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SIMflVHg 

An investigaticai is undertaken to (l) reevaluate the elastic theory 

results obtained by previous investigators for both perfect and initially 

Imperfect, axially compressed circular cylindrical shells, (2) develop 

new elastic stability results describing the postbuckling behavior of 

curved plates, and (3) present criteria based, in part, upon the curved 

plate results which can be used to ei'^e and locate stringers and rings 

such that the initial buckling load will occur in the neighborhood of 

the classical buckling load for a cylinder representing a minimized- 

weight design. 
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FOREWORD 

The vork reported herein constitutes a portion of a continuing effort 

being undertaken at Stanford University for the U. S. Army Aviation 

Materiel Laboratories anaer Contract DAAJ02-68-C-0055 (Task 

1F16220UA17002) to establish accurate theoretical prediction capability 

for the static and dynamic behavior of aircraft structural components 

utilizing both conventional and unconventional naterials. Predecessor 

contracts supported investigations vhich led, in part, to the results 

presented in references 16, 19, 24, and 25. 
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approaches zero. Meanwhile, by utilizing a more exact set of strain- 

displacenent relations than von KamaD-Donnell, Mayers and Rehf ield, in 

1963« had obtained radius-to-thickness-dependent, load-end shortening 

curves for the Kempner deflected shape and showed that the von Karoan- 

Doonell-theory solution obtained by Kempner Is reached only as ^he 

thickness-to-radius ratio of the cylinder approaches zero. As is democ- 

strated In reference 15, the deflected shape of the converged potential 

energy solution of the von Karnan-Donnell equations approaches the 
17 

developable-surface shape derived by Yoshlssira.   Thus, In view of the 

findings of Hoff et al.  and Mayers and RehTleid,  it became evident 

that elastic analysis postbuckling curves for perfect shells were of no 

practical significance. Attention was then turned to the elastic 

behavior of imperfect, axially compressed, circular cylindrical shells in 

attempts to more accurately predict the initial buckling or maximum load. 

The major effort in this area is included, also, in the work of Madsen 

and toff reported in reference 12. 

However, despite the extensive and important information concerning the 

elastic stability and postbuckling behavior of axially compressed cyl- 

inders Included in references 1-17, there is still no theoretical 

analysis which will predict the Initial elastic buckling load of a 

practically fabricated, thin, axially compressed cylinder. More iinpor- 

taat, since pure monocoque shells are the exception rather than the rule 

in shells designed for compression loading, there is no theoretical 

analysis which can (1) predict the Initial buckling load of a thin 

stiffened cylinder even if the behavior is elastic and (2) provide design 

criteria whereby the stiffened cylinder will reflect an optimized design. 

It is the purpose of the present investigation to (l) reevaluate the 

elastic theory results obtained by previous investigators for both 

perfect and initially imperfect, axially compressed circular cylindrical 

shells, (2) develop new elastic stability results describing the post- 

buckling behavior of curved plates,and (3) present criteria based in 

part upon the curved plate results which can size and locate stringers 

and rings such that the initial buckling load will occur in the 

4 
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neighborhood of the classical buckling load tor a cylinder representing 

a Einimized-weight design. All three objectives have been met; the 

findings are presented in the form of equations and graphs. The results 

of the analyses and the computations are presented in the body of the 

repcrt, and the details of the analyses and computational procedures are 

given in a series of appendixes. 



GERERAL THEOgr 

aTRAIM«D13HiACa<Hfr RHiATIOBS 

The straia-displacement relations used herein are the small strain, 

large displacements-moderate rotations set derived by Donoell vith 

modifications to account for initial deviations from uniform circularity 

along the shell length, with  v denoting the initial imperfection 

shape, v denoting the additional deflection due to bending of the shell 

during lead application, and v  denoting the sum of v  and i»; that 

is, 

'T = V0 ^ V (1) 

The strain-displacement equations for the middle surface of the shell 

(see Figure l) are 

€x = U'X 
+ ? (WT, -'0, > 'x  'x 

€y = v'y + f (vT,y-
w0,y) " -S— }& 

V U'y 
+ V'x + wT,x

WT,y " 
w0,x

W0,y 

In view of equation (l), equations (2) are rewritten as 

.0     .1 2 . e = u, + » w, + w, w« x   'x  2 'x   'x 0, 'x 

y   'y  2 'y   'y 0,y  R ' ^ 

0 7 = u. + v, + w, w, + wn w, + w, w,. 'xy  'y   'x   'x 'y   0,x 'y   'x 0,^ 

The bending strains are 

1 
i 



ex   =-CT'xx 

_.,. ^ ^ -^    • «t-1-- 

€        »  -ZV. 
y 'yy ^C») 

7      = -22W, 

Thus, the total strains, equations (3) plus equations (k), are 

0       1 12 
€     = €     + €     = U,      + 7? V,      + V,   Vrt        -   ZV, x       x       x       'x     2   'x       'x 0, 'xx 

0       1 12 v 
7       y       y        'y     2    'y       fy O,        R 'yy K5) 

7xy= 7xy + V = U'y + V'x + w'xw'y + w0,x
w'y + w'xv0,y * 2zV'xy; 

STHESS-STRAIK RELAIICWS 

For stresses that do not exceed the elastic limit, Hboke's Lav is valid; 

it is given by either 

ax = E(€x
+Vey)/(   , 

cry = E(ey+vex)/(l-v'
f) -(6) 

Txy = ^xy/2(1+v> 

or, in inverted form, by 

e     = (a -va )/E x        v x     y7' 

ey   ^V^xVE 

v= 2(i+v)VE 
•(7) 



FOTHrriAL EWERGY 

The total potential energy stored in the elastic shell under prescribed 

unit end shortening e (see Figure l) is coraposed of the extensional and 

bending strain energies; it is given by 

2 L/2,. SstR,. t/2 
Ü = 

2(1 

Substitution of equations (5) in equation (8) and subsequent integration 

over the constant thickness t of the shell vail yields 

- 2<:L-v'",1'x+5,''xt"'x,'0, '^'/l^'y-O, * P " I^'/^x 
x y 

+ v, w, +W-, w, +w, v_ ) ]]dxdy 
'x 'y 0,x 'y 'x O,^' JJ ^ 

L/2 2nR 2 
+ IJ_L/2J^  t(v,xx^yy)

2-2(l-v)(v,xxv,yy.v,xy)]dxdy (9) 

where D = Et5/l2(l-v2). 

In accordance with the potential energy principle, U must have a 

stationary value with respect to admissible variation in the degrees of 

freedom u, v, and w in order for equilibrium to be achieved. As 

derived in Appendix I, the variation leads to the equilibrium equations 

"x     +C     =0 
*'x        ^'s 

y'y        Xy'x 

i. 
R »x^xx-cj - "yC 

- ^■^o.J - 0 

(10) 

yy 
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and the accon^anying boundary conditions at 

x^l: 

r2itR 
N dy = 0 

r2ÄRo N    dy = 0 
J0       ^ 

p2itR 
M dy = 0 

r 2äR. .a 

or   5u = 0 

or    6v = 0 

or    5w,x.= 0 

►(11) 

„0      ^'x^Ky^'y^O,   H, +2Mxy,   ]dy = 0    0r    ^ = 0 

y = 0,2nR 

rL/2o 

rL/2o 
J.L/sV^0 or    6u = 0 

pL/2 
M dx = 0 

^L/2 y 

I.L/2
[Ny(^y^o,y

)+Nxy(-x^x)+My,y
+2V,x

]dx = 0   -   s« = 0 

'(12) 

or    6w,    =0 
'y 

X = ± p y = 0,2nR: 

V or    &w = 0        (13) 

ALTERNATE FORM OF TOTAL POTENTIAL ENERGY FUNCTIONAL 

With the use of the middle surface strain-displacement equations (3), the 

total potential energy, equation (9), can he expressed in the form 



0 • ^V r ^r 2,a>[(£
0«0)2-2{l-v)(A0-Jr02)läxdy 

2(1-7) J-L/^O    ** "xylT'V' 

rL/2 2KR 

Next, vith the constitutive relations (?)> vritten for the middle sur- 

face, the strains c 

potential energy as 

face, the strains e , e , and y       can be replaced to give the total x  y      xy 

pL/2p2nR 
+ iJ.L/2J0  t^xx^yy) -^^^(^xx^yy-'xy)^^   (15) 

The first two equilibrium equations (10) car be satisfied identically by 

the Airy stress function F, defined as 

N0/t = a0 = F, x'    x   'yy 

N°/t = a° = F,^ >(16) 

Nxy/t= V= -F'xy 

finally, the introduction of the relationships between the middle-surface 

stresses cr , a , and T   and the Airy stress function F defined by 
x  y      xy 

equations (16) permits the elimination of the stress components from 

equation (15); thus the desired alternate form of the total potential 

energy is 

L/2ßKR „ 2 

U =-£- [(F,    +F,     ) -2(l+v)(F,    F,    -F,     )]dxdy 2E J T/Jn    LV 'yy   'xx'      ^      /v 'yy 'xx   'xy'       ^ -L/2' 0 

L/2    2itR p 
+ iJ.L/2I0      [^xx^yy^ -2(l-v)(w,xxv,yy-w,xy)]dxdy       (17) 

I 
/ 



The total potential energy consists now of only two unknown quantities: 
i 

the stress function F and the additional radial displacement v of 

the shell. With middle-surface equilibrium automatically satisfied 

through Introduction of the stress function, the varlatlonal principle 

need be applied only with respect to w to achieve equilibrium out of 

the middle surface. However, it Is necessary first to establish a 

relationship between F and w in order to present the total potential 

energy in terms of w alone. From displacement compatibility in the 

classical theory of elasticity, it is known that the middle surface dis- 

placements u and v must satisfy the condition 

K^yy + (V'xx ' K^'xy = 0 (lß) 

With the strain-displacement equations (3) and the constitutive relations 

(7), written for the middle surface, the stress-displacement compatibil- 

ity equation becomes 

0       0.0 00 cr      a       T       -a+o-- 

^"E^yy + ( E^xx " 2( E ^xy = ^ E ^ = v'xy"v'xxv'yy"R v'xx 

+ 2wrt  w, -w^.  w, -wrt  v, (IQ) 0,  'xy 0,  'yy 0,  'xx v ■" 'xy w  'xx **      *Yi 

Then, by introducing the relations between the middle-surface stress 

components and the Airy stress function F of equations (l6), the com- 

patibility equation of von Karman-Doanell shell theory is obtained for 

linear elastic behavior as 

VVE = w?^ - w^w,^ - | w,^ + 2w0> w,^ 
*y 

- wrt  w,  - w»  w, (20) 
0'xx yy   0'yy ^ 

For any specific case, in order to eliminate the stress function F, 

the procedure is to solve equation (20) for F in terms of w. Then, 

I 



with F known, the total potentiell energy becomes a function B" V 

alone. This procedure is not a simple one, since equation (20) lends 

itself to ready solution only vhen, for example, trigonometric series 

are usod to express v. Further, it should he pointed out that the 

procedure is highly restricted 1 general to materials vith constant 

elastic moduli (independent of the coordinates of the body) in view of 

the operations implicit in deriving equation (20) from equation (19)* 

10 
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METHOD OF SQLÜTICW 

With the total potential energy applicable to both iinperfect axlally 

congjressed curved plates and shells given by equation (17) in teircs of 

the dfejflection v and the stress functiot! F, the direct method of the 

calculus of vn^iations (Rayleigh-Ritz method) is utilized to establish 

equilibriuni-star.e? average stress-end shortening curves for various 

imperfection patterns. 

CIRCULAR CYLUfDBICAL  SHELL 

To study the various facets of the compressed circular cylindrical-shell 

problem and to establish a better understanding of solutions obtained 

türough von Harman-Donnell theory, in conjunction vith the potential 

energy method and trigonometric series to represent the radial displace- 

ment patterns, both initial and additional, several cases are investi- 

gated. 

General. Case of Present Analysis 

A reasonable imperfection pattern for a long circular cylindrical shell 

Is 

T = Aii cos — '\+ A20 cos r- ^ 
xo   yo      xo 

This expression represents a modification of the chessboard pattern into 

which 3 perfect cylinder buckles with infinitesimal amplitudes according 

to the classical theory (see references 1, 2, and 3). It is also both 

the experimentally obser/ed ouckle pattern of a compressed shell (see 

reference 18) and the moda;. pattern of a long thin cylinder undergoing 

free vibration with finite amplitudes (see reference 19). Thus, -ehe 

initial pattern selected fcr w  is obviously one to which a compressed 

shell is particularly sensitive. 

To provide for the growth of the initial pattern w0 upon application 

of end shortening, the expression 

11 



Ts ^cos r-cos x   + *&>C08 — t22) 
xo   yo      xo 

is assumed. Equation (22) ensures that the Imperfection pattern vQ 

retains its original wavelengths hut is free to grow in amplitude 

through A*  and A* . 

The buckle mode for the shell is taken to be 

t ' *]! C08 r C08 x + ^ cos t- + ^ cos x + AQO + T   (25) 
x    y x y 

It is to be noted that except for iL,,., \   ,   and \   ,   all of the 
0      ^0 parameters in equation (23) ere arbitraiy; they are to be determined by 

application of the variational principle. That is, a stationary value 

of the total potential energy, equation (17), is sought vith respect to 

tifo,  AJJ^, Ay,,  AgQ, AQg, Xx, and \ .    Since AQQ actually vanishes 

before variation of the total potential energy, it is determined 

independently from enforcement of the periodicity condition governing 

the circumferential displacement v. 

Of course, before the variation is carried out, equation (21) and 

equation (23) are substituted into equation (20) to determine F. Such 

a procedure leads to 

F   oy2   -k,  2 v,xx ,. 
1 = " SS   V ^'xy"v'xxw'yy" T~  ^0, v'xy 

^y 

- vrt  v, -w-  w, ) (2k) 0,  'yy 0,  'xx' v ' 'xx "^  'yy 

where a   has been introduced to provide for an average compressive 
stress acting on each shell cross section. The actual expression for F 

obtained by the operations indicated in equation (24) is illustrated in 

Appendix II. The average compressive stress is developed also in 

Appendix II for the same case and is shown to be 

12 
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where e is the prescribed unit end shortening and thtus Is the forcing 

function for the problem. 

A typical average stress-unit end shortening curve for an assumed 

imperfection pattern wherein A,, = 1, iU-, » 0.25, M« ** \r A_ - 0.52, 
2   2 0  0 

and T]   - rRt/X  = 0.25 is given In Figure 2. The values selected 
X)      7Q 

tor   u0 and rj  correspond to the n and TJ values of the stable 

portion of the Kempner  curve when eR/t = 0.70. 

8 
von Kangin-Tslen Salution 

The first solution of the von Earnan-Donnell theory for perfect shells 

appears in reference 8. The main contribution of this vcark lies in the 

qualitative rather than quantitative results, since the authors show 

the existence of equilibrium states with large as veil as small 

(infinitesimal) displacements. The former imply that equilibrium stress 

states exist far below the one corresponding to classical buckling. This 

important finding became the plausible explanation for axlally ccnpressed 

thin cylinders in actual test to achieve only a nrnaU fraction of the 

classical buckling load. 

The constrained deflection utilized by von Kanaan and Tsien is equivalent 

to the deflection function of equation (23) with «3 = 0 and AQ« = Ap0. 

Typical von Ksman-Tsien average stresd-end shortening curves are plotted 

in Figure 3 for ix = XAy = 1 and several values of TJ = iTRt/A. 

(0.676, 0.1*00, 0.255, and O.I69). A curve obtained from the present 

analysis is plotted also in Figure 3 for ^ = \/\   « 1, A  = A^Q, 

and T) absolutely free. 

Kempner  Solution 

The first unconstrained solution of the von Karnian-j)onnell theory for 

perfect axially compressed thin shells is given in reference 15. This 

solution, for the deflection function assumed (equation (25) with 

13 



w» » 0 and A^, A^ A^    |i, and n co^letely arbitrary) represents 

a true equlllbrtam sdtutlon, since all radial deflection paraaeters are 

persitted to vary in the application of the vaxiatiooal principle. The 

calculated points obtained hy Kölner  to construct his average stress- 

end shortening curve are shown In Figure k. 

Ifcdaen-Hoff12 Solution 

In references k and 12, Hoff et al. point out the basic error of Donnell 

and Wan appearing In reference 11, that of actually permitting the 

Inperfectlon pattern a^ilitude and wave shape to vary. In reference 12, 

the authors avoid the error hy assuming an imperfection shape and per- 

mitting only the growth of the imperfection amplitude to vary, Their 

assumed initial imperfection shape and arbitrary buckle pattern are 

equivalent to equation (21) and equation (23) of the pres it work with 

Aj, ■ 0, AgQ » 0,  and A^ « 0. The average stress-end shortening 

curves obtained on this basis are shown in Figure 5 for A., - 0, 0.1, 

and 0.17. Also shown in Figure 5 aie the results of the present study 

for AQJ, ^ 0, ^y = ^y / ^ = 0-1. a^ 0.17. 

CUCQLAHLY COWED ELgEg 

Most of the research that has been conducted in connect ion with under- 

standing the so-called "perplexing behavior" (see reference 5) of thin 

shells in coopreseicn has had, in reality, the goal of providing criteria 

for conventional shell structures used in aerospace design to withstand 

direct compression and bending loads. Such structures appear, in 

general, in stiffened rather than unstiffened form; hence, theoretical 

studies on pure monocoque shells under direct compression and bending 

loads have only limited value from the practical viewpoint. 

A stiffened shell of the noncoraposite type may be viewed as being made 

up of a series of curved plates separated by stringers and rings. Thus, 

it is of some importance to study the behavior of curved plates as 

Professor Joseph Kempner kindly provided the calculated points from 
which the continuous curve in reference 13 was plotted. 

Ik 



-, '- H -- , .-qü^C 

discrete structural elements and also to establish a knowledge cf the 

transition from the veil-understood behavior of flat plates to the not- 

so-vell-understood behavior of complete cylinders as the curvature is 

gradually increased. 

The shell theory presented in QSKEBSL THEORY and Appendix I is equeUy 

applicable to curved and flat (R -»») plates simply by changing the 

liad-ts of integration in the circumferential direction in the potential 

energy expression (equation (17)) and the boundary conditions (equations 

(11)-(15)) from y = 0, 2JCR to y = - ^ 5* J10*111*1^* the Bme 

changes vould occur in the developments of Appendix 1. A long curved 

plate element is shown In Figure 1, along with the sign conventior. used 

in the analysis. 

For a first approxiinatlon to the behavior of a circularly curved plate 

under prescribed end shortening, the radial deflection function is taken 

as 

^ = A^ cos r— cos ^C + A  cos 3L f -- = 1,3,5...   (26) 
x   y        J     y 

The first tenn is sufficient to establish quite accurately the average 

stress-end shortening curve for a long rectangular flat plate (R -»•) 

with pinned edges until the end shortening exceeds the critical end 

shortening by an order of magnitude (see reference 20). For shallow- 

curved plates (Z = b "/Rt < 10), the second term in equation (26) is 

sufficient to provide reasonably accurate average stress-end shortening 

curves dependent upon Z. Through the use of equation (26) and the 

total potential energy given by equation (1?) (with suitable integration 

limits for the circumferential direction), application of the varlational 

principle leads to the average stress-end shortening curves plotted in 

Figure 6, when ^ = X /\   =1, N = b/X = 1, and Z = 10 and 20, 
y x y 

respectively. Also, in Figure 6, are shown corresponding results for 

an improved approximation to the radial deflection function; that is. 

I 
i 
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The detail« of the curved plate analysis are given In Appendix III. 

It is to be noted that the behavior of a shallow curved plate (Z < 10) 

Is slallar to that of a flat plate; thus, the curved plate Is relatively 

Insensitive to Initial deviations (see reference 21). 

16 
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RESULTS MD DISCOBSIOW 

GDCOLAR CnJBDHICAL Sggt 

An Investigation of the bending, truckling, and postbuckllng of Initially 
iiiiperfect circular cylindrical shells under axial compression has been 

undertaken to establish a clearer understanding of the many solutions 

obtained through the use of von Kancan-DonneU shell theory, the 

potential energy method, and trigonometric series to represent the 

radial displacement patterns. 

General Case of Present Analysis 

The most general solution of the present study is based upon the assumed 

initial and additional radial displacement functions given by equations 

(21) and (23). The assumed waveform differs from that of Kempner only 

in the stipulation of an imperfection pattern and the allowance for its 

growth in aaglitude. With w- and w* set equal to zero, the stable 

branch of the average stress-end shortening curve first obtained by 

Kempner with 3 free parameters is duplicated in Figure 2 by the lower 

curve. The upper curve represents a 7-free-parameter solution obtained 

from the present analysis with A.. = 1, A™ = 0.25, JVi = ^ A = 0«52, 
2/2 ±± du u   y0 x- 

end 1Q = « ^Ay = 0«25. The values of n- and TJ. correspond to 

those of Kempner when eR/t = 0.70. The curve is of Interest because it 

shows that unlike average stress-end shortening curves for postbuckled 
11    22 shells as presented by, for example, Donnell and Wan,  Loo,  and 

12 
Madsen and Hoff,  any perfect body solution is a lower rather than 

upper bound to the imperfect body behavior when the von Karman-Donnell 

theory is utilized in combination with trigoncoetric series and the 

Bayleigh-Ritz procedure. A more meaningful interpretation of the two 

curves in Figure 2 is presented later in connection with the detailed 

discussion of the Kempner  solution as reevaluated in the present 

analysis. 

von Karman-Tsien Solution 

Although the von Karman-Tsien solution was undertaken in a qualitative 

fashion only, mainly to offer a plausible explanation for the failure of 
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coopressed shells in experlaoents to reach more than a suell fraction of 

the classical buckling load, Daqy subsequent investigators have attrib- 

uted quantitative results to von Eanaan-Tslen which the authors them- 

selves never claimed. 

Thus, as a first step in evaluating the existing work on the post- 

buckling behavior of imperfect shells, the von Karman-Tsien solution vas 

reviewed in the light of the present analysis approach. On the basis of 

equation (25), with «§ = 0 and A-^ = iWj, the corves plotted in 

Figure 3 were obtained. The solid curves in the postbuckling region 

represent identically the results obtained by von Kanaan and Tsien for 

(i = l and the designated values of r\.    The dashed curve is the result 

of the present analysis when )i = 1 and n is a free variable. Of 

importance is the fact that for \i = 1,    the lowest postbuckling stress 

" a Biniw potential energy basis is given by crB/Et - 0.21*5. The 

ijwest postbuckling stress obtained by von Karoan and Tsien appears en 

the i\  = 0.255 curve and is given by aK/Bt = 0.19U. Leggett and Jones 

noted, with respect to the results of von Karman and Tsien, that the 

lowest postbuckling stress obtained for a fixed }i and discrete valves 

of T) is not necessarily that corresponding to a minimum eaergy at the 

fixed value of }i. This can be illustrated in Figure 5 by noting that 

only certain points on each T|-curve correspond to points on the true 

minimum energy curve for the deflection assumed and ji = 1. The 

important fact is that the minimum stress obtained from the envelope of 

the discrete Tj-value curves is lower than the postbuckling stress 

corresponding to the minimum-energy solution for the fixed value of R. 

In other words, in systems which possess unstable branches of the post- 

buckling curves> it is not permissible to obtain the lowest stress by 

minimizing the load with respect to the buckling parameter?. It is 

interesting, nevertheless, that with the same deflection function 

}  = A  cos f cos f + A  cos ^ + A02 cos ^ + A 
x    y x y 

and Aon = A-.«, the von Karman-Tsien minimum postbuckling stress of 

18 
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aü/Et  = C.194 (obtained for y. - 1   and TJ = 0.255) compares almost 

IdeDt-tcally vith the idnlmiga postbucKllng stress, aF/Bt = 0.195, 
9 10 

obtained by Leggett and Jones and Michielsen  on the basis of free 

variation vith respect to both ti and TJ. 

Kempner Solution 

Although a portion of the stable branch average stress-end shortening 

curve of the Kempner solution has been shown In Figure 2, the solid- 

curve result presented by Kempner in reference 15 is shown in Figure k 

in terms of the actual calculated points (see footnote on page Ik).    The 

solid curve of Figure k is the result obtained in the present analysis 

vith the aid of a high-speed computer. The desk-calculator results 

obtained by Kempner in a remarkable effort are quite accurate along the 

stable branch of the average stress-end shortening curve. However, even 

though the remaining points appear to indicate that the postbuckling 

curve closes to the bifurcation point, the very accurate numerical 

results of the present analysis show that (l) the left-hand portion of 

the lower branch of the solution cannot be extended economically for 

crfi/Et > 0.33^, a Burroughs B-5500 congnrter notwithstanding, and (2) 

another solution of completely unstable character exists for 

crR/Et > ü.387. 

The loop appearing below the bifurcation point is not a new result. 

Thielemann, in Figure 10 of reference 23, notes that Donnell's solution 

yields the same phenomenon. However, in the Donnell and Wac  study 

referred to by Thielemann, the authors mention only that success was 

achieved in finding a solution emanating from the bifurcation point down- 

ward to crR/Et = O.U5. The unstable solution moving upward from the 

bifurcation point is considered a new result in view of its absence from 

the literature. 

Another new result of the present analysis, incidentally, is the average 

stress-end shortening curve shown in Figure 7. This solution corres- 

ponds to the deflection function, equation (23), with w* = 0, A^  = 0, 

and a free variation of the total potential energy with respect to 
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A-,, Ag-, n, and TJ. The curve of Figure T is not much different from 

that of Kerapner in Figure k.    The minimum equilibrium posthuckling stress 

parameter is given by aK/Et = 0.195. This minimum value is significant 

in that it has been obtained on the basis of a buckle pattern vhich is 

a first modification of the classical-theory chessboard pattern. From 

the discussions contained in the studies presented by von Karnan-Tsien, 

Leggett and Jones, Michielsen,  and Kempner,  the t-iplication is 

always present that the low minimum postbuckling stresses obtained are 

associated with the "diamond" buckle pattern developed by von Ka'rman and 

Tsien on the basis of physical observation which autonetically includes 

the A02 term in equation (23). 

The difficulty in obtaining an economically feasible solution beyond 

ofi/Et = 0.53^ (on the unstable portion of the curve) is attributed to 

the fact that, for small increments in the applied unit end shortening 

(see Figure k),  the buckle maximum amplitude, nondimensionalized with 

respect to the wall thickness t, is growing very rapidly whereas |i 

and Tj are becoming quite small in magnitude. The buckle pattern free 

coefficients A^, A^Q,    and A»« are given in Figure 8 as functions 

of eH/t; the free parameters v   and TJ are given in similar fashion 

in Figure 9. 

The tedious and, hence, cost-consuming computations necessary to seek a 

converged solution of the five nonlinear equations in A,., Ap0, A0O, ^, 

and TJ are not justified because the portion of the average stress-end 

shortening curve in question represents epplicatlon of the von Karman- 

Donnell theory in a range where it is no longer valid for practical 

considerations; the limitation on either the size of the rotations or 

the linear-elastic constitutive law is being exceeded, and the results 

have meaning,only for shells of extremely high R/t ratios. The 

limitations of von Karman-Donnell theory with respect to permissible 

rotations and onset of inelastic deformations for axially compressed 

perfect shells in the R/t range of practical interest have been pointed 

out by Mayers and Rehfield.   In fact, in reference 16 it is shown that 

the Kerapner solution of reference 13 based on von Karman-Donnell theory 
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Is the lover bound to a feiiily of fi/t-dependent average stress-end 

shortening curves and corresponds to the case of I^t -»•. 

The present-analysis solution shown in Figure k for aB/Eb > 0.38? does 

not exceed the kinematic limitations on von Kemnän-DooneU theory, as 

the Ecximum deflections are of the order of the vail thickness; however, 

it is of no practical value because it represents unstable equilibrium. 

Above the bifurcation point, however, it is of Interest to note that the 

thin-shell theory is attempting to produce thick-shell behavior 

(axisyjonetrlc buckling) because, as indicated in Figure 9,    i\ ~*0   and 

The von Kannan-DonneU theory, Kerapner-type, axially compressed perfect 

shell solution with more terms included in the radial deflection function 

v (equation (23) with w* = 0) has been given by Almroth  (nine 
15 

free parameters) and Hoff et al. (13 free parameters). Although 

Almroth succeeded In obtaining a minimum postbuckling equilibrium stress 

corresponding to ofl/Et = 0-0652, Hoff et al. succeeded In lowering the 

minimum postbuckling stress parameter ofl/st to 0.0427. From the 

overall results of reference 15, the authors are able to conclude that 

when the radial deflection is represented by an infinite series, the 

completely free parameter solution of the von Karman-Donnell theory for 

the axially compressed perfect shell is represented by w -»0, fi -♦ 0, 

T] -* 0, and a minimum postbuckling equilibrium stress parameter 

crR/Et -»0. The buckle shape itself approaches a perfect Yoshlmura 

developable surface .(vanishing membrane strain). Thus, on the basis of 

the findings reported in references 15 and 16, it took from 19^1 to 1965 

to establish that the rigorous stable solution of the von Earman-Donnell 

theory for an axially compressed perfect shell with (l) a finite number 

of assumed buckle-pattern parameters absolutely free applies only to an 

infinitely thin shell (R/t -»«) and with (2) an infinite number of assumed 

buckle-pattern parameters which are absolutely free leads to the trivial 

solution that the infinitely thin shell buckles at a vanishingly small 

stress. 
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Some final reoarks are in order relative to the present-analysis solution 

shewn in Figure 2 and that of Kempner shown In both Figures 2 and k. 

Obviously, vlth decreasing inittal-iniperfection amplitudes, the present- 

analysis curve of Figure 2 coalesces into the lower branch of the Kempner 

curve. How, vhen the initial deviation pattern vavelengths are larger 

than the vavelengths occurring in the Kempner soluticn, an increase of 

the initial-imperfection amplitudes will not affect the Kempner solution 

beccje the Kempner buckle shape is physically able to govern the behav- 

ior. On the other hand, vhen the initial-deviation-pattern vavelengths 

are smaller than the vavelengths occurring in the Kempner solution, the 

Initial-deviation pattern governs and grows in amplitude; the Kempner 

buckle pattern is constrained from occurring,vhich means that an Increase 

in the potential energy occurs. Thus, the minimum postbuckling stress of 

the imperfect shell Is greater than the minimum postbuckling stress 

obtained from the Kempner solution. The implication, then, is that 

stiffening elements could be placed on a thin shell with spacing so 

arranged that the snap-through buckle pettem cannot occur. Thl4 behavior 

has been illustrated in the laboratory by buckling tvo identical cylin- 

ders vhich vere commercially fabricated on an automated assembly line. 

One cylinder is buckled in the unstiffened configuration so as to discern 

the buckle pattern. The remaining cylinder is tested vith very light 

stiffeners located so as to hinder the original buckle pattern from 

forming. A significant increase in buckling load (almost 50 percent) has 

resulted vith a very small weight penalty. Photographs of the two 

specimens tested to substantiate tnis behavior are.shown in Figure 10. 

The remarkable decrease in buckle amplitude of the lightly stiffened 

cylinder should be noted. The buckle pattern of the unstiffened cylinder 

is of interest because of its similarity to the Yoshimura ' buckle pattern. 

The latter is a polyhedral surface of plane triangles developable from 

the middle surface of a circular cylindrical shell. Conventional cylin- 

ders tested in the laboratory tend toward Yoshimura-type buckles only in 

localized bands. The preformed plastic hinges shown in the test cylinder 

of Figure ID provide the mechanism for the development of the Yoshimura 

buckle pattern over almost the entire surface of the unstiffened specimen. 
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Madsen'Hoff Solution 

The behavior of postbuckled,axlally compressed, perfect circular cylin- 

drical shells leading to the trivial solution (for an infinite manber 

of terms in the trigonometric series representing the radjal deflection 

function) discussed in the preceding section has been explained by 
12 

Madsen and Hoff.   The authors of reference 12 point out that a varia- 

tion of the total potential energy vlth respect to aü auckle-pattern 

parameters is unrealistic in view of the fact that a cylinder of finite 

R/t ratio cannot buckle into less than 2 circumferential full vayes. 

Thus, in reality, the trivial solution cannot occur. 

ID the same reference, Madsen anC  Hoff then proceed to investigate the 

behavior of practical shells in order to estimate the magnitude of the 

maximum stress reached in the presence of imperfections. Although the 

behavior of imperfect shells in axial compression had been investigated 

by Donnell and Wan,  Madsen and Hoff discerned an error in the DonneU- 

Wan procedure and thus justified further investigation of the problem. 

Fundamentally, the criticism of the Donnell-Wan procedure, as noted by 

Madsen and Hoff, is that the total potential energy should not be 

mi -«imized "fith respect to any of the parameters describing the initial 

deviation shape. Some of the results of their analysis based on the 

correct procedure are given in Figure 5 for a specified imperfectioi: 

pattern. The deflected shape is obtainable from equations (21) and (23) 

of the present analysis -when A,, = 0, Ap0 = 0, and Anp = 0. 

The curve of Figure 5 for A.., = 0 is based upon a fixed ji- a;, I T]0. 

The postbuckling curve for A^,, A^Q, \i,    and T]    as free variables, as 

discussed earlier, has oeen obtained for the first time in the present 

analysis (see Figure 7). The significance of nn = 1.0 and TU = 0.826 

is related to the only reasonable physical solution of the linearized 

problem solved by Madsen and Hoff. It is of interest to note, however, 
22 

that Loo,  by making the arbitrary assumption that l-i = 1, was able to 

calculate that r\  = 0.826 at the bifurcation point. Of further interest 

is the fact that the present analysis leads to the values u = 1 and 

T] =  0.826 in a free variation of the nonlinear formulation at the 
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tlfurcatien point; in addition, it cen be seen from Figure 9 that; on 

the basis of extrapolation, another set of fi and r\   values (approxi- 

■ately, ji = 0.5k'j   and r\  = 0.520) exists at the bifurcation point. 

The imperfect shell average stress-end shortening obtained by Madsen and 

Hoff for A^, =0.1 is given in Figure 5 as a solid curve. A distinct 

■axllMB stress is evidenced. This Maximum, the conclusions of reference 12 

notwithstanding, is not the lowest maximum stress to be expected. The 

addition of the A^   term in equation (25) leads to the dashed curve in 

Figure 5 on the basis of the present analysis vhen >. = X, . In 
o y    yp 

addition, for the case when A11 = 0.17, the inclusion of the AQ^ term 

removes the concept of an initial maximim stress. Thus, it is evident 

tint maximum stress calculations for reasonably imperfect shells based 

on the Hadsen-Hoff procedure should include sufficient terms it the 

assumed deflection function to guarantee a converged solution. This 

means that the maximum stress is sensitive not only to the amplitude of 

the initial deviation but also to the waveform of the buckle pattern. 

Finally, it is important to note that maximum stress calculations should 

not overlook the possibility of yielding of the material. A maximum 

strength analysis of axially compressed Imperfect shells, including 
2k 

inelastic deformation, has been presented by Mayers and Wesenberg, ' in 

which a modified version of Beissner's variational principle is utilized. 

CIRCÜIARLY CURVED PLATE 

The analysis  of the long curved plate undertaken in this investigation is 

important from the standpoint that conventional aerospace vehicle shell 

structures are generally of the semlmonocoque rather than pure-monocoque 

type. That is, the pure monocoque thin shell discussed in the previous 

section is stiffened by stringers and rings in actual practice in order 

to overcame the tendency of pure-aonocoque thin shells to buckle at 

stresses well below the classical value under direct compression and 

bending loads. To date, despite extensive theoretical and experimental 

studies, the optimum semlmonocoque shell for a given loading (that is, 

the sizing of stJffeners and shell thickness and the spacing of 

stiffeners) cannot be designed on the basis of theoretical analysis 

2k 
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alone. It Is unusual that so much attention and effort has been devoted 

to pure-monocoque shells when the fundamental structural conponent 

existing between stringers and rings of semlmooocoque shells (the actual 

case) Is a curved plate. This Is certainly true when discrete stiffening 

is utilized and conceptually true in the case when analysts consider that 

sufficiently closely spaced stiffeners and rings may be "smeared out" 

over the shell surface. However, even in the latter case, informaticn 

is necessary to establish geometrical properties (including spacing of 

the st iff eners), supposedly to preclude the occurrence of local buckling 

between stiffening elements. 

The average stress-end shortening curves appearing in Figure 6 for 

Z s 10 and 20, respectively, based upon the radial deflection function 

of equation (26) and the variational development of Appendix III (with 

(i = l and X. = b), are considered to be extremely significant. It is 

to be noted that when the plate is flat (R -»», Z -> 0), the well-known 

behavior reflects the ability at the plate to carry additional load 

beyond the bifurcation point. As shown in reference 25, this behavior 

is limited only by the phenomena of eventual buckle pattern change and 

the onset of inelastic deformations. Under the assumption of elastic 

behavior in the present analysis, the solid-curve result in Figure 6 for 

a shallow-curved plate (z =10) suggests that catastrophic snap-through 

buckling can be avoided and a load-carrying ability In the vicinity of 

the classical value can be maintained. With Z = 20, the snap-through does 

occur, but it cannot be considered catastrophic from the load-carrylng- 

abllity standpoint. Even when the improved radial deflection function 

(equation 27) is introduced, only about a ten percent reductloa in load- 

carrying ability is evidenced. However, for Z = 1*0 and 60, the 

present analysis computations indicate that thin-cylinder behavior 

(catastrophic snap-through) governs. The lower bound to such behavior 

for the present analysis (with A«, =0) is given by the lowermost solid 

curve. This curve is the same as that appearing in Flf'ore 5 for a 

perfect cylinder wuich buckles and postbuckles with (i = 1 and 

TJ = 0.826. 

25 



The primary question, of course, concerns the veight penalty involved in 

sizing stiffened shells such that the panel behavior between stiffeners 

and rings is given by results similar to those plotted in Figure 6. 

Apparently, in practice, cylinders with stiffeners spaced sufficiently 

close together that the "smearing out" concept may be used are 

specifically designed such that local buckling of the sheet material 

between stiffeners is prevented. For example, the recent preliminary 

design procedure presented by Smith and Spier  for stringers and/or 

ring-stiffened circular cylinders under axial ccmpression commences with 

the fundamental step that precludes buckling cf the curved sheet lying 

between the stiffening elements of the overall cylinder. As another 
27 

example, the recent shell analysis manual prepared by Baker et al. 

recommends (l) the de .sign formula 

Cr    12(1-/) B 

bo determine the buckling stress for the curved plate elements between 

stringers and rings and (2) the generous knock-down values for C extending 

from 1+0 percent for R/t = 100 to 55 percent for R/t = 500, the prac- 

tical R/t-ratio range for the sheet material in stiffened cylinders. 

The coefficient TJ in equation (28) has been introduced in reference 27 

as a correction factor when inelastic buckling occurs. 

To study the implications of the present results (see Figure 6) as they 

might apply to achieving increased efficiency of axially compressed 

stiffened shells, a particular cylinder tested by Card and Jones  has 

been selected. The cylinder geometry and elastic constants are given 

in Figure 11. It is noteworthy that even though the effective R/t 

ratio of the "smeared out" cylinder is 167, the "effectively" thick 

cylinder buckled in a typical thin-cylinder "diamond" configuration (see 

Figure 3b of reference 28). This would tend to indicate a significant 

sensitivity to initial deviations from a uniform circular shape. 

For the cylinder section of Figure 11, the Z of the curved plate 

between 60 stringers spaced 1.0 inch apart is 5«T4. Now, when every other 
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stringer of the 60 stringers is removed, Z becomes IU.96. In an 

attempt to provide for the formation of nodes at each remaining stringer, 
29 

the criterion given by Schildcrout and Stein  for axially compressed 

curved plates vith simply supported edges has been used vith the result 

that the depth of the stringers must be Increased to t = 0.336 inch 
8 

The increased stringer material is "borrowed" from the 30 stringers that 

have been removed. Next, the remaining material from the removed 

stringers is distributed as 20 rings of the same geometry as the 30 

redesigned stringers. With curved square sections, the criterion given 

by Batdorf and Schildcrout  for simply supported compressed curved 

rectangular plates vith central chordwise stiffeners implies that nodes 

should form at each shell ring independent of the stiffness of the 

ring cross section. The ring spacing has been selected to give |i « 1 

in every curved-plate element. From Figure 6, it can be seen that the 

average stress resalns in the vicinity of the classical stress for 

Z = 1^.96. Thus, for a 6 percent increase in velght of the entire cylinder, 

the classical load obtained from the buckling criterion given by Block 

et al.  is 6.55 times greater than the corresponding buckling load for 

the original cylinder with 60 longitudinal stringers and no rings. Even 

though the quantitative results may not be practically useful, the 

qualitative trend cannot be overlooked. That is, a Judicious redesign 

with respect to the rings should both lighten the cylinder and reduce the 

buckling load to a practical level. The attempt should be made to 

determine, by iteration, the lightest cylinder for Z < 20 and an 

effective radlup-to-thickness ratio below about 250. For example, a 

trade-off study could be undertaken with respect to the effects of (l) 

lightening the 20 rings and (2) doubling the spacing between the existing 

rings and, if necessary, increasing the ring stiffness through use of 

the material available from the removed rings. In any event, the 

impressive results obtained herein with respect to the potential increase 
28 

in efficiency of the cylinder tested by Card and Jones  cannot be dis- 

regarded. For eccencrically stiffened cylinders, the decrease in 

effective radius-to-thickness ratio minimizes the sensitivity to initial 
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Imperfections. The appearence of "dlsaaod" buckles In the cylinder test, 

even vlth the effective R/t ratio equal to 167, suggests that ring 

stiffening can only aid in alleviating the laperfectloo sensitivity. 

Finally, the sample calculations show thrt rings can be added at little 

or no increase in veigfat by redesigning the stringers vlth respect to 

section properties and spacing. 
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CCWCLÜDIHG HBMBES 

The extensive study presented has made it possible tc understand to a 

greater degree the long-standing and enigmatic bebsvior of thin circular 

cylindrical shells in axial compression. The significant contributions 
7    ' 8        13 

of Donnell, von Raman and Tsien, and Kempner  stemming from their 

investigations of perfect elastic shells have been reevaluated on the 

basis of the present analysis and some new results and interpretations 

given the earlier works. With regard to the behavior of imperfect shells, 

the analyses of Donnell and Wan  and Madsen and Hoff  have been studied, 

also, and the results of the latter authors have been extended. 

On the basis of the understanding of pure-monocoque shell behavior, an 

Investigation of the postbuckling behavior of curved plates has led to 

significant results concerning the transition region from flat plates to 

highly curved plates and complete cylinders. The curved plate behavior 

is significant in that the conventional thin shell utilized in aerospace 

structures design is of the semimonocoque (stiffened) rather than the 

pure-monocoque configuration- Thus, the basic structural shell elements 

are the curved plates existing between stringers and rings. In the 

absence of any known theoretical analysis which can predict the maximum 

load in axial compression of a given stiffened shell, the present 

investigation offers some new concepts which appear to justify the 

preliminary design of optimized conventionally (stringer-ring) stiffened 

shells on the basis of nonlinear curved plate analysis in conjunction 

with stringer-ring sizing and spacing based upon (l) the postbuckling 

results obtained herein for unstiffened thin shells and (2) the linear- 
29    ^ 30 

theory results of Schildcrout and Stein  and Batdorf and Schildcrout 

for axially compressed, simply supported, curved plates with axial and 

chordwise central stiffeners, respectively. The qualitative results 

obtained relative to achieving buckling loads of stiffened cylinders in 

the vicinity of the classical value cannot be overlooked. Further re- 

search in this area is mandatory because of the desperate requirement 

for wsife.it reduction in aerospace structures. The latest design manuals 

(1967-68^ ' '' '  still contain cautionary remarks to the effect, for 
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example, that "A currently popular vievpoint is to consider classical 

theory to be directly applicable to most practical stiffened shells. 

Nevertheless, to account for uncertainties and to guard against reckless 

extrapolation into extreme parameter ranges, it is suggested here that a 

knock-down factor be retained in the buckling analysis of stiffened 

cylinders. This should result in conservative strength estimates which 

can be employed with confidence in the design of actual hardware." 

unfortunately, the knock-down fajtors suggested are very little different 

from those which have been generously utilized in practice for the past 

25 years at the expense of overweight and uneconomical designs. If 

optimized design criteria are not available for conventional shell 

construction, then what hope is there that such criteria will soon be 

available for shells in which promising composites are to be employed 

(for example, sandwich, laminated, and fiber-reinforced materials)? 
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Figure 2. Average Stress-Unit End Shortening Curves (Present Analysis 
and Reference 13). 
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Figure 5. Average Stress-Unit End Shortening Curves (Present Analysis 
and Reference 8). 
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Figure 5. Average Stress-Unit End Shortening Curves for Perfect and 
Imperfect Shells (Comparison of Present Analysis Solutions 
With Those of Reference 12). 
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PRESENT ANALYSIS' 

Figure 7. Average Stress-Unit End Shortening Curve for Modified-Kerapner 
Radial Deflection Function (A-p = 0). 
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Figure 8. Variation of Radial Deflection Pattern Amplitudes A^, A- , 

and A 2 With Unit End Shortening for Present Analysis 

Solution Corresponding to Kempner Deflection Function. 
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Figure 9« Variation of Radial Deflection Pattern Wave Parameters \i 
and TJ With Unit End Shortening for Present Analysis Solution 
Corresponding to Kempner Deflection Function. 
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Figure 10. Effect of Lightweight Longitudinal Stiffeners in Preventing 
Catastrophic Snap-Through Buckling Into a Yoshimura Pattern. 

!+0 



~*rS~    "^'*3-"    er^S 

? 

»-•a« 

^ ^    SS^SSe" "— ^ "- " » Basis for 

41 



LITERATURE CITSD 

1. Lorenz, Rudolf, ACHSSNSYtWBTRISCHE VEIEEREÜNGEW BI DÖMWANAKDIGEN 
HOHLZYLIKDERH, Zeltschrift des Vereines Deutcher Ingenieure, Vol. 
52, Ho. 45, October 190b, p. 1706. "" 

2. Timoshenko, S., EIBIGE STAHELmTSFROBLESffi DER ELASTIZITATSTHEORIE, 
Zeitschrift fur Mathematlck und Physik, Vol. 58, No. k, June 1910, 
p- 557. 

5. Southwell, R. V., OM THE GJUERAL THEORY OF ELASTIC STABILJTy, 
Philosophical Transactions of the Royal Society, London, Series A, 
Vol. 15, Ho. A501, August 1915, p. 107• 

k.    Hoff, H. J., THIN SHELLS IN AEROSPACE STRUCTURES, Fourth von 
Barman Lecture Presented at the Third AIAA Annual Meeting, Novenber 
29, 1966. Aeronautics and Astronautics, Feb. 1967, pp. 26-U5. 

5. Hoff, N. J., THE PERELEXIRG BEHAVIOR OF THIN CIRCULAR CYLINDRICAL 
SHELLS IN AXIAL CCMPRESSICW, Second Theodore von Karman Memorial 
Lecture of the Israel Society of Aeronautical Sciences, Israel 
Journal of Technology, Vol. k.  No. 1, 1966, pp. 1-28. 

6. Stein, M., RECEHT ADVANCES IN THE INVESTIGATION OF SHELL BUCKLING, 
AIAA Journal, Vol. 6, No. 12, December 1968, pp. 2359-25^5. 

7. Donnell, L. H., A NEW THEORY FOR THE BÜCKLING OF TEEN CYLINDERS 
UNDER AXEAL CCMPRESSION AND BERDINC', Transactions of the American 
Society of Mechanical Engineers, Vol. 3D, NO. 11, November 19314-, 
pp. 795-ÖOÖ. 

8. Von Kanaan, Theodore, and Tsien, H. S., THE BUCKLING OF THIN 

CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION, Journal of the 
Aeronautical Sciences, Vol. 8, No. 8, June 1941, pp. 505-512. 

9- Leggett, D. M. A., and Jones, R. P. N-, THE BEHAVIOR OF A 
CYLINDRICAL SHELL UNDER AXIAL COMPRESSION WHEN THE BUCKLING LOAD 
HAS BEEN EXCEEDED, Aeronautical Research Council Reports and 
Memoranda, No. 2190, August 1942. 

10. Michielsen, Herman F., THE BEHAVIOR OF THIN CYLINDRICAL SHELLS AFTER 
BUCKLING UNDER AXIAL COMPRESSION, Journal of the Aeronautical 
Sciences, Vol. 15, No. 12, December 194Ö, pp. 758-74^. 

11. Donnell, L. H., and Wan, C. C, EFFECT OF IMPERFECTIONS ON 
BUCKLING OF THIN CYLINDERS AND COLUMNS UNDER AXIAL COMPRESSION, 
Journal of Applied Mechanics, Vol. 17, No. 1, March 1950, pp. 73-85. 

I 

I 

1+2 

J 



12. Madsen, W. A., and Hoff, N. J., THE SHAP-THROUGH ASD P0STBÜC5CLING 
EftUILIEaiUM BEHAVIOR OF CIHCULAR CYLINDRICAL SHELLS UNDER AXIAL 
LOAD, Stanford University Department of Aeronautics and Astronautics, 
SUDAER No. 227, April 1965. 

13. Kerapner, J., POSTBUCKLING BEHAVIOR OF AXIALLY COMPRESSED CIRCULAR 
CYLINDRICAL SHELLS, Journal of the Aeronautical Sciences, Vol. 17, 
No. 5, May 195U, pp. 329-55?, 342.    — — —' 

Ik.    Almroth, B. 0., POSTBUCKLING BEHAVIOR OF AXIALLY COMPRESSED CIRCULAR 
CYLINDERS, AIAA Journal, Vol. 1, No. 3, March 1963, pp. 630-635. 

15. Hoff, N. J., Madsen, W. A., and Mayers J., THE POSTBUCKLING 
EQUILIBRIUM OF AXIALLY COMPRESSED CIRCULAR CYLINDRICAL SHELLS, 
AIAA Journal, Vol. k,  No. 1, January 1966, pp. 126 155. 

16. Mayers, J., and Rehfield, L. W., DEVELOPMENTS IN MECHANICS, Vol. 3, 
Part 1, (Proceedings of the Ninth Midwestern Mechanics Conference, 
Madison, Wisconsin, August I6-I8, 1965), New York, John Wiley and 
Sons, Inc., 1967, pp. 1^5-160. 

17. Yoshiraura, Y., ON THE MECHANISM OF BUCKLING OF A CIRCULAR 
CYLINDRICAL SHELL UNDER AXIAL COMPRESSION, NACA Technical Menorandum 
1390, National Advisory Committee for Aeronautics, July 1955' 

18. Tennyson, R. C, and Welles, S. W., ANALYSIS OF THE BUCKLING PROCESS 
OF CIRCULAR CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION, University 
of Toronto; Institute of Aerospace Studies, UTIAS Report No. 129 
February 1968. (In process of publication in AIAA Journal.) 

19. Mayers, J., and Wrenn, B. G., DEVELOPMENTS IN MECHANICS, Vol. k, 
(Proceedings of the Tenth Midwestern Mechanics Conference, Fort 
Collins, Colorado, August 21-23, 196?), Johnson Publishing Co., 
1968, pp. 819-8^6. 

20. Mayers, J., and Budiansky, B., ANALYSIS OF BEHAVIOR OF SIMPLY 
SUPPORTED FLAT PLftTES COMPRESSED BEYOND BUCKLING INTO THE PLASTIC 
RANGE, NACA Technical Note 3368, National Advisory Committee 
for Aeronautics, February 1955- 

21. Hu, P. C, Lundquist, E. E., and Batdorf, S. B., EFFECT OF SMALL 
DEVIATICWS FROM FLATNESS ON EFFECTIVE WIDTH AND BUCKLING OF PLATES 
IN COMPRESSION, NACA Technical Note 112k,  National Advisory 
Coimnittee for Aeronautics, September 19^6. 

22. Loc, T. T., EFFECTS OF LARGE DEFLECTIONS AND IMPERFECTIONS ON THE 
ELASTIC BUCKLING OF CYLINDERS UNDER TORSION AND AXIAL COMPRESSION, 
(Proceedings of the Second U. S. Congress of Applied Mechanics, 
Ann Arbor, Michigan, June I4-I8, 195^), New York, The American 
Society of Mechanical Engineers, 195^, pp. 3^5-357' 

hi 



23. Thielemann, W., NSW DEVELOPMEKTS IN THE NCMLIKEAR THEORIES OF 
BUCKLING OF THIN CYLINDRICAL SHELLS, (Proceedings of the Durand 
Centennial Conference, Stanford, California, August 5-8, 1959), 
New York, Pergamon Press, I960, pp. 76-119. 

2k,    Mayers, J., and Wesenberg, D. L., THE MAXIMUM 3TREKGTH OP IHITIALLy 
IMPERFECT, AXIALLY COMPRESSED, CIRCULAR CYLINDRICAL SHELLS, Stanford 
University; USAAVTiABS Technical Report 69-60, ü. S. Army Aviation 
Materiel Laboratories, Fort Eustis, Virginia, August I969. Presented 
at the AIAA 7th Aerospace Sciences Meeting, AIAA Paper No. 69-61, 
New York, January I969. 

25. Mayers, J. and Nelson, E-, MAXIMUM STRENGTH ANALYSIS OF POSTBUCKLED 
RECTANGULAR PLATES, Stanford University; USAAILABS Technical Report 
69-6^, U. S. Army Aviation Materiel Laboratories, Fort Eustis, 
Virginia (in publication). Presented at the AIAA 6th Aerospace Sciences 
Meeting, AIAA Paper No. 68-171, New fork, January 1968. 

26. Smith, G. W., and Spier, E. E., THE STABILITY OF ECCENTRICALLY 
STIFFENED CIRCULAR CYLINDERS, VOLUME I - GENERAL, Convair Division 
of General Dynamics, Report No. GDC DDG 67-OO6, June 1967. 

27. Baker, E. H., Capelli, A. P., Kovalevsky, L., Rish, F. L., and 
Verette, R. M., SHELL ANALYSIS MANUAL, NASA CR-912, National 
Aeronautics and Space Administration, April 1968. 

28. Card, M. F-, and Jones, R. M., EXPERIMENTAL AND THEORETICAL RESULTS 
FOR BUCKLING OF ECCENTRICALLY STIFFHJED CYLINDERS, NASA Technical 
Note D-3639> National Aeronautics and Space Administration, Oct.1966. 

29. Schildcrout, M., and Stein, M., CRITICAL AXIAL-COMPRESSIVE STRESS OF 
A CURVED RECTANGULAR PANEL WITH A CENTRAL LONGITUDINAL 3TIFFENER, 
NACA Technical Note 1661, National Advisory Committee for 
Aeronautics, July 19*48. 

30. Batdorf, S. B., and Schildcrout, M., CRITICAL AXIAL-COMPRESSIVE 
STRESS OF A CURVED RECTANGULAR PANEL WITH A CENTRAL CHORDWISE 
STIFFENER, NACA Technical Note 1879, National Advisory Committee 
for Aeronautics, May 19^9« 

31. Block, D. L., Card, M. F., and Mikulas, M. M., Jr., BUCKLING 
OF ECCENTRICALLY STIFFENED ORTHOTROPIC CYLINDERS, NASA Technical 
Note D-296O, National Aeronautics and Space Administration, August 

1965. 

32. Anonymous, BUCKLING OF THEN-WALLED CIRCULAR CYLINDERS, NASA SP-8007, 
National Aeronautics and Space Administration, August I968. 

kk 

) 

_ 



35. Smith, G. W., and Spier, E. E., THE SIASnJTC OF BCCHJTRICALLY 
SnFFWED CIRCULAR CTCLIMDEBS, VOLUME V - EFFECTS & INITIAL 
IMPERFECTIONS; AXIAL COMPRESSION AND PURE BESDING, Convalr Division 
of General dynamics Report No. GDC DDG 67-006, June 1967. 

^5 



wgww»3WWBiat.gaig'gtB»'^»»Jw ^ l'-iayssj:^?^fc.fc~ «i^— •■ 

APPENDIX I 

DEVELOPMEWT OF GOVEHTIKG EQüATIOWS AND BOÜHBARY COTDICIOHS 

The total potential energy, equation (8), upon substitution of the 

strains given by equation (5), and subsequent integration through the 

shell thickness, gives in expanded form 

TT Et      rLy'2r2,tRU1 „2 j-1^ 4.1   2    2    ,..1   2    1   U    1   2    2 
" ^7) Wo      ^ U'x+^x+2^xV2 V? V2%X 

,12   12. , ^1 2 J 1 + —KV 
+
^U, v, +u, v, wrt   +u, v, +;ru, v, +u, v, v.    -T:U, W 

2R2        2   'x 'x    'x 'x 0,      'x 'y  2   'x 'y    'x 'y 0,    R   'x 

13 ..1        2^122^ 12 12 
2    'x 0,     2   'y 'x   U   'x 'y   2   'x 'y 0,     2R 'x      'y 'x 0, 

^12^ 1 ..1 2 _, 
2    'x 'y 0,x    'x 'y 0,x 0,y R   'x 0,x    2   'y 'y    'y 'y 0,y 

1 ^1   3 12      1 \      /■,     \/ ..1 2 
- — V.   V+wV,   Vrt   -ÄSS  W-—V,  V-     V)   -   {1-V)(u,   V,   +7rU,  V, R   'y    2   'y Of   2R   *y    R   'y 0,     '       v       /x  'x 'y 2   'x ' 

2 
y 

112 12^ ^1 + u,  v.  w-     -■su,  w+^v,   V,   -=- W,  V+W,  Wn    V,   +S-W,  W-    W,  V- 'x 'y 0,     R   'x     2   'x 'y 2R    'x      'x 0,     'y 2    'x 0,     'y 0, y x x y 

1 12121221221 1 
R    'x 0,       4   'y   4   'x   4   0,    'y ¥   'x 0,y  2   'y fx 2   'y 'x 'y 

1 1 1, 1 
2 y 0*v    y  2   'y 'x 0,     2   'x 'x 'y 2   'x 0.    'y 

" I ^'x^»^ + 2 J_L/2J,    t^xx^yy) 

- 2(l-v)(w,xx v,yy.v?xy)]äxdy (29) 

In accordance with the potential energy principle, the first variation 

of the strain functional, equation (29), vith respect to the displace- 

ments u, v, and w must vanish. Thus, 
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1   2 
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12 

,1   2 
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X *- A 
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+ w,xv0^   )}&w,y - i [(v,y+|v?y^,yw0^ -| ) + v(u,x+|v2x 

-* pL/2   2JtR 
+ v. w      )]&wf dxdy + D I [(^vv^w-)^«, 

x J,x       j -L/2''0 xx     yy       xx 

+ (w,    +vw,     )Sw,    +2(l-v)v,    Sw.     ]dxdy = 0 v  'yy      'xx'    'yy 'xy    'xy (50) 

I 

i 
t 
3 

Integration by parts followed by appropriate grouping of terms yields 

6 (U) = - u,v,w 
Et     r L/2p23tRr 1 

+ v 

(l-v^) "'-L/STO       l        x   2     x      x 0,x 
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L/'2 Et      rL/2 12 
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= 0 (5X) 

With the use of the strain-displacement relations, equation (3), equation 

(31) can be rewritten as 
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+ (ey+vex^V'y^0,   )'y + ^O^O,   ^y + I (ey+^)}aw| dxdy 
jr X 

»1/2   2^   , Et     r2nR  0    0       L/2 
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(continued) 
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Now, vith the introduction of the stress-strain relations (equations 

(6)), vritten for the r Idle surface, the variation of the total 

potential energy vith respect to the displacements u, v, and v is 

expressed as 

L/2 „gnR  n   n        n   n 
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Finally, since the generalized iisplacenents are erbitrary in the 

Anterior of the shell and at the boundaries, as appropriate, eguatioa 

(33) yielt^ tr.. equilibriun equations 

»x^C = 0 
'y 

o o 
N       + N =0 K3U) 
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A JT X 

(where the first tvo relations of equation (3^) have been used to 

simplify the third), and the attendant boundary conditions at 

x  _ 2 . 

2«R 
J   N°dy = 0 or 5u = 0 

I    H dy = 0 

2JIR 

^0 
Mvdy = 0 

or 6v = 0 

or 6w. = 0 'x   ! 

K35) 

c 2j:R o       o 
[Nx(w,x+w0 )+N (w, +w0 )+M  +2M   ]dy = 0 or &w = 0 

'x 'y        'x        y'y -o 

y « 0,2TrR: 

L/2 

;-L/2 

L/2 ß 

N0dx = 0 
y 

r N dx = 0 
!-L/2 Xy 

or 6v = 0 

or 8u = 0 

(continued) 
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r L/2 
J-L/2 y 

M dx = 0 or &w,y = 0>(56) 

rL/2 0       0 
J-L/2 y  y %  ^  x 0'x  y'y  ^'x 

X = ± I , y = 0, 2nR: 

Mxy = 0 
or &w = 0 (37) 
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APPHJDIX II 

SQLlfTICag OF COMPATIBILirY BfllATICH 

For a given trigonooetrlc series representing the initial and buckling 

radial deflection shapes, tlr? procedure for integrating the compatibility 

equation {2k)  is as follows: 

Equations (21) and (23) can be rewritten as 

V 

"T = Aii C08 ^o* COG aoy + A20 cos 2,1oaox      ^58^ 

and 

t ~ A00 + All C0S iieX COS ay + A20 COS 2^ax + A02 C0S 2ay 

+ i^ cos |i0a0x cos BL^ + A£0 cos 2u0a0x (39) 

wnere   a0 = \ /\ >    ^ = \/\,    *0 = *Ay f    and   a = x/\y. 

Substitution or equations (38) and (39) into equation {2k), and perfor- 
-k k,   * nance of the indicated opera-ci^ .s, where   V   V (   ) = 0,    yields 

F/E = ir+ {-T^ (^r ■ 2t2AuA2o-2t2AiiAo2)cos ^ cos ay 

1     / ötA20        2 2 \ 12 2 2 
+ -—$ \ 5- - t A,, J cos 2|aax - -» t |i An1  cos 2ay 

32/   V   Ra^ ■1-L/ ^^ :LL 

2t2^AllA20          ,                         2t2AllA02  5 5— cos 3uax cos ay « . cos uax cos 5ay 
(901) (n2+9r 
2 2 2 

20 02                                                  ^0      f    11        2 * «— cos 2tiax cos 2ay + —5    —it -2t (A* M 
+1) (MQ+D

2
 Lite2 ^2i 

0 0  vl 1     /8tA*n       ?    ? + A^A^+A^A^Mcos u0a0x cos a^ + -^ (—^H . t^Ag 
32^o x ^0 

(continued) 
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•2t2 

—r—? {A^A^AyP^A^) ooc ?u0a0x cos a^ 
(9n0+l) 

2 2 2+2 
HQ

8
 a0* 0 

m ^2 V^o+Weos ^oaox cos 2ay 

t a a0(n.n0) A^A^+A^ 
— -j- -_- cos (na-(i0a )x cos (a-a )y 
H(^a-M0a0) +(a-a0) ] 

t a a0(n^0)
cA11(/^1+A ) 
 5 ^-5— cos (na-Hina )x cos (a+an)y 
M(na^0a0)

2
+(a4e0)

2]2        0 0       0 

— .g . "- .2^  cos (^^oaO)x cos (a+a0^ 
^[(na-kt0a0) +(a+a0) j 

t2a2a2(n4Uo)
2A;L1(A*1+4l) 

— -g- ^-r- cos (na+u a0)x cos (a-a0)y 
^[(|ia-Hi0a0; +(a-a0) ] 

„.2 2 2 2, ._ ^„0 v 2t a a0n0A (A*0+A20) 
 =—K-K  cos (^a-2(i an)x cos ay 
[(ua^n^)2-^2]2 0 0 

2t2a
2
a^A (A*0^0) 
 *—«-•  cos (na+2u aA)x cos ay 

[(ua+2n0a0)2
+a2]2 0 0 

2t2,2a2
a
2A20(A!l+A^) 

— -g        ^        cos (2na-n a0)x cos a^ 
[(2na-(a0a0) +a0] 

2t2u2a2a2A20(A£1+A^) 
— o    2g        cos (2na4Voa0)x cos a^ 

[(2tia-Hi0a0) +a0] 

5^ 

(continued) 
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a      ,2 ~ -ZTT cos ,ioaox cos ^a-ao)y 

^^oao) +(2a"ao) ] 

2t2n2a2a^    (A* +A0 ) 

[(u0&0) +{2a+a0)  ] 

Now, with the introduction of the stress function   T,    equation {hO), and 

the initial and arbitrary displacements w0 and v, equations (.58) and {39), 

into equation (17), the total potenti&l energy is obtained, in terms of 

the displacement amplitude and the buckle wavelength parameters, and it is 

expressed as 

""^ ' o        ^2
A
2
 «2 k 2,2 A2        ,   1^ 2.2 .2 

.-U n  „2  ,2   .  ^ A11A20   .  * ^ A11A02      ^ ^ A20A02 
+ 2 ^20 " t All;        7~2~^2~ +    ;  2^,2      +      ;  2^,2 

(9M +1) (n +9) (|i +i) 

4 2 4 

+ T^ (
A
!I

+2A
!I

A
II

)2
 

+ -7T-2 fA!i-2Tio(A!iA?o+A!oAii+AliA2o)]2 

M^o+D 

h 2 

+ m [8A?o^oA!i(A!i+2An)]2 + ~T~2 (ALA!o+A^i+A!iV 
(9n0

+i) 

2x  >2 ^02^20 ^02^20;        TT^     7=        7=^  , 7=     7=^2 

^.^-^^^(A^^)
2 ^^^ .+u0 )1+

A
2
1( A^.AJ, )2 

+ —^ + 

2 2/   .     ^*2  ^A* ^n
0   ^2 ^ 2 2A2  , AJL    „0  x2 

n n0(^M0) A11(A|1+A;L1) ■ ^o1 ri^^A^+A^) 
+  ?: a-w + 

6M(n/^.^0/^)2
+(/^./^)2]2     [(iiA-2n /^J^] 

(continued) 
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^   2   ^'     ,  ^   ^«O    \2 ^   2   2*2   /A*   U.«0    \2 

[(uy^2n0y^)2+T,]2   [(2ny^ia0y^)2+T,0]2 

,> 2 2 2  , 0  v2 U 2 2.2  , ,„ ^0  x2        1+2 2A2  , .^ ^.0  v2 

[(2n /r+u0 >/no)2+TJo]2    ^oV(2^- ^)2]2     tW^Wv^ 
2,  2J, s2A2        _ 2,   1+.2 ^.2  v        2,  2A. .2A„2        _ k 2.J2 

+ n (^    1) ^ + 
2T1 (|i A20+A02) + HpC VT-) A*^ + ^oV|o ^ 

it8(l-v2)       5a-v2)    '  li8(l-v2)     3(l-vP) 

2   2    2 2   2    2 
vhere T] = it Rt/X, = a PH; and T) = it Rt/\  = a-Rt 

The first term in equation (i+l),that is, the average stress, can be 

expressed in terms of the applied end shortening e and the displacement 

parameters by utilizing tne relation defining the unit end shortening 

1 PL/2 
e = - ±     u. dx (42) 

L J-L/2  X 

In terms of the stress function F and the displacements, equation (42) 

becomes 

L/2 

by virtue of equation (5), equation (7) written for the middle surface, 

and equation (16). Substitution of equations (58), (59), and (40) into 

equation (45) and performance of the indicated operations yields (after 

multiplication of both sides of equation (43) by R/t) 

2 2 0 
A A*       A* A 

The variation of the total energy (4l) with respect to all of the free 

parameters yields a set of nonlinear algebraic equations in the variables 

of the assumed displecement, equation (59), with the prescribed end 
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shortening being the forcing function. The variation is made indepen- 

dently of A00. This parameter is evaluated by enforcing the periodicity 

condition on the displacement v. With the use of equation (i;), equation 

(7) written for the middle surface, and equation (l6), the relation 

v. = i (F, -vF, ) - i w? - v,  wn  +|       (1+5) 'y E K  'xx      ,yy/      2 'y   'y 0,   R       v y/ 

is obtained. When equations (38), (39).» and (1+0) are introduced inco 

(U5), the resulting expression yields trigonometric relations in terms 

of y and additional terras independent of y; hence, these terms are set 

equal to zero vith the result that 

o 

Aoo = ^ir+ 4)+ T (A!?+2A!iAn) -v § w 

Ti 



APPEHDIX III 

SQLUT-IQR OF CURVED-PLATE FROBLEM 

The assumed radiel deflection shape in the curved plate is assumed to 

be, in general, 

'S  = tA,,   COS r— COS -r4" + 'tA--,   cos -~ •+  tA„,   COS  -T— COS r*- (U7) 
11 A, A. 01 D 21 A A. v 

x    y x    y 

However, in the  present solution, the buckle aspect ratio \i = X /\ 
y x 

is issumed to be unity and \   = b/N, vhere N is odd and L/'b is 
if 

even. 

The corresponding stress function is 

2.2 2 2 

F = E j-(t A;^^) cos -£- - (-^-) cos -^ - -j^ cos ^g- 

2 2 2 2 
t A21 2N^;     t ^1^21 Nnx     * A11A21 3Nroc 

- n COS  —T-*- -  ——T  COS  -T—-  -   ,-» COS  —r— 8 b 1+ b 5o b 

9 2A     . N«x 2Nrty      * A11A21 5Nmc 2Nny 
- r~ t  A, A        COS  -r— COS  —-*• -^^r  COS  -rr— COS  -rrf- 100        11 £il o b o/o b b 

N^t A11A01 Nnx    n    (N-l)ny 
 5 5^ cos T~ cos  —>r^ 

2[N2
+(N.l)2]2 ^ b 

N t AI1A01 Nnx (N+l)ny 
 ö ö~^ cos "TT" cos    —vT"^ 

2[N2
+(N+1)2]2 b b 

2 2 
2N t A01A21 2N:tx (j^jW 

  cos —— cos - —- 
[^2

+(N-l)2]2      '     b       ' b 

2 2 2 
m t Ao;LA21 2Njtx          (N+jWr j    

b tAll          Nitx          Nity 
 ^—!r COS  -!  COS  ■*—       *- +  a  a     COS  -r— COS  -rJi- 

[^(w)2)2       b b       wA2        b        b 

(continued) 
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kt\> A^ ^ „ 2^ 21 2K3tx „„   Nffy     ay    „ ,.«* 

The mean end shortening is 

- . L/2 cr    a   n „        _2 2^.2  ,.   _ 

L J.L/2 E  V E '  2 v»xJGX  E  ^2  ^^ll^^l^   ^; 

The total potential energy, excluding the potential of the applied load 

since the end shortening is assumed constant for a rigid testing machine, 

is 

u = NVA^JM 
+ rmVA^/iae + (1/00(1/169 + 281/2^^^^ 

2 
+ (g)    + NVA^A^d-f&jjj)/^ + HVA^a2/.^ + A^/16 

+ NS^A^CI+B^) + NVA^A^
2
 + ^i/25 

+ 
2ii 

K
^

2A
?1

A
01

A
21^W^ " NTA^C-l) 2 75* + NS^A^A^S^/S 

H-l N-l 
- NnAj1A2;L(-l) 

2 A« + ^VA^AQ^OÖ^/SO - 3RTlA^LA21(-l)'
r/20« 

-l^TjA^A^ß/Un - N2TiA^LA31ß/t3t{2N-l)  - ^TJA^A^O/^ 

+ N2TlA^1Ao;La/J+Tt(2N+l) - 8N2TiA01A2
:LA/5n - 8N2TiAo:L/

2
1A/5n(2N-l) 

- 8N2r1A01A217/5^ + 8^^^7/5^(2511-1) 

N-l N-l 

ir.?lV  ~) 2 /SOOn - 3NT)A2
1A21( - 2(l+v)[27Nt1A

2 A    (-1) 2 /SOOrt - 3NT)A
2
 A.. (-1) 2 /521t 

(continued) 
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- ^nA^A^VlÖJtCaj-l) + N2
n^1Aoia

2^/l6n(2N+l) 

- l6N2nA01A2;LA2*/25n(2N.l) + leN^A^A^A/^CSR+l)] (50) 

2        2 where   n = n Rt/b 

a = l/t^+U+l)2] 

ß = 1/[N2+(W-1)2] 

7 = l/tW^N+l)2] 

A = l/[lrfJ2+(N-l)2] 

♦ = IfK2 + 1(B + 1 

♦ = 1+N2 - l^N + 1 

f 1   for   N = 1 

■^      l 0    f or   N / 1 

The ■boundary conditions satisfied by the assumed deflection are 

w = 0    at     y = ± b/2 

f   '     cr dx = 0 /(51) 
.1       /_     v 1 ' : J  ., ,n   y -L/2 

f.L/2 
i t    dx = 0 

J-L/2    ^ 
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