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ABSTRACT

The objective of this project was to carry out both experimental and analyt-
ical studies leading to improved design procedures for predicting thrust termination
of single -chamber controllable solid motors. The experimental work consisted of
measuring quantitatively the effects of incident thermal radiation on low pressure
burning rates and deflagration limits of typical solid propellants. A technique was
developed in which small cylindrical samples of the propellant were burned inside
an electrically heated tube furnace. At furnace wall temperatures up to 1500°F,
the burning rates were observed to be as much as 50% greater at 10psia than they
were when surrounded by room temperature walls., Analytical work was performed
using an improved mathematical model of the transient combustion process of a
solid propellant. This study led to the conclusion that experimentally characteriz-
ing the extinguishability of a propellant in terms of a critical dp/dt provided very
little useful design information. On the other hand, characterizing extinguishability
in terms of the product L;ff was shown to provide a design criteria with the prom-
ise of very general applicability.
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I
INTRODUCTION

The accurate prediction of the thrust of a rocket motor during the transient
periods that precede or follow steady-state operation is a difficult problem. Even
with simplifying assumptions, the matheinatics describing the conservation of mass
and energy are complex and, more importantly, the burning characteristics of the
propellant under transient conditions are not fully understood. Difficulty notwith-
standing, obtaining satisfactory solutions to this problem is becoming more critical.
This aspect of design is especially important for controllable motors or for conven-
tional motors having thrust termination capabilities. The need for improved design
capabilitics is indicated most forcefully by the recent failures of scaled-up research
motors to completely terminate thrust on command (1). Instead of shutting down as
had been predicted on the basis of small-scale data, the motors continued to burn at
a low level,

The research reported herein was designed to provide information to improve
the ability of the motor designer to accurately predict marginal extinguishment con-
ditions. The work was planned around two important observations: (1) the steady-
state low pressure strand burning-rate data that is often used for motor design
purposes can be seriously in error because of thermal radiation effects, and (2)
correlations can be made which indicate that the extinguishability of a wide variety
of propellants increases inversely with the steady-state burning rate. The first
observation indicated a need for improved methods for obtaining laboratory data.
The second observation indicated a need for analytical work leading to more accept-
able general correlations.

The work accomplished can be logically divided into four phases: Experi-
mental Work, Data Compilation and Correlation, Parametric Design Studies, and
Recommended Design Procedures,

It should be noted that the analytical work was directed specifically toward
applications in the design of single-chamber controllable motors; however, the con-
clusions regarding low pressure burning rates and the sizing of the nozzle area can
also be applied in the design of the aft chamber of a dual-chamber controllable motor.
The problem of spontaneous reignition following thrust termination was not consid-
ered during this study.

PRECEDING PAGE BLANK
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I
EXPERIMENTAL WORK
1. Objectives

One design technique employed to insure extinguishment of single-chamber
controllable solid-motors is to size the nozzle throat area such that with the nozzle
fully open the motor L* and pressure will both be less than some critical value,
The magnitudes of these critical values are determined empirically vsing test fir-
ings of small motors (2).

Problems have been encountered in the use of this technique because the
steady-state burning rates determined in small motors or with strand burners,
which are used to compute the full-scale nozzle throat area, can be significantly
less than the burning rates that occur in the full-size motor (1). This discrepancy
in burning rate can lead to continued burning after the nozzle pintle has been with-
drawn, rather than extinguishment.

The objective of this phase of the program was to investigate methods for
reliably characterizing, in the laboratory, the low-pressure buming rates and
deflagration limits that might be expected in full-scale motors. It was reasoned
that the principle difference between the combustion process in full-scale motors and
in small motors or strand burners was the net supply of thermal radiation to the
burning surface of the solid propellant. In the full-scale motor, the surface would
be exposed either to additional burning surface or to the hot insulation covering the
nozzle and pintle housing. Thus the net supply of thermal radiation incident to the
burning surface would be near zero, or positive if the insulation surface were at a
higher temperature than the propellant surface. On the other hand, in the strand
burner the burning surface would be exposed to the cold walls of the pressurizing
container and the net supply of thermal radiation would be negative. In small motors
the ratio of burning surface area to the total surface area of the combustion chamber
is usually considerably less than it is in full-scale motors, and the exposed area is
not so well insulated. Thus, the net incident thermal radiation to the burning sur-
face may also be negative in small motors.

2., Apparatus

The temperature at the surface of burning propellants has been measured
by various means (3, 4) and typically has been reported to be near 1000-1100°F
(550-600°C). Therefore, if the large motor environment is to be simulated in a
laboratory strand burner, the strand should be exposed to inert surfaces heated to

2
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temperatures in this range, or higher, or the propellant sample should be prepared
in such a way that the burning surface is exposed principly to additional burning sur-
face.

In exploratory experiments conducted at BYU prior to this program, strands
of an ammonium perchlorate -oxidized composite propellant were burned both in the
conventional manner and also by placing two strands end to end so that their burning
surfaces were opposed. At 1 psia the burning rate of single strands was 0.028 in/sec
and the burning rate of the opposed strands was .053 in/sec. This large difference
in burning rates could have been partly due to differences in convective heat transfer
resulting from the different velocities of the combustion products relative to the
burning surfaces. Similar uncertainties were encountered using different sample
configurations to simulate motor conditions. It was decided early in the program,
therefore, to construct a strand burner with heated walls in order that the effects
of incident thermal radiation might be isolated.

Figure 1 shows a diagram of the apparatus that was constructed. The basic
part of this apparatus is a tube-furnace, Model No. 423, manufactured by Electro
Applications, Incorporated. This furnace is rated at 1200 watts and with an alumina
tube can be operated at temperatures up to 2750°F. In initial tests with propellant
samples inside the furnace, the alumina tubes fractured due to thermal shock follow-
ing ignition of the sample. Consequently, the alumina was replaced with a tube
made of stainless steel, This tube, which is 2-1/4" O,D, with .065" wall, type 347,
has performed satisfactorily. Because of its greater thermal conductivity, however,
more heat is conducted to the cooling coils at the sides of the furnace, and the max-
imum operating temperature is approximately 1500°F .

3. Experimental Procedure

Prior to placing the propellant sample into the heated section of the tube,
this section is allowed to reach the temperature specified for the test. Electrical
current is supplied to the heating wires of the furnace through an automatic controller
which employs a thermocouple sensor inside the heated section. The controller
automatically adjusts the electrical current to maintain the desired temperature.

The tube -furnace is connected through a large tank to a high capacity vacuum
pump. The pressure in the tank is regulated by controlling air leakage into the tank
through a bleed-valve. A small flow of nitrogen is admitted to the tube to provide a
continuous purge during the test.

The propellant sample was placed in the heated section with a hand-operated
push rod. Immediately after it had reached the proper position, controlled by a pin
on the push-rod, it was ignited. Ignition was accomplished with an electrically-
heated nichrome wire in contact with propellant surface, the surface previously
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being coated with a paste consisting of potassium perchlorate, ammonium per-
chlorate, titanium, boron, and polyisobutylene.

The burning time of the sample was detected with a photocell, Raytheon
EM1502, mounted in the end-cap of the tube. The photocell signal, along with the
signal from a pressure transducer also mounted in the end-cap, was recorded
using a Honeywell Model 1508 Visicorder.

Several different sample configurations were tried. The configuration pro-
viding the most reliable data was a solid cylinder, 0.75 inches in diameter, with
lengths ranging from 0,1 to 0.6 inches. The ends of these samples were machined
to insure that they were parallel and that accurate measurements could be made of
the burn distance. The samples burned from one end, the cylindrical surfaces
being inhibited with a coating of silicone grease immediately prior to testing, Tc
determine the burning rate at a given pressure and tube temperature, three or
more samples of each of three different lengths were prepared. These were then
cemented to sample-holders which could be attached to the end of the push rod.
The burning times for each of these samples were then measured and the average
burning rate computed from the burning time-sample length data. Figure 2 illus-
trates the type of photocell data that was obtained.

Similar data were also obtained with cylindrical samples inhibited on the
end rather than on the cylindrical sides. These samples burned radially. The
diameter of these samples was varied, rather than the length, and the burning
times measured as a function of radial burn distance.

4, Data Reduction Method

An illustration of the burning time data, plotted versus the sample length,
is shown in Figure 3. As indicated by this figure, the burning times can be corre-
lated by an equation of the formt =% +bL. The reciprocal of b, or the slope of
the lines, represents the burning rate.

The best fit line was determined by the method of least squares for each
set of data. An estimate of the reliability of the burning rate was then made follow -
ing regression analysis procedures (33). According to these procedures, the esti-
mated standard error in time predicted by the best fit equation t = a - bL is

. 2
Se+[T (4 - ti)z/(N-Z)]l/ ....... e (200)
i

where t; is the measured time and ?i the predicted time for a sample of length L;,
and N is the number of data points. The corresponding standard error in the
slope b is
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Illustration of Tube Furnace Burning
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Figure 2. Example of photo cell data used to compute burning rates
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where

Xz X/N it a(2.3)
i

The 95 per cent confidence limits in % would then be given approximately by

L.

b=b:28b ..oo..oo-o-ooooo(204)

The ;orresponding 95 per cent confidence limits on £ = 1/ 5 would then be given
to the same degree of approximation by

re2 Y25,/ (B ... ....2.5)

5. Experimental Results

Table 1 summarizes the experimental burning rate data obtained during
this project. The measured burning times and sample lengths for each test are
tabulated in the Appendix. Five different propellants were tested during the course
of the testing program. All of the propellants were ammonium perchlorate oxidized
composites. The propellant designated E-107 has a polyurethane binder with alum-
inum. Propellant UG consists of 18 per cent polybutadiene-acrylic acid binder with
82 per cent ammonium perchlorate. Propellant AGC 64-1106 has a carboxytermin-
ated polybutadiene binder with aluminum. Propellant A-13 consists of a poly-
butadiene -acrylonitrile binder and ammonium perchlorate in the ratio 76/24.
Propellant AAP-3318 is similar to AGC 64-1106 but with part of the ammonium
perchlorate replaced with potassium perchlorate. The test condition variables,
in addition to furnace temperature, were sample configuration and furnace pres-
sure,

Effect of furnace temperature. The effect of the furnace tube temperature
on the burning rates at 10.3 psia of propellants AGC 64-1106, UG, and E-107 are
shown in Figure 4. Approximate incident radiant flux levels corresponding to the
measured tube temperatures are shown on this figure, These flux levels were
estimated using the equation

4 4
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with F|9 assumed to be 0.8, Tg assumed to be 450°C (940°F), and T,, the wall
temperature. Recent attempts at measuring Ts (5) for similar AP-oxidized pro-
pellants have shown it to be in the range of 500-740°C at pressures near 100 psia.
The temperature would be expected to be lower at the pressures employed for

the furnace tests, assuming an Arrhenius relationship between Tg and burning rate.
Consequently, the value of 450°C was selected as a representative value in order

to estimate the net radiant flux. £t is noted that with these assumptions there is a
loss of approximately 0.4 cal/cm® sec from the burning surface when the propellant
is exposed to room -temperature surroundings.

The data shown in Figure 4 indicate that the burning rates of the UG and
AGC propellants were increased by approximately 50 per cent as the furnace tube
temperature was increased from room temperature to 1500°F, while for E-107
propellant a 50 per cent increase occurred when the temperature was raised from
room temperature to 1000°F. These data clearly indicate a strong effect of
thermal radiation on burning rate at this pressure.

Data for A-13 and AAP-3318 propellants illustrated in Figure S do not
show the same magnitude effect as for the other propellants, Difficulty in igniting
these propellants was experienced, however, and the data are somewhat question-
able,

Effect of sample configuration. Initial tests with the AGC 64-1106 propellant
were made with radial burning cylindrical samples of propellant inhibited on the
ends. Subsequent tests made with end-burning cylindrical samples, with the sides
inhibited, resulted in substantially higher average burning rates with the furnace at
room temperature. The room te:nperature mean rate for radial burning was .028
inches/sec while the end-burning mean rate was .037 inches/second.

This difference was thought to be due to the proximity of the cold stainless
steel tube to the burning surface. The minimum clearance between the burning
surface and the tube wall in this configuration was 0,66 inches, whereas in the end-
burning configuration the burning surface was perpendicular to the center line of
the tube and the motion of the combustion products was unobstructued. To test
this hypothesis, tests were made using the radial-burning configuration with the
furnace tube replaced by a large-diameter lucite tube. In these tests the clearance
between the burning surface and the tube wall was increased to 2,60 inches, The
mean burning rate at room temperature was observed to be .030 inches/sec in
this configura-tion, nearly the same as with the small-diameter tube, indicating
that the cold wall did not cause the rate to be reduced.

Figure 6 presents a comparison of the data for the different configurations.
There appears to be no effect of the configuration when the tube is heated; however,
taking into account the uncertainty in the data, the radial-burning configuration
appears to result in lower rates for this propellant when the tube is unheated. No
suitable explanation for this effect can be given at this time.
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fersts with hoth radial and end-burning configurations were also made with
the )G propellant,  ffor this propellant, the differences in the mean rates were
within the uncertainty limits, indicating no significant effect of configuration differ-
ences,

Effect of pressure. Figure 7 illustrates the effect of varying the pressure
in the tube-furnace. This figure presents data obtained with UG propellant at
pressures of 2.5, 4.9, and 10.9 psia. The room temperature (75°F) data is seen
to correspond well with conventional strand burner data for this propellant reported
by Lockheed Propulsion Company (5).

Effect of radiation on Ppj.. A limited study was made of the effect of the
thermal radiation from the furnace tube on the deflagration limit of the propellant.
The results of these experiments are also listed in Table 1.

These experiments were conducted by placing two valves between the tube
furnace and the evacuated tank, a metering valve and a fast-acting solenoid valve.
Prior to ignition, the pressure in the tube was adjusted to slightly less than atmos-
pheric with the solenoid valve closed. The sample was then ignited and the solenoid
valve opened, causing the tube pressure to drop at a rate governed by the netering
valve. The deflagration limits were assumed to be indicated by the photocell signal
falling off, The sample was withdrawn from the heated tube at this point, the remain-
ing unburned propellant confirming that extinguishment had occurred. To insure
that a depressurization effect was not affecting the data, the experiments were
repeated at different metering valve settings.

Figure 8 presents data obtained in this manner for the AGC propellant. These
data indicate the Ppj, was reduced approximately from 4 in. Hg to 3 in, Hg, absolute
pressure, when the sample was exposed to 1000°F tube walls. Additional data for
this propellant and UG propellant are listed in Table 1.

Attempts at measuring the P, with a tube temperature of 1500°F were
unsuccessful, The samples always were consumed even though the photocell indi-
cated extinguishment might have occurred.

Conclusions. These tests show that quantitative measurements can be made
in the laboratory which show the effect of incident thermal radiation on solid pro-
pellant burning rates. At sub-atmospheric pressures, where the burning rates are
low, radiant fluxes corresponding to surrounding walls at 1500°F can cause the burn-
ing rates to be as much as 50 per cent greater than those measured under conven-
tional strand burner conditions. This large effect should obviously be considered in
the ballistic design of controllable solid propellant motors, and the tube -furnace
technique employed in this project can be applied to obtain this data. Additional
work should be done to improve the accuracy of the data.
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DATA COMPILATION AND CORRELATION
1. Survey of Published Experimental Data

This survey covers in an historical fashion the work done in the experimental
field of propellant extinguishment via rapid depressurization. Data from nine differ-
ent sources are tabulated in this section, Table 2 lists the nomenclature used in
these tables.

References 6, 7, and 8 describe the work of Ciepluch who performed the
original set of experiments in this field, The extinguishment experiments were
performed by burning a slab of propellant in a specially designed small motor that
contained two nozzles. The slab weighed about 1 pound and was placed on the side
of the motor so that the gas flow was parallel to the propellant surface. The exper-
imental technique consisted of first igniting the small motor and permitting it to
reach a stable operating pressure, one nozzle being closed. At this time, the
second nozzle was opened by means of an explosive bolt, causing rapid depressuri-
zation, The motor was then examined to determine whether there was any pro-
pellant left or whether it had all been consumed. If no propellant remained, the
test was classified as a non-extinguishment test. If propellant remained in the
motor, extinguishment was said to have occurred. Table 3 summarizes the exper-
imental data reported in these three references.

Marginal extinguishment conditions were expressed in terms of a character-
istic depressurization time above which the grain burned out without extinguishment,
This characteristic time was defined as that necessary to depressurize the chamber
to one-half its initial pressure and was designated as t}/2. Later investigators have
used both this time and the corresponding average depressurization rate between the
initial pressure, Pj, and Pj/2. Figure 9, taken from reference 7, illustrates this
kind of experimental data.

The Ciepluch technique was followed by nearly all subsequent investigators
except that in some cases the propellant configuration was altered and different
methods were used to increase the nozzle area.

Reference 9 describes the work conducted by Amcel Propulsion Company.
The extinguishment portion of that program was secondary to the major objectives
of developing a controllable motor, and only one propellant was tested. Table 4
lists the data for the propellant tested in that program,

In 1964, Aerojet General Corporation began a major program in this area.
Table S summarizes data extracted from the reports describing the work performed

17
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under several different contracts (2, 10, 11, 12), The test motor geometry used
for most of the data reported was very similar to that used by Ciepluch except for
the fact that 3" O.D., one-pound, end-burning grains were used rather than side-
burning slabs. Some data were also obtained in large motors, however,

Table 6 summarizes the data obtained by Hercules, Inc., at their Bacchus
Plant (13). In this investigation they studied the extinguishability of double -base
solid propellants and used a motor which was virtually identical to that of Ciep-
luch's,

Table 7 and Reference 14 present the data and results obtained at the Univer-
sity of Utah. Their experimental procedure was unique in that they used a strand of
propellant burning in a very large volume so that a single nozzle was used to control
the depressurization. This nozzle was closed at the beginning of a test. Thus, in
this experimental technique, the pressure in the chamber would begin to rise very
slowly upon ignition of the strand. However, because the strand burning arca was
small compared with the frec volume, the pressure rise rate was negligible.

After stable combustion was realized, the nozzle was opened, causing depressuriza-
tion. With this type of experimental setup, the single nozzle not only controls the
depressurization rate but the final pressure if extinction does not occur.

The results of a Stanford Research Institute program are described in
Reference 15 and Table 8. Only a limited amount of experimental data were
obtained in this program, the effort being largely theoretical. Although differing
in some details, the experimental motor and technique were essentially that used
in the Aerojet program,

Table 9 and Table 10, respectively, describe the results recently obtained
at the United Technology Center as reported in References 16 and 17, In these
programs, a very extensive series of propellant formulations were tested for
extinguishability characteristics. The extinction technique was similar to that
used by Ciepluch., However, several different grain configurations were used in
this study, including strands, end-burning grains, slabs, and tubular internal
burning grains. Because the data from these programs are presented more com-
pletely than those from other programs, Tables 9 and 10 contain the data probably
of most use to other investigators,

Reference 18 and Table 11 describe the results of an experimental program
carried out at Brigham Young University. The technique used was essentially that
of Aerojet except the end-burning grains were only 1-1/4 inches in diameter.
Because it has become apparent that the data as reported in Reference 18 were
not sufficient for many purposes, the data contained in the present survey have
been expanded over that originally presented.
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Table 12 describes the results obtained in the program of Atlantic Research
Corp. (19). The experimental technique used was essentially that used at the Uni-
versity of Utah in that an extremely large volume of gas made the use of a primary
nozzle unnccessary and a single nozzle controlled the entire blowdown. Rcferences
20-24 also contain additional experimental data describing the extinguishment of
burning solid propellants. However, either the data were taken in a much different
manner than described above or are not reported in sufficient detail to permit com-
parison with the data listed herein.
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TABLE 2. Nomenclature Used in Survey Tables (Tables 3-12)

A"f/Ani The area of the secondary nozzle divided by the primary nozzle area
dinP/dt b/P,

nj The exponent in the burning rate law r=ap” at Py

P The initial depressurization rate when the secondary nozzle opens
P, The ambient pressure

Pi Chamber pressure prior to the opening of the secondary nozzle

Pa1 The deflagration limit of the propellant

rj Burning rate of the propellant at Pj

ti/2 The time required for the chamber to depressurize to Pj /2

T¢ Adiabatic flame temperature
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TABLE 4. Extinguishment Data, Amcel Propulsion Co.

Propellant
Extinguishment
P, 103 psi/sec
Py, psia

ri, in/sec

nj

P,, psia

Reference: Second Annual Report, RRL-PT-4-64-52, September, 1964.

PBO-13

38

1000

.27

.65

14.7

24
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Propellant

P41, psia
Pi, psia
Ty, in/sec
ny

Pa’ psia

Extinguish.

26

TABLE 6. Extinguishment data, Hercules, Inc.

CYH
1.45

512 366

434 378

.55 .55

12.5 0.5

B, 1 psi/sec 60 10

EJC VHX VHY VHW VHV VCP VIR

(Modified Double Base)
8.2 2.3 1.9 1.9 47 23 3.0

420 360 380 340 400 400 380

9.5 9.5 12 15 7 7 7

Reference: Final Report, Contract No. AF04(694)-127 WS-133A, 1965 PSP Task 8



Propellant

Binder
Conc. 7,

Oxidizer
Conc. 9
Size,

Additive

P4)» Psia
P;, psia
Iy, in/scc
Ny

P,, psia

Exting.
dlnP/dt

TABLE 7. Extinguishment Data, University of Utah

PBAA

18

Ap
82

200/15

2625

90-175

.16-.,22

12.5

AH
PBAA
25
AP
75

15

1988

70-150
.17-.23
.56

12.5

50

GB
PBAA
17

Ap

80
200/15

Carbon
Black

2

2459
.92
90-175
.16-.22
.50

12.5

50

UA
PBAA
15
Ap

73

CU0,0,*

90-175.
.37-.49
.55

12.5

225

AF
PBAA
15

Ap

73
200/15

12.5

600

PBAA
18

Ap

80
200/15

CUO,0,

90-175
.28-.42
.38

12.5

700

Reference: Final Report, Contract AFOSR 67-1901, September, 1966.

27

UF

PU

20

Ap

80
200/15

CUO,0,

2598
2.2
90-175
.15-.26
.78-.31

12.5

11

*CUOZ07 denotes copper-chromite manufactured by Harshaw Chemical Co.



TABLE 8.

Propellant

Binder
Conc. %

Oxidizer
Conc. %
Size, u

Additive

Conc. %
Ty, K
Pdl' psia
P; , psia
rj , in/sec
nj
P,, psia

Extinguishment
P, 103 psi/sec

Reference: QTR No. 5, Contract NAS 7-389, February, 1967,

Extinguishment data, Stanford Research Institute

PU174
PU
17.5
AP

80

Ethyl
Siloxane

2.5
2600
3.3
500
.19
.6

7.8

19

PU193

PU
20
AP

80

1.0

470

.32

5.2

14

PU185
PU
18.5
AP

80

FeyO3

1.5

750

.37

6.0

27

28
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TABLE 11. Extinguishment data, Brigham Young University
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Propellant A-13 A-14 A-15 A-16 A-17 A-18
Binder PBAN PBAN PBAN PBAN PBAN PBAN
Conc. % 24 24 24 24 24 24
Oxidizer AP AP AP AP AP AP
Conc. % 76 76 76 76 76 76
Size, m 80 15 80 15 80 15
Additive -- -- CUO,0p CUDY2 LiF  LiF
Conc. % o o0 1 1 1 1
Tp, %K 2100 2100 2100 2100 2100 2100
Py, psia .40 .56 20 .45 .10 .80
P, , psia 91 164 400 153 280 285 320 169 157
r; , in/sec L1105 143 .23 .24 .39 31 .67 21 181
ny .51 .51 .51 .6l .61 .53 .56 .42 .57
P,, psia 12,5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Extinguishment
tl/2’ msec 11 10 7.5 7.2 7.2 6.4 1.9 7.3 6.6

Ang/ An; 1.99 2.92 4.50 2.39 2.78 4.40 5.15 4.99 2.57

Reference: AIAA Journal, 6, 292-297 (1968).
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TABLE 12, Extinguishment data, Atlantic Research Corp.
Investigators: G. Von Elbe, E, McHale

Prop.'lant Arcite PBAA PBAA-Al
Binder PVC PBAA PBAA
Conc. % 20 30 28.5
Oxidizer AP AP AP
Conc. % 80 70 66.5
Size, m o0 80 80
Additive Al
Conc. % 13.4
P;, psia 100 200 200
L in/sec 174 . 109 .178
ny .57 .50 .42
P,, psia 14.7 14.7 14.7
Extinguishment
ty/2: msec* 20 51 13.4

*Computed from data presented

Reference: AIAA Journal, 6, July 1968, 1417-1419.
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2. Correlations of Experimental Data

A first attempt at correlating the data discussed in the previous section util-
ized the following equation, which was derived independently by Von Elbe (27) and
Paul, et al. (28):

2

= (3.1)

1
- @InP/dt)eye = 3

or
1
An

- (= P/2P) -

where (dlnP/dt)ext is the critical logarithmic depressurization rate for extinguish-
ment, r is the burning rate, n is the burning rate exponent, & is the thermal diffus-
ivity, and A is an empirical correction factor. Figure 10 presents the results of
this correlation. To obtain this plot it was assumed that e = 0,00025 inz/sec for

all propellants, This assumption was necessary since data for & are not available
for most of the propellants. It was further assumed that the pressure decayed expon-
entially in all cases. The theory leading to Equation (3.1) predicts that extinguish-
ment occurs during the pressure decay transient when this equation is satisfied. Thus
the value of r employed in the correlation should be that corresponding to steady -state
at the pressure when dInP/dt satisfied Equation (3.1). Since only average initial
decay rates are reported, the time during decay when extinguishment occurred is

not known. If the decay is exponential, the value of dlnP/dt is constant during the
depressurization and the average initial value will apply approximately throughout

the decay. The minimum value of the right-hand side of (3.1) would be that corre-
sponding to the final pressure, since P and hence r would then have their minimum
values, For this reason, the correlation was attempted (Figure 10) using the burning
rates corresponding to the final pressure. This attempted correlation was clearly
unsatisfactory.

Figure 11 presents the results of a second correlation attempt. In this figure
the depressurization half-time, which is proportional to dinP/dt for an exponential
decay, is plotted versus the initial steady burning rate., Although the data show a
trend consistent with Equation (3.1), the scatter is such that this correlation was also
not satisfactory.

As a result of the study discussed in Section IV, it became apparent that the
motor L* is an important variable that must be accounted for in any successful
correlation of extinguishment data., The importance of this variable is illustrated
by the data shown in Figure 12, which were taken from Reference 10. These data
show that the marginal initial depressurization rate for extinguishment for a given
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propellant can vary by about a factor of 5 depending on the motor used for testing.
The critical rate appears to increase with decreasing initial L* of the test motor.

As discussed in Section IV, the marginal extinguishment conditions predicted
theoretically were nicely correlated without regard for depressurization rate using
the parameters L¢* and ry. These parameters are the characteristic length of the
motor and the burning rate that would be calculated assuming steady-state ballistics
apply using the fully opened nozzle area, or using K, = Ab/Anf. Figure 13 presents
the results of the correlation attempt which was made following this approach.

Unfortunately, most of the literature cited previously in this section does not
contain sufficient information to permit application of this method of correlation. A
notable exception is the recent data reported by the United Technology Center (16, 17),
and most of the data points shown in Figure 13 were taken from this reference. In
addition to this data, one point was extracted from results reported by Stanford
Research Institute (15), one point from full-scale motor testing carried out by Aero-
jet General Corp. (25), and one from previous tests at BYU. Also included in this
figure are theoretical points and lines illustrating the predicted effect of flame tem-
perature, These theoretical results are discussed in Section IV,

It is important to note that the correlations shown in Figure 11 and 13 both
suggest that the lower the burning rate of a propellant, the more easily it is extin-
guished.
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PARAMETRIC DESIGN STUDIES
1. Objectives and Approach

The ballistics engineer must make one basic calculation in the design of a
single -chamber controllable motor having stop-restart capability. This is the cal-
culation of the minimum area to which the nozzle must be opened in order to cause
the propellant to extinguish. Three criteria have been proposed to calculate the
required area increase: (1) the depressurization rate resulting from the area change
be greater than some critical value (P criterion), (2) the predicted steady-state
chamber pressure resulting from the change be less than some critical value (Ppy,
criterion), and (3) the L* resulting from the change be less than some critical value
(L* criterion).

If there exists a unique deflagration limit, PDL’ or minimum pressure below
which a propellant will not burn, the nozzle-area increase necessary to reach this
PpL can be computed in a straightforward manner using conventional steady-state
ballistics. There appears to be a strong effect of the thermal environment on the
PpL (26), however, and proven methods have not yet been developed for measuring
in the laboratory Ppy 's which apply inside full-scale rocket motors. In addition to
this problem, the required area changes computed solely on the basis of the Ppy,
criterion, without regard to motor L* effects or P effects, tend to be larger than
those resulting from employing these alternative criteria. Thus, the area change
computed solely on the basis of a limiting Pp;, may dictate a larger and heavier nozzle
than is actually required.

The objective of this phase of the program was to carry out parametr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>