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SUMMARY

An investigation is undertaken to (1) reevaluate the elastic theory
results obtained by previous investigators for both perfect and initially
imperfect. axially compressed circular cylindrical shells, (2) develop
new elastic stability results describing the postbuckling behavior of
curved plates, and (3) present criteria based, in part, upon the curved
plate results which can be used to £ize and locate stringers and rings
such that the initial buckling loed will occur in the neighborhood of

the classical buckling load for a cylinder representing a minimized-
welght design.
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FOREWORD

The work reported herein constitutes a portion of & continuing effort
being undertaken at Stanford University for the U. S. Army Aviation
Materiel Laboratories under Contract DAAJ02-68-C-0035 {Task
1F162204A17002) to establish eccurate theoretical prediction capability
for the static and dynamic behavior of aircraft structural components
utilizing both conventional and unconventional materials. Predecessor
contracts supported investigations which led, in part, to the results
presented in references 16, 19, 24, and 25.
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nondimensionalized displacement parameter
nondimensionalized initial deviation displacement parameter

nondimensionalized initial deviation displacement-growth
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in.

bending moments per unit length in x- and y-directioms,
respectively, 1b

twisting moment per unit length, 1b

number of buckle half-waves in the circumferentiasl direction
for curved plate

total loads per unit length in x- and y-directions,
respectively, 1b/in.

total shear load per unit length in aiddle surface, 1b/in.

mean radius of circular cylindrical shell or curved plate,
in.

thickness of either circular cylindrical shell or curved
plate, in.

total strain energy of stretching and bending, lb-in.

displacements of point on middle surface of either circular
cylindrical shell or curved plate in x-, y-, and
z-directions, respectively, in.
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VsV initial deviation and total displacement, respectively, in
z-direction, in.

X,y,2 cylinder and curved plate coordinates, irn.
2 nondimensional curvature parameter
a,é,y constants defined in Appendix III
Txy total sheering strain in middléAsurface, in./in.
A constant defined in Appendix III
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in. /in.
157 nondimensicnal wave-number parameters; constant in equation (28)
xx,xy buckle half-wavelengths of either'cylinder or curved plate
in axial and circumferential directions, respectively, in.
Xx oA buckle half-wavelengths of initlial deviation of either

o Yo cylinder or curved plate in axial and circumferential
directions, respectively, in.

KoMy buckle aspect ratios
v Poisson's ratio
¢ average compressive stress, lb/in.2
ck,o& ;g;ii gtresses in x- and y-directions, respectively
Ty total shear stress in middle surface, lb/in.2
¢, ¥ censtants defined in Appendix III
OPERATOR SYMBOLS
vl‘( ) defined by ( ), ...+ 2( ),xxyy + ( )’ywy
v‘l‘( ) defined by o 'l‘( )=()
SUPERSCRIPTS
0 denotes extensional strain -
1 denotes bending strain
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VsV initial deviation and total displacement, respectively, in
z~direction, in.

X,¥,2 cylinder and curved plate coordinates, in.
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approackes zero. Meanwhile, by utilizing & more exa:zt set of strain-
displacement relations than von Karmen-Donnell, Mayers and Rehfield, in
1965, bad obtained radius-to-thickness-dependent, load-end shortening
curves for the Kempner deflectef shape and showed that the von Kerman-
Donnell-theory solution obtained by Kempner is reached only as the
thickness-to-raedius ratio of the cylinder apprcaches zero. As is demon-
strated in reference 15, the deflected shape of the zanverged pctential
energy salution of the von Karman-Donnell eguations approaches the
developable-surface shape derived by Yoshimm.l7 Thus, in view of the
£indings of Hoff et al.l” and Mayers and Rehrieid,l® it became evident
that elsstic apalysis postbuckling curves for perfect shells were of no
practical significance. Attention was then turned to the elastic
behavior of imperfect, axially compressed, circular cylindrical shells in
attempts to more accurately predict the initial buckling or maximm load.
The major effort in this area is included, also, in the work of Medsen
and Hoff reported in reference 12.

However, degpite the extensive and important information concerning the
elastic stability and posttuckling behavior of axially compressed cyl-
inders included in references 1-17, there is still no theoretical
analysis which will predict the initial elastic buckling lcad of a
practically fabricated, thin, axially compressed cylinder. More impor-
tant, since pure monocoque shells are the exception ratker than the rule
in shells designed for compression loading, there is no thecretical
analysis which can (1) predict the initial buckling load of a thin
stiffened cylinder even if the behavior is elastic and (2) provide design
criteria whereby the stiffened cylinder will reflect an optimized design.

It is the purpose of the present investigation to (1) reevaluate the
elastic theory results obtaineé by previocus investigators for both
perfect and initially imperfect, axially compressed circular ¢ylindrical
shells, (2) develop new elastic stability results describing the post-
buckling behavior of curved plates,and (3) present criteria based in
part upon the curved plate results which can size and locate stringers

and rings such that the initial buckling load will occur in the
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neighborhood of the classical buckling load for a cylinder representing
a minimized-weight design. All three objectives have been met; the
findings are presented in the form of equations and graphs. The results
of the analyses and the computetions are presented in the body of the
repert, snd the details of the analyses and computational procedures are
given In a series of appendixes.




GENERAL THEORY

STRAIK-DISPLACEMENT RELATIORS

The strain-displacement relations used herein are the small strain,

lerge displacements-moderate rotations set derived by Donnell with
modifications to account for initial deviations from uniform circularity
along the shell length, with ", denoting the initial imperfection
shape, w denoting the additional deflection due to bending of the sheil
during lcad application, and Y denoting the sum of Yo and w; that
is,

W, =W, +W (1)

The strain-displacement equations for the middle surface of the shell
(see Figure 1) are

0 1,2
(

€. =u, +7 (v, v

x x 2 Ty, Os,,

0 1 2 (vg-v)

€ =v, + 5 (VT .vo - —F (2)
y y 1y Vy %
70 =u, +v, +v, 6 W -vw. v

oy Ux LT,y 0,0,

In view of equation (1), equations (2) are rewritten as

’x
0 1.2 w
=) + = + W =
€ = Viy t 5 ¥y "’y"o,v R (3)
70 =u, +vV, +W, W, +W. W, +W,V
xy ’x 1M 0, ¥ 7x¥0,

The bending strains are




Gl = «7ZW
x  TUxx
1
€ = -2v 4
y vy (4)
1
= -22zW -
Txy 5y 3
i
Thus, the total strains, equations (3) plus equations (%), are
€E =€ + el =1u =y + v, W v
X X Jx 2 7? ’x o,x I xx
_ .0 1 _ 1 ')
c—:y = ey + ey = v’y tE v, + w’ywo,y R zw‘,yy (5)
=0 e + + + 2
Ty Tay T ay T Wy T Vox P Vaxoy ¥, oy “rdlo, T Fhy

STRESS~-STRAIN RELATIONS

For stresses that do not exceed the elastic limit, Hooke's Law is valid;
it is given by either

o, = E(ex+vey)/(1-v2)
o, = E(ey+vex)/(1-v2) (6)
Txy = Eyw/2(1+v)

or, in inverted form, by

€ = (ax-vcy)/E

x
€, = (cry-vax)/E . (7)
Tay = 2(1+v)'rxy/E

n




POTENTIAL ENERGY

The total potential energy stored in the elastic shell under prescribed
unit end shortening e (see Figure 1) is composed of the extensional and
bending strain energies; it is given by

L/2 enﬁr t/2

v=—E_ T

2
2 7
2(1-v%) J-1/2%0 “'-t/2[(ex+ey) 2@)(ee,- )] oz (®)

Substitution of equations (5) in equetion (8) and subsequent integration
over the constant thickness t of the shell wall yields

L/2, 2nR

Et l1 2 1.2

U = «———— {(u, E W, -H’, W +v’ L W, -l-q’ w
2(1—v2) -1/ x2 x ’x 0, y

2
- 2(3-v)[(u, +§")x""")x 0, )(V:y"' Wy "‘":y O = “wﬁ) = ’]i(u, +v,

+H,H,
vz]

where D = EBt’/12(1-v2).

w, yrs¥o, )2 1}axdy

0,
J ’y

L/2 , 2R

L/2"0 [(w’x‘xw’yy '2(1'\’)(“: )yy xy)]dxay (9)

In accordance with the potential energy principle, U mst have a
stationary value with respect to edmissible variation in the degrees of
freedom u, v, and w Iin order for equilibrium to be achieved. As

derived in Appendix I, the variation leads to the equilibrium equations

Nx + N =0
’y xy,y
NO + NO -0
Yyy XYJX
(10)
NO
4 A 0 0
Ww - - N(w, 4w - N (w,_ _+w
R X' 7xx O,XX) y( vy O’yy)
(o)
0
Xy Xy Ixy
6

.
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x=i%:

e 2R
| Ndy =0

"O X

1 sznody_c
o X

27R
. J; dey =0

' - 2nR

Y0

o 0
[hx(v,xﬂo,x)mxy(v,yw

ard the accompanying boundary conditions at

) +2M Jay = 0
o’y H&:x xy,y

ALTERNATE FORM OF TOTAI, POTENTIAL ENERGY FUNCTIONAL

or

or

or

or

or

or

or

or

ov

0 (13)

With the use of the middle surface strain-displacement equations ( 3), the

total potential energy, equation (9), can be expressed in the form

emcopre TSN




L/2 . 2nR 2
J, U2t v asay

=]

2(1 -v ) -L/2"0

+z]

Next, with the constitutive relations (7), written for the middle sur-
face, the strains eg, 63’ and 72y can be replaced to give the total

L/2 2nR

L/2" [(“:xxw:yy) -2(1- V)(“:xx ryy “:xy)]dxtly (1k)

potential energy as

& L/2, 2xR 0 @2
U=3 1/ [(c 10, ) -2(l+v)(o o -Txy)]dxdy
p ¢ L/2, 2mR
T§J..L/2-[o (s sy )*-2(2-v)(w, "’yy )iy (13)

The first two equilibrium equations (10) car be satisfied identically by
the Airy stress function F, defined as

0/ = o°
N/t =0, = Fsuy
0, _ 0 _
Ny/t =0, = Fsx (16)
0 0
=T = =
ny/'c Xy F’xy

+inally, the introduction of the relationships between the middle-surface

stresses cg, co, and TO and the Airy stress function F defined by

equations (16) permits the elimination of the stress components from

equation (15); thus the desired alternate form of the total potential
energy is

g L/2

—EI-L/Q

L/2 21R

j -L/2" o

R 5 5
[(F:yy"'F:xx) ‘2(1+V )(F’y'y'F’XX-F’xy) ]dxdy

[(w,xxw,w) -2(1-v) (W s w,xy)]dxdy (27)

.
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The total potential energy consists now of only two unknown quantities: -
the stress function F and the additional radial displacement v of
the shell. With middle-surface equilibrium automatically satisfied
through introduction of the stress function, the variational principle
need be applied only with respect to w <to achieve equilibrium out of
the middle surface. However, it 18 necessary first to estabtlish a
relationship between F and w 1in order to present the total potertial
energy in terms of w alone. From displacement compatibility in the
classical theory of elasticity, it is known that the middle surface dis-
placements u and v must satisfy the condition

0 (18)

(u,x): + (V,y):xx - (U,y"‘V,x),

vy Xy

With the strain-displacement equations (3) and the constitutive relations
(7), written for the middle surface, the stress-displacement compatibil-
ity equation becomes

0 o . 0 0 0 -
x % yy Py o2
(—E)’yy + ( E),JOI - 2( E ),w = ( E ) = V,W'V,nv,w-'ﬁv,n
+ 2w w -W W -W w 1
O,W ’xy O,xx ’yy O’YY Ixx ( 9)

Then, by introducing the relations between the middle-surface stress
components and the Airy stress function F of equations (16), the com-
patibility equation of ven Karmsn-Doanell shell theory is obtalned for
linear elastic behavior as

b2 1.
xy
= Vo, Yoyw T Vo Wiy (20)
,xx J‘yy

For any specific case, in order to eliminate the stress function F,
the proceiure is to solve equation (20) for F in terms of w. Then,

e et o e e metm + o = e s e e escemmman oo

[




with F known, the total potential energy becomes a function 2 w
1 alone. This procedure is not a simple one, since equation (20) lends
itself to ready solution only when, for example, trigonometric series
are used to express w. Further, it should be pointed out +hat the
procedure is highly restricted 1 general to materials with constant
elastic moduli (independent of the coordinates of the body) in view of
the operations implicit in deriving equation (20) from equation (19).

10
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METHOD OF SOLUTION

With the total potential energy applicable to both imperfect axially
compressed curved plates and shells given by equation (17) in terms of
the devlection w and the stress function F, the direct method of the
calculus of veviations (Rayleigh-Ritz method) is utilized to establish
equilibrium-state, average stress-end shortening curves for various
imperfection patterns.

CIRCULAR CYLINDRICAL SHELL

To study the various facets of the compressed circular cylindrical-shell
problem and to establish a better understanding of solutions obtained
through von Karmen-Donnell theory, in conjunction with the potential
energy method and trigonometric series to represent the radial displace-
ment patterns, both initial and additional, several cases eare investi-
gated.

General Case of Presenl. Analysis

A reasonable imperfection pattern for a long circular cylindrical shell
is

A

o_ .0 ™_ Ay . ,0 2nx

T = Ay 08 T 3+ Ay, cos 7— (21)
*o Yo *o

This expression represents a modification of the chessboard pattern into
which 2 perfect cylinder buckles with infinitesimal amplitudes according
to the classical theory (see references 1, 2, and 3). It is also both
the experimentally observed ouckle pattern of a compressed shell (see
reference 18) and the moda. pattern of a long thin cylinder undersoing
free vibration with finite amplitudes (see reference 19). Thus, the
initisl pattern selected f¢r wo
shell ic particularly sensitive.

is obviously one to which a compressed

To provide for the growth of the initial pattern ¥y upon application

Jf end shortening, the expression

e e v et e S




'5 nx ny 2xx

- = A¥ —— —

T = A, cos 3= cos §— + A%, cos y (22)
xO yb )

is assumed. Equation (22) ensures that the imperfection pattern w
retains its original wavelengths but is free to grow in amplitude
through A%, and A%

The buckle mode for the shell is tsken to he

0

w*
v o y 2 2xy 0 5
% “nc"sfx'“s xy*‘zoc"s“xx + Bgp ©OS X thp T (23)

It ia to be noved that except for Ay, A, and xy, all of the
paraneters in equation (23) &re arbitrary;othey are tg be determined by
application of the variational principle. That is, a stationsry value
of the total potential emergy, equation (17), is cought with respect to
Aﬁ, Ago, A].J.’ A20’ A02' xx, and )‘y' Since Aoo actually vanishes
before variation of the total potential enmergy, it is determined
independently from enforcement of the periodicity condition governing
the circumferential displacement v.

Of course, before the variation is carried out, equation (21) and
equation (23) are substituted into equation (20) to determine F. Such
a procedure leads to

F 2 -l Y1 xx
F=-zg* v (w,xy w’xxw’yy' — 2“0, v’xy
xy
-V '] w ’] 2L
0y 130, P (24)

vhere o has been introduced to provide for an average compressive
stress acting on each sheli cross section. The actual expression for F
obtained by the operations indicated in equation (24) is illustrated in
Appendix II. The average compressive stress 1s developed aliso in
Appendix II for the same case and is shown to be
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2 2 0 an
%= o - %[“2"(%1_ - Ago) + ugqo(f%l_ + 553 +;A]%in_+ 2‘20"50)] (25)

where e 1is the prescribed unit end shortening and thus is the forcing
function for the problem.

A typical average stress-unit end shortening curve for dn assumed

imperfection pattern wherein A?l =3, Ago = 0.25, My = A /A, =0.52,
s 2 xg.l.ec

and qo=x2Rt/>o.y = 0.25 18 given in Figure 2. The values s ted

for Mo and 5 ocorreapond tothe p and 1 values of the stable

portion of the Ke@nern curve vhen eR/t = 0.70.

von Kﬁx‘m!in-’.l's:l.en8 Solution

The first solution of the von Karman-Domnell theory for perfect shells
appears in reference 8. The main contribution of this work lies in the
qualitative rather than gquentitative results, since the authors show

the existence of egquiiibrium states with lerge &3 well as small
(infinitesimal) displacements. The former imply that equilibrium stress
states exist far below the cme corresponding to classical buckling. This
important finding became the plausible explanation for axially compressed
thin cylinders in actual test to achlieve only a small fraction of the
classical buckling load.

The constrained deflection utilized by von Karman and Tsien is equivalent
to the deflection function of equation (23) with w% =0 and A,, = A,
Typical von Kerman-Tsien average stress-end shortening curves are plotted
in Figure 3 for u = \y/)o.x =1 and several values of 1 = th/).s
(0.676, 0.400, 0.255, and 0.169). A curve obtained from the present
analysis is plotted also in Figure 3 for u = )..y/).x =1, Ap = Ay

ard 1 absolutely free.

K__e_mpnerD Solution

The first unconstrained solution of the von Karman.-Donnell theory for

perfect axially compressed thin shells is given in reference 13.  This
solution, for the deflection function assumed (equation (23) with

13
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vi=0 and A., A,y Ay, K, sd 7 coupletely arbitrary) represents
a true equilibrium salution, since all radial deflection parameters are
permitted to vary in the application of the variationmal principle. The
calculated points obtained by Kc.zll;.mcrl3 to construct his average stress-
end shortening curve are shown in Pigure b.'
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Madsen-Boff> Salution

In references 4 and 12, Hoff et al. point out the basic error of Donnell
and Wan appearing in reference 11, that of actually permitting the
imperfection pattern amplitude and wave shape to vary. In reference 12,
the authors avoid the error by assuming an imperfection shape and per-
mitting only the growth of the imperfection amplitude to varv. Their
assumed initial imperfection shape and arbitrary buckle pattern are
equivalent to equation (21) and equation (Z3) of the pres at work with
Au=O,A20=O, and Aoaso. The average stress-end shortening
curves cbtained on this basis are shown in Figure 5 for AJ; = 0, 0.1,
and 0.17. Also shown in g:lgure 5 are the results of the preseat study

for Ay, #0, .xy = xyo, Aj; = 0.1, and 0.17.

CIRCULARLY CURVED FLATE

Most of tke research that has beer conducted in comnection with under-
standing the so-called "perplexing behavior” (see reference 5) of thia
shells in compreseica has had, in reality, the goal of providing criteria
for conventional shell structures used in serospace design to withstand
direct compression and bending loads. Such structures appear, in
general, in stiffened rather than unstiffened form; hence, theoretical
studies on pure monocoque shells under direct compression and bending
loeds have only limited value from the practical viewpoint.

A stiffened shell of the noncomposite type may be viewed as being made
up of a series of curved plates separated by stringers and rings. Thus,
it is of some importance to study the behavior of curved plates as

Professor Joseph Kempner kindly provided the calculated points from
vhich the coutinuous curve in reference 15 was plotted.
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discreze structural elements and algso to establish a knowledge of the
transition frcm the wvell-understood behavior of flat plates to the not-
so-well-understood behavior of complete cylinders &s the curvature is
gradually increased.

The shell theory presented in GENERAL THEORY and Appendix I is equally
applicatle to curved and flat (R — ) plates siaply by changing the
limits of integration in the circumferential direction in the potemtizl
energy expression (equation (17)) and the boundary conditions (equations
(11)-(13)) from y =0, 2R to y = - 2—, ;L. Katurally, the same
changes would occur in the developments of Appendix I. A long curved
plate element is shown in Figure 1, along with the sign conventiowm used

in the analysis.

For a first approximetion to the behavior of a circularly curved plate
under prescribed end shortening, the radial deflection function is taken

as

Vv o_ piod b _ -
= A]J. cos K cos % + AOl cos % 3 )‘y = 1,353,500 (26)

The first term is sufficient to establish quite accurately the average
stress-end shortening curve for a long rectangular flat plate (R - e)
with pinned edges until the end shortening exceeds the critical end
shortening by an order of magnitude (see reference 20). For shallow-
curved plates (Z = b2/Rt < 10), the second term in equation (26) is
sufficient to provide reasonably accurate average stress-end shortening
curves dependent upon Z. Through the use of equation (26) and the
+otal potential energy given by equation {17) (with suitable integration
limits for the circumferential direction), application of the variational
principle leads to the average stress-end shortening curves plotted in
Figure 0, when u = xy/xx =1, N= 1:>/>~y =1, and Z =10 and 20,
respectively. Also, in Figure 6, are shown corresponding results for
an improved approximation to the radial deflection function; that is,

15
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=A]lcos§cosx£+A°1cos¥+Aalcos§Ecosg (27)
y x y

The details of the curved plate aralysis are given in Appendix III.
It is to be noted that the behavior of a shallow curved plate (Z < 10)

is similar to that of a flat plate; thus, tke curved plate is relativelyr
insensitive to initial deviations (see reference 21).
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RESULTS AXD DISCUSSION

CIBCULAR CYLINDRICAL SHELL

An investigation of the berding, buckling, and postbuckling of initially
imperfect circular cylindrical shells under axial compression has been
undertaken to establish a clearer understanding of the many salutions
obtained through the use of von Karmdn-Donnell shell theory, the
potential energy method, and trigonometric series to represent the
radial displacement patterns.

Genersl Case ¢f Present Analysis

The most general solution of the present study is based upon the assumed
initial arnd additional radial displacement functions given by equations
(21) and (23). The assumed waveform differs fram that of Kempner only
in the stipulation of an imperfection pattern and the allowance for its
growth in amplitude. With Y and wa' set equal to zero, the stable
branch of the average stress-end shortening curve first obtained by
Kempner with 5 free parameters is duplicated in Figure 2 by the lower
curve. The upper curve represents a 7-free-parameter solution obtained
£rom the present snalysis with ) =1, K =0.25, u = xyo/xx = 0.52,
end gy = @ Rt/kyo = 0.25. The values of u, and 7, correspong to
those of Kempner when eR/t = 0.70. The curve is of interest because it
shows that unlike average stress-end shortening curves for postbuckled
shells as presented by, for example, Donnell and Han,n Loo,22 and
Madsen and Hoi’f,l2 any perfect body solution is a lower rather than
upper bound to the imperfect body behavior when the von Karman-Donnell
theory is utilized in combination with trigonometric series and the
Rayleigh-Ritz procedure. A more meaningful interpretation of the two
curves in Figure 2 is presented later in coﬁnection with the detailed
discussion of the Kempner:l'3 solution as reevaluated in the present
analysis.

von Karman-Tsien Solution

Although the von Karman-Tsien solution wvas undertaken in a qualitative
fashion only, mainly to offer a plausible explanation for the failure of

17
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coupressed shells in experiwents to reach more than a spsll fyaction of
the classical buckling load, many subsequent investigators bave attrib-
uted quantitative results to von Karmén-Tsien whick the authors them-
selves never <laimed. '

et b s i)

Thus, as & first step in evaluating the existing work on the post-
buckling behavior of imperfect shelle, the von Kermen-Tsien solution wae
revieved in the light of the rresent amalysis approach. On the bagis of
equation (23), with w =0 and Ay, = Ay;, %he curves plotted in
Figure 3 vere obtained. The solid curves in the postbuckling region
represent identically the results obtained by von Kérmén and Tsien for
u =1 and the designated values of 1. The dashed curve is the result
of the present analysis wben p =1 and 1 1is a free variable. Of
importance is the fact that for u =1, the lowest postbuckling stress
~ a minimm potential energy basis is given by oR/Et = 0.245. The
awest postbuckling stress obtained by von Karman end Tsien appears on
the 1 = 0.255 curve and is given by OR/Bt = 0.194. Leggett and Jones®
noted, with respect to the results of von Kermen and Tsien, that the
lowest postbuckling stress obtained for a fixed i and discrete valves
of v 1s not necessarily that corresponding to a minimm energy st the
fixed value of u. This can be illustrated in Figure 3 by noting that
only certain points on each n-curve correspond to points on the true
minimm energy curve for the deflection assumed and u = 1. The
important fact is that the minimm stress obtained from the envelope of
the discrete n-value curves is lower than the postbuckling stress
corresponding to the minimm-energy solution for the fixsd value of u.
In other words, in systems which possess unstable branches of the post-
buckling curves; it is not permissible to obtain the lowest stress by
minimizing the load with respect to the buckling parameters. It is
interesting, nevertheless, that with the same deflection function

v x Iy 2 2ny
= All cos Xx cos )\y + .l!\,‘20 cos )”x + A02 cos ly + AOO,

and A20 = A02’ the von Karman-Tsien minimum postbuckling stress of

18
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oR/Et = C.194 (obtained for u =1 and 1 = 0.255) compares almost
identically with the einimm postbuckling stress, oF/Bt = 0.195,
obtained by Leggett and Jcnes9 and Michielsenlo on the basis 6f free
variation with respect to both u &and 1.

§EEEEer Solution

Although a portion of the stable branch average stress-end shortening
curve of the Kempner solution has been shown in Figure 2, the solid-
curve result presented by Kempner in reference 13 is shown in Figure 4
in terms of the actual calculated points (see footnote on page 14). The
solid curve of Figure 4 is the result obtained in the present analysis
with the aid of a high-speed computer. The desk-calculator results
obtained by Kempner in a remarkable effort are quite accurate along the
stable branch of the average stress-e¢nd shortenirg curve. However, even
though the remaining points appear to indicate that the postbuckling
curve closes to the bifurcation point, the very accurate numerical
results of the present analysis show that (1) the left-hand portion of
the lower branch of the solution cannot be extended economically for
oR/Et > 0.33k, a Burroughs B-5500 computer notwithstanding, and (2)
another solution of completely unstable character exists for

cR/Et > 0.387.

The loop appearing below the bifurcsiion point is not a new result.
Thielemann, in Figure 10 of reference 23, notes that Donneil's solution
yleids the same phenomenon. However, in the Donnell and Whn;l study
referred to by Thielemann, the authors mention only that success was
achleved in finding a solution emanating from the bifurcation point down-
ward to oR/Et = 0.L5. The unstable solution moving upward from the
bifurcation point is considered a new result in view of its absence from
the 1literature.

Another new result of the present analysis, incidentally, is the average
stress-end shortening curve shown in Figure 7. This solution corres-
ponds to the deflection function, equation (23), with w% =0, A__ =0,

0 02
and a free variation of the total potential energy with respect to
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A5 Ayps By 8nd n. The curve of Figure T is not much different from
that of Kempner in Figure 4. The minimum equilibrium postbuckling stress
parameter is given by oR/Et = 0.195. This minimm value is significant
in that it has been obtained on the basis of a buckle pattern which is

a first modification of the classical-theory chessboard pattern. From
the discussions contained in the studies vresented by van Kﬁfméh-Tsien,e
Leggett and Jones,9 MiChielsen,lo and Kempner,13 the implication is
alvays present that the low minimum postbuckling stresses obtained are
associated with the "diamond” buckle pattern developed by von Karman and
Tsien on the basis of physical observation which autometically includes

the A,, term in equation (23).

The difficulty in obtaining an economically feasible solution beyond
oR/Et = 0.334 (on the unstable portion of the curve) is attributed to
the fact that, for small incremeats in the applied unit end shortening
(see Figure 4), the buckle maximum amplitude, nondimensionalized with
respect to the wall thickness t, 1s growing very rapidly whereas u
and 7 are becoming quite small in magnitude. The buckle pattern free
coefficlents All’ A20, and Ao2
of eRft; the free parameters p and 1 are given in similar fashion

in Figure 9.

are given in Figure 8 as functions

The tedious and, hence, cost-consuming computations necessary to seek a
converged solution of the five nonlineuar equations in All’ A20’ A02’ M,
and 1 are not Justified because the portion of the average stress-end
shortening curve in questlion represents spplication of the von Kayman-
Domnell theory in a range where it is no longer valid for practical
considerations; the limitation on either the size of the rotations or
the linear-elastic constitutive law is being exceeded,and the results
have meaning only for shells of extremely high R/t ratios. The
limitations of von Karman-Donnell theory with respect to permissible
rotations and onset of inelastic deformetions for axially compressed
perfect shells in the R/t range of practical interest have been pointed
out by Mayers and Rehfield.l6 In ract, in reference 16 it is shown that

the Kempner solution of reference 15 based on von Kerman-Donnell theory
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is the lower bound to a femily of K/t-dependent average stress-end
shortening curves and corresponds to the case of R/t —»w.

The present-analysis solution shown in Figure 4 for oR/Et > 0.387 does
not exceed the kinematic limitations on von Karmén-Donnell theory, as

the meximm deflections are of the order of the wall thickness; however,
it is of no practical wvalue because it represents unstable equilibrium.
Above the pifurcation point, however, it 1s of interest to note that the
thin-shell theory is attempting to produce thick-shell behavior
(axisymmetric buckling) because, as indicated in Figure 9, 4 -0 and

[T X -T%

The von Karmin-Donnell theory, Kempner-type, axlally compressed perfect
shell solution with more terms included in the radial deflection function
w (equation (23) with vy = 0) has been given by Al.nr.rdl‘.hlh (nine

free parameters) and Hoff et a1. 1’ (15 free parameters). Although
Almroth succeeded in obtaining a minimm postbuckling equilibrium stress
corresponding to OoR/Et = 0.0652, Hoff et al. succeeded in lowering the
minimum postbuckling stress parameter oR/Et to 0.0427. From the
overall results of reference 15, the authors are able to conclude that
when the radisl deflecticn is represented by an infinite series, the
completely free parameter solution of the von Karmen-Donnell theory for
the axially compressed perfect shell is represented by w -0, p -0,

n -0, and a minimm postbuckling equilibrium stress parameter

oR/Et = 0. The buckle shape itself approaches a perfect Yoshimral7
developable surface (vanishing membrane strain). Thus, on the basis of
the findings reported in references 15 and 16, it took from 1941 to 1965
to establish that the rigorous stable solution of the von Kirmsn-Donnell
theory for an axially compressed perfect shell with (1) a finite number
of assumed buckle-pattern parameters absolutely free applies only to an
infinitely thin shell (R/t » ®) and with (2) an infinite number of assured
buckle-pattern parameters which are absolutely free leads to the trivial
solution that the infinitely thin shell buckies at a vanishingly small
stress.
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Some final remarks are in order relative to the present-analysis sclution
shown in Figure 2 and that of Kempner shown in both Figures 2 and 4.
Obviousiy, with decreasing initisl-imperfection amplitudes, the present-
analysis curve of Figure 2 coalesces into the lower branch of the Kempner
curve. Now, when the initial deviation pattern wavelengths are larger
than the wavelengths occurring in the Kempner solutica, an increase of
the initial-imperfection amplitudes will not affect the Kempner solution
bece.3e the Kempner buckle shape is physically able to govern the behav-
ior. On the otber hand, when the initial-deviation-pattern wavelengths
are smaller than the wavelengths occurring in the Kempner solution, the
initial-deviation pattern governs and grows in amplitude; the Kempner
buckle pattern is constrained from occurring,which means that an increase
in the potential energy occurs. Thus, the minimum postbuckling stress of
the imperfect shell is greater than the minimum postbuckling stress
obtained from the Kempner solution. The implication, then, is that
stiffening elements could be placed on a thin shell with spacing so
arranged that the snap-through buckle pettern cannot occur. Th i behavior
has been illustrated in the laboratory by buckling two identical cylin-
ders which were commercially fabricated on an automated assembly line.
One cylinder is buckled in the unstiffened configuration so &s to discern
the buckle pattern. The remaining cylinder is tested with very light
stiffeners located so as to hinder the original buckle pattern from
forming. A significant increase in buckling load (almost 50 percent) has
resulted with a very small weight penalty. Photographs of the two
specimens tested to substantiate tais behavior are shown in Figure 10.
The remerkable decrease in buckle amplitude of the lightly stiffened
cylinder should be noted. The buckle pattern of the uﬁstiffened cylinder

is of interest because of its similarity to the Yoshimura®'

buckle pattern.
The latter is a polyhedral surface of plane triangles deQelopable from

the middle surface of a circular cylindrical shell. Conventional cylin-
ders tested.in the laboratory tend toward Yoshimura-type buckles only in
localized bands. The vreformed plastic hinges shown in the test cylinder
of Figure 10 provide the mechanism for the development of the Yoshimura

buckle pattern over almost the entire surface of the unstiffened specimen.
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Madsen=Hoff Solution

The behavior of postbuckled,axially compressed, perfect circular cylin-
drical shells leading to the trivial solution (for an infinite number
of terms in the trigonometric series representing the radial deflecticn
function) discussed in the preceding section has been explained by
Madsen and Hoff.12 The authors of reference 12 point out that a varia-
tion of the total potential energy with respect to 81 auckle-pattern
parameters is unrealistic in view cf the fact that a cyiinder of finite
R/t ratio cannot buckle into less than 2 circumferentiasl full waves.
Thus, in reality, the triviai solution cannot occur.

In the same reference, Madsen an’ Hoff then proceed to invastigate the
behavior of practical shells in order t» estimate the magnitude of the
maximim stress reached in *“he presence of lmperfections. Although the
behavior of imperfect shells in axial compression had been investigated
by Donnell and Wan,ll Madsen and Hoff discerned an error in the Tonnell-
Wan procedure and thus justified further investigation of the probvlem.
Fundamentally, the criticism of the Donnell-Wan procedure, as noted by
Madsen and Hoff, is that the total potential energy should not be
mivimized «ith respect to any of the parameters describing the initisl
deviation shape. Some of the resuits of their analysis based on the
correct procedure are given in Figure 5 for a specified imperfectiomn
pattern. The deflected shape is obtainable from equations (21) and (23)

of the present analysis when All =0, A, =0, and A02 = 0.

The curve of Figure 5 for Agl = 0 1is based upon a fixed 4 ol o

The postbuckling curve for All’ AEO’ u, and 1 as free varisbles, as

20

discussed earlier, has veen obtained for the first time in the pr:sent
analysis (see Figure 7). The significance of Mo = 1.0 and Ny = 0.824
is related to the only reasonable physical solution of the linearized
problem solved by Madsen and Hoff. It is of interest to note, however,
that Loo,22 by making the arbitrary assumption that up =1, was able to
calculate that 7 = 0.826 at the bifurcation point. Of further interest
is the fact that the present analysis leads to the values p =1 and

n = 0.826 in a free variation of the nonlinear formulation at the
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bifurcation point; in addition, it cen be seen from Figure 9 that, on

the basis of extrapolation, another set of & and 7 values (approxi-
mately, u = 0.34%5 and 70 = 0.320) exists at the bifurcation poirt.

The i-perfect shell everage stress-end shortening obtained by Madsen and
Hoff for Agl = 9.1 1is given in Figure 5 2s 2 solid curve. A distinct
maximum stress is evidenced. This maximm, the conclusions of reference 12
notwithstanding, is not the lowest maximm stress to be expected. The
addivion of the Ay, term in equation (23) leads to the dashed curve in
Pigure 5 on the basis of the p:esent analysis when )y = x In
addition, for the case when All 0.17, the inclusion of tge AOL term
removes the concept of an initial maximim stress. Thus, it 1s evidemt
t'mt maximm stress calculations for reaconably imperfect shells based
on the Madsen-Foff procedure should include sufficient terms ir the
assumed deflection function to grarantee a converged solution. This
means that the meximum stress is sensitive not only to the amplitude of
the initial devistion but also to the waveform of the buckle pattern.
Finally, it is important to note that maximm stress calculations should
not overlook the nossibility of yielding of the materizl. A maximum
strength analysis of axially compressed Iimperfect shells, including
inelastic cdeformation, has been presented by Mayers and Wesenberg, 2k in

which a modified version of Reissmer's varlational principle is utilized.

CIRCULARLY CURVED PLATE

The analysis of the long curved plate undertaken in this iavestigation is
important frum the standpoint that ccnventional aerospace vehicle shell
structures are generally of the semimonocoque rather than pure-monocogue
type. That is, the pure momocogue thin shell discussed in the previous
section is stiffened by stringers and rings in actual practice in order
to overcome the tendency of pure-monocoque thin shells to buckle at
stresses well below the clagsical value under direct compression and
bending loads. To date, despite extensive theoretical and experimental
studies, the optimum semimonccoque shell for a given loading (that is,
the sizing of stiffeners and shell thicxness and the spacing of
stiffeners) cannot be designed on the basis of theoretical analysis
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alone. It 1s unusual that so much attention and effort has been devoted
to pure-monocoque shells when the fundamental structural cowponent
existing between stringers and rings of semimonocogue shells (the actual
case) is a curved plate. Tais is certainly true when diecrete stiffening
is utilized and conceptually true in the case when analysts comsider that
sufficiently closely speced stiffeners and rings may be "smeared out”
over the shell surface. However, even in the latter case, information

is necessary to establish gecmetrical properties (including spacing of
the stiffeners), supposedly to preclude the occurrence of local buckling
between stiffening elements.

The average stress-eand shortening curves appearing in Figure 6 for

Z = 10 and 20, respectively, based upon the radial deflection function
of ecuation (26) and the variational development of Appendix III (with
p=1 and )'y =b), are considered to be extremely significant. It is
to be noted that when the plate is flat (R - e, 2 = 0), the well-known
behavior reflects the ability of the plate to carry additiopmal load
beyond the bifurcation point. As shown in reference 25, this behavior
is limited only by the phenomena of eventual buckle pattern change and
the onset of inelsstic deformations. Under the assumption of elastic
behavior in the present snalysis, the solid-curve result in Figure 6 for
a shallow-curved plate (2 = 10) suggests that catastrophic snap-through
buckling can be avoicded and a load-carrying ability in the vicinity of
the classical value can be maintained. With Z = 20, the snap-through does
occur, but it cannot be considered catastrophic from the load-carrying-
ability standpoint. Even when the improved radial deflection function
(equation 27) is introduced, only about a ten percent reductio. in load-
carrying ability is evidenced. However, for % = 40 and 60, the
present analysis computations indicate that thin-cylinder behavior
(catastrophic snap-through) governs. The lower bound to such behavior
for the present analysis (with Ay = 0) 1s given by the lowermost solid
curve. This curve is the same as that appearing in Figure 5 for a
perfect cylinder w.dch buckles and postbuckles with p =1 and

n = 0.826.

25




-

The primary question, of course, concerns the weight penalty involved in
sizing stiffened shells such that the penel behavior between stiffeners
and rings is given by results similar to those plott+d in Figure 6.
Apparently, in practice, cylindérs with stiffeners spaced sufficiently
clcse together that the "smearing out” concept may be used are
specifically designed such that local buckling of the sheet material
between stiffeners is prevented. For example, the recent preliminary
design procedure presented by Smith and Spier26 for stringers and/or
ring-stiffened circular cylinders under axial compression commences with
the fundsmentel step that precludes buckling cf the curved sheet lying
between the stiffening elements of the overall cylinder. As another
example, the recent shell analysis manual prepared by Baker et 81.27
recommends (1) the design formula

2 2

iE_ ,t
0, = ¢ —=>= () Z <30 (28)
T T 1(af) P

to determine the buckling stress for the curved plate elements between
stringers and rings and (2) the generous knock-down values for C extending
from 40 percent for R/t = 100 to 55 percent for R/t = 500, the prac-

tical. R/t-ratio range for the sheet material in stiffened cylinders.

The coefficient 7 in equation (28) has been introduced in reference 27

as a correction factor when inelastic buckling occurs.

To study the implications of the present results (see Figure &) @s they
might apply to achieving increased efficiency of axially compressed
stiffened shells, a particular cylinder tested by Card and Jones28 has
been selected. The cylinder geometry and elastic constants are given
in Figure 11. It is noteworthy that even though the effective R/t
ratio of the "smeared out" cylinder is 167, the "effectively" thick
cylinder buckled in a typical thin-cylinder "diamond" configuration (see
Figure 3b of reference 28). This would tend to indicate a significant
sensitivity to initial deviations from a uniform circular shape.

For the cylinder section of Figure 11, the Z of the curved plate
between 60 stringers spaced 1.0 inch apart is 3.74. Now, when every other
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stringer of the &) stringers is removed, Z becomes 14.96. In an
attempt to provide for the formation of nodes at each remaining stringer,
the criterion given by Schildcrout and Ste1n29 for axially compressed
curved plates with simply supported edges has been used with the result
that the depth of the stringers must be increased to t, = 0.336 inch
The increased stringer material is "borrowed” from the 30 stringers that
have been removed. Next, the remaining meterial from the removed
stringers is distributed as 20 rings of the same geometry as the 30
redesigned stringers. With curved square sections, the criterion given
by Batdorf and Schildcroutao for simply supported compressed curved
rectangular plates with central chordwise stiffeners implies that nodes
should form at each shell ring independent of the stiffness of the

ring cross section. The ring spacing has been selected to gilve u =1

in every curved-plate element. From Figure 6, it can be seen that the
average stress remains in the vicinity of the classical stress for

Z = 14.96. Thus, for a 6 percent increase in weight of the entire cylinder,
the classical load obtained from the buckling criterion given by Block
et al.31 is 6.55 times greater than the corresponding buckling load for
the original cylinder with 60 longitudinal stringers and no rings. Even
though the quantitative results may not be practically useful, the
qualitative trend cannot be overlooked. That is, a judicious redesign
with respect to the rings should both lighten the cylinder and reduce the
buckling load to a practical level. The attempt should be made to
determine, by iteration, the lightest cylinder for Z < 20 and &an
effective radius-to-thickness ratio below about 250. For example, a
trade-off study could be undertaken with respect to the effects of (1)
lightening the 20 rings and (2) doubling the spacing between the existing
rings and, if necessary, increasing the ring stiffness through use of

the material available from the removed rings. In any event, the
Impressive results obtained herein with respect to the potential increase
in efficiency of the cylinder tested by Card and Jone:sz8 cannot be dis-
regarded. For eccentrically stiffened cylinders, the decrease in

effective radius-to-thickness ratio minimizes the sensitivity to initial
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imperfections. The appearance of "iismond” buckles in the cylinder test,
even vith the effective R/t ratio equal to 167, suggests that ring
stiffening can only aid in alleviating the imperfection sensitivity.
PFinally, the sample calculations show thet rings can be added at little
or no increase in wveight by redesigning the stringers with respect teo
section properties and specing.
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CONCLUDING REMARKS i

bay b

The extensive study presented has made it possible tc understand to a
greater degree the long-standing and enigmatic behsvior of thin ~ircular
cylindrical shells in axial compression. The significant contributions
of Donnell,7 von Karman and Tsien, ané Kempner13 stemring from their
investigations of perfect elastic shells have been reevaluated cn the
basis of the present analysis and some new results and interpretations
given the earlier works. With regard to the behavior of imperfect shells,
the epalyses of Donnell and Hanll and Madsen and Hioffl2 have been studied,
also, and the results of the latter authors have been extended.

Cn the tasis of the understanding of pure-monocoque shell behavior, an
investigation of the postbuckling behavior of curved plates has led to
significant resuits concerning the transition region from flat plates to
highly curved plates and complete cylinders. The curved plate behavior
is significant in that the conventional thin shell utilized in aserospace
structures design is of the semimonocoque (stiffened) rather than the
pure-menocoque configuration. Thus, the basic structural shell elements
are the curved plates existing between stringers and rings. In the
absence of any known theoretical analysis which can precCict the maximmm -
load in axial compression of a given stiffened shell, the present
investigation offers some new concepts which appear to justify the
preliminary design of optimized conventicnally (stringer-ring) stiffened
shells on the basis of nonlinear curved plate analysis in conjunction
with stringer-ring sizing and spacing based upon (1) the postbuckling
results obtained herein for unstiffened thin shells and (2) the linear-
theory results of Schildcrout and Stein29 and Batdorf and Schildcroutjo
for axially compressed, simply supported, curved plates with axial and
chordwise central stiffeners, respectively. The qualitative results
cbtained relative to schieving buckling loads of stiffened cylinders in
the vicinity of the classical value cannot be overlooked. ther re-
search in this area is mandatory because of the desperate requirement
for veigit reduction in aerospace structures. The latest design manuals

(196'7-6-."-)':")’2?’52"75 still contain cautionary remarks to the effect, for
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example, that "A currently popular viewpoint is to consider cicssical
theory to be directly applicatle to most practiccl stiffened stells.
Nevertheless, tc account for uncertainties and to guard against reckless
extrapolation into extrecme parameter ranges, it is suggested here that a
knock-down factor be retained in the buckling analysis of stiffened
cylinders. This should result in conservative strength estimates which
can be employed with confidence in the design of actual hardware,"
Unfortunately, the knock-down fa:tors suggested are very little different
from those which have been generously utilized in practice for the past
25 years at the expense of overweight and uneconomical designs. If
optimized deslgn criteria are not available for conventional shell
construction, then what hope is there that such criteria will soon be
avaiilable for shells in which promising compcsites are to be employed

(for example, sandwich, laminated, and fiber-reinforced materials)?
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PRESENT ANALYSIS
(CENERAL CASE )

Figure 2. Average Stress-Unit End Shortening Curves (Present Analysis
and Reference 13).
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Figure 3.

Average Stress-Unit End Shortening Curves (Present Analysis
and Reference 8).

33

B U —

ki o 3-?“-!1‘3%.'- i\xnﬁ




0

A"' %0“020 [ ond ")(FREE)

o  CALCULATED POINTS FOR REF. (3
PRESENT DiGITAL - COMPUTER ANALYSIS

Figure 4.

Average Stress-Unit End Shortening Curve for Kempner Radial

Deflection Function (Present Analysis Digital Computer
Solution and Desk Calculator Points Obtained in Reference 13).
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Figure 5. Average Stress-Unit End Shortening Curves for Perfect and
Imperfect Shells (Comparison of Present Analysis Solutions

With Those of Reference 12).
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Figure 6. Average Stress-Unit End Shortening Curves for Flat and Curved
Plates Covering the Range 0 < Z < =.
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Figure 7. Average Stress-Unit End Shortening Curve for Modif ied-Kempner
Radial Deflection Function (A02 =0).
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Variation of Radial Deflection Pattern Amplitudes All' A20,
ana A02 With Unit End Shortening for Present Analysis
Solution Corresponding to Kempner Deflection Function.
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Figure 10. Effect of Lightweight Longitudinal Stiffeners in Preventing
Catastrovhic Snap-Through Buckling Into & Yoshimura Pattern.
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Figure 11. Physical Properties of Stiffenéd Shell Used as a Basis for
Optimizing Procedure.
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APPENDIX I

DEVELOPMERT OF GOVERNING EQUATICNS AND BOUNDARY CONDITIONS

The total potential energy, equation (8), upon substitution of the
strains given by equation (5), and subsequent integration through the
shell thickness, gives 1in expanded form
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In accordance with the potential energy principle, the first variation

of the strain functional, equation (29), with respect to the displace-

ments u, v, and w must vanish. Thus,
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Integration by parts followed by approrriate grouping of terms yields
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With the use of the strain-displacement relations, equation (3), equation
(31) can be rewritten as
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Now, with the introduction of the stress-strain relations (equations
{6)), written for the : idle surface, the variation of the total
potential energy with respect to the displacements u, v, and w is

expressed as
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Fimlly, since the generalized displacements ave erbitrary in the
interior of the shell and at the boundaries, as appropriate, eguaticm

(33) yleli: =: . equilibrium eguations
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(where the first two relations of equation (34) have been used to
simpilify the third), ard the attendant boundary conditions at
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(continued)
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APPENDIX I1

SOLUTICN OF COMPATIBILITY EQUATION

For a given trigonometric series representing the initial and buckling
radial deflection shapes, thz procecure for integrating the compatibili+y
equation (2%) is as follows:

Equations (21) and (23) can be rewritten as

W
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and
W
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where p, = Xy /xxo, T xy/xx, a, = :t/kyo, and a = x/xy.
Substitution 09 equations (38) and (39) inté equation (24), and perfor-

mance of the indicated operatir .3, where V'hvh( ) =0, yields
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Now, with the introduction of the stress function F, equation (40), and

o @nd w, equations (38) and (39),
into equation (17), the total potential energy is obtained, in terms of

the initial and arbitrary displacements w

the displacement amplitude and the buckle wavelength parameters, and it is
expressed as

2 L A h 2
- (CR H 11 2 . u L
Us=(5) * 57 (5 - 1hpayg=hAg)" + - Ay
(n°+1)
s u22'2 W oo » Lo2o 2
N _gAz )2+““AnAzo+“T‘AnA02 b A phno
5 Ay 11 55 5 5%
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b2 N
o'lo 2 0 \2 0 . 0 0 42
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0
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1 0 .2 oMo 0 0
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0
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(ngg*n) W[k V/1=pg 1)+ 1= 1) ]
02 b2 0 \2 22 b2 0 .2
- *
- 5 7t - 5 e
SOV TIVENS e QVAYIVOIS i R ((TIVE STV o B GV E Y W b
20 b2 0 2 ho202 0 \2
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5 55 5D
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(continued)
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, Mol Ny - L4580 HAn0) N Moz (A% *Ay7)

(e vy /ool [(2u Ve o) g1

L2202 02 L 222 02 L4222 0,2
B oo (AYy HA ) , Vol Mool ATy ¥Ay, ) Mo oo (A, Ay, )

+ . g
[(2n g v P41 °  Tuangt@/a- yagltIP [kangHay/n+/g)°)°

2, 2. 22 2, 42 2 2,2 .2 2 b2 .2
O (W+1)7A;, . 2n (h Ay +as,) . no(Hg*L) A% ) 2u n AKX -
48(1-v2) 3(1°) 48(1-v°) 3(1-v")
= PRt NC = g2 . 2.2 2
where 0 =« Rt/)»y 2 Rt and 7y =7 Rt/)»y = a Rt

0
The first term in equation (41), that is, the average stress, can be
expressed in terms of the applied end shortening e and the displacement
parsmeters by utilizing tne relation defining the unit end shortening
1 L/2

e =-= u, Ax (¥2)
-L/2

In terms of the stress function F and the displacements, equation (42)
becomes
L/2

2
-F, )3 e ¥, (43)

e=-1]
L
by virtue of equation (5), equation (7) written for the middle surface,
and equation (16). Substitution of equations (38), (39), and (40) into
equation (L43) and performance of the indicated operations yields (after
multiplication of both sides of equation (43) by R/t)

2 2 0
* ¥*
oR A e(Au. 2 Ahfy 0

R o Ay 2 .
ez =gt g + Ay) +ugn(—g= + A%y + =+ 28X A,

1
['(F:
/e BW

(bk)

The variation of the total energy (41) with respect to all of the free
parameters yields a set of nonlinear algebraic equations in the varisbles

of the assumed displscement, equation (39), with the prescribed end
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shortening being the forcing function. The varietion is made indepen-
dentliy of AOO' This parameter is eveluated by enfcrcing the periodicity
condition on the displacement v. With the use of equation (%), equation
(7) wricten for the middle surface, and equation (16), the relation

1 1l 2 ) v
V)y *E (F:XX'VF:W) ) W:y - "::’,"O’y v R (45)
is obtained. When equations (38), (39),and (4O) are introduced into

(L5 ), the resulting expression yields trigonometric relations in terms

of y and additional terms independent of y; hence, these terms are set

equal to zero with the result that

e

A n
11l 2 0 2 0
Aoy = ’1('8" + AOQ) + g (A%S+2A% AT ) - v oR (46)
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APPENDIX III

SOLUTIOR OF CURVED-PLATE PROBLEM

The assumed radiazl deflection shape in the curved p

be, in generel,

However, in th present solution, the buckle aspect
1s issumed to be unity and Xy = b/N, where N is

even.

The corresponding stress function is

late is assumed to

X ()

n
x”'?!
[¢]
o
}2

ratio p = xy/xx
odd and L/b is

. 22 2,2
F=E i-(teAil/32) cos qux - ( 3211) cos Zﬁ:y - 1221 cos hq:x
22 2 2
+
- : A21 COS ENII}’ - . AllA2l cOs Eﬁ - : AllA2l COs BNID(
8 b L b 30 b
2
—2- t2A A cos EE{ cos Nzy - E-A11A2l cos N cos EHEZ
~ 100 1121 b b 070 b b
2
Wt Aoy N N-1)
- 3.3 €08 T €08
2[N"+(N-1)"]
22
W AllAOl Nmx (N+1)my
- 2 55 COS =%~ €08 /g
2[N“+(N+1)7]
22
2Nt Ay sy N (N-1)7y
- 5 5.5 cOos b [ef o] b
[UN“+(N-1)7]
22 2
A S oNax  (Wl)my . P A1 W Nmy
- 22COS b cOs D + 55 cos 5 COST
[P+(+1)° ] LRAN
(zontinued)
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BtuCA , 21
21 208 :N}D{ cOs Ngj - % ('l“e)
ey

The mean end snortening is

~L/2 @ o

: I A
I (% v )
“.L/2

Jax =g+ NZ (An“l"‘el (49)

T
O -
<

e = -

The total potential energy, excluding the potential of the apyrlied load
since the end shortening is assumed constant for a rigid testing machine,

is

U= quhAh /oh + 17N q A /128 + (1/64)(1/165 + 281725 )Nh zAilAgl

h22 e hza
) + NN AL A BT(148 )/16+n {12/16+A1_L/l6

+ NhnzAgl o2 (1+5 )+ WhnzAglAely + h4A l/a»
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(2,2 2 XX
N0 Ay Ag Apy 88, /% - Ay As, (-1) R A1y 851 A P /8
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- NﬂAll 57(-1) 2 Jux + on'y A11 0140728, /80 - 3Nqul oy (-1) 2 oo
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Jln - NnA A..Bfka(2N-1) - Nq ofkbx

Ln? 11803 All o1
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- nqu]e_lAm_(d?ﬁ? )/16n - 16N2qA01A§l(72+A2)/25:~.
- szfl%laao/lén(an-l) + quAilAma?v/len(zNﬂ)

- 168°nA A2 £20/25n(2N-1) + 16874 2y/25m(2841)]

o121 Ly
where 1 = 7°Rt/b°
o = 1/[F+(§+1)°]
B = 1/[N°+(8-1)°]
y =1/ [un2+(n+1)2]
a=1/ [lm2+(n-1)2]

v=hN2+hN+l

o= LN -k +1

{l for N=1
B. =
W 1o for Wf2

The boundary conditions satisfied by the assumed deflection are

w=0 at y=¢%Db/2
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