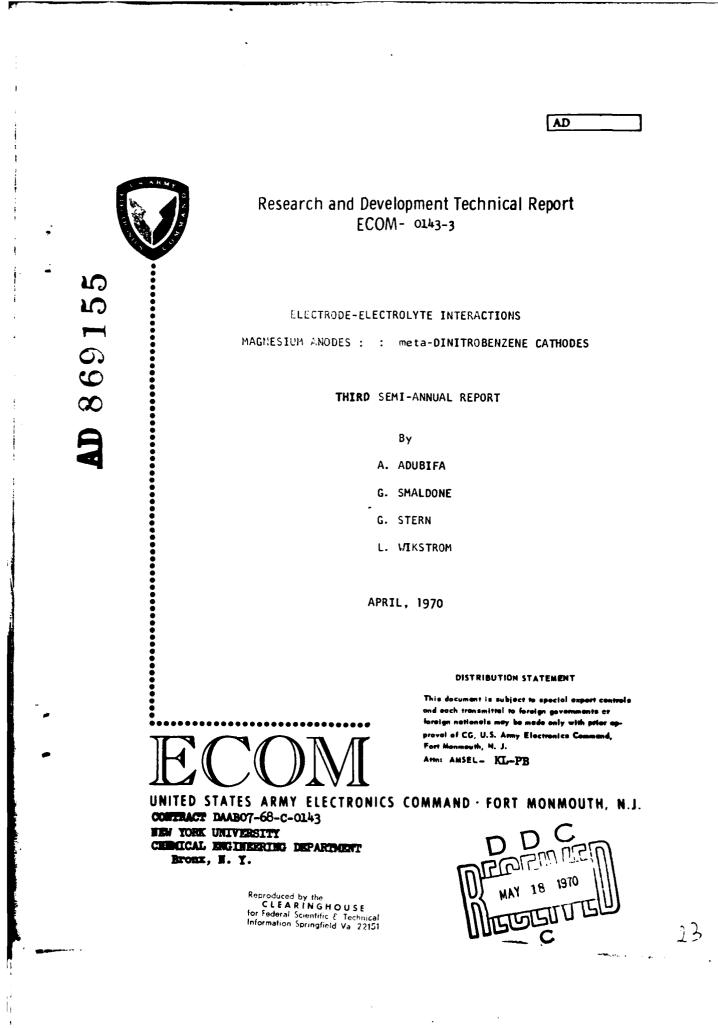
UNCLASSIFIED

AD NUMBER

AD869155

NEW LIMITATION CHANGE

TO


Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1970. Other requests shall be referred to U.S. Army Electronics Command, Attn: AMSEL-KL-PB, Fort Monmouth, NJ 07703-5601.

AUTHORITY

Army Electronics Command ltr dtd 27 Jul 1971

Electrode - Electrolyte Interactions Magnesium Anodes: meta-Dinitrobenzene Cathodes

1

.

1 January 1969 to 30 June 1969

Report No. 3

Contract No. DAAB07 - 68-C-0143

Prepared by

A. Adubifa

G. Smaldone

G. Stern

L. Wikstrom

NEW YORK UNIVERSITY DEPARTMENT OF CHEMICAL ENGINEERING U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

Surface Sec. (Sec. date: Sec.)

Table of Contents

.

	Page No.
List of Figures	i
Abstract	1
Purpose	2
Introduction	3
Experimental Procedure	3
Results and Discussion	6
Conclusions	14
Recommendation for Future Research	15
Identification of Key Personnel	16
Bibliography	17
Distribution List	

.

List of Figures

· .

-

.

نر

.

		<u>Page No.</u>
Figure 1	m-DNB Cathode Assembly	5
Figure 2	Polarization Data	7
	Effect of Mg++/Na+ Ratio on Mg Dissolution	
	-1.80v vs SCE Starting Potential	
Figure 3	Polarization Data	9
	Effect of Mg++/Na+ Ratio on Mg Dissolution	
	-1,70v vs SCE Starting Potential	
Figure 4	Polarization Data	10
	Effect of Starting Potential on Mg Dissolu	tion
	2.8M NaC10 ₄ - 0.6M Mg(C10 ₄) ₂	
Figure 5	Polarization Data	11
	Effect of $Sr(C10_4)_2$ Concentration	
Figure 6	Polarization Data	13
	Reduction of mDNB in NaClO4 and Mg(ClO4) $_2$	

.

.

Abstract

The electrochemical dissolution of magnesium (AZ-21) and hydrogen evolution reaction on magnesium in $\text{Mg}(\text{ClC}_{l_1})_2$, $\text{Sr}(\text{ClC}_{l_1})_2$, NaClC_{l_1} and $\text{NaClC}_{l_1} - \text{Mg}(\text{ClC}_{l_1})_2$ electrolyte mix have been investigated. The electrochemical reduction of meta-dimitrobenzene in NaClC₁ and $\text{Mg}(\text{ClC}_{l_1})_2$ has also been studied. Polarization data indicate the corrosion current density of the magnesium electrode is much smaller in the NaClC₁ than in the other electrolytes studied. In the NaClC₁ - $\text{Mg}(\text{ClC}_{l_1})_2$ electrolyte mix the corrosion current density of the magnesium electrode increases as the proportion of $\text{Mg}(\text{ClC}_{l_1})_2$ is increased. In the mixed electrolyte system the magnesium electrode can exhibit two distinctly different corrosion current densities. These corrosion current densities are dependent upon the history of the electrode.

The rate of meta-dimitrobenzene reduction in NaClC_{4} and $\operatorname{Mg}(\operatorname{ClC}_{4})_2$ was found to be about equal. Even though the reduction rate in the two electrolytes was equal, different reaction products apparently were formed.

Purpose

ī

- '

The purpose of this study is to investigate the electrochemical characteristics of the magnesium anode and the meta-dimitrobenzene cathode in like electrolytes. Huch emphasis was paid to the reproducibility of the polarization data. -----

Introduction

Previously, the initial results of the investigation of the electrochemical dissolution and corresion of magnesium and the reduction of meta-dimitrobenzers in aqueous electrolyte were reported^(1,2). A review of the pertinent literature was also presented⁽¹⁾. The material presented within this report represents a continuation of the work described earlier⁽¹⁾.

Experimental Procedure

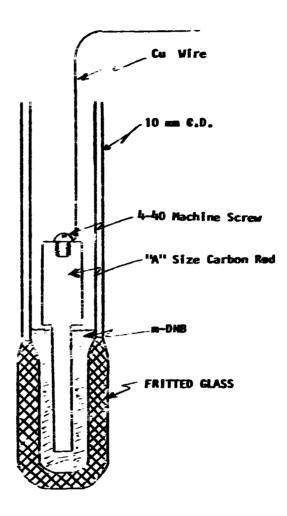
The electrochemical cell, three electrode system employed, and the experimental procedure followed for the investigation of the magnesium electrodes (A2-21) were described previously⁽¹⁾. Starting potentials of -1.65v, -1.77v, -1.75v, -1.80v, and -1.85vwith potential increments of 25 mV were used in this investigation. The electrolytes used are listed in Table I.

TABLE I

ELECTRCLYTES INVESTIGATED

2.0M $Mg(ClC_{l_{1}})_{2}$ 4.0M $MaClC_{l_{1}}$ 3.96M $MaClC_{l_{1}} = 0.02M Mg(ClC_{l_{1}})_{2}$ 3.60M $MaClC_{l_{1}} = 0.2M Mg(ClC_{l_{1}})_{2}$ 2.80M $MaClC_{l_{1}} = 0.6M Mg(ClC_{l_{1}})_{2}$ 0.5M $Sr(ClC_{l_{1}})_{2}$ 1.0M $Sr(ClC_{l_{1}})_{2}$ 2.0M $Sr(ClC_{l_{1}})_{2}$ Again, the test electrodes investigated were standard "A" magnesium (AZ-21) cans. A constant surface area was obtained by immersing the open end of each battery can into molten prepurified paraffin wax. As masked, the wax free end of the magnesium can provide a surface area of $1h \text{ cm}^2$.

The unmasked end of the magnesium can was immersed into the solution being investigated. The electrode remained at open circuit until a stable rest potential was recorded. The can was then initiated by .stting the potential of the magnesium test electrode at the initial value for a duration of 10 minutes. Potential increments of 25 mm were used. At the end of 5 minutes the current was recorded.


The electrochemical reduction of meta-dimitrobenzene in the aqueous perchlorate electrolyte has also been initiated. The test electrode arrangement is shown in Figure 1.

The meta-dimitrobenzene was placed in the 10 mm fritted glass bubbler. A standard "A" size carbon rod, machined to 0.110 inch for the bottom/1.0 inch was used as the cathode. This cathode was attached to a Cu lead with a l_1 -h0 machine screw threaded in the top of the carbon rod. This carbon rod assembly was inserted into the inside of the fritted glass bubbler, in which the meta-dimitrobenzene had been placed, with a plunger. This whole assembly was now immersed in the electrolyte. Sufficient time was allowed for diffusion of electrolyte into the bubbler. The rest potential was allowed to

FIGURE 1 CATHODE ASSEMBLY

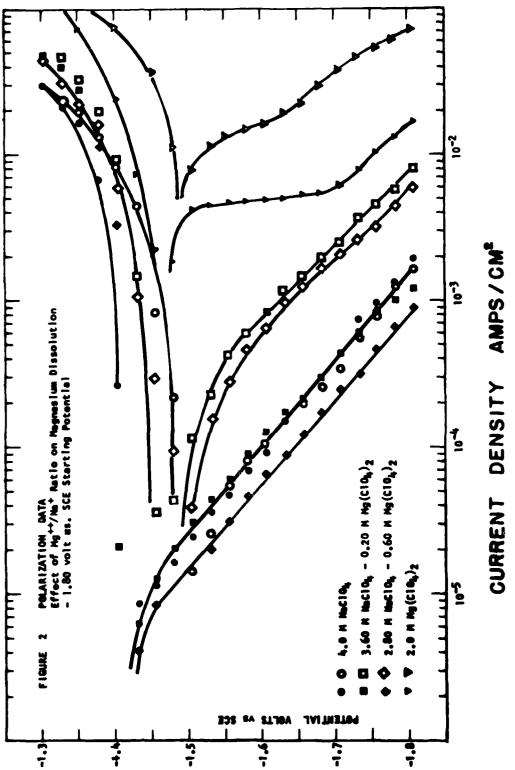
•

.

5

٠

7


stabilize and was then recorded The taking of the polarization data was then initiated. The following regime was followed:

- The chosen potential was applied. The current was monitored on the type 56k Memoscope. When a steady-state current was reached, probably not a true steady-state, the current was recorded. Time duration was approximately 3 minutes.
- 2. The potential was switched back to the rest potential. The current was monitored until no measurable current passed.
- The potential was switched to the next chosen value and sp-cn.

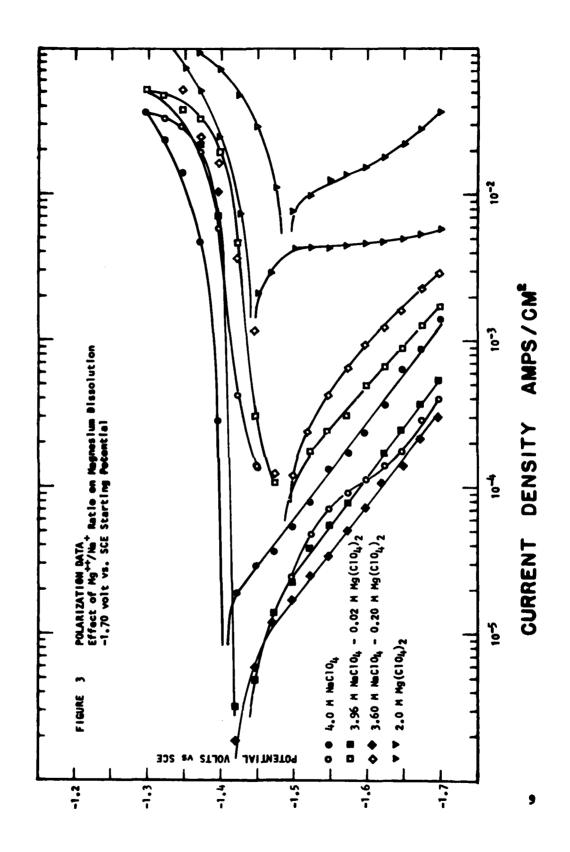
Results and Discussion

Figure 2 shows the polarization data for magnesium (AZ-21) in aqueous perchlorate electrolyte. These data were taken with a starting potential of -1.80v vs SCE. The closed symbols represent data taken with anodic potential steps and the open symbols represent data taken with cathodic potential steps. From Figure 2 it is seen that as the proportion of $Mg(ClC_{1/2})_2$ in the electrolyte is increased, the hysteresis between the polarization data taken in the anodic and cathodic direction increased. The corresion current density also increased sharply. With increasing $Mg(ClQ_1)_2$ concentration in the electrolyte the magnesium electrode established two, very different, corrosion current densities. These corrosion current densities are,

as Figure 2 shows, a function of the polarization history of the individual electrode and $Mg(ClO_{4})_2$ concentration. Figure 3 shows similar polarization data for magnesium in aqueous perchlorate electrolyte with a starting potential -1.70v vs SCE. These data exhibit the same characteristic as the data with a starting potential of -1.80v vs SCE. From these figures, it is seen that there is a need for polarization data taken in a solution with the composition

> 1.60M NaClC4 1.20M Mg(ClC4)2

and/or


0.80M NaClC4 1.60M Mg(ClC4)₂

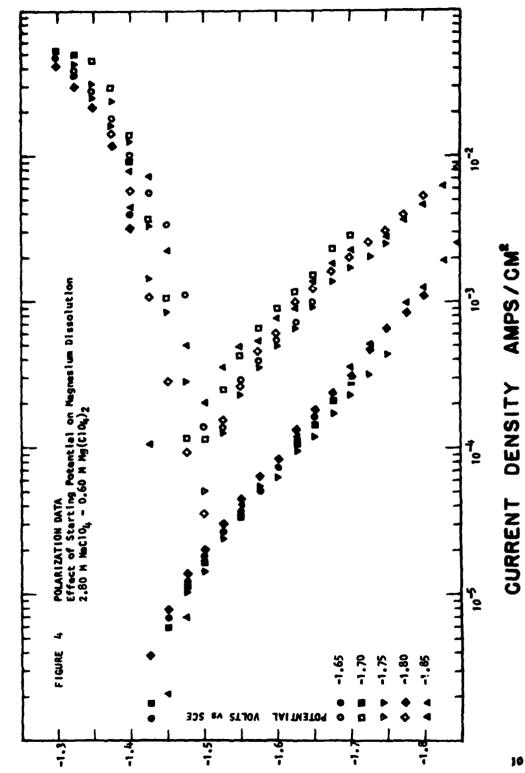
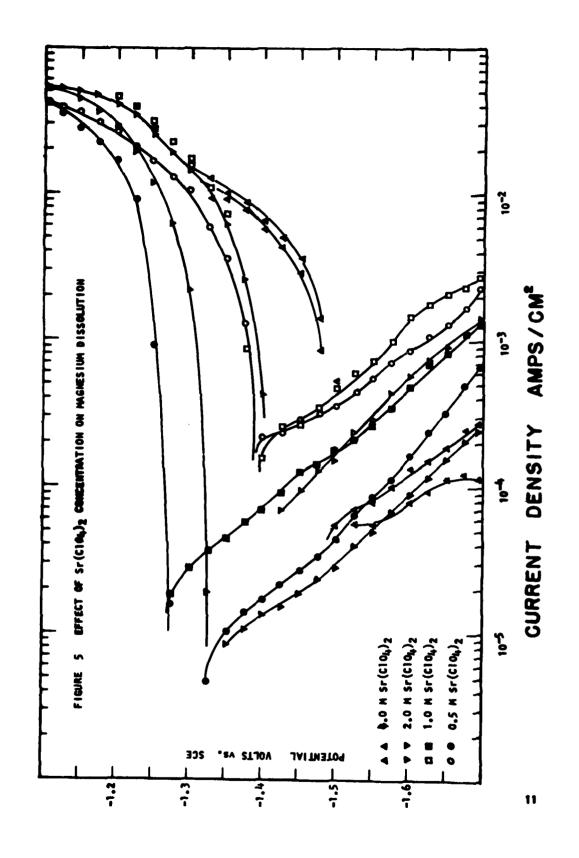

or possibly a greater proportion of $\mathbb{M}g(\text{ClC}_{\underline{L}})_2.$

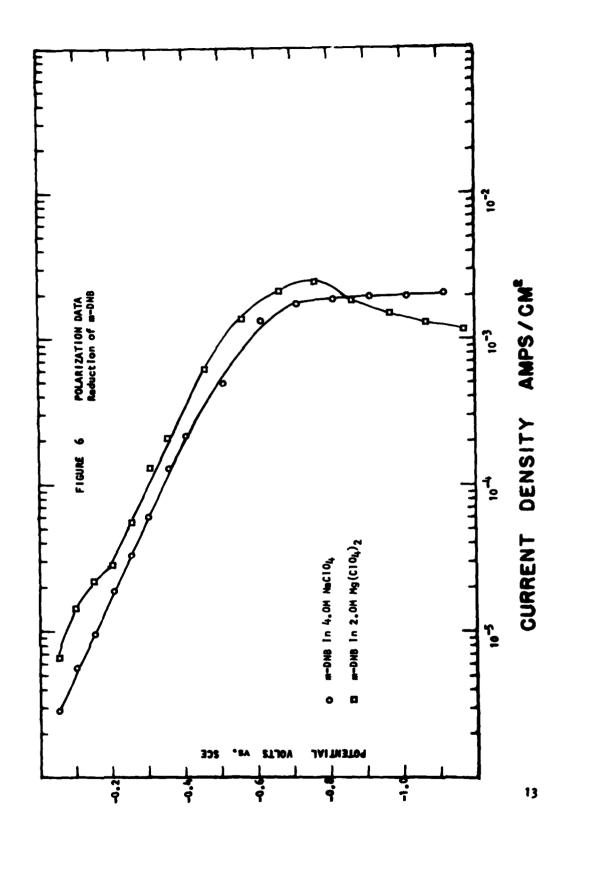
Figure 4 shows the effect of starting potential with the electrolyte 2.8M NaClC₄ - 0.6M Mg(ClC₄)₂. These data are remarkably reproducible for a magnesium electrode. This figure also shows that these data are well behaved and predictable. The starting potential does not appear to influence these data.

Figure 5 shows the polarization data for a magnesium (AZ-21) electrode in $Sr(ClC_{l_1})_2$. Concentrations of $l_1.0M$, 2.0M, 1.0M and 0.5M were investigated. The $l_1.0M$ $Sr(ClC_{l_1})$ solution was exceedingly viscous. The polarization data indicate that the rest potential and corrosion current densities are a strong function of concentration. In a given $Sr(ClC_{l_1})_2$ electrolyte the magnesium electrode exhibited two apparently

.



T


1

•

stable corrosion current densities. This phenomena was also observed with $Mg(ClC_{l_1})_2$ electrolytes. From Figure 5 it is seen that the $Sr(ClC_{l_1})_2$ electrolyte would be a relatively poor choice for a magnesium anode battery. The corrosion current density of the magnesium is relatively large and the polarization at reasonable current densities is excessive.

Figure 6 shows the polarization data for the electrochemical reduction of meta-dinitrobenzene in 4M NaClC₄ and 2M Mg(ClC₄)₂. The polarization curves appear quite similar, but the reaction products appeared to be quite different. In the NaClC₄ electrolyte the reaction product was blue in color whereas the reaction product in the $Mg(ClC_4)_2$ was orange in color. At present an analysis of the product is not available.

•

Conclusion

- 1. $MaClC_{l_1}$ appears to be a better electrolyte than $Mg(ClC_{l_1})_2$ for the Mg-mDNB cell.
- 2. Sr(ClC₄)₂ is an unsatisfactory electrolyte for the Eg-mDNB cell.
- 3. The rate of reduction of mDNB in NaClC4 and Mg(ClC4) is about equal.
- 4. The reduction of mDNB appears to yield different reaction products in NaClC₁ and $Mg(ClO_1)_2$.

Recommendations for Future Research

1. Further investigation of the dissolution of magnesium and hydrogen evolution reaction on magnesium in the $NaClC_{l_1}$ - $Mg(ClO_{l_1})_2$ electrolyte system.

2. Further investigation of the electrochemical reduction of meta-dinitrobenzene in $NaClO_4 - Mg(ClO_4)_2$ electrolyte system.

3. Fabrication of "A" size magnesium - meta-dinitrobenzene cells with LN NaClO_L electrolyte.

4. Investigation of the dissolution of magnesium, hydrogen evolution reaction on magnesium, and reduction of metadinitrobenzene in LiClC₄ - $Mg(ClC_4)_2$ and $KClC_4$ - $Mg(ClC_4)_2$ electrolyte systems.

References

- L. Wikstrom, "Electrode-Electrolyte Interactions: Hagnesium Anode - meta-Dinitrobenzene Cathode", First Semi-Annual Report, ECCM-011:3-1, Cctober, 1968.
- L. Wikstrom, et al., "Electrode-Electrolyte Interactions: Wagnesium Anode - meta-Dinitrobenzene Cathode", Second Semi-Annual Report, ECCM-Oll43-2, August, 1969.

Identification of Key Personnel

Leonard Lee Wikstrom, Assistant Professor	-	1/4	time
Akim Adubifa, Graduate Research Assistant	-	1/2	time
Gerald Smaldone, Research Technician	-	1/4	time

٩

Security Classification	NT CONTROL PATA - R	& D	
(Security classification of title, body of abstract a			overall report in classified)
. ORIGINATING ACTIVITY (Corporate suffer)		1	CURITY CLASSIFICATION
New York University, School of Engi	meering & Science	Uncle 20. Shoup	ssified
University Heights		ZA CAGOP	
Bronz. New York 10453			
ELECTRODE-ELECTROLYTE INTELACTIONS :		eta-DINITRO	BENZENE CATHODES
Semi-Annual 1 Jan 69 to 30 June 69	•		
3. AUTHOR(S) (First anne, middle intial, lest name)			
Wiketwan I · A Adubita, C Smolds	no. C Storm		
Wikstrom, J.; A. Adubifa; G. Smaldo	TA TOTAL NO. C	T PAGES	75. NO. OF REFS
April 1970			
M. CONTRACT OR GRANT NO.	SA. ORIGINATOR	S REPORT NUM	ER(\$)
DAAB07-68-C-0143			
A PROJECT NO. 1TO 61102 A 34A			
- Task No02	S. CTHEN REP	T NO(5) (Any of	her angle a flat may be see
	itale report)		
Subtask No32	300M - 0	143-3	
10. DISTRIBUTION STATEMENT			
This document is subject to special			
Governments or foreign nationals m			oroval of CG, US A
Electronics Command, Fort Monmouth,		-KL-PF	
	Cuttendin		
		lectronics	Commend
	1 -		ATTN: AMSEL-KL-
13. ABSTRACT			
The electrochemical dissolution of	magnesium (AZ-21)	and hydroge	n evolution react
on magnesium in $Mg(ClO_4)_2$, $Sr(ClO_4)_2$	2, NaClO4 and NaClO	4-Mg(C104)2	electrolyte mix
have been investigated. The electric			
NaClO ₄ and Mg(ClO ₄) ₂ has also been	studied. Polarizat	ion data in	dicate the corros
current density of the magnesium el other electrolytes studied. In the			
current density of the magnesium el			
is increased. In the mixed electro			
two distinctly different corrosion			
		-	
densities are dependent upon the hi		ode.	
· _	story of the electr		
The rate of meta-dinitrobenzene red	story of the electr uction ir NaClO _h an	d Mg(ClO),)	was found to be
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	was found to be tes was equal,
The rate of meta-dinitrobenzene red	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw	d Mg(ClO),)	, was found to be tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc different reaction products apparen	story of the electr uction ir NaClO ₄ an tion rate in the tw tly were formed.	d Mg(ClO ₁) o electroly	tes was equal,
The rate of meta-dinitrobenzene red about equal. Even though the reduc	story of the electr uction ir NaClO ₄ an tion rate in the tw tly were formed.	d Mg(ClO ₁) o electroly Unclassif	tes was equal,

.

•••

•

KEY WORDS	LIN		LINK B		LINKC	
	ROLE	WT	ROLE	WT	ROLE	W T
ligh-Energy Battery Systems						
Drganic Cathode Materials						
Matheckenson						
linitrobenzene					1	
lectroreduction]	
ingnesium Anodes						
Electrolyte						
lagnesium Dissolution						
	1					
						ł
	l				1	
	1					
					ŀ	
					l I	
					(
	i					
]	
					1	
	l l					
		i				
		l i			i i	
					1	
					1	
	ľ					
						ľ
		L			I	l