's. As depth increases, the depth dependency
change becomes more pronounced, until at 2500 meters the
effect of the higher reference velocity is cancelled (i.e.,
.0012(2500)=3), and Mackenzie's equation is predicting as it
was originally.

Figure 2 shows a plot of the residuals after modifica-

tion of Mackenzie's equation and Figure 3 shows the

distribution of residuals by means of a histogram, after
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this modification.

The magnitude of 3718 of the 3720 residuals obtained
were of the order |r,|<0.9. The two residuals whose value
was greater than 1.0, were found at a zero salinity readiﬁg.
Clearly, for this area, Mackenzie's equation is much im- |
proved, and will be very beneficial for comparing to regres-

sion sound velocity predictions.

Residual (m/s)

14~
B
-m—

~
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1 2 3 4 5 6 7 8 9 10 11 12 B 14 15 16 17 18 19 20 21 22 283 24 25 ©
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s

2]

.75L— s
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Figure 2. Residuals Versus Depth After Modification

. . - -
of Mackenzie's Equation (ri Wy mi)

Figure 2 represents a plot of the average residual
(ri =W, - mi) at depth D;. The plot does not show the
residuals which reached larger values (e.g., > .5). For this
reason the distribution is shown in Figure 3 as a histogram.
The plot is shown as number of residuals against magnitude
of residual. For example, the number of residuals from 0.0

to 0.1 is 428. Alternating positive and negative residuals

lower the value of the average r. at Di in Figure 2.
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After modification, Mackenzie's equation was checked on
a 1° by 1° square of data from 38°-39° N latitude and 69°-70°
W longitude. This run substantiated the validity of the

modification, for all the residuals (wi -mi) here fell in

the range of -.5 m/s to .9 m/s.

Number From To Number

7°°L — .7 ]-.86 5

-.6 |-.5 38

6000 -.5 |-.4 yy

| T

S00r= [ .2 |-.1 ] 221

Vool — F.T | 0283

0 .1 | 428

Jool .1 | .2 %03

— .2 .3 | 531

200l .3 L4 [ 597

N .5 1738

Look .5 .6 | 259

.b .7 5

i .8 3

SR AL A SR S A T .8 .9 L

JTE6TSTATIT2TYI 00 02 ;3 .4 5 .6 ,7 8.9 Total 3718
Figure 3. Histogram of residual distribution of

r., = W.-m, for the same data in the 4°xui°

square’36%-40° N latitude 68°-72° W longi-

tude.

Throughout the remainder of this discussion, W and m.
will represent Wilson's and Mackenzie's sound velocity,
respectively, as before, and Bi will represent the sound
velocity yielded by the regression equation.

The stepwise multiple regression procedure was utilized
in building polynomial models involving two to six independ-
ent variables and various higher order cross products of
these variables in ascending order of complexity. The

greatest significance is attached to the more complex models
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toward the end of the study and therefore the most compre-~
hensive analysis is reserved for those models described on
pages 31 - 34. |

The set of data used is from the u° by y© square‘38° -

0

40° N latitude, 68° - 72°

W longitude, consisting of 3720
data points over 20 depth planes of 0; 10, 20, 30, 50, 75,
100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1200,
1500, 2000, 2500 meters.

Some arbitrary criterion must .be established for
measuring how well the regression equations appear to be in
the analysis. This may be achieved in several ways. This
investigator will use three common criterion for determining
goodness of fit. First, and probably most important, is the
R? ratio or percent of variation explained by the regression
equation; second, the standard error of the regression
equation; and third, plots of the residuals (deviation from
actual value) against the dependent variable (§). Ideally,
we wish to increase‘Rzlas‘webdecrease the standard error of %.
| The stepwise procedure requires a significance level
for the deletion of non-significant terms from the model and
the addition of significant terms. In most of the ensuing
_ models, an F level of 2.65 is used for adding and deleting
variables in the model building process. This figure repre-
sents F(1,v2,.90) where v, 2> 120 degrees of freedom.

When plotting the residuals (yi - 9i) against §, four
common patterns may appear signifying certain conditions of

the prediction equation over the range of the dependent
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variable. Figure 4 shows the general shape of these pat-

terns.

Variations of shape, slope, and combinations of more

than one are possible.

A.

r r r
_ /:/ /"—‘-—~
- - ——
—— ”’/ ///// // P
- 7 P ”
range range 7 “range 4 7 range
\\\
—— — g \\
\\
B. C. D.

Figure 4. Possible patterns of residual plot of yi—9i

against §¢.

- Interpolation of the cases is as follows:!?

AQ

Residuals fall in a horizontal band indicaté no
unaccounted for effects over the range of the
dependent variable §¢. This indicates a normal
regression situation and good fit.

Residual plot forms a fan pattern indicating the
variance is not constant but increases with increas-
ing values of the dependent variable. This implies
wéighted least squares analysis should be used
instead.

Band with slope greater than zero indiqating that a
linear term is needed in the model.

Nonlinear band indicates linear and quadratic terms

are needed in the model.

This type of analysis will be applied to more significant

models.
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Second Order Model - Two Independent Variables

The second order model was the simplest of all mbdels
tried. The purpose was to determine if temperature, salinity,
and sound velocity are functions of geographic locafion.”
(latitude and lohgitude). Temperature, salinity and sound
.velocity are used as independent variables. Depth is not
an independent variable here, consequently the model is
applied to the data at each depth plane for each dependent
variable.

Model 1 used here is as follows:

B°+BIZI+82ZT+B322+8u2122+8sZiZZ+BsZ:+B7Z1Z2+882:Z:
where: Z1 = latitude

22 = longitude
Figure 5 shows the szand corresponding standard error O
of fofor each depth plane when temperature is the dependent
variable. Figures 6 and 7 show plots of the R? statistic
and correspondiﬁg standard error, for each depth plane,'
Qhere éalinity and sound velocity are the depehdent vari-
ables, respectively.

An examination of the residuals from the résulting equa-
tions and the plots in figures 5, 6, and 7 reveal deficien-
cies in Model 1. The residuals (actual - predictedi‘are
generally in the ranges of :SOC for temperature, 180/oo for
salinity, and +50 meters per second for sound velocity. These
residuals are too large in comparison to the magnitude of num-

bers being predicted and indicate an obvious need for more

independent variables and/or higher order cross products in

the model.
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A further check was performed on the results of Model 1
by evaluating Mackenzie's equation using the temperature and
salinity yielded by the regression equations rather than the
true temperature and salinity. The sound velocity obtained
by Mackenzie's equation in this manner was then compared to
. Wilson's sound velocity value and then to the sound velocity
predicted by the regression sound velocity equation for the
same data. Mackenzie's equation utilizing the calculated
temperature and salinity displayed severe differences from
Wilson values. In many cases the differences were 800
m/sec! The differences between Mackenzie's prediction and
the regression equation prediction were even more severe.
Some of the differences here reached 900 m/sec. The inade-
quacy of Model 1 was substantiated, and a more expanded

model was tried.

Much of the inadequacy of Model 1 and the rather wild
results obtained in the analysis is attributable to missing
data resulting from such things as instrument failure or bad
weather. To eliminate as much of the effect of missing
data as possible, a-screening is implemented so that if a
zero temperature or salinity reading is encountered, it is
essentially eliminated from the discussion. Figure 6 shows

the effect of screening out bad data.

Second Order Model - Four Independent Variables

In this facet of the study the regression model was

expanded to include four independent variables, latitude,




28

longitude, day of year, and time of day.

The introduction of additional independent variables
greatly increases the possible combinations of cross prod-
ucts which could be considered to enter the model. A
judicious choice was made and the resulting model was:

BO+8121+BZZf+832122+Bu2123+BsZIZu+BGZZ+B7Zz

+3 2 7 +B 7 Z 4B 7 +B Z2+B 7 Z +B 7 +B Z?
8 2 3 9 2 4 10 3 11 3 12 3 1

4 3 % 15 4

+BlSZIZZZ“+BI7Z1232“+BIBZZZSZM+8192122232u+e (Model 2)
where Z1 = day-of-year, 22 = time-of-day, Z3 = latitude,
Zu = longitude.

Higher order terms were arbitrarily avoided at this
point to minimize the complexity of the problem in the early
stages. Notice, however, Zf, Z;, Z:, Zi have been included.

Seven depth planes were chosen for the analysis; 0, 10,
20, 50, 100, 500, 1500 meters. Model 2 was applied to the
data at each depth plane for each of the dependent variables
temperature, salinity, and sound velocity. %, g, éb were
determined at each depth plane with the 90% F of 2.65.

Table I shows the R? statistic and corresponding standard

error for each regression equation at each depth plane con-

sidered.
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Depth RZ(%) (S) (sV)
meters 0t R 0s R Usv
0 .666| 3.07]/.378 13.09 | 596] 53.1
10 .721| 2.92].348/ 13.75 [512| 62.9
20 .813| 2.56|.736] .61 L627| 53.9
50 .806| 3.15|.705 .62 |.640| 64.85
100 774 ) 2.57].751 .37 [.627| 60.4
500 .812] 2.98].813 .35 [.756] 50.9
1500 .552| .39|.185  .073[.265| 31.4

Table I. The R? and corresponding standard error for
all equations developed using Model 2 at
depth planes indicated.

The residuals associated with the regression equations
at the various depth planes still showed excessively large
deviations from the observed values. Residual patterns were
similar to those of Model 1. The residuals for the equa-
tions derived from Model 2 still were generally in the range
of +5°C for temperature, +8°/,, for salinity, and +50m/sec
for sound velocity. Calculation of Mackenzie's equation
using the calculated temperature and salinity and comparing
to Wilson's and the regression sound velocity for the same
data showed no significant improvement over results from
Model 1. Further comment on this particular model is
deferred until more comprehensive models have been discussed.

In the general regression situation it was desired to
create a model which involves as many significant independ-

ent variables and cross products as possible while at the
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same time containing as few terms as possible to do a
responsible job of predicting.

Depth should have a significant relationship to
salinity and sound velocity. This introduces the general
problem of developing regression equations for temperature,
salinity, and sound velocity over all depth planes.

A reassessment of the basic problem reveals two un-
answered questions. TFirst, is it possible to develop
regression equations to adequately predict temperature and
salinity values, which could then be used in an existing
equation, such as Wilson's or Mackenzie's equation, to yield
a sound velocity value near the true value without the need
‘for "on-location" measurements of temperature and salinity?
Second, if adequate temperature and salinity equations can
be developed, could a regression equation for sound velocity
then be used, utilizing these predicted values, to produce
sound velocities close to the true reading without relying
on existing methods such as Mackenzie's or Wilson's equa-
tion? The-most important aspect in either case is eliminat-
ing the need for actual measurement by instruments.

There are at least two procedures which may be used in
developing the desired regression equations for temperature,
salinity and sound velocity. First, one large model may be
used, changing only the dependent variable. Second, an
individual model for each dependent variable may be used.

It was concluded, after extensive model testing, too

voluminous to present here, that the individual character
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of the dependent variables temperature, salinity and sound
velocity require individual models.

Thus the models presented in the ensuing discussion
were built according to procedure two, and yield better
results than those models tested by procedure one. It
should also be pointed out that the temperature, salinity
and sound velocity models presented in the following dis-
cussion are the culmination of an extensive trial and error
model building process. These are the models which produced
the most significant results.

S

Salinity = F (latitude, longitude, depth)

B +B y/ + B zz+s z Z +B z Z +B z Z +s z
+s zz+s Z z +s Z +s Z2 +s 73 +s zs+s 23
10 11 2 12 3

+ + + + 5+ 8
e 3Z +Bxuzz B1523 Blszl g 7zz 81923 B szl (model 3)

+s z Z* +B z A +s z +s Z4z" +e z +s yA z2
23 2 25 1

+e z z +s z +e z z +3 A +s z‘°+s Z zs
29 2 30 1 31 2

+8_ Z5Z°4+8 zl°+e zsz g 2'%g /7 +8 /z2
32 1 3 33 2 34 2 3 35 3 36 3 37 3
+ 34+
Baa/zs € .
where sz latitude, 22 = longitude, 23 = depth. Application
of this model to the.available data yielded the following
prediction equation.

S = -1.osszl+.1635x10‘“zlza-1x10‘sz§+.253x10'az:

+.959x10752%+.61u%107 12125~ .848x107 112323
+.976x10 °2%2%+.62x1071°25-.196x1072%2°2°
1 2 2 1 3

+.733x10'2Sz:z:+.8x10‘33z;°-9.6133/za+8.6/z:+68.57
The prediction equation represents a relatively good

statistical fit to the salinity observations on cards.
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Nearly all residuals (Si —gi) fall in the range -1.5 to 1.5,
and R? = 64.1% with the standard error of S = .7375.

The temperature model is more complex since it in-
volves two more independent variables than the salinity
model, and incorporates the terms of Anderson's model?® to
account for seasonal variation. The model is expanded to
include depth and day of year as independent variables.

T = Temperature = F (latitude, longitude, depth,

salinity, day of year)

B +B Z +3 22+3 z A +s'z*z +s z V/ +B Z z5

+B Z +B VA +B Z Z +B Z Z +B 1Z Z +BIZZ3

+B Z +B z z +B z Z +B z +Bl7z +3 z z (Model 4)

+B Z +8 Z2%2+p 2Z83 +e z +3 z3+g 23 +3 23
19 § 20 5§ 21 2 23 3 24 4 25 5

+8 z“+3 22 +8 2" +s 248 2'+8 2 21
26 28 3 29 L 5 31 1

+e z 73 +s z 73 +s z +835Z +8 sz z5 +s z z:

+B 1n(z ) +B ezl+e 7 22+, /2248 2°Z
38 3 33 40 1 2 4 2

+8 72 /7 +¢
43 4 3
where Z1 = latitude

Z2 = longitude

Z3 = depth

Y - salinity

Z
Z5 = day-of-year
€ = error term
Notice that some experimental cross products are
included in the model. It is interesting to note that some

of these odd terms entered the resulting regression equation

at high levels of significance. Applying this model to the
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data resulted in the following prediction equation for
temperature.

~

T = -34.96 + .19x10°%Z 2 + .2u46x1072%Z Z -.0187 2
-1 3 1 5 4

2
-.152x10‘“z§ + .u77x10'3zsz“-.3599x10“'zaz5
-.884x10_ZZ“ZS + .ugleo‘zzi -.187x10"3z:
+.78x107°2% + .1u66x107 %% + 7u6x107%2%2
-.13x107*12% -.513x10772 23 -.584x107 12z Z°

3 2 5 1 s
3 ¥ 3

This equation represents a good fit to the 3720 temper-
ature observations on cards. For this set of data, R2%=.9u48u4
and the standard error of T = 2.32. The vast majofity of
residuals (T; =T.) fall in the range *2°C from the observed
value.

Finally, the sound velocity model used to fit the 3720
sound velocity observations is a function of five independ-
ent variables.

SV = sound velocity = F (latitude, longitude, depth,

temperature, salinity)

B +B Z +B Z2+R Z Z +B Z Z +B Z Z +B Z Z
0 1 1 2 1 3 1 2 4 1 3 5§ 1 4 6 1 §

+B Z +B Z2+B Z Z +B Z Z +B Z Z +B 2
7 2 8 2 9 2 3 10 2 & 11 2 § 12 3
+B Z24B Z Z +B Z Z +B Z +B Z%*4B 2 Z
13 3 14 3 4 15 3 5§ 16 & 17 & 18 4 §
+B Z +B Z%4B Z Z Z +B Z Z Z +B Z 7 Z
19 § 20 S5 21 1 2 3 22 1 2 &4 23 1 2 5
+B Z Z Z +R Z Z Z +8B Z Z Z +B Z Z Z (Model 5)
24 1 3 4 25 1 3 5 26 1 4 5 27 2 3 4

+R Z Z Z 4B Z Z Z +B Z 22 +B Z 73%Z
28 2 3 5§ 29 2 4 5 30 3 4 S 31 1 2 3

B 272 2 2 B 2 72 727 8 71 7 71 12
32 1 2 4 5 33 1 3 & 5 34 2 3 4 §

+B Z Z Z Z%*+e
35 1 3 4 5§

where Z1 = latitude
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Z2 = longitude
Z3 = depth

Zu = temperature
Z = salinity

and temperature will be a function of day-of-year.
Applying this sound velocity model to the available
data yielded the following prediction equation:
SV = (4894,08 + .022ZZf + ,1122122 —.1127Z3 +.373x10-SZ§
+.65x107%Z Z -.10322+3,.58Z +.0152%-,0052Z Z Z
3 s - M 5 5 1 2 &
+.59%107%Z 2 Z +.685x10 °Z Z Z +.799x10°°Z Z Z Z
1 3 & 1 2 3 1 2 b4 s
-.226x1077Z Z 7 2%)/3.281
1 3 & s
This sound velocity equation is a very good fit to the

data with R%Z = .9935 and 98% of the residuals (sv; -sv.)
fall in the range of *2 m/sec. The standard error of

SV 2.9 m/sec.

'The method by which these equations were derived
presents an interesting possibility. A sound velocity value
could be computed knowing only latitude, longitude, depth,

and day-of-year, since

Salinity = F(lat, lon, depth)
Temperature = F(lat, lon, depth, salinity, day-of-year)

Sound velocity = F(lat, lon, depth, temperature, salinity)

r

There are now five sound velocity values for each

latitude, longitude and depth.
1. Wilson's value (given in initial data)
2. Mackenzie's value computed using the observed tem-

perature and salinity.
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3. The regression equation value (é%) using the
observed temperature and salinity.
4. Mackenzie's value computed using the predicted
temperature and salinity.
5. The regression equation value using the predicted
temperature and salinity.
For each of the 3720 latitude, longitude, and depth
observations, these five sound velocity values were obtained.
With these five sound velocities, six comparisons were made

for each data point.
\

- _. . . ) - . ' .
1. Tom SW;om. (Wilson's Mackenzie's) using
observed
2. B =wi-Bi (Wilson's - Regression S.V.) ,Ftempera-
ture and
=m.- tala - . . .
3. B =m; Bi (Mackenzie's Regression S.V.)Jsallnlty
5. p =w.-B using the predicted temperature
" "wB TUi i and salinity

6. r B =mi-Bi

Six corresponding residual distributions were developed
according to the magnitude of the residual. The purpose of
the distributions is to determine how many of the residuals
are more than 30 m/sec high, 29-30 m/sec high, . . ., 29-30
m/sec low, more than 30 m/sec low. Table II shows the six
residual distributions and their densities.

Using the observed temperature (T) and salinity (S),
Wilson and Mackenzie show hardly any difference as would be
expected after modification of Mackenzie's equation.

Using the observed (actual) T and S the residual dis-

tribution for wi--Bi shows 98% of the residuals are in the




range +2 m/sec. This indicates a good fit to the Wilson
values.

The third distribution, M - B, using the observed
T and S, indicates that the regression equation is a close
duplication of Mackenzie's equation; that is, only 81 of
3720 predictions differ by more than +2 m/sec. This is an
interesting point, for the regression equation for sound
velocity is much simpler in form than Mackenzie's equation.

The fourth distribution is obtained by comparing the
Wilson sound velocity values with the Mackenzie values
computed from a predicted T and S. The resulting residual
distribution takes on the shape of a normal distribution,
which is slightly skewed to the left. Figure 8 shows the

distribution by means of histogram of magnitude against

36

number. It is felt that the resulting distribution enhances

the feasibility of predicting sound velocity given only lati-

tude, longitude, and depth, and be at least 70% sure of

being within 9 meters/sec of the true sound velocity.

The fifth residual distribution of Table II is obtained

by evaluating the regression sound velocity equation using
the predicted temperature and salinity and comparing the
results with Wilson's value from the card (i.e., obtain all
wi—Bi). The residual distribution here is almost identical
with distribution 4. The histogram of figure 8 adequately
represents distribution 5 as well as distribution 4.
Distribution 6 compares the sound velocity predictions

of Mackenzie's sound velocity equation to those of the
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regression sound velocity equation using predicted tempera-
ture and salinity values. If distribution 3 is compared with
distribution 6 in table II, it is clear that the regression
sound velocity equation predicts very nearly the same as
Mackenzie's sound velocity equation.

The nearly normal residual distribution obtained by
using the modified Mackenzie equation with the predicted
temperature and salinity and the results obtained when these
sound velocity values are compared to Wilson's values for
the same data, underscores the random error in the data from
which the temperature, salinity and sound veélocity equations
were developed.

Final analysis involved computing a predicted temper-
ature and salinity from their respective regression equa-
tions for use in the regression sound velocity equation.

The predicted sound velocity from the regression equation
(éb) was compared to Wilson's value for the same data at
each observation, forming 3720 residuals (Wilson's sound
velocity - regression sound velocity). A plot of these
residuals against éb for each respective observation reveal-
ed a pattern as shown in figure 9. That is, the regression
sound velocity equation shows no unaccounted for effect over
the range of the dependent variable and indicates a reason-
ably good fit, as previously noted in the explanation of
figure 4. It was observed that 88% of the residuals fell

within this horizontal band from +12 m/s to -12 m/s (i.e.,

no indicated lack of linear or quadratic terms in the sound
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1470 m/s 1540 m/s SV
1 4

-12 e e ————_——————

Figure 9. Residual Pattern - plot of residuals against
Sv.

velocity model). This residual pattern is what would be
expected if the error is random. The analysis presented
concerning models 3, 4, and 5 indicates that the error in
predictions is random, though large. The predicticn of
sound velocity without costly instrument measurements of
temperature and salinity may require that wider tolerances
for error be considered acceptable. For example, based on
time and cost saved on instrumental measurements of temper-
ature and salinity, a 90% certainty of being within 5 m/s
of the true sound velocity value might be considered adequate.
It is felt that the results of this study are signifi-
cant enough to warrant application of models 3, 4, and 5 to
additional oceanographic data, particularly in squares

surrounding the y© by 1y © square used in this investigation.
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IV. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The problem of determining adequate models for predicting
temperature, salinity, and sound velocity has been considered.
Sound velocity values yielded by Wilson's equation
described on pages 9 - 12, are considered good enough for
use in most scientific work.2? The Wilson equation, however,
is rather complex and requires an excessive amount of cal-
culation. Mackenzie's sound velocity equation, described on
pages 6 - 8, is more appealing to use than Wilson's equation
because of its simplicity of use. The modification to the
reference velocity and depth dependency term, as described
on page 18, gives Mackenzie's equation the capability of
predicting sound velocities to within #+1 meter/second of
Wilson's equation for all data considered. Distribution 2 of
Table II on page 37 shows this result. The Mackenzie equa-
tion was therefore concluded to be a convenient and accurate
equation from which sound velocity predictions (mi) could |
. be obtained to compare with the regression sound velocity
predictions (ébi). Distribution 3 in Table II is formed by
cdnsidering m, - ébi for all i, when the observed salinities
and temperatures are used in each equation. In contrast, dis-
tribution 6 uses the predicted salinities and temperatures in
each equation.

Two approaches to the problem of developing prediction
equations were used in this investigation. The distinguish-
ing factor between the two approaches is whether depth is

included as an independent variable.
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Model 1 shown on page 23 and Model 2 shown on page 28
were the primary models considered in the first approach.
Depth is not an independent variable in Model 1 or Model 2,
therefore a prediction equation for each of the dependent
variables temperature, salinity, and sound velocity at each
debth plane results.

The results of Models 1 and 2 are discussed on pages
23 and 29 respectively. TFor each dependent variable, plots
of R’ against depth plane, and o against depth plane for
Model 1 appear on pages- 24, 25, and 26. In general, all
measures of adequacy as described on page 21, and an exam-
ination of residuals (actual - predicted) for each quest?on,'
fail to substantiate the regression equations yielded by
models 1 and 2 as adequate for predictive purposes.

The second approach used in the study was to consider’
the general situation where depth was included as one of the
independent variables. Clearly, this resulted in only one
.regression equation for each dependent variable temperature,
salinity, and sound velocity which represents the data over
all depth planes. Data manipulation and analysis of results
is much faster if one equation can be found to represent
the data over all depth planes, rather than over only one
depth plane. |

Within the second approach, there were two ways to
build the models. First a large model of the form Y = I BiXi
+ £ could be designed. In using this model, only the |

dependent variable would be changed. This model would
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therefore be used three times. Secondly, three individual

models of form

YT: c.X

i%i
1

TR
TR

; 1aixi + e, Y= glbixi te, Yoy = :
fop temperature, salinity, and sound velocity, respectively,
could be developed.

It was concluded in an extensive trial and error model
building process, in the search for suitable regression
models, that the individual character of the dependent
variables required individual models, rather than one large
ﬁodel from which ali equationé cbuld be derived. The
salinity model (model 3), temperature model (model 4), and
~sound velocity model (model 5) shown on pages 31, 32, and

33, respectively, are the models which gave the best results

' in the analysis applied.

The salinity equation, obtained from model 3, is a
function of latitude, longitude, and depth. The temperature
'equation, obtained from model 4, is a function of latitude,
longitude, depth, salinity, and day-of-year. The final
temperature model a}so included the terms of the model pro-
posed by Anderso}x9 for predicting sea surface temperature
which also accounts for seasonal variation. The sound
velocity equation, obtained from model 5, is a function of
latitude, longitude, depth, temperature, and salinity.

When using the prediction equations to arrive at a

“sound velocity, the following procedure was uged.
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Salinity may be calculated from values of latitude;
longitude, and depth. These are independent variables whose
values may be chosen by the user. Once the salinity value
is known, and a particular day of year is specified, then
a temperature value may be computed. Now both salinity and
temperature are defined. These are the only two values
that must be known to compute a predicted sound velocity
value from either Mackenzie's modified sound velocity equ-
ation or the regression sound velocity equation.

For purposes of comparison, the following five sound
velocity values were found at each observatiqn of latitude,
longitude, depth, temperature, and salinity: Wilson's sound
velocity value, Mackenzie's sound velocity and the regression
sound velocity using the observed temperature and salinity,
and finally Mackenzie's sound velocity and the regression
sound velocity using the predicted temperature and salinity.

An assumption that Wilson's sound velocity values
'Qere the most accurate, provided a standard of comparison
for the sound velocity calculations from Mackenzie's equation
and the regression equation. For example, using an observed
temperature and salinity, a sound velocity value was cal-
culated from Mackenzie's equation. This sound velocity
value was then subtracted from Wilson's value calculated
from the same data, and the difference (wi - mi) was observed.
This was performed at each of the 3720 data points.

Distribution 1 of Table II was formed to see how these

residuals were distributed about Wilson's predictions. If
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the residual happened to be of magnitude .9 m/sec, the count
of all residuals falling in the interval 0 - 1 m/sec was
increased by one. Distribution 4 Table II was formed in

the same manner using Mackenzie's equation with predicted
temperature and salinity. Similar distributions (No. 2 and
No; 5 - Table II) were formed regarding the regression sound
velocity predictions for observed, as well as predicted
temperature and salinity. Two additional distributions

(No. 3 and No. 6 - Table II) compare Mackenzie's sound veloc-
ity predictions to the regression sound velocity predictions
for observed then predicted temperature and salinity, res-
pectively. The six distributions described above are summar-
ized in Table II and reveal some interesting points about

the sound velocity equations and their predictive abilities.

When using the observed (instrumental) temperature and
salinity in calculating sound velocity from a given equation,
Wilson's, Mackenzie's and the regression sound velocity
equations all predict sound velocity values very close to
one another as distributions 1, 2, and 3 of Table II point
out. ' The regression sound velocity equation resulting from
model 5, however, is simpler in form and easier to use than
Wilson's equation or Mackenzie's equation.

The residual distributions (No. 4 and No. 5 - Table II),
obtained by using predicted temperatures and salinities in
computing sound velocity values from Mackenzie's equation
and the regression sound velocity equation, are encouraging

in that they are nearly normal about Wilson's sound velocity
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predictions as shown in figure 8. This form of residual
distribution underscores the random error in the data from
which the regression equations were developed, and enhances
the feasibility of predicting sound velocity without the
need for on location, instrument measurement of temperature
and salinity.

Figure 9 shows a plot of the residuals (wi - ébi)
against the dependent variable predictions (é%i) for distri-
bution 5, according to the analysis described on pages 21
and 22. TFigure 9 differs from figure 8 in that figure 8 is
a plot of number of residuals versus magnitude of residual;
figure 9 is a plot of magnitude of residual versus magnitude
of the dependent variable value (ébi). This plot extends
over the entire range of the dependent variable. The plot
in figure 9 is that of case A of figure 4, page 22. The
residual pattern is roughly a horizontal band, indicating
no significant unaccounted for effects (linear or quadratic)
in the model over the range of the dependent variable. Since
the plot of (w:.L - ébi) versus ébi’ for all i, is a horizontal

A

band, the prediction equation (SV) is predicting as would be

~

expected if the errors in the raw data for which SV was
developed, were random.

The regression sound velocity predictions obtained
by using predicted salinities and temperature, are not as
good as might be desired or needed for use in scientific
work. Distribution 5 of Table II shows 528 cases where the

regression sound velocity equation predicted values 30 m/sec
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previous runs. In addition, the residuals were quite.stable.
These results substantiated the thought that models 3, 4,
and 5 would produce acceptable results if the bad data were
removed. Based on these results, it appears feasible that
the need for on-location observations of salinity and temp-
eréture might be eliminated in the future.

In future work on this topic, some data screening de-
vice should be implemented to filter out obvious errors be-
fore the final prediction equations, particularly for salinity
and temperature, are developed. This would improve the pre-
dictive ability of the salinity and temperature equations
and thus improve the regression sound velocity predictions.

One such data screening device, which might be used in
future investigations, is suggested by Andersons. He pro- .
poses that a regression equation be fit to all raw data
available as was done in this study. The residuals (observed -
predicted) would then be examined. If the residual is #2
standard deviations from the mean, that data will be used in
further analyses, if not, that data point will be eliminated
from further consideration. A regression equation is then
fit to the remaining data. This procedure has the facility
of immediately identifying erroneous data or gross instru-
ment error.

An alternative to the above data screening procedure
would be to compute the mean and standard deviation of the

data set in question, then eliminate all data which falls
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outside +2 or +3 standard deviations from the mean. A
regression equation could then be fit to the remaining data.

A number of 2° by 2° and 4° by y° squares adjacent to
the area 36° - 40°N latitude and 68° - 72% longitude were
examined. The resulting prediction equations were quite
siﬁilar in form to those determined for the original square.
However, the coefficients of the independent variables were
obviously somewhat different. In general, the prediction
equations for salinity, temperature and sound velocity in
the surrounding areas produced results that were quite good.

Tor future study on this topic, analysis similar to
that discussed in Chapter III of this study, should be per-
formed on several additional 2° x 2° or 4% x 4° squares sur-
rounding the area 36° - 40°N latitude and 68° - 72°w‘1ongitude.
Based on the results from a number of surrdunding squares
that were examined in this study, the resulting regression
equations should be similar to the ones resulting from models
i3, 4, and 5 described in Chapter III. These regression equa-
tions could then be examined for patterns and possibly
generalized equationé for salinity, temperature, and sound
velocity would become evident which could be applicable to a
much expanded oceanographic area.

Physical characteristics of the oceanographic environ-
ment are difficult to represent with rigid equations, as is
possible in many areas of the physical sciences, because of
their dynamic character. The laws of nature, however, are

characterized by certain patferns and this environment will

eventually be represented too.
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