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SUMMARY 

The viscous transonic small disturbance equation has been recast into a form 

which displays the role of the usual inviscid transonic similarity parameter and 

of a newly defined viscous transonic similarity parameter in the two dimensional 

flow past slender bodies.   Using the approximate method of Hosokawa the solu- 

tion for viscous transonic flow past a wavy wall has been obtained in analytical 

form, and displays the role of the above similarity parameters.   The Influence 

of the Reynolds number and free stream Mach number on the supersonic pockets 

which arise at the wall surface has been investigated. 
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I.   INTRODUCTION 

Regions of supersonic flow arise near the surfaces of airfoils and nozzles 

as the free stream Mach number approaches unity.   Such supersonic pockets 

are usually, though not always (Nleuwland and Spee, 1968) terminated by a 

weak shock wave.   Analysis of the flow within and near such pockets, particu- 

larly In the neighborhood of the terminating shock Is a crucial problem of tran- 

sonic aerodynamics.   A particular difficulty Is that the pressure rise across 

the terminating shock wave is not the same as that obtained from the Ranklne- 

Hugoniot equations due to the interaction between the shock and the boundary 

j layer at the surface and also due to the fact that the weak terminating shock 

may be sufficiently thick that the shock structure is no longer one dimensional 

(Sichel, 1968). 

To gain some insight into this problem Hosokawa (1960a, b), using an ap- 

proximate method, obtained solutions of the inviscid transonic equation for 

flow past a wavy wall.   With increasing free stream Mach number supersonic 

pockets do appear at the surface of the wavy wall, and Hosokawa's analysis 

always requires that such supersonic regions be terminated by a shock like 

discontinuity.   Hosokawa's method was applied by Sichel and Yin (1969) to ob- 

tain solutions of the viscous transonic (or V-T) equation for wavy wall flow. 

The V-T equation, which is discussed in a survey by Sichel (1968), corrects 

the inviscid transonic equation by an additional term representing the influence 



of compressive or longitudinal viscosity, but shear viscosity is still neglected. 

Thus the V-T equation makes it possible to analyze weak shock waves with a 

two dimensional internal structure.   Sichel and Yin's results could only be ob- 

tained by numerical integration and hence were limited to a single Reynolds 

number and only several values of free stream Mach number. 

In the present paper the V-T equation is first recast into a form which 

displays the role of the usual inviscid transonic similarity parameter, and a 

newly defined viscous transonic similarity parameter in transonic flows about 

bodies in general.   Then, using the method of Hosokawa, the solution for V-T 

flow past a wavy wall is obtained in analytical form so that the influence of 

Reynolds number and free stream Mach number on the supersonic pockets which 

arise can b0. explored in detail. 
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II.   THE VISCOUS TRANSONIC EQUATION AND SIMILARITY 

The V-T small disturbance equation has been derived (Sichel, 1968) from 

the Navier-Stokes equations by perturbing with respect to a uniform sonic flow. 

But, a more general equation is obtained if perturbations are with respect to 

some uniform free stream velocity U near the sonic value but not necessarily 

equal to it.   Consider two dimensional flow past a body, whose surface is given 

by 

y-yw(x)=Sf(x/L) (1) 

as shown in Fig. 1.   Barred quantities are dimensional.   S is the maximum 

  _  _     _ _2 
thickness, and the body shape function f(x/L) ^0(1).   Then using U, p   , p U 

as reference velocity, density and pressure; and the body length, L, as refer- 

ence length, the expansions 

ü   ,          (1)                                               1 (1) 
u=— = l+eu+... p = 2 "♦■ e P      + •     •     • 

U yM 
oo 

(2) 

P    i (1) v     ^     (1) p=-c- = l+€p+... u=—^Xev 
P U 

and the coordinate stretching 

x = ^ , -^ (3) 
x =>i 

when introduced in the Navier Stokes equations, yield the following equations 

for u      and v    : 



UL«rV      Pr"/     J 
1 - O   (1) + u 

xx e x 

.       ,, .^ 2    (1)   (1)     X2   (1)     n (y + 1) M     uv ' ux ' + — v      = 0 
oo x    c       y (4) 

u'1' = v(1) (5) 
y        x 

The stretch factor A takes into account the difference in the characteristic x 

and y dimensions which arises in transonic flow while IT   , p    , p^   , and v 

are presumed to be 0(1), and the expansion parameter e « 1.   f" is t.ie com- 

pressive or longitudinal viscosity and Pr" is the longitudinal Prandtl number. 

Since the flow is irrotational to the present order of approximation introduc- 

tion of a potential * reduces Eqs.  (4) and (5) to 

(1 " M3 2 A2 

,   ,,,-       + — *     -(y + l)M     *   *     + —*     =0 Pr"/   xxx € xx oo    x   xx     e    yy 
(6) 

To the present order of approximation the boundary conditions will be that 

(1) dyw       df 
AevU,(x,ü)=Ae*y(x,0)=-ä^=S^ (7) 

where S = S/L, and that u     and v      must remain finite as y -* oo.   At the same 

time the pressure coefficient C   is given by 



: 

: 

o 
D 

i 

J 

] 

1 

P'P00 
Cn=T ^S"2*** 

Following Ferrari and Tricomi's (1968) discussion of inviscid transonic simi- 

larity let 

[] Ac=S (8) 

since both v^(x, 0) and V{x) should be 0(1). 

Using Eq. (8) the V-T equations can then be written in the form 

11 
-..   2 . _ (1 -M ^e2 

Tj^s2\       Pr"/   xxx s2 xxx 

(y + l)M  2£3 

 _?? $   s»     +*     =0 (9) 
s2 x   xx      yy 

Now, in V-T flow the four terms of Eq. (9) should be of ihc same order, and if 

the expansion and stretching of Eqs. (2) and (3) are appropriate, the *      , 

«fc    , * , <l>     ~ O(l), and it becomes convenient to choose e so that 
xx     x     yy 

(y + DM^c3 s2/3 
 2 = 1    or   e = jTg ^Tä (10) 

SZ (y + l)
1/3MZ/3 

TO 

The coefficient of *     then becomes xx 

(1 -M^e2 (1 -M^2) 

B s2"     V/3M4/31 + I)2/3 = XQO 
00 

(ID 
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where x    is now the usual inviscid transonic similarity parameter (Ferrari 
00 

and Tricomi, 1968).   The coefficient of the viscous term of Eq. (9) becomes 

üX^^NüS^M^^M'^K   (12) 
00 

where x   is now a viscous-transonic similarity parameter.   The V-T equation 

can thus be written in the form 

X*       +X*     -**     +*     =0 (13) v   xxx       oo   xx      x   xx       yy 

with the boundary conditions 

* (x,0)«f,(x)    ;    * ,*     bounded as     lyl - oo,   |x|- oo (14) 
J J 

The pressure coefficient will be 

.2/3 

V".       ri/3., 2/3*x(x'y?Xoo'*v) (15) 
r
        (y + 1)       M 

oo 

Equations (13), (14), and (15), provide the basis for viscous-transonic simi- 

larity rules. 

Since U L/V' Is a Reynolds number. Re, based on compresslve viscosity, 

the newly defined V-T similarity parameter, x   can also be expressed In the 

form 

00 
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Thus x   varies inversely with the Reynolds number, and the coefficient of the 

viscous term in Eq. (13) will become very small for large Re.   Letting 

(17) 
'=ÜS2/3M^(^^^i1+^) 

the V-T similarity parameter x   becomes 

Xv=r?/L (18) 

and 77 is a length of the same order as the thickness of a weak shock wave. 

Finally, in terms of a viscous length L   = i/"/a  , 

(SA' i1 + fer) v y      '       Pr'   ■ ,1Q, 

' V/3 M 7/3 (v + I)2/3 '   ' 
00 

Since L   is of the order of the mean free path, the ratio L /L is clearly a 

Knudsen number. 

It is readily shown that at the sonic point 

m    (ii .       (1 " M«2) . x .... 

00 

that is the critical value of the expansion coefficient u   ' equals the inviscld 

transonic similarity parameter. 



The variation of x   with S and M    is shown in Fig. 2(a), while Fig. 2(b) 
oo oo 

shows the variation of x   with the Reynolds number U h/v" for different values 

of thickness ratio S, and also shows the variation of L /L with Re.   Clearly, 

the use of the continuum theory is questionable when L /L > 0.1 or when 

Re < 10 in the present case with M    =1.0.   With Re > 100, x   «1, except 

for extremely small values of the thickness ratio S, and then solution of the 

V-T equation (13) becomes a singular perturbation problem. 

Equation (15) implies the similarity rule that the pressure coefficient C , 

2/3 2 varies as S       for fixed x  , X , at least to first order in (1 - M   ) or e.    For oo    V oo 

geometrically similar bodies it is necessary to know the influence of the phys- 

ical variables L, M   , S, and L   upon the similarity parameters x   and x   to 

assess the significance of the V-T similarity rule implied by Eqs. (13), (14), 

and (15); hence the effects of these variations have been summarized in Table I 

below.   Case 1 in Table I represents flow with constant free stream density, 

temperature, and velocity, but with variable characteristic length L, which 

might, for instance, be the airfoil chord.   Then even though the inviscid tran- 

sonic similarity parameter remains constant, the viscous parameter x   varies 

inversely with L.   Flow past a fixed object with constant p , T   but variable 

M    is represented by Case 2, and then x   is fixed but the inviscid parameter 

X    is variable.   Cases 3 and 4 show the el'?cts of varying body thickness S, 

and of varying p   and T   and hence the viscous length L   upon the similarity 

parameters.   Case 5 shows the variation of C   when parameters are adjusted to 

keep x   and x fixed. 
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Table I.   Relation Between Physical Variables and Similarity 
Parameters in V-T Flow. 

Case 
No. 

Physical Variables Similarity Parameters 

Fixed Variable Fixed Variable 

1. VS L x« 
XyOCL-1 

2. S,L,L 
'    '    V 

M 
QO \ ^ d  - Moo2) 

3. ^v^oo S *J\ 

4. 8,17,1^ 
\ \ 

\ocLv 

5. L 
V 

S, L, M^ 
00 

l-M2ccS2/3 

00 

Vv c ocs2/3 

P 

L cc S"2 
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HI.   WAVY WALL PROBLEM — FORMULATION 

The problem of flow past a wavy wall provides a means of examining the 

effects of the parameters x   and x   on V-T flow since, using the method of 

Hosokawa (1960), it is possible to obtain approximate solutions of the V-T 

equation in analytical form. 

With the ordinate of the wall given by 

y    =Ssin27r= (21) 

where i is the wavelength, the boundary condition (Eq. (14)) becomes 

v(    = * (x, 0) = a) cos wx (22) 

where aj= 2v L/T.   The factor u) determines the choice of the characteristic 

length L.   Thus letting w =1 implies that L = S./2ii, and, as will become evi- 

dent later, is the most convenient choice.   In the present formulation the 

influence of S and S. enters only ti.rough the similarity parameters x    and x 

in Eq. (13), with the choice of w a matter of computational convenience,- in 

contrast to the previous formulation (Sichel and Yin, 1969) where tlie param- 

eters of the problem occur in both the equation and the boundary conditions. 

Following Hosokawa (1960b) the potential * is split into two parts 

* ^ + g (23) 

such that 6 satisfies a linearized V-T equation with the acceleration 6     In the 
xx 

10 



nonlinear term replaced by a constant K so that 

X^       +X^     -K^+0     =0 (24) v   xxx       oo  xx x      yy 

0 is made to satisfy the wavy wall boundary condition (Eq. (22)) so that 

^ (x, 0) = w cos cox = Re (co e      ) (25) 

The function g is a nonlinear correction which in view of Eqs. (13), (24), and 

(25) must satisfy 

Xg      +Xg     +(K-0)^-(g^)-gg     +g     =0 (26) v &xxx       oo 6xx ^xx rx     &x rx       &x &xx    6yy 

gy(x, 0) = 0 

A key assumption in the approximate analysis, which is discussed in detail 

by Hosokawa (1960b) and by Sichel and Yin (1969) is that 

gyy(x, 0) = 0 (27) 

so that Eq. (26) can be treated as an ordinary differential equation for g at the 

wall, y =0. Following Hosokawa (1960b) the constant K is chosen as 0 (x, 0) 

at the accelerating sonic point, ^ (x, 0) = x   , in the linear solution where 
X 00 

K > 0.   This procedure yields the equations 

*X(X*0;VXV) = XCO 

♦„(«».OiX^-K 
(28) 

U 



for K and the sonic point x =x*.   The justification for the choice of K is dis- 

cussed by both Hosokawa (1960b) and Sichel and Yin (1969).   Equations (23)- 

(28) present the basic elements of Hosokawa's approximate method. 

Assuming that <f> is of the form 

<MRe[F(y)eia,x] 

the solution of Eq. (24) with boundary condition (Eq. (25)) is readily shown to 

be 

^ =Re[- (w/m / ) exp(- m /   y cos |)exp i Uox - m '    y sin f " l/J (29) 

where 

m = x
0o2a,4+Cu,3xv+u,K)J 

1/2 

(30) 

3 a)   x   + a)K 
ß = arctan ^—=—      ;      0 < ß < TT 

00 

Letting K = x    =0 reduces the linearized equation (24) to that for inviscid 

linearized subsonic or supersonic flow, and the solution (29) reduces to the 

well known linearized subsonic or supersonic wavy wall solution. 

Equation (26) for g(x, 0) can be integrated once to yield 

Mxx + ''co*x-S(*x+gx)2 + K*':Al (31) 

12 



where A. is a constant of integration.   Introduction of the variable 

C(x) =gx(x, 0) + *x(x, 0) - X^ = u(1)(x, 0) - u(1J. (32) 

for the deviation of u ^(x, 0), the velocity at the wall, from the critical value 

and use of the linearized solution for <f> then yields the following ordinary dif- 

ferential equation for C: 

c -2F? =-2r+r+T"""C08f    1-2^        (^ V V V V 

Equation (33) ia a Riccati equation, which with the transformation 

.      CÜ 3       IT 

^2X + 4+4    ; 

- 1 dT 
^"^v'TdT 

(34) 

changes to the following second order linear equation for T: 

T,f + (ä - 2q cos 24) T = 0 (35) 

with 

-     2A1 - X=o2 m1/2 

Equation (35) is the Mathieu equation whose properties are well known 

(McLachlan, 1947).   The V-T wavy wall flow has thus been reduced to the 

problem of solving the Mathieu equation and is considered below. 

13 



IV.   RELATION BETWEEN X , X   , AND THE PARAMETERS 
V       00 

OF THE MATHIEU EQUATION 

The wavy wall solution depends upon the similarity parameters X   and 

X    through their influence on ä and q in the Mathieu equation (35).   Therefore 

it is necessary to solve Eq. (28), which relates m and the angle ß to x   and 

00 

Introducing the solution for <£, Eq. (28) becomes 

-T728ln(wx*-f)=xco m 

3 (36) 
J172C0S(wx*-f) = K 

m 

In solving Eq. (36) it is more convenient to deal with the variable 

WX   + (K/w) 
7j = tan ß = —^-  (37) 

Xoo 

so that 

m1/2 = a, lx   l1/2(l^2) (38) 

Upon squaring both sides Eq. (36) can be reduced to the following algebraic 

equation for 77 

14 



1 + 

2       2/,      ,3 

(39) 

Although Eq. (39) is of sixth order in TJ so that an analytical solution is not avail 

able, a graphical interpretation of Eq. (39) does provide an insight into the 

behavior of rj.   Let 

y1 = l+(^w^) 
00 

y2 = 

co2/lxJ3 

(1 + v2) 
172 

then solutions of Eq. (39) are the intersections of the curves y. (TJ) and y«^) 

2 3 
in the y-rj plane as shown in Fig. 3.   As long as w /I X  I   > 1.0, Eq. (39) oo 

will have two solutions 7]   and rj   such that rj   < u)X /\   < r]     and from Eq. 
1 Z 1 V     oo        ^ 

(37) it then follows that K < 0 when TJ = TL and K > 0 when ?] = rj .   Since K is 

to be evaluated at the accelerating sonic point, rj  must be the appropriate 

solution of Eq. (39). 

Although Eq. (39) cannot be solved for rj as a function of x   and x   , the 

equation can be solved for x   and a function of T] and X    so that 

xv = 
oo 

CO 
77 +' 

2/I       I3 
1/2 

(1 + V) 
172 

(40) 

and the minus sign must be chosen in Eq. (40) to ensure that K> 0.    From 

4  ,      16 I/2 

Eq. (40) it follows that rj < [(co /1 x   I ) - 11       if X   is to be real while 
00 J v 

15 



4/3 1/2 
ITJI > I [(u>     /lx I ) - 1]       I if X   is to be positive.   For purely subsonic 

flows such that ^ (x, 0) < x    for all x the present formulation loses its mean- 

ing. 

The variation of ij with x   and x   as determined from Eq. (40) is shown 
00 

In Fig. 4, for subsonic free stream flow with x    > 0, and with u» = 1. 0 for 
00 

convenience in calculation.   Figure 4 reflects the influence of compressive 

viscosity on the linear solution for $.   From the definitions of TJ (Eq. (37)) and 

q (Eq. (35)) It follows that 

,1/2 

q = 
00 

(i + n2) 
1/4 

(41) 
WX. 

and the variation of q with x   and x    is shown in Fig. 5.   Remarkably, q varies v oo 

only slightly with x    but Is mainly a function of the viscous parameter x •   For 

a sonic free scream with x    =0, Eq. (36) reduces to a cubic equation for K 

with solution 

K = 

/ 3' 
1    i fi ^v H 4 + 27 

1/3 

while the Eq. (41) for q becomes 

q = s = ö—      when X   « 1 v (42) 

16 



From Eq. (36) and (37) it can be shown that 

x*=- 
1 1,-1 -1        ^00 ö tan     TJ + tan    —  

2 \r} - wx, 
oo 1 ] (43) 

] 

and the variation of the accelerating sonic point x* with x   and x    is shown 

in Fig. 6 for a subsonic free stream with x    > 0. 
00 

1 
1 
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V.   SOLUTION OF THE MATHIEU EQUATION 

From Eq. (41) for q and the definition of x   and x    it can be shown that 

q ■- 0 as S — 0, that is as the amplitude of the wavy wall decreases to zero. 

Solutions of the Mathieu Eq.  (35) in this limiting case q =0 will be considered 

first for guidance to the appropriate choice of the constants of integration. 

Then 

T=A2e^+A3e"^ (44) 

where A2 and A« are constants of integration and 

v 

From Eq. (34) it then follows that 

<^'{X,0)-XX-  ——   g ^  (45) 
(A2/A3) e1^ - e ^ 

and A./A. is now the only independent constant of integration.   Letting 

A2/A3 - * 

C = -wx  u = - yxj ■ 2A 
-1 

""1 

and choosing A- =0 yields 

C = - X^ (46) 

18 



(Ao/Ao)=1.0 ;      C^-X^tanh^« (4V) 

n 
corresponding to undisturbed free stream flow.   This is the expected result in 

the limiting case of vanishing amplitude.   Howevf r, with A1 - 0 three other 

possible solutions are n 
W ,VA3 

[] (A2/A3)=0 ;      K'-**m (48) 

0 
:: 

i 
] 
] 

(Aj/Aj^-l.O       ;      C^-x^coth^i (49) 

The solution (47) corresponds to Taylor's (1910) solution for the structure of 

a weak normal shock wave while the solution (49) diverges at i; = 0.   None of 

the solutions (47)-(49) are appropriate limiting solutions for vanishing ampli- 

tude. 

When q ^ 0, it follows from the Floquet theory for second order linear 

equations with periodic coefficients that solutions of the Mathieu equation can 

be written in the form (Abramowitz and Stegun, 1964) 

|J T = A2 e'MC P^ + A3 eM4 p^) <50) 

J P(4) is a function with period TT or 2IT and ß =/x(Ä,q) is the characteristic ex- 

* ponent which may be real, zero, imaginary, or complex, and is a function of 

the parameters ä and q.   With ji = 0 one of the solutions T will be periodic of 

i 
1 

19 
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period n or 2ir and for a given q the values of ä resulting in /i = 0 are called 

characteristic values of the Mathieu equation.   With /i real T diverges at either 

^ —+ oo or I ^ - oo and the solution is called unstable, while if ß is imaginary 

T will be periodic but of period other than n or 2n and the solution is termed 

a stable solution.   The (£, q) plane can thus be subdivided into regions of stable 

and unstable solutions separated by jLt(ä, q) = 0.   The portion of the (ä, q) plane 

pertinent here is shown qualitatively in Fig. 7 which also shows curves of 

constant <i. 

With q = 0 it has already been shown that ß= y- & = x /t*>x   and that 

ä < 0 so that the solution for T lies in the unstable region along the negative 

ä axis (Fig. 7).   When q > 0 it is to be expected that the solution will, at least 

for some range of q, still lie in this unstable region, however iijt  y- & but 

will depend on both q and ä.   Then the solution (50) can be expressed in the 

form (McLachlan, 1947) 

T=A2e    ^L   C2re        +V      ^Sr6 (51) 

r=-oo r=-oo 

with the recurrence relation 

[ä-(2r-lrt2JC2r-q(C2r+2 + C2r,2)=0 (52) 

20 



n 

I 
D 
1 
:: 

:: 

D 
D 
] 
] 
] 
3 
3 
I 
I 
I 

From Eq. (52) it follows that C«   and C ^ ^e complex conjugates.   Then 

letting 

Cft   = p«   e ,    C rt   =p0   e ,    CA=2f. 
2r    K2r '       -2r    K2r 0       0 

Equations (34) and (51) yield the following solution for C, the deviation of the 

velocity u     at the wall from the sonic value: 

^v   A3 

+ e -I* 

00 ^ 

ßPQ + ^ 12rp2r sin (2r^ + ^2r) - ßp2r cos (2r^ + ^2r) I  I 

+ ^0 + S  [2rp2r Sin (2r^ " *2r) + ^r COS {2H " *2r) [ 
L r=l ■' J 

2   i4 
00 

P0 +  2  p2r C0S (2r4 + 02r) 

r=l 

+ e ■tf 

00 

i 
p0 + 2L  p2r C0S {2r4 " *2r) 

r=l ] 
Letting A-/A« - oo as in the limiting q =0 case considered above the solution 

(53) for C becomes 

00 

CO XvJ>   2rp2r sin (2r4 + 02r) 

v^ 
r=l 

JQ 

00 
(54) 

p2r cos (2r4 + </>2r) 

r=l 
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From the recurrence relation (52) it follows that as q - 0, CL   and hence 

p0   -► 0 so that ? ■* - wx ß which is identical to the limiting solution (46). zr v 

The solution (54) has period TT in i; or is of period 2ir in cux, that is the same 

period as the wavy wall. 

If A2/A„ =0 the solution reduces to Eq. (48) in the limit q - 0.   When 

Ag/A« =1.0 the solution for J behaves like a weak normal shock wave at the 

origin with a superimposed oscillation, while the solution will diverge at some 

value of 4 when A2/A3 < 0.   Thus, the choice A./A„ - oo appears to be the 

only proper one for the wavy wall problem. 

The constant of integration A, determines the parameter & (Eq. (35)) and 

hence influences the solution through both the recurrence relation (52) and 

through the dependence of the characteristic exponent /i upon ä.   With q ^ 0 

the choice of A, is thus not as straightforward as in the limiting q = 0 case. 

A property of Hosokawa's (1960) inviscid analysis but not of the present viscous 

solution is that the correction g   vanishes at the accelerating sonic point de - 

fined by Eq. (28).   In the viscous case g (x*) will depend upon the integration 

constant A..; therefore, in order to compare the viscous and inviscid results 

A1 has been chosen to make g (x*) = 0.   Therefore, at the accelerating sonic 

point, x =x* or 4=^*, where C(l*) =0, the condition 
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00 

^  2rp2r sin (24* + 02r) 

(*&, q) = -^  (55) 

^0 + 2 P2r C0S (2r^ + *2r) 

r=l 

must be satisfied.   Equation (55) is an implicit equation for £ and hence A,, 

which can only be solved by trial and error. 

The series in the solution (54) converge very rapidly so that on?y three 

or four terms of the series need to be retained in the numerical evaluation of 

C.   For low values of q the values of ß for different values of & and q have been 

obtained from graphs in Abramowitz and Stegun (1964).   For large values of q 

asymptotic expressions given by Erdelyi et al (1955) have been used to deter- 

mine ji as described    in    Appendix A.   In practice computations are carried 

out by first choosing a value of q, which, from Fig. 5, is equivalent to fixing 

the viscous similarity parameter x  .   C is then computed for arbitrary values 

of ä, and the position of the sonic point, £* read from these solutions can be 

used to determine x   from Fig. 6.   The computation of ? can then be repeated 
00 

using values of ä corresponding to equal increments in x   . oo 
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VI.   RESULTS AND DISCUSSION 

The variation of C with x   has been determined for x   = 0. 61 and 0. 33 

as shown in Figs. 8 and 9.   Hosokawa's (1960a) inviscid solution for several 

different values of x   , described in Appendix B, is shown in Fig. 10.   In the 

case of a sonic free stream with x    = 0 the variation of C is plotted in Fig. 11 

for x   =0.61, 0.48, 0.33, 0.27, and for x   =0 corresponding to Hosokawa's 

(1960a) inviscid solution. 

From Figs. 8 and 9 it can be seen that in the viscous theory shock discon- 

tinuities terminating regions of supersonic flow are replaced by smooth compres- 

sions across which the Rankine-Hugoniot conditions are not necessarily satisfied. 

Comparison of Figs. 8 and 9 shows the influence of decreasing x   or increas- 

ing Re upon the solutions.   It can be seen that the transition to subsonic flow 

becomes steeper with decreasing x .   With a sonic free stream x    = 0, x 

does not seem to affect the location of the compression wave; in fact, the inflec- 

tion points of the sonic compressions occur at x = 1. 25 a which is also the 

location of the corresponding shock discontinuity in the inviscid solution (Fig. 

10).   With a subsonic free stream, X   > 0, on the other hand the effect of 

viscosity is to shift the compressions upstream and to shorten the supersonic 

region as compared to the inviscid solution of Hosokawa (Fig. 10).   Compari- 

son of the viscous and inviscid solutions shows that viscosity has a negligible 

effect on the accelerating portion of the flow preceding the shock transition. 
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Figure 11 shows that the viscous solution approaches the inviscid solution 

as x   -0 when the free stream flow is sonic (x    =0); however, as indicated 

above this no longer appears to be true when the free stream is subsonic 

il (x    > 0).   This interesting result, which suggests that it may be essential to oo 

include viscous effects in the analysis of certain transonic flows, bears further 

investigation.   Since the theory developed here rests on a number of approxi- 

mations and assumptions, the result that the subsonic solutions fail to approach 

the inviscid solutions as x    - 0 can only be considered tentative. 

The sonic solutions have certain special features.   For these solutions 

the characteristic exponent |i - 0 so that the sonic solutions correspond to the 

characteristic solutions of the Mathieu equation.   Further, with x    =0, the 

phase angle ß, which arises in the linear solution for 4> has a value of ■n/2 just 

as in the inviscid case while x* = ir/A and is independent of x . 

The choice of the condition g (x*) =0, used here, will have a particularly 
A 

important influence on the behavior of the subsonic solutions.   Setting g (x*) =0 

is ba.«. J in part on the inference of Oswatitsch (1955) that the linearized solu- 

tion should be valid near the accelerating sonic point, and of course this is also 

the point at which the constant K coincides with the actual acceleration ^     of 

the linearized flow; however, there is no rigorous justification for this choice, 

g (x*) could also, for example, be chosen to make the inflection points of the 
A 

compressions in the viscous solutions coincide with the position of the Inviscid 
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shock discontinuities.   With this choice all the viscous solutions would probably 

approach the inviscid solutions as x   — 0. 

The flows considered here correspond to low Reynolds numbers.   For ex- 

ample, for a body with thickness ratio S = 0.01 the range 0. 27 < x   < 0.61 

corresponds to64> Re >28, and 0.016 < (L /L) < 0.035 (Fig. 2(b)).   For this 

value of S^ M   will be very close to unity and the range 0 < X    < 0. 8 corres- 

ponds to 1 > M   > 0.970.   Boundary layers have, of course, been neglected 

In the present analysis, and the Re is based upon the wavelength or character- 

istic body length.   In an actual flow the behavior of the free stream shock wave 

will also be influenced by disturbances induced in the boundary layer by the 

rapid free stream compression.   Then on appropriate Reynolds number to des- 

cribe the behavior of the flow near the shock wave might be more appropriately 

based upon a length characteristic of the boundary layer thickness rather than 

the length of the body.   It is thus possible even when the Reynolds number based 

on L is extremely large, that the local Reynolds number governing the shock 

behavior may be extremely small, that is of the same order as the Reynolds 

numbers considered here. 

As compared to the previous paper on wavy wall flow (Sichel and Yin 1969) 

it has now been possible to obtain solutions in analytical form.   The ratio of 

wall amplitude to wave length and to a viscous length appears here only through 

the parameters x   and x    whereas these ratios were introduced through the 
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boundary conditions in the previous paper.   It is difficult to compare the present 

results to those obtained by numerical integration in the previous paper although 

there seems to be some difference.   In particular, with a sonic, free stream the 

location of the inviscid shock and the viscous compression do not coincide as in 

the present paper.   As pointed out in Section 5 above there are several solutions 

for C which are periodic but only one has the proper limiting behavior as the 

wall amplitude S - 0.   While it is easy to choose the appropriate solution here, 

the difficulty of discriminating between the different solution branches when 

numerical integration is used may account for the differences between the pre- 

vious and present paper. 

Solutions have been obtained only for sonic and subsonic flow, i.e. for 

X > 0, in the present paper. However the present analysis can be readily 

used to evaluate solutions for supersonic free stream flows with X   < 0, by 
00 

letting the constant of integration A^/A» = 0 in Eq. (53), and by extending the 

range of the calculations for the relation between X , X  , and ß.   In the limit 
V        Q0 

X    - 0 the supersonic solutions will approach the same characteristic Mathieu 

solution as the subsonic solutions. 

The present results provide an indication of the role of x   and x    in viscous 

transonic flow.   The boundary layer has been neglected and since experimental 

results for transonic wavy wall flow are not available there Is no way of com- 

paring theory and experiment. 
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Figure 1.   Definition of the Coordinate System. 
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Figure 2b.   The Variation of *v and L^L with the Reynolds Number. 
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APPENDIX A 

For q ^ 1, ä » 1 the asymptotic expressions for the characteristic value /i 

given by Erdelyi et al (1955) can be expressed in terms of complete elliptic inte- 

grals.   Since these expressions are not, to the author's knowledge, available 

elsewhere they are presented below. 

For ä < - 2 |q 1 the expression for ß can be reduced to 

ß = (2/rr) i/fcTTE (g^j) (A-l) 

where E(  ) is a complete elliptic integral of the second kind (Abramowitz and 

Stegun, 1964).   On the other hand for - 2q < ä < 2q 

cosh ßn = cos L cosh I, (A-2) 

where 

:t/2 ^ /-v     /Ä     1X -;- 1/2 Ij =2 /^^[m1^ E(l/m) - (m - 1) m" 1/Z K(l/m)] 

iii =  4q/(2q+a) 

I2 =2 V>2q -a^m1/2 E(l/m) - (m - 1) m" l/2 K(l/m)] 

m = 4q/(2q - a) 

In these expressions K( ) is a complete elliptic integral of the first kind. 
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APPENDIX B 

Hosokawa's (1960b) inviscid solution when expressed In the variables used 

here becomes 

C =± VZX^2 + 2K [<f> -*(x*)] - 2xoo*x (B-l) 

with the positive sign when ^   > \   and the negative sign when </>   < x   .   In 

the inviscid case 

^ = - CO cos (UJX - ö ß) 

r/ 4/3,     2,     ^1/2 

*{**)*-{\Ju)[{uA/Z/xJ) -1]1/2 

ß=arctan[(uJ
4/3/x3 - 1J1/2 

00 
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