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ABSTRACT

This report contains methods for constructing iso-damage curves for
structures. The results for the cylindrical shell are given in detail.
Tt is shown that by starting with the theory presented here, we can de-
rive the empirical relation developed by Johnson several years ago. The
theory of damage due to short duration contact explosion is presented
and the results are compared with experiment. &4 series of curves are
presented which give the damage sensitivity of cylinders as a function
of the ratios of diameter to thickness and length to diameter.
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LIST OF SYMBOLS

side on pressure

side on impulse

impulse below which no damage will occur
pressure below which no damage will occur

time constant of exponentially decaying pressure
pressure as a function of time

energy flux in explosion (i.e. energy per unit area in shock
front)

air density

sound velocity in air

total energy absorbed in structure

total energy of explosion which is directed toward target
projected area of target directed toward explosion

2}3Q

weight of explosive

distance from explosion to target

constants which describe the pressure and impulse as a function
of W and R

positive duration of overpressure

nondimensional functions which describe the impulse and energy
in a blast

kinetic energy in the structure

displacements of a point on the structure in three orthogonal
directions

work done by internal forces in deforming the structure
work done by external forces

components of the external force

generalized mass

generalized resistance function

generalized force

mass per unit area of structure
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Jﬁ,(ﬁ) deflection distribution in the lateral plastic deformation pattern
/; impulse on the structure from the short duration explosion
CE'GEJG}) Za)QQQJ Zyz stresses in the structure

é;.ég,ézq }2?)911)352 strains in the structure

Zo oct hedral shear stress (3 dimensional)

); oct hedral shear strain (3 dimensional)

a; oct hedral shear stcess (biaxial)

€; oct hedral shear strain (biaxial)

Og yield stress

ea slope of elastic-linear plastic material

£ elastic modulus

2. yield strain

T absolute temperature

Tom absolute melting temperature of metal

Q:,e; 7’ powers of €; in the expression for the absorbed energy
o;)g;)2;¢ biaxial stresses in a cylindrical shell

A parameter describing strain hardening

2 Poisson's ratio

xbgﬂ cylindrical coordinates

x! X/ R

A shell thickness

ce shell radius

,é)L shell length

AQ,AQ6A&¢ membrane forces in the cylinder (force per unit length)

7

=4

'P.
22
&
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decay parameter for exponentially distributed loading on shell
pressure at which collapse commences

uniform pressure at which bucklong commences

75)4/;,&6”5;,9: parameters used for the calculation of the buckling load

peak nonuniform pressure at which buckling commences

parameter describing distribution of pressure in a cylinder in
buckling
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correction factor to get nonuniform buckling pressure from uni-
form buckling pressure

component of nondimensional energy in perfectly plastic material
exponential decay constant for buckle shape

number of full circumferential waves in buckling pattern

maximum deflection of cylinder

constants for the deflection pattern of a cylinder under contact
explosion

diameter of cylinder
mass density of cylinder material

peak impulse per unit area in a 180° cosine distribution of
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I. Introduction and hackground

The iso-damage concept was originated at Ballistic Research Laboratories
in the early 1950's. Just as isothermal means constant temperature, so
iso-damage means constant damage. The iso-damage curve consists of a
plot of incident pressure as ordinate with incident impulse as abscissa
such as shown in Fig. 1.

Fig. 1 Typical Iso-Damage Curve

The experimental iso-damage curve is formed by testing a structure un-
der a series of explosive weights and distances of explosion to the tar-
get. For each explosive weight and distance a certain damage level will
occur. A curve which is faired through the same damage level for var-
ious impulse and pressure is called an iso-damage curve. Each struc-
ture will have a series of these curves, one for each damage level. The
asymptotes shown by the dotted lines are minimum values of pressure and
impulse for which damage level A will occur. Thus for Z <., , nc
matter what the value of P there will be no damage at "Damage Level A."
Likewise for F< /2 no matter what the level of I there will be no
damage at "Damage Level A." There will be a series of asymptotes -- a
pair for each damage level.

II. Iso-damage theory
A. General concepts

In a previous reportl* iso-damage theory was illustrated by using the
exponential decay curve as a first approximation. For example, assume
£hat "thé préssufe tifme relation is as follows:

*Superscripts refer to references listed at the end of the report.
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wvhere P denotes the maximum pressure and % is the time constant of the
decay. The energy flux in the explosion at any point (i.e. the energy

per unit area) is given by the expression

i 2
//79(1‘-)2&/7.‘ = P (2]
° [~
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where g, is the density of the medium and <&, is the sound velocity in
the medium. The impulse per unit area is given by

o0
Z =[-p/t)dt = P& [3]
Thus
zﬁq,

Neglecting any dissipation effects, the conservation of energy demands
that the energy absorbed by the structure in defoiming be equal to the
energy directed to the structure from the explosion. The damage that

occurs in the structure can be measured by the energy absorbed by the

structure in deforming. Thus

vV = E [5]
where V 1is the total energy absorbed by the structure and E is the

energy directed to the structure from the explosion. The total energy
E can be written in terms of the energy flux, £; by the expression

E =£E,A [6)

where A is the projected area of the structure directed toward the ex-
plosion.

The energy absorbed by the structure is equal to the internal work
done by the structure in deforming. For a given level of damage (i.e.
a given deflection distribution) there is a single value of internal
work done by the structure. This means that the structure does a
given amount of internal work which then results in a given plastic de-
flection distribution. Thus the damage in the structure is measured by
the value of V . It is true that we can obtain the same value of
for different deflection distributions. However for certain types of
loads and structural geometries the patterns of plastic deflection are
fixed. The maximum deflection in this fixed pattern of deformation is
a measure of the magnitude of V and therefore of damage to the struc-
ture. Thus

Ef = V/A [7]
Substituting into [4]

PI =2pcY 8]




For the exponentially decaying pressure the iso-damage curves are hyper-
bolas as shown in Fig. 2:

D, £F rent Values of (25 C}:}-‘-/)

P
Fig. 2 Isc-Damage Curve with the Energy

as a Parameter

B. Conceptual comparison with the Johnson 'I‘heory3

Recently O. T. Johnson of BRL offered a new theory of blast damage.
Although Johnson derived his theory from empirical considerations, it
can be shown that his theory is fundamentally well grounded. To prove
this we: start with the form of the iso-damage curve derived in the last
section, i.e. _

PT = A E; [9]
where A is a constant

Consider two tests, one with side on pressure # , impulse Z,, weight w,
and distance from explosion to target K, ; the other with pressure 7,
impulse Z, , weight W, and distance A&, . In order for the same dam-
age to occur in both tests the same energy has to be absorbed in the
structure. Thus, for the same damage

R I = R L, [10]

. 4 .
According to Cole the pressure and impulse can be represented as a
function of the explosive weight and distance by the general relations

Y\ X
peA (%) (1)
“3, 8
=4 /1/3/ %) [12)
where ,[ ,é- &-) /Z are empirical constants.
Substltutlng [11] and (12] into [10] we obtaln V. —
W "3 /g //3 W‘_ 2 ﬁ
£(% ) Fw, (%) ( Zw, (=) [13]
ité_.t’ [14]
Thus = - __.'> 30+8)
EQ ( 4%

2
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From Goodman's curves we obtain approximate values for < and /f il.e.
ol 7 <
o(/v/)ﬂ /
OS-

e, ) = (YAwm.) [15]

-

If we let W = too0” be the reference weight and let W,~w, 2, : &2
be the charge weight and distance, then

. (Cooyn) = (") " (18]

—

or (Bre/pp ) = 1o ™~ [17]

Thus

This relation is very close to the one given by J'ohnson.3 It just var-
ies in the constant and the power of W . If we had used more accur-
ate values for « and ,5 we would have obtained values even closer to
Johnson's. 1In principle it is seen that by starting with the energy

concept of iso-damage we end up with the Johnson Blast Relationship.
*
More accurate formulation of iso-damage curves for blasts at a dis-

tance from the target

Brc~de6-8 obtained the pressure time relation for spherical blast waves
as well as impulse values for the pgsitive phase of the explosion. As
pointed out in an earlier reference  the maximum underpressure in the
negative phase of the pressure is generally much smaller than the peak
overpressure at the shock front so that less plastic damage will occur
in the negative phase than in the positive phase. We will therefore
use the positive phase impulse and energy values to determine the dam-
age. Further study of the effect of the negative phase on the plastic
deformation of nonlinear structures will certainly be warranted at a
future date.

Although Brode's values of pressure and positive duration are slightly
in error (as compared with experimentlo) for spherical pentolite with
values of R/ "3 greater than 20 (R being the distance of target

to explosion and W being the weight of explosive) it is still felt that
the form of the pressure time history in the positive phase is given
accurately by Brode and therefore his impulse values will be satis-
factory. The impulse and energy that will be used to describe the iso-~
damage curves are the positive duration values. Thus

-
I=_£ Pit)dAE (18]

and . - i
. :J;/—[ Pt [19]

where T is the positive duration of the overpressure.

* i.e. More accurate than the theory: - Ref. 1

~4-
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Let 2=ty [20]
then = T_/QA,P/Z);/Z [21]
/
and Ep =455 [ Pila)d 2 [22]

The pressure-time relation during the positive phase can be written in the

form €. 11 —o¢ 2

where o¢ 1is a nondimensional constant which is dependent upon A , the
peak value of overpressure. The impulse and energy can then be written

T= BT/ C-2)e"%%/z

]

[24]
E. = TR* ’ ~e2 7%
£~ ZC ,[[f/‘-‘f)é ] 2 [25)
So T - - ’ - &
0 er = £R)= L rimaye 0z [26]
» ! 2.

EsRChpr= K (R)= [[(/-2)@"“2_7 A 2 [77]
where % (A2) and # (R ) are nondimensional impulse and energy func-
tions. Integrating, we obtain N 9

fh)ed-hlr-e™) (26]
/ / -2
hery = [1md i (-] (29
where the time constant, o , is a functiocn of E; . Using the values
of impuvise, overpressure and positive duration given by Brode ‘', a curve
of £ (CF) as a function of / has been obtained and is given in Fig. 3.

‘A few experimental values as given by Goodman® are plotted on the curve.
For low overpressures the agreement between theory and experiment is
satisfactory. However for the higher overpressures (greater than 10 at-
mospheres) there are too few experimental points and too much scatter to
draw any definite conclusions.

The value of &X was determined by comparing the values of I>1%.T in

Fig. 3 with the value of # (%) given by [28] which is plotted in Fig. 4.
The nondimensional energy value, £ (A ) , was then obtained from this
value of « by using eq. [29]. This nondimensional energy value was then
plotted in Fig. 3.

The complete iso-damage curve for any case can then be formulated by elim-

inating T from equations [26] and [27], i.e.

L - £p& [30
F£R) AIR)R*

]




; :
© Ct73)d§/’%¢n@) = E £ G

’ [31]
For large values of 4
- AL
f(@)’,‘:f [ o(] [32]
AHhy=E L [1-&]T
So, for large £ )
0%/ pm) 2 23]
d

Equation ([34] is exactly the equatioi obtained for the simple exponen-
tial in Reference 1 and in Section I A of this report.

Short time contact explosions

We understand blast loading as that loading due to a standoff explosion
which produces a propagating shock wave in the air. Therxe are other
cases of impu.se response under explosive loading which do not fall into
the category of blast. One example is the case of a contact explosion
produced by sprayed explosive.l2 The sprayed explosive models are ex-
posed to very short time loading of various distributions. In order to
derive an expression for the response in this case, we start with Ham-

ilton's Principle t,
54 [ T'-07]4¢ =0 [35]

=/ / . . ' v
where 7' _2-4/(4 (G2 Ar*+..0%)AA , the Yinet

_t1 = mass per unit area of structure

0

arergy

te-

AA = element of surface area

L@*J:A{f = velocities in the three coordinate directions
Assume that we know the distribution of the displacements from some ex-
perimental work, then 06 VvV, aJ can be written

Usztg(t) £ (A) [36]

A= u;[t)fr[ﬂ)
s T ad, (£) oy (A)

where fi) fﬂ; +.r are the distributions of L{ldj AJ- over
the surface of the structure

The variation & is taken exactly as in the elastic problem.l3 This
problem is equivalent to the following problem in the Calculus of Var-
iations:

Find the functions “2 (x) L x) .. &1‘“/‘\") which
take on given values for a: a.and X = and which mini-
mize the definite integral

-8-




4
T=£F(x/}'"’°’»?z“)“";»/‘My/’t%;;'/&)----;n'fz))/*— [37]

The result is that £ must satisfy the set of Euler Equations

(38]
In our case F =7 = (j
7' :M°)7Z- ?3_ O)?-,':MOJ ?zl:u—o) 7}':/!.:/", [39]
Thus . ,
/= = -124/(,1 (e Frear=)ctA —Vv'+w’ [10]

il Xe h
b -
v’ = _/ (/ o de; )’/V (work done by internal forces) [41]
= ¢ (=]

W= [ (Xt Yo b 2ar) A 4]
Thus the governing equations for the unknowns U o, 4, are
. Qv
b [ £o) cda + X = [xca t) £ ca) A
, 43]
,-J‘ ,a ‘/AU/A £ 2V YA, ) FrA) dA [
/; A
S, f,u £ Gl + Q.‘C' :/ZKA,-é)JQ-(/‘“d/’
I
In the large deflection reglon V’'is a function of powers of Us Sy 2,
so that the functions %-\-’ v’ Q Vv’ are
Ay ) c)»\!‘ / dvfd
nonlinear functions of Us , Vo, . The equations [43] are

therefore ordinary nonlinear differential equations for Ue, M, 4y
These equations can be written in the standard single degree of freedom
form

’% + Rx = Plt) [44]
where M is the generalized mass, 2 is the generalized resistance and P

is the generalized force. Assume that “, s are small compared to av°
For the lateral deflection av~

~M //{4 ta)d A

—

/2: __...

D W,

Prey= [ 2(A )L (A)AA

For very short time loading eq. [44] can be simplified considerably.14
If a dynamic loading P(¢¢) 1is applied to a dynamic system with one
degree of freedom (i.e. a system satisfying eq. [41[ the external work
done up to any time t is given by

[45]

-9~
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T

x(t}

r
7 — ~ — a&
w'lt) —/ /J/t)d,t = [/’/f) vyt ot [46]
The velocity % (%) is determined by integration of eq. [44]
. / £~ o —
iet)= @ [ Peer - mexy] oA [+7]

Thus P £
’ = / 5 2y
w'ct) =[ P(f—)/‘;;‘_[[p/f)—/efx)]é’* A [48]

If the time it takes to reach a maximum deflection is greater than the
duration of the load, T, then eq. [48)] need only be integrated up to T.

Under these circumstances Rlx) is small during the application
of the load and can therefore be neglected. The work W' therefore
becomes: - &
- 5 L /g [49]
= ¢ £ Bre)de [At
or w 4(-'0( ) ZF‘M /2 -7
wiz A [50]
2/
— T_
‘nere = t
wher ~ /o Pre)d

H is the total impulse of the external load. This work, W' done by the
external load is equal to the work done by the internal forces, V, in
deforming the structure 5

i.e. - M
V= g% [51]
V=['(j Crole: ) AV
1% °
o :/A”/}/A,f)ﬁ, (A)SE el A
R o [ o £ AN AA

Calculation of structural anergy absorption

where

[52]

The loading has been characterized in the previous sections by the peak
overpressure,4€, the positive duration of thf overpressure, 7/, and the
impulse I. For either blast loadings"s’ 15=1 or impulse loadinglo'18
these parameters are measurable. The main question is concerned with
what effect the magnitudes of overpressure, duration and impulse have
on the damage induced in the structure. The characteristics of the
structure were given in the previous sections simply by V, the energy

absorbed in deforming the structure.

Suppose there are direct stresses O, G;‘ 02 and shear stresses
?;9;L@,%§a acting on an elemental volume of the structure as shown in
Fig. 5:

-10-
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Fig. Free Body Diagram of Elemental Volume

. . 20
The direct and shear strains are é;) égw éa_)};?) };,J }’t .  The
stress strain curve for one dimensional “strain in the x ‘direction will
be as shown in Fig. 6:

-

-l €,

€x
Fig. 6 One Dimensional Stress—Strain Curve
The elemental work for straining in the z direction will then ke
dw = 07 e, [53]

The total work in direct stress and shear will then be

dw = 6;de, +O';4/g; + G2 A€, f’z,?é/&,? + Tuad Fer * 2; 94/253 [54]

The work per unit volume can be divided into the work done in changing
the shage of the body and the work done in changing the volume of the
body?l' 2 j.e.

-11-
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w' = 3_/0'}//5 +.§-{Z‘e/2; [55]

€
in which
=z 9xt0y+G2 de = PGt &, 146 [56]
3 > 37
and 7, are the octahedral shear stress and strain given by2l
*
\/(a‘ 03 )"+ (05-6‘2)",&(62-01)‘76(7-’9;4 Txa'+ ) [57)

2 35\/(6’6,_1/69)11* Gl 5 =cl€2 )+ (el €3 -el€n ) +.3 (‘/a'a':*‘/k”‘z*a%?l)

If the material is incompressible then the volume does not change and
the total work is

3 [ 7. do [58]

o
For an incompressible material in a biaxial stress state we replace the
octahedral shear stress and strain by their two dimensional counterparts3
0.and €:; . The work done per unit volume in distortion is then 2.2
[ags

p 59
w' :[ G:f&/él_' (59]
where
af - 0_‘- T &
V-0 #03 ™+ 3 7oy 60]
¢ = €y t E E. ¢ 6
Ve e, 0"
The total work done through the entire volume is then
Vo= f\: widv’ [61]

The stress-strain law of the material is given by the functional rela-
tionship between ¢; and ¢<; as shown in Fig. 7

e

rd

-

N

é-

(3

Fig. 7 Form of Stress Strain Law of Material

-12-




The stress strain law can have a variety of forms.

Most practical cases
will fall under the following categories:

| 1. Rigid-Linear Hardening
o; =05 + K&

(3

< = .S/opc
- Z£ kK=o GCT=0; (pe-Factly plastic)

R el

=1
A

¢;

Fig. 8 Rigid-Linear Hardening Law
2. Elastic-Linear Hardening

0; = Ee; Sfor ;<€

0; =0 +K(e.-¢,) fr C:>€;

|
|
|
|
|
€s

e-

Fig. 9 Elastic-Linear Hardening Law
3. Elastic-Plastic Power Law

o:- - Eé": For e;<€_,

G - =8¢ " Ae>e;
i
i wherc B'= 9
e‘?
! s
1
¢

e
Fig. 10 Elastic-Plastic Power Law
4., Bell Parabolic Law24

iy

oz =p0- £ )veE

T = abse len '/t 7L€mper;- f'u re

To= melfin *Lc'»«peza*ufe o ¥
material

S

A

4 {5,7 k] Un:ver;‘;/ CGﬂSfﬁﬂr
Fig. 11 Bell Stress-Strain Law
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Using each of these laws, substituting into [50] and integrating, the total

energy can be put into the following general form

Ve[S (ce¥ic e e ¢ Gy (621
V'

where

1. Rigid-Linear Hardening

Q’=2. ¢ =2
L'z G = O For pertectly
T'20O C_g: o
2. Elastic-Linear Hardening ¢+ 7°©

R'=2 ¢ =K/

R'=y G, =0;-Ke;

7T'-o C3=O

G = K= qhe*

where A = surface area of the shell

A

3. Elastic-Plastic Power Law

shell thickness

' -
Q= prs = 537
£'=O CL:Ogl
T’::79+/ €3=“;;7
Q:%A-ﬁek

4. Bell Law , -

3 2 - Z

Q’:-"/Z C,-._..‘:(/ =
/2'-'—'0 (2“0
7T =20 ¢, =0
C, =0

,o/a.rf‘lc K=o

For very large plastic deformations the elastic strains are very small
compared to the plastic strains and usually (4 can be placed equal to 0.

The energy integral [62] is given in terms of €;

, which is a function

of é,‘)é?) s . The next sections of the report will be devoted to
the calculation of this energy for particular structures.

-14-




III. Energy absorption curves for various failure shapes of cylindrical
shells

A. General relations for energy absorption of cylindrical shells

The strains & 6?) 3’,7 of the biaxial stress field can be written
€ € -2 E,=€ -2k, Ve, =8 -227 [63]
where €, ¢, ¥ are the midsurface strains, Z is the radial dis=
tance from the midsurface to any element as shown in Fig. 12 and

<, /(,_‘ Z are the curvatures and twist.

P NPy
*“ Fig. 12 Stresses on Shell Element
. 26
For large deflections the values of £, 52_) ’'e are
P
= QU 4 L /R )E D) 5
él - -52* 2 D x > é‘z:iﬁ_%"é A_j‘_;_;-)‘ [64]
= 2, £ du L Dar I
= o; + £ oo + .‘.)L&" A._":.;
The curvatures and twist are
2 >
Koo DA Ko o= L Qs )
b SPE P 2 T 2 ,agp:.*;fzw [65]
T—- L a:-""—’: + L s
T & oxod A Ox

For very large deformations under intense lateral loading the mid-
surface strain involving .« (i.e. the nonlinear terms) should pro-
bably be greater than the linear terms involving ¢ and ~~ . Assum-
ing that o and 4~ and their derivatives are much smaller than av~

and its derivatives, we have
o] L o% tR 3
éz=:{‘(f _ pYnr & _//aw- s 2 dhr [66]
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[l

de * 3 ?-7- Aaq z ar S~
% T ox ci¢ T oxogf




e e § &

A large number of practical cases can be fitted to the elastic linear
hardening law shown in Fig. 9. Figure 13 shows how an elastic-linear
hardening curve can be fitted to an actual stress-strain curve.

-—
Actucas
- Curve
O: “ry / Eiulv»/éu.f
/ Elbstrc ~Lincar Hacelenim
Curve s
7/
/4

e.

&

Fig. 13 Fit of Elastic-Linear Hardening Law
Temperature can.play an important part in the form of the stress strain

law. Figure 14 shows the effect of temperature on the yield stress
and hardening characteristics of a typical elastic-linear hardening curve.

2

1

Fig. 14 Effect of Temperature on Stress-Strain Law

The effect of increasing temper-ture is to decrease the yield stress
and decrease the hardening.

Since the elastic-linear hardening curve can be used to describe most of
the critical characteristics of the metal, we will limit the analysis to
this type of stress-strain curve. Under thesezsircumstances the energy
absorbed in a ?ylindrical shell can be written

FAPXY A
V=[ [L"://-)s)_53',—(6,‘2,#6‘5}.,6-;2-,,#3;?:.)

o T4y [67]

*EAC.A L R . N
V:" Zvém /E;é‘aféy /-é}’%"]aﬂ"/(/zdi

A
- éléfk Lﬂqlui
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where A =/~ /g (sce Fg.a)

Supstituting the expressions for the strains given by [66]}, letting Xx'=X/g

and T = fﬁﬁtg<y) and integrating [67], the energy absor-
bed can be written in the following convenient form:30
Y, Elr-\)ARal [yt Elr=2) £ i
= - A v /- -~ 7
' 201-v*) //wdx"/’f’ “ ST T4 /.,/')"/" lef

£ ACy Aaz// T 28+ 5N @t e . /9:/5—‘/_5'7%/_ '/2_&_)]
i / V3t (e

(-2p+F) V= 3 §+
3 sEVE (S jf/z7¢
where

< =&+ o (FZE-FY) -
“xia) = (SE) (5 V) (DB () V-0 (R4 (%£)*
ORI )RS ) )

— 69]
¥lxiq) =~/—‘;—’9)3 ) ) (W _J_Zf) OF ’;z/u)’xaléf [

; 22 a¢*
-‘)//“:@)(a ‘4/.) /%1/“‘)(4f)(j) )(3);
"E) "(au*/ l//—d)/m)(a)% Jx 'a (5% /jcf

Eteiq) = /zf-) 13) & ) /:‘ ) 2 ) TR ) 3;1 ‘
L) E)TSE)" w2038V ) ()

The integrals are dimensionless quantities which are functions of the
dimensionless ratios *¢/f i ”‘44 ) R .

The parameter A and the yield stress Oy are outside the integrals.

Therefore the value of the integral is independent of both the hardening
and the yield stress.
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There are three main types of failure patterns which h?g%ﬁPgen determin-
ed experimentally. These typical deformation patterns™ are shown
in Figures 15-19. The first two (Figs. 15, 16) are typical patterns
associated with blast waves originating at a &istance from the shell.
The other figures (i.e. Figs. 17-19) are typical patterns from contact
explosions™“’~° in the form of a sheet of explosive on the surface of
the shell. The analytical functions describing each of these types of
patterns and the corresponding energy absorbed will be treated in the
next several sections of the report.

The single diamond pattern and the lobar buckling pattern
l. Criterion for determining the pattern

In previous work31 a criterion was determined to establish whether
the hinged single diamond pattexn (Fig. 15) or the lobar buckling
pattern (Fig. 16) would occur. ©Over the past several years it has
been found that this criterion is not gquite accurate enough. Using
the same ideas as in the previous work, it will be assumed that the
diamond pattern is a collapse mode and that the shell will assume
this mode of failure if the yield condition is reached. If the
load which produces buckling is less than this yield load, then
buckling will occur. In order to calculate the yield or collapse
load, it will be assumed that the shell is thin enough to take the
total load by membrane action alone. Under these circumstances the
stress distribution is easily found. 32

Pl

1
e
a
3

NIy

Fig., 20 Statically Loaded Cylindrical Membrane

Let the length of the shell he L and assume Lhat it is supported

by a diaphragm at each end ( = = %= €/2 ). 1If the origin is at
the center of the shell the boundary conditons are

Nx =o ot 2= Al
The gtress resultants in the shell under a lateral pressure of fnqp)
are

-18-
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/\/(p 0.79/cﬁ)
Nx = =g (€% 22%) ‘l_;_)

ﬁqué - - 2 F)

Fep) = £ 4‘1;,.’;_/; [70]

At the same time of contact of the shell with the shock wave, the press-
ure will be a maximum on the side of the shell facing the explosion and
decrease to a small value on the back side. The load distribution »2¢/)
will therefore be taken in the following form:

P@) =p, e " v [71]
A/xqo fo%‘K'/@?_&(QV .,
N ==t (£Eqx)’p, e Y
/\J’y = G.;O‘ _“q

A hinge will form at 2 =¢/ =0 when the yield condition is satisfied at
that point, i.e.

N *=NeNep + N ™ = 3 Nigp NN ¥ (73]

The front face pressure at which yield (or collapse) will start is
therefore:

Therefore

[72]

GAL /
2= = [74]

The elastic_buckling load for unlform loadlng of the cyllnder is given
by Reynolds33

Vo
e /:m (4) L= ) 175}
where ? - 3= 2‘/ /"’Q')
_:/, 3 a
4 2 VAZ
e = -

/ - "'Q.)(ig ;.)[CZ% 'l/@_)

‘/‘ﬁc ——é——’q 2 64 +/)

ﬁé‘:‘ ﬂ MAA&G"‘M&
cen B — Con Be
éé (/A~;JL Q?1_+-4~h 52/

Crl Ce/2 —cn Be/y ) Oe -[3/—»‘)_/‘&
in which a_ is the cross sectlonal area of the rings which supported the
cylinder ag Z = 13Q/L (see Fig. 20), b is the width of the
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4 frame in contact with the shell (see Fig. 21)
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Fig. 21 Cross Section in the Vicinity of the Ring Support
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Almroth34 gives correction curves for buckling under nonuniforim loading.
The nonuniform peak buckling pressure can be written as 72, ' where
' = — [(77)
= K >/
P < Pu , =
2. Comparison of the collapse and buckling relations with experiment

A largelgBTyer of tests were carried out on shells of various sizes by
Schuman? The blasts were mostly side on so that the pressure distri-
bution was nonuniform over the shell circumference but uniform over the
length. Based upon previous work32/30 ap assumption of oc! = 4 for
calculation of the collapse load seemed rgzsonable. The buckling load
was corrected by use of Almroth's curves. Almroth calculated the buck-
ling pressure of cylinders with the following pressure distribution:

; PPt P ced (78]
: Letting Pl P
Pt 7,
7 - 2t

The peak load is at ¢ =o and has a value of (2 7+, ) -

For our calculations a value of P =75 was used to estimate the
correction due to nonuniform loading.

The collapse load is then given by

=2 - / (79]
e /?%i)léf{' "y
and the buckling load by
/ Z\* [80]
e £ 2tk (£) (EF)
0z A Os 3pl1-vF)  Z-2001-F)
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where c/0, is the ratio of elastic modulus fg yield stress and
for the test shells is given in a previous reference. /< is the Alm-
roth correction™  factor for nonuniform loading. Table 1 gives the re-
sults of the theory and experiment. The last two columns indicate whether
1 the shell collapsed or buckled in the tests and what was predicted from
the theory. In the theory

- . ’ca 7)5&- ) s

7 é—z-< 7"';7. Collapse will occur (81]
T T4 ! Buckling will occur
BB

In Table 1 ¢

| by = b, = B

-

Table 1 Collapse and Buckling Parameters

) B-Buckling
“ Y 7' c-Collapse

L &t Material 6 /< G & oz & _ Theoxr. Exper.
2 158 1040 Steel 1000 1.25 .38 .44 C C
2.87 158 1.25 .21 .31 C C

3 158 1.25 .20 .29 C C
3.87 158 1.30 .12 .23 C C
4,87 158 1.35 .08 .19 C C

6 158 1.40 .05 .16 C C

8 158 1.50 .03 .13 C Cc
2.87 86 1.55 .21 .95 C C

3 86 1.55 .19 .91 C C

6 86 1.60 .05 47 C C

3 316 1.50 .19 .12 B not clgar
2.91 172 1.40 .21 .30 C C

3 172 1.40 .20 .29 C C
2.91 79 1.50 .21 1.03 C C
2.94 158 1.25 .20 .30 C C
2.94 88 1.49 .20 .81 C C
1.98 176 1.25 .38 .38 C not clear
2.0 1000 Al 5052-48 333 1.15 .19 .006 B B
3.0 1000 1.15 .38 .008 B B
5.0 1000 1.20 .077 .003 B B
3.0 500 1.25 .20 .017 B B

5 500 1.30 .077 (11 B B
7.67 500 1.35 .033 .007 B B
10 500 1.40 .020 .006 B B

3 250 1.25 .197 .005 B B

3 125 1.25 .197 .139 B B

-26-




Sk R H A M A . T — —_— =
r - AT Dt T STV & < v

B-Buckling
— £ y C-Collapse
Lo e Material £ /< A %%f; Theor. Exper.

3 2000 Al 5052-H8 333 1.10 .197 .0019 B B
3 1000 1.15 .197 .0056 B B
3 136 Al 6061-T6 250 1.30 .197 .095 B B
3 71 1.50 .197 .293 C C
] 3 143 1.30 .197 . 088 B B
.67 500 Al 1100-0 2000 1.10 .89 .42 B B
X 500 1.10 .76 .28 B B
; 1.67 500 1.10 .48 .16 B B
- 2 500 1.20 .38 .15 B B
3 3 500 1.25 .19 .10 B B
3 4 500 1.30 .12 .08 B B
) 500 1.35 .076 . 067 B B

7.67 500 1.40 .033 .045 C not clear
3 300 1.25 .20 .22 c C
.57 250 1.20 .89 1.29 C C
, 1 250 1.20 .76 .86 c c
3 250 1.25 .20 .29 ¢ C
1.5 1000 1.15 .54 . 068 B B
1.83 1000 1.20 .43 . 058 B R
.67 500 1.15 .89 .43 B B
1 500 1.10 .76 .28 B B

It is seen that with very few exceptions the formulas presented in the

previous section accurately predict whether the shell will collapse oxr
buckle.

C. Energy in the diamond collapse pattern

The plastic energy absorbed in the collapse pattern during large defor-~

3 mation was obtained in an earlier report. More complete curves are pre-
sented here in Figure 22 as a function of the deflection ratio *oz
which is a more convenient parameter than the one used for collapse in
the earlier work.3l For the linear hardening curve shown in Fig. 9 (see
equation 67 for A ), the total energy can be written as

V= 03 Kot fﬂl.:.i)f+,\\2_,\u/'3—/r(,f 8o
ﬁ 2{5/,_,/1.) [ ]
In Fig. 22 the nondimensional energy functions Z, and V, are plotted for
a large range of physical parameters. Note that these functions are in-
E dependent of 4 and for %4/ > § Lhey are independent of “/p . Collap-
se involving temperaturec dependence (see Fig. 14) and other hardening
problems can be completely solved by this set cf curves since both func-
tions if and v, are independent of the hardening parameter A .

s
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D. Energy in the buckled pattern

A typical buckling pattern that could occur in the shell due to side on
blart is shown in Figure 16. The theory predicts one half wave length
along the length of the shell and 7 waves around the periphery, where

7 is dependent on the geometry of the shell. The manner of buckling
is well confirmed by experiment. The displacement pattern in the post
3 failure or plastic region can be described by the following equation:

3 —A£f

A PV N VVAN < Cdz’VLC/ [83]
3

y The number of peripheral lobes, 72 is given by Reynold's33 as

‘ ~ T / -/ [84]

"~ 1.230/ad VL

The factor of 1.23 is not exactly correct. Since the nzumber of full
waves, », must be a whole number this factor of 1.23 is adjusted so
that 71 1is the whole number nearest to the value calculated by using
the factor 1.23. The parameter 4 varies and it is difficult to as-
sign a reliable number to this parameter. Nevertheless a range for

§ can be determined. Based upon examination of experimental result. it
seems that o©<ARA«<, . An extensive set of energy absorption curves
for # =,2x5 is shown in Figure 23-25. These curves are based upon
the addition of membrane and bending energy. It was found that the
membrane was much greated than the bending for buckling in this large
deflection region. Figures 26, 27 show a comparisor of membiane ab-
sorption energies for various values of A between 0 and 1 Ior several
shell geometries. For side on blasts a good average value for £ is 25.

E. Energy in the short duration contact explosion pattern

Q Some typical deformation patterns for sprayed explosive loading are
1 shown in Figures 17-19. The deformation patterns vary considerably,
but all of them can be described by the general form

AV /w'a[-(/—e‘c“‘)ﬁé_cqﬂ//'/&/) 4”;':—;;;5/_7 s x'=2g (89

The constants which vary with each pattern are G, H, C, B, K. Figures
28, and 29 show the longitudinal and peripheral displacement distribu-
3 tions for a range of values of these constants;. Since the patterns are
‘ always symmetrical about fzoand ='=.s only one half of the pattern

is shown. The patterns in the Stanford Research Institute tests vary
greatly from those in the Southwest Research Institute tests (see Fig.
19). It is therefore difficult to conclude what a typical pattern should
be for a given value of ~'p and £/ . It is believed that these short
duration explosive tests are not as conclusive as the collapse and buck-
ling phenomena from stand off blast as presented earlier in the report.

o T
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It was found that the energy of plastic deformation was critically de-
bendent upon the values of the shape parameters G,H,C,B,K. Therefore
it would be misleading at this time to tie down energy values as a
function of & , 2re . However in the next section of the report
the actual impulse values obtained from tests will be compared with
those predicted from theorv by using representative values of G,H,C, B, K.

Impulse response of cylindrical shells for short time contact explosions

In Section IIB of this report there is a derivation of the impulse as a
function of the energy absorbed. For the cylindrical shell this rela-
tion becomes

-2
/= w =
v 24 [86]
where w = \/ = work done by internal forces (see eq. [68]
BT [ Ftno) £t s)ocncs (87]
~ /A// 20k, 8) ccledd

where _151- (x, 8) is the impulse distribution and Z 1is the peak value
of impulse per unit area. Substituting the value of V from (68], H and M
from {87]), we obtain the following relation for a rigid -- perfectly
plastic material: . D .
(I/t ) = FO%%, 2, ) (88]

where F is a dlmensn.onless functlon of the dimensionless parameters

p/t "/D ""J-""‘/a_ . Av,.. 1s the maximum deflection, which in
all cases considered here, is at ¢ =0 , x= "‘-7/2_ . Equation [88]
was programmed on a time sharing system and calculations were run using
a cosine distribution of impulse over 180° 12 using representative val-
ues of the constants describing the deformation pattern. A rigid per-
fectly plastic material (see Fig. 8) was assumed. It was found that the
following values of the constants gave a deflection distribution which
was consistent with the SRZ and S, R ZL tests (see Fig. 19) and
at the same time fitted the damage sensitivity curve of S AL .12

=64 6 k=/ C=], G100, H=3 [(89]
The deflection distribution for this set of constants as well as other
sets are given in Figures 28, 29. The theoretical curve using the above
mentlonig constants is compared with the experimental results of Baker,
et. al. in Fig. 30. Using the same set of constants curves of the non-
dimensional impulse function /tf;g-; as a function of “/» and P4 for
all values of .. /a. were calculated and plotted in Fig. 31, 32.

The effect of “D especially for short cylinders in which &4 </ is very

large. For longer cylinders with #&/o > 2. the effect of P is very

small. As the #“p decreases the effect of Y4 increases. Note that the

values of “%t =10, j0o used in Fig. 32 represent a vast range. For
Pr¢ > 100 there 1is no effect of £4 whatsoever.
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