# UNCLASSIFIED

# AD NUMBER

# AD869035

# LIMITATION CHANGES

# TO:

Approved for public release; distribution is unlimited.

# FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; FEB 1970. Other requests shall be referred to Army Aviation

Materiel Labs., Fort Eustis, VA.

# AUTHORITY

USAAMRDL ltr, 18 Jun 1971

THIS PAGE IS UNCLASSIFIED

# USAAVLABS TECHNICAL REPORT 69-88

A

Di

- -

4+8

# **ROTOR AEROELASTIC INSTABILITY AND TRANSIENT CHARACTERISTICS**

ły

Charles F. Niebanck Lawrence J. Bain

February 1970

# U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

CONTRACT DA 44-177-AMC-203(T) UNITED AIRCRAFT CORPORATION SIKORSKY AIRCRAFT DIVISION STRATFORD, CONNECTICUT

This document is subject to operate report controls, and each transmittel to foreign governments or foreign nationals may be made only with prior approval of 18 Army Aristics Material Laborations - Fort Lation Virginia - 23:54

#### DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

1

1

#### DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.





٠

DEPARTMENT OF THE ARMY HEADQUARTERS US ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the U. S. Army Aviation Materiel Laboratories and is considered to be technically sound.

.

λ.

.

-1

The report is published for the exchange of information and the stimulation of ideas.

.

#### Task 1F162204A13903 Contract DA 44-177-AMC-203(T) USAAVLABS Technical Report 69-88 February 1970

2

À.

#### ROTOR AEROFLASTIC INSTABILITY AND TRANSIENT CHARACTERISTICS

SER-50597

Ъy

Charles F. Nicbanck

Lawrence J. Bain

Prepared by

United Aircraft Corporation Sikorsky Aircraft Division Stratford, Connecticut

for

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of US Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

#### FOREWORD

.

2

1

.

This report describes the results of a test program which was performed by Sikorsky Aircraft under Contract DA 44-177-AMC-203(T), Task 1F162204A13903, with the U. S. Army Aviation Materiel Laboratories. The test program in this report was performed in conjunction with a separate investigation of rotor wake characteristics and yaw effects on rotor performance, which was carried out under the same contract. The work of this contract was monitored for USAAVLABS by Mr. Patrick Cancro.

The test planning, analysis, and discussion pertaining to the rotor transient investigation presented in this report were the work of Mr. Lawrence J. Bain. The similar tasks which pertained to the aeroelastic instability portion of the test program were carried out by Mr. Charles F. Niebanck.

v

÷.,

#### TABLE OF CONTENTS

1

.

.

|                                                  | Page |
|--------------------------------------------------|------|
| SUNDARY                                          | ili  |
| POREMORD                                         | v    |
| LIST OF ILLUSTRATIONS                            | viii |
| LIST OF TABLES                                   | xiv  |
| LIST OF SYMBOLS                                  | xx   |
| INTRODUCTION                                     | 1    |
| DESCRIPTION OF NODEL                             | 3    |
| TEST PROCEDURE AND INITIAL OBSERVATIONS          | 9    |
| DESCRIPTION OF DATA AND DATA REDUCTION           | 15   |
| DESCRIPTION OF THEORETICAL CALCULATIONS          | 22   |
| AKALYSIS OF TRANSIFUT DATA                       | 28   |
| ANALYSIS OF INSTABILITY DATA                     | 40   |
| PRACTICAL OPERATING LINITS                       | 66   |
| CONCLUSIONS                                      | 68   |
| LITERATURE CITED                                 | 72   |
| APPENDIXES                                       |      |
| I. Description of Facilities and Equipment       | 258  |
| II. Tables of Maximum and Minimum Blade Response | 260  |
| III. Tables of Blade Response Harmonics          | 273  |
| DISTRIBUTION                                     | 426  |
|                                                  |      |

vii

### LIST OF ILLUSTRATIONS

1

.

t

4

.

<u>}</u>

| Figure |                                                                                                                                                                                                                                                                                                                                      | Page |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|        |                                                                                                                                                                                                                                                                                                                                      | Take |  |
| 1      | Sikorsky Compound Helicopter Model in United<br>Aircraft Corporation 18-Foot Wind Tunnel                                                                                                                                                                                                                                             | 96   |  |
| 2      | Three-View Drawing of Sikorsky Compound Helicopter Model                                                                                                                                                                                                                                                                             | 97   |  |
| 3      | Dynamically Scaled Model Blade Construction                                                                                                                                                                                                                                                                                          | 98   |  |
| 4      | Blade Mass Properties                                                                                                                                                                                                                                                                                                                | 99   |  |
| 5      | Blade Stiffness Properties                                                                                                                                                                                                                                                                                                           | 100  |  |
| 6      | Blade Flapwise Natural Frequency Versus Rotor Speed                                                                                                                                                                                                                                                                                  | 101  |  |
| 7      | Blade Chordwise Natural Frequency Versus Rotor Speed                                                                                                                                                                                                                                                                                 | 102  |  |
| 8      | Blade Torsional Natural Frequency Versus Rotor Speed                                                                                                                                                                                                                                                                                 | 103  |  |
| 9      | Blade First Flapwise Bending Mode Shape; $\Omega_{s} R = 700$ ft/sec.                                                                                                                                                                                                                                                                | 104  |  |
| 10     | Blade First Chordwise Bending Mode Shape;<br>$\Omega_{g}R$ = 700 ft/sec                                                                                                                                                                                                                                                              | 105  |  |
| 11     | Blade First Torsional Mode Shape; $\Omega_{g}R = 700$ ft/sec                                                                                                                                                                                                                                                                         | 106  |  |
| 12     | Model Blade Bearing Friction Test Results                                                                                                                                                                                                                                                                                            | 107  |  |
| 13     | Rotor Operating Conditions for Transient Testing                                                                                                                                                                                                                                                                                     | 108  |  |
| 14     | Theoretical Fixed-Azimuth Stability Boundaries and<br>Selected Data Points                                                                                                                                                                                                                                                           | 109  |  |
| 15     | Sample Control Position Transient Input; $V_g = 300 \text{ km}$ ,<br>$\mu = 1.026$ , TAN $\delta_3 = 1.0$ , $\alpha_s = 0.0^\circ$ , $\theta_{cs} = 0.0^\circ$ ,<br>$\Delta \theta_c = 4.0^\circ$ , $a_{1ss} = 0.0^\circ$ , $\Delta a_{1s} = 2.4^\circ$ , $b_{1ss} = 0.0^\circ$ ,<br>$\Delta b_{1s} = -1.4^\circ$ , Run 60, Point 28 | 110  |  |
| 16     | Frequency and Damping of Calculated Fixed-Azimuth<br>Flutter Mode                                                                                                                                                                                                                                                                    | 113  |  |
| 17     | Torsional Damping From Stall Flutter Calculations;<br>$\alpha_s = 0.0^\circ$ , $a_{1s} = 0.0^\circ$ , $b_{1s} = 0.0^\circ$                                                                                                                                                                                                           | 117  |  |
| 18     | Experimental and Theoretical Blade Lag Angle During<br>Transient Conditions; $V_g = 120 \text{ kn}$ , $\mu = 0.29$ ,<br>$Y_{CG}/c = 0.25 \dots \dots$                                                                                      | 120  |  |

viii

# Figure

1

.

À

t

| 19 | <b>Experimental and Theoretical Blade Flapwise Bending</b><br>Moments During Transient Conditions; $V_g = 120$ kn,<br>$\mu = 0.29$ , $Y_{CG}/c = 0.25$                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | <b>Experimental and Theoretical Blade Flap Angle During</b><br><b>Transient Conditions;</b> $V_g = 120 \text{ kn}$ , $\mu = 0.29$ ,<br>$Y_{CG}/c = 0.25 \dots 124$              |
| 21 | Experimental and Theoretical Blade Torsional Moment<br>During Transient Conditions; V <sub>S</sub> = 120 kn,<br>µ = 0.29, Y <sub>CG</sub> /c = 0.25                             |
| 22 | <b>Experimental and Theoretical Blade Lag Angle During</b><br><b>Transient Conditions;</b> $V_g = 200 \text{ kn}$ , $\mu = 0.50$ ,<br>$Y_{CG}/c = 0.25 \dots 127$               |
| 23 | <b>Experimental and Theoretical Blade Flapwise</b><br>Bending Moments During Transient Conditions;<br>$V_g = 200 \text{ kn}, \mu = 0.50, Y_{CG}/c = 0.25 \dots 129$             |
| 24 | <b>Experimental</b> and Theoretical Blade Flap Angle During<br>Transient Conditions; $V_g = 200 \text{ kn}$ , $\mu = 0.50$ ,<br>$Y_{CG}/c = 0.25 \dots 135$                     |
| 25 | <b>Experimental and Theoretical Blade Torsional Moment</b><br>During Transient Conditions; $V_g = 200 \text{ kn}$ ,<br>$\mu = 0.50$ , $Y_{CG}/c = 0.25 \dots 137$               |
| 26 | <b>Experimental</b> and Theoretical Blade Lag Angle During<br>Transient Conditions; $V_g = 300 \text{ kn}$ , $\mu = 1.03$ ,<br>$Y_{CG}/c = 0.25 \dots 139$                      |
| 27 | <b>Experimental and Theoretical Blade Flapwise Bending</b><br>Moments During Transient Conditions; $V_g = 300 \text{ kn}$ ,<br>$\mu = 1.03$ , $Y_{CG}/c = 0.25$ 141             |
| 28 | <b>Experimental and Theoretical Blade Flap Angle During</b><br>Transient Conditions; $V_8 = 300 \text{ kn}$ , $\mu = 1.03$ ,<br>$Y_{CC}/c = 0.25 \dots 148$                     |
| 29 | Experimental and Theoretical Blade Torsional Moment<br>During Transpent Conditions; $V_s = 300 \text{ kn}$ ,<br>$\mu = 1.03$ , $Y_{CG}/c = 0.25$                                |
| 30 | Theoretical Blade Lag Angle During Transient Conditions;<br>$V_g = 300$ km, $\mu = 1.03$ , $Y_{CG}/c = 0.25$ , Control Input<br>Applied 3/4 Revolution After Experimental Input |

Page

# Piquee.

)

•

1

.

1

.

| 31        | Theoretical Blade Flapwise Bending Moment During<br>Transient Corditions: $V_g = 300$ km, $u = 1.03$ ,<br>$Y_{CC}/c = 1.25$ , Control Input Applied 3/4 Revolution<br>After Experimental Input                                                                                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35        | Theoretical Blade Flap Angle During Transient<br>Conditions; $V_g = 300$ km, $\mu = 1.03$ , $Y_{CD}/c = 0.25$ .<br>Control Input Applied 3/4 Revolution After<br>Experimental Input                                                                                                 |
| 33        | Theoretical Blade Torsional Moment During Transient<br>Conditions; $V_g = 300$ kn, $u = 1.03$ , $Y_{CG}/c = 0.25$ ,<br>Control Input Applied 3/4 Revolution After<br>Experimental Input                                                                                             |
| 34        | Blade Response Versus Azimuth During<br>Retreating Blade Aeroelastic Limits Testing;<br>$Y_{CG}/c = 0.25$ , $a_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$V_s = 332$ km, $\theta_c = 2.0^\circ$                                                                           |
| 35        | Blade Response Versus Azimuth During Advancing<br>Blade Aeroelastic Limits Testing; $Y_{CG}/c = 0.25$ ,<br>$a_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ , $\theta_c = 2.0^\circ$                                                                                               |
| <b>36</b> | Blade Response Versus Azimuth During Advancing<br>Blade Aeroelastic Limits Testing;<br>$Y_{CG}/c = 0.25$ , $\alpha_g = 0.0^\circ$ , $a_{1g} = b_{1g} = 0.0^\circ$ ,<br>$\Omega_g R = 700$ ft/sec, $\theta_c = 4.0^\circ$                                                            |
| 37        | Blade Response Versus Azimuth During Advancing<br>Blade Aeroelastic Limits Testing; Y <sub>CG</sub> /c = 0.25,<br>$a_s = 0.0^{\circ}$ , $a_{1s} = b_{1s} = 0.0^{\circ}$ , $\Omega_s R = 500$ ft/sec,<br>$\theta_c = 4.0^{\circ}$                                                    |
| 38        | Blade Response Versus Azimuth During Combined<br>Advancing and Retreating Blade Aeroelastic Limits<br>Testing; $Y_{CG}/c = 0.30$ , $\alpha_g = 0.0^\circ$ , $a_{1g} = b_{1g} = 0.0^\circ$ ,<br>$V_g = 332$ kn, $\Omega_g R = 404$ ft/sec, $\mu = 1.39$ , $\theta_c = 4.0^\circ$ 177 |
| 39        | Blade Response Versus Azimuth During Advancing<br>Blade Aeroelastic Limits Testing; $Y_{CG}/c = 0.35$ ,<br>$a_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ , $\Omega_s R = 700$ ft/sec,<br>$\theta_c = 4.0^\circ$                                                                 |
| 40        | Blade Response Versus Azimuth During Advancing<br>Blade Aeroelastic Limits Testing; $Y_{CG}/c = 0.35$ ,<br>$a_s = 0.0^{\circ}$ , $a_{1s} = b_{1s} = 0.0^{\circ}$ , $\Omega_s R = 500$ ft/sec,<br>$\theta_c = 4.0^{\circ}$                                                           |

### linure

ľ

1

.

h

| 41    | Blade Response Versus Azimuth Juring Advancing<br>and Combined Advancing and Retreating Blade<br>Aeroelastic Limits Testing: $Y_{CO}/c = 0.35$ ,<br>$a_g = 0.0^{\circ}$ , $a_{1s} = b_{1s} = 0.0^{\circ}$                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42    | Blade Response Versus Aximuth During Stall Flutter<br>Testing: $Y_{CG}/c = 0.25$ , $a_g = 0.0^{\circ}$ , $a_{1g} = b_{1g} = 0.0^{\circ}$ ,<br>$Y_g = 121$ km, $a_g R = 700$ ft/sec, $u = 0.29$                                                                 |
| 43    | Slade Response Versus Azimuth During Stall Flutter<br>Testing: $Y_{CC}/c = 0.25$ , $u_s = 0.0^{\circ}$ , $u_{1s} = b_{1s} = 0.0^{\circ}$ ,<br>$V_s = 145$ km, $u_s R = 700$ ft/sec, $\mu = 0.35$                                                               |
| ie ka | Slade Response Versus Aximuth During Stall Flutter<br>Testing; $Y_{CG}/c = 0.25$ , $a_0 = 0.0^{\circ}$ , $a_{10} = b_{10} = 0.0^{\circ}$ 209                                                                                                                   |
| 45    | Blade Response Versus Azimuth Du-ing Combined<br>Advancing Blade Aeroelastic Limits and <u>Stall</u><br>Flutter Testing: $Y_{CC}/c = 0.30$ , $a_g = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$ , $a_c = 11.0^{\circ}$                                   |
| 46    | Blade Response Versus Azimuth During Recovery<br>From Violent Instability: $Y_{CG}/c = 0.35$ , $a_s = 0.0^{\circ}$ ,<br>$V_g = 260$ km, $\Omega_g R = 500$ ft/sec, $u = 0.88$ , $\delta_c = 4.0^{\circ}$ ,<br>$A_{1g} = -1.3^{\circ}$ , $B_{1g} = 4.6^{\circ}$ |
| 47    | Blade Response Versus Azimuth During Violent<br>Instability; $Y_{CC}/c = 0.35$ , $a_s = 0.0^\circ$ , $V_s = 120$ km,<br>$\Omega_s R = 700$ ft/sec, $u = 0.29$ , $\theta_c = 6.8^\circ$ , $A_{1s} = -2.7^\circ$ ,<br>$B_{1s} = 6.1^\circ$                       |
| 18    | Blade Response Versus Frequency During Violent<br>Instability; $Y_{CC}/c + 0.35$ , $a_8 = 0.0^\circ$ , $V_8 = 120$ km,<br>$\Omega_9 R = 700$ f./sec, $u = 0.29$ , $\theta_c = 6.8^\circ$ , $A_{18} = -2.7^\circ$ ,<br>$B_{18} = 6.1^\circ$                     |
| 49    | Blade Log and Flap Response Versus Frequency During<br>Retreating Blade Limits Testing; $Y_{CC}/c = 0.25$ ,<br>$a_s = 0.0^{\circ}$ , $a_{1s} = b_{1s} = 0.0^{\circ}$ , $Y_s = 332$ km, $\theta_c = 2.0^{\circ}$ 233                                            |
| 50    | Range of Blade Lag Response During Retreating Blade<br>Aeroelastic Limits Testing: $a_g = 0.0^{\circ}$ ,<br>$a_{1g} = b_{1g} = 0.0^{\circ}$ , $V_g = 332$ km                                                                                                   |
| 51    | Pange of Blade Flapuise Bending Response During<br>Retreating Blade Aeroelastic Limits Testing;<br>$a_n = 0.0^{\circ}$ , $a_{1n} = b_{1n} = 0.0^{\circ}$ , $V_n = 332$ km                                                                                      |

# Figure

| 52 | Range of Blade Torsional Response During Retreating<br>Blade Aeroelastic Limits Testing; $a_s = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$ , $V_s = 332$ kn                                  |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 53 | Range of Blade Flapping Response During Retreating<br>Blade Aeroelastic Limits Testing; $a_5 = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$ , $V_s = 332$ kn                                   | 1 |
| 54 | Range of Blade Chordwise Bending Response During<br>Retreating Blade Aeroelastic Limits Testing;<br>a <sub>g</sub> = 0.0°, a <sub>ls</sub> = b <sub>ls</sub> = 0.0°, V <sub>s</sub> = 332 kn        | • |
| 55 | Range of Blade Lag Response During Advancing Blade<br>Aeroelastic Limits Testing; $\alpha_g = 0.0^\circ$ ,<br>$\alpha_{1s} = b_{1s} = 0.0^\circ$ , $\Omega_g R = 700$ ft/sec                        |   |
| 56 | Range of Blade Flapwise Bending Response During<br>Advancing Blade Aeroelastic Limits Testing;<br>α <sub>8</sub> = 0.0°, a <sub>18</sub> = b <sub>18</sub> = 0.0°, Ω <sub>8</sub> R = 700 ft/sec    |   |
| 57 | Range of Blade Torsional Response During Advancing<br>Blade Aeroelastic Limits Testing; $a_g = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$ , $\Omega_g R = 700$ ft/sec                        |   |
| 58 | Range of Blade Flapping Response During Advancing<br>Blade Aeroelastic Limits Testing; $\alpha_{\rm g} = 0.0^{\circ}$ ,<br>$a_{\rm ls} = b_{\rm ls} = 0.0^{\circ}$ , $\Omega_{\rm g}R = 700$ ft/sec |   |
| 59 | Range of Blade Chordwise Bending Response During<br>Advancing Blade Aeroelastic Limits Testing;<br>$\alpha_s = 0.0^\circ$ , $\alpha_{ls} = b_{ls} = 0.0^\circ$ , $\Omega_s R = 700$ ft/sec          |   |
| 60 | Range of Blade Lag Response During Stall Flutter<br>Testing; $Y_{CG}/c = 0.25$ , $\alpha_s = 0.0^{\circ}$ , $a_{1s} = b_{1s} = 0.0^{\circ}$ 244                                                     |   |
| 61 | Range of Blade Flapwise Bending Response During<br>Stall Flutter Testing; $Y_{CG}/c = 0.25$ , $\alpha_s = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$                                         | Ŧ |
| 62 | Range of Blade Torsional Response During Stall<br>Flutter Testing; $Y_{CG}/c = 0.25$ , $\alpha_s = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$                                                | 1 |
| 63 | Range of Blade Flapping Response During Stall<br>Flutter Testing; $Y_{CG}/c = 0.25$ , $a_s = 0.0^\circ$ ,<br>$a_{1s} = b_{1s} = 0.0^\circ$                                                          | 8 |

Page

xii

•

# Figure

1

.

4

# Page

.

| 64 | Range of Blade Lag Response During Combined Advancing<br>Blade Aeroelastic Limits and Stall Flutter Testing;<br>$\alpha_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ , $\Omega_s R = 700$ ft/sec,<br>$\theta_c = 10.0^\circ$                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 65 | Range of Blade Flapwise Bending Response During<br>Combined Advancing Blade Aeroelastic Limits and<br>Stall Flutter Testing; $\alpha_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$\Omega_s R = 700$ ft/sec, $\theta_c = 10.0^\circ$ . |
| 66 | Range of Blade Torsional Response During Combined<br>Advancing Blade Aeroelastic Limits and Stall Flutter<br>Testing: $\alpha_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$\Omega_s R = 70$ ft/sec, $\theta_c = 10.0^\circ$           |
| 67 | Range of Blade Flapping Response During Combined<br>Advancing Blade Aeroelastic Limits and Stall<br>Flutter Testing; $a_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$\Omega_s R = 700$ ft/sec, $\theta_c = 10.0^\circ$                |
| 68 | Range of Blade Lag Response During Advancing Blade<br>Aeroelastic Limits Testing at Reduced Simulated<br>Rotational Tip Speed; $\alpha_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$\Omega_s R = 500$ ft/sec                          |
| 69 | Range of Blade Flapwise Bending Response During<br>Advancing Blade Aeroelastic Limits Testing at<br>Reduced Simulated Rotational Tip Speed; $\alpha_g = 0.0^{\circ}$ ,<br>$a_{1s} = b_{1s} = 0.0^{\circ}$ , $\Omega_g R = 500$ ft/sec         |
| 70 | Range of Blade Torsional Response During Advancing<br>Blade Aeroelastic Limits Testing at Reduced Simulated<br>Rotational Tip Speed; $\alpha_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$\Omega_s R = 500$ ft/sec                    |
| 71 | Range of Blade Flapping Response During Advancing<br>Blade Aeroelastic Limits Testing at Reduced Simulated<br>Rotational Tip Speed; $a_s = 0.0^\circ$ , $a_{1s} = b_{1s} = 0.0^\circ$ ,<br>$\Omega_s R = 500$ ft/sec                          |
| 72 | Range of Blade Chordwise Bending Response During<br>Advancing Blade Aeroelastic Limits Testing at Reduced<br>Simulated Rotational Tip Speed, $a_s = 0.0^\circ$ ,<br>$a_{1s} = b_{1s} = 0.0^\circ$ , $\Omega_s R = 500$ ft/sec                 |
| 73 | United Aircrait Research Laboratories 18-Foot<br>Main Wind Tunnel                                                                                                                                                                             |

xiii

.

#### LIST OF TABLES

| Table |                                                                                                                     | Page |
|-------|---------------------------------------------------------------------------------------------------------------------|------|
| I     | Ratios of Model Parameters to Full Scale                                                                            | 74   |
| II    | Calculated Effect of Inertial Coupling on<br>Flapwise and Torsional Natural Frequencies                             | 75   |
| III   | Calculated Natural Modes With Inertial<br>Coupling (Blade C.G. at .30 Chord)                                        | 76   |
| IV    | Calculated Natural Modes With Inertial<br>Coupling (Blade C.G. at .35 Chord)                                        | 77   |
| V     | Model Blade Structural Damping Test Results -<br>Bending and Torsional Static Modes                                 | 78   |
| VI    | Rotor Parameters for Transient Test Conditions<br>(Blade Center of Gravity at .25 Chord)                            | 79   |
| VII   | Rotor Parameters for Instability Test Conditions<br>(Blade Center of Gravity at .25 Chord)                          | 85   |
| VIII  | Rotor Parameters for Instability Test Conditions<br>(Blade Center of Gravity at .30 Chord)                          | 87   |
| IX    | Rotor Parameters for Instability Test Conditions<br>(Blade Center of Gravity at .35 Chord)                          | 88   |
| X     | Structural Damping Coefficients for the Rotating<br>Blade (Blade Center of Gravity at .25 Chord)                    | 89   |
| xī    | Calculated Flutter Modes                                                                                            | 90   |
| XII   | Calculated Stall Flutter Conditions                                                                                 | 91   |
| XIII  | Blade Response During Instability                                                                                   | 92   |
| XIV   | Blade Nonharmonic Response                                                                                          | 93   |
| XV    | Maximum and Minimum Blade Motions and Loads<br>(Blade Center of Gravity at .25 Chord,<br>Tangent $\delta_3 = 1.C$ ) | 260  |
| XVI   | Muximum and Minimum Blade Motions and Loads<br>(Blade Center of Gravity at .25 Chord,<br>Tangent $\delta_3 = 0.0$ ) | 264  |
| XVII  | Maximum and Minimum Blade Motions and Loads (Blade Center of Gravity at .25 Chord,                                  |      |
|       | <b>Tangent</b> $\delta_3 = 0.0$ )                                                                                   | 268  |

1

xiv

| D | ~~ | -  |
|---|----|----|
|   | 22 | e. |
| - |    | -  |

.

| XVIII  | Maximum and Minimum Blade Motions and Loads<br>(Blade Center of Gravity at .30 Chord,<br>Tangent $\delta_3 = 0.0$ )   | ro |
|--------|-----------------------------------------------------------------------------------------------------------------------|----|
| XIX    | Maximum and Minimum Blade Motions and Loads<br>(Blade Center of Gravity at .35 Chord,<br>Tangent $\delta_3 = 0.0$ )27 | 2  |
| XX     | Blade Lag Motion Harmonics - Run 50<br>(Blade Center of Gravity at .25 Chord)                                         | '3 |
| IXX    | Blade .30R Flepwise Bending Moment Harmonics -<br>Run 50 (Blade Center of Gravity at .25 Chord) 27                    | '5 |
| XXII   | Blade .60R Flapwise Bending Moment Harmonics -<br>Run 50 (Blade Center of Gravity at .25 Chord) 27                    | 7  |
| XXIII  | Blade Flap Motion Harmonics - Run 50<br>(Blade Center of Gravity at .25 Chord)                                        | 9  |
| XXIV   | Blade .35R Torsional Moment Harmonics - Run 50<br>(Blade Center of Gravity at .25 Chord)                              | 1  |
| XXV    | Blade Lag Motion Harmonics - Run 51<br>(Blade Center of Gravity at .25 Chord)                                         | 3  |
| XXVI   | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 51 (Blade Center of Gravity at .25 Chord) 28                    | 5  |
| XXVII  | Blade .60R Flapwise Bending Moment Harmonics -<br>Run 51 (Blade Center of Gravity at .25 Chord) 28                    | 7  |
| XXVIII | Blade Flap Motion Harmonics - Run 51<br>(Blade Center of Gravity at .25 Chord)                                        | 9  |
| XIX    | Blade .35R Torsional Moment Harmonics - Run 51<br>(Blade Center of Gravity at .25 Chord)                              | 1  |
| XXX    | Blade Lag Motion Harmonics - Runs 64-67<br>(Blade Center of Gravity at .25 Chord)                                     | 3  |
| IXXY   | Blade .30R Flapwise Bending Moment Harmorics -<br>Run: 64-67 (Blade Center of Gravity at .25 Chord) 29                | 5  |
| XXXII  | Blade .18R Torsional Moment Harmonics - Runs<br>64-67 (Blade Center of Gravity at .25 Chord) 29                       | 7  |
| XXXIII | Blade Flap Motion Harmonics - Runs 64-67<br>(Blade Center of Gravity at .25 Chord)                                    | 9  |

Table

4

.

1

ŧ

| The l | <b>b</b> 1 - |
|-------|--------------|
|       | DTG          |
| _     | _            |

| P  |     |
|----|-----|
| τ. | age |
|    |     |

| XIXIV   | Blade .35R Torsional Moment Harmonics - Run 64<br>(Blade Center of Gravity at .25 Chord)            | 301 |
|---------|-----------------------------------------------------------------------------------------------------|-----|
| XXXXX   | Blade Lag Motion Harmonics - Run 68<br>(Blade Center of Gravity at .25 Chord)                       | 302 |
| XXXXI   | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 68 (Blade Center of Gravity at .25 Chord)     | 304 |
| XXXVII  | Blade .60R Flapwise Bending Moment Harmonics -<br>Run 68 (Blade Center of Gravity at .25 Chord)     | 306 |
| XXXVIII | Blade .18R Torsional Moment Harmonics - Run 68<br>(Blade Center of Gravity at .25 Chord)            | 308 |
| XIXXX   | Blade Flap Motion Harmonics - Run 68<br>(Blade Center of Gravity at .25 Thord)                      | 310 |
| XL      | Blade Lag Motion Harmonics - Runs 69-70<br>(Blade Center of Gravity at .25 Chord)                   | 312 |
| XLI     | Blade .30R Flapwise Bending Moment Harmonics -<br>Runs 69-70 (Blade Center of Gravity at .25 Chord) | 314 |
| XLII    | Blade .60R Flapwise Bending Moment Harmonics -<br>Run 69 (Blade Center of Gravity at .25 Chord)     | 316 |
| XLIII   | Blade .18R Torsional Moment Harmonics - Runs<br>69-70 (Blade Center of Gravity at .25 Chord)        | 317 |
| XLIV    | Blade Flap Motion Harmonics - Runs 69-70<br>(Blade Center of Gravity at .25 Chord)                  | 319 |
| XLV     | Blade Lag Motion Harmonics - Run 71<br>(Blade Center of Gravity at .25 Chord)                       | 321 |
| XLVI    | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 71 (Blade Center of Gravity at .25 Chord)     | 323 |
| XLVII   | Blade .18R Torsional Moment Harmonics - Run 71<br>(Blade Center of Gravity at .25 Chord)            | 325 |
| XTAIII  | Blade Flap Motion Harmonics - Run 71<br>(Blade Center of Gravity at .25 Chord)                      | 327 |
| XLIX    | Blade Lag Motion Harmonics - Run 72<br>(Blade Center of Gravity at .25 Chord)                       | 329 |
| L       | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 72 (Blade Center of Gravity at .25 Chord)     | 331 |

| Table |                                                                                                      | Page |
|-------|------------------------------------------------------------------------------------------------------|------|
| LI    | Blade .18R Torsional Moment Harmonics - Run 72<br>(Blade Center of Gravity at .25 Chord)             | 333  |
| LII   | Blade Flap Motion Harmonics - Run 72<br>(Blade Center of Gravity at .25 Chord)                       | 335  |
| LIII  | Blade Lag Motion Harmonics - Run 74<br>(Blade Center of Gravity at .30 Chord)                        | 337  |
| LIV   | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 74 (Blade Center of Gravity at .30 Chord)      | 339  |
| LV    | Blade .1&R Torsional Moment Harmonics - Run 74<br>(Blade Center of Gravity at .30 Chord)             | 341  |
| LVI   | Blade Flap Motion Harmonics - Run 74<br>(Blade Center of Gravity at .30 Chord)                       | 343  |
| LVII  | Blade .30R Chordwise Bending Moment Harmonics -<br>Run 74 (Blade Center of Gravity at .30 Chord)     | 345  |
| LVIII | Blade .35R Torsional Moment Harmonics - Run 74<br>(Blade Center of Gravity at .30 Chord)             | 347  |
| LIX   | Blade Lag Motion Harmonics - Runs 75-76<br>(Blade Center of Gravity at .30 Chord)                    | 349  |
| LX    | Blade .30R Flapwise Bending Moment Harmonics -<br>Runs 75-76 (Blade Center of Gravity at .30 Chord)  | 351  |
| LXI   | Blade .18R Torsional Moment Harmonics - Runs 75-76<br>(Blade Center of Gravity at .30 Chord)         | 353  |
| TXII  | Blade Flap Motion Harmonics - Runs 75-76<br>(Blade Center of Gravity at .30 Chord)                   | 355  |
| LXIII | Blade .30R Chordwise Bending Moment Harmonics -<br>Runs 75-76 (Blade Center of Gravity at .30 Chord) | 357  |
| LXIV  | Blade .35R Torsional Moment Harmonics - Runs 75-76<br>(Blade Center of Gravity at .30 Chord)         | 359  |
| LXV   | Blade Lag Motion Harmonics - Runs 77-78<br>(Blade Center of Gravity at .30 Chord)                    | 361  |
| LXVI  | Blade .30R Flapwise Bending Moment Harmonics -<br>Runs 77-78 (Blade Center of Gravity at .30 Chord)  | 363  |
| LXVII | Blade .18R Torsional Moment Harmonics - Runs 77-78<br>(Blade Center of Gravity at .30 Chord)         | 365  |

xvii

| Table   |                                                                                                      | Page |
|---------|------------------------------------------------------------------------------------------------------|------|
| LXVIII  | Blade Flap Motion Harmonics - Runs 77-78<br>(Blade Center of Gravity at .30 Chord)                   | 367  |
| LXIX    | Blade .30R Chordwise Bending Moment Harmonics -<br>Runs 77-78 (Blade Center of Gravity at .30 Chord) | 369  |
| LXX     | Blade Lag Motion Harmonics - Run 79<br>(Blade Center of Gravity at .30 Chord)                        | 371  |
| LXXI    | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 79 (Blade Center of Gravity at .30 Chord)      | 373  |
| LXXII   | Blade .18R Torsional Moment Harmonics - Run 79<br>(Blade Center of Gravity at .30 Chord)             | 375  |
| LXXIII  | Blade Flap Motion Harmonics - Run 79<br>(Blade Center of Gravity at .30 Chord)                       | 376  |
| LXXI A  | Blade .30R Chordwise Bending Moment Harmonics -<br>Run 79 (Blade Center of Gravity at .30 Chord)     | 378  |
| LXXXV   | Blade .35R Torsional Moment Harmonics - Run 79<br>(Blade Center of Gravity at .30 Chord)             | 380  |
| LXXVI   | Blade Lag Motion Harmonics - Run 80<br>(Blade Center of Gravity at .30 Chord)                        | 381  |
| LXXVII  | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 80 (Blade Center of Gravity at .30 Chord)      | 383  |
| LXXVIII | Blade .18R Torsional Moment Harmonics - Run 80<br>(Blade Center of Gravity at .30 Chord)             | 385  |
| LXXIX   | Blade Flap Motion Harmonics - Run 80<br>(Blade Center of Gravity at .30 Chord)                       | 387  |
| LXXX    | Blade .30R Chordwise Bending Moment Harmonics -<br>Run 80 (Blade Center of Gravity at .30 Chord)     | 389  |
| LXXXI   | Blade Lag Motion Harmonics - Run 81<br>(Blade Center of Gravity at .30 Chord)                        | 391  |
| LXXXII  | Blade .30R Flapwise Bending Moment Harmonics -<br>Run 81 (Blade Center of Gravity at .30 Chord)      | 393  |
| LXXXIII | Blade .18R Torsional Moment Harmonics - Run 81<br>(Rlade Center of Gravity at .30 Chord)             | 394  |
| LXXXIV  | Blade Flap Motion Harmonics - Run 81<br>(Blade Center of Gravity at .30 Chord)                       | 396  |

2

i.

xviii

.

.

L

Page

| LXXXV    | Run 81 (Blade Center of Gravity at .30 Chord)                                                        | 398 |
|----------|------------------------------------------------------------------------------------------------------|-----|
| LXXXVI   | Blade Lag Motion Harmonics - Runs 83-84<br>(Blade Center of Cravity at .35 Chord)                    | 400 |
| LXXXVII  | Blade .30R Flapwise Bending Moment Harmonics -<br>Runs 83-84 (Blade Center of Gravity at .35 Chord)  | 402 |
| LXXXVIII | Blade .60R Flapwise Bending Moment Harmonics -<br>Runs 83-84 (Blade Center of Gravity at .35 Chord)  | 404 |
| LXXXIX   | Blade .18R Torsional Moment Harmonics - Runs 83-84<br>(Blade Center of Gravity at .35 Chord)         | 406 |
| XC       | Blade Flap Motion Harmonics - Runs 83-84<br>(Blade Center of Gravity at .35 Chord)                   | 408 |
| XCI      | Blade .30R Chordwise Bending Moment Harmonics -<br>Runs 83-84 (Blade Center of Gravity at .35 Chord) | 410 |
| XCII     | Blade .35R Torsional Moment Harmonics - Run 84<br>(Blade Center of Gravity at .35 Chord)             | 412 |
| XCIII    | Blade Lag Motion Harmonics - Runs 85-86<br>(Blade Center of Gravity at .35 Chord)                    | 414 |
| XCIV     | Blade .30R Flapwise Bending Moment Harmonics -<br>Runs 85-86 (Blade Center of Gravity at .35 Chord)  | 416 |
| XCV      | Blade .60R Flapwise Bending Moment Harmonics -<br>Runs 85-86 (Blade Center of Gravity at .35 Chord)  | 418 |
| XCVI     | Blade Flap Motion Harmonics - Runs 85-86<br>(Blade Center of Gravity at .35 Chord)                   | 420 |
| XCVII    | Blade .30R Chordwise Bending Moment Harmonics -<br>Runs 85-86 (Blade Center of Gravity at .35 Chord) | 422 |
| XCVIII   | Blade .35R Torsional Moment Harmonics, Runs 85-86<br>(Blade Center of Gravity at .35 Chord)          | 424 |

Table

-

Å

à

5

xix

#### LIST OF SYMBOLS

2

| AP                                       | computer symbol for positive cosine component of Pth rotor<br>harmonic in dynamic data (where P is an integer),<br>inlb or deg (as stated)                   |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A <sub>ls</sub>                          | lateral cyclic pitch with respect to the shaft, deg                                                                                                          |  |  |  |
| <b>a</b>                                 | cosine part of a discrete frequency component in the<br>dynamic data                                                                                         |  |  |  |
| <sup>a</sup> ls                          | longitudinal component of blade first harmonic flapping<br>motion at hinge with respect to the shaft, deg (positive for<br>blade low at $\psi = 0^{\circ}$ ) |  |  |  |
| lss                                      | flapping component $a_{13}$ for the initial steady part of a transient data point, deg                                                                       |  |  |  |
| BETA                                     | computer symbol for blade flapping at hinge, deg                                                                                                             |  |  |  |
| BP                                       | computer symbol for positive sine component of Pth rotor<br>harmonic in dynamic data (where P is an integer),<br>inlb or deg (as stated)                     |  |  |  |
| Bls                                      | longitudinal cyclic pitch with respect to the shaft, deg                                                                                                     |  |  |  |
| Ъ                                        | number of blades                                                                                                                                             |  |  |  |
| b <sub>m</sub>                           | sine part of a discrete frequency component in the dynamic data                                                                                              |  |  |  |
| bls                                      | lateral component of blade first harmonic flapping motion at<br>hinge with respect to the shaft, deg (positive for blade<br>low at $\psi = 90^{\circ}$ )     |  |  |  |
| blss                                     | flapping component $b_{1s}$ for the initial steady part of a transient data point, deg                                                                       |  |  |  |
| co                                       | blade reference chord, ft                                                                                                                                    |  |  |  |
| <sup>c</sup> <sub>L</sub> / <sub>σ</sub> | rotor lift coefficient-solidity ratio, $C_L^{\sigma} = L/\pi R^2 \rho(\Omega R)^2 \sigma$                                                                    |  |  |  |
| C <sub>D</sub> /σ                        | rotor drag coefficient-solidity ratio, $C_D/\sigma = D/\pi R^2 \rho (\Omega R)^2 \sigma$                                                                     |  |  |  |
| C <sub>Y</sub> /σ                        | rotor side force coefficient-solidity ratio, $Cy/\sigma=Y/\pi R^2\rho(\Omega R)^2\sigma$                                                                     |  |  |  |
| C <sub>Q</sub> ∕σ                        | rotor torque coefficient-solidity ratio, $C_Q/\sigma$ = $Q/\pi R^3 \rho (\Omega R)^2 \sigma$                                                                 |  |  |  |
| C <sub>PM</sub> /σ                       | rotor Fitching moment-solidity ratio, $C_{PM}/\sigma = PM/\pi R^3 \rho (\Omega R)^2 \sigma$                                                                  |  |  |  |

•

1

хх

| C <sub>RM</sub> /၁  | rotor rolling moment coefficient-solidity ratio,<br>$C_{\rm RM}/\sigma = RM/\pi R^3 \rho (\Omega R)^2 \sigma$                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| c                   | blade chord, ft (unless otherwise stated)                                                                                            |
| D                   | rotor drag force, lb, positive rearward                                                                                              |
| DEL "A 3            | computer symbol for pitch flap coupling angle, deg,<br>DELTA3 = $\delta_{C}$ = arctan (- $\partial \theta_{O}/\partial \beta$ )      |
| E                   | Young's modulus, $lb/in$ , <sup>2</sup> (for the fiber glass blade<br>bending, E = 2.25 x $10^6$ $lb/in$ . <sup>2</sup> )            |
| El                  | "A" actuator extension (degrees $A_{ls}$ when $B_{ls}$ and $\theta_{c}$ are zero)                                                    |
| <sup>5</sup> 2      | "B" actuator extension (degrees $B_{ls}$ when $A_{ls}$ and $\theta_c$ are zero)                                                      |
| <sup>Е</sup> 3      | collective follower position (degrees of collective pitch)                                                                           |
| e                   | base of the system of natural logarithms                                                                                             |
| Fc                  | optional constant correction value, in1b or deg, (as stated)                                                                         |
| f <sub>SN</sub>     | blade static natural frequency                                                                                                       |
| GJ                  | blade torsional stiffness, lb-in. <sup>2</sup>                                                                                       |
| g                   | structural damping coefficient                                                                                                       |
| Ic                  | blade cross-section area chordwise moment of inertia, in.4                                                                           |
| I <sub>F</sub>      | blade cross-section area flapwise moment of inertia, in.4                                                                            |
| ι <sub>θ</sub>      | blade torsional mass moment of inertia per unit span, lb-sec <sup>2</sup>                                                            |
| L                   | rotor lift force, lb, positive up                                                                                                    |
| M m                 | blade mass per unit span, lb/in.                                                                                                     |
| M <sub>1.,90</sub>  | actual blade tip Mach number at $\psi = 90^{\circ}$                                                                                  |
| M <sub>T</sub>      | generalized mass of the blade first torsional natural mode,<br>ft-lb-sec <sup>2</sup> , $M_T = \int_0^R I_{\theta} [W_{T1}(x)]^2 dr$ |
| MU                  | computer symbol for advance ratio ( $\mu = V_S / \Omega_S R$ )                                                                       |
| M <sub>F</sub> .30R | blade flapwise bending moment at 0.30R, inlb, positive for upward bending                                                            |
| <sup>M</sup> F.60R  | blade flapwise bending moment at 0.60R, inlb, positive for upward bending                                                            |

ł

p

ł,

۰.

xxi

| Mc. 30R          | blade chordwise bending moment at 0.30R, inlb, positive for rearward bending                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| MT.18R           | blade torsional moment at 0.18R, in1b, positive for nose-<br>up twisting                                                                           |
| MT. 35R          | blade torsional moment at 0.35R, inlb, positive for nose-up twisting                                                                               |
|                  | an integer                                                                                                                                         |
| N                | actual rotor rotational speed, rpm                                                                                                                 |
| n                | an integer                                                                                                                                         |
| oms #R           | computer symbol for simulated rotational tip speed, $(\Omega_g R)$ , ft/sec                                                                        |
| P                | an integer                                                                                                                                         |
| PM               | rotor pitching moment, positive nose up, ft-lb                                                                                                     |
| Q                | rotor torque, positive for motor driving rotor, ft-lb                                                                                              |
| q <sub>ij</sub>  | conversion coefficient for the transformation of actuator positions $E_1$ , $E_2$ , $E_3$ into control inputs $A_{1s}$ , $B_{1s}$ , and $\theta_c$ |
| q <sub>FPn</sub> | amplitude of the Pth flapwise natural mode contribution to<br>the nth flutter mode                                                                 |
| <sup>q</sup> ∂Pn | amplitude of the Pth torsional natural mode contribution to the nth flutter mode                                                                   |
| R                | rotor radius, ft (unless otherwise stated)                                                                                                         |
| RA               | amplitude ratio of successive cycles of a damped vibration                                                                                         |
| R <sub>c</sub>   | physical equivalent of calibration signal, inlb or deg (as stated)                                                                                 |
| RM               | rotor rolling moment, positive for starboard side down, ft-lb                                                                                      |
| RP               | amplitude of Pth rotor harmonic in dynamic data (where P is<br>an integer), inlb or deg (as stated)                                                |
| RS               | average value of dynamic data, inlb or deg (as stated)                                                                                             |
| r                | distance along a rotor radius, in. (unless otherwise stated)                                                                                       |
| r <sub>m</sub>   | resultant amplitude of a discrete frequency component in the dynamic data, inlb or deg (as stated)                                                 |

9

ı

1

۲

.

xxii

| S                    | ratio of full-scale to model size                                                                                                              |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Т                    | a time interval of arbitrary length, sec                                                                                                       |
| THEC                 | computer symbol for collective pitch $(\theta_c)$ , deg                                                                                        |
| t                    | time, sec                                                                                                                                      |
| v                    | actual forward speed, kn                                                                                                                       |
| vs                   | simulated forward speed, kn                                                                                                                    |
| W <sub>D</sub>       | instantaneous value of dynamic data, in1b or deg (as stated)                                                                                   |
| W <sub>FP(x)</sub>   | flapwise blade deflection as a function of fractional radius<br>for the Pth flapwise natural mode, normalized to unit tip<br>deflection, in.   |
| W <sub>n</sub> (x,t) | flapwise blade deflection for the nth linear combination (nth flutter mode) of flapwise natural modes, in.                                     |
| $\bar{W}_{n}(l.)$    | amplitude of $W_n(x,t)$ at the blade tip, in.                                                                                                  |
| Wo                   | average of digital tape values from a dynamic zero point                                                                                       |
| WR                   | average of digital tape values from a "RCAL" calibration record                                                                                |
| WT                   | individual data value on the digital tape                                                                                                      |
| W <sub>TP</sub> (x)  | torsional blade deflection as a function of fractional radius<br>for the Pth torsional natural mode, normalized to unit tip<br>deflection, rad |
| WZ                   | average of digital tape values from a "ZCAL" calibration record                                                                                |
| x                    | rotor fractional radius, x = r/R                                                                                                               |
| Y                    | rotor sideforce, positive to starboard, 1b                                                                                                     |
| Y <sub>CG</sub> /e   | blade center-of-gravity position aft of blade leading edge,<br>divided by blade chord                                                          |
| ZETA                 | computer symbol for blade lag at hinge, deg                                                                                                    |
| °c                   | rotor control axis angle of attack, deg, ac = as - Bls                                                                                         |
| ar                   | fuselage angle of attack, deg                                                                                                                  |
| as                   | shaft angle of attack, deg (for this test, $a_f = a_g$ )                                                                                       |

g-

ħ

xxiii

| β                          | blade flapping at hinge, deg (unless otherwise stated)                                                                                                             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Δa <sub>ls</sub>           | increment in $a_{j,c}$ applied during a transient condition, deg                                                                                                   |
| Δb <sub>ls</sub>           | increment in bls applied during a transient condition, deg                                                                                                         |
| ۵ <sub>0</sub>             | increment in $\theta_{c}$ applied during a transient condition, deg                                                                                                |
| Δψ                         | increment $\frown f \ \psi$ between digital values of dynamic data, deg                                                                                            |
| δ3                         | pitch-flap coupling angle, deg, $\delta_3 = \arctan(-\partial \theta_0/\partial \beta)$                                                                            |
| ζ                          | blade lag angle at hinge, deg                                                                                                                                      |
| <sup>ζ</sup> AD            | critical damping ratio of blade torsional mode from stall flutter calculations                                                                                     |
| <sup>C</sup> CF            | critical damping ratio of an aeroelastic mode from classical flutter calculations                                                                                  |
| θο                         | blade pitch angle with respect to the plane of rotation at the control horn, deg, $\theta_0 = \theta_c - A_{ls} \cos \psi - B_{ls} \sin \psi - \beta \tan \zeta_3$ |
| θ <sub>c</sub>             | collective pitch, deg                                                                                                                                              |
| <sup>0</sup> cs            | collective pitch for the initial steady part of a transient data point, deg                                                                                        |
| $\theta_{en}(x,t)$         | torsional blade deflection for the nth linear combination (nth flutter mode) of torsional natural modes, rad                                                       |
| <b>∂</b> <sub>n</sub> (1.) | amplitude of $\theta_{en}(x,t)$ at the blade tip, rad                                                                                                              |
| λ                          | uniform inflow velocity divided by rotational tip speed                                                                                                            |
| λ <sub>n</sub>             | real part (decay) of the eigenvalue for the nth aeroelastic mode from the classical flutter calculations                                                           |
| μ                          | advance ratio $\mu = V_g / \Omega_g R = V / \Omega R$                                                                                                              |
| Ξa3                        | integrated stall flutter torsional damping parameter                                                                                                               |
| ρ                          | air density, slugs/ft <sup>3</sup>                                                                                                                                 |
| σ                          | rotor solidity $\sigma = bc/\pi R$                                                                                                                                 |
| ∳ <u>m</u>                 | phase angle of a discrete frequency component in the dynamic data, rad                                                                                             |
| φ <sub>nw</sub> (1.)       | phase of flapwise motion at the blade tip for the nth aeroelastic mode, deg                                                                                        |

xxiv

,

- $\phi_{n\theta}(1.)$  phase of torsional motion at the tip for the nth aeroelastic mode, deg
- $\psi$  azimuth position of rotor blade, zero over the tail, and increasing in a counterclockwise sense as seen from above, deg
- Ω actual rotor rotational speed, rad,'sec

 $\Omega_{\rm g}$  simulated rotor rotational speed, rad/sec

- Ω<sub>s</sub>R simulated tip speed, ft/sec
- ω frequency, rad/sec
- ω<sub>m</sub> discrete frequency of an amplitude component present in the dynamic data, rad/sec
- $\omega_n$  frequency of the nth aeroelastic mode from classical flutter calculations, rad/sec
- ω<sub>T</sub> stall flutter frequency (assumed equal to the blade first torsions, natural frequency), cps

#### SUBSCRIPTS

÷

| i | imaginary | part  | of a  | complex   | quantity |
|---|-----------|-------|-------|-----------|----------|
| r | real part | of a  | compl | lex quant | ity      |
| v | vibratory | ampli | tude  | of dynam  | nic data |

XXV

2 5

N.

#### INTRODUCTION

#### ROTOR TRANSIENT CHARACTERISTICS

Helicopter response to control inputs depends on the rotor blade behavior during and following the input. If the control input is rapid, blade response may become greater than that experienced during the steadystate conditions before and after the transient. In addition, the sudden application of a control change may trigger a rotor instability if that tendency exists because of rotor operating condition or blade configuration. The time required to reach a steady-state condition following a control change is some indication of the time required to reach a steadystate condition following a sharp gust disturbance. Experimental information on transient behavior of a rotor demonstrates the suitability of that aspect of rotor operation for a particular configuration, and aids in the development of theories for the calculation of rotor transient response.

The method reported in Reference 1 can, in principle, provide a theoretical prediction of rotor response to a transient, and this capability was utilized in Reference 2. Rotor transient airloads were also investigated as reported in Reference 3. One of the basic obstacles to obtaining transient control input rotor data in the wind tunnel has been the lack of a sufficiently fast-acting control system. The control transients applied during this test program were essentially complete after approximately one-fourth of a revolution.

Samples of the transient data obtained during this test program were compared with theoretical data which was calculated by the method of Reference 1. The transient behavior of the dynamically scaled model was measured at simulated forward speeds up to 300 knots with and without pitch-flap coupling. A variety of control inputs were investigated, including pure collective inputs, pure cyclic inputs for various amounts of longitudinal and lateral flapping, and various combined cyclic and collective inputs.

#### AEROELASTIC INSTABILITY

The operation of new rotor designs and the penetration of unfamiliar rotor operating regimes require that careful attention be given to rotor blade aeroelastic behavior in general, and especially to the possibility of catastrophic instabilities.

In order to predict rotor blade aeroelastic behavior, various theoretical methods have evolved. Confident use of these theories requires that suitable test results be obtained to verify the calculated behavior. Sufficiently detailed test results also provide invaluable guidance for the improvement of the theories.

The aeroelastic theories of rotor blade instability vary widely in complexity. Reference 4 describes a simple torsion-flapping static

stability analysis. Reference 5 contains the far more elaborate development of a fixed-azimuth flutter analysis which is mathematically similar to a fixed-wing analysis. The method of Reference 6 considers the timevarying coefficients in the blade differential equations of flutter motion. Finally, the method of Reference 1 is a timewise, step-by-step integration of the complete blade equations of motion.

A comparison of the fixed-azimuth flutter theory calculation with earlier test data and with some calculations by the method of Reference 6 appears in Reference 5.

The use of a dynamically scaled model appears to offer the best set of compromises for the experimental study of rotor instability, since the destruction of the model will not result in a loss of personnel or aircraft.

The test program and resulting data that are described in this report demonstrate the operation of the fully articulated rotor for extreme conditions. Previously developed discrete-azimuth blade aeroelastic stability theories for torsional divergence, classical flutter, and stall flutter are described. The results of applying these theories to the dynamically scaled model are presented and compared to the behavior of the model during the test.

During the testing, a number of violent instabilities were encountered, which may not be suitable for analysis with discrete-azimuth theories. These instabilities arose suddenly, with no perceptible warning from blade stress or motion measurements that an unstable condition was about to be encountered.

#### DESCRIPTION OF MODEL

#### GENERAL

The Sikorsky Aircraft Compound Helicopter Model is a generalized configuration suitable for a transport compound helicopter. The model scale is considered to be one-eighth of full size, representing an aircraft of approximately 40,000 pounds gross weight. Figure 1 depicts the model mounted in the 18-foot UARL Wind Tunnel for previous tests. In the test program described in this report, the model configuration consisted of the rotor and the fuselage only. Figure 2 is a dimensioned three-view drawing of the model. It is important to note that the rotor, rotor drive system, and rotor control system were all mounted on a six-component strain gage balance, which was itself mounted on the basic keel structure of the model. The entire model was rigidly supported through the keel structure on a single main support strut and a pitch strut.

#### ROTOR SYSTEM

The dynamically scaled 9-foot-diameter model rotor that was tested to provide the data described in this report was of a conventional articulated type, with both flapping and lag hinges. The four untwisted blades had a 0.353-foot chord, which resulted in a solidity ( $\sigma$ ) of 0.100. The coincident flapping and lagging hinge was located at a fractional radius of 0.0555. The lag hinge was restrained by a viscous damper, which was set at a damping constant of 1.39 foot-pound-seconds. The blade airfoil section was NACA 0012. Provision was made for the adjustment of blade pitch-flap coupling angle ( $\delta_3$ ). This parameter was set at 45 and 0 degrees for the transient testing, and at 0 degrees for the instability testing.

#### FUSELAGE

The fuselage was a streamlined fiber glass shell which was mounted independently to the basic keel structure of the model. A separate fuselage strain gage balance was available for measuring fuselage arrodynamic loads, although this capability was not needed for this test program. The fuselage frontal area was 1.25 square feet, and the total fuselage length was 9 feet.

#### DRIVE SYSTEM

t

The rotor was powered by a variable-speed 19-horsepower electric motor, through a transmission which provided a speed reduction of approximately 13.5 to 1. The rotor speed could be set at any desired value within the motor power limitations.

#### CONTROL SYSTEM

Rotor cyclic and collective pitch angles were remotely controlled by the model operator through an electrically controlled hydraulic servo system. The cyclic and collective pitch were applied to the blades through a conventional swash plate mechanism, which was controlled by three actuators. The motions of the three actuators were automatically coordinated so that the motion of the corresponding dial on the model control console applied lateral cyclic pitch (Als), longitudinal cyclic pitch  $(B_{]s})$ , or collective pitch  $(\theta_c)$ . The control console was furnished with two sets of the above three control knobs, which can be termed the basic and transient increment controls. The basic controls were applied to the model immediately as the dials were moved. The settings of the transient increment knobs were automatically added to those on the basic controls by turning on a control switch. This made it possible to suddenly apply a control increment by setting the transient increment knobs, and then turning the control switch on. The transient control switch was duplicated as part of an automatic system to be discussed under the heading "Test Procedure and Initial Observations". This automatic system was necessary to coordinate tape recorder operation and transient application at a constant blade azimuth angle.

#### BLADES

#### General Description

The dynamically scaled blades were fiber glass replicas of typical full-scale construction, similar to those described in Reference 8. Figure 3 is an exploded view showing the blade construction and external dimensions.

For the purposes of this test program, the chordwise center of gravity of the blades was changed from the normal 25 percent chord to the 30 percent and the 35 percent chord position. The blade leading edge counterweights could not be removed from the existing blades, so an alternate method had to be used to alter the center-of-gravity position.

The most practical method for accomplishing the center-of-gravity position change was found to be the cementing of individual steel weights along the trailing edge of each "pocket". The weights measured 2.22 inches in the spanwise direction, 0.46 inch in the chordwise direction, and were 0.02 inch thick. The weights were cemented to the lower surface of the trailing edge to move the center of gravity to the 30 percent chord position, and to both the upper and the lower surface to move the center of gravity to the 35 percent chord position.

The blade Lock number was 5.84 for the blade with the center of gravity at the 25 percent chora position. For the blades with the 30 percent and 35 percent chord center-of-gravity positions, the Lock numbers were 5.43 and 5.03 respectively.

L

The blade-distributed mass and stiffness properties are shown in Figures 4 and 5. The addition of the trailing edge weights resulted in only a small change in blade mass per inch of span. The torsional mass moment of inertia was changed significantly, with a corresponding decrease in torsional frequency. Since the weights were attached individually to the nonstructural pockets making up the aft portion of the blade, they had a negligible effect on blade stiffness.

#### Discussion of Blade Dynamic Scaling

The blade flapwise, chordwise, and torsional stiffnesses were scaled so that they were one-fourth as stiff as geometrically similar blades built of aluminum. The blades were weighted so that their mass was equal to the mass of the aluminum blades. This resulted in blade natural frequencies which were one-half those of the aluminum blades. Operation of the fiber glass dynamically scaled rotor at an arbitrary condition simulated the operation of the aluminum bladed model rotor at rotational and forward speeds twice as high. This simulation included most of the rotor parameters which have a strong effect on aeroelastic behavior. The forces and accelerations were approximately one-fourth those of the aluminum model at the simulated condition. Velocities and frequencies were approximately one-half those of the simulated condition, and displacements were approximately the same. Reynolds and Mach number effects were not included in the simulation. The use of the reduced-stiffness model greatly expanded the regime of possible rotor operating conditions which could be reached within the wind tunnel limitations. The model power required was also approximately one-eighth that required for full-scale operating speeds.

The effect of dynamic scaling on various rotor parameters is summarized in Table I. The dynamically similar blades whose properties are listed in Table I are the fiber glass blades used for this test, and an aluminum blade of equal size and mass properties but with four times the elastic stiffness. They are related to a hypothetical full-scale aluminum prototype, geometrically similar to the models, with a size scaling factor S with respect to the models. These results have been obtained by using recognized dynamic scaling theory, as discussed in Reference 8.

#### Natural Frequencies and Mode Shapes

¢

The uncoupled flapwise bending, chordwise bending, and torsional natural frequencies and modes were calculated. The calculated uncoupled natural frequencies are presented as a function of rotor rpm in Figures 6, 7, and 8. The results are shown for the three blade center-of-gravity configurations. The addition of the trailing edge weights had a very small effect on the bending natural frequencies and an appreciable effect on the torsional frequencies. The calculated flapping and lagging natural frequencies about the blade hinges were 1.044 and 0.309 cycles per revolution respectively. The addition of the trailing edge weights had a negligible effect on the flapping and lagging natural frequencies. The first uncoupled flapwise bending, chordwise bending, and torsional mode shapes are plotted in Figures 9, 10, and 11. The trailing edge weights had, as

expected, a very small effect on the uncoupled bending mode shapes and a negligible effect on the torsional mode shape.

The effect of flapwise-torsion coupling on the natural vibration of the blade was studied by using the uncoupled natural modes in the blade classical flutter program. In order to study the natural vibration of the blade with the flutter program, the air density was set at an infinitesimally small value. The output of the flutter program was a new set of natural frequencies, with inertial coupling considered. The modes corresponding to these frequencies were calculated as linear combinations of the input uncoupled mode shapes. Expressing this concept mathematically, a coupled modal flapwise deflection at an arbitrary fractional radius is given by

$$W_{n}(x,t) = \left[q_{Fln}W_{Fl}(x) + q_{F2n}W_{F2}(x) + a_{F3n}W_{F3}(x) + q_{F4n}W_{F4}(x)\right]COS_{w_{n}t}(1)$$

In a similar fashion, the torsional deflection at an arbitrary fractional radius is given by

$$\theta_{en}(x,t) = \left[q_{\theta \ln} W_{T1}(x) + q_{\theta 2n} W_{T2}(x)\right] COS\omega_n t$$
 (2)

Note that all the natural modes have at least a small amount of both flapwise and torsional motion when coupling is present. The subscript n in the above equations refers to a particular coupled mode.

The frequencies of the coupled modes are given in Table II; note that the coupled modal frequencies are quite close to the uncoupled modal frequencies.

The contributions of each uncoupled mode to the coupled natural modes are given in Table III for the blade with the center of gravity at the 30 percent chord. Also shown in Table III are the corresponding resultant blade tip motions. Similar results are given in Table IV for the blade with the center of gravity at the 35 percent chord. The last two columns in these tables are the blade tip motion amplitudes during natural vibrations. Note that the modes are normalized to a flapwise tip vibration of approximately 1 inch or a torsional tip vibration of 3 radian.

The flapwise and chordwise natural frequencies increase markedly with rotor RPM, while the torsional natural frequencies are affected very slightly. This familiar result causes torsional and certain flapwise modal frequencies to be equal at certain rotor rotational speeds. When coupling is present, as in the blades used for this test, the relative amounts of flapwise and torsional motion in a given mode will change markedly as the rotor speed for equal flapwise and torsional frequency is approached. This is evident in the results presented in Tables III and IV. Operating the rotor at a speed for a flapwise and torsional mode of equal frequency could conceivably result in unfavorable coupling and a tendency to flutter. It is also possible that favorable coupling may exist, with a reduction in blade vibration.

#### Static Load Calibration

Each of the instrumented blades used in this test was supported as a cantilever, known static loads were applied in the flapwise and chordwise directions, and the tip deflection was noted. The blades were then loaded with known torsional couples, and the blade twisting deflection was observed. This procedure related known loads to cantilever tip deflections. The calibration with respect to the strain gage bending and torsional bridges was conveniently carried out by applying known cantilever deflections and by observing the output of the instrumentation. By using the load-deflection relationship, the output of the strain gage instrumentation was related to local blade bending and twisting moments.

#### Structural Damping and Natural Frequency

The structural damping, static natural frequencies, and hinge bearing friction of the model blades were determined by test on the nonrotating blades. The information was obtained by hanging the blade vertically on its bearings in the rotor head, with the lag damper disconnected. A vibratory force was applied with a variable frequency pulsating air jet. Frequency was varied and the blade response noted by monitoring strain gage output on an oscillograph. When a resonant peak was encountered, the air jet was instantaneously interrupted, and the decay of vibrations was recorded on the oscillograph. Frequency and structural damping values vere obtained from the decay records. As indicated on the results tabulated in Table V, data was not obtained for all the listed modes of each blade tested. Enough data was obtained to permit evaluation of the effects of structural damping on the wind tunnel test results. Comparison of the test frequencies with the calculated static frequencies in Table II shows that satisfactory agreement exists. The blade hinge bearing friction under light load was obtained by recording the decay of blade motion as it was allowed to swing on its bearings in the rotor head, while suspended vertically. Examination of the decay records showed that blade pendulum motion suddenly ceased when the amplitude decayed to a certain level, indicating that damping was of a Coulomb rather than a viscous type. Following the blade swing tests, similar tests were performed with the blade replaced by a pendulum loaded with various weights. The radius of gyration of the loaded pendulum was approximately equal to that of the blade, so that all pendulum tests were carried out at the same frequency. Practical considerations did not permit loading the pendulum to the equivalent of centrifugal force at full RPM, but the loadings used were sufficient to establish the bearing friction coefficient. Folloving the pendulum tests, the blade flapping bearings were removed from the rotor head and mounted in a special fixture, which permitted blade swing tests in the same set of bearings in the flapwise and chordwise directica. This final test was performed to demonstrate whether or not aerodynamic damping had any

appreciable effect on the static blade damping tests. The results of the blade swing and pendulum tests are presented in Figure 12. The effective Coulomb friction torque was calculated from the decay records by using the known blade mass properties and by assuming that all changes in amplitude were caused by classical Coulomb friction.

The blade damping data obtained for the nonrotating case must be considered in terms of its effect on the rotating blade. The primary effect of blade rotation is to greatly reduce the significance of structural damping on blade flapping and bending modes. For this reason, the scatter evident in the blade static damping measurements can be considered unimportant. This subject will be discussed in greater detail under the report subheading on classical flutter.

#### Relationship of Fiber Glass Blade Loadings to Aluminum Blade Stresses

The extreme fiber stresses were measured for known bending moments on a geometrically similar aluminum model blade, and the torsional stresses were measured at spar mid-chord for known twisting couples. These stresses would be the same on a geometrically similar full-scale prototype S times larger than the model, under bending moments and twisting couples S<sup>3</sup> times as large. The similar loads applied to the fiber glass model to produce the same bending and twisting deflections are one-fourth those applied to the aluminum model. This provides an equivalence relationship between fiber glass model bending and twisting moments and model and fullscale aluminum blade stresses under dynamically similar operating conditions. Thus, 60 inch-pounds of flapwise moment on the fiber glass model corresponds to 10,000 psi stress on the aluminum blades. Similarly, 125 inch-pounds of chordwise moment and 85 inch-pounds of torsional moment correspond to 10,000 psi stress.

#### TEST PROCEDURE AND INITIAL OBSERVATIONS

In addition to actual data points, each wind tunnel run consisted of calibration records, static zero points, and dynamic zero points.

Prior to the start of each wind tunnel run, a series of calibration records was automatically placed on each magnetic tape data channel. The series consisted of a record of zero electrical input, a record of known electrical input which corresponded to a transducer output for a known physical quantity, and a record of transducer output from the model with the rotor stationary and the wind tunnel off. In later discussions of data reduction, these calibration records will be referred to as "ZCAL", "RCAL", and "XCAL" records respectively.

1

¥.

When the calibration records were complete, the static zero points were obtained. These were data records taken with the model rotor stationary and the wind tunnel off. For cases where model angle of attack was to be varied during the run, static zeros were taken at positive, zero, and negative angles of attack. These data were used primarily to provide weight tare corrections for rotor balance data reduction.

Following the static zero points, the rotor was brought up to speed and the dynamic zero points were taken. These data were taken with the wind tunnel off and the rotor at zero cyclic and collective pitch. Under these conditions, blade flapping, bending, and torsional loauings were considered zero. The dynamic zero data provided a physical zero reference for most of the data channels.

After the dynamic zero was obtained, the wind tunnel was turned on and the actual data points were taken. At the conclusion of the run, a final dynamic zero, a second set of static zeros, and a second set of calibration records were taken.

During the test, telected dynamic data channels were monitored on an oscilloscope to determine that blade moment limits were not exceeded. All dynamic channels could also be displayed on an oscillograph for on-line operational checking. Provision was also made for on-line frequency analysis of dynamic data. It was expected that inspection of successive on-line spectra would reveal incipient instability before dangerous conditions were reached. In practice, it was found that dangerous instabilities could be encountered very suddenly. In most cases, no appreciable excitation of the incipient unstable mode was present before the dangerous condition was entered. The on-line frequency analysis equipment did indicate that certain expected frequency responses were actually occurring.

#### TRANSIENT TESTING

The phase of the wind tunnel tests during which the rotor blade transient response data were obtained involved variations of the following operational parameters:

| Parameter               | Range of Variation                   |
|-------------------------|--------------------------------------|
| Pitch-Flap Coupling     | $\tan \delta_3 = 1.0, 0.0$           |
| Forward Speed           | V <sub>s</sub> = 120, 200, 300 knots |
| Shaft Angle of Attack   | $a_{f} = -8, -4, 0, 4, 8$ degrees    |
| Collective Pitch        | $\theta_{c} = 0$ to 12 degrees       |
| First Harmonic Flapping | $a_{ls} = -8$ to +4 degrees          |
|                         | $b_{1s} = -4$ to +2 degrees          |

١

Seventy-nine separate conditions were used as initial operating points. The parameter settings for these points and the corresponding final operating points are listed in Table VI. The rotor speed-forward speed combinations tested are shown in Figure 13.

During this phase of the tests, two different data acquisition procedures were followed. At normal steady-state conditions, rotor and tunnel parameters were set, and the magnetic tape system was manually activated and automatically shut down after a prespecified recording time determined from the rotor speed. The record lengths were normally 5 to 10 seconds. Following the magnetic tape shutdown, the rotor balance data were manually recorded from Baldwin SR-4 strain indicators. A specially designed automatic system was used to actuate the magnetic tape system during the transient conditions. The functions of this system are described in step 9 below. The experimental procedure followed for each of the 79 sets of test points was as follows.

- 1. The <u>initial</u> steady-state operating condition was established, and dynamic and rotor balance data were taken in the normal way.
- 2. The transient increment controls for  $\Delta \theta_c$ ,  $\Delta A_{1s}$ , and  $\Delta B_{1s}$  were set for zero increment.
- 3. The transient control switch was turned on.
- 4. The <u>test final</u> operating condition was established by slowly dialing the transient increment controls.
- 5. Dynamic and rotor balance data were taken in the normal way, and the settings of the transient increment controls were recorded

- 6. The transient increment controls were returned to zero increment, reestablishing the initial steady-state condition.
- 7. The transient control switch was turned off.
- 8. With the transient increment controls deactivated, the settings recorded in step 5 were redialed. The rotor operating condition remained at the initial steady-state condition.
- 9. Control was transferred to the automatic system that:
  - (a) activated the magnetic tape system
  - (b) paused 3 seconds while the initial steady-state dynamic data were recorded
  - (c) turned on the transient increment controls which were activated by the next zero rotor azimuth signal
  - (d) shut down the magnetic tape system after a prespecified recording time
- 10. Rotor balance data for the <u>post transient</u> steady-state condition were recorded from the strain indicators.

For each of the transient conditions, the rotor was observed to reach its final state rapidly and smoothly.

#### INSTABILITY TESTING

ł

#### Advancing Blade Aeroelastic Limit

Each of the blade configurations was operated at a simulated rotational tip speed  $(\Omega_g R)$  of 700 ft/sec. The collective pitch was left at a constant setting, while rotor first harmonic flapping was kept at zero by using cyclic pitch. Data were taken at successively higher tunnel speeds, as shown by the upper rows of points in Figure 14. In the case of the 25 percent chord and 30 percent chord center-of-gravity configurations, the tunnel speed was limited by excessive model vibration. (Figure 35 shows sample data from this part of the test. The superimposed time history of torsional response for two successive revolutions is shown.) In the case of the 35 percent chord center-of-gravity configuration, the tunnel speed was limited by a violent rotor instability, which appeared suddenly as speed was being increased without any discernible warning from on-line monitoring equipment.

The tunnel speed limits for the 30 percent chord center-of-gravity blade and the 35 percent chord center-of-gravity blade were also found in a similar manner at a simulated rotational tip speed ( $\Omega_{\rm g}$ R) of 500 ft/sec. With the 30 percent chord center-of-gravity blade, the tunnel speed was again limited by model vibration. Another violent instability was encountered with the 35 percent chord center of gravity. In this case, seemingly stable operation was obtained at the actual condition of
instability, and data were taken before the sudden onset of violent nonharmonic blade motions and high stresses. Time history data of blade loadings and motions were obtained with the on-line oscillograph just after tunnel power was terminated. (These data appear in Figure 46.) Post-test analysis of the data taken immediately before this incident showed a relatively small amount of random nonharmonic blade motion and stress.

ŧ

### Retreating Blade Aeroelastic Limit

The three different blade center-of-gravity configurations were operated at high tunnel speed, and data was taken at constant collective pitch and zero first harmonic flapping for successively lower rotational speeds, as shown by the right-hand vertical rows of points in Figure 14. Advance ratios  $(V_s/\Omega_s R)$  of approximately 1.4 were reached at a simulated forward speed of 328 knots with the 25 percent chord and 30 percent chord center-of-gravity configurations. The limitation to further reductions in rotational speed was due to increasing torsional stress. (Figure 34 shows sample data from this part of the test. The superimposed time history of torsional response for two successive revolutions is shown.) Coupled flapping and lagging motions at a frequency of 0.25 cycle per revolution were noted during post-test data reduction for the highest a vance ratios reached. These motions were small but growing rapidly with increasing advance ratio when the blade torsional stress limit was reached. The cyclic pitch requirements for the removal of blade flapping at the higher advance ratio conditions were large enough to cause the rotor to operate in a negative lift condition.

The 35 percent chord center-of-gravity configuration blade was operated at a simulated forward speed of 232 knots during this phase of the testing, and an advance ratio limit of approximately 1.6 was reached, with further decreases in rotational speed limited by impending loss of control.

It should be noted that the retreating blade aeroelastic limits for all three blade configurations were encountered in a gradual or "soft" manner, and no dangerous blade motions or stresses were experienced in this phase of the testing.

# Stall Flutter

The 25 percent chord and 30 percent chord center-of-gravity blades were operated at simulated speeds of 120 knots, 144 knots, 168 knots, and 200 knots. The simulated rotational tip speed ( $\Omega_{g}R$ ) was kept at 700 ft/sec, and blade first harmonic flapping was kept at zero by using cyclic pitch. At each speed, data were obtained at successively higher collective pitch settings. Moderately high torsional stresses were encountered, but no dangerous or stress-limited conditions were encountered. The maximum collective pitch of approximately 12 degrees was defined by control system limitations. (Figure 43 shows sample data from this part of the test. The superimposed time history for two successive revolutions is also shown.)

12

The behavior of the 35 percent chord center-of-gravity blade was again dramatically different from the other two configurations. Attempts to raise the collective pitch past 7 degrees at a simulated forward speed of only 120 knots and a simulated rotational speed of 700 ft/sec resulted in still another violent instability. Time history data of blade loadings and motions were obtained with the tape recorder as the wind tunnel was shut down. (These data appear in Figure 47.) Data taken at the same condition with a collective pitch of 5 degrees showed no evidence of impending instability, either from the standpoint of stress or motion amplitude or from the results of frequency analysis.

# Combined Stall Flutter and Advancing Blade Aeroelastic Limits

The 25 percent chord and 30 percent chord center-of-gravity blade configurations were operated at forward speed and rotational speed combinations encountered during the Advancing Blade Aeroelastic Limits testing previously described. Blade first harmonic flapping was again kept at zero. The collective pitch was raised as far as possible at each speed, and data were taken.

This phase of the testing was generally limited by the cyclic pitch available from the rotor control system. It was possible to operate the rotor with zero blade first harmonic flapping at a collective pitch as high as 10 degrees at a simulated forward speed of 330 knots. The 30 percent chord center-of-gravity blade did encounter stress limitations at simulated speeds higher than 290 knots. The testing of the 35 percent chord center-of-gravity blade was very restricted for this phase, with collective pitch limited to 5 degrees for the prevention of instability.

#### Flapping Limits

ł

٢

Each of the blade center-of-gravity configurations was operated at a simulated forward speed of 180 knots, constant collective pitch, and zero first harmonic flapping. Data were taken at successively lower rotational speeds, as shown by the left-hand vertical rows of points in Figure 14, until rotor response to control changes became excessively sluggish. All blade configurations behaved similarly for this part of the test. No discrete frequency subharmonic motions were discernible, although random variation. in blade flapping motion were present. Advance ratios of approximately 1.6 were reached during this part of the test.

#### Combined Flapping and Retreating Blade Aeroelastic Limit

The 25 percent chord and 30 percent chord center-of-gravity blade configurations were operated at gradually increasing simulated forward speeds between 180 and 328 knots, as shown by the lower rows of points on Figure 14. At each tunnel speed, the rotational speed was reduced until control response was excessively sluggish or blade stress was becoming too high. Collective pitch was kept constant, and blade first harmonic flapping was kept at zero. The two blade configurations behaved in similar fashion during this phase of the testing. The highest advance ratio reached with the rotor controllable was approximately 1.91, at a simulated forward speed of 258 knots. At a simulated forward speed of 280 knots and an advance ratio of 1.94, control of the rotor was actually lost, and a retreating blade nearly struck the fuselage. Control was immediately regained by bringing up rotational speed.

Ł

.

7

.

### DESCRIPTION OF DATA AND DATA REDUCTION

### MEASURED QUANTITIES

#### Tunnel Parameters

The barometric pressure, tunnel test section to settling chamber differential pressure, and tunnel settling chamber temperature were recorded manually.

### Model Parameters

Ł

The rotor rotational speed, shaft angle of attack, control console dial settings, first harmonic flapping resolver output, and rotor balance output were recorded manually.

# Dynamic Data

The positions of two of the three swash plate actuators and the collective follower positions were measured to define swash plate motion. Blade flapping and lagging motions were measured at the respective blade hinges. Blade flapwise and chordwise bending moments were measured at 30 percent and 60 percent of the rotor radius, and blade torsional moment was measured at 18 percent and 35 percent of the rotor radius. These data were recorded on the F.M. magnetic tape recorder. Additional data supplied to the magnetic tape were a zero azimuth signal, which occurred when the instrumented blade passed over the tail of the model, and a  $60_{7}$  per-revolution sample command signal, which was electronically doubled for off-line analogue to digital conversion.

#### ROTOR PERFORMANCE DATA

Signals from the six-element rotor balance were manually recorded from Baldwin SR-4 Precision Indicators (Type L-50). Wind tunnel parameters were also manually recorded. These data were transferred to punched cards and reduced and tabulated by a UNIVAC 1108 digital computer. The data reduction program, using appropriate wind tunnel operating parameters, resolved the balance data into six wind-axis forces and moments. Force data were corrected for the effects of gravity, and wind tunnel corrections based on the methods described in References 9 and 10 were applied. The blockage correction to velocity was less than 2 percent of the wind tunnel velocity, and the wall correction to angle of attack was no greater than 0.5 degree. Rotor head aerodynamic lift and drag tares were removed from the reduced data, and all forces and moments were converted to coefficient form and tabulated.

Rotor operating conditions and performance for each data point of the program appear in Tables VI through IX. Each transient case gave rise to three rotor performance readings as discussed in the Test Procedure. The first of these was a reading taken for the initial steady state. The second was a reading of the final steady-state condition entered with the controls moved slowly. The third reading was taken after the transient input had taken place and the rotor had reached its final steady state. In the tables, these points are called "initial", "test final", and "post transient" respectively.

### DYNAMIC DATA

The dynamic data included rotor control motions, blade motions, and blade moments. For the purposes of this test program, it was necessary to observe and evaluate a very wide range of possible rotor frequencies. Rotor lag motions at a frequency as low as 0.20 cycle per revolution were of interest, and theoretical calculations in Reference 4 indicated that torsional frequencies as high as 14 cycles per revolution might occur. In order to evaluate the lower frequency motions, approximately 50 rotor revolutions of data were recorded for steady-state data points. Transient data points included an initial steady state as well as a transient, and approximately 100 rotor revolutions of data were recorded for each transient point.

ţ

The dynamic data were recorded on F.M. magnetic tape and were converted off-line to digital form. The analogue to digital converter sampled each of the channels at the rate of 120 samples per revolution, in order to make certain that high-frequency motions were properly defined. The digital data for each test point started at a zero azimuth signal. The 120-per-revolution sampling rate was higher than necessary for some data channels. Using a lower rate for certain channels would have required an additional setup and additional processing time for the analogue to digital conversion.

During the progress of the test program, on-line monitoring revealed failure of various data channels. Repairs were made and data points were repeated when possible. The data obtained were sufficient to fulfill the objectives of the program.

# Time History

### Blade Load and Motion Data

Each time history value  $(W_D)$  at the various azimuth angles was expressed in terms of physical units by using the following expression:

$$W_{\rm D} = \frac{R_{\rm C}}{W_{\rm R} - W_{\rm Z}} \left( W_{\rm T} - W_{\rm O} \right) + F_{\rm C}$$
(3)

where

 $R_{c}$  = A constant of proportionality, expressed in engineering units

W<sub>R</sub> = Average of digital tape values from the "RCAL" calibration record for the wind tunnel run

- W<sub>Z</sub> = Average of digital tape values from the "ZCAL" calibration record for the wind tunnel run
- W<sub>0</sub> = Average of digital tape values from the dynamic zero record for the wind tunnel run
- $F_C$  = Optional correction value in physical units

ŧ

 $W_{m}$  = An individual data value on the digital tape

The above calculation was performed by the digital computer for each individual data value of a time history for each data channel in each wind tunnel data point. Program options included selectable data points and channels. The time history samples extended from a selected starting zero azimuth signal to a selected ending zero azimuth signal. All time history samples for a given wind tunnel data point were selected with the same starting zero azimuth signal. The azimuth spacing of data values in the time history listing was selectable for multiples of 3 degrees. Extreme maximum and minimum values were read from the time history samples for each data channel available for each wind tunnel point. These values appear in tabular form in Appendix II. Detailed computer listings of time history samples for each transient and each instability data point are available at USAAVLABS.

Machine plotting of the time history data was utilized to permit the examination and evaluation of the large amount of data generated by this program. The transient data were plotted starting at the second zero azimuth signal before the onset of the transient and continuing until 5 complete revolutions were included. The 5revolution sample length was chosen to present the most interesting portion of the entire transient time history record. In all cases, the rotor reached a representative steady-state condition in this interval. Some of the data channels did exhibit random variations between successive rotor revolutions even after a steady state condition had been reached. This was especially true for the blade torsional response data. Since the transient time history sample used to prepare the tables in Appendix II was longer than 5 revolutions, and because of occasionally appreciable random variations in the steady-state data, the maximum and minimum values listed there do not always appear on the plotted samples.

When the time history samples were plotted and analyzed, the time scale was expressed in a manner that would aid in the interpretation of the result In the case of the transient data, the time scale was selected. terms of rotor revolutions. The last pre-transient steady-state rotor revolution was represented by the -1 to 0 revolution interval. The command signal to the rotor control system for a sudden input took place at 0 revolution. At this time the instrumented rotor blade was passing over the tail of the model. Measurable response of the control system began at an azimuth angle of approximately 60 degrees and was essentially complete at approximately 150 degrees of the 0 to 1 rotor revolution. The remainder of the transient response was expressed in terms of succeeding rotor revolutions. (Samples of the transient response plots appear as Figures 18 through 33.) The instability test data were generally presented as a two-revolution sample, plotted against azimuth angle, except for a few cases where it was desirable to show a longer sample. The plots of the two-revolution samples were superimposed, so that the possible presence of nonharmonic frequency components would be more apparent. (Samples of these plots appear as Figures 34 through 45.) Note that the usual symbols making up each individual observation in the time histories have been deleted for the sake of clarity. The observations were taken at an azimuth angle of 0 degrees and continued at a spacing given by the parameter  $\Lambda \psi$ supplied for each plot.

ł

### Control Position

¥

The reduction of control position data required special provisions, since the desired swash plate position could not be measured directly. As mentioned under the <u>MEASURED QUANTITIES</u> subheading, the extension of two of the three swash plate actuators ( $E_1$  and  $E_2$ ) and the collective follower position ( $E_3$ ) were measured. The desired  $A_{1s}$  and  $B_{1s}$  cyclic pitch inputs were determined from the measured quantities by using the following expression:

$$\begin{cases} A_{1s} \\ B_{1s} \\ \theta_c \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ 0 & 0 & Q_{33} \end{bmatrix} \begin{cases} E_1 \\ E_2 \\ E_3 \end{cases}$$
(4)

The values of the  $Q_{ij}$  above were determined experimentally. Time history values of  $E_1$ ,  $E_2$ , and  $E_3$  were calculated by the program using Equation (3). The above calculation was carried out by the program for each azimuth angle of the control system transients to convert  $E_1$ ,  $E_2$ , and  $E_3$  into the desired  $A_{1s}$ ,  $B_{1s}$ , and  $\theta_c$  control positions.

### Frequency Analysis

The frequency analysis used to study the data of this program is essentially the same as the familiar Fourier analysis. Usually, dynamic data are assumed to be periodic with respect to a rotor revolution. In this case, however, the presence of much lower frequencies is admitted. It can be shown that the Fourier type analysis can supply sufficiently accurate results for arbitrary frequencies of interest, provided these frequencies are high enough compared to the assumed fundamental.

As a starting point for the discussion, let it be assumed that a time history segment of data extending from time t = 0 to an arbitrary time 2T exists, and that it can be represented in that interval with practical accuracy by a series of the type

$$W_{D}(t) = \Sigma r_{m} \cos (\omega_{m} t + \phi_{m}) = \Sigma \left[a_{m} \cos \omega_{m} t + b_{m} \sin \omega_{m} t\right]$$
(5)

where m takes the values of the integers.

ŧ

۲

.'

Letting  $W_D(t)$  be represented in the form of Equation (5), the following integrals may be evaluated as in the formation of the usual Fourier coefficients:

$$\frac{1}{T}\int_{0}^{2T} W_{D}(t) \cos \omega t dt = \Sigma \left[ a_{m} \left( \frac{\sin 2 (\omega_{m} - \omega)T}{2(\omega_{m} - \omega)T} + \frac{\sin 2 (\omega_{m} + \omega)T}{2(\omega_{m} + \omega)T} \right) - b_{m} \left( \frac{\cos 2(\omega_{m} - \omega)T}{2(\omega_{m} - \omega)T} + \frac{\cos 2(\omega_{m} + \omega)T}{2(\omega_{m} + \omega)T} - \frac{1}{2(\omega_{m} - \omega)T} - \frac{1}{2(\omega_{m} + \omega)T} \right) \right]$$
(6)  
$$\frac{1}{T}\int_{0}^{2T} W_{D}(t) \sin \omega t dt = \Sigma \left[ -a_{m} \left( \frac{\cos 2(\omega - \omega_{m})T}{2(\omega - \omega_{m})T} + \frac{\cos 2(\omega + \omega_{m})T}{2(\omega + \omega_{m})T} - \frac{1}{2(\omega - \omega_{m})T} - \frac{1}{2(\omega - \omega_{m})T} \right) \right]$$
(7)

When  $\omega + \omega_m$ , certain terms in the above series have the following limits:

$$\lim_{\omega \to \omega_{\rm m}} \left[ \frac{\sin 2(\omega_{\rm m} - \omega)T}{2(\omega_{\rm m} - \omega)T} \right] = 1$$
(8)

$$\lim_{\omega \to \omega_{m}} \left[ \frac{\cos 2(\omega - \omega_{m})T}{2(\omega - \omega_{m})T} - \frac{1}{2(\omega - \omega_{m})T} \right] = 0$$
(9)

When the Fourier analysis is carried out in the usual way,  $W_D(t)$  contains only a fundamental frequency  $\omega_l$ . Then the interval 2T is chosen as the period of the fundamental frequency. In this case,

$$T = \frac{\pi}{\omega_1}$$
 and  $\omega_m = m\omega_1$  (10)

and the expressions Equation (6) and Equation (7) become the following with  $\omega$  chosen as an integral multiple n of  $\omega_1$ :

$$\frac{1}{T}\int_{0}^{2T} W_{D}(t) \cos n\omega_{1}tdt = \sum \left[ a_{m} \left( \frac{\sin 2(m-n)\pi}{2(m-n)\pi} + \frac{\sin 2(m+n)\pi}{2(m+n)\pi} \right) - b_{m} \left( \frac{\cos 2(m-n)\pi}{2(m-n)\pi} + \frac{\cos 2(m+n)}{2(m+n)\pi} - \frac{1}{2(m-n)\pi} - \frac{1}{2(m+n)\pi} \right) \right] (11)$$

$$\frac{1}{T}\int_{0}^{2T} W_{D}(t) \sin n\omega_{1}tdt = \Sigma \left[ -a_{m} \left( \frac{\cos 2(n-m)\pi}{2(n-m)\pi} + \frac{\cos 2(n+m)\pi}{2(n+m)\pi} - \frac{1}{2(n-m)\pi} - \frac{1}{2(n-m)\pi} \right) + b_{m} \left( \frac{\sin 2(m-n)\pi}{2(m-n)\pi} - \frac{\sin 2(m+n)\pi}{2(m+n)\pi} \right) \right] (12)$$

¥

2

It can be seen that all the terms of the series (11) and (12) vanish except for the terms where n = m.

This gives the familiar definition of the Fourier coefficients:

...

$$\mathbf{a}_{\mathrm{m}} = \frac{1}{T} \int_{\mathbf{0}}^{\mathbf{W}_{\mathrm{D}}(t)} \cos\left(\frac{\mathrm{m}\pi t}{\mathrm{T}}\right) \mathrm{dt}$$
(13)

ŧ

$$b_{m} = \frac{1}{T} \int_{0}^{2T} W_{D}(t) \sin\left(\frac{m\pi t}{T}\right) dt$$
(14)

$$\mathbf{a}_{0} = \frac{1}{2T} \int W_{D}(t) dt$$
 (15)

It should be noted that for application to rotor frequency analysis, the above results will still be rigorously correct for the determination of components at rotor harmonic frequencies, if the interval 2T is chosen as an integral number of rotor revolutions.

Results similar to Equations (13), (14), and (15) can be obtained for arbitrary frequencies as well as for the integer multiples of the fundamental, if the interval length 2T is sufficiently long. This can be seen from inspection of Equations (6) and (7). The denominators of all terms grow with 2T, while the numerators are of order unity, unless for some term  $\omega \rightarrow \omega_m$ . For these terms, as  $(\omega - \omega_m)T$  approaches zero, the results shown in Equations (8) and (9) will be obtained. It is therefore desired that the other terms should be small compared with unity.

If the lowest frequencies of interest are approximately 1.26 radians per revolution (0.20 cycle per revolution), terms like  $1/2(\omega_m+\omega)T$  are approximately equal to 0.01 for T of 25 revolutions.

The way in which terms such as Equations (8) and (9) approach their limits affects the accuracy of the frequency analysis in a manner which is more difficult to assess. As  $\omega \rightarrow \omega_m$ , Equation (8) approaches its limit in an oscillatory manner and is non-zero when  $(\omega_m - \omega)T$  is not an odd multiple of  $\pi/2$ . Therefore, the analysis will not be accurate for arbitrary frequency components which are sufficiently close together. This limitation is also controlled by the size of the interval T. With T = 25, the amplitude of the oscillation of the term on the left side of Equation (8) is 0.02 when  $(\omega_m - \omega)$  is 0.97 radian per revolution (0.16 cycle per revolution).

For the application of the above considerations to this program, the digital computer program calculated time history values WD as in Equation (3) for a selected channel. The interval over which the values were calculated was selectable between any two zero azimuth signals. The azimuth spacing of the values was also selectable as a multiple of 3 degrees. The integrals on the left-hand side of Equations (6) and (7) were computed numerically for a specified list of frequencies. Then the resultant amplitude was calculated as the square root of the sum of the squares of the two integrals. The expenditure of computer time for frequency analysis was minimized by choosing shorter analysis intervals for higher frequencies and larger azimuth increment spacing for the lower frequencies. The analysis for rotor frequencies of less than one per cycle utilized an azimuth spacing of 12 degrees and an interval of 50 revolutions. The analysis for rotor harmonics used an azimuth spacing for  $W_D$  of 3 degrees and an interval of 10 revolutions. The operation of the frequency analysis program was checked by analyzing a record containing a signal of arbitrary frequency. The numerical procedure was also checked by determining the known frequency components of a square wave. Additional checks were made by comparing the results of the on-line frequency analysis made during the wind tunnel test.

The frequency analysis was used to provide harmonic components of all available dynamic data from the instability portion of the test. These results are presented in tabular form in Appendix III.

21

#### DESCRIPTION OF THEORETICAL CALCULATIONS

### NORMAL MODE TRANSIENT ANALYSIS

The Normal Mode Transient Analysis is a step-by-step timewise integration of the elastic rotor blade equations of motion. The analysis uses rotating blade natural vibration modes as elastic degrees of freedom. The use of these orthogonal or "normal" modes gives rise to the designation "Normal Mode Transient Analysis". As used in this investigation, the aerodynamic loadings were determined by quasi-steady strip theory, with the effects of aerodynamic stalling, drag, and torsional moment included.

Ļ

----

When a steady-state rotor condition is being analyzed, the integration proceeds in small but finite timewise steps from an arbitrary starting value. After a number of rotor revolutions, the predicted motions will become cyclic within a desired tolerance. This is the usual solution desired, and performance, load, and stress calculations are usually based on these cyclic motions. On the other hand, the prediction of rotor behavior following a disturbance is a basic capability which was utilized for the purposes of this investigation.

The basic differential equations used in the Normal Mode Transient Analysis are presented in Reference 1.

The calculations for the rotor transient conditions were carried out by first establishing the theoretical counterpart of the experimental initial condition. It was found possible to obtain satisfactory correlation with respect to blade shaft angle and first harmonic flapping by accepting small deviations between measured and calculated  $C_L/\sigma$  and control position. These deviations were less than 0.005 for  $C_L/\sigma$  and 1 degree for  $B_{1p}$  and  $\theta_c$ . Deviations of 3 degrees in  $A_{1s}$  were experienced at the 120- and 250-knot simulated speed conditions without pitch-flap coupling. Otherwise, the  $A_{1s}$  discrepancy was also less than 1 degree.

When the calculated initial condition was established, the measured control position time history was introduced into the calculations. A sample time history of a typical control change is shown in Figure 15. Rotor behavior was calculated for at least 3 full revolutions after the control input. Additional revolutions were calculated if there was any doubt that the rotor had reached a steady-state condition.

# FIXED-AZIMUTH AEROELASTIC INSTABILITY THEORIES

In recent years, the availability of the advanced computing equipment has facilitated progress in methods for predicting rotor blade behavior. The more sophisticated methods, such as the previously described Normal Mode Transient Analysis, provide information of useful accuracy for conventional rotors operating under ordinary conditions. It is advantageous, however, to develop simpler and more rapid methods to investigate specific idealized types of aeroelastic instability. These simpler methods are intended for the rapid definition of problem areas during the preliminary design stages for new aircraft. The three fixedazimuth aeroelastic theories described in the following subsections were developed with this objective in mind, and were used to calculate theoretical data for comparison with the test results generated by this program.

# Fixed-Azimuth Torsional Divergence

One of the basic aeroelastic investigations applying to fixed wings is the torsional divergence analysis, as explained in Reference 11.

Consideration of the torsional divergence phenomenon for a fixed wing leads to an examination of similar situations existing for helicopter rotors. Obviously, unlike a flight condition for a fixed wing, the relative velocity on a rotor blade varies along the span. In forward flight, the velocity distribution is rapidly and continuously changing. Therefore, the static stability analysis for torsional divergence applies only to an instantaneous condition for a helicopter blade in forward flight.

The torsional divergence situation for a helicopter blade usually develops on the retreating blade for advance ratios greater than unity. The blade is then traveling backwards (sharp edge first) through the air for part of each revolution, and the aerodynamic center of pressure moves close to what is normally the 75 percent chord position. This produces a large torsional moment arm about the blade elastic axis and center-ofgravity position at or near the normal 25 percent chord position. Hence, torsional divergence can be encountered for the retreating blade even though the relative velocity is comparatively low. If the blade center of gravity is aft of the aerodynamic center of pressure on an advancing blade, torsional divergence can, of course, occur there as well.

The torsional divergence analysis used to generate the stability boundaries shown in Figure 14 is essentially a two-degree-of-freedom static stability analysis, which is fully described in Reference 4. The first torsional natural vibration mode and the rigid blade flapping mode were used as these two degrees of freedom. Aerodynamic lift was assumed to be proportional to blade twisting deflection and dynamic pressure calculated from the local relative tangential velocity. Aerouynamic lift was assumed to be the only aerodynamic effect present. The distributed lift force was assumed to act at the 25 percent chord for forward flow and at the 75 percent chord for retreating blade reverse flow. The virtual work done by the aerodynamic force was calculated for the flapping and torsional modes. The aerodynamic virtual work was set equal to the virtual work done against centrifugal effects and the change in torsional strain energy. The result was two coupled linear homogeneous equations in the flapping and torsional degrees of freedom, whose determinant was evaluated. Combinations of forward speed and rotational speed were found for which this determinant was zero. The loci of these points are the torsional divergence boundaries appearing in Figure 14. Boundaries were established at the 270 degree azimuth position and, in the case of the aft center-of-gravity blades, at the 90 degree azimuth position. Note that the boundaries sloping down to the right are for the advancing blade,

while those sloping up to the right are for the retreating blade.

### Fixed-Azimuth Classical Flutter Analysis

The classical flutter phenomenon for fixed wings has been studied for many years, and is discussed in detail in Reference 11.

As with the torsional divergence analysis, it is natural to attempt to apply the fixed-wing classical flutter analysis to the helicopter rotor blade. In forward flight, however, the relative velocity at the blade is constantly changing, instead of remaining constant with time. In addition, the velocity varies along the span, and there are multiple nonplanar blade wakes.

Ś.

In order to convert the rotor blade classical flutter problem to a form basically similar to the fixed-wing flutter problem, a number of simplifying assumptions are required. The most important of these is the assumption that aerodynamic forces appropriate to a discrete azimuth can be used in the equations of motion to determine the blade flutter characteristics in that azimuth region. The other simplifying assumptions include consideration of small displacements, consideration of the blade as a series of two-dimensional strips, and zero steady-state blade twist, collective and cyclic pitch, and lag angle. The important centrifugal effects present on a helicopter blade were carefully considered in the development of the equations of motion. The aerodynamic effects were calculated by using fixed-wing, two-dimensional, compressible-flow flutter coefficients obtained from the previously existing literature. As usual in flutter analyses, natural vibration modes were used as degrees of freedom. Further details and development of this flutter analysis are contained in Reference 5.

The classical flutter analysis predicts the frequency and damping of blade aeroelastic vibrations for a series of desired rotor operating conditions. When a flight condition is found for which the damping of any aeroelastic mode is negative, a flutter condition has been predicted. The locus of flight conditions for which the damping of a particular mode is zero lies between regions of positive and negative damping, and is termed a flutter boundary.

The flutter analysis was applied to the model blade, with rigid blade flapping, the first three flapwise bending modes, and the first two torsional modes considered as degrees of freedom. Structural damping was shown by test to be small, and was neglected. The 90 degree and 270 degree azimuth locations were used to determine advancing and retreating blade boundaries. As with the torsional divergence boundaries, the advancing blade boundaries slope down to the right and the retreating blade boundaries slope up to the right.

The results of the calculations fulfilled qualitative expectations. The 25 percent chord center-of-gravity blade displayed no advancing blade flutter boundary, even at advancing blade velocities well above those to be tested. The similar calculations for the aft center-of-gravity blades predicted advancing blade instability at speeds well below the advancing blade torsional divergence speeds. The flutter mode was principally composed of rigid blade flapping and blade twisting, at a frequency somewhat below the torsional natural frequency.

The calculated flutter behavior at the 270 degree azimuth position was similar for all three configurations. The predicted retreating blade flutter boundary was at speeds just below the predicted retreating blade static torsional divergence boundary. Furthermore, the flutter mode consisted almost entirely of torsional motion and was of a low frequency. Thus, the flutter and static torsional divergence solutions tended to be equivalent at the 270 degree azimuth position.

The frequency and damping of the calculated fixed-azimuth flutter modes are plotted in Figure 16 as a function of simulated forward speed at a number of constant rotational tip speeds. The rate of decrease of damping with forward speed is rapid as the line of zero damping is reached, so that structural damping can have little effect. This can be appreciated by using the classical simplified relationship  $g=2\zeta_{CF}$  between structural damping coefficient and critical damping ratio. If structural damping is g = 0.02, for example, a viscous damping of  $\zeta_{CF}=-0.01$  is required to establish neutral damping. This would shift the calculated flutter boundary by 2 simulated knots or less.

It should be pointed out that the rotating blade ilapwise and chordwise structural damping ratio is even smaller than the measured static values. This is a result of centrifugal effects, which greatly increase blade effective stiffness without introducing any additional damping. The structural damping of the rotating blade natural modes was estimated by using the results of the previously described static damping tests in the flutter program with zero air density. The effects of Coulomb hinge damping on the apparent structural damping coefficient depend on the flapping amplitude. The Coulomb damping effects are large for very small motions but decrease sharply for motions observed in practice. The effects of Coulomb damping were included in the rotating blade damping calculations by assuming a representative amplitude for the flapping mode. This amplitude was 0.1 degree at the flapping hinge. The Coulomb damping coefficient was added to the structural damping obtained by using the static modes with the measured frequency and damping in the flutter program with zero air density. The total estimated structural damping for the flapwise and torsional modes of the 25 percent chord center-of-gravity blade is given in Table X for three rotational speeds. The structural damping of the other two blade configurations is of a similar magnitude. The structural damping is, as mentioned previoury, too small to have any appreciable effect on the fixed-azimuth flutter calculations.

The classical flutter calculation also provides information as to the participation of the input modes in each of the modes of aeroelastic vibration. The motion of any point on the blade elastic axis is given in real form by the expressions

$$W_{n}(\mathbf{x},t) = \sum_{P} \left[ (q_{FPnr} + iq_{FPni}) W_{FP}(\mathbf{x}) \right] e^{(\lambda_{n} + i\omega_{n})t} + \sum_{P} \left[ (q_{FPnr} - iq_{FPni}) W_{FP}(\mathbf{x}) \right] e^{(\lambda_{n} - i\omega_{n})t}$$
(16)

$$\theta_{n}(x,t) = \sum_{P} \left[ (q_{\theta Pnr} + iq_{\theta Pni}) W_{TP}(x) \right] e^{(\lambda_{n} + i\omega_{n})t} \\ + \sum_{P} \left[ (q_{\theta Pnr} - iq_{\theta Pni}) W_{TP}(x) \right] e^{(\lambda_{n} - i\omega_{n})t}$$
(17)

If  $\omega \neq 0$ , the above represent damped oscillations, which have a critical damping ratio given by

$$\zeta_{\rm CF} = -\frac{\lambda_{\rm n}}{\omega_{\rm n}} \tag{18}$$

1

The calculated flutter modes for some selected operating conditions are detailed in Table XI. The last four columns are the resultant motions at the blade tip, normalized with respect to the largest flapwise modal amplitude and phase. In terms of the nomenclature of Table XI, the tip motions during the various conditions are

$$W_{n}(1., t) = \overline{W}_{n}(1.) e^{-\omega_{n}^{*}CF} \cos(\omega_{n}t - \phi_{nW}(1.))$$
 (19)

$$\theta_{D}(1., t) = \overline{\theta}_{n}(1.) e^{-\omega_{n} \zeta_{CF}} \cos(\omega_{n} t - \phi_{n\theta}(1.))$$
(20)

The damping  $(\zeta_{CF})$  and frequency  $(\omega/2\pi)$  of the flutter modes are given in Figure 16.

### Fixed-Azimuth Stall Flutter Analysis

è

The aerodynamic hysteresis effects resulting from the vibration of an airfoil through the stall angle can give rise to the single-degree-offreedom instability known as stall flutter. The mechanism of this instability results from the tendency of the airfoil to remain unstalled while it is pitching up, and its tendency to remain stalled while it is pitching down. The stalled airfoil pitching moment is negative about the blade torsional axis and is almost zero when it is unstalled. Thus the airstream will do work on the blade torsional vibration mode, and small amplitudes will tend to grow larger. A more detailed discussion of stall flutter is given in Reference 12.

The aerodynamic aspects of stall flutter have not been suitable for a strictly analytical study, since unsteady, viscous, and sometimes compressible flow effects are involved. Experimental studies reported in Reference 12 have, however, provided two-dimensional data on unsteady, stalled flow which are the basis of a useful blade stall flutter analysis. Pressure measurements on a vibrating airfoil were converted to aerodynamic damping coefficients dependent on mean angle of attack and reduced frequency. These coefficients were negative for mean angles of attack near the stall. The stall flutter analysis assumes a hypothetical torsional vibration in the first natural mode and frequency. Then, the aerodynamic torsional damping is calculated for a series of two-dimensional chordwise strips at a selected azimuth angle, using the damping coefficients derived from the experimental data. The damping of the strips is integrated to give an aerodynamic damping coefficient for the whole blade. The process is repeated for azimuth angles at selected intervals. The mean angle of attack for each chordwise strip and azimuth angle was obtained from calculations using the method of Reference 1 applied to the model blade. The quasi-steady effects of blade stall and blade twisting were considered in these preliminary calculations, which were carried out with the assumption of a uniform inflow. The rotor parameters and calculated performance for the stall flutter analysis conditions are given in Table XII. The calculations for the rotor conditions of Table XII provided distributions of angle of attack and Mach number with respect to blade radial station and azimuth. These results were used in the stall flutter analysis of Reference 12, and the variation of blade damping with azimuth was calculated. The blade damping parameter  $E_{\alpha_3}$  resulting from the Reference 12 calculations was converted into blade critical damping ratio in torsion by using the following relationship:

$$\zeta_{AD} = \frac{\rho C_0^2 R^3}{4 M_m} \frac{\Omega^2}{\omega_m^2} (1 + \mu \sin \psi)^2 \Xi_{\alpha_3}$$
(21)

The generalized mass  $(M_T)$  of the torsional mode was  $1.185 \times 10^{-4}$  slug-ft<sup>2</sup>. The results of the blade damping calculations, converted into critical damping ratio, are shown in Figure 17.

#### ANALYSIS OF TRANSIENT DATA

The transient response of the rotor system to sudden control changes was measured at 79 rotor operating conditions. As described in the Experimental Procedures section of this report, each transient condition includes data at three test points: the initial steady state, the test final steady state, and the actual transient condition. The rotor performance data for each of the test points are listed in Table VI, and the measured maximum and minimum values of blade motion and bending moments are listed in Tables XV and XVI.

ł

In general, the rotor system was well behaved during the transient conditions. The rotor blades usually stained the final steady-state condition within three or four revolutions, without excessive overshoot of flapping or blade bending moments. Time histories of rotor blade flapping and lag motions and flapwise bending and torsional moments are presented in Figures 18 through 29 for twelve representative conditions.

#### EVALUATION OF ROTOR BLADE TRANSIENT RESPONSE AT 120 KNOTS

The blade lag motion at a forward speed of 120 knots, shown in Figure 18, exhibits three distinctive characteristics: a high harmonic frequency component, a first harmonic frequency component, and a highly damped subharmonic motion. The high-frequency response persists at all the 120-knot conditions, but always at an amplitude of one-half degree or less. This response is unaffected by rapid changes in the rotor control settings. The first harmonic lag motion evident in the measured data varies with the rotor operating condition in a manner similar to the variation in rotor blade flapping, with larger first harmonic flapping corresponding to larger first harmonic lag motion. The third characteristic is the appearance of a damped subharmonic response, at approximately one-third cycle per revolution, on the introduction of the rapid control change. The magnitude of this response is related to the rate of change in first harmonic flapping response resulting from the control change. The subharmonic response is a reaction of the natural rigid body mode of the blade to a disturbance and, as such, exhibits a larger amplitude with a larger disturbance. The size of the disturbance is reflected in the resulting change in rate of change of flapping.

The rotor blade flapwise bending moments at the 120-knot initial steady-state conditions are primarily governed by the first elastic modal response of the blade occurring at a frequency of 3 cycles per revolution, as seen in the experimental data presented in Figure 19. The calculated natural frequency of the first elastic flapwise mode is 2.75 cycles per revolution. In the case of the lateral flapping transient, Figures 19(d) and 19(e), no significant change in flapwise bending moments occurs with or without pitch-flap coupling. Figures 19(b) and 19(c), however, present data from two transient conditions, one with and one without pitch-flap coupling. In each of these cases a collective pitch change of  $\Delta\theta_c = 4.0$  degrees takes place, and a change in harmonic content as well as an increase in amplitude occurs. The moment increase occurs during the first

and second rotor revolutions following the pitch change, and then a final steady-state condition is reached in which the peak-to-peak moment has returned to a value near that of the initial condition. During the transient, the second elastic mode of the blade comes into play at a frequency of 5 cycles per revolution. The calculated natural frequency of the mode is 5.23 cycles per revolution. The first mode becomes dominant again when the final steady-state condition is reached. The appearance of the higher elastic mode is, similar to the subharmonic lag motion response, a rapidly damped natural mode response to the disturbance. As expected, the presence of the pitch-flap coupling moderates the flapwise bending moment response during and following the transient.

5

The flapping response during the transient conditions at 120 knots exhibits no unusual behavior. As expected, the presence of the pitch-flap coupling results in a smaller flapping response to the collective pitch change, and the final state is reached more rapidly. It is notable that this state is reached within one revolution with the pitch-flap coupling and in only two revolutions without it, even though the flapping amplitude is twice as large. As mentioned before, this rapid attainment of the final steady condition was characteristic of the entire spectrum of test conditions. Representative flapping transients at 120 knots are shown in Figure 20.

The rotor blade torsional moments, presented in Figure 21, exhibit the most significant response to the sudden control inputs. With the pitch-flap coupling absent, a large-amplitude oscillation with a high 5cycle-per-revolution content occurs immediately following the control change. This oscillation damps out somewhat as the final steady-state condition is reached, so the reak moments occur within one revolution after the control change. Comparison of the signature of this response with that of the corresponding flapwise bending moment time histories indicates a similarity in harmonic content. With a calculated torsional natural frequency of 6.2 cycles per revolution at this operating condition, flapwise-torsional coupling with a frequency in the 5-to 6-cycle per revolution range would be expected with the introduction of pitch-flap coupling. It might also be expected that the torsional oscillation induced by the rapid control change would be damped through the absorption of energy in the flapwise mode. Such a damping effect is observable in Figure 21(b).

The transient torsional moments shown in Figures 21(a) and 21(c) have a signature which characterizes stall flutter. The two conditions considered represent heavily loaded states,  $C_L/\sigma = 0.1$ , where such a response would be expected. In the case involving a change in first harmonic lateral flapping, it can be found by comparing points in Table XV and XVI that the introduction of negative  $b_{1S}$  flapping, as shown in Figure 20(b), induces a more severe torsional oscillation than does the introduction of positive  $b_{1S}$  flapping. It is not obvious, without a much more extensive analysis, why this is the nature of the phenomenon, but throughout the 120-knot test conditions, the same trend is evident both in the presence and absence of pitch-flap coupling.

29

# CORRELATION OF ROTOR BLADE TRANSIENT RESPONSE AT 120 KNOTS

On comparing the experimental lata with theoretical transient blade responses, several noteworthy items are observed which would not appear in a comparison of purely steady-state results. First, the appearance of the subharmonic lag motion is predicted. The precise degree of correlation is dependent on the accuracy of the calculated flapping motion, which is a measure of the relative severity of the theoretical disturbance. The same is true of the first harmonic lag motion correlation. The theoretical results are compared to the experimental data in Figure 18. The degree of flapping correlation is related to the change in rotor lift resulting from the rapid control change. Figure 20 shows that the calculated flapping amplitude following the lateral cyclic pitch change compares well with the experimental data, although in the case without pitch-flap coupling, an error of approximately 1 degree in the coning angle and a phase error of about 30 degrees are present. In these cases, the rotor lift does not significantly change during the transient. At the other two conditions shown, the rotor lift is increased by 46 percent as a result of the control change, and the calculated flapping response, which does not reflect the change in inflow associated with the lift change, overshoots the experimental values by as much as 100 percent. In addition, it is seen that the theoretical case with pitch-flap coupling attains steady state as rapidly as the corresponding experimental response, while the theoretical case without pitch-flap coupling does not attain the final state until 5 or 6 revolutions following the transient. It is also seen in both cases that the calculated coning angle is too low, reflecting the pre-transient inflow value. In line with the analysis of these data and in agreement with the investigation reported in Reference 3, it would be expected that updating the rotor inflow during the transient computations would substantially increase the degree of correlation of the flapping responses and consequently that of the lag motion responses.

ł

The torsional response calculations show the remaining item peculiar to the transient responses. Figure 21 reveals that the calculated response does not exhibit any of the retreating blade oscillation experienced by the tested blade. In the case of the lateral flapping change, the calculated torsional moment does not respond to the control input. Following the collective pitch change, the calculated torsional moment reaches a more negative peak on the retreating azimuth angles, but lacks the proper response frequency. Two characteristics can be identified from the comparison of the calculated torsional moment with the experimental data. It is first seen that the calculated torsional moment breaks downward at a lower azimuth angle than the experimental moment, implying a breakaway in the blade pitching moment at a lower angle of attack. This is in agreement with the difference in the characteristics of the two-dimensional, quasi-steady airfoil characteristics used in the theory and oscillating airfoil characteristics as described in Reference 12. The second characteristic is indicated by the large damping of the calculated response relative to that of the measured results. This effect is also in accord with the difference between steady and unsteady airfoil performance. The incorporation of unsteady aerodynamic effects in the theory could be expected to improve the degree of correlation of torsional moments.

30

The further comparison of the theoretical and experimental transient blade responses at 120 knots reveals some items worthy of mention but not peculiar to the existence of the transient condition. First, the high harmonic content of the lag motion does not appear in the theoretical results. In the absence of chordwise bending moment data for these operating conditions, the source of the high-frequency lag response cannot be specifically determined, and consequently no explanation as to why this response is not predicted can be offered. The steady lag angle predicted by the theory is seen to be low by an amount related to the magnitude of the angle or, correspondingly, the rotor torque. Such a discrepancy was not unexpected, since the initial rotor operating conditions were theoretically determined by specifying lift, control angles, and first harmonic flapping rather than by rotor performance alone. Consequently, theoretical values of rotor drag and torque deviated somewhat from the measured values.

ž

The second aspect of the general comparison of the 120-knot responses is the lack of consistent correlation of the flapwise bending moments. The calculated moments generally lack the correct harmonic content. At the operating conditions under consideration, it would be expected that the inclusion of wake-induced velocity effects would improve the flapwise bending correlation. However, without an improved prediction of the torsional response as discussed above, complete agreement between measured and calculated flapwise moments, at the operating conditions considered here, is unlikely.

Finally, the qualitative effect of the pitch-flap coupling is adequately handled by the theory, although at the 120-knot conditions this is not as critical to the overall degree of correlation as the effects of inflow and unsteady aerodynamics.

# EVALUATION OF ROTOR BLADE TRANSIENT RESPONSE AT 200 KNOTS

The blade lag motion responses at the 200-knot conditions exhibit essentially the same characteristics as those at 120 knots. The 200-knot responses are presented in Figure 22. The subharmonic and first harmonic components induced by the rapid control change and the higher harmonic, small-amplitude oscillations are all present. The higher harmonic components now exhibit a lower frequency, primarily 4 cycles per revolution, than was seen at the 120-knot conditions; but as before, they are not noticeably affected by the control changes. The observed 4-cycle-perrevolution frequency would imply that this motion is a response to first mode chordwise bending of the rotor blade. The calculated natural frequency of this mode is 3.75 cycles per revolution. The first and subharmonic lag components are seen to vary in relation to the change in first harmonic flapping following the control change and are thus affected by the presence or absence of pitch-flap coupling.

The rotor blade flapwise moment responses, shown in Figure 23, consist primarily of a third harmonic component through the entire transient sequency. This is evidence of the first elastic flapwise mode response. Although the harmonic content does not change as much at these

conditions as at the 120-knot conditions, the peak-to-peak moments during the revolutions immediately following the control change show the increase over the steady-state values that was seen at 120 knots. This is also evident from maximum-minimum flapwise moment data presented in Tables XV and XVI. As expected, the ultimate flapwise moment response is more severe in the absence of pitch-flap coupling, although the maximum values are attained more slowly. Comparison of the flapwise moment transients between the two operating conditions considered at 200 knots indicates the effect of pitch-flap coupling to be greater for the combined collective and cyclic pitch change than for the pure collective pitch change. Comparison of the transient flapping motions from Figure 24 shows the pitchflap coupling effect to be greater for the collective pitch change than for the combined pitch change. This would indicate that the energy entering the flapping mode because of the pure collective pitch change is transmitted to the elastic modes when the flapping response is controlled with cyclic pitch. Comparison of rotor performance changes resulting from the control inputs in question offers some clarification of the flapwise bending response. Table VI gives the rotor lift and drag coefficients of the 200-knot conditions without pitch-flap coupling. For the combined pitch change, the rotor lift is increased by 50 percent to yield a final  $C_{\rm L}/\sigma$  of 0.075 while the rotor drag remains small,  $C_{\rm D}/\sigma$  less than 0.001. In the pure collective pitch change case,  $C_{\rm L}/\sigma$  doubles, reaching a value of 0.105; while the drag, significant to begin with, also doubles,  $C_D/\sigma$ reaching a value of 0.0126. Full-scale wind tunnel data reported in Reference 13 indicate that increasing lift at constant, low drag will result in a significant increase in flapwise stress, while a similar lift increase accompanied by a large drag increase will not result in a particularly large stress increase.

As previously mentioned, the flapping response at the 200-knot conditions presented in Figure 24 exhibits two characteristics. In the combined pitch change case, the amounts of first harmonic flapping prior to and following the control change were prespecified, so the differences between the steady states of the cases with and without pitch-flap coupling are the result of different higher harmonic compositions. In the motions shown, the amplitude difference amounts to approximately 0.5 degree. The effect of the pitch-flap coupling is to cause the flapping to undershoot slightly before reaching the final steady state. In response to the collective pitch change at 200 knots, the expected flapping motions occur. The first harmonic flapping amplitude increases from 0.0 to 1.5 degrees with the pitch-flap coupling and to 4.7 degrees without pitch-flap coupling. As with the similar transients at 120 knots, the final steady state is reached sconer with the pitch-flap coupling present. In both of the conditions shown in Figure 24, the higher harmonic flapping seen in the initial state is not significantly affected by the control change, although it necessarily is a smaller percentage of the total flapping in the final state.

The torsional moment transient responses at 200 knots, presented in Figure 25, are somewhat similar in character to those examined at 120 knots, although certain differences do exist. In general, the maximum torsional moment amplitude persists into the final steady-state condition

rather than being confined to the transient revolutions as before. An exception to this can be seen at points 16 and 19 of run 53 presented in Table XVI. In these two cases, the transient torsional moment does exceed the steady-state values. However, it is seen that both the initial and final steady-state conditions represent relatively severe conditions in terms of torsional moment amplitude. Table VI shows that these are lowdrag, high-power conditions. Full-scale wind tunnel data presented in Reference 13 show that the torsional moment sensitivity does increase with decreasing drag at the levels of rotor lift considered here. It is also evident from the torsional moment data presented in Table XVI that the moment amplitudes are increased with the increase in forward speed from 120 to 200 kncts. At both speeds, nevertheless, the harmonic content of the torsional moment is similar, and the effect of the pitch-flap coupling is also similar. It is worth noting from Figure 25 that the two responses without pitch-flap coupling as well as the two with it are very similar in spite of the difference in rotor operating conditions and control changes. This effect is consistent with the nature of the stall-induced torsional oscillation. The onset and quenching of the oscillation occur in the same general azimuth region for a wide range of conditions. The oscillation itself is governed by the dynamic characteristics of the rotor blade. The reduction of the torsional moment response by the pitch-flap coupling is again evident, but the mechanism through which this is accomplished is not immediately obvious. The coupling of flapwise and torsional modes may play a role in this effect. Harmonic analysis of the final steady-state data from point 22 of run 60 and point 11 of run 54 show, however, that no marked difference in the harmonic content of the flapwise moment is present, even though there is a 50 percent reduction in the amplitude of the fifth and sixth torsional moment harmonic components for the case with pitch-flap coupling.

### CORRELATION OF ROTOR BLADE TRANSIENT RESPONSE AT 200 KNOTS

ĩ

Only one basic difference exists between the degree of lag motion correlation at 200 knots and that at 120 knots. In the 200-knot case, the 4-cycles-per-revolution higher-harmonic response does appear in the theoretical results, although at a small amplitude. The theoretical chordwise bending moment response at the conditions considered contains a dominating fourth harmonic component, giving support to the suggestion that the measured higher harmonic lag motion is a response to the chordwise elastic deflection of the blade. Other than this, the theoretical and experimental motions display the first harmonic and subharmonic components that would be expected from the analysis of the 120-knot results. The effect of the pitch-flap coupling is also qualitatively similar.

The most significant difference in the correlation of the 200-knot conditions relative to that at 120 knots is the improvement in the theoretical flapwise bending moments. This is not surprising when it is considered that the flapwise response at the conditions in question is primarily first elastic mode bending. In all cases shown in Figure 23, the calculated initial steady-state flapwise moments agree much better with the measured values than was the case at 120 knots. The consistent discrepancy between the calculated and measured transient results is seen to be too little theoretical outboard moment and too much theoretical inboard moment. This is most evident in the cases without pitch-flap coupling. The implication of this discrepancy is that the second elastic flapwise mode is overexcited in the theoretical analysis. The final steady-state moments in point 14 of run 54 further confirm this, as the theoretical results obviously contain a larger 5-cycle-per-revolution component than the measured response. It is not clear that improving the treatment of the transient inflow with azimuthal variations induced by wake effects, as discussed with regard to the 120-knot correlation, would result in a higher degree of flapwise moment correlation. It is more likely, since the experimental response consists primarily of the natural response of one blade mode, that consideration of the time variation of uniform inflow would yield an improved flapwise moment correlation.

1

2

As in the 120-knot cases, the qualitative effect of the pitch-flap coupling is adequately predicted by the theory. At 200 knots, this effect is more significant in terms of reducing peak-to-peak blade bending moments than was true at the lower speed; however, as will be seen below, it still maintains an important role with respect to reductions in the torsional moments.

Considering the rotor blade flapping response to the c sined collective and cyclic pitch change, comparison of the motion shown in Figures 24(a) and (b) reveals that the calculated transion flapping contains an excess of second harmonic flapping and a deficiency of first harmonic flapping. Because second harmonic flapping is a function of rotor inflow (for example, see Reference 14), it can be expected that incorporation of a transient uniform inflow in the analysis will improve the flapping correlation in this case as well as in the case with only a collective pitch change. This case, shown in Figures 24(c) and (d), exhibits an excessive theoretical first harmonic flapping similar to the results discussed at 120 knots.

As in the case of the 120-knot torsional responses, the comparison of calculated and measured torsional moments at 200 knots, presented in Figure 25, shows a low degree of correlation. The nature of the disagreement at this forward speed is essentially the same as that discussed for the 120-knot cases. The early downward break of the calculated moment and the excessive damping of the calculated response both result from the use of quasi-steady aerodynamic theory in the theoretical analysis.

# EVALUATION OF ROTOR BLADE TRANSIENT RESPONSE AT 300 KNOTS

The lag motion data presented in Tables XV and XVI show that the control changes introduced at 300 knots result in only small lag motion changes. The time histories presented in Figure 26 indicate the nature of the transient lag response. The reason for the general lack of response stems from the fact that the control changes were generally smaller at this forward speed and were introduced at unloaded rotor conditions,  $C_{\rm L}/\sigma = 0.01$ . These limitations were imposed by the sensitivity of the flapping and the flapwise and chordwise bending moment at this forward speed.

Flapwise moment responses are presented in Figure 27. In each case considered, the flapwise moments increase with the control change. As with the transients at the lower forward speeds, the pitch-flap coupling causes a more rapid convergence to the final state. In the cases having only collective pitch change, it should be noted that although the final flapwise moments are nearly equal, the control change was 4 degrees with the pitch-flap coupling and 1 degree without it. No other effects peculiar to the flapwise transient responses are evident from the data in Figure 27.

The transient flapping response shown in Figure 28 is similarly well behaved. The last revolution in each time history sample is typical of the time histories of all succeeding revolutions. As before, the pitchflap coupling results in a more rapid convergence to the final steadystate condition. In addition, the third harmonic flapping, associated with the first mode elastic bending, is seen to persist throughout the transient in the presence of the pitch-flap coupling, while without it the third harmonic flapping is noticeably suppressed. The longitudinal flapping transients show no unusual characteristics.

The torsional responses at 300 knots appear in two characteristic forms. At some operating conditions, the torsional moment response is not unlike that presented in Figure 25 for the 200-knot operating conditions. Figures 29(a) and 29(b) show two such cases. Although there are similarities between the signatures of these time histories and those examined at 200 knots, the 300-knot amplitudes are much smaller. In addition, the retreating blade oscillations are more rapidly damped than in the 200-knot cases. The other characteristic torsional response is seen in Figures 29(c) and 29(d). In these cases, a single large peak moment occurs on the retreating side of the rotor disk. This behavior is characteristic of impending torsional divergence.

Significantly different torsional moment transient behavior is observable following each of the two types of control changes considered in Figures 29(c) and 29(d). In the case of the forward longitudinal flapping increment, the transient response is not substantially different from the initial steady-state condition either in signature or in amplitude. On the other hand, the aft longitudinal flapping increment noticeably changes the character of the torsional moment. Not only is the amplitude reduced, but the overall response tends to become similar to that seen in Figure 29(b) for point 11 of run 55. This is reasonable in that the rotor lift and flapping in the final steady states are nearly identical between point 7 of run 56 and point 11 of run 55.

Contrary to the effect of pitch-flap coupling seen at the lower forward speeds, comparison of data from Table XV for point 29 of run 47 with the response of point 29 of run 55, Figure 29(c), shows that the pitch-flap coupling increases the maximum torsional moment by a factor of about 2. This is in agreement with results published in References 15 and 4, which show the detrimental effect of pitch-flap coupling on torsional moments as the torsional divergence bour. y is approached.

# CORRELATION OF ROTOR BLADE TRANSIENT RESPONSE AT 300 KNOTS

The degree of correlation of blade lag motion at 300 knots is essentially the same as that obtained at the lower forward speeds. Figure 26 shows the comparison of the measured and calculated results. The relative absence of the higher harmonic content is again evident in the theory, and in point 29 of run 55, the subharmonic component is predicted by the theory but not seen in the experimental data. Nothing unique to this forward speed is revealed through comparison of experimental and theoretical lag motions.

I

The comparison of flapwise bending moments at 300 knots does reveal certain items not encountered at the lover forward speeds. Figure 27 shows a generally poor correlation of pre-transient conditions with a subsequent improvement in correlation as the transient response progresses. These results can be attributed to the fact that, in general, it was difficult to generate a completely satisfactory theoretical, pre-transient condition at this forward speed. Since the experimental parameters were served for these conditions ( $\theta_c = a_{1s} = b_{1s} = a_s = 0$  degrees), the measured response is a result of unsteady effects and interference from the model fuselage. Consequently, the compromises involved in attempting to theoretically achieve the measured values of lift, flapping, control settings, and shaft angle did not result in a uniform degree of correlation in the pre-transient conditions. In the case that includes pitch-flap coupling, the calculated flapwise moment is extremely small. In the other cases, the response has the correct order of magnitude but not the correct harmonic content. The introduction of the control changes results in an increase in rotor loading and a consequent reduction in the influence of the extraneous disturbances. Thus, the nature of the correlation following the control change is essentially as expected from consideration of the lower speed correlation. In the case of the collective pitch change without pitch-flap coupling, the calculated response is slower in attaining the final steady-state condition than the experimental response and slightly overshoots the measured final values. Correspondingly, the response with pitch-flap coupling reaches the final value rapidly with no overshoot. During the longitudinal flapping changes, the calculated response builds up more slowly than during the collective pitch change case and does not overshoot the measured final values. The high third harmonic content observable in the experimental flapwise bending moments is also evident in the theoretical results and indicates a significant participation of the first flapwise elastic mode at its natural frequency.

The comments made above concerning the generation of the theoretical pre-transient cases also apply to the flapping motions. Figure 28 shows a general lack of agreement between the initial steady-state motions from theory and experiment. However, as with the flapwise moments, the correlation during the transient response is much improved. The higher harmonic response in the theoretical results does not build up sufficiently, particularly in the case which includes pitch-flap coupling, but the first harmonic response correlation is much improved over that obtained at the lower speeds. This can be attributed to the diminishing effect of liftinduced inflow on rotor blade response as advance ratio increases. In the two cases where longitudinal flapping increments are considered, the theoretical response during the rotor revolution that includes the control change and the following revolution correlates poorly with the experimental data. This is due in part to the problem of generating the correct pretransient flapping, but this is evidently not the sole reason because Figure 28(d) shows that even with an apparently reasonable entry into the first transient revolution, the theoretical flapping fails to respond rapidly enough. This effect is consistent with the slow response of the no-pitch-flap-coupling cases examined at the lower speeds. Figure 28(a) shows that the 300-knot case with pitch-flap coupling does respond as rapidly to the control change as does the measured flapping motion.

ł

The correlation of the measured and calculated torsional moments presents a new situation at the 300-knot conditions. In the absence of the large-amplitude, stall-induced os illations, the measured torsional response is more accurately predicted than was the case at the lower forward speeds. Except where pitch-flap coupling is included, the calculated peak torsional moments, shown in Figure 29, are consistently low, although the qualitative responses to the control changes are good. The most reasonable explanation for the low moment peaks is that the reverse flow aerodynamic characteristics of the model blades are not exact enough in the theory. In this situation, where the blade is in an unstable attitude, a small error in lift curve slope, for example, will result in a significant error in the retreating blade torsional response. Since the case with pitch-flap coupling, Figure 29(a), does not exhibit the retreating blade moment peak, the correlation between theory and experiment is generally good in terms of total amplitude. Figure 29(a) shows, however, that the harmonic content of the measured response is not attained by the theory. The use of quasi-steady aerodynamics in the theory could be expected to produce such a result through excissive damping. This effect was seen at the lower forward speeds.

Some general summary comments are appropriate at this point concerning the evaluation of the experimental transient data and the correlation of theory and experiment. Of course, the complete analysis of transient rotor blade response must eventually include the consideration of chordwise elastic blade response and disturbances other than control changes. However, the present data show several significant effects and indicate the proper direction in which to seek improvements in analytical methods.

No noticeably unusual rotor behavior was observed during the actual wind tunnel testing of rotor blade response to rapid control inputs. At a few conditions, however, the rotor blade response immediately following the control change included flapwise and torsional moment amplitudes larger than the amplitudes in the initial or final steady-state conditions. The data show that these increased moments persist for only one or two rotor revolutions. The rapid control changes sometimes excited a subharmonic lag motion which decayed within one or two cycles.

37

The correlation of the transient responses measured in the wind tunnel with those calculated using the Normal Mode Transient Analysis is not consistent throughout the range of operating conditions considered. At the lower forward speeds, the results indicate that the inclusion of a transient rotor inflow, possibly including nonsteady, wake induced effects, is necessary to cause the theory to yield a realistic response, jarticularly rotor blade flapping. At the more extreme low-speed conditions, the addition of unsteady effects associated with blade stall appears to be a requirement to uttain a reasonable degree of torsional response correlation. At the higher forward speeds, the most significant aspect of the correlation analysis is the basic problem of theoretically generating a prespecified operating condition in terms of rotor performance, control settings, and angle of attack. The high sensitivity of the rotor system at advance ratios of 1.0 and above forces the analyst to make judgment on parametric values that could be ignored at lover advance ratios.

1

### EFFECT OF AZIMUTH ANGLE OF CONTROL INPUT

.

Changes in rotor blade transient response, resulting from a variation in the rotor azimuth angles over which the rotor control change takes place, were investigated by using the Normal Mode Transient Analysis. Initial steady-state conditions corresponding to point 28 of run 60 and point 11 of run 55 were used. The rotor control changes for the same test points were modified to take place at azimuth angles 270 degrees larger and were used in the theoretical analysis. The resulting transient responses are presented in Figures 30 through 33.

The revised control inputs begin at the 270-degree azimuth of the first revolution appearing in Figures 30 through 33. This revolution starts at zero and extends to 1 on the azimuth scale of Figures 30 through 33. Because of the lag which appears in the sample data of Figure 15, however, most of the actual change starts at the numeral 1 on the azimuth scale of Figures 30 through 33 and is essentially complete at the 90degree azimuth of that revolution.

Comparison of these results with the theoretical transients presented in Figures 26 through 29 indicates that the revised control change causes a larger blade response than the original control change.

No significant change in the lag motion without pitch-flap coupling is observable. With the pitch-flap coupling, a much larger control increment is used, and an increase in the subharmonic amplitude occurs.

The flapwise bending moments, flapping motions, and torsional moments show a definite increase in response with the pitch-flap coupling when subjected to the revised control change. The blade response during the actual control change is, of course, quite different between the two sets of cases, but in the second revolution following the control change, the flapwise moment amplitudes are 30 percent larger with the 0- to 90degree azimuth control change than with the 90- to 180-degree azimuth control change. The overall harmonic content of the response is essentially the same in both cases by the end of the second transient revolution. The increases in flapping and torsional moment responses are on the order of 10 percent in the third and fourth transient revolutions. During the actual control change, these responses also differ significantly from those following the original control change. As with the flapwise moments, the flapping and torsional moment signatures are unaffected three or four revolutions after the control change.

Without the pitch-flap coupling, the third and fourth revolution flapwise moment, flapping, and torsional moment responses are not significantly different following either the earlier or the later control change. As expected, the responses during the first transient revolution are quite different, and the 0- to 90-degree azimuth control change case is seen to converge to the final values more rapidly than the 90- to 180degree case.

1

The physical significance of the differences in transient responses following control changes at different azimuth angles is that, in general, a rapid change in rotor controls will result in a different response by each individual blade of the rotor system. This will exhibit itself in multiple tip path planes and blade root shear forces that are not integrated out before reaching the nonrotating system. The wind tunnel tests showed that these effects are only short term in duration since no unusual behavior was observed in the experiments. The analytical results imply, however, that the erratic rotor behavior may last for 5 rotor revolutions following the control change. Effects of this duration could not be visually observed in the wind tunnel due to the frequency scaling involved, nominally 0.1 second per rotor revolution.

The theoretical effect of transient control input azimuth phasing on the blade response persists for a longer period of time for the case considered here with pitch-flap coupling than for the case without pitchflap coupling. This is probably related to the much larger control increment required to produce a given amount of flapping when pitch-flap coupling of the amount used here is present. It can be seen in Figure 30 that subharmonic motion is noticeably larger for the case with pitch-flap coupling. This motion requires several revolutions to damp out. While it is present, the various coupling mechanisms cause it to affect blade flapwise and torsional response.

39

# ANALYSIS OF INSTABILITY DATA

# GENERAL DISCUSSION

2

Each of the known types of rotor blade instability pertinent to this investigation is discussed separately in the following paragraphs. It is usual to treat these phenomena as separate entities, using certain appropriate simplifying assumptions or experimental conditions. This approach has led to basic understanding and simple, qualitatively useful methods. Real rotor systems, however, do not necessarily observe these assumptions or restrictions. For example, the violent instabilities experienced during the testing of the blades with aft center of gravity can not be clearly placed into any one of the categories of instability to be discussed below.

1

# Torsional Divergence

The concept of rotor blade torsional divergence follows directly from the similar consideration for a fixed wing, as discussed in Reference 11. Torsional divergence results from a static aerodynamic torsional load which increases in linear fashion with the product of dynamic pressure and angle of attack. If the structural deflection due to the torsional load results in an increase in angle of attack, a so-called regative aerodynamic spring is present. Since the elastic restoring moment resisting the torsional load is proportional to the deflection only, a dynamic pressure which is sufficiently high will result in a rate of static torsional load increase with deflection which exceeds the rate of increase of the elastic restoring moment. This situation is referred to as torsional divergence.

The torsional divergence investigation is clearly applicable to a fixed wing in steady flight, or possibly to a rotor blade in hovering flight, where the relative velocity along the blade is constant in time.

Conventional helicopter blades are, however, mass balanced about the 25 percent chord position of the unstalled aerodynamic center of pressure. This practice causes the torsional couple to remain small when the blade is operating in hover or in the advancing azimuth regime of the rotor disc during forward flight.

When a helicopter rotor is operating at an advance ratio greater than unity, the entire blade is traveling backwards (sharp edge first) through the air for part of each revolution. Under these conditions, the aerodynamic center of pressure moves close to the normal 75 percent chord position. The static flapping restraint for the blade is furnished by a centrifugal force component acting through the blade center of gravity. Hence there is a static torsional couple caused by aerodynamic lift and centrifugal restraining forces whose arm is approximately one-half chord. This large couple causes the torsional divergence situation to be encountered, even though the relative velocities are low on the retreating side of the blade. The elastic axis position in the typical helicopter blade has little influence on the static torsional moment, because most of the resistance to aerodynamic loadings is due to centrifugal stiffness, which acts at the local blade center of gravity.

If the rotor blade is not mass-balanced, the torsional divergence situation can be encountered on the advancing side of the rotor disc. Since dynamic pressure is much higher than on the retreating side of the rotor disc, a much smaller displacement of the blade center of gravity aft of the center of pressure is required to produce torsional divergence at a given forward speed. Reference 4 contains additional discussion on helicopter blade torsional divergence, with nondimensional charts of divergence boundaries for a wide range of parameters.

The limitations of the torsional divergence theory as applied to the helicopter blade are quite obvious. The blade loadings are applied at time rates which make torsional inertia effects important. Furthermore, the basic torsional forcing moments can be unacceptably large even though a condition for torsional divergence has not been encountered.

# Classical Flutter

2

The classical flutter instability for rotor blades, like torsional divergence, also follows directly from the f\_xed-wing clar loal flutter problem, as discussed in Reference 11, for example.

The term "classical flutter" usually refers to the self-excited oscillation of an aerodynamic surface in unstalled flow. Usually classical flutter involves at least two modes of motion, such as airfoil pitching and airfoil plunging. In this case, the elastic, inertial, and aerodynamic properties of the airfoil result in out-of-phase pitching and plunging vibrations. When flutter occurs, the phasing between the motions results in a mechanism which extracts energy from the airstream and feeds it into the structural vibration. If the maximum pitch angle occurs when upward plunging velocity is at its maximum, it can readily be seen that the serodynamic lift can be in a direction to add energy to the vibration. The pitch angle, velocity, and aerodynamic force will all be reversed when one-half cycle of vibration has passed, and energy input to the structure will continue. The flutter frequency is usually high enough so that the aerodynamic forces have a significant phase difference from the motions, and these phase differences are customarily accounted for in flutter analysis.

Classical flutter occurs in a flow regime where aerodynamic forces are linear with respect to the airfoil motions. Therefore, flutter amplitude will grow with time until nonlinear effects become important or the structure is destroyed.

The classical flutter problem for the helicopter blade in hover is similar mathematically to the fixed-wing classical flutter problem. The major differences are the presence of a helical wake, the variation in velocity along the blade, and the various stiffness and inertial effects caused by rotation. The classical flutter problem for helicopter blades in forward flight presents a much more complicated problem than the fixed-wing flutter problem. The large, rapid, timewise variation in relative velocity at a blade section requires that the differential equations of motion have time-varying coefficients. The fixed-wing flutter problem is conveniently presented in terms of small motions about some steady equilibrium position. The helicopter blade in forward flight is subject to continuous vibratory loadings and cyclic changes in relative angle of attack which often extend into the stall or reverse flow regime. Because of these large vibratory loadings and resultant blade motions, a purely linear st bility analysis for helicopter blade flutter in forward flight has much less practical significance than the typical fixed-wing flutter analysis. The cyclic vibratory loadings and deflections may strongly affect the parameters of the linear stability problem, making the consideration of nonlinear terms necessary for a comprehensive mathematical treatment.

Ţ.

The cyclic variation of flow conditions for the helicopter blade can result in an instability which is limited to certain azimuth regions. If these regions are not too large, the blade passes through them rapidly enough that amplitudes remain acceptable. Thus, '. theoretically predicted instability boundary may be penetrated without producing any practically significant change in rotor blade response.

### Stall Flutter

à

Stall flutter refers to the aerodynamically self-excited vibration of an airfoil in the stalled regime. The flow conditions for stall flutter are separated, unsteady, viscid, and compressible. A purely theoretical prediction of the airfoil loadings under these conditions has not as yet been obtained. The available methods of predicting stall flutter depend on the application of airloads data obtained from sinusoidally vibrating two-dimensional sections.

The mechanism of stall flutter results from the rapid motions of the airfoil as it vibrates in pitch. If the frequency of vibration is sufficiently high for a given chord and forward velocity, the steady-state flow conditions will not become established. The airfoil will tend to remain unstalled when pitching upward, and will tend to remain stalled when pitching down. If the stalled pitching moment is negative with respect to the unstalled pitching moment, work will be done on the airfoil as it vibrates. This work is reflected as a negative damping of torsional vibrations.

Stall flutter of helicopter blades occurs intermittently in forward flight as the blade passes through a region of high angle of attack on the retreating azimuth. With conventional blades, only one or two cycles of vibration can take place while the blade is in the unstable azimuth regime. However, the initial entry of the blade into stall will generally provide a large torsional impulse, which will excite torsional vibration. The vibration will tend to persist for one or two cycles until the blade passes into the region of high positive damping on the advancing side of the rotor. The prediction of stall flutter currently depends on the application of data acquired for a steady-state vibration to a condition where a vibration is impulsively started and quenched. This is probably less of a shortcoming than the problem of accurately predicting the blade angle of attack variation with azimuth on the retreating side of the rotor disc for a given flight condition. Obviously, this angle of attack variation must be known accurately, since the blade aerodynamic pitching loads change radically as scon as stall is encountered.

# Flapping Instability

ł.

The resistance of the conventional articulated or hingeless helicopter blace to flapping forces is basically the result of centrifugal force components normal to the blade. These components are approximately proportional to small blade flapping angles with respect to the plane of rotation through the rotor hub. The magnitude of these components obviously also depends on the square of the rotational speed. Flapping instability refers to a condition for which the centrifugal flapping resistance is overcome by aerodynamic flapping forces. The flapping instability of the rotor in forward flight was explored in this experimental investigation.

If the helicopter is in forward flight, the upward flapping or flapwise bending of a helicopter blade in the forward half of the azimuth results in an increase in blade angle of attack. This increase in angle of attack causes an increase in blade lift, which is basically resisted by a corresponding increase in the centrifugal force components normal to the blade. If the rotor rotation is slowed, the rate of increase of the centrifugal force component with rotor flapping will become smaller. As shown in Reference 16, a transient negative spring rate in flapping can develop for advance ratios less than  $\mu = 0.8$ . As advance ratio increases even further, the mignitude and azimuth range of the negative spring rate increases. According to the analogue computer study of Reference 16, this negative spring rate in flapping is responsible for the flapping instabilities that may occur.

Flapping instability has been studied theoretically, as in Reference 16, without considering the effects of coupling with in-plane motions of the blade, such as motion about the lag hinge. More elaborate investigations, one of which is cited in the next section, include consideration of in-plane motior.

# Flap-Lag Instability

Helicopter blade flapping and in-plane motions, such as chordwise bending or motion about the lag hinge, have an influence on each other which is referred to as flap-lag coupling. This coupling is primarily due to Coriolis forces. These effective forces arise when the blades acquire a finite flapping angle. The Coriolis forces are of second order from a strict mathematical standpoint, but they are definitely not negligible for blade flapping angles obtained in practice, especially when the rotor is heavily loaded. In Reference 17, the coupled flap-lag motion of a helicopter blade is studied theoretically. The coupled flap-lag motion was found to be unstable under some circumstances. The coning angle of the rotor determines the amount of unstable coupling. It was also found in Reference 15 that the lag hinge damping of the articulated rotor can be sufficient to suppress flap-lag instability. It does not appear that a simple explanation of flap-lag instability in physical terms is available.

References (16) and (17) do not comment specifically on the operating domains for which a pure flapping instability would be encountered and those for which flap-lag type of instability would appear. The flap-lag instability predicted in Reference (17) can appear at an advance ratio as low as 0.4, for a blade Lock number of 10. The pure flapping instability of Reference (16) is predicted to lie between advance ratios of 2.0 and 2.4 for blade Lock numbers between 12 and 4. Therefore, the more complicated flap-lag theory must be considered in a specific set of rotor stability calculations. In Reference 2, for example, a set of articulated blades was found to be free from flap-lag instability for a certain range of operating conditions. Response of the blades to a sharp-edged gust could then be realistically studied in terms of flapping motion only.

### COMPARISON OF THEORY AND EXPERIMENT

# Torsional Divergence

As shown by the right-hand vertical rows of points in Figure 14, the theoretical torsional divergence boundary was approached for the 25 percent chord and the 30 percent chord center-of-gravity blades by reducing rotational speed at a constant simulated forward speed of 332 knots. Figure 34 shows time history plots for data points 67-11 and 67-12. A four-revolution sample of blade lag time history is shown, so that the subharmonic motion can be seen. The other plots in Figure 34 are the superimposed time histories of two successive revolutions. The time histories for data points 72-8, 72-9, 75-10, 75-11, 81-8, and 81-9 are qualitatively similar, except for aft center-of-gravity effects and smaller amounts of the subharmonic motion. The conditions for these data points, which are similar to those for 67-11 and 67-12, are given in Tables VII and VIII.

The inboard end of the blade airfoil section is in reverse flow from  $\psi = 190$  degrees to  $\psi = 350$  degrees for the two data points shown in Figure 34. The entire blade is in reverse flow from  $\psi = 225$  degrees to  $\psi = 315$  degrees. The large pulse of torsional elastic response shown in Figures 34(e) and 34(f) begins as the blade tip passes into reverse flow. Reference to Table VII shows that  $\theta_c = 2.0$  degrees and  $B_{15} = 4.8$  degrees for data point 67-12. The static blade calibration tests provided information about the blade torsional deflection for a given static load. If it is assumed that the blade dynamic torsional deflection mode is approximately the same as the first torsional natural mode, the blade tip torsional deflection for the various dynamic loading conditions. The peak torsional deflection for the response shown in Figure 34(f) has been estimated as approximately 9 degrees in

this way.

In order to obtain qualitative information about what actually took place during the condition of Figure 34(f), an estimate of static aerodynamic torsional load at the start of the pulse was made. To facilitate this, induced inflow was neglected, and the relative tangential velocity at  $\psi$  = 230 degrees was assumed. The blade angle of attack was assumed to be -174.3 degrees as given by the combination of cyclic and collective pitch. Reference to Figures 34(d) and 34(h) shows that flapping and flapwise bending deflection and velocity are small at  $\psi$  = 230 degrees and therefore do not contribute to blade angle of attack. A lift curve slope of  $2\pi$  and a center of pressure at the 75 percent chord position were also assumed. The result of this calculation was an estimated aerodynamic blade torsion at  $\psi$  = 230 degrees of 59.2 incn-pounds about the 25 percent chord. This large, suddenly applied load produced the large torsional acceleration around  $\psi$  = 230 degrees. The sudden loading was a result not of an instability, but of the passage of the blade into a reverse flow region with a moderately large reverse flow angle of attack. The torsion was the result of a couple between the aerodynamic downward lift at the 75 percent chord and the inertial force required at the 25 percent chord to accelerate the blade mass downward.

The blade elastic twist and cyclic pitch caused the blade reverse flow stalling angle to be encountered soon after  $\psi$  = 230 degrees. At  $\psi$  = 270 degrees, the blade angles of attack were estimated to range from -173 degrees at the inboard section to -164 degrees at the tip. Figure 5(c) of Reference 18 shows that reverse flow stalling began at an angle of attack of approximately -173 degrees. Reverse flow velocities continued to increase until the azimuth position reached  $\psi$  = 270 degrees, while the moment coefficient continued to decrease because of blade stalling. This apparently caused blade torsional aerodynamic loading to remain relatively constant at 60 inch-pounds between  $\psi = 240$  degrees and  $\psi = 280$  degrees. During this interval, the blade deflection and corresponding elastic moments built rapidly as shown in Figure 34(f). Once  $\psi = 270$  degrees was passed, reverse flow velocities decreased and blade torsional load decreased rapidly. The decrease of load was even more rapid than the buildup. This was probably due to a delay in the establishment of unstalled flow.

The flapwise motion of the blade during the conditions of Figure 34 was predominately a three-per-revolution excitation of the first flapwise bending mode. The plunging velocities due to this motion caused comparatively small angle of attack changes.

The results shown in Figure 34 have been shown to be primarily the forced response in torsion and flapping due to the passage of the blade through the reverse flow region. The loadings due to the initial angle of attack were high and rapidly caused blade elastic twist into the stall regime. The reverse flow stall caused the peak loadings to be much smaller than a linear aerodynamic theory would have predicted.

45

It can be seen that other operating conditions would reduce the torsional loads obtained for the conditions of Figure 34. If the cyclic pitch were reduced from the values used in the conditions of Figure 34, the blade reverse flow angles of attack would approach 180 degrees, both as a direct effect and because of increased blade rearward flapping. This in turn would permit higher forward velocities or lower rotational velocities and a closer approach to the theoretical divergence or classical flutter boundaries. This would obviously not be a practical operating condition for the rotor, since the application of cyclic pitch control for the reduction of blade flapping would cause excessive blade stresses.

#### Retreating Blade Classical Flutter

The test conditions shown in Figure  $3^4$ , which were discussed in terms of torsional divergence, also represent the closest approach to the theoretical retreating blade classical flutter boundary, which is practically coincident with the retreating blade torsional divergence boundary. As mentioned in the previous discussion, response to dynamic blade loadings became excessive before the theoretical stability boundary was encountered. The forced response experienced during the test approximated a half cycle at 13 cycles per second. The incipient flutter mode, from an interpolation in Figure 16, has a frequency of approximately 45 cycles per second for the condition of Figure  $3^4$ . Reference to Table XI shows that the calculated incipient flutter mode has the first flapwise bending mode out of phase with torsion. The forced experimental response was found to have essentially in-phase first flapwise bending and torsion motions.

Figure 15 of Reference 4, which used the method of Reference 1, presents the torsional response of a helicopter blade in reserves flow at a small initial angle of attack. The response appears as an intermittent high-frequency flutter, rather than the single pulse per revolution experienced for similar conditions during the test. This is another indication that a flutter type response may be encountered on retreating blades if the angles of attack are kept close to 180 degrees.

### Advancing Blade Classical Flutter

The comparison of theory and experiment for the fixed-azimuth flutter calculations must be rather limited from a quantitative sense. The fixed-azimuth calculation makes the basic assumption that conditions existing in a certain azimuth region exist for all time. Inspection of the test data to be presented in the following paragraphs shows that this simplification is a very drastic one for the rotor in forward flight. Even at advance ratios as low as  $\mu = 0.3$ , the flapwise bending, torsional, and rigid blade flapping time histories do not exhibit more than one cycle of motion which can even approximate the type of coupled near-sinusoidal motion which exists for a fixed wing. Even if this one cycle of vibration is quite unstable from a fixed-wing flutter standpoint, the buildup of successively larger vibrations which characterizes fixed-wing flutter cannot occur. This, of course, makes the fixed-azimuth flutter calculation, in itself, very conservative. This fact was confirmed by the test results. The  $\psi = 90$  degrees advancing blade flutter boundaries were penetrated with no noticeable change in blade response. The rotor was operated at conditions far in excess of these boundaries, with only moderate increases in blade loadings and motions, as expected.

The unexpected incidents of violent and sudden rotor instability which occurred during the experimental investigation for the blades with center of gravity at the 35 percent chord appear to be related to advancing blade excitation. While each of the incidents occurred beyond the fixed-azimuth flutter boundary, it cannot be concluded that this will always be the case. For example, the forward speed for violent instability at a rotational tip speed of  $\Omega_S R = 700$  feet per second was lowered from  $V_S = 208$  knots to  $V_S = 120$  knots by raising collective pitch from  $\frac{1}{2}$ .O degrees to 6.8 degrees on the trimmed rotor. The predicted fixed-azimuth flutter forward speed was 20 knots for this rotational speed. It is at least plausible to expect that a slightly higher collective pitch would cause violent instability to occur in hover at  $\Omega_S R = 700$  feet per second, although this would not be predicted by the fixed-azimuth flutter theory.

.

In spite of the above considerations, it is worthwhile to compare the experimentally determined blade response to the predicted fixedazimuth flutter response. This comparison can lead to improved judgement and to the creation of a more realistic and possibly simpler analysis. The blade motions over limited azimuth regions of the blade will be treated in the comparison as if they were sinusoidal vibrations. Simultaneous motions occurring in torsion, flapwise bending, or flapping will also be considered as taking place at the same frequency, even if this is only approximately correct. Thus, the terms "frequency" and "phase" will be applied to a short time interval during which the fixed-azimuth flutter motions may approximate the experimental motions. These terms, which have a definite meaning within the fixed-azimuth flutter calculation, do not, in a strict sense, apply to the actual response of the blade.

In order to relate the blade response to the predicted fixed-azimuth flutter modes, the relationship between blade tip deflection and moments was determined from the natural mode calculations and checked with the aid of the static blade calibration results. One inch of tip motion in the blade first flapwise bending mode was found to be equivalent to 34.6 inchpounds of flapwise bending at the 30 percent radius station, 51.0 inchpounds of bending at the 60 percent radius station, and -2.4 degrees of blade flapping at the hinge. One inch of tip motion in the blade rigid flapping mode is equivalent to 1.1 degrees of blade flapping at the hinge. One degree of blade pitch at the tip in the first torsional mode produces a moment of 7.5 inch-pounds at the 18 percent radius station and 7.0 inchpounds at the 35 percent radius station.

Sample time history data for the blades balanced about the 25 percent chord location are presented in Figure 35 for comparison with the behavior of the aft center-of-gravity blades. The data are presented as the superimposed time histories of two successive revolutions. The data of Figure 35 were taken during test points 65-3 and 67-7. The rotor conditions for these points are given in Table VII. The various time histories are similar for these two data points. Some reverse flow
excitation is evident in torsion and bending in both cases.

Figure 36 presents data at  $\Omega_s R = 700$  feet per second and two simulated forward speeds for the blade with the center-of-gravity location at the 30 percent chord. The rotor operating conditions for these points, 74-5 and 74-9, are given in Table VIII. The calculated flutter onset for this blade at that rotational speed is  $V_s = 150$  knots, as shown on Figure 16(c). The flutter onset is defined by the change from positive to negative damping of the critical aeroelastic mode. The damping versus forward speed at various constant rotational speeds is given in Figure 16(c). Both data points shown in Figure 36 are well into the theoretically unstable regime. Data point 74-9 was taken at the highest speed reached with the  $\Omega_{g}R = 700$ -feet-per-second rotational tip speed and the 30 percent chord center-of-gravity blade. As shown in Figure 36, the blade response was still quite moderate at this speed. Further increases in speed were prevented by an observed increase in model vibration. This may have been related to the nonharmonic lag motion evident in Figure 36(b). Frequency analysis showed a discrete frequency lag motion component of 0.46 degree amplitude at 0.215 cycle per revolution.

In order to determine the more detailed effects of the aft centerof-gravity location, Figure 35(a) can be compared with Figure 36(b), 35(c) with 35(d), 35(e) with 36(f), and 35(g) with 36(h). The conditions for the two data points involved were practically identical. The only dramatic change occurred in the torsional time history. A torsional vibration appeared, grew in amplitude in the advancing azimuth regime, and decayed in the retreating azimuth regime. The instantaneous frequency of the torsional oscillations was lower on the advancing than on the retreating azimuth region. These amplitude and frequency variations fulfill qualitative expectations from the fixed-azimuth flutter considerations. From a more quantitative standpoint, the frequency of torsional oscillation in Figure 36(f) for the cycle between  $\psi = 40$  degrees and  $\psi = 140$ degrees is 3.6 cycles per revolution or 45 cycles per second. The frequency of the cycle between  $\psi = 240$  degrees and  $\psi = 320$  degrees is 4.5 cycles per revolution or 55 cycles per second. These frequencies may be compared to the torsional natural frequency of 55.6 cycles per second given in Table II and the predicted flutter frequency of 29 cycles per second, shown in Figure 16(c). It is evident that the large predicted drop in the frequency of the torsional mode did not occur.

Evidence of coupling between torsional and flapwise motion in the advancing azimuth region is present. The flapwise bending peak in Figure 36(d) at  $\psi = 140$  degrees is out of phase with torsion. Comparison of Figures 35(g) and 36(h) shows that the aft center-of-gravity blade has an additional advancing azimuth flapping motion which is also out of phase with torsion. This phase relationship is not similar to that calculated for the flutter mode at  $V_S = 220$  knots, as shown in Table XI. The relative order of magnitude of these motions is, however, roughly comparable to the calculated flutter mode for  $V_S = 220$  knots. Comparison of the data of Figure 36(e) and 36(f) shows that the torsional magnitude increases with forward speed and that frequency is relatively unaffected. The flapwise bending response in Figure 36(c) is very small, but it appears that flapwise bending response is approximately in phase with torsion at this lower speed. This phase relationship is similar to that shown in Table XI for forward speeds of  $V_s = 160$  knots and  $V_s = 220$  knots.

The data shown in Figure 37 are also for the 30 percent chord center-of-gravity blade, and are from points 75-4 and 75-7. The corresponding rotor operating conditions are given in Table VIII. Figures 37(b) and 35(b), 37(d) and 35(d), 37(f) and 35(f), and 37(h) and 35(h) can be directly compared to determine the effect of the 30 percent chord center of gravity. The most obvious effect is, as before, the torsional vibration buildup on the advancing azimuth region, as shown in Figure 37(f). The rotational tip speed  $(\Omega_s R)$  is 500 feet per second. Thus the relative velocities are smaller over most of the azimuth than in Figure 36, which presents data with  $\Omega_s R = 700$  feet per second. This is probably the reason for the much more rapid quenching of the torsional vibrations in the retreating azimuth region. The torsional vibrations excited on the advancing azimuth are almost completely decayed when the reverse flow torsional impulse begins around  $\psi = 260$  degrees.

1

By referring to Figure 16(c) and Figure 37, it can be seen that test point 75-4 lies on the calculated flutter boundary and that test point 75-7 lies well beyond it.

The frequency of the cycle of torsional vibration between  $\psi = 60$ degrees and  $\psi = 140$  degrees in Figure 37(f) is 4.5 cycles per revolution or 40 cycles per second. The cycle of vibration between 180 degrees and 240 degrees is 6.0 cycles per revolution or 53 cycles per second. As before, these frequencies may be compared with the torsional natural frequency of 55.7 cycles per second given in Table II and the predicted flutter frequency of 30 cycles per second, shown in Figure 16(c). As at  $\Omega_{\rm g} R = 700$  feet per second the experimental advancing blade response frequency at  $\Omega_{\rm g} R = 500$  feet per second is much higher than the predicted flutter frequency.

The coupling of torsion with flapwise bending and flapping is much more prominent for point 75-7 than for point 74-9. Flapping is out of phase with the torsional pulse at  $\psi = 100$  degrees in Figure 37(f), while flapwise bending is in phase. Consideration of the relative amounts of flapwise bending and flapping indicate that the blade flapwise motion in this region is principally first-mode bending. These results do not agree qualitatively or quantitatively with the calculated flutter mode at  $V_g =$ 320 knots, as given by Table XI.

Figure 38 presents data from point 75-11, which is at the same forward speed as point 75-7 but at a lower rotational speed of  $\Omega_{\rm g}R$  = 404 feet per second. The advancing azimuth torsional response is qualitatively the same in Figure 38(c) and Figure 37(f). The retreating azimuth response is much greater because of increased reverse flow. The flapwise response in Figure 38(b) is quite different from that in Figure 37(d). The flapping time histories shown in Figure 38(d) and Figure 37(h) are, on the other hand, quite similar on the advancing azimuth region. The nonharmonic lag motion appearing in Figure 38(a) hus a significant discrete frequency component at 0.29 cycle per revolution. The nonharmonic flapping motion has discrete frequency components at 0.29, 0.71, and 1.29 cycles per revolution. These nonharmonic motions will be discussed separately.

The forward flight advancing azimuth excitation of the blade with the 30 percent chord center-of-gravity location does not generally conform, even instantaneously, to the predicted fixed-azimuth flutter frequency or mode shape. It is probable that the very short time interval during which the blade is theoretically susceptible to fixed-wing type flutter prevents the noticeable self-excited buildup of a fixed-wing type flutter mode.

The sample data from the advancing blade aeroelastic limits testing of the blade with the center of gravity at 35 percent chord will be discussed next. Figure 39 shows data from test points 83-3 and 83-5. The operating conditions for these points are given in Table IX. Both points were taken at a rotational tip speed  $(\Omega_s R)$  of 700 feet per second. As for the blade with the 30 percent chord center of gravity, a torsional vibration arose which grew in amplitude on the advancing side and decayed on the retreating side. This vibration is evident in the time history results given in Figures 39(f) and (g). The increase in forward speed from  $V_g = 138$  knots to  $V_g = 187$  knots did not affect the frequency of vibration and caused only a moderate increase in amplitude.

The frequency of the torsional vibration cycle which extends from  $\psi = 0$  degrees to  $\psi = 150$  degrees in Figure 39(g) is 2.4 cycles per revolution or 30 cycles per second. The frequency of the cycle which extends from  $\psi = 240$  degrees to  $\psi = 360$  degrees is 3.0 cycles per revolution or 37 cycles per second. These frequencies may be compared with the natural torsional frequency of 48.8 cycles per second from Table II and the predicted flutter frequency of 27 cycles per second from Figure 16(d). Considering the fact that the flutter frequency is predicted only for an azimuth angle of  $\psi = 90$  degrees, this is a satisfactory agreement.

The blade response for point 83-5 is moderate, and evidence of coupling between flapwise bending and torsion does not appear in Figure 39(d) for the inboard flapwise bending. Figure 39(e) does, however, show an outboard flapwise bending response which has a waveform similar to the torsional response. The relative amounts of flapwise bending and torsional response agree to within 20 percent with the calculated flutter mode for  $V_g = 80$  knots, which is given in Table XI. The phase relationship between bending and torsion is not as predicted, but this may be a result of the substantially higher forward speed of test point 83-5. The predicted involvement of the rigid blade flapping mode also does not occur.

After point 83-5 was taken, the wind tunnel velocity was slowly increased, while the torsional stress amplitude was continuously monitored. The stress amplitudes remained close to the moderate values corresponding to Figure 39(g) until a simulated speed of 208 knots was reached. At this point, the blade stresses suddenly increased beyond the allowable limits, and violent nonharmonic blade flapping motions were observed. The wind tunnel was shut down and the model stabilized before a record of the blade

### motions could be obtained.

The data shown in Figure 40 were taken at a rotational tip speed  $(\Omega_g R)$  of 500 feet per second. Data points 84-3 and 84-6 were taken at forward speeds  $(V_g)$  of 187 knots and 259 knots respectively. The rotor operating conditions for these two data points are given in Table IX. The type of advancing blade excitation noted for the test points of Figure 39 occurred again, as shown in Figure 40(f) and (g). A nonharmonic torsional vibration is evident in Figure 40(g). This particular data point is for an operating condition at which a violent instability later occurred spontaneously, and this nonharmonic motion shown for the two revolutions in Figure 40(g) was not typical for the entire record of 50 revolutions, and only appeared occasionally at random intervals.

The cycle of torsional vibration in Figure 40(g) between  $\psi = 40$ degrees and  $\psi = 160$  degrees has a frequency of 3.0 cycles per revolution or 27 cycles per second. The cycle of torsional vibration between  $\psi = 220$ degrees and  $\psi$  = 290 degrees has a frequency of 5.1 cycles per revolution or 45.6 cycles per second. These frequencies may be compared with the torsional natural frequency of 47.1 cycles per second from Table II and the calculated flutter frequency of 27 cycles per second from Figure 16(d). As with the results shown in Figure 39 for data points 83-3 and 83-5, these frequencies agree well with the fixed-azimuth considerations. The coupling of torsion with flapwise bending is not plainly apparent, as can be seen from Figures 40(d) and (e). The coupling that does exist appears to cause flapwise bending to be in phase with torsion. The flapping motion about the hinge is out of phase with torsion around the azimuth angle  $\psi$  = 120 degrees, as shown in Figure 40(i). A comparison with the predicted flutter mode for  $V_s = 140$  knots from Table XI shows that the predicted relatively large amounts of flapwise bending do not appear. The relative amounts of rigid blade flapping and torsion and their phase are, however, correct within about 50 percent.

Even though the blade response was quite moderate while the data shown in Figure 40 (for data point 84-6) were taken, the rotor was in fact operating at a condition for which a violent instability was possible. After the data were taken for point 84-6, and before any of the controls were operated to obtain the next test point, rotor response changed suddenly. Blade stresses and motions became nonharmonic and greater than allowable, and the wind tunnel was shut down. During the recovery of the model from the instability, some time history data were obtained with the on-line oscillograph. These data will be presented and discussed later. Frequency analysis of the data of point 84-6 showed nonharmonic flapping motions of only 0.3 degree at a frequency of 0.5 cycle per revolution, and torsional nonharmonic moments of only 0.74 inch-pound at a frequency of 0.5 cycle per revolution and only 2.4 inch-pounds at 4.5 cycles per revolution. These frequency components are obviously present in the time history of the instability, which will be presented and discussed later.

Figure 41 presents time history data for two additional data points taken with the 35 percent chord center-of-gravity blade. Point number

85-3 is another point close to a violent instability, and 85-8 is the point of highest reverse flow velocity obtained with this blade.

The data for point 85-3 in Figure 41 was taken for a speed slightly lower and a collective pitch slightly higher than for point 83-3 shown in Figure 39. The corresponding data channels show good quantitative agreement. The relatively small changes reflect the differences in the operating condition. An attempt to raise collective pitch at the forward speed and rotational speed of point 85-3 resulted in another sudden violent instability when a collective pitch of 6.8 degrees was reached. The instability again was characterized by high nonharmonic blade loads and motions. Analysis of the data of point 85-3, which was taken at a collective pitch of 5.0 degrees, did not produce any indication whatever that a violently unstable condition would be entered by raising the collective pitch 1.8 degrees. In the case of this instability, data were obtained on the magnetic tape, and a full frequency analysis of the motions during the instability could be carried out. This will be discussed later.

The data from test point 85-8 also appear in Figure 41. These data repeat the patterns of previous data, which are a growth of torsional amplitude on the advancing azimuth and a decay on the retreating azimuth. As with previously discussed data, the frequency of the vibration is lower on the advancing azimuth. The coupling between flapwise bending and torsion again exists only on the advancing azimuth region, as can be seen from Figures 41(d) and 41(j).

Consideration of the time history data presented in Figures 35 through 41 shows that the aft center-of-gravity offset consistently caused an advancing blade torsional vibration. The coupling of the torsional motions with flapwise motions in the manner of a fixed-wing flutter was not, however, consistently observable. When it was observable, agreement with the fixed-azimuth flutter mode was sporadic.

Since, at most, one cycle of vibration is possible before the blade passes out of the theoretically unstable regime, the rapid increase in torsional vibration must be explained in terms of a forced phenomenon. This contention is strengthened by observing the torsional moment time history in Figure 37(e) for data point 75-4. This point is very close to the 90-degree fixed-azimuth stability boundary, yet the torsional amplitude more than doubles in one cycle. Since negative damping of the fixedazimuth flutter mode is not sufficient to explain this rapid growth in blade torsional vibration, some other mechanism must be responsible.

In order to gain some preliminary insight into what actually occurred when the rotor blade with center of gravity at 35 percent chord was operated in forward flight, some simple calculations were based on the data for point 83-5, which are shown in Figures 39(b), 39(d), 39(e), 39(g), 39(i), and 39(k). Assuming zero rotor inflow velocity, a lift curve slope of  $2\pi$ , and a center of pressure at 25 percent chord, a static aerodynamic blade torque of 25.2 inch-pounds was estimated at an azimuth angle of  $\psi = 0$  degrees and 13.9 inch-pounds at  $\psi = 90$  degrees. These calculations considered the elastic blade twist corresponding to the elastic moment

time history shown in Figure 39(g). Obviously, the elastic torsional response shown in that figure is readily explained on the basis of blade response to tyclic loadings. In addition to causing torsional load directly, the aft center of gravity causes a negative aerodynamic spring effect in torsion. This negative spring effect is considered in the fixed-azimuth torsions), divergence and flutter analyses. Consideration of the blade dynamic deflections corresponding to the moment time history of Figure 39(g) indicates that they are the same order of magnitude as the cyclic pitch changes. For example, estimated blade root pitch is 5.5 degrees and tip pitch is 4.2 degrees at an azimuth angle  $\psi = 0$  degrees. At  $\psi = 90$  degrees, the blade root pitch is -1.2 degrees, but the blade tip pitch is 2.5 degrees. Thus, over this quadrant of the azimuth, only 1.7 degrees of pitch change appears at the blade tip, in contrast to 6.7 degrees at the blade root. At  $\psi = 90$  degrees, however, the blade positive torsional deflection reaches its peak and begins to decrease. When the blade is at  $\psi = 135$  degrees, the torsional deflection is negative, and estimated blade pitch is -0.8 degree at the root and -3.2 degrees at the tip. Over the azimuth sector  $90 < \psi < 135$  degrees, +0.4 degree of pitch change appears at the root, in contrast to -5.7 degrees of pitch change at the blade tip. When the blade reaches  $\psi = 180$  degrees, torsional deflection is almost zero, and the tip and root blade pitch practically coincide. It is probable that the magnification of cyclic pitch change in the second azimuth quadrant compensates for the loss of cyclic pitch change in the first quadrant.

The above considerations lead to a preliminary explanation of the violent instabilities observed during the course of the wind tunnel testing. In simple terms, dynamic blade twisting was caused by the response of the blade with aft center of gravity to the cyclic loads on the advancing side of the azimuth. These dynamic deflections were of relatively low frequency because of the negative aerodynamic torsional spring effect. For some flight conditions, these deflections overcame the cyclic pitch input required to control blade flapping, as well as the angle of attack changes due to flapping velocity which stabilize the blade tip path plane.

Instabilities of the above type depend on rotor loading and are not predictable by a fixed-azimuth consideration of the unloaded blade, slthough it may be found that such a fixed-azimuth calculation will always provide a conservative boundary.

The approach of Reference 6 should be suitable for studying the types of instabilities encountered. Reference 6 considers the cyclically varying parameters of the linear differential equations of motion. The method of Reference 1 also can be applied to the problem, if unsteady aerodynamic effects do not play an important part in the mechanism of the instability. The method of Reference 1 is a step-by-step timewise numerical integration of the equations of motion, with full consideration of quasi-steady nonlinear effects.

## Stall Flutter

The agreement between theory and experiment for the fixed-azimuth stall flutter analysis is reasonably good from a qualitative standpoint, in that the predicted retreating blade vibrations materialized for rotor conditions found to be theoretically subject to stall flutter. Since stall flutter occurs at a relatively high frequency, the fixed-azimuth assumption has a relatively greater correspondence to physical reality. As will be shown in the discussions to follow, the blade torsional dynamic loadings, as well as the torsional instability, contribute to the levels of torsional response noted for retreating blade stall flutter.

4

The accuracy of the stall flutter prediction method used in this investigation, or any similar improved method, depends in turn on an accurate determination of retreating blade angle of attack for a given flight condition. This may sometimes prove difficult, since when stall flutter occurs the rotor is operating in a condition for which heavy blade stalling is present. Rotor performance and corresponding blade motion predictions tend to be less accurate under these conditions.

For the present investigation, the variation of angle of attack and relative velocity with azimuth and radius was determined by using the Normal Mode Transient Analysis described in Reference 1. In order to make the geometrical relationships in this calculation as much like the experimental relationships as possible, the collective pitch range to be used in the test was also used in the Normal Mode Transient Analysis. The cyclic pitch used in the analysis was that setting which resulted in a calculated zero first harmonic flapping response for a given flight condition. This procedure was also followed experimentally. The calculated rotor performance was not used as a basis for comparing stall flutter theory and experiment. The calculated rotor conditions which provided the angle of attack and relative velocity variation needed for the stall flutter analysis are summarized in Table XII. These may be compared with similar experimental conditions in Table VII, such as 68-3 through 68-7, 68-13 through 68-16, and 51-7 through 51-11. It can be noted that the calculated results overestimate longitudinal cyclic pitch requirements, underestimate rotor lift, and agree relatively well with experimental rotor torque. The experimental conditions for the theoretically predicted lift coefficients shown in Table XII would occur at collective pitch settings approximately 4 degrees lower, and it is virtually certain that stall flutter would not be experienced for these conditions. The consideration of variable rotor inflow may improve the agreement between calculated rotor performance and experimental performance for a given collective pitch.

The experimental stall flutter condition time histories are given in Figures 42 through 45. Figure 42 contains data from points 68-3, 68-6, and 68-7 which were taken at a rotational tip speed  $(\Omega_{\rm g}R)$  of 700 feet per second and a simulated forward speed of  $V_{\rm g}$  = 121 kncts. Figure 17(a) shows the calculated variation of aerodynamic torsional damping ratio with azimuth for these rotor conditions. The calculated negative critical damping ratios are far too small to explain the sudden onset of torsional

vibration appearing in Figures 42(k) and 42(1). Using the simple expression for the suplitude ratio of oscillations

$$R_{A} = e^{-2\pi\zeta_{AD}}$$
 (22)

3.0 4

and letting, for example,  $\zeta_{AD} = -0.04$  (from Figure 17(a)), one obtains  $R_A = 1.46$ . This means that with no other effects present, the cscillation would gradually increase, with each successive cycle of oscillation 1.46 times the preceding one. The actual blade torsional time history in Figures 42(k) and 42(1) shows a rather abrupt nose-down response, which is due to blade stalling. The resulting torsional vibration is sustained for 1.5 cycles by negative and low damping in the retreating szimuth region. The frequency of the oscillation is approximately 6.3 cycles per revolution or 78 cycles per second. This agrees well with the torsional natural frequency of 75.3 cycles per second, which is given in Table II. The return of the blade to the unstalled, high positive damping region in the advancing azimuth part of the rotor disc results in a rapid quenching of the torsional vibration. Inspection of the data for lag, flapwise bending, and flapping in Figures 42(a) through 42(i) and Figures 42(a) through 42(o)shows that no discernible direct coupling exists between the torsional vibrations and lag and flapwise responses. Figure 43 shows data from points 68-8, 68-11, and 68-12. These are shown instead of data from points 68-13 through 68-16 because of an intermittent failure of the torsional strain gage. The stall flutter response at this higher speed ( $V_{\rm m} = 145$ knots) is slightly greater than the similar data for Figure 42, which were taken at  $V_{g}$  = 122 knots. The size of the unstable azimuth sector shown in Figure 17(b) for  $V_g = 170$  knots is somewhat larger than the corresponding region in Figure 17(a) for 120 knots. The calculated negative damping is numerically smaller, however, primarily because of the lower relative velocities. The data in Figure 43 for  $V_s = 145$  knots are qualitatively similar to those in Figure 42 for  $V_g = 120$  knots

Figures 44(a), 44(c), 44(e), 44(g), and 44(i) show data from point 51-11, which corresponds to the last of the calculated conditions in Table XII. These calculations provided the torsional damping data shown in Figure 17(c). The stall flutter response shown in Figure 44(i) at this forward speed ( $V_g = 202$  knots) is slightly smaller than the corresponding data from Figure 43(1), which were taken for  $V_g = 145$  knots. The torsional vibration has a less abrupt initiation, but its subsequent buildup is more rapid than at the lower speeds. The less abrupt initiation could be caused by lower relative velocities existing around  $\psi = 270$  degrees for the condition of Figure 44(i) than for the condition of 43(1) or 42(1). It would appear, however, that the negative damping is somewhat greater than the predicted variation given in Figure 17(c). In the azimuth region  $24C<\psi<340$  degrees of Figure 44(i), for example, the second torsional cycle is approximately twice the amplitude of the first one. Using the inverse of Equation (22), one obtains  $\zeta_{AD} = -0.110$ .

The above comparison of theory and experiment shows that stall flutter will occur as predicted by the fixed-azimuth stall flutter analysis if the retreating blade angles of attack used in the analysis are reasonably clope to those existing experimentally. It appears that the magnitudes of the negative damping are of the correct order of magnitude. The torsional impulse which accompanies blade stalling appears to have a significant effect on the stall flutter amplitude. The information from the fixed-azimuth stall flutter analysis therefore provides only a very approximate indication of the severity of the stall flutter.

Figures 44(b), 44(d), 44(f), 44(h), and 44(j) show data from test point 51-16, which was taken at high collective pitch and high forward speed ( $V_g = 304$  knots). The advance ratio was 1.03 for this condition. The blade torsional response for this condition is shown in Figure 44(j). Stall flutter was not present, and the blade responded to reverse flow loadings, as shown in Figure 34 and discussed earlier in this section under the subheading <u>Torsional Divergence</u>. The torsional amplitude of the reverse flow response was approximately equal to the stall flutter response experienced at lower speeds.

Figure 45 presents data taken with the 30 percent chord center-ofgravity blades for data points 76-4, 78-4, and 79-10. The rotor operating conditions for these points are given in Table VIII. Point 76-4 is comparable to point 68-6 shown in Figure 42, point 78-4 is comparable to point 68-11 shown in Figure 43, and point 79-10 is comparable to point 51-16 shown in Figure 44.

Comparison of Figures 45(h) and 45(i) for the 30 percent chord centerof-gravity blades with Figures 42(k) and 43(k) respectively for the 25 percent chord center-of-gravity blades shows that the stall flutter portion of the blade response was not aggravated by the aft center-of-gravity offset. In fact, some alleviation of stall flutter appears in Figure 45(h). A larger excitation resulted on the advancing blade, however. The frequency of the advancing blade torsional motion was approximately equal to the frequency noted for the similar response in point 74-5, shown in Figure 36(e). The advancing blade response decays rapidly at high collective pitch angles, instead of persisting into the retreating azimuth region as in Figure 36(e). It is interesting to note that the coexisting retreating azimuth stall flutter and advancing azimuth excitation do not aggravate each other but, on the contrary, appear to interfere with each other. A rotor blade with aft center-of-gravity offset has a tendency to become unstable at lower forward speeds under higher loadings. This does not appear to be a result of any interaction between stall flutter and advancing blade excitation.

## Advancing Azimuth Excitation at High Collective Pitch

Examination of the flapwise bending response for data points 76-4and 78-4, which is shown in Figures 45(d), 45(e), and 45(g), and comparison of these with Figures 42(h), 43(e), and 45(h) show little if any direct coupling of the flapwise bending response to the advancing azimuth torsional excitation. The blade flapping data for point 78-4, shown in Figure 45(k), does show out-of-phase coupling with blade torsion on the advancing azimuth. The data in Figure 45(k) may be compared with Figure

43(n) for the blade with the center of gravity at the 25 percent chord operating at the same condition. This advancing azimuth coupling of flapping and torsion is approximately the same as in the predicted fixed-azimuth classical flutter mode at a forward speed  $(V_s)$  of 140 knots, which is given in Table XI.

Data for point 79-10, which corresponds to point 51-16, is also given in Figure 45. At this higher speed and high collective pitch condition, the changes caused by aft center of gravity are more dramatic. By comparing Figure 45(q) with 44(k), 45(1) with 44(h), and 45(f) with 44(d), it can be seen that a very obvious coupling effect exists between flapwise and torsional motions on the advancing azimuth region. The relative phasing of flapping and torsion is similar to that for the calculated fixedazimuth flutter mode at 320 knots, as given in Table XI. The experimental motion has a much larger proportion of blade flapping and flapwise bending. The blade lag motion shown in Figure 45(c) contains a noticeable nonharmonic motion. Frequency analysis showed this motion to be 0.50 degree amplitude at 0.30 cycle per revolution.

The comparisons made in the above paragraphs are a further demonstration that the advancing azimuth aft center-of-gravity blade excitation is fundamentally a forced phenomenon. Figures 45(q) and 37(f), 45(1) and 45(h), and 45(f) and 37(d) may be compared to show that collective pitch, and therefore blade loading, has an important effect on the magnitudes and relative proportions of the various blade response measurements.

### DISCUSSION OF VIOLENT INSTABILITIES

## Flapping Instability

Each of the rotors was operated at various forward speeds with the rotor rotational speed reduced as far as possible. At all but the highest forward speeds, reduction in rotational speed was limited by a noticeable sluggishness in rotor control response. Rotational speed was reduced until it was felt that control of the rotor was about to be lost. The highest advance ratio reached with the rotor controllable was 1.91, at a simulated speed of 258 knots. At a simulated speed of 280 knots and an advance ratio of 1.94, control of the rotor was lost. Control was immediately regained by bringing up rotational speed.

During this part of the testing, the blade first harmonic flapping was kept as small as possible through the use of cyclic pitch, although random wandering of the blade tip paths was noted at the minimum rotational speeds. Post-test analysis of the data taken at the minimum rotational speeds showed, however, that blade motions and loads increased gradually with forward speed. Frequency analysis showed that rotor harmonics were the only significant discrete frequency components present at simulated forward speeds below 300 knots. The random wandering of the blade tip paths was recorded as randomly varying bursts of first harmonic flapping motions. At simulated forward speeds of 300 knots and greater, the reduction in rotational speed was limited by rapidly increasing retreating blade torsional loadings, accompanied by peak torsional deflections as high as 11 degrees. Under these conditions, a coupled flap-lag motion developed at a discrete frequency. This incipient instability will be discussed later.

As mentioned previously, all instabilities resulting from the slowing of the rotor were encountered in a gradual manner, and it was clearly evident from either rotor response or blade stress amplitude monitoring that a dangerous condition was being approached.

### Instability Due to Aft Center-of-Gravity Location

A number of violent instabilities were encountered with the blade center of gravity at the 35 percent chord position. These were encountered while increasing forward speed at constant rotational speed and by raising collective pitch at constant forward speed and rotational speed.

Rotor blade response for conditions close to instability has been discussed under the comparison of the experimental data and the advancing blade classical flutter theory. As mentioned under that discussion, the theoretical advancing blade classical flutter boundary was penetrated, and blade torsional response increased gradually with forward speed or collective pitch until a sudden violent instability occurred. Analysis of the data showed that the blade cyclic airloads caused blade torsional deflections in the advancing azimuth region, and that these were large enough to interfere with the cyclic blade angle of attack changes which normally control and stabilize the rotor. It did not appear that the fixed-wing type of flutter instability could produce the blade response noted, since it was present for too limited an azimuth sector.

The first of the instabilities referred to occurred as the forward speed was raised to  $V_s = 208$  knots, starting from data point 83-5. The rotor operating conditions for data point 83-5 are given in Table IX. No data were obtained while the rotor was in its unstable mode, although large blade stresses and flapping motions were observed. Detailed analysis of the data from point 83-5 showed that nonharmonic motions at discrete frequencies were very small.

Instability was encountered at the operating condition of data point 84-6, which was at a simulated speed of 256 knots. Instability was entered spontaneously after data had been taken for point 84-6. The data shown in Figure 46 were taken with the on-line oscillograph during wind tunnel shutdown. The unstable oscillations were decaying but were still very prominent. Inspection of Figures 46(a) and 46(d) shows that a one-half-perrevolution lag and flap motion was present. Inspection of the torsional time history in Figure 46(c) shows that a 4.5-cycle-per-revolution frequency component is also present. This is especially obvious during the second revolution shown on Figure 46(c). The 4.5-cycle-per-revolution frequency is equivalent to 39.8 cycles per second. The local variation of

frequency with azimuth appears similar to that recorded for point 84-6 and shown in Figure 40(g). The torsional amplitude shown is approximately equivalent to 5.5 degrees of elastic twist at the blade tip. The data of point 84-6 were carefully analyzed, and discrete frequency motions were found at 0.5 cycle per revolution in flapping and torsion and at 4.5 cycles per revolution in torsion. These were not present at point 84-5 which was taken at a speed of  $V_s = 235$  knots, 24 knots lower than point 84-6. These motions were still extremely small at point 84-6. The 0.5-cycle-perrevolution components had an amplitude of only 0.3 degree in flapping and 0.7 inch-pound in torsion. The 4.5-cycle-per-revolution torsional response had an amplitude of only 2.4 inch-pounds. Even though the rotor was operating at a dangerous condition, the related nonharmonic response was not noticeable until the instability was triggered to a larger amplitude. Inspection of Figure 46(c) shows a torsional response at 4.5 cycles per revolution with an average amplitude of approximately 25 inch-pounds. By comparing with the 2.4-inch-pound amplitude at this frequency component that was present for data point 84-6, it can be seen that the nonharmonic motions grew spontaneously by a factor of at least 10 as the instability became established.

Instability was again encountered with the 35 percent chord centerof-gravity blade by raising collective pitch to approximately 7 degrees at a forward velocity (V<sub>g</sub>) of 120 knots and a rotational tip speed ( $\Omega_g R$ ) of 700 feet per second. Data point 85-3 was taken at the same conditions, except for a collective pitch of 5 degrees, as shown in Table IX. The instability again was entered suddenly; on this occasion, a record of the unstable motions was obtained on the F.M. tape recorder. An eight-revolution sample of this record is presented in Figure 47. The torsional time history of Figure 47(d) has a superficial resemblance to that of Figure 46. but the modulation of amplitude occurs at approximately 0.33 cycle per revolution instead of 0.5 cycle per revolution. The amounts of flapping and lag motion relative to torsion are also greater in the instability shown in Figure 47. In order to determine specific blade motions which play an important part in the instability, frequency analyses of the data were carried out. The plots of amplitude against frequency are shown in Figure 48. The components of the most important amplitudes are given in Table XIII. The  $a_m$  and  $b_m$  refer to the  $cos \omega_m t$  and  $sin \omega_m t$  components respectively at each frequency given. The time (t) is defined as zero at an arbitrary zero azimuth signal; therefore, the components given for the nonharmonic motions are only significant in relation to one another.

It is interesting to note that the important nonharmonic frequencies present do not reflect motion at a low integral subharmonic frequency such as 0.33 or 0.50 cycle per revolution. The frequencies present appear to be those of aeroelastic vibrations, which have become much greater than the normal harmonic forced vibration.

The blade flapping and lagging motion at 0.28 cycle per revolution is close to the calculated lag frequency of 0.309 cycle per revolution. The flapping components at 0.72 and 1.28 cycles per revolution are due to a lag frequency amplitude modulation of blade once-per-revolution flapping. The predominant torsional amplitude during the instability occurred at a frequency of 3.40 cycles per revolution, which is equivalent to 42.1 cycles per second. This is slightly lower than the torsional natural frequency of 48.8 cycles per second from Table II, and much higher than the advancing blade classical flutter frequency of 27 cycles per second shown in Figure 16(d). It appears that the frequency of the torsional oscillations is locally lower in the advancing azimuth region, as for the stable rotor conditions previously discussed.

The peak torsional amplitudes appearing in Figure 47(d) represent a blade tip elastic deflection amplitude of approximately 13 degrees, and it is certain that blade stalling occurred at the tip. The large drag forces caused by this stalling may be responsible for the large lag motion shown in Figure 47(a). It can be seen that the blade velocity in the lag direction is greatest during the bursts of large torsional oscillation.

Each of the violent instabilities due to aft center-of-gravity location were encountered suddenly and reached a large though self-limited amplitude before any action could be taken. The amplitude-limiting mechanism was probably blade stalling. The fully articulated fiber glass blades were flexible enough to execute these large deflections without immediate failure.

## DISCURSION OF NONHARMONIC RESPONSE

2

As mentioned in previous discussions, rotor nonharmonic motion was observed at rotor conditions other than the violent instabilities. Discrete frequency subharmonic amplitudes during stable rotor operation were very small, with the exception of certain chordwise bending responses. At least a small amount of random variation in rotor blade response was always present in the recorded data. This was especially noticeable in the torsional response data from the retreating blade stress limit conditions and the stall flutter conditions. Examples of these conditions are points 67-12 and 68-7 respectively. Figure 42(1), for example, shows a typical variation in the amplitude of stall flutter response in the azimuth sector between  $\psi$  = 240 degrees and  $\psi$  = 360 degrees. A change in amplitude of approximately 20 percent takes place in this azimuth region between the two successive revolutions shown. The random response was very small during ordinary operating conditions, with some increase during conditions of incipient instability as noted above. The increase in random response was most noticeable for retreating blade incipient instabilities, where degradation in control response or high stress also demonstrated that an unstable condition was being approached. The increase in random response was also present as the violent advancing blade instabilities were approached, but remained generally very small compared to the harmonic response until the actual instability took place. Conceivably, these changes could provide a warning of an approach to an unstable condition, if they were not obscured by the harmonic response and random signal inputs from other sources.

The rotor nonharmonic response during stable rotor operation was of interest in some cases, in spite of the generally small amplitude. Some samples of nonharmonic response are given in Table XIV. The components  $a_m$  and  $b_m$  shown in the table are the coefficients of  $cos \omega_m t$  and  $sin \omega_m t$ 

respectively, and  $r_m$  is the resultant amplitude. The zero time reference is at an arbitrary zero azimuth signal; therefore, the components  $a_m$  and  $b_m$ have meaning only for the relative phasing of the various data channels at a particular data point. Thus, only the resultant amplitude  $r_m$  is given if only one data channel is involved in the nonharmonic at a given data point.

.

The first of the nonharmonic responses presented in Tuble XIV was present during points 67-9, 67-10, 67-11, and 67-12, which were taken with the blade center of gravity at 25 percent chord. The operating conditions for these points are given in Table VII. A similar response, also presented in Table XIV, was noted for the similar points 75-9, 75-10, 75-11, and 81-9, which were taken with the blade center of gravity at 30 percent chord. The operating conditions for these points are given in Table VIII. Blade lagging and flapping motion amplitude versus frequency plots between 0.02 and 1.0 cycle per revolution are given in Figure 49 for data points 67-9, 67-10, 67-11, and 67-12. The response can be described as a coupled lagging and flapping motion, which takes place at successively lower frequencies as rotor rotational speed drops. The frequency drops faster than the rotor rotational speed, and had reached approximately 0.25 cycle per revolution at an advance ratio ( $\mu$ ) of 1.47 and a simulated speed (V<sub>s</sub>) of 332 knots. The pair of flapping amplitudes at frequencies of 1.0 plus lag frequency and 1.0 minus lag frequency can be shown to be a first harmonic flapping response modulated by the lag frequency. The blade elastic bending and twisting motions were found to include discrete amplitudes at the flap and lag motion frequencies. These were very small, as seen from Table XIV for data point 67-12 and point 75-11.

Coupled flap-lag motion similar to that described above also took place during data point 79-10, which was taken with the 30 percent chord center-of-gravity blade at an advance ratio ( $\mu$ ) of 1.0, a simulated forward speed (V<sub>B</sub>) of 304 knots, and a collective pitch of 11 degrees.

The coupled flap-lag motion was observed only in the above instances of high speed over 300 knots. It was not observed at the higher advance ratios reached at somewhat lower forward and rotational speeds, nor at the high rotor lift conditions at lower advance ratios.

The coupled flap-lag response at lower rotor rotational speeds was probably inhibited by the viscous lag hinge damper. This damper furnished 9.4 percent of critical damping in uncoupled lag motion at a rotational tip speed ( $\Omega_s R$ ) of 700 feet per second. At a rotational tip speed of 380 feet per second (point 67-12), the critical damping ratio was 17.7 percent. At a rotational tip speed of 184 feet per second (point 71-12), it rose to 35.8 percent.

A nonharmonic response of high frequency and small amplitude, which involved flapwise bending and torsion, took place during the stall flutter conditions. Both amplitude and frequency of the oscillation increased with cyclic pitch. Examples of this response are given in Table XIV for data points 68-3 through 68-7 and 68-9. The operating conditions for these data points are given in Table VII. The oscillation took place at approximately the fourth flapwise bending frequency of 167 cycles per second, or 13.5 cycles per revolution, which is given in Table II. The recorded rotor azimuth signals were checked against an independent constant-frequency device, and it was found that rotor speed remained constant to within 1 revolution per minute (or 0.3 percent) during the recording of the data discussed above. Therefore, the observed frequency change does not represent a slowing of the rotor with a constant time frequency signal. The observed amplitudes are very small; however, they do exceed the harmonic excitations at comparable frequencies. The amplitudes continued to grow until the control limit collective pitch settings were reached.

The chordwise bending data obtained with the 30 percent chord center-of-gravity blade revealed some fairly strong nonharmonic response. Table XIV contains some samples of this response for data points 74-3 through 74-9, 75-6 through 75-8, 77-12, and 77-13. The operating conditions for these data points are given in Table VIII. The response at approximately 9.7 cycles yer revolution is at a frequency close to the second chordwise natural mode, as shown in Figure 7. The larger response took place at a frequency of 10.52 cycles per revolution when rotational tip speed  $(\Omega_{s}R)$  was 700 feet per second, and at 5.26 to 5.28 cycles per revolution when rotational tip speed was 500 feet per second. These frequencies do not correspond to natural frequencies, and the response at the high rotational speed has almost exactly twice as many cycles per revolution as the response at the lower rotational speed. The in-plane hinge force corresponding to the 5.27 per revolution excitation may be estimated by assuming that the mode shape is the same as the first chordwise natural bending mode. On this basis, the 41.4-inch-pound moment for data point 75-8 produced an in-plane shear force of approximately 4.6 pounds. This is equivalent to 1200 pounds per blade on a hypothetical 72-foot full-scale rotor. Unfortunately, reliable chordwise bending data were not obtained for the 25 percent chord center-of-gravity blade, so it is not known if similar responses were taking place with the normal balanced blade configuration.

The remaining information in Table XIV is for data point 84-6, which became spontaneously unstable after data were taken. The nonharmonic motions, although small from a practical standpoint, suddenly became magnified by a factor of at least 10 when the instability became established. This data point was taken for the 35 percent chord center-of-gravity blade. The rotor operating conditions are given in Table IX.

## EFFECTS OF OPERATING CONDITION ON INCIPIENT INSTABILITY

### Torsional Divergence

Figures 50 through 54 show the effects on blade response of decreasing rotational speed at a constant simulated forward speed of 328 knots. The pairs of curves identified by the various symbols define the maximum and minimum blade excursions during a rotor revolution. The static fixedazimuth torsional divergence boundary shown was calculated for an azimuth angle of 270 degrees. It can be seen that a practical limit for rotational speed is reached before the predicted stability limit, and that the collective pitch is quite important. The effects of collective pitch shown in Figures 50 through 54 also include those of the correspondinamount of cyclic pitch required to remove first harmonic flapping motion, as shown in Tables VII and VIII.

The reduction of rotational tip speed at 332 knots beyond the minimum values shown in Figures 50 through 54 was prevented primarily by rapidly rising torsional response. Rapid changes in the other blade response channels were also taking place. The chordwise bending response contains a large 5-per-revolution component at a rotational tip speed  $(\Omega_{\rm g}R)$  of 500 feet per second, due to resonance with the first chordwise bending mode, as can be seen from Table LXIII. Inspection of Tables XXXI and LX shows small peaks in harmonic components of flapwise bending response, which correspond to the flapwise bending natural frequencies. None of these flapwise resonances caused an important increase in flapwise blade stress for the lightly loaded rotor.

The effects of approaching the retreating blade aeroelastic limit or torsional divergence boundary by reducing rotational tip speed are gradual, except for chordwise bending resonances. The rate at which blade response changes with rotational tip speed also increases gradually.

#### Classical Flutter

Figures 55 through 59 show the effects on blade response of increasing forward speed at a constant rotational simulated tip speed  $(\Omega_S R)$ of 700 feet per second, with relatively low collective pitch settings. The pairs of curves identified by the various symbols define the maximum and minimum blade response during a typical rotor revolution. The changes in blade response with forward speed were very gradual with the 25 percent and 30 percent chord center-of-gravity blades, and no dramatic increase in response was noted with the 35 percent chord center-of-gravity blade until the sudden onset of violent instability. Note that the fixed-azimuth classical flutter boundary for this blade at a simulated tip speed  $(\Omega_S R)$ of 700 feet per second was at a simulated forward speed of only 20 knots.

The increase in torsional and chordwise bending response for the 30 percent chord center-of-gravity blade was mainly at a frequency of 4 cycles per revolution, as shown in Tables LV and LVII.

#### Stall Flutter

Figures 60 through 63 show the effect on blade response of increasing collective pitch at various constant forward speeds and rotational speeds. Without first harmonic flapping, the effect of collective pitch change predominates for the blade lag and torsional responses. By considering Figures 17 and 62, it can be seen that, as collective pitch is raised, considerable torsional blade response occurs even before a region of negative damping is encountered. This is a result of a torsional impulse due to retreating blade stalling. The torsional response tends to reach its maximum at a collective pitch of approximately 12 degrees for the rotor operating conditions tested. Examination of Table XXXVIII shows that the blade torsional response increase occurs in the first, fourth, fifth, and six.h harmonics.

The effect of forward speed is felt indirectly as a gradual lowering of blade steady lag and cone positions. This is a result of increased cyclic pitch requirements to remove first harmonic flapping at higher forward speeds.

Figures 64 through 67 show the effect on blade response of an increase in forward speed at constant collective pitch. The collective pitch setting is high enough to result in retreating blade stall flutter at the lower forward speeds shown in Figures 64 through 67. Only a limited amount of torsional response data were obtained for Figure 66 because of instrumentation failure. The increase in torsional responses shown for the test points at forward speeds  $(V_s)$  over 320 knots was due to retreating blade excitation rather than stall flutter. The same observation is true for the gradually increasing response measured for the remainder of the blade data.

Figures 64 through 67 also show data, again limited by instrumentation difficulties, for the response of the 30 percent chord center-ofgravity blade to stall flutter. The increase in torsional response of this blade over the 25 percent chord center-of-gravity blade at the similar condition is due to advancing blade response rather than stall flutter.

### <u>Combined Advancing</u> and Retreating Blade Aeroelastic Limit

Figures 68 through 72 show the effects on blade response of increasing forward speed at a constant rotational simulated tip speed  $(\Omega_g R)$ of 500 feet per second, with various collective pitch settings. At this rotational speed, the advancing blade classical flutter boundary was at 260 knots simulated speed for the 30 percent chord center-of-gravity blade and at 146 knots simulated speed for the 35 percent chord center-ofgravity blade. The retreating blade static torsional divergence and flutter boundaries were both at approximately 420 knots simulated speed.

The rise in blade torsional response with forward speed which appears in Figure 70 is predominately a retreating blade effect, except for the violent instability encountered with the 35 percent chord centerof-gravity blade. This retreating blade response is visible in Figure 37(f). The rise in blade flapping response is, however, due to an advancing blade excitation, as shown in Figure 37(h). The blade chordwise response is again due to excitation of the first chordwise bending mode. At a rotational tip speed ( $\Omega_S R$ ) of 500 feet per second, this response is predominately at 5 cycles per revolution, as shown in Tables LXIII and LXXIV.

The effects of collective pitch and consequent blade loading are clearly present in the data of Figures 68 through 72. This is another demonstration of the necessity for considering the effects of blade loading as well as aeroelastic stability when rotor aeroelastic operating boundaries are determined.

.

#### PRACTICAL OPERATING LIMITS

The practical operating boundary for a full-scale prototype of the 25 percent chord center-of-gravity blade configuration tested may be estimated on the basis of the data obtained in this test program and on the basis of acceptable full-scale stresses.

The acceptable full-scale stress must, of course, be based on the blade material utilized, the configuration of the actual blade structure, and the desired fatigue life of the blade. For an aluminum structure,  $\pm$  4,000 pounds per square inch vibratory shear stress and  $\pm$  8,000 pounds per square inch bending stress may be tolerated for a finite time. These stresses correspond respectively to + 34 inch-pounds in torsion, + 48 inch-pounds in flapwise bending, and + 100 inch-pounds in chordwise bending on the fiber glass model. Obviously, the full-scale rotor control system strength and stiffness must also be consistent with the loads encountered. Reference to Figures 50 through 54 indicates that the blade could be operated in smooth air at a forward speed of 330 knots at sea level and a rotational tip speed ( $\Omega R$ ) of 450 feet per second, without exceeding the approximate stress levels given above on a one-half peak-topeak basis. This condition is at an advance ratio of 1.24, with an advancing blade tip Mach number of 0.89. The stress levels, however, change very rapidly with rotor control position and loading. Therefore, the operation of the rotor in turbulent air at the 330-knot condition is questionable for the stress limits given above.

The instability and transient test results do, however, demonstrate that the 300-knot forward speed, 500-foot-per-second rotational tip speed condition is practical for the operation of this particular rotor blade configuration. During the course of the transient response portion of this test, a variety of rotor loadings and control positions were tested. Examination of the data presented in Tables XV and XVI for runs 47, 55, and 56 shows that the levels of blade elastic moment given above were not exceeded on the basis of peak-to-peak response, either with or without the pitch-flap coupling. The 300-knot forward speed condition applies to sea level, and higher speeds would be possible by operating at a higher advance ratio at a higher altitude. It would also be possible to increase forward speed by using airfoil sections suitable for transonic operation in the blade tip region. This would allow higher advancing tip Mach numbers and lower advance ratios for a given speed.

Examination of the data for runs 47, 55, and 56 in Tables XV and XVI also discloses that blade stresses at 300 knots forward speed and 500 feet per second rotational speed are quite sensitive to variations in the other rotor parameters. Selection of the proper combination of parameters will result in blade loadings and stresses which are well under the limits given above. In general, it appears that application of forward cyclic pitch (positive BIS) will raise blade stresses. On a compound helicopter, where wings and additional propulsive devices are present, the rotor is not constrained to produce a unique value of lift and thrust for steady flight at a given aircraft weight and speed. Therefore, adjustment of rotor operating parameters at a given aircraft flight condition why be made to produce the optimum combination of rotor performance and blade stress condition. The high stress conditions would then be encountered only when necessary for maneuvering or operating in turbulent air.

The effect of pitch-flap coupling on blade stress is not necessarily pronounced for rotor conditions of similar performance. As an example, points 47-34 and 56-8 may be compared, using Table VI, Table XV, and Table XVI. From Table VI, it can be seen that the rotor performance parameters for these conditions are approximately the same, with  $C_{\rm L}/\sigma$  = 0.03,  $C_{\rm D}/\sigma$  = 0.01, and  $C_0/\sigma = 0.002$ . The 30 percent radius flapwise bending moment maximum and minimum values are 28 and -31 with pitch-flap coupling and 29 and -28 inch-pounds respectively without it. The torsional moment range at the 35 percent radius station is from 16 to -14 inch-yourds with pitchflap coupling and from 15 to -12 inch-pounds without it. This is in contrast to the comparison previously made on page 34 between point 29 of run 47 and point 29 of run 55. These points have the same contentine pitch. shaft angle, and first harmonic flapping. These two points have large angles of blade incidence in the reverse flow region, a condition which causes large positive (nose-up) torsional moments. These are aggravated by the statically unstable effect of the pitch-flap coupling in reverse flow.

The transient and stability testing of this program was carried out with the rotor shaft rigidly mounted. The operating limit of an actual aircraft will be affected to some extent by interactions among the rotor, the remainder of the aircraft, and control inputs. Therefore, the conclusions of this report will be most accurate for aircraft configurations and flight conditions with small perturbations in fuselage motion.

The high-speed, high-advance-ratio limits for error to the term percent chord center-of-gravity blade configuration appear to to find reto those for the 25 percent chord center-of-gravity location. There is, however, a general increase in torsional blade load throughout most of the test conditions encountered. This increase in load is due to advancing blade excitation, which is relatively independent of the retreating blade effects which define the high-speed, high-advance-ratio limits. Thus, moderately high torsional loads exist for the 30 percent chord center-ofgravity blade at conditions for which the 25 percent chord center-ofgravity blade has low torsional loads. An example of this effect appears in Figure 57.

The 35 percent chord center-of-gravity blade was found to be unstable within the normal operating range of the rotor. Furtherwise, the transition from stable to unstable operation was sudded, with no gradual increase in stress as the unstable condition was approached. This fact is significant with respect to the stability test results for the 30 percent chord center-of-gravity blade. Even though violent instability was not encountered, the test results provide no indication of the operating conditions for which this blade would become unstable. Thus, the margin of stability for the aft center-of-gravity blade cannot be demonstrated by test under steady flight conditions, unless instability is encountered.

( <sup>--</sup>

### CONCLUSIONS

#### TRANSIENT RESPONSE

## Transient Response Characteristics

- 1. The measured rotor blade response in the steady-state condition following a rapid change in rotor control settings does not differ noticeably from the response in a steady-state condition which follows a slow control change.
- 2. Except for small subharmonic lag motions, the final steady-state blade response after a sudden control change is reached in less than 4 revolutions following a control change if a pitch-flap coupling ratio  $(\partial\theta_0/\partial\beta)$  of -1.0 is present. Without pitch-flap coupling, the final steady state is reached in less than 5 revolutions.
- 3. The rotor blade bending and twisting moments and torsional moments in the first and second revolutions following a rapid control change can achieve amplitudes which are greater than either pre-transient or post-transient steady-state amplitudes. This is particularly true at operating conditions where stallinduced torsional oscillations are experienced.
- 4. A pitch-flap coupling ratio  $(\partial\theta_0/\partial\beta)$  of -1.0 generally results in a reduction in the severity of blade response to rapid control changes. For some conditions, the final steady-state flapping response is reached in half the number of revolutions required for the rotor without pitch-flap coupling. At operating conditions near the torsional divergence boundary, the pitch-flap coupling may cause a moderate increase in the torsional moment amplitude.

### Correlation of Transient Response With Theoretical Prediction

- 1. Normal mode transient analysis calculations of rotor blade flapping response following a rapid control change agree well in amplitude with experimental results when significant changes in rotor lift are not involved. When lift changes are involved, the agreement is poor.
- 2. The calculated first flapwise modal response agrees reasonably well with experiment. The steady lag angle and small-amplitude, high-harmonic components of lag motion are not accurately predicted by the theory.

- 3. The agreement of calculated blade torsional response with experiment is only qualitatively good when a substantial part of the blade is in reverse flow. The agreement of calculated blade torsional response with experiment is poor when blade stalling is present.
- 4. The qualitative effect of pitch-flap coupling is adequately handled by the theory at all forward speeds.
- 5. The 'heoretical effect of the azimuth position of a rapid control input is perceptible in blade lag motion for approximately 4 revolutions at a 300-knot condition when pitch-flap coupling is not present. A pitch-flap coupling ratio  $(\partial \theta_0 / \partial \beta)$ of -1.0 results in a larger theoretical excitation of lag motion because of the rapid flapping response. The effect of control input azimuth change is similarly larger, and this effect is perceptible beyond 5 revolutions after the control change.
- 6. The calculated application of control input at a speed of 300 knots between azimuth angles of 0 and 90 degrees results in significantly larger amplitude blade response than the identical input between 90 and 180 degrees.

# BLADE AEROELASTIC INSTABILITY

- 1. The fixed-azimuth torsional divergence, classical flutter, and stall flutter theories agreed with experiment only in a broad qualitative sense under selected operating conditions.
- 2. The torsional divergence stability boundary has the correct shape on a rotational speed versus forward speed plot. When significant blade loadings were present, the practical operating boundary for a given rotational speed was encountered at a considerably lower forward speed than the predicted fixedazimuth torsional divergence stability boundary.
- 3. The classical flutter boundary for the lightly loaded rotor also has the correct geometric shape on a rotational speed versus forward speed plot. The incidents of violent instability which were encountered during this test occurred at a much higher forward speed than the predicted fixed-azimuth advancing blade flutter boundary for the same rotational speed. The existing fixed-azimuth flutter theory does not include the experimentally demonstrated effect of blade loading on the occurrence of violent instability. Therefore, it should not be concluded that an advancing blade classical flutter boundary will always be predicted at a higher speed than the speed for the occurrence of violent instability. The practical operating boundary was encountered at a considerably lower forward speed than the predicted fixed-azimuth retreating blade flutter boundary for the same rotational speed.

- 4. The fixed-azimuth stall flutter theory predicted the occurrence of stall flutter for the approximate rotor conditions at which it actually occurred. The predicted magnitude and extent of negative damping varied in the same qualitative manner with collective pitch as the torsional vibration components associated with stall flutter. The amplitude of stall flutter is strongly influenced by the strength of the torsional impulsive loading. This factor is not considered in the current theory, and therefore no quantitative prediction of the amplitude of stall-induced torsional vibrations is possible.
- 5. Operation of the model rotor with the blade center of gravity at the 35 percent chord position resulted in sudden violent instabilities. It appears that these instabilities are related to excessive torsional deflections induced by the aft center-ofgravity locations. These deflections interfere with the cyclic angle of attack changes which normally control and stabilize the rotor.
- 6. The presence of a safe margin between a stable operating condition and an impending aft center-of-gravity blade instability condition can not be reliably demonstrated from steady-state blade stress and motion measurements alone.

## PRACTICAL OPERATING LIMITS

- 1. The rotor blade configuration tested with the center of gravity at the 25 percent chord remained within practical equivalent full-scale stress limits for a variety of fixed shaft angles and control positions at a sea level simulated forward speed ( $V_g$ ) of 300 knots with an advance ratio of 1.0. This was true both with and without pitch-flap coupling. The provision of pitchflap coupling decreased the flapping sensitivity of the rotor to loading. Pitch-flap coupling did, however, significantly aggravate the increase in blade torsional stress when high loadings in reverse flow were encountered.
- 2. The 25 percent center-of-gravity configuration tested can be operated in still air at a simulated forward speed as high as 332 knots with an advance ratio of 1.4, without pitch-flap coupling and without exceeding practical stress limits. The blade stress becomes very sensitive to loading and control position at this condition.
- 3. The limit of practical operation of the 30 percent chord centerof-gravity blade configuration was defined by the stress level due to retreating blade reverse flow response, and was similar to the limit for the 25 percent chord center-of-gravity blade. The 30 percent chord center-of-gravity blade configuration did, however, have a considerably higher vibratory stress level throughout the general range of test conditions. Also, the margin between the operating conditions at which data were taken

and those for which an aft-center-of-gravity instability might exist cannot be determined for the 30 percent chord center-ofgravity blade.

4. The 35 percent chord center-of-gravity blade was found to be violently unstable within the normal operating range of the rotor, and would therefore not be considered for practical use.

.

.

# LITERATURE CITED

- Arcidiacono, P. J., PREDICTION OF ROTOR INSTABILITY AT HIGH FORWARD SPEEDS, VOLUME I - STEADY FLIGHT DIFFERENTIAL EQUATIONS OF MOTION FOR A FLEXIBLE HELICOPTER BLADE WITH CHORDWISE MASS UNBALANCE, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 68-18A, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, February 1969, AD685860.
- Elman, H. L., Niebanck, C. F., and Bain, L. J., PREDICTION OF ROTOR INSTABILITY AT HIGH FORWARD SPEEDS, VOLUME V - FLAPPING AND FLAP-LAG INSTABILITY, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 68-18E, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, February 1969, AD685862.
- 3. Segel, L., AIRLOADINGS ON A ROTOR BLADE AS CAUSED BY TRANSIENT INPUTS OF COLLECTIVE PITCH, Cornell Aeronautical Laboratory; USAAVLABS Technical Report 65-65, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, October 1965, AD624860.
- 4. Niebanck, C. F., and Elman, H. L., PREDICTION OF ROTOR INSTABILITY AT HIGH FORWARD SPEEDS, VOLUME IV - TORSIONAL DIVERGENCE, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 68-18D, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, February 1969, AD687323.
- Astill, C. J., and Niebanck, C. F., PREDICTION OF ROTOR INSTABILITY AT HIGH FORWARD SPEEDS, VOLUME II - CLASSICAL FLUTTER, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 68-18B, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, February 1969.
- 6. Crimi, P., A METHOD FOR ANALYZING THE AEROELASTIC STABILITY OF THE ROTOR IN FORWARD FLIGHT, Rochester Applied Science Associates, Report No. 68-10 (To be issued as a NASA Contractor Report), December 1968.
- 7. Bain, L. J., and Landgrebe, A. J., INVESTIGATION OF COMPOUND HELICOPTER AERODYNAMIC INTERFERENCE EFFECTS, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 67-44, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, November 1967, AD665427.
- Fradenburgh, E. A., and Kiely, E. F., DEVELOPMENT OF DYNAMIC MODEL ROTOR BLADES FOR HIGH SPEED HELICOPTER RESEARCH, United Aircraft Corporation, Sikorsky Aircraft Division; Proceedings of the Symposium on Aeroelastic and Dynamic Modeling Technology, Air Force Flight Dynamics Laboratory, Research and Technology Division, Air Force Systems Command, RTD-TDR-63-4197, Part I, Wright-Patterson Air Force Base, Dayton, Ohio, September 1963.
- 9. Pope, A., WIND TUNNEL TESTING, New York, John Wiley and Sons, 1954.

- Heyson, H. H., LINEARIZED THEORY OF WIND TUNNEL JET BOUNDARY CORRECTION AND GROUND EFFECT FOR VTOL-STOL AIRCRAFT, NASA Technical Report R-124, National Aeronautics and Space Administration, Langley Field, Virginia, January 1962.
- 11. Scanlan, R. H., and Rosenbaum, R., INTRODUCTION TO THE STUDY OF AIRCRAFT VIBRATION AND FLUTTER, New York, The Macmillan Company, 1951.
- Carta, F. O., and Niebanck, C. F., PREDICTION OF ROTOR INSTABILITY AT HIGH FORWARD SPEEDS, VOLUME III - STALL FLUTTER, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 68-18C, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, February 1969, AD687322.
- 13. Paglino, V. M., and Logan, A. H., AN EXPERIMENTAL STUDY OF THE PERFORMANCE AND STRUCTURAL LOADS OF A FULL-SCALE ROTOR AT EXTREME OPERATING CONDITIONS, United Aircraft Corporation, Sikorsky Aircraft Division; USAAVLABS Technical Report 68-3, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, March 1968, AD674187.
- Bailey, F. J. Jr., A SIMPLIFIED THEORETICAL METHOD OF DETERMINING THE CHARACTERISTICS OF A LIFTING ROTOR IN FORWARD FLIGHT, NACA Report 716, The National Advisory Committee on Aeronautics, Langley Field, Virginia, 1941.
- Fradenburgh, E. A., and Segel, R. M., MODEL AND FULL-SCALE COMPOUND HELICOPTER RESEARCH, United Aircraft Corporation, Sikorsky Aircraft Division; 21st Annual National Forum of the American Helicopter Society, Washington, D. C., May 12, 1965.
- Sissingh, G. J., DYNAMICS OF ROTORS OPERATING AT HIGH ADVANCE RATIOS, Journal of the American Helicopter Society, Volume 13, No. 3, July 1968.
- Hohenemser, K. H., and Heaton, P. W. Jr., AEROELASTIC INSTABILITY OF TORSIONALLY RIGID HELICOPTER BLADES, Journal of the American <u>Helicopter Society</u>, Volume 12, No. 2, April 1967.
- Critzos, C. C., Heyson, H. H., and Boswinkle, R. W. Jr., AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT ANGLES OF ATTACK FROM 0° to 180°, NACA TN 3361, National Advisory Committee for Aeronautics, Langley Field, Virginia, January 1955.

| Innameter             | Fiber<br>Jlass<br>Model | Aluminum<br>Model |
|-----------------------|-------------------------|-------------------|
| Linear Dimensions     | 1/5                     | 1/5               |
| h:**12                | 1/22                    | 1/32              |
| West ver Ench of Span | 1/52                    | 1/S <sup>2</sup>  |
| Total Mass            | 1/33                    | 1/53              |
| Elastic Stiffness     | 1/454                   | 1/5 <sup>4</sup>  |
| Augular Velocity      | 3/2                     | S                 |
| Linear Velocity       | 1/2                     | 1                 |
| lach Number           | 1/2                     | 1                 |
| Froude Number         | ۲/۲                     | S                 |
| Reynolas Number       | 1/25                    | 1/S               |
| Forces                | 1/432                   | 1/3 <sup>2</sup>  |
| Moments               | 1/4:3                   | 1/33              |
| ower                  | 1/85 <sup>2</sup>       | 1/5 <sup>2</sup>  |
| Elastic Strains       | 1                       | 1                 |
| Satural Frequencies   | 8/2                     | 5                 |

|                  |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wodal Frequ    | Notal Prequesties (cps) |               |                |
|------------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|---------------|----------------|
|                  |      |      | 255 Chore C.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jos Charl C.G. | 4 0.6.                  | 135 000       | 35 Chert C.G.  |
| Mode Description | a.   | Ł    | Uncoupled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uncoupled      | Complet                 | Uncounted     | Constant       |
| Flapping         | 0    | c    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |               | .              |
| lst. Flapwine    | 0    | 0    | 33°E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3           | 11.2                    |               |                |
| 2nd. Flapwise    | c)   | 0    | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C • <b>X</b>   | 9-0                     | 3.4           | •              |
| 3rd. Flapwise    | c    | c    | 1 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ()<br>()<br>() | 9.4.                    | 2.92          | 3.6            |
| kth. Flapwise    | υ    | ç    | 2.87.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133.0          | 5 6 1                   | 0. 8          | 12.5           |
| lst. Torsion     | 0    | c    | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1            | ł                       | *.7           | *              |
| 2nd. Torsion     | D    | n    | 21.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250.0          |                         | 3.9           | ¥              |
| Flapping         | 300  | 319  | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5            | • • • •                 | ۵<br>۲        | 1.1            |
| lat. Flapwise    | 503  | eti  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F .<br>4       | 43<br>•<br>•            | •<br>• •      |                |
| Znd. Flapwise    | 206  | 319  | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •              |                         | • 7           | 1.12           |
| 3rd. Flapvise    | 303  | 319  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.3           | 34                      | a<br>a        |                |
| kth. Flapvise    | C OR | 319  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 2 1          | 0.00                    | с. <b>х</b> . | 1.5.5          |
| lst. Torsion     | 00   | 319  | 14 (A) 14 | 53.2           | 5.4.5                   | 1.64          |                |
| 2nd. Tornion     | 8    | 616  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.96.5         | ie                      |               | 1.7.0          |
| Flapping         | 2025 | 165  | j.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | •                       |               | •              |
| lst. Flapulse    | 500  | 5 31 | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2            | 4.<br>4.                | •             | 2              |
| Zhd. Flapvise    | 200  | 5.82 | 1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. X           | ·•<br>,₹                | e 7.          | 11.            |
| Jrd. Flapeise    | 200  | 11.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.46           | ¥                       |               | 1 - 1 - 1<br>1 |
| Ach. Flapwise    | 3.6  | 532  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150.6          | 0.0-                    |               | 2.842          |
| lst. Torsion     | ž    | 531  | ۶۰.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.7           | +                       |               | · 7            |
| And. Torston     | 25   | 531  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0.5          | - 1-1                   | . 10          | 1.57.0         |
| F. npping        | 201  | ?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.0           | 13 ° <b>f</b> •         |               |                |
| ist. Flapwise    | 100  | 1.3  | i,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.0           | 47.14                   | 13.6          | 1.41           |
| End. Flapulse    | 100  | 243  | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £.3            | 1.4.                    | 0.45          | 5.19           |
| 3r1. Flapeise    | 730  | 74.3 | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 107.5          | E THE                   | 0.81          | 0.401          |
| k-h. Flapelse    | 100  | 14.3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 164.0          | 24.2 0                  | 161.0         | 0.001          |
| lst. : rsion     | 7.00 | [•:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B. 1           | \$5.4                   | 4.4           | 10.0           |
| Znd. I rsion     | 142. | 143  | - 8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :61.9          | 3410                    | 0.141         | 0              |

| Mcde Description | e<br>C | a (1      | H (Ne | Ē                | Ē           | <b>F</b> ë | <u>ور</u><br>ور | <b>1</b> | £.    | ţĨ    | 3Ĩ    | ()<br>() |        |
|------------------|--------|-----------|-------|------------------|-------------|------------|-----------------|----------|-------|-------|-------|----------|--------|
| Fleping          | -      | 0         | •     | 1.000            | 8.          | ľ          | 88              | 8        | 3     | 90C.  | 80.   | 1.200    | 8      |
| lat. Flapulse    | ~      | 0         | •     | 8                | 1.500       | •          | - 190           | 100      | 8     | 8     |       | 1.003    | 195    |
| Znd. Flapwise    | -      | •         | c     | .050             | 195.        | 1.0        | 8               | 8        | [9    | 100   | 8     | 3        | 8      |
| 3rd. Flapelse    |        | 0         | 0     | .016             | (60.        | e.         | 1 100           | 8        | 8     |       | Sta . | 1.945    | . et : |
| Ath Flepelse     | \$     | 0         | n     | 120.             | 120.        | 9.         | 10              | [10.     | 1.000 | 3     | 8     | 1.040    | [[0] - |
| lat. Torsion     | 9      | •         | 0     | .256             | 037         | -          | 111             | 18       | 100.  | 8     | 8     | 1411     | 1.300  |
| 2md. Torsion     | -      | 0         | •     | [00]             | <b>9</b> 2. | •          |                 | 41.      | 160.  | -     | 1.36  | ***      | Ŧ      |
| Playsing         | -      | 8         | 319   | 1.000            | 100.        | •          | 100             | 800      | 900   | 8     | 808   | 1.83     | 88     |
| lat. Flapeise    | N      | ĝ         | 916   | 100.             | 1.000       | 0          |                 | 8        | 100.  | 206.  | 100.  | 1.033    | 8      |
| 2nd. Flappise    | ~      | ĝ         | 319   | 8                | [20] -      | 1.000      |                 | 67       | 100   | E     | 196.  | 6-0-T    |        |
| 3rd. Flapuise    | 4      | ĝ         | 919   | .015             | 160.        |            | 1 210           |          | 600   | 8     | 10.   | 1.043    | .0     |
| kth. Flapelee    | ~      | ĝ         | 516   | 120.             | 80.         | 0          | ×o              | 000      | 1.000 | 110   | 110   | 1.077    | ¥0     |
| lat. Torsion     | 9      | ĝ         | 611   | 16.              | 640         | -          | 103             | 18       | .001  | 1.000 | 8     | ×a.      | 1.006  |
| 2nd. Torsion     | -      | Ř         | 916   | £00 <sup>-</sup> | 222         |            | - 110-          | 21.      | a.    | 198.  | 1.000 | 1        | Ŧ      |
| Plapping         | -      | 8         | 5 M   | 1.000            | 900.        | •          | 100             | 8        | 80.   | 88    | 8     | 1.001    | 80     |
| lat. Reputes     | ~      | 8         | 32    | -001             | 1.000       | 0.         | 950             | 010      | 8     | 6.0   | 8.    | 1.073    |        |
| 2nd. Flapelee    | -      | ş         | 511   | 960.             | 078         | 1.0        | 8               | 16       | 610-  | .354  | 8     | 1.000    | aut.   |
| 3rd. Plapeise    | 4      | 8         | 21    | -015             | 010.        | •          | - 10            |          | -     |       | 120   | 1.079    | 129-   |
| kth. Flapelee    | ~      | ş         | su    | 120.             | 410.        | 0          |                 | 910.     | 1.000 | 1.00. | No    | 1.045    | Sta    |
| lat. Torsion     | 9      | 8         | 311   | 12.              | 647         |            | - 910-          | (8)      | 18.   | 1.000 | 18    | 5        | ŧ      |
| 2md. Torsion     | ~      | 8         | 531   | [00]             | 212         | •          | - 610-          | .171     | 80.   | 8     | 1.000 | 97.      | ÷.     |
| Playing          | -      | 100       | 743   | 1.000            | 8           |            | 200             | 900      | 8     | 8     | 88    | 1        | 8      |
| lst. Flapeise    | ~      | 8         | 545   | 110.             | 1.000       | ,<br>D     |                 | 110      | 8     | 8     | 063   | 1.214    | X      |
| Zad. Playere     | -      | 700       | 113   | 023              | · . 055     | 3-0        | 000             | 8        | ş     | - 195 | Ĩ     | 1.014    | M1     |
| 3rd. Flepelse    | 4      | 8         | 143   | -015             | tto.        | 1          | 190             | 8        | 16    | 100   | 8     | - 914    | Cra-   |
| bin. Playtee     | \$     | <b>20</b> | 143   | 020              | - 94        | 9          | 910             | 8        | 1.000 | 6.70  | 128   | ŧ        | ŧ.     |
| lst. Torsica     | 9      | 20        | 11    | 52               | 176         |            | ŧ               | 10.      | 610-  | 1 800 | 8     | 5        | 5      |
| Zad. Torsion     | •      | 700       | 14.1  |                  | 1           |            |                 | ł        |       | 1     |       |          |        |

|                                        |    | , i              |          | 1001          |              | CALCULATE MATCHAL HUGH | 2.0                 | 14 145 111.<br>17 415 111. |             |           |                                                                                 |                                       |
|----------------------------------------|----|------------------|----------|---------------|--------------|------------------------|---------------------|----------------------------|-------------|-----------|---------------------------------------------------------------------------------|---------------------------------------|
| Rode bescriftion                       | 4  | 4.<br>(1)<br>(1) | 1<br>1   | le te         | *****<br>*** | 4.47<br>(1.47)         | 4<br>4<br>7<br>7    | 894.<br>18.                |             |           | 41<br>54<br>1                                                                   | + + + + + + + + + + + + + + + + + + + |
| Flapping                               | -1 | c                | 1.2      | tor.          | 8            | . 560                  | يدو ، وي            | 2002                       | Crr         | 0         |                                                                                 | . J.L.                                |
| ist. Flapwise                          | •  | 0                | 0        | Š.            |              | • 51 · •               | •                   | 1                          | 1           | •         | 0                                                                               | 2                                     |
| .nd. Flepvise                          | ~  | 0                | Ľ        | .035          | 1            |                        | a shi a             | 4.201 +                    | 1000        | d,        | 1                                                                               | •                                     |
| srd. Flapulse                          | -  | U.               | >        | •             |              | л. <u>п</u> . п        | . 300               | • 0.•                      | • 6 •       | 2         | 2                                                                               | * ž                                   |
| utn. Flaputse                          | 5  | U.               | 1        |               |              | 1.2                    | 9<br>4<br>1         | 411 - 112                  | •           | ÷         | 8<br>4 9                                                                        | 8<br>8<br>1                           |
| ist. Tersion                           | ړ  | ζ,               |          | 10.1          | •            |                        | 1° 1°               | р<br>Н                     | A           | • •       | 12                                                                              | 1                                     |
| ent. Forston                           | ۰  |                  |          | · .           |              | • • •                  | 4 y .               |                            | 2<br>1<br>1 | ÷.        |                                                                                 | 8<br>42<br>3<br>4                     |
| Flapping                               | -1 | 201 <b>5</b>     | ***      | 200           | •            | +                      | مالى ،              |                            | Ĩ           |           | ļ                                                                               |                                       |
| ist. Flapwise                          | 6  | 201              |          | 4 ° 1         | 1            |                        | 4° 16' 1            |                            |             |           | ĺ                                                                               |                                       |
| end. Plarvise                          | ~  | 30.              | •        |               | *            | . C .                  | •                   | # (D)                      |             | fee:      | 44                                                                              | i.                                    |
| Sri. Flapuise                          | 1  | 301              | • •      |               | ;            | 100                    |                     | 2                          |             |           |                                                                                 | ċ                                     |
| Atr. Flapeise                          | ~  | 0.5              |          | <b>8</b><br>1 | Ş<br>,       | 3                      |                     | · · ·                      | •,          |           | i                                                                               | - 010                                 |
| lst. Torsian                           | 2  | 9                |          | •             | -            | • 3. •                 | 1.003               | •                          | 100         |           | • • • • •                                                                       | 1011                                  |
| .r.1. Torsint                          | 1- | 5                | 3 4      | *             |              | 8 p                    |                     |                            |             | ť         | 5 · · · ·                                                                       | ţ                                     |
| F. Np p i ne                           |    | , in .           | 0<br>0 1 | Ì             |              |                        |                     | ,<br>,                     | . QL        | 1         | 3                                                                               |                                       |
| Ist. Fapelse                           | •  | 5                |          |               |              | *                      |                     |                            | đ           | 100.      | 12.11                                                                           | 4 J<br>4<br>1                         |
| s.s. Flapeise                          | *1 | 1204             |          |               | •            | ļ                      | 2                   | *                          | * * * * * * |           | 4                                                                               | •                                     |
| srt. Flupuise                          | ,  |                  | •        | •             |              |                        | 100                 | ÷                          | 43          |           |                                                                                 | ÷.                                    |
|                                        | `  | ر                | *        |               |              | ي.<br>-                |                     | 1000                       | . 02.00     | •         | 1                                                                               |                                       |
|                                        | •  | 9                | · 3.     |               |              |                        |                     | •                          | - 19 - +    |           | 1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 8                                     |
| and Tribut                             |    | 1                | •        | 1             |              |                        | 101 - F             |                            | 2           | N         | •                                                                               | 2                                     |
| and the s                              |    | 5.               | Î        |               | ¥            | 2                      |                     |                            | 16          |           | 0                                                                               |                                       |
| . I. B. ap at se                       |    | 10.1             | 1        | •             |              | · •                    | ,                   |                            | Ţ           |           | ,*<br>•<br>•                                                                    | :                                     |
| T I. P. MARKAN                         |    | 2                | *        | 2             |              | 4                      | *                   | •                          |             | B = 1 - 1 | 1000                                                                            |                                       |
| ······································ | ,  | 12.              |          |               | *            |                        | $a \to a^{0} A^{1}$ |                            | •           |           |                                                                                 | 1.0                                   |
|                                        | •  | Cr.              |          |               |              | *.                     | *<br>* *            |                            |             | ;         |                                                                                 | ;                                     |
| 181- <b>1</b> -181                     | •  | 1.000            | ,        |               | 2<br>4       | *                      | ł                   |                            | ļ           | 8         | ş                                                                               |                                       |
| al. 1.5. "                             | *  | 12.7             | 1        |               |              | - 1                    | 2.2                 |                            | 5           |           | •                                                                               |                                       |
|                                        |    |                  |          |               |              |                        |                     |                            |             |           |                                                                                 |                                       |

|                         | PLADE NO.23<br>25. CHORD C.C. | 0.23<br>D.C.C. | LADE NO. 24<br>25 CHORD C.C. | 0 25<br>0 C C | stable No. 2<br>30° CHORD C. 2 |      | 6LADE NO.35<br>357 CHORD C.G. | 5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° |
|-------------------------|-------------------------------|----------------|------------------------------|---------------|--------------------------------|------|-------------------------------|-----------------------------------------|
| NUDE DESCRIPTION        | (CPS)                         |                | (C <sup>15</sup> S)          |               | (CPS)                          |      | (CPS)                         |                                         |
| FIRST FLAPWISE RENDER.  | 12.0                          | <b>E</b> 1.    | 11.1                         | 046           | 11.3                           | 140. | 10.7                          | 0770.                                   |
| SECOND FLAPWISE BENDING | ð()                           |                | 30.5                         | .035          | 4                              |      | 35.4                          | .025                                    |
| FIRST CHORDWISE BENDING | 0.0.                          |                |                              | ų,            | 34.3                           | ÷60. | 36.5                          | SEO.                                    |
| FIRST TORSION           | 70.3                          | \$10.          | 54.5                         | 120.          | 56.0                           | .016 |                               |                                         |

|                                                        | 3            |           |                   | i        |            |          | 5  |    | 1        | F        |    |                   |        |             | Ę  | Î          |            | fi          |          | 1          | 1  |          |     | f  |           | i  | 1   |           |          | j  | j          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 |           | ]}  | 1  |      |                    |
|--------------------------------------------------------|--------------|-----------|-------------------|----------|------------|----------|----|----|----------|----------|----|-------------------|--------|-------------|----|------------|------------|-------------|----------|------------|----|----------|-----|----|-----------|----|-----|-----------|----------|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|-----|----|------|--------------------|
|                                                        | t<br>J       | Į         | il                |          |            | ij       | I  |    | ļ        |          | l  | ľ                 |        | fi          | į  | Ï          |            | 1           |          | ĥ          | H  |          |     | Ħ  |           |    |     |           |          |    | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ |           |     |    |      |                    |
| S                                                      | •            | Į         |                   |          |            |          |    | f  | i        |          |    |                   |        |             |    |            |            |             |          |            |    |          | ił  | [  |           |    |     |           |          | ;; |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           |     | ĪÌ | j    |                    |
| FOR TRANSIENT TEST CONDITIONS<br>GRAVITY AT .25 CHORD) | 25           | ŧ         |                   | Ę        |            |          | Ī  |    |          | 5        |    |                   | Į      |             | í  | į          | Ĩ          |             | Į        | F          |    | Ĩ        | lf  | 1  | Ĩ         |    |     | li        | Į        | i  | i          | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i | 3         | I   |    | 2    |                    |
| r con                                                  | <b>ي</b> م   | ļ         |                   | ļļ       | ļ          | Ą        | ļļ | ļ  | ļļ       | ì        | ļ  | ļļ                | ļ      | ļį          | ţ  |            | ļ          | ļ           | ij       | 1          |    |          | Į   | ļi | ļ         |    |     | ÏÌ        | Ĩ        | i  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 21        |     |    |      |                    |
| FOR TRANSIENT TEST CO<br>GRAVITY AT .25 CHORD)         | * 5          | Į         |                   |          | 1          | Į        |    |    |          |          |    | į                 | i      |             | Į  |            | Į          | H           |          | i          | įĮ | Ę        |     | ļ  |           | ł  | Ę   | Į         | 1        |    | į          | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |           | Ę   | ļį | Ę    |                    |
| SI EN                                                  | •*           | 2'<br>    |                   | 11       | 11         | 12       | 33 | 1  | 37       | 1        |    | ??<br>??          | 3      |             |    |            |            | ))<br> 1    | 33       | 22         |    | 33       |     | 33 | 33<br>• • | 1  | IJ  | 17        | 72       | 3  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           |     | 12 |      | !                  |
| TRAN                                                   | 가<br>기<br>기  | 14'<br>7' | •                 | 11<br>77 | 79         | 19<br>19 | 17 | 1  | / †<br>} | -        | 1  | 77<br>77<br>77    | 1      |             |    | ļ          | 1          |             | 11<br>11 | 11         | 17 | 77       |     | 7  | 77        | 7  |     | (4<br>••• |          |    | - 7        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 11        |     |    | 71   |                    |
|                                                        | -            | •         |                   | ••       | :::<br>.:  |          |    |    |          |          |    | 11                | •      |             | 11 |            | ;;         | 33          | 33       | ;          |    |          | 1   |    | •••       |    |     | ::<br>••  |          |    | ;•         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | ••        |     | 7  | •••  |                    |
| ER OF                                                  | -1           |           |                   |          |            |          |    |    |          |          |    |                   |        |             |    |            |            |             |          |            | 13 | 33<br>37 |     |    |           |    |     |           |          |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           |     |    |      |                    |
| ARAMETERS<br>CENTER OF                                 | •            | Ę         | Į,                | ł        | ĘĘ         | Ę        | Į  | ĘI |          | ĘĘ       |    | ļĮ                | Ż      | į           | Ę  | E          | ĘĮ         |             | ĮĮ       | Į          | Z  | ĘĘ       | Ę   | 2  | 22        | 2  | 12  | 22        |          |    | <i>e x</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           | 33  | 2  |      |                    |
| ROTOR PARAMETERS<br>(BLADE CENTER OF                   | <b>4 1 4</b> | 23        |                   | Ŕ        | ž.         | 5        |    | 1  |          | 55<br>   | 5  |                   | 51<br> |             | 1  |            | 55         |             |          |            | I  |          |     |    |           |    | 2   |           |          |    |            | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |           |     |    |      |                    |
| ROI<br>(BI                                             |              | Ž         |                   |          | 1 T<br>2 2 | E        |    | ž] |          | TT<br>ŽŽ | Z  | T T<br>2 2        | T I    | Ē           | 21 | į          | T T<br>2 2 | 7           | TT<br>ZZ | 7 -<br>7 2 | ž  | Į        | ž   | E. |           | 55 | 5   |           | T<br>• • | 5  | ŗ          | Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ş | ţţ        | Ç,  | 5  |      |                    |
| >                                                      | £            |           |                   |          | 11         |          |    | -  |          | 1        |    |                   | 1      |             | 1  |            |            |             |          |            |    | 11       | 1   | -  | 11        |    |     |           |          |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | ::        | ••• | 1  | 1    |                    |
| TABLE                                                  | - Internet   |           | The second second | 1        |            |          |    |    | 1        |          |    | The second second | 1      | Sall Street | 1  | Them, ICHT | į          | Themas ICur | 1        |            | Ĭ  |          |     |    |           | 1  |     |           |          |    |            | In the second se |   | Transferr | 1   |    | 1    | Them in the second |
|                                                        |              |           | į                 | Ē        | Ē          | Ì        | Ī  | Ē  |          | į        |    | ŝ                 |        | Ĩ           |    | Ĩ          |            | 1164        | 5        |            | 2  |          | 110 |    | ł         |    | 110 | į         | 1.12     | Ĩ  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ī         | 152 |    | 1231 | Ē                  |
|                                                        | 38           | 33        | 33                | 4        | ij         | 1        | į  | ;; | ī        | ;;       | ]] | ì                 |        | 5           | ij | 21         |            | 27<br>      | 121      | 5          | ** | 57       | 5   |    | -         | ļ  |     |           |          |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           | ļļ  |    | 2-1- | ŗ                  |

|        | Jest 1         | TANB, DSH | D.s. H |         | 8.13   | 1      | đ     | 4    | 52   | 50          | N N  |      | c1 /0   | C0/0   | U          | c 1/0     | C.0/0    | C m lo  | C       |
|--------|----------------|-----------|--------|---------|--------|--------|-------|------|------|-------------|------|------|---------|--------|------------|-----------|----------|---------|---------|
|        |                |           |        |         |        | 142    | 2     | 1    | 2    | 2           | 2    | 220  |         |        |            |           |          |         |         |
| 4      | TEST ETTAL     |           | 2      | -       | 5.12   | . 503  | -10.6 |      | •    | •           |      | 6.7  | .0360   |        |            | 00096     | 16200    | .00020  | .00102  |
| -      | POST TRANSIENT |           | 519    |         |        | 202    | -10.4 |      |      |             |      |      |         | 00064  |            |           | 00200    | 47200   | 11100.  |
| •      | INITIAL        | 5         | \$13   | 1       |        | • •    |       | •    |      | 2 -         |      |      |         |        |            | 10.00     |          |         | 40100 · |
| с<br>1 | TEST FINAL     | ٩.        | +75    | 1       | 5      | •      |       |      | 2    | 2           |      | 5    | 1640    |        |            | 00151     | 00421    | 00199   | 00136   |
| -10    | POST TRANSIENT | ••        | 675    | •       | .435   | •      |       |      | 2.0  | 0           | -2.7 | 5.3  | -0+62   | .00068 | 0 - 0      | **100     | +1+00    | .00106  | 00135   |
| =      | INITIAL        | ·.        | 675    | •       | .435   | .503   |       | 0.0  | •    | •           | -1.1 | 6.7  | .0344   |        | 1          | - 00007   | 00367    | .00016  | .00100  |
| 21-0   | TEST           | 0.        | 675    | 0.1     | .435   | •      |       | 10.0 | 2.0  | •           | -3.3 | 6.9  | .0594   |        | 1          | 00226     | 00500    | 00160   | .00192  |
|        | • •            | •         | 613    | °.<br>1 | . 4 35 | •      |       | 10.0 | 2.0  | •           | -3.3 | 6.9  | .0587   | •      | -          | 00218     | 00586    | 00172   | .0018   |
|        | -              | •         | 675    | •       | ****   | -504   |       | 10.0 | •    | •           | 1.1  | 10.1 | .0669   |        |            | . 02562 . | 00429    | .00048  | 1       |
|        | POST FUNAL     | e,        | 675    | ••      | 3.     | 105    |       | 10.0 | ••*  | •           | N    | 7.1  | .0913   | .00433 | 0 - n      | 0456      | 00100    | 00379   | •       |
|        |                | •••       |        |         |        | 105°   |       | 10.0 | *    | •           |      | 1.1  | .0910   |        |            | 00453 .   | 66900    | 00374   | •       |
|        | TEST EINAL     |           |        |         |        |        |       | 0.01 | •    | •           |      | 10.1 | .0661   | •      |            | 0338      | 00641    | .00057  | .00289  |
| -1-0   | POST TRANSIENT |           |        |         |        |        |       |      | •••  | - 6         |      |      |         | 11000. |            |           | *5900    | \$2000. |         |
| -20    | INITIAL        |           | 519    |         |        |        |       |      | •••  |             |      |      | 1000.   |        |            |           | BCB00    | 12000   |         |
| 12-6   | TEST FINAL     | 2         | 519    |         |        |        |       |      |      |             |      |      | 1070    | ;      |            | . 12000 - | 11000    | 87000 · |         |
| - 22   | POST THANSIENT | -         | 144    |         |        |        |       | •••  |      |             |      |      | 1010    |        | 4 1        |           | 32000    |         | •       |
|        | TMITIAL        |           | 1.10   |         |        |        |       |      | 2.0  |             |      |      | CA00.   |        | <b>.</b> . |           | 01200    |         |         |
|        | TEST FINAL     |           |        |         |        |        |       | -    |      | •           |      |      | 0/90.   |        |            |           | 24900    |         | 1200    |
|        |                | •         | 144    |         |        |        |       |      |      |             | -    | 10.0 | 2000    |        |            |           | 11000    | 19200 - | 0.010   |
| 3-26   | INITI          |           | 619    |         |        | 200    | •     | •    |      |             |      | 10.0 | C/ CD . |        | 0 0        |           | 8/ 500   | 10200.  | 2010.   |
| 3-27   | TEST           | •         | 675    |         |        |        |       |      |      | 2           |      |      | 1000.   | 19010  |            |           | -        | 20000-  | 0100 ·  |
| 29     | P051           | •         | 675    |         |        |        |       |      |      |             |      |      | 1001    |        |            |           | 1200     | 10400   |         |
| 3-21   | TINI T         | ·.        | 675    | •       | •      | 50%    | 0.0-  | -    |      |             |      |      | 0693    | • •    |            | 00326     | 96.900   | 00013   | 19200.  |
| 5      | TEST           | ¢.        | 675    | •       | 404.   | .504   | -7.4  | -    | N    | 1           | -0.0 | 7.5  | 0833    | •      | 1          | 01194     | 00639    |         | 01320   |
| 1      | POST THANSIENT | •         | 675    | •       | 464.   | .504   |       | -    | 1.9  | -3.9        | -9.9 | 7.5  | .0832   | •      |            | 01169     | 00642    | 00157   | .01316  |
|        | TEST CIME      | •         | 520    |         | . 435  | .503.  | -9.4  | 9.0  | 0.4- | •           | 5.7  | 12.5 | .0527   | •      | ï          | 00254 .   | 00+99    | ***00*  | .00189  |
| -      | POST TRANSIENT | ? ·       |        |         |        | .503   | 1.0-  | 10.0 | -1.6 | •           | 5    | 12.5 | .0771   | •      |            | 00295 .   | 00722    | .00197  | .00167  |
| 80     |                |           | 144    |         |        | 202.   |       | 10.0 |      | •           | 1    | 12.5 | .0772   | •      | i          | 00294     | 00720    | .00192  | .00167  |
| e<br>1 | TEST FINAL     |           | 519    |         |        |        |       |      |      | •           | -    | 12.5 | 0100.   |        | •          | 00652     | 100624   | 20.00.  | 00164   |
|        | POST TRANSIENT | •         | 675    |         |        |        |       |      |      | <b>•</b> •• |      |      | 2410.   | 20     |            | - 20400   | 00400    | .00238  | .9200   |
| -10    | POST TRANSIENT | ••        | 675    | 0.4     | 5      |        |       |      |      |             | 1    |      |         |        |            | . 10000   | 22100    | C+200.  |         |
| -15    | TAITINL        | •         | 675    | 0.*     | . 435  |        |       |      |      |             | -    |      |         |        |            |           |          |         |         |
|        |                | •         | 675    | 0.4     | . 435  | 503    | -1-   |      | 1.1  |             |      |      | 1047    | •      |            |           | 01500    | 000.0   |         |
|        | POST TRANSIENT | •         | 675    |         | .435   | 503    | -1-   | 8.0  |      | •           | 1.2  | 9    | 1052    | •      |            | 00320     | - 04500  | 00474   | DOIAL   |
|        | TECT COM       | •         | 675    | 1       | . 435  | . 503. | - 9-  |      | •    |             | 1.5  | 5.9  | .0069   |        | •          | 00037     | 00203    | 00000   | 00011   |
|        |                | •         | 673    | 1       | . 435  | . 503  | -6.6  | 6.0  | 2.8  |             | -1.5 | 2.9  | .0406   | •      |            | 00047     | 00296    | 00276   | 00020   |
|        | TUST THANSIENT | •         | 675    | 1       | -435   | .503   | -0.0  | 6.0  | 2.8  | *           | -1.5 | 2.9  | .0411   | •••    |            | 00046     | 00297    | 00261   | .00020  |
|        |                | •         | 675    | 1       | . 135  | .503.  | -10.7 | 8.0  | •    | •           | -2.9 | 6.7  | .0340   | •      |            | 00050     |          | .00018  | .00063  |
|        |                |           | 519    | 1       | 35     | .503   | -10.6 | 10.0 | 2.2  | *           | -2.9 | 6.7  | .0605   | 1      |            | 00175     | 00601 -  | 00221   | .00124  |
|        | L +            | •         | 675    |         | . 435  | .503   |       | 10.0 | 2.4  | *           | -2.9 | 6.7  | .0611   |        |            | 00179     | 00603    | .00228  | .00127  |
|        |                | ņ         |        |         | 191    | .294   | -9-   | 8.0  | •    | •           | -2.8 | 4.7  | .0701   |        |            | 00136     | - 69400  | 00006   | .00145  |
| 10-14  | 200            |           |        |         | 192    | .294   | -8-   | 10.0 | 1.5  | ŝ           | -2.8 | 4.7  | .0882   |        |            | 00171 .   | 00668 -  | 00158   | .00131  |
|        | IT INI         |           |        |         |        | 52.    |       | 10.0 | 1.6  | *           | -2.8 | ÷.7  | .0883   |        |            | 00173 .   | .00671 - | 00155   | .00132  |
| 54-25  | -              |           |        |         | 00     | 52.    | -     | 9-0  | •    | •           | -2.8 | 4.7  | .0687   | 00380  | 0 0        | 0156 .    | 10400    | .00005  | .00176  |
| 54-26  | -              | 2         |        |         |        | -291   |       |      | •    | •           | -3.1 | 4    | .0889   | •      | ē - 9      | 9260 .    | 00136    | .00022  | 100221  |
| 54-27  | 1000           |           | 222    | 3.4     | 2201   | -00    | 4     | •    |      |             |      |      |         |        |            |           |          |         |         |

| INITIAL   INITAL   INITAL                                                    | T-MU     | TYPE                      | TANG         | 8 d  | 8   | 8        | 1       | 42          | -        | ä    | 2          | Ŧ          | 8.8        | c, / ص | C D /0  | C + /6  | C.a / 0 | ere.             | C       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|--------------|------|-----|----------|---------|-------------|----------|------|------------|------------|------------|--------|---------|---------|---------|------------------|---------|
| 5   TEST FINAL   0   500   0   533   1026   1.2   0   1.1   1.0   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1                                                                                                                                                                                                                                                                                                  |          |                           |              |      |     |          |         |             |          |      | 1          |            | SIG .      |        |         |         |         |                  |         |
| 7   757   775   74   74   74   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75   75 <t< td=""><td></td><td>INITIAL</td><td><b>ç</b>, (</td><td>200</td><td>ę</td><td>504.</td><td>1.026</td><td>-1-5</td><td>e e</td><td></td><td>•<br/>•••</td><td>***</td><td>1.2 -</td><td>-0112</td><td>.00987</td><td>.00067</td><td>•</td><td>.00145</td><td>00016</td></t<>                                                                                                  |          | INITIAL                   | <b>ç</b> , ( | 200  | ę   | 504.     | 1.026   | -1-5        | e e      |      | •<br>•••   | ***        | 1.2 -      | -0112  | .00987  | .00067  | •       | .00145           | 00016   |
| 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | FOST FINAL                | <b>.</b> (   |      | •   | 2        | 1-020   |             | •        |      |            |            | 2.         | 2020   | C/010.  | - 00000 | •       | 02000 <b>.</b> - | 1100.   |
| 9   INITIAL   0   500   0   933   1026   -112   10   44   8   11   12     1   POST FRANSIENT   0   500   0   933   1026   -112   10   0   0   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12   12                                                                                                                                                                                                                                                                                                                                                                      |          | 1031 INANSJEWI<br>1417141 | -            | 000  | •   |          | 020 · T | 4 .         | •••      | •    | <b>,</b> , | 2.2        |            | 1000.  | 560T0-  | 16000 - | •       | 000000-          | CI100.  |
| 11   7EST FIML   0   500   0   433   1026   -1.1   10   44   9   -1.1   1.0   44   9   -1.1   1.0   44   9   -1.1   1.0   9   -1.1   1.0   44   9   -1.1   1.0   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0   -1.1   1.0                                                                                                                                                                                                                                                                             |          | INITIAL                   | •            |      | 2   |          | 1.026   |             |          |      |            |            |            | 0/00*  | 04400.  | 10000   | 11200.  | +0100 ·          | 21000 - |
| POST TRANSIENT   0   500   0   453   1026   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -2.1   -1.6   0   -5   -1.6   0   -5   -2   -1.6   0   -5   -1.6   0   -5   -1.6   0   -5   -1.6   10   10   10   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11   11                                                                                                                                                                                                                                                                                                                                  | 5-10     | TEST FINAL                |              | 2005 |     |          | 1.026   |             | 1.0      |      | 0          |            |            | -0102  | 91079   | 29000 - | •       | CT100            | 1000    |
| INITIAL   0   500   0   433   1.026  6   0  5   5.1  5   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-11     | POST TRANSIENT            | •            | 200  | •   | .433     | 1.026   | -1.1        | 1.0      |      | 0          |            | 2.1        | -020e  | 01093   | 00076   | • •     | - 00340          | 0000    |
| FIST FINAL   0   500   0   +333<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-12     | INITIAL                   | ٩.           | 500  | •   | .433     | 1.026   | -1.2        | •        | •    | 0          | 1.4        |            | -0066  | .01025  | ••      | •       | 96000.           | 00023   |
| INITIAL   0   500   0   433   1.026  0   0  5  5  5  5  5  5  5   0   1.1   1.2   1.2   1.4   1.6   1.6   1.4   1.6   1.6   1.4   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6                                                                                                                                                                                                                                                                                                                          |          | TEST FINAL                | ç            | 200  | •   | . 4 3 5  |         | e           | •        | _    | 2.0        | 3.8        | •          | .0059  | .00980  | •       | •       | .00147           | .00203  |
| TEST FINL   0   500   0   933   1026   11.6   0   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   1                                                                                                                                                                                                                                 |          | POST INANSIEN             | ••           | 200  |     |          | 1.026   | е<br>•<br>• | ••       |      |            | 8.5        |            | • 0079 | -00987  | •       | •       | .00166           | .00205  |
| POST FRANSIENT   0   500   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40 <td></td> <td>TEST ETNAL</td> <td>•••</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td>6600*</td> <td>66600.</td> <td>.00082</td> <td>•</td> <td>00135</td> <td>00017</td>                                                                                                                             |          | TEST ETNAL                | •••          |      |     |          |         |             | •        | •    |            |            |            | 6600*  | 66600.  | .00082  | •       | 00135            | 00017   |
| INITIAL   0   500   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400 <td< td=""><td>5-17</td><td>POST TRANSIENT</td><td></td><td>500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10100</td><td>10010</td><td>•</td><td>1200.</td><td></td><td>- 00276</td></td<>                                                           | 5-17     | POST TRANSIENT            |              | 500  |     |          |         |             |          |      |            |            |            | 10100  | 10010   | •       | 1200.   |                  | - 00276 |
| TEST FINAL   0   500   40   40   0   -34   8.6     INITIAL   0   500   40   434   1.024   -4.6   4.0   0   -3.4   8.6     INITIAL   0   500   40   433   1.024   -4.6   4.0   0   -1.3   8.6     INITIAL   0   500   40   433   1.026   -6.4   4.0   -0   -1.3   8.6     INITIAL   0   500   0   433   1.026   -5.9   4.0   0   -1.3   8.6     INITIAL   0   500   0   433   1.026   -5.9   4.0   0   -1.3   6.4     INITIAL   0   500   0   433   1.026   -5.1   4.0   -1.3   5.7     INITIAL   0   500   0   433   1.026   -5.1   4.0   0   -1.3   5.7     INITIAL   0   500   0   433   1.026   -4.4   0   0   -1.0   0   -1.0   0   0<                                                                                                                                                                                                                                                                                                                     | S-10     | INITIAL                   | •            | 500  | 0.4 | 424.     | 1.024   | -6.1        |          |      |            | -          |            | .0180  | 01203   | • •     | •       | 00683            | 20000-  |
| POST TRANSTENT   0   500   4.0   4.0   4.0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 <td>2-10</td> <td>TEST FINAL</td> <td>c.</td> <td>500</td> <td>•••</td> <td>424.</td> <td>1.024</td> <td>9.41</td> <td>•••</td> <td>•</td> <td>0</td> <td></td> <td></td> <td>.0253</td> <td>.01146</td> <td>1</td> <td>••</td> <td>.0004</td> <td>.00186</td>                                                                                                                                                                                      | 2-10     | TEST FINAL                | c.           | 500  | ••• | 424.     | 1.024   | 9.41        | •••      | •    | 0          |            |            | .0253  | .01146  | 1       | ••      | .0004            | .00186  |
| INITIAL   0   500   0   453   1.026   -0.0   40   -1.3   5.0     POST TRANSENT   0   500   0   433   1.026   -0.4   40   -2.1   0   -1.3   5.4     POST TRANSENT   0   500   0   433   1.026   -5.2   4.0   -0   -1.3   5.4     POST TRANSENT   0   500   0   433   1.026   -5.2   4.0   2.0   -1.7   5.9     POST TRANSENT   0   500   0   433   1.026   -5.2   4.0   2.0   -1.7   5.9     POST TRANSENT   0   500   0   433   1.026   -5.2   4.0   0   -1.7   5.7     POST TRANSENT   0   500   0   433   1.026   -5.8   4.0   0   -1.0   7.1     POST TRANSENT   0   500   0   433   1.026   -5.8   4.0   0   -1.0   7.1   5.7     POST TRANSENT   0   500   0   433   1.026 </td <td>1-20</td> <td>POST TRANSIENT</td> <td>0.</td> <td>200</td> <td>0°*</td> <td>+2+.</td> <td>1.024</td> <td>9.4-</td> <td>0.4</td> <td>•</td> <td>0</td> <td>4.5</td> <td></td> <td>•0234</td> <td>.01133</td> <td>00201</td> <td>•</td> <td>.00089</td> <td>.00169</td> | 1-20     | POST TRANSIENT            | 0.           | 200  | 0°* | +2+.     | 1.024   | 9.4-        | 0.4      | •    | 0          | 4.5        |            | •0234  | .01133  | 00201   | •       | .00089           | .00169  |
| FIST FINAL   0   500   0   433   1.026   5-0   4.0   2.1   0   1.3   5.4     FIST FINAL   0   500   0   433   1.026   5-0   4.0   2.1   5.0   1.3   5.4     FEST FINAL   0   500   0   433   1.026   5.2   4.0   2.1   5.2   5.2     FEST FINAL   0   500   0   433   1.026   5.2   4.0   2.1   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.                                                                                                                                                                                                                                                                                                 | 2-51     | INITIAL                   | •            | 500  | •   | .433     | 1.026   | 0.0-        |          | •    |            | 1.8        |            | .0118  | .01210  | •       | •       | .00134           | .00015  |
| INITIAL   0   500   0   433   1026   55.2   4.0   2.0   5.2     INITIAL   0   500   0   433   1026   5.2   4.0   2.0   5.2     INITIAL   0   500   0   433   1026   5.2   4.0   2.0   5.2     INITIAL   0   500   0   433   1026   5.2   4.0   2.1   5.2     INITIAL   0   500   0   433   1026   5.2   4.0   2.1   5.2     INITIAL   0   500   0   433   1026   5.4   0   1.0   7.1     INITIAL   0   500   0   433   1.026   5.4   0   0   1.0   5.2     INITIAL   0   500   0   433   1.026   5.4   0   1.0   5.2   4.4   0   1.0   5.2   4.4   0   1.0   5.2   4.4   0   1.0   5.2   4.4   0   1.0   5.2   5.2   5.2   5.2 <td>22-22</td> <td>POST FUNAL</td> <td>9</td> <td>200</td> <td>•••</td> <td>2</td> <td>1.026</td> <td></td> <td></td> <td>0.2</td> <td>0 0</td> <td><b>n</b> .</td> <td><b>.</b> .</td> <td>•0313</td> <td>.01325</td> <td>•</td> <td>.00115</td> <td>00+00</td> <td>00035</td>                                                 | 22-22    | POST FUNAL                | 9            | 200  | ••• | 2        | 1.026   |             |          | 0.2  | 0 0        | <b>n</b> . | <b>.</b> . | •0313  | .01325  | •       | .00115  | 00+00            | 00035   |
| TEST FINAL   0   500   0   433   1026   5.2   4.0   2.0   5.2     INFTAL   0   500   0   433   1026   5.2   4.0   2.0   5.2     INFTAL   0   500   0   433   1026   5.2   4.0   2.0   5.2     INFTAL   0   500   0   433   1026   5.1   4.0   0   1.0   7.1     INSTER   0   500   0   433   1.026   7.1   4.0   0   1.0   7.1     INSTER   0   500   0   433   1.026   7.1   4.0   0   1.0   7.1     INSTER   0   500   0   433   1.026   7.1   4.0   0   1.0   7.1     INSTER   0   500   0   433   1.026   7.1   4.0   0   1.0   7.1   4.0   0   1.0   7.1   4.0   0   1.0   7.1   4.0   1.0   1.0   7.1   4.0   0   1.0                                                                                                                                                                                                                                                                                                                                    |          |                           |              |      |     |          | 1.020   |             | <b>.</b> |      |            |            |            | 1100.  |         | 1.000   | 10100.  |                  | 02000   |
| POST FRANSTENT   0   503   0   433   1.026   5.2   4.0   0   -2.0   5.2   4.0   0   -1.7   5.8   -     TEST FINL   0   500   0   433   1.026   5.2   4.0   0   -1.7   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.8   -   1.17   5.1   1.17   5.8   -   1.16   1.11   5.1   1.11   5.1   1.17   5.8   -   1.16   1.11   5.1   1.11   5.1   1.11   5.1   1.11   5.1   1.11   5.1   1.11   5.1   1.1                                                                                                                                                                                                                                                                                                      |          | TEST FINAL                | ſ            | 2005 |     |          |         |             |          |      |            |            |            |        | 21210.  | ٠,      | •       | 49100.0          | 00004   |
| INITIAL   .0   500   .0   433   1.026   -5.8   4.0   .0   -1.7   5.6     FEST FINAL   .0   500   .0   433   1.026   -7.1   4.0   -4.0   .0   -1.0   7.1     POST TRANSIENT   .0   500   .0   433   1.026   -7.1   4.0   -4.0   .0   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1   -1.0   7.1 <t< td=""><td>3</td><td>INJISHINE ISOA</td><td>•</td><td>200</td><td>•</td><td></td><td>1.026</td><td>-5.2</td><td></td><td>2.1</td><td></td><td>2.0</td><td>2.2</td><td>6200.</td><td>01137</td><td></td><td>• •</td><td>64000 -</td><td>25000.</td></t<>         | 3        | INJISHINE ISOA            | •            | 200  | •   |          | 1.026   | -5.2        |          | 2.1  |            | 2.0        | 2.2        | 6200.  | 01137   |         | • •     | 64000 -          | 25000.  |
| TEST FINAL   0   403   1.026   -7.1   4.0   -4.0   0   -1.0   7.1     POST TRANSTENT   0   500   0   493   1.026   -7.1   4.0   -1.0   7.1   0     INTTAL   0   500   0   493   1.026   -7.1   4.0   0   -1.0   7.1   0     POST TRANSTENT   0   500   0   493   1.026   -1.4   4.0   4.0   -1.0   7.1   0     POST TRANSTENT   0   500   0   433   1.026   -1.4   4.0   4.0   -1.0   7.1   0   -2.6   4.4     POST TRANSTENT   0   500   0   433   1.026   -1.4   4.0   4.0   -2.6   4.4   4.6   4.6   -2.6   4.4   4.6   -2.6   4.4   4.6   -1.1   5.1   1.1   5.1   1.1   5.1   1.2   5.1   1.6   1.1   5.1   1.1   5.1   5.1   1.1   5.1   5.1   1.1   5.1   5.1   5.1                                                                                                                                                                                                                                                                                     | 5-27     | INITIAL                   | •            | 200  | •   | .433     | 1.026   | -5.B        | •        | •    |            | 1.7        |            |        | .01240  | •       | .00175  | .00174           | 00003   |
| POST FINAL   0   500   0   453   1.026   -7.1   6   0   1.0   7.1     TEST FINAL   0   500   0   433   1.026   -1.4   4.0   0   -1.9   7.1     POST FINAL   0   500   0   433   1.026   -1.4   4.0   0   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.9   7.6   -1.1   5.1   1.1   5.1   1.1   5.1   1.1   5.1   1.1   5.1   1.1   5.1   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   5.1   1.0   1.1   5.1                                                                                                                                                                                                                                                                                     | 5-28     | TEST FIMAL                | ç            | 200  | •   | .433     | 1.026   | -7.1        |          | 0.4- |            | 1.0        | _          |        | .01576  |         | i       | .00706           | 00051   |
| TEST FINAL   0   500   0   433   1.026   -4.4   4.0   4.1   0   -2.6   4.4     POST FINAL   0   500   0   433   1.026   -4.4   4.0   4.1   0   -2.6   4.4     POST FINAL   0   500   0   433   1.026   -4.4   4.0   4.1   0   -2.6   4.4     POST FINAL   0   500   0   433   1.026   -9.1   4.0   2.0   0   -1.1   5.1     POST FINAL   0   500   0   433   1.026   -9.1   4.0   2.0   0   -1.1   5.1     POST FINAL   0   500   0   433   1.026   -9.1   4.0   2.0   0   -1.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1   5.1                                                                                                                                                                                                                                                                                                  |          | INITIAL                   |              | 005  | 20  |          |         | - 7 - 1     | * 4      | -    |            |            |            | •0+he  | .01588  | •       | 00013   | .00732           | .00063  |
| POST TRANSIENT   0   500   0   433   1.026   44.0   4.0   0   0   5.6   4.4     INITIAL   0   500   0   433   1.026   54.4   4.0   4.0   0   1.0   5.6   4.4     TEST F1.AL   0   500   0   433   1.026   54.1   4.0   2.0   1.1   5.1     POST TRANSIENT   0   500   0   433   1.026   54.1   4.0   2.0   1.1   5.1     POST TRANSIENT   0   500   0   433   1.026   54.1   4.0   2.0   1.1   5.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1   54.1                                                                                                                                                                                                                                                              |          | TEST FINAL                | •            | 500  | •   |          | 1.026   | ***         | -        |      |            |            |            | 4550-  | 24110.  |         | •       | 10200            |         |
| INITAL 0 500 0 433 1.425 74.6 4.0 4.0 0 1.1 5.1 757 757 757 751 74.6 5.1 752 751 74.6 5.1 75.1 75.1 75.1 75.1 75.1 75.1 75.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | POST TRANSIENT            | •            | 500  | •   | .433     | 1.026   | 1.1         |          |      |            | 2.6        | 3.3        | .0300  | 01151   | 00205   | • •     | 00344            | 10200   |
| TEST FFT.AL   10   500   4933   1.026   5.11   4.0   2.0   0   -1.11   5.11     POST TFANSTENT   .0   500   .0   4933   1.026   -5.11   4.0   2.0   0   -1.11   5.11     INITIAL   .1   500   .0   4933   1.026   -5.17   4.0   4.0   -1.1   5.11   5.11     TEST FILAL   .1   500   .0   4933   1.026   -5.77   4.0   0   -1.7   5.7   -     POST TRANSIENT   .0   500   .0   433   1.026   -5.7   4.0   .0   -1.7   5.7   -     POST TRANSIENT   .0   500   .0   433   1.026   -5.7   4.0   .0   -1.7   5.7   -   -   1.0   1.7   5.7   -   1.0   1.0   -0.0   0   0   0   0   -1.7   5.7   -   -   1.0   5.7   -   1.0   1.0   5.7   -   1.0   1.0   1.0   0   0   <                                                                                                                                                                                                                                                                                        |          | INITIAL                   | •            | 200  | •   | .433     | 1.026   | 9.41        | •••      | 4.0  |            |            | 4.6        | .0276  | .01169  | 00189   | •       | 00311            | .00205  |
| TOT INTIAL .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 <td></td> <td>TEST FI'AL</td> <td>-</td> <td>000</td> <td></td> <td></td> <td>1.026</td> <td>1.0-</td> <td>•••</td> <td>2.0</td> <td></td> <td>1.1</td> <td>5.1</td> <td>.0072</td> <td>.01130</td> <td>00057</td> <td>•</td> <td>00095</td> <td>6000.</td>                                                                                                                                                                                                                                                                                               |          | TEST FI'AL                | -            | 000  |     |          | 1.026   | 1.0-        | •••      | 2.0  |            | 1.1        | 5.1        | .0072  | .01130  | 00057   | •       | 00095            | 6000.   |
| TEST FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | POST TRAUSIENT            | Ģ            | 000  | ••  |          | 1.026   | •           | •••      | 2°0  |            |            | 5.1        | •0024  | .01124  | 00030   | •       | 00071            | .00017  |
| PEST TRANSTENT 00 500 00 4935 1026 -517 440 00 00 -117 557 -517 -517 -517 -517 -517 -517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | TECT ETHAL                | •            |      | •   |          | 120.1   |             | -<br>-   |      |            |            |            | 1120.  | C/ 110. | 00193   | •       | 00306            | •       |
| INITIAL 10 500 0 453 1026 4.0 0 13.8 8.6 15 15 10 10 13.8 8.6 15 1511AL 10 15 10 10 1433 1026 14.9 14.0 14.0 10 12.8 9.8 15 1025 14.9 14.0 14.0 10 12.8 9.8 15 1025 14.9 14.0 14.0 10 10 12.8 9.8 15 1011 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -17      | POST TRANSIENT            |              | 005  | 2   |          | 1.025   |             |          |      |            |            |            | 2010.  | C/110.  | CC000.  | 64100.  | 10100.           | •       |
| TEST FILAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-14     | INITIAL                   | c            | 500  | 2   |          | 1.026   |             |          |      |            |            |            | 8500   | UTACO.  |         | •       | 11100.           |         |
| POST TPAYSIENT .0 500 .0 .433 1.026 -4.8 4.0 -4.3 -1 -2.8 9.6 -<br>INITIAL .0 500 .0 .433 1.026 -13.1 3.0 .0 .4.4 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-15     | TEST FILAL                | c.           | 200  | •   | .433     | 1.026   | -4.9        | •        |      |            |            |            | 0162   | 03176   | 00027   | • •     | •                |         |
| INITIAL .0 500 .0 .433 1.026 -13.1 3.0 .0 -4.4 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91-9     | POST TPAUSIENT            | c.           | 500  | •   | .433     | 1.026   | -4.8        | 0.4      |      |            | 2.0        | -          | .0161  | 03195   | 00000   | •••     | • •              | - 00029 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-17     | INITIAL                   | Ģ            | 200  | °,  | <b>m</b> | 1.026   | -13.1       | -        | •    |            | 4.4.1      | 3.2        | 0236   | .03236  | 00212   | •       | 00560            |         |
| TEST FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-18<br> | TEST FINAL                | •            | 200  | •   | 554      | 1.020   | -13.1       |          | -4.2 |            | 4.4        | •<br>~     | 0150   | .03479  | .00022  | .00104  | .01231           | •       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC      |                           |              |      |     |          |         |             |          |      |            |            |            |        |         |         |         |                  |         |
| I'-NN | TYPE              | TANB | De R<br>F1/SEC | 5       | 8      | 1     | 18    | e<br>9 | .*.S | Pis Ais   |         | ່<br>ບ່<br>ອະອ | ,a | c, / e    | c, /e   | c, /e  | c, m ,  | C mm )  |
|-------|-------------------|------|----------------|---------|--------|-------|-------|--------|------|-----------|---------|----------------|----|-----------|---------|--------|---------|---------|
| 0- 5  | INITIAL           | 1.0  | 700            | 4       |        | 400   | -7.0  | 4      | 9    |           | Ľ       | 1 1 1 1 1 1    |    | 11000     |         |        |         |         |
| 9-9   | TEST FINAL        | 1.0  |                |         | -      | 294   | - 1 - | 10.0   | 1    |           |         | •              |    |           | GII00 - | 12000. | 82000 - | 01100.  |
| 60- 7 | POST TRANSIENT    | 1.0  |                | 1       |        | *6c   | -7    | 10.0   |      | - 2 -     |         | 1000 . 0687    |    |           | 11200   | -0-00. |         | 22200   |
|       | INITIAL           | 1.0  |                | 0.0     | 390    | 164.  | 5.9   | 0.4    | ?.   |           |         |                |    |           | 00152   | 00006  | 00000   | 00138   |
|       | TEST FINAL        | 1.0  | 100            | 9.0     | 390    | 162.  | 6.1   | 8.0    | 1.0  |           |         |                | •  | 01668 -   | C##00   | 0000   | 60113   | 60440   |
| 010   | POST TRANSIENT    | 1.0  | 100            | 8.0     | .390   | 162.  | 6.1   |        | 1.3  |           |         |                | •  |           | 0045    | 00000  | 00113   | 00442   |
|       | INITIAL           | 1.0  | 675            | 0.1     |        | . 5v3 | -9.3  |        | •    |           |         |                |    | - 00042 - | 00055   | 00325  | 00007   | 00057   |
| 21-09 | TEST FINAL        | 1.0  | 675            | 0.7     | 435    | . 5u3 | -9°3  | -      | •    | •         |         |                | ŧ  | .00034 -  | 00178   |        | 00082   | .00206  |
| CI-09 | POST TRANSIENT    | 1.0  | 675            | 0.<br>¶ | .435   | .5u3  | -9.3  | 10.0   | 9.   | •         |         | •              | 1  | - 00030 - | 00175   | •      | 00080   | .00210  |
| +T-09 | INITIAL           | 1.0  | 675            | 0.4-    | . 135  | .543  | -9.3  |        | •    | •0 -5     | 2.4 5   | •              |    | - 62000   | 00044   |        | 00009   | 14000.  |
| -1-0  | TEST FINAL        | 1.0  | 675            | 0.4     | . 135  | . 5u3 | 6.8-  | -      | 2.0  | •         | 1.5     |                |    | 00032     | 00166   | .00411 | 00226   | .00152  |
| -1-0  | POST TRANSIENT    | 1.0  | 673            | •       | .435   | • 5u3 | 6.9-  | 10.0   | 2.0  | •         | 1 5     | •              | •  | 00023 -   | 00179   | .00.12 | 40230   | .00164  |
| -1-0  | INITIAL           |      | 675            | •••     | .435   | 5u3.  | 9.0   |        | 0.4- | -0-0-     | -       | •              | •  | 00166 -   | .100    | .00321 | 10200.  | .00149  |
| -00   | TEST FINAL        |      | 673            | •••     | . 435  | . 5u3 | 3     | 10.0   | -3.2 | 5 -8.4    | _       | 10.3 .0624     |    | 00150 -   | 00362   | .00442 | .00316  | .00337  |
| 61-00 | POST TRANSIENT    | 1.0  | 519            | *       | 435    | 503.  | -6.2  |        | -3.2 | 5 -8.4    | -       | _              |    | .00155 -  | 00340   | 04400* | .00321  | .00337  |
| 12-00 | INITIAL           |      | 519            | *       | . 135  | 5n3.  | -6.3  |        | 0.4- | .0 -0.4   | -       |                |    | .00166 -  | 00176   | .00322 | . 00398 | .00157  |
|       | BOCT TOTAL        |      |                | -       | .435   | 505.  | 9.9   | 10.0   | -2.0 | ?         | -       |                |    | .00287 -  | 00324   | 00435  | .00176  | .00277  |
| 10-04 | TUTTO             |      |                |         | .435   | Suc.  | -6.4  |        | -2.0 | •         | -       | 0.2 .0688      |    | .00285 -  | -100312 | .00435 | .0193   | .00268  |
|       |                   |      |                |         | .437   | 06.   | n.    |        | •    |           |         | -              | •  | - 11110   | 00301   | 00015  | 00024   | .00260  |
| 10-25 |                   |      |                |         | -#37   |       |       | 0<br>0 |      |           |         | 9660 . 6.9     |    | 01558 -   | 00721   | .00139 | 40177   | .00703  |
|       | INJICHAN ILON     |      |                |         | - + 37 | 56.   | 5.5   | 0.0    |      | -1.1 -2.6 |         | 1.9 .100       |    | 1570 -    | 00732   | .00139 | 00180   | .00714  |
|       |                   |      |                | •       | 554.   | 1.026 | •     | •      | •    | -         | •       | .2 .01         |    | .00782    | ·000#3  | •      | 00061   | .00050  |
|       | DOLT TOWNS        |      |                | •       | 554-   | 1.026 | 1     | ••     | 2.4  | -1- 4-1-  | *       | .2 .0362       | •  | - 81600   | 00246   |        | 00304   | .00402  |
|       | THITTEL THANSIENT |      |                | •       | - + 33 | 1.026 | 7     |        | 2.4  | -1.4 -1.  | *       | •2 •0364       | •  | - 90600   | 00255   | •      | 00302   | +0+00*  |
| 60-10 | TECT ETUAL        |      |                |         | オのオー   | 1.024 | 10.0  | 8.0    | •    | ·0 -2     | .1 10.0 | •              | •  | - 12210   | 00296   | .00313 | 00027   | .00257  |
|       |                   |      |                |         | 中の中で   | 1.024 | 1.9   |        | -3.0 | 1.6 -5.1  | _       | 10.0 .0136     | 1  | 00900     | -00034  | 00250  | 00202   | - 00173 |
|       |                   |      |                |         |        |       |       |        |      |           |         |                |    |           |         |        |         |         |

| UN-PT      | TYPE             | TANO | A.R        | MLSO  | μ            | ac<br>DEG | θ <sub>c</sub><br>DEG | ene<br>DEG | b <sub>ie</sub><br>DEG | A <sub>18</sub><br>DEg | 0 <sub>16</sub><br>DEG | CL/G   | C <sub>D</sub> /o | Cy/e    | Ce/o    | C <sub>PE</sub> /s | C <sub>RM</sub> / |
|------------|------------------|------|------------|-------|--------------|-----------|-----------------------|------------|------------------------|------------------------|------------------------|--------|-------------------|---------|---------|--------------------|-------------------|
| 4-3        | STEADY<br>STEADY | .0   | 700        | .416  | .390         | -1.9      | 2.0                   | .0         | :0                     | -1.7                   | 2.0                    | .0355  |                   | 00058   |         | 00018              | .000              |
| - 5        | STEADY           | . 0  | 700        | .449  | .504         | -2.6      | 2.0                   | .0         | .0                     | -1.8                   | 2.7                    | .0264  | .00287            | .00016  | .00185  | 00037              | .00               |
| - 6        | STEADY           | .0   | 700        | .468  | .565         | -2.8      | 2.0                   | .0         | .0                     | -1.8                   | 2.8                    | .0217  | .00323            | 00041   |         | 00038              | .00               |
| - 8        | STEADY           | .0   | 700        | . 506 | .682         | -3.1      | 2.0                   | .0         | .0                     | -1.9                   | 3.1                    | .0153  | .00407            | 00029   | .00182  | 00059              | .00               |
| - 3        | STEADY           | .0   | 700        | .506  | .682         | -3.2      | 2.0                   | .0         | .0                     | -1.8                   | 3.3                    | .0159  | .00436            | 00041   |         | 00821              | .00               |
| - 5        | STEADY           | .0   | 700        | .539  | .801         | -3.6      | 2.0                   | .0         | .0                     | -1.8                   | 3.6                    | .0137  | .00610            | 80837   | .00188  | 00066              |                   |
| 5          | STEADY           | .0   | 700        | .560  | .861         | -3.6      | 2.0                   | :0         | .0                     | -1.8                   | 3.6                    | .0117  |                   | -,00031 | .00196  | 00058              |                   |
|            | STEADY           | .0   | 674        | .530  | .832         | -3.7      | 2.0                   | .0         | .0                     | -1.8                   | 3.7                    | .0087  | .00438            |         | .00207  | .00010             |                   |
| - 5        | STEADY           | .0   | 652        | .521  | .862         | -3.7      | 2.0                   | :0         | .0                     | -1.9                   | 3.7                    | .0056  | .00485            | .00017  | .00211  | .00039             |                   |
| - 7        | STEADY           | . 0  | 498        | .455  | 1.126        | -3.7      | 2.0                   | .0         | .0                     | -1.8                   | 3.7                    | 8026   | .01181            |         | .06212  | 00006              |                   |
|            | STEADY           |      | 476        | .445  | 1.181        | -3.7      | 2.0                   | .0         | :0                     | -1.8                   |                        | 0014   | .01300            | .00049  | .08280  | 00059              | 00                |
| -10        | STEADY           | .0   | 428        | .424  | 1.312        | -4.1      | 2.0                   | .0         | .0                     | -1.7                   | 4.1                    | 0168   | .01692            | .08079  | .00139  | -,00037            | 00                |
| -11        | STEADY           |      | 404        | .414  | 1.388        | -4.8      | 2.0                   | .0         | .0                     | -1.3                   | 1.1                    | 0272   | .01971            |         | .00083  | 00029              |                   |
| - 3        | STEADY           | .0   | 700        | . 387 | .204         | -5.1      | 8.0                   | .0         | , u                    | -3.7                   | 5.5                    | .0920  | .00053            | 00269   | .00517  | .00002             | .00               |
| - 4        | STEADY           | .0   | 700        | .387  | 244          | -5.5      | 9.0                   | :0         | .0                     | -4.2                   | 6.3                    | ·U960  | 00039             |         | .00634  | .00016             |                   |
| - 6        | STEADY           |      | 700        | .307  | .244         | -7.2      | 11.0                  | .0         | . U                    | -4.9                   | 7.7                    | .1056  | 00208             | 00401   | .00910  | .00020             | .00               |
| - 7        | STEADY           | .0   | 700        | .387  | .244         | -7.7      | 12.0                  | .0         |                        | -5.4                   | 8.3                    |        | 00289             |         | .01042  |                    | .00               |
| - 9        | STEADY           | .0   | 700        |       | .3-1         | -6.9      | 9.0                   | .0         | ۰.                     | -4.3                   | 7.2                    | .0888  | 00071             | 00322   | .00645  | .00020             | .00               |
| -10        | STEADY           | .0   | 700        | .404  | .351         |           | 10.0                  | :0         | • <b>!</b> !           | -4.4                   | 7.9                    |        |                   | 00375   | .00780  |                    |                   |
| -12        | STEADY           | .0   | 700        | .404  | .351         | -9.0      | 12.0                  | .0         | . ''                   | -5.0                   | 9.4                    | .1029  | -,00347           | 00447   | .01037  | .00014             | .00               |
| -13        | STEADY           | .0   | 700        | ,423  | ,410<br>.410 | -7.0      | 8.0<br>9.0            | 0          | :0                     | -3.8                   | 7.2                    | .0751  | .00030            | 00173   | .00500  | 00001              |                   |
| -15        | STEADY           | .0   | 700        | .423  | .410         | -8.5      | 10.0                  | .0         | ••                     | -4.9                   | 8.7                    | .u856  | 00126             | 00345   | .00726  | .00005             | .00               |
| -16<br>-17 | STEADY           | .0   | 700        | .423  | .410         | -9.2      | 11.0                  | .0         |                        | -5.2<br>-3.A           | 9.5                    | .1131  | 00183             | 01352   | .00841  | .00222             |                   |
| -18        | STEADY           | . 0  | 700        | .446  | .416         | -8.9      | 9.0                   | .0         | • U                    | -4.3                   | 9.0                    | . 4680 | .00039            | 03298   | .00584  | ,00008             | .00               |
| -19        | STEADY           | .0   | 700        | .446  | .4+6         | -9.7      | 10.0                  | .0         |                        |                        | 9.9                    |        |                   | 0319    | .00695  | 00006              |                   |
| • 3        | STEADY           |      | 700        | .463  | .546         | -7.4      | 9.0                   | .0         | • •                    | -4.4                   | 7.5                    | .0859  | -,00404           |         |         | .00000             | -                 |
| 1          | STEADY           | .0   | 700<br>700 | .463  | .546         | -8.8      |                       | .0         | :0                     | -5.2                   | 9.0                    | - 0974 | 00633             | .00417  | .00500  | 00004              |                   |
| • 6        | STEADY           | . 0  | 700        |       | .034         | -11.4     | 10.0                  | .0         | , u                    | -4.4                   | 11.4                   | . 1526 | .00239            | .01111  | .00461  | .00027             | 00                |
| 13         | STEADY           | .0   | 700        | .498  | .659         | -11.0     |                       | :0         | .0                     |                        |                        | +0483  | .00394            | .01392  |         | 00004              |                   |
|            | STEADY           |      | 700        | . 506 | . 682        | -5.6      | 4.0                   | . 0        | .0                     | -2.5                   | 5.6                    | .0229  | .00497            | 00105   | .00225  | 00015              | .00               |
|            | STEADY           |      | 700        | .513  | .704         | -13.0     |                       | :0         | .0                     | -4.4                   |                        | .0458  |                   | 00362   |         | 00014              |                   |
| - Ť        | STEADY           |      | 700        | .589  | .731         | -13.1     | 11.0                  | .0         | .0                     | -4.4                   | 13.1                   | .0444  | .00664            | 00362   | .00542  | 00031              | .00               |
| ::         | STEADY           | :8   | 700        | .527  | .756         | -13.3     |                       | .0         | .0                     | -4.2                   |                        | .0407  | .00768            | 00341   | .00508  | -,00022            | .00               |
| -10        | STEADY           |      | 700        | .544  |              | -12.5     | 10.0                  | .0         | .0                     | -3.8                   | 15.5                   | .0325  | ,00942            | 00304   | .00403  | 00015              |                   |
|            | STEADY           |      | 362        | . 245 | .795         |           | .0                    | :0         | .0                     | -1.4                   | - :3                   | .8051  | .00681            | . 00035 |         | -,00021            |                   |
|            | STEADY           |      | 340        | .275  | . 906        | -1.0      | .0                    | .0         | .0                     | -1.4                   | 1.0                    |        | ,08871            | .00090  | .00213  | .00014             |                   |
| : •        | STEADY           | ::   | 316        | .265  | .974         | -1.0      | .0                    | :0         | .0                     | -1.2                   | 1.0                    | .0066  | .00986            |         | .00215  |                    | 0                 |
| - 8        | STEADY           |      | 268        | .245  | 1.144        | -1.0      | .0                    | .0         | . 0                    |                        | 1.0                    | .0054  | .01321            | . 80078 | .00248  | 00040              |                   |
| -10        | STEADY           |      | 244        | .235  | 1.254        | -1.0      |                       | .0         |                        | :*                     | 1.0                    | . 8055 | .01555            | 90032   | .06239  |                    |                   |
| -11        | STEADY           |      | 196        | .215  | 1.553        | -1,3      | .0                    | . 0        | . 0                    | .2                     | 1.3                    | .0037  | . 02205           |         | .00272  |                    | - 6               |
| -12        | STEADY           |      | 184        | .209  | 1.464        | -1.4      | - :8                  | .8         | .0                     | -:5                    | 1.4                    | 0018   | .02668            |         | . 00362 | -,00071            | -,00              |
| • •        | STEADY           |      | 202        | .236  | 1.739        | -1.4      |                       |            | .0                     |                        | 1.4                    |        | . 02628           | .00109  |         | 00136              | 0                 |
| - 5        | STEADY           |      | 214        | .259  | 1.842        | -1.8      |                       | .0         |                        | - :1                   | 1.2                    | .0063  | . 83665           | .00134  |         | 00160              | 0                 |

TABLE VII. ROTOR PARAMETERS FOR INSTABILITY TEST CONDITIONS (BLADE CENTER OF GRAVITY AT .25 CHORD)

t

| ر <b>ا</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00002  | .00007 | 00003  | 00000   | 00014  | 00016  | 00029  | 00033  | 0282   | 00306  | 00317    | .00341 | .00241  | 00251            | 00259  | 00293  | 00323  | 00013   | .00028 | 00057   | 00075  | 00114   |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|----------|--------|---------|------------------|--------|--------|--------|---------|--------|---------|--------|---------|--|
| ں<br>د ۳۳ /م       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        | - 20100 |        | •      | •      | •      |        | 0.35   |          | 0025   | 1047    | 6 100            | 0028   | 000    | 046    | · 00165 | 1112   | . 10027 | 151    | 1134    |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | •      | •      | •       | •      |        |        |        |        |        |          |        |         |                  |        |        |        | •       | -      | -       | -      | -       |  |
| Co.                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00192 | 100.   | 100.   | 100.    | 100.   | .00159 | .001   | 000    | .0061  | · 0072 | .0084    | •0096  | .0046   | .005             | .006   | .00752 | .00866 | .0016   | .00132 | .000    | 000.   | .0000°  |  |
| Cγ /σ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00017  | .00010 | .00037 | .00029  | .00052 | .00061 | .00076 | .00072 | 00325  | 00367  | \$U\$00  | 00431  | 00272   | 00303            | 00315  | 00369  | 00411  | 10000.  | .00025 | 00018   | 00008  | .1000   |  |
| ر <sup>م</sup> / م | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00541 | .00644 | .01033 | .01165  | .01290 | .01484 | .01695 | .01979 | 00051  | **100  | 00251    | 00321  | • 00097 | .00028           | 00028  | 00086  | 00136  | .01173  | .01341 | .01274  | +6110. | •01982  |  |
| ر <sup>ר</sup> /م  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •0066  | .0019  | 0106   | 0161    | 0229   | 0298   | 0367   | 0509   | • 0955 | 9660.  | .1036    | -1084  | •0597   | .0652            | 9690   | .0146  | .0801  | 0072    | 0024   | 0025    | 0023   | +0000   |  |
| 8                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5    | 3.5    | 9.6    | 3.7     | 3.8    | 3.9    | 1.4    | *      | 6.2    | 7.0    | 7.7      | 8.2    | 8.3     | 9.2              | 10.1   | 10.8   | 11.5   | 5.9     | 0.5    | 10.9    | 12.2 . | 13.5    |  |
| AIS                | DEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.0   | -1.7   | -1.7   | -1.7    | -1.7   | -1.5   | -1.7   | -1.4   | 5.4-   | 9.4-   | -5.0     | -5.4   | 0.3-    | n.1              | 9.4-   | -      |        | _       | -2.4   | Ξ       | _      | ~       |  |
| SIQ                | in the second se | •      | •      | •      | •       | •      | •      | •      | •      | c.     |        | ••       | •      | •       | •                | •      | •      | •      | •       | •      | •       | •      | •       |  |
| S <sup>D</sup>     | 0EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •      | •      | °,     | •       | •      | •      | •      | •      | •      | •      | <b>•</b> | ••     |         | •                | •      | •      | •      | ••      | •      |         | •      |         |  |
| e <sup>c</sup>     | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0    | 0.0    | 2.0    | 2.0     | 2.0    | 2.0    | 2°0    | 2.0    | 0.6    | 10.01  | 11.0     | 12.0   | 8.0     | 0.6              | 10.0   | 11.0   | 12.0   | 4.0     | 6.0    | 0.0     | 9.0    | 10.0    |  |
| ac                 | S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3.5   | -3.5   | -3.6   | -3.7    | 0.5-   | 6.6-   |        | *      | -5.7   | 5.9    | -7.2     | -7.7   | -8.2    | 1.6-             | -10.0  | 10.7   |        | -5.9    | -0.3   | -10.9   | 12.2   | 13.5    |  |
| 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 167.   | . 808  | 1.026  | .062    | 611.   | 1.160  | .248   |        |        |        |          |        |         |                  |        |        |        |         |        |         |        | - 026 - |  |
| 8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        | - 1    |         | -      | 406 1  | -      | -      |        |        |          |        |         |                  |        |        |        | -       | 7      | +33 1   |        | 433 1   |  |
|                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 532    |        | 182     |        |        |        | 385    | •      | •      | •        | •      | •       | •                | 519    |        |        | •       | •      | •       | 500    | •       |  |
| TAN 85 S           | Ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.     | 0,0    | 0      | -       | *<br>0 | •      | -<br>- | 0      | 0      | •      | -        | -      |         |                  | 0,0    |        |        | 0.      | •      |         | •<br>• | 0       |  |
| TYPE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |         |        |        |        |        |        |        |          |        |         |                  |        |        |        |         |        |         |        |         |  |
| 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STEADY | STEADY | STEADY | STEADY  | STEADY | STEADY | STEADY | STEADY | STEADY | STEADY | STEADY   | STEADY | STEADY  | SIEADT<br>STEADY | STEADT | TURPIC | STEADY | STEADY  | STEADY | STEADY  | STEADY | STEADY  |  |
| R.M. PT            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷,     |        | - 1    | •       |        |        |        | ÷      |        |        |          |        |         | 0 C              | -      |        | - (    | Ν.      | 51-13  | *I-IC   | 21-1c  | 21-16   |  |

| NO.     | TYPE         | TAND       | ft/st      | M.,M  | 4                 | - DEG | Ø c<br>QEG | e <sub>te</sub><br>DEG | DEG DEG | 0.s<br>DEG | ¢ر'¢             | Cp/e    | C <sub>v</sub> /# | C. / .  | C <sub>PB</sub> /# | C     |
|---------|--------------|------------|------------|-------|-------------------|-------|------------|------------------------|---------|------------|------------------|---------|-------------------|---------|--------------------|-------|
|         | EADY<br>EADY | .0         | 700        | .398  | .333              | -3.0  | 4.0        | .0                     | .0 -2.1 | 3.2        | + 0621           |         | 00047             |         | 00018              |       |
|         | EADY         | .0         | 700        | .435  | . 448             | -4.5  | 4.0        | .0                     | .0 -2.3 | 4.6        | .0481            | .00264  | 00014             | .00252  | 00031              |       |
|         | EACY         | .0         | 700        | .451  | .5 <sub>0</sub> 4 | -4.9  | 4.0        | :0                     | .0 -2.3 | 5.0        | + U420<br>+ U371 | .00317  | .00019            |         | 00052              | .000  |
|         | EADY<br>EADY | . C        | 700        | .487  | .623              | -5.3  | 4.0        | .0                     | .0 -2.2 | 5.4        | +0327            | .00454  | .00096            | .00238  | 00074              |       |
|         | EADY         | .0         | 700<br>500 | .506  | .682              | -5.5  | 4.0        | :0                     | .0 -2.2 | 5.5        | · U297           | .00522  | .00131            |         | 00090              |       |
|         | EAUY         | .ñ         | 500        | . 400 | .876              | -4.9  | 4.0        | .0                     | .0 -2.6 | 5.0        | · u208           | .00775  | 00134             | .00248  | 06139              |       |
|         | EADY         | .0         | 500        | .419  | .958              | -5.0  |            | .0                     | .0 -2.6 | 5.0        | .0167            |         | 00106             |         | 00162              |       |
|         | EADY<br>EADY | .0         | 500<br>500 |       | 1.126             | -4.9  | 4.0        | .0                     | .0 -2.7 | 5.1        | .0145            | .01393  | 00063             |         | 00155              |       |
| 5- 8 ST | EAUY         | . 0        | 475        |       | 1.101             | -5.1  | 4.0        | 0                      | .0 -2.4 | 5.1        | .0037            | .01532  | .00107            | .00227  | 00130              |       |
|         | EADY<br>EADY | .0         | 452        | .435  | 1.243             | -5.2  | 4.0        | .0                     | .0 -2.2 |            | 0020             | .01753  | .00095            |         | 00120              |       |
|         | EADY         | .0         | 404        | .415  | 1.388             | -5.7  | 4.0        |                        | .0 -2.0 | 5.7        | 0144             | .02504  | .00130            | .00002  | 00158              | - 844 |
|         | EADY<br>EADY | .0         | 700        | .387  | .294              | -6.5  | 10.0       | .0                     | .0 -4.7 | 7.0        | .1055            |         |                   |         | 00059              | . 00. |
|         | EADY         | .0         | 700        | . 387 | .294              | -8.1  | 12.0       | .0                     | .0 -5.6 | 8.7        | .1124            | 00306   | 00506             | .01236  | 00032              |       |
|         | EADY         | .0         | 700        | .387  | .294              | -8.8  | 13.0       | .0                     | .0 -0.1 | 9.3        | .1157            |         |                   |         | 00037              | .00   |
|         | EADY<br>EADY | .0         | 700        | .404  | .351              | -7.7  | 10.0       | .0                     | .0 -2.5 | 8.0        | -1000            |         |                   |         | 00037              | . 00  |
| - 5 ST  | EADY         | .0         | 700        | .423  | .410              | -5.9  | 6.0        | . 0                    | .0 -2.8 | 6.0        | .0686            | .00155  | 00218             | .00410  | 00044              | . 90  |
|         | EACY         | .0         | 700        | .446  | .446              | -5.0  | 4.0        | :0                     | .0 -2.2 | 5.1        | .0453<br>.0514   |         | 00150             |         | 00039              | . 00  |
|         | EACY         | .0         | 700        | .464  | .546              | -5.3  | 4.0        | .0                     | .0 -2.2 | 5.4        | .4395            |         | 00112             | .00263  | 00061              |       |
|         | LADY         | .0         | 700        | .464  | .546              | -6.2  | 5.0        | .0                     | .0 -2.6 | 6.3        | .0461            |         | 00147             |         | 00064              | . 00  |
|         | EADY<br>EADY | .0         | 700        | .483  | .610              | -6.5  | 5.0        | .0                     | .0 -2.4 | 6.5        | · U415           |         | 00148             |         | 00093              | .00   |
| -12 51  | EADY         | .0         | 500        | . 412 | . 926             | -6.2  | 5.0        | .0                     | .0 -2.9 | 6.2        | . u233           | .00919  | 00168             | .00273  | 00177              | .001  |
|         | LADY         | .0         | 500        | .419  | .958              | -6.2  | 5.0        | :0                     | .0 -2.8 | 6.2        | +0216            | 00159   | 00155             | . 00273 | 00172              | .00   |
| - 4 51  | LAJY         | .0         | 700        | .404  | .351              | -8.9  | 11.0       | . 0                    | .0 -5.4 | 9.2        | .1027            | 00240   | 00442             | .01063  | 00025              | . 00  |
|         | EADY         | .0         | 700        | .404  | . 351             |       | 12.0       | .0                     | .0 -5.9 |            | .1062            | 00336   |                   |         | 00020              | . 00  |
|         | LAUY         | .0         | 500        | .353  | .410              | -9.2  | 13.0       | :0                     | .0 -4.9 | 9.4        | +0912            | .00257  | 00301             | . 00926 | 00066              | .00   |
|         | YUAT         | .0         | 500        | .378  | .766              | -12.8 | 12.0       | .0                     | .0 -5.4 | 12.8       | .0493            | .00868  | 00535             | .00638  |                    |       |
|         | LADY<br>LADY | .0         | 500        | .397  |                   | -13.2 | 12.0       | .0                     | 0 -5.2  | 13.2       | +0348            |         | 00436             |         | 00025              | . 00  |
| - 7 516 | LAOY         | .0         | 500        | .412  |                   | -13.4 | 12.0       | . 0                    | .0 -5.0 | 13.4       | .0324            | .01564  | 00369             | .00449  | 00134              |       |
|         | LADY<br>LADY | .0         | 500        | .419  | .958              |       | 12.0       | .0                     | .0 -5.0 |            | .0307            |         | 00329             |         | 00151              | . 003 |
|         | LADY         | .0         | 500        | .419  | .9y1<br>1.026     | -13.5 | 12.0       | .0                     | .0 -4.5 |            | +u271<br>+u228   |         | 00167             | .00330  | 00157              | .001  |
|         | YCA          | .0         | 500        | .441  | 1.002             | -9.1  | 8.0        | .0                     | .0 -3.7 | 9.1        | + J174           | .01843  | 00068             |         | 00134              | .00   |
|         | EAUY<br>LADY | .0         | 367        | .296  | .795              | -2.7  | 2.0        | .0                     | .0 -1.8 | 2.7        | .0153            |         | 00040             |         |                    |       |
| - 5 51  | EADY         | .0         | 339        | .276  | .906              | -2.8  | 2.0        |                        | .0 -1.8 | 2.8        | .0117            | .00941  | 00037             |         |                    |       |
|         |              | .0         | 316        | .265  | .974              | -2.9  | 2.0        | - 2                    | .0 -1.7 | 2.9        | -1100            |         | 00044             |         |                    | . 00  |
| - 8 STE | VCAJ         | . U        | 269        | .246  | 1.058             | -3.0  | 2.0        |                        | .0 -1.5 | 2.8        | .0035            |         |                   | . 00239 |                    |       |
|         | LADY         | . C<br>. U | 245        | .235  | 1.254             | -2.9  | 2.0        | .0                     | .0 -1.1 | 2.9        | +4124            | .01693  | . 00020           | . 00244 | 06258              |       |
|         | LADY         | .0         | 211        | .225  | 1,308             | -3.1  | 2.0        | .0                     | .01     | 3.1        | .0181            | .02090  | .00021            |         | 00333              | 000   |
| - 3 STI | LADY         | .0         | 236        | .251  | 1,448             | -3.4  | 2.0        | .0                     | .00     | 3.4        | -+u177           | . 02051 | . 00052           | . 00231 | 00122              |       |
|         | LADY         | .0         | 218        | . 243 | 1.011             | -3.5  | 2.0        | .0                     | .03     | 3.5        | - 0196           | .02453  | .00031            |         | 00520              | 00    |
| - 6 51  | LADY         | .0         | 232        | .267  | 1.642             | -3.5  | 2.0        | :0                     | .02     | 3.5        | +0172            | .03114  | .00102            | .00141  | 00452              |       |
|         | AOY          | .0         | 288        | .324  | 1.016             | -4.2  | 2.0        | - 5                    | 53      | 4.2        | 0483             | .02915  |                   | . 00095 | 00131              |       |
|         | EACY<br>LADY | .0         | 314 392    | .362  | 1.005             | -4.1  | 2.0        | .0                     | .0 -1.5 | *.1<br>3.3 | 1235             | .02833  | .00069            |         | 00202              |       |

 TABLE VIII. ROTOR PARAMETERS FOR INSTABILITY TEST CONDITIONS

 (BLADE CENTER OF GRAVITY AT .30 CHORD)

| LA-MAN     | TYPE   | TAND, | D.P. | 1     | 4     | • 8         | • B | *°          | - 8 | **<br>8 * | - <b>8</b>      | c, /e  | C <sub>a</sub> /e | e',2    | C, /e  | :5      | Case / 0 |
|------------|--------|-------|------|-------|-------|-------------|-----|-------------|-----|-----------|-----------------|--------|-------------------|---------|--------|---------|----------|
| -S-        | STEADY | •     | 700  |       |       |             |     | i.          |     | 4.1-      |                 | 51.411 | 00155             | - 00110 | An Lot | 10000   | 70100    |
|            | STEADY | •     | 700  |       | . 390 |             |     |             |     | 5-1-      |                 | 0404   | 01219             |         | 20200- | 55000-  | 59000    |
| <b>5-2</b> | STEADY | •     | 700  | . 135 | 50    | -2.1        |     | •           |     | -1.5      | 5.2             | 6040.  | .00215            |         |        | .00066  | 00003    |
|            | STEADY | •     | 201  |       | 632   | ~<br>1      |     | •           |     | -1-7      | 5.4             | .0293  | .00447            | 00052   | •      | .00052  | .00101   |
| -          | STEADY | •     | 200  | 3     | 00    | * :<br>1    |     | •           |     | -1.5      | 9. <del>1</del> | +L1.   | .00554            |         |        | .00013  | 00351    |
| -          | STEADY | •     | 005  | 285   | 561.  |             |     | •           |     | <b>.</b>  | 5.4             | •0134  | .00688            | 00009   | .00278 | -00002  | .00066   |
|            | STEADY | •     |      | 004   |       |             |     | ļ           |     | -1.5      | -               | -0095  | 00830             | .00008  | .00288 | 00009   | •00034   |
|            | STEADY |       | 2    | 572   | ATA A |             |     | , e         |     | •         |                 | -011   | 00737             | .0000   | .00284 | .00021  | .00050   |
|            | STEADY |       |      |       |       | 1           |     |             |     | 0.1.      |                 | 4110.  | C6/00*            | #0000°* | .00298 | 00000.  | .00036   |
| -10        | STEADY | •     | 1    |       | 1.030 | 1           |     | •           |     |           |                 | 100.   | 01168             | 20000.  | 00200  | -1000-  | .00025   |
| 11-10      | STEADY | •     | 357  | .322  | 1.1.7 | 1           | ••• | •           |     | -2.2      |                 | 000    | 01291             | 04000   | 00312  | 10003   | .00046   |
| 21-12      | STEADY | •     | 3    | .312  | 1.165 | 1           |     | •           |     | -2.1      |                 | 0040   | .01513            | 01000.  | .00298 | ·0000.  | .00055   |
|            | STEADY |       | 010  | 202   |       |             |     | ••          |     | -1.6      |                 | 0156   | .01749            | -00005  | .00280 | .00318  | .00052   |
|            | STEADY |       |      |       |       |             |     |             |     |           |                 | 0296   | .02094            | +0000   | .00238 | 00001   | .00048   |
| 91-19      | STEADY |       |      |       | 1.652 |             |     | <b>,</b> 10 |     |           |                 |        | 09420             | 29000.  | 26100. | 00005   | .00024   |
| 5- 5       | STEADY | •     | 100  | 1     | 294   | -3.9        | 0.1 | 0           |     | -2.2      |                 | 1752   | 0116              |         |        | 02000.  | 24000    |
| ₩-5        | STEADY | •     | 700  | 101   | 151.  | -5.0        | 5.0 | •           |     | -2.1      | 5.5             | . 1640 | 00000             | 00144   | 10200  | 09000   | 00126    |
| 5-2        | STEADY | •     | 200  | .353  | .657  | 1<br>1<br>1 | 0.0 | •           |     | -2.0      | 5.6             | .0230  | .00458            | 00121   | .00295 | .00012  | .00086   |
|            | STEADY | •     | 20   | . 37  | 201.  | -2.7        |     | •           |     | -1.7      | 5.7             | -0164  | .00757            | -+000#2 | .00301 | .00051  | .00031   |
|            | STEADY |       |      | -     | 190.1 |             |     | •           |     | -2.7      | 5.5             | 6015   | .01146            | 60000.  |        | .00014  | .00030   |
|            | 21CAUT |       |      |       | 1.1   |             |     | •           |     |           | 1.2             | 9200-  | -0110-            | 61000.  |        | 30051   | 00025    |
|            | STEADY |       |      | ļ     |       |             |     |             |     |           | 0.0             | 0000   | .00782            | 10000-  | 00200. | 62000   | 01000.   |
|            | STEADY |       |      |       | 9.6   | -2.1        | 0   |             |     | -         |                 | 2000   | 16900             | 20000   | 69200  |         | 00021    |
| 990        | STEADY | 0     | 316  | 265   | 974   | -2.1        | 2.0 |             |     | -1.6      | 2.1             | -0042  | .01076            | 10100   | 00206  |         | 00026    |
| 9          | STEADY | •     | 292  |       | 1.052 | -2.1        | 2.0 | •           |     | -1-       | 2.1             | 6100.  | 01735             | .00165  | 00294  | 00156   | 00062    |
|            | STEADY | •     | 52   |       | 1.144 | -2.0        | 2.0 | •           | •   | -1.2      | 2.1             | -0057  | 01419             | .00198  | .00314 | 66000   | 00004    |
|            | STEADY | ę     | 205  | .235  | 1.254 | -2.1        | 8°0 | ٩.          |     | ••••      | 2.1             | .0036  | .01699            | .00296  | .00333 | 00093   | 00135    |
|            | STEADY | •     | 221  | 225   | 1.366 | -2.1        | 2.0 | •           |     | 1         | 2.1             | -00.82 | 01940             | 00100   | 00 147 | - 00105 | 00160    |
|            |        |       |      |       |       |             |     |             |     | ;         |                 |        |                   | 10000.  |        | COTON - |          |

| TABLE X.         | STRUCTURAL DAMPING COE<br>BLADE (BLADE CENTER OF |     |             |
|------------------|--------------------------------------------------|-----|-------------|
|                  | $\Omega_{s}R$                                    |     | · · · · · · |
| Mode Description | (ft/sec)                                         | RPM | g           |
| Flapping         | 300                                              | 319 | .020        |
| lst. Flapwise    | 300                                              | 319 | .037        |
| 2nd. Flapwise    | 300                                              | 319 | .034        |
| 3rd. Flapwise    | 300                                              | 319 | .038        |
| 4th. Flapwise    | 300                                              | 319 | .040        |
| lst. Torsion     | 300                                              | 319 | .019        |
| 2nd. Torsion     | 300                                              | 319 | .019        |
| Flapping         | 500                                              | 531 | .012        |
| lst. Flapwise    | 500                                              | 531 | .020        |
| 2nd. Flapwise    | 500                                              | 531 | .025        |
| 3rd. Flapwise    | 500                                              | 531 | .032        |
| 4th. Flapwise    | 500                                              | 531 | .035        |
| lst. Torsion     | 500                                              | 531 | .019        |
| 2nd. Torsion     | 500                                              | 531 | .019        |
| Flapping         | 700                                              | 743 | .010        |
| lst. Flapwise    | 700                                              | 743 | .013        |
| 2nd. Flapwise    | 700                                              | 743 | .019        |
| 3rd. Flapwise    | 700                                              | 743 | .026        |
| 4th. Flapwise    | 700                                              | 743 | .032        |
| lst. Torsion     | 700                                              | 743 | .018        |
| 2nd. Torsion     | 700                                              | 743 | .018        |

|        |    |             |       |              |         |              |             |        |           |       |       | -             |        |       |                                 |         |         |           |           |          |         |
|--------|----|-------------|-------|--------------|---------|--------------|-------------|--------|-----------|-------|-------|---------------|--------|-------|---------------------------------|---------|---------|-----------|-----------|----------|---------|
|        |    |             |       |              |         |              |             |        |           |       |       |               |        |       |                                 |         |         |           |           |          |         |
|        |    | 1           |       |              |         | •            | 1           |        | 2         |       | ••••  | 14 - 14<br>14 |        |       |                                 |         | ,       | :         |           | ;<br>  " | ÷. 6.1  |
|        |    | 1           |       | 23           |         |              | _           | · •    | •         | 1411  |       | ÷             | 4      |       |                                 |         |         | :         | м<br>А    | • • • •  | 1.00    |
|        |    | 1           |       |              |         | i.           |             |        |           |       |       | • 57          |        | •     | ļ                               |         | •       |           | •         | •        | 7       |
|        |    |             | •     | ۲.<br>۱      | •       |              |             | Ì      | •         | 3     |       |               | 0      |       | •                               |         |         |           |           |          | • • • • |
|        |    |             | 1     | 6.1          | 0       | 24<br>       | )<br>1<br>H | i      |           |       |       |               |        |       | ł                               | ÷       |         |           |           | ۰<br>۱   | • • •   |
|        |    | •           | £ .   | í,           |         | See.         | 2           |        |           |       |       |               | .335   |       |                                 |         |         |           | ÷         |          |         |
|        |    | •           | ŀ     |              | 1       | **           | 2.<br>      | 4      |           |       |       | 3             |        |       |                                 |         |         | ľ.        |           |          |         |
| -      | •  |             | •     |              | 2. 1. 1 | 1)<br>2      |             |        |           |       |       |               |        | :     |                                 |         |         |           |           |          |         |
| ;      |    | `.          |       |              | ſ       | 1            | -           |        |           | 75: - |       |               | 95     |       | 1<br>1<br>1                     | - (Je   |         | ľ.        |           | •        | ••••••• |
| ,      |    | ;           |       | 4            | •       | £            |             | 1      | •         | 4.    | . Ú.L |               |        | 1     |                                 |         |         |           |           |          |         |
| 2      |    |             |       |              |         | •            | 1.7         | 2      | • • • •   | 5     |       | - 20-         |        |       | 5                               |         |         |           |           |          |         |
| •      | 4  | ••          | • •   | Ì            |         |              | · .         | · c.   | - ; ; ; ; | 1.1   | 104   | 50.           |        |       | •                               | • • •   |         |           | • / •     | :        |         |
|        |    |             | 1     | 0<br>22<br>1 |         | e<br>T       | с<br>1      |        |           | 2     |       |               |        |       |                                 |         | ł       |           |           |          | ,       |
|        |    | .,          | 1     | 12.          |         |              |             | 4.4    |           |       | in    | . 30-         | . 61 . | •. •. | 1                               | '       |         |           | •         |          |         |
|        |    | 1<br>7<br>9 | • ",  | •            | 0.2.1   | •            | i,          |        | S<br>T    |       | ני    | ·             |        | `.    |                                 |         |         |           | i i       | 4        | ,       |
| -      | •  |             | Ì.t   |              | ·       |              | ,<br>L      | . 50 . | 11211     |       | .52.  | .5%           | 1      | • • • |                                 | 1.5.1   |         |           |           | ** 1 •   |         |
| 1      | •  | 2015        |       | 34.0.11      | cre.    | •            |             | :.     |           | 56    | Sec.  | 105           |        | à.    |                                 |         |         | · · · · · |           |          |         |
|        | •  | . 25        | •     | 55           | 0.0     | . 4 .        |             | 246.   |           | 000.  |       | 3             | . 201  |       | 4 <sup>4</sup> 4 <sup>4</sup> 4 |         | ·       |           |           | ;        |         |
| A      | •  |             | .,    | ł            | . 90    | •            |             | ** •   | 5-5       | 29-   | .5.   |               | 202.   | S     |                                 | ···     |         |           |           | ſŗ.      |         |
|        | ·  | ļ           |       | 1.199        |         |              |             |        |           | 101   |       | .961          | 0.000  | -     | • • • •                         | · . J(  |         | 2         | 0         | ***      |         |
| ÷      | •  | 8           | ÷     | <i> i</i> ,  |         |              |             |        | •         | . 56. | 30-   | 1001          | 200.   |       |                                 |         |         | 51.       |           | • •      |         |
| 2      | 1) | 5           | •,    |              | ų       |              | 1. 2. A.    | 125    | ľ,        | 2001  |       |               | 000.   | 06    |                                 |         | • • • • |           | • • • • • |          |         |
|        |    | 15.         | 2     |              | -12-    | -            | 17          |        | · · ·     | 200.  | . 360 | TCC.          | 50.0   | - 544 | • • • •                         | - 22 -  |         | · • ·     |           | ·        | •••••   |
| 1      | •  | )<br>()     | - 6   | • • •        |         | · · · ·      |             | . S    |           |       | . 15. | cor.          | .990   |       |                                 |         |         |           |           |          | 1- 1- 1 |
| ۰<br>۱ | •  | 6.          | • • • |              | •       | 1            |             |        |           | 50.   |       | . 300         |        | 1     | ÷,                              | 'J      | •       | ····      | 30.05     |          |         |
|        | ×  | c           |       | с.<br>       |         | i<br>ir<br>C | 1           | 5.9C - |           | 203   |       | . 56.         | 200.   | - 15: |                                 | . 20 .  | 445.    | . 35. 7   | 5.4       |          |         |
| ÷.     | •  | 92.         | s,    | 11, 11       |         | ¢            | E. :        | FIC.   |           | . 302 |       | . 00.         | 000    | - 160 |                                 | . J. k. |         | 0:::-     | 3.5.      |          |         |
| 47     | ÷  | ж.          | `     | - 5          | · · ·   | 224-4        | 102.        | . 616  | 92        | 000.  | 052   | 000.          | 000.   | 063   | 3.0.                            | - 96    | 55.     | -c.f.     | 1.5       | 101-     | -33-5   |
|        |    |             |       |              |         |              |             |        |           |       |       |               |        |       |                                 |         |         |           |           |          |         |

| Tan. ô <sub>3</sub> | ລິ R<br>(Tos) | ح   | ار مع<br>( deg ) | Als<br>(deg) | Bls<br>(deg) | als<br>(deg) | bls (aeg) | ~               | cL/a   | c <sub>D</sub> /a | 0 <sup>2</sup> /2 |
|---------------------|---------------|-----|------------------|--------------|--------------|--------------|-----------|-----------------|--------|-------------------|-------------------|
| 0.                  | 100           | -29 | 0.6              | -2.0         | 7.0          | 0.           | 0.        | 600 <sup></sup> | .0689  | 0001              | .0067             |
| 0.                  | 002           | .29 | 10.5             | -2.2         | 0.0          | ۰.           | 0.        | 010             | 0020.  | 0030              | :000:             |
| 0.                  | 700           | .29 | 12.0             | -3.8         | 0.11         | 0.           | 0.        | 010             | .0713  | 0047              | 0010.             |
| 0.                  | 100           | .41 | 0.6              | -1.8         | 8.5          | ۰.           | 0.        | 008             | .0558  | 0012              | . 00EG            |
| 0.                  | 002           | .41 | 10.5             | -2.5         | 10.1         | 0.           | ٥.        | 008             | .0585  | 0017              | 470C.             |
| 0.                  | 042           | τų. | 12.0             | -3.4         | 11.8         | •            | 0.        | 008             | 9096.  | 0726              | 160c.             |
| 0.                  | 676           | .50 | 0.6              | -1.3         | 1.6          | •            | •         | 007             | 6140.  | 0002              | .0056             |
| ς.                  | 670           | .5. | 10.5             | -2.6         | 10.6         | 0.           | 0.        | 007             | .050 c | 0006              | .0068             |
| °.                  | Jus           | 6   | 12.0             | -3.5         | 12.5         | 0.           | •         | 600             | 0530.  | 0013              | .0082             |

|             |       |             | TABLE         | TABLE XIII. BLADE | BLADE RESPONSE DURING INSTABILITY | RING INSTAB    | ALITI      |             |                    |
|-------------|-------|-------------|---------------|-------------------|-----------------------------------|----------------|------------|-------------|--------------------|
|             |       |             | <b>م</b><br>∨ | Mr.30R            |                                   | 8              |            | z           | 35P 6              |
| (m/g) (chs) | (cps) | ्त<br>(deg) | н<br>(deg)    | т<br>(inlb)       | _m<br>(inlb)                      | deg)           | (ieg)      | m<br>(inlb) | inlb)              |
| •           | 0.    | 6.7         | 0.            | 3.4               | •                                 | 2.3            | 0.         | 6.7         | с.                 |
| .28         | 3.5   | -3.4        | 3.6           | 9.                | .5                                | 1.1            | 2          | -3.6        | 6.1-               |
| .36         | 4.5   | ٩.          | 1.2           | Q.                | 0.                                | ·-             | 0.         | 0.          | 0                  |
| .40         | 5.0   | -1.9        | 2             | 0.                | 0.                                | .6             | 0.         | 7           | -5.6               |
| .72         | 8.9   | 0.          | 0.            | 6.                | 2                                 | -1.1           | ·.         | -3.0        | ۳.<br>۱            |
| 1.00        | 12.4  | - 1         | 0.            | 4.                | -1.2                              | ۰ . <i>ل</i> ا | 1          | 3.3         | 5.4                |
| 1.28        | 15.9  | •           | •             | 5.                | 1                                 | 1              | 2          | 2 · 3       | ÷                  |
| 1.40        | 17.4  | •           | ٥.            | ~                 | 1.6                               | -1.2           | .5         | <b>5.</b> 0 | ۲.3                |
| 1.72        | 21.3  | •           | 0-            | -5                | e.                                | 5              | 0.         | 1.1         | -3.0               |
| 2.00        | 24.8  | •<br>•      | 0.            | ۰ ۱               | 1.3                               | r              | 4          | 1.9         | ć.5                |
| 2.28        | 28.2  | 0.          | 0.            | 5                 | 1.4                               | 0.             | 2.1        | ۱<br>در     | 1.2                |
| 2.40        | 29.7  | •           | 0.            | -5.6              | -2.7                              | 6.             |            | -14.4       | ٽ . ت              |
| 3.00        | 37.2  | •           | °.            | 2.4               | -1.7                              | 0.             | 2.         | -16.0       | -1 • \<br>u \<br>1 |
| 3.40        | 42.1  | •••         | 0.            | -1.0              | 5.2                               | 0.             | с <b>.</b> | ం.<br>-     | 9.44-              |
| 1.00        | 49.6  | 0.          | 0.            | 2.                | -1.5                              | 0.             | -!         | 1.5         | 5.0                |
| 4.40        | 54.5  | ••          | 0.            | 2.0               | -1.6                              | 0.             | 0.         | - 8.5       | 1.1                |
| 5.00        | 61.9  | o.          | •             | 6                 | -3.3                              | 0.             | .1         | 1.8         | - 1.4              |
| 5.40        | 6.99  | ۰.          | с.            | -1.8              | 3.5                               | 0.             | 0.         | 7.          | 1.0                |
| 6.00        | 74.4  | •           | 0.            | •••               | 4                                 | 0.             | 0.         | 5           | -<br>-<br>-        |
|             |       |             |               |                   |                                   |                |            |             |                    |

è

|               | TABLE )                   | (IV. BLADE NON      | HARMONIC RES        | PONSE              | della del |
|---------------|---------------------------|---------------------|---------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| RUN-PT<br>NO. | ω <u>m</u><br>Ω           | DATA<br>CHANNEL     | 8.<br>m             | COMPONENTS         | r                                                                                                               |
| 67-9          | .36<br>.36                | ζβ                  | .1<br>.0            | .2<br>1            | .2                                                                                                              |
| 67-10         | .32                       | ς                   | .1                  | .2                 | .3                                                                                                              |
|               | .32                       | β                   | .0                  | 1                  | .1                                                                                                              |
|               | .68                       | β                   | .0                  | .0                 | .1                                                                                                              |
| 67-11         | .28<br>.28<br>.72<br>1.28 | ζ<br>β<br>β         | .1<br>.1<br>2<br>.0 | .6<br>3<br>1<br>.4 | .7<br>.3<br>.2<br>.4                                                                                            |
| 67-12         | .24                       | ζ                   | 2                   | .9                 | .9                                                                                                              |
|               | .24                       | MF.30R              | .]                  | .5                 | .6                                                                                                              |
|               | .24                       | MT.18R              | 2                   | .8                 | .8                                                                                                              |
|               | .24                       | β                   | 3                   | 4                  | .5                                                                                                              |
|               | .76                       | MF.30R              | 2                   | .3                 | .4                                                                                                              |
|               | .76                       | MT.18R              | 8                   | 2                  | .8                                                                                                              |
|               | .76                       | β                   | 2                   | .2                 | .3                                                                                                              |
|               | 1.24                      | MF.30R              | 4                   | 1                  | .4                                                                                                              |
|               | 1.24                      | MT.18R              | .8                  | .6                 | 1.0                                                                                                             |
|               | 1.24                      | β                   | 2                   | .1                 | .2                                                                                                              |
| 68–3          | 13.58                     | M <sub>F.30R</sub>  | .4                  | 4                  | .6                                                                                                              |
|               | 13.58                     | MF.60R              | .6                  | .0                 | .6                                                                                                              |
|               | 13.58                     | MT.18R              | .9                  | 3                  | 1.0                                                                                                             |
| 68-4          | 13.65                     | M <sub>F</sub> .30R | 2                   | .6                 | .7                                                                                                              |
|               | 13.65                     | M <sub>F</sub> .60R | 1                   | .6                 | .6                                                                                                              |
|               | 13.65                     | M <sub>T</sub> .18P | 5                   | 1.1                | 1.2                                                                                                             |
| 68-5          | 13.74                     | M <sub>F</sub> .30R | .8                  | 1                  | .8                                                                                                              |
|               | 13.74                     | M <sub>F</sub> .60R | .7                  | 2                  | .8                                                                                                              |
|               | 13.74                     | M <sub>T</sub> .18R | 1.4                 | 1                  | 1.4                                                                                                             |
| 686           | 13.84                     | M <sub>F</sub> .30R | .7                  | 6                  | .8                                                                                                              |
|               | 13.84                     | M <sub>F</sub> .60R | .6                  | 6                  | .8                                                                                                              |
|               | 13.84                     | M <sub>T</sub> .18R | 1.3                 | 9                  | 1.6                                                                                                             |
| 68-7          | 13.96                     | M <sub>F</sub> .30R | 6                   | 8                  | 1.0                                                                                                             |
|               | 13.96                     | M <sub>F</sub> .60R | 7                   | 7                  | .9                                                                                                              |
|               | 13.96                     | M <sub>T</sub> .18R | 9                   | -1.4               | 1.7                                                                                                             |
| 68-9          | 13.72                     | MF. JOR             | .5                  | 4                  | .7                                                                                                              |
|               | 13.72                     | MF. JOR             | .4                  | 4                  | .6                                                                                                              |
|               | 13.72                     | MT. 18R             | 1.0                 | 7                  | 1.2                                                                                                             |
| 74-3          | 9.70                      | MC. 30R             | -5.2                | -3.6               | 6.3                                                                                                             |
|               | 10.52                     | MC. 30R             | -19.8               | -15.2              | 25.0                                                                                                            |

|               |                                                                       | TABLE XI                                                                                                                            | V - Continu                                         | ed                                                    |                                                    |
|---------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| RUN-FT<br>NO. | <u>ه</u><br>۵                                                         | DATA<br>CHANNEL                                                                                                                     | <b>6</b>                                            | COMPONENTS<br>b<br>m                                  | rm                                                 |
| 74-4          | 9.71<br>10.52                                                         | MC.30R<br>MC.30R                                                                                                                    | 1.0<br>-16.2                                        | 5.1<br>-18.6                                          | 5.2<br>24.6                                        |
| 74-5          | 9.71<br>10.52                                                         | M <sub>C.30R</sub><br>M <sub>C.30R</sub>                                                                                            | 2.3<br>-14.4                                        | - 4.7<br>- 8.4                                        | 5.2<br>16.7                                        |
| 74-6          | 9.71<br>10.52                                                         | MC.30R<br>MC.30R                                                                                                                    | 3.6<br>10.8                                         | - 3.4<br>12.0                                         | 5.0<br>16.0                                        |
| 74-7          | 9.71<br>10.52                                                         | MC.30R<br>MC.30R                                                                                                                    | 6<br>-12.2                                          | 4.6<br>- 8.3                                          | 4.6<br>15.6                                        |
| 74-8          | 9.70<br>10.52                                                         | MC.30R<br>MC.30R                                                                                                                    | 4.6<br>9.8                                          | - 1.0<br>10.2                                         | 4.7<br>14.2                                        |
| 74-9          | .22<br>9.7 <u>1</u><br>10.52                                          | ς<br>Mc.30R<br>Mc.30R                                                                                                               | 5<br>2.7<br>10.1                                    | .0<br>- 3.3<br>- 8.6                                  | .5<br>4.3<br>12.3                                  |
| 75-6          | 5.26                                                                  | Mc.30R                                                                                                                              | -                                                   | -                                                     | 31.4                                               |
| 75-7          | 5.28                                                                  | MC.30R                                                                                                                              | -                                                   | -                                                     | 34.0                                               |
| 75-8          | 5.27                                                                  | Mc.30R                                                                                                                              | -                                                   | -                                                     | 41.4                                               |
| 75-9          | •35<br>•35                                                            | ς<br>β                                                                                                                              | •3<br>2                                             | .0<br>.0                                              | •3<br>•2                                           |
| 75-10         | •33<br>•33                                                            | ς<br>β                                                                                                                              | .4<br>3                                             | 2<br>1                                                | .5<br>.3                                           |
| 75-11         | .29<br>.29<br>.29<br>.29<br>.71<br>.71<br>.71<br>1.29<br>1.29<br>1.29 | ζ<br>M <sub>F</sub> .30R<br>M <sub>T</sub> .18R<br>β<br>M <sub>F</sub> .30R<br>M <sub>T</sub> .18R<br>β<br>M <sub>T</sub> .18R<br>β | .3<br>2<br>1<br>4<br>2<br>3<br>.3<br>.0<br>.5<br>.2 | 7<br>.0<br>.6<br>.0<br>.3<br>3<br>.0<br>.5<br>2<br>.0 | .8<br>.2<br>.7<br>.4<br>.5<br>.3<br>.5<br>.6<br>.2 |
| 77-12         | 5.26                                                                  | Mc.30R                                                                                                                              | _                                                   | -                                                     | 8.8                                                |
| 77-13         | 5.26                                                                  | M <sub>C.30R</sub>                                                                                                                  |                                                     | -                                                     | 9.2                                                |
| 79-10         | .29<br>.29<br>.29<br>.29<br>.71<br>.71                                | <sup>K</sup> F.30R<br><sup>M</sup> F.30R<br><sup>M</sup> F.30R<br>β                                                                 | 4<br>1<br>.0<br>- 2.3<br>3<br>.1                    | 3<br>.2<br>.3<br>1.4<br>.1                            | .5<br>.3<br>2.6<br>.3<br>.4                        |

|               |         | TABLE XIV .        | - Concluded    |                  |     |
|---------------|---------|--------------------|----------------|------------------|-----|
| RUN-PT<br>NO. | um<br>Ω | DATA<br>CHANNEL    | a <sub>m</sub> | COMPONENTS<br>bm | r   |
|               | .71     | MC.30R             | .4             | .4               | .5  |
|               | 1.30    | MC.30R             | .2             | .3               | .4  |
|               | 1.30    | B                  | .2             | 2                | .3  |
|               | 1.30    | MC.30R             | .2             | 3                | .4  |
| 81-9          | .27     | ζ                  | .5             | .4               | .6  |
|               | .27     | <sup>M</sup> T.18R | 1              | .7               | .7  |
|               | .27     | β                  | 1              | 3                | .3  |
|               | .73     | <sup>M</sup> T.18R | 6              | .4               | .7  |
|               | .73     | β                  | .1             | 2                | .3  |
|               | 1.27    | <sup>M</sup> T.18R | .7             | .4               | .8  |
|               | 1.27    | β                  | 1              | .0               | .1  |
| 84–6          | .50     | MT.18R             | 5              | 6                | .7  |
|               | .50     | B                  | 1              | 3                | .3  |
|               | 4.52    | MT.18R             | .9             | .5               | 1.0 |
|               | 4.53    | MC.30R             | .9             | - 4.7            | 4.8 |

.

.

!















Figure 4. Blade Mass Properties.



à

Figure 5. Blade Stiffness Properties.



Figure 6. Blade Flapwise Natural Frequency Versus Rotor Speed.



à

Figure 7. Blade Chordwise Natural Frequency Versus Rotor Speed.



Figure 5. Blade Torsional Natural Frequency Versus Rotor Speed.



à.

Figure 9. Blade First Flapwise Bending Mode Shape;  $\Omega_{\rm g}$  R = 700 ft/sec.



.

ş

Figure 10. Blade First Chordwise Bending Mode Shape;  $\Omega_{\rm g}~{\rm R}$  = 700 ft/sec.



Figure 11. Blade First Torsional Mode Shape;  $\Omega_s R = 700 \text{ ft/sec.}$ 



Figure 12. Model blade bearing Friction Test Ferults.



,

۲







Figure 14. Theoretical Fixed-Azimuth Stability Boundaries and Selected Data Points.



(a)

Figure 15. Sample Control Position Transient Input;  $V_s = 300 \text{ kn}$ ,  $\mu = 1.026$ , TAN  $\delta_3 = 1.0$ ,  $\alpha_f = 0.0^\circ$ ,  $\theta_{cs} = 0.0^\circ$ ,  $\Delta \theta_c = 4.0^\circ$ ,  $a_{lss} = 0.0^\circ$ ,  $\Delta a_{ls} = 2.4^\circ$ ,  $b_{lss} = 0.0^\circ$ ,  $\Delta b_{ls} = -1.4^\circ$ , Run 60, Point 28,



į

1:

Figure 15. Continued.



•



Figure 15. Concluded.



( ) + . 270", BLADE CG AT 25 CHORD

Figure 16. Prequency and Damping of Calculated Fixed-Azimuth Flutter Mode.



(b) #= 270", BLADE C.G. AT .30 CHORD

Figure 16. Continued



(c) # = 90°, BLADE C G AT .30 CHORD

Figure 16. Continued.

· ;

...



.

(d) #=90", BLADE C.G. AT .35 CHORD

Figure 16. Concluded.









(b)  $V_{s} = 170 \text{ knots}, \mu = .41$ 

118





o




(a) tan  $B_3 = 0.0$ ,  $a_f = -8.0^\circ$ ,  $\theta_{CS} = 12.0^\circ$ ,  $\Delta\theta_C = 0.0^\circ$ ,  $a_{1SS} = 4.0^\circ$ ,  $\Delta a_{1S} = 0.0^\circ$ ,  $b_{1SS} = 0.0^\circ$ ,  $\Delta b_{1S} = -2.0^\circ$ 

à

Figure 18. Experimental and Theoretical Blade Lag Angle During Transient Conditions;  $V_s = 120 \text{ kn}$ ,  $\mu = 0.29$ ,  $Y_{CG}/c = 0.25$ .



Figure 19. Experimental and Theoretical Blade Flapwise Bending Moments During Transient Conditions;  $V_g = 120$  kn,  $\mu = 0.29$ ,  $Y_{CG}/c = 0.25$ .



à

Figure 19. Continued.



(f) ton δ<sub>3</sub> = 10, α<sub>f</sub> = 80°, θcs = 40°, Δθc = 40°, α<sub>iss</sub> = 00°, Δα<sub>is</sub> = 10°, b<sub>iss</sub> =00°, Δb<sub>is</sub> =-05°

Figure 19. Concluded.



Figure 20. Experimental and Theoretical Blade Flap Angle During Transient Conditions;  $V_s = 120 \text{ kn}$ ,  $\mu = 0.29$ ,  $Y_{CG}/c = 0.25$ .



Figure 20. Concluded.



(a)  $\tan \vartheta_3 = 0.0$ ,  $\vartheta_f = -8.0^\circ$ ,  $\vartheta_{CS} = 12.0^\circ$ ,  $\Delta \vartheta_C = 0.0^\circ$ ,  $\sigma_{1SS} = 4.0^\circ$ ,  $\Delta \sigma_{1S} = 0.0^\circ$ ,  $b_{1SS} = 0.0^\circ$ ,  $\Delta b_{1S} = -2.0^\circ$ 

Figure 21. Experimental and Theoretical Blade Torsional Moment During Transient Conditions;  $V_s = 120$  kn,  $\mu = 0.29$ ,  $Y_{CG}/c = 0.25$ .



(a)  $\tan \theta_s = 1.0$ ,  $e_f = 4.0^\circ$ ,  $\theta_{Cs} = 8.0^\circ$ ,  $\Delta \theta_c = 2.0^\circ$ ,  $a_{1ss} = -4.0^\circ$ ,  $\Delta a_{1s} = 2.0^\circ$ ,  $b_{1ss} = 0.0^\circ$ ,  $\Delta b_{1s} = 0.0^\circ$ 

Figure 22. Experimental and Theoretical Blade Lag Angle During Transient Conditions;  $V_s = 200 \text{ kn}, \mu = 0.50, Y_{CG}/c = 0.25.$ 







(a) ten  $b_3 = 1.0$ ,  $a_f = 4.0^\circ$ ,  $b_{CS} = 8.0^\circ$ ,  $\Delta b_c = 2.0^\circ$ ,  $a_{1SS} = -4.0^\circ$ ,  $\Delta b_{1S} = 2.0^\circ$ ,  $b_{1SS} = 0.0^\circ$ ,  $\Delta b_{1S} = 0.0^\circ$ 

•

Figure 23. Experimental and Theoretical Blade Flapwise Bending Moments During Transient Conditions;  $V_s = 200 \text{ kn}, \mu = 0.50, Y_{CG}/c = 0.25.$ 



÷.





Figure 23. Continued.

131



(e)  $\tan \delta_3 = 10$ ,  $e_f = 4.0^\circ$ ,  $\theta_{CS} = 8.0^\circ$ ,  $\Delta \theta_C = 2.0^\circ$ ,  $a_{1SS} = -4.0^\circ$ ,  $\Delta a_{1S} = 2.0^\circ$ ,  $b_{1SS} = 0.0^\circ$ ,  $\Delta b_{1S} = 0.0^\circ$ 

Figure 23. Continued.



Figure 23. Continued.



è

Figure 23. Concluded.

134



(a) ten 3<sub>3</sub> = 10, e<sub>f</sub> = 40°, θ<sub>CS6</sub> + 80°, Δθ<sub>C</sub> = 20°, e<sub>B6</sub> + -40°, Δe<sub>6</sub> = 20°, h<sub>BS</sub> = 00°, Δb<sub>B</sub> = 00°

Figure 24. Experimental and Theoretical Blade Flap Angle During Transient Conditions;  $V_s = 200 \text{ kn}, \mu = 0.50, Y_{CG}/c = 0.25.$ 

.

•



• . • •

à

Figure 24. Concluded.



Figure 25. Experimental and Theoretical Blade Torsional Moment During Transient Conditions:  $V_g = 200 \text{ km}$ ,  $\mu = 0.50$ ,  $Y_{CG}/c = 0.25$ .



٠-

(c) tan  $B_3 + IO$ ,  $e_f = 8O^\circ$ ,  $\theta_{CS} = 4O^\circ$ ,  $\Delta\theta_C = 4.0^\circ$ ,  $a_{1SS} = 0O^\circ$ ,  $\Delta a_{1S} = 15^\circ$ ,  $b_{1SS} = 0O^\circ$ ,  $\Delta b_{1S} = -1.1^\circ$ 

Figure 25. Concluded.



4

.

•



139





•















i







Figure 27. Continued.

144







Figure 27. Continued.



(g) Ion 83 +00. ef +4 0\* . Δ8, +00\*. 04 +00\* . Δ04 +-4 0\*. 04 +00\*. Δ04 +01\* + 0 0\* , ees

Figure 27. Concluded.



Figure 28. Experimental and Theoretical Blade Flap Angle During Transient Conditions;  $V_s = 300 \text{ km}, \nu = 1.03$ ,  $Y_{CG}/c = 0.25$ .



Figure 28. Concluded.



Figure 29. Experimental and Theoretical Blade Torsional Moment During Transient Conditions;  $V_s = 300$  kn,  $\mu = 1.03$ ,  $Y_{CG}/c = 0.25$ .



Figure 29. Concluded.



-



1









à



154






Figure 31. Concluded.



Figure 32. Theoretical Blade Flap Angle During Transient Conditions;  $V_s = 300 \text{ kn}$ ,  $\mu = 1.03$ ,  $Y_{CG}/c = 0.25$ , Control Input Applied 3/4 Revolution After Experimental Input.



Figure 33. Theoretical Blade Torsional Moment During Transient Conditions;  $V_s = 300 \text{ kn}$ , u = 1.03,  $Y_{CG}/c = 0.25$ , Control Input Applied 3/4 Revolution After Experimental Input.



Figure 34. Blade Response Versus Azimuth During Retreating Blade Aeroelastic Limits Testing;  $Y_{CG}/c = 0.25$ ,  $a_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $V_s = 332$  kn,  $\theta_c = 2.0^\circ$ .



Figure 34. Continued.



Figure 34. Continued.





Figure 34. Concluded.



Figure 35. Blade Response Versus Azimuth During Advancing Blade Aeroelastic Limits Testing;  $Y_{CG}/c = 0.25$ ,  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\theta_c = 2.0^\circ$ .



Figure 35. Continued.



Figure 35. Continued.



ê,

Figure 35. Concluded.



Figure 3t. Blade Response Versus Azimuth During Auvancing Blade Aeroelastic Chite Testing; Copie = Chit, ag = 1.0°, ags = bis = 0.0°, NgR = 700 ft ser, g = 4.0°.



Figure 36. Continued.



Figure 36. Continued.





Figure 36. Continued.



Figure 36. Concluded.



à.

Figure 37. Blade Response Versus Azimuth During Advancing Blade Aeroelastic Limits Testing;  $Y_{CG}/c = 0.25$ ,  $a_g = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ ,  $a_g R = 500$  ft/sec,  $\theta_c = 4.0^{\circ}$ .



Figure 37. Continued.



-

Figure 37. Continued.



Figure 37. Continued.



•

Figure 37. Concluded.



•

ø

.

...

00-7 herelatic Lists Blade Response Versue Atimuth Buring Combined Advancing and Retreating Blade Aeroelastic Lit Testing: Y<sub>cc</sub>/c = 0.30; a. = 0.0°; a. = b.a. Y<sub>a</sub> = 332 km, A<sub>a</sub>R = 400 km/sec, u. = 1.39, b<sub>c</sub> = Figure 38.

.

•

.



Pigure No. Continued.





141 44 + 30'

Figure 38. Continued.



•

.





.





.

\$

Figure 39. Blade Response Versus Azimuth During Advancing Blade Aeroelastic Limits Testing;  $Y_{CG}/c = 0.35$ ,  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\Omega_s R = 700$  ft/sec,  $\theta_c = 4.0^\circ$ .



é

Figure 39. Continued.



Figure 39. Continued.

è

:



...

Figure 39. Continued.



(h) Vs = 138 KNOTS , # + 0 33

Figure 39. Continued.



Figure 39. Concluded.



ð





Figure 40. Continued.



v



190



111 V. + 107 KNOTS . . + 0.63

Figure 40. Continued.


•

.

.

à

Figure 40. Continued.



a

Figure 40. Concluded.



Figure 41. Blade Response Versus Azimuth During Advancing and Combined Advancing and Retreating Blade Aeroelastic Limits Testing;  $Y_{CG}/c = 0.35$ ,  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ .



Figure 41. Continued.



Figure 41. Continued.



Figure 41. Continued.



Figure 41. Concluded.



Figure 42. Blade Response Versus Azimuth During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $a_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $V_s = 121$  kn,  $\Omega_s R = 700$  ft/sec,  $\mu = 0.29$ .



Figure 42. Continued.



Figure 42. Continued.



Figure 42. Continued.



Figure 42. Concluded.



Figure 43. Blade Response Versus Azimuth During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $\alpha = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ ,  $V_s = 145 \text{ kn}$ ,  $\Omega_s R = 700 \text{ ft/sec}$ ,  $\mu = 0.35$ .



de.

a.

Figure 43. Continued.



Figure 43. Continued.



.

Figure 43. Continued.



Figure 43. Concluded.



Figure 44. Blade Response Versus Azimuth During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $\alpha_s = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ .



à.

Figure 44. Continued.



Figure 44. Continued.



en st

2

Figure 44. Continued.



Figure 44. Concluded.



Figure 45. Blade Response Versus Azimuth During Combined Advancing Blade Aeroelastic Limits and Stall Flutter Testing;  $Y_{CG}/c = 0.30$ ,  $\alpha_s = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ ,  $\theta_c = 11.0^{\circ}$ .



Figure 45. Continued.



Figure 45. Continued.

216



Figure 45. Continued.



Figure 45. Continued.



Figure 45. Continued.



۲

Figure 45. Concluded.



(a) 
$$\Delta \Psi = 3.0^{\circ}$$



.

.

9

221



à



(b) Δψ = 3.0<sup>0</sup>



.

4



223



.





.

,

٩.

(ε.) Δψ = 3.0<sup>0</sup>

Blade Response Versus Azimuth During Violent Instability;  $Y_{GG}/c = 0.35$ ,  $\alpha_{g} = 0.0^{\circ}$ ,  $V_{g} = 120$  km,  $\Omega_{g}R = 700$  ft/sec,  $\mu = 0.29$ ,  $\theta_{c} = 6.8^{\circ}$ ,  $A_{1g} = -2.7^{\circ}$ ,  $B_{1g} = 6.1^{\circ}$ . Figure 47.









.

.



.

(c) Δψ = 3.0<sup>0</sup>

227


-



(d) ∆♦ = 3.0<sup>0</sup>

228



(a)

Figure 48. Blade Response Versus Frequency During Violent Instability;  $Y_{CG}/c = 0.35$ ,  $a_g = 0.0^\circ$ ,  $V_g = 120$  km,  $\Omega_g R = 700$  ft/sec,  $\mu = 0.29$ ,  $\theta_c = 6.8^\circ$ ,  $A_{1s} = -2.7^\circ$ ,  $B_{1s} = 6.1^\circ$ .













40 2 5 4 Munuhud . FREQUENCY RATIO, wm /0 (c) m 2 3 2 ź



p.

٠

Figure 48. Continued.



(P)



232







è

.

Figure 50. Range of Blade Lag Response During Retreating Blade Aeroelastic Limits Testing;  $a_g = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ ,  $V_g = 332$  kn.



Figure 1. Pange of Blade Flapwise Bending Response During Retreating Blade Aeroelastic Limits Testing;  $a_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $V_s = 332$  kn.



¥

è





Figure 53. Range of Blade Flapping Response During Retreating Blade Aeroelastic Limits Testing;  $a_{g} = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ ,  $V_{g} = 332$  kn.

.



è

Figure 54. Range of Blade Chordwise Bending Response During Hetreating Blade Aeroelastic Limits Testing:  $a_{g} = 0.0^{\circ}$ ,  $a_{1g} = b_{1g} = 0.0^{\circ}$ ,  $V_{g} = 332$  An.



Figure 55. Hence of Blade Lag Hestonse During Advancing Blade Astroclastic Limits Testing:  $a_{\mu} = 0.0^{\circ}$ .  $a_{\mu} = b_{\mu} = 0.0^{\circ}$ ,  $a_{\mu} = -700$  ft/sec.



Figure 50. Hence of blace flapsise behaing besphase buring disce denotiabilit binits festing,  $a_{\rm g}=0.0^6$ ,  $a_{\rm g}=t_{\rm g}=0.0^7$ ,  $a_{\rm g}\pm$  = 0.0 ft/sec.



.

Figure 57. Names of blade Torsional Response During Advancing Blade Apropiastic limits Testing,  $a_{\mu} = 0.0^{\circ}$ ,  $a_{\mu} = 0.0^{\circ}$ ,  $a_{\mu} = 700$  ft sec.



à

Figure 58. Hence of Since Fielding tendents instag deresions as 100% , 100% , 100% , 100% , 100% , 100% , 100% , 100%



.

.

Figure 59. Range of blade thorawise bending Response tring Advancing Blade Aeroelastic Limits Testing;  $\alpha_s = 0.0^\circ$ ,  $\alpha_{ls} = b_{ls} = 0.0^\circ$ ,  $\Omega_s R = 700$  ft/sec.



Figure 60. Range of Blade Lag Response During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $\alpha_s = 0.0^{\circ}$ ,  $a_{1s} = b_{1s} = 0.0^{\circ}$ .



Figure 61. Range of Blade Flapwise Bending Response During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $\alpha_s = 0.0^\circ$ ,  $a_{ls} = b_{ls} = 0.0^\circ$ .



.

Figure 62. Range of Blade Torsional Response During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ .



Figure 63. Range of Blade Flapping Response During Stall Flutter Testing;  $Y_{CG}/c = 0.25$ ,  $a_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ .



Figure 64. Range of Blade Lag Response During Combined Advancing Blade Aeroelastic Limits and Stall Flutter Testing;  $\alpha_s = 0.0^\circ$ ,  $\alpha_{ls} = b_{ls} = 0.0^\circ$ ,  $\Omega_s R = 700$  ft/sec,  $\theta_c = 10.0^\circ$ .



ø

Figure 65. Range of Blade Flapwise Bending Response During Combined Advancing Blade Aeroelastic Limits and Stall Flutter Testing;  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\Omega_s R = 700$  ft/sec,  $\theta_c = 10.0^\circ$ .



Figure 66. Range of Blade Torsional Response During Combined Advancing Blade Aeroelastic Limits and Stall Flutter Testing;  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\Omega_s R = 700$  ft/sec,  $\theta_c = 10.0^\circ$ .



Figure 67. Range of Blade Flapping Response During Combined Advancing Blade Aeroelastic Limits and Stall Flutter Testing;  $\alpha_s = 0.0^\circ$ ,  $\mathbf{a}_{1s} = \mathbf{b}_{1s} = 0.0^\circ$ ,  $\Omega_s R = 700$  ft/sec,  $\theta_c = 10.0^\circ$ .



Figure 68. Range of Blade Lag Response During Advancing Blade Aeroelastic Limits Testing at Reduced Simulated Rotational Tip Speed;  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\Omega_s R = 500$  ft/sec.



Figure 69. Range of Blade Flapwise Bending Response During Advancing Blade Aeroelastic Limits Testing at Reduced Simulated Rotational Tip Speed;  $\alpha_s = 0.0^\circ$ ,  $a_{ls} = b_{ls} = 0.0^\circ$ ,  $\Omega_s R = 500$  ft/sec.



à,

Figure 70. Range of Blade Torsional Response During Advancing Blade Aeroelastic Limits Testing at Reduced Simulated Rotational Tip Speed;  $\alpha_s = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\Omega_s R = 500$  ft/sec.



Figure 71. Range of Blade Flapping Response During Advancing Blade Aeroelastic Limits Testing at Reduced Simulated Rotational Tip Speed;  $\alpha_s = 0.0^\circ$ ,  $\alpha_{ls} = b_{ls} = 0.0^\circ$ ,  $\Omega_s R = 500$  ft/sec.



à

Figure 72. Range of Blade Chordwise Bending Response During Advancing Blade Aeroelastic Limits Testing at Reduced Simulated Rotational Tip Speed,  $a_g = 0.0^\circ$ ,  $a_{1s} = b_{1s} = 0.0^\circ$ ,  $\Omega_s R = 500$  ft/sec.



.

Figure 73. United Aircraft Research Laboratories 18-Foot Main Wind Tunnel.

# APPENDIX I DESCRIPTION OF FACILITIES AND EQUIPMENT

## WIND TUNNEL

à

The 18-foot Main Wind Tunnel at the United Aircraft Research Laboratories is a closed-throat, single-return wind tunnel capable of speeds up to approximately 180 knots. A cutaway drawing of this tunnel is shown in Figure 73. The test section has an octagonal cross section. Tunnel stagnation temperature is held approximately constant by variable-opening air exchangers. Stagnation pressure is atmospheric and is constant throughout the unobstructed test section. Tunnel controls and data acquisition equipment are located in the control room adjacent to the tunnel test section. Windows permit constant observation of the model from the control room.

8

# DATA ACQUISITION SYSTEM

The rotor balance is of the six-component, internal-strain-gage, floating-frame type. The balance is highly linear, is temperature compensated, and has small or negligible interactions between components. Interactions between balance components are determined experimentally and were included in the data reduction calculations. The rotor balance data were recorded manually from Baldwin SR-4 Precision Indicators (Type L-50).

The principal acquisition device for the dynamic data was an Ampex Model AR 200 magnetic tape recorder, which had a capacity of 1<sup>4</sup> information tracks and 2 edge tracks. The recording system was wide band F.M. A total of 11 tracks were used for dynamic data, 2 were used for rotor azimuth reference contactors, and the final track contained a data run command used in data reduction processing.

The blade strain gage instrumentation data were supplied to the tape through Sikorsky-built signal conditioning modules. Blade flap and lag angles were measured with Clifton Linear Generators. Special equipment supplied the complete flap and lag signal to the tape; it also electrically separated the first harmonic part of the flapping signal and resolved it into its longitudinal and lateral components. The first harmonic flapping components were displayed on the model control console and were recorded manually for use in the rotor performance calculations. Rotor control input data were acquired from two swash plate actuator potentiometers and the collective pitch follower potentiometer.

On-line spectral analysis was provided through the use of a tracking filter and an x-y plotter patched into the appropriate data channels.

Operation of the recording system was accomplished with a single control unit which featured selectable time duration data bursts and automatic calibration sequencing using standard resistance techniques.

## DATA REDUCTION

The rotor balance readings, tunnel parameters, control console inputs, and first harmonic flapping components were transferred to punch cards and processed on a UNIVAC 1108 digital computer.

The dynamic data channels were processed by a nine-bit analogue to digital converter. The digital data were placed in the desired format on the digital tape by a Scientific Data Systems Computer, Model 910. The digital tape was processed by a UNIVAC 1108 computer to obtain the data in the desired physical units. The calibration records were converted from analog to digital form along with the actual test data to which they applied.

#### DATA ACCURACY AND REPEATABILITY

## Rotor Performance Data

The repeatability of the rotor performance coefficient data is approximately 5 percent of the maximum reading, as demonstrated by comparison with the results of Reference 7. This figure exceeds conservative estimates of the accuracy of the rotor balance and tunnel parameter data. It is believed that the data repeatability is governed by the accuracy of the control servo, which is approximately 0.5 degree for the collective and cyclic pitch settings. The repeatability of the data can be related to physical quantities for better appreciation of its importance. The model rotor lift, for instance, repeats within approximately 10 pounds, or 5 percent of the maximum lift force obtained during the test. This is equivalent to a repeatability of 2,560 pounds for the dynamically similar condition with a 72-foot full-scale rotor.

### Blade Load and Moment Data

It is estimated that the static accuracy of the blade dynamic data acquisition system is approximately 2 percent of the full-scale reading. This is equivalent to approximately 0.2 degree of flapping or lagging amplitude, or 2.0 inch-pounds of bending or twisting moment. This is similar in magnitude to the data repeatability indicated by average readings taken during the dynamic zero points for each wind tunnel run, which generally differed from zero within that tolerance. It is believed that the dynamic variations in load and moment are measured with even greater accuracy than 2 percent of full scale, since orderly variations of much smaller magnitude were noted in the data. In any event, the 2 percent full-scale accuracy represents an error in full-scale equivalent stress on the order of only 200 pounds per square inch, which is of little practical significance.

It should be noted that variations between individual time history records for different revolutions taken during actual test points include nonharmonic motions. If the rotor has significant random motion components, the concept of data repeatability has meaning only for the comparison of data intervals of appropriate time length.

# APPENDIX II

# TABLES OF MAXIMUM AND MINIMUM BLADE RESPONSE

| RUN-  | TYPE                  | BETA<br>(DEG) |      | MF.30R<br>(1N,-LB) |      | MF.GOR<br>(IN,-LB) |      | MT.35R<br>(INLB) |      |
|-------|-----------------------|---------------|------|--------------------|------|--------------------|------|------------------|------|
| NO.   |                       |               |      |                    |      |                    |      |                  |      |
|       |                       | MAX.          | MIN. | MAX.               | HIN. | MAX.               | MIN. | MAX.             | MIN. |
| 42- 5 | INITIAL               | 2,3           | 1.2  | 11.                | -5.  | 11.                | -5.  | 2.               | -6.  |
| 42+ 6 | TEST FINAL            | 6.3           | -2.3 | 11.                | -5.  | 12.                | -7.  | 4.               | -5.  |
| 42- 7 | TRANSIENT             | 7.0           | -2.6 | 13.                | -6.  | 13.                |      | 6.               | -6.  |
| 42- 8 | INITIAL               | 2,2           | 1.1  | 11.                | -4.  | 12.                | -5.  | 2.               | -5.  |
| 42- 9 | TEST FINAL            | 3.2           | 1.4  | 11.                | -5.  | 14.                | -7.  | 2.               | -6.  |
| 42-10 | TRANSIENT             | 2.9           | 1.0  | 11.                | -4.  | 15.                | -3.  | 4.               | -9.  |
| 42-11 | INITIAL<br>TEST FINAL | 2.0           | 1.0  | 10.                | -2.  | 13.                | -3.  | 1.               | -6.  |
| 42-12 | TRANSIENT             | 3.8           | 5    | 12.                | -3.  | 12.                | -5,  |                  | -12. |
| 42-14 | INITIAL               | 2.2           |      | 11.                | -4   | 12.                | -3.  | 1.               | -6.  |
| 42-15 | TEST FINAL            | 4.3           | 8    | 13.                | -4   | 12.                | -4.  | î.               | -7.  |
| 42-16 | TRANSIENT             | 4.4           | 8    | 12,                | -6.  | 12.                | -4.  |                  | -12. |
| 42-17 | INITIAL               | 2.2           | 1.0  | 10.                | -4.  | 12.                | -3.  | 1.               | -7.  |
| 42-18 | TEST FINAL            | 3.8           | 7    | 10.                | -4.  | 12.                | -2.  | 1.               | -7.  |
| 42-19 | TRANSIENT             | 3.9           | 8    | 11.                | -6.  | 13.                | -3.  | 2.               | -9.  |
| 42-20 | INITIAL               | 2.1           | . 6. | 11.                | -4.  | 12.                | -3,  | 1.               | -6.  |
| 42-21 | TEST FINA             | 4.9           | -1.5 | 13.                | -4.  | 12.                | -5.  | 1.               | -7.  |
| 42-22 | TRANSIENT             | 5.1           | -1.6 | 13.                | -4.  | 13.                | -6.  | 3.               | -11. |
| 42-23 | INITIAL               | 2.0           | 1.0  | 11.                | -3.  | 13.                | -3.  | 1.               | -6.  |
| 42-24 | TEST FINAL            | 5.0           | -2.0 | 12.                | -3.  | 13.                | -4.  | 2.               | -7.  |
| 42-25 | TRAKSIENT             | 5.7           | -2.0 | 12.                | -7.  | 16.                | -5.  | 6.               |      |
| 42-26 | INIBIAL               | 5.4           | -3.1 | 11.                | -5.  | 13.                | -5,  | 2.               | -5.  |
| 42-27 | TEST FINAL            | 9.4           | -5.8 | 24.                | -43. |                    | -22. | -                | -    |
| 42-28 | TRANSIENT             | 9.5           | -5.8 | 25.                | -44. | 16.                | -21. |                  | -    |
| -2-29 | TEST FINAL            | 6.4           | -2.9 | 12.                | -5.  | 16.                | -8.  |                  | -    |
| 42-31 | TRANSIENT             | 7.3           | -3.0 | 15.                | -7.  | 16.                | -8.  | -                |      |
| -2-32 | INITIAL               | 6.3           | -2.0 | 12.                | -4   | 15.                | -7.  | -                | -    |
| 42-33 | TEST FINAL            | 6.9           | -2.6 | 13.                | -7.  | 14.                | -7.  | _                |      |
| 42-34 | TRANSIENT             | 7.2           | -2.9 | 15.                | -7.  | 15.                | -7.  | -                | -    |
| 42-35 | INITIAL               | 2.2           | 1.6  | 7.                 | -7.  | 7.                 | -6.  | -                | -    |
| 42-36 | TEST FINAL            | 4.3           | 1.4  | 11.                | -7.  | 11.                | -9.  | _                | -    |
| 42-37 | TRANSIENT             | 4.7           | 1.1  | 12.                | -9.  | 12.                | -8,  | -                | -    |
| 42-38 | INITIAL               | 2.9           | 1.7  | 12.                | -5.  | 12.                | -7.  | -                | -    |
| 42-39 | TEST FINAL            | 6.1           | -2.8 | 11.                | -6.  | 14.                | -6.  | -                | -    |

| TABLE XV - Continued            |                       |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |  |  |
|---------------------------------|-----------------------|---------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--|--|
| KUN-<br>PT.<br>NO.              | TYPE                  | ZETA<br>(DEG) | BETA<br>(DEG)        | MF.30R<br>(INLB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MF.60R<br>(INLB) | MT.35R<br>(INLB) |  |  |
|                                 |                       | MAX. MIN      | . MAX. MIN.          | MAX. MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAX. MIN.        | MAX. MIN         |  |  |
| 45- n                           | INITIAL               | 3.9 3.0       | 2.1 .1               | 148.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 157.             | 39               |  |  |
| 45- 7                           | TEST FINAL            | 4.3 3.3       |                      | 2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 199.             | 511              |  |  |
| 45- 8                           | TRANSIENT             | 4.6 3.1       | 3.53                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199.             | 511              |  |  |
| 45- 9                           | INITIAL               | 3.9 2.8       |                      | 138.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 158.             | 38               |  |  |
| 45 <b>-1</b> 0<br>45 <b>-11</b> | TEST FINAL            | 3.8 2.7       | 3.7 -1.6<br>4.1 -1.9 | 157.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 189.<br>178.     | 411              |  |  |
| 45-12                           | TRANSIENT<br>INITIAL  | 4.0 3.1       | 2.01                 | 139.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159.             | 49               |  |  |
| 45-13                           | TEST FINAL            | 4.5 3.4       | 4.3 -1.5             | 189.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 209.             | 814              |  |  |
| 45-14                           | TRANSIENT             | 4.6 3.0       |                      | and the second sec | 2110.            | 816              |  |  |
| 45-15                           | INITIAL               | 5.2 4.2       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 219.             | 1119             |  |  |
| 45-16                           | TEST FINAL            | 5.1 3.6       | 6.6 -2.9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2312.            | 1124             |  |  |
| 45-17                           | TRANSIENT             | 5.3 3.0       |                      | 2511.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2516.            | 1126             |  |  |
| 45-18                           | INITIAL               | 5.4 4.0       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2110.            | 919              |  |  |
| 45-19                           | TEST FINAL            | 5.4 3.8       |                      | 2211.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2110.            | 1117             |  |  |
| 45-20                           | TRANSIENT             | 5.5 3.8       |                      | 2413.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2411.            | 1120             |  |  |
| 45-21                           | INITIAL<br>TEST FINAL | 5.2 4.1       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 219.<br>209.     | 814              |  |  |
| 45-23                           | TRANSIENT             | 5.4 3.9       |                      | 2212.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2312.            | 1320             |  |  |
| 45-24                           | INITIAL               | 5.2 4.0       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2210.            | 1119             |  |  |
| 45-25                           | TEST FINAL            | 5.2 4.1       | 6.6 -3.3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1910-            |                  |  |  |
| 45-26                           | TRANSIENT             | 6.3 3.8       | 7.4 -4.2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2218.            | ··· 51 -10       |  |  |
| 45-27                           | INITIAL               | 5.2 3.9       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2010.            | 1119             |  |  |
| 45-28                           | TEST FINAL            | 5.3 3.8       |                      | 2211.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2112.            | 1021             |  |  |
| 45-29                           | TRANSIENT             | 5.5 3.8       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2113.            |                  |  |  |
| 46- 5                           | INITIAL               | 4.8 3.5       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1710.            | 910              |  |  |
| 46- 6                           | TEST FINAL            | 5.7 4.2       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2111.<br>2212.   | 1114             |  |  |
| 46- 8                           | TRANSIENT<br>INITIAL  | 5.8 3.4       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1711.            | 91               |  |  |
| 46- 9                           | TEST FINAL            | 4.6 3.4       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1911.            | 101              |  |  |
| 46-10                           | TRANSIENT             | 4.8 3.3       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2012.            | 81               |  |  |
| 46-11                           | INITIAL               | 4.9 3.6       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1810.            | 71               |  |  |
| 46-12                           | TEST FINAL            | 5.7 4.1       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2112.            | 1014             |  |  |
| 46-13                           | TRANSIENT             | 5.6 3.4       |                      | 2415.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2212.            | 91               |  |  |
| 46-14                           | INITIAL               | 2.7 1.9       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1716.            | 712              |  |  |
| 46-15                           | TEST FINAL            | 3.8 2.3       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2521.            | 1320             |  |  |
| 46-16                           | TRANSIENT             | 4.0 1.4       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2618.            | 1320             |  |  |
| 46-17                           | INITIAL               | 3.9 3.0       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148.             | 61               |  |  |
| 46-18                           | TEST FINAL            | 3.2 2.4       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1511.<br>1617.   | 51               |  |  |
| 46-20                           | INITIAL               | 3.3 2.3       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1613.            | 5(               |  |  |
| 46-21                           | TEST FINAL            | 3.8 2.8       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129.             | 7                |  |  |
| 46-22                           | TRANSIENT             | 4.1 2.6       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2216.            | 810              |  |  |

| RUN- TYPE<br>PT.<br>NO. | TYPE                    | ZETA<br>(DEG)      | BETA<br>(DEG)        | MF.30R<br>(INLB) | MF.60R<br>(INLB) | MT.35R<br>(INLB) | HC.30R<br>(INLB |  |
|-------------------------|-------------------------|--------------------|----------------------|------------------|------------------|------------------|-----------------|--|
|                         |                         | MAX. MIN.          | MAX. MIN.            | MAX, MIN.        | MAX. MIN.        | MAX. MIN.        | MAX. HIN        |  |
| 47- 5                   | INITIAL                 | 4.7 3.7            | 1.6 -1.1             | 1718.            | 2521.            | 714.             | 1931            |  |
| 17- 6                   | TEST FINAL              | 3.7 2.8            | 6.9 -4.6             | 3040.            | 4131.            | 833.             | 4251            |  |
| 17- 7                   | TRANSIENT               | 4.6 2.6            | 7.4 -5.0             | 4042.            | 4832.            | 1333.            | 4450            |  |
| 7- 8                    | INITIAL                 | 4.7 3.7            | 1.3 -1.1             | 1521.            | 2521.            | 815.             | 2334            |  |
| 17- 9                   | TEST FINAL              | 5.1 3.7            | 5.3 -3.4             | 2835.            | 4032.            | 1316.            | 624             |  |
| 47-10                   | TRANSIENT               | 4.8 3.5            | 5.6 -3.4             | 3036.            | 4132.            | 1417.            | 272             |  |
| 47-11<br>47-12          | INITIAL                 | 4.8 3.8            | 1.58                 | 1318.            | 2019.<br>2621.   | 1013.<br>818.    | 283             |  |
| \$7-13                  | TEST FINAL<br>TRANSIENT | 4.6 3.7<br>4.9 3.6 | 3.6 -2.4<br>3.8 -2.8 | 1519.<br>1922.   | 2822.            | 820.             | 382             |  |
| 47-14                   | INITIAL                 | 4.7 3.7            | 1.59                 | 18, -19,         | 22, -19,         | 712.             | 272             |  |
| 7-15                    | TEST FINAL              | 4.8 3.7            | 2.7 -2.7             | 1621.            | 2220.            | 715.             | 312             |  |
| 7-16                    | TRANSIENT               | 4.8 3.7            | 2.6 -2.8             | 1821.            | 2924.            | 914.             | 312             |  |
| 7-17                    | INITIAL                 | 4.9 3.7            | 4.3 -5.0             | 2722.            | 2227.            | 2313.            | 4135            |  |
| 17-18                   | TEST FINAL              | 5,1 3,7            | 4,3 -1,3             | 3138.            | 4330.            | 1421.            | 7540            |  |
| 17-19                   | TRANSIENT               | 5.2 3.5            | 5.0 -4.8             | 3641.            | 4530.            | 2320.            | 683             |  |
| 7-20                    | INITIAL                 | 5.0 3.7            | 2.0 -1.7             | 2826.            | 2528.            | 2212.            | 402             |  |
| 7-21                    | TEST FINAL              | 5.0 3.8            | 4.1 -3.5             | 2932.            | 3629.            | 1416.            | 684             |  |
| 17-22                   | TRANSIENT               | 5.1 3.7            | 4.3 -3.8             | 29, -35,         | 41, -31.         | 23, -17,         | 68, -4          |  |
| 17-23                   | INITIAL                 | 4.7 3.7            | 1.8 -1.5             | 2823.            | 2327.            |                  | 392             |  |
| 7-24                    | TEST FINAL              | 5.0 3.7            | 4.0 -3.4             | 3034.            | 3930.            | 1416.            | 674             |  |
| \$7-25                  | TRANSIENT               | 4.7 3.5            | 4.3 -3.3             | 3135.            | 3930.<br>2525.   | 2514.<br>2511.   | 423             |  |
| 17-26                   | INITIAL<br>TEST FINAL   | 4.9 3.5<br>3.5 2.0 | 4.6 -5.6             | 4522.            | 4629.            | 499.             | 8781            |  |
| 7-29                    | TRANSIENT               | 4.6 1.8            | 4.8 -5.6             | 4825.            | 4829.            | 5114.            | 707             |  |
| 7-50                    | INITIAL                 | 4.9 3.4            | 2.0 -1.4             | 2922.            | 2226.            | 2312.            | 5041            |  |
| 7-31                    | TEST FINAL              | 4.8 3.5            | 7.1 -5.5             | 3641.            | 4630.            | 1221.            | 874             |  |
| 17-32                   | TRANSIENT               | 5.1 3.3            | 7.4 -5.2             | 3140.            | 4630.            | 2323.            | 7941            |  |
| 17-33                   | INITIAL                 | 4.8 3.6            | 7.1 -5.3             | 36, -41.         | 4721.            | 1221.            | 8044            |  |
| 7-34                    | TEST FINAL              | 4.9 3.7            | 3.9 -3.4             | 28, -31.         | 3730.            | 1614.            | 7040            |  |
| \$7-35                  | TRANSIENT               | 5.0 3.5            | 7.1 -5.2             | 3641.            | 4630.            | 1321.            | 875             |  |
| 17-36                   | INITIAL                 | 4.7 3.6            | 6.9 -5.3             | 3340.            | 4830.            | 1219.            | 804             |  |
| 7-37                    | TEST FINAL              | 4.8 3.4            | 1.9 -1.5             | 2724.            | 2227.            | 2512.            | 51              |  |
| 17-38                   | TRANSIENT               | 5.0 3.2            | 7.0 -5.4             | 35, -44.         | 4930.            | 2621.            | 75, -49         |  |
| 7-39                    | INITIAL                 | 5.0 3.4            | 4.3 -1.7             | 3340.            | 4530.            | 1120.            | 7733            |  |
| \$7-40                  | TEST FINAL              | 5.0 3.7            |                      | 2621.            | 1926.<br>4231.   | 2611.<br>2819.   | 706             |  |
| 47-41                   | TRANSIENT               | 5.2 3.4            | 4.6 -5.2             | 4038.            | 5731.            | 3520.            | 8764            |  |
| 47-42                   | INITIAL                 | 6.1 4.4            | 5.2 -2.2             | 4251. 2830.      | 3027.            | 2015.            | 6027            |  |
| 47-43                   | TEST FINAL              | 5.1 3.7<br>6.2 3.7 | 4.5 -5.1<br>5.2 -5.3 | 4747.            | 5426.            | 3419.            | 8771            |  |
|             |                    |         |               | TABL          | TABLE XV - Concluded | Conclu            | ıded         |                  |             |                  |              |                  |             |
|-------------|--------------------|---------|---------------|---------------|----------------------|-------------------|--------------|------------------|-------------|------------------|--------------|------------------|-------------|
| RUN-<br>PT. | TYPE               | ZE      | ZETA<br>(DEG) | BETA<br>(DEG) | ₹9                   | MF. 30R<br>(1NLB) | 181<br>181   | MF.60R<br>(INLB) | 50R<br>-LB) | MT.16R<br>(INL6) | 10R<br>- LB) | MT.35R<br>(INLB) | 55R<br>-LB) |
| • 04        |                    | MAX.    | MIN.          | MAX.          | MIN.                 | MAX.              | MIN.         | MAX.             | MIN.        | MAX.             | MIN.         | MAX.             | MIN.        |
| c -09       | INITIAL            | 3.8     | 2.8           | 2.3           | 1.4                  |                   | -2.          | 15.              | . 6-        | 'n               |              | 2.               | -S-         |
|             | TEST FINAL         | 4.2     | 3.4           | 3.5           |                      | 9.                | -2-          | 16.              |             |                  | -7.          | ~                |             |
| 09          | TRANSIENT          | *       | 2.8           | 5°0           | •                    | <b>.</b> .        | <b>.</b>     | 17.              | •           | 5                | -7.          | е<br>10          | -9-         |
|             | TEST FINAL         | -       | 0.3           |               |                      | • •               | i            | 12.              |             |                  | •••••        | ÷.               |             |
| 7           | TRANSIENT          |         |               | 2.0           | 9.1                  | 11.               |              | 15.              |             |                  | -16.         | • •              | -12-        |
| 60-11       | INITIAL            | 3.6     | 2.7           | •             | •                    | -                 | į            | 19.              | -11-        | 5                | - 8-         |                  | 0           |
| 60-12       | TEST FINAL         |         | 3.1           |               | n.                   | 19.               |              | 25.              | -13.        |                  | -12.         |                  | -12.        |
| 7           | TRANSIENT          | 10<br>1 | 2.8           |               | 2                    | 17.               | -6-          | 25.              |             |                  | -13.         | 5.               | -12.        |
| -           | INITIAL            | 5.0     | 2.7           | 2.0           | -                    | 13.               | • <b>9</b> • | 17.              |             |                  | -8-          |                  | -           |
| 61-09       | TEST FINAL         | 10 a    | 3.1           |               | -1.2                 | 10.               | ŗ            | 25.              |             |                  | -12.         | 9.               | -12.        |
| 91-09       | TRANSIENT          |         | 9.0           |               |                      | 9                 | -8-          | 24.              | -12.        | •                | -13.         | 7.               | -13.        |
|             | TECT CINAL         |         |               | •             |                      |                   |              | 21.              |             | <b>0</b>         | -11.         | •                | -12.        |
| 4 -         | TRANSTENT          | • •     |               |               |                      |                   | -12.         |                  | -15.        |                  | ***          | 10.              | -13.        |
| • •         | INITIAL            | 5       | 2.2           |               |                      | 6                 |              | 200              |             |                  |              |                  |             |
| 60-21       | TEST FINAL         | 4       | 2.8           | 5.0           | -1.0                 | 2                 | -12.         | 25.              |             |                  | -17.         | 12.              |             |
| 60-22       | TRANSIENT          | ***     | 2.4           |               |                      | 23.               | -11.         | 24.              |             | 11.              | -16.         | 0                | -17.        |
| 60-23       | INITIAL            | -       | ٠             |               | 1.0                  | 15.               | î            | 19.              |             | •                | -14.         | 7.               | -12.        |
| 12-09       | TEST FINAL         | 2.7     | 1.3           |               | •                    | 19.               | •<br>•       | 23.              |             | 14.              | -31.         | 13.              | -30.        |
| -2-09       | THITTAL            | 2.2     | •••           | •             | •.                   | 21.               |              | 22.2             | -19.        |                  | -29.         | 12.              | -29.        |
| 20-00       |                    | •       |               | •             | -                    |                   | •••••        |                  |             | •                | -            | -                | -11.        |
|             | TOME TENT          | 2       | 1.0           | •             | Ň                    |                   | • • • • •    | 8                | -28.        |                  | -16.         | 10.              | -12.        |
|             | INJIINI<br>INJIIAL | 0 H     | 2.0           | •             |                      | 2                 | • 62 •       |                  | 82-         |                  | -11-         | 12.              |             |
| 1           | TEST FINAL         |         |               |               | - 2                  | 27.               |              |                  |             |                  |              | ••••             | - DN-       |
|             | TRANSIENT          | 5.0     | 2.1           | • •           | -5.6                 |                   |              | 62.              |             |                  | 4 17         |                  |             |
|             |                    |         |               |               |                      |                   |              |                  |             |                  |              |                  |             |
|             |                    |         |               |               |                      |                   |              |                  |             |                  |              |                  |             |

\$

| NO.         MAX. MIN.           49-5         INITIAL         5.9         4.8           49-6         TEST FINAL         6.2         4.5           49-7         TRANSIENT         6.1         4.6           49-8         INITIAL         5.8         4.7           49-9         TEST FINAL         7.1         5.6           49-10         TRANSIENT         7.3         4.8           49-11         INITIAL         6.9         5.8           49-12         TEST FINAL         7.1         5.6           49-13         TRANSIENT         7.3         5.7           49-14         INITIAL         6.8         5.7           49-15         TEST FINAL         7.1         5.8           49-16         TRANSIENT         7.2         5.4           49-17         INITIAL         7.1         5.8           49-18         TEST FINAL         7.0         5.8           49-20         INITIAL         7.1         5.4           49-20         INITIAL         7.0         5.8           49-21         TEST FINAL         7.0         5.8           49-22         TRANSIENT         7.6         5.8 | MAN MENT             |           | (INLB)                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|---------------------------|--|
| 49-6TEST FINAL 6.24.549-7TRANSIENT 6.14.649-8INITIAL 5.84.749-9TEST FINAL 7.15.649-10TRANSIENT 7.34.849-11INITIAL 6.95.849-12TEST FINAL 7.15.849-13TRANSIENT 7.35.749-14INITIAL 6.85.749-15TEST FINAL 7.15.849-16TRANSIENT 7.25.449-17INITIAL 7.15.849-18TEST FINAL 7.15.849-19TRANSIENT 7.15.449-20INITIAL 7.05.849-21TEST FINAL 7.35.849-22TRANSIENT 7.15.849-23INITIAL 7.05.849-24TEST FINAL 7.05.649-25TRANSIENT 7.05.249-26INITIAL 7.05.649-27TEST FINAL 5.23.449-28TRANSIENT 5.53.249-30TEST FINAL 7.75.749-31TRANSIENT 8.25.049-32INITIAL 7.85.749-33TEST FINAL 7.65.449-34TRANSIENT 8.25.549-35INITIAL 2.51.149-36TEST FINAL 5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAX. MIN.            | MAX. MIN. | MAX. MIN.                 |  |
| 49-7TRANSIENT6.14.649-8INITIAL5.84.749-9TEST FINAL7.15.649-10TRANSIENT7.34.849-11INITIAL6.95.849-12TEST FINAL7.15.849-13TRANSIENT7.35.749-14INITIAL6.85.749-15TEST FINAL7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL7.05.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.05.849-22TRANSIENT7.15.849-23INITIAL7.05.849-24TEST FINAL7.05.249-25TRANSIENT7.05.249-26INITIAL7.05.649-27TEST FINAL5.03.249-28TRANSIENT5.53.249-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7 1.7              |           | 3 7.                      |  |
| 49-8INITIAL5.84.749-9TEST FINAL7.15.649-10TRANSIENT7.34.849-11INITIAL6.95.849-12TEST FINAL7.15.849-13TRANSIENT7.35.749-14INITIAL6.85.749-15TEST FINAL7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL7.15.849-19TRANSIENT7.15.449-20INITIAL7.05.849-21TEST FINAL7.05.849-22TRANSIENT7.65.849-23INITIAL7.05.649-24TEST FINAL7.05.249-25TRANSIENT7.05.249-26INITIAL7.05.649-27TEST FINAL5.03.249-28TRANSIENT5.53.249-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.8 -1.8             |           | 714.                      |  |
| 49-9TEST FINAL 7.15.649-10TRANSIENT 7.34.849-11INITIAL6.95.849-12TEST FINAL 7.15.849-13TRANSIENT 7.35.749-14INITIAL6.85.749-15TEST FINAL 7.15.849-16TRANSIENT 7.25.449-17INITIAL7.15.849-18TEST FINAL 7.15.849-19TRANSIENT 7.25.449-19TRANSIENT 7.15.449-20INITIAL7.05.849-21TEST FINAL 7.35.849-22TRANSIENT 7.65.849-23INITIAL7.05.849-24TEST FINAL 7.05.649-25TRANSIENT 7.05.249-26INITIAL7.05.249-27TEST FINAL 5.23.449-28TRANSIENT 5.53.249-29INITIAL7.75.749-30TEST FINAL 7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.9 -1.8             |           | 616.                      |  |
| 49-10TRANSIENT7.34.849-11INITIAL6.95.849-12TEST FINAL7.15.849-13TRANSIENT7.35.749-14INITIAL6.85.749-15TEST FINAL7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL7.15.849-19TRANSIENT7.15.449-20INITIAL7.15.849-21TEST FINAL7.05.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL7.05.249-27TEST FINAL7.05.249-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7 1.7              |           | 2 7.                      |  |
| 49-11INITIAL6.95.849-12TEST FINAL7.15.849-13TRANSIENT7.35.749-14INITIAL6.85.749-15TEST FINAL7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL7.15.849-19TRANSIENT7.15.449-20INITIAL7.05.849-21TEST FINAL7.05.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL7.05.249-27TEST FINAL7.05.249-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.6 .6               |           | 911.                      |  |
| 49-12TEST FINAL 7.15.849-13TRANSIENT7.35.749-14INITIAL6.85.749-15TEST FINAL 7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL 7.15.849-19TRANSIENT7.15.449-20INITIAL7.15.449-21TEST FINAL 7.05.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL 7.05.649-25TRANSIENT7.05.249-26INITIAL7.05.249-27TEST FINAL7.05.249-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6 .7               |           | 1016.                     |  |
| 49-13TRANSIENT7.35.749-14INITIAL6.85.749-15TEST FINAL7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL7.15.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.05.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL7.05.249-27TEST FINAL7.05.249-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7 1.4<br>4.4 .0    |           |                           |  |
| 49-14INITIAL6.85.749-15TEST FINAL 7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL 7.05.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL 7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL 7.05.649-25TRANSIENT7.05.249-26INITIAL7.05.249-27TEST FINAL5.03.249-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4 .0<br>4.2 .2     |           | 210.<br>212.              |  |
| 49-15TEST FINAL 7.15.849-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL 7.05.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.849-25TRANSIENT7.05.249-26INITIAL7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9 1.7              |           | 212.<br>27.               |  |
| 49-16TRANSIENT7.25.449-17INITIAL7.15.849-18TEST FINAL7.05.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.249-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.92                 | 17 7.     | 2 T.<br>3 T.              |  |
| 49-17INITIAL7.15.849-18TEST FINAL7.05.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.65.449-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.93                 |           | 415.                      |  |
| 49-18TEST FINAL 7.05.849-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9 1.7              |           | 1 7.                      |  |
| 49-19TRANSIENT7.15.449-20INITIAL6.95.849-21TEST FINAL7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4 .1               |           | 2 9.                      |  |
| 49-20INITIAL6.95.849-21TEST FINAL7.35.849-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.52                 |           | 312.                      |  |
| 49-22TRANSIENT7.65.849-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7 1.6              | 17 8.     | 2 7.                      |  |
| 49-23INITIAL7.05.849-24TEST FINAL7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1 -1.1             |           | 410.                      |  |
| 49-24TEST FINAL 7.05.649-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.99                 |           | 514.                      |  |
| 49-25TRANSIENT7.05.249-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.749-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0 1.8              |           | 2 6.                      |  |
| 49-26INITIAL6.04.649-27TEST FINAL5.23.449-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.9 -1.2             |           | 414.                      |  |
| 49-27TEST FINAL 5.23.449-28TRANSIENT 5.53.249-29INITIAL 7.75.749-30TEST FINAL 7.75.549-31TRANSIENT 8.25.049-32INITIAL 7.85.749-33TEST FINAL 7.65.449-34TRANSIENT 8.25.549-35INITIAL 2.51.149-36TEST FINAL 5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.9 -1.1             |           | 413.                      |  |
| 49-28TRANSIENT5.53.249-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3 -2.6             |           | 2 6.                      |  |
| 49-29INITIAL7.75.749-30TEST FINAL7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0 -6.2             |           | 610.                      |  |
| 49-30TEST FINAL 7.75.549-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL 7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL 5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0 -6.2<br>7.1 -1.8 |           | 710.<br>921.              |  |
| 49-31TRANSIENT8.25.049-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.9 -2.7             |           | <b>9.</b> –21.<br>5. –26. |  |
| 49-32INITIAL7.85.749-33TEST FINAL7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 2214.     | 1024.                     |  |
| 49-33TEST FINAL 7.65.449-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL 5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.2 -2.0             |           | 918.                      |  |
| 49-34TRANSIENT8.25.549-35INITIAL2.51.149-36TEST FINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.8 -2.3             |           | 1220.                     |  |
| 49-35INITIAL2.51.149-36TESTFINAL5.73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.6 -2.2             |           | 1437.                     |  |
| 49-36 TEST FINAL 5.7 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 1516.     |                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.01                 |           | 1633.                     |  |
| 49-51 INMISIENT ).0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.11                 |           | 1838.                     |  |
| 49-38 INITIAL 5.1 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.9 2.5              |           | 1324.                     |  |
| 49-39 TEST FINAL 4.8 3.4<br>49-40 TRANSIENT 5.5 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1 -2.3<br>7.0 -2.1 |           | 812.<br>1427.             |  |

TABLE XVI.MAXIMUM AND MINIMUM BLADE MOTIONS AND LOADS<br/>(BLADE CENTER OF GRAVITY AT .25 CHORD, TANGENT DELTA3 = 0.0)

|                    |                         | TABLE           | XVI - Co             | ntinued          |                      |                      |
|--------------------|-------------------------|-----------------|----------------------|------------------|----------------------|----------------------|
| RUN-<br>FT.<br>NO. | TYPE.                   | ZETA<br>(DEG)   | BETA<br>(DEG)        | MF.30R<br>(INLB) | MF.60R<br>(INLB)     | MT.35R<br>(INLB)     |
|                    |                         | MAX. MIN.       | MAX. MIN.            | MAX. MIH.        | MAX. MIN.            | MAX. MIN.            |
| 54- 5              | INITIAL                 | 5.1 3.5         | 5.9 -3.3             | 1910.            | 1913.                | 1113.                |
| 54- 6              | TEST FINAL              | 0.6 4.7         | 4.64                 |                  | 2716.                | 2238.                |
| 54- 7              | TRANSIENT               | 0.6 3.3         | 5.8 -3.1             | 2414.            | 2816.                | 2137.                |
| 54- 8              | INITIAL                 | 5.0 3.6         | 5.8 -3.3             | 2012.            | 2014.                | 1013. 2037.          |
| 54-11              | TEST FINAL              | 6.5 4.7         | 4.89<br>5.7 -3.1     | 2215. 2817.      | 2617.<br>2618.       | 1936,                |
| 54-12              | INITIAL                 | 3.3 2.2         | 2.8 .4               | 2011.            | 1716.                | 714.                 |
| 54-13              | TEST FINAL              | 5:8 1:8         |                      | 20: -13:         | 33: -18:<br>34: -20: | 22: -37:<br>19: -39: |
|                    |                         |                 |                      |                  |                      |                      |
| 54-15              | INITIAL                 | 3.2 2.4         | .88                  |                  | 127.                 | 15.                  |
| 54-19              | TEST FINAL              | 3.8 2.7         | 4.6 -2.8             | 14: -12:         | 19: -11:             | 77.<br>68.           |
| 54-18              | INITIAL                 | 4.6 3.3         | 1.8 .1               | 159.             | 179.                 | 47.                  |
| 54-19              | TEST FINAL              | 5.9 4.2         | 4.9 -1.7             | 1910.            | 2413.                | 1120.                |
| 54-20              | TRANSIENT               | 6.1 3.4         | 4.9 -1.8             | 1910.            | 2411.                | 1121.                |
| 54-21              | INITIAL                 | 5.0 4.0         | 2.7 1.5              | 115.             | 157.                 | 28.                  |
| 54-22              | TEST FINAL<br>TRANSIENT | 6.3 4.9         | 4.7 .4               | 1410.            | 188.<br>209.         | 1115.                |
| 54-25              | INITIAL                 | 2.7 1.8         | 3.1 2.2              | 116.             | 1310.                | 816.                 |
| 54-26              | TEST FINAL              | 5.9 3.4         | 6.92                 | 1213.            | 1214.                | 1539.                |
| 54-27              | TRANSIENT               | 5.9 1.6         | 7.01                 | 2114.            | 2218.                | 2035.                |
| 55- 5              | INITIAL                 | 3.5 2.5         | .9 -1.6              | 1312.            | 1715.                | 65.                  |
| 55- 6              | TEST FINAL              | 2.6 1.6         | 5.8 -4.8             | 2323.            | 3026.                | 522.                 |
| 55- 7              | TRANSIENT               | 3.5 1.7 3.2 2.3 | 5.7 -4.5             | 2123.            | 3426.<br>2118.       | 522.                 |
| 55- 9              | INITIAL                 | 3.3 2.4         | .7 -1.2              | 1515.            | 2820.                | 45.                  |
| 55-10              | TEST FINAL              | 2.3 1.7         | 6.1 -5.1             | 3128.            | 3826.                | 618.                 |
| 55-11              | TRANSIENT               | 3.0 1.3         | 6.6 -5.4             | 2626.            | 3426.                | 719.                 |
| 55-12              | INITIAL                 | 3.2 2.1         | .7 -1.5              | 1513.            | 2020.                | 35.                  |
| 55-13<br>55-14     | TEST FINAL              | 3.2 2.0         | 2.8 -3.1<br>2.9 -3.6 | 1211. 2017.      | 1816.                | 87.<br>95.           |
| 55-15              | INITIAL                 | 3.2 2.1         | .8 -1.5              | 1514.            | 2423.                | 37.                  |
| 55-16              | TEST FINAL              | 3.2 2.3         | 2.1 -3.1             | 1612.            | 1916.                | 45.                  |
| 55-17              | TRANSIENT               | 3.2 1.9         | 2.6 -3.6             | 1818.            | 2319.                | 68.                  |
| 55-18              | INITIAL                 | 3.1 1.7         | 4.0 -5.0             | 2716.            | 2518.                | 218.                 |
| 55-19              | TEST FINAL              | 3.4 1.7         | 3.2 -1.5             | 2927.            | 3726.                | 1615.                |
| 55-21              | TPANSIENT               | 3.2 1.6 3.0 1.8 | 4.2 -5.4             | 2829.<br>2618.   | 3525. 2619.          | 2215.<br>227.        |
| 55-22              | TEST FINAL              | 3.1 1.8         | 2.0 -3.8             | 3115.            | 2826.                | 285.                 |
| 55-23              | TRANSIENT               | 3.3 1.8         | 2.0 -3.9             | 2815.            | 2725.                | 315.                 |
| 55-24              | INITIAL                 | 3.1 1.8         | .8 -1.7              | 2314.            | 2523.                | 246.                 |
| 55-25              | TEST FINAL              | 2.9 1.8         | 2.7 -3.2             | 2517.            | 2621.                | 2111.                |
| 55-20              | TRANSIENT<br>INITIAL    | 3.0 1.6         | 2.8 -2.7             | 2720. 2316.      | 2723. 2517.          | 2412 208.            |
| 55-28              | TEST FIMAL              | 2.7 1.4         | 3.7 -5.7             | 3419.            | 4224.                | 355.                 |
| 55-29              | TRANSIENT               | 3.1 1.6         | 3.5 -5.7             | 3520.            | 3826.                | 368.                 |

÷ .

| DT             | TYPE                    |      | TA    | BET<br>(DE |      | MF.6       |      | MT.  |      |
|----------------|-------------------------|------|-------|------------|------|------------|------|------|------|
| PT.<br>NO.     |                         |      | DEG)  | IDE        |      | (IN,-      | -0)  | (IN. | -LO) |
|                |                         | MAX. | MIN.  | MAX.       | MIN. | MAX.       | MIN. | MAX. | MIN  |
| 52- 5          | INITIAL                 | 4.5  | 3.4   | 5.9        | -3.3 | 19.        | -13. | 12.  | -15  |
| 52- 6          | TEST FINAL              | 6.2  | 4.4   | 5.0        | 9    |            | -14. | 19.  | -38  |
| 52- 7          | THANSIENT               | 6.1  | 3.3   | 5.9        | -3.3 |            | -16. |      | -33  |
| 52- 6          | INITIAL                 | 4.7  | 3.3   | 0.1        | -3.4 | 19.        |      |      | -13  |
| 52- 9<br>52-10 | TEST FINAL              | 5.0  | 3.4   | 4.5        | -1.2 | 23.<br>22, |      |      | -23  |
| 52-11          | INITIAL                 | 4.8  | 3.4   | 5.9        | -3.1 |            | -15. |      | -17  |
| 52-12          | TEST FINAL              | 6.2  | 4.6   | 5.0        | -1.2 | 25.        | -15. | 21.  | -37  |
| 52-13          | TRANSIENT               | 6.1  | 3.4   | 5.8        | -3.4 | 26.        |      |      | -37  |
| 52-14          | INITIAL                 | 3.1  | 1.6   | 2.6        | .6   | 16.        |      |      | -13  |
| 52-15<br>52-16 | TEST FINAL<br>TRANSIENT | 5.4  | 2.6   | 8.5        | -3.2 | 32.        | -19. |      | -38  |
| 52-17          | INITIAL                 | 3.2  | 2.2   | 1.6        | 3    | 13.        |      | 4.   | -5   |
| 52-16          | TEST FINAL              | 2.9  | 1.9   | 6.1        | -3.3 | 16.        |      |      | -12  |
| 52-19          | TRANSIENT               | 3.2  | 1.7   | 0.1        | -3.0 | 17.        |      |      | -11. |
| 52-20          | INITIAL                 | 3.3  | 2.2   | 1.8        | 2    | 15.        |      | 4.   | -5   |
| 52-21          | TEST FINAL              | 2.8  | 2.1   | 4.7        | -4.7 | 12.        | -8.  | 3.   | -6   |
| 52-22          | TRANSIENT               | 3.2  | 2.0   | 4.7        | -4.8 | 16.        |      | 6.   | -6.  |
| 53- 6          | INITIAL<br>TEST FINAL   | 3.6  | 2.4   | 2.0        | -1.5 | 19.        |      | 4.   | -20  |
| 53- 7          | TRANSIENT               | 5.2  | 2.6   | 5.1        | -1.5 | 25.        |      |      | -17  |
| 53- 8          | INITIAL                 | 3.6  | 2.3   | 2.2        | .3   | 18.        |      | 4.   | -7   |
| 53- 9          | TEST FINAL              | 3.9  | 2.5   | 4.1        | -1.3 | 22.        | -12. |      | -10. |
| 53-10          | TRANSIENT               | 3.9  | 2.4   | 3.9        | -1.2 | 23.        |      |      | -12. |
| 53-11          | INITIAL                 | 3.5  | 2.4   | 2.2        | .3   | 19. 25.    |      | 4.   | -20  |
| 53-12<br>53-13 | TEST FINAL              | 4.9  | 3.1   | 4.4        | -1.1 | 26.        |      |      | -18  |
| 53-14          | INITIAL                 | 5.2  | 3.5   | 3.4        | 1.1  | 27.        |      |      | -27  |
| 53-15          | TEST FINAL              | 6.2  | 3.4   | 7.2        | -2.2 | 31.        | -17. | 21.  | - 36 |
| 53-16          | TRANSIENT               | 6.0  | 3.3   | 6.8        | -2.2 | 33.        |      |      | -43. |
| 53-17          | INITIAL                 | 5.1  | 3.4   | 3.0        | 1.0  | 27.        |      |      | -30  |
| 53-18          | TEST FINAL<br>TRANSIENT | 5.3  | 3.3   | 4.3        | 6    | 26.        |      |      | -29. |
| 53-20          | INITIAL                 | 5.5  | 3.4   | 3.3        | 7    | 26.        |      |      | -30. |
| 53-21          | TEST FINAL              | 5.3  | 3.4   | 5.5        | 2    | 28.        |      |      | -26. |
| 53-22          | TRANSIENT               | 5.6  | 3.4   | 5.3        | 1    | 27.        | -15. | 16.  | -28. |
| 53-23          | INITIAL                 | 5.8  | 4 . 1 | 3.1        | .7   | 28.        |      |      | -30. |
| 3-24           | TEST FINAL              | 5.1  | 3.4   | 7.2        | -3.2 | 23.        | -16. |      | -14. |
| 53-25          | TRANSIENT               | 6.1  | 3.5   | 7.1        | -3.4 | 25.        |      |      | -29. |
| 53-26<br>53-27 | INITIAL<br>TEST FINAL   | 2.8  | 1.6   | 5.1        | -3.4 | 18.        |      | 2.   | -15. |
| 53-28          | TRANSIENT               | 2.8  | 1.3   | 5.1        | -3.5 | 20.        |      |      | -17. |
| 53-29          | INITIAL                 | 5.1  | 3.1   | 3.3        | .9   | 26.        |      |      | -31. |
| 53-30          | TEST FINAL              | 5.A  | 4.0   | 7.6        | -2.4 | 27.        | -14. | -    | -32. |

.

|             |                  |         | H             | TABLE X       | XVI - Con | - Concluded |             |                 |             |      |             |
|-------------|------------------|---------|---------------|---------------|-----------|-------------|-------------|-----------------|-------------|------|-------------|
| RUN-<br>PT. | TYPE             | 2E<br>1 | ZETA<br>(deg) | BETA<br>(DEG) | 1A<br>(6) | MF.J        | 30R<br>-LB) | MF.60R<br>(INLB | 60R<br>-LB) | MT.  | .35R<br>LB) |
| •           |                  | MAX.    | •NIM          | MAX.          | .NIM.     | MAX.        | •NIM        | MAX.            | •NIM        | MAX. | •NIM•       |
| 56- 5       | INITIAL          | 2.9     | 1.8           | <b>.</b>      | -1.5      |             | -14.        | 24.             | -22.        | 22.  | -7.         |
| 56- 6       | TEST FINAL       | 3.2     | 1.8           | 6.3           | -5.4      | 30.         | -27.        | 41.             | -26.        | 14.  | -15.        |
|             | TRANSIENT        | 3.1     | 1.6           | 6.1           | -5.0      |             | -25.        | 37.             | -26.        | 20.  | -13.        |
| 56- 8       | INITIAL          | 3.3     | ٠             | 5.8           | -4.9      |             | -28.        | 40.             | -26.        | 15.  | -12.        |
| 56- 9       | TEST FINAL       | 3.2     | 1.9           | 3.5           | 1.5-      |             | -20.        | 30.             | -22.        | 20.  | -13.        |
| -           | TRANSIENT        | 3.5     |               | 5.9           | - 4- 7    |             | -28.        | 40.             | -25.        | 20.  | -13.        |
| 56-11       | JNITIAL.         | 3.0     |               | 6.2           | 6.4-      |             | -24.        | 36.             | -26.        | 13.  | -14.        |
| -           |                  | 3.2     |               | 6.            | 2.1-      |             | -15.        | 25.             | -22.        | 19.  | -8-         |
| 56-13       | TRANSIENT        | 3.5     |               | 5.6           | -4.8      |             | -24.        | 38.             | -25.        | 23.  | -11-        |
| 56-14       | INITIAL          | 3.5     | •             | 3.3           | -1.5      |             | -28.        | 37.             | -26.        | 15.  | -13.        |
| 56-15       | TEST FINAL       | キ・ワ     | •             |               | 6.4-      |             | -16.        | 27.             | -19.        | 22.  | -9-         |
| 56-16       | <b>TRANSIENT</b> | 3.5     | 1.7           | 4.2           | -5.1      |             | -26.        | 36.             | -25.        | 23.  | -15.        |
| -           | INIIAL           | 3.7     | •             |               | -1.2      | 38.         | -30.        | 44              | -25.        | 37.  | -22.        |
| 56-18       | TEST FINAL       | 3.2     |               |               | -5.4      | 39.         | -23.        | 30              | -23.        | 36   | 10          |
| 56-19       | TRANSIENJ        | . 3.7   | 1.6           |               | -5.6      | 45,         | -38.        | 47,             | -25.        | 39.  | -16.        |
|             |                  |         |               |               |           |             |             |                 |             |      |             |

.

| TYPE | ZETA          | BETA       | HF. 30R   | 14. 60R   | HT.18R    | MT. 35R    | ISR      |
|------|---------------|------------|-----------|-----------|-----------|------------|----------|
|      | (1)E ()       | (056)      | (INLB)    | (INB)     | (INLB)    | (INLB)     | Ę,       |
|      | MAX. MIN.     | MAX. MIN.  | MAX. MIH. | MAX. MIN. | MAX. HIN. | MAX. MIN.  | MIN.     |
|      | 2.7 1.6       | 1.3 -1.1   | 1513.     | 1911.     | 1         | <b>6</b> . | -5.      |
|      | 2.9 1.8       | 1.9 -1.3   | 1510.     | 1917.     | 1         | •          | 9        |
|      | 3.3 2.4       | 1.2 -1.9.  | 2014.     | 2613.     | 1         | 13.        | -1-      |
|      | 3.3 2.0       | 7          | 2315.     | 2516.     | 1         | 15.        | 6-       |
|      | 3.2 1.8       | 1.0 -2.3   | 2514.     | 2619.     | 1         | 19.        | -7.      |
|      | 3.5 1.8       | .7 -2.0    | 2615.     | 3019.     | 1         | 22.        | -        |
|      | 2.1 6.V       | .7 -2.8    |           | 3523.     | 1         | 29.        | <b>n</b> |
|      | Z.0 1.3       |            | •         | 3725.     | 1         | 8          | 2        |
|      |               | 3.4 Z.1    | 100.      | 1911.     | 1         | 13.        | -19.     |
|      | C • • • • • • | <b>N</b> ( | 1710.     | 1812.     | 1         | 17.        | -30.     |
|      |               | N          | •         | 2112.     | 1<br>†    | 19.        | -37.     |
|      | 0.9           | 3.7 Z.4    |           | •         | •         | 15.        | -        |
|      |               | 5° 6       |           | 2112.     | 1         | 12.        | -16.     |
|      | 9°2 3°6       | 5.9        | 169.      | 2313.     | 1         | 1          | -21.     |
|      |               | 5° 2° C    |           | 2315.     | 1         | 19.        | -26.     |
|      | * •           | •          |           | 2613.     | •         |            | -32-     |
|      | •••           | -          |           | -1107     | •         | •61        |          |
|      |               | 7 1<br>7 4 |           | -1110     |           |            |          |
|      |               |            |           |           | • •       |            |          |
|      | ~             |            | •         |           | י<br>ו    |            | -16-     |
|      | -             | -          |           |           | ,<br>1    | 5.4        | -15.     |
|      | 2.4 1.7       | ~          |           |           | 43.       | 1.         | 1        |
|      | 2.6 1.9       | 1.5 .2     | 127.      | 1<br>1    | 4J.       | 3.         | -        |
|      | 2.6 1.6       | 1.41       | 126.      | 1<br>     | 53.       | <b>.</b>   |          |
|      | 2.6 1.8       | 1.33       | 120.      | י<br>ו    | 54.       | <b>n</b>   | 5        |
|      | 2.8 1.8       | 1.14       |           | 1         | 77.       | #          | Ŷ        |
|      | 2.0 1.6       | 1.39       | •         | 1<br>1    | 07.       | <b>n</b>   | -7-      |
|      | 2.9 1.6       |            | 1610.     | 1         | 9.9       | I          | ł        |
|      | 2.9 1.8       |            | 1612.     | 1         | 97.       | I          | I        |
|      | 2.4 1.8       |            | 1712.     | 1         | 126.      | ١          | ł        |
|      | 2.9 1.6       | 1.0 -1.0   | 1710.     | •         | 167.      | 1          | ۱        |
|      | 2.9 2.0       | 1.6 -1.2   | 1612.     | ł         | 117.      | ł          | t        |
|      | 3.0 2.1       | ·- 6.      | 1313.     | 1         | 138.      | ł          | I        |
|      | 3.1 1.9       | 1.6 -1.4   | 1614.     | 1<br>1    | 108.      | I          | I        |
|      | 3.4 2.5       | .7 -1.2    | 1714.     | ł         | 198.      | I          | 1        |
|      | 3.4 2.0       | .9 -1.6    | 2215.     | 1         | 297.      | I          | 1        |
|      | 3.3 2.0       | 1.4 -2.0   | 2620.     | 1         | 3510.     | ł          | 1        |
|      | 3.5 1.8       | .6 -2.1    | 2917.     | ı<br>t    | 4110.     | I          | !        |
|      | 3.0 1.0       | .6 -2.9    | 3327.     | 1         | 419.      | ,          | I        |
|      | 3.2           | .9 -3.2    | 3429.     | 1         | 4412.     | I          | 1        |
|      |               |            |           |           |           |            |          |

|                |         |         | TABLI      | e XVI    | I -       | Conc | luded        | ۱   |              |            |               |
|----------------|---------|---------|------------|----------|-----------|------|--------------|-----|--------------|------------|---------------|
| HUN-<br>41.    | TYPE    | 2E<br>( | TA<br>DEG? | 8E<br>(D | TA<br>Egi |      | . 30R        |     |              |            | T.18R<br>NLB) |
|                |         | WAX.    | MIN.       | MAX.     | MIN.      | MAI  | . MIN.       | MAX | . MIN.       | MAI        | . MIN.        |
| 64- 5          | STEADY  | 4.9     | 3.7        | 3.5      | 2.3       | 13.  | -10.         | 17. | -11.         | 7.         | -19.          |
| 68- 4          | STEADY  | 5.6     | 0          | 3.9      | 2.4       | 13.  | -9.          | 17. | 12.          | 10.        | -20.          |
| 04- 7          | STEAL   | 6.7     | 5.0        | 4.0      | 2.6       | 10.  | -7.          | 20. | -4           | 15.        | -25.          |
| 68- b          | STEADY  | 7.3     | 5,4        | 4.3      | 2.5       | 16.  | -10.         | 20. | -11.         | 20.        | -33.          |
| 68- 7          | STEADY  | 8.2     | 6.1        | 4.4      | 2.9       | 16.  | -4.          | 22. | -10.         | 16.        | -35,          |
| 68- 8<br>68- 9 | STEADY  | 4.7     | 3.5        | 3.7      | 1.8       | 14.  | -8.          | 18. | -4.          | 9.         | -22.          |
| 6A-10          | STEADY  | 6.5     | 4.1        | 3.9      | 2.0       | 19.  | -11.         | 19. | -12.         | 14.        | -30.          |
| 66-11          | STEADY  | 7.3     | 5.6        | 4.2      | 2.3       | 20.  | -14.<br>-12. | 21. | -11.<br>-13. | 17.        | -35.          |
| 6h-17          | STEADY  | 8.2     | 6.2        | 4.5      | 2.3       | 21.  | -10.         | 25. | -10.         |            | -42.          |
| on-13          | STEADY  | 4.9     | 3.7        | 3.2      | 1.6       | 14.  | -15.         | 17. | -11.         | 21.        | -17           |
| 68-14          | STEADY  | 5.4     | 4.0        | 1.5      | 1.6       | 17.  | -5.          | 19. | -14.         | 7.         | -25.          |
| 66-15          | STEADY  | 6.2     | 4.6        | 3.8      | 1.7       | 19.  | -10.         | 21. | -13.         | -          |               |
| 68-10          | STEADY  | 7.0     | 5.3        | 3.8      | 1.8       | 18.  | -11.         | 22. | -14.         | -          | -             |
| 6A-17          | STEADY  | 4.6     | 3.3        | 3.0      | 1.0       | 10.  | -10.         | 21. | -13.         | 11.        | -15.          |
| 68-18          | STEADY  | 5.3     | 3.8        | 3.5      | 1.0       | 24.  | -12.         | 25. | -14.         | 16.        | -21.          |
| 68-14          | STEADY  | 6.0     | 4.2        | 3.5      | 1.1       | 24.  | -14.         | 27. | -15.         | -          | -             |
| 68-20          | STEADY  | 6.6     | 4.7        | 3.9      | 1.4       | 22.  | -13.         | 27. | -10.         | -          | -             |
| 60- 3          | STEADY  | 6.3     | 4.7        | 4.3      | 2.2       | 18.  | -8.          | 19. | -11.         | 13.        | -27.          |
| 69- II         | STEADY  | 8.1     | 0.1        | 4.8      | 2.4       | 25.  | -10.         | 23. | -11.         | -          | -             |
| 69- 5          | STEADY  | 6.4     | 4.3        | 3.5      | .6        | 25.  | -11.         | 28. | -15,         | -          | -             |
| 69- 6          | STEADY  | 6.1     | 4.4        | 3.8      | .6        | 28.  | -11.         | 29. | -15.         | -          | -             |
| 69- 7          | STEADY  | 5.8     | 3.9        | 4.0      | . 3       | -    | -            | -   | -            | -          | -             |
| 70- 3          | STEADY  | 5.2     | 3.4        | 3.3      | • 0       | 33.  | -12.         | -   | -            | 14.        | -15.          |
| 70- 5          | STEADY  | 3.0     | 1.9        | 1.6      | • 0       | 17.  | -10.         | -   | -            | 13.        | -10.          |
| 70- 5          | STEADY  | 5.5     | 3.9        | 3.9      | 3         | 39.  | -16.         | -   | -            | 22.        | -27.          |
| 70- 7          | STEADY  | 5.4     | 3.7        | 3.8      | 1         | 37.  | -14.         |     | -            | 18.        | -21.          |
| 70- 8          | STEADY  | 5.0     | 2.8        | 4.0      | 7         | 43.  | -17.         | -   | -            | 29.        | -29.          |
| 70- 4          | STEADY  | 4.5     | 2.5        |          | 1.0       | 45.  | -20.         |     | -            | 32.        | -29.          |
| 70-10          | STEADY  | 4.4     | 2.5        | 3.9      | 8         | 46.  | -20.         | -   |              | 40.        | -17.          |
| 71- 3          | STEADY  | 3.2     | 1.9        | 1.6 -    |           | 17.  | -18.         | -   | -            | Ψ.         | -3.           |
| 71- 4          | STEADY  | 3.1     | 2.1        | 1.9      | 9         | 12.  | -12.         | _   | -            | 3.         | -3.           |
| 71- 5          | STEADY  | 3.3     | 2.1        |          |           | 11.  | -11.         | -   |              | <b>š</b> . | -3.           |
| 71- 0          | STEADY  | 3.2     | 2.1        |          | 1.1       | 10.  | -10.         |     | -            | 2.         | -3.           |
| 71- 7          | STEADY  | 3,1     | 1.8        |          | 1.1       | 12.  | -8.          | -   | -            | 2.         | -4.           |
|                | STEADY  | 3.0     | 2.4        |          | 1.1       | 11.  | -11.         | -   | -            | 1.         | -4,           |
| 71- 4          | STEADY  | 3.9     | 2.4        |          | 1.3       | 10.  | -11.         | •   | -            | 2.         | -4.           |
|                | STEADY  | 4.0     | 2.1        |          | 2.2       | 15.  | -17.         | -   | -            | 4.         | -5.           |
|                | STEADY  | 4.3     | 2.1        | .3 -     |           | 25.  | -22.         | -   | -            | 2.         | -6.           |
|                | STEADY  | 4.4     | 2.0        | 6 -      |           | 20.  | -20.         | -   | -            |            | -7.           |
|                | STEADY  |         | 2.0        | .9 -     |           | 11.  | -15.         | -   | -            | 5.         | -5.           |
|                | STEADY  |         | 2.0        | .3 -     |           | 24.  | -26.         | -   | -            | . 7.       | -6.           |
|                | STEADY  |         | 1.8        | 1.7 -    |           | 24.  | -23.         | -   | -            | 10.        | -7.           |
|                | STEADY  |         | 1.7        | -1 -     |           | 27.  | -22.         | -   | -            | 25.        | -7.           |
|                | STEADY  |         | 1.4        | 1.5 -    |           | 24.  | -28.         | -   | -            | 30.        | -12.          |
|                | STEADY  |         | 2.0        | 2.0 -    |           |      | -19.         |     |              |            |               |
| 15-14          | 316 401 |         |            | 6 + U -  |           | 18.  | -14-         | -   | -            | 21.        | -7.           |

| <b></b>                                   | 1                 | T         | -        |        | -      |                 |        |          | -      | _       |          |          | _      |   |       |      |       | _         |     |            |         |        |        | _        |      |      |            |    |           |         |       |
|-------------------------------------------|-------------------|-----------|----------|--------|--------|-----------------|--------|----------|--------|---------|----------|----------|--------|---|-------|------|-------|-----------|-----|------------|---------|--------|--------|----------|------|------|------------|----|-----------|---------|-------|
|                                           | MC. 30R<br>(INLB) | HAX. HIN. | 19.      | 61-    |        |                 |        |          |        | 27.     | 28.      |          |        |   | •     | 39.  | 76.   |           | •   |            |         |        |        |          |      | •    | 31.        |    | •         | -30.    |       |
|                                           | 12                | H.        | 22       | 20     | 20     | 20              | 12     | 3        | 21     | 25      | 2        | 3        | 62     | 3 | 2     | 0.4  | 8     | 20        |     |            |         | 5      | 20     | 5        | 5    | 2    | 15         | 51 | 3         | 53      | 67    |
| (A3 = 0.0)                                | MT.35R<br>( [NLB) | MAX. HIN. | 92.      | •      |        | 5. <b>-</b> 12. | • •    | -17.     |        |         | •        |          |        |   |       |      |       | •         |     | -27.       |         | 1      | 1      | 1        | 1    | ł    | I          | •  | 1         | 1       | 1     |
| EL                                        |                   | Γ         |          | 2      | -      |                 |        |          |        | 2       | 1        | 20       |        |   | 5     | 5    | 2     | 10        | N   | N          | 31      | '      | '      | '        | '    | 1    | '          | ľ  | I         | '       | '     |
| D LOADS<br>D. TANGENT DELTAS              | MT.10R<br>(INLB)  | HAX. HIN. | 105.     | 136.   | •      | 1613.           | 2210.  | 2720.    | •      | 127.    | •        |          | •      |   |       |      |       | 3527.     |     | ł (<br>1   | 3226.   | -22    |        | 1914.    |      | •    |            |    |           | 916.    | 1619. |
| E MOTIONS AND LOADS<br>AT .30 CHORD, TANG | MF.30R<br>(INLB)  | MAX. MIN. | 62.      | 65.    | •      | <b>1</b> 1      | 1513.  |          |        | 1514.   | 1915.    | •        | 3430.  |   | 2637. |      |       | 155.      |     |            | 16.     |        | •      | •        | 125. | 120. | •          | •  |           | 2316.   | 2519. |
| NUM BLADE<br>GRAVITY                      | BETA<br>(DEG)     | MAX. HIN. | 2.1 1.1  | •      | •      | 2.1             | •      | 1        | •      |         |          |          |        |   |       | 2    | -21   | ດ.<br>ດຸເ | N C |            |         | .7 2.  | .9 1.  | 2.1 .4   | *    | •    | *          |    | 2         | 2.3 1.5 | •5 1. |
| MAXIMUM AND MININ<br>(BLADE CENTER OF     | ZETA<br>(DEG)     | MAX. MIN. |          | -      | -      | 2.0 1.6         | 4      | -        | -      | 2.8 1.6 | 2.9 1.6  | -        | -      | • | •     |      | i     | 7.2 5.2   | •   | <b>.</b> . | 6.7 5.1 | 9      | N      | 2.4 1.3  | -    |      | -          |    |           | •       |       |
| TABLE XVIII.                              | TYPE              |           | 3 STEADY | STEADY | STEADY | 7 STEADY        | STEADY | 9 STEADY | STEADY | STEADY  | 5 STEADY | 6 STEADY | STEADY |   |       |      |       | STEADY    |     | STEADY     | STEADY  | STEADY | STEADY | 6 STEADY |      |      | <b>5</b> ( |    | TT STEADY | N       | n     |
|                                           | RUN-<br>PT.       |           | 74-      | - 14-  |        |                 | 74-    | 74-      | 75-    | -22-    | 75-      | 75-      | 75-    | 5 | 75- 9 | 75-1 | 1-5-1 | -92       |     |            | 11-     | -1-    |        | -        |      |      | •          |    |           | 4       | 1-11  |

Ш

|                         | MT.35R MC.30R<br>(INLB) (INLB) | MAX. MIN. MAX. MIN. | 5336.  | - 1    | 48.    |        |        | 28.        | -27.       | 102.   | -20. 00. |        | ,      | - 85.   |        |         | •       |        | 1      | - 24. 4. |        |        |        | - <b>-</b> i                           |        | - 2019. |        | - 2235.  | 2248.  |   |
|-------------------------|--------------------------------|---------------------|--------|--------|--------|--------|--------|------------|------------|--------|----------|--------|--------|---------|--------|---------|---------|--------|--------|----------|--------|--------|--------|----------------------------------------|--------|---------|--------|----------|--------|---|
| T                       | MT.18R<br>( INLB)              | MAX. MIN.           |        | 3527.  |        |        | 2718.  | •          | •          |        | •        | 5 1    | 1      | 1       | 95.    | 74.     | 65.     | 46.    | •      |          | 74.    | •      | •      | ······································ | •      | 216.    | •      | •        | •      |   |
| TABLE XVIII - Concluded | MF.30R<br>(INLB)               | MAX. MIN.           | 164.   | •      | 175.   | •      |        | 2717.      | -2251      | -0204  |          |        |        |         | 1423.  |         |         | 1113.  |        |          |        |        | 2121.  |                                        |        | •       | •      | 3528.    | •      | 1 |
| TABLE XVIII             | BETA<br>(DEG)                  | MAX. HIN.           | •      | 0      |        | 8      | •      |            |            |        |          |        | 8.     | •0 3.   | .1 -1. | \$      | .8 -1.4 | Ŧ      | 2-2-   | -        | n'     | n:     | 1      | N                                      | ar I   |         |        |          | 1      | " |
|                         | ZETA<br>(DEG)                  | MAX. MIN.           | 8      | 9      | 8      | ສ<br>ທ | *      | ن درم<br>س | N (<br>N ( |        |          |        | 0      | 3.5 1.0 | 5 1    | 2.3 1.2 | 2.6 1.4 | •6     | .5     |          | •      | .1 .   |        |                                        | 5      | -<br>~  | 0      | .1 - 1 - | •      | C |
|                         | TYPE                           |                     | STEADY | STEADY | STEADY | STEADY | STEADY | STEADY     | STEAUT     | STEAUT | STEADY   | STEADY | STEADY | STEADY  | STEADY | STEADY  | STEADY  | STEADY | STEADY | STEADY   | STEADY | STEADY | STEADY | STEADY                                 | STEADY | STEADY  | STEADY | STEADY   | STEADY |   |
|                         | PT.                            |                     |        | 1      |        |        |        |            | 1          |        |          | 79- 9  | 79-10  | 7       | 1      |         | 80- 5   |        |        |          | 1      | 7      | -      |                                        |        | 1       | 1      | Ļ        | 1      | ( |

| -     | TABLE RIK | NAKING<br>TBLADO | CENTER OF | GRAVITY   | LADE N<br>1TY AT                        | 0110 | TTONS AND 1 | TANAE      | OADS<br>TANGENT DELTAS | - 11   | (0.0)     |       |           |           |      |
|-------|-----------|------------------|-----------|-----------|-----------------------------------------|------|-------------|------------|------------------------|--------|-----------|-------|-----------|-----------|------|
| \$:   | TIPE      | ZETA             |           | DETA      |                                         | 4    | F. 30R      | 2          | NE. 60R                | .F     | NT.16R    | .I.   | HT. 35R   | MC . 30R  | ğ    |
| 2     |           | (1020)           |           |           | 5                                       | .NI  | (INLB)      | 197- "NI ) | Î                      | (INLB) | Î         | ( IN. | (87N.)    |           | ĝ    |
|       |           | NIN .XAN         |           | HAT. PIN. | ·NIA                                    | HAY. | HAN. HIH.   | HAX.       | HAR. HIN.              | MAX.   | MAX. HIN. | HAX.  | MAX. MIN. | MAX. MIN. | ·NIH |
|       |           |                  | •         | 2.1       | 1.2                                     |      | ~           |            | ŕ                      | 25.    | ļ         | ı     | 3         | 16.       | -23. |
| • •   | STEADT    |                  |           |           | •                                       | 13.  | Ŧ           |            | -10-                   | 3      | -27.      | •     | ı         |           | 2    |
| ~ ~   | STEADT    | 1.2              |           | •         | ~                                       | 17.  | 7           |            |                        | ż      | -28.      |       | 1         |           | -33. |
|       | STEADT    | -                | •         | •         |                                         | :    |             |            | 1                      |        | -15.      |       | -10.      |           | -10. |
| :     | STEADT    | 3.0 2.           |           | 1.7       |                                         | :    | -1.         | 12.        | •                      | ż      | -22-      | ż     | -23.      |           | -10. |
|       | SICADY    | -                | •         | 1.7       | ••••                                    |      | -10.        |            | -10.                   |        |           |       | -23.      |           | -23. |
|       | STEADY    | 2.0 1.5          | •         | 2.1 -     | -1.5                                    |      | -10.        |            | -10.                   |        | Ż.        |       | i         |           |      |
|       | -         |                  | •         |           | ~                                       |      |             |            | -10.                   |        | ŗ.        |       | ż.        | Ś         | į    |
|       |           | 2.1 1.7          |           | _         | -1-2                                    |      | i           | 17.        | -10.                   |        | .2.       |       | ż.        |           | -55. |
|       |           |                  | •         |           | ••••                                    |      | -15.        |            | -2-                    |        | - 2.      |       | -37.      |           | -23. |
|       | STEADY    | -                | •         |           | -2.2                                    |      | -10.        | •          |                        |        | 2.        |       |           |           | :x-  |
|       | STC ADT   | 2.9 1.7          | -         | -         | -1.•                                    |      | ż.          | f          | 1                      |        | r         |       | -23.      |           | -    |
|       | S ICAOT   | ••••             |           | •         |                                         | -22  | -21.        | 1          | 8                      | ı      |           |       | -10-      |           | ŧ    |
|       |           | 2.7              |           |           | •                                       |      | -11.        |            | Ŀ                      | 8      |           |       | -13.      | ż         | i    |
|       |           |                  | •         |           | ~                                       |      |             | 4          | 4                      | I      | r         |       | -12.      | Ś         | ÷    |
|       |           | •                |           | •<br>•    |                                         |      | ż           | 2          |                        | 1      |           |       |           | ż         | ÷    |
|       |           |                  |           |           |                                         | •    | ċ           |            |                        | 8      |           | ż     |           |           | ÷    |
|       |           |                  |           |           |                                         |      | i           |            | i                      | ę      |           |       | i         |           |      |
|       |           |                  |           |           |                                         |      | i           |            | it                     | . 1    |           | 63    |           | 1         |      |
| • • • | 575 401   | -                |           | -         | -1-1                                    |      | 1           |            | 4                      |        |           |       | 1         |           | 2    |
|       | SILADY    | ~                |           | -         | • • •                                   |      | -21.        |            | 1                      | ę      |           |       | 7         | 101       | •    |
| • • • | 1.1       |                  | •         |           |                                         |      | -21.        | 8          |                        | 1      |           |       | į         | \$        | ż    |
| 1     |           |                  | •         | •••       | ••••                                    |      | -13.        |            | ×                      | r      |           |       | -10-      |           | -10- |
| •     |           |                  | •         | •         | ••••                                    | -21  | -11.        | 8          | 8                      | đ      |           | .21   | t         |           | -12. |
| 1     |           |                  | •         | •         | -1.1                                    |      | -13.        |            | Ŧ                      | 2      |           | •     |           |           | -12. |
| 1     |           |                  | -         |           |                                         |      | -12.        | 4          | đ                      |        | n         |       | i         |           | ŕ    |
|       | 104 115   | •                | •         | •         |                                         |      | -12.        | n          | U                      | 9      |           |       | ŕ         |           |      |
|       |           |                  | -         | -         |                                         |      | -=-         | 8          |                        |        |           |       | i         |           |      |
|       |           |                  |           |           | • • • •                                 |      | -13.        |            |                        | Ł      |           |       | ŧ         |           |      |
|       |           |                  | •         |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      | -12.        |            |                        | Ŧ      |           | :     | ŕ         | 2.        | t    |
| Ī     | -         |                  | -         |           |                                         | :    | -12-        |            | 0                      | đ      |           |       | ŕ         |           |      |
|       |           |                  |           |           |                                         |      |             |            |                        |        |           |       |           |           |      |

## APPENDIX III

ø

.

| - 14 - 1947 - | 18 | 14 1 A Patri | PRODONCE.        | HARMONTOS |
|---------------|----|--------------|------------------|-----------|
| 2 6 almadam   | 11 | it and the   | The of the offer | HARMONICS |

| RU:1-<br>P1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OHS                                           |                                          |                                               | BL.A                                | DE LAG                                | MOTION                                       | HARMONI                 | CS (DEG)                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|-------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR<br>FPS1                                    | ۲U                                       | THEC<br>(DEG)                                 | A1                                  | A2                                    | AJ                                           | A4                      | A5                          |
| 50- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | ,731                                     | 2.0                                           | •2                                  | •0                                    | •0                                           | .2                      | •0                          |
| 50- h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | .808                                     | 2.0                                           | •1                                  | •0                                    | • 0                                          | .0                      | •0                          |
| 50- 7<br>50- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | 1.026                                    | 2.0                                           | •2                                  | •0                                    | .1                                           | 1                       | •0                          |
| 50- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1.119                                    | 2.0                                           | •0                                  | •0                                    | .1                                           | 1                       | •1                          |
| 50-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1.140                                    | 2.0                                           | •2                                  | .1                                    |                                              | .0                      | •0                          |
| 50-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1.248                                    | 2.0                                           | .0                                  | •0                                    | .1                                           | .0                      | •0                          |
| 50-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                          | 2.0                                           | .0                                  | • 0                                   | •1                                           | 1                       | •0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                          |                                               |                                     |                                       |                                              |                         |                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UMS                                           |                                          |                                               | ULA                                 | DE LAG                                | POTION                                       | HARMONI                 | CS (DEG)                    |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNS<br>•R<br>FMS1                             | ٣٥                                       | THEC<br>(DEG)                                 | dl A<br>61                          | DE LAG<br>J2                          | POTION<br>B3                                 | HARMONI<br>B4           | CS (DEG)<br>B5              |
| ۲۲.<br>۸۵.<br>۵۰- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •R<br>FPS)<br>700                             | .731                                     | 10661                                         | 61                                  | J2<br>• 1                             | <b>83</b>                                    | .1                      | 85                          |
| +1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •R<br>FPS)<br>707<br>•32                      | .731                                     | (DEG)<br>2.0<br>2.0                           | 61<br>• 1<br>• 1                    | J2<br>• 1<br>• 1                      | <b>83</b><br>•0                              | B4<br>2                 | 85<br>•0<br>•0              |
| +1.<br>2.L.<br>(<br>00-5<br>00-5<br>00-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •A<br>FPS)<br>700<br>•32<br>500               | .731<br>.408<br>1.026                    | (DEG)<br>2.0<br>2.0<br>2.0                    | 61<br>•1<br>•1                      | J2<br>• 1<br>• 1<br>• 1               | <b>B3</b><br>.0<br>.0<br>.1                  | .1<br>2<br>1            | 85<br>•0<br>•0<br>•1        |
| -1.<br>-2.<br>-2.<br>-2.<br>-2.<br>-2.<br>-2.<br>-2.<br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •A<br>FPS)<br>707<br>•32<br>500<br>•d2        | .731<br>.4.08<br>1.026<br>1.062          | (DEG)<br>2.0<br>2.0<br>2.0<br>2.0             | 61<br>•1<br>•1<br>-•1<br>-•3        | J2<br>• 1<br>• 1<br>• 1<br>• 1        | <b>0</b> 3<br>.0<br>.1<br>.1                 | .1<br>2<br>1<br>.0      | 85<br>•0<br>•0<br>•1<br>•0  |
| PT.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2.1.<br>2 | +A<br>FPS1<br>+32<br>500<br>+d2<br>+57        | .731<br>.6.08<br>1.026<br>1.062<br>1.119 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 61<br>•1<br>•1<br>-•1<br>-•3<br>-•3 | J2<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1 | <b>B3</b><br>• 0<br>• 0<br>• 1<br>• 1<br>• 1 | B4<br>2<br>1<br>.0<br>1 | 85<br>•0<br>•1<br>•0<br>-•1 |
| PT.<br>20-5<br>50-6<br>50-7<br>50-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •R<br>FPS)<br>•32<br>•50<br>•d2<br>•57<br>•34 | .731<br>.4.08<br>1.026<br>1.062          | (DEG)<br>2.0<br>2.0<br>2.0<br>2.0             | 61<br>•1<br>•1<br>-•1<br>-•3        | J2<br>• 1<br>• 1<br>• 1<br>• 1        | <b>0</b> 3<br>.0<br>.1<br>.1                 | .1<br>2<br>1<br>.0      | 85<br>•0<br>•0<br>•1<br>•0  |

.

| OMS<br>*R<br>FPS) NU (DEG)<br>700 .731 2.0<br>632 .808 2.0<br>632 .808 2.0<br>457 1.119 2.0<br>457 1.119 2.0<br>457 1.119 2.0<br>457 1.119 2.0<br>457 1.119 2.0<br>457 1.119 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLE XX - Concluded   | RLADE LAG MOTION HARMONICS (DEG)<br>RS R1 R2 R3 R4 R5 | 22.96<br>2.4<br>2.5<br>2.4<br>2.5<br>2.4<br>2.5<br>2.4<br>2.5<br>2.4<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| OMS<br>*R<br>(FPS) NU<br>700 .731<br>632 .808<br>500 1.026<br>457 1.119<br>457 1.119<br>434 1.160<br>410 1.248<br>410 1.248<br>435 1.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TABLE XX - Concluded | ßS                                                    |                                                                                                                                            |
| PT1-<br>5005<br>5005<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-1000-10 |                      |                                                       | 700 .731<br>632 .808<br>500 1.026<br>482 1.062<br>457 1.119<br>434 1.180<br>410 1.248<br>410 1.248<br>435 1.327                            |

|                                               | A10                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 810                          | 000-00-0                                                                            |
|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------|
|                                               | 64                                     | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                             |
| 1 50                                          | -LB)<br>AB                             | nn000n-n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -L8)<br>86                   | 00000034                                                                            |
| ICS- RUN                                      | CS (INLB)<br>A7 A8                     | * 00 - 0 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CS (IN.                      |                                                                                     |
| "OMFN'T HAR' KONICS-<br>.25 CHORD)            | HARMONI<br>A6                          | 1.0<br>1.1<br>2.5<br>2.5<br>2.5<br>-2.6<br>-2.8<br>-3.0<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HARMONICS (INLB)<br>B6 B7 B8 | 093-11-0<br>093-11-0                                                                |
|                                               | HOMENT I                               | 5000000<br>5000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOMENT I                     | 000-0000<br>                                                                        |
| .30R FLAPWISE BEWDING<br>CENTER OF GRAVITY AT | BENDING MOMENT HARMONICS<br>A4 A5 A6 A | -1.0<br>-1.0<br>-1.0<br>-1.0<br>-1.0<br>-3.9<br>-3.9<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BENDING                      | 1 1 - N<br>2 0 0 0 - NN                                                             |
| APWISE<br>ROF GRA                             | FLAPWISE B                             | - 2.0<br>- 1.0<br>- 1.0<br>- 1.0<br>- 1.0<br>- 1.0<br>- 2.0<br>- 2.0<br>- 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FLAPWISE B                   | 5.4<br>9.5<br>111.3<br>185.6<br>185.6                                               |
| . 30R FI<br>E CENTER                          | .30R FLA<br>A2                         | - 1.8<br>- 1.8 | .30 <sup>R</sup> FLA<br>82   | 1 - 1 - 1 - 1 - 4<br>- 1 - 1 - 1 - 1 - 4<br>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |
| BLADE<br>(BLADE                               | HLADE .<br>Al                          | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLADE .<br>31                |                                                                                     |
| LE XXI.                                       | THEC<br>(DEG)                          | 0000000<br>000000<br>0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THEC<br>(DEG)                | 000000<br>000000<br>000000000000000000000000                                        |
| TABLE                                         | Ŋx                                     | .731<br>.808<br>1.026<br>1.119<br>1.119<br>1.119<br>1.248<br>1.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.¥                          | .731<br>.808<br>1.026<br>1.026<br>1.119<br>1.119<br>1.180<br>1.248<br>1.327         |
|                                               | 0MS<br>#R<br>FPS)                      | 700<br>380<br>381<br>381<br>381<br>381<br>381<br>381<br>381<br>381<br>381<br>381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0MS<br>+R<br>FPS)            | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                         |
|                                               | RUI-<br>PT-<br>NC.                     | 500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10<br>500-10000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RUN-<br>PT.                  | 50- 5<br>50- 5<br>50- 7<br>50- 7<br>50- 1<br>50-11<br>50-11<br>50-11                |
|                                               | RUN-<br>PT.<br>NO.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                     |

•

|                       |                                                    |               | 1                                                                                                               |
|-----------------------|----------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
|                       |                                                    | R10           | <u></u>                                                                                                         |
|                       |                                                    | R9            | ******                                                                                                          |
|                       |                                                    | 88            | ม <sub>ี</sub> เข้าเข้าเข้าเข้าเข้าเข้าเข้าเข้าเข้าเข้า                                                         |
|                       | -LB)                                               | R7            | Dr. 8 . r. 9 . r.                                                                                               |
|                       | CS (IN.                                            | R6            |                                                                                                                 |
|                       | ARMONI                                             | R5            | 6 4 0<br>6 4 0<br>7 1 1 0<br>7 1 0<br>7 1 0<br>7 |
| nded                  | .ADE .JUR FLAPWISE BENDING MOMENT MARMONICS (INLB) | R <b>4</b>    | 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                         |
| TABLE XXI - Concluded | SNICH                                              | R3            | 6,2<br>9,6<br>11,5<br>16,1<br>18,1<br>18,1<br>18,1<br>18,1<br>18,1                                              |
| LE XXI                | PWISE B                                            | R2            | 9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                         |
| TAB                   | 30R FLA                                            | R1            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                          |
|                       | HADE .                                             | RS            |                                                                                                                 |
|                       |                                                    | THEC<br>(DEG) | 000000000<br>                                                                                                   |
|                       |                                                    | ŊW            | .731<br>.608<br>.608<br>1.026<br>1.026<br>1.119<br>1.119<br>1.180<br>1.180<br>1.248<br>1.327                    |
|                       |                                                    | #R<br>FPS)    | 700<br>632<br>632<br>453<br>453<br>453<br>410<br>385                                                            |
|                       |                                                    |               | 50- 5<br>50- 5<br>50- 7<br>50- 7<br>50- 7<br>50-11<br>50-12<br>50-12                                            |

2.6

|                                                                           | <b>—</b>                                      |                    |           | -           | -      | -      | -     | -        | -     | -           |  |                  | -   |               |      | -       |          | -           |        |       |          | -       |
|---------------------------------------------------------------------------|-----------------------------------------------|--------------------|-----------|-------------|--------|--------|-------|----------|-------|-------------|--|------------------|-----|---------------|------|---------|----------|-------------|--------|-------|----------|---------|
|                                                                           |                                               | A10                |           |             |        | .1     |       | <b>.</b> | •     | - 2         |  |                  |     | 810           | 1    |         | ±.1      |             | 1.1    | •     |          | 2       |
|                                                                           |                                               | A9                 |           | 2.          | •      |        |       | ~        | 1     | <b>••</b> - |  |                  |     | 89            | •2   | P       | <b>n</b> |             | P      | + · · | <b>.</b> | <b></b> |
| RUN 50                                                                    | 118)                                          | A8                 | £         | r           | 1      | 1.1    | ••    | 0.       | £     | n           |  | 1LB)             |     | 88            | 2    | + • +   | 5        | 5           | - 5    | - 5   | + • •    | £       |
| 1                                                                         | IICS (I)                                      | 74                 | <b></b> 3 | <b>-</b> .6 | + • +  | 1.1    | 1     | •        | + • + |             |  | HARMONICS (INLB) |     | 87            | 3    | <b></b> | 6        | 6           | ••0    | 6.1   | + • •    | 6       |
| T HARMO<br>HORD)                                                          | HARMON                                        | A6                 | 9         | -1.0        | -1.9   | -1.5   | 1.0   |          | 1.2   | 1.0         |  | HARMON           |     | B6            | +    | + • •   | 1.5      | ÷.          | ŗ.     | •     | -1.0     | -1.1    |
| G MOMENT HAF<br>T .25 CHORD)                                              | MOMENT                                        | AS                 | -2.0      |             |        | -1.9   |       | -1.6     | -1.8  | -2.1        |  | BENDING MOMENT   |     | 85            | 1.6  | 1.0     | +-+      | n           | -1.2   | -1.1  |          | -1.1    |
| BENDIN<br>AVITY A                                                         | <b>BENDING</b>                                | A4                 | -2.0      |             |        | 6.5-   |       |          | -6.1  |             |  | <b>JENDING</b>   |     | 84            | •5   | n       | n°-      | <b>*</b> •• | ~      |       |          |         |
| .60R FLAPWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT .25 CHORD) | .60R FLAPWISE BENDING MOMENT HARMONICS (INLB) | A3                 | -4.3      |             |        | - +-+- |       |          | -6.7  |             |  | FLAPWISE (       |     | 83            | 0.6  | 8.6     | 12.3     | 12.0        | 14.8   | 15.2  | 20.0     | 22.0    |
| G-1                                                                       | 60R FL                                        | A2                 |           |             | -4.2 . |        |       |          |       |             |  | .60R FL/         |     | 32            | 1.5  |         |          |             | -1.5 1 |       |          |         |
| BLADE .<br>(BLADE                                                         | BLADE .                                       | A1                 |           |             |        | 2.6 -  |       |          |       |             |  | BLADE .          |     | 81            | 1.5  | -1.7    | 6        |             | 5 -    |       |          |         |
| TABLE XXII.                                                               |                                               | THEC<br>(DEG)      | 2.0       | 2.0         | 2.0    | 2.0    | 2.0   | 2.0      | 2.0   | 2.0         |  |                  |     | THEC<br>(DEG) |      | •       |          |             | 2.0    | '     |          |         |
| TABI                                                                      |                                               | L UM               | .731      | .808        | 1.026  | 1.062  | 1.119 | 1.180    | 1.248 | 1.327       |  |                  |     | MU            | .731 | .808    | .026     | .062        | .119   | .180  | .248     | 1.327   |
|                                                                           |                                               | ums<br>#R<br>(FPS) |           |             | -      | 482 1  | -     | -        | -     | -           |  |                  | SMC | #R<br>FPS)    |      |         |          |             | 457 1  |       |          |         |
|                                                                           |                                               | .ov                |           |             |        | 50-84  |       |          |       |             |  | -NUA-            | P1. | -             | S    | s       | 2        | 8           |        | 01    | =        | 12      |

.

.

|                 |         |               |             |     | TARI,                                         | TARI,E XXII - Concluded | Conclu | led   |          |            |          |         |          |
|-----------------|---------|---------------|-------------|-----|-----------------------------------------------|-------------------------|--------|-------|----------|------------|----------|---------|----------|
| RUN-<br>PT. OMS |         |               | BLADE       |     | .60R FLAPWISE BENDING MOMENT HARMONICS (INLB) | BENDING                 | MOMENT | HARMO | VICS (IN | 428)       |          |         |          |
| NG. #R          | 5) MU   | THEC<br>(DEG) | ßS          | 181 | R2                                            | R3                      | R4     | RS    | R6       | R7         | R.6      | R9      | RIO      |
| 50- 5 700       |         | 2.7           | 1.4         | 2.9 | 2.2                                           | 10.0                    | 2.0    | 2.6   |          | 5          | 5.       | t.      | 2.       |
| 50- 6 632       | 2.808   | 2.0           | 1.8         | 2.7 | 2.2                                           | 9.4                     | 1.3    | 1.8   | 1.0      |            | ŝ        | +.      | <b>N</b> |
| 50- 7 500       | -       | 2.0           | 2.2         | 2.9 | 4.2                                           | 12.7                    | 3.3    | 1.6   | 2.4      | .7         | •5       | r.      | • =      |
| 50- 8 485       | 2 1.062 | 2.0           | 2.6         | 2.7 | 5.1                                           | 12.8                    | 4.0    | 1.9   | 1.5      | 9.         | <b>ئ</b> | ۳.<br>• | - 5      |
|                 | -4      | 2.0           | 3.3         | 3.0 | 5.6                                           | 15.3                    | n•+    | 2.0   | 1.0      | 9.         | ۍ<br>۱   | n.      | -        |
|                 | -       | 2.0           | 4.0         | 3.2 | 1.1                                           | 16.7                    | 5.5    | 2.0   | 2.       | 6.         | 5        | ÷.      |          |
| 50-11 410       | -       | 2.0           | <b>6°</b> † | 3.7 | A.1                                           | 21.1                    | 6.6    | 2.2   | 1.6      | 9.         | <b>S</b> | 5       | -        |
|                 | -       | 2.0           | 5.4         | 3.8 | 10.0                                          | 22.6                    | 7.2    | 2.3   | 1.5      | , <b>)</b> | +.       | +•      | <b>n</b> |
|                 |         |               |             |     |                                               |                         |        |       |          |            |          |         |          |

|                                                            | T                         | 1                                                                                        |                           | · · · · · · · · · · · · · · · · · · ·                                                                |
|------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------|
|                                                            | 6)<br>A6                  | 0.000                                                                                    | G)<br>B6                  | 00440040                                                                                             |
| (D)                                                        | HARMONICS (DEG)<br>A4 A5  | 0.4.0.4.4.0                                                                              | ICS (DEG)<br>BS           |                                                                                                      |
| - RUN 50<br>.25 CHORD)                                     |                           |                                                                                          | HARMONICS<br>B4 B5        | 0000004N<br>11                                                                                       |
| I HARMONICS<br>GRAVITY AT                                  | MCTION<br>A3              | · · · · · · · · · · · · · · · · · · ·                                                    | FLAP MOTION               |                                                                                                      |
| BLADE FLAP MOTION HARMONICS<br>(BLADE CENTER OF GRAVITY AT | DE FLAP<br>A2             | NNNNNN#<br>                                                                              |                           |                                                                                                      |
| SLADE FLAP MOTION<br>(BLADE CENTER OF                      | BLADE                     | 11111 1                                                                                  | BLADE<br>B1               | 0-<br>••••••••••••<br>••••••••••                                                                     |
|                                                            | THEC<br>(DEG)             | 0000000<br>                                                                              | тчес<br>(DEG)             | 000000000<br>0000000000000000000000000000                                                            |
| TABLE XXIII.                                               | ∩¥<br>¥                   | .731<br>.808<br>1.026<br>1.1062<br>1.119<br>1.248<br>1.327                               | י)<br>צ                   | .731<br>.808<br>1.026<br>1.026<br>1.119<br>1.119<br>1.248<br>1.327                                   |
| TA                                                         | RUN-<br>PT. OMS<br>NC. AR | 01 5 700<br>01 5 700<br>01 5 632<br>01 9 453<br>01 1 4 454<br>01 1 1 4 10<br>01 1 1 4 10 | RUN-<br>PI. OMS<br>NC. AR | 50- 5 700<br>50- 6 632<br>50- 6 632<br>50- 7 500<br>50- 8 482<br>50- 9 457<br>50-11 410<br>50-12 385 |
|                                                            | α<br>                     | ភ្លេសស្ថិត ភ្លេស<br>ភ្លេសស្ថិត ភ្លេស<br>ភ្លេស                                            | а<br>7 н с                |                                                                                                      |

٠.,

|                 |        |               | TABLE | - IIIXX 3 | TABLE XXIII - Concluded           | ą         |          |    |    |
|-----------------|--------|---------------|-------|-----------|-----------------------------------|-----------|----------|----|----|
| RUN-<br>PT ONC  |        |               | BLA   | DE FLAP   | BLADE FLAP MOTION HARMONICS (DEG) | HARMON    | 100 (DE( |    |    |
| NC. +R<br>(FPS) | ۲<br>¥ | THEC<br>(DEG) | RS    | RI        | R2                                | <b>53</b> | R4       | RS | R6 |
| S               | .731   | 2.0           | ۳.    | r.        | ~                                 | 5.        | -        | -  | 0. |
| 50- 6 632       | . 808  | 2.0           | .1    | ŗ.        | ~                                 | 9         |          | 2  |    |
| 2               | 1.026  | 2.0           | 1     | .7        | <b>n</b>                          | 8         | •        | -  |    |
| 80              | 1.062  | 2.0           | 2     | ÷.        | ۰<br>۱                            | 8         |          |    |    |
| σ               | 1.119  | 2.0           | n•1   | ±.        | 5                                 | 6         | •        | •  |    |
| 10              | 1.160  | 2.0           | 7     | \$        | .2                                | 6         | ~        | .1 |    |
| 1               | 1.248  | 2.0           | 6.1   | 2.        | •                                 | 1.1       | •        | -  |    |
| 12              | 1.327  | 2.0           | -1.3  | •1        | ÷.                                | 1.2       | ÷        | \$ |    |
|                 |        |               |       |           |                                   |           |          |    |    |

è

|                                                                                            |                                                                              | TABLE                                     | ABLE XXIV.                               | BLADE<br>(BLADE                         | .35R TORSIONAL MOMENT HARMONICS<br>CLUTER OF GRAVITY AT .25 CHORD                                                                                                                                                | SIONAL<br>DF GRAV | MOMENT 1<br>ITY AT | HARMONICS<br>.25 CHORD)                 | S - RUN<br>ED)                        | 50         |          |            |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-----------------------------------------|---------------------------------------|------------|----------|------------|
| RUN-<br>PT. OMS<br>NO. aR<br>(FPS)                                                         | ₹                                                                            | THEC<br>(DEG)                             | 7                                        | BLADE<br>A2                             | .35R TOR                                                                                                                                                                                                         | TORSIONAL         | MOMENT             | HARMONICS (INLB)<br>A6 A7 A8            | CS (IN.<br>A7                         | -LB)<br>A8 | Vo       | A10        |
| 50- 5 700<br>50- 5 700<br>50- 6 652<br>50- 9 652<br>50-112 852<br>50-112 855<br>50-112 855 | 731<br>908<br>1.026<br>1.110<br>1.110<br>1.327                               | 00000000<br>00000000000000000000000000000 |                                          | 111111111111111111111111111111111111111 | # 00 0 # 0 # 0<br>• • • • • • • •<br>• • • • • • • • •<br>• • • • • • • • • •<br>• • • • • • • • • • • • • •<br>• • • • • • • • • • • • • • • • • • • • | 8 8 mm            |                    |                                         | 29-2205-2<br>29-2205-20               |            | N-0-N-NN | 000000     |
| RUN-<br>PT. ONS<br>NO. AR                                                                  | R                                                                            | THEC<br>(064)                             | 79                                       | BLADE<br>B2                             | . 358 TORSIONAL                                                                                                                                                                                                  | SIONAL            | MOMENT             | MOMENŤ HARMONICS (INLB)<br>BS 66. B7 88 | C5 (IN.                               | -LB)<br>Bô | 69       | <b>B10</b> |
| 50- 5 700<br>50- 6 532<br>50- 7 500<br>50- 7 500<br>50- 8 462<br>50-11 410<br>50-12 410    | -731<br>-731<br>-735<br>-735<br>-735<br>-735<br>-735<br>-735<br>-735<br>-735 |                                           | • • • • • • • • • •<br>• • • • • • • • • | 207-90-0<br>                            |                                                                                                                                                                                                                  | 1                 |                    |                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NNN        | 4-4-2-20 |            |

•

.

| BLADE       .35R TORSTONAL MOMENT HARMONICS (INLB)         R1       R2       R3       R4       R5       R6       R7       R9       R10         1.1       2.0       .4       2.5       1.3       .5       .2       .3       .1         1.1       2.0       .4       2.5       1.6       1.7       1.0       .3       .3       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1 <t< th=""><th></th><th></th><th></th><th>TABLE</th><th>TABLE XXIV - Concluded</th><th>Conclud</th><th>leđ</th><th></th><th></th><th></th><th></th><th></th></t<> |                  |         |              | TABLE    | TABLE XXIV - Concluded | Conclud | leđ     |         |      |     |            |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------------|----------|------------------------|---------|---------|---------|------|-----|------------|----------|
| R1       R2       R3       R4       R5       R6       R7       R9         1.1       2.0       .4       R5       R6       R7       R9       R9         1.1       2.0       .4       2.5       1.0       .3       .5       .3         2.0       .4       2.5       1.0       .3       .5       .2       .3         2.0       .4       2.5       1.0       1.7       1.0       .3       .5       .3         2.0       2.6       1.7       1.0       1.3       .5       .2       .3       .5       .3       .5       .3       .1       1.1       .7       .2       .3       .3       .5       .3       .1       .1       .7       .2       .3       .3       .5       .3       .3       .3       .5       .3       .1       .1       .7       .2       .3       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1                                                                                                                                                                                            |                  |         | <b>BLADE</b> | .35R TOR | SIONAL                 | MOMENT  | HARMONI | CS (IN. | -18) | ,4  |            |          |
| 1.3       2.0       .4       2.5       1.8       .3       5.2       2.5       1.8       .3       .5       .2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                 | THEC<br>(DEG) RS | ß       | RI           | R2       | R3                     | R4      | RS      | R6      | R7   | Rŋ  | R9         | R10      |
| 1.1       2.0       .8       .6       1.7       1.0       .3         2.0       2.5       1.7       1.6       1.7       1.0       .3         2.7       2.8       2.0       2.2       1.8       1.9       1.1       .7         3.3       3.3       2.5       2.7       1.6       1.7       1.0       .3         3.3       3.5       2.5       1.6       1.7       1.9       1.4       1.1         7.9       3.6       3.5       2.7       1.6       1.6       1.1       .7         7.9       5.2       1.5       1.6       1.7       1.3       .9       .9         7.9       7.2       5.4       4.5       2.2       1.7       1.3       .9       .9         7.9       7.2       5.4       4.5       2.2       1.3       1.4       1.7       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .731 2.0 -1.1    | -1.1    | 1.3          | 2.0      | 4                      | 2.5     | 1.8     | ۴.      | 5.   | 2   | ro<br>•    | .1       |
| 2.5       1.7       1.6       1.7       2.0       1.1       .7         2.8       2.0       2.2       1.6       1.7       2.0       1.1       .7         3.3       2.5       2.7       1.6       1.9       1.4       1.1         3.3       2.5       2.7       1.6       1.6       1.5       1.6         4.9       3.6       3.3       1.5       1.4       .8       .3         6.0       4.2       3.6       1.7       1.3       .9       .9         7.2       5.4       4.5       2.2       1.3       1.4       1.7       1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.03             | <b></b> | 1.1          | 2.0      | .8                     | 9.      | 1.7     | 1.0     | r.   | n   | .1         | .1       |
| 2.8       2.0       2.2       1.8       1.9       1.4       1.1         3.3       2.5       2.7       1.6       1.6       1.5       1.6         4.9       3.6       3.3       1.5       1.4       1.6       1.5       1.6         6.0       4.2       3.6       1.7       1.3       .9       .9       .9         7.2       5.4       4.5       2.2       1.7       1.3       .9       .9       .9         7.2       5.4       4.5       2.2       1.3       1.4       1.7       1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0 .8           | 8.      | 2.0          | 2.5      | 1.7                    | 1.8     | 1.7     | 2.0     | 1.1  | -   | <b>c</b> 1 | r.       |
| 3.3       2.5       2.7       1.6       1.6       1.5       1.6         4.9       3.6       3.3       1.5       1.4       .8       .3         6.0       4.2       3.6       1.7       1.3       .9       .9         7.2       5.4       4.5       2.2       1.3       1.4       1.7       1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0 1.4          | 1.4     | 2.7          | 2.8      | 2.0                    | 2.2     | 1.8     | 1.9     | 1.4  | 1.1 |            | 4.       |
| 5.2 4.9 3.6 3.3 1.5 1.4 .8 .3<br>6.5 6.0 4.2 3.8 1.7 1.3 .9 .9<br>7.9 7.2 5.4 4.5 2.2 1.3 1.4 1.7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0 1.9          | 1.9     | 3.3          | 3.3      | 2.5                    | 2.7     | 1.6     | 1.6     | 1.5  | 1.6 | 3.         | r.       |
| 6.5 6.0 4.2 3.8 1.7 1.3 .9 .9<br>7.9 7.2 5.4 4.5 2.2 1.3 1.4 1.7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0              | 3.2     | <br>5.2      | 4.9      | 3.0                    | 5.5     | 1.5     | 1.4     | .8   | 0   | •2         | <i>n</i> |
| 7.9 7.2 5.4 4.5 2.2 1.3 1.4 1.7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0              | 4.1     | 6.5          | 6.0      | 4.2                    | 3.8     | 1.7     | 1.3     | 6.   | 0   | .7         | ٠٦       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 5.0     | 7.9          | 7.2      | 5.4                    | 5.4     | 2.2     | 1.3     | 1.4  | 1.7 | 1.8        | •6       |

|                                       | BLADE LA<br>(BLADE C |          |          |              |                |                |
|---------------------------------------|----------------------|----------|----------|--------------|----------------|----------------|
| RUN-<br>PT. OMS<br>NO. #R             | THEC                 | BLA      | DE LAG   | MOTION       | HARMONI        | CS (DEG)       |
| (FPS) MI)                             | (DEG)                | A1       | A2       | A3           | A4             | A5             |
| 51- 3 700 .294                        |                      | 2        | ٠U       | .0           | •1             | •1             |
| 51-4700 .294<br>51-5700 .294          |                      | 3        | •0<br>•0 | .0           | •1             | •0<br>•0       |
| 51- 6 700 .294                        | 12.0                 | - 4      | • U      | .0           | •0             | •0             |
| 51-7 675 .504<br>51-8 675 .504        | •                    | 2        | • U      | .1           | • 4            | •0<br>-•1      |
| 51-9 675 .504                         | -                    | 2<br>3   | •0<br>•0 | .1           | •4             | •1             |
| 51-10 675 .504                        |                      | 3        | •0       | .1           | .4             | •0             |
| 51-11 675 .504<br>51-12 500 1.026     |                      | 3        | •Ŭ<br>•U | •1           | .4<br>1        | •0<br>•1       |
| 51-13 500 1.026                       | 6.0                  | 1        | .0       | .2           | 1              | .1             |
| 51-14 500 1.026<br>51-15 500 1.026    | 8.0<br>9.0           | 1<br>2   | •1<br>•2 | •1           | 2              | •0<br>•0       |
| 51-16 500 1.026                       |                      | 2        | •2       | .1           | 3              | •1             |
| RUN-<br>PT. OMS<br>NO. •R<br>(FPS) MU | THEC<br>(DEG)        | [.LA     |          | MOTION<br>83 | HARMONII<br>B4 | C5 (DEG)<br>85 |
| 51- 3 700 .294                        | 9.0                  | .3       | .2       | .1           |                | •1             |
| 51- 4 700 .294                        | 10.0                 | .3       | •2       | .1           | •2             | •1             |
| 51-5700 .294<br>51-6700 .294          | 11.0                 | • 4      | •2       | •2           | •2             | •1             |
| 51-7 675 .504                         | 8.0                  | •5<br>•1 | •2       | .2           | • 3            | •1             |
| 51-8 675 .504                         | 9.0                  | .2       | •2       | • 1          | •0             | •0             |
| 51-9 675 .504<br>51-10 675 .504       | 10.0                 | •2<br>•3 | .2       | .1           | 1<br>1         | •1             |
| 51-11 675 .504                        | 12.0                 | . 4      | .2       | .1           | -+1            | • 1            |
| 51-12 500 1.026<br>51-13 500 1.026    | 4,0<br>6,0           | 3<br>3   | •1       | •1<br>•U     | 1              | •0<br>•C       |
| 51-14 500 1.020                       | 8.0                  | 3        | .1       | ?            | 1              | 2              |
| 51-15 500 1.020<br>51-16 500 1.020    |                      | 3        | .2       | 2            | •0<br>-•1      | 2              |
|                                       |                      | • -      |          | • -          | •1             |                |

.

.

.

.

| RUN-<br>PT. OMS<br>NO. *R                                                                                                                                                                                                                                                                                                                                                                                         |                                        | BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLADE LAG         | MOTION     | HARMONICS | cs (DEG) | (9 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-----------|----------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                   | THEC<br>(DEG)                          | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R1                | •          | R3        | R4       | RS |
| 51-3       700       294         51-5       700       294         51-5       700       294         51-6       700       294         51-7       675       504         51-9       675       504         51-10       675       504         51-11       675       504         51-12       500       1.026         51-15       500       1.026         51-15       500       1.026         51-16       500       1.026 | 00000000000000000000000000000000000000 | - 4 N D B 2 D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N D D N | ++0,0000++0000+++ | ~~~~~~~~~~ |           | ~~~~~    |    |

| <u> </u>                                     |                                   |               |       |     |   | -    |      |       | _    | -    |        |      | -     |       | _       |     |          | -     | - |   | -                                                 | -  | -    | -     |       | -    |       |      |      |                   | -    | -        |      |     | -        |             | -      | - |
|----------------------------------------------|-----------------------------------|---------------|-------|-----|---|------|------|-------|------|------|--------|------|-------|-------|---------|-----|----------|-------|---|---|---------------------------------------------------|----|------|-------|-------|------|-------|------|------|-------------------|------|----------|------|-----|----------|-------------|--------|---|
|                                              |                                   | 910           |       |     |   | e    | -    | •     | ۴.   | -    | -      | -    |       |       |         |     |          | -2.1  |   |   |                                                   |    |      |       | 0     |      |       |      | •    | -                 | •    | •        | -    | ç   | •••      |             | 77     |   |
| RUNK 51                                      |                                   | 1             |       |     |   |      |      | ?     | •••• | •    | 2      | •    | ~ -   |       | 2       |     |          |       |   | 1 |                                                   |    |      | 2     | •     | · ·  | •••   |      | -1.1 | -1.1              | •    |          |      |     | •        | ņ           |        | • |
| 1                                            | Î                                 | 2             |       |     |   |      | 6    | •     | •    | ^    | ~      | ~    | ~     |       |         |     |          | •••   |   |   |                                                   |    |      | 8     | •     |      | 2.    | •    | •    | •                 | •    | •        | •    | •   | 2        | •           | ; ;    | ) |
| HARMONICS<br>RD )                            | CS (111, -18)                     | 47            | -     |     |   |      | •    | ٥.    | •    | •    | 1.1    | 1.3  |       | ~     | 1       |     |          | •     |   |   | CS UN.                                            |    |      | 01    | ~     |      | 2     | 1.1  | \$-  | ·                 | •••  |          | ~    | •   | •        | -           | •••    | • |
| MOMENT HAR<br>25 CHORD)                      | FLAPHISE REHOTHG MOMENT MARMONICS | 2             |       |     | • |      | 0.   | Ŷ     | 'n   | •    | •      | 1.1  | 4.2   | 7.2   | 7.6     |     |          | 0.0   |   |   | . 301 FLADVISE THADING HOMENT MARMONICS (IN -+ 8) |    |      | £     | -1.3  |      | -2.1  | -1.7 | -1.7 | -2.5              | -3.2 | n        |      |     | 0.1-     |             | N - 1  |   |
|                                              | HONENT                            | A5            |       |     |   |      | 8.5- | 1.2   |      | -2.2 | -1.0   | -2.9 | 0.1   | -2.4  | 1       |     |          | -2.0  |   |   | NONENT                                            |    |      | 82    | -2.0  | 0.1  | 1.4   | 1.5  | 1.7  | 2.04              | 1.2  | 9.0<br>5 | 2.1  | 2 I |          | 1<br>1<br>1 |        |   |
| 30R FLAPWISE BENDING<br>CENTER OF GRAVITY AT | EHD THG                           | ¥             | -     | •   |   | 1.1- | -1.2 | 6.1   | -1.0 | -1.4 | -1-6   | -2.0 | -1.2  |       | -2-     |     |          | -3.2  |   |   | IL ND ING                                         |    |      | 8     | -1.3  |      | -1.5  | -1.9 | •    | 7                 | -1.0 |          | -1-2 | 0.1 | 2.2      | 1.1         |        |   |
| FLAPWI<br>TER OF                             | U 3SINd                           | A3            | - C - |     |   |      | -3.1 | -2.1  | -2.0 | -2.1 | -2.1   | -2.0 | -1.2  | -1-1  | c . [ - |     |          | -2.4  |   |   | JSING                                             |    |      | 83    | 1.4   |      | 1.1   | ۲.   | 7.5  | 7.8               | 8.1  | 8.2      |      | 1.6 | 10.8     | 11.2        | 12.0   |   |
| ° 60                                         | . JAR FLI                         | A2            | 5     |     |   |      |      | -1.5  | -1-8 | 9-1- | -2.0   | -2.2 | -5.8  | -0.0  | -11-2   |     | 0.11     | -12.9 |   |   | JOR FL                                            |    |      | 29    |       | 1.1  | 6.    | 1.0  | 1.7  | 1.7               | 1.7  | 1.7      | 1.7  | :'  | -        | 1.0         | -2-0   |   |
| BLADE<br>(BLADE                              | RLADE .                           | IV            | •     | •   |   | •    | -    | 2.5   | 2.5  | 2.7  | 3.8    | 3.7  | 3.5   | C     | 1       |     |          | 3.8   |   |   | BLADE                                             |    |      | 91    | -2-2  | -2.2 | 2.2   | -2.2 | -2.3 | **-2              | -2.5 | -2.6     |      |     | -7.5     | -7-8        |        |   |
| TABLE XXVI.                                  |                                   | THEC<br>(DEG) | 0     |     |   | 0.11 | 12.0 | 8.0   | 0.6  | 10.0 | 11.0   | 12.0 | 0.4   | 6-0   | 9.6     | 0   |          | 10.0  |   |   |                                                   |    | THEC | (DEG) | 0.6   | 10.0 | 11.0  | 12.0 | 8.0  | 0.6               | 10.0 | 11.0     | 12.0 |     | <b>9</b> | 0.0         | 10.0   | • |
| TABLE                                        |                                   | ŊΜ            | 204   | 400 |   | 202  | 507  | • 504 | .504 | .504 | .504   | .504 | 1.026 | 1.026 | 1-026   | 100 |          | 1.026 |   |   |                                                   |    |      | £     | .294  | .294 | .294  | .294 | .504 | • 50 <sup>4</sup> | .504 | .504     | ٠    | ٠   | 1.026    | 1.026       | 1.026  |   |
|                                              |                                   | . OMS<br>     | 1007  |     |   |      | ٥    | ~     | 30   | σ    | 10 675 | -    | N     | n     |         | · u | <b>,</b> | ٥     |   |   |                                                   |    | č    | (533) | 3 700 |      | 5 700 |      | ~    |                   | σ    | 0        | -    | M I | 0        | ÷ 1         | 15 500 | • |
|                                              | RUN                               | PT.<br>NO.    | 51-   |     |   |      |      | 51-   | 51-  | 51-  | 51-    | -15  | 51-   | 51-   | -15     |     |          | -10   |   |   | -NUN-                                             | Ld | 02   |       | 51-   | 51-  | 51-   | 51-  | 51-  | 51-               | 51-  | 20       |      |     | -15      |             |        | ; |

.

|                        |                                 | R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | 6<br>8                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | 2                               | 0000770000777799<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | -LB)<br>R7                      | 49479974999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | CS (IN.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ed                     | MARMONICS (INLB)<br>R5 R6 R7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conclud                | MOMENT I                        | 111000001000010<br>110000010000010<br>10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TABLE XXVI - Concluded | BENDING  <br>R3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TABLE                  | PWISE B<br>R2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | RLADE .30R FLAPWISE<br>RS R1 R2 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | RLADE .<br>RS                   | ฉรงงงตรระงงตง <i>เ</i><br>เรื่องขอรสตงงอเรียงอ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | THEC<br>(DEG)                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | ÛM                              | 2026<br>2026<br>2026<br>2026<br>2026<br>2026<br>2026<br>2026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | OMS<br>#R<br>(FPS)              | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | PT.                             | 51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-10<br>51-100 |

|                                                                           |                                               |               | <del>.</del> |       | _     | -       |             |              |             |          |                 | _             | _     | -          | _     | _          | <br>T - |                                                      |     |               | -   | -            |      | -        |          |            |     |            |       | _     |         |       | _        | _     |
|---------------------------------------------------------------------------|-----------------------------------------------|---------------|--------------|-------|-------|---------|-------------|--------------|-------------|----------|-----------------|---------------|-------|------------|-------|------------|---------|------------------------------------------------------|-----|---------------|-----|--------------|------|----------|----------|------------|-----|------------|-------|-------|---------|-------|----------|-------|
| 51                                                                        |                                               | 01V           |              |       | 1     | -       | ų.          |              | <b>C</b> •• |          | ۰ <b>.</b><br>۱ | ¢.            | -     | ••         | 0.    | 1.6        |         |                                                      |     |               | 919 | · · ·        | 1    | -        | · · ·    |            | -   | •          |       |       | -1.0    | -1.4  | -        | ¢,    |
| RUN                                                                       |                                               | 6 <b>4</b>    | 8            |       | 2     | .1      | \$.         | s.           | <b>ې</b>    | *.       | - 2             | \$            |       | 1          | •     | 2          |         |                                                      |     | Q             | 60  | 4            | 5    | ۳.       | s.       | •          |     | •          |       | 1     |         | n.    | 2        | 4     |
| - SOIN                                                                    | 1LE)                                          | <b>A</b> 8    | 7            |       |       | .1      |             | 3.1          | <b>-</b> 5  | 3".<br>1 | <b>-</b> •5     | <b>.</b>      | .1    | •          |       | 3.         |         |                                                      |     | eC            | 8   | -1.0         | 0    | •••      | <b>n</b> | \$°•       | ••• | с р<br>1 1 |       | 5     | 10<br>1 | •     | c.       | 2     |
| r harmc<br>Hord)                                                          | nics (1                                       | A7            | ~            | : 7   |       | .1      | -°2         | 7            | •••         | 8        | -1.0            | 1             | •     | <b>t</b> . | \$    | 8.         |         | NICS (1                                              |     | 67            | 5   | 2            | 2    | <b>n</b> | n.,      | <u>م</u> . | •   | o u        |       | 0.1   | 7       | •••   | # -<br>1 | 9.1   |
| MOMENT HAI                                                                | T HARMO                                       | A6            | 3<br>1       |       | - 5   | °.      | ••          | 2            | ~-          | n.       | n.              | -2.4          | -4.6  | 0.41       | -4.6  | 6.4-       |         | T HARMO                                              |     | 48            | 3   | 8.           | 1.1  | 1.1      |          | ~ • •      |     |            | 1.6   | -1-9  | 5.1     | 2.7   | -1.1     | ;     |
| ENDING<br>ITY AT                                                          | 6 NOMEN                                       | AS            | 4.4          | 6.4   | 4.4   | 2+3     | -1.4        | 9 <b>•</b> - | 2           | •        | 1.6             | -1.5          |       | 1.6        | •     | 1.3        |         | G HOMEN                                              |     | ŝ             | 3   | 1.2          | 4.1  | -1.6     | -1.5     | •••        |     |            | -2.1  |       | 5       | •••   | 6 • I    | 2+0   |
| WISE B                                                                    | RENDIN                                        | A4            | -            | •     |       | 2       | -1.3        | -1.4         | -1.4        | -1.2     | -1.1            | 3.3           | 4.0.+ | 4.0-       | -3.8  | -4-5       |         | RENTIN                                               |     | 44            | 5   | 4<br>1       | 8°•1 | -1.0     | 6.1      | ~          | •   |            | 1.1   | *     | 1       | •     |          | -1.9  |
| .60R FLAPWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT .25 CHORD) | .60P FLAPWISE RENDING NOMENT HARMOHICS (THLE) | ٨3            | 9.4-         | -5.5  | -2.7  | -5.4    | -3.3        | 2.5          | 0.6-        | -2-0     | 5°.5-           | n             | 9.01  | D          | -7.4  | -8.3       |         | RLADE .00R FLAPWISE RENDING HOMENT HARMOHICS (TN1 R) |     | L H           | 3   | 3.2          | 3.0  | 3.2      | 2.8      | 8.6        |     |            | 10.3  | 11.4  | 12.2    | 13.3  | 11.7     | 11.3  |
| BLADE .6<br>(BLADE C                                                      |                                               | A2            | -3.7         | 0.4-  | 4.4-  | 6.4-    | ±•€−        |              | 3°3-        | 6.4-     |                 | <b>C•</b> 1 - | -10.0 | -13.4      | -14.2 | -15.9      |         | .6UR F                                               |     | 612           | 5   | -1.0         | *·I- | 6.1-     | -1-0     | ۰.<br>۱    | • • | 2          | 1.0   | 7     | •       |       | 7.31     | -3-6  |
|                                                                           | <b>SLADF</b>                                  | R             | .1           | •     | 0.    | ς.<br>• | <b>3</b> •5 | 3.4          | 2.1         | 8        | 6 i             | S*C           | 1     |            | 3.8   | 4.2        |         | RLADE                                                |     | 10            | ;   | a• :-        | 6.6- | -3.3     | -3.6     | 5<br>      |     |            | -     | -1-0  | -1.6    | -2.0  |          | -2.9  |
| TABLE XXVII.                                                              |                                               | THEC<br>(DEG) | <b>9</b> •0  | 10.0  | 11.0  | 12.0    | 8.0         | 0.0          | 10.0        | 0.11     | 12.0            |               |       |            | 0.6   | 10.0       |         |                                                      |     | THEC<br>(DFG) |     | <b>0°6</b>   | 10.9 | 11.0     | 12.0     |            |     | 11.0       | 12.0  | 0.    | •••     |       |          | 10.01 |
| TAB                                                                       |                                               | l in          | 402°         | .204  | ·204  | 102.    | +0 <u>5</u> | 105.         | 100         | 100      | 00.0            | 1.020         | 020.1 | 076.01     | 1.026 | 1.026      |         |                                                      |     | ŝ             |     | .294         | .294 | 204      | 102.     |            |     | 50         | .504  | 1.026 | 1.026   | 1.020 | 020.1    | 1.020 |
|                                                                           | NO<br>NO                                      | FPS)          | 101          | 4 70N | 5 701 | 101     | 675         | 675          | 619         |          |                 |               |       |            |       | <b>105</b> |         |                                                      | SHO | (FPS)         |     | 1 700        | 100  | 01       | 5        | 010        |     |            |       | 200   |         |       |          |       |
|                                                                           | RUN-                                          | CN            | 51- 3        | 7 -15 | -15   | 51-     | -12         | 8 - I S      | 6 - 10      |          |                 |               |       |            | cl-1c | 51-16      |         | RUN-                                                 | P1. | No            |     | - <b>1</b> 2 | -10  |          |          |            |     | 51-10      | 11-15 | 51-12 |         |       |          | D7_10 |

¢

|                         | RIO                                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | e e                                               | NN-N-140000-+600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | 8                                                 | « • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 89                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | NLB)<br>R7                                        | , 4 4 4 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | BENDING MOMENT HARMOHICS (INLB)<br>R3 R4 R5 R6 R7 | 001001000100<br>001001000100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| leã                     | IT HARMO<br>R5                                    | 000001040101000<br>010 1001100555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conclud                 | G MOMEN                                           | 4 0 0 0 0 4 4 4 0 0 4 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TABLE XXVII - Concludeã | BENDIN<br>R3                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TABLE                   | .60R FLAPWISE<br>R1 R2                            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         |                                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | RLADE<br>RS                                       | ๛๛๛๛๛๛๛๛๛ <b>๛๛๛๛</b><br>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | THEC<br>(DEG)                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | MU                                                | 204<br>204<br>504<br>504<br>10026<br>10026<br>10026<br>10026<br>10026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | OMS<br>+R<br>(FPS)                                | 700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | RUN-<br>Pi.                                       | 551-10<br>551-10<br>551-10<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>51-12<br>510 |

•

| TABLE XXVI                                                                                                                        |                                                                                                           | BLADE FI                                                                                              |                                                                                  |                                                                    |                                                                                                                            | C5 0220 (0220)                                                                   | and the second se |                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| RUN-<br>PT. CMS<br>NO. *R                                                                                                         |                                                                                                           | THEC                                                                                                  |                                                                                  |                                                                    | MOTION                                                                                                                     |                                                                                  | ICS (DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G)                                                                         |  |
| $(F^{2}S)$ 51-3700 51-4700 51-5700 51-6700 51-7675 51-8675 51-9675 51-10675 51-11675 51-12500 51-13500 51-14500 51-15500 51-16500 | MU<br>.294<br>.294<br>.294<br>.504<br>.504<br>.504<br>.504<br>1.026<br>1.026<br>1.026<br>1.026            |                                                                                                       | A1<br>2<br>1<br>1<br>1<br>1<br>2<br>3<br>2<br>7<br>2<br>.0                       | A2<br>2<br>3<br>4<br>4<br>5<br>6<br>5<br>6<br>7                    | A3<br>.3<br>.3<br>.1<br>.1<br>.0<br>.0<br>.1<br>.1<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | A4<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.2 | A5<br>•1<br>•2<br>•1<br>-•1<br>•0<br>•1<br>•1<br>•2<br>•1<br>•1<br>•2<br>•1<br>•1<br>•2<br>•3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |  |
| RUN-<br>PT. OMS<br>NO. *R<br>(FPS)                                                                                                | MU                                                                                                        | THEC<br>(DEG)                                                                                         | NLA<br>B1                                                                        | DE FLAP<br>B2                                                      | мотіон<br>вз                                                                                                               | HARMON<br>B4                                                                     | ICS (DE<br>B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G)<br>86                                                                   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                              | .294<br>.294<br>.294<br>.504<br>.504<br>.504<br>.504<br>.504<br>1.026<br>1.026<br>1.026<br>1.026<br>1.026 | 9.0<br>10.0<br>11.0<br>12.0<br>8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>4.0<br>6.0<br>8.0<br>9.0<br>10.0 | •1<br>•1<br>•2<br>•1<br>•0<br>•1<br>•0<br>•1<br>•0<br>-1<br>-1<br>-1<br>-1<br>-1 | .0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>.0<br>.1<br>.2<br>.0 | .0<br>.0<br>.0<br>6<br>6<br>6<br>7<br>7<br>8<br>9<br>-1.0<br>9                                                             | •1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•  | •1<br>•1<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•1<br>•2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.0<br>.1 |  |

|                 |          |               | TABLE | TABLE XXVIII - Concluded | Conclud  | ed         |           |     |     |
|-----------------|----------|---------------|-------|--------------------------|----------|------------|-----------|-----|-----|
| RUN-<br>PT. OMS |          |               | BLA   | BLADE FLAP               | MOTION   | HARMONICS  | 1CS (DEG) | (9  |     |
| NO. *R<br>(FPS) | С.<br>М. | THEC<br>(DEG) | RS    | RI                       | R2       | R3         | R4        | R5  | R6  |
| 1- 3            | •294     | <b>0°6</b>    | 2.8   | с.                       | ~        | ۰.<br>۲    | •1        | °.  | 0.  |
| 51- 4 700       | •294     | 10.0          | 2.9   | •1                       | ~        | <b>n</b> • | •1        | ~   | .1  |
| 1- 5            | • 294    | 11.0          | 3.1   | \$                       | Б.       | ÷.         | • 1       | 2   | .1  |
| <b>1-</b> 6     | •294     | 12.0          | 3.2   | \$                       | n.       | <b>ب</b>   | •1        | .1  | •1  |
| 1- 7            | .504     | 8.0           | 1.7   | .1                       | ÷.       | •0         | • 1       | .1  | • 1 |
| 1- 8            | .504     | 0.6           | 1.8   |                          | 3.       | ••         | •1        | •   | .1  |
| 1-9             | .504     | 10.0          | 2.0   | •1                       | • 4      | •6         | • 1       | • 1 | .1  |
| 1-10            | .504     |               | 2.2   | .1                       | •<br>2   | L.         | • 1       | .1  | .1  |
| 1-11            | . 504    | 12.0          | 2.4   | 2.                       | •        | .7         | •1        | ~   | .1  |
| 1-12            | 1.026    | t, O          | 2     | ř.                       | <b>ب</b> | •8         | 2         | •1  | •1  |
| 1-13            | 1.026    | 6.0           | 1     | •2                       | •        | 8.         | <u>د</u>  | •1  | -2  |
| 1-14            | 1.026    | 8.0           | ю     | ٠٦                       | s.       | •          | 2.        |     | 2.  |
| 1-15            | 1.026    | <b>0°6</b>    | 1     | ~                        | ••       | 1.0        | •2        | •2  | ~   |
| 1-16            | 1.026    | 10.0          | 1     |                          | .7       | 6.         | •2        |     | ~   |
|                 |          |               |       |                          |          |            |           |     |     |

à

| _                                     | <b>n</b>         |                    | <b>—</b> | _    | _          |       |       | _    |       | -    |          |              |          |              | _     |              |   | <b>—</b> |                           | _   | -    |       | <b>r</b> |      | -    | _    |      |      |      |      |     |          |      |       |    | _           |
|---------------------------------------|------------------|--------------------|----------|------|------------|-------|-------|------|-------|------|----------|--------------|----------|--------------|-------|--------------|---|----------|---------------------------|-----|------|-------|----------|------|------|------|------|------|------|------|-----|----------|------|-------|----|-------------|
|                                       |                  | 01V                |          | •    | •          |       |       |      |       | •    |          |              | <b>~</b> |              |       | -            | • |          |                           |     |      | 810   | ,<br>1   | . •  |      |      |      |      | : `  | • •  | ~•  | <b>.</b> | =    | 3     | •  |             |
|                                       |                  | 64                 |          |      |            |       | 2     | : ?  | •     | 2    | <b>.</b> | 0.           | <b>.</b> | 2            | 1     | 1            |   |          |                           |     |      | 68    |          |      | •    |      | •    | • •  |      |      | •   | •        | •    | •     | i  | 0<br>1      |
| 51                                    | 18)              | <b>AB</b>          |          |      | ) -<br>) - |       |       |      |       |      | 3.1      | ۰.           | 7        | 7            | 2     | -            |   |          |                           |     |      | 88    | 2        |      |      |      | : ^  | 0    | 1.2  | 1.0  | •   | 7        |      |       |    |             |
| - Run                                 | S (INLB          | A7                 |          |      |            |       | e e   |      | 1.1   | 1.0  | -1.1     | r."          | 2        | ເກ<br>•<br>• |       |              | • |          |                           |     |      | 87    |          |      |      |      |      | • •  |      | 2.7  |     |          |      | •     | •  |             |
| HARMONICS .<br>25 CHORD)              | HOMENT HARMONICS | Ab<br>Ab           | -1.0     |      |            |       | 0     | 8    | 1.    | 5.   | 3.1      | •            | 9.       | •2           | 1.9   | 2.5          |   |          | ucuting use of the second |     |      | 66    | 2.8      | 4.5  | 7.0  | 5.7  | 2.7  | 5.4  | 9.4  | 7.3  | 8.0 | -1.6     |      |       |    | 2.0         |
| HARM<br>• 25                          | INT P            | AS                 | - 4 - 7  | -5.0 |            |       | 1.1   | 1.0  | -     | ·•5  | -•6      | 2.0          | 1.1      | •            | 1.4   | 5 <b>-</b> 1 |   |          | ICAN NT .                 |     |      | 95    | 2.8      | 5.4  | 7.6  | 7.1  | 2.9  | 9.4  | 5.8  | 1.1  |     |          |      |       |    |             |
| TORSIONAL MOMENT<br>TER OF GRAVITY AT | TORSIONAL *      | **                 | 2 6-     |      |            |       |       | 2.5  | 1.0   | - 7  | C        | 1.8          | 2.8      | 3.5          | 3.2   | 2.11         |   |          |                           |     |      | 84    |          |      |      |      |      |      |      |      |     |          | 3.0  |       |    | 1           |
| RSIONAI<br>OF GRU                     | 35R TORS         | A3                 | a<br>1   |      |            |       | •     | 1.5  |       | •    | 0.       | 6 <b>.</b> I | 2        | ,<br>Q       | -1.1  | -2.6         |   |          | 1000 JONT 931             |     |      | H3    | 7        |      | -    | 1.0  | -    | 1.1  | 1.6  | 2.2  | 2.1 | 3°0      | 2.0  |       |    |             |
| 35R TO                                | BLANE .3         | A2                 | 1.1      |      |            |       |       |      | =     | 5    | • • •    | -4.7         | -6.4     | -7.9         |       | - 0-         |   |          |                           |     |      | 0.7   | 1.5      |      | 6.2  | 2.5  | 1    | 5.0  | 4.7  | 5.2  | 5.7 |          | a :  |       |    | •           |
| BLADE .<br>(BLADE                     | 5                | IV                 | -        | •    | - c        | •     |       | 0.1  | -     | ſ    | 7.       | 1.5          | •        | •            |       |              |   |          | c                         | מ   |      | 81    |          |      |      |      |      |      |      | 5.3  | 6.2 | 8.1-     | -0.9 |       |    | <b>ر.</b> ۳ |
| XXIX. B<br>(                          |                  | THEC<br>(DEG)      | c<br>o   | •    | 5 -        | 12.0  |       |      |       | :    | ¢.       |              |          |              |       |              | , |          |                           |     | THEC | (DEG) |          | 0    | 0    | 2.6  | 5    | 0.   | 5    | 1.0  | •   | 0        | 20   | •     | 20 |             |
| ABLE XX                               |                  | NN                 | 100      | 100  | 204        | 102   | - 504 | ÷504 | · 504 | .504 | .504     | 1.026        | 1.026    | 1.020        | 1.020 | 1.126        |   |          |                           |     |      | (IN)  | +02.     | .20H | .294 | .20H | .504 | +05. | +0ç. | 404. | •   | •        | •    | 1.026 | •  | •           |
| ΤI                                    |                  | ONS<br>+R<br>(FPS) | 700      | 200  | 700        | 700   | 675   | 675  | 675   | 675  | 675      | 503          | 500      | 50n          | 501)  | 500          |   |          |                           | ONC |      | (FPS) | 700      | 200  | 10u  | 701) | 675  | 675  | 675  | 675  | 519 | 200      |      |       |    |             |
|                                       | RUN-             | PT.                |          |      |            | 51- 6 | ı     | ŧ    |       | 7    | 7        | 7            | 7        | 7            | 7     | 51-10        |   |          | -7410                     | 10  | CZ   |       | ŧ        |      |      | ı    |      |      | ŧ    |      | 7   | 7        | 11   | 17    | 1  | 1           |
|                                       |                  |                    |          |      |            |       |       |      |       |      |          |              |          |              |       |              |   |          |                           |     |      |       |          |      |      |      |      |      |      |      |     |          |      |       |    |             |

.

|                                                                                                                   |                               |                                        |                                         |                                                                               | TABLE                                  | TABLE XXIX - Concluded                 | Conclude                                  | pa                           |                                 |                                        |                                        |                              |                               |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|------------------------------|---------------------------------|----------------------------------------|----------------------------------------|------------------------------|-------------------------------|
| RIN-<br>PT. OHS<br>NO. 4R                                                                                         | 5)<br>5)<br>80                | THEC<br>(DEG)                          | SJ                                      | BLANE<br>R1                                                                   | .35R TORSIONAL MOMENT<br>R2 R3 H4      | tS I OHAL<br>R3                        | MOHENT                                    | HARMOUL                      | HARMONICS (INLB)<br>R5 R6 K7    | -LB)<br>K7                             | 88                                     | ç                            | R10                           |
| 51- 3 700<br>51- 4 700<br>51- 5 700<br>51- 5 700<br>51- 7 675<br>51-12 675<br>51-12 605<br>51-13 500<br>51-13 500 | 555504446555<br><i>444446</i> | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | \$\$\$ <b>\$\$\$\$\$\$</b> \$\$\$\$\$\$<br>\$\$\$\$\$\$\$\$\$<br>\$\$\$\$\$\$ | 00003000000000000000000000000000000000 | 00000000000000000000000000000000000000 | ๛๛๛๛๛๛๛๛๛๛๛๛<br>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ | 8797478767888<br>87977878788 | 4010040500100<br>0-0-0040500100 | -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 00000000000000000000000000000000000000 | ມທິແ <b>ແມ່</b> ລະເເກີນ ລະເຊ | ដំនំលល់ <u>។</u> សំសងរដំដំនំល |
| 51-15 500<br>51-16 500                                                                                            |                               | 9.0<br>10.0                            | 4°0                                     | 9.4<br>10.9                                                                   | 8.6<br>9.7                             | 7.2<br>8.1                             | ***                                       | 2.2<br>1.8                   | 4.2                             | 3.1                                    | 1.8                                    | 5 K                          | 20                            |

| TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xxx.                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | ARMON                                                                                                                                                                     |                                                                                                        |                                                                                        |                                                                                  | 7                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>(BL</u>                                                                                 |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | RAVIT                                                                                                                                                                     |                                                                                                        |                                                                                        | (ORD)                                                                            |                                                                    |
| RUN-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | ي خلق                                                                                                                        | DE LAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MOTION                                                                                           | HARMONI                                                                                                                                                                   | CS (DE                                                                                                 | 6)                                                                                     |                                                                                  |                                                                    |
| PT. QMS<br>NO. 0H<br>(FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MU                                                                                                                                                                                                                                                                                                                                                                                                                                         | THEC<br>(DEG)                                                                              | A1                                                                                                                           | AZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A3                                                                                               | Au                                                                                                                                                                        | A5                                                                                                     | A6                                                                                     | <u>A7</u>                                                                        | A8                                                                 |
| 64- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 390                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                        | • 1                                                                                                                          | •0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0                                                                                               | .0                                                                                                                                                                        | •0                                                                                                     | .0                                                                                     | .0                                                                               | .ō                                                                 |
| 64- 4 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .448                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | -1                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0                                                                                               | •Q                                                                                                                                                                        | •0                                                                                                     | .0                                                                                     | •0                                                                               | •0                                                                 |
| 64- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .504                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | •1                                                                                                                           | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0                                                                                               | .0<br>.a                                                                                                                                                                  | •0                                                                                                     | .0                                                                                     | •0                                                                               | .0                                                                 |
| 64- 6 700<br>64- 7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .565                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | • 1                                                                                                                          | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0                                                                                               | .0                                                                                                                                                                        | .0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 64- 8 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .682                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | •2                                                                                                                           | • 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0                                                                                               | .0                                                                                                                                                                        | .0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 65- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .682                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | •1                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | .0                                                                                                                                                                        | • 0                                                                                                    | •0                                                                                     | .0                                                                               | •0                                                                 |
| 65- 4 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .741                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | •2                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | .1                                                                                                                                                                        | •0<br>•0                                                                                               | .0                                                                                     | •0                                                                               | .0                                                                 |
| 65- 5 700<br>65- 6 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .601                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | .2                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | .1                                                                                                                                                                        | .0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 67- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .801                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | •2                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | .1                                                                                                                                                                        | .0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 67- 4 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .432                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | .2                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | -1                                                                                                                                                                        | -1                                                                                                     | •0                                                                                     | •0                                                                               | .0                                                                 |
| 67- 5 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .862                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                        | •2                                                                                                                           | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | .3                                                                                                                                                                        | •0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 67- 6 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.040                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                        | .3                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | .0                                                                                                                                                                        | .0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 67- 8 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.181                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                        | .2                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | .0                                                                                                                                                                        |                                                                                                        | .0                                                                                     | .0                                                                               | .0                                                                 |
| 67- 9 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.243                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                        | .1                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | .0                                                                                                                                                                        | .0                                                                                                     | .0                                                                                     | .0                                                                               | .0                                                                 |
| 67-10 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.312                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                        | •1                                                                                                                           | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1                                                                                               | .0                                                                                                                                                                        | •0                                                                                                     | •0                                                                                     | .0                                                                               | •1                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                        | 0                                                                                                                            | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .1                                                                                               | 1                                                                                                                                                                         | 1                                                                                                      | 1                                                                                      |                                                                                  | .0                                                                 |
| 67-11 404<br>67-12 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.388                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                        | 1                                                                                                                            | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •1                                                                                               | 3                                                                                                                                                                         | -•1                                                                                                    | 1                                                                                      | -1                                                                               | ••                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                                                                                                              | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                                                                                               | 3                                                                                                                                                                         | 1                                                                                                      | 1                                                                                      | -11                                                                              |                                                                    |
| 67-12 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | 1                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | 3                                                                                                                                                                         |                                                                                                        |                                                                                        | 1                                                                                |                                                                    |
| 67-12 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | 1                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | _                                                                                                                                                                         |                                                                                                        |                                                                                        | - • 1<br>B7                                                                      |                                                                    |
| 67-12 380<br>PT. 0M5<br>Nu. 4R<br>(FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.474<br>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.U<br>THEC<br>(DEv)                                                                       | 1<br>3LA                                                                                                                     | ACE LAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTION<br>B3                                                                                     | HARMONI<br>84                                                                                                                                                             | CS (DE                                                                                                 | G )<br>26                                                                              | 87                                                                               | 80                                                                 |
| 67-12 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.474                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.U                                                                                        | 1<br>3LA<br>01                                                                                                               | LE LAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MOTION<br>B3<br>.0                                                                               | HARMONI<br>84<br>• 0                                                                                                                                                      | CS (DE                                                                                                 | 6)<br>86<br>• 0                                                                        | B7<br>.0<br>.0                                                                   | <b>B0</b><br>.0                                                    |
| RU.1-<br>PT. 0M5<br>NU. aR<br>(FP5)<br>64- 3 700<br>64- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .390<br>.448<br>.504                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0<br>THEC<br>(DEv)<br>2.0<br>2.0<br>2.0                                                  | 1<br>3LA<br>01<br>.0                                                                                                         | LAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOTION<br>B3<br>.0<br>.0                                                                         | HARMON1<br>84<br>.0<br>.1                                                                                                                                                 | CS (DE<br>B5<br>•0<br>•0<br>•0                                                                         |                                                                                        | 87<br>.0<br>.0                                                                   | .0<br>.0<br>.0                                                     |
| AU.I-<br>PT. 0M5<br>NU. 4R<br>(FP5)<br>64- 3 700<br>64- 4 700<br>64- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MU<br>.390<br>.504<br>.565                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>THEC<br>(DEv)<br>2.0<br>2.0<br>2.0<br>2.0                                           | 1<br>3LA<br>0<br>.0<br>.0<br>.0                                                                                              | ACE LAG<br>82<br>.C<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOTION<br>B3<br>.0<br>.0                                                                         | HARHONI<br>84<br>.0<br>.1<br>.1                                                                                                                                           | CS (DE<br>B5<br>•0<br>•0<br>•0                                                                         | 6)<br>26<br>.0<br>.0                                                                   | 67<br>.0<br>.0<br>.0                                                             | <b>B0</b><br>.0<br>.0<br>.0                                        |
| Ruit-<br>PT. 045<br>NL 4R<br>(FPS)<br>64-3 700<br>64-4 700<br>64-5 700<br>64-6 700<br>64-7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.474<br>Mu<br>.390<br>.448<br>.504<br>.5623                                                                                                                                                                                                                                                                                                                                                                                               | 2.0<br>THEC<br>(DE0)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0                      | 1<br>3L4<br>0<br>.0<br>.0<br>.0                                                                                              | NCE LAG<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOTION<br>B3<br>.0<br>.0<br>.0<br>.0<br>.0                                                       |                                                                                                                                                                           | CS (DE<br>B5<br>.0<br>.0<br>.0<br>.0<br>.0                                                             | 6)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0                                                 | 87<br>.0<br>.0<br>.0<br>.0                                                       | <b>B6</b><br>• 0<br>• 0<br>• 0<br>• 0                              |
| AU.I-<br>PT. 0M5<br>NU. 4R<br>(FP5)<br>64- 3 700<br>64- 4 700<br>64- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mu<br>.390<br>.448<br>.565<br>.623<br>.662                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>THEC<br>(DEv)<br>2.0<br>2.0<br>2.0<br>2.0                                           | 1<br>3LA<br>0<br>.0<br>.0<br>.0                                                                                              | NCE LAG<br>.C<br>.C<br>.0<br>.0<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTION<br>B3<br>.C<br>.0<br>.0<br>.0<br>.0<br>.0                                                 |                                                                                                                                                                           | CS (DE<br>B5<br>•0<br>•0<br>•0                                                                         | 6)<br>86<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                           | 87<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0                                     | <b>B6</b><br>• 0<br>• 0<br>• 0<br>• 0<br>• 0                       |
| Ruit-<br>PT. 0M5<br>NU. 4R<br>(FPS)<br>64- 3 700<br>64- 4 700<br>64- 5 700<br>64- 6 700<br>64- 6 700<br>64- 8 700<br>64- 8 700<br>65- 4 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mu<br>.390<br>.446<br>.505<br>.623<br>.662<br>.662<br>.741                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>THEC<br>(DE0)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1                                                                          | NCE LAG<br>.C<br>.U<br>.0<br>.0<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTION<br>B3<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                 | -14RMON1<br>84<br>-0<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-2                                                                                                      | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                     | 87<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                     | <b>Be</b><br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0         |
| Run-<br>PT. 0M5<br>Nu. aR<br>(FP5)<br>64- 3 700<br>64- 5 700<br>64- 5 700<br>64- 6 700<br>64- 6 700<br>64- 6 700<br>65- 3 700<br>65- 3 700<br>65- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mu<br>.390<br>.504<br>.505<br>.622<br>.682<br>.741<br>.801                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>THEC<br>(DEG)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>3LA<br>01<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1                                                               | LEE LAG<br>.C<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTION<br>B3<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                         | HARHONI<br>84<br>• 0<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1<br>• 2                                                                                              | CS (DE<br>B5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                           | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                               | 87<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0                       | •••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•••               |
| Run-<br>PT. 0M5<br>Nu. aR<br>(FP5)<br>64- 3 700<br>64- 5 700<br>64- 6 700<br>64- 6 700<br>64- 7 700<br>65- 3 700<br>65- 4 700<br>65- 5 700<br>65- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mu<br>.340<br>.565<br>.623<br>.662<br>.741<br>.601                                                                                                                                                                                                                                                                                                                                                                                         | 2.0<br>THEC<br>(DEG)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1                                                                | NCE LAG<br>.C<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOTION<br>B3<br>.C<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | HARHONI<br>84<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2                                                                                                 | CS (DE<br>B5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                           | 6)<br>86<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                               | 87<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0                       | • 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 |
| Run-<br>PT. 0M5<br>Nu. aR<br>(FP5)<br>64- 3 700<br>64- 5 700<br>64- 5 700<br>64- 6 700<br>64- 6 700<br>64- 6 700<br>65- 3 700<br>65- 3 700<br>65- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mu<br>.390<br>.504<br>.505<br>.622<br>.682<br>.741<br>.801                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>THEC<br>(DEv)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>3L4<br>0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1                                                    | LEE LAG<br>.C<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTION<br>B3<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                         | HARMONI<br>84<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2                                                                                                       | CS (DE<br>B5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                           | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                               | 87<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0                       | <b>Be</b><br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0          |
| Run-<br>PT. 0M5<br>hu. aR<br>(FP5)<br>64- 3 700<br>64- 3 700<br>64- 4 700<br>64- 5 700<br>64- 6 700<br>64- 7 700<br>64- 8 700<br>65- 4 700<br>65- 4 700<br>65- 4 700<br>65- 4 700<br>65- 4 700<br>65- 5 700<br>67- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MU<br>.390<br>.505<br>.504<br>.565<br>.623<br>.662<br>.741<br>.601<br>.601<br>.601<br>.601<br>.602                                                                                                                                                                                                                                                                                                                                         | 2.0<br>THEC<br>(DEs)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>1<br>1                                                                                                   | LCE LAG<br>.C<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOTION<br>B3<br>.C<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | HARHONI<br>B4<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.0                                                                               | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | 87<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0         |                                                                    |
| AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mu<br>.390<br>.448<br>.565<br>.623<br>.662<br>.741<br>.601<br>.601<br>.601<br>.601<br>.602<br>.741<br>.601                                                                                                                                                                                                                                                                                                                                 | 2.0<br>THEC<br>(DEG)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1             | CE LAG<br>.C<br>.U<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B3<br>.C<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O<br>.O                 | HARMONI<br>84<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>1<br>0<br>0                                                                                  | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0             | B7<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |                                                                    |
| Run-<br>PT. 0M5<br>Nu. aR<br>(FP5)<br>64-3 700<br>64-5 700<br>64-5 700<br>64-5 700<br>64-5 700<br>64-7 700<br>65-3 700<br>65-3 700<br>65-4 700<br>65-5 700<br>65-5 700<br>65-6 700<br>67-7 4 674<br>67-7 4 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mu<br>.390<br>.504<br>.505<br>.622<br>.652<br>.652<br>.652<br>.652<br>.652<br>.652<br>.65                                                                                                                                                                                                                                                                                                                                                  | 2.0<br>THEC<br>(DE0)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                         | SCE LAG<br>- 60<br>- 00<br>- 00<br>- 11<br>- 1 | MOTION<br>B3<br>. C<br>. O<br>. O<br>. O<br>. O<br>. O<br>. O<br>. O<br>. O                      | HARMONI<br>B4<br>.0<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.1<br>.0<br>.0                                                                                     | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 87<br>.0                                                                         |                                                                    |
| Aun-<br>PT. 0M5<br>hu. aR<br>(FPS)<br>64- 3 700<br>64- 5 700<br>64- 5 700<br>64- 6 700<br>64- 7 700<br>64- 7 700<br>65- 3 700<br>65- 8 700<br>67- | Mu<br>.390<br>.505<br>.504<br>.565<br>.623<br>.662<br>.741<br>.601<br>.661<br>.601<br>.662<br>.662<br>.741<br>.601<br>.601<br>                                                                                                                                                                                                                                                                                                             | 2.0<br>THEC<br>(DEy)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | LCE LAG<br>.C<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MOTION<br>B3<br>.c<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | HARHONI<br>B4<br>0<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>1<br>0<br>0<br>0<br>-<br>1                                                                             | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0             | B7<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |                                                                    |
| Aun-<br>PT. 0M5<br>hu. aR<br>(FPS)<br>64- 3 700<br>64- 5 700<br>64- 5 700<br>64- 6 700<br>64- 7 700<br>64- 7 700<br>65- 3 700<br>65- 8 700<br>67- | Mu<br>.390<br>.504<br>.505<br>.622<br>.652<br>.652<br>.652<br>.652<br>.652<br>.652<br>.65                                                                                                                                                                                                                                                                                                                                                  | 2.0<br>THEC<br>(DE0)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                  | LCE LAG<br>.C<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTION<br>B3<br>.C<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | HARHONI<br>B4<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.1<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1       | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | 87<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0         |                                                                    |
| Ruin-           PT.         OMS           Nu.         AR           .(FPS)           64-3         700           64-3         700           64-4         700           64-5         700           64-7         700           65-5         700           65-5         700           65-5         700           67-4         670           67-5         52           87-6         474           67-7         494           67-7         474           67-9         452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mu<br>.390<br>.448<br>.565<br>.623<br>.662<br>.741<br>.601<br>.601<br>.601<br>.602<br>.602<br>.741<br>.601<br>.601<br>.602<br>.602<br>.741<br>.601<br>.602<br>.602<br>.741<br>.602<br>.602<br>.741<br>.602<br>.602<br>.741<br>.602<br>.602<br>.741<br>.602<br>.602<br>.741<br>.602<br>.602<br>.602<br>.741<br>.602<br>.602<br>.602<br>.602<br>.602<br>.602<br>.602<br>.741<br>.602<br>.602<br>.602<br>.602<br>.602<br>.602<br>.602<br>.602 | 2.0<br>THEC<br>(DEG)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 1<br>1<br>1<br>1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1             | NCE LAG<br>.C<br>.C<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTION<br>B3<br>.C<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | HARHONI<br>B4<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.2<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | CS (DE<br>B5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | G)<br>26<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   | B7<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                   |                                                                    |

.

|                  |       |               |       | TABLE      | XXX - C | TABLE XXX - Concluded |          |    |    |    |    |
|------------------|-------|---------------|-------|------------|---------|-----------------------|----------|----|----|----|----|
| RU:              |       |               | BLAGE | LAG        | NOITOM  | HARMONICS             | CS (DEG) |    |    |    |    |
| 1:0. #R<br>(FPS) | ÛX    | THEC<br>(DEG) | RS    | RI         | R2      | R3                    | R4       | RS | R6 | R7 | RB |
|                  | • 390 | 2.0           | 2.1   | ۲.         | 0.      | •                     | 0.       | •  | •  | •  | 0• |
| a<br>I           | .448  | 2.0           | 2.3   | .1         | ¢.      | •                     |          | •  | •  | •  | •  |
| 64- 5 700        | .504  | •             | 2.3   | •1         | .1      | ••                    | .1       | •  | •  | •  | •  |
| 9                | .565  |               | 2.3   | •1         | 0.      | ••                    | .1       | •  | 0. | •  | •  |
| ~                | .623  | 2.0           | 2.3   |            | •       | •                     | .1       | •  | •  | •  | •  |
| 80               | .682  | 2.0           | 2.3   | \$         | •1      | .1                    | .1       | •  | •  | •  | •• |
| 10<br>1          | .682  | 2.0           | 2.4   | ~          | • •     | .1                    | .1       | •  | •  | •  | •  |
| t<br>I           | .741  | 2.0           | 2.4   | 2          | •1      |                       | •2       | •  | •  | •  | •• |
| ŝ                | .801  | 2.0           | 2.4   | ~          | • •     | .1                    | •2       | •  | •  | •  | •  |
| 9                | .861  |               | 2.4   | •          | .1      |                       | -2       | •  | •  | •  | •  |
| <b>ה</b>         | .801  | 2.0           | 2.4   | °.         |         | .1                    | •2       | •  | •• | •  | •  |
| ±                | .032  | 2.0           | 2.0   | \$         | .1      | .1                    | •2       | •1 | •  | •• | •• |
| ر<br>۲           | .862  | 2.0           | 2.4   |            | .1      | ۰.                    | <b>.</b> | •  | •  | •  | •  |
| 9                | •     | 2.0           | 2.5   | n.         | .1      | .1                    | .1       | •• | •• | •  | •  |
| ~                | 1.126 | 2.0           | 2.7   | <b>n</b> • | .1      | .1                    | .1       | .1 | •  | •• | •  |
| 30<br>I          | 1.181 | 2.0           | 2.7   | ÷.         |         | .1                    | .1       | .1 | •  | •• | 0. |
| б<br>1           | 1.243 | 2.0           | 2.5   | <b>*</b> • |         | .1                    | •1       | .1 | •• | 0. | •  |
| 2                | 1.312 | 2.0           | 2.1   | <b>.</b>   |         | .1                    | .1       |    | •1 | •• | •1 |
| 67-11 404        | 1.388 | 2.0           | 1.9   |            | ۰.      | .1                    | .1       |    | •1 | 0. | 0. |
| 7-12             | 1.474 | 2.0           | ອ     | <b>Б</b>   | .1      | °.                    | <b>م</b> |    |    | •1 | •1 |
|                  | ļ     |               |       |            |         |                       |          |    |    |    |    |

-

|                |           |             |            | TABLE      | ХХ:• Э<br>(                                          | ILADE -    | BLADE - SUR FLAPRISE<br>(BLADE CENTER OF GR | F GRAVI                                   | SE UENDING 4<br>GRAVITY AT . | NOMENT HAMMOUTES | AHMOUTC  | - s    |          |            |          |
|----------------|-----------|-------------|------------|------------|------------------------------------------------------|------------|---------------------------------------------|-------------------------------------------|------------------------------|------------------|----------|--------|----------|------------|----------|
| *U •           |           |             | 36.405     | JL . 34F   |                                                      | 10179 3    | MON SN                                      | FLAPAISE BLIJING NOWENT WARMONICS (INFLA) | ONICS (                      | IN-La)           |          |        |          |            |          |
| 1              | ?         | 14.<br>CFC  | N.         | 32         | <b>4</b> 5                                           | <b>A</b> 4 | ¢۲.                                         | 46                                        | ▲7                           | A (5             | 49       | A10    | 411      | A12        | 618      |
| 012 5 -+9      | . Juli    | 7<br>•<br>• | 2.1        | <b>?</b>   | 0                                                    | 2          | з,                                          |                                           | -                            |                  | •        | 2:     | 5.       |            | •        |
| • •            | 104,<br>1 | د.<br>• •   |            |            |                                                      |            |                                             |                                           |                              |                  |          |        |          |            |          |
| 4              | 644       | 2.0         | ~          | -          | - 3. 4                                               | ?          |                                             | 3                                         | 3                            |                  | -        | 0      |          |            | •        |
| ~              | 0.3       | i.          |            | 1          | ***                                                  | 1          | 1.1                                         | ~                                         | ~                            |                  | 2        | 0.     | 5        | :          | •        |
| ø              | 144.      | 2.0         | ~ ~ ~      | -1.4       | · · ·                                                | -          | 2.1                                         |                                           |                              | ~                |          | ¢.     | 5.       | ·          | °.       |
| 1112 2 -59     | 100.      | 3           |            | * • • • •  | יי<br>יי<br>ו                                        |            | 1.7                                         |                                           | 5                            |                  | <b>.</b> | •      | •        | י<br>•     | •        |
|                | 1 * 4     |             |            | · · ·      | £                                                    |            | •                                           | •                                         | <b>.</b>                     | <b>,</b>         |          | -<br>- | •        | د<br>•     | <b>c</b> |
| Λ.             | 100.      | 2.          |            |            | 3 :<br>3 :                                           |            | Ð.,                                         | •                                         | :                            | 0                | <b>.</b> | •      | •        | .)<br>•    | •        |
| c •            |           |             |            |            |                                                      |            | •                                           |                                           |                              | •                | •        | •      | <b>.</b> | э.<br>•    | ę.       |
|                | 100.      | ;           |            |            |                                                      |            | N                                           |                                           |                              | •                | 2        | •••    | •        | -          |          |
|                |           |             | •          |            |                                                      |            |                                             | •                                         |                              |                  | •        | •      | •        | •          |          |
| n 4            | . 041     |             |            |            |                                                      |            |                                             |                                           |                              |                  |          | - 1    | -        |            |          |
| h              |           |             |            |            |                                                      | 4          |                                             |                                           |                              |                  |          |        | •        | •          | •        |
| 5              | 141.1     | 1           |            | 7          |                                                      |            |                                             | 0.4                                       |                              |                  | •        |        | 2.2      | ۔ د<br>• • |          |
|                | 1.243     |             | ;          |            | 1-6-                                                 | -1-7       |                                             | 1.5                                       | 3                            | 0                | ~        | -      |          | í          |          |
| 5              | 511-1     | 0.1         |            | -(-6       | -13.1                                                | - 2.1      |                                             | 0.0-                                      | s                            | •                | 1        | ;      |          | -          | ;        |
| _              | 1.360     | 2.0         | 1          | 0.01       | -11-3                                                |            |                                             | 0.4-                                      |                              |                  |          |        |          |            | ! -      |
| 0              | 1.474     | 0           |            |            | -18.0                                                | -1.1       |                                             | -5.0                                      | 2.3                          |                  | -        |        |          | <u>^</u>   |          |
|                |           |             |            |            |                                                      |            |                                             |                                           |                              |                  |          |        |          |            |          |
| ۱.<br>۲.       |           |             | 14         | . 39k      | NLAUE .39% FLAPAISE MEROINE MOMERI MAMMONICS (10-Lu) | 10114      | 340m 5*.                                    | HAN TH                                    | ONICS                        | 11-1-1           |          |        |          |            |          |
|                |           |             |            |            |                                                      | 6          |                                             |                                           |                              |                  |          |        |          |            |          |
| 1543)<br>(EPS) | 2         | 11<br>ELS   | <b>1</b> ) | 96         | 59                                                   | 8.         | cu,                                         | ŧ                                         | 19                           | 99               | 60       | 018    | 118      | B12        | 813      |
| CH2 29         | .340      | 2.9         | -          |            | 1.5                                                  | 1          |                                             | s.                                        | ?                            | ^                | 1        |        | 0        |            | q        |
| 1              | 0         | 2           | -          | 3.         | 1.1                                                  | -          | -1-2                                        |                                           | *                            |                  | 2        | •      |          |            |          |
| \$             | .504      | 2.0         | 7          | 1.3        | 0) <b>- 1</b>                                        | а.<br>1    | 3.1                                         |                                           | -                            |                  | 0.       | •      |          | ?          | c.       |
| 541 3 710      |           | 2.5         |            |            | ~~~                                                  |            |                                             | •••                                       | •                            | •                | ?        | •      | 5        | •          | Ģ        |
| •              |           | 2 3         | 3          |            | v                                                    |            |                                             |                                           | •                            | •••              | •        | •      | •        | ?          | •        |
| 001 5 -50      | 104       | 2           |            | 5.1        | 3.2                                                  | 3          | -3-5-                                       |                                           | :7                           | 27               |          | 0      |          |            |          |
|                | 1+1       | 2.1         |            | 2.4        | •••                                                  | 7          | -3.7                                        |                                           |                              |                  | 2        | с.     | •        |            | •        |
| s              | 109.      | 3.0         | 7          | •••        | 1.1                                                  | ?          |                                             |                                           | 2                            | ~                | 5.       | ••     | •        | 0.         | •        |
| c =            |           |             |            | ::         |                                                      |            |                                             | •                                         | • •                          | ç                | 2        | •      | <b>.</b> | 5.         | •        |
|                | 25.4      | 2.0         |            |            |                                                      |            |                                             |                                           |                              | : :              |          |        |          |            |          |
| ŝ              | . 662     | 2.0         | -1.0       | 2          |                                                      | 1          |                                             | •                                         |                              |                  |          |        |          |            |          |
| 2              | 0+0-T     | 2.0         | -1.4       | <b>9</b> . | \$                                                   |            | 7                                           | 3.5                                       |                              | ••               |          | •      |          |            | •        |
| 87-7 448       | 1.126     | 2.0         | -2.4       | 8          | 3.4                                                  |            | -1.4                                        | 3.8                                       | 9.                           | •                | :        |        | ·.5      |            |          |
| •              | 1.1.91    | 2.0         | C • 2 •    | -          | ::                                                   | 9.         | -1.5                                        | ***                                       |                              | -                | 7        |        | -1.0     | S••        |          |
|                |           |             | ***        |            | , .<br>                                              |            | •                                           |                                           |                              | •                |          | - •    |          | 7          | •••      |
|                |           |             |            |            |                                                      |            |                                             |                                           |                              | •                | •        | -      | ~        | Ŷ          | *        |
| • •            |           |             |            |            |                                                      | 1          |                                             |                                           |                              |                  |          | : '    |          |            |          |
|                |           |             |            |            |                                                      |            |                                             |                                           |                              | •                | •        | •      | •        | *          |          |
|                |           |             |            |            |                                                      |            |                                             |                                           |                              |                  |          |        | I        |            |          |

|       |       |        |              |             |        | ΤA      | BLE XX  | TABLE XXXI - Concluded                             | onclud  | led     |        |            |            |     |          |     |     |
|-------|-------|--------|--------------|-------------|--------|---------|---------|----------------------------------------------------|---------|---------|--------|------------|------------|-----|----------|-----|-----|
| RU:-  | SHO   |        |              | 19L AU      | AUC. 3 | FLAPWIS | 10438 3 | AUE .JUR FLAPHISE BENDING MOMENT MARMONICS (IN-LB) | NT HARH | ONICS ( | IN-LB) |            |            |     |          |     |     |
| ?     | Res.  | Ì      | THEC<br>LDEG | K5          | RA     | 82      | R.S     | R*                                                 | R5      | Ro      | R7     | 88         | 68         | RIO | RIL      | R12 | R13 |
| - *0  | 3 700 | 190    | 0.0          | 5           | 5.1    |         | :       | u                                                  | •       |         | •      | '          | •          | •   |          |     | •   |
| 170   | 1 730 | 044    | 2.0          | *           | 2.1    | 1.0     |         |                                                    |         |         |        | v -        | •          |     | ? ?      | •   |     |
|       | 5 700 | *05°   | 2.0          | 1.2         | 2.1    | 1.3     |         | -                                                  |         |         |        |            |            |     | 2        |     | 2   |
|       | 6 700 | .505   | 2.0          | 1.2         | 2.4    | 1.0     | 5.4     | 3                                                  | 1.2     | 7       |        |            | •          | •   | 2        | -   | •   |
| - + 9 | 7 700 | .623   | 2.0          | 1.0         | 2.4    | 1.9     | 0.4     | *                                                  | 1.8     | 2.      | 2      |            | •          | •   |          | •   | •   |
|       | 0 100 | .682   | 2.0          |             | 2.3    | 2.4     | 5.5     |                                                    | 3.5     | 9.      | 2      | 1          | 0.         |     |          | 0.  | 0   |
| 5     | 3 700 | .682   | 2.0          | 6.          | 2.4    | 2.5     | 5.4     |                                                    | 3.6     |         | 2      |            | •          |     |          |     |     |
|       | 4 700 | 1+2.   | 2.0          | <b>S</b> •. | 2.4    | 3.0     | 6.2     |                                                    | 3.0     |         | -      |            | •          |     |          | •   | 0   |
| 5     | 2 700 | .001   | 2.0          | •           | 2.7    | 5.3     | 0.0     |                                                    | 5.1     | 1.2     |        |            | •          |     |          |     | 0   |
|       | 6 700 | . 861  | 2.0          | •           | 3.1    | 4.0     | 5.7     | 1.0                                                | 3.9     | 1.1     | ۲.     | •          | •          | •   |          | •   | 0   |
|       | 3 700 | 109-   | 2.4          | 6.          | 2.6    | 3.5     | 6.4     | 6.                                                 | 6.4     | 1.0     | *      | s.         | 2          |     |          | -   |     |
|       | *1*   | .632   | 2.0          | 1.1         | 1.5    | 3.0     | **S     | •                                                  | 5.4     | 1.2     |        | •          |            | -   |          |     |     |
| 5     | 55    | - 862  | 2.0          | 1.0         | 4.0    | 3.6     | 6.5     | 1.2                                                | 4.2     | 1.0     | \$     | <b>9</b> . | 1.1        |     |          |     |     |
| 2     | 6     | 1.040  | 2.0          | 2.0         | 9.4    | 3.2     | 6.9     | 1.                                                 | *       | 4.6     | 1.0    | *          | 5.         | 1.2 |          | n.  | .1  |
| -     | 1 498 | 1.126  | 2.0          | 2.2         | 5.3    | 0.4     | 7.9     | 1.1                                                | 1.7     | 5.1     | 9.     | 2          | <b>.</b> . | 1.3 | <u>ا</u> | ?   |     |
| -19   | 6 476 | 1.101  | 2.0          | 2.1         | 5.0    | 0.5     | 0.7     | 1.4                                                | 2.3     | 6.3     | 8.     |            | 2.         | 9.  | 1.0      | s.  | 2   |
|       | 9 452 | 1.243. | 2.0          | 2.0         | 5.7    | 5.8     | 10.9    | 1.9                                                | 2.5     | 7.2     | 1.1    |            | 7          | 2   | 1.4      | -   | ?   |
| 67-1  | 0 428 | 1.312  | 2.0          | 3.0         | 6.3    | 7.0     | 15.0    | 3.3                                                | 2.8     | 6.5     | 1.1    | ••         | 3          | .1  | 4.       |     | ••• |
|       | -     | 1.246  | 2.0          | 3.0         | 6.3    | 8.7     | 16.4    | 4.8                                                | 3.4     | 5.8     | 1.1    | 9.         | 3          | -   | -        | 1.1 | 5.  |
| 67-1  | ~     | 1.474  | 2.0          | 4.2         | 6.3    | 11.3    | 25.6    | 7.2                                                | 4.7     | 6.4     | 3.3    |            | •          | 0   | ••       | 3   | 1.3 |
|       |       |        |              |             |        |         |         |                                                    |         |         |        |            |            |     |          |     |     |

è

|                                               | 64                                                          |   | _   | _        | _   |      | _   | -   | _   |       | _   |     |              | _     |     | _        |            |      |             |   | Г |                                        |   | n   |     |     | -   |    | _   |   |     | -   |            | _          |     | -    | -     |     |      |       | _     |
|-----------------------------------------------|-------------------------------------------------------------|---|-----|----------|-----|------|-----|-----|-----|-------|-----|-----|--------------|-------|-----|----------|------------|------|-------------|---|---|----------------------------------------|---|-----|-----|-----|-----|----|-----|---|-----|-----|------------|------------|-----|------|-------|-----|------|-------|-------|
|                                               |                                                             |   |     |          |     | 20   |     |     | •   |       |     | -   | 2            | 1     | 1   | •        |            |      |             |   |   |                                        |   | 813 | 19  |     |     |    |     |   |     |     |            | •          | •   |      | •     | •   |      |       | •     |
|                                               | A12                                                         | • | ÷   | •        | ••  | •••  |     | •   | •   | Ģ     |     | -   | ĩ            | •     | •   | :        |            |      |             | • |   |                                        |   | 812 | !   | •   | 0.  | Ģ  | •   |   | c   | •   | •          | <b>N</b> - |     |      | •     | •   |      | 1     | ĩ     |
|                                               | TTV TTV                                                     |   | •   | •        | ••• |      | ſ.  | ••  | •   | ••    |     | •   | •            | 1     | ~   |          |            |      | 1           |   |   |                                        |   | 811 | •   | •   | •   | •  | ••  | 9 | •   | •   | •          | •••        | :-  | : -  | •     |     |      | •     | •     |
|                                               | 0TV                                                         |   | •   | ••       | •   |      | 2   | •   | •   | •••   | •   | 0.  | •            | 2.1   |     |          |            | 2.7  | 1           | 1 |   |                                        |   | 610 | •   | •   | •   | •  |     | 9 | •   | •   | •          | •          | :-  | •    | ~     | 24  |      |       | -     |
| ONICS<br>CHORD)                               | 5                                                           |   | •   | •        | e,  |      | •   |     | •   | •••   |     |     | 1            | 1     |     | •        | -1         | 1    | -<br>-<br>- |   |   |                                        |   | 6   | •   | •   | •   | •  | ę   |   | •   | •   | •          |            | •   | ~    | ~     | 24  |      |       | 1.7   |
| HARMONICS<br>.25 CHORD                        |                                                             |   |     |          |     |      |     |     |     |       |     |     |              |       |     |          |            |      | •           |   |   |                                        |   |     |     |     |     |    |     |   |     |     |            |            |     |      |       |     |      |       |       |
|                                               | (97-1)<br>V9                                                |   |     | •••      |     | : -  |     | -   | •   |       |     | 1.1 | 0.           | 5     | N.  | •        |            |      |             |   |   |                                        |   | 1   | 1.  | •   | •   | •  | ••• | 1 |     | -   |            |            |     |      |       |     |      | -1.1  | •     |
| .18R TORSIONAL MOMENT<br>CENTER OF GRAVITY AT | .148 TORSIONAL MOMENT HARMONICS (1WLB)<br>A3 A4 A5 A6 A7 A8 |   | -   | •        |     | : :  | 1   | -   | 7.  | • •   | 2   | - 2 | 7            | •     | •   | •        | <b>.</b>   |      | -1-1        |   |   | .184 TORSIONAL MOMENT HARMONICS (INLB) |   | 87  | •   | •   | •   | •  | ••• |   | •   | 2   | •          |            |     |      |       |     |      | -2.3  |       |
| NAL MOM<br>GRAVITY                            | THOMA 94                                                    |   | -   | ņ        |     |      | -0  |     | •   |       |     |     |              | 1.0   | •   |          | •          | -    | •           | 5 |   | INONE                                  |   | 1   | 0   |     | ••• | -  |     |   | 2   | Ņ   | <u>.</u> , |            |     |      |       |     |      |       | ~     |
| GR                                            | NT HA                                                       |   |     |          |     |      |     |     |     |       |     |     |              |       |     |          |            |      |             |   |   | NT HA                                  |   |     | ['  |     |     |    | •   | • | '   |     |            |            | -   | • •  |       | ? : |      | 1     | ĩ     |
| ORSIC<br>R OF                                 | MOM.                                                        |   | ~   | N •      | .,  | 14   |     | 1.7 | N   |       |     | 1.7 | 2.2          | 2.1   | 2.2 | <b>.</b> |            |      | 5.0         |   |   | <b>MOH</b>                             |   | 5   | 0.1 |     |     | •  |     |   | 1   | 1.1 | -          |            |     |      | 1.2   |     |      | 2.1   | •     |
| 18R TOI<br>CENTER                             | SIONAL                                                      |   | •   | <b>.</b> | •   | 1.0  |     | 2.0 |     | 2 - N | 2.2 | 1.9 | 2.2          | •     |     |          |            |      | 9           | 9 |   | SIONAL                                 |   | 8   | ?   | ?   | ŝ   | -  |     |   |     | •   |            | 1.2        |     | 2.2  | 2.7   |     |      |       | ;     |
| 60                                            | A TOR                                                       |   |     | •        |     | i in |     | in  |     |       |     | 5   | •            | *     | ~   |          |            |      |             |   |   | R TOR                                  |   | 12  | -   | ••• | ~   | ę, | ņ,  |   | •   |     |            | n - 1      |     |      | 3.2   |     |      |       | •     |
| BLADE<br>(BLADE                               | 1                                                           |   |     |          |     |      |     |     |     | ' '   | ••• | ī   | 7            | ?     | 7   | ī        | 11         | 1    | T           |   |   | E . 10                                 |   |     |     | •   | •   |    |     |   |     | -   | -          | -          | • • | •    | -     |     | -    | -     | =     |
| а .                                           | BLADE<br>A2                                                 | 1 | 5   |          |     |      | ~   | -   |     |       |     |     | -1-          | -3.9  | 0.9 |          |            | 0.01 | 15.5        |   |   | BLADE                                  |   | 2   | 1   |     | -   |    |     |   | 1.2 | •   | •          |            |     |      | -3.2  |     |      | 1.1   |       |
| IDOX                                          | AL AL                                                       |   | *   | •        |     |      |     |     |     |       |     | 1.3 | 1.4          | ۲.,   |     | 9 • N    | 4 u<br>N r |      |             |   |   |                                        |   | 1   | 1.2 |     | -   | •  |     |   | •   | 1   | •          |            |     | -2.4 | -     | -   |      | -12.2 | -15.0 |
|                                               | THEC<br>DED                                                 |   | 8.0 | 0.0      |     |      | 2.0 | 0.0 | 0.0 |       | 2.0 | 2.0 | 2.0          | 5.0   |     | 0.1      |            |      | 2.0         | 2 |   |                                        |   |     | 2.0 | 0.5 | 5.0 | -  |     |   | 0.5 |     |            |            |     |      | 0.2   | ••• |      |       |       |
| TABLE                                         |                                                             |   | 2   | 5        |     |      |     |     |     |       |     |     |              |       |     |          |            |      |             |   |   |                                        |   |     |     |     | ÷   |    |     |   |     |     |            |            |     |      |       |     |      |       |       |
| -                                             |                                                             |   | ň.  |          | ň,  |      | 3   | 3   |     |       | đ   |     | á.           | 1.04  | 1.1 |          |            |      | 1.17        |   |   |                                        |   | 3   | ŝ.  | i.  | 3   |    |     |   | R.  | Į   |            | ļ          |     | 1.01 | 1.126 |     |      |       |       |
|                                               | ŠŦŠ                                                         |   | 100 | 001      |     | 3    | 100 | 8   | 001 |       | 200 | -1- | <b>\$</b> 25 | Ş     |     |          | 2          |      |             |   |   | Ş                                      | ł | ŧĒ  | 700 | -   | 2   |    |     | ļ | -   |     |            |            | -   | Ş    | Į.    |     |      | ş     | ž     |
|                                               | 3:2                                                         |   |     |          |     |      | -   |     | *   | 1     |     |     | 5 - 25       | 67- 6 |     |          |            |      | 67-12       |   |   | -                                      | ÷ | 9   | 2   | * 1 | 5   | 1  |     |   |     | 5   | ۰.<br>۱    |            |     |      |       |     | 7-10 | 11-49 | 67-12 |
|                                               | 1                                                           | _ | -   | _        | ~ ` |      |     | -   | 1   |       | _   | _   | -            | -     | -   | ~        | - •        |      |             |   |   | -                                      |   |     | 1   | -   | -   | •  |     |   | -   | -   |            | - 4        |     | -    | -     |     |      |       | -     |

|        |       |        |       |          |             | F           | TABLE XXXII                              | - IIX   | - Concluded | nded    |     |     |     |     |            |     |     |
|--------|-------|--------|-------|----------|-------------|-------------|------------------------------------------|---------|-------------|---------|-----|-----|-----|-----|------------|-----|-----|
| RUI-   | , is  |        |       |          | iù LDF      | 148 10      | -144 TOPSTOWAL WOMENI HARMONICS (1N -18) | MONE NT | MOMON       | NIT SOL | Ĩ   |     |     |     |            |     |     |
|        | 2     |        | THES  |          |             |             |                                          |         |             |         |     |     |     |     |            |     |     |
|        | (FFS) | ł      | (DEC) | 22       | RI          | 27          | å                                        | a R     | ßS          | R6      | R7  | RB  | R9  | RIO | R11        | R12 | R13 |
| 5 -#9  | 700   | 066.   | 2.0   | 2.       | 1.3         | ۲.          | 4                                        | 2.      |             | 1.      | .1  | •   | •   | 0.  | <b>n</b> • | 0.  | ••  |
|        | 100   | . 440  | 2.0   | \$       | <b>1.</b> 5 |             |                                          | *.      |             | .1      | ••  | 0.  | •   | •   |            | ••  | •   |
| 64- 5  | 700   | *00° * | 2.0   | •        | 1.0         | 1.1         | •                                        | •       |             | 3.      |     | •   | •   | •   |            | •   | •   |
| 9-1-10 | 100   | -165   | 2.0   | σ.       | 1.5         | <b>1.</b> 5 | s.                                       | •       | •••         | s.      |     | •   | •   | •   |            | •   | 0.  |
| 54- 7  | 200   | .623   | 2.4   | 1.2      | 1.3         | 2.0         |                                          | 1.7     | 6.          | s.      |     | ••  | •   | •   |            | •   | •   |
| 170    | 200   | .682   | 2.0   | 1.6      | 1.3         | 2.5         | 6.                                       | 2.4     | 1.6         | 9.      |     | .1  | •   | •   |            | •   | •   |
|        | 200   | . 682  | 2.0   | 1.5      | 1.1         | 2.7         | 1.0                                      | 2.4     | 1.9         |         |     | •   | •   | •   |            | •   | ••  |
| 4 -5a  | 2004  | 141    | 2.0   | 1.8      | 1.2         | 3.5         | 1.2                                      | 3.0     | 2.1         | 0       | ~   |     | •   | •   |            | •   | ••  |
| 65- 59 | 200   | 108.   | 2.0   | 2.4      | 1.1         | 3.7         | 1.5                                      | 3.1     | 2.5         | 2.      | •2  |     | •   | •   |            | •   | •   |
| 6j− 0  | 700   | 190.   | ž.U   | 3.5      | 1.6         | 4.6         | 2.3                                      | 3.3     | 2.5         | 1.1     | \$. | ••  | •   | ••  |            | •   | •   |
|        | 140   | 100.   | 0.3   | 2.1      | 1.2         | 2.7         | 1.3                                      | 3.1     | 2.2         | 1.      | *   | 5.  | .1  | .1  | .1         | 2.  | .1  |
| 1 - 29 | 014   | .632   | v.0   |          | 1.3         | 7.0         | 1.9                                      | 2.6     | 2.8         | 1.1     | ••• | ••  |     | •   |            | 2   |     |
| 07-5   | 652   | .862   | 2.0   | 1.7      | 1.5         | 3.6         | 2.0                                      | 2.2     | 2.5         | 1.7     | 1.1 | 2.  | ~   | .1  | •          | ~   | \$  |
| 67- 0  | 699   | 1.040  | 2.0   | \$       | 3.0         | 5.4         | 2.9                                      | 2.4     | 2.0         | 1.9     | 1.1 | ŝ   | ~   | ~   | 2.         | •   | .1  |
| 67-7   | 863   | 1.126  | 2.0   | د .<br>ا | 6.0         | 6.9         | 6**                                      | 3.7     | 2.0         | 2.0     |     | *   | ••  | 4   | ~          | .1  | .1  |
| 67- 6  | 476   | 1.1.11 | 2.11  | 1.0      | 1.0         | 7.0         | 5.7                                      | 0°.3    | 3.4         | 3.5     | 1.6 | 6.  | r.  | ••  | •          | 2   | .1  |
| 67-9   | P 52  | 1.243  | 2.0   | 1.5      | 5.0         | 9.1         | 7.1                                      | 5.9     | 3.0         | 3.2     | 1.7 | •   | *   | 3.  | -          | ~   | .1  |
| U1-10  | 428   | 1.312  | 2.0   | 1.4      | 11.4        | 1.11        | 8.3                                      | 0.0     | 3.4         | 3.1     | 2.4 | 1.1 | •   |     | ~          | ~   | 2   |
| 67-11  | 4.    | 1.364  | 2.0   |          | 12.4        | 12.6        | 9.5                                      | 7.7     | 5.4         | 3.5     | 2.5 | 1.4 | ŝ   | 2.  | 2          |     | ~   |
| 67-12  | 340   | 1.474  | 0.3   | · · ·    | 16.4        | 15.8        | 12.2                                     | 9°9     | 3.5         | 2.7     | 5.4 | 3.5 | 3.1 | 1.8 | 1.0        | 9.  |     |
|        |       |        |       |          |             |             |                                          |         |             |         |     |     |     |     |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              |                                                                             |                                                                                   |                                                                            |                                                                                                                                                                            | E GRAVIT                                                             |                                                                                                          | 1a.917                                                                                  |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|
| RUN-<br>PT, OHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              |                                                                             | BL                                                                                | ADE FLAF                                                                   | MOTION                                                                                                                                                                     | HARMON                                                               | ICS IDE                                                                                                  | (6)                                                                                     |     |
| NO, AR<br>(FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HU                                                                                                                                                                           | THEC (DES)                                                                  | A1                                                                                | A2                                                                         | A3                                                                                                                                                                         | A4                                                                   | A5                                                                                                       | A6                                                                                      | A7  |
| 64- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 390                                                                                                                                                                        | 2.0                                                                         | 1                                                                                 | 0                                                                          | . 3                                                                                                                                                                        | .0                                                                   | .0                                                                                                       | .0                                                                                      |     |
| 64- 4 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              | 2.0                                                                         | 1                                                                                 | 1                                                                          | .3                                                                                                                                                                         | .0                                                                   | .0                                                                                                       | .0                                                                                      |     |
| 64- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .504                                                                                                                                                                         | 2.0                                                                         | 1                                                                                 | 1                                                                          |                                                                                                                                                                            | .0                                                                   |                                                                                                          | .0                                                                                      | • 1 |
| 64- 6 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .565                                                                                                                                                                         | 2.0                                                                         | 2                                                                                 | 1                                                                          | .4                                                                                                                                                                         | .0                                                                   | .0                                                                                                       | .0                                                                                      |     |
| 64- 8 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .482                                                                                                                                                                         | 2.0                                                                         | 2                                                                                 | 1                                                                          | .5                                                                                                                                                                         | .0                                                                   | 1                                                                                                        | .0                                                                                      |     |
| 65- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .682                                                                                                                                                                         | 2.0                                                                         | .1                                                                                | 1                                                                          |                                                                                                                                                                            | .0                                                                   | .0                                                                                                       | .0                                                                                      |     |
| 65- 4 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .741                                                                                                                                                                         | 2.0                                                                         | *                                                                                 | 1                                                                          |                                                                                                                                                                            | .1                                                                   | 10                                                                                                       | .0                                                                                      |     |
| 65- 5 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .001                                                                                                                                                                         | 2.0                                                                         | 2                                                                                 | .0                                                                         | .5                                                                                                                                                                         | 11                                                                   | 1                                                                                                        | .0                                                                                      | •   |
| 65- 6 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .861                                                                                                                                                                         | 2.0                                                                         | 2                                                                                 | .0                                                                         | .5                                                                                                                                                                         | .0                                                                   | .0                                                                                                       | .0                                                                                      |     |
| 67- 4 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .832                                                                                                                                                                         | 2.0                                                                         | 3                                                                                 | .0                                                                         | .3                                                                                                                                                                         | .0                                                                   | 1<br>1                                                                                                   | .0                                                                                      |     |
| 67- 5 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 862                                                                                                                                                                        | 2.0                                                                         | 6                                                                                 | .0                                                                         | . 4                                                                                                                                                                        | .1                                                                   |                                                                                                          |                                                                                         |     |
| 67- 6 496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.040                                                                                                                                                                        | 2.0                                                                         | •1                                                                                | 1                                                                          | .5                                                                                                                                                                         | .1                                                                   |                                                                                                          | 1                                                                                       |     |
| 67- 7 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.126                                                                                                                                                                        | 2.0                                                                         | .3                                                                                | 1                                                                          |                                                                                                                                                                            | .1                                                                   | .1                                                                                                       | 1                                                                                       | •   |
| 67- 8 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.181                                                                                                                                                                        | 2.0                                                                         | 4                                                                                 | 2                                                                          | .5                                                                                                                                                                         | .2                                                                   |                                                                                                          | 2                                                                                       | •   |
| 67- 9 452<br>67-10 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.243                                                                                                                                                                        | 2.0                                                                         | .1                                                                                | 2                                                                          | 1.0                                                                                                                                                                        | :3                                                                   | .1                                                                                                       | .0                                                                                      |     |
| 67-11 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.368                                                                                                                                                                        | 2.0                                                                         | -,4                                                                               | 5                                                                          |                                                                                                                                                                            |                                                                      | .2                                                                                                       | .:                                                                                      |     |
| 67-12 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,474                                                                                                                                                                        | 2.0                                                                         | .0                                                                                | 7                                                                          | 1.2                                                                                                                                                                        | .6                                                                   | .3                                                                                                       | .2                                                                                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              | ····-                                                                       |                                                                                   |                                                                            |                                                                                                                                                                            |                                                                      |                                                                                                          |                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              | <u></u>                                                                     |                                                                                   |                                                                            |                                                                                                                                                                            |                                                                      |                                                                                                          |                                                                                         |     |
| RUN-<br>PT, OHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              |                                                                             | <br>84.                                                                           | NDE FLAP                                                                   | . HOTEON                                                                                                                                                                   | -                                                                    | ICS (DE                                                                                                  | 363                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MU                                                                                                                                                                           | THEC<br>(DEG)                                                               | BL/                                                                               | NDE FLAP<br>B2                                                             | 83<br>MOTION                                                                                                                                                               | 1 HARMON                                                             | IICS (DE                                                                                                 | 6)<br>86                                                                                | 87  |
| PT. ONS<br>NO. SR<br>(FPS)<br>64- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 390                                                                                                                                                                        | (DE6)                                                                       | <b>01</b>                                                                         | 02<br>1                                                                    | <b>0</b> 3                                                                                                                                                                 | .0                                                                   | 85                                                                                                       | .0                                                                                      |     |
| PT. ONS<br>NO. oR<br>(FPS)<br>64- 3 700<br>64- 4 .700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 390                                                                                                                                                                        | (DE6)<br>2.0<br>2.0                                                         | 01<br>1<br>2                                                                      | •2<br>1<br>1                                                               | 83<br>1<br>.0                                                                                                                                                              | .0<br>.0                                                             | .0<br>.1                                                                                                 | <b>86</b>                                                                               |     |
| PT. ONS<br>NO. SR<br>(FPS)<br>64- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 390                                                                                                                                                                        | (DE6)                                                                       | <b>01</b>                                                                         | 02<br>1                                                                    | <b>B3</b><br>1<br>1<br>1                                                                                                                                                   | .0<br>.0<br>.0<br>.0                                                 | 85                                                                                                       | B6<br>.0<br>.0<br>.0                                                                    | .0  |
| PT. OHS<br>NO. oR<br>(FPS)<br>64- 3 700<br>64- 4 700<br>64- 5 700<br>64- 6 700<br>64- 7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .390<br>.448<br>.504<br>.565<br>.623                                                                                                                                         | (DE0)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0                             | 01<br>1<br>2<br>2<br>2<br>2<br>2                                                  | •2<br>1<br>1<br>1<br>1<br>1<br>2                                           | <b>B</b> 3<br>1<br>.0<br>1<br>1<br>1                                                                                                                                       | .0<br>.0<br>.0<br>.0                                                 | 85<br>.0<br>.1<br>.0<br>.0<br>.1                                                                         | 86<br>.0<br>.0<br>.0<br>.0                                                              |     |
| PT. OHS<br>NO. eR<br>(FPS)<br>64- 3 700<br>64- 4 .700<br>64- 5 700<br>64- 6 700<br>64- 7 700<br>64- 8 700                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 390<br>. 448<br>. 504<br>. 565<br>. 623<br>. 682                                                                                                                           | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0                      | 01<br>1<br>2<br>2<br>2<br>2<br>0<br>2                                             | 62<br>1<br>1<br>1<br>1<br>2<br>2                                           | <b>B</b> 3<br>1<br>.0<br>1<br>1<br>1<br>1<br>2                                                                                                                             | ••<br>• 0<br>• 0<br>• 0<br>• 0<br>• 1                                | 85<br>.0<br>.1<br>.0<br>.1<br>.1<br>.1                                                                   | 86<br>.0<br>.0<br>.0<br>.0<br>.0                                                        | .0  |
| PT.   OHS     NO.   #R     (FPS)     64-   3     64-   4     64-   5     64-   6     64-   7     64-   7     64-   7     64-   3     64-   5     64-   5                                                                                                                                                                                                                                                                                                                                                                                    | . 390<br>. 448<br>. 504<br>. 545<br>. 683<br>. 682<br>. 682                                                                                                                  | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0               | <b>91</b><br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                            |                                                                            | 03<br>1<br>1<br>1<br>2<br>3                                                                                                                                                | .0<br>.0<br>.0<br>.0<br>.0<br>.1                                     | 05<br>.0<br>.1<br>.0<br>.0<br>.1<br>.1<br>.1                                                             | .0<br>.0<br>.0<br>.0<br>.0<br>.0                                                        |     |
| PT.   OHS     NO.   #R     (FPS)     64-   3 700     64-   4.700     64-   5 700     64-   7 700     64-   8 700     64-   8 700     64-   8 700     64-   8 700     65-   3 700                                                                                                                                                                                                                                                                                                                                                            | .390<br>.448<br>.504<br>.565<br>.623<br>.682<br>.682<br>.741                                                                                                                 | (DE0)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | <b>91</b><br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                 | <b>B2</b><br>1<br>1<br>1<br>2<br>2<br>2<br>2                               | 03<br>1<br>1<br>1<br>1<br>2<br>3<br>4                                                                                                                                      | .0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.0                         | 85<br>.0<br>.1<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1                                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                            | .0  |
| PT.   OHS     NO.   #R     (FPS)     64-   3     64-   4     64-   5     64-   6     64-   7     64-   7     64-   7     64-   3     64-   5     64-   5                                                                                                                                                                                                                                                                                                                                                                                    | . 390<br>. 448<br>. 504<br>. 545<br>. 683<br>. 682<br>. 682                                                                                                                  | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0               | 01<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1                         |                                                                            | 03<br>1<br>1<br>1<br>2<br>3                                                                                                                                                | • • • • • • • • • • • • • • • • • • •                                | 85<br>.0<br>.1<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                         | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                |     |
| PT, OHS     H0, sR     (FPS)     64-3 700     64-4 700     64-5 700     64-6 700     64-7 700     64-8 700     64-7 700     64-7 700     65-3 700     65-3 700     65-6 700     65-7 700                                                                                                                                                                                                                                                                                                                                                    | .390<br>.448<br>.504<br>.565<br>.623<br>.682<br>.682<br>.741<br>.601<br>.801                                                                                                 |                                                                             | 01<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>3                         | 02<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                 | <b>B</b> 3<br>1<br>.0<br>1<br>1<br>2<br>3<br>4<br>3<br>3<br>3<br>3                                                                                                         | • • •<br>• •<br>• •<br>• •<br>• •<br>• •<br>• •<br>• •<br>• •<br>•   | 85<br>.0<br>.1<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                               | 86<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     |
| PT, OHS     NO. eR     (FPS)     64-3 700     64-5 700     64-6 700     64-7 700     64-7 700     65-3 700     65-3 700     65-5 700     65-6 700     67-3 700     65-7 700     65-8 700     65-9 700     67-3 700     67-6 6 700     67-6 6 700                                                                                                                                                                                                                                                                                            | .390<br>.448<br>.504<br>.565<br>.623<br>.682<br>.682<br>.741<br>.801<br>.801<br>.832                                                                                         |                                                                             | <b>B1</b><br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1   | <b>B2</b><br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | <b>6</b> 3<br>1<br>1<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>1                                                                                                          |                                                                      | 85<br>.0<br>.1<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                           | 86<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |     |
| PT, OHS     NO.   eR     (FPS)     64-5700     64-5700     64-5700     64-5700     64-6700     64-7700     64-7700     64-7700     64-700     64-7700     65-7700     65-75500     67-5520                                                                                                                                                                                                                                                                                                                                                  | .390<br>.448<br>.504<br>.565<br>.623<br>.623<br>.682<br>.741<br>.601<br>.801<br>.801<br>.801<br>.832<br>.862                                                                 |                                                                             | <b>B1</b> 1221111112                                                              | <b>B2</b><br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <b>B</b> 3<br>1<br>1<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                           | 84<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1       | 85<br>.0<br>.1<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2                         | <b>B6</b><br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       |     |
| PT, OHS     H0, sR     (FPS)     64-3700     64-4700     64-5700     64-6700     64-6700     64-7700     64-8700     64-8700     64-9700     64-9700     64-9700     65-9700     65-9700     65-9700     67-3700     67-360     67-560     67-6490                                                                                                                                                                                                                                                                                          | .390<br>.448<br>.504<br>.505<br>.623<br>.662<br>.662<br>.662<br>.662<br>.662<br>.661<br>.801<br>.801<br>.801<br>.801<br>.801<br>.801<br>.801<br>.80                          | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | <b>B1</b><br>1<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>.0       | <b>B2</b> 11112222222222                                                   | <b>B</b> 3<br>1<br>1<br>1<br>2<br>3<br>6<br>3<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | 84<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | 85<br>.0<br>.1<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1             | <b>B6</b><br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |     |
| PT, OHS     NO.   eR     (FPS)     64-5700     64-5700     64-5700     64-5700     64-6700     64-7700     64-7700     64-7700     64-700     64-7700     65-7700     65-75500     67-5520                                                                                                                                                                                                                                                                                                                                                  | .390<br>.448<br>.505<br>.623<br>.642<br>.642<br>.642<br>.642<br>.642<br>.641<br>.601<br>.601<br>.632<br>.642<br>.642<br>.641<br>.601<br>.632<br>.642<br>.641<br>.632<br>.645 | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | <b>B1</b><br>1<br>2<br>2<br>0<br>2<br>0<br>2<br>1<br>1<br>3<br>1<br>2<br>.0<br>.0 | 02<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2             | <b>B</b> 3<br>1<br>1<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>1<br>6<br>3<br>3<br>1<br>4<br>3<br>3<br>3<br>1<br>4<br>3<br>3<br>1<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |                                                                      | 85<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | <b>B6</b><br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |     |
| PT, OHS     NO. oR     (FPS)     44-3700     64-5700     64-6700     64-7700     64-7700     64-7700     64-7700     65-700     65-700     65-700     65-700     65-700     65-700     65-700     67-7500     67-7500     67-7500     67-7500     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700     67-700 | .390<br>.448<br>.504<br>.505<br>.623<br>.662<br>.662<br>.662<br>.662<br>.662<br>.661<br>.801<br>.801<br>.801<br>.801<br>.801<br>.801<br>.801<br>.80                          | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | <b>B1</b><br>1<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>.0       | <b>B2</b><br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | <b>B3</b><br>1<br>1<br>2<br>3<br>3<br>3<br>1<br>4<br>2<br>5                                                                                                                | 84<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | 85<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                   | <b>B6</b><br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |     |
| PT, OHS     NO. eR     (FPS)     64- 3 700     64- 4 700     64- 5 700     64- 5 700     64- 6 700     65- 3 700     65- 5 700     65- 6 700     65- 6 700     67- 6 470     67- 7 496     67- 7 496     67- 8 76                                                                                                                                                                                                                                                                                                                           | .390<br>.448<br>.505<br>.545<br>.623<br>.642<br>.741<br>.601<br>.601<br>.601<br>.601<br>.601<br>.032<br>.642<br>1.600<br>1.126                                               | (DE6)<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | <b>B1</b><br>1<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>.0<br>.0<br>2      | <b>B2</b><br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | <b>B</b> 3<br>1<br>1<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                     |                                                                      | 85<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | <b>B6</b><br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |     |

I

|                                        |                    |       |                                        | -                  | TABLE XXXIII - Concluded                | II - Con     | cluded                                       |                          |                                         |                                       |   |
|----------------------------------------|--------------------|-------|----------------------------------------|--------------------|-----------------------------------------|--------------|----------------------------------------------|--------------------------|-----------------------------------------|---------------------------------------|---|
| PT.                                    | OMS<br>+R<br>(FPS) | £     | THEC.<br>(DEG)                         | BL,<br>RS          | BLADE FLAP<br>R1                        | MOTION<br>R2 | HARMON                                       | MARMONICS (DEG)<br>R3 R4 | 6)<br>R5                                | a a a a a a a a a a a a a a a a a a a | 6 |
| n+n+n+n+n+n+n+n+n+n+n+n+n+n+n+n+n+n+n+ |                    |       | 00000000000000000000000000000000000000 | NOOFNO ##MN#N#OMN4 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              | <i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i> | 0                        | 0.200.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 000000000000000                       |   |
| 67-10<br>67-11<br>67-12                | 353                | 1.912 | 000                                    | • •                |                                         |              |                                              |                          |                                         | ****                                  |   |

à

| TA                         | BLE X | CXXIV.        |       | E .35R<br>DE CEN |         |        |        |         |      | RUN |
|----------------------------|-------|---------------|-------|------------------|---------|--------|--------|---------|------|-----|
| RUN-<br>PT. OMS<br>NO. #R  |       | THEC          |       | .35R TO          |         |        |        |         |      |     |
| (FPS)                      | MU    | (DEG)         | A1    | A2               | A3      | A4     | A5     | A6      | A7   |     |
| 64- 3 700                  | . 390 | 2.0           | .8    | 4                | .7      | .1     | .1     | .0      | .1   |     |
| 64- 4 700<br>64- 5 700     | .448  | 2.0           | .8    | 6                | .7      | .4     | .0     | .0      | .0   |     |
| 64- 6 700                  | .565  | 2.0           | .9    | -1.0             | .6      | .7     | -,1    | .4      | .1   |     |
| 64- 7 700                  | .623  | 2.0           | .8    | -1.4             | .6      | 1.0    | .6     | .4      | .0   |     |
| 64- 8 700                  | .682  | 2.0           | 1.1   | -1.8             | .7      | 1.5    | 1.0    | .5      | 1    |     |
| RUN-<br>PT. oms<br>No. \$R |       | THEC          | BLADE | .35R TO          | RSIONÁL | HOMENT | HARMON | ICS (IN | (LB) |     |
| (FPS)                      | MU    | (DEG)         | 81    | B2               | 83      | 84     | 85     | 86      | 87   |     |
| 64- 3 700                  | .390  | 2.0           | .8    | .0               | 2       | .4     | 1      | 1       | .0   |     |
| 64- 4 700                  | .448  | 2.0           | .9    | .0               | 5       | .2     | 1      | .1      | .0   |     |
| 64- 5 700                  | .504  | 2.0           | 1.2   | .1               | 4       | .5     | .0     | .2      | .0   |     |
| 64- 6 700                  | .565  | 2.0           | 1.2   | .3               | 4       | 1.3    | .1     | .1      | .0   |     |
| 64- 7 700<br>64- 8 700     | .623  | 2.0           | 1.1   | •0               | 3       | 1.7    | .3     | .0      | .0   |     |
|                            |       |               |       | ••               |         |        | ••     |         |      |     |
| RUN-<br>PT. OMS            |       |               | BLADE | .35R TO          | RSIONAL | MOMENT |        | ICS (IN | (LB) |     |
| NO. OR<br>(FPS)            | MU    | THEC<br>(DEG) | RS    | R1               | R2      | R3     | R4     | R5      | R6   | R7  |
| 64- 3 700                  | . 390 | 2.0           | -1.5  | 1.1              | .4      | .7     | .5     | .1      | .1   | • 1 |
| 64- 4 700                  | .448  | 2.0           | -1.7  | 1.3              | .6      | .8     | .5     | .1      | .1   | •   |
| 64- 5 700<br>64- 6 700     | .504  | 2.0           | -1.8  | 1.5              | .9      | .9     | .7     | .1      | .3   | •   |
| 04- 0 /00                  | .565  | 2.0           | -1.8  | 1.5              | 1.0     | :7     | 1.0    | .2      | .4   | •   |
| 64- 7 700                  |       |               |       |                  |         |        |        |         |      |     |

,

|                                                                                                                                                               | (BI                                                                         | LADE C                                                                            |                                                                             |                                                                          |                                                                          |                                                                |                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|
| RUN-<br>PT. OMS<br>NO. BR<br>(FPS)                                                                                                                            | 5 <b>4</b> 1 y                                                              | THEC<br>(DEG)                                                                     | DLA                                                                         | DE LAG                                                                   | HOTION                                                                   | HARMCII)                                                       | A5                                                                                    |
| 68- 3 700<br>68- 4 700<br>68- 5 700<br>68- 5 700<br>68- 6 700<br>68- 7 700<br>68- 8 700                                                                       | .294<br>.294<br>.294<br>.294<br>.294<br>.351                                | 8.0<br>9.3<br>10.0<br>11.0<br>12.6<br>8.0                                         | •.2<br>•.3<br>•.4<br>•.5<br>•.5                                             | .0<br>.u<br>.v<br>.v                                                     | •1<br>•1<br>•0<br>•0<br>•0                                               | • 0<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1                  | • 0<br>• 0<br>• 0<br>• 0<br>• 0                                                       |
| 68- 9 700<br>68-10 700<br>68-11 700<br>68-12 700<br>68-13 700<br>68-14 700                                                                                    | .351<br>.351<br>.351<br>.351<br>.410<br>.410                                | 9.0<br>10.6<br>11.0<br>12.0<br>8.0<br>9.0                                         | 4<br>5<br>5<br>2<br>3                                                       | .U<br>.U<br>.U<br>.U<br>.U                                               | .1<br>.1<br>.1<br>.1<br>.1                                               | •1<br>•1<br>•1<br>•1<br>•1                                     | •0<br>•0<br>•0<br>•0                                                                  |
| 68-15 700<br>68-16 700<br>68-17 700<br>68-18 700<br>68-19 700<br>68-20 700                                                                                    | .410<br>.410<br>.485<br>.485<br>.485                                        | 10.6                                                                              | 3<br>4<br>2<br>3<br>3                                                       | •U<br>•U<br>•J<br>•I                                                     | •1<br>•1<br>•1<br>•1                                                     | •2<br>•2<br>•2<br>•2                                           | •0<br>•0<br>•0<br>•0                                                                  |
|                                                                                                                                                               |                                                                             | 11.0                                                                              | 4                                                                           | • U                                                                      | .1                                                                       | • 3                                                            | •0                                                                                    |
|                                                                                                                                                               |                                                                             |                                                                                   |                                                                             | ••                                                                       | •1                                                                       | ••                                                             | •0                                                                                    |
| RUN-<br>PT. ONS<br>NO. +R                                                                                                                                     |                                                                             |                                                                                   |                                                                             |                                                                          |                                                                          |                                                                | •0<br>CS (DEC                                                                         |
| RUN-<br>PT. ONIS                                                                                                                                              | . <b>VBC</b>                                                                | THEC<br>(DEG)                                                                     |                                                                             |                                                                          |                                                                          |                                                                |                                                                                       |
| RUN-<br>PT. ONS<br>NO. #R<br>(FPS)<br>68- 3 701<br>68- 4 700<br>68- 5 700<br>68- 5 700                                                                        | .294<br>.294<br>.294<br>.294                                                | THEC<br>(DEG)<br>8.0<br>9.0<br>10.0<br>11.0                                       | B1<br>.1<br>.2<br>.3                                                        | CE LAG<br>U2<br>.U<br>.U<br>.U<br>.U                                     | ₩0ТІОН<br>ВЗ<br>.0<br>.0<br>.1                                           | HARMOHI<br>B4<br>•2<br>•2<br>•1<br>•1                          | C5 (UEC<br>R5<br>•0<br>•0<br>•0<br>•0                                                 |
| RUN-<br>PT, OMS<br>NO, #R<br>(FP5)<br>68-3 700<br>68-4 700<br>68-5 700<br>68-5 700<br>68-7 700<br>68-7 700<br>68-9 700<br>68-10 700<br>68-10 700<br>68-10 700 | MI)<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.351<br>.351<br>.351 | THEC<br>(DEG)<br>8.0<br>9.0<br>10.0<br>11.0<br>12.6<br>8.0<br>9.0<br>10.0<br>11.5 | еца<br>81<br>.1<br>.2<br>.3<br>.4<br>.1<br>.2<br>.3<br>.4<br>.1<br>.2<br>.3 | DE LAG                                                                   | HOTION<br>B3<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U | HARMOIJI<br>B4<br>•2<br>•2<br>•1<br>•1<br>•1<br>•1<br>•1<br>•0 | C5 (DEC<br>P5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 |
| RUN-<br>PT. ONS<br>NO. *R<br>(FPS)<br>68-3 700<br>68-4 700<br>68-5 700<br>68-5 700<br>68-7 700<br>68-7 700<br>68-7 700<br>68-8 700<br>68-10 700               | MI)<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294         | THEC<br>(DEG)<br>8.0<br>9.0<br>10.0<br>11.0<br>12.6<br>8.0<br>9.0<br>10.0         | B1<br>.1<br>.2<br>.2<br>.3<br>.4<br>.1<br>.2<br>.3                          | CE LAG<br>U?<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U<br>.U | ₩01101<br>83<br>.0<br>.1<br>.1<br>.1<br>.0<br>.0                         | HARMOIJI<br>B4<br>•2<br>•2<br>•1<br>•1<br>•1<br>•1<br>•1       | C5 (UEC<br>R5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                         |

|               |             |            | TAE           | ILE XXXV | TABI.E XXXV - Concluded | pəpr   |           |            |    |
|---------------|-------------|------------|---------------|----------|-------------------------|--------|-----------|------------|----|
| RUN-<br>PT. 0 | SMO         |            |               | BLADE    | DE LAG                  | NOITON | HARMONICS | CS (DEG)   | (9 |
|               | *R<br>(FPS) | М          | THEC<br>(D26) | ßS       | R J                     | R2     | R3        | R4         | RS |
| 68-37         | 700         | •294       | 8.0           | 4.2      | ю.<br>•                 | •0     | •1        | •2         | •  |
| 4             | 700         | <b>+62</b> |               | •        | ۳.                      | 0.     | .1        | •2         | •  |
| n             | 00          | .294       | 10.0          | 5.9      | ŝ                       | ••     | • 1       | -2         | •  |
| 9             | 00          | •294       | :             | 6.6      | ŝ                       | •      | •1        | .1         | •  |
|               | 00          | .294       |               | 7.4      | .7                      | .1     | •1        | • 2        | •  |
|               | 00          | .351       |               | 4.1      | 2.                      | •      | •1        | \$         | •  |
|               | 00          | .351       |               | 5.0      | ÷.                      | •      | .1        | •          | •  |
|               | 00          | .351       |               | 5.7      | • 2                     | •      | .1        | •5         | •  |
|               | 00          | • 351      | 11.0          | 6.6      | •                       | .1     | •1        | •1         | •  |
|               | 700         | .351       | 12.0          | 7.4      | 9.                      | 1.•    | •1        | • 1        | •• |
|               | 00          | .410       |               | 4.1      | ς.                      | •      | •1        | • 5        | •  |
|               | 00          | 07 **      | 0.6           | 4.7      | ř.                      | .1     | • 1       | • 5        | •• |
|               | 700         | 014.       |               | 5.4      | ÷.                      | .1     | .1        | •2         | •  |
| 68-16 7       | 00          | •410       | 11.0          | 6.1      | ŝ                       |        | •1        | • 5        | •• |
|               | 00          | .486       | 8.0           | 4.0      | <b>n</b> .              |        | .1        | N.•        | •  |
|               | 00          | •486       | 0.6           | 4.6      | ε.                      |        | •1        | ř.         | •  |
|               | 700         | .406       | 10.0          | 5.2      | ÷.                      | .1     | •1        | n•         | •  |
|               | 00          | • 486      | 11.0          |          | •2                      | ••     | •1        | <b>г</b> • | •  |
|               |             |            |               |          |                         | 5      |           |            |    |

| TABLE X                            | CXVI. |               |             | OR FLAN        |                |              |              |                |               |            |
|------------------------------------|-------|---------------|-------------|----------------|----------------|--------------|--------------|----------------|---------------|------------|
| RUN-<br>PT. OMS<br>NO. #R          |       | THEC          | -           | .308 FL        |                |              |              |                |               |            |
| (FPS)                              | MU    | (DEG)         | A1          | A2             | A3             | A4           | A5           | Aó             | A7            | Að         |
| 64- 3 700<br>68- 4 700             | . 294 | 8.0           | •5          | 4              | -3.3<br>-3.3   | 2            | -1.6<br>-1.7 | .6             | 2             | -1.0       |
| 68- 5 700                          | .294  | 10.0          | .4          | 6              | -3.2           | 3            | -3.8         | 1.3            | 2             | 9          |
| 68- 6 700<br>68- 7 700             | .294  | 11.0          | .4          | 6              | -3.1           | 3<br>1       | -4.9         | 1.3            | 1             | 2          |
| 60- 8 700                          | .351  | 8.0           | 1.2         | 2              | -3.9           | .5           | 1.3          | 1.3            | .3            | .1         |
| 68- 9 700                          | .351  | 9.0           | 1.2         | 4              | -4.0           | .2           | 1.6          | 1.7            | .2            | .1         |
| 68-10 700<br>68-11 700             | .351  | 10.0          | 1.2         | 4              | -3.8           | .1           | 1.0          | 2.1            | •0<br>•0      | 3<br>1     |
| 68-12 700                          | . 351 | 12.0          | 1.3         | 3              | -4.1           | .0           | -1.0         | 1.9            | 1             | •0         |
| 68-13 700<br>68-14 700             | .410  | 8.0           | 1.7         | -1.3           | -5.5<br>-5.8   | 1<br>2       | •1<br>6      | 2              | -,5<br>-,5    | -1.1       |
| 68-15 700                          | .410  | 10.0          | 1.6         | -1.7           | -5.6           | 2            | -2.5         | .5             | 7             | -2.0       |
| 66-16 700                          | .410  | 11.0          | 1.6         | -1.8           | -5.3           | 3            | -3.2         | .2             | 8             | -2.2       |
| 68-17 700<br>68-18 700             | .486  | 8.0           | 2.7         | -1.9           | -5.1<br>-5.5   | 3            | -1.9         | 1.4            | .4            | 9<br>-1.0  |
| 68-19 700                          | .486  | 10.0          | 2.9         | -2.2           | -5.5           | 5            | -4.1         | 2.8            | .6            | -1.2       |
| 68-20 700                          | ,486  | 11.0          | 3.0         | -2.3           | -5.6           | 6            | -4+1         | 2.8            | .3            | -1.5       |
| RUN-<br>PT. OMS<br>NO. #R<br>(FPS) | МU    | THEC<br>(DEG) | BLADE<br>B1 | .30R FLA<br>B2 | APWISE (<br>B3 | BENDING      | MOMENT       | HARMON I<br>B6 | C5 (IN,<br>87 | -LB)<br>88 |
| 68- 3 700                          | .294  | 8.0           | -2.0        | •1             | .6             | -1.2         | -3.3         | 9              | 5             | .0         |
| 68- 4 700                          | .294  | 9.0           | -2.0        | • 3            | .5             | -1.4         | -4.8         | 5              | 4             | 1          |
| 68- 5 700<br>68- 6 700             | .294  | 10.0          | -2.0        | •5<br>•6       | .1             | -1.6         | -6.2         | -,3<br>-,9     | 2             | .0<br>1    |
| 68- 7 700                          | .294  | 12.0          | -1.9        | .6             | • 0            | -1.7         | -1.9         | -1.1           | 1             | .1         |
| 68- 8 700<br>68- 9 700             | .351  | 8.0           | -1.4        | •5<br>•6       | 3.0            | -,3<br>-,8   | -3.2         | .7             | •1            | 6<br>5     |
| 68-10 700                          | .351  | 10.0          | -1.5        | .9             | 2.6            | -1,1         | -8.3         | 1.4            | •6            | 1          |
| 68-11 700                          | .351  | 11.0          | -1.5        | 1.1            | 2.1            | -1.2         | -8.0         | 1.3            | .8            | .3         |
| 68-12 700<br>68-13 700             | .351  | 12.0          | -1.4        | 1.2            | 1.9            | -1.3<br>-1.1 | -8.1         | 1.3            | .8            | .5         |
| 68-14 700                          | .410  | 9.0           | -1.4        | .7             | 1.9            | -1.3         | -2.7         | .3             | .4            | .4         |
| 68-15 700                          | .410  | 10.0          | -1.4        | .9             | 2.1            | -1.5         | -3.3         | 5<br>-1.1      | 2             | 1          |
| 68-16 700<br>68-17 700             | .410  | 8.0           | -1.4        | .8             | 5.1            | -1.5         | -3.5         | .2             | .7            | .3         |
| 68-18 700                          | . 486 | 9.0           | -1.6        | •8             | 5.7            | 8            | 6            | .2             | .9            | .3         |
| 68-19 700<br>68-20 700             | .486  | 10.0          | -1.7        | .7             | 6.2            | -1.1         | -1.6         | 1              | .9            | .2         |
| 00-EU /VU                          | 1400  |               |             | • •            |                |              |              |                |               |            |

.

|            |      |            |               |       | TABLE XXXVI   | - IVXX | Concluded      | p      |           |          |        |     |
|------------|------|------------|---------------|-------|---------------|--------|----------------|--------|-----------|----------|--------|-----|
|            | ¥    |            |               | BLADE | .30R FLAPWISE |        | BENDING MOMENT | MOMENT | HARMONICS | CS (IN.  | (INLB) |     |
| 20.<br>49. | FPS) | Ĵ¥         | THEC<br>(DEG) | RS    | R1            | R2     | R3             | R4     | RS        | R6       | R7     | Rß  |
| 0          | 8    | •294       |               | 4.5   | 2.0           | •2     | 3°5            | 1.2    | 3.6       | 1.0      | 5,     | 1.0 |
| 4          | 00   | .294       |               | 4.8   |               | r.     | 4.6            | 1.4    | 5.0       | 1.0      | +      | 1.2 |
| S          | 00   | <b>#62</b> |               | 5.1   | 2.1           |        | 3.0            | 1.6    | 7.1       | 1.3      |        |     |
| 9          | 00   | •294       |               | 5.4   | 2.0           | 6.     |                | 1.5    | 7.1       | 1.7      | 5      | 5   |
| ~          | 00   | •294       |               | 5.6   | 1.9           | 6.     |                | 1.7    | 4.5       | 1.4      | .1     | 2   |
| ¢          | 00   | .35.       |               | 4.1   | 1.8           | ••     |                | •      |           |          | 5      | 9.  |
| σ          | 8    | .351       |               | 4.4   | 1.9           | 1.     |                | .8     | 6.8       |          | ÷.     |     |
| 10         | 8    | .351       |               | 4.8   | 2.1           | 1.0    |                | 1.1    | 8.4       | 2.5      | ••     |     |
| 11         | 00   | .351       |               | 5.2   | 2.0           | 1.2    |                | 1.2    | 8.1       |          | .8     |     |
| 12         | 00   | .351       |               | 5.5   | 1.9           | 1.3    |                | 1.3    | 8.1       |          | .8     | •   |
| 2          | 00   | .410       |               | 4.0   | 2.1           | 1.5    |                | 1.1    | 1.1       | • 2<br>• | ۲.     | 1.3 |
| 1          | 8    | .410       |               | n•+   | 2.1           |        |                | 1.3    | 2.8       | ÷.       | ••     |     |
| 66-15 70   | 700  | .410       | 10.0          | 4.6   | 2.1           | 1.9    | 6.0            | 1.5    | 4.1       | .7       | ۲.     | 2.0 |
| 91         | 00   | .410       |               | ٠     | 2.2           |        |                | 1.9    | 4.7       | 1.1      | 6.     |     |
| 2          | 0    | . 186      |               | 4.2   | 3.1           |        |                | •      | 2.0       | 1.4      | 8.     | 1.0 |
| 2          | 0    | . 486      |               | ۰     | <b>U</b> •D   |        |                | 6.     | 3.2       |          | •      |     |
| 2          | 0    | . 186      |               | ۰     | オ・ウ           | ٠      |                |        | 4.4       |          | 1.1    | •   |
| 20         | 0    | .486       |               | •     | 3.5           | •      |                | 1.7    | 4.9       |          | 1.1    |     |

|                                                                                                                                             |                                                                      | TA                                                                      | BLE XXXVI                                                            |                                                            | ADE .60R F                                           |                                      |                                                     |                   |                                           |                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|--------------------------------------|-----------------------------------------------------|-------------------|-------------------------------------------|-----------------------------------------------------|
| RUN-<br>PT. OMS                                                                                                                             |                                                                      |                                                                         | BLADE                                                                | .60R                                                       | FLAPWISE                                             | BENDIN                               | G MOME!                                             | NT HARMO          | NICS ()                                   | NL8                                                 |
| NO. #R<br>(FPS)                                                                                                                             | MU                                                                   | THEC<br>(DEG)                                                           | A1                                                                   | A2                                                         | A3                                                   | A4                                   | A5                                                  | A6                | A7                                        | 84                                                  |
| 68- 3 700                                                                                                                                   | .294                                                                 | 8.0                                                                     | .7                                                                   | -2.8                                                       | -6.3                                                 | 3                                    | 1.4                                                 | 4                 | •4                                        | 1.2                                                 |
| 68- 4 700<br>68- 5 700                                                                                                                      | .294                                                                 | 9.0<br>10.0                                                             | •6                                                                   | -3.0                                                       | -6.2                                                 | 2                                    | 1.5                                                 | 5                 | .4                                        | 1.3                                                 |
| 68- 6 700                                                                                                                                   | .294                                                                 | 11.0                                                                    | •5                                                                   | -3.4                                                       | -5.9                                                 | .3                                   | 4.2                                                 | 7                 | .4                                        | .6                                                  |
| 68- 7 700                                                                                                                                   | .294                                                                 | 12.0                                                                    | • 3                                                                  | -3.9                                                       | -5.7                                                 | .1                                   | 3.2                                                 | 4                 | .3                                        | .1                                                  |
| 68- 8 700<br>68- 9 700                                                                                                                      | .351                                                                 | 8.0                                                                     | 2.4                                                                  | -1.9                                                       | -5.9                                                 | -1.2                                 | 6                                                   | 8                 | 2                                         | •0                                                  |
| 68-10 700                                                                                                                                   | .351                                                                 | 9.0<br>10.0                                                             | 2.3                                                                  | -2.5                                                       | -5.3                                                 | 7                                    | 5<br>.3                                             | -1.1              | 1                                         | .0                                                  |
| 68-11 700                                                                                                                                   | .351                                                                 | 11.0                                                                    | 2.2                                                                  | -3.0                                                       | -5.7                                                 | 5                                    | 1.7                                                 | -1.2              | .2                                        | .3                                                  |
| 68-12 700                                                                                                                                   | .351                                                                 | 12.0                                                                    | 2.1                                                                  | -3.3                                                       | -6.0                                                 | 5                                    | 1.7                                                 | -,9               | .3                                        | .2                                                  |
| 68-13 700                                                                                                                                   | .410                                                                 | 8.0                                                                     | 1.7                                                                  | -4.4                                                       | -7.9                                                 | -1.0                                 | 2                                                   |                   | .4                                        | 1.2                                                 |
| 68-14 700<br>68-15 700                                                                                                                      | .410                                                                 | 9.0                                                                     | 1.5                                                                  | -5.6                                                       | -7.6                                                 | 8<br>8                               | .3                                                  | •1                | .5                                        | 2.0                                                 |
| 68-16 700                                                                                                                                   | .410                                                                 | 11.0                                                                    | 1.9                                                                  | -5.7                                                       | -6.4                                                 | 6                                    | 1.9                                                 | .4                | .6                                        | 1.7                                                 |
| 68-17 700                                                                                                                                   | .486                                                                 | 8.0                                                                     | 3.5                                                                  | -4.1                                                       | -7.1                                                 | 5                                    | • 7                                                 | 3                 | •0                                        | .1                                                  |
| 68-18 700                                                                                                                                   | .486                                                                 | 9.0                                                                     | 3.8                                                                  | -4.3                                                       | -7.4                                                 | 5                                    | 1.5                                                 | 6                 | 3                                         | .7                                                  |
| 68-19 700<br>68-20 700                                                                                                                      | .486                                                                 | 10.0                                                                    | 3.8                                                                  | -4.8                                                       | -7.3                                                 | -:7                                  | 2.3                                                 | 8                 | 1                                         | 1.0                                                 |
| RUN-<br>PT. ONS                                                                                                                             |                                                                      |                                                                         | BLADE                                                                | .60R                                                       | FLAPHISE                                             | BENDIN                               | g momen                                             | IT HARMO          | NICS (I                                   | NL8                                                 |
| NO. #R<br>(FPS)                                                                                                                             | MU                                                                   | THEC<br>(DEG)                                                           | 81                                                                   | 95                                                         | 83                                                   | 84                                   | 85                                                  | 86                | 87                                        | 84                                                  |
| 68- 3 700                                                                                                                                   | .294                                                                 | 8.0                                                                     | -2.4                                                                 | -2.8                                                       | 1.4                                                  | 1                                    | 2.1                                                 | .6                | .3                                        | •0                                                  |
| 68- 4 700<br>68- 5 700                                                                                                                      | .294                                                                 | 9.0                                                                     | -2.5                                                                 | -2.8                                                       | 1.5                                                  | 1                                    | 3.2                                                 | .4                | .2                                        | .0                                                  |
|                                                                                                                                             | .294                                                                 | 11.0                                                                    | -3.0                                                                 | -3.3                                                       | 1.3                                                  | 3                                    | 3.1                                                 | .6                |                                           | .1                                                  |
| 68- 6 700                                                                                                                                   |                                                                      | 12.0                                                                    | -3.6                                                                 | -3.6                                                       | 1.2                                                  | 6                                    | 1.0                                                 | .5                | 2                                         | •0                                                  |
| 58- 7 700                                                                                                                                   | .294                                                                 |                                                                         |                                                                      |                                                            |                                                      |                                      |                                                     | .0                | 2                                         |                                                     |
| 58- 7 700                                                                                                                                   | . 351                                                                | 8.0                                                                     | -2.2                                                                 | -2.3                                                       | 4.3                                                  | .2                                   | 2.3                                                 |                   | - · · ·                                   |                                                     |
| 58- 7 700<br>68- 8 700<br>68- 9 700                                                                                                         | . 351                                                                | 8.0                                                                     | -2.3                                                                 | -2.4                                                       | 4.3                                                  | .5                                   | 4.7                                                 | 2                 | 3                                         |                                                     |
| 58- 7 700                                                                                                                                   | . 351                                                                | 8.0                                                                     |                                                                      |                                                            |                                                      | .5                                   |                                                     | 2<br>4<br>4       | 6                                         | -,3                                                 |
| 58-7 700<br>68-8 700<br>68-9 700<br>68-10 700<br>68-11 700<br>68-12 700                                                                     | . 351<br>. 351<br>. 351<br>. 351<br>. 351<br>. 351                   | 8.0<br>9.0<br>10.0<br>11.0<br>12.0                                      | -2.3<br>-2.6<br>-2.8<br>-3.0                                         | -2.4<br>-2.6<br>-2.7<br>-2.9                               | 4.3<br>4.1<br>3.5<br>3.5                             | .5<br>.6<br>.5                       | 4.7<br>5.7<br>5.3<br>5.3                            | -,2<br>-,4<br>-,5 | 6<br>8<br>9                               | .5<br>.0<br>-,3<br>-,6                              |
| 58-7 700<br>68-8 700<br>68-9 700<br>68-10 700<br>68-11 700<br>68-12 700<br>68-13 700                                                        | .351<br>.351<br>.351<br>.351<br>.351<br>.351<br>.410                 | 8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0                               | -2.3<br>-2.6<br>-2.8<br>-3.0<br>-2.0                                 | -2.4<br>-2.6<br>-2.7<br>-2.9<br>.3                         | 0.3<br>0.1<br>3.5<br>3.5<br>2.6                      | .5<br>.8<br>.5<br>1                  | 4.7<br>5.7<br>5.3<br>5.3                            | 2<br>4<br>5<br>.0 | 6<br>8<br>9                               | .0<br>-,3<br>-,6<br>-,7                             |
| 58-7 700<br>68-8 700<br>68-9 700<br>68-10 700<br>68-11 700<br>68-12 700<br>68-13 700<br>68-14 700                                           | .351<br>.351<br>.351<br>.351<br>.351<br>.351<br>.410                 | 8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0<br>9.0                        | -2.3<br>-2.6<br>-2.8<br>-3.0<br>-2.0<br>-2.2                         | -2.4<br>-2.6<br>-2.7<br>-2.9<br>.3<br>.2                   | 4.3<br>4.1<br>3.5<br>3.5<br>2.6<br>2.8               | .5<br>.8<br>.5<br>1                  | 4.7<br>5.7<br>5.3<br>5.3<br>.5<br>1.4               | 2<br>4<br>5<br>.0 | 6<br>8<br>9                               | .0<br>3<br>6                                        |
| 58-7 700<br>68-8 700<br>68-9 700<br>68-10 700<br>68-11 700<br>68-12 700<br>68-13 700                                                        | .351<br>.351<br>.351<br>.351<br>.351<br>.351<br>.410                 | 8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0                               | -2.3<br>-2.6<br>-2.8<br>-3.0<br>-2.0                                 | -2.4<br>-2.6<br>-2.7<br>-2.9<br>.3                         | 0.3<br>0.1<br>3.5<br>3.5<br>2.6                      | .5<br>.8<br>.5<br>1                  | 4.7<br>5.7<br>5.3<br>5.3                            | 2                 | 6<br>8<br>9<br>9<br>9<br>9<br>9           | ,0<br>-,3<br>-,6<br>-,7<br>-,6<br>-,6               |
| 58- 7 700<br>68- 8 700<br>68- 9 700<br>68-10 700<br>68-11 700<br>68-12 700<br>68-13 700<br>68-14 700<br>68-15 700<br>68-16 700<br>68-16 700 | .351<br>.351<br>.351<br>.351<br>.351<br>.410<br>.410<br>.410<br>.410 | 8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0<br>9.0<br>10.0<br>11.0<br>8.0 | -2.3<br>-2.6<br>-2.8<br>-3.0<br>-2.0<br>-2.2<br>-2.8<br>-2.5<br>-2.5 | -2.4<br>-2.6<br>-2.7<br>-2.9<br>.3<br>.2<br>.2<br>.2<br>.7 | 4.3<br>4.1<br>3.5<br>2.6<br>2.8<br>3.0<br>2.3<br>5.4 | .5<br>.6<br>.5<br>1<br>1<br>.0<br>.4 | 4.7<br>5.3<br>5.3<br>5.3<br>1.4<br>1.6<br>1.1<br>7  | 2                 | 6<br>8<br>9<br>9<br>9<br>9<br>3<br>3<br>1 | ,0<br>-,3<br>-,6<br>-,7<br>-,6<br>-,6<br>-,6<br>-,6 |
| 58- 7 700<br>68- 8 700<br>68- 9 700<br>68-10 700<br>68-11 700<br>68-12 700<br>68-13 700<br>68-13 700<br>68-13 700<br>68-15 700<br>68-16 700 | .351<br>.351<br>.351<br>.351<br>.351<br>.351<br>.410<br>.410<br>.410 | 8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0<br>9.0<br>10.0<br>11.0        | -2.3<br>-2.6<br>-2.8<br>-3.0<br>-2.0<br>-2.2<br>-2.2<br>-2.6<br>-2.5 | -2.4<br>-2.6<br>-2.7<br>-2.9<br>.3<br>.2<br>.2<br>.2       | 4.3<br>4.1<br>3.5<br>3.5<br>2.6<br>2.8<br>3.0<br>2.3 | .5<br>.6<br>.5<br>1<br>1             | 4.7<br>5.7<br>5.3<br>5.3<br>.5<br>1.4<br>1.6<br>1.1 | 2                 | 6<br>8<br>9<br>9<br>9<br>9<br>9           | .0<br>3<br>6<br>7<br>6<br>9                         |

|      |     |       |               |       | Ĥ    | TABLE XXXVII - Concluded | I - Concl    | uded           |           |               |          |     |
|------|-----|-------|---------------|-------|------|--------------------------|--------------|----------------|-----------|---------------|----------|-----|
| Ru-  | ž   |       |               | BLADE | .60R | FLAPWISE                 |              | BENDING MOMENT | HARMONICS |               | (INLB)   |     |
|      | 4   | 7     | THEC<br>(DEG) | RS    | КI   | R2                       | R3           | R4             | RS        | R6            | R7       | R.8 |
| -    | 00  | 208   | 0.0           | 1.4   | 2.5  | 3.9                      | 6 <b>.</b> 4 | Е.             | 2.6       | •8            | •5       | 1.2 |
|      | 004 | .294  | 0.6           | 1.6   | 2.6  | 4.1                      | 6.3          | •2             | 3.5       | 2.            | °.       | 1.3 |
| 1013 | 700 | 24    | 10.0          | 1.8   | 2.1  | 4.6                      | 6.0          | .1             | 5.0       | 2.            | •5       | 1.0 |
|      | 004 | 202   |               | 2.1   | 3.1  | 4.8                      | 6.0          | 4.             | 4.9       | <b>.</b><br>8 | ÷.       | 9.  |
| ~    | 004 | 20    |               | 2.4   | 3.6  | 5.3                      | 5.8          | •6             | 3.3       | •0            | 5.       | -   |
| •    | 004 | 156.  |               | 1.7   | 5.3  | 3.0                      | 7.3          | 1.2            | 2.4       | •8            | ŗ.       | •   |
| •    | 004 | .351  | 9.0           | 2.1   | 3.5  | 3.2                      | 7.2          | 1.0            | 4.7       | 1.0           | ÷.       | 5   |
| •    | 004 | 152.  | 10.0          | 2.3   | 3.5  | 3.6                      | 6.7          | 1.0            | 5.7       | 1.1           | .7       | +•  |
| -    | 004 | 150.  | 11.0          | 2.4   | 3.6  | 0.4                      | 6.7          | •8             | 5.6       | 1.2           | 8.       | 5   |
| ~    | 004 | .351  |               | 2.7   | 3.7  | 4.4                      | 6.9          |                | 5.6       | 1.0           | 6.       |     |
| -    | 004 | 614.  | 0.0           | 1.3   | 2.6  | 4.5                      | B.3          | 1.0            | •5        | 4.            | °.       | 1.4 |
|      | 004 | .10   | 9.0           | 1.5   | 2.6  | 5.1                      | 8.5          | .8             | ٠         | 2             | •5       | 1.7 |
| •    | 00  | 015.  |               | 1.9   | 2.8  | 5.6                      |              | <b>8</b> •     | 2.2       | •<br>2        | 9.       | 2.0 |
|      | 004 | .110  |               | 2.6   |      | 5.7                      | 6.8          | - 7            | 2.2       | •6            | ۲.       | 1.8 |
| ~    | 004 | 86    |               | 2.9   | њ.,  | 4.1                      |              | •2             | 1.0       | •0            | .1       | .8  |
| •    | 00  | . 136 |               | 4.0   | 0.4  |                          | 6 <b>°</b> 6 | • <b>2</b>     | 1.5       |               | ÷.       |     |
| •    | 004 | .186  |               | 5.7   | 4.8  | 6°†                      | 10.3         | •              | 2.4       | 6.            | <b>.</b> | 1.0 |
| 0    | 00  | 904.  | 11.0          | * *   | 5.0  | 5.0                      | 9.8          | 1.5            | 2.5       | 6.            | <b>5</b> | 1.0 |

| TABLE X                                                                                                                                                                            | XXVIII                                                                              |                                                                                                      |                                                                              | R TORS:<br>NTER OI                                                                     |                                                                                |                                                                                 |                                                                                                                      |                                                                                         | л 68                                                                                                                            |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| RUN-<br>PT. OMS<br>NO. eR<br>(FPS)                                                                                                                                                 | MU                                                                                  | THEC<br>(DEG)                                                                                        | A1                                                                           | BLADE                                                                                  | .18R TO                                                                        | RSIONAL<br>A4                                                                   | MOMENT                                                                                                               | HARMON                                                                                  | ICS (IN.                                                                                                                        | LB)<br>A8 |
| 68- 3 700<br>64- 4 700<br>68- 5 700<br>68- 6 700<br>68- 7 700<br>68- 8 700<br>68- 9 700<br>68-10 700<br>68-10 700<br>68-12 700<br>68-12 700<br>68-13 700<br>68-14 700<br>68-18 700 | .294<br>.294<br>.294<br>.351<br>.351<br>.351<br>.351<br>.351<br>.410<br>.410<br>.46 | 8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>8.0<br>9.0<br>8.0<br>9.0 | 1.3<br>1.1<br>.4<br>.0<br>5<br>1.0<br>.1<br>5<br>9<br>-1.1<br>.6<br>.2<br>.2 | .9<br>1.1<br>.9<br>.9<br>1.0<br>.6<br>.2<br>.3<br>.7<br>.1<br>.1<br>.1<br>-2.3<br>-2.6 | 1.2<br>.9<br>4<br>-2.0<br>2.4<br>1.7<br>.5<br>2<br>6<br>2.7<br>2.7<br>.7<br>.1 | 9<br>-1.7<br>-5.4<br>-5.5<br>1.1<br>3<br>-3.6<br>-4.8<br>2.5<br>1.6<br>.7<br>.4 | $\begin{array}{r} -2.6\\ -3.8\\ -6.8\\ -8.5\\ -7.3\\9\\ -2.0\\ -4.9\\ -7.1\\ -8.1\\ 1.1\\7\\ -2.8\\ -4.5\end{array}$ | -2.1<br>-3.4<br>-5.9<br>-4.7<br>-2.3<br>-3.6<br>-6.3<br>-8.1<br>.7<br>8<br>-2.6<br>-4.8 | $\begin{array}{r}8 \\ -1.3 \\ -2.0 \\ -2.3 \\ -1.1 \\ -1.4 \\ -1.5 \\ -2.2 \\ -3.1 \\ -3.2 \\2 \\2 \\ -1.4 \\ -2.5 \end{array}$ |           |
| RUN-<br>PT. OMS<br>NO. eR                                                                                                                                                          |                                                                                     | THEC                                                                                                 |                                                                              | BLADE                                                                                  | .18R TO                                                                        | RSIONAL                                                                         | HOMENT                                                                                                               | MARMON                                                                                  | ICS (IN,                                                                                                                        | ,-L8)     |
| (FPS)                                                                                                                                                                              | .294                                                                                | (DE6)                                                                                                | 01<br>3.2                                                                    | <u>82</u>                                                                              | 83<br>6                                                                        | -,5                                                                             | -1.5                                                                                                                 | 0                                                                                       | 87<br>- 1                                                                                                                       | <br>      |
| 68- 5 700                                                                                                                                                                          | .294                                                                                | <b>9.0</b><br>10.0                                                                                   | 4.4<br>6.0                                                                   | 1.0                                                                                    | -1.1<br>-1.3                                                                   | -1.3                                                                            | -2.3                                                                                                                 | -1.1                                                                                    | •.1                                                                                                                             | •         |
| 68- 6 788<br>68- 7 789                                                                                                                                                             | . 200                                                                               | 11.0                                                                                                 | 7.5                                                                          | 2.9                                                                                    | -1.1                                                                           | 2.1                                                                             | 3.6                                                                                                                  | 1.0                                                                                     |                                                                                                                                 | •         |
| 68- 8 788                                                                                                                                                                          | . 351                                                                               | 0.0<br>7.0<br>10.0                                                                                   | 3.8                                                                          | 2.0                                                                                    | -1.5                                                                           | -1.6                                                                            | -3.3                                                                                                                 | -9.2                                                                                    | 5<br>-1.6<br>-2.1                                                                                                               |           |
| 68- 9 700                                                                                                                                                                          |                                                                                     |                                                                                                      | 6.5                                                                          | 3.0                                                                                    | -1.4                                                                           |                                                                                 | -7.6                                                                                                                 |                                                                                         |                                                                                                                                 | -1.1      |
| 68-18 788<br>68-11 789                                                                                                                                                             | . 351                                                                               | 11.0                                                                                                 | 8.1                                                                          | 3.7                                                                                    | -1.9                                                                           | -3.9                                                                            |                                                                                                                      | -3.0                                                                                    | -1.7                                                                                                                            | ••        |
| 60-10 700                                                                                                                                                                          |                                                                                     |                                                                                                      | 9.7                                                                          | 9.1<br>3.9                                                                             | -1.9<br>-2.1<br>1.1                                                            | -3,5                                                                            | -7.0                                                                                                                 | -1.6                                                                                    | -1.3                                                                                                                            | -,1       |
| 68-18 788<br>68-11 789<br>68-12 788                                                                                                                                                | . 351                                                                               | 11.0                                                                                                 | 9.7                                                                          | 9.1                                                                                    | -2.1                                                                           | -3.5                                                                            | -7.0                                                                                                                 | -1.6                                                                                    | -1.3                                                                                                                            |           |

Ξ.

|               |      |                                                                                                  |       | TABLE       | TABLE XXXVIII - Concluded | - Concl | uded |                  |         |      |            |
|---------------|------|--------------------------------------------------------------------------------------------------|-------|-------------|---------------------------|---------|------|------------------|---------|------|------------|
| alter<br>Part |      |                                                                                                  | Ð     | HADE .1     | .18R TORSIONAL MOMENT     | IONAL H |      | HARMONICS (INLB) | -•NI) S | -۲В) |            |
| 1 <u>1</u>    | £    | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | PS    | LN<br>LN    | R2                        | КЗ      | Ru   | R5               | R6      | R7   | R8         |
|               | ź,   | 0.0                                                                                              | -2.9  | 3.5         | 1.7                       | 1.3     | 1.0  | 2.9              | 2.1     | 6•   | •2         |
| 2 20          | 2    | 0.0                                                                                              | -3.8  | <b>*</b> •5 | 2.1                       | 1.4     | 1.9  | 4.4              | 3.5     | 1.3  | 5          |
|               | Ł    | 10.0                                                                                             | -5.2  | 6.0         | 2.4                       | 1.4     | 4.2  | 7.3              | 5.7     | 2.0  | •          |
|               | ž.   | 11.0                                                                                             | 5.9   | 7.6         | 3.1                       | 1.8     | 5.4  | 8.5              | 7.0     | 2.4  | .7         |
|               | Į.   | 12.0                                                                                             | -7.4  | 9.3         | 3.8                       | 2.0     | 5.8  | 8.1              | 6.3     | 2.1  | 6.         |
| -             | 155. | 9.0                                                                                              | -3.1  | 3.4         | 2.3                       | 2.5     | 2.1  | 3.6              |         | 1.5  | <b>*</b> • |
| _             | 151. | 0.0                                                                                              | •     | 5.0         | 2.5                       | 2.2     | 3.5  | 6.7              | 6.3     | 2.2  | ••         |
| -             | 196. | 10.0                                                                                             | -5.7  | 6.5         | 3.0                       |         | 5.1  | 9.1              | 8.8     | 3.1  | 1.3        |
|               | 190. | 11.0                                                                                             | 1.9   | 0.1         | 3.7                       | 2.0     | 5.3  | <b>6</b> •3      | 9.5     |      | 1.8        |
|               | 150. | 12.0                                                                                             | -7.8  | 9.7         | 4.2                       |         | 6.0  | 9.5              | 0.6     | 3.5  | 1.8        |
| -             |      | 0.0                                                                                              | - 2.0 | 9.9         | 0.0                       | 3.0     | 2.5  | 2.3              | 1.7     | .8   | <b>.</b> • |
|               |      | 0.0                                                                                              | -3.9  | 5.0         | 3.7                       | 2.8     | 1.8  | 3.0              | 1.8     | 4.   | •2         |
| _             | \$   | •••                                                                                              | -2.6  | 3.1         | 3.8                       | 1.8     | 2.0  |                  |         | 1.4  | .7         |
| -             | ł    | 0.0                                                                                              | -3.0  | 9.9         | 4.2                       | 2.1     | 2.1  |                  | 4.8     | 2.5  | 1.3        |
|               |      |                                                                                                  |       |             |                           |         |      |                  |         |      |            |

3.010

| TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXXI                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                            | LAP MO<br>CENTER                                                                                   |                                                                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | - |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---|
| RUN-<br>PT. 045<br>NO. *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         | THEC                                                                                                                                                                                                  | 6L A                                                                                                                                                                                                                                                                                                                                                                                                                       | DE FLAP                                                                                            |                                                                                                         | HARMON                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EG)                                                                              |   |
| (FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIJ                                                                                                                                     | (DEG)                                                                                                                                                                                                 | Δ1                                                                                                                                                                                                                                                                                                                                                                                                                         | A2                                                                                                 | A3                                                                                                      | A4                                                                                               | A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A6                                                                               | _ |
| 68- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .294                                                                                                                                    | 8.0                                                                                                                                                                                                   | •0                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                  | .3                                                                                                      | •0                                                                                               | +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0                                                                               |   |
| 68- 4 700<br>68- 5 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 294                                                                                                                                     | 9.0                                                                                                                                                                                                   | •1                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                  | .3                                                                                                      | •0                                                                                               | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •0                                                                               |   |
| 68- 6 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .294                                                                                                                                    | 10.0                                                                                                                                                                                                  | •1<br>•1                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                  | .3                                                                                                      | •0<br>•0                                                                                         | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0                                                                               |   |
| 68- 7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .294                                                                                                                                    | 12.0                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                  | .3                                                                                                      | .0                                                                                               | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                                                                               |   |
| 68- 8 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 351                                                                                                                                   | 8.0                                                                                                                                                                                                   | .2                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                  | •3                                                                                                      | •0                                                                                               | -•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •0                                                                               |   |
| 68- 9 700<br>68-10 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .351                                                                                                                                    | 9.0                                                                                                                                                                                                   | •1                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                  | .3                                                                                                      | +0                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0                                                                               |   |
| 68-11 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .351                                                                                                                                    | 10.0                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                  | • 4                                                                                                     | •0<br>•0                                                                                         | •0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                |   |
| 68-12 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 351                                                                                                                                   | 12.0                                                                                                                                                                                                  | .2                                                                                                                                                                                                                                                                                                                                                                                                                         | -,3                                                                                                | .4                                                                                                      | •0                                                                                               | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                |   |
| 68-13 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .410                                                                                                                                    | 0.6                                                                                                                                                                                                   | .1                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                  | .5                                                                                                      | .0                                                                                               | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                                                                               |   |
| 68-14 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .410                                                                                                                                    | 9,0                                                                                                                                                                                                   | .2                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                  | .5                                                                                                      | •0                                                                                               | •0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0                                                                               |   |
| 68-15 700<br>68-15 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .410                                                                                                                                    | 10.6                                                                                                                                                                                                  | •1                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                  | •5<br>•5                                                                                                | •0<br>•0                                                                                         | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                                                                               |   |
| 68-17 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .480                                                                                                                                    | 8.0                                                                                                                                                                                                   | .0                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                  | .5                                                                                                      | •0                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0                                                                               |   |
| 68-18 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 480                                                                                                                                   | 9.0                                                                                                                                                                                                   | .1                                                                                                                                                                                                                                                                                                                                                                                                                         | -,4                                                                                                | .5                                                                                                      | .0                                                                                               | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                |   |
| 60-19 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 486                                                                                                                                   | 10.0                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                  | .5                                                                                                      | .0                                                                                               | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    | • =                                                                                                     |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |   |
| 68-20 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .446                                                                                                                                    | 11.0                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                  | .5                                                                                                      | .0                                                                                               | •1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                |   |
| 68-20 700<br>RUN-<br>PT, 0HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         | 11.0                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    | •5                                                                                                      | • 0                                                                                              | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |   |
| 68-20 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                       | .0                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                  | •5                                                                                                      | • 0                                                                                              | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |   |
| RUN-<br>PT. 045<br>NO. 08<br>(FP5)<br>68- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .446<br>MU<br>.294                                                                                                                      | 11.0<br>THEC<br>(DEG)<br>8.0                                                                                                                                                                          | .0<br>                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>DE FLAP<br>B2<br>1                                                                            | .5<br>MOTION<br>83<br>1                                                                                 | •0<br>••AHMON<br>••4                                                                             | •1<br>11C5 (DE<br>05<br>•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G1<br>Ub<br>• 0                                                                  |   |
| 68-20 700<br>PT. 045<br>NO. 08<br>(FP5)<br>68- 3 700<br>68- 4 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 4A6                                                                                                                                   | 11.0<br>THLC<br>(DEG)<br>8.0<br>9.0                                                                                                                                                                   | .0<br>                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>DE FLAP<br>1<br>2                                                                             | .5<br>MOTION<br>83<br>1<br>1                                                                            | •0<br>••AHMON<br><b>B4</b><br>• U<br>• U                                                         | •1<br>1C5 (DE<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>198<br>.0<br>.0                                                            |   |
| RUN-<br>PT. 045<br>NO. 08<br>(FP5)<br>68- 3 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,446<br>NU<br>,294<br>,294                                                                                                              | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3                                                                                                                                                           | .0<br>BLA<br>1<br>.0                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>DE FLAP<br>B2<br>1                                                                            | .5<br>MOTION<br>83<br>1                                                                                 | •0<br>••AHMON<br>••<br>••<br>••                                                                  | •1<br>11C5 (DE<br>05<br>•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G1<br>Ub<br>• 0                                                                  |   |
| RUN-<br>PT, OHS<br>NO, eR<br>(FPS)<br>68- 3 700<br>68- 5 700<br>68- 5 700<br>68- 7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .440<br>NU<br>.294<br>.294<br>.294<br>.294                                                                                              | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>1.3                                                                                                                                            | .0<br>                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>DE FLAP<br>B2<br>1<br>2<br>3<br>3                                                             | .5<br>MOTION<br>83<br>1<br>1<br>1<br>1<br>1                                                             | .0<br>HAHMON<br>B4<br>.U<br>.U<br>.1<br>.1<br>.1                                                 | +1<br>11C5 {DE<br>85<br>+1<br>+2<br>-2<br>-7<br>+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01<br>•0<br>•0<br>•0<br>•0                                                       |   |
| RUN-<br>PT, OHS<br>NO, OR<br>(FPS)<br>68- 3 700<br>68- 3 700<br>68- 5 700<br>68- 6 700<br>68- 7 700<br>68- 7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,446<br>RU<br>,294<br>,294<br>,294<br>,294<br>,294<br>,294<br>,294<br>,294                                                              | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>30.3<br>11.3<br>3.0<br>8.0<br>8.0                                                                                                                              | .0<br>BLA<br>0.<br>0.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>DE FLAP<br>B2<br>1<br>2<br>3<br>3<br>3<br>3                                                   | .5<br>MOTION<br>B3<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | .0<br>#AHMON<br>84<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                               | , i<br>IICS (OF<br>B5<br>-1<br>-2<br>-2<br>-2<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                     |   |
| RUN-<br>PT. OHS<br>NO. OR<br>(FPS)<br>68-3 700<br>68-3 700<br>68-5 700<br>68-5 700<br>68-7 700<br>68-7 700<br>68-7 700<br>68-7 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .446<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294                                                                    | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>11.3<br>11.3<br>11.0<br>8.0<br>9.0                                                                                                             | .0<br>BLA<br>0<br>1<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0                                                                                                                                                                                                                                                                                                                                                                    | 5<br>DE FLAP<br>B2<br>1<br>2<br>2<br>3<br>3<br>3<br>3<br>3                                         | .5<br>MOTION<br>83<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | .0<br>PAHPON<br>Bb<br>.U<br>.U<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                               | •1<br>11C5 (DE<br>95<br>•1<br>•2<br>•2<br>•1<br>•1<br>•1<br>•2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6)<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                           |   |
| RUN-<br>PT. OHS<br>NO. OH<br>(FPS)<br>64- 3 700<br>64- 5 700<br>64- 5 700<br>64- 7 700<br>64- 7 700<br>64- 8 700<br>64- 9 700<br>64- 9 700<br>64- 9 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .446<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.295<br>.295<br>.295<br>.295<br>.295<br>.395<br>.395                    | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>11.3<br>11.3<br>11.3<br>11.5<br>10.6                                                                                                                           | .0<br>BLA<br>1<br>.0<br>.0<br>.0<br>.1                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>DE FLAP<br>B2<br>1<br>2<br>3<br>3<br>3<br>3                                                   | .5<br>MOTION<br>83<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | •0<br>#AHMON<br>Bb<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U | +1<br>IICS (DE<br>B5<br>+1<br>+2<br>+2<br>+1<br>+1<br>+1<br>+2<br>+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                                     |   |
| RUN-<br>PT. OHS<br>NO. OR<br>(FPS)<br>64- 3 700<br>64- 5 700<br>64- 5 700<br>64- 6 700<br>64- 7 700<br>64- 7 700<br>64- 8 700<br>64- 8 700<br>64- 9 700<br>64- 9 700<br>64- 9 700<br>64- 9 700<br>64- 9 700<br>64- 10 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .446<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294                                                                    | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>11.3<br>11.3<br>11.0<br>8.0<br>9.0                                                                                                             | .0<br>BLA<br>0<br>1<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0                                                                                                                                                                                                                                                                                                                                                                    | 5<br>DE FLAP<br>62<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3                                         | .5<br>MOTION<br>83<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | .0<br>PAHPON<br>Bb<br>.U<br>.U<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                               | , i<br>IICS 100<br>B5<br>-1<br>-2<br>-2<br>-2<br>-1<br>-1<br>-2<br>-3<br>-3<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0       |   |
| RUN-     PT.   OHS     NO.   oR     (FPS)     68-3   700     68-3   700     68-4   700     68-5   700     68-7   700     68-9   700     68-10   700     68-11   700     68-13   700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .446<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.294<br>.295<br>.295<br>.295<br>.295<br>.295<br>.295<br>.295<br>.295            | THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11.0<br>10.5<br>11.0<br>10.5<br>11.0<br>10.5<br>11.0                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0                                                                                                                                                                                                                                                                                     | 5<br>DE FLAP<br>B2<br>1<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3                               | .5<br>MOTION<br>83<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | .0<br>PAHPON<br>Bb<br>.U<br>.U<br>.U<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | , i<br>IICS {DE<br>B5<br>.1<br>.2<br>.2<br>.2<br>.2<br>.1<br>.2<br>.2<br>.3<br>.3<br>.3<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0 |   |
| RUN-<br>PT. OHS<br>NO. OR<br>(FPS)<br>64-3 700<br>64-5 700<br>64-5 700<br>64-6 700<br>64-6 700<br>64-7 700<br>64-7 700<br>64-10 700<br>64-13 700<br>64-13 700<br>64-13 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .446<br>294<br>294<br>294<br>294<br>294<br>294<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295                    | THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                   | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0<br>.0<br>.1<br>.0<br>.0<br>.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                               |                                                                                                    | .5<br>MOTION<br>83<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1        | •0<br>#AHMON<br>Bb<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U | •1<br>IICS (DE<br>B5<br>•1<br>•2<br>•2<br>•2<br>•1<br>•1<br>•1<br>•3<br>•3<br>•3<br>•3<br>•3<br>•4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0 |   |
| RUN-<br>PT. 045<br>NO. 08<br>(FP5)<br>60-3 700<br>60-3 700<br>60-5 700<br>60-5 700<br>60-6 700<br>60-7 700<br>60-10 700<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-100<br>60-1000<br>60-1000<br>60-1000<br>60-1000<br>60-1000<br>60-1000<br>60-10000 | MU<br>294<br>294<br>294<br>294<br>294<br>294<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295                      | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.5<br>1.0<br>10.5<br>11.0<br>10.5<br>11.0<br>10.5<br>11.0<br>10.5<br>11.0<br>10.5<br>11.0           | .0<br>BLA<br>0<br>1<br>.0<br>.0<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.0<br>.1<br>.0<br>.0<br>.0                                                                                                                                                                                                                                            | 5<br>DE FLAP<br>B2<br>1<br>2<br>3<br>3<br>4<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5      | .5<br>MOTION<br>B3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | •0<br>••0<br>••0<br>••0<br>••0<br>••0<br>••0<br>••0                                              | , i<br>IICS (OF<br>B5<br>-1<br>-2<br>-2<br>-2<br>-1<br>-2<br>-3<br>-3<br>-3<br>-0<br>-3<br>-3<br>-0<br>-1<br>-3<br>-3<br>-0<br>-1<br>-3<br>-3<br>-0<br>-1<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 |   |
| RUN-<br>PT. OHS<br>NO. OR<br>(FPS)<br>64-3 700<br>64-5 700<br>64-5 700<br>64-6 700<br>64-6 700<br>64-7 700<br>64-7 700<br>64-10 700<br>64-13 700<br>64-13 700<br>64-13 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .446<br>294<br>294<br>294<br>294<br>294<br>294<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295                    | THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                   | .0<br>BLA<br>0.0<br>.0<br>.0<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0                                                                                                                                                                                                                                                                 |                                                                                                    | .5<br>MOTION<br>83<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1        | •0<br>#AHMON<br>Bb<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U | •1<br>IICS (DE<br>B5<br>•1<br>•2<br>•2<br>•2<br>•1<br>•1<br>•1<br>•3<br>•3<br>•3<br>•3<br>•3<br>•4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0 |   |
| RUN-   PT. OHS   NO. off   IFP51   64-3 700   64-5 700   64-6 700   64-7 700   64-8 700   64-9 700   64-10 700   64-10 700   64-13 700   64-14 700   64-15 700   64-16 700   64-17 700   64-18 700   64-10 700   64-10 700   64-11 700   64-12 700   64-13 700   64-10 700   64-10 700   64-10 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NU<br>294<br>294<br>294<br>294<br>294<br>294<br>294<br>294<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295        | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>12.0<br>8.0<br>9.0<br>10.5<br>11.0<br>12.6<br>6.0<br>9.0<br>10.5<br>11.0<br>12.6<br>8.0<br>9.0<br>10.5<br>11.0<br>10.6<br>11.0<br>10.6<br>11.0 | .0<br>BLA<br>0<br>1<br>.0<br>.0<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.0<br>.1<br>.0<br>.0<br>.0                                                                                                                                                                                                                                            | 5<br>DE FLAP<br>B2<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                               | .5<br>MOTION<br>83<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1        | •0<br>MAHMON<br>Bb<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U<br>•U                   | , i<br>IICS (DE<br>B5<br>-1<br>-2<br>-2<br>-1<br>-1<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |   |
| RUN-   PT. OHS   NO. oR   (FPS)   60-3 700   60-3 700   60-6 700   60-7 700   60-8 700   60-9 700   60-10 700   60-11 700   60-12 700   60-13 700   60-15 700   60-15 700   60-15 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NU<br>294<br>294<br>294<br>294<br>294<br>294<br>294<br>294<br>294<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295<br>295 | 11.0<br>THEC<br>(DEG)<br>8.0<br>9.0<br>10.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11                                                                                                     | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | 5<br>DE FLAP<br>B2<br>1<br>2<br>2<br>3<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5 | .5<br>MOTION<br>83<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | •0<br>••0<br>••0<br>••0<br>••0<br>••0<br>••0<br>••0                                              | , i<br>IICS (OF<br>05<br>11<br>2<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>3<br>3<br>3<br>4<br>1<br>4<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |                                                                                  |   |

|        |                 |       |              | TABLE | TABLE XXXIX - Concluded | Conclude | r5       |                 |          |     |
|--------|-----------------|-------|--------------|-------|-------------------------|----------|----------|-----------------|----------|-----|
| B(9)-  | SHS<br>SHS      |       |              | BLADE | DE FLAP                 | MOTION   |          | HARMONICS (DEG) | 6)       |     |
| 2      | eR<br>(FPS)     | ł     | 1HC<br>(0EC) | RS    | R1                      | R2       | R3       | R4              | R5       | R6  |
| 6 - 99 | 700             | •294  | 8.0          | 3.0   | .1                      | r.       | £.•      | 0.              | .2       | 0.  |
| 3      | 700             | .294  |              | 3.2   | •1                      | r.       | ε.       | •               | •2       | 0.  |
| 5-99   | 200             | • 594 |              | 3.4   |                         | r.       | · ·      | .1              | •2       | 0.  |
| 3      | 200             | ·294  | 11.0         | 3.5   | •1                      | 4.       | ۳.<br>•  | •1              | ΰ.       | .1  |
|        | 700             | 52.   | ٠            | 3.7   | •                       | °.       | ÷.       | •1              | .1       | ••  |
| -99    | 101             | . 351 | 8.0          | 2.7   | \$.                     | <b>.</b> | ÷.       | •               | ••       | 0.  |
| 5      | 700             | .351  |              | 2.9   | •1                      | 3°       | ֥        | ••              | <u>م</u> | 0.  |
| 69-10  | 10 <sup>2</sup> | . 351 |              | 3.1   | .1                      | <b>.</b> | t.       | • 1             | n.       | .1  |
|        | 304             | 156.  | ٠            | 3.3   | \$                      | ທຸ<br>•  | • 4      | .1              | £•       | .1  |
| 60-12  | 103             | . 351 | 12.0         |       | ~                       | •        | <b>.</b> |                 | n,       | •1  |
|        | 20.2            | .410  |              | 2.4   | .1                      | ۳.<br>•  | • 2      | 0.              | ••       | 0.  |
| 1-3    | 200             | .*10  |              | 2.6   | •2                      | 5.       | •5       | ••              | .1       | 0.  |
| 51-99  | 200             | .410  |              | 2.8   |                         | دی<br>•  | •5       | 0.              | .1       | 0.  |
| 60-16  | 700             | 01.   | 11.0         | 3.0   | ~                       | • 2      | •5       | .1              | ~        | 0.  |
| 60-17  | 200             | . *86 |              | 2.0   | •1                      | • 4      | ••       | •               | .1       | .1  |
| 81-00  | 10.04           | . 286 |              | 2.2   |                         | <b>•</b> | .7       | 0.              | •        | • 1 |
| 61-99  | 203             |       | 10.0         | 2.5   | .1                      | s.       | .7       | 0.              | .2       | .1  |
| 0~-70  | 202             | .466  | ٠            | 2.6   | •5                      | •        | .7       | .1              | °2       | • 1 |
|        |                 |       |              |       |                         |          |          |                 |          |     |

| ТА                                                                                                                                                                             | BLE XI                                                                                                              |                                                                                             |                                                                            |                                                                |                                                                |                                                                                           | INS 69-70<br>5 CHORD)                                          |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|
| RUN-<br>PT. OMS<br>NC. #R                                                                                                                                                      |                                                                                                                     | THEC                                                                                        |                                                                            |                                                                |                                                                | HARMONI                                                                                   |                                                                |   |
| (FPS)<br>69- 3 700<br>69- 4 700<br>69- 5 700<br>69- 6 700<br>70- 3 700<br>70- 4 700<br>70- 5 700<br>70- 6 700<br>70- 7 700<br>70- 7 700<br>70- 8 700<br>70- 9 700<br>70-10 700 | NI)<br>.546<br>.546<br>.610<br>.634<br>.659<br>.682<br>.706<br>.682<br>.706<br>.682<br>.731<br>.756<br>.784<br>.808 | (DEG)<br>9.0<br>11.0<br>10.0<br>10.0<br>10.0<br>10.0<br>11.0<br>11.0                        | A1<br>3<br>4<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>2<br>2             | A2<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2 | A3<br>.1<br>.1<br>.1<br>.1<br>.3<br>.3<br>.3<br>.3<br>.3<br>.3 | A4<br>.2<br>.3<br>.3<br>.4<br>.1<br>.4<br>.5<br>.5<br>.5<br>.5                            | A5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 |   |
| RUN-<br>PT. OMS<br>NO. +R<br>(FPS)                                                                                                                                             | MU                                                                                                                  | THEC<br>(DEG)                                                                               | BLA                                                                        | DE LAG<br>B2                                                   | MOTION<br>B3                                                   | HARMONI<br>84                                                                             | CS (DEG)<br>B <b>5</b>                                         | P |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                           | .546<br>.546<br>.610<br>.634<br>.659<br>.682<br>.706<br>.682<br>.731<br>.756<br>.784<br>.80°                        | 9.0<br>11.0<br>10.0<br>10.0<br>10.0<br>10.0<br>11.0<br>11.0<br>11.0<br>11.0<br>10.0<br>10.0 | .2<br>.4<br>.1<br>.1<br>.1<br>.1<br>.1<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1 | .0<br>.0<br>.0<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.2       | .0<br>2<br>2<br>0<br>1<br>1<br>2<br>2<br>2                     | .0<br>1<br>2<br>2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2 | •0<br>•0<br>•1<br>•0<br>•1<br>•1<br>•1<br>•1<br>•1             |   |

|                           |            |       | TABLE XL - Concluded | - Conclu   | lded       |            |          |    |
|---------------------------|------------|-------|----------------------|------------|------------|------------|----------|----|
| RUN-<br>PT. 0MS<br>NO. +R | i          | THEC  | BLADE                |            | S          | HARMONICS  | CS (DEG) | 6) |
| (FPS)                     | MM         | (020) | ŝ                    | Ŧ          | RZ         | 53         | K4       | ¢5 |
| m                         | •546       | 0°6   | 5.6                  | ÷.         | •0         | .1         | •5       | •  |
| \$                        | .546       | 11.0  | 7.2                  | •          | .1         | .1         | \$       | •  |
| 69- 5 700                 | .610       | 10.0  | 5.3                  | ņ.         | .1         | ~          |          | •  |
| Q                         | <b>634</b> | 10.0  | 5.1                  | <b>n</b> • | .1         | 2.         | • •      | •  |
| 2                         | .659       | 10.0  | 4.8                  | \$         |            | .2         | • •      | -  |
| n                         | .659       | 10.0  | 5.5                  | 2.         | ~          | 2.         |          | -  |
| ŧ                         | .682       | 4.0   | 2.5                  | ~          |            | .1         | •5       | •  |
| S                         | .706       | 11.0  |                      | <b>n</b> . | ς.         | <b>n</b> . | •5       |    |
| s                         | .682       | 11.0  | 4.6                  | ς.         | ~          | r.         | •5       |    |
| ~                         | .731       | 11.0  | t.3                  | ς.         | • 5        | <b>n</b> • | •5       |    |
| 60                        | .756       | 11.0  | 4.1                  | <b>n</b> . | <b>n</b> . | ÷.         | 9.       |    |
| σ                         | .784       | 10.0  | 3.6                  | °.         | °.         | r.         | ÷.       |    |
| 70-10 700                 | . 808      | 10.0  | 3.4                  | ~          | .2         | ÷.         | •5       | .1 |
|                           |            |       |                      |            |            |            |          |    |

| _                                                           |                                 |               |        |           |       |      | -    |          | -    |      | _     |       |       |       |       |                                         | _   |      |    |               | _     |      |       |            |      |     |      |      |      |               |       | -      |
|-------------------------------------------------------------|---------------------------------|---------------|--------|-----------|-------|------|------|----------|------|------|-------|-------|-------|-------|-------|-----------------------------------------|-----|------|----|---------------|-------|------|-------|------------|------|-----|------|------|------|---------------|-------|--------|
| c1-                                                         | -FB)                            | 90            | •      |           |       | 6.   | 1.1  |          | 5    | 2.5  | •     | 0.5   | *     | 3.1   | 3.8   | â                                       | i   | æ    | 8  | 3.            | -     |      | 5     |            | 2.5  |     | 0.N  |      |      |               | 2.2   | 1.2    |
| runs 69-70                                                  | CS (IN.                         | A7            | ŗ.     | 9         |       |      |      | •        | n.   | • •  | 1.2   | 1.9   | 1.8   | 1.5   | 1.0   | NI S                                    |     | 47   | 5  | •             | ş     | 0.1  | 7     | <b>n</b> . |      | 7   |      | •'   |      | <b>.</b><br>1 | •••   |        |
| IICS - R                                                    | HARMONI                         | Ao            | 1.0    | 1.3       |       | 7    |      | <b>.</b> | -    | 1.5  | 1.3   | 2.2   | 2.3   | 1.8   | 1.6   | HARMONT                                 |     | æ    | 3  | •             | 2.5   | -1-0 | 9     |            | 5.1  | ~ ' | , i  |      | P. ( | ,<br>,        | •     | N      |
| BENDING MOMENT HARMONICS -<br>VITY AT .25 CHORD)            | BENDING MOMENT HARMONICS (INLB) | AS            | -3.0   | 10.<br>1  | 2.6   | 4.2  | 2.9  | 7.4      | •••  | 10.9 | 9.7   | 10.8  | 11.7  | 12.8  | 11.5  | A I A A A A A A A A A A A A A A A A A A |     | 55   | 3  | -2.0          | -2-0  | -1.0 | -3.2  | 9.5-       | 2.6  |     | 2.5- |      | •    | 2.1.          | 0.0   | 2<br>4 |
| MOMENT HAF                                                  | SNIGNE                          | 44            | r      | 80 :<br>I | #<br> | - 2  | -1.0 | -5.4     | 1    | -1.9 | -1.3  | -2.6  | -2.6  | -2.1  | -2.8  | FNDTMG                                  |     | i i  | 5. | <b>.</b><br>1 | -     | N    | · · 2 |            | -1.0 |     |      |      |      |               |       | -1.2   |
| BLADE . 30R FLAPWISE BENDING<br>(BLADE CENTER OF GRAVITY AT |                                 | A3            | -1.4   | -1-6      | 1.4   | 3.1  | 3.2  | -5.6     | -5.3 | -6.0 | 6.5   | -5.0  | 14.5  | 0.9   | -4.2  | Putce a                                 |     | T.P. | 3  | 0.            | 4.2   | 9.7  | 9.4   | 6.4        | 5.6  |     | 11.0 | 0.11 | 2.01 |               | 12.5  | 14.5   |
| APWISE<br>OF GRA                                            | .30R FLAPWISE                   | A2            | a<br>1 | 21        | 0.0-  | -3.7 | -4.5 | -5.5     | -3.0 | -7.9 | 6.9-  | -9.6- | -9.6  | -9.2  | -10.1 | ALR FLA                                 |     | ŝ    | \$ | 1.2           | 5-1   | 5.9  | 5.5   | 8.5        | 1.8  | 1.9 |      |      |      |               |       | ŗ      |
| . 30R FLAPWISE<br>CENTER OF GR                              | GLADE .                         | ۸1            | 6.     | 1.        | 0.2   | 2.4  | 2.5  | 4.1      | 2•5  | 4.1  | 1.4   | 4.1   | 4.2   | 4.2   | 4.6   | ADF                                     |     | I.   | ;  | 0.1           | -1-2  | 8.2- | -2.9  | 5.5-       | 2-1- | n.  | •••  |      |      |               |       | -2.3   |
| BLADE .<br>(BLADE                                           |                                 | THEC<br>(DEG) | 0.6    | 11.0      | 10.0  | 10.0 | 10.0 | 10.0     | 0.4  | 11.0 | 11.0  | 11.0  | 11.0  | 10.0  | 10.0  |                                         |     | THEC |    | 0.6           | 11.0  | 10.0 | 10.0  | 10.0       | 10.0 |     | 0.11 | 11.0 |      | 0.11          | 0.01  | 10.0   |
| XLI.                                                        |                                 | NΜ            | .546   | • 546     | 019.  | .634 | .659 | .659     | .682 | .706 | .682  | .731  | .756  | .784  | .800  |                                         |     | 12   |    | .546          | • 546 | .010 | 400.  | .659       | 669. | 692 |      | 790  | 10.  |               | - 100 | . 805  |
| TABLE XLI.                                                  | , N                             | FPS)          | 700    | 700       | 002   | 790  | 700  | 200      | 200  | 700  | 700   | 700   | 700   | 700   | 700   |                                         | SMO | #K   |    | 100           | 100   | 002  | 200   | 100        | 001  | 002 |      |      |      |               |       | 100    |
| Ē                                                           | Rui-                            |               | 69- 3  | ++<br>69  |       |      |      | 20- 3    |      |      | 70- 6 |       | 70- 8 | 6 -02 | 70-10 | RU1-                                    | PT. | •    |    |               | 69- 4 |      | -     |            |      |     |      |      |      |               |       | 01-04  |

-

314

|                   |       |               |                     | TABI                  | LE XLI - | TABLE XLI - Concluded | þ      |                  |         |          |     |
|-------------------|-------|---------------|---------------------|-----------------------|----------|-----------------------|--------|------------------|---------|----------|-----|
|                   |       |               | BLADE               | .30R FLAPWISE BENDING | PWISE    | BEND ING              | HOMENT | HARMONICS (INLB) | CS (IN. | 197      |     |
| OMS<br>*R<br>FPS) | ŊΨ    | THEC<br>(DEG) | RS                  | R1                    | R2       | R3                    | R.     | R5               | R6      | R7       | Rð  |
| ~                 | • 546 |               | 4 • 6               | 1.8                   | 1.3      | 5.1                   | s.     | 3.6              | 1.1     | ?        | 1.  |
| ~                 | .546  | 11.0          | 5.0                 | 1.7                   | 1.5      | <b>*</b> • 6          | 1.1    | 6.4              | 5.1     |          |     |
| 0                 | .610  |               | 5.4                 | 3.8                   | 4.6      | 8.9                   | 5      | 3.9              | 1.3     | 0        |     |
| 0                 | .634  |               | 5.2                 | 3.8                   | 4.9      | 9.0                   | 0.     | 5.3              | •       | 2        | 1-0 |
| 0                 | .659  |               |                     | 4.2                   | 5.9      | 10.2                  | 1.1    | 6.3              | •       |          | 1.1 |
| 0                 | •659  |               | 5.1                 |                       | 5.8      | 10.9                  | 1.1    | 7.8              |         | •        | 5 2 |
| 0                 | .682  | 4.0           | 1.6                 |                       | 3.6      | 6.8                   | 6.     | 4.6              | •2      | <b>n</b> | 1-0 |
| 0                 | .706  | 11.0          | 5.2                 | 4.5                   | 7.9      | 13.2                  | 2.9    | 11.4             | 1.6     |          | 3.5 |
| 0                 | .682  | 11.0          | 5.2                 |                       | 7.0      | 12.8                  | 2.4    | 9.7              | 1.4     | 1.2      | 3.0 |
| . 004             | .731  | 11.0          | 5.2                 |                       | 8.7      | 14.1                  | 3.5    | 12.6             | 2.1     | 2.0      | 5.4 |
| 0                 | .756  | 11.0          | 5.4                 |                       | 9.6      | 14.9                  | 3.8    |                  | 2.4     | 2.0      | 0.1 |
| 0                 | .784  | 10.0          | 5.0                 |                       | 9.2      | 13.7                  | 2.8    |                  | 1.9     | 1.6      | 3.8 |
| 0                 | .808. | 10.0          | <b>6</b> • <b>†</b> |                       | 10.2     | 15.1                  | 3.1    |                  | 1.6     | 1.5      | 0   |
|                   |       |               |                     |                       |          |                       |        |                  |         |          |     |

:15

|                                                                           | -                                             |               |                                  |                                               | Т     | -              |            | <br>                                                |               | -          |                |      |
|---------------------------------------------------------------------------|-----------------------------------------------|---------------|----------------------------------|-----------------------------------------------|-------|----------------|------------|-----------------------------------------------------|---------------|------------|----------------|------|
| <b>H</b> 69                                                               |                                               |               |                                  |                                               |       |                |            |                                                     | 2             | 1.1        |                | •    |
| <b>ري - الما</b>                                                          | 197-1                                         | 1             |                                  | 1                                             | 8     | 77             |            | N181                                                | 47            | ~          |                | •    |
| HAROON I<br>RD )                                                          | NICS (I                                       | A7            | <b></b>                          | MICS (1                                       | 67    | ??             | <b>??</b>  | MICS (1                                             | Ş             | •          | • •            | •.   |
| NOMENT HAR<br>.25 CHORD)                                                  | T HARMO                                       | 4             | * © N #<br>                      | T HARMO                                       | 8     | •;             |            | Т нание                                             | R5            | •:         |                | 3.0  |
| TY AT                                                                     | G NONEN                                       | AS            | -2.5                             | 6 MOMEN                                       | 8     | •?             |            | 6 WONER                                             | 2             | 1.0        | 0.1            | 1    |
| HISE BE                                                                   | BENDIN                                        | ¥.            | 1.00                             | BENDIN                                        | 5     | •••            | •••        | BENDIN                                              | K3            |            | 11.6           | 11.8 |
| .60R FLAPWISE BENDING NOMENT HARMONICS<br>CENTER OF GRAVITY AT .25 CHORD) | .60R FLAPWISE BENDING NOWENT MARMONICS (INLD) | ٨3            | -1.3<br>-1.9<br>2.5              | .60R FLAPWISE BENDING MOMENT HARMONICS (INLB) | E9    | 5°3            | 11.6       | 6LADE .60R FLAPHISE BENDING WONENT MANMONICS (1NLB) | 2             | 5.<br>7    | 7.2            | 7.2  |
| BLADE 6<br>(BLADE C                                                       |                                               | A2            | -2.5<br>-3.7<br>-5.9             |                                               | ξÂ    | 8<br>1         | 4          | . 60R F                                             | RA            | 3.9        |                | 4.5  |
|                                                                           | BLADE                                         | VI            | 1.5<br>2.8<br>2.6                | BLADF                                         | 81    | -2.5           | 4°5-       | PLADE                                               | ß             | 4°6        | - + -<br>+ - + | 5.0  |
| TABLE XLII.                                                               |                                               | THEC<br>(DEG) | 9.0<br>11.0<br>10.0              | THEC                                          | (010) | 9.0<br>11.0    | 10.0       |                                                     | THEC<br>(DEG) | 0°6        | 10.01          | 10.0 |
| E                                                                         |                                               | Ŵ             | 546<br>546<br>610<br>634         |                                               | Ð     | .546<br>.546   | 610<br>634 |                                                     | Ŋ             | • 546<br>1 | .610           | •634 |
|                                                                           |                                               | (FPS)         | 3 700<br>4 700<br>5 700<br>6 700 | 0 0 WS                                        | 1511  | 3 700<br>4 700 | ς<br>Ω     |                                                     | . #R<br>(FPS) |            | 5 700          | ۍ    |
|                                                                           | -ting                                         | 22            | 69-<br>69-<br>69-                | RUN-<br>PT.                                   |       | 69-<br>69-     | 69-<br>69- | RUN-<br>PT.                                         | -0N           | -69        | -69            | 69-  |

| BLADE . I BR TORSIONAL MOMENT HARMONICS - RUNG 69-70<br>(BLADE CENTER OF GRAVITY AT .25 CHORD) | BLADE .1840 TORSTONAL MORENT MARMANICS (TU1.81<br>A2 A3 A4 A5 A4 A1 A4 A1 A4 A1 A4 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                               |            |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| 18R TORSIONAL 1<br>CENTER OF GRAVI                                                             | ADE .184 TONSIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                               |            |
| BLADE<br>(BLADE                                                                                | THEC<br>THEC<br>IDE61 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •••••••<br>•••••••                                                                                                                  |            |
| TABLE XLIII.                                                                                   | ers<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Proventier<br>Provent | 700<br>7700<br>7700<br>7710<br>7700<br>7711<br>7700<br>7711<br>7700<br>7711<br>7700<br>7711<br>7700<br>7711<br>7700<br>7711<br>7700 |            |
|                                                                                                | RUN-<br>PT.<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 701<br>701<br>701<br>701<br>701<br>701<br>701<br>701<br>701<br>701                                                                  | Peres 2000 |

....

|       | j     |       |           |   | TABLE X    | - 1111       | TABLE XLIII - Concluded | 7         |           |     |        |         |           |
|-------|-------|-------|-----------|---|------------|--------------|-------------------------|-----------|-----------|-----|--------|---------|-----------|
|       | Ĩ s Ê | 2     |           | £ | 1 m<br>1 m | Cars I canad | 3                       |           |           | ą s | 2      |         | 2         |
| ***** |       | ***** | ••••••••• |   |            |              |                         | 772773333 | 221323333 |     | ****** | ******* | ********* |

| TABLE XL                                                                                                                                                                           | JIV. B                                                                                       | LADE FI<br>BLADE C                                                                                          | AP MOT                                                            | ION HAP                                        | RMONICS<br>/ITY AT                                                         | - RUNS<br>.25 CH                                                           | 69-70<br>ord)                                                                    |                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|
| RUN-<br>PT. CMS<br>NO. #R<br>(FPS)                                                                                                                                                 | MU                                                                                           | THEC<br>(DEG)                                                                                               | BLA                                                               | DE FLAF                                        | MOTION                                                                     | HARMON                                                                     | ICS (DE                                                                          | G)<br>A6                                                 |
| 69- 3 700<br>69- 4 700<br>69- 5 700<br>69- 6 700<br>69- 7 700<br>70- 3 700<br>70- 4 700<br>70- 5 700<br>70- 6 700<br>70- 7 700<br>70- 8 700<br>70- 8 700<br>70- 9 700<br>70-10 700 | .546<br>.546<br>.610<br>.634<br>.659<br>.682<br>.706<br>.682<br>.731<br>.756<br>.784<br>.308 | 9.0<br>11.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>11.0<br>11.0<br>11.0<br>11.0<br>10.0<br>10.0<br>10.0 | .0<br>1<br>.0<br>2<br>.2<br>.1<br>.3<br>.1<br>1<br>2<br>.4<br>3   | 4<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>5<br>6 | •1<br>•1<br>-•2<br>•6<br>•6<br>•7<br>•6<br>•5<br>•7                        | .0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.2<br>.1                         | •1<br>-2<br>-1<br>-8<br>-3<br>-1<br>-4<br>-4<br>-4<br>-4<br>-4<br>-4             | .0<br>0<br>.3<br>.0<br>.2<br>.0<br>.0<br>.0<br>.0<br>.0  |
| RUN-<br>PT. OMS<br>NO. #R<br>(FPS)                                                                                                                                                 | MU                                                                                           | THEC<br>(DEG)                                                                                               | BLA<br>B1                                                         | DE FLAF<br>B2                                  | MOTION<br>B3                                                               | HARMON<br>B4                                                               | ICS (DE<br>B <b>5</b>                                                            | G)<br>86                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                               | .546<br>.546<br>.610<br>.634<br>.659<br>.682<br>.706<br>.682<br>.731<br>.756<br>.784<br>.808 | 9.0<br>11.0<br>10.0<br>10.0<br>10.0<br>10.0<br>11.0<br>11.0<br>1                                            | .0<br>1<br>.0<br>.0<br>.1<br>.1<br>.1<br>.2<br>.0<br>1<br>2<br>.1 | 1<br>2<br>1<br>3<br>3<br>3<br>3<br>3<br>2<br>2 | 5<br>4<br>8<br>7<br>7<br>3<br>-1.1<br>-1.2<br>-1.2<br>-1.3<br>-1.1<br>-1.3 | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.1<br>.1<br>.1 | •1<br>•1<br>•0<br>•1<br>•2<br>•1<br>•0<br>•2<br>•1<br>•2<br>•1<br>•2<br>•1<br>•2 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0<br>.0 |

.

+

| BLADE   FLAP   NOTION   HAMMONIC     THEC   RS   R1   R2   R3     9.0   3.1   .0        11.0   3.5         11.0   3.5         11.0   3.5         10.0   1.0           10.0   1.0                                                                                                                                                     |   |            |      |               | TABLE | TABLE XLIV - Concluded | oncluded |        |         |    |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|------|---------------|-------|------------------------|----------|--------|---------|----|---|
| FPS MJ THEC THEC   700 546 9.0 3.1 0   7100 546 9.0 3.1 0   700 546 11.0 3.5 1 0   700 546 11.0 3.5 1 0 1   700 546 11.0 3.5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <                                         |   | - MC       |      |               | BLA   | DE FLAP                | MOTION   | HARMON | 105 (00 | 61 |   |
| 3 700 .546 9.0 3.1   7 700 .546 11.0 3.5   7 700 .546 11.0 3.5   7 700 .610 10.0 2.0   7 700 .659 10.0 1.0   7 700 .659 10.0 1.0   7 700 .659 10.0 1.0   7 700 .659 10.0 1.0   7 700 .652 11.0 1.0   7 700 .731 11.0 1.5   7 700 .756 11.0 1.5   7 700 .731 11.0 1.5   7 700 .756 11.0 1.5   8 700 .756 1.1 1.5   8 700 .756 1.1 1.5 |   | #R<br>FPS) | ſi₩  | THEC<br>(DEG) | RS    | RI                     | R.2      | 83     | £       | 8  |   |
| 4 700 .546 11.0 3.5   5 700 .610 10.0 2.0   6 700 .659 10.0 2.0   7 700 .659 10.0 2.0   7 700 .659 10.0 1.0   7 700 .659 10.0 1.0   7 700 .659 10.0 1.0   7 700 .658 4.0 1.0   7 700 .658 11.0 1.1   7 700 .731 11.0 1.7   7 700 .756 11.0 1.7   8 700 .756 11.0 1.7   8 700 .756 11.0 1.7                                           |   | 700        | .546 | •             | 3.1   | 0.                     | •        | •.     | •       | -  |   |
| 5 700 .610 10.0 2.0   7 700 .659 10.0 2.0   3 700 .659 10.0 1.8   3 700 .659 10.0 1.8   4 700 .659 10.0 1.8   5 700 .659 10.0 1.6   6 700 .6582 4.0 1.6   7 700 .6682 4.0 1.6   7 700 .756 11.0 1.7   7 700 .756 11.0 1.7   7 700 .756 11.0 1.7   8 700 .756 11.0 1.7                                                                |   | 700        | .546 |               | ີ່ ເ  |                        | ŗ        | •      | •       | •  | 9 |
| 7 700 .634 10.0 2.0   3 700 .659 10.0 1.6   3 700 .659 10.0 1.6   4 700 .658 4.0 1.6   5 700 .6682 4.0 1.6   6 700 .766 11.0 1.5   7 700 .731 11.0 1.5   7 700 .756 11.0 1.5   7 700 .756 11.0 1.5   7 700 .756 11.0 1.5                                                                                                             |   | 700        | .610 | •             | 2.0   | 2                      | 9.       |        | •       | -  | 9 |
| 7 700 .659 10.0 1.6<br>3 700 .659 10.0 1.6<br>5 700 .682 4.0 1.6<br>6 700 .706 11.0 1.5<br>6 700 .731 11.0 1.5<br>7 700 .731 11.0 1.5<br>7 700 .756 11.0 1.5<br>7 700 .756 11.0 1.5                                                                                                                                                  |   | 200        | •63• |               | 2.0   | ••                     | 3.       | •      |         | 7  | • |
| 3 700 .659 10.0 1.6   4 700 .6682 4.0 .7   5 700 .706 11.0 1.5   6 700 .562 11.0 1.7   7 700 .731 11.0 1.7   7 700 .756 11.0 1.7   8 700 .756 11.0 1.5   9 700 .784 10.0 1.4                                                                                                                                                         |   | 700        | .659 |               | 1.8   | ~                      | 9.       | •      |         | 7  | • |
| 4 700 .682 4.0 .7   5 700 .706 11.0 1.5   6 700 .756 11.0 1.7   7 700 .731 11.0 1.7   8 700 .756 11.0 1.5   9 700 .784 10.0 1.1                                                                                                                                                                                                      |   | 700        | .659 |               | 1.6   | ~                      | 9.       |        |         | ?  | • |
| 5 700 .706 11.0 1.5<br>6 700 .682 11.0 1.7<br>7 700 .731 11.0 1.7<br>8 700 .756 11.0 1.5<br>9 700 .764 10.0 1.1                                                                                                                                                                                                                      |   | 700        | .682 | •             |       |                        | ~        | •      |         | -  | • |
| 6 700 .662 11.0 1.7<br>7 700 .731 11.0 1.5<br>8 700 .756 11.0 1.6<br>9 700 .784 10.0 1.4                                                                                                                                                                                                                                             |   | 700        | .706 | 11.0          | 1.5   | ••                     | ۲.       | 1.2    | ~       | •  | • |
| 7 700 .731 11.0 1.5<br>8 700 .756 11.0 1.4                                                                                                                                                                                                                                                                                           |   | 700        | .682 |               | 1.7   |                        |          | 1.2    |         | ?  | • |
| 8 700 .756 11.0 1.4<br>9 700 .784 10.0 1.1                                                                                                                                                                                                                                                                                           |   | 200        | .731 | ٠             | 1.5   | ~                      |          | 1.3    | ~       | •  | - |
| 9 700 .784 10.                                                                                                                                                                                                                                                                                                                       |   | 700        | .756 | •             |       | ~                      |          | •••    | 2       | •  | - |
|                                                                                                                                                                                                                                                                                                                                      |   | 200        | .784 |               | 1.1   | *.                     | 3.       | 1.3    | ~       | •  |   |
| 10 700 .808 10.                                                                                                                                                                                                                                                                                                                      | - | 700        | .808 | 10.0          | 1.2   | :                      | •        | • •    | ?       | •  | 1 |

|                                                                                         | TAB                                                                       | BLE XLV.                                                         |                                                                   |                                       |                                                     | NONICS -<br>VITY AT                          | RUN 71<br>25 CHORD                                  | )                                                  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| 1                                                                                       | OMS<br>≢R                                                                 |                                                                  | THEC                                                              | BLA                                   | DE LAG                                              | MOTION                                       | HARMONI                                             | CS (DEG)                                           |
|                                                                                         | FPS)                                                                      | MU                                                               | (DEG)                                                             | A1                                    | A2                                                  | A3                                           | A4                                                  | A5                                                 |
| 71- 3                                                                                   |                                                                           | .795                                                             | •0                                                                | •2                                    | •1                                                  | •0                                           | •0                                                  | •0                                                 |
| 71- 4                                                                                   |                                                                           | .847                                                             | •0                                                                | •2                                    | •0                                                  | •0                                           | •0                                                  | •0                                                 |
| 71- 5                                                                                   |                                                                           | .906                                                             | •0                                                                | •2<br>•1                              | .1                                                  | •0                                           | •0                                                  | •0                                                 |
|                                                                                         | 316<br>292                                                                | .974<br>1.052                                                    | .0                                                                | :0                                    | :1                                                  | .0                                           | .0                                                  | •0                                                 |
| 71- 8                                                                                   |                                                                           | 1.144                                                            | .0                                                                | •0                                    | .1                                                  | .0                                           | .0                                                  | •0                                                 |
| 71- 9                                                                                   |                                                                           | 1.254                                                            | .0                                                                | 1                                     | .1                                                  | .0                                           | .0                                                  | •0                                                 |
| 71-10                                                                                   |                                                                           | 1.388                                                            | .0                                                                | 2                                     | .1                                                  | .0                                           | .0                                                  | •0                                                 |
| 71-11                                                                                   |                                                                           | 1.553                                                            | .0                                                                | 4                                     | • 1                                                 | •0                                           | .0                                                  | •0                                                 |
| 71-12                                                                                   | 184                                                                       | 1.664                                                            | • 0                                                               | 5                                     | •1                                                  | .1                                           | •0                                                  | •0                                                 |
|                                                                                         |                                                                           |                                                                  |                                                                   |                                       |                                                     |                                              |                                                     |                                                    |
| RUN-                                                                                    | AMS                                                                       |                                                                  |                                                                   | BLA                                   | DE LAG                                              | MOTION                                       | HARMONI                                             | CS (DEG)                                           |
| PT.<br>NO.                                                                              | QMS<br>#R<br>FPS)                                                         | MU                                                               | THEC<br>(DEG)                                                     | BLA<br>B1                             | DE LAG<br>B2                                        | MOTION<br>B3                                 | HARMONI<br>B4                                       | CS (DEG)<br>B5                                     |
| PT.<br>NO.<br>(                                                                         | #R<br>FPS)                                                                |                                                                  | (DEG)                                                             | B1                                    | 82                                                  | 83                                           | B4                                                  | 85                                                 |
| PT.<br>NO. (<br>71- 3                                                                   | *R<br>FPS)<br>386                                                         | .795                                                             | (DEG)<br>.0                                                       | B1                                    | B2                                                  | B3                                           | B4                                                  | B5                                                 |
| PT.<br>NO.<br>(                                                                         | *R<br>FPS)<br>386<br>362                                                  | .795                                                             | (DEG)                                                             | B1                                    | 82                                                  | B3<br>•0<br>•0                               | B4<br>.0<br>.0                                      | 85<br>•0<br>•9                                     |
| PT.<br>NO.<br>(<br>71- 3<br>71- 4<br>71- 5<br>71- 6                                     | *R<br>FPS)<br>386<br>362<br>340<br>316                                    | .795<br>.847<br>.906<br>.974                                     | (DEG)<br>•0<br>•0<br>•0                                           | B1<br>1<br>1                          | B2<br>•0<br>•0                                      | B3<br>•0<br>•0<br>•0                         | B4<br>• 0<br>• 0<br>• 0                             | B5                                                 |
| PT.<br>NO.<br>(<br>71- 3<br>71- 4<br>71- 5<br>71- 6<br>71- 7                            | *R<br>FPS)<br>386<br>362<br>340<br>316<br>292                             | .795<br>.847<br>.906<br>.974<br>1.052                            | (DEG)<br>•0<br>•0<br>•0<br>•0<br>•0                               | B1<br>1<br>1<br>1                     | B2<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0               | B3<br>•0<br>•0<br>•0<br>•0                   | B4<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0               | 85<br>•0<br>•0<br>•0                               |
| PT.<br>NO.<br>(<br>71- 3<br>71- 4<br>71- 5<br>71- 6<br>71- 7<br>71- 8                   | *R<br>FPS)<br>386<br>362<br>340<br>316<br>292<br>268                      | .795<br>.847<br>.906<br>.974<br>1.052<br>1.144                   | (DEG)<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                   | B1<br>1<br>1<br>3<br>4<br>4           | B2<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0        | B3<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0       | B4<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0               | B5<br>•0<br>•0<br>•0<br>•0<br>•0                   |
| PT.<br>NO.<br>(<br>71- 3<br>71- 4<br>71- 5<br>71- 6<br>71- 7<br>71- 8<br>71- 9          | *R<br>FPS)<br>386<br>362<br>340<br>316<br>292<br>268<br>246               | .795<br>.847<br>.906<br>.974<br>1.052<br>1.144<br>1.254          | (DEG)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | B1<br>1<br>1<br>3<br>4<br>4<br>5      | B2<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 | B3<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 | B4<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0        | B5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0       |
| PT.<br>NO.<br>(<br>71- 3<br>71- 4<br>71- 5<br>71- 6<br>71- 7<br>71- 8<br>71- 9<br>71-10 | *R<br>FPS)<br>386<br>362<br>340<br>316<br>292<br>268<br>246<br>222        | .795<br>.847<br>.906<br>.974<br>1.052<br>1.144<br>1.254<br>1.388 | (DEG)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | B1<br>1<br>1<br>3<br>4<br>4<br>5<br>6 | B2<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0        | B3<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | B4<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 | B5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 |
| PT.<br>NO.<br>(<br>71- 3<br>71- 4<br>71- 5<br>71- 6<br>71- 7<br>71- 8<br>71- 9          | *R<br>FPS)<br>386<br>362<br>340<br>316<br>292<br>268<br>246<br>222<br>198 | .795<br>.847<br>.906<br>.974<br>1.052<br>1.144<br>1.254          | (DEG)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       | B1<br>1<br>1<br>3<br>4<br>4<br>5      | B2<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 | B3<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 | B4<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0        | B5<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0       |

|                 |              | TAI           | BLE XLV | TABLE XLV - Concluded | eđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |          |    |
|-----------------|--------------|---------------|---------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|----|
|                 |              |               | BLA     | BLADE LAG             | NOITOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LAG MOTION HARMONICS | CS (DEG) | 6) |
| NO. #R<br>(FPS) | MU           | THEC<br>(DEG) | RS      | R1                    | R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R3                   | R4       | RS |
| 71- 3 386       | .795         | 0.            | 2.6     | r.                    | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••                   | 0•       | •0 |
| 71- 4 362       | .847         | ••            | 2.6     | 5.                    | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••                   | ••       | •  |
| 71-5 340        | .906         | 0.            | 2.6     | <b>n</b> •            | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                    | •        | •  |
|                 | <b>+</b> 26. | 0.            | 2.6     | 5.                    | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.                   | ••       | •  |
| 2               | 1.052        | ••            | 2.6     | ÷.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                    | •        | •  |
| 71- 8 268       | 1.144        | ••            | 2.9     |                       | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                    | ••       | •  |
| 9               | 1.254        | •             | 3.0     | •5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                    | •        | •  |
|                 | 1.388        | 0.            | 3.1     | •                     | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .1                   | ••       | •  |
| 71-11 198       | 1.553        | ••            | 3.2     | .8                    | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                    | ••       | •  |
| 2               | 1.664        | •             | 3.1     | •9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1                   | •        | •  |
|                 |              |               |         |                       | and the second se |                      |          |    |

|                                |                  | A10        | ~.         | •          |            | •    |       |       |       | -     |   | •     |   |                  | i          | e10   | •1   |          | -        | •        |       | N.          | ٩        |            | # '<br> | •••         |
|--------------------------------|------------------|------------|------------|------------|------------|------|-------|-------|-------|-------|---|-------|---|------------------|------------|-------|------|----------|----------|----------|-------|-------------|----------|------------|---------|-------------|
|                                |                  | <b>A</b> 9 | -2         | •          | -          |      |       |       |       | 7     | - | :     |   |                  |            | 68    | ۰.   | °.       | ~        | •        | •     | 1.1         | •        |            |         | •           |
| - RUN 71                       | (IN-LB)          | <b>A</b> 8 | <b>م</b> : | •          |            |      | • •   | 1.1   |       | •     |   |       |   | (IN-LB)          | i          | 88    | .7   | <b>n</b> | •••      | •        | •     | •           | ;        |            | •       | •           |
|                                |                  | A7         | 1.1        | + u<br>-   | <b>•</b> = | •    |       |       |       | 1     | - |       |   |                  |            | 87    | 1.7  | -1.3     | -1.3     |          |       | + .<br>     | 0 :<br>• | + I        |         | <b>?</b> •• |
| MOMENT HARMONICS<br>.25 CHORD) | MOMENT HARMONICS | A6         | N.         |            | + -<br>    | •    | •     | 2-    |       | 5     | - | :     |   | MOMENT HARMONICS | ł          | 99    | •••  | •••      |          |          | •     | •           | ?.       |            |         | •           |
| AT                             |                  | A5         | •          | ? <b>.</b> |            |      |       |       | -2-0  | -2-3  |   |       |   |                  | ;          | c8    | n    | 4.1      |          | •••      |       | <b>†</b> •• | •        | <b>*</b> . | C•1     | 1.8         |
| IRA                            | E BENDING        | A4         | ••         | •          | •••        | •    |       |       | - 2.0 | -7.1  |   |       |   | E BENDING        |            | 84    | .7   | <b>۳</b> | + !<br>! |          | 2.1-  |             |          |            | •••     | 0.4         |
| 30R FLAPWISE<br>CENTER OF GR   | FLAPWISE         | A3         | n.         | N•2        | 2.0        |      | 0.0   | + - C |       | 5.1   |   | •     |   | FLAPWISE         | 1          | 83    | 9.3  | 8.9      | 6.2      | 0.4      | 2.0   | 2.2         | + c      | 0 .        | -       | 2.0         |
| BLADE . 30R<br>(BLADE CENT     | .30R             | A2         | 5.         | <b>.</b> . | <b>t</b> 0 | •    | •     |       |       | 9     |   | :     | 9 | .30F             |            | 82    | 1.1  |          | -        | <u>م</u> | •     | ÷.          | •        | •          | •       | 1.6         |
|                                | BLADE            | 41         | 1.9        |            | 0.0        |      | 2.t   |       | 0.v   | 1.7   |   | · · · |   | BLADE            | 1          | 61    | 5.1  | + • t    |          | a        | 6     | 6           | -1.0     | -1.2       |         |             |
| TABLE XLVI                     | THEC             | (DEG)      | 0.         | •          | •          | •    | •     | •     | •••   |       | • | •     |   |                  | THEC       | (DEG) | •0   | 0.       | ••       | ••       | •     | ••          | •        | •          | •       | •0          |
| Ξ.                             |                  | ΝM         | .795       | .847       | 906.       | +15. | 1.052 | 1.144 | 1.388 | 1.553 |   | +00.1 |   |                  |            | NH.   | .795 | 7 tite . | •00      | 425.     | 1.052 | 1.144       | 1.254    | •          | •       | ٠           |
|                                | 0MS              | FPS)       | 386        | 362        | 340        | 316  | 292   | 268   | 010   | 108   |   | 104   |   |                  | eMS<br>8   | FPS)  | 386  | 362      | 040      | 316      | 242   | 268         | 246      | 200        | 144     | 184         |
|                                | PT.              |            | m<br>•     | =          | ۍ<br>۱     | 0 :  |       | 80 0  | 1-10  |       |   | 21-   |   |                  | рт.<br>ИО. | -     | r    |          | S        | ٥        | -     | 8           | 6        | 5          | -       | -12         |

.

.

|                 |        |               |         |         | TABLE                                                | <b>XLVI</b> | TABLE XLVI - Concluded | uded     |            |        |            |          |     |
|-----------------|--------|---------------|---------|---------|------------------------------------------------------|-------------|------------------------|----------|------------|--------|------------|----------|-----|
|                 |        |               | BLAD    | E . 30R | BLADE .30R FLAPWISE BENDING MOMENT HARMONICS (IN-LB) | E BENDI     | NG MOME                | NT HARM  | ONICS      | IN-LB) |            |          |     |
| NO. #R<br>(FPS) | s) MU  | THEC<br>(DEG) | RS      | R1      | R2                                                   | R3          | R4                     | RS       | R6         | R7     | <b>R</b> 8 | R9       | R10 |
| 11- 3 38        |        | •             | •       | 1.9     | 1.2                                                  | 10.2        |                        | <u>،</u> |            | 2.1    |            | <b>4</b> | 2.  |
|                 |        | •             | •       | 2.1     | 6.                                                   | 9.2         | ŗ.                     | 4        | • 5        | 1.6    | 3.         | -2       | .1  |
| 71-5 340        | 906. 0 | •             | n••     | 2.0     | *                                                    | 6.7         | 4.                     | 4        | ŝ          | 1.4    | 4.         | 2.       | .1  |
|                 | ·      | ••            | 6.1     | 2.2     | 1.1                                                  | 7.4         | 8.                     | 4        | .1         | 5.     | ~          | •1       | .1  |
|                 |        | •             |         | 2.6     | 1.0                                                  | 5.7         | 1.2                    | <b>.</b> | 5          |        | 6.         |          | ~   |
| ••              | -      | •             | 4 .<br> | 2.5     | 6.                                                   | 5.6         | 2.0                    |          | ю.         | 8.     | 1.2        | 1.8      |     |
| ••              | -      | •             | 4-1     | 2.7     | 1.0                                                  | 5.4         | 4.0                    | 1.3      | 5          | ۲.     | •6         | 1.9      | 6.  |
| ••              | -      | •             | 6       | 2.0     | 9 <b>.</b>                                           | \$°5        | 6.0                    | 2.0      | ۳ <b>.</b> | ŧ.     | .1         | 5        | 1.5 |
|                 |        | •             | 7       | 1.9     | 1.3                                                  | 5.5         | 10.7                   | 2.8      | \$°        | 9.     |            |          | 4.  |
| -               |        | •             | 4       | 1.5     | 1.9                                                  | 5.5         | 10.0                   | 2.1      | ٩.         |        |            | .1       | 5   |
|                 |        |               |         |         |                                                      |             |                        |          |            |        |            |          | I   |

| _                                             |                                                             |                                                                                   |                              |                                                                                                                     |
|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                               | A10                                                         | <b></b>                                                                           | 810                          | n o # 40000000                                                                                                      |
|                                               | 4٩                                                          | N.D.V.2.10.1.V.1.V                                                                | 68                           | -000000                                                                                                             |
| 71                                            | ЧВ)<br>А8                                                   |                                                                                   | (B)<br>B8                    |                                                                                                                     |
| s - RUN<br>D)                                 | S (IN                                                       |                                                                                   | s (IN<br>87                  |                                                                                                                     |
| HARMONICS<br>.25 CHORD                        | ARMONIC<br>A6                                               |                                                                                   | HARMONICS (INLB)<br>B6 B7 B8 | n n n n n n n n n n n n n n n n n n n                                                                               |
|                                               | .16R TORSIONAL MOMENT HARMONICS (INLB)<br>A3 A4 A5 A6 A7 A8 | ที่มีมีที่มีมีมีมีมีมีมีมีมีมีมีมีมีมีมี                                          | MOMENT H                     |                                                                                                                     |
| .18R TORSIONAL MOMENT<br>CENTER OF GRAVITY AT | ONAL MC                                                     | <i>៶</i> ៲៶៲៶៲៶៹៰៰៶៰                                                              | TORSIONAL M                  | 7.7400007075<br>7.74                                                                                                |
| 18R TORSIC<br>CENTER OF                       | R TORSI<br>A3                                               | 1 1 1 1 1 1 1 1<br>4 4 0 4 10 4 10 4 10 4 1                                       |                              | *********                                                                                                           |
| BLADE .18<br>(BLADE CE                        | BLADE .16<br>A2                                             |                                                                                   | BLADE .16R<br>B2 B3          |                                                                                                                     |
|                                               | BLI                                                         | 7                                                                                 | BL/                          |                                                                                                                     |
| BLE XLVII.                                    | A1                                                          | 14055000                                                                          | 81                           | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                            |
| TABLE                                         | THEC<br>(DE6)                                               | •••••                                                                             | THEC<br>(DEG)                | <b></b>                                                                                                             |
|                                               | )<br>M                                                      | .795<br>.847<br>.847<br>.906<br>.974<br>1.052<br>1.052<br>1.554<br>1.553<br>1.664 | C<br>I                       | .795<br>.847<br>.974<br>.974<br>1.052<br>1.144<br>1.254<br>1.388<br>1.553                                           |
|                                               | OMS<br>#R<br>FPS)                                           | 186<br>1986<br>1986<br>1988<br>1988<br>1988<br>1988<br>1988<br>1                  | OMS<br>4R<br>FPS)            | 386<br>340<br>340<br>292<br>268<br>268<br>268<br>292<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>202 |
|                                               | RU1<br>PT.<br>NO.                                           | 71-15<br>71-5<br>71-5<br>71-16<br>71-19<br>71-10<br>71-11<br>71-11<br>71-11       | RUI<br>PT.                   | 71-3<br>71-5<br>71-5<br>71-5<br>71-7<br>71-8<br>771-9<br>771-9<br>771-10<br>771-12                                  |

|                         | RIO                                                         | * * * * * * * * * * * *                                                   |
|-------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|
|                         | Rg                                                          | *****                                                                     |
|                         | e R                                                         |                                                                           |
|                         | -LB)<br>R7                                                  |                                                                           |
|                         | CS (IN.                                                     |                                                                           |
| uded                    | HARMONI                                                     | <b></b>                                                                   |
| TABLE XLVII - Concluded | .10R TORSIONAL MOMENT HARMONICS (INLB)<br>R2 R3 R4 R5 R6 R7 | N N N N & 96 00                                                           |
| - IIVIX                 | SIONAL<br>R3                                                | ູ້ທູ່ທີ່ເຈົ້າເຈັ້ນເອີ້ມ                                                   |
| TABLE                   | 16R TOR<br>R2                                               | **********                                                                |
|                         | BLADE .<br>R1                                               |                                                                           |
|                         | RS                                                          | 0,00,00,00,00,00<br>1,1,1,1,1                                             |
|                         | THEC<br>(DEG)                                               |                                                                           |
|                         | Ð                                                           | .795<br>.647<br>.906<br>.974<br>1.052<br>1.144<br>1.553<br>1.553<br>1.553 |
|                         | OMS<br>#R<br>(FPS)                                          | 386<br>396<br>396<br>396<br>396<br>396<br>396<br>396<br>396<br>396<br>39  |
| -                       | RUN-<br>PT.                                                 | 71-5<br>71-5<br>71-5<br>71-5<br>71-5<br>71-10<br>71-10<br>71-11<br>71-11  |

|                                               | -                                 |                    |                                                                                                                        |                                                  |                                                                               |
|-----------------------------------------------|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|
|                                               | 6)                                | A6                 | 000000000                                                                                                              | 6)<br>B6                                         | •••••••                                                                       |
| - RUN 71<br>.25 CHORD)                        | ICS (DE                           | AS                 | 0.000000000                                                                                                            | ICS (DE                                          | 0000000000                                                                    |
|                                               | BLADE FLAP MOTION HARMONICS (DEG) | A4                 | 0007707567                                                                                                             | BLADE FLAP MOTION HARMONICS (DEG)<br>B2 B3 B4 B5 | 00                                                                            |
| FLAP MOTION HARMONICS<br>CENTER OF GRAVITY AT | MOTION                            | A.3                | N<br>1111111111                                                                                                        | MOTION<br>63                                     |                                                                               |
| LAP MOTION<br>CENTER OF                       | DE FLAP                           | A2                 | 0.400444000                                                                                                            | NDF. FLAF<br>B2                                  |                                                                               |
| BLADE FL<br>(BLADE C                          | BLA                               | A1                 | NOUUNHNMNN<br>1 1111 1                                                                                                 | 6L/                                              | 0000000000                                                                    |
|                                               |                                   | THEC<br>(DEG)      | 000000000                                                                                                              | THEC<br>(DEG)                                    |                                                                               |
| TABLE XLVIII                                  |                                   | ЫN                 | 795<br>906<br>906<br>1.052<br>1.052<br>1.388<br>1.553<br>1.664                                                         | ΩW                                               | .795<br>.847<br>.996<br>.974<br>1.052<br>1.052<br>1.554<br>1.553<br>1.553     |
| L                                             |                                   | UHS<br>+R<br>(FPS) | 10000000000000000000000000000000000000                                                                                 | 0MS<br>#R<br>(FPS)                               | 3365<br>3465<br>3465<br>3466<br>3466<br>3440<br>2683<br>2683<br>1988<br>1988  |
|                                               | RUL-                              | Υ.<br>ХС.          | 71- 5<br>71- 5<br>71- 5<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>71- 1<br>7 | RUL-<br>FT.<br>NC.                               | 71- 5<br>71- 5<br>71- 5<br>71- 5<br>71- 6<br>71- 9<br>71- 9<br>71-11<br>71-11 |

|                           |       |               | TABLE    | TABLE XLVIII - Concluded          | - Conclud | ed         |            |    |    |
|---------------------------|-------|---------------|----------|-----------------------------------|-----------|------------|------------|----|----|
|                           |       |               | BLA      | BLADE FLAP MOTION HARMONICS (DEG) | MOTION    | HARMON     | ICS (DE    | (9 |    |
| 1. 045<br>NO. #R<br>(FPS) | Ĵ     | THEC<br>(DEG) | RS       | R1                                | R2        | R3         | 84         | RS | R6 |
| 71- 3 386                 | . 795 | •             | -        |                                   | •2        | ۲.         | •          | •  | 0. |
| -                         | . 847 | ••            | 1        | .1                                | •2        | . 2        | •          | •  | •  |
| 1-5                       | .906  | •             | n.1      | ••                                | \$        | \$         | .1         | •  | •  |
| 1-6                       | 426.  | •             | - 2      | ••                                | ~         | • 5        |            | •  | •  |
| 1- 7                      | 1.052 | ••            | <b>n</b> | ņ                                 | ~         | <b>n</b> . | .1         | •  | •  |
| 1- 8                      | 1.144 | ••            | * • •    | .1                                | ~         | ۳.<br>•    | °.         | •1 | •  |
| 1- 9                      | 1.254 | ••            | -•5      | •2                                | 2         | <b>.</b> . | <b>n</b> • | .1 | •  |
| 71-10 222                 | 1.388 | ••            | -1.1     | <b>.</b> .                        | .1        | n<br>•     | •5         |    | •  |
| 1-11                      | 1.553 | •             | -1.4     | \$                                | •1        | ~          | - 1        | 4  | •  |
| 71-12 184                 | 1.664 | •             | -2.0     | 4                                 |           | •1         | •          | .1 | •  |
|                           |       |               |          |                                   |           |            |            |    |    |

|                 | TABLE XLIX. |               | BLADE LAG MOTION HARMONICS<br>(BLADE CENTER OF GRAVITY AT | OTION H<br>ER OF G | HARMONICS GRAVITY AT | - RUN 72<br>T .25 CHORD) | (0      |
|-----------------|-------------|---------------|-----------------------------------------------------------|--------------------|----------------------|--------------------------|---------|
|                 |             |               | BLADE                                                     | DE LAG             | MOIIOM               | HARMONICS                | S (DEG) |
| NC. #R<br>(FPS) | MU          | THEC<br>(DEG) | <b>A1</b>                                                 | A2                 | A3                   | Att                      | A5      |
| n<br>I          | 1.488       | 0.            | 2                                                         | •1                 | 0.                   | 0.                       | 0.      |
| 72- 4 202       | 1.739       | •             | <b>4</b> •1                                               | • 1                | •                    | ••                       | ••      |
| ى<br>ا          | 1.842       | •             | + • <del>•</del>                                          |                    | •                    | •                        | ••      |
| 9               | 1.914       | •             | + • +                                                     | .1                 | •                    | •                        | ••      |
| ~               | 1.891       | •             | <b>••</b> •                                               | •                  | •                    | •                        | •       |
| 80              | •           | ••            | 2                                                         | .1                 | •                    | 0.                       | 0.      |
| 6               | 1.452       | •             | ς.                                                        | .1                 | •                    | 0.                       | •       |
|                 |             |               |                                                           |                    |                      |                          |         |
|                 |             |               |                                                           |                    |                      |                          |         |
| RUN-<br>PT. OMS |             |               | BLADE                                                     | DE LAG             | MOIIOM               | HARMONICS                | S (DEG) |
| ~               | MU          | THEC<br>(DEG) | 81                                                        | 82                 | 83                   | B4                       | 85      |
| n               | 1.488       | 0.            | ••                                                        | •1                 | •                    | 0.                       | 0.      |
| đ               | •           | 0.            | 8                                                         | •1                 | •                    | •                        | •       |
| Ŋ               | •           | •             | 9                                                         | .1                 | •                    | •                        | 0.      |
| 72- 6 228       | 1.914       | ••            | -1.0                                                      |                    | •                    | •                        | ••      |
| 2               | •           | •             | -1.0                                                      | .1                 | •                    | •                        | ••      |
| Ø               | 1.753       | •             | 6.1                                                       |                    | •                    | •                        | •       |
| σ               |             | •             | 5                                                         | •                  | •                    | •                        | •       |
|                 |             |               |                                                           |                    |                      |                          |         |

.

329

|       |             |       | 4               | TABLE XLIX - Concluded | K - Conc. | luded  |                            |          |   |
|-------|-------------|-------|-----------------|------------------------|-----------|--------|----------------------------|----------|---|
| RUN-  | š           |       |                 | A 10                   | 9V ] 30   | m07104 | BLADE LAG MOTION MARHONICS | cs (DE6) | 6 |
| 9     | eR<br>(FPS) | 2     | THE C<br>COE 6) | RS                     | R1        | 2      | R3                         | ć        | £ |
| 72- 3 | 82          | 1.000 | •               | 3.1                    | •         | -      | •                          | •        | • |
| 72- • | 202         | 1.739 | •               | 3.1                    | •         |        |                            | •        | • |
| 72- 5 | 214         | 1.042 | •               | 3.1                    | 1.0       | -      |                            | •        | • |
| 72- 0 | 228         | 1.91. | •               | 3.3                    | 1.1       |        | •                          | •        | • |
| 72- 7 | 222         | 1.0.1 | •               | 2.9                    | 1.0       | -      | •                          | •        | • |
| 72- 0 | Ł           | 1.75  | •               | 2.5                    | •         | -      | •                          | •        | • |
| 72- 9 | ł           | 1.152 | •               | 2.0                    | •         | -      | •                          | •        | • |
|       |             |       |                 |                        |           |        |                            |          |   |

|                                                                          | 1                                                       | T                                                                                      | · · · · · · · · · · · · · · · · · · ·             |                                                                                 |
|--------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|
|                                                                          | CIA<br>CIA                                              |                                                                                        | 813                                               |                                                                                 |
|                                                                          | 412                                                     | NO                                                                                     | 812                                               | N 60 6 6                                                                        |
|                                                                          | 114                                                     | • • • • • • • • •                                                                      | 811                                               |                                                                                 |
| 72                                                                       | 10                                                      | <b>.</b>                                                                               | 810                                               | N N O N O N O                                                                   |
| HUN.                                                                     | ţ                                                       | 007605N                                                                                | 68                                                | * N F @ 6 N 0<br>1                                                              |
| - 13 IN                                                                  | g 1                                                     | NNN 6 NN -                                                                             | 88<br>88                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                          |
| HAFMO                                                                    | 1 ( IN                                                  | N                                                                                      | 6 (IN                                             | 5900000<br>11110                                                                |
| 30R FLAFWISE RENDING NOMENT HARMONICS<br>CENTER OF GRAVITY AT .25 CHORD) | BENDING WONENT HARMOHICS (INLB)<br>A. A. A. A. A. A. A. | 979<br>11-<br>1-1-                                                                     | BENDING MOMENT HARMONICS (INLB)<br>B4 B5 B6 B7 B0 | ~~~~~                                                                           |
| SE BENUING N<br>GRAVITY AT                                               | ENT HE                                                  | -1.0<br>-2.5<br>-3.1<br>-3.1<br>-3.5<br>-2.5<br>-1<br>-2.5<br>-1<br>-2.5<br>-1<br>-2.5 | MENT HA                                           | - 000003                                                                        |
| NULT<br>NVLT                                                             |                                                         |                                                                                        | 9<br>1<br>1<br>1<br>1                             | 1 I I I I                                                                       |
| UNTSE<br>OF GRU                                                          | 9410-136                                                | ******                                                                                 | 3END I NG<br>B4                                   | 4000040<br>400001                                                               |
| 30R FLAFY                                                                | Pulse<br>A                                              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                  |                                                   | 14.0<br>14.0<br>14.0<br>14.0                                                    |
| HLADE 3                                                                  | .308 FLAPWISE<br>A2 A3                                  | 9                                                                                      | .30R FLAPWISE<br>B2 B3                            |                                                                                 |
|                                                                          | + 10 .                                                  | 0.000.000                                                                              | HLADE .<br>B1                                     |                                                                                 |
| TABLE                                                                    | 14EC<br>10EG                                            | •••••                                                                                  | THEC<br>(DEG)                                     | ••••••                                                                          |
|                                                                          | 3                                                       | 1. 460<br>1. 739<br>1. 739<br>1. 862<br>1. 853<br>1. 452<br>1. 452                     | 2                                                 | 1.488<br>1.739<br>1.842<br>1.842<br>1.914<br>1.753<br>1.452                     |
|                                                                          | 8 . Š                                                   | 202<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>202<br>202                     | 0MS<br>0R<br>(FPS)                                | 236<br>236<br>296<br>296<br>296<br>296<br>296<br>296<br>296<br>296<br>296<br>29 |
|                                                                          | 1                                                       | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                | RU1-<br>PT.                                       | 72-5172-54                                                                      |

|            |       |               |       |                                               | - 23    | TABLI     | с – (   | TABLE L - Concluded | led        |      |            |     |     |            |     | Τ        |
|------------|-------|---------------|-------|-----------------------------------------------|---------|-----------|---------|---------------------|------------|------|------------|-----|-----|------------|-----|----------|
|            |       |               | BLADE | .30R FLAPWISE BENDING MOMENT MARMONICS (INLB) | PWISE ( | SEND I NG | MOMENT  | HARMONIC            | S (IN      | -69) |            |     |     |            |     |          |
| 10         | 2     | THEC<br>(DEG) | RS    | R1                                            | R2      | R3        | 8.<br>8 | RS                  | R6         | R.7  | 88         | R9  | R10 | R11        | R12 | R13      |
| 5          | 1.484 |               | -1.0  | 2.5                                           | •       | 6.3       | 5.7     | 1.9                 | 2.         | ŝ    | 2.         | 1.1 | 1.0 | 2.5<br>2.8 |     |          |
| 72- 4 202  | 1.739 | ••            | 1.1   | 1.0                                           |         | 1.0       | 10.5    | 3.1                 | <u>.</u> . | 1.0  | ••         |     | 1.7 | 1.9        | 0.1 | 3 "      |
| <b>0</b> n | 1.914 | •••           | -1.8  | 0.0                                           |         | 10.1      | 4.6     | 3.6                 | ~          | 1.1  | <b>5</b> 4 | 2.1 | 2.1 | 1.1        |     |          |
| ~          | 1.691 | •             |       | 9.1                                           | - 0- 1  | 19.61     | 9. H    | 2.3                 | 9.1        | 1.1  | 1.2        | 9   |     | 3          | ~   |          |
| 0 0        | 1.452 |               | -1.3  | 3.5                                           | 3.8     | 15.0      | 6.1     | •                   | 3.5        | 2.6  |            | ~   | •   | •          | •   | <b>.</b> |
|            |       |               |       |                                               |         |           |         |                     |            |      |            |     |     |            |     |          |

| _                                                                 |                                                                      |                                                             |                                        |                                                                    |
|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|
|                                                                   | 415                                                                  | 0-0-1-0-                                                    | 519                                    | ******                                                             |
|                                                                   | A12                                                                  |                                                             | 510                                    | <b></b>                                                            |
|                                                                   | 111                                                                  | 000000                                                      | 110                                    | ******                                                             |
|                                                                   | A10                                                                  |                                                             | 010                                    |                                                                    |
| run 72                                                            | A9                                                                   | 22450<br>2450<br>2450                                       | 2                                      |                                                                    |
| 1                                                                 | -LB)<br>A8                                                           | 0.1.1.4.00                                                  | 6 8                                    |                                                                    |
| .18R TORSIONAL MOMENT HARMONICS<br>CENTER OF GRAVITY AT .25 CHORD | BLADE .18R TORSIONAL MOMENT HARMONICS (INLB)<br>A2 A3 A4 A5 A6 A7 A8 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                     | MOMENT HARMONICS (INLB)<br>BS B6 B7 B4 |                                                                    |
| MOMENT<br>ITY AT                                                  | HARMONI<br>A6                                                        |                                                             | HARMONI<br>B6                          |                                                                    |
| SLADE .18R TORSIONAL MOMENT<br>(BLADE CENTER OF GRAVITY AT        | MOMENT<br>A5                                                         | 2 9 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                     | MOMENT                                 | 7977799<br>111177                                                  |
| BR TOR                                                            | ISIONAL<br>A4                                                        | 2007782<br>1100441                                          | TORSIONAL<br>B4                        |                                                                    |
| BLADE .1<br>(BLADE C                                              | .18R TOF                                                             | 1<br>                                                       | .18R TOF                               | 14000 A                                                            |
| LI BI                                                             | BLADE .<br>A2                                                        | -12222222222222.                                            | BLADE .<br>B2                          |                                                                    |
| TABLE                                                             | T V                                                                  |                                                             | 81                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                              |
|                                                                   | THEC<br>(DEG)                                                        | •••••                                                       | THEC<br>(DEG)                          | ••••••                                                             |
|                                                                   | Ĩ                                                                    | 1.488<br>1.739<br>1.842<br>1.842<br>1.891<br>1.753<br>1.452 | ₽.<br>F                                | 1.488<br>1.488<br>1.842<br>1.914<br>1.891<br>1.891<br>1.452        |
|                                                                   | CHS<br>+R<br>FPS)                                                    | 202 202 202 202 202 202 202 202 202 202                     | 0MS<br>#R<br>(FPS)                     | 236<br>214<br>228<br>252<br>252<br>252<br>252<br>252<br>255<br>255 |
|                                                                   | RUN-<br>PI-                                                          | 72- 5<br>72- 5<br>72- 5<br>72- 5<br>72- 9<br>72- 9          | RUN-<br>PT.<br>NO.                     | 72- 5<br>72- 4<br>72- 5<br>72- 6<br>72- 7<br>72- 8<br>72- 9        |

|       |             | -     |               |     |          |         | TABLE   | - 11    | TABLE LI - Concluded                   | lded  |     |            |            |     |        |     |     |
|-------|-------------|-------|---------------|-----|----------|---------|---------|---------|----------------------------------------|-------|-----|------------|------------|-----|--------|-----|-----|
|       | SMO         |       |               | 20  | BLADE .1 | BR TORS | IONAL M | OMENT H | .18R TORSIONAL MOMENT HARMONICS (INLB) | S (IN | (B) |            |            |     |        |     |     |
| NG.   | +R<br>(FPS) | MU    | THEC<br>(DEG) | RS  | R1       | R2      | R3      | R4      | RS                                     | R6    | R7  | R8         | R9         | R10 | R11    | R12 | R13 |
| 72- 3 | 236         | 1.488 | 0.            | •5  | •2       | 1.2     | 1.0     | 1.2     | •                                      | •1    | .1  |            | ۳.         | \$. | ~      | .2  | •5  |
| 72- 4 | 202         | 1.739 | ••            | °.  | 1.0      | 2.2     | 1.8     | 1.6     | 9.                                     | .1    |     | .1         | ~          |     |        | .1  |     |
| 72- 5 | 214         | 1.842 | •             | 9.  | 6.       | 2.4     | 2.2     | 2.1     | 1.0                                    | .1    |     | <b>n</b> • | <b>*</b> . | .2  | .2     | .1  | °.  |
| 72- 6 | 228         | 416.1 | ••            | •5  | °.       | 2.5     | 2.9     | 2.8     | 1.5                                    | •     | t.  | t.         | °.         | ••  | •      | \$  | ູ   |
| 72- 7 | 252         | 1.891 | •             | 2.2 | 3.1      | 5.6     | 5.1     | 4.7     | 2.7                                    | 1.5   | 1.0 | 1.0        | 1.0        |     | •      | ŝ   |     |
| 72- 8 | 296         | 1.753 | 0.            | 3.0 | 3.2      | 6.1     | 5.8     | 5.6     | 3.7                                    | 2.5   | 1.9 | 1.6        | 1.4        | •   | 1.2    | 6.  | ۲.  |
| 72- 9 | 386         | 1.452 | ••            | 2.7 | 2.4      | 4.2     | 3,5     | 3.6     | 2.9                                    | 1.9   | 1.4 | 1.1        | 1.3        | .7  | •<br>۲ | ÷.  | •5  |
|       |             |       |               |     |          |         |         |         |                                        |       |     |            |            |     |        |     |     |
|       |             |       |               |     |          |         |         |         |                                        |       |     |            |            |     |        |     |     |
| BLADE FLAP MOTION HARMONICS - RUN 72<br>(BLADE CENTER OF GRAVITY AT .25 CHORD) | BLADE FLAP MOTION HARMONICS (DEG) | EC<br>EG) A <b>1 A2 A3 A4 A5 A6</b> | 1 .02 .5 | .0 .12 .5 .2 | 1 .03 .7 .2 | 113 .7 .3 | .0 .12 .4 .2 | 432 .4 .2 | 31 .6 .2 .1 |  | BLADE FLAP MOTION HARMONICS (DEG) |           | EG) B1 B2 B3 B4 B5 B6 | .1 .1 | .3 .0251 | 4 .0332 | .08152 .0 .1 | ·1 ·2 -8 -2 ·0 | -•4 •1 -1 <sup>2</sup> ? •0 •0 | .1 .1 |
|--------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------|--------------|-------------|-----------|--------------|-----------|-------------|--|-----------------------------------|-----------|-----------------------|-------|----------|---------|--------------|----------------|--------------------------------|-------|
|                                                                                | ON HA                             | A                                   |          |              |             |           |              | <b>.</b>  |             |  | AH NO                             |           | B                     |       | •        | •       | '            | •              |                                |       |
| RMONICS<br>VITY AT                                                             | I TOM C                           | A3                                  | 2        | - 2          |             |           | - 2          |           | •0          |  | D MOTI                            |           | 63                    | •     |          |         | - 5          |                | -1.2                           | -1-0  |
| OTION HAI<br>R OF GRAV                                                         | NDE FLA                           | A2                                  | 0.       |              | •           | 1         |              | <b></b>   |             |  |                                   |           | 82                    | 2     | •        | •       | 1.           | ~              | .1                             | :-    |
| E FLAP M                                                                       | 8L4                               | A1                                  | 1        | •            | 1           |           | •            | +.<br>    | <b>.</b>    |  | BLA                               |           | 81                    | 1     | r.       | 4       | 8            |                | 1.4                            | •     |
|                                                                                |                                   | THEC<br>(DEG)                       | •0       | •            | •           | •         | •            | •         | •           |  |                                   | THEC      | (DEG)                 | •0    | •        | 0.      | ••           | •              | 0.                             | •     |
| TABLE LII.                                                                     |                                   | мU                                  | 1.488    | 1.739        | 1.842       | 1.914     | 1,891        | 1.753     | 1.452       |  |                                   |           | MU                    | 1.488 | 1.739    | 1.842   | 1.914        | 1.891          | 1.753                          | 1.452 |
|                                                                                |                                   | OMS<br>#R<br>(FPS)                  | 236      | 202          | 214         | 228       | 252          | 296       | 386         |  |                                   | ems<br>*R | (FPS)                 |       |          |         | 228          |                |                                |       |
|                                                                                | RUN-                              |                                     |          |              |             |           | 72-7         |           |             |  | RUN-                              | PT.       |                       |       |          |         | 72- 6        |                |                                |       |

|                       |                                   | R6            | •     |            | .1    |       | •      |        | .1       |
|-----------------------|-----------------------------------|---------------|-------|------------|-------|-------|--------|--------|----------|
|                       | ()                                | R5            | •1    | 2          | ~     | r.    | 2.     | 2.     | .1       |
|                       | ICS (DE                           | R4            | •5    |            |       | .7    | •<br>• | t.     | •5       |
| I                     | HARMON                            | R3            | r.    | ř.         | 4.    | 9.    | 6.     | 1.3    | 1.2      |
| Conclude              | MOTION                            | R2            | °.    | .1         |       | ~     | ~      | ю.     | ~        |
| TABLE LII - Concluded | BLADE FLAP MOTION HARMONICS (DEG) | R1            |       | <b>n</b> • | 4.    | 1.0   | .1     | 9.     | n        |
| TABI                  | BLAI                              | RS            | £•-   | -1.3       | -1.0  | 5     | -1.4   | 7      | <b>.</b> |
|                       |                                   | THEC<br>(DEG) | 0.    | ••         | ••    | ••    | ••     | ••     | •        |
|                       |                                   | ŊW            | 1.488 | 1.739      | 1.842 | 1.914 | 1.891  | 1.753  | 1.452    |
|                       | SMO                               | #R            | 236   | 202        | 214   | 228   | 252    | 296    | 386      |
|                       | RUN-<br>PT                        |               | +     | 72- 4      | -     | 1     | 1      | I<br>N | -        |

| RUN-<br>PT.<br>NO.         ELADE         LAG         MOTION         ARMONICS         (I           PT.<br>NO.         FPS         MU         (DE6)         A1         A2         A3         A4         A5           74-<br>5         700         333         4.0        1         .0         .0         .0         .0           74-<br>5         700         333         4.0        1         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0 <td< th=""><th></th><th>-</th><th>TABLE LIII</th><th>II. BLAJE I<br/>(BLADE</th><th>E LAG MOTION<br/>DE CENTER OF</th><th></th><th>HARMONICS -<br/>GRAVITY AT</th><th>RUN 74.<br/>.30 CHORD)</th><th></th></td<> |   | -           | TABLE LIII | II. BLAJE I<br>(BLADE | E LAG MOTION<br>DE CENTER OF |        | HARMONICS -<br>GRAVITY AT | RUN 74.<br>.30 CHORD) |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|------------|-----------------------|------------------------------|--------|---------------------------|-----------------------|----------|
| •R         THEC         A2         A3         A4         A5           5 700         -333         4.0        1         .0         0         .0           5 700         -390         4.0        1         .0         .0         .0         .0           7 700         -390         4.0        1         .0         .0         .0         .0           7 700         -390         4.0        1         .0         .1         .0         .0         .0           7 700         -504         4.0        1         .0         .1         .0         .0         .0         .0           7 700         -502         4.0         .1         .0         .1         .0         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1                                                                                                                                                                                                                                                               |   | SMO         |            |                       | BLAC                         |        |                           | HARMONI               | CS (DEG) |
| 3 700       -333       4.0       -1       0       0       0         5 700       -393       4.0       -1       0       0       0       0         6 700       -504       4.0       -1       0       0       0       0       0         7 700       -565       4.0       -1       0       0       0       0       0         8 700       -565       4.0       -1       0       0       1       0       0       0         9 700       -565       4.0       -1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                        |   | *R<br>(FPS) | Ŗ          | THEC<br>(DEG)         | <b>A1</b>                    | A2     | ٨3                        | 44                    | AS       |
| 4 700       390       4.0      1       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0                                                                                                                                                                                                                                                                                                                           |   | 700         | .333       | •                     | 1                            | 0.     | 0.                        | رت<br>•               | 0.       |
| 5 700       448       4.0      1       0       0       1       1       1         7 700       565       4.0      1       0       .1       .0       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1                                                                                                                                                                                                                                                                                                                                     |   | 200         | .390       | 4.0                   | 1                            | •      | •                         | ••                    | •        |
| 6 700       556       4.0      1       .0       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .2       .1       .1       .1       .1       .2       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1                                                                                                                                                                                                                                                                                                                           |   | 200         | 844.       | <b>6.0</b>            | 1                            | •      | •                         | •                     | ••       |
| 7 700       .565       4.0       .1       .0       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1       .1                                                                                                                                                                                                                                                                                                                        | - | 200         | .504       | 0.4                   | 1                            | •      | •                         |                       | 0.       |
| 9 700       .623       4.0       .1       .0       .1       .1       .1       .1       .2       .1       .0       .1       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2       .2                                                                                                                                                                                                                                                                                                                        |   | 200         | . 565      | 4.0                   | .1                           | •      |                           | .1                    | •        |
| 9 700 .682 4.0 .1 .0 .1 .2 .<br>ONS<br>*R<br>ONS<br>*R<br>*R<br>MU (DEG) B1 B2 B3 B4 B5<br>7 700 .533 4.0 .0 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - | 200         | .623       | ¢.0                   | .1                           | ••     |                           | .1                    | 0.       |
| OMS     BLADE     LAG     MOTION     HARMONICS       +R     MU     THEC     BLADE     LAG     MOTION     HARMONICS       +R     +R     HEC     B1     B2     B3     B4     B5       5<700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - | 700         | .682       | 4.0                   | ۲.                           | •      | • 1                       | \$                    | 0.       |
| *R       THEC         (FPS)       MU       DE6       B1       B2       B3       B4       B         3 700       .333       4.0       .0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                 |   | SMO         |            |                       | BLAD                         | DE LAG | MOTION                    | HARMONIC              | CS (DEG) |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | +R<br>(FPS) | P          | THEC<br>(DEG)         | 81                           | 82     | 83                        | 94                    | 85       |
| * 700       .390       *.0      1         5 700       .448       *.0      1         6 700       .565       *.0      1         7 799       .565       *.0      1         7 799       .565       *.0      1         7 700       .565       *.0      1         7 799       .565       *.0      1         7 700       .565       *.0      1         7 700       .565       *.0      1         7 700       .565       *.0      1         7 700       .565       *.0      1         7 700       .565       *.0      1         7 700       .565       *.0      1         1       .1       .1       .1         1       .1       .1       .1       .1         1       .1       .1       .1       .1         1       .1       .1       .1       .1         1       .1       .1       .1       .1         1       .1       .1       .1       .1         1       .1       .1       .1       .1         1 </td <td></td> <td>700</td> <td>.333</td> <td>0.4</td> <td>0.</td> <td></td> <td></td> <td></td> <td>0.</td>                                                                                                                                                                                                                                                                                                                                                              |   | 700         | .333       | 0.4                   | 0.                           |        |                           |                       | 0.       |
| 5 700 .448 4.01<br>6 700 .504 4.01<br>7 700 .565 4.01<br>8 700 .623 4.01<br>9 700 .682 4.01<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 700         | .390       | 0.4                   |                              | .1     |                           | .1                    | •        |
| 6 700 .50 <b>4 4.01 .1 .1</b> .2<br>7 799 .565 4.0 .1 .1 .1 .2<br>8 700 .682 4.0 .1 .1 .1 .2<br>9 700 .682 4.01 .1 .1 .0 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 200         | 844.       | 4.0                   | 1                            |        |                           |                       | 0.       |
| 7.700 .565 4.0 .1 .1 .1 .2<br>8.700 .623 4.0 .1 .1 .1 .2<br>9.700 .682 4.01 .1 .1 .0 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - | 200         | .504       | •••                   | 1                            |        |                           | .2                    | •        |
| 8 700 .682 4.0 .1 .1 .1 .2<br>9 700 .682 4.01 .1 .0 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 700         | 565        | •                     |                              |        | •                         | ~                     | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |             | .623       |                       |                              |        |                           | Ņ                     | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | 20/         | 200.       |                       |                              |        | •                         | N.                    | •        |

| TABLE LIII - Concluded | BLADE LAG MOTION HARMONICS (DEG) | S) MU (DEG) RS R1 R2 R3 R4 R5 |       | 0 .448 4.0 2.2 .1 .1 .1 .1 .0 |       |       | .623 4.0 2.7 .1 .1 .1 |       |
|------------------------|----------------------------------|-------------------------------|-------|-------------------------------|-------|-------|-----------------------|-------|
|                        | RUN-<br>PT_ OMS                  | *R<br>(FPS)                   | 4 700 | 5 700                         | 6 700 | 7 700 | 8 700                 | 9 700 |

|                                                | <b>A1</b> 0                                       |                                                | <b>6</b><br>0 1 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 6 <b>4</b>                                        | オガオトトーナ<br>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 89                           | cn-0.000<br>111                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HL T4                                          | -LB)<br>A8                                        | 0 000 0 00 0                                   | -FB)<br>-FB)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                              | CS (IN.                                           | N N I N I I I                                  | S (IN.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HARMONI<br>DRD )                               | ARMONI<br>A6                                      | 1 1 1 1 1 1                                    | HARMONICS (INLB)<br>B6 B7 B8 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BENDING MOMENT HARMONICS<br>WITY AT .30 CHORD) | IOMENT +                                          | ท งท - อ ง เม<br>                              | MOMENT +<br>B5               | 0 K 8 N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                |
| (SE BENDING<br>GRAVITY AT                      | BENDING MOMENT HARMONICS (INLB)<br>A4 A5 A6 A7 A8 | ים דיני עומיט<br>ו                             | BENDING N                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| .30R FLAPWISE<br>CENTER OF GRA                 |                                                   | いちち 4 4 4 4<br>このこの 4 6 6<br>1 1 1 1 1 1 1 1   | FLAMUISE BE                  | 1.1<br>2.0<br>2.0<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9                                                                                                                                                                                                                                                                                                                                                  |
| ല                                              | .30R FLAPWISE<br>A2 A3                            | 5 200 5 4 5 0<br>7 20 5 7 5 0<br>1 1 1 1       | .30R FLA                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                | BLADE .                                           | t 4t - t2 3                                    | 6LADE .                      | 006 4 9 9 4 4<br>0 0 6 4 9 9 4 4                                                                                                                                                                                                                                                                                                                                                                                                         |
| TABLE LIV                                      | THEC<br>(DEG)                                     | 000000                                         | THEC<br>(DEG)                | ******                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Т                                              | PI                                                | .333<br>.448<br>.504<br>.665<br>.682           | Ň                            | .333<br>.448<br>.504<br>.655<br>.653                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | OMS<br>+R<br>(FPS)                                | 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | OMS<br>+R                    | 5 700<br>5 700<br>6 700<br>8 700<br>9 700<br>9 700                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                | RUN-<br>PT.                                       |                                                | RUN-<br>PT.<br>NO.           | 744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-77744-777474-777777 |

|               |               |     |               |       |                                                      | TABL    | E LIV -  | TABLE LIV - Concluded | lded    |          |     |     |     |     |
|---------------|---------------|-----|---------------|-------|------------------------------------------------------|---------|----------|-----------------------|---------|----------|-----|-----|-----|-----|
| RUN-<br>PT. O | ş             |     |               | BLADE | BLADE . JOR FLAPWISE BENDING MOMENT HARMONICS (INLB) | Puise B | JEND ING | MOMENT                | HARMONI | CS (IN.  | Î   |     |     |     |
| •             | +R<br>(FPS) I | Ŧ   | THEC<br>(DEG) | RS    | RI                                                   | R2      | R3       | <b>*</b>              | ŝ       | R6       | R.7 | R.  | 89  | R10 |
| 74- 3 7       | • 00          | 333 | 0.4           | 2.3   | 6.                                                   | ~       | 2.8      | 2.                    | 2.      | •        | 2   | ~   | 5   | -   |
| 74- 4 7       | 8             | 390 |               | 1.3   | 1.1                                                  | 5       | 3.6      | •                     | 1.7     | <b>n</b> |     |     |     |     |
| 74-57         | 8             | 9   | •••           | ¢.    | 1.6                                                  | •       | 5.7      | 1.6                   | 6.      | •        | ņ   |     |     | .1  |
| - 4-<br>- 4-  | 8             | 105 | 0.4           | •     | 1.8                                                  | 1.4     | 5.4      | 1.4                   | 3.4     | •        |     |     |     | 1.  |
|               | 0.0           | 265 | *             | •     | 2.1                                                  | 2.0     | ***      | 1.4                   | ***     |          | 1.0 | 1.1 | 1.0 | .1  |
|               | 100           | 623 | •             | 1.7   | 2.6                                                  | 2.8     | 6.4      | 1.8                   | 6.2     | ۲.       | 1.1 | 1.6 | •   | 1.  |
| 6             | •             | 682 | •••           | 1.8   | 2.9                                                  | •       | 5.6      | 2.0                   | 6-5     | ۲.       | 1.0 |     | ۲.  | .2  |
|               |               |     |               |       |                                                      |         |          |                       |         |          |     |     |     |     |

| A10           |                                                                    | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 <b>4</b>    |                                                                    | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -LB)<br>A8    | 0-00                                                               | -LB)<br>B <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CS (IN.       | N-0-0+N                                                            | S (IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N-03030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HARMONI(      | <i>ຑ</i> ჿ <i>ຑ</i> ຑຑຑຑ                                           | IARMONI(<br>B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MOMENT +      | 90000 J 17 t                                                       | 40MENT +<br>B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | 3.7<br>4.7<br>8.7<br>9.6<br>111.2<br>113.2                         | SIONAL N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18R TOR       | 888115211<br>84652<br>84651                                        | 18R TCR5<br>B3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BLADE .<br>A2 | 1.0                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -00-1-01-<br>+ + 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 14          | N000000                                                            | <b>B1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84 40F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| THEC<br>(DEG) | 444444                                                             | THEC<br>(DEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33333333<br>0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| )<br>¥        | .333<br>.448<br>.504<br>.565<br>.6823                              | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .333<br>.390<br>.504<br>.565<br>.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| eR<br>FPS)    | 700000000000000000000000000000000000000                            | MS<br>PS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700<br>7700<br>7700<br>7700<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ĭ             | 00100100                                                           | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5459786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RUN-<br>PT.   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                              | PT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-77744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-7744-77744-77744-77744-7744-77744-7744-7744-7744-7744-77744-77744-77744-777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | CMS<br>CMS<br>*R THEC<br>(FPS) MU (DEG) A1 A2 A3 A4 A5 A6 A7 A8 A9 | N-       CMS       PLADE       IBR TORSIONAL MOMENT HARMONICS (INLB)         7. CMS       *R       THEC       A       AS       A       AS       A       AS       A       AS       A       AS       AS | CMS         DLADE         IBR TORSIONAL MOMENT HARMONICS (INLB)           CMS         THEC         A1         A2         A3         A4         A5         A6         A7         A8         A9           3 700         -333         4.00         .7         1.0         -1.1         3.7         .4         .2         .0         -1.1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1 |

.

| į |       |       |               |     | KADE .1 | SHOT No | TONAL | NONENT | DLADE . 184 TOPSIONAL MONENT MARMONICS (INLB) | . (IN      | ŝ   |   |    |     |
|---|-------|-------|---------------|-----|---------|---------|-------|--------|-----------------------------------------------|------------|-----|---|----|-----|
|   | i+£   | Ŧ     | THEC<br>(DEB) | S.  | 81      | 22      | 63    | £      | RS                                            | <b>R</b> 6 | R.7 | 2 | 2  | 810 |
|   | •     |       | •.0           | 3.7 | •.1     | 2.0     | 1.1   | 3.7    | 5                                             |            | .2  | - | 1. |     |
| - |       |       |               |     | 2.2     | 2.6     | 2.0   |        | •                                             | ?          | ~   | - |    | -   |
| ż | 5 703 | ł     | •.•           | 3.6 | 2.3     | s.s     |       |        | •.                                            | •          | ~   | - |    | ~   |
| - |       | 5,    | •••           | ••• | 2.0     | 3.2     | 5.0   | •••    | •••                                           | •          | •   | ~ |    |     |
| 2 | ~     | 202   | •••           | 2.2 | 2.2     |         | •.•   | •••    | 2.0                                           | ŝ          | ŝ   |   |    | -   |
| ł | •     |       | •.•           | 3.2 | 2.0     | • • •   | •.•   |        | 2.4                                           | •          | •   | ~ | ~  | ~   |
| - | •     | . 602 | •••           | 2.7 | 1.0     | •       |       | 13.5   | 2.6                                           | ŝ          | •   | • | ~  |     |

à.

|                                                                                | FLAP MOTION MARMONICS (DEG)<br>12 A3 A4 A5 A6 | 0000000<br>00000NN<br>11                                                      | IICS (DEG)<br>B5 B6                        | 0,000,00                                                                        |
|--------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|
| - FUN 74<br>30 CHOR                                                            | V HARMO                                       |                                                                               | N HARMO                                    | 0                                                                               |
| APMONICS<br>NVITY AT                                                           | > MOTION                                      | ພຸຊຸຊາບທູດດ້                                                                  | > M0TION                                   |                                                                                 |
| HLADE FLAT MOTION HARMONICS - KUN 74<br>(BLADE CENTER OF GHAVITY AT .30 CHORD) | BLADE FLAF<br>A2                              |                                                                               | BLADE FLAP MOTION HARMONICS<br>B2 B3 B4 B5 | 00000333<br>11111                                                               |
| DE FLAT                                                                        | 8L/<br>A1                                     |                                                                               | BLA<br>B1                                  |                                                                                 |
|                                                                                | THEC<br>(DEG)                                 |                                                                               | THEC<br>(DEG)                              | 0000000<br>111111                                                               |
| TABLE LVI                                                                      | £                                             | . 333<br>. 565<br>. 565<br>. 565<br>. 682<br>. 682                            | ) M                                        | .333<br>.390<br>.504<br>.565                                                    |
|                                                                                | OMS<br>+R<br>(FPS)                            | 7000                                                                          | OMS<br>*R<br>(FPS)                         | 700                                                                             |
|                                                                                | RUN-<br>P1.<br>NO.                            | 78- 5<br>78- 5<br>78- 5<br>78- 5<br>78- 5<br>78- 7<br>78- 7<br>78- 7<br>78- 9 | RUN-<br>PT.<br>NÚ.                         | 74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>7 |

|                       | EG)                               | R5 R6         | 0.     |       |            |            |            |      | 0. Z.      |
|-----------------------|-----------------------------------|---------------|--------|-------|------------|------------|------------|------|------------|
|                       | IICS (D                           | R4            | 0.     |       | -          | •          |            | ~    | 2.         |
|                       | HARMON                            | R3            | r.     | \$    | <b>t</b> ( | 5          | ņ          | 9    | •          |
| oncluded              | MOTION                            | R2            | -      | ~     | 2          | <b>n</b> . | <b>t</b> . | 3.   | <b>†</b> • |
| TABLE LVI - Concluded | BLADE FLAP MOTION HARMONICS (DEG) | RI            |        |       | 2          | .1         | -          |      | •1         |
| TABLE                 | BLA                               | RS            | 1.6    | 1.5   | 1.2        | 1.0        | .8         | 6.   | •2         |
|                       |                                   | THEC<br>(DEG) | 0.4    | 4.0   | 0.4        | 4.0        | 0° 1       | 4.0  | 0.4        |
|                       |                                   | <b>N</b> W    | .335   | .390  | .448       | .504       | .565       | .623 | .682       |
|                       | NO NO                             | FPS)          | \$ 700 | 1 700 | 5 700      |            |            |      |            |
|                       | RUN-                              | Ģ             |        | 74- 4 |            |            |            |      |            |

|                                                                              | A10                                               | ****                                                        | <b>9</b> 10                            | 0 8 # # O P                               |
|------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------|
|                                                                              | 6V                                                | N-0NNN#                                                     | 6                                      |                                           |
| RUN 74                                                                       | -LB)<br>AB                                        | 0-14226                                                     | (8)<br>1-                              |                                           |
| н.,                                                                          | CS (IN.                                           |                                                             | CS (IN.                                | NP#N#<br>                                 |
| T HARMO                                                                      | IARMONI (<br>A6                                   |                                                             | ARMONI (                               | N 0 0                                     |
| . 30R CHORDWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT . 30 CHORD) | BENDING MOMENT HARMONICS (INLB)<br>A4 A5 A6 A7 A8 |                                                             | MOMENT HARMONICS (INLB)<br>B5 B6 B7 B8 |                                           |
| 30R CHORDWISE BENDING<br>CENTER OF GRAVITY AT                                | NDING I                                           |                                                             | BENDING M                              | -10.1<br>-11.3<br>-15.6<br>-12.5<br>-12.5 |
| ORDWISE<br>OF GRA                                                            |                                                   | n#morr<br>                                                  |                                        |                                           |
| . 30R CH                                                                     | .30R CHORDWISE<br>A2 A3                           | 4 6 8 8 7 7 7 7 6 8 8 8 7 7 7 6 8 8 8 8 7 7 7 7             | . JOR CHORDWISE<br>B2 B3               | 1                                         |
| BLADE<br>(BLADE                                                              | BLADE .30<br>A1                                   |                                                             | BLADE .30<br>81                        | 44000                                     |
| : LVII.                                                                      | (DE6)                                             | ••••                                                        | BL<br>THEC<br>(DEB)                    | • • • • • • •                             |
| TABLE                                                                        | Ŧ                                                 | . 333<br>. 390<br>. 448<br>. 504<br>. 504<br>. 585<br>. 682 | R                                      |                                           |
|                                                                              | EPS)                                              | 77000                                                       | OMS<br>+R                              | 700<br>700<br>7000<br>7000<br>7000        |
|                                                                              |                                                   |                                                             | -                                      | n=00-00                                   |
|                                                                              | RCK<br>NO                                         |                                                             | RUN-<br>PT.                            | *****                                     |

| TABLE LVII - Concluded | BLADE .30R CHORDWISE BENDING MOMENT HARMONICS (INLB) | R3 R4 R5 R6 R7 R8 R9 R10   | 1.3 10.1<br>1.2 11.4<br>1.2 11.4<br>1.2 11.4<br>1.0 .2<br>1.2 11.4<br>1.0 .2<br>1.2 1.0<br>1.2 .2<br>1.0 .2<br>1.2 .2<br>1.0 |
|------------------------|------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ţ                      | SOR CHORDWISE                                        | R1 R2                      | 4444000<br>4444000<br>4444000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | BLADE .3                                             | c<br>6) RS                 | 0000000<br>0000000<br>0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                      | MU (DEG                    | nostone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                      | P1. 0M5<br>N0. *R<br>(FPS) | 74- 5 700<br>74- 5 700<br>74- 6 700<br>74- 6 700<br>74- 8 700<br>74- 9 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                                               |                               |                                                                                                                                                                                                                                              | ·**                           |                                                    |
|-----------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|
|                                               | A10                           |                                                                                                                                                                                                                                              | 810                           | 9                                                  |
|                                               | ٨٩                            | °, °, °, °, -, °, -, °, °, °, °, °, °, °, °, °, °, °, °, °,                                                                                                                                                                                  | Bo                            | °, °, -, °, -, -, -, -, -, -, -, -, -, -, -, -, -, |
| 74                                            | 88<br>88                      |                                                                                                                                                                                                                                              | 88                            | 9999999                                            |
| 5 - RUN<br>)                                  | -LB)<br>A7                    |                                                                                                                                                                                                                                              | -LB)<br>B7                    |                                                    |
| HARMONICS                                     | CS (INLB)<br>A6 A7            | 8                                                                                                                                                                                                                                            | CS (INLB)<br>B6 B7            | nn 91 n 9 1                                        |
|                                               | MOMENT IIARMONICS<br>A4 A5 A6 | 1<br>4-000044                                                                                                                                                                                                                                | MOMENT IIARMONICS<br>B4 B5 B6 |                                                    |
| .35R TORSIONAL MOMENT<br>CENTER OF GRAVITY AT | OMENT I                       | 1.1<br>1.1<br>1.1<br>1.1                                                                                                                                                                                                                     | OMENT 1                       | N00000                                             |
| 35R TORS                                      | TORSIONAL M<br>A3             | 0-100NF6                                                                                                                                                                                                                                     | TORSIONAL M<br>B3             |                                                    |
| BLADE .3                                      |                               |                                                                                                                                                                                                                                              |                               | 1111<br>1111<br>1111<br>1111                       |
| TABLE LVIII.                                  | DE .3                         | 0.400400                                                                                                                                                                                                                                     | DE .3                         | 1.922.4                                            |
| LE LV                                         | BLA<br>A1                     |                                                                                                                                                                                                                                              | BLA<br>B1                     |                                                    |
| TAB                                           | THEC<br>(DEG)                 | 444444                                                                                                                                                                                                                                       | THEC<br>(DEG)                 | 444444                                             |
|                                               | Ĩ                             | .333<br>.448<br>.565<br>.565<br>.682<br>.682                                                                                                                                                                                                 | Đ                             | .333<br>.390<br>.448<br>.504<br>.565<br>.623       |
|                                               | OMS<br>*R<br>(FPS)            | 6 2 200<br>6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | UMS<br>+R<br>(FPS)            | 3 700<br>5 700<br>6 700<br>8 700<br>9 700<br>9 700 |
|                                               | RUN-<br>PT.                   |                                                                                                                                                                                                                                              | RUN-<br>P1.<br>NO.            | 744-                                               |

,

.

|                 |         |               |       |         | TABLE                                  | LVIII  | TABLE LVIII - Concluded | luded   |            |    |    |    |     |
|-----------------|---------|---------------|-------|---------|----------------------------------------|--------|-------------------------|---------|------------|----|----|----|-----|
| PT. OHS         |         |               | BLADE | .35R TO | .35R TORSIONAL MOMENT HARMONICS (INLB) | MOMENT | HARMON                  | ICS (IN | 18)        |    |    |    |     |
| NO. #R<br>(FPS) | NH<br>C | THEC<br>(DEG) | RS    | R1      | R2                                     | R3     | R4                      | RS      | R6         | R7 | RB | R9 | RIO |
| 74- 3 700       | .333    | 4.0           | 3.0   | 1.7     | 1.7                                    | 8.     | 3.1                     | ł       | 5.         | 1. | ۲. | 0  | 1,  |
| 74- 4 700       | .390    | 0°#           | 2.6   | 2.1     | 2.3                                    | 2.3    | 0.4                     | 5       | <b>n</b>   |    | -  | -  | -   |
| 0               |         | •             | 2.3   | 2.3     | 2.2                                    | 3.5    | 5.9                     |         | n.         |    |    | .1 | ٩.  |
| 0 r             |         |               |       | 9.0     | 01                                     | •<br>• | 2.8                     | 1.2     | <b>n</b> ( |    | -  | -  | -   |
| - 4             |         |               |       |         |                                        |        | ູ                       | 1.7     | n .        | 4  |    | -  |     |
| 0 0             |         |               |       |         | <b>.</b>                               | 1      | 1.6                     | 1.9     | •          | đ  | N  | -  | -   |
| h               | 700.    |               | 1.2   | 2.3     | 2.4                                    | 0.1    | 11.5                    | 2.2     | •          | ŝ  | ÷  | Ņ  | ~   |
|                 |         |               |       |         |                                        |        |                         |         |            |    |    |    |     |

| TA                      | BLE I       |              | LADE LA<br>BLADE C |     |        |        |        |           |
|-------------------------|-------------|--------------|--------------------|-----|--------|--------|--------|-----------|
| RUN-<br>PT.             | OMS         |              |                    | BLA | DE LAG | MOTION | HARMON | CS (DES)  |
| NO.                     | PR<br>(FPS) | MU           | THEC<br>(DEG)      | A1  | A2     | A3     | Aq     | A5        |
| 75- 3                   |             | .793         | 4.0                | •2  | •0     | .1     | 1      | •1        |
| 75- 4<br>75- 5          | 500<br>500  | •876<br>•958 | 4.0<br>4.0         | .2  | •0     | .1     | 1<br>1 | •1        |
|                         | 500         | 1.040        | 4.0                | •0  | •0     | .1     | 7.1    | .2        |
| 75- 7<br>75- 8          | 500         | 1.126        | 4.0<br>4.0         | •0  | •0     | •1     | 1      | •3        |
| 75- 9                   | 152         | 1.243        | 4.0                | .0  | •1     | .1     | .0     | 1         |
| 75-10<br>75-11          |             | 1.312        | 4.0                | 1   | •1     | .1     | -:1    | 1         |
| 76- 3                   |             | .294         | 10.0               | 5   | •0     | .0     |        | •0        |
| 76- 4                   |             | .294         | 11.0               | 5   | •0     | •0     | .0     | •0        |
| 76- 5<br>76- 6          |             | .294         | 12.0<br>13.0       | 4   | •1     | •1     | .1     | •1        |
| RUN-                    | OMS         |              |                    | BLA | DE LAG | MOTION | HARMON | ICS (DES) |
| NO.                     | #R          |              | THEC               |     |        |        |        | -         |
|                         | (FPS)       | MU           | (DEG)              | 81  | B2     | 83     | 84     | 85        |
| 75- 3                   | 500<br>500  | .793         | 4.0                | •0  | •1     | .0     | 1      | •0        |
|                         | 500         | .876         | 4.0                | 3   | •1     | .0     | 1      | •0<br>-•1 |
|                         | 500         | 1.040        | 4.0                | 3   | •1     | .0     | 1      | •0        |
| 75- 7                   | 500         | 1.126        | 4.0<br>4.0         | 4   | •1     | •0     | 1      | 1         |
| 75- 9                   | 152         | 1.243        | 4.0                | 5   | •1     | .0     | 1      | 1         |
| 75-10                   |             | 1.312        | 4.0                | 7   | •1     | •1     | 1      | •0        |
| 10-11                   |             | .294         | 10.0               | .3  | •1     | .1     | 1      | •0        |
| 76- 3                   |             |              |                    |     |        |        |        |           |
| 76- 3<br>76- 4<br>76- 5 |             | .294         | 11.0               | •4  | •1     | .1     | .0     | •0<br>•1  |

.

.

.

|        |     |       | TABLI         | E LIX - | TABLE LIX - Concluded | I      |                      |            |          |
|--------|-----|-------|---------------|---------|-----------------------|--------|----------------------|------------|----------|
| -      | ž   |       |               | BLA     | BLADE LAG             | MOITOM | LAG MOTION HARMONICS | CS (DEG)   | (        |
| Ŷ      | #R  | ¥     | THEC<br>(DEG) | RS      | R1                    | R2     | R3                   | R <b>4</b> | RS       |
| 75- 3  |     | 562.  |               | 2.3     | ~                     |        | .1                   | .1         | .1       |
| 1-2-   | - 1 | .876  | 0.4           | 2.2     | ~                     |        |                      |            | -        |
| 75- 5  | 500 | 926*  | 0.4           | 2.2     | n.                    |        |                      | .1         | -        |
| -1-0   | -   | 1.040 | •••           | 2.1     | <b>n</b> .            |        |                      |            | <u>ب</u> |
|        | -   | 1.126 | 0.4           | 2.0     | •                     |        |                      |            | <b>n</b> |
| 75- 8  |     | 1.161 | 0.4           | 1.0     | <b>n</b>              | -      |                      |            | 2        |
| 6 - 22 |     | 1.243 | •••           | 1.6     | 5                     | •1     | .1                   | • •        | -        |
| 12-10  | -   | 1.312 | 0.4           | 1.3     |                       | .1     |                      |            |          |
| 12-51  |     | 1.500 | 0.4           |         | •                     |        | e.                   | Ņ          | -        |
| 76- 3  |     | .294  | 10.0          | 6.2     | 9.                    |        | .,                   | . 1        | •        |
| 76- 4  | -   | 294   | 11.0          | 7.0     | •                     |        | .1                   | .1         | •        |
| 76- 5  | -   | .294  | 12.0          | 7.8     |                       | 2.     | 2.                   | . 1        |          |
| 76- 6  | -   | .294  | 13.0          | 8.7     | •                     |        |                      | -          | •        |
|        |     |       |               |         |                       |        |                      |            |          |

|            |           | F       | TABLE L    | LX. BLADE<br>(BLADI | •<br>61      | .30R FLAPWISE BEND                            |          | ING<br>AT | MOMENT HAI | (D)    | h            | RUNS 75  | 75-76 |            |          |
|------------|-----------|---------|------------|---------------------|--------------|-----------------------------------------------|----------|-----------|------------|--------|--------------|----------|-------|------------|----------|
| PI-        | ¥         |         | BLADE      |                     | Jan April SE | .30R FLAPWISE BENDING MOMENT HARMONICS (INLB) | MOMENT   | HARMONI   | CS IIN.    | -18)   |              |          |       |            |          |
| ~          | PPS) MU   | U (DEG) | 1 A1       | 42                  | <b>C</b> A   | A.                                            | AS       | A6        | A7         | 84     | <b>A</b> 9   | A10      | 114   | A12        | A13      |
|            |           |         | -          |                     | 1.           | -1-6                                          | •        |           | <b>n</b> . |        | 3 <b>8</b> 3 | ~        |       |            | •        |
| • •        |           |         | - 0        |                     |              | 9.1-                                          |          | -1.6      |            | • •    |              | -1.5     | •     | •••        |          |
|            | -         | *       | N          |                     | -3.6         | -2.8                                          | 1.6      | -3.0      | 8.1        | 5      |              | -1.4     |       |            |          |
| 75- 7      | 500 1.126 | 92      | **         |                     | 2.2          | **                                            | **       | 8°6       | -2.1       | •      | 1.1          |          |       | -          |          |
|            | 4 4       |         |            |                     |              |                                               | 1        | 9.9       |            |        |              |          |       | <b>*</b> - |          |
|            |           |         |            |                     | 6.9          | -7.5                                          | -5.1     | -         | -2.7       | -1-0   |              |          | -     | -1.1       |          |
| -          | -         |         | •          |                     | -15.9        | -9.9                                          | -1.2     |           | -3.9       |        | 9            | <b>n</b> |       | •••        | 2        |
| <b>n</b> . |           | ::      |            |                     |              | <b>,</b> (                                    | 5.7      |           | •          |        |              | <b>~</b> | •     | •          | •        |
| - 10       |           | -       |            |                     |              | N                                             |          | N a       |            |        |              |          |       | •          | •        |
|            |           |         | (          |                     |              |                                               |          |           | <b>.</b>   | •      | •            |          | 2     | •          | >        |
|            |           |         |            | i                   | <b>7</b> •1- | •                                             | <b>D</b> | •         | :          | Ċ      | 1.1          | :        | •     | •          | •        |
|            |           |         | BLADE      |                     | APUISE       | -30R FLAPWISE BENDING MOMENT HARMONICS (INLB) | HOMENT   | HARMONI   | CS (IN.    | ,<br>P |              |          |       |            |          |
|            | SH        |         |            |                     |              |                                               |          |           |            |        |              |          |       |            |          |
| мо.<br>Г   | PR. HU    | U THEC  | 91         | 82                  | 83           | 1                                             | 82<br>28 | 90        | 67         | 88     | 89           | 810      | 118   | 812        | 813      |
| 75- 3 5    | 264. 005  |         | 111.4      | ~                   | 1.0          |                                               |          | 6.P       | •          | ທູ່    | -            | ?        | •     | 7          | 7        |
|            |           |         | •          |                     |              |                                               |          |           |            |        | •            | •        | N     |            |          |
|            | _         |         | •••        |                     |              |                                               |          |           |            |        |              | N #      | •••   | 7          |          |
|            | _         |         | i          |                     | 13.0         |                                               |          | 6.3       | •          | -      | 1            |          | -1-7  |            |          |
|            | -         | •       | 7          |                     | 1.11         |                                               | 5.7      | 12.6      | -          | 6.1    | *            |          | -3.2  | 12         |          |
|            |           | •       | <b>;</b> ; |                     | 10.1         | -1-                                           |          |           | *          | 9      |              | 1.0      |       | 1          | 2        |
|            |           | •       | <b>?</b> 7 |                     |              |                                               |          |           |            | 7'     | -            |          | •     | 6.1        | <b>n</b> |
|            |           |         |            |                     |              |                                               |          |           | 1.2        |        |              |          | ••    |            |          |
|            |           |         |            |                     | -1.5         | -                                             | 1        | 2         | -          |        |              |          |       |            |          |
|            |           | -       | •          |                     | -1-7         |                                               | -3.0     |           | Ņ          |        | -            | N<br>1   |       |            | 0        |
|            |           |         | •          | 7                   | -2.2         | -2.4                                          | -2.5     | •         |            | 2      |              | 0.1      | •     | •          | 0        |
|            |           |         |            |                     |              |                                               |          |           |            |        |              |          |       |            |          |

|                 | 2     |               |       |               |          | TABLE   | LX - C | LX - Concluded | ed               |     |     |     |             |     |     |     |
|-----------------|-------|---------------|-------|---------------|----------|---------|--------|----------------|------------------|-----|-----|-----|-------------|-----|-----|-----|
| PT. OWS         |       |               | BLADE | -30R FLAPHISE |          | 9ENDING | HONENT |                | HARMONICS (INLB) | î,  |     |     |             |     |     |     |
| NO. eR<br>(FPS) | ł     | THEC<br>CDEG) | RS    | A1            | R2       | R3      | ž      | 85             | 4<br>2           | R7  | RG  | R9  | <b>R1</b> 0 | R11 | R12 | R13 |
| 75- 3 500       | 564.  |               | 1.6   | 1.6           | 2.9      | 9.1     | •      | 2.1            | 0.4              | s.  | 5   | "   | :           | ~   | -   | -   |
|                 | 0/0   |               | 0.2   | 2.0           | ***      | 9.6     | 1.7    | 1.9            | 3.5              | •   | 9.  |     | •           | ŝ   | -   | -   |
| -               |       | •             | 2.3   | 2.5           | 4.2      | 9.6     | 1.7    | 1.9            | •••              | 9.  | 5   | •   | 1.5         | 9.  | .1  |     |
|                 | 1.040 |               | 2.4   | 9.e           | 5.6      | 9.7     | 3.0    | **n            | 5.6              | 1.1 | 1.  | 1.1 | 2.1         | 2.  | .1  | .1  |
|                 | 1.120 | •             | 2.2   | ***           | 6.9      | 13.4    | ***    | 5.0            | 11.7             | 2.1 | •   | 1.2 | 3.2         | 1.7 | *   | .1  |
| -               | 1.101 | •••           | 2.0   | •••           | 7.5      | 11.1    | 5.5    | 6.0            | 13.4             | 2.0 | •   | •   | 1.6         | 3.7 |     |     |
| ÷ .             | 1.243 | •             | 1.6   | •.4           | 6.8      | 10.9    | 6.0    | 6.5            | 11.4             | 1.1 |     |     | 1.0         | 2.7 | 5   |     |
| -               | 1.312 | •             | 2.0   | 2.1           | 1.5      | 9.1     | 7.5    | 7.9            | 6.6              | 2.8 | 1.0 | ~   | n.          | 6.  | 1.5 | *   |
| -               |       | •••           | 0.0   | •             | 9.5      | 17.9    | 5.9    | 7.6            | 7.2              | *** | 1.1 | 9.  | *           | . 7 | •   | 5.  |
| -               | R.    | 10.0          |       | •             | 1.6      | 2.3     | 5.7    | .1             | *                | •   | 1.4 | 5.  | •           | 0.  | •   | •   |
|                 |       | 11.0          |       |               | •        | 1.9     | 2.5    | n.+            | *                | ~   | *   |     | .2          | •   | •   | •   |
| -               | 202   | 12.0          | 0.2   |               | ۲.       | 2.4     | 2.6    | 5.1            | 1.               | ۰.  | *   |     | *.          | •   | •   | •   |
|                 |       | 13.0          | 2•3   | •             | <b>.</b> | 2.6     | 2.5    | 5.6            | 1.0              | ŝ   | •   | 1.1 | <b>n</b>    | ••• | •   | •   |
|                 |       |               |       |               |          |         |        |                |                  |     |     |     |             |     |     |     |

| A13               | 000000                                                                                                            | 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00-000-1-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A12               | 0444488 0900                                                                                                      | 812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0004450000C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A11               | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                          | 811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A10               |                                                                                                                   | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nnn+ 0+++n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6V                | 00                                                                                                                | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNNO 44 NGN 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LB)<br>A6         | ND # D # HD HD HD HD H<br>1 1 1 1                                                                                 | 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *0070000*0**<br>       <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5 (IN<br>A7       | 0000000000<br>                                                                                                    | 5 (IN<br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RMONIC:<br>A6     | **************************************                                                                            | RMONIC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MENT HA           | -                                                                                                                 | MENT HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N N               |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RSIONA<br>A4      | 999940944047<br>19979940<br>11111                                                                                 | RSIONA<br>B4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111 - 10 - 00<br>- 11 - 10 - 00<br>- 11 - 10 - 00<br>- 11 - 11<br>- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| . 188 TO          | NARUL 44 N4 44<br>NARUL 44 N4 44                                                                                  | 188 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BLADE -           |                                                                                                                   | BLADE .<br>B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6~~~~ # 0 - 0 0 0 0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14                | 980-00-0000<br>                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| THEC<br>(DEG)     |                                                                                                                   | THEC<br>(DE6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| £                 | 795<br>976<br>976<br>976<br>976<br>976<br>294<br>294<br>294<br>294<br>294<br>294                                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 793<br>976<br>976<br>956<br>11.126<br>11.126<br>11.26<br>11.280<br>11.280<br>11.280<br>11.280<br>11.290<br>11.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S No S No S       | 00 + 1 / 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                       | OHS<br>eR<br>(FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 122<br>122<br>122 | 245 6 6 6 9 3 7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                             | RCN-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | BLADE .18R TORSIONAL MOMENT HARMONICS (INLB)<br>OMS<br>R<br>(PPS) MU (DEG) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 | ONS         BLADE .1BR TONSTONAL HOMENT MARMONICS (INLB)           ONS         THEC         A1         A2         A3         A4         A5         A6         A7         A8         A9         A10         A11         A12           ONS         THEC         A1         A2         A3         A4         A5         A6         A7         A8         A9         A10         A11         A12           300         TYS         4.0         1.4         -1.7         -3.2         1.6         1.1         9.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 </td <td>Offer         BLADE         LIADE         <thliade< th="">         LIADE         <thl< td=""></thl<></thliade<></td> | Offer         BLADE         LIADE         LIADE <thliade< th="">         LIADE         <thl< td=""></thl<></thliade<> |

| _ | -                     | _                           |               | -     | _     | _          | -          | -     | -        | -     | -        |
|---|-----------------------|-----------------------------|---------------|-------|-------|------------|------------|-------|----------|-------|----------|
|   |                       |                             | 1             | 97    | •••   |            |            | Ņ 4   |          | • •   |          |
|   |                       |                             | 812           | 97    | -     |            | •          | vi    | •        | 0.9   | :        |
|   |                       |                             | 1             | 24    | ••    | •••        |            | ••    | • •      |       | ;        |
|   | ł                     |                             | 810           | N7    | "     | 2.1        | •••        | •     |          |       | :        |
|   |                       |                             | 68            | ~ ~   | •     |            | •••        | •     | <b>.</b> |       | •        |
|   |                       |                             | a a           | 5     | •     | 1.5        | 0.1<br>9-1 | 5     | -        | 5     | <b>.</b> |
|   |                       | 9                           | R7            |       | 2.1   | 1.7        | 6.T        | ***   | 6.1      |       | 1.2      |
|   | g                     | (IN                         | R6            | 1.4   |       | 6.4        | 0.9        | 10.0  | 12.3     | 3.0   | 3.0      |
|   | TABLE LXI - Concluded | HARMONICS (INLB)            | RS            | 1.6   |       | 7.5        | 13.8       | 12.4  | 10.3     |       | 5.6      |
|   |                       | DMENT H                     |               |       |       | 5          | 6.0        |       | 11.5     | 12.1  | 10.1     |
|   | ABLE L                | IONAL M                     | 55            | 3.9   | 2.4   |            | -          | 15.4  | 15.0     | 0.0   | 9.1      |
|   | I                     | R TORS                      | R2            | 1.2   | 9.1   |            |            | 0.0   | 1.11     | 14.1  | 6.6      |
|   |                       | BLADE .18R TORSIONAL MOMENT | R1            | 6.    | 1.5   |            | 5.7        | 2.01  | 13.8     | 16.3  | 8.0      |
|   |                       | ð                           | RS            | 2.0   | 2.7   | 0.0        | * 9        | 1.41  | 15.4     | 16.7  |          |
|   |                       |                             | THEC<br>(DEG) | 0.4   |       | 0 0<br># : |            | 0.4   |          |       | 11.0     |
|   |                       |                             | ł             | . 793 | .876  | .958       | 1.126      | 1.181 | 1.312    | 1.360 | 294      |
|   |                       |                             | OMS<br>PRS)   |       |       |            |            |       |          | 100   |          |
|   |                       | RUN-                        | NO.           | 75- 3 | 75- 4 | 75- 5      | -54        | 75- 6 | 75-10    | 11-51 | 19-      |
|   |                       |                             | _             |       | -     |            |            |       |          |       |          |

| TA                                                                                                                                                                    | BLE LXI                                                                                                    | I. BLA<br>(BL                                                                        |                                                                                             |                                                    | N HARMO                                                               |                                                                                  |                                                                                 |                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| RUN-<br>PT. OMS<br>NO. aR<br>(FPS)                                                                                                                                    | MU                                                                                                         | THEC<br>(DEG)                                                                        | BLA                                                                                         | A2                                                 | P MOTION                                                              | I HARMON                                                                         | ICS (DE                                                                         | G)<br>A6                                                           |  |
| 75- 3 500<br>75- 4 500<br>75- 5 500<br>75- 7 500<br>75- 7 500<br>75- 8 475<br>75- 9 452<br>75-10 427<br>75-11 404<br>76- 3 700<br>76- 4 700<br>76- 5 700<br>76- 6 700 | .793<br>.876<br>.958<br>1.040<br>1.126<br>1.181<br>1.243<br>1.312<br>1.388<br>.294<br>.294<br>.294<br>.294 | 4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>10.0<br>11.0<br>12.0<br>13.0 | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | 2<br>2<br>3<br>6<br>8<br>9<br>1<br>3<br>2          | .56<br>.64<br>.0<br>.1<br>.2<br>.9<br>.2<br>.2<br>.2                  | •1<br>•1<br>•2<br>•5<br>•6<br>•7<br>•8<br>•7<br>•1<br>•0<br>•0<br>•0             | •0<br>•0<br>•0<br>•1<br>•1<br>•1<br>•4<br>•5<br>-•1<br>-•1<br>-•1<br>-•1<br>-•2 | .0<br>.0<br>.1<br>.1<br>.3<br>.1<br>3<br>4<br>.0<br>.0<br>.0<br>.0 |  |
| RUN-<br>PT. OMS<br>NO. ¢R<br>(FPS)                                                                                                                                    | MU                                                                                                         | THEC<br>(DEG)                                                                        | BLA<br>B1                                                                                   | DE FLAF<br>B2                                      | P MOTION<br>B3                                                        | HARMON                                                                           | ICS (DE<br>85                                                                   | G)<br>86                                                           |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | .793<br>.876<br>.958<br>1.040<br>1.126<br>1.181<br>1.243<br>1.312<br>1.388<br>.294<br>.294<br>.294         | 4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0                   | .0<br>.0<br>.1<br>.1<br>1<br>.0<br>.0<br>.1<br>.2<br>.0<br>.2<br>.1<br>.2                   | 2<br>1<br>1<br>.2<br>.2<br>.3<br>.3<br>4<br>5<br>6 | 7<br>7<br>8<br>-1.4<br>-1.1<br>-1.1<br>8<br>9<br>.2<br>.2<br>.2<br>.2 | .1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.1<br>.1<br>.2<br>.1<br>.1<br>.1 | •1<br>•1<br>•2<br>•3<br>•4<br>•4<br>•4<br>•3<br>•0<br>•0<br>•1<br>•1            | 1<br>1<br>1<br>2<br>4<br>3<br>.2<br>.3<br>.0<br>.0<br>.0<br>.0     |  |

|      | Ĭ     |       |               | BLADE      | DE FLAP  | MOTION | HARMONICS | ICS (DEG) | (9)          |            |
|------|-------|-------|---------------|------------|----------|--------|-----------|-----------|--------------|------------|
| -ON  | S S S | £     | TYEC<br>(DEG) | ß          | R1       | R2     | R3        | R4        | RS           | R6         |
|      | 0.00  | 262.  | 0.4           | n.         | *        | 5      | 6.        | 1.        |              | -          |
| * 1  | 000   | .876  |               | ~          |          |        | 0,0       | ~         | •            | -          |
| •    | 200   | • •   |               |            |          |        | 0.0       |           |              | <b>N</b> N |
|      | 00    | 1.126 | 0.4           | 2          | <b>n</b> | 9.     | 1.4       | 5         | ! <b>?</b>   |            |
| • •  | 15    | 1.181 |               | 10 P       |          | 9.     |           | •         | 187-18<br>19 | 4          |
| 2    | 5     |       |               |            | - ?      | •••    |           |           | *            | + 4        |
| =    | 5     | 1.366 | 0.4           | -1.5       | ~        | 1.0    |           |           |              |            |
| •    | 00    | 201   | 10.0          | 3.2        |          | 4      | •         | ~         | -            | •          |
| r 10 |       |       | 12.0          | 4 U<br>0 U |          | 5      | ••<br>•   | ~         | <b>N</b> (   | •••        |
| •    | 004   | 294   | 13.0          | 2.7        |          |        | ) #<br>•  | •         | 9.C          | •          |

t

| TABLE LATIL. BLADE 30R CHORMSTE BENDING MOMENT HABORICS - RUNS 75-76           (BLADE CENTER OF CRAVITY AT 30 CHORD)           Number of CRAVITY AT 30 CHORD)           PT-<br>No.         PT-<br>(PS)         Number of CRAVITY AT 30 CHORD)         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A                                                                                                                                                                                                                                                                                                                                                                      |                 |             |            |      |      |     |       |       |        |                  | _     | _     |     |       |  | _ |          |      |       | _     |        |   |       |                 |                                         |            |      | _    |       | _      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|------------|------|------|-----|-------|-------|--------|------------------|-------|-------|-----|-------|--|---|----------|------|-------|-------|--------|---|-------|-----------------|-----------------------------------------|------------|------|------|-------|--------|
| TABLE LXTIT. BLADE . JOR CHORMSTE BENDING MOMENT HARMONICS - RUNS 75-76           ILALDE CENTER OF GRAVITY AT . 30 CHORD)           MADE . 30R CHORMSTE BENDING MOMENT HARMONICS - RUNS 75-76           ILADE . JOR CHORMSTE BENDING MOMENT HARMONICS INLD)           MADE . 30R CHORMSTE BENDING MOMENT HARMONICS (INLD)           MADE . 30R CHORMSTE BENDING MOMENT HARMONICS - RUNS 75-76           COMPANY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             | A13        |      | •    |     |       | •_    | 2.1    | 7                |       |       | •   | •     |  |   |          |      | 813   |       | ٠      | • |       | •               | 5                                       | <b>n</b> . | •    | 20   |       | )<br>• |
| TABLE LATIT. BLADE . 3OR CHORDWISE BENDING MART HARMONICS - RUNS 75-76           (BLADE CENTER OF GRAVITY AT .30 CHORD)           MADE .3ON CHORDWISE BENDING MART HARMONICS - RUNS 75-76           BLADE CENTER OF GRAVITY AT .30 CHORD)           ORS         BLADE .3ON CHORDWISE BENDING MART HARMONICS - RUNS 75-76           ORS         BLADE .3ON CHORDWISE BENDING MART HARMONICS (1N-4.4)         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         <                                                                                                                                                                                                                                                                                                                              |                 |             | A12        | s    | 2    |     | •     |       | 2      | •                | *     | •     | •   | •     |  |   |          |      | 812   | 3     | 2      |   |       |                 | -                                       | *          | •    |      |       | 2      |
| TABLE LXIII. BLADE JOR CHORDNISE BENDING MOMENT HARMONICS - RUNS<br>(BLADE CENTER OF CRAVITY AT .30 CHORDNICS - RUNS)           BLADE JOR CHONDUSE ENDING MOMENT HARMONICS (IN-LD)           RLADE JOR CHONDUSE ENDING MOMENT HARMONICS (IN-LD)         A         A         A           OPE         ALL         A         A         A         A         A           OPE         ALL         A         A         A         A         A         A         A         A           OPE         ALL         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A                                                                                                                                                                                                                                                                                                                                                            | 92-36           |             | <b>A11</b> |      | 1.1  |     |       |       |        | 2                | 9     |       |     |       |  |   |          |      | 811   |       |        |   |       |                 |                                         |            |      |      |       | •      |
| TABLE LATIT. BLADE CENTER OF GRAVITY AT .30 CHORD)           BLADE .300 CHORDISE BENDING MOMENT HARMONICS (INLD)           500 0.793 %.0 0.710 2.33 2.13 0.941 0.95 7.2 0.11           5.13 1.11 2.11 2.11 3.11           5.13 1.12 1.13 0.11 2.12 0.11           5.13 1.13 0.11 0.11 2.11 0.12           5.13 1.13 0.11 0.11 0.11           5.13 1.13 0.11 0.11 0.11           5.11 0.11 2.11 0.11 0.11           7.10 1.12 2.11 0.11 0.11           2.11 0.11 2.11 0.11 0.11           5.11 0.11 2.11 0.11 0.11           5.11 0.11 0.11 0.11 0.11           5.11 0.11 0.11 0.11 0.11           5.11 0.11 0.11 0.11 0.11           S.11 0.11 0.11 0.11 0.11           CHORDINEE BENDING MOMENT HARMONICS (INLB)           11.11 2.11 0.11 0.11 0.11           2.11 0.11 0.11 0.11 0.11           11.11 2.11 0.11 0.11           11.11 2.11 0.11                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             | A10        | .1   | •    |     | n e   |       | 1      | •                | 1.2   | ~     |     | N • - |  |   |          |      | B10   | 1     | •      |   |       | -1.4            | 5.1                                     |            |      |      |       | •      |
| TABLE LXIII. BLADE .30R CHORDWISE BENDING         ELADE .30R CHORDWISE BENDING         ORS       BLADE CENTER OF GRAVITY AT         ORS       BLADE .30R CHORDWISE BENDING MOMENT HARMON         OPE       A3       A4       A5       A6         OD       1046       A.0       -1.1       2.3       -1.1       -1.2         S100       10264       A.0       -1.1       2.3       -1.1       -1.2       -1.1         S100       10264       A.0       -1.1       2.3       -1.1       -1.1       -1.2       -1.1       -1.1       -1.2       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1 </td <td></td> <td></td> <td>44</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>2</td> <td>•</td> <td>-1.2</td> <td></td> <td></td> <td>0.1-</td> <td></td> <td></td> <td></td> <td></td> <td>68</td> <td>5.1</td> <td>2</td> <td></td> <td>•</td> <td></td> <td></td> <td>-1-0</td> <td></td> <td></td> <td></td> <td></td>                            |                 |             | 44         |      | •    |     |       |       | 2      | •                | -1.2  |       |     | 0.1-  |  |   |          |      | 68    | 5.1   | 2      |   | •     |                 |                                         | -1-0       |      |      |       |        |
| TABLE LXIII. BLADE .30R CHORDWISE BENDING         ELADE .30R CHORDWISE BENDING         ORS       BLADE CENTER OF GRAVITY AT         ORS       BLADE .30R CHORDWISE BENDING MOMENT HARMON         OPE       A3       A4       A5       A6         OD       1046       A.0       -1.1       2.3       -1.1       -1.2         S100       10264       A.0       -1.1       2.3       -1.1       -1.2       -1.1         S100       10264       A.0       -1.1       2.3       -1.1       -1.1       -1.2       -1.1       -1.1       -1.2       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1       -1.1 </td <td>(ARMON)</td> <td>ĝ</td> <td>Ş</td> <td>1.1</td> <td>-</td> <td>Ņ</td> <td>•</td> <td></td> <td></td> <td>7</td> <td>-</td> <td></td> <td></td> <td>٠</td> <td></td> <td></td> <td>(8)</td> <td></td> <td>98</td> <td>2</td> <td>,<br/>1</td> <td></td> <td></td> <td>н<b>Л</b><br/>•</td> <td>6.1</td> <td></td> <td></td> <td></td> <td>~</td> <td>•</td> | (ARMON)         | ĝ           | Ş          | 1.1  | -    | Ņ   | •     |       |        | 7                | -     |       |     | ٠     |  |   | (8)      |      | 98    | 2     | ,<br>1 |   |       | н <b>Л</b><br>• | 6.1                                     |            |      |      | ~     | •      |
| TABLE LXIII. BLADE CENTER OF CHORDWISE BENDING         BLADE .JOR CHORDWISE BENDING         ONE       BLADE CENTER OF GRAVITY AT         ONE       BLADE .JOR CHORDWISE BENDING MONENT HARMON         ONE       BLADE .JOR CHORDWISE BENDING MONENT HARMON         ONE       ALAC .JOR -LIP .2.3 -LIP .2.1 .1.2 .1.1.3 .2.1.1.3 .2.1.1.3 .2.1 .1.2 .2.1 .1.2.1 .2.1.3 .2.1.1.3 .2.1 .2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MENT F          | - 'NI) S    | ۸7         | 2    | ~    |     |       |       | -      | -1.6             | 0.4   | -     | •   | •     |  |   | - "NI) S |      | 87    | ***   | n.     |   | 6     |                 |                                         | 2.5        |      | )    | •     | 1      |
| TABLE LXIII.         BLADE CENTER OF CHORDWISE BE<br>(BLADE CENTER OF GRAVIT<br>(BLADE CENTER OF GRAVIT<br>(FFS)         MU         DEAC         JOR CHORDWISE BENDING HOMENT<br>(FFS)         MA         AS           900         976         4.0         -1.1         2.2        6         1.5         -4.0           900         1026         A1         A2         A3         A4         A5           900         1126         4.0         -1.1         2.2        6         1.1         2.1           900         1126         4.0         -1.1         2.2        6         1.1         2.1           900         1126         4.0         -1.1         2.2        6         1.1         2.1         1.2           900         1126         4.0         -1.1         2.2        6         1.2         -1         2.1           901         1.260         4.0         -1.1         2.2         -1.0         7.0         5.5         -1.0         7.0           901         1.260         4.0         -1.0         2.2         -1.0         7.0         5.0         7.0         5.5         7.0         7.0           700         2.94         10.0         -2.5                                                                                                                                                                                                                                                                                                                                                     | •               | VINONIC     | A6         | 5    | •    |     |       |       |        |                  |       |       | •   |       |  |   | RHONIC   |      | 86    | 2     | -      |   | 0.1.  | 5.1             | - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | 9 - 2      |      |      |       | •      |
| TABLE LXIII.         BLADE . 30R CHORDWISE DENOTING<br>(BLADE CENTER OF<br>(FS) MU (DE6) A1 A2 A3 A4<br>500 .0793 4.0 -1.1 2.26 1.5<br>500 1.040 4.0 -1.1 2.26 2.1<br>500 1.040 4.0 -2.6 2.0 2.06 2.1<br>500 1.040 4.0 -2.6 1.0 2.5 -1.0 2.5 -1.0<br>700 .294 11.0 -2.6 1.0 2.5 -1.0 2.5 -1.0<br>700 .294 11.0 -2.6 1.0 2.5 -1.0 2.6 1.0<br>700 .294 11.0 -2.6 1.0 2.5 -1.0 2.6 1.0<br>800 1.040 4.0 -5.0 1.0 0.0 -2.6 1.0 2.0 5.0<br>700 2.294 11.0 -10.0 1.0 0.0 -2.0 5.1 0.0 4.0<br>800 1.040 4.0 -10.0 1.0 0.0 -2.1 0.0 4.0<br>800 1.040 4.0 -10.0 1.0 0.0 5.1 0.0 -2.0<br>800 1.040 4.0 -10.0 1.0 0.0 0.0 5.1 0.0 -2.0<br>800 1.040 4.0 -10.0 1.0 0.0 5.1 0.0 -2.0<br>800 1.040 4.0 -10.0 1.0 0.0 0.0 5.1 0.0 0.0 5.0<br>800 1.040 4.0 -10.0 1.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                              | <b>I</b> >      |             | AS         | 6.1  | 9.9  | 2.1 |       |       |        |                  |       | 6.1   | N•1 |       |  |   |          |      | 85    | 6.8   | 7.7    |   |       |                 |                                         |            |      |      | 2.4   |        |
| TABLE LXIII.       BLADE       301         (BLADE       CEI         (PPS)       NU       (DE6)       AI       A2       A3         500       .978       4.0       -1.1       2.2      6         500       .978       4.0       -1.1       2.3      6         500       .978       4.0       -1.1       2.2      6         500       .1266       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.2       2.2         700       .294       10.0       -2.5       -1.4       2.6         700       .294       10.0       -2.5       -1.4       2.2         700       .294       10.0       -2.5       -1.4       2.5         500       1.250       4.0       -1.6       2.4       2.5 </td <td>3</td> <td>8</td> <td></td> <td>T</td> <td>•</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• 1</td> <td>)</td> <td></td> <td></td> <td></td> <td>Ŷ</td> <td></td> <td></td> <td>-</td> <td>• •</td> <td>-</td> <td>10</td> <td>N</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>                                                                                                                                                                                                      | 3               | 8           |            | T    | •    | 1   |       |       |        |                  |       | • 1   | )   |       |  |   | Ŷ        |      |       | -     | • •    | - | 10    | N               | -                                       |            |      | -    |       |        |
| TABLE LXIII.       BLADE       301         (BLADE       CEI         (PPS)       NU       (DE6)       AI       A2       A3         500       .978       4.0       -1.1       2.2      6         500       .978       4.0       -1.1       2.3      6         500       .978       4.0       -1.1       2.2      6         500       .1266       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.3      6         500       1.126       4.0       -1.1       2.2       2.2         700       .294       10.0       -2.5       -1.4       2.6         700       .294       10.0       -2.5       -1.4       2.2         700       .294       10.0       -2.5       -1.4       2.5         500       1.250       4.0       -1.6       2.4       2.5 </td <td>CHORI<br/>TER OI</td> <td>BENDIN</td> <td>4</td> <td>1.9</td> <td>1.5</td> <td>2.1</td> <td></td> <td></td> <td>•<br/>1</td> <td>-1.9</td> <td>-9-</td> <td>-2.0</td> <td></td> <td>1.0</td> <td></td> <td></td> <td>BENDIN</td> <td></td> <td>48</td> <td>4.5</td> <td>0.0</td> <td></td> <td></td> <td>7.7</td> <td>4 ° 6</td> <td>10.6</td> <td>0.12</td> <td></td> <td>-2.8</td> <td>1</td>                                                                                                                                  | CHORI<br>TER OI | BENDIN      | 4          | 1.9  | 1.5  | 2.1 |       |       | •<br>1 | -1.9             | -9-   | -2.0  |     | 1.0   |  |   | BENDIN   |      | 48    | 4.5   | 0.0    |   |       | 7.7             | 4 ° 6                                   | 10.6       | 0.12 |      | -2.8  | 1      |
| TABLE LXIII<br>TABLE LXIII<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ் <sub>ப</sub>  | 351NQ       | S          |      | 9.1  |     |       |       | -1-2   |                  | 2.2   | 5.2   | 20  | 2.0   |  |   |          |      | 83    | -1.7  | -2     |   |       | 0.4-            | -2.1                                    | -1.6       |      |      |       | •      |
| TABLE LXIII<br>TABLE LXIII<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLAD<br>(BLA)   | DR CHO      | A2.        | 2.3  | 2.2  |     | 2.    |       | 2.6    | 2.3              | ***   |       |     | 0.1-  |  |   | DR CHOR  |      | 82    | s.    | •      | • |       |                 |                                         |            |      |      |       |        |
| TABLA<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR<br>PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             | V          | 8.1  | 1.1- | ••• |       | -2.0  | -3.9   | <b>*</b> •9<br>- | -10.0 |       |     | C•2-  |  |   | •        |      | 81    | 0.4-  | -2.0   |   | 10.6  | 10.4            | +-11-                                   | 10.1       |      | 10.8 | 14.3  | •      |
| OMS         MS         MS           675         500         575           500         575         1.126           500         575         1.218           500         575         1.218           700         5294         700           700         294         700           550         793         594           700         294         700           550         1.018         1.018           700         294         700           550         1.026         958           500         .793         594           700         .294         1.026           550         1.026         .956           500         .793         .294           700         .294         .294           700         .294         .294           700         .294         .294           700         .294         .294           700         .294         .294           700         .294         .294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABLE           | đ           | (056)      |      |      | •   |       |       | •      | •                | 0.4   | •••   | -   | 0.0   |  |   | B        | THEC | (DEG) |       |        |   |       |                 |                                         |            |      |      |       |        |
| 1446 14 14 14 14 14 14 14 14 14 14 14 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |             |            | .793 | .876 | •   | 1.040 | 1.181 | 243    | 1.312            | .366  |       |     |       |  |   |          |      |       | .793  | .876   |   | 126   | 191.            | .243                                    | 512        |      |      |       |        |
| Run 200 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | N N N       | (FPS)      | 500  | 200  |     |       |       |        |                  |       | 004   |     |       |  |   |          | S No | (FPS) | 500   | 200    |   |       | 175 1           | <b>#52</b>                              | \$27       |      |      | 004   | 2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | RUN-<br>PT. |            |      |      |     |       | 75- 8 | 75- 9  | 75-10            | 75-11 | 76- 5 |     |       |  |   | RUN-     | PT.  |       | 75- 3 | -21-   |   | 15- 1 | 75- 8           | 75- 9                                   | 75-10      |      | -92  | 76- 5 |        |

|                                          |   |    |     |   | TA | LABLE LI | - 11D | LXIII - Concluded | uded.           |     |    |     |       |     |     |     |
|------------------------------------------|---|----|-----|---|----|----------|-------|-------------------|-----------------|-----|----|-----|-------|-----|-----|-----|
| 1<br>İz                                  |   |    | į   | 3 |    | W I GLO  |       |                   | NUMBRICS (INLB) | Ş   |    |     |       |     |     |     |
| isĒ<br>i                                 | 3 | žŧ | *   |   | 2  | 5        | 8     | 2                 | 2               | 5   | 2  | \$  | 810   | 811 | R12 | R13 |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | E | :  | ••• |   |    |          | •••   | 1                 | •               | •   | ?  | ?   | •     | :   | !   | 'n  |
|                                          |   | 3  |     | 3 |    | 2.3      | 3     | 11.7              | •               | •   | •  | •   | 7     |     | ••  | •   |
|                                          |   | 3  | 1   | 3 |    | •••      |       | 13.7              | •               | •   | •  | •   | •     | •   | 5   | •   |
|                                          |   | 33 | 1   | 3 |    | •        | 3     |                   |                 |     | ?' | ņ   | •     | 1.0 | 1.6 | •   |
|                                          |   | 3  | 1   |   | 1  |          |       |                   |                 |     |    |     |       |     |     |     |
| 3                                        | 1 | 3  | 3   | : | -  |          | •     |                   |                 |     | •  | 1.1 |       | 2.5 |     | 5   |
|                                          | H | 3  | 3   |   | 1  | •        |       |                   | 17.0            | 5.5 | •  |     | •     | 1.2 | 1.0 | •   |
|                                          |   |    | 13  |   |    |          |       |                   |                 |     |    |     | 0 - N |     | •   |     |
| 3                                        | Ļ | 1  | 1   |   | 1  |          | 1     | 1                 | 17              | •   | •  | :•; |       |     | •   | •   |
|                                          | Ę | 1  | 2   | 1 | 1  | 2        | ī     | :                 | •               | •   | •  | 2-1 | 1.1   | •   | •   | •   |
|                                          |   |    |     |   |    |          | I     |                   |                 |     |    |     |       |     |     |     |

15.8

| E of   |                    |       |               | BLADE | . 35R . | TORSIONAL MOMENT HARMONICS | MOMENT     | HARMON |                         | (INLB)     |            |     |     |
|--------|--------------------|-------|---------------|-------|---------|----------------------------|------------|--------|-------------------------|------------|------------|-----|-----|
|        | OMS<br>#R<br>(FPS) | M     | THEC<br>(DEG) | ÂÌ    | A2      | A3                         | 44         | AS     | 46                      | 27         | <b>A6</b>  | 49  | A10 |
| 75-    | 6                  | . 793 | 4.0           | 9.    | 7       |                            | -          | 1.2    | 1.2                     | 8.         | *.         | •   | •   |
| 15-    | 4 500              | .876  |               | •     | 9       | -3.3                       |            | 2.0    | 1.3                     | •          | *          |     | 1:- |
| 75- 1  | -                  | .958  | 4.0           | 1.5   | -1.2    |                            | •          | 3.0    | 2.2                     | 1.1        |            |     | •   |
| 75-    |                    | 1.040 | 0.4           | 2.2   | -2.1    |                            | -3.0       | 6.2    | 3.1                     | 1.4        | 5          | 77  | •   |
| 75- 1  | -                  | 1.126 | 4.0           | 3.3   | 6       |                            | -7.7       | 11.6   | 3.3                     | 1.7        | 1.0        | 1.1 |     |
| 75- 1  | -                  | 1.181 |               | 3.0   | -3.3    |                            | -6.2       | 12.0   | 5.7                     | 3.2        | 2.         | 2   | 2.  |
| -51    | -                  | 1.243 | 4.0           | 3.2   | -5.4    |                            | -5.8       | 6.8    | 9.1                     | 1.3        | 5          | •   |     |
| 75-1   | -                  | 1.312 | 0.4           | 3.0   | -7.2    | -1.9                       | -5.8       |        | 0.6                     | -1.2       | 5.1        | *   | ~   |
| 75-1   |                    | 1.388 | 0.4.          | 2.9   | -10.2   |                            | 1.3        | -2.7   | 2.2                     | -1.5       | 3          | 1.  | 1.0 |
| 76-    |                    | .294  | 10.0          | -     | 6       | -6.1                       | 9          | 2.0    | 1.0                     | *          |            |     | 0.  |
| 76- 1  | -                  | 294   | 11.0          | -2.8  | 2       |                            | 1.01       | -1-1   | 1                       | 2          |            |     | -   |
| 76-    | -                  | 294   | 12.0          | -2.1  |         | Ĩ                          | 8.4-       |        | -                       | -          | 2          |     | -   |
|        |                    |       |               |       | •       |                            |            |        |                         |            |            |     | •   |
| ę      | •                  |       | 0.01          | C•7-  | •       | 71-                        | 1.0        | 6·1-   |                         | Ĩ          | 2          | •   | •   |
|        |                    |       |               |       |         |                            |            |        |                         |            |            |     |     |
|        |                    |       |               |       |         |                            |            |        |                         |            |            |     |     |
| -NUN-  |                    |       |               | BLADE | .35R    | .35R TORSIONAL             | MOMENT     | HARMON | MOMENT HARMONICS (INLB) | 118)       |            |     | ×   |
| PT.    |                    |       |               |       |         |                            |            |        |                         | •          |            |     |     |
| °<br>N |                    |       | THEC          | 2     |         | 2                          | ł          | ł      | à                       | 2          | 2          |     |     |
|        | (544)              | 2     | (DEG)         | 19    | 29      | 63                         |            | 20     | 8                       | 19         | 89         | 60  | 019 |
| 75- 3  | -                  | .793  | 4.0           | *     | 1.0     |                            | -1.1       | 0.1    | •                       | .1         |            |     | .1  |
| 75- 1  | -                  | .876  | 4.0           |       | 8.      |                            | -1.2       | •      | 9.                      | s.         | <b>n</b> . | ••  | ġ   |
| 15- 1  |                    | .958  | 4.0           | 1.1-  | ~       |                            | <b>-</b> 2 | •      | 1.3                     | •          | *.         | ••  |     |
| 15-    |                    | 1.040 |               | -3.1  | -1.1    | 6.1                        | <b>n</b> . | 1.6    | 3.2                     | 9          | 9          |     | *   |
| 75- 1  | -                  | 1.126 | 4.0           | -4.5  | -2.8    | 8.7                        | 9.1        | 2.5    | 5.4                     | <b>n</b> . | -1.3       |     | 4.  |
| 75- 1  | -                  | 1.101 | 4.0           | -6.6  | -3.7    | 9.7                        | 1.6        | -1.4   | 4.1                     | 7          | <b>K</b>   | ••• | ġ   |
| -2-    | ~                  | 1.243 | 0.4           | -9.1  | オ・ワー    | 10.6                       | <b>*</b> * | 3.0    |                         | -2.5       |            |     |     |
| 12-11  | -                  | 1.312 | 0.4           | 6.6-  | -3.6    | 11.9                       | 8.2        |        | -                       | -1-2       |            | 9   |     |
| 1-51   | 104                | 1.388 |               | -12.4 |         | 11.5                       | 0.0        | -      | -10-2                   | -2.9       | D :        | -   |     |
| 2      | ~                  |       | 10.01         | 9.0   |         | 0.0-                       |            |        |                         |            | <b>*</b> 1 |     |     |
|        | -                  | 162°  | 11.0          |       |         |                            | -10-2      |        |                         |            | •          | ~   | 7   |
|        | •                  |       | 14.0          | 2.6   |         |                            |            |        |                         | 2.1-       |            |     |     |
| -01    | -                  |       |               |       |         |                            |            |        |                         |            | •          |     |     |

|             |             |       |               |       |             | T.        | TABLE LXIV - Concluded | V – Cor | ıcluded          |      |     |            |            |     |
|-------------|-------------|-------|---------------|-------|-------------|-----------|------------------------|---------|------------------|------|-----|------------|------------|-----|
| RUN-<br>PT. | SMO         |       |               | BLADE | LADE .35R 1 | TORSIONAL | MOMENT                 | HARMON  | HARMONICS (INLB) | (LB) |     |            |            |     |
| •<br>oz     | #R<br>(FPS) | N     | THEC<br>(DEG) | RS    | R1          | R2        | R3                     | 44      | RS               | R6   | R7  | RB         | R9         | RIO |
| 75- 3       | 500         | £64°  | 4.0           | 6•    |             | 1.0       | 2.9                    | 1.1     | 1.5              | 1.2  | 10  | С          | ۳.         | .1  |
| 12- 1       | 500         | .876  | 0.4           | 1.4   | •           | 1.0       | 3.8                    | 1.2     | 2.0              | 4.1  | 6.  | 9.         | <b>n</b> . | \$  |
| 75- 5       | 005         | .958  | 0.4           | 2.1   | 1.9         | 1.2       | 4.0                    | 5       | 3.2              | 2.6  | 1.1 | 0.         | *.         | •   |
| 75= 6       | 200         | 1.040 | 0.4           | 3.3   | 1.9         | 2.4       | 7.0                    | 3.0     | 6.4              | ***  | 1.6 | •          | <u>ہ</u>   | 3.  |
| 75- 7       | 500         | 1.126 | 0.4           | 4.5   | 5.6         | 2.9       | 11.3                   | 7.7     | 11.9             | 5.5  | 1.7 | 1.6        | •          | 4.  |
| 75- 8       | 475         | 1.181 | 0.4           | 5.2   | 7.4         | 4.9       | 11.9                   | 6.4     | 12.1             | 7.0  | 3.2 | 1.5        | =          |     |
| 75- 9       | 452         | 1.243 | 0.4           | 5.7   | 6.7         | 6.3       | 12.3                   | 6.7     | 10.8             | 9.2  | 3.2 | 5.         | ••         | *   |
| 75-10       | 427         | 1.312 | 0.4           | 6.4   | 10.3        | 8.0       | 12.0                   | 10.0    | 9.1              | 11.2 | 1.9 | 5          |            | ÷.  |
| 75-11       | 101         | 1.368 | 0.4           | 7.4   | 12.8        | 10.6      | 11.6                   | 10.4    | 5.5              | 10.8 | 3.3 | •          |            | 1.0 |
| 76- 3       | 700         | +6Z.  | 10.0          | 1.4   | 5.9         | 4.9       | 7.1                    | 9.7     | 5.0              | 2.5  | 6.  | \$.        | 2          | •   |
| 76- 4       | 700         | •294  | 11.0          | -7.2  | 8.8         | 6.7       | 8.2                    | 11.0    | 6.1              | 3.9  | 1.8 | 5          | *          | \$  |
| 76- 5       | 200         | •294  | 12.0          | -4-5  | 4.6         | 6.9       | 9.6                    | 8.3     | 8.4              | 3.2  | 1.2 | <b>n</b> . | 2          | *   |
| 76- 6       | 200         | •294  | 13.0          | -6.7  | 11-4        | 7.7       | 12,6                   | 8.6     | 4.8              | 3.0  | 1.1 | •          | <b>n</b>   | •   |
|             |             |       |               |       |             |           |                        |         |                  |      |     |            |            |     |

| TABLE LX                                             | V. BLADE I<br>(BLADE                                                                                                                                                                                                                  | AG MOTI<br>CENTER                                                        |                                                                                  |                                                                                        |                                                                                  |                                                                            |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| RUN-<br>PT. ONS<br>NO. #R<br>(FPS)                   | THEC<br>MU (DEG)                                                                                                                                                                                                                      |                                                                          | ADE LAG                                                                          | MOTION<br>A3                                                                           | HARMONI<br>Aq                                                                    | CS (DES)                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | .351 10.0<br>.351 11.0<br>.410 6.0<br>.406 4.0<br>.406 5.0<br>.546 5.0<br>.546 5.0<br>.546 5.0<br>.546 5.0<br>.546 5.0<br>.546 5.0<br>.546 5.0<br>.610 5.0<br>.926 5.0<br>.926 5.0<br>.956 5.0<br>.351 10.0<br>.351 10.0<br>.351 10.0 | 4<br>5<br>1<br>1<br>1<br>1<br>1<br>5<br>3                                | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0       |                                                                                        |                                                                                  |                                                                            |
| RUN-<br>PT. OMS<br>NO. SR<br>(FPS)                   | THEC<br>MU (DEG)                                                                                                                                                                                                                      |                                                                          | DE LAG                                                                           | MOTION<br>83                                                                           | HARNONI<br>B4                                                                    | CS (DEG)<br>B <b>S</b>                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | .351 10.0<br>.351 11.0<br>.410 6.0<br>.446 4.0<br>.446 5.0<br>.546 4.0<br>.546 5.0<br>.546 5.0<br>.610 5.0<br>.634 5.0<br>.926 5.0<br>.351 10.0<br>.351 11.0<br>.351 12.0<br>.410 10.0                                                | .3<br>.0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>.3<br>.4<br>.4<br>.3 | .1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | .1<br>.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1 | .0<br>.0<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2<br>.2<br>.1<br>.1<br>.0<br>.1<br>.1 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |

.

| -                     |                    |                                          |
|-----------------------|--------------------|------------------------------------------|
|                       | e)<br>R5           | 0.000000000000000000                     |
|                       | CS (DEe)<br>R4     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   |
|                       | HARMONICS<br>R3    |                                          |
| eđ                    | MOTION<br>R2       |                                          |
| TABLE LXV - Concluded | BLADE LAG<br>R1    | 8.9 N N N N O                            |
| - אדו פוש             | BLA<br>RS          | 07 00 00 00 00 00 00 00 00 00 00 00 00 0 |
| TAI                   | THEC<br>(DE0)      |                                          |
|                       | ₹                  |                                          |
|                       | 0MS<br>*R<br>(FPS) | 7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  |
|                       | RUR<br>84.         |                                          |

| _                                                                         |                                               |               |                                                             |                                                                         |                                                |
|---------------------------------------------------------------------------|-----------------------------------------------|---------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|
|                                                                           |                                               | A10           |                                                             | 016                                                                     |                                                |
| RUNS 77-79                                                                |                                               | 6V            | N                                                           | 8                                                                       | 0799-9900000000000000000000000000000000        |
|                                                                           | 10)                                           | 2             | ••••••••••••••                                              | (87<br>197                                                              |                                                |
| - SOINC                                                                   | CS (IN.                                       | A7            | ۹۴.40 - F. F + + + + F. | cs (IN.                                                                 |                                                |
| T HARM(<br>HORD)                                                          | INOWIAH                                       | <b>46</b>     | ND                                                          | . 98                                                                    |                                                |
| MCMENT HAF<br>.30 CHORD)                                                  | HOMENT                                        | SA<br>AS      |                                                             | HOMENT                                                                  |                                                |
| .30R FLAPWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT .30 CHORD) | .300 FLAPWISE BENDING MOMENT HARMONICS (INLB) | ¥             |                                                             | "JOR FLAPHISE BENDING MONENT MARMONICS (IN,-LB)<br>B2 B3 B4 B5 B6 B7 B4 |                                                |
| PWISE I                                                                   | 0 JSIA                                        | A3            | -0                                                          | e sing                                                                  |                                                |
| OR FLA                                                                    | SOR FLA                                       | A2            |                                                             | 30A FLA<br>B2                                                           |                                                |
| BLADE .3<br>(BLADE 0                                                      | BLADE .                                       | 41            |                                                             | BLADE .<br>B1                                                           |                                                |
|                                                                           |                                               | THEC<br>(DEB) | 00000000000000000000000000000000000000                      | THEC<br>(DE0)                                                           |                                                |
| TABLE LXVI                                                                |                                               | ¥             |                                                             | 3                                                                       |                                                |
| ΤA                                                                        | ž                                             | FPS)          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       | 8 8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8      | <b>444466</b> 00000000000000000000000000000000 |
|                                                                           |                                               | _             |                                                             | 1.5                                                                     |                                                |

e

363

•

|     |             |                         |                     |                                        |                                             | 51    | TABLE LXVI - Concluded  | VI - Coi | ncluded                      |         | -                     |     |                                        |     |
|-----|-------------|-------------------------|---------------------|----------------------------------------|---------------------------------------------|-------|-------------------------|----------|------------------------------|---------|-----------------------|-----|----------------------------------------|-----|
| 1.0 | ens<br>FPS) | Ŧ                       | THEC<br>(DEC)       | BLADE<br>RS                            | .JOR FLAPUISE BENDING HONENT<br>R1 R2 R3 R4 | PN152 | BENDING<br>R3           |          | HARMONICS (INLB)<br>R5 R6 R7 | CS CIN. | 1<br>1<br>1<br>1<br>1 | 2   | 2                                      | 810 |
|     |             |                         | 20200002020200<br>0 | 50000000000000000000000000000000000000 |                                             |       |                         |          | ก็ถูกกลักระระดูด             |         |                       |     | 2200000-000000000000000000000000000000 |     |
|     | 000         | . 351<br>. 351<br>. 410 | 11.0                | * - • •                                |                                             | 995   | 0.1-1<br>0.5-1<br>0.5-1 |          | n.ea<br>nnn                  |         | • ~ •                 | ••• | 7.4.                                   | -04 |

| _                                             |                                                                                             |                                                                                         |                                         |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|
|                                               | A10                                                                                         | *****                                                                                   | • • • • • • • • • • • • • • • • • • • • |
|                                               | ۽                                                                                           | 55 N - 6 7 N - 6 + 6                                                                    | 8                                       |
| 7-78                                          | <u>ş</u> 2                                                                                  |                                                                                         |                                         |
| RUNS 77-78                                    | S (1N                                                                                       |                                                                                         |                                         |
| NICS -<br>HORD)                               | Afrenic<br>Af                                                                               | 7.00                                                                                    |                                         |
| HARMONICS                                     | AS AS                                                                                       | ••••••••••••••••••••••••••••••••••••••                                                  |                                         |
| MOMENT<br>ITY AT                              | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | ~~ <u>\$</u> \$\$\$\$\$\$\$\$<br>\$ <b>\$</b> \$\$\$\$\$\$\$<br>\$ <b>\$</b> \$\$\$\$\$ |                                         |
| F GRAV                                        | A Tens                                                                                      | *-•, , , , , , , , , , , , , , , , , , ,                                                |                                         |
| .18R TORSIONAL MOMENT<br>CENTER OF GRAVITY AT | NLADE .1AM TANSIONAL NONEXIT HAMMONICS (INLD)<br>A2 A3 A4 A5 A6 A7 A8                       | 40000000000000000000000000000000000000                                                  |                                         |
| 3-3                                           | * 7                                                                                         |                                                                                         |                                         |
|                                               | THEC<br>(DEC)                                                                               |                                                                                         |                                         |
| IXVI                                          |                                                                                             |                                                                                         |                                         |
| TABLE LXVII.                                  | 3                                                                                           | ŖŖ <b>ŢŢŢŢŢ</b> ŢŢŢ                                                                     | २ जनहरूरेहरुरे <del>ह</del> न्न्        |
| E                                             | ¥ŦÊ                                                                                         |                                                                                         | ¥1Ê 222222222222                        |
|                                               | 111                                                                                         |                                                                                         |                                         |

|                 |      |               |      |            | TAE         | SLE LX       | ) - IIV | TABLE LXVII - Concluded |              |     |     |     |      |
|-----------------|------|---------------|------|------------|-------------|--------------|---------|-------------------------|--------------|-----|-----|-----|------|
| PT. ONS         |      |               |      | LADE .11   | TOUSIONAL   |              | HONENT  | HARMONICS (INLB)        | (IN          | 18) |     |     |      |
| NG. ef<br>(FPS) | ł    | THEC<br>(BEC) | 2    | R1         | 2           | 8            | £       | R5                      | 1            | R7  | 2   | \$  | R10  |
| nie             | 155  | 10-0          |      | 7.2        |             | .N.          | 13.0    | 1),q<br>10 g            |              | 1.2 | •   | •   |      |
| -               | 21   | •             | 2    |            |             | 9.0.7<br>9.4 | 5.      |                         |              |     |     | 27  |      |
| ~               | 23   |               |      | •          | 5           |              |         |                         |              |     |     | :   |      |
|                 |      | 00            |      |            |             |              |         |                         | -            |     |     |     | 177  |
| 77-12 500       | 38   |               |      | <b>a</b> - | <b>N N</b>  |              | 1.01    | 051                     | 5            |     | 201 | N   |      |
|                 |      |               |      |            |             |              |         | P 9                     | •••<br>N N N |     | 00  | ••• | ອຸທຸ |
|                 | 100. |               | e•1- |            | <b>C</b> •A | 1            | 2021    |                         | K•2          | C•1 | •   | •   | 1    |

à

| TAB                                                                                                                                                                                                                   | LE LXV                                                                                                               | -                                                                                            |                                                                                        |                                                                    | OF GRA                                                                                                                                                                             |                                                                            |                                                              | NS 77-78<br>Chord)                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--|
| RUN-<br>PT, OHS<br>NO, #R<br>(FPS)                                                                                                                                                                                    | MU                                                                                                                   | THEC<br>(DEG)                                                                                | BL/                                                                                    | AZ                                                                 | AS                                                                                                                                                                                 | AA                                                                         | AS                                                           | (6)<br>A6                              |  |
| 77-3700<br>77-4700<br>77-5700<br>77-5700<br>77-7700<br>77-7700<br>77-10700<br>77-10700<br>77-11700<br>77-12500<br>77-13500<br>78-3700<br>78-5700<br>78-6700                                                           | .351<br>.351<br>.410<br>.446<br>.546<br>.546<br>.546<br>.546<br>.610<br>.634<br>.926<br>.361<br>.351<br>.351<br>.351 |                                                                                              | .1<br>.2<br>.1<br>.1<br>.0<br>.0<br>.2<br>.2<br>.2<br>.3<br>.3<br>.3<br>.3<br>.2       | 3<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>5<br>5 | .4<br>.4<br>.5<br>.5<br>.6<br>.6<br>.3<br>.4<br>.4                                                                                                                                 |                                                                            |                                                              |                                        |  |
| RUN-<br>PT. ONS                                                                                                                                                                                                       |                                                                                                                      |                                                                                              | 0LA                                                                                    | DE FLAP                                                            | MOTION                                                                                                                                                                             | HARNON                                                                     | ICS (DE                                                      | •)                                     |  |
| NO, OR<br>(FPS)                                                                                                                                                                                                       | HU                                                                                                                   | THEC<br>(BE®)                                                                                | 81                                                                                     | 82                                                                 | 83                                                                                                                                                                                 | 84                                                                         | 85                                                           | 86                                     |  |
| $\begin{array}{c} 77-3 \ 700 \\ 77-4 \ 700 \\ 77-5 \ 700 \\ 77-6 \ 700 \\ 77-7 \ 700 \\ 77-9 \ 700 \\ 77-9 \ 700 \\ 77-10 \ 700 \\ 77-11 \ 700 \\ 77-12 \ 500 \\ 77-13 \ 500 \\ 78-3 \ 700 \\ 78-5 \ 700 \end{array}$ | .351<br>.351<br>.410<br>.486<br>.546<br>.546<br>.610<br>.634<br>.926<br>.958<br>.351<br>.351                         | 10.0<br>11.0<br>4.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>10.0<br>11.0<br>12.0 | .1<br>.3<br>.0<br>.1<br>.2<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.3 | 5<br>4<br>3<br>4<br>4<br>4<br>5<br>5<br>1<br>1<br>4<br>7           | $ \begin{array}{c}         1 \\         1 \\         0 \\        1 \\        1 \\        1 \\        1 \\        1 \\        1 \\         0 \\         0 \\         0 \\         $ | •1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•2<br>•2<br>•1<br>•2<br>•2<br>•2 | 1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>.1<br>.2<br>.0<br>.0 | 00000000000000000000000000000000000000 |  |

|                          |                            | 00000000NN                               |
|--------------------------|----------------------------|------------------------------------------|
|                          | L<br>L                     |                                          |
|                          | 2                          |                                          |
|                          |                            |                                          |
|                          | 8 5<br>0 8                 | ~~~~~~                                   |
|                          | HARHONICS (DEA)<br>R3 R4   |                                          |
| 8                        | HARM<br>R3                 |                                          |
| uded                     |                            | 0- nn = = = 0 n = = 4                    |
| Conclu                   | HOT NOT                    |                                          |
| ) -<br>1                 | C FLAP<br>R1               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |
| LXVI                     | BLADE FLAP MOTION<br>R1 R2 |                                          |
| TABLE LXVIII - Concluded | RS R                       |                                          |
| <b>C</b> ,               |                            | 00000000000000                           |
|                          | THEC<br>(DEG)              |                                          |
|                          | £                          |                                          |
|                          | ~                          |                                          |
|                          | ONS AND                    |                                          |
|                          | 59                         | n= n |
|                          | <u> </u>                   | ****                                     |

|                                                                             |                                                |           | <b>—</b> |       |       |       |       |       |       |       |       |       |       |       |       |       | -     | -    |  |                                                      |     |               | -      | -     | -    |       | -     |       | -     | -     | -     |       | -          | -    |       | -    |
|-----------------------------------------------------------------------------|------------------------------------------------|-----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--|------------------------------------------------------|-----|---------------|--------|-------|------|-------|-------|-------|-------|-------|-------|-------|------------|------|-------|------|
|                                                                             |                                                | A10       | -1.2     |       | 9.    | 5     | •     | 5     | r.    | •••   | •     | 9.    |       | .1    |       |       |       |      |  |                                                      |     | 810           | 2      |       | -1.8 | -     |       | •     | 1.0   | 1.2   | 1.0   |       |            |      |       | 17   |
| 77-78                                                                       |                                                | <b>A9</b> | 1.6      | 1.6   | 3     | ·     | 6     | 5.1   |       | •     | *     | •     | 1.1   | 1.3   |       |       |       | 1.1  |  |                                                      |     | 68            | 1      | 9.1   | -    |       |       | 9     |       |       |       |       |            |      |       | 1    |
| - RUNS                                                                      | -18)                                           | 88        |          | •     | *     | -     | .1    | •     | ••    | ••    | P     | \$.   | 9.    | 5.1   |       |       |       |      |  | (8)-                                                 |     | 88            | -1.3   |       | 2    |       | ***   | ***   | 9     | -1.0  | -1.1  |       |            |      |       | -    |
|                                                                             | CS (IN.                                        | 47        | 5        | *     | 5     | •     | ~     | 1.1   | •     | •••   | 2     |       | 0     | 5.1   |       |       |       |      |  | CS (IN                                               |     | 87            | 6      |       |      | 9     | *     | 9     | 9     | *     | -     |       | •          |      |       | •••  |
| T HARM<br>ORD )                                                             | HARMONI                                        | 96        | -1.2     | -1.2  |       |       | 9.1   | 8     | 0.1   | •     | 1.5   | 1.2   | 1.5   | 6     | 6     | 1     |       | 2    |  | HARMONI                                              |     | <b>8</b> 6    | 5<br>- |       | -    | 1.1   | 2     | ~-    | 1.    |       |       |       | <b>N</b> . |      |       |      |
| HOMENT HA                                                                   | MOMENT                                         | AS        | -1.7     | -2.0  | 5     |       | 1.1   | 5     | 9.    | 1.2   | 6     | -19.0 | -20.2 | -1.6  | -1-0  |       |       |      |  | MOMENT                                               |     | 85            | -1.4   | -     | -1.9 |       |       | •     |       | 7     | 9.1   | 13.4  | 17.4       |      | 44    | -    |
| . 30R CHORDWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT .30 CHORD) | .JOR CHORDWISE GENDING MOMENT HARMONICS (INLB) | ŧ         | -26.9    | -17.8 | -19.8 | -13.8 | -19.2 | -17.2 | -22.2 | -20.0 |       |       |       |       | -10.3 | 1     |       | 0.40 |  | BLADE .JOR CHORDWISE BENDING MOMENT HARMONICS (INLB) |     | 8             | 9.3    | 11.2  | 2.1  | -15.2 | -16.4 | -14.1 | -10.5 | -22.0 | -21.6 | 10.0  | 11.3       |      |       | 2.1  |
| DWISE I                                                                     | DWISE 8                                        | 54        |          |       |       |       |       |       | -1.5  |       |       |       |       | -1.3  |       |       |       |      |  | DWISE B                                              |     | 83            | -4.5   | 10.0  |      |       |       |       |       |       |       |       |            |      |       | 6.5- |
| R CHOR                                                                      | DR CHOR                                        | A2        | 2.9      | 2.8   | 1.9   | 2.0   | 2.2   | 2.4   | 2.7   | 2.9   | 3.3   | 4.0   | 4.4   | 2.2   | 2.2   | 0.0   |       |      |  | DR CHOR                                              |     | 82            | 1.1    |       |      | 6.    | •     |       |       |       |       |       |            | 1.2  |       |      |
| G-1                                                                         | BLADE .3                                       | V         | -7.0     | -7.5  | 5.4-  | -2.6  | -3.6  | -2.0  | -2.7  | -2.0  | -1.9  |       | -1.0  | -2.5  | -2.2  | 1.1   |       | 1.0  |  | ADE .3                                               |     | 81            | 9.9    | 8.8   | -1.9 |       | -2.9  | 9.4-  | -5.1  | -5.5  | -5.6  | -1.7  | ni<br>F    |      | 10.01 | 1.1  |
| <b>—</b>                                                                    | đ                                              | (DEG)     | 10.0     | 1.0   | 6.0   |       | 5.0   |       | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 10.0  | 11.0  | 10.01 |       |      |  | 6                                                    |     | THEC<br>(DEG) | 10.0   | 11.0  | 6.0  |       | 5.0   | 0.4   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0        | 0.01 |       | 10.0 |
| TABLE LXIX.                                                                 |                                                | ₹         | .351     | .351  | .410  | .466  | .486  | .546  | .546  | .610  | .634  | .926  | .956  | .351  | 1951  |       |       |      |  |                                                      |     | £             | .351   | 1951  | 410  | 486   | 406   | 546   | 546   | .610  | .634  | .926  | 926.       | 100. |       | 110  |
| TABI                                                                        |                                                | FPS)      | 1 700    | 100   | 1000  | 200   | 700   |       |       |       |       |       |       |       |       |       |       |      |  |                                                      | OHS | eR<br>(PPS)   | 700    | 100   | 100  | 100   | 100   | 700   |       |       |       |       |            |      |       | 200  |
|                                                                             | RUN-                                           | 22        | 77- 3    | 77- 4 |       | 77- 6 |       | 77- 6 | 77- 9 | 77-10 | 11-11 | 77-12 | 77-13 | 78- 3 | 78- 4 | 78-   | TR- P |      |  | RUN-                                                 | 7.  | N             | 17- 3  | 77- 4 | -11- | 77- 6 | 1-1   | 11- 8 | 17- 9 | 77-10 | 11-11 | 77-12 | 17-13      |      |       |      |

r

,

•

|                 |        |               |         |                | TABLE  | TABLE LXIX - Concluded | Conclud | eđ                              |          |      |         |     |     |
|-----------------|--------|---------------|---------|----------------|--------|------------------------|---------|---------------------------------|----------|------|---------|-----|-----|
| RUN-<br>DT AME  |        |               | BLADE . | .30R CHORDWISE | RDWISE |                        | MOMENT  | BENDING MOMENT HARMONICS (INLB) | CS (IN.  | -LB) |         |     |     |
| NO. 48<br>(FPS) | UM (1  | THEC<br>(DEG) | RS      | R1             | R2     | R3                     | R4      | RS                              | Ŕ        | R7   | RB      | R9  | R1  |
|                 |        | 10.0          | 13.1    | 7.9            | 3.1    | 101<br>11              | 20.5    | 2.2                             | 1.3      | à.0  | 1.3     | 1.6 | 1.3 |
| 77- 5 700       | 100.4. | 11.0          | 8-1     | 11.0           | 2.8    | 2.6                    | 21.0    | 2.1                             |          | •••  |         |     | ••• |
|                 |        |               | 7.4     | 5.1            | 2.2    | 4.4                    | 20.6    | 10                              | 6        | 9.   | 3.      | •   | 9.  |
|                 |        | 5,0           | 7.6     | 4.6            | 2.3    | 1.7                    | 25.3    | 1.2                             | 9.       | 5    | \$<br>• | 1.0 | •   |
|                 |        | 4.0           | 7.5     | 5.3            | 2.6    | 1.6                    | 22.3    | ŝ                               | 6.       | 9.   | *       | •   | 1.0 |
|                 |        | 5.0           | 7.9     | 5.7            | 2.7    | 2.2                    | 28.9    | r.                              | •        | Ŷ    | 9.      | 1.0 | 1.2 |
|                 |        | 5.0           | 7.8     | 5.8            | 3.0    | 2.3                    | 29.8    | 8                               | •        | *    | 1.0     |     | 1.4 |
|                 |        | 5.0           | 7.4     | 5.9            | 3.5    | 2.6                    | 32.2    | 8.                              | <b>9</b> | 5    | 1.1     | 5   | 1.3 |
|                 |        | 5.0           | 10.4    | 7.7            | 0.4    | 5,3                    | 11.2    | 23.2                            | 1.4      | ۲.   | 9.      | 5   | 9.  |
|                 |        | 5.0           | 18.3    | 6.3            | # • #  | 6,1                    | 11.9    | 26.7                            | 1.5      | 1.0  | 8.      | •   | 1.0 |
|                 |        | 10.0          | 10.4    | 9.1            | 3.1    | 3.6                    | 27.9    | 1.6                             | •        | *    | 1.3     | 1.6 | ŝ   |
|                 |        | 11.0          | 12.3    | 10.8           | 2.9    | 4,2                    | 23.1    | 1.3                             |          | ~    | 1.2     | 1.5 | •   |
|                 |        | 12.0          | 13.9    | 12.7           | 2.4    | 5.4                    | 15.9    | 1.1                             | ŧ.       |      | 1.0     | 1.3 | •   |
|                 |        | 10.0          | 10.4    | 8.0            | 2.3    | 4.7                    | 31.7    | 2.0                             | <b>n</b> | •    | 1.1     | 2.1 | 2.5 |
|                 |        |               |         |                |        |                        |         |                                 |          |      |         |     |     |
| TA                                                                                                                                                                                                       | ABLE LXX                                                                     |                                                                             | LAG MOTI<br>E CENTER                            |                                                                                 |                                                          | RUN 79<br>30 CHORD                    | )                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------------------------|
| RUN-<br>PT. OMS<br>NO. #R<br>(FPS)                                                                                                                                                                       |                                                                              | THEC<br>(DEG)                                                               | _                                               |                                                                                 |                                                          | HARMONI                               | CS (DEG)                                                 |
| 79- 3 500<br>79- 4 500<br>79- 5 500<br>79- 6 500<br>79- 7 500<br>79- 7 500<br>79- 8 500<br>79- 9 500<br>79-10 500<br>79-11 500                                                                           | MU<br>.657<br>.766<br>.857<br>.890<br>.926<br>.958<br>.991<br>1.026<br>1.062 | 13.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>11.0<br>8.0 | A1<br>5<br>4<br>4<br>4<br>4<br>4<br>4<br>3<br>2 | A2<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.1                              | A3<br>.3<br>.2<br>.1<br>.2<br>.2<br>.2<br>.2<br>.1<br>.2 | A4<br>2<br>3<br>3<br>3<br>3<br>3<br>1 | •0<br>•2<br>•1<br>•1<br>•1<br>•1<br>•2<br>•1<br>•2<br>•2 |
| RUN-<br>PT. OMS<br>NO. #R<br>(FPS)                                                                                                                                                                       | MU                                                                           | THEC<br>(DEG)                                                               | BLAI                                            | DE LAG<br>B2                                                                    | MOTION<br>B3                                             | HARMONI<br>B4                         | CS (DEG)<br>B5                                           |
| 79-3       500         79-4       500         79-5       500         79-6       500         79-7       500         79-8       500         79-9       500         79-10       500         79-11       500 | .657<br>.766<br>.857<br>.890<br>.926<br>.958<br>.991<br>1.026<br>1.062       | 13.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>11.0<br>8.0 | .2<br>.0<br>1<br>2<br>3<br>3<br>4<br>5<br>5     | ·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>·2<br>· | .0<br>2<br>3<br>4<br>4<br>4<br>4<br>2                    | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>1  | .0<br>1<br>3<br>3<br>3<br>4<br>4<br>4<br>3               |

|       |                  |       |       | TANLE LX | TANLE LXX - Concluded | uded       |                            |            |            |
|-------|------------------|-------|-------|----------|-----------------------|------------|----------------------------|------------|------------|
| PT.   | N<br>N<br>N<br>N |       | THEC  | BLA      | DE LAG                | MOTION     | BLADE LAG MOTION HARMONICS | 5 (DEG)    |            |
| -     | FPS)             | £     | (DEG) | RS       | <b>8</b> 1            | R2         | ß                          | <b>Rb</b>  | RS         |
| 2-62  | 500              | .657  | 13.0  | 5.7      | 5                     | ~          | ۳.                         | •2         | •          |
| 79- 4 | 500              | .766  | 12.0  | 4.2      | *                     | ~          | <b>n</b>                   | <b>.</b>   | 4          |
| 79- 5 | 500              | .857  | 12.0  | 3.8      | *                     | ~          | 4                          | <b>.</b> . | <b>n</b> . |
| 79- 6 | 500              | .890  | 12.0  | 3.6      | 4                     | ю.         | *                          | <b>n</b> • | ņ          |
| 2 -62 | 500              | .926  | 12.0  | 0.7      | 5                     | <b>n</b>   | \$                         | <b>n</b> • | <b>n</b> . |
| 79- 8 | 500              | .958  | 12.0  | 3.1      | ŝ                     | <b>n</b> . | 4                          | 1 <b>7</b> | *          |
| 6 -62 | 500              | 166.  | 12.0  | 2.8      | 9•                    | <b>n</b>   | 4.                         | <b>.</b> . |            |
| 79-10 | 500              | 1.026 | 11.0  | 2.3      | 9.                    | n.         | *                          | <b>n</b>   | *          |
| 11-64 | 500              | 1.062 | 8.0   | 2.2      | 5                     | \$         | n.                         | •5         | •          |
|       |                  |       |       |          |                       |            |                            |            |            |

| _                                                                         |                                                                       |                                                               |                                                                       |                                               |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
|                                                                           | 61A                                                                   | N-0-<br>1                                                     | 518                                                                   |                                               |
|                                                                           | A12                                                                   |                                                               | fie .                                                                 | 0-000000                                      |
|                                                                           | 411<br>4                                                              | • • • • • • • • • • • • • • • • • • •                         | 118                                                                   | • • • • • • • • •                             |
| run 79                                                                    | A10                                                                   | • • • • • • • • • • • • • • • • • • •                         | 11                                                                    |                                               |
| 1                                                                         | \$                                                                    | * 0BF *<br>1                                                  | 2                                                                     |                                               |
| RMONIC                                                                    | (g - 7                                                                | 0,00,0400                                                     | g z                                                                   |                                               |
| MOMENT HAF                                                                | CS (IN.<br>A7                                                         | 05445 <b>676</b><br>4 11114                                   | cs (IN.                                                               | 0 6N 7 - M - C<br>-                           |
| ING MON<br>AT .30                                                         | HARMON I<br>A6                                                        | 0,NF, F0, 8 - 1 - 2<br>1 MM # N N - 1<br>1 MM # N N - 1       | INONN 98                                                              |                                               |
| CSE BENDI<br>GRAVITY                                                      | MOMENT<br>A5                                                          | * 0 <b>0</b> 0 1 1 1 0<br>0 1 1 1 0<br>1 1 1 0                | HOMENT<br>BS                                                          | · · · · · · · · · · · · · · · · · · ·         |
| .30R FLAPWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT .30 CHORD) | -30R FLAPWISE BENDING MOMENT HARMONICS (INLB)<br>A2 A3 A4 A5 A6 A7 A8 | 44474674<br>7777779974                                        | -30R FLAPWISE BENDING MONENT HARMONICS (INLD)<br>B2 B3 B4 B5 D6 D7 D6 | - 1NNN 2<br>1                                 |
| 63                                                                        | IPNISE E                                                              | N 01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                      | PWISE 8                                                               | 0 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9     |
| BLADE<br>(BLADE                                                           | -30R FLI                                                              | 0.00 4 1 0 0 0<br>0 1 0 1 0 1 0 0<br>0 1 0 1 0 1 0 1          | 50R FL/                                                               | 7 ON NNNN -<br>                               |
| LXXI.                                                                     | BLADE .<br>A1                                                         | 001-101-1-<br>                                                | BLADE .<br>B1                                                         | 4 NO 70N7<br>1 1 1 1 1                        |
| TABLE LXXI                                                                | THEC<br>(DEG)                                                         | 00000000                                                      | THEC<br>(DEC)                                                         | 0 00 0 00 0 0<br>0 0 0 0 0 0 0<br>1 1 1 1 1 1 |
|                                                                           | £                                                                     | 657<br>657<br>857<br>850<br>926<br>926<br>926<br>926<br>1.026 | £                                                                     | 657<br>765<br>956<br>926<br>938<br>938<br>991 |
|                                                                           | PS)                                                                   |                                                               | S 45                                                                  |                                               |
|                                                                           | RUN-<br>NO.                                                           | n 40 01 00 0                                                  | PT.                                                                   | 2 40 40 40 9<br>2 41 4 4 4 4<br>7 4 4 4 4 4 4 |

|                        |                                 | 0 R11 R12 R13 | 1.<br>1. 9. |       | 1. 1 |       |       |      |      |             |
|------------------------|---------------------------------|---------------|-------------|-------|------|-------|-------|------|------|-------------|
|                        |                                 | R10           | <b>F</b> •  |       | 1.6  |       |       |      |      | "           |
|                        |                                 | 8             |             |       | 1.2  | -     |       | 1.6  | -    | 1.6         |
|                        |                                 | 8a            | 1.0         | 1.2   | 1.1  | 1.3   | 1.1   | 1.2  | 1.3  | 1.3         |
|                        | 181                             | R7            |             | 1.0   | ~    |       | 5     | 6.   | 1.3  | 1.9         |
| þ                      | CS (IN                          | R6            | 1.3         | 4.1   | 8.5  | 9.4   | 10.6  | 11.1 | 9.1  | 11.0        |
| onclude                | HARMONI                         | RS            | 2.8         | 4.4   | 1°5  | 6.8   | 8.0   | 4.6  | 10.8 | 11.8        |
| й<br>-<br>Ц            | MOMENT                          | #<br>#        | 1.9         | 3.6   | 4.4  | 4.6   | 5.2   | 5.5  | 6.7  | 6.7         |
| TABLE LXXI - Concluded | BENDING MOMENT HARMONICS (INLB) | R3            | 12.9        | 16.1  | 18.5 | 16.9  | 10.0  | 19.5 | 20.0 | 19.0        |
| TAF                    | VPNISE 6                        | R2            | 5.0         | 7.3   | 8.9  | 9.7   | 11.3  | 12.3 | 13.1 | 13.3        |
|                        | .30R FLAPWISE                   | RI            | 1.9         | 1.9   | 2.8  | 4.0   | 3.7   | 5.4  | 4.7  | 5.5         |
|                        | BLADE                           | RS            | 5.1         | 5.2   | 5.5  | 5.2   | 5.6   | 5.5  | 5.5  | 5. <b>k</b> |
|                        |                                 | THEC<br>(DEG) | 13.0        | 12.0  | 12.0 | 12.0  | 12.0  | 12.0 | 12.0 | 11.0        |
|                        |                                 | £             | .657        | .766  | .857 | 060.  | .926  | 956. | 166. | 1.026       |
|                        | S#0                             | +R<br>(FPS)   | 500         | 200   | 200  | 200   | 200   | 200  | 200  | 200         |
|                        | RUN-<br>PT.                     | Q             | 5 -61       | 4 - 4 | 2 2  | 2-2-0 | 2 - 2 | 2    | 0-2  | 79-10       |

|                                               |                                                                                 |                                            |                                                                      | r                                                                                                                                                          |                                                            | r                                   |
|-----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|
|                                               |                                                                                 |                                            |                                                                      |                                                                                                                                                            | 815                                                        | * - * * *                           |
|                                               | A13                                                                             |                                            | 613                                                                  | * 0 - N*                                                                                                                                                   | A12                                                        | *                                   |
|                                               | A12                                                                             | 7977N                                      | 812                                                                  |                                                                                                                                                            | R11                                                        | 9 - N 5 5                           |
|                                               | A11                                                                             | NO - 11 N                                  | B11                                                                  | 0 - N<br>1 + + 1                                                                                                                                           | <b>R</b> 10                                                | ٥. ٠ ٠ ٠ ٠ ٠                        |
| run 79                                        | A10                                                                             | ~~~~                                       | B10                                                                  | 0-10#N<br>                                                                                                                                                 | ę                                                          | 441 NG                              |
| <u>،</u>                                      | A9                                                                              |                                            | 68                                                                   | 0.0000                                                                                                                                                     | 8                                                          | 566 - 1<br>5 6 6 - 1<br>5 6 6 - 1   |
| HARMONICS<br>.30 CHORD                        | -L8)<br>A6                                                                      | N - 10 0 F                                 | <b>8</b>                                                             | - 9955                                                                                                                                                     | 47<br>A                                                    | 1.00                                |
| 1                                             | CS (IN.<br>A7                                                                   | 200-0<br>                                  | CS (IN.                                                              | 0.0000<br>0.111<br>1                                                                                                                                       | S (IN                                                      | 599NQ                               |
| NAL MOME<br>GRAVITY                           | HARMONI<br>A6                                                                   |                                            | HARMONI                                                              |                                                                                                                                                            | ARMONIC<br>R5                                              | 8.4 T 5.9<br>9.4 T 5.9<br>9.4 T 5.9 |
| RSIONAL<br>OF GRA                             | MOMENT                                                                          | - 5- 1<br>- 5- 1<br>- 1 - 5                | MOMENT                                                               | 0 # - 0 0<br>- 1 - 10<br>- 1 - 1                                                                                                                           | Re Re                                                      | 4 # # F @                           |
| .18R TORSIONAL MOMENT<br>CENTER OF GRAVITY AT | SIONAL                                                                          | មហេ ៥ ហេ ៥<br>ទំពាំ ទំព័ត្<br>រំរំរំរំរំរំ | SI ONAL<br>B4                                                        | 4 0 0 0 0<br>1 0 0 0 0 | IONAL M                                                    | 9.4<br>11.6<br>14.0<br>16.1<br>17.8 |
| 61                                            | BLADE .1BR TORSIONAL MOMENT HARMONICS (INLB)<br>A2 A3 A4 A5 A6 A7 A8            | *****                                      | BLADE .18R TORSIONAL MOMENT MARMONICS (INLB)<br>B2 B3 B4 B5 B6 B7 B6 | 7.6<br>11.5<br>13.3<br>15.2<br>17.3                                                                                                                        | .18R TORSIONAL MOMENT MARMONICS (INLB)<br>R2 R3 R4 R5 R6 R | 3.8<br>2.6<br>3.1<br>3.1            |
| BLADE<br>(BLADE                               | BLADE .<br>A2                                                                   |                                            | 0L.ADE .<br>182                                                      | 10.40 B                                                                                                                                                    | BLADE .1<br>R1                                             | 4.5<br>6.6<br>10.0                  |
| LXXII.                                        | - Iv                                                                            | 288.0<br>7 8 8 8 9 7                       | 1                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                      | 5<br>5                                                     | 6 4 4 M M M M M                     |
| TABLE L                                       | THEC<br>(DE6)                                                                   | 12.0                                       | THEC<br>(DE6)                                                        | 0000<br>17500<br>17500                                                                                                                                     | THEC                                                       | 12.0                                |
| Tr/                                           | £                                                                               | 53588                                      | 3                                                                    | 5.3688                                                                                                                                                     | ł                                                          | 536 <b>8</b> 8                      |
|                                               | Si te Si                                                                        | iiii                                       | 20 4 5 5<br>20 4 5 5                                                 |                                                                                                                                                            | ¥.                                                         | iii;                                |
|                                               | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1 | ****                                       | 223                                                                  | ****                                                                                                                                                       | 223                                                        | ****                                |

t

|                                                            | (9)                               | <b>A</b> 6    | 0,         | •    |             |   | ••    | •     | •           |  | (9)                               |      | 86    |       | 2    | n    | р.<br>- | オーレ    | * •        | n•-   | 4     | n.    |
|------------------------------------------------------------|-----------------------------------|---------------|------------|------|-------------|---|-------|-------|-------------|--|-----------------------------------|------|-------|-------|------|------|---------|--------|------------|-------|-------|-------|
| 9<br>RD)                                                   | ICS (DE                           | A5            | •••        |      | Ģ           | • |       | ÷.    | \$          |  | ICS (DE                           |      | 85    | •1•   | 2.   | n.   | 5.      | •<br>• | 9.         | 9•    | 9.    | •     |
| - RUN 79<br>.30 CHORD)                                     | HARMON                            | 44            | 20         | 4    | 3 U         |   |       | .7    | .7          |  | HARMON                            |      | B4    | .2    | ••   | •    | •       | •      | 1          | 1     | 1     | n •   |
| ARMONICS<br>AVITY AT                                       | BLADE FLAP MOTION HARMONICS (DEG) | A3            | S.O.       | •    | n.          |   | 9.1   | 6     | 9           |  | BLADE FLAP MOTION HARMONICS (DEG) |      | 83    | -1.2  | -1.6 | -1.9 | -2.0    | -2.0   | -2.0       | -2.1  | -2.0  | -1.8  |
| BLADE FLAP MOTION HARMONICS<br>(BLADE CENTER OF GRAVITY AT | DE FLAP                           | A2            | -1.0       | -1.0 |             |   | -1.2  | 6     | 9           |  | DE FLAP                           |      | 82    | 2     | .1   | \$   | \$.     | 4      | <b>n</b> . | \$    |       | •2    |
| DE FLAP<br>Ade cent                                        | BLA                               | 11            | <b>0</b> 7 | 2    | -<br>-<br>- |   | •••   | •     | 1.1         |  | BLA                               |      | 81    | 1     | •    | n    | n.1     | •      |            | 2     | n.    | 2     |
|                                                            |                                   | THEC<br>(DEG) | 13.0       | 12.0 | 12.0        |   | 12.0  | 11.0  | <b>9</b> •0 |  |                                   | THEC | (DEG) | 13.0  | 12.0 | 12.0 | 12.0    | 12.0   | 12.0       | 12.0  | 11.0  | 8.0   |
| TABLE LOUIII.                                              |                                   | ¥             | .657       | .857 |             |   | 166   | 1.026 | 1.062       |  |                                   |      | ¥     | .657  | .766 | .057 | .690    | .926   | .958       | 166.  | 1.026 | 1.062 |
| LT.                                                        | ¥                                 | eR<br>(FPS)   | 200        |      | <b>,</b> 3  |   |       |       | 200         |  |                                   | É.   | (FPS) | 200   | 200  | 200  | 200     | 200    | 200        | 200   |       | 200   |
|                                                            | RUN-<br>PT.                       |               | **         | 5    | **          | į | 0 - E | 7-10  | 11-64       |  |                                   | :£   |       | 79- 0 |      |      | 9       |        |            | 6 -64 |       | 11-6/ |

|       | 0    |       |               | TABLE L | <b>TABLE LXXIII - Concluded</b> | oncluded |        |                        |     |          |
|-------|------|-------|---------------|---------|---------------------------------|----------|--------|------------------------|-----|----------|
| -init | ž    | 1     |               | BLA     | BLADE FLAP                      | MOTION   | HARMON | MOTION HARMONICS (DEG) | 6)  | 12       |
| .04   | RPS) | ¥     | THEC<br>(DEG) | RS      | R1                              | R2       | R3     | R4                     | RS  | R6       |
| った    |      | .657  | 13.0          | 2.4     | •2                              | 6.       | 1.3    | 8.                     |     |          |
| ż     | 3    | .766  | 12.0          | 1.6     | <b>.</b>                        | 1.0      | 1.6    | <b>n</b> •             | 2   | .1       |
| 5     |      | .057  | 12.0          | 1.3     | *                               | 1.0      | 1.9    | 4                      | n.  | r.       |
| *     |      | .090  | 12.0          | 1.2     | 9.                              | 1.1      | 2.0    | 4.                     | *   | 5        |
| *     |      | .926  | 12.0          | 0       | <b>n</b>                        | 1.1      | 2.0    | <b>.</b>               | in: | 4        |
| *     |      | 926.  | 12.0          | 6.      | ņ                               | 1.2      | 2.2    | ••                     | 9.  | 4        |
| *     |      | 5     | 12.0          | 2.      | <b>n</b> .                      | 1.2      | 2.3    |                        | ~   | <b>.</b> |
| 3-4   |      | 1.026 | 11.0          | 5       | <b>n</b> .                      | 1.2      | ۲      | 2.                     | ~.  | *        |
|       | -    | 1.062 | 0.0           | Ņ       | ç                               | 1.0      | 1.9    |                        | 9   | <b>n</b> |
|       |      |       |               |         |                                 |          |        |                        |     |          |

#

.

|                        | 61A                                     | N+000000+0+0                                                                                                           | 813                          | * 00 * 95 9 * C                                                           |
|------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------|
|                        | A12                                     | 56005050300<br>11 190000                                                                                               | 812                          | N0440-NMM                                                                 |
| 19                     | VI V                                    | 047006044                                                                                                              | 611                          | N-000                                                                     |
| RUN                    | A10                                     | 1 1 1 1 1 1 1 1<br>1 1 1 1 1 1 1 1<br>1 1 1 1 1 1 1 1 1 | 810                          |                                                                           |
| NICS -                 | ę                                       | 0-0-0-000                                                                                                              | 8                            | 55 55 55 55 55 55 55 55 55 55 55 55 55                                    |
| HARMONICS<br>RD)       | (j) - F                                 | *••, ·· · · · · · · · · · · · · · · · · ·                                                                              | (a) - 8                      | 79-00 <b>8</b> -0                                                         |
| MOMENT HI<br>30 CHORD) | CS (IN.                                 |                                                                                                                        | CS (IN.                      | 0000000000                                                                |
| DING                   | NONENT HARMONICS (IN4.B)<br>AS A6 A7 A8 | • • • • • • • • • • • • • • • • • • •                                                                                  | HARMONICS (INLB)<br>B6 B7 B0 | •••••                                                                     |
|                        | ADENT 1                                 |                                                                                                                        | HONENT -                     | • • • • • • • • • • • • • • • • • • •                                     |
| CHORDWISE              |                                         |                                                                                                                        | e entre                      | 1.7<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 |
| E . 30R CH             | chonorise de                            | <b>4 1 1 1 1 1 1 1 1 1 1</b>                                                                                           |                              | ~ - <u>,                                  </u>                            |
| BLADE<br>(BLADE        | •                                       |                                                                                                                        | in Control 52                | ••••••                                                                    |
| LOCIV.                 | ALACC . 300                             |                                                                                                                        |                              | •••••••                                                                   |
| TABLE LICO             | 1<br>(026)                              |                                                                                                                        |                              |                                                                           |
|                        | 2                                       | \$258888883                                                                                                            | 2                            | 325888888                                                                 |
|                        | ¥1Ē                                     |                                                                                                                        | <b>I</b> TĒ                  | *****                                                                     |
|                        | ţti                                     | *****                                                                                                                  | 411                          | ttttt                                                                     |

|                |     |   |       |   |      | 4   | LABLE 1 | - VIXIL  | - Concluded | nded           |      |     |      |             |     |     |            |
|----------------|-----|---|-------|---|------|-----|---------|----------|-------------|----------------|------|-----|------|-------------|-----|-----|------------|
| 11<br>11<br>11 | Į.  | ž | Ne se | 3 | č    | 312 | Coltre  | LICHON . | I ADDREAM   | HAMMICS (INLB) | 197  |     |      |             |     |     |            |
| -              | 7   |   | 5     |   | 2    | 2   | :       | 2        | ES.         | z              | R7   | 2   | ŝ    | <b>R1</b> 0 | R11 | R12 | <b>R13</b> |
|                |     |   |       | • |      | 7.0 | •••     | 13.0     | 6.5         |                | 2.3  | 5   |      | 2           | 9   |     | v          |
|                |     |   |       | • | ;    |     |         | 2.0      | 2.5         | 5.2            |      | 1.0 | 1.2  | -           |     | .0  |            |
|                |     |   |       | • |      |     |         |          | 21.2        | •              | 10 Y | 1.2 | 1.4  |             | n:  |     | 2.7        |
|                |     |   |       |   | 33   |     |         |          |             |                |      | N   |      | 2•1         | 1.1 | *   | ທ.<br>ກໍ   |
|                |     |   |       |   | 5.01 |     |         | ŝ        | 53.5        |                |      | 1.2 |      | •••         | 2.2 | 2.0 |            |
|                |     |   |       |   | •••  |     |         | ž        | 31          | 2.1            | 0.4  | 2.1 |      |             | 2.1 |     |            |
|                | • • |   |       |   |      |     | E       | 2        |             |                |      | 17  | N 5. | • • •       |     | 2.2 |            |
|                |     |   |       |   |      |     |         |          |             |                |      |     |      |             |     |     |            |

|                                               |                                        |                                           |                                                             |                                               |                                                                      | 1                                    |
|-----------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|--------------------------------------|
|                                               |                                        |                                           |                                                             |                                               | R13                                                                  |                                      |
|                                               | 514                                    |                                           | 613                                                         |                                               | R12                                                                  |                                      |
|                                               | alA                                    | • • • • • • • • • •                       | 012                                                         | 1-1-1-1<br>1-1-1-1<br>1-1-1-1-1-1-1-1-1-1-1-1 | 118                                                                  | NN 041-9                             |
|                                               | 411                                    |                                           | 811                                                         |                                               | A10                                                                  |                                      |
| RUN 79                                        | A10                                    |                                           | 810                                                         |                                               | 8                                                                    | 1990.01                              |
| '~                                            | 8                                      | 19595                                     | 8                                                           |                                               | 2                                                                    | 14000 +                              |
| HARMONICS<br>.30 CHORD                        | 2                                      |                                           | 8                                                           | 1 1 0 0 0                                     | 5                                                                    | 1.12.8.8.4.5                         |
| ent harv<br>At 30                             | (8)-                                   | ,,,,,,::                                  | 197 6                                                       |                                               | (â) - 2                                                              | 2055980<br>2057                      |
| .35R TORSIONAL MOMENT<br>CENTER OF GRAVITY AT | NONENT HARMONICS (INLB)<br>A4 A5 A6 A7 | 41, 416 4 H                               | ICS (IN                                                     | 11 44                                         | ICS (IN                                                              | 2.4<br>6.4<br>7.4<br>10.1<br>12.3    |
| RELONAL                                       | HARHON]<br>AS                          |                                           | HARMON                                                      |                                               | HARMON]                                                              | 8.3<br>8.3<br>10.5<br>10.5<br>10.5   |
| 35R TOR<br>CENTER                             | MOMENT<br>AA                           |                                           | HOMENT                                                      |                                               | MOMENT<br>R5                                                         | 11.4<br>15.0<br>14.7<br>17.2<br>17.6 |
| 6.0                                           |                                        |                                           | .35R TORSIONAL MOMENT HARMONICS (INLB)<br>B2 B3 B4 B5 B6 B7 | 11<br>14.6<br>15.6<br>17.6<br>17.6            | BLADE .35R TORSIONAL MOMENT HARMONICS (INLB)<br>RS R1 R2 R3 R4 R5 R6 | 2.2<br>2.9<br>2.9<br>2.1<br>2.1      |
| ~ 7                                           | .35R TORSIONAL<br>A2 A3                | 4. <b>.</b>                               | 35Å TOR<br>B2                                               | 8.9 6 9 9 5<br>1 1 1 5 9<br>1 1 1 5 9         | .35R TOR                                                             | 1.55.99                              |
| LXXV.                                         | RLADE .                                | 2.2                                       | BLADE .<br>B1                                               | 0.040.09<br>0.040.09                          | BLADE .<br>RS                                                        | -4-1<br>-3-0<br>3-5<br>7-1           |
| TABLE                                         | THEC<br>(DEB)                          | 12.0<br>12.0<br>12.0<br>11.0<br>11.0      | THEC<br>(DE6)                                               | 12.0<br>12.0<br>12.0<br>12.0<br>11.0          | THEC<br>(DEG)                                                        | 12.0<br>12.0<br>12.0<br>12.0         |
|                                               | ł                                      | .857<br>.850<br>.926<br>.958<br>.991      | £                                                           | .857<br>.890<br>.926<br>.958<br>.991<br>1.026 | 2                                                                    | .857<br>.890<br>.958<br>.958<br>.991 |
|                                               | SHO SHE                                |                                           | OWS<br>*R                                                   |                                               | SNG SNG                                                              | 0.000.000                            |
|                                               | RUN-                                   | 79-00-00-00-00-00-00-00-00-00-00-00-00-00 | RUN-<br>NO.                                                 | 79- 5<br>79- 6<br>79- 9<br>79- 9<br>79- 9     | RUN-                                                                 | 79- 9                                |

|                              | (DEG)                            |                                                                    | (DEG)              |                                                                    |
|------------------------------|----------------------------------|--------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|
| RUN 80<br>.30 CHORD)         | RMONICS<br>A4 A5                 | 00000000                                                           | HARMONICS<br>B4 B5 | 00000-00-                                                          |
| 1 64                         | LAG MOTION HARMONICS<br>A2 A3 A4 |                                                                    | MOTION HAR<br>B3 B |                                                                    |
| DN HARMONICS<br>DF GRAVITY A | LAG MOT                          |                                                                    | LA6<br>12          |                                                                    |
| LAG MOTION<br>CENTER OF      | BLADE                            |                                                                    | BLADE<br>B1 B      | 0-0746955                                                          |
| BLADE I (BLADE               | THEC<br>(DEG)                    | 000000000                                                          | THEC<br>(DEG)      |                                                                    |
| TABLE LXXVI                  | )<br>X                           | 0 - 9 - 9 - 9 - 9 - 9                                              | Ĩ                  | 795<br>847<br>906<br>974<br>1.052<br>1.144<br>1.368                |
| TAB                          | OMS<br>PR<br>(FPS)               | 811<br>811<br>811<br>811<br>811<br>811<br>811<br>811<br>811<br>811 | OMS<br>#R          | 242<br>242<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252 |
|                              | RUN-<br>PT.                      | 00000000000000000000000000000000000000                             | PT.                | 00000000000000000000000000000000000000                             |

Ł

|         |       | TA       | BLE LXXV | TABLE LXXVI - Concluded | luded  |                            |        |              |
|---------|-------|----------|----------|-------------------------|--------|----------------------------|--------|--------------|
| PT. OWS |       | THEC     | BLA      | DE LAG                  | MOTION | BLADE LAG MOTION HARMONICS | ( DEG) |              |
| (544)   | ₹     | (DEG)    | ß        | RI                      | S      | R3                         | 42     | RS           |
|         | .795  | 2.0      | 1.8      | n.                      |        |                            | ••     | 0.           |
|         | - 947 | 2.0      | 1.7      | 0                       | -      | •                          | ••     | . <b>.</b> . |
| -       |       | 8°0      | 2.0      |                         | -      | ₩., (<br>●                 | •      | 0.0          |
|         | 1.052 | 00       |          | 0.#<br>• •              | •      |                            | ••     |              |
|         | 1.144 | 2.0      | 2.4      |                         |        | -                          | -      | .0           |
|         | 1.234 | 000      |          | •                       |        |                            | ••     | -            |
| -       | 1.456 | 8.0<br>8 | 5.0<br>6 | •                       |        |                            |        | ••           |
|         |       |          |          |                         |        |                            |        |              |

| ·                               | 12                                     |                                                                 |                   | ·····                                   |
|---------------------------------|----------------------------------------|-----------------------------------------------------------------|-------------------|-----------------------------------------|
|                                 | A10                                    | · · · · · · · · · · · · · · · · · · ·                           |                   |                                         |
|                                 | ę                                      |                                                                 | 2                 | *******                                 |
| run 80                          | ĝ \$                                   | ~~~~~                                                           | ĝ 2               | ********                                |
| ·                               | S (IN.                                 |                                                                 | S CIN.            | *****                                   |
| MOMENT HARMONICS<br>. 30 CHORD) | A6<br>NONIC                            | *****                                                           | Humbhilds (144.0) | ;;;;;;;;;;                              |
|                                 | MONENT MARMONICS (INLB)<br>AS A6 A7 A8 | ₩≠£1; <b>\$</b><br>•             <del> </del><br>• <del> </del> |                   | ******                                  |
| BENDI<br>VITY                   |                                        | ****                                                            | 1 1               |                                         |
| APWI<br>OF                      | VISE 86                                |                                                                 | -                 | ::::::::::::::::::::::::::::::::::::::: |
|                                 | A CA SUMUN AG.                         | · · · · · · · · · · · · · · · · · · ·                           |                   |                                         |
| BLADE<br>(BLADE                 | 4.0C .3                                | 4F.F. 0 0 0 0 0 0                                               | j i               | *******                                 |
| TABLE LIXVII.                   |                                        |                                                                 | Ţ                 |                                         |
| TABLE                           | 2                                      | Fiffesser!                                                      | 3                 | £\$\$£8268\$                            |
|                                 | <b>L</b> sĒ                            | 12112121                                                        | હાર્              | 124 12 12 12                            |
|                                 | 1 ii                                   |                                                                 | 451               |                                         |
|                                 | 5.1                                    | *******                                                         | 3.1               | *******                                 |

18 )

|                |       |               |          |                                                     | TABLE | TABLE LXXVII - Concluded | - Conclu | aded   |        |     |            |     |      |
|----------------|-------|---------------|----------|-----------------------------------------------------|-------|--------------------------|----------|--------|--------|-----|------------|-----|------|
|                |       |               | <b>J</b> | BLADE . 300 FLAPHISE BEIDING HONENT NUMBRICS (INLB) | 35114 | ento:                    | HONENT   | INCOMP | CS (IN | Ĵ   |            |     |      |
|                | £     | THEC<br>(DEG) | S        | R1                                                  | 겉     | 2                        | ٤        | 2      | Z      | 2   | 2          | 8   | 810  |
| - 0 367        | 195   | 8.0           | £ • -    | 9.1                                                 | 5.    | 13.1                     | •        | •      |        | 2.1 |            | 1.1 | i ni |
|                |       | 0 0<br>• •    | •••      |                                                     |       |                          |          |        |        |     | -          | ູ່  |      |
|                | 1.052 | 00<br>00      |          |                                                     |       |                          |          |        |        | ••  | ••         |     | 4.41 |
| 6- 0 <b>50</b> | 1.14  | 0 0 0<br>0 0  | •••      |                                                     |       |                          |          |        | ••     | ••  | <b>?</b> ? | ••• | •••  |
| ä -            |       | 0 0<br>N N    |          | •                                                   |       |                          |          | 2.1    | •      | ~   | -          | ?   | :    |

|                                                      |                                         |                                                                                                                     | the second s |                  |
|------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------|
|                                                      | 416                                     |                                                                                                                     | 3 .4                                                                                                           | 7779             |
|                                                      | 8                                       | ~~~~                                                                                                                | 8 43.444                                                                                                       |                  |
| 0                                                    | <b>a</b> 2                              | •••••                                                                                                               | 3 8 77777                                                                                                      | <b>;;;</b> ;;    |
| - RUM 80                                             | (01-'11) :<br>A7 A                      | ****                                                                                                                |                                                                                                                |                  |
| ONICS<br>CHORD)                                      | HAIMONICS<br>A6                         |                                                                                                                     |                                                                                                                |                  |
|                                                      | NDIENT HA                               | <b>NN N N N N N N N N N</b>                                                                                         |                                                                                                                |                  |
|                                                      |                                         | N # N = UP B & #                                                                                                    |                                                                                                                | NB 8             |
| BLADE .18R TORSIONAL MOM<br>(BLADE CENTER OF GRAVITY | TORSI                                   | No - • • • • • • • • • • • • • • • • • •                                                                            |                                                                                                                | <b>nne</b> r<br> |
| ' 🖬                                                  | •                                       |                                                                                                                     |                                                                                                                |                  |
|                                                      | đ                                       | ****                                                                                                                | FONDE                                                                                                          |                  |
| LXXVIII.                                             | VI<br>V                                 |                                                                                                                     |                                                                                                                |                  |
|                                                      | THEC                                    | ถึงกัน กัน กัน กัน<br>กัน กัน กัน กัน กัน กัน กัน กัน กัน กัน                                                       | 00000<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                   |                  |
| TABLE                                                | 3                                       | -795<br>-847<br>-978<br>-978<br>1.128<br>1.234<br>1.338                                                             | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        |                  |
|                                                      | S R A A                                 | 811<br>811<br>812<br>812<br>812<br>812<br>814<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817 | S. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                       |                  |
|                                                      |                                         | 0                                                                                                                   | ne041                                                                                                          |                  |
|                                                      | N L L L L L L L L L L L L L L L L L L L |                                                                                                                     |                                                                                                                |                  |

| 10                        | _                        |               |     | -          |            |            |            |     |
|---------------------------|--------------------------|---------------|-----|------------|------------|------------|------------|-----|
|                           |                          | 2             | ??  | 79         |            |            | :?         |     |
|                           |                          | 2             | ••  |            | 14         | . 7.       | :"         |     |
|                           |                          | 2             | ••  | •          | •••        | <b>.</b>   | 77         |     |
|                           | 9                        | ٤             |     |            | 29         | <b>1</b> 7 | <b>7</b> 7 |     |
|                           |                          | 2             |     |            | •••        | • •        | <b>?</b> ? |     |
| babi                      | NOVENT HAANONICS (IN-LB) | 2             | •   |            |            | - 0        | ••         | 121 |
| TABLE LXXVIII - Concluded | MENT HA                  | 2             | ••• | ••         | <b>?</b> ? | • •        | •••        |     |
| IIIAXX                    | CONAL NO                 | Ð             | -   |            | **         |            |            |     |
| TABLE L                   | BLADE . 18N TONSTONAL    | 2             | •.• |            | 00         |            |            |     |
|                           | LADE .1                  | 11            |     | • •        |            | 10         | 1.1        |     |
|                           | đ                        | ş             | 1.1 |            |            |            |            |     |
|                           |                          | THEC<br>(DEG) | 2.0 | 8.0<br>8.0 | 00         | 0          | 0          |     |
|                           |                          | R             | 195 | 140        | 446        |            |            |     |
|                           |                          | S R S         | 5   |            | 910        | 2          |            |     |
|                           |                          |               |     |            |            |            | -          |     |
|                           | 2                        | 22            | -00 |            |            |            | 01-00      | 20  |
| _                         |                          | -             |     |            |            |            |            |     |

| -                             |                                                  | والمحادث والمرافع والمحاد والمحاد والمحاد                                        |                                                                                              |
|-------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                               | :<br>*                                           | <b>,,,,,</b> ,,,,,                                                               | * *******                                                                                    |
| 80<br>HORD)                   | ICS (DE                                          |                                                                                  |                                                                                              |
| lcs - Run Bo<br>At .30 Chohd) | HARMON<br>Ac                                     | •                                                                                |                                                                                              |
|                               | BLADE FLAP MOTION HAMMONICS (DEB)<br>A2 A3 A4 A5 | 500070777<br>                                                                    |                                                                                              |
| FLAP NOTION HAZMON            | DE FLAP                                          |                                                                                  |                                                                                              |
| BLADE FLA<br>(BLADE CE        | A1 PLA                                           | <b>-</b> ,, <b>-</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                               |                                                                                              |
|                               | THEC<br>(DE6)                                    | 0000000000<br>000000000                                                          | 20<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| TABLE LXXIX.                  | ¥                                                | 795<br>847<br>974<br>1.052<br>1.194<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294 |                                                                                              |
|                               | OMS<br>PR<br>(FPS)                               |                                                                                  |                                                                                              |
|                               | RUN-<br>PT.<br>NO.                               |                                                                                  |                                                                                              |

.

| Juded                    | orion memorics (DEB) | 1 1                                                                             | • • • • |     |   | <br> |  |  |
|--------------------------|----------------------|---------------------------------------------------------------------------------|---------|-----|---|------|--|--|
| TABLE LITTIX - Concluded | MADE FLAF NOTION     | 1                                                                               | 2       | 1.1 |   |      |  |  |
| 4                        |                      | N (DEC)                                                                         |         |     | • |      |  |  |
|                          |                      | 53<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>5 |         |     |   | <br> |  |  |

•

| (BLADE . 30R CHORDWISE |               |       | DR CHORD | ´    🍃     | MISE           | BENDING        | MOMENT | BENDING MOMENT HARMONICS (INLB) | CS (IN     | -18)   |          |     |
|------------------------|---------------|-------|----------|------------|----------------|----------------|--------|---------------------------------|------------|--------|----------|-----|
| £                      | U (DEG)       |       |          | <b>A</b> 2 | 23             | ŧ              | AS     | ş                               | 77         | 84     | 6V       | A10 |
| 795                    | 2.0           | 11    |          | 11         |                | 2.0            | 1.0    | 2.1                             | 20         |        | 2.1      | 20  |
|                        | 8.0           |       | -1.3     | 0          | -1.4           | 13             | . 7    | 2                               |            | N<br>1 | :-       | ••  |
| -                      |               |       |          |            | -1.1           | 1.1            | ~      | -                               | 9          | n.     |          | •   |
| 25                     |               |       | ÷        |            | •              |                | Ņŗ     |                                 |            |        |          |     |
| 1                      |               |       | 6.4      | 1.0        | 6.1            | 1.1            | •      |                                 | :-:        |        | 1        |     |
| 8                      |               |       | •        | •          |                | 2.6            | 4.1    | •                               | <b>.</b>   | 1      | <b>.</b> | - 5 |
| 20                     | 2.0           | 7     | *        | 1.2        | -2,5           | 2.3            | •      | 2                               | •          | •      | 2        |     |
|                        |               |       |          |            |                |                |        |                                 |            |        |          |     |
|                        |               | BLADE |          | DR CHO     | .30R CHORDWISE | BENDING MOMENT | MOMENT | HARMONICS (INLB)                | CS (IN.    | -FB)   |          |     |
| Ţ                      | THEC<br>(DEG) |       | 81       | 82         | 83             | 1              | 82     | B6                              | 87         | BB     | 89       | 810 |
| 795                    | 0.0           |       | 1.5-     |            | -1.6           | •              | 5      |                                 | 38         | 2.     |          | ••• |
|                        |               |       | 6.6-     | -          | 2              |                | -      | .N                              | 5          |        | : -      | 2   |
| 2                      |               |       | •        | ņ          | •              | •              |        | -                               | 9.         | 4.     |          | •   |
| 3                      |               |       | •<br>•   | <b>n</b> 1 |                | •              | å      | <b>N</b> 1                      | <b>n</b> : | -      |          | •   |
|                        |               |       | 2°5      |            |                |                |        |                                 | * 0        | * -    | <b>.</b> | •   |
|                        | -             |       |          |            |                |                |        | •                               |            |        |          |     |
| 5                      |               |       |          |            |                | 1              |        | ).Q                             |            |        |          |     |
|                        |               |       | !        | !          |                |                |        |                                 |            | 1      | 1        |     |

ň

\*

|                        |                        |               |      | 6   |     |     |       |       |     |      |
|------------------------|------------------------|---------------|------|-----|-----|-----|-------|-------|-----|------|
|                        |                        | 2             | 7.   |     | 17  | -   | •     |       | \$  |      |
|                        |                        | 8             | 7.   |     | 17  |     | 1     | •     | 9   |      |
|                        |                        | 8             | •    | •   | 1   | ?   | •     | 1     | 1   |      |
|                        | Ĵ                      | 5             | 9    | 1   | ??  | 1   | •     |       | 1   |      |
|                        |                        | 2             | •••  | 1   | •   | 17  | 7     | 27    | 17  | 3    |
|                        |                        | 2             | •••  |     |     |     |       | 1     |     | 2    |
| pcluded                | ייידע ויישוונג ונוייון | £             | 2.2  |     |     | ::  |       |       |     |      |
| TABLE LICC - Concluded | n miade                | 2             | 1.7  | ••• | ••• |     | •     |       |     |      |
| ABLE LX                | 38 3514040             | 2             | 1.1  | 1.3 | •   |     | •     |       |     |      |
| 4                      | 3                      | RI            | 9.6  | **  |     |     | 1.9   |       |     |      |
|                        | NOC . 301              | S             | *••  | 5.9 |     |     |       | 13.1  |     |      |
|                        | 3                      | THEC<br>(DEG) | 2.0  | 2.0 | 2.0 |     | 0.0   | 2.0   | 0.  |      |
|                        |                        | R             | 561. |     | -   | 250 | 1.144 | 1.234 |     |      |
|                        |                        | PS)           |      |     |     |     |       | -     | _   |      |
|                        | 22                     | 2             | -08  | -00 | -09 |     |       | -00   | 010 | 1-09 |

|                                      | CS (DEG)<br>A5                  | 0040000                                                     | CS (DEG)<br>65     | 0000000                                                              |
|--------------------------------------|---------------------------------|-------------------------------------------------------------|--------------------|----------------------------------------------------------------------|
| . RUN 81<br>.30 CHORD)               | LAG MOTION HARMONICS<br>2 A3 A4 |                                                             | MOTION HARMUNICS   |                                                                      |
| HARMONICS -<br>GRAVITY AT            | MOTION<br>A3                    | 0000                                                        | MOTION<br>B3       |                                                                      |
|                                      | BLADE LAG<br>A2                 | 0777070                                                     | BLADE LAG<br>B2    |                                                                      |
| BLADE LAG MOTION<br>(BLADE CENTER OF | A1                              | 0.10 × 10 0 + 0                                             | 81                 | L C C C C C C C C C C C C C C C C C C C                              |
|                                      | THEC<br>(DEG)                   | 0000000<br>000000000000000000000000000000                   | THEC<br>(DE0)      | ~~~~~                                                                |
| TABLE LXXXI                          | MC                              | 1.488<br>1.611<br>1.652<br>1.678<br>1.656<br>1.656<br>1.431 | DW<br>C            | 1.488<br>1.651<br>1.651<br>1.652<br>1.656<br>1.656<br>1.656<br>1.656 |
|                                      | OMS<br>+R<br>(FPS)              | 3 236<br>5 252<br>5 252<br>9 392<br>9 392<br>9 392          | OMS +R             | 98 49 25 55 5<br>7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                   |
|                                      | PT.                             | 81-<br>81-<br>81-<br>81-<br>81-<br>81-                      | RUN-<br>PT.<br>NO. |                                                                      |

|             |                    |       | TA            | BLE LXXX  | TABLE LXXXI - Concluded | luded  |                                          |                |          |
|-------------|--------------------|-------|---------------|-----------|-------------------------|--------|------------------------------------------|----------------|----------|
| RUN-<br>PT. | OMS<br>*R<br>(FPS) | ₹     | THEC<br>(DEG) | BLA<br>RS | DE LAG<br>R1            | MOTION | BLADE LAG MOTION HARMCNICS<br>R1 R2 R3 R | CS (DEG)<br>R4 | e)<br>R5 |
| 81-         | 3 236              | 1.488 | 2.0           | 2.1       | 8.                      | 1:     | 1.                                       | •              | 0.       |
| -18         | 4 218              | 1.611 | 2.0           | 1.6       | 6.                      | -      | -                                        | -              |          |
| -10         | 5 232              | 1.692 | 2.0           | 1.8       | 1.1                     | -      |                                          | 0              | -        |
| 81-         | 6 260              | 1.678 | ¿.0           | 1.5       | 1.0                     | -      |                                          | 0              |          |
| -10         | 7 286              | 1.656 | 2.0           | 1         | 1.0                     |        |                                          | •              | 0        |
|             |                    | 1.605 | 2.0           | ۲.        | 1.0                     | 4 a    | 4.                                       |                | •        |
| 81-         | 9 392              | 1.431 | 2.0           | 1.6       | •                       | -      | .1                                       |                | •        |
|             |                    |       |               |           |                         |        |                                          |                |          |

| <b>I</b> | -                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | A13                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-90-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | A12                                    | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80-11-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 114                                    | 1 1<br>1 1<br>1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6. 19 no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 - 0 - 4 0<br>0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | A10                                    | 2.7<br>2.7<br>6<br>4<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.<br>12.<br>19.<br>19.<br>19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ęx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 6¥                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FB)      | 48                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (97-<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | â î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N40.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CS (IN.  | Å7                                     | 1 4 6 0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CS (IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS (IN.<br>Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 17 4 17 4 19<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HARMONI  | 96                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HARMON Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nna-n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARMONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 13 15 <b>10 00</b><br>10 10 10 10 10<br>10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HOMENT   | 45                                     | ********<br>NN 7 7 7 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HOMENT -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | ¥                                      | -7.4<br>-7.4<br>7.5<br>7.5<br>-5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ENDING 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 899889<br>89988<br>8998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENDING -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.2<br>9.3<br>80.6<br>82.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NISE B   | SA<br>SA                               | 8026<br>8026<br>8026<br>8026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WISE BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,5<br>5,6<br>5,9<br>21,9<br>21,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WISE BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SOR FLAF | A2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JOR FLAP<br>B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IOR FLAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ğ        | 41                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.186.4<br>3.186.4<br>3.186.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | THEC<br>(DEG)                          | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E B (DEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | THEC<br>(DE6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | R                                      | 1.488<br>1.611<br>1.692<br>1.692<br>1.693<br>1.695<br>1.605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.488<br>1.611<br>1.678<br>1.678<br>1.656<br>1.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.480<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Į        | PS)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OMS<br>*R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eR<br>FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RUN-     | -                                      | 811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>811-55<br>81 | PT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8888<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RUN-<br>PT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | BLADE . JOR FLAPWISE BENDING MOMENT HA | BLADE .30R FLAPWISE BENDING MOMENT HARMONICS (INLB)<br>Thec<br>(Deg) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OMS         BLADE         JOR FLAPWISE BENDING MOMENT HARMONICS (INLB)           **         **         **         A5         A6         A7         A8         A9         A10         A11         A12           **         **         **         A5         A6         A7         A8         A9         A10         A11         A12           3         236         1.498         2.0         1.5         -2.5         -1.2         1         -1         -5         1.6         -2         -2.5         -1         1         -1         -5         1.6         -2         -2         -1         1         -1         -5         1.6         -2         -2         -1         1         -1         -5         1.6         -2         -2         -1         1         -1         -2         -1         1         -1         -1         -2         -1         1         -1         -1         -2         -1         1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1 <td>OHS         BLADE         JOR FLAPHISE BENDING MOMENT HARMONICS (INLB)           045         AT         A2         A3         A4         A5         A6         A7         A8         A9         A10         A11         A12           7         FFS1         HU         (DE6)         A1         A2         A3         A4         A5         A6         A7         A8         A9         A10         A11         A12           3         236         1.498         2:0         1.5         -4.2         5.6         -7.4         -2.5         -1         1         -1         -5         1.2         -1         -1         -1         -6         1.2         -5         -3         -3         -3         -1         -1         -1         -1         -2         -1         -1         -1         -2         -3         -2         -3         -2         -3         -2         -1         -1         -2         -2         -1         -3         -2         -2         -1         -2         -2         -1         -2         -2         -2         -1         -2         -2         -2         -2         -2         -2         -2         -2         -2</td> <td>ONS         BLADE         JOR FLAPHISE BENDING MOMENT HARMONICS (INLD)           005         MU         UNEC         A1         A2         A3         A4         A5         A6         A7         A8         A10         A11         A12           045         MU         UDE60         A1         A2         A3         A5         A7         A8         A10         A11         A12           2 245         1011         2:0         1:1         -1:2         5:6         -7:4         -2:5         -1:1         1:1         -2:5         1:2         1:1         -1:1         -2:5         -1:1         1:1         -2:5         -1:1         1:1         -2:6         -2:2         -2:5         -2:5         -2:5         -2:5         -2:5         -2:1         1:1         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5</td> <td>OIS<br/>(FFS)         BLADE         JOR         LADE         JOR         LANDE         FLAPLISE         BENDING         MOMENT         HARMONICS         (1NLB)           015         NU         THEC         A1         A2         A3         A4         A5         A6         A7         A0         A10         A11         A12           228         16611         2.0         1.5         -4.2         5.6         -7.4         -2.5         -1.1         -1.1         -5.5         -1.2         5.1         -1.2         5.1         -1.2         5.1         -5.5         -1.1         -1.1         -5.5         -1.2         -1.1         -1.1         -5.5         -1.1         -1.1         -1.5         1.6         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5</td> | OHS         BLADE         JOR FLAPHISE BENDING MOMENT HARMONICS (INLB)           045         AT         A2         A3         A4         A5         A6         A7         A8         A9         A10         A11         A12           7         FFS1         HU         (DE6)         A1         A2         A3         A4         A5         A6         A7         A8         A9         A10         A11         A12           3         236         1.498         2:0         1.5         -4.2         5.6         -7.4         -2.5         -1         1         -1         -5         1.2         -1         -1         -1         -6         1.2         -5         -3         -3         -3         -1         -1         -1         -1         -2         -1         -1         -1         -2         -3         -2         -3         -2         -3         -2         -1         -1         -2         -2         -1         -3         -2         -2         -1         -2         -2         -1         -2         -2         -2         -1         -2         -2         -2         -2         -2         -2         -2         -2         -2 | ONS         BLADE         JOR FLAPHISE BENDING MOMENT HARMONICS (INLD)           005         MU         UNEC         A1         A2         A3         A4         A5         A6         A7         A8         A10         A11         A12           045         MU         UDE60         A1         A2         A3         A5         A7         A8         A10         A11         A12           2 245         1011         2:0         1:1         -1:2         5:6         -7:4         -2:5         -1:1         1:1         -2:5         1:2         1:1         -1:1         -2:5         -1:1         1:1         -2:5         -1:1         1:1         -2:6         -2:2         -2:5         -2:5         -2:5         -2:5         -2:5         -2:1         1:1         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5         -2:5 | OIS<br>(FFS)         BLADE         JOR         LADE         JOR         LANDE         FLAPLISE         BENDING         MOMENT         HARMONICS         (1NLB)           015         NU         THEC         A1         A2         A3         A4         A5         A6         A7         A0         A10         A11         A12           228         16611         2.0         1.5         -4.2         5.6         -7.4         -2.5         -1.1         -1.1         -5.5         -1.2         5.1         -1.2         5.1         -1.2         5.1         -5.5         -1.1         -1.1         -5.5         -1.2         -1.1         -1.1         -5.5         -1.1         -1.1         -1.5         1.6         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5         -1.5 |

ŧ

à

.

|                                                                   |                                        |                                                                               | 3                                                                                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                       |
|-------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| . 3                                                               |                                        | N # Q - N                                                                     | 912                                                                                                            | 11<br>1                                                                       |
|                                                                   |                                        |                                                                               | ī                                                                                                              | N-01-0N                                                                       |
| 81                                                                |                                        | 00-70 00<br>1-                                                                | 810                                                                                                            |                                                                               |
| - RUN                                                             |                                        | 9-9- <b>9</b> 9-                                                              | 2                                                                                                              | N M N N M M M M M M M M M M M M M M M M                                       |
| HARMONICS<br>. 30 CHORD                                           | ĝ. 1                                   |                                                                               | j 2                                                                                                            | -0-NN90<br>1 1 -N-                                                            |
| AT .30                                                            | S LIN.                                 | -0-0-00                                                                       | S (IN                                                                                                          | NPNN-D-<br>1111190                                                            |
| .16R TORSIONAL MUMERT HARMONICS<br>CENTER OF GRAVITY AT .30 CHORD | WRINCHI (                              | 0-45000<br>1119                                                               | HONENT MARMONICS (INLB)<br>B5 B6 B7 50                                                                         | N N ON H OH<br>I I I H N N P<br>I I I I                                       |
| 18R TORSIONAL NUM                                                 | NONENT 1                               | N-70N0R<br>NN7                                                                | BS BS                                                                                                          | • • • • • • • • • • • • • • • • • • •                                         |
| .18R TC<br>CENTE                                                  | TONAL P                                |                                                                               | IONAL P                                                                                                        | N                                                                             |
| BLADE<br>(BLADE                                                   | .188 TORSTONAL MONENT HARMONICS (INLB) |                                                                               | .186 TORSIONAL                                                                                                 | 004N00J<br>NF 40040                                                           |
| XXXIII.                                                           | 91.ADE                                 | 0,00,00,00<br>0,0,0,0,0,0,0<br>0,0,0,0,0,0,0,                                 | BLADE .1<br>B2                                                                                                 | 141819<br>96969696<br>197819                                                  |
|                                                                   | 2                                      | n==0000                                                                       | 1                                                                                                              |                                                                               |
| TABLE                                                             | THEC<br>DEG                            | 0000000<br>Na NNNNN                                                           | THEC<br>(DEC                                                                                                   |                                                                               |
|                                                                   | ₹                                      | 1.480<br>1.692<br>1.692<br>1.672<br>1.678<br>1.678<br>1.658<br>1.658<br>1.431 | £                                                                                                              | 1.488<br>1.611<br>1.611<br>1.678<br>1.678<br>1.678<br>1.656<br>1.656<br>1.656 |
|                                                                   | 8.5 L                                  | 2219<br>2219<br>2219<br>2219<br>2219<br>2219<br>2219<br>2219                  | Part Service S | 2220                                                                          |
|                                                                   | -                                      | n = 0 = 0 0                                                                   | N N N N N N N N N N N N N N N N N N N                                                                          | n+n0r00                                                                       |
|                                                                   | 222                                    |                                                                               | 5èź<br>E                                                                                                       |                                                                               |

|                           | 8)<br>R7 Na R9 810 811 812 813                                                  |   |
|---------------------------|---------------------------------------------------------------------------------|---|
| - Concluded               | NONENT HAMMONICS (1NLB)                                                         |   |
| TABLE LXXXIII - Concluded | MADE .16R TORSTONAL MONEDA                                                      | • |
| ſ                         | 101 - 10<br>101 - 10                                                            |   |
|                           |                                                                                 |   |
|                           | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1 |   |

|                           | 14                 |                                                                                                                                                                                                                                                                                                                                                       | 87                | 00000-N                                                     |
|---------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|
| - RUN 81<br>.30 CHORD)    | 6)<br>A6           | C 0 0 0 0 7 N                                                                                                                                                                                                                                                                                                                                         | 6)<br>B6          | 0040000                                                     |
|                           | (CS (DE6)<br>A5    | N N M M N N M M                                                                                                                                                                                                                                                                                                                                       | ICS (DEG)<br>BS   | 00                                                          |
| N HARMONICS<br>GRAVITY AT | HARMONICS<br>AL A  | v o o o d o o                                                                                                                                                                                                                                                                                                                                         | HARMONICS<br>B4 B |                                                             |
| FLAP MOTION<br>CENTER OF  | MOTION             | n n n n n n n n n n n n n n n n n n n                                                                                                                                                                                                                                                                                                                 | MOTION<br>B3      | 1 1 1<br>1 1 1 1<br>0 0 0 0 0 0 0 0 0 0 0                   |
| BLADE FI<br>(BLADE (      | E FLAP             |                                                                                                                                                                                                                                                                                                                                                       | E FLAP<br>B2      | 0010100                                                     |
| TABLE LXXXIV.             | BLACE              |                                                                                                                                                                                                                                                                                                                                                       | BLADE             | 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                     |
| TABLE                     | THEC<br>(DFG)      | 0000000                                                                                                                                                                                                                                                                                                                                               | THEC<br>(DEG)     | 0000000                                                     |
|                           | Ē                  | 8 H N 8 9 9 H 8                                                                                                                                                                                                                                                                                                                                       | ĩ                 | 1.488<br>1.611<br>1.692<br>1.678<br>1.656<br>1.655<br>1.431 |
|                           | ONS<br>*R<br>FPS)  | 236<br>236<br>232<br>232<br>232<br>260<br>3314<br>3314                                                                                                                                                                                                                                                                                                | OMS<br>#R<br>FPS) | 236<br>218<br>232<br>292<br>292<br>292                      |
|                           | RUN-<br>PT.<br>NO. | 8<br>8<br>8<br>8<br>8<br>8<br>1<br>1<br>1<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>1<br>8<br>8<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | RUN-<br>PT.       | 00000000000000000000000000000000000000                      |

|             |       |       |             | TABLE | TABLE LXXXIV - Concluded          | Conclude | P      |         |    |    |
|-------------|-------|-------|-------------|-------|-----------------------------------|----------|--------|---------|----|----|
| RUN-<br>PT. |       |       | L<br>A<br>F | BLA   | BLADE FLAP MOTION HARMONICS (DEG) | MOTION   | HARMON | ICS (DE | 6) |    |
|             | (FPS) | Ĩ     | (DEG)       | RS    | R1                                | R2       | R3     | 4 X     | R5 | R6 |
|             |       | 1.488 | 2.0         | -1.3  | ۴.                                | Е.       | 9.     | ٠٦      | -2 |    |
| 91-         | 4 218 | 1.611 | 2.0         | -2.5  | 1.6                               | 3        | 0      | 1.0     | 2  |    |
|             |       | 1.692 | 2.0         | -1.8  |                                   | \$       | 8.     | 1.0     | n. |    |
|             |       | 1.678 | 2.0         | -1.9  | s.                                | • •      | 1.0    | ٠٦      | n. |    |
|             |       | 1.656 | 0°0         | -2.7  | 9.                                | 8.       | 1.6    | .7      | 5  |    |
|             |       | 1.605 | 2.0         | -1.9  | 4                                 | 8.       | 1.8    |         | 5  | -1 |
|             |       | 164-1 | 2.0         | 1     | 6•                                | •        | 1.6    | ŝ       | 7  | r. |
|             |       |       |             |       |                                   |          |        |         |    |    |

ŧ

1

ł

8

| _                                                                            | <u></u>                                                                          | ÷                                            |                                          |                                       |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------|
| N 81                                                                         |                                                                                  | ***                                          | ī                                        | n en er n e                           |
| s - RUN                                                                      |                                                                                  | -00                                          | 91<br>0                                  | * 11 - 1 - 1                          |
| MONICE                                                                       | 4                                                                                | 5-0505<br>1 711                              | 2                                        | 6064650                               |
| NT HAR<br>HORD)                                                              | ą a                                                                              | ~~~~~<br>· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   | ĝ Z                                      | * 00 - 10 - 1<br>* 00 - 10 - 10       |
| 3 MOMENT H                                                                   | C\$ (IN.                                                                         |                                              | S (IN.                                   |                                       |
| . 3OR CHORDWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY AT . 30 CHORD) | NLADE .300 CHANDUISE BÉNDING NONDAT HAMMONICS (1N1.8)<br>Al A2 A3 A4 A5 A4 A7 A4 | <b>?</b>                                     | HONERT HARMONICS (INLB)<br>BS B4 B7 B4   | 7-2020-<br>11 1990                    |
| BLADE . 30R CHORDWISE BENDING<br>BLADE CENTER OF GRAVITY AT                  | - Lignor<br>VG 10                                                                |                                              | 10 18                                    | 0 - NNMAA<br>1 1 1 1 1                |
| CHORD<br>TER OF                                                              | noim<br>A                                                                        | • • • • • • •                                | an a | • • • • • • • • • • • • • • • • • • • |
| E. 30R<br>DE CEN                                                             |                                                                                  | ******                                       |                                          | *****                                 |
| BLADE<br>(BLADE                                                              |                                                                                  |                                              | .3en chonguise<br>Re 63                  | ******                                |
| .voor                                                                        | K. 14                                                                            | •••••<br>•••••                               | . 30A.10                                 | • • • • • • • • •<br>• • • • • • • •  |
| TABLE LXXXV.                                                                 |                                                                                  |                                              |                                          | • • • • • • • • • • • • • • • • • • • |
| -                                                                            | ł                                                                                | <b>;;;;;;</b> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | · 2                                      |                                       |
|                                                                              | 87Ê                                                                              |                                              | ¥ .                                      |                                       |
|                                                                              | ş t s                                                                            |                                              |                                          | neneree<br>1111111<br>8888887         |

)

|                         | 811                                          | 0,00000                                                                   |
|-------------------------|----------------------------------------------|---------------------------------------------------------------------------|
|                         | OTU                                          |                                                                           |
|                         | 68                                           |                                                                           |
|                         | R.G.                                         | 0 = = N 0 N 4<br>= (1 0 = =                                               |
|                         | (8)-<br>R7                                   |                                                                           |
|                         | CS (IN.                                      | 40.0.00<br>40.00                                                          |
| cluded                  | HARMONICS (INLB)<br>R5 R6 R1                 |                                                                           |
| - Con                   | MENT H                                       | 45466660<br>NNN-726                                                       |
| TABLE LXXXV - Concluded | NDING H                                      | ******                                                                    |
| TABLE                   | .Sor CHORDMISE BENDING MOMENT<br>R1 R2 R3 R4 |                                                                           |
|                         | R CHORD<br>R1                                | 9.8<br>1.22.7<br>1.44.1<br>1.64.1<br>1.64.1<br>1.64.1<br>1.64.1<br>1.64.1 |
|                         | BLADE .30<br>RS                              |                                                                           |
|                         | BL<br>THEC<br>(DEG)                          | 1<br>0000000<br>NN MN NN                                                  |
|                         | R                                            | 1.486<br>1.611<br>1.675<br>1.675<br>1.675<br>1.656<br>1.656<br>1.655      |
|                         | OMS<br>+R<br>(FPS)                           | 22588<br>2318<br>2318<br>2318<br>2318<br>2318<br>2318<br>2318<br>23       |
|                         |                                              | *****                                                                     |
|                         | 21.3<br>21.2                                 |                                                                           |

ŧ.

|                                                                                                                                                                           |                                                                                | TABLE L                                                                                                                | XXXXVI.                                                                     |                                                   |                                                                      |                                                                                              | AT .35 CH                                                          |                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| RUN-                                                                                                                                                                      | MS                                                                             | ł.                                                                                                                     | 3                                                                           | BLA                                               | DELAG                                                                | MOTION                                                                                       | HARMONI                                                            | CS (DEG)                                                                   |
| NO.                                                                                                                                                                       | R<br>PS)                                                                       | MU                                                                                                                     | THEC<br>(DEG)                                                               | ۸1                                                | A2                                                                   | A3                                                                                           | <b>A</b> 4                                                         | A5                                                                         |
| 83- 3 7                                                                                                                                                                   |                                                                                | .333                                                                                                                   | 4.0                                                                         | 1                                                 | .0                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 63- 4 7                                                                                                                                                                   |                                                                                | . 390                                                                                                                  | 4.0                                                                         | .0                                                | • 0                                                                  | .0                                                                                           | .0                                                                 | .0                                                                         |
| 03- 5 7                                                                                                                                                                   |                                                                                | .450                                                                                                                   | 4.0                                                                         | .0                                                | .0                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 84-3                                                                                                                                                                      |                                                                                | .632                                                                                                                   | 4.0                                                                         | .1                                                | .0                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 84- 4                                                                                                                                                                     |                                                                                | .708                                                                                                                   | 4.0                                                                         | .2                                                | .0                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 84- 5 1                                                                                                                                                                   |                                                                                | .793                                                                                                                   | 4.0                                                                         | .2                                                | .0                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 84- TA                                                                                                                                                                    |                                                                                | .876                                                                                                                   | 4.0                                                                         | - :2-                                             | .0                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 84- 8 4                                                                                                                                                                   |                                                                                | .876                                                                                                                   | 4.0                                                                         |                                                   | .0                                                                   | .0                                                                                           | .0                                                                 | 1                                                                          |
| 4- 9                                                                                                                                                                      |                                                                                | .924                                                                                                                   | 4.0                                                                         | .2                                                | •0                                                                   | .1                                                                                           | - 0                                                                | .1                                                                         |
| 84-10 3                                                                                                                                                                   |                                                                                | 1.038                                                                                                                  | 4.0                                                                         | .0                                                | .1                                                                   | .0                                                                                           | 1                                                                  | 1                                                                          |
| 84-11 3                                                                                                                                                                   |                                                                                | 1.107                                                                                                                  | 4.0                                                                         | .0                                                | .1                                                                   | .0                                                                                           | .0                                                                 |                                                                            |
| 84-12 3                                                                                                                                                                   |                                                                                | 1.185                                                                                                                  | 4.0                                                                         | .0                                                | .1                                                                   | .1                                                                                           | .0                                                                 | .0                                                                         |
| 84-13                                                                                                                                                                     |                                                                                | 1.275                                                                                                                  | 4.0                                                                         | 1                                                 | .1                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 80-14                                                                                                                                                                     |                                                                                | 1.380                                                                                                                  | 4.0                                                                         | 2                                                 | .1                                                                   | .0                                                                                           | .0                                                                 |                                                                            |
| 84-15                                                                                                                                                                     |                                                                                | 1.504                                                                                                                  | 4.0                                                                         | 3                                                 | .1                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| 84-16                                                                                                                                                                     |                                                                                | 1.652                                                                                                                  | 4.0                                                                         | 6                                                 | .1                                                                   | .0                                                                                           | .0                                                                 | .0                                                                         |
| RUN-                                                                                                                                                                      | ,                                                                              |                                                                                                                        |                                                                             | 81.4                                              | DELAG                                                                | MOTION                                                                                       | HARMONI                                                            | CS (DEG)                                                                   |
|                                                                                                                                                                           |                                                                                |                                                                                                                        |                                                                             | DLA                                               | UE LAU                                                               | HOLION                                                                                       | HARMUNI                                                            |                                                                            |
| NO.                                                                                                                                                                       | R                                                                              |                                                                                                                        | THEC                                                                        |                                                   |                                                                      |                                                                                              |                                                                    |                                                                            |
| NO. (F                                                                                                                                                                    | R<br>PS)                                                                       | MŲ                                                                                                                     | (DEG)                                                                       | 81                                                | 82                                                                   | 83                                                                                           | B4                                                                 | 85                                                                         |
| NO. (F                                                                                                                                                                    | R<br>PS)                                                                       | .333                                                                                                                   | (DEG)                                                                       | 1                                                 | .0                                                                   | .0                                                                                           | .0                                                                 | B5<br>.0                                                                   |
| NO. (F                                                                                                                                                                    | R<br>PS)<br>700                                                                | .333                                                                                                                   | (DEG)<br>4.0<br>4.0                                                         | -:1<br>-:1                                        | .0                                                                   | .0                                                                                           | .0<br>.0                                                           | 85<br>.0                                                                   |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7                                                                                                                                   | R<br>PS)<br>700<br>700                                                         | .333<br>.390<br>.450                                                                                                   | (DEG)<br>4.0<br>4.0<br>4.0                                                  | -:1<br>-:1<br>-:1                                 | .0                                                                   | .0                                                                                           | •0<br>•0<br>•0                                                     | 85<br>.0<br>.0                                                             |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 5                                                                                                                        | R<br>PS)<br>700<br>700<br>700                                                  | .333<br>.390<br>.450<br>.632                                                                                           | (DEG)<br>4.0<br>4.0<br>4.0                                                  | 1<br>1<br>1<br>.1                                 | .0<br>.0<br>.0                                                       | .0<br>.0<br>.1                                                                               | .0<br>.0<br>.0                                                     | B5<br>.0<br>.0<br>.0                                                       |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 5<br>84- 4 5                                                                                                             | R<br>PS)<br>700<br>700<br>700<br>700                                           | .333<br>.390<br>.450<br>.632<br>.708                                                                                   | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0                                    | 1<br>1<br>1<br>.1                                 | .0<br>.0<br>.0<br>.1<br>.1                                           | .0<br>.0<br>.0<br>.1                                                                         | • 0<br>• 0<br>• 0<br>• 0<br>• 0                                    | B5<br>.0<br>.0<br>.0<br>.0                                                 |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 8<br>84- 4 8<br>84- 5 8                                                                                                  | R<br>PS)<br>700<br>700<br>700<br>700<br>700<br>700<br>700                      | .333<br>.390<br>.450<br>.632<br>.708<br>.793                                                                           | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0                             | 1<br>1<br>1<br>.1<br>.1                           | .0<br>.0<br>.0<br>.1<br>.1                                           | .0<br>.0<br>.0<br>.1<br>.1<br>.1                                                             | •0<br>•0<br>•0<br>•0<br>•0                                         | B5<br>.0<br>.0<br>.0<br>.0<br>.0                                           |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 9<br>84- 4 9<br>84- 5 9<br>84- 6 9                                                                                       | R<br>PS)<br>700<br>700<br>500<br>500<br>500                                    | .333<br>.390<br>.450<br>.632<br>.708                                                                                   | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0                                    | 1<br>1<br>1<br>.1<br>.1<br>.0<br>1                | .0<br>.0<br>.1<br>.1<br>.1<br>.1                                     | .0<br>.0<br>.1<br>.1<br>.1<br>.1                                                             | •0<br>•0<br>•0<br>•0<br>•0<br>•0                                   | B5<br>.0<br>.0<br>.0<br>.0<br>.0                                           |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 8<br>84- 4 8<br>84- 5 8                                                                                                  | R<br>PS)<br>700<br>700<br>500<br>500<br>500<br>500                             | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876                                                                   | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0                      | 1<br>1<br>1<br>.1<br>.1                           | .0<br>.0<br>.0<br>.1<br>.1                                           | .0<br>.0<br>.1<br>.1<br>.1<br>.1                                                             | •0<br>•0<br>•0<br>•0<br>•0                                         | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                         |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 8<br>84- 4 8<br>84- 5 8<br>84- 6 8<br>84- 7 4                                                                            | R<br>PS)<br>700<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500        | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.832                                                           | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0        | 1<br>1<br>1<br>.1<br>.0<br>1                      | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1                               | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1                                                       | •0<br>•0<br>•0<br>•0<br>•0<br>•0                                   | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1                   |
| NO. (F<br>83- 3 7<br>83- 4 7<br>84- 3 8<br>84- 5 8<br>84- 5 8<br>84- 6 8<br>84- 6 8                                                                                       | R<br>PS)<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.832<br>.876                                                   | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | 1<br>1<br>1<br>.1<br>.0<br>1                      | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                         | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                                           | •0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                       | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                         |
| NO. (F<br>33- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 8<br>84- 5 8<br>84- 6 8<br>84- 7 4<br>84- 8 4<br>84- 9 4                                                                 | R<br>PS)<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.832<br>.876<br>.924                                           | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | 1<br>1<br>1<br>.1<br>.1<br>.0<br>1<br>1<br>3      | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                   | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1       | *0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0                 | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.0             |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 8<br>84- 5 8<br>84- 5 8<br>84- 6 8<br>84- 7 4<br>84- 7 4<br>84- 10 3<br>84-11 3<br>84-12 3                               | R<br>PS)<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.832<br>.876<br>.924<br>1.038                                  | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | 1<br>1<br>1<br>.1<br>.0<br>1<br>3<br>3<br>3<br>4  | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1                   | .0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | •0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0           | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>1        |
| NO. (F<br>83- 3 7<br>83- 4 7<br>83- 5 7<br>84- 3 8<br>84- 5 8<br>84- 5 8<br>84- 6 8<br>84- 7 4<br>84- 7 4<br>84- 10 3<br>84-11 3<br>84-12 3                               | R<br>PS)<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.832<br>.876<br>.832<br>.876<br>.832<br>.924<br>1.038<br>1.107 | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | 1<br>1<br>.1<br>.0<br>1<br>.0<br>1<br>3<br>3<br>3 | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1       | .0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | • 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.0<br>.0 |
| NO. (F<br>33-37<br>83-47<br>83-57<br>83-57<br>84-55<br>84-55<br>84-55<br>84-55<br>84-55<br>84-55<br>84-55<br>84-65<br>84-7<br>84-7<br>84-123<br>84-113<br>84-123<br>84-13 | R<br>PS)<br>700<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | .333<br>.390<br>.632<br>.708<br>.793<br>.876<br>.924<br>1.038<br>1.107<br>1.185<br>1.275<br>1.380                      | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | 1<br>1<br>1<br>.1<br>.0<br>1<br>3<br>3<br>3<br>4  | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1             | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1       | • 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 | B5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.1<br>.1<br>1<br>.0<br>.0<br>.0  |
| NO. (F<br>                                                                                                                                                                | R<br>PS)<br>700<br>700<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.924<br>1.038<br>1.107<br>1.185<br>1.275                       | (DEG)<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0 | 1<br>1<br>1<br>.1<br>.0<br>1<br>3<br>3<br>3<br>5  | .0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | .0<br>.0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | • 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0<br>• 0 | B5<br>.0,0<br>.0,0<br>.0,0<br>.0,0<br>.1,1<br>.1,1<br>.0,0<br>.0,0         |

.

|          |     | TABI          | TABLE LXXXVI - Concluded | [ - Conc]  | luded  |           |          |    |
|----------|-----|---------------|--------------------------|------------|--------|-----------|----------|----|
|          |     |               | BLADE                    | LAG        | MOTION | HARMONICS | CS (DEG) | (9 |
| MU (D    | ΞO  | THEC<br>(DEG) | RS                       | R1         | R2     | R3        | R4       | RS |
|          | ব   | 0             | 8.                       | .1         | 0.     | 0.        | •        | •  |
|          | ŧ   | 0             | 2.                       |            | •      | 0.        | •        | 0. |
|          | 4   | 0             | 8.                       | .1         | 0.     | 0.        | •        | •  |
| .632 4.  | 4   | 0             | .8                       | 2.         | .1     | .1        | 0        | 0. |
| .708 4.( | 4.0 | ~             | 1.0                      | ~          | .1     | 1.        | 0        | 0. |
| 4        |     | 0             | 1.0                      | 2.         | .1     | .1        |          | •  |
| 4        |     | 0             | 1.0                      | r.         | .1     | .1        | •        | •  |
|          |     | 0             | 1.0                      | 2          | .1     | . 1       |          | .1 |
| ÷.       |     | 0             | 6.                       | <b>n</b> . | .1     | .1        | 0.       | 2  |
| *        |     | 0             | 1.0                      | 5          | .1     | .1        |          |    |
| .038 4.  | •   | 0             | 6.                       | r.         | .1     |           | 4.       |    |
| 1.107 4. | \$  | 0             | 6.                       | n.         | .1     |           | •        | •• |
| .185     |     | 0             | 6.                       | ÷.         | .1     |           |          | •  |
| -        | 4   | 0             | 9.                       | 5.         |        | •         | •        | •  |
| .380 4.  |     | 0             | 4                        | ••         | .1     | •         | ••       | •• |
| .504 4   |     | 0.            | 3.                       | 8.         |        | •         | 0        | •  |
| 1.652 4. | 4   | 0             | 2                        | 1.1        |        | 0.        | 0        | •  |
|          |     |               |                          |            |        |           |          |    |

t

| No.         No. <th></th> <th>TABLE</th> <th>ΓX</th> <th>CVII.</th> <th>BLADE<br/>(BLADE</th> <th>30R<br/>CENT</th> <th>INI</th> <th>SE BENDING<br/>GRAVITY AT</th> <th>AT</th> <th>MOMENT HARMONICS<br/>.35 CHORD)</th> <th>D)</th> <th>•</th> <th>runs 8</th> <th>83-84</th> <th></th> <th></th>               |            | TABLE | ΓX           | CVII.      | BLADE<br>(BLADE | 30R<br>CENT | INI     | SE BENDING<br>GRAVITY AT | AT         | MOMENT HARMONICS<br>.35 CHORD) | D)       | •    | runs 8     | 83-84 |          |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------|------------|-----------------|-------------|---------|--------------------------|------------|--------------------------------|----------|------|------------|-------|----------|---------|
| Triangle                                                                                                                                |            |       |              |            | . JOR FLA       | - 35 I.M.   | )ENDING | NONENT                   | HARMONI    | CS (IN.                        | -18)     |      |            | 1     |          |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |       | THEC<br>LOFE | 1V         | ۸2              | <b>6</b> A  | ¥¥      | AS                       | A6         | ۸7                             | A6       | 49   | A10        | A11   | A12      | A13     |
| 7700       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***                                                                                                                                                                                                                                                                                                                                                                                                       | •          |       |              |            | -               | .1          |         | 0                        | .1         | 0.                             | 2        | *    | -          | •     | •        | 0.      |
| 7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |              |            | 1               | *           |         | -3.7                     |            |                                | •        | •••  |            | •     | •        | •       |
| 7 307       700       770       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •          |       |              |            | <b>S</b> •••    | 0.1         | 5.1     |                          | •          | •                              | ~-       | •    | •          | •     | Ģ        | •       |
| 7 500       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700 <td< th=""><th>•</th><th></th><th></th><th></th><th>0.1</th><th>5.2</th><th></th><th></th><th>•</th><th></th><th><b>.</b></th><th>•</th><th>1.6</th><th></th><th></th><th>•••</th></td<>                                                                                                                                                                                                             | •          |       |              |            | 0.1             | 5.2         |         |                          | •          |                                | <b>.</b> | •    | 1.6        |       |          | •••     |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e ve       |       |              |            |                 |             |         |                          |            |                                |          |      |            |       |          |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |              |            |                 |             | -       |                          |            |                                | : 7      |      |            |       | ~        | : -     |
| 9.91       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70       9.70                                                                                                                                                                                                                                                                                                                                                     | -          |       |              | 1.9        | -2.9            | 0.4         |         |                          | 2.5        |                                | 5        | 2.   |            | 5     |          |         |
| 9       923       924       924       941       724       112       743       112       743       112       743       112       743       112       743       112       743       112       743       112       743       112       743       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112       112                                                                                                                                                                                                                                                                                                                                                                                                | ¢          |       | •••          | 1.9        | -3.8            | -5.0        | ···     | 1.1                      | -1.3       | 2.                             |          | •    | 37<br>1    | * •   | •        | ;•      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •          |       |              | 1.9        | 1.1             | -2.9        | 2       | 1.2                      |            | -1.2                           | *        | ~    | 3.1        | vi    | 9.       | •       |
| 11       333       1110       40       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       25       -9       10       11       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2          | -     |              | 2.7        | 1.5-            | 7.0         | -1-6    | ŝ                        | <u>.</u>   |                                | <b>.</b> | ē,   |            |       | 1.0      | 2.      |
| 3.33       1.11       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1 <td< td=""><th>=</th><td>-</td><td></td><td>2.5</td><td>-3.9</td><td>6.9</td><td>-2.2</td><td></td><td>2.2</td><td>-2.6</td><td>-</td><td>~</td><td>~</td><td></td><td>* -<br/>1</td><td>\$</td></td<>                                                                                                                                                                                               | =          | -     |              | 2.5        | -3.9            | 6.9         | -2.2    |                          | 2.2        | -2.6                           | -        | ~    | ~          |       | * -<br>1 | \$      |
| 230       1.277       *.0       2.6       5.7       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       7.1       -5.6       -5.6       -5.7       -5.6       -5.6       -5.7       -5.6       -7.1       -5.6       -7.1       -5.6       -5.6       -5.7       -5.6       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.6       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7       -5.7                                                                                                                                                                                                                                                                                                                                                               |            | -     | •            | 2.2        | 9.9-            | \$.\$       | -2.5    | 6.1                      | 1.1        | 1.5                            | -        |      |            | 2     |          | •       |
| 239       1.500       5.0       1.6       5.0       1.6       5.0       1.1       -7       5       5       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •          | -     | •••          | 2.6        | -5.2            | 7.1         | **0-    | -1.6                     | •          | 2.1                            | 0.1      |      | -          | :     |          | :       |
| 239       1,50%       4,0       1,4       -5,2       7,0       -3,0       -1,1       -6,5       7,7       -5,2       -6,6       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -0,5       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,1       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2       -1,2 <td< td=""><th></th><td>1</td><td>0.4</td><td>1.0</td><td>6.9-</td><td>6.4</td><td></td><td>-2.1</td><td>•</td><td>1.1</td><td>7</td><td>9.</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                              |            | 1     | 0.4          | 1.0        | 6.9-            | 6.4         |         | -2.1                     | •          | 1.1                            | 7        | 9.   |            |       |          |         |
| - 1.         - 0.         - 7.0         - 1.         - 0.         - 1.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0.         - 0. <t< td=""><th>0</th><td>-</td><td>•••</td><td>1.4</td><td>1.8-</td><td>7.7</td><td>-5.2</td><td>-2.8</td><td></td><td>9.</td><td></td><td>¢,</td><td></td><td>5.</td><td>~</td><td>.,</td></t<>                                                                 | 0          | -     | •••          | 1.4        | 1.8-            | 7.7         | -5.2    | -2.8                     |            | 9.                             |          | ¢,   |            | 5.    | ~        | .,      |
| ONE         THE         DEADE         TOR         FLAPRISE         DEMONICS         DIAL         DIAL <thdial< th=""></thdial<>                                                                                                                                                                                                                                               |            | -     |              | 7          | 0-0-            | 0.0         | -7.0    | -3.0                     | •          | ·                              | #<br>    | -1.2 |            | 4     |          | 1       |
| ONS         THEC         Dial Flatenisc         Dial Dial Dislose         Dial Flatenis |            |       |              |            |                 |             |         |                          |            |                                |          |      |            |       |          |         |
| OFE         THEC         Dial         Dial <thd< th=""><th>-</th><th></th><th></th><th></th><th>. SOR FLA</th><th>2012</th><th>SMD ING</th><th>MONENT</th><th>HARMONI</th><th>NID SU</th><th></th><th></th><th></th><th></th><th></th><th></th></thd<>                                                       | -          |       |              |            | . SOR FLA       | 2012        | SMD ING | MONENT                   | HARMONI    | NID SU                         |          |      |            |       |          |         |
| (FPS)         NU         (Dec)         B1         B2         B3         B10         B11         B12           700         333         4.0          2.2.2         2.1          0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th></th> <th>s</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ì</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                              |            | s     |              |            |                 |             |         |                          |            |                                | Ì        |      |            |       |          |         |
| (FP3)         M         (066)         B1         B2         B3         B1         B1           700         530         530         530         530         531         50         70         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                       |            |       | THEC         |            |                 |             |         |                          |            |                                |          |      |            |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E F        |       | (026)        | 5          | 20              | 3           | ð       | 3                        | <b>8</b> ¢ | 6                              | 8        | 68   | 810        | 811   | B12      | 813     |
| 700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       700       7                                                                                                                                                                                                                                                                                                                                                                                                | 1          |       |              | د.         | •               | 6.          | 6.<br>1 | -1.2                     | ~          | •                              |          | 1    | •          | 0.    | 0.       | 0.      |
| 730       550       731       1.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2.1       2                                                                                                                                                                                                                                                                                                                                                                                                |            |       |              | •          | 2.2             | 2.1         | -1.2    | -2.1                     | •          | ŗ,                             | • 5      |      |            | •     | •        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~          |       |              |            | 2.1             | -           | -1-5    | -2.9                     |            | •                              | # (<br>1 |      | 7          | •     | •        | •       |
| 7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30       7.30                                                                                                                                                                                                                                                                                                                                                     | <b>.</b> . |       |              | -          |                 | <b>?</b> •7 |         |                          |            |                                |          | 2    | ••         | N -   | •••      | •       |
| 7.90       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976       976                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |              | 2          |                 |             |         |                          | 2 7        |                                |          |      |            | •     | ••••     | •       |
| 7       7.75       .6.12       .0                                                                                                             .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £          |       |              |            |                 | -1.0        | -1.0    |                          | ::1        |                                | -        |      | -2.7       |       |          |         |
| <b>951</b> 976       4.0       1.1       2.5       -0       -1       -5       -6       -7       -1 <b>926</b> 924       4.0       1.1       2.5       -0       -1       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       -7       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~          |       |              |            | 2.1             | 1.6         | :       | 9°-                      | <b>.</b>   |                                | s.       | •    | -1.2       |       |          | 2.2     |
| 301       1.037       4.0      1      7       2.5      1      7       2.5      1      7       2.5      1      7       2.5      1      7       2.5      1      7       2.5      1      7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       1.7       2.5      1       2.5      1       1.7       2.6      1       2.7       2.5       1.1       2.6      1       2.7       2.5       1.1       2.6      1       2.7       2.5       1.1       2.6      1       2.7       2.5       1.1       2.6      1       2.7       2.5       1.6       2.5      1       1.6       2.5      1       1.7       1.1       2.6      1       1.7       1.6       2.6       1.6       2.6       1.7       1.7       1.6       2.5       1.7       1.7       1.7       1.7       1.6       2.6       1.7       1.7 <td< th=""><th>•</th><th></th><th></th><th>1.8</th><th>1.1</th><th>S•2</th><th>•</th><th></th><th>5</th><th>s.,</th><th>-</th><th>ŝ</th><th><b>9</b>-</th><th></th><th></th><th>- 2</th></td<>                                                                                                                                                                                                                                                                                                          | •          |       |              | 1.8        | 1.1             | S•2         | •       |                          | 5          | s.,                            | -        | ŝ    | <b>9</b> - |       |          | - 2     |
| 531       1107       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |              | ມ<br>-     | Ģ               | 9.0         | - '     |                          |            | 3 ·<br>•                       | i i      | •    | ~          |       |          | ې.<br>۱ |
| 2.39       1.155       4.0       -7.2       -7.1       11.6       1.0       -9       4       -9       -1       -2       -1       -2       -1       -2       -1       -2       -1       -2       -1       -2       -1       -2       -1       -2       -1       -2       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>- •</th> <th></th> <th></th> <th></th> <th>N "</th> <th></th> <th>N :</th>                                                                                                                                                                                                                                                                        |            |       |              |            |                 |             |         |                          |            | - •                            |          |      |            | N "   |          | N :     |
| 3 310       1.275       4.0       -2.7       -2.7       10.6       .5       -15       .4       .8       .3       .2       .3       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0<                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | •     |              | -2.2       | -2.1            | 11.6        | 1.0     | 6.1                      |            |                                |          | 7    | ? ?        |       |          |         |
| 0.207       1.300       4.0       -3.3       -2.5       11.2       1.6      5       .5      1       .3       .2       .3       .0         5       262       1.504       4.0       -4.0      9       8.6       4.3       .9       .4      7       .7       -1       4.1       .1       .0         5       262       1.504       4.0       -4.0      9       8.6       4.3       .9       .4      7       .7       -1       4.1       .1       .0         5       259       1.652       4.0       -5.2       1.2       7.6       7.1       1.5       .5      3       .3       .0         5       239       1.652       4.0       -5.2       1.2       7.6       7.1       1.5       .5      3       -3.1      6       .2       .1       .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •          | -     |              | -2.7       | -2.7            | 10.8        | r.      | ·-5                      | 3          | 6                              | · ·      | 2.   | ::         | •     |          | . 1     |
| 2 202 1:504 4.0 -4.09 8.8 4.3 .9 .47 .7 -1.41 .1 .0<br>5 239 1:652 4.0 -5.2 1.2 7.6 7.1 1.5 .553 -3.16 .2 .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -     |              | -3.3       | -2-5            | 11.2        | 1.6     | 5                        | \$         |                                |          | °.   | ŗ.         | ••    |          | .1      |
| 1, 2, 3, -1, -2, -2, -2, -1, 1, -2, -2, -3, -3, -3, -3, -3, -4, -2, -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>n</b> . |       |              | 6 .<br>7 . |                 |             |         |                          | <b>.</b>   |                                |          |      | -          | -     |          | °.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0          |       |              | -2.2       | 1.2             | 0.          | 1.      | 1.0                      | •          |                                |          | -3.1 | 9          | Ņ     |          | .1      |

¥

.

ŧ

.

|                           | T                                                | 1.            |       | -    | •     |       |        |       |      |      |             |      |       |       | -     |       | -     |       | -     |  |
|---------------------------|--------------------------------------------------|---------------|-------|------|-------|-------|--------|-------|------|------|-------------|------|-------|-------|-------|-------|-------|-------|-------|--|
|                           |                                                  | 413           | •     | •    | 9     |       |        | 1     |      | 15   | 1           | 17   |       |       | 1     |       | 1     |       | 1     |  |
| ļ                         |                                                  | <b>R12</b>    | •     | •    |       |       | -      | 1     | 1    | 17   | -           |      |       |       | -     | -     |       | 19    | 17    |  |
|                           |                                                  | 811           | •     | •    | •     | ~     | -      | -     | -    |      |             |      |       | •     | 1     |       | -     |       | •     |  |
|                           |                                                  | R10           | -     |      | -     |       |        |       | 6.2  | -    |             | •    | •     | -     | -     | 1     |       |       |       |  |
|                           |                                                  | 2             | •     | 1    | •     | C     | -      | -     | -    | •    |             |      | •     | •     |       | 1     | •     |       |       |  |
|                           |                                                  | 2             | •     | ~    | •     | •     | •      | •     | •    |      |             | •    | 1.3   | •     |       | •     |       |       | •     |  |
|                           | (B)                                              | R7            | 1.    | 9.   | 'n    |       | 5      | -     | •    | •    | ņ           | 1.2  | 3.1   | 6.2   | •:•   | 2.3   | 1.1   | •     | •     |  |
| luded                     | S (IN.                                           | Rb            | 2.    | 4    | 0.    | 2.7   | 1.3    | 1.0   | 1.7  | 2.5  | 1.4         | 2.8  | 1.4   | 2.4   | 1.2   | •     | 5     | •     | s.    |  |
| TABLE LXXXVII - Concluded | HARMONI                                          | RS            | 1.2   | n.*  | 5.5   | 2.1   | 1.9    | •     | •    | •    | 1.1         | 1.4  |       | 2.0   | 1.3   | 1.7   | 2.2   | 0.0   | •••   |  |
| IIVXX                     | HOMENT                                           | 4<br>2        | 1.1   | 2.1  | 2.1   |       | 1.2    |       | 1.0  | *    | 5.          | .2   | 1.6   | 2.3   | 2.7   |       | •••   | 6.7   | 10.0  |  |
| עד שיופי                  | DE "JOR FLAPWISE DENDING MOMENT MARMONICS (INLB) | R3            | 6.    | 2.1  | 1.4   | 8 ° D | 3.6    | 2.9   | 3.7  | 5.4  | <b>9</b> •2 | 9.6  | 12.8  | 12.7  | 12.5  | 12.9  | 12.3  | 11.7  | 12.4  |  |
|                           | PWISE D                                          | R2            |       | 2.3  | 2.1   | 2.3   | 3.3    | 3.8   | 5.4  | 3.6  | 3.9         | 4.1  | 5.1   | 0.4   | ***   | 5.9   | 7.5   | 9.5   | 9.6   |  |
|                           | JOR FLA                                          | RI            | 0     | 4.1  | 1.6   | 1.9   | 1.9    | 2.2   | 2.0  | 2.2  | 2.6         | 2.7  | 2.7   | 3.6   | 0.0   | 3.8   | 3.0   | C     | 5+2   |  |
|                           | PLADE .                                          | PS            | 2.5   | 2.3  | 2.1   | 1.2   | 2.0    | 1.7   | 1.5  | 1.6  | 2.9         | 4 °C | 2.6   | ŝ     | 1.1   | 2.0   | 1.6   | 1.7   | 1.6   |  |
|                           | -                                                | THEC<br>(DEG) | 0.4   | 0.4  | 0.4   | 0.4   | 0" #   | ¢.0   | 0.4  | 0.4  | 0.4         | 0.4  | 0.4   | 0.4   | c     | 0.4   | 0"#   | 0.4   | 0.4   |  |
|                           |                                                  | 6M            | .333  | .390 | 0111. | .632  | .708   | . 793 | .076 | .832 | .876        | 426. | 1.038 | 1.107 | 1.185 | 1.275 | 1.360 | 1.504 | 1.652 |  |
|                           |                                                  | FPS)          | 700   | 700  | 700   | 500   | 500    | 200   | 500  | 475  | 121         | 128  | 301   | 357   | まつつ   | 310   | 287   | 263   | 239   |  |
|                           | RUN-                                             | - 1           | 63- 3 | 1-50 | 83- 5 | -     | 4 - 40 |       | ~    | ~    | -           | -    | -     | _     |       | _     | _     |       |       |  |

| RUL-<br>IN-<br>IN-<br>(FFS)         BLADE         GON         LANUES         EMOTING         MARMONICS         (INLL)           NO.         (FFS)         NU         (DE6)         A1         A2         A3         A6         A7         A6         A0         A10           S1-<br>7         700         333         4.0         2.3         5.5         1.5         1.4         -1.1         -1.2         -1.3         -1.2         -1.3         -1.2         -1.3         -1.3         -1.2         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3         -1.3 <td< th=""><th></th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<> |       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |               |      |       |          |        |         |         |         |          |           |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------|---------------|------|-------|----------|--------|---------|---------|---------|----------|-----------|-------------|
| THE         THE         A3         A4         A5         A5         A7         A6         A6         A7         A6         A                                                                                                                                                                                                                                                         |       | ž                                     |       |               | BLAD | 50R   | FLAPWISE | BENDIN | B MOMEN | T HARM  | NICS (I | NLB)     |           |             |
| 7700       .333 $4,0$ $2,3$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$ $-1,5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | FPS)                                  |       | THEC<br>(DEG) | 41   | A2    | A3       | A4     | AS      | 96      | A7      | A.B      | <b>A9</b> | A10         |
| 7700       590       4.0       2.1       -5       5.4       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -10       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -                                                                                                                                                                                                                                                                                                              | A3- 3 |                                       | .335  | 4.0           | 2.3  | 5.    | 1.5      | -1.1   | 1.      | 2       |         | •        | 5.2       | •           |
| 7700       +50       +10       -11       -5       -13       -10       -13       -11       -13       -11       -13       -11       -13       -11       -13       -11       -13       -11       -13       -11       -13       -11       -13       -11       -14       -15       -14       -15       -14       -15       -14       -15       -14       -15       -14       -15       -14       -15       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -                                                                                                                                                                                                                                                                                                              | 83- 4 |                                       | .390  |               | 2,3  | 9     | 4.0      | 2      | 1.9     | •       | *       | 2        | ~         | •           |
| 300       793       4.0       2.4      7      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5      5       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                       | 450   | 4             | 1.5  | 5     |          | 1      | 2.8     | * •     |         |          | Ņ         |             |
| 910       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       770       7                                                                                                                                                                                                                                                                                                              |       |                                       | 632   | *             | 4 .  |       |          |        | -1.1    | •       |         |          | ••        |             |
| 300       875       4.0       1.4       -1.5       -5.2       -2.4       1.6       -1.5       -5.5       -5.4       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -5.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5       -1.5                                                                                                                                                                                                                                                                        |       |                                       |       |               |      |       |          |        | •       |         |         |          |           |             |
| 331       1103       415       -51       -22       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51       -51                                                                                                                                                                                                                                                                                                                     |       |                                       | 261.  |               | 2.1  |       |          |        |         |         |         | •        |           | 2.2         |
| 337       1107       4.0       1.6       -5.1       -6.2       -5.1       -6.2       -5.1       -6.2       -5.1       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2       -6.2 <t< td=""><td></td><td></td><td>610.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                    |       |                                       | 610.  |               |      |       |          |        |         |         |         |          |           |             |
| 331       1103       10       26       10       25       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                       | 84-8  |                                       | 876   |               |      |       |          |        |         |         |         |          |           |             |
| 381         1.038         4.0         2.5         -5.1         1.0         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.1         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5.6         -5                                                                                                                                                                        |       |                                       | 426   |               |      |       |          |        |         |         |         |          |           |             |
| 337       1.107       4.0       2.6       -5.1       1.0.6       -5.1       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -5.5       -1.4       -1.4       -5.5       -1.4       -1.4       -1.5       -1.6       -1.4                                                                                                                                                                                                                                                                    | 84-10 |                                       | 1.038 |               | 2.6  | -0.0  |          | -2.1   | -2.8    | -1.2    | 1.9     |          |           |             |
| 334       1.185       4.0       2.5       -5.7       4.2       -5.2       -1.4       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9       -1.9 <t< td=""><td>84-11</td><td></td><td>1.107</td><td>0.4</td><td>2.8</td><td>-6.1</td><td></td><td>-2.1</td><td>-1-1</td><td>-2.5</td><td>4.2</td><td></td><td>•</td><td></td></t<>                                                                                    | 84-11 |                                       | 1.107 | 0.4           | 2.8  | -6.1  |          | -2.1   | -1-1    | -2.5    | 4.2     |          | •         |             |
| 310       1.275       4.0       2.6       -6.2       7.4       -4.3       -1.9      4       -1.4      3      1         287       1.530       4.0       2.4       -9.1       -2.9      2      5      5      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84-12 |                                       | 1.185 | 0.4           | 2.5  | -5.7  |          | -3.2   | -1.4    |         | -1.9    | 2        | •         | 9           |
| 287       1.380       4.0       2.3       -0.1       4.4       -6.0       -2.0      2      5       .3      1       4.4       -6.0       -2.0      2      5       .3      1       4.4      6       0       -2.0      2      5       .3      1       4.4      6       0       -2.0      2      5       .3      1       4.4      6       0       -2.0      2      5       .3      1       4.4      6       0       -2.0      2       0      2       1.4      5       1.4      5       1.4      5       1.4      5       1.4      5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5 </td <td>84-13</td> <td></td> <td>1.275</td> <td></td> <td>2.6</td> <td>-6.2</td> <td></td> <td>5.41</td> <td>-1.9</td> <td>4.1</td> <td>+-1-4</td> <td></td> <td></td> <td>***</td>                                                                                                                                                                                                         | 84-13 |                                       | 1.275 |               | 2.6  | -6.2  |          | 5.41   | -1.9    | 4.1     | +-1-4   |          |           | ***         |
| 263       1.504       4.0       2.4       -9.6       6.7       -7.1       -2.4      9      3      5       -1.6         0HS       1.7       -10.9       8.3       -8.7       -2.4      9      3      5       -1.6         0HS       1.7       -10.9       8.3       -8.7       -2.4      9      5       -1.6       -9.5       -1.6       -9.5       -1.6       -9.5       -1.6       -9.5       -1.6       -9.5       -1.6       -9.5       -1.6       -9.5       -1.6       -9.5       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2       -1.2                                                                                                                                                                                                                                                                                                                 | 84-14 |                                       | 1.380 |               | 2.3  | -8.1  |          | -6.0   | -2.0    | 2       | 5       |          | -         |             |
| 239       1.652       4.0       1.7       -10.9       8.3       -8.7       -2.7       -2.2       .6       .9       -2         OHS       A       BLADE       60R       FLAPWISE BENDING MOMENT HARMONICS (INLB)       8       -9       -2       -2       -2       -6       -9       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       -2       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                   | 84-15 |                                       | 1.504 | 0.4           | 2.4  | -9.6  |          | -7.1   | -2.4    | 6       | r       | 5        | -1.6      | 8           |
| OHS         THEC         BLADE         GOR FLAPWISE BENDING MOMENT HARMONICS (INLB)           +R         THEC         B1         B2         B3         B4         B5         B1         B9           +R         THEC         B1         B2         B3         B4         B5         B1         B9         B9           700         333         4.0         -1.0         -1.1         2.0        3         .7         .1        1         .4           700         333         4.0         -1.0         -1.1         2.0        3         .7         .1        1         .4         .4           700         333         4.0         -1.0         -1.1         2.0        3         .7         .1        1         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4         .4 </td <td>84-16</td> <td></td> <td>1.652</td> <td></td> <td>1.7</td> <td>-10.9</td> <td></td> <td>-8.7</td> <td>-2.7</td> <td>-2.2</td> <td>9.</td> <td>6.</td> <td>2.1</td> <td>6</td>                                                                                            | 84-16 |                                       | 1.652 |               | 1.7  | -10.9 |          | -8.7   | -2.7    | -2.2    | 9.      | 6.       | 2.1       | 6           |
| OHS         BLADE         GOR         FLAPHISE         BENDING         HOMENT         HARMONICS         (IN-LB)           PR         THEC         B1         B2         B3         B4         B5         B6         B7         B8         B9           700         333         4.0         -1.0         -1.1         2.0        3         1.1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                       |       |               |      |       |          |        |         |         |         |          |           |             |
| OHS         THEC         BLADE         GOR         FLAPHISE         BENDING         MOMICS         IN-LB           PR         THEC         B1         B2         B3         B4         B5         B4         B6         B7         B8         B9           700         333         4.0         -1.0         -1.1         2.0        3         1.7         -1        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4        4                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                       |       |               |      |       |          |        |         |         |         |          |           |             |
| OMS         THEC         B3         B4         B5         B6         B7         B8         B9           700         333         4,0         -1.0         -1.1         2.0         -33         4,0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -1.0         -                                                                                                                                                                                         | RUN-  |                                       |       |               | BLAD |       | FLAPWISE | BENDIN | B MOMEN | T HARMO | NICS (I | NLB)     |           |             |
| *R         THEC         B4         DE         B5         B4         B                                                                                                                                                                                                                                                         | P1.   | SMO                                   |       |               |      |       |          |        |         |         |         | 2        |           |             |
| 700       .333       4,0       -1.0       -1.1       2.0         700       .450       4,0       -1.5       3.8       5.6       -3.3         700       .450       4,0       -1.5       3.1       2.0       -1.1       2.0         700       .450       4,0       -1.5       3.1       8.5       -3.3       1.0       -1.1         700       .450       4,0       -1.5       3.1       8.5       -3.3       1.0       -1.1         500       .793       4,0       -1.6       1.9       2.7       1.0       1.4       -3.4         500       .793       4,0       -1.6       1.10       1.1       1.5       -1.4       -4         500       .793       4,0       -1.6       1.10       1.4       -7       -4       -4         500       .793       4,0       -1.6       1.10       1.4       -4       -4       -4       -4         501       1.038       4,0       -1.6       1.10       1.4       -4       -4       -4       -4         511       1.038       4,0       -1.6       1.4       -4       -4       -4       -4 <td< td=""><td>N</td><td>#R<br/>(FPS)</td><td>ŝ</td><td>THEC<br/>(DEG)</td><td>18</td><td>82</td><td>83</td><td>B4</td><td>85</td><td>B6</td><td>87</td><td>88</td><td>89</td><td>810</td></td<>                                                                                                                                                                                          | N     | #R<br>(FPS)                           | ŝ     | THEC<br>(DEG) | 18   | 82    | 83       | B4     | 85      | B6      | 87      | 88       | 89        | 810         |
| 700       390       40       -1.5       3.6       -3.7       1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       1                                                                                                                                                                                                                                                                 | 83- 3 |                                       | .335  | 0.4           | -1.0 | -1.1  | ~        |        |         | -       |         | 3.       | 3.        | 5           |
| 700       450       40       -2.1       3.1       8.5       -9       1.5       -7       -6       -6       -4       -1       -6       -6       -4       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -6       -7       25       11       10       10       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11                                                                                                                                                                                                                                                                                                                                                                   | 83- 4 |                                       | .390  | 0.4           | -1.5 | 3.8   | 2        |        | 1.8     | +       | 3.1     |          | -         | •           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83- 5 |                                       | .450  | 4.0           | -2.1 | 3.1   | 80       | 6      | 1.5     |         |         | ÷.       |           | •           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                       | .632  | •••           | ~    | 1.6   | •        | 1.0    | •       | 1.5     | .1      |          | •         |             |
| 750       770       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <                                                                                                                                                                                                                                                                                                                                                                |       |                                       | 708   | •••           | \$   | 1.9   | 2        | <br>   | 1.4     | •       |         |          |           | <u>،</u> به |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                       | 54J.  |               |      |       |          | •••    |         |         |         | •        |           | * • •       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84- 7 |                                       | . 812 |               | -    |       |          |        | • -     |         |         |          |           |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84-8  |                                       | .876  |               |      |       |          |        | -1.2    |         | 2       | 1        | *         | ~           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84-9  |                                       | 426.  | 4.0           | 1.5  | -1.3  |          | 2      | -1.0    | •••     | ÷.      | 1        | 4.1       | 3.1         |
| 357     1.107     4.0     1.4     -2.0     9.9     .3     1.9     -1.4     -1.8     .8     .2       310     1.275     4.0     .8     -3.5     13.0     1.6     1.9     -1.5     -2.6     .2     -4       267     1.500     4.0     .1     -3.3     12.6     1.6     1.0     -1.4     -1     -1     -1       267     1.500     4.0     .1     -3.3     12.6     1.6     1.0     -1.4     -1     -1     -1       267     1.500     4.0     .1     -3.3     12.6     1.6     1.0     -1.4     -1     -1     -1       263     1.504     4.0     .2     3.2     1.2     -1     1     -1       263     1.504     4.0     .2     7.7     2.5     -1     .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84-10 |                                       | 1.038 | 0.4           | 3.0  | -1.2  |          | 1.4    | 1.9     | -3.9    | •       | 1.4      | 9.        | <b>،</b> در |
| 334       1.103       7.0       2.0       1.4       2.0       1.4       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 <td< td=""><td>11-48</td><td></td><td>1.107</td><td></td><td>÷.</td><td>-2.0</td><td></td><td></td><td>1.9</td><td></td><td>8.1-</td><td><b>0</b></td><td>Ņ</td><td>•••</td></td<>                                                                                                                                 | 11-48 |                                       | 1.107 |               | ÷.   | -2.0  |          |        | 1.9     |         | 8.1-    | <b>0</b> | Ņ         | •••         |
| 263 1.504 4.0 -2.6 -16 9.8 4.6 1.2 -1.4 -14 -1 -1 -4 -2 2.5 1.504 4.0 -2.6 -16 9.8 4.6 1.2 -1.7 -1 -7 -1 2.6 2.9 1.652 4.0 -2.6 2.8 9.2 7.7 2.5 -1.6 -7 7.7 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-40  |                                       | C01.1 |               |      |       |          | •••    |         |         | 2.2     | Ņ.       |           | Ŷ           |
| 263 1.504 4.09 -1.6 9.8 4.8 1.2 -1.7 -1 0 3<br>239 1.652 4.0 -2.6 .8 8.2 7.7 2.5 -1.67 .7 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84-14 |                                       | 1.340 |               |      |       | 12.6     | 9.1    |         |         |         | :-       |           |             |
| 239 1.652 4.0 -2.6 .8 8.2 7.7 2.5 -1.67 .7 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84-15 |                                       | 1.504 |               |      | -1.6  | 9.8      | 8.4    |         | -1-1    |         |          | 2         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84-16 |                                       | 1.652 | 4.0           | -2.6 | .8    | 8.2      | 1.7    |         | -1.6    | 1.0     |          | 2.6       | 8.          |

£,

ä

.

|       |                    |                                       |               |       | E   | TABLE LXXXVIII - Concluded       | - IIIVX       | Conclu   | ıded    |                              |            |        |            |     |
|-------|--------------------|---------------------------------------|---------------|-------|-----|----------------------------------|---------------|----------|---------|------------------------------|------------|--------|------------|-----|
| PT.   | OMS<br>*R<br>(FPS) | R R R R R R R R R R R R R R R R R R R | THEC<br>(DE6) | BLADE |     | 60R FLAPWISE BENDING<br>R1 R2 R3 | BENDING<br>R3 | G MOMENT | T HARMO | HARMONICS (INLB)<br>65 R6 R7 | NLB)<br>R7 | a<br>a | 6 <u>8</u> | R10 |
|       |                    |                                       |               |       |     |                                  |               |          |         |                              |            | 2      |            |     |
| 83-   | 2 700              | . 333                                 | 4             | 1.5   | 2.5 | 1.2                              | 2.5           | 1.1      |         | ~                            |            | 5      | ŝ          | 2.  |
| 83- 4 | 1 700              | .390                                  | 4             | - 5   | 2.7 | 3.9                              | 6.6           | #<br>•   | 2.6     | 8.                           | 9.         | 4.     | ~          |     |
| 83- 5 | 5 700              | .450                                  | 4.0           | ۰.    | 3.8 | 3.1                              | 9.5           | 1.0      | 3.2     | 8.                           | •          | 5      | ~          | 1.  |
|       | 500                | .632                                  | \$            | 1.6   | 2.4 | 1.7                              | 5.1           | 1.3      | 1.4     | 1.8                          |            |        | •          | 1.5 |
| 84- 4 | 1 500              | . 708                                 | 0.4           | 1.0   | 2.7 | 2.0                              | 5.1           | 1.0      | 1.5     | 1.0                          | 4          | 2      | 2          | 2.4 |
| -+18  | 5 500              | . 793                                 | 4             | 4.    | 2.3 | 1.9                              | 3,9           | 2.3      | 1.4     | 1.4                          |            | 9      |            | 2.7 |
| 84-   | 5 500              | .876                                  |               | 3.    | 2.1 | 2.0                              | 5.3           | 3.5      | 1.3     | 1.8                          |            | 9      | S          | 2.0 |
| -+18  | 1 475              | .832                                  | \$            | 2.    | 1.8 | 2.0                              | 7.5           | 2.0      | 1.4     | 2.9                          | •          | 9.     | \$.        | 1.1 |
| 84-   | 154 6              | .876                                  | 3             | 1.0   | 1.8 | 3.1                              | 10.2          | 2.5      | 1.2     | 8.                           | 5          | \$     | *          | 5   |
| -18   | 9 428              | .924                                  | a             | 8.    | 2.1 | 4.4                              | 13.9          | 2.4      | 1.9     | 3.                           | 5.         | •      | 9.         | •   |
| 84-10 | 381                | 1.038                                 | 3             | 2.4   |     | 8.1                              | 16.1          | 2.5      | 4.5     | 4.1                          | 1.9        | 4      | 6.         | ••  |
| 84-11 | 357                | 1.107                                 | 3             | 1.1   | 3.2 | 6.4                              | 14.6          | 2.1      | 2.6     | 2.9                          | 9.4        | 1.1    | ~          | •   |
| 84-1  | 334                | 1.185                                 | 0.4           | 1.6   | 2.5 | 6.1                              | 14.9          | 3.3      | 1.7     | 1.0                          | 3.4        | -      | 4.         |     |
| 84-13 | 310                | 1.275                                 | *             | 1.5   | 2.7 | 7.1                              | 15.0          |          | 2.0     | 6.                           | 1.5        | •      |            | *.  |
| 84-14 | 1 287              | 1.380                                 | 3             | 2.4   | 2.3 | 8.8                              | 13.4          | 6.2      | 2.2     | 1.4                          | 1.         | 2      | S          |     |
| 84-15 | 5 263              | 1.504                                 | 0.4           | 2.5   | 2.6 | 9.7                              | 11.8          | 9.6      | 2.7     | 2.0                          |            | 5      | 1.6        | •   |
| 84-16 | 239                | 1.652                                 | 4.0           | 2.3   | 3.1 | 11.0                             | 11.7          | 11.6     | 3.7     | 2.1                          |            | 1.1    | 2.6        | 1.1 |
|       |                    |                                       |               |       |     |                                  |               |          |         |                              |            |        |            |     |

I

2

ş

| TABLE LXXXIX. BLADE .18R TORSION *L MOMENT HARMONICS - RUNS 83-84<br>(BLADE CENTER OF GRAVITY AT .35 CHORD) | 515<br>1                               | 000N00                                                                                                         | 8<br>0,004,00,4044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             |                                        | 0000000                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             |                                        | 000-000-                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | <b>1</b> 0                             | 9741774-000<br>1 111                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | •                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | ĝ S                                    | 0-0-0-0000                                                                                                     | 8<br>8<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                             | .18R TORSIONAL MOMENT HARMONICS (INLB) | 04047408070<br>11                                                                                              | .16P TORSIONAL MOMENT HARMONICS (INLB)<br>B3 B4 B5 B6 B7 B0<br>-4.3 3.9 7 .4 .2<br>-16.3 2.6 .5 .4 -1 -<br>-10.9 6.6 .5 .5 .1 -<br>-10 .4 -5.5 1.0 .4 .1 -<br>-4 -5.5 1.0 .4 .1 -<br>-4 -5.5 1.0 .4 .1 -<br>-5 .5 1.0 .4 .1 -<br>-5 .5 1.0 .1 -<br>-5 .5 1.0 .1 -<br>-6 .7 -1 1 -<br>-5 .5 1.0 .1 -<br>-1 .1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                             | ARHONIC                                | 04110001004                                                                                                    | ARMONIC<br>B6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | IONENT H                               | 40-00-00-0<br>1 1 0 4 4 4 0 0 0 0 4<br>1 1 1 1 1 1 1 1 1 1 1                                                   | 000ENT +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                             | IONAL P                                | 1940240404                                                                                                     | 10NAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                             | LBR TORS                               |                                                                                                                | 16P TORS<br>16P TORS<br>15.5<br>10.9<br>10.9<br>10.9<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                             | BLADE                                  |                                                                                                                | 9LADE<br>82<br>1 - 91<br>1 - 91<br>1 - 91<br>2 - 9<br>2 br>- 9<br>2<br>- 9<br>2<br>- 9<br>2<br>- 9<br>2<br>- 9 |
|                                                                                                             |                                        | 0-000000000<br>                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                             | THEC                                   | *******                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>L                                                                                                      | £                                      | 333<br>339<br>539<br>532<br>532<br>532<br>632<br>632<br>632<br>632<br>632<br>632<br>632<br>632<br>924<br>1.038 | MU<br>333<br>450<br>450<br>450<br>450<br>450<br>832<br>832<br>832<br>832<br>832<br>832<br>832<br>832<br>832<br>832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                             | OMS<br>*R<br>S                         | 00000000000000000000000000000000000000                                                                         | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                             | ALE N                                  |                                                                                                                | P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.<br>P11.                                                                                                                                                                                                                                                                                                                                                                     |

ì

ş
| -   | -           | æ     |               |     | BLADE | 1 18L. | JBR TORSTONAL | L NOMENT | T HARMONICS (INLB) | CS (IN | (8) |    |   |            |     |     |     |
|-----|-------------|-------|---------------|-----|-------|--------|---------------|----------|--------------------|--------|-----|----|---|------------|-----|-----|-----|
| 2   | eR<br>(FPS) | ł     | THEC<br>(DEG) | RS  | 11    | R2     | R3            | 1        | RS                 | R6     | R7  | R0 | ŝ | 610<br>810 | 811 | R12 | R13 |
| 5-5 | 100         | .333  | •••           | 8.2 | 2.2   | 9      | 100           | -        |                    | •      |     | -  |   | -          | •   | •   | •   |
|     | 1 700       | 390   | •••           | 5.6 | 2.8   | 9.6    | 6 18.9        | 2        |                    |        |     |    |   |            |     |     |     |
|     | 2 700       | 450   | •••           | 5.2 | 2.8   |        | ~             |          |                    |        |     |    |   |            |     | •   |     |
| -   | 005 5       | .632  |               | 1.7 | 1.1   |        |               |          |                    |        |     |    |   |            | ••• | :-  |     |
| -   | 50C         | .708  |               |     | •     |        |               |          |                    |        | 1   |    |   | !"         | :•  | :   |     |
| -   | 2 500       | 261.  | •••           | 2.0 | -     | •      |               |          |                    |        |     |    |   |            | •   | :•  | :-  |
| -   | 005 5       | .076  | •             | •.1 | 1.6   | 5      |               |          |                    | 2.1    | •   |    |   |            | :-  | -   | •   |
| -   | 475         | .032  |               | -   |       |        |               |          |                    | 3.6    |     |    |   |            | •   | :•  | ••• |
| -   | 12+ 6       | .876  |               | 2.5 | 1.1   |        |               |          |                    |        | •   | •  |   | !-         | :*  | •   | :-  |
| -   | 9 *28       | .924  |               | 2.0 | 1.2   |        |               |          |                    |        | 1.1 |    |   |            | : " | :-  | :-  |
|     | 192 0       | 1.936 | •••           | 3.8 | 2.5   |        |               | 9 5.1    | 1 10.2             | 7.3    | 2.0 |    |   |            | 1   |     |     |

|                                                                                                                                                                                                 | TABLE                                                                                                                                       | XC.               | BLADE                                                                                 |                                                               | NOTION<br>ER OF G                                                                                           |                                                                                  |                                                                                              |                                                                            |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|
| RUN-<br>PT. ONS<br>NO. SR                                                                                                                                                                       |                                                                                                                                             | THEC              | DLA                                                                                   | DE FLAF                                                       | MOTION                                                                                                      | HARMO                                                                            | ICS (DE                                                                                      | G)                                                                         |                |
| (FPS)                                                                                                                                                                                           | MU                                                                                                                                          | (DEG)             |                                                                                       | A2                                                            | A3                                                                                                          | A4                                                                               | A5                                                                                           | A6                                                                         | A7             |
| 83- 3 700<br>83- 4 700<br>83- 5 700<br>84- 3 500                                                                                                                                                | .333<br>.340<br>.450<br>.632                                                                                                                | *.0<br>*.0<br>*.0 | .0<br>.1<br>1<br>.0                                                                   | 2<br>.2<br>.1<br>3                                            | .1<br>.1<br>.1                                                                                              | •0<br>-•1<br>-•1<br>•0                                                           | •0<br>•1<br>•1                                                                               | • 0<br>• 0<br>• 0<br>• 0                                                   | .0<br>.0<br>.0 |
| 84- 4 500<br>84- 5 500<br>84- 6 500<br>84- 7 475                                                                                                                                                | .708<br>.793<br>.876<br>.832                                                                                                                | 4.0<br>4.0<br>4.0 | 1<br>1<br>.0<br>2                                                                     | 2<br>2<br>2<br>3                                              | •5                                                                                                          | •0                                                                               | •0<br>•0<br>•0                                                                               | •0<br>•0<br>•0                                                             | •0<br>•0<br>•0 |
| 84- 8 451<br>84- 9 428<br>84-10 381<br>84-11 357                                                                                                                                                | .876<br>.924<br>1.038<br>1.107                                                                                                              | 4.0<br>4.0<br>4.0 | .2<br>.0<br>.6                                                                        | 2<br>2<br>1<br>3                                              | .6<br>.5<br>3<br>3                                                                                          | •0<br>•0<br>•2<br>•3                                                             | -•1<br>-•1<br>•0<br>•1                                                                       | .0<br>1<br>.0<br>1                                                         | .0<br>.0<br>.0 |
| 84-12 334<br>84-13 310<br>84-14 287<br>84-15 263                                                                                                                                                | 1.185<br>1.275<br>1.380<br>1.504                                                                                                            | 4.0<br>4.0<br>4.0 | .5<br>.4<br>.4<br>2                                                                   | 3<br>3<br>5                                                   | 2<br>2<br>3<br>6                                                                                            | •3<br>•3<br>•4                                                                   | •1<br>•1<br>•1<br>•2                                                                         | •0<br>•0<br>•0                                                             | 1<br>.0<br>.0  |
| 84-16 239                                                                                                                                                                                       | 1.652                                                                                                                                       | 4.0               | 4                                                                                     | 7                                                             | 6                                                                                                           | •*                                                                               | •2                                                                                           | .0                                                                         | .0             |
| RUN-<br>PT. ONS                                                                                                                                                                                 |                                                                                                                                             |                   | BLA                                                                                   | DE FLAF                                                       | MOTION                                                                                                      | HARMON                                                                           | ICS (DE                                                                                      | G)                                                                         |                |
| NO. +R<br>(FPS)                                                                                                                                                                                 | MU                                                                                                                                          | THEC<br>(DEG)     | 81                                                                                    | 62                                                            | 83                                                                                                          | 84                                                                               | B5                                                                                           | 86                                                                         | 87             |
| 83- 3 700<br>83- 4 700<br>83- 5 700<br>84- 3 500<br>84- 4 500<br>84- 5 500<br>84- 5 500<br>84- 7 475<br>84- 8 451<br>84- 9 428<br>84-10 381<br>84-12 334<br>84-12 334<br>84-12 287<br>84-15 263 | .333<br>.390<br>.450<br>.632<br>.708<br>.793<br>.876<br>.832<br>.876<br>.924<br>1.038<br>1.107<br>1.185<br>1.275<br>1.380<br>1.504<br>1.652 |                   | .1<br>.2<br>.1<br>.1<br>.0<br>1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0 | 2<br>4<br>4<br>5<br>4<br>5<br>1<br>.0<br>.1<br>.0<br>.2<br>.3 | .0<br>.1<br>1<br>2<br>1<br>.1<br>1<br>3<br>7<br>9<br>-1.0<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>7<br>7 | •0<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1<br>•1 | •0<br>•1<br>•1<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0<br>•0 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |                |

õ

|             |      |       |               |               | TABLF X  | TABLF XC - Concluded | uded      |           |     |    |    |
|-------------|------|-------|---------------|---------------|----------|----------------------|-----------|-----------|-----|----|----|
| RUN-<br>PT. | SMO  |       |               | BLADE         | DE FLAP  | HOTION               | HARMONICS | ICS (DEG) | (9  |    |    |
| oz          | FPS) | ŊΜ    | THEC<br>(DEG) | RS            | RI       | R2                   | R3        | R4        | RS  | R6 | R7 |
| 1           |      | .333  | 4.0           | 1.6           | .1       | ŗ.                   | .1        | •         | 0.  | 0. | 0. |
|             |      | .390  | 0.4           | 1.1           | ~        | s.                   | •1        | • 1       | •1  | •  | 0. |
| 1           |      | .450  | 4.0           | 1.1           | 2.       | °.                   | -         | • 1       | 2   | 0  | 0  |
| ÷           |      | .632  | 4.0           | <b>.</b><br>گ | .1       | 4.                   | 5.        | • 1       | •1  | 0  | •  |
| 84-4        | 500  | .708  | 0.4           | 4.            | .1       | \$°.                 | •         | •1        | •   | 0  | 0  |
| Τ.          |      | 567.  | 4.0           | 5             | .1.      | 9.                   | 5         | • 1       | 0   | •  | •  |
| 1           |      | .876  | 4.0           | •1            | .1       | 9.                   | 9.        | 2.        | ••  | •  | •  |
| T           |      | 60    | 4.0           | •             | 2.       | ••                   | ••        | •1        | •   | 0. | •  |
| ī           |      | .876  | 4.0           | •1            | ς.       | ÷.                   |           | •1        |     | •  | •  |
| 1           |      | 426.  | <b>6</b> .0   | •             | •1       | ÷.                   | 6.        | \$        | .1  |    | •  |
| 7           |      | •     | 0.4           | 5             | 9.       | .1                   | 6.        | ۳<br>•    | •1  | ~  | 0. |
| 7           |      | .10   | 4.0           | 2             | t.       | 3.                   | 1.0       | ۳.<br>•   |     | .1 |    |
| 7           |      | 1.185 | 4.0           | 7             | <b>.</b> | <b>n</b> •           | 1.0       | <b>.</b>  | .1  | 0. |    |
| 7           |      | .27   | 4.0           | -1.0          | 4.       | <b>n</b>             | 1.0       | n,        | .1  | •  | .1 |
| T           |      | 2     | 4.0           | -1.6          | 5.       | ۴.                   | 6.        | ÷.        | .1  | •  | 0. |
| ï           |      | • 50  | 4.0           | -1.9          |          | \$                   | 6.        | 9.        | \$. | •  | •  |
| 7           |      | •     | 4.0           | -2.4          | 9.       | 9.                   | 6.        | .8        | ~   | 0. | •  |
|             |      |       |               |               |          |                      |           |           |     |    |    |

|                      |                                                       |       | _     | _        |      |            | _    |          | -          | -    |       | _    |          |            |     |      |            |   | - |                                                |     |               | -    |          |          |     |      |      | -            |      |      |            |       |       |      |       | _       |
|----------------------|-------------------------------------------------------|-------|-------|----------|------|------------|------|----------|------------|------|-------|------|----------|------------|-----|------|------------|---|---|------------------------------------------------|-----|---------------|------|----------|----------|-----|------|------|--------------|------|------|------------|-------|-------|------|-------|---------|
|                      |                                                       | A13   | 0.    | •        | •    |            |      |          |            |      |       | 5.1  | ~        | ę          | •   | •    |            | 2 |   |                                                |     | 813           | 0.   | 0        | •        | -   |      | 1.2  | 1.6          | •    | •    |            |       |       | 2    | 7     | uņ.     |
| 76                   |                                                       | A12   | •     | •        | •    |            |      |          |            |      | •     | 1.0  | 2        |            |     |      | N -        | : |   |                                                |     | 812           | •    | •        | 0        | -   |      | •    |              |      | •    |            | ) -   | -     | ~    | *     |         |
| 83-84                |                                                       | A11   | •     | •        | •    | ?          | ?'   |          |            |      | 2     | 9.1  | 5        | ę.         |     |      | •          |   |   |                                                |     | 811           | •    | •        | •        |     |      |      | -            | •    | •    |            |       |       |      | •     | ۰.      |
| RUNS                 |                                                       | A10   | 1.8   | •••      | -1.4 | ¢.         | 7    |          | <b>c</b> 1 |      | 1     |      | r.       | •          | 2   | •    |            |   |   |                                                |     | 810           | ۰.   |          | 7        | 4.  |      |      | ~ <b>.</b> . | •    | •    | ç          |       |       | ¢    | κ.    | -1.1    |
| - SOI                |                                                       | 49    | 6.    |          |      | N -        | -    | •        |            |      | •     | -1.1 |          | ę!         |     |      |            |   |   |                                                |     | 8 <b>9</b>    | 9.1  | 2.1      |          | ••  | • •  | : -: |              |      | ė    |            |       | •     | 1    | 9.    |         |
| ARMON                | (B)                                                   | 84    | .2    |          |      |            | •    | •••      |            | ;7   |       | 3.1  | 2.0      | ~          |     |      |            |   |   | (8)                                            |     | 80            | 2    | -1.1     | •••      | •   |      |      | 7            | 9.1  | 2.1  |            | • 1   | •     | -2.7 | •     |         |
| MOMENT H             | - 'NI) S                                              | ۸7    | 1     | 1        |      | Ņ          | 7    | •••      |            |      |       | •    |          | _          |     |      |            |   |   | - "NI) 9                                       |     | 87            | r.   | -        | <b>n</b> | ••• |      | 1    | 1.2          | •    |      |            |       | -1.2  |      | 8.    | 1.1     |
| 103                  | BLACE . 30P CHORDWISE RENDING MONENT HARMONICS (INLB) | A6    | 2     | 1.0      |      | •          |      |          |            | 2.6  | 1.6   | 0.4  | _        | <b>a</b> r | ?•  |      |            |   |   | .30P CHORDWISE BENDING MOMENT MARMONICS (INLB) |     | 86            | ۶.   | -1.4     | 0.1-     |     |      |      | -            |      | 2.5  |            |       |       |      | •     | · · 3   |
| TY AT                | ENT HA                                                | AS    | 6*-   | 'n       | ~    | -2.8       |      |          |            |      |       |      |          | ·          |     |      |            | 2 |   | ENT HA                                         |     | 85            | 9.   |          |          | 0   |      | -5.6 | ***          |      | 12.0 |            |       |       | ŝ    | 1.0   |         |
| VISE BENI<br>GRAVITY | 5<br>T                                                |       |       |          | •    | ĩ          | i i  | 1        | 1          | 1    | T     | ĩ    | T        | i i        |     | ,    |            |   |   | Ş.                                             |     | 2             |      | •        |          | ' ī | 1    | ï    | •            |      | -    | <b>i</b> " |       |       |      |       | •       |
| OF GF                | SEND IN                                               | v     | 1.4   | 2.1      |      | n          |      |          |            |      | -2.5  | -3.9 | -1-      |            |     |      |            | 2 |   | JENDIN                                         |     | 84            | 3.7  | 9.       | 5°.<br>N |     | -1-0 | -2.4 | -1.2         | -2.2 | -2-7 |            |       | -2-   |      |       | :       |
| 30R CHO<br>CENTER    | SINO                                                  | 6A    | 2.3   | <b>.</b> | •    | 2          | 1.0  |          |            | 1.7  | 2.3   | 2.0  | -1.4     |            | 0.4 |      |            |   |   | DVISE                                          |     | 83            | 2.2  | <b>1</b> | 2.1      |     | 9    | -2.4 | -1.5         | -1.2 |      |            | -1.6  | 1     | •    | •     | e - 1 - |
| 62                   | PR CHOR                                               | A2    | -1.5  | 2.5      |      |            | -1-1 |          |            |      | -2.4  | -1.2 | -1-5     |            |     |      |            | • |   | DP CHOR                                        |     | 82            | -1.2 | -1.0     | -1-0     |     | -1-6 | -1.8 | -1.5         | -1-9 |      |            |       | 1.0   | 1.3  | 1.0   | 3.0     |
| BLADE<br>(BLADE      | ARE .30                                               | 11    | 1.6   | ŝ        | 1.0  | 1.2        |      |          | •          | 2.1  | 3.7   | 2.4  | 2.1      | 0 P        |     |      |            |   |   | BLACE .30                                      |     | 18            | s.   | 1.6      | 6 · C    |     |      | 7.7  | 6.0          | 9.9  | ~    |            |       | 0     | 1.11 | 11.8  | 11.1    |
| XCI.                 | ಹ                                                     | (DEG) | 0.4   | 0<br>#   |      |            |      |          |            | 0.4  | 0.4   | 0.4  | 0 (<br># |            |     |      |            |   |   | ก                                              |     | THEC<br>(DEG) | 0.4  | 0.4      |          |     | 0    | 0.4  | 0.4          | 0    |      |            | 0     | 0.4   | 0.*  | 0.4   | ••      |
| TABLE                |                                                       | R     | . 333 | 390      | 054  | 200        | 00/  | 876      | .832       | .876 | \$26. | .038 | .107     | 100        |     |      | .652       |   |   |                                                |     | ī             | .333 | - 390    | 051      | 200 | 793  | .076 | .032         | .076 | 26   | 107        | 185   | •275  | .380 | · 504 | •652    |
| -                    | ¥.,                                                   | ŝ     | 700   |          |      |            |      |          |            |      |       | -    | -        | -          |     |      |            |   |   |                                                | ¥   | #R            |      |          |          |     |      |      |              |      |      |            | • ••• | 310 1 | -    | -     | ~       |
|                      | S.                                                    |       | 2     | * 1      | •    | <b>n</b> . |      | <b>.</b> | -          |      | •     | 0    | - 6      |            |     | e ar | <u>م</u> ۱ |   |   |                                                |     | -             | ~    |          |          |     |      | •    |              | ~ -  |      |            |       | -     | -    | ~     | •       |
|                      | 52                                                    |       | -50   |          |      |            |      |          |            |      |       |      |          |            |     |      |            |   |   | Party and a state                              | P1. | Ŷ             | 83-  |          |          | 5   |      |      | 5            |      |      |            |       |       | -    |       |         |

| ONS         BLAFE         JOP CHORUWISE         REMONISE         REMONICS         LIL-LB           eR         THEC         FPS         RU         THEC         R         R         R         R           700         J333         %.0         -7.9         1.0         3.0         1.0         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R </th <th>18</th> <th></th> <th></th> <th></th> <th></th>                                     | 18      |         |       |            |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|------------|-----|
| NU         (DEG)         FS         R1         R2         R3         R4         R5         R6           .333         *.0         -7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.9         1.06         7.07         1.07         7.9         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07         7.07 |         |         |       |            |     |
| .333       *.0      4.5       1.0       2.0       3.2       3.9       1.0         .450       *.0       -10.2       2.2.2       1.1.1       5.3       7.7       2.5       2.1         .450       *.0       -10.2       2.2.2       1.1.1       5.3       7.7       2.5         .450       *.0       -10.2       2.2.2       1.1.1       5.3       7.7       2.5         .703       *.0       -10.2       2.2.2       3.0       5.1       2.7       2.5         .703       *.0       -10.2       2.2.2       3.0       5.1       2.7       2.5         .703       *.0       -10.5       7.0       5.0       5.1       2.7       2.5         .703       *.0       -7.3       5.1       2.2       3.5       1.1       1.6         .875       5.1       2.2       3.3       3.3       4.5       1.5       1.3         .875       5.1       2.3       3.3       2.1       2.5       2.5       5.5       5.5       5.5         .875       5.4       5.3       5.3       5.3       5.5       5.5       5.5       5.5       5.5       5.5       <                                                                                                                                                                            | R7 R6   | R9 RÍO  | 0 R11 | <b>F12</b> | R15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | č. č.   | 1.1 1.8 | 0.    | 9          | 0   |
| .450       *.0       -10.2       2.2       1.7       5.3       7.7       2.5         .032       *.0       -10.2       2.2       1.7       5.3       7.7       2.7         .032       *.0       -10.2       2.2       1.7       5.3       7.7       2.5         .793       *.0       -1.5       7.3       8.0       -7.3       8.1       2.6         .793       *.0       -1.5       7.8       2.2       9.0       5.6       5.1       1.0         .875       *.0       -5.5       7.8       2.2       9.5       3.5       7.7       1.4         .832       *.0       -7.9       5.2       2.3       3.5       1.4       2.5         .832       *.0       -7.9       5.4       9.1       1.0       1.4       1.4         .924       *.0       1.1       1.3       2.6       3.6       9.5       1.4       1.4         .924       *.0       1.4       2.1       2.2       2.5       5.6       9.6       9.6       9.6       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4 <t< td=""><td>.6 1.3</td><td></td><td>0</td><td></td><td></td></t<>                                                                                                               | .6 1.3  |         | 0     |            |     |
| •032       *.0       -1.5       2.9       2.0       3.0       3.4       2.9       2.0         •703       *.0       -5.5       7.0       5.4       5.1       5.6       5.1       1.0         •875       *.0       -5.5       7.0       5.4       5.1       5.5       5.6       5.1       1.0         •832       *.0       -5.5       7.0       2.4       5.1       6.5       7.7       1.4         •832       *.0       -7.9       5.2       2.5       3.5       7.7       1.4         •832       *.0       -7.9       5.2       2.5       3.5       1.3       1.5       1.4         •832       *.0       -7.9       5.2       2.5       3.5       1.3       1.3         •934       *.0       -7.9       5.3       2.4       3.1       3.5       2.4       1.4         •932       *.0       1.4       2.4       2.4       3.6       2.5       5.6       3.6       1.3         •932       *.0       1.4       2.4       2.4       3.6       2.4       1.4       5.6       5.6       5.6       5.6       5.6       5.6       5.6       5.                                                                                                                                                                              | 1.3 2.0 | 2.0 1.4 | •     | 9          |     |
| 708       *.0       -3.0       *.1       2.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       *.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.2       3.6       4.6       3.6       2.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6       3.6                                                                                                                      |         | -       |       | 1          |     |
| .703       *.0       -7.0       5.6       5.1       1.0         .876       *.0       -6.5       7.8       2.4       7.1       1.4         .876       *.0       -6.5       7.8       2.4       7.1       1.4         .876       *.0       -6.5       7.8       2.4       7.1       1.4         .875       *.0       -6.5       7.8       2.4       7.7       1.4         .876       *.0       -7.9       6.2       2.3       3.3       4.5       1.3         .876       *.0       0.1       2.4       2.1       2.5       2.7       1.4         .924       *.0       0.1       2.4       2.1       2.5       2.5       2.6         .924       *.0       0.5       2.4       2.1       2.6       2.6       2.6         1.038       *.0       0.6       8.0       1.7       3.1       2.7       3.7       1.2         1.107       *.0       1.6       1.4       2.1       2.6       2.6       2.6         1.107       *.0       1.6       1.4       2.1       2.7       3.1       2.8       0.1         1.107       <                                                                                                                                                                                                  | .7 .2   |         | *     |            |     |
| .876       *.0       -6.5       7.8       2.4       1.1       8.3       7.7       1.4         .832       *.0       -7.9       6.2       2.3       3.3       4.5       7.7       1.4         .832       *.0       -7.9       6.2       2.3       3.3       4.5       1.5       1.3         .924       *.0       -4.3       6.9       2.3       3.3       2.6       2.5       2.6         .924       *.0       -7.9       6.2       2.3       3.3       2.1       2.2       2.5         .924       *.0       1.0       2.4       2.1       2.2       3.1       2.2       2.5         1.038       *.0       10.4       8.0       1.7       3.1       2.4       4.9       8.6         1.107       *.0       10.4       8.0       1.7       3.1       2.4       4.9       8.6         1.107       *.0       10.4       8.0       1.7       3.1       2.4       4.9       6.5       2.6         1.107       *.0       10.5       3.1       2.1       3.1       2.4       4.9       6.6       2.6       4.9       6.6       2.6       4.9       <                                                                                                                                                                          |         |         |       |            |     |
| .832       *.0       -7.9       6.2       2.3       3.3       4.5       15.3       1.3         .875       *.0       -4.3       6.9       2.3       2.1       2.2       27.5       5.6         .924       *.0       -4.3       6.9       2.3       2.1       2.2       27.5       2.6         10.038       *.0       0.6       8.1       1.9       2.9       3.0       12.1       5.6         1.038       *.0       10.4       8.0       1.7       3.1       2.4       4.9       6.5       2.6         1.038       *.0       10.4       8.0       1.7       3.1       2.4       4.9       6.5       2.6         1.107       *.0       10.4       8.0       1.7       3.1       2.4       4.9       6.6         1.107       *.0       12.3       6.8       1.4       2.1       3.1       2.4       1.2         1.145       1.6       1.4       2.1       3.1       2.4       4.9       6.6         1.145       1.6       1.4       2.1       3.1       2.4       4.9       6.6       1.2         1.2504       4.0       1.6       1.6 <td>•</td> <td>. 7.</td> <td>5</td> <td>2.0</td> <td></td>                                                                                                                      | •       | . 7.    | 5     | 2.0        |     |
| .876       4.0       -4.3       6.9       2.3       2.1       2.2       27.5       2.6         .924       4.0       .0       8.1       2.4       2.7       3.7       12.1       5.4         1.038       4.0       .0       8.1       1.9       2.9       9.7       12.1       5.4         1.038       4.0       6.6       8.1       1.9       2.9       9.7       12.1       5.4         1.107       4.0       10.4       8.0       1.7       3.1       2.4       4.9       8.6         1.107       4.0       12.3       8.0       1.7       3.1       2.4       4.9       8.6         1.107       4.0       12.3       8.0       1.4       2.1       3.1       2.4       4.9       8.6         1.1275       4.0       14.0       10.0       1.5       .7       3.1       2.3       .6       6       6         1.504       4.0       16.7       1.6       1.5       .7       3.1       2.3       .6       .6         1.504       4.0       16.7       1.6       1.5       .7       3.1       2.3       .6       .6       .6                                                                                                                                                                                         |         |         |       |            |     |
| •924       4.0       .0       8.1       2.4       2.7       3.7       12.1       5.4         1.038       4.0       6.8       8.1       1.9       2.9       4.0       6.5       20.1         1.107       4.0       10.4       8.0       1.7       3.1       2.4       9.5       8.6         1.107       4.0       10.4       8.0       1.7       3.1       2.4       4.9       8.6         1.1185       4.0       12.3       8.8       1.4       2.1       3.1       2.4       1.2         1.1185       4.0       12.3       8.8       1.4       2.1       3.1       2.4       1.2         1.1287       4.0       12.3       8.8       1.4       2.1       3.1       2.3       .8         1.280       4.0       16.7       11.8       1.5       .7       3.1       2.3       .8         1.504       4.0       18.9       14.7       1.6       2.2       1.7       1.0       1.3         1.504       4.0       18.7       1.4       2.2       2.7       1.0       1.3                                                                                                                                                                                                                                                 |         |         |       |            |     |
| 1.038 4.0 6.8 8.1 1.9 2.9 4.0 6.5 20.1<br>1.107 4.0 10.4 6.0 1.7 3.1 2.4 4.9 6.6<br>1.1185 4.0 12.3 8.8 1.4 2.1 3.1 2.4 1.2<br>1.275 4.0 18.0 1.6 1.5 .9 2.4 2.0 8.8<br>1.380 4.0 18.9 14.7 1.6 2.2 1.7 1.0 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 1.0 .1  | 2.    |            | -   |
| 1.107     4.0     10.4     6.0     1.7     3.1     2.4     4.9     6.5       .1185     4.0     12.3     6.8     1.4     2.1     3.1     2.4     1.2       1.275     4.0     12.3     6.8     1.4     2.1     3.1     2.4     1.2       1.380     4.0     16.7     11.6     1.5     .7     3.1     2.3     .8       1.504     4.0     18.7     11.8     1.5     .9     2.4     .6     .6       1.504     4.0     18.7     11.8     1.5     .9     2.4     .6     .6       1.504     4.0     18.7     14.7     1.6     2.2     1.7     1.0     1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 3.1 |         | -     | 1.0        | -   |
| - 1.185 4.0 12.3 8.8 1.4 2.1 3.1 2.4 1.2<br>1.275 4.0 14.0 10.0 1.5 .7 3.1 2.3 .8<br>1.380 4.0 16.7 11.8 1.5 .9 2.4 .6 .6<br>1.504 4.0 18.9 14.7 1.8 2.2 1.7 1.0 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1.2 .6  | 5     |            |     |
| 1.275 4.0 14.0 10.0 1.5 .7 3.1 2.3 .8<br>1.380 4.0 16.7 11.8 1.5 .9 2.4 .6 .6<br>1.504 4.0 18.9 14.7 1.8 2.2 1.7 1.0 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         | 2     | -          | -   |
| 1.380 4.0 16.7 11.8 1.5 .9 2.4 .6 .6<br>1.504 4.0 18.9 14.7 1.8 2.2 1.7 1.0 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         | •     | -          |     |
| 1.504 4.0 18.9 14.7 1.8 2.2 1.7 1.0 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         | -     | •          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 1.9     | *     |            | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.7 .8  | 3.2 1.2 | 5     |            |     |

Æ

|                         |                       | THOM     |      |            | A HANDE  |                |              |                                                              |          |      |     |      |      |     |      |
|-------------------------|-----------------------|----------|------|------------|----------|----------------|--------------|--------------------------------------------------------------|----------|------|-----|------|------|-----|------|
| RUN-<br>PT. OI<br>NO. I | OMS<br>•R<br>(FPS) MU | THEC     |      | BLADE .    | .35R YOF | RSI ONAL       | MOMENT<br>AS | .358 YORSIONAL MOMENT HARMONICS (114LB)<br>A3 A4 A5 A6 A7 A8 | ics (14, | -LB) | =   | 010  |      | A12 | 614  |
| 1                       |                       |          |      | e          |          |                |              |                                                              |          |      |     |      |      |     |      |
| n :                     | 500 .632              | • •<br>• | •    |            | 9.9      | 3.8            | -2.8         | 1.1                                                          |          | 9    |     | 7    | - '  |     |      |
| <b>*</b> u              |                       |          |      | •          | 9.8-     | 9.9            |              |                                                              |          |      | -'  | ç    | ••   |     |      |
| n 4                     |                       |          | ••   |            | 9.8-     | 11.6           |              |                                                              | ť,       |      |     | •    | •••  |     | ••   |
| -                       |                       |          |      | -1-        |          | 9              |              |                                                              |          |      | ;.  |      | :•   | :•  |      |
| - @                     |                       |          |      | •          |          |                |              |                                                              | •        |      | ::  |      |      |     | 17   |
| -                       |                       |          |      |            | -8-3     |                | 11.5         | 2.0                                                          |          |      |     |      |      |     | : •  |
| -                       |                       |          |      |            |          |                |              |                                                              |          |      |     | -    | -    | ~   | -    |
|                         | -                     |          |      | ~          | -2.2     | 1              | 2.0          | 6.4                                                          |          |      | 3   |      | -    |     |      |
| -                       | -                     |          |      | -1.6       | -2.4     | -1.8           |              | 2.5                                                          | -1.3     | 9    | -   |      | ~    | 0   |      |
| -                       | -                     |          |      | -2.3       | -1.6     | -1.2           | # ° I        | 9.                                                           | *.       | 6.   | 0.  | ~    | •    | •   | •    |
|                         | -1                    |          |      | -3.3       | 6        | 7              | •••          | 2.                                                           | *.       | ••   | .1  | 9.   |      | •   | •    |
| -                       | -                     |          | 6.   | -3.8       | 1.0      | 1.2            | · · ·        | 5                                                            | 2.       | •    | 1.4 | 1.2  |      | -   | 2    |
| -                       | -                     |          |      | 8.4-       | 2.2      | 2.2            |              | ••5                                                          |          | 3.   | 1.4 | *    | ~    | ŧ.  | •    |
|                         |                       |          |      |            |          |                |              |                                                              |          |      |     |      |      |     |      |
|                         |                       |          |      |            |          |                |              |                                                              |          |      |     |      |      |     |      |
|                         |                       |          |      | 1          |          |                |              |                                                              |          |      |     |      |      |     |      |
|                         |                       |          |      | BLADE      | . 358 10 | <b>ASIONAL</b> | MOMENT       | .35R TORSIONAL MOMENT MARMONICS (INLB)                       | ICS (IN. | -18) |     |      |      |     |      |
|                         |                       | THEC     |      |            |          |                |              |                                                              |          |      |     |      |      |     |      |
|                         | (FPS) MU              | (DE6)    | B1   | 82         | 83       | 94             | 85           | B6                                                           | B7       | 88   | 88  | 810  | 811  | 812 | 813  |
| m                       |                       | 4.0      | 1.4  | 3.4        | 1.2      | -6.5           | 1.4          | 1.0                                                          | 3.       | •    | -17 | •    | ۰.   | 1   | .1   |
|                         |                       | *        | 1.2  | 4.3        | 6.       | -8.3           | ÷.           | 1.3                                                          | s.       | •••  | •   |      |      |     |      |
| 0                       |                       | 4.0      | 1.0  | 4.7        | -2.6     | -1.6           | -2.8         | 1.6                                                          | 9.       |      | ~   | •    | e.   |     | •    |
|                         |                       |          |      | 1.0        | 2        | 0,0<br>8-      | ***          |                                                              | ė.       |      | ~   | 2    | •    | 2.  | •••  |
|                         |                       |          | •    | : t<br>: t | •••      |                |              |                                                              | •••      | •••  |     | - •  | ;.   |     |      |
|                         |                       |          |      |            |          |                |              | 10-                                                          | • 7      |      |     |      | :-   |     |      |
|                         | -                     |          | 1.1  |            | 5.1      | - 2            | - 3.9        | 0.0                                                          | -1.4     | 3    | ~   | : `  | : -: | 2   | :-   |
| -                       | -                     |          | +    |            | 6.6      | 6.1            | -7.4         | :                                                            | -3.5     | 2    | •   | •    | 2.   |     | •    |
| ~                       | -                     |          | -3.0 | 6          | 2.0      |                | -3.8         | 9.1                                                          | .2       | ~    |     | ~    | -    | -   | •    |
|                         | 512 1 515             |          | 8.5  | 6 a        | 2.5      | j.             | - 2.         | -2.0                                                         | •••      |      |     |      |      |     |      |
|                         |                       |          |      |            |          |                | -1.8         |                                                              |          |      |     |      | :    |     | : ;  |
|                         | -                     |          | -6.7 | ?          |          |                | -1.8         | 1                                                            | •••      | 8    |     | -1.5 | ~    | 2   | : -: |
|                         |                       |          |      |            |          |                |              |                                                              |          |      |     |      |      |     |      |

|       |     |         |     |      |        |          | TABLE         | I XCI I | TABLE XCII - Concluded | luded            |     |     |     |     |     |            |     |
|-------|-----|---------|-----|------|--------|----------|---------------|---------|------------------------|------------------|-----|-----|-----|-----|-----|------------|-----|
| 2 L   | S   | Į.      |     |      | DLADE  | . 35A T( | JSM TORSTONAL | HONEIN  |                        | HARMONICS (INLB) | ą   |     |     |     |     |            |     |
| ŝ     | Ť   | Z       |     | 2    | 2      | 2        | 2             | Ł       | £                      | g                | 2   | 2   | 2   | R10 | BII | <b>R12</b> | 513 |
| - 5   |     | 22.4    | 0-6 | 2.1  | 1.6    | 3.5      | 6.7           | 7.5     | 3.1                    | 1.5              | 2   | ?   | 1.  | .1  | 1   | ۲.         | 2   |
|       |     | -70     | 0.4 | 2.1  | 1.5    | n        | 9.6           | 10.6    | •••                    | 1.7              | •   | •   | \$  |     |     | 2          | .1  |
| 5     | 200 | 2       | 0.4 | 2.3  | 1.2    |          | 6.9           | 13.9    | •••                    | 2.0              | •   | 7   | •   | -   | ~   | Ņ          | -   |
|       |     | .876    | •   | 2.2  | •      | 5.3      | 5.6           | 16.1    | 0.1                    | 2.3              | 6.  | •   | 4   | ~   | ~   | ~          | 0   |
| -     |     | 25.     | 0.4 | 2.2  | 6.     |          | 9.1           | 10.9    | 10.9                   | •••              | 1.0 |     | -   | •   | -   | .1         | - 2 |
| -     |     | .876    | ••• | 1.5  | •      | 3.5      | 7.9           |         | 1.11                   | 5.5              | 1.0 | 1.0 |     | ŝ   |     | .1         |     |
| 2     |     | - 924   | 9-1 |      | 64 · · | 2        | 44            | 145 -   | 13.6                   | 9.6              | 1.5 | •   | 5   |     |     | ~          |     |
| 64-10 |     | 1.038   | 0   | 0.1  | 1.0    | ŝ        | 7.2           |         | 11.0                   |                  | 2.5 | •   | sc. | Ņ   |     | ~          | ~   |
|       |     | 1-107   | 0.4 | -1.1 | 1.5    | ~        | 7.0           | 6.1     | 1.7                    | 6.4              | 5   |     | *   | 7   | 2   | .1         | 0   |
| 21-12 |     | 1.185   | 0.4 | -1.0 | 0.0    | 1.0      | 9.6           | 1.9     | <b>n</b> ,             | 2.6              | 1.3 | •   | -   | ~   | ~   |            |     |
| -1-F  |     | 1.275   | 0.4 | -1.6 |        | 2.5      | 5.1           | 1.3     | 2.9                    | 2.1              | •   | •   |     | •   | ņ   | -          | -   |
|       |     | 1. 1.00 | •   | -1.3 | 5.1    | 3.3      | # * 10        | 1.0     | 2.3                    | 1.7              | •   | •   |     |     | 2   | ~          |     |
|       |     | 1-564   | 9.0 | 515  | 2.2    |          | 5.7           | 1.9     | - 1.0 -                | 1.5              | 7   | 94  | 15  | 1.2 | 1   | 7          | 2   |
| 84-16 |     | 1.652   | ••• | 1.1. | 6.7    |          | 6.2           | 2.4     | •••                    | •                | •   | •   | 1.6 | :-2 | n   |            | •   |
|       |     |         |     |      |        |          |               |         |                        |                  |     |     |     |     |     |            |     |

T

1

.

| TABLE XCI                                                     |                                          |                                 |                   |                      |                      |                      | NS 85-8<br>CHORD)        |
|---------------------------------------------------------------|------------------------------------------|---------------------------------|-------------------|----------------------|----------------------|----------------------|--------------------------|
| RUN-<br>PT. ONS<br>NO, «R<br>(FPS)                            | MU                                       | THEC<br>(DEG)                   | •                 | DE LAG               |                      |                      | CS (DEG                  |
| 85- 3 701<br>85- 4 700<br>85- 5 500<br>85- 6 500              | . 294<br>. 351<br>. 657<br>. 766         | 5.0<br>5.0<br>5.0               | .0<br>.C<br>.?    | .0                   | .0<br>.0<br>.0       | •0<br>•0<br>•0       | •0                       |
| 85- 7 400<br>85- 8 400<br>86- 3 387<br>86- 4 363              | 1.067<br>1.108<br>.795<br>.847           | 2.0                             | .2<br>.4<br>.3    | .0<br>.0<br>.1       | •1<br>•1             | .0<br>1<br>.0<br>.0  | •0<br>•0<br>•0<br>•0     |
| 86- 5 339<br>86- 6 316<br>86- 7 292<br>86- 8 269              | .906<br>.974<br>1.052<br>1.144           | 2.0 2.0 2.0 2.0                 | .3                | .1                   | .0                   | •0                   | • 0<br>• 0<br>• 0<br>• 0 |
| 86- 9 245<br>86-10 221<br>86-11 211                           | 1.254                                    | 2.0                             | 1<br>3<br>4       | .1<br>.1<br>.0       | .0<br>.0<br>.0       | •0<br>•0<br>•0       | •0<br>•0<br>•0           |
| RUN-                                                          |                                          |                                 |                   | DC 1.40              |                      |                      | CS (DEG                  |
| PT. OHS<br>NO. 4R<br>(FPS)                                    | HU                                       | THEC<br>(DEG)                   |                   |                      | 83                   | 84                   | 85                       |
| 85- 3 700<br>85- 4 700<br>85- 5 500                           | .294<br>.351<br>.657                     | 5.0                             | .2<br>.1<br>.2    | •1                   | • 1<br>• 1<br>• 1    | •1<br>•1<br>•0       | •1<br>•1<br>•0           |
| 85- 6 500<br>85- 7 400<br>85- 8 400<br>86- 3 387<br>86- 4 363 | .766<br>1.067<br>1.108<br>.795           | 5.0<br>2.0<br>2.0<br>2.0<br>2.0 | 3<br>2<br>.0      | .1<br>.1<br>.2<br>.1 | .1<br>.0<br>.1<br>.1 | •1<br>•0<br>•0<br>•0 | •0<br>-•1<br>-•1<br>•0   |
| 86- 6 316<br>86- 6 316<br>86- 8 269                           | .847<br>.906<br>.974<br>1.052<br>1.144   | 2.0<br>2.0<br>2.0<br>2.0        | .0<br>2<br>4      | .1<br>.1<br>.1       | .1<br>.1<br>.0<br>.0 | •0<br>•0<br>•0<br>•1 | •0                       |
| 86- 9 245                                                     | 1.254<br>1.3 <b>60</b><br>1.4 <b>5</b> 6 | 2.0<br>2.0<br>2.0               | •.6<br>•.7<br>•.7 | •1<br>•1<br>•1       | .1<br>.1<br>.1       | • 1<br>• 1<br>• 0    | •0                       |

Ť

A

|             |           |       | TABLE | - XCIII -  | TABLE XCIII - Concluded | eđ               |         |           |           |
|-------------|-----------|-------|-------|------------|-------------------------|------------------|---------|-----------|-----------|
| RUN-<br>P1. | ONS<br>#R | i     | THEC  | BLA        | AG                      | MOTION HARMONICS | HARMON] | (cs (DEG) | (9)<br>19 |
|             |           |       | 10501 | ¢X         | KI                      | ž                | 2       | ł         | £         |
| 85- 3       | 5 700     | .294  | 5.0   | 1.1        | <b>ې</b>                | •1               | .1      | • 1       | .1        |
| 85- 4       | 1 700     | .351  | 5.0   | 8.         |                         | .1               | .1      | .1        | •1        |
| 85- 5       | 5 500     | .657  | 5.0   | ۲.         | 2                       | .1               |         | .1        | 0.        |
| 85- 6       | 500       | .766  | 5.0   | ю.         | n.                      | •1               |         | .1        | 0.        |
| 85- 7       | 007 2     | 1.067 | 2.0   | 5          | *                       | . 1              | •       |           | .1        |
| -           | 8 400     | •     | 2.0   |            | 3.                      | ~                |         |           | .1        |
| 86- 3       | 3 387     | . 795 | 2.0   | \$         | <b>n</b> .              | .1               | -       | •         | •         |
| 86- 4       | 1 363     | . 847 | 2.0   | 5          | ř.                      | • 1              | •       | •         | 0.        |
| 86- 5       | 5 339     | .906  | 2.0   |            | £.                      | .1               | •       | 0         | 0.        |
| 86- 6       | 5 316     | 426.  |       | 9.         | ÷.                      | • 1              | •       | •         | 0.        |
| 86- 7       | 292       | 1.052 | 2.0   | <b>9</b> . | ÷.                      | .1               | •       | 0.        | •         |
| -           | 3 269     | 1.144 | 2.0   | 1.0        | 5.                      |                  | .1      | •1        | •         |
| 96- 9       | 9 245     | 1.254 | 2.0   | 1.0        | 9.                      |                  |         | .1        | .1        |
| 86-10       |           | 1.388 | 2.0   | 1.1        |                         | . 1              |         | .1        |           |
| 86-11       | 21        | 1.456 | 2.0   | 1 - 1      | 8.                      |                  | -       | •         | 0         |
|             | 1         |       |       |            |                         | ;                |         |           | •         |

2

1

415

and a second sec

| _                               |                |            | _           |        |       | _    |      |          | _     |        | _          |       |      |       | _     | _     | _    |    |                                                  | _   | _          | _     | _    | _    |      |      |      | _        |          | -          | -    | _           | -     | _     |           | _           | ų |
|---------------------------------|----------------|------------|-------------|--------|-------|------|------|----------|-------|--------|------------|-------|------|-------|-------|-------|------|----|--------------------------------------------------|-----|------------|-------|------|------|------|------|------|----------|----------|------------|------|-------------|-------|-------|-----------|-------------|---|
|                                 |                | 212        | a           |        | d     | -    | 1    | 1        | ~     | ·.2    |            | ~     |      |       | -04-  | -     | -    |    |                                                  |     | ı          | 813   | -    |      | -    | 1    | •    |          | -        | ?'         | ;.   | -           | 9     | •     | 17        | 1.1         |   |
|                                 |                | A12        | 1           | •      |       | 2.1  | -    | *        |       |        |            | -     | 1    |       | 9,    | -     | - 1  |    |                                                  |     |            | 912   | 1.   |      | -    | 1    | 1.0  | •        | ~        |            |      | •           | •     |       |           | -           |   |
|                                 |                | M          | 1           | -      |       |      | 6    | 5        | ł     |        | '          | •     |      |       | ~     | •     | 2    |    |                                                  |     |            | 811   | 1-   |      |      |      | 5    | •••      | •        |            |      | ;7          | -     | •     | ~-~       | -           |   |
| 65 <b>-</b> 86                  |                | <b>A10</b> | 0           | 1      | •     |      |      |          | 1     |        |            |       |      |       |       |       | 0.   | .1 |                                                  |     |            | 810   | 0,   |      | :    | -2.5 |      |          | •        | <b>.</b>   | •    |             | •     | -     | 1.1       | 1.1         |   |
| RUNS                            |                | 49         | 5           | -      | 2     | 101  |      |          |       | .1     |            |       | -    |       | 17    |       | 6    |    |                                                  |     |            | 89    | 0.   |      |      |      |      | •        | <b>"</b> | Ņ          |      | -           | -     | 4     |           |             |   |
|                                 | ÷              |            |             | •<br>; | Ī     | ·    |      |          |       |        |            |       |      |       |       | •     | •    |    |                                                  |     |            |       |      |      |      |      |      |          |          |            |      |             |       |       | ·         |             |   |
| DNICS                           | Ę.             | W          |             |        |       | 10   | -    |          | ŝ,    | ~      |            | 2     | -1.4 | 9.    |       | •     | 2    |    |                                                  | Ì   |            | 88    | 1.3  |      |      | 0    | -1-  | -1.3     | 2.4      | •          |      |             | •     | -     |           |             |   |
| CHORD)                          | S CIN          | L          | 27          |        | -     | 3    | -3.1 | 1        | 5     | -1.0   |            | •     | •    | 9.    | 7     |       |      |    | S CIN                                            |     |            | 87    |      |      |      | 1    | •    | 1.0      |          | ••         |      |             | 2     | - 5   |           | •           |   |
| MOMENT HARMONICS<br>. 35 CHORD) | HAMMICS (INLB) | A6         | 5           | -      | -1.0  |      |      | 0.1      |       | \$     |            | *     | *    | n.    | 14    | 1.    | 9    | •  | ARMONIC                                          |     |            | 86    | 2.   | 0    | -2.9 | 4    | 2.1  | 9-1      |          | <b>n</b> 4 |      |             | -     | •     |           |             |   |
| SH A                            | HONENT H       | A5         | -           | 3.0    |       | 6.   |      | ۲.       | 5     | °,     | 5          | 2     | 1    | s••   | -1.2  | 1.5   | -1.9 | ;  | .308 FLADWISE BENDING MOMENT HARMONICS (IN -1 8) | :   |            | BS    | 2.6  |      |      | 1.5  | .1.0 | 2.1      |          |            |      |             | 2     | 2     | •1        | •           |   |
|                                 |                |            |             | -      |       | 2    | 2    | <u>ا</u> |       |        |            |       |      |       |       |       |      | ;  | ING MO                                           |     |            | *     | 5    | 2 7  |      |      |      |          |          | <b>.</b>   |      |             | 6     | ~     | •         | •           |   |
| UPWISI<br>OF GI                 | BENDING        | W          | •           | -      | 1     | -1.2 | -1.5 | ľ        |       | ľ      |            | ŧ     | 6.1  | 1     | 1     | ŝ     | -0.1 |    | BEND                                             |     |            | 1     | I    |      | 1    | 1    |      |          |          |            | 1    | 1           | •     | 1     | 1         | 'n          |   |
| E                               |                | 2          | -1.7        | 5      | - 3.3 | -3.3 | 1.2  |          | 3.2   | 10° #. | 2.0        | 5.2   | 6.4  | 6     | 5.3   |       | 5.3  |    | PWISE                                            |     |            | B3    |      | 5.0  |      |      | 13.5 | 13.0     |          | 0 -<br>v   |      | 3.5         | 2.6   | 2.1   | 6.        | 1.2         |   |
| БЭ                              | . JOR FLAPUISE | R          | 5           | 5      | -2.4  | -3.1 | -8.4 | 5.4-     |       | -1.0   | -1.1       | -1.1  | -1.0 | -1.7  | -lab. | -1.9  | -2.1 |    | DOR FLA                                          |     |            | 82    | r.   |      | -    | 3.1  | -2.9 | -1.7     |          |            |      | 6.          | ••    | N.    | 1.2       | ••          |   |
| BLADE                           | MLADE          | IV         | 5<br>1<br>1 | -      | 1.6   | 2.0  | 2.7  | 2.7      | 1.7   | 1.8    | 1.9        | 2.1   | 2.0  | 1.8   | 1.6   | 1.4   | 1.3  |    | BLADE                                            |     |            | 81    | 2    | 5    | 1.3  | 6.   | 6.   | 2.5      | •••      |            |      | 4           | -     | 7     | ar .<br>1 | <b>9</b> •• |   |
| XCIV.                           |                | (DEG)      | 5.0         | 5.0    | 5.0   | 5.0  | 2.0  | 2.0      | 2.0   | 2.0    | 2.0        | 2.0   | 2°D  | N.O   |       | Z.0   | 2.0  |    | 22                                               |     | THEC       | (DEG) | 5.0  | 5.0  | 5.0  | 5.0  | 2.0  | 0 0<br>5 |          |            | 2.0  | 2.6         | 2.0   | 2°0   | 2.0       | 2.0         |   |
| TABLE )                         |                | Ş          | 294         | .351   | .657  | .766 | .067 | .108     | - 795 | . 847  | - 306      | \$16. | .052 | - 144 | 52    | . 280 | .456 |    |                                                  |     |            | ΠW    | .294 | .351 | .657 | .766 | •067 | 108      |          | 906        | 426. | .052        | 1-144 | • 254 | 388       | • #56       |   |
| H                               | Si de          | ŝ          | 702         |        |       |      | -    | •**      |       |        |            |       |      |       |       | -     | -    |    |                                                  | SHC | <b>#</b> R | (Sd   |      |      |      |      |      |          |          |            |      |             | 269 1 | -     | -         | - ·         |   |
|                                 |                | . 1        | -           | *      | ŝ     | ø    | ~    | •        | 4     |        | <b>n</b> . | 01    | ~    | 0 (   | -     | 2     | =    |    | · ‡                                              |     |            | 키     | n    | 4    | n    | 9    | ~    | 0 *      | n a      | 10         | 9    | 2           | 0     | 5     | 2         | =           |   |
|                                 |                |            | 65-         | Ϋ́,    | ċ     | È.   |      |          |       |        | 8          |       | 8    | 8     |       |       |      |    | RU                                               | Ρ1. | ž          |       | 85-  | 58   | ŝ    | ģ    |      |          |          |            | 90   | <b>8</b> 6- | -98   | 8     |           | 8           |   |

\*

416

£.

4

ì

|       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        | Τ          | ABLE XC  | ) - VI   | TABLE XCIV - Concluded | led        |      |            |     |          |     |     |            |
|-------|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|------------|----------|----------|------------------------|------------|------|------------|-----|----------|-----|-----|------------|
| PT.   | SMO         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RLADE      | . JOR FLAPWISE BENDING | APWISE F   | SEND 146 | MORENT   | HARMONICS (INLB)       | cs (IN.    | -18) |            |     |          |     |     | Č,         |
| oy    | *R<br>(FPS) | MU    | THEC<br>(DEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PS         | R1                     | R2         | R3       | ¥4       | R5                     | R6         | R7   | RB         | R9  | R10      | RII | R12 | R13        |
| 65- 3 | 700         | •294  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2        | s.                     | <b>9</b> • | 1.7      | 9.       | 2.7                    | •2         | ۲.   | 1.3        | ۲.  | ••       | ۲.  |     |            |
| 85- 4 | 700         | .351  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1        |                        | 1.4        | 2.3      | 1.6      | 3.1                    | 4.         | •    |            | •   |          | -   | •   | .1         |
| 85- 5 | 200         | .657  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9        | 2.1                    | 2.8        | 3.6      | 6.       | 2.6                    | 3.1        |      | ••         | .2  | 1.3      | -   | ~   | 0.         |
| 85- 6 | 500         | .766  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9        | 2.2                    | E.4        | 3.3      | 1.4      | 1.8                    | 1.0        | 3.   | s.         | ŗ.  | 2.6      |     | \$  | 2.         |
| 85- 7 | 400         | 1.067 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.2        | 2.8                    | 8.9        | 13.5     | 1.5      | 1.0                    | 2.1        | 3.1  | 1.4        | •   | 8.       | 1.0 | 1.0 | *          |
| 85-8  | 100         | 1.108 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4        | 3.6                    | 4.8        | 13.0     | 9.       | 8.                     | 2.0        | 4.5  | 1.4        |     | <b>.</b> | 8.  | •   | *          |
| 86- 3 | 387         | . 795 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r.         | 1.8                    | 1.5        | 8.9      | ŝ        |                        | 1.2        | 1.4  | 9.         |     | 2        | 2   | 7   | 3          |
| 86- 4 | 363         | .847  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1.8                    | 1.2        | 7.8      | <b>°</b> | \$                     |            | 1.2  | ~          | •   | 8.       | -   |     | <b>n</b> . |
| 86- 5 | 339         | 406.  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4          | 1.9                    | 1.3        | 7.7      | ÷.       | ŧ.                     | •2         | 1.8  | •          |     | ~        | ~   | 2   | s,         |
| 9-99  | 316         | 416.  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>.</b> . | 2.1                    | 1.2        | 7.6      | 4.       | ÷.                     | •5         | 1.2  | 2.         | •   |          |     |     | 5          |
| 86-7  | 292         | 1.052 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 2.0                    | L.J.       | 7.2      | 1.0      | ••                     | ••         | 1.0  | 2.0        | .2  | ~        | -   |     |            |
| 8-98  | 269         | 1.144 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2         | 1.9                    | 1.7        | 5.6      | 1.8      | •                      | <b>.</b> . | ۲.   | 6.         |     | •        |     | -   |            |
| 86- 9 |             | 1.254 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1.9                    | 1.7        | 5.7      | 3.3      | 1.2                    |            | ÷.   | <b>n</b> . | 1.8 |          | ~   |     |            |
| 86-10 |             | 1.388 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1.4                    | 2.2        | 6.4      | 5.1      | 1.5                    |            | • •  |            | •   | ***      | ~   | 4   | .1         |
| B6-11 | 211         | 1.456 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۰.         | 1.5                    | 2.2        | 5.4      | 7.2      | 1.9                    |            |      | ~          |     | 1.8      | ~   | ų   |            |
|       |             |       | and the second se |            |                        | 4          |          |          |                        |            |      |            |     |          |     |     |            |

š

| 36                                                                        |                                                                       | d c c . d                                                        |                                                 |                                                                                                                                       |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| - runs 85-86                                                              |                                                                       |                                                                  | 68                                              |                                                                                                                                       |
| S - RU                                                                    | NLB)                                                                  | N-0000-000-1                                                     | 4 LB)<br>B8                                     |                                                                                                                                       |
| RMONIC:                                                                   | 41CS (1)                                                              | 111141 1111<br>Naanoonoviootaa                                   | IJCS (11<br>B7                                  |                                                                                                                                       |
| MOMENT HAI                                                                | HARMON                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                            | B6 B6                                           |                                                                                                                                       |
| NG MOM                                                                    | A5                                                                    | NOO64674977474                                                   | MOMEL41<br>B5                                   | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                  |
| .60R FLAPWISE BENDING MOMENT HARMONICS<br>CENTER OF GRAVITY &T .35 CHORD) | .60R FLAPWISE BENDING NOMENT HARMONICS (INLB)<br>42 43 44 45 45 47 44 | QOFSIT#4000040F0<br>                                             | 60R FL.APWISE REWDING MOMELIT HARMOHICS (TriLB) | 1 1 - 1 1 1                                                                                                                           |
| APWISE<br>OF GF                                                           | APUISE                                                                | N003042000043                                                    | APWISE<br>B3                                    | 0.000000000000000000000000000000000000                                                                                                |
| .60R FLAPWI<br>CENTER OF                                                  | 60R FL                                                                |                                                                  | 60R FL.                                         |                                                                                                                                       |
| BLADE<br>(BLADE                                                           | BLADE                                                                 | <b>ຎຑຑ</b> ຎຑຑ <i>ຌჁ</i> ჾჾ <b></b> ຑຑຑຎ                         | EI ADE                                          | NOLOHOHOLUC -                                                                                                                         |
|                                                                           | THEC                                                                  | ,                                                                | THEC<br>(DEG)                                   | ຺຺຺<br>ຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉ<br>ຑຑຑຑຑ <b>ຑ</b> ຎຑຑຑຑຑຑ                                                                                      |
| TABLE XCV.                                                                | Ī                                                                     | ***                                                              | 1<br>[                                          | .2294<br>.537<br>.657<br>.657<br>.656<br>.067<br>.766<br>.766<br>.766<br>.705<br>.705<br>.705<br>.705<br>.705<br>.705<br>.705<br>.705 |
|                                                                           | OMS<br>*R<br>(FPS)                                                    | 700<br>2210<br>2210<br>2210<br>2210<br>2210<br>2210<br>2210<br>2 | 아버5<br>+R<br>(FPS)                              | 700<br>500<br>3353<br>2569<br>2211<br>2211<br>2211<br>2213<br>2213<br>2213<br>2213<br>221                                             |
|                                                                           | PT.                                                                   | 8.888888888888888888888888888888888888                           | RUN-<br>PT.<br>NO.                              | 00000000000000000000000000000000000000                                                                                                |

2.

ć

i.

ł

Z

3

ł

}

•

|       |       |       |       |      | TABLE 1                 | XCV - C     | XCV - Concluded | q      |                  |            |     |     |     |
|-------|-------|-------|-------|------|-------------------------|-------------|-----------------|--------|------------------|------------|-----|-----|-----|
| SMO   |       |       | BLADE | .60R | FLAPWISE BENDING WOMENT | BENDIN      | 6 WOMENI        | I HARM | HARMONICS (TNLB) | NLB)       |     | ·   |     |
| (FFS) | Ĩ     | (DEC) | RS    | RI   | R2                      | RJ          | R4              | R5     | R6               | R7         | Rß  | R9  | R10 |
| 3 700 | 462.  | 5.0   | 3.1   | 2.0  | 1.7                     | 3.1         | ۲.              | 1.6    | ٤.               | 3.         | 1.6 | •   | .1  |
| 4 700 | .351  | 5.0   | 2.5   | 3.3  | 6.                      | 5.8         | 1:0             | 2.1    | 4.               | <b>n</b> . | 8.  |     | .1  |
| 5 500 | .657  | 5.0   | 1.6   | 2.9  | 2.1                     | 5.5         | 1.8             | 1.9    | 1.9              | .2         | 2   | -   | 1.2 |
| 6 500 | .766  | 5.0   | 1.5   | 2.6  | 2.0                     | 3.6         | 2.2             | 1.7    | 1.0              | •          |     | 10  |     |
| 7 400 | 1.067 | 2.0   |       | 4.2  | 9.6                     | 14.3        | 3.1             | 3.7    | 3.1              | 1.8        | 1.9 |     | 1.2 |
| 3 387 | . 795 | 2.0   | ÷.    | 2.1  | 2.5                     | 12.6        | • 6             | 6      | 1.4              | 6.         | 4   | -   | ~   |
| 4 363 | - 847 | 2.0   | · ·   | 1.8  | 1.9                     | 11.0        | •               | 6.     | •2               | 6.         | .1  | .2  | 2.  |
| 5 339 | .906  | 2.0   | -     | 2.0  | 1.7                     | 10.5        | \$              | 2.     | • 5              | 1.4        | 2.  | 2.  | .1  |
| 6 316 | +26.  | 2.0   | 8.    | 2.1  | 1.6                     | 6*6         | 1.2             | .8     | s.               | 1.0        | 2.  | -   | .1  |
| 7 292 | 1.052 | 2.0   | 1.0   | 2.0  | 1.6                     | <b>1</b> °6 | 2.4             | 1.0    | ۲.               | 6.         | 1.6 |     | -   |
| 8 269 | 1.144 | 2.0   | 1.0   | 1.9  | 2.1                     | 6.7         | 3.3             |        | 4.               | 9.         | 8.  |     | 2   |
| 9 245 | 1.254 | 2.0   | 1.4   | 2.0  | 1.9                     | 6.8         | 4.9             | 1.5    | 9.               | 3.         | 5.  | 1.7 |     |
| 0 221 | 1.388 | 2.0   | 1.3   | 1.4  | 2.4                     | n.<br>1     | 6.8             | 1.7    | 1.0              | n.         | 2   | -   | 1.1 |
| 1 211 | 1.456 | 2.0   | 1.5   | 1.3  | 2.6                     | 5.6         | 0.6             | 2.3    | 1.2              | 3.         |     |     |     |
|       |       |       |       |      |                         |             |                 |        |                  |            |     |     |     |

419

•

| TABLE XC                                                      | CVI.                                                                                                                                          | BLADE H<br>(BLADE                                                              | FLAP MO<br>CENTER                                                                                        | DTION I<br>R OF GI                             | LARMONI<br>RAVITY                                                        | CS - RU<br>AT .35                                                         | JNS 85-<br>CHORD                | -86<br>)                                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|
| RUN-<br>PT. OMS<br>NO. of<br>(FPS)                            | NU                                                                                                                                            | THEC (DEG)                                                                     | 5LA<br>A1                                                                                                |                                                | A3                                                                       | HARMON                                                                    | AS                              | A6                                                       |
| 64- 8 269<br>84- 9 245<br>84-10 221                           | .294<br>.351<br>.657<br>.766<br>1.067<br>1.108<br>.795<br>.847<br>.906<br>.975<br>1.082<br>1.082<br>1.144<br>1.082<br>1.144<br>1.388<br>1.476 | 5.0<br>5.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2 | .1<br>.1<br>.3<br>.3<br>.3<br>.2<br>.1<br>.1<br>.1<br>.2<br>.0<br>.1<br>.1<br>.2<br>.0<br>.1<br>.2<br>.2 | 3<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | .2<br>.1<br>.5<br>.6<br>.2<br>.4<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3 | .0<br>1<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1<br>.2<br>.2<br>.3<br>.4<br>.5 |                                 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 |
| RUN-                                                          |                                                                                                                                               |                                                                                | BLA                                                                                                      | DE FLAF                                        | MOTION                                                                   | HARMON                                                                    | IÇS_(DE                         | 6)                                                       |
| NO, SR<br>(FPS)                                               | HU                                                                                                                                            | THEC (DEG)                                                                     | 81                                                                                                       | 82                                             | 83                                                                       | 84                                                                        | 85                              | 86                                                       |
| 43- 3 700<br>43- 4 700<br>45- 5 500<br>65- 6 500<br>45- 7 400 | .294<br>.351<br>.657<br>.766<br>1.067                                                                                                         | 5.0<br>5.0<br>5.0<br>5.0<br>2.0<br>2.0                                         | .2<br>.3<br>.1<br>- <u>1</u><br>.1<br>-,2                                                                | 1<br>4<br>5<br>7<br>3                          | .1<br>1<br>1<br>1<br>-1.3<br>-1.2                                        | •0<br>•0<br>•1<br>•2<br>•2<br>•2                                          | 1<br>.1<br>.0<br>.0<br>.1<br>.1 | .0<br>.0<br>.1<br>.0<br>1<br>1                           |

t

ś

| _                      | <u>.</u>                 | 0040440000000000                                                                 |
|------------------------|--------------------------|----------------------------------------------------------------------------------|
|                        | 8<br>8                   |                                                                                  |
|                        | Rs                       |                                                                                  |
|                        | HARMONICS (DEG)<br>R3 R4 |                                                                                  |
|                        | DINO                     |                                                                                  |
| đ                      | HAR<br>RS                |                                                                                  |
| TABLE XCVI - Concluded | MOTION<br>R2             | ~ * • • • • • • • • • • • • • • • • • •                                          |
| - C0                   | FLAP M<br>1              | ~~~~~~~~~~                                                                       |
| E XCVI                 | e 1                      |                                                                                  |
| TABL                   | BLADE                    | 40000000000000000000000000000000000000                                           |
|                        |                          |                                                                                  |
|                        | THEC<br>(DEG)            |                                                                                  |
|                        | S.                       | 294<br>551<br>557<br>1067<br>1067<br>1067<br>1067<br>1067<br>1067<br>1067<br>106 |
|                        | OMS<br>*R<br>(FPS)       | 2258928929292929292929292929292929292929                                         |
|                        | •                        | nan shonanohoo ch                                                                |
|                        | PT.                      | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                            |

í

|                                |                                                | i         |         |      |      |      | _           |        | _    |        | _     |      |      |          | -           | -       | -               | <br> |                                     |     |               | _          | -           |      | _    |       | _          |     | _          | _   | -     |       |       | •       |         |
|--------------------------------|------------------------------------------------|-----------|---------|------|------|------|-------------|--------|------|--------|-------|------|------|----------|-------------|---------|-----------------|------|-------------------------------------|-----|---------------|------------|-------------|------|------|-------|------------|-----|------------|-----|-------|-------|-------|---------|---------|
|                                |                                                | A13       | 0.      |      |      |      |             | ~      | ٩.   | 1      | .1    |      | -    |          |             | •       | .,              |      |                                     |     | 613           |            |             |      | 1.2  | r.    | •          |     | N 0        |     |       |       | •     | ~       | .1      |
| 98                             |                                                | A12       | 8.1     | -    | •0   | 4-1  |             |        | 1    | •      | •     |      | •    | •••      |             |         | •               |      |                                     |     | 812           | .1         |             |      | -1.7 | 9     | <b>n</b> . |     | •          |     |       |       | -     | ~       | Ņ       |
| s 85-86                        |                                                | A11       | 2       |      |      | 2    | 4           | 0.     | 1    | •      | •     | •    |      |          | ł           | ar<br>• | ۳.              |      |                                     |     | 811           | <b>5</b> . |             |      | -    | đ,    | ່          |     |            |     |       | 1     | 2     | 2       | •••     |
| - RUNS                         |                                                | A10       | -1.8    |      | 1    |      | 10          |        | -    | ¢.     | •     | ¢,   |      | •        |             | ~       |                 |      |                                     |     | 810           | 8.         | 1-0         |      | 3    | ۰.    | ••         | •   | •          |     |       |       | ~     | 3.1     | ić<br>1 |
|                                |                                                | <b>A9</b> | 9       |      |      |      | 5           | 2.1    | •    | ~      |       | •    |      | •        | N           | •       | *               |      |                                     |     | 89            |            |             |      | 2    | -1.6  | 7          |     | N 4        | •   |       | •     |       |         | •       |
| HARMC<br>RD )                  | (8)                                            | 98        | - e     | -    | 0    | -    | <b>C</b> -T | 9.1    | 9.   | 9.     | -     | •    | 1.1  | 0 v<br>1 | •••         |         | °,              |      | 61                                  |     | 88            | 5.         | - 41<br>- 1 |      |      | 4.4   | 0.4        | •   |            |     |       | 0     | •     | .1      |         |
| MOMENT HARMONICS<br>.35 CHORD) | S (IN                                          | A7        | 10<br>1 |      | 1    | ~ ~  | 1.0         | 3.9    | 60.  | .7     | 2     | 9.   |      | N 4      | -<br>-<br>- | ~ •     | n.              |      | ND ST                               |     | 87            | 7          | 3           | -    | 9.   | -3.9  | -1-5       | n : |            |     |       |       | •     | •       | •       |
| AT .                           | .33P CHORDWISE BENDING MOMENT HARMONICS (INLB) | A6        | -2      | 1 17 |      | 1.2  | 17.6        | -11.8  | -1.8 | 2.1    | -1-3  |      |      |          |             | ••      | - 5             |      | PENDING MOMENT HARMONICS (111 -1 3) |     | 96            | 7          | 1           | 0    | •    | -1.2  | # 1<br>0 - |     |            |     | 1     | 2     | -     | ~       |         |
|                                | OMENT H                                        | AS        | *       |      | -2.9 |      |             | -2.2 - |      |        |       |      |      | •        | •           | •       | ••              |      | OHENT :                             |     | 85            | P. •       |             | -1.6 |      | 5.0   | 8.6-       |     | <b>?</b> • |     |       | 9     | r.    | 5       | •       |
|                                | N SNIO                                         | A4        | 2.5     |      |      |      |             | -3.0   |      |        |       |      |      |          |             | n.,     | 3.1             |      | - STILDE                            | 5   | 8             | 6.1        | 2.7         | -3.2 | 4    | r.9   | -3.2       |     |            |     |       |       |       | ·       | 4<br>1  |
| . 30R<br>CENT                  | IISE DEI                                       | ٨3        |         |      |      |      |             |        |      | -<br>2 |       |      | 2.1- |          |             |         |                 |      | WISE BE                             |     | 55            | 2.5        | 2.7         |      | -1.5 | •     | -2.8       |     |            |     |       | 7     | •     | 1.4     | 1.4     |
| BLADE<br>(BLADE                | CHORD1                                         | A2        | -1.1    |      | .1.6 | 1.7  | 2.6         | -1.9   | 6    | 60 I   | 2°*   |      |      |          |             |         | · · ·           |      | .30P CHORDWISE                      |     | 62            | -1.6       | -1.5        | -1-5 | -1.4 | 2.3   | e.         | ••• |            |     | •     | 2     | э.    | ••      | •       |
| CVII. E                        | LACE . 30P                                     | 11        | •       |      |      |      |             | - 6    |      | 9      |       | 0    | 1.7  |          |             | 5.5     | 6. <sup>4</sup> |      | ULAPE .30                           |     | lu            |            |             |      |      |       | 5.6        | a - |            |     |       | 6.5   | 6.8   | 7.9     | 7.7     |
| ×                              | 6LA                                            | (DEG)     | 5.0     | 0    | 0    | 0    | 0           | 2.0    | 0    | 0      |       | -    |      |          |             | -       | 0               |      | 1<br>1                              |     | THEC<br>(DFG) | 5.0        | 5.0         | 5.0  | 5.0  | 2.0   | 2.0        | 2.0 | 2.0        | 2.0 | 2.0   | 2.0   | 2.0   | 2.0     | 2.0     |
| TABLE                          |                                                | , UH      | .294    | .351 | .657 | .766 | .067        | .108   | .795 | . 847  | - 906 | 425. | 100  |          |             | • 260   | .456            |      |                                     |     | 115           | .294       | .351        | .657 | .766 | 1.067 | 1.108      |     |            | 976 | 1.052 | 1.144 | 1.254 | 1.363   | 1.456   |
|                                | SHO                                            | FPS)      |         |      |      |      | -           | 1 004  |      |        |       |      |      | ••       | -           |         | -               |      |                                     | SHO | ŧĥ<br>(FPS)   |            |             |      |      |       |            |     |            |     |       | 1 269 |       |         |         |
|                                | PT PT                                          |           |         |      |      | -    |             | 8-58   |      |        |       |      |      |          |             | •       | -               |      | RUH                                 | P1. | NO.           |            |             |      |      |       |            |     |            |     |       | -98   |       | -10<br> |         |

|         |          |       |      |       |                              |          | TABLE    | TABLE XCVII - Concluded | - Conc.            | luded    |         |     |     |        |     |     |     |
|---------|----------|-------|------|-------|------------------------------|----------|----------|-------------------------|--------------------|----------|---------|-----|-----|--------|-----|-----|-----|
| RUN-    | 9.<br>2. | i i   | THEC | BLAFE | THE CHORDAISE DENDING NUMERI | a astau  | 8F101113 | MUNENT                  | INARMONICS (114LB) | cs (111. | -18)    |     | . 8 | )<br>K |     |     |     |
|         |          | P.    | 5301 | 2     | 2                            | K2       | £3       | ž                       | £                  | 96       | EN<br>M | 2   | å   | 810    | RII | R12 | R13 |
| 10 - SA | 700      | .24   | 5.0  | -18.0 | 1.2                          | 1.9      | 4.2      | <b>6.6</b>              | s.                 | ۲.       | 8.      |     | 2.  | 2.0    | 'n  |     | ~   |
|         | 200      | .351  | 2.0  | -13.0 | 1.0                          | 1.7      | 3.6      | 5.7                     | 9.                 | 3        | *,      | •   | 1.1 | 2.1    | •   | 1   | 1   |
| 5-20    | 200      | . 657 | 5.0  | 35.4  | 0.1                          | 2.5      | 3.8      | 4.2                     | 3.3                | 1.2      | •       | n.  | ~   |        | 5   | 1.0 |     |
| 92-9    | 200      | .766  | 5°0  | 39.8  | 5.7                          | 2.2      | 4.6      | 5.3                     | 5.5                | 1.3      | •       | *   |     |        |     | 0   |     |
| 12- 2   | 004      | 1.067 | 2.0  | 62.5  | 3.2                          | 3.4      | 3.5      | 7.7                     | 13.2               | 17.7     | 0**     | 9-4 | 1.7 | 5      | 9   |     |     |
| 8S0     | C0#      | 1.108 | 2.0  | 0°59  | 4°C                          | 6°1      | 2.9      | ***                     | 3.1                | 4 . 4 1  | 0.4     | -   | 2.1 |        |     |     |     |
|         | 191      | c95.  | 2.0  |       |                              | 1.0      | 1.1      | 1.4                     | 2.7                | 6-1      |         |     |     |        | -   | -   | -   |
| 1-90    | 363      | 1 347 | 2.0  | •     | 4.2                          | 8.       | 1.4      | 1.3                     | 1.7                | 2.4      |         | •   |     | 1      | 19  | 17  | -   |
| 1       | 529      | .906  | 2.0  | 1.5   |                              | 9.       | 1.2      | 1.0                     | 9.                 | 1.3      | 1.0     | 5   |     | ~      |     |     |     |
| 9-96    | 316      | 424   | 2.0  | 2.3   | 5.1                          | 3        | 1.4      | ٥.                      |                    |          |         |     | 1   | 2      |     |     | -   |
| 96- 7   | 292      | 1.052 | 2.0  | 3.1   | 5.9                          | ູ        | 1.3      | 1.0                     | 5.                 | 2.       |         | 1.5 |     | 2      | -   |     | • • |
| 696     | 269      | 1.144 | 2.0  | 3.8   | 7.1                          | ŗ.       | 1.2      | 5                       | •                  | 5        |         | •   |     | 2      | 17  | 1-  | 4 - |
|         | 202      | 1.254 | 2.0  | 4.6   | 6.3                          | 1.       | 1.2      | *                       | .7                 |          | -       | 9   |     |        | 2   |     |     |
| 96-10   | 221      | 1.348 | 2.0  | 5.5   | 9.7                          | 4.       | 1.4      | 3.                      | •                  | ~        | ~       | ~   | -   |        |     | • • |     |
| 86-11   | 211      | 1.450 | 2.0  | 6.0   | 19.6                         | <b>ن</b> | 1.5      |                         | ••                 | 2.       |         | 2   | *   | ŝ      |     | 19  | 14  |
|         |          | 8     |      |       |                              |          |          |                         |                    |          |         |     |     |        |     |     |     |

\$

i

Ì

| True         True <th< th=""><th></th><th></th><th>1</th><th>• • •</th><th></th><th>BLADE</th><th>.35A TO</th><th>TONSIONAL</th><th>MONENT</th><th>HARMONICS (INLB</th><th>CS (IN.</th><th>(ġ,</th><th></th><th></th><th>,</th><th></th><th></th></th<> |        |      | 1     | • • •         |      | BLADE | .35A TO | TONSIONAL | MONENT | HARMONICS (INLB | CS (IN.    | (ġ,      |             |         | ,        |            |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------|---------------|------|-------|---------|-----------|--------|-----------------|------------|----------|-------------|---------|----------|------------|-----|
| 700       231       500       1.0       51       -6.5       -1.2       -0       -1.2       -0       -1.2       -0       -1.2       -0       -1.2       -0       -1.2       -0       -1.2       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       <                                                                                                                                                                                                                                                                                                                                                                                                              | !      | i÷Ê  | £     | THEC<br>(DEB) | V1   | 42    | 5       | ¥         | A5     | ¥6              | 47         | 84       | , 6A        | A10     | IIV      | A12        | A13 |
| 9700       351       5:0       1:0       1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5       -1:5 <td< td=""><td>858</td><td>100</td><td>¥62.</td><td></td><td>1.1</td><td>1.5</td><td>-6.5</td><td></td><td></td><td>2.</td><td></td><td>1</td><td>I</td><td>•</td><td></td><td>1</td><td></td></td<>                                                                                                                         | 858    | 100  | ¥62.  |               | 1.1  | 1.5   | -6.5    |           |        | 2.              |            | 1        | I           | •       |          | 1          |     |
| 910       1.001       2.0       1.0      2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2       -7.2 <t< td=""><td></td><td>100</td><td>135.</td><td>0.0</td><td>-</td><td>-</td><td></td><td>• •</td><td></td><td>2</td><td></td><td></td><td>-</td><td>~</td><td></td><td>-</td><td>0.0</td></t<>                                                                                                                                 |        | 100  | 135.  | 0.0           | -    | -     |         | • •       |        | 2               |            |          | -           | ~       |          | -          | 0.0 |
| 000       1.000       2.00       1.00       2.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       <                                                                                                                                                                                                                                                                                                                                                                 | -      | 200  | .766  | 8.0           | 1.1  |       | -11.8   |           |        | 1.3             | -          |          |             |         |          |            | -   |
| 337       1795       2.0       1        1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      | 004  | 1.067 | 0.0           | -    |       | -1.2    | •         | 12.7   | -11.0           | •          | ė        |             | -       |          |            |     |
| 289       1.087       2.0       1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |      | 201 1 | 2.0           |      |       |         |           | 11.0   |                 |            |          |             |         |          |            |     |
| 252       1.155       2.0       1       -6       -1.5       -6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 195  | 647   | 2.0           | 13   | *     | 9.7-    |           |        | 1.6             | 1.1        | 5        | <b>.</b> .  | -       | -        | •          |     |
| 221       1.052       2.0       1      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0       0.1       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       0.0       1.1       1.1       0.0       1.1       1.1       1.1       1                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 339  | 906.  | 2.0           | -    | -     | -1.6    |           |        | 1.1             |            | ņ        |             |         |          | e.         | ;   |
| 221       1.256       2.0       1          0       1        0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 010  | 979.  |               |      |       |         |           | •      |                 |            |          |             |         |          | •••        | : 9 |
| 221       1.256       2.0       .1       -1.0      3      1      1       0       1         221       1.456       2.0       .0       -1.0      3      1      2       0       0       1         221       1.456       2.0       .0       -1.0      3      1      2       0       0       1         0HS      1      10      3      10      3      1      2       0       1         0HS      1      10      3      10      3      1      2       0       1      1      1      2       0       1      2       0       1      1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1      2       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1 <t< td=""><td></td><td>269</td><td>1.144</td><td>8.0<br/>8</td><td>:7</td><td></td><td>-1.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>:7</td><td></td><td>•••</td></t<>                                                                                                                                                                                                                                                                                                                                                                       |        | 269  | 1.144 | 8.0<br>8      | :7   |       | -1.1    |           |        |                 |            |          |             |         | :7       |            | ••• |
| 221       1.366       2.0      1       -1.0      3      1      2       0       1         211       1.456       2.0      0       -1.0      5      1      0       0         0HS       THEC       BLADE       .35R <torsional (i4,-l<="" harmonics="" moment="" td="">       0       0       1       0       1         0HS       THEC       B1       B2       B3       B4       B5       B6       B7         0HS       THEC       B2       B3       B4       B5       B6       B7         010       251       5.0       2.4       4.3       -5.2       -7       0       1         700       251       5.0       3.5       7.7       -10.8       5.6       1       1       1         700       251       5.0       3.5       5.0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</torsional>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 24   | 1.254 | 2.0           | -    | 6     | 8       | 2         |        |                 |            |          |             | 5       |          |            | •   |
| 211         1.456         2.0         .0         -1.2        5         .1         .0         .1         .1           OHS         THEC         BLADE         .35R TORSIONAL MOMENT HARMONICS (INL)         0         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1         .1                                                                                                                                                                                                                                                                                                              |        | 221  | 1.388 | 2.0           | 1.   | -1.0  | -       |           | - 2    | •               |            | • .2     |             | F)<br>• |          | -          | •   |
| ONS         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         THEC         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         THEC         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         0NS         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         0NS         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         0NS         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         SSG         BLADE         JSR TORSTONAL MOMENT HARMONICS (IKu-L           0NS         0NS         SSG         SSG         SSG         JSG         JSG           1000         29%         SSG         JSG         JSG         JSG         JSG         JSG           1000         10067         ZSG         JSG         JSG         JSG         JSG         JSG         JSG         JSG         JSG         JSG           1000         10067         ZSG         JSG         <                                                                                                                                                                                                                                            | -      | 211  | 1.456 | 2.0           | •    | -1.0  | •••     |           | •      |                 |            | 7        | -           | ņ.      | <b>.</b> | :          | :   |
| ONS         BLADE         JSR TORSTONAL MOMENT HARMONICS (INL.           0NS         THEC         BLADE         JSR TORSTONAL MOMENT HARMONICS (INL.           0NS         THEC         BL         BS         BU         BS         BS           0FPS         MU         (DE6)         B1         B2         B3         B4         B5         B5         B1           0         700         294         5.0         2.4         4.3         5.5         3.5         3.5         3.6         1.0         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1                                                                                                                                                                                                                                                                                       |        |      |       |               | ž.   |       |         |           |        |                 |            |          |             |         |          |            |     |
| OMS         THEC         B4         B5         B5         B4         B5         B5         B4         B5         B5         B5         B5                                                                                                                                                                                                                                                                                                                         | RUN-   |      |       |               |      |       | 35R T0  | SIONAL    | MOMENT | HARMONI         | CS (IM.    | (B)-     |             |         |          |            |     |
| (FPS)       MU       (REC)       B1       B2       B3       B4       B5                                                                                                                                                                                                                                                                                                                                                                                                                           | P1.    | SHO  | 1     |               | [    |       |         |           |        |                 | •          | ļ        |             |         |          |            | ÷   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2      | FPS) | £     | (DEG)         | 81   | 92    | 83      |           | 85     | 98              | 87         | 88       | <b>B</b> 9  | B10     | 811      | <b>B12</b> | 813 |
| 700       351       5.0       3.5       7.7       10.8       5.8       1.0         5500       657       5.0       1.3       7.7       10.8       5.8       1.0         7       500       766       5.0       1.3       7.7       10.8       5.8       1.0         7       500       766       5.0       1.3       7.7       1.0       5.8       1.0         7       500       766       5.0       1.3       7.7       1.0       5.8       1.0         7       1067       2.0       5.3       5.6       1.0       5.2       1.7       1.0         8       100       1.067       2.0       5.3       5.8       1.0       1.7       1.4       1.0         8       100       1.067       2.0       1.0       5.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2       1.2<                                                                                                                                                                                                                                                                                                                                                                                                                             | 85- 3  | 700  | .294  | 5.0           | 2.4  |       | 5.      | 2.9       | 5.     | £.              | .1         | •        | 2.          | ۶.      | 8.       | 2.         | ۲.  |
| 5500       657       5:0       4:1      3       4:1      3       5:0       1.3       1.1       1.4       1.3       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.4       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5                                                                                                                                                                                                                                                                                                                                                                                  | 4 -59  | 100  | .351  | 5.0           | 3.5  | •     | 10.     | 5.8       | 1.0    | 4               | 2.         |          |             | 1       | 2        | -:         | -   |
| 7       100       1.00       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2       -3.2 <td< td=""><td>85- 5</td><td>200</td><td>.657</td><td>5</td><td>1.3</td><td>•.</td><td>•</td><td>-5.2</td><td>•••</td><td>***</td><td>•</td><td>•</td><td><b>-</b>j-</td><td></td><td>•</td><td></td><td></td></td<>                                                                                                         | 85- 5  | 200  | .657  | 5             | 1.3  | •.    | •       | -5.2      | •••    | ***             | •          | •        | <b>-</b> j- |         | •        |            |     |
| 3400       1.108       2.0       5.6       10.8       3.5       -8.1       4.3       -12.9      9         5330       .795       2.0       1.0       .7       1.4       -3.5       -1.1       1.0       .1         5330       .906       2.0       .7       1.4       -2.5      5      5         5339       .906       2.0       .7       1.4       -2.1       2.5      9         5339       .906       2.0       .7       1.4       -2.1       -2.5      9         5339       .906       2.0       .7       1.2       .9       -1.2      5      9         5316       .991       2.0       .7       1.2       .9       -1.2      9         5316       .991       2.0       .7      9       -1.2      9      9         7       1.2       .7       1.2       .7      9      1      9         7       1.2       .7       1.2       .7      9      9      9         7       1.2       .7       1.2       .7       1.5      7      9         7       1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02- 7  | 004  | 1.067 | 2.0           | -1.2 | ;•    | :       | 6.9       | 2.2    | -               | 5          | :        |             | :-:     | 2        |            |     |
| 363     77     1.4     -3.5     1.4     -3.5     1.4       363     3647     2.0     9     7     1.4     -3.5     1.4       5339     9906     2.0     7     1.4     -2.5     1.5     1.6       5339     9906     2.0     7     1.4     -2.5     1.6     1.6       5316     9906     2.0     7     1.5     1.2     1.6       5316     9906     2.0     7     1.5     1.6       5316     9906     2.0     7     1.5     1.6       5316     1052     2.0     5     9     1.5     1.6       5269     1.144     2.0     2.5     1.1     1.0     1.7       7     1.25     2.0     1.2     1.6     1.7     1.2       7     1.25     1.1     1.0     1.7     1.7     1.7       7     1.25     1.1     1.0     1.7     1.7     1.7       7     1.25     1.1     1.0     1.7     1.7     1.7       7     1.25     1.1     1.0     1.7     1.7     1.7       7     1.25     1.1     1.0     1.7     1.7     1.6       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82- 8  | 004  | 1.108 | 2.0           | 9.9  | •     | •       |           |        | å.              | •          | Ņ        | •.•         | Ņ       | N        | •••        | •   |
| 5     339     906     2.0     7     5     5     9     -1.2     -2.0     -1.0       7     292     1.052     2.0     -5     -5     -9     -1.5    8       7     292     1.052     2.0     -5     -9     -7     -1.5    8       7     292     1.052     2.0     -5     -9     -7     -1.5    8       7     295     1.5     -9     -7     -1.5    8    7    7       7     251     1.554     2.0     -2     1     1.0    4    7       7     255     1.1     1.0    4     .3     1.2    7    2       7     251     1.554     2.0    2     .1     1.0    4    7       7     251     1.56     .3     1.2    3     -1    7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 555  | 667   | 2.0           |      |       |         |           | 1.1.1  |                 |            |          | พูญ         |         | ::       |            | ••• |
| 0       316       .974       2.0       .6       .5       .7      9       -1.5      6      4         7       292       1.052       2.0       .5       .5       .9      7       -1.5      6      4         7       292       1.052       2.0       .5       .5       .9      7       -1.5      6      7      2         7       292       1.0152       2.0       .2       .4       1.0      4      2       .4       .10      7      2       2.2       2.4       1.0      4      2       2.2       2.5       1.1       1.0      4      3      1      2       2.2       2.5       1.2      3      1      2       2.2       2.5       1.2      3      1       1.2      3      4      3      2       2.4      3      1      2       2.2       2.5       1.2       1.2      3      4      3      4      3      4      3       2.4      3       2.4      3      4      3      4      3       2.4      4      3       3       2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86- 5  | 339  | 906.  | 2.0           |      | 5     |         | -1.2      | -2.0   | -1.0            | 6.1        | •        |             |         | -        |            | •   |
| 5 269 1.144 2.0 2 4 1.0 -3 1.0 -7 -2<br>9 245 1.254 2.0 -2 1.1 1.0 -4 -6 -4 -5<br>1 221 1.368 2.0 -4 3 1.2 -3 -7 -4 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86- 6  | 316  | . 974 |               |      | ູ້    |         | •••       | 11     |                 | # 0<br>1 1 | •        |             |         |          |            | ••• |
| 9 245 1.254 2.02 1 1.04643<br>1 221 1.366 2.04 .3 1.23742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96- 8  | 566  | 1.144 |               | 2    |       |         | 2         | 10.17  |                 |            | -        |             | :-:     | ••       | ••         | ••  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 - 98 | 245  | 1.254 | 8.0           | N. 1 |       | •;      | # !<br>   | •      | # :<br>1        |            | 3 .<br>1 | •           |         | 2.5      | ••         | e.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01-08  | 122  | 1.285 |               |      | :-    | •       |           |        | •••             | •          |          | + 4<br>1 1  |         |          |            | :-  |

|    |     |              |     |      |            |               | TABLE | XCVIII | TABLE XCVIII - Concluded | cluded              |     |            |   |          |     |   |   |
|----|-----|--------------|-----|------|------------|---------------|-------|--------|--------------------------|---------------------|-----|------------|---|----------|-----|---|---|
| 10 | žĩ  |              |     | 1    | ω -        | JSR TORSTONAL |       | HONENT | INOMANH                  | (Ch-, MI) 231MOMAMM | ĝ l |            |   |          |     |   |   |
|    |     | 2            |     | 2    | I S        | 2             | 2     |        | 2                        |                     |     | 2 <br>     |   |          |     |   |   |
|    |     |              |     | 2.41 | 9 (<br>N ) |               |       | 2.2    |                          |                     | -   | •          | Ņ | 7        | •   | Ņ | - |
|    | 000 | 100.         | 00  | 0    |            |               |       |        | 2.0                      |                     | N.4 | •.         |   | N -      | N-1 |   |   |
|    |     | .766         | 5.0 | -3.2 | 1.2        | 6.1           | 12.1  | 15.5   | 7.5                      | 2.1                 |     | 'n         |   | -        | ~   | 2 |   |
|    | -   | - 067        | 2.0 | -5.1 | 3.4        |               | 10.9  | 6.9    | 12.9                     | 13.1                | 5   |            | s | 2        | ~   | - | - |
|    | _   | 901.         | 2.0 | 9.9  | 1.1        | 1.1           | 9.5   | 9.2    | 11.8                     | 14.0                | 1.0 |            | ~ | Ņ        | ~   |   |   |
|    |     | £            | 2.0 | 5.3  | 1.0        | •             | 3.0   | 3.6    | ••                       |                     | 1.2 | 'n         | ~ | ~        | -   | - | 0 |
|    |     | - 047        | 2.0 | 2.9  | •          | •             | 2.3   | 2.6    | 2.7                      | 1.7                 | 1.2 | •          | • | Ņ        |     | • | - |
|    |     | 800          | 2.0 | 7    | -          | -             | 1.8   |        | 2.0                      | 1.5                 | •   | <b>n</b> , |   |          | -   | - | - |
|    |     | .974         | 2.0 | -1-5 |            |               | 1.6   |        |                          | 1.1                 | •   |            | • | Ņ        | -   | - |   |
|    | -   | .052         | 0.0 | 6.1  | 5          | •             | 1.5   | 1.0    | 1.2                      |                     | Ņ   | 0.1        |   | "        | N   | - | • |
|    | Ξ.  |              | 2.0 | -1.2 | ~          |               |       |        | 1.0                      |                     |     | •          | N | <b>.</b> | -   | • | • |
|    | _   | .254         | 2.0 |      | Ņ          | •             | 1.3   |        | •                        |                     | •   | n,         | ŝ | ŝ        | ~   | 4 | • |
|    |     | 200          | 2.0 | -1.6 | •          | 1.1           | 1.2   |        |                          | •                   | Ņ   | n.         | • | ູ        |     | Ņ | • |
|    | -   | •12 <b>6</b> | 2.0 | -1.6 | -          | 1.3           | 1.1   | ŝ      |                          |                     | ŝ   | Ņ          | • | •        | ?   | " | - |
|    |     |              |     |      |            |               |       |        |                          |                     |     |            |   |          |     |   |   |

I

| UNCLASSIFIED<br>Security Classification                                                                                                                                                  |                                                                                                                  |                                                                                                            |                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                                                                                                          | ENT CONTROL DATA - R                                                                                             | A D                                                                                                        |                                              |
| (Security classification of title, bady of abstract                                                                                                                                      |                                                                                                                  | intered when the                                                                                           |                                              |
| ORIGINATING ACTIVITY (Corporate author)                                                                                                                                                  |                                                                                                                  |                                                                                                            | CURITY CLASSIFICA                            |
| United Aircraft Corportion                                                                                                                                                               |                                                                                                                  | Unclassi                                                                                                   | fied                                         |
| Sikorsky Aircraft Division<br>Stratford, Connecticut                                                                                                                                     |                                                                                                                  | ab. enoup                                                                                                  |                                              |
| REPORT TILLE                                                                                                                                                                             |                                                                                                                  | J                                                                                                          |                                              |
| ROTOR AEROELASTIC INSTABILITY AND                                                                                                                                                        | TRANSIENT CHARACTER                                                                                              | STICS                                                                                                      |                                              |
| . DESCRIPTIVE NOTES (Type of report and inclusive det                                                                                                                                    |                                                                                                                  |                                                                                                            | <u></u>                                      |
| Final Report<br>AUTHOR(8) (First name, middle initial, fast name)                                                                                                                        |                                                                                                                  |                                                                                                            |                                              |
| Charles F. Niebanck<br>Lawrence J. Bain                                                                                                                                                  |                                                                                                                  |                                                                                                            |                                              |
| AEPONT DATE                                                                                                                                                                              | 74. TOTAL NO. 0                                                                                                  | F PAGES                                                                                                    | 78. NO. OF REFS                              |
| February 1970                                                                                                                                                                            | 450                                                                                                              | -                                                                                                          |                                              |
| DA 44-177-AMC-203(T)                                                                                                                                                                     |                                                                                                                  |                                                                                                            |                                              |
| A PROJECT NO.                                                                                                                                                                            | USAAVLABS                                                                                                        | Technical                                                                                                  | Report 69-88                                 |
| 1F162204A13903                                                                                                                                                                           |                                                                                                                  |                                                                                                            |                                              |
| e.                                                                                                                                                                                       | S. OTHER REPO                                                                                                    |                                                                                                            | her numbers that may                         |
|                                                                                                                                                                                          | this report)                                                                                                     |                                                                                                            |                                              |
| 4                                                                                                                                                                                        | SER-50597                                                                                                        |                                                                                                            |                                              |
|                                                                                                                                                                                          | ay be made only with                                                                                             |                                                                                                            | TOVEL OF US A                                |
| Aviation Materiel Laboratories, Fo                                                                                                                                                       | ort Eustis, Virginia                                                                                             | 23604.                                                                                                     |                                              |
| II. SUPPLEMENTARY NOTES                                                                                                                                                                  | ort Eustis, Virginia                                                                                             | 23604.<br>MILITARY ACTI<br>Aviation N                                                                      | vitv<br>Interiel Labor                       |
| II. SUPPLEMENTARY NOTES                                                                                                                                                                  | 9 feet in diameter,<br>ries Wind Tunnel. Then response to sudd<br>and the generation of                          | 23604.<br>Aviation N<br>s, Virginia<br>was tested<br>to purposes<br>en control<br>of detailed              | in the 18-fo<br>of the test<br>inputs, the i |
| A dynamically scaled model rotor,<br>United Aircraft Research Laborator<br>the determination of rotor transie<br>tion of blade aeroelastic limits,<br>evaluation and improvement of theo | 9 feet in diameter,<br>ries Wind Tunnel. Then response to sudd<br>and the generation of                          | 23604.<br>Aviation N<br>s, Virginia<br>was tested<br>to purposes<br>en control<br>of detailed              | in the 18-fo<br>of the test<br>inputs, the i |
| A dynamically scaled model rotor,<br>United Aircraft Research Laborator<br>the determination of rotor transie<br>tion of blade aeroelastic limits,<br>evaluation and improvement of theo | 9 feet in diameter,<br>ries Wind Tunnel. Then response to sudd<br>and the generation of                          | 23604.<br>Aviation N<br>s, Virginia<br>was tested<br>to purposes<br>en control<br>of detailed              | in the 18-fo<br>of the test<br>inputs, the i |
| A dynamically scaled model rotor,<br>United Aircraft Research Laborator<br>the determination of rotor transie<br>tion of blade aeroelastic limits,<br>evaluation and improvement of theo | 9 feet in diameter,<br>ries Wind Tunnel. Then response to sudd<br>and the generation of                          | 23604.<br>Aviation N<br>s, Virginia<br>was tested<br>to purposes<br>en control<br>of detailed              | in the 18-fo<br>of the test<br>inputs, the i |
| A dynamically scaled model rotor,<br>United Aircraft Research Laborator<br>the determination of rotor transie<br>tion of blade aeroelastic limits,<br>evaluation and improvement of theo | 9 feet in diameter,<br>ies Wind Tunnel. Thent response to sudd<br>and the generation of<br>pretical calculations | 23604.<br>Aviation M<br>s, Virginia<br>was tested<br>a purposes<br>en control<br>of detailed<br>s. The rot | in the 18-f<br>of the test<br>inputs, the    |

UNCLASSIFIED

|      |     |       | _  |      |  |
|------|-----|-------|----|------|--|
| ROLE | .17 | ROLE  | a1 | RULE |  |
|      |     | W 268 |    | HULE |  |
|      |     |       |    |      |  |
|      |     |       |    |      |  |
|      |     |       |    |      |  |
|      |     |       |    |      |  |

3

₹

4

T.

Bearity Classification