UNCLASSIFIED

AD NUMBER

AD868578

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; FEB 1970. Other requests shall be referred to Army Materiel Command, Alexandria, VA. Document partially illegible.

AUTHORITY

USAMC ltr, 14 Jan 1972

THIS PAGE IS UNCLASSIFIED

AMC PAMPHLET

AMCP 706-260

ENGINEERING DESIGN HANDBOOK

GUNS SERIES

AUTOMATIC WEAPONS

MAY 5 1970

A Copics L'B

HEADQUARTERS, U.S. ARMY MATERIEL COMMAND

FEBRUARY 1970

States - States

HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND WASHINGTON. D. C. 20315

ENGINEERING DESIGN HANDBOOK AUTOMATIC WEAPONS

Paragraph

Page

LIST OF ILLUSTRATIONS	VI
LISTOFTABLES	viii
LIST OF SYMBOLS	Х
PREFACE	xviii

CHAPTER 1. INTRODUCTION

1-1	SCOPE AND PURPOSE	1-1
1 - 2	GENERAL	1-1
1-3	DEFINITIONS	1 - 1
1–4	DESIGN PRINCIPLES FOR AUTOMATIC WEAPONS	1–1

CHAPTER 2. BLOWBACK WEAPONS

2-1	GENERAL	2 - 1
2-2	SIMPLE BLOWBACK	2-3
2 - 2.1	SPECIFIC REQUIREMENTS	2-3
2 - 2.2	TIMEOFCYCLE	2-4
2 - 2.2.1	Recoil Time	2-5
2 - 2.2.2	Counterrecoil Time	2-6
2 - 2.2.3	Total Cycle Time	2-7
2-2.3	EXAMPLE OF SIMPLE BLOWBACK GUN	2-8
2 - 2.3.1	Specifications	2-8
2 - 2.3.2	Computed Design Data	2-8
2-2.3.3	Case Travel During Propellant Gas Period	2-10
2 - 2.3.4	Sample Problem of Case Travel	2-10
2 - 2.3.5	Driving Spring Design	2-11
2-3	ADVANCED PRIMER IGNITION BLOWBACK	2-12
2-3.1	SPECIFIC REQUIREMENTS	2-12
2 - 3.2	SAMPLE CALCULATIONS OF ADVANCED	
	PRIMER IGNITION	2-13
2 - 3.2.1	Firing Rate	2-13
2 - 3.2.2	Driving Spring Design	2-15
2-4	DELAYEDBLOWBACK	2 - 17
2 - 4.1	SPECIFIC REQUIREMENTS	2 - 17
2 - 4.2	DYNAMICS OF DELAYED BLOWBACK	2-18
2-4.3	SAMPLE PROBLEM FOR DELAYED	
	BLOWBACK ACTION	2-24
2-4.3.1	Specifications	2 - 24
2 - 4.3.2	Design Data	2 - 24
2 - 4.4	COMPUTER ROUTINE FOR COUNTERRECOILING	
	BARREL DYNAMICS	2-33
2-4.5	SPRINGS	2-37
2-4.5.1	Driving Spring	2 - 37
2-4.5.2	Barrel Spring	2-39
2-4.5.3	Buffer Spring	2-39
2-5	RETARDEDBLOWBACK	2-40
2 - 5.1	SPECIFIC REOUIREMENTS	2-40

TABLE OF CONTENTS (Con't.)

. .

Paragraph		Page
2-5.2	DYNAMICS OF RETARDED BLOWBACK	2-40
2 - 5.2.1	Kinematics of the Linkage	2-40
2-5.2.2	Equations of Dynamic Equilibrium	2-43
2-5.2.3	Digital Computer Program for the Dynamic Analysis	2_44
2-6	RATING OF BLOWBACK WEAPONS	2-47
	CHAPTER 3. RECOIL-OPERATED WEAPONS	
3-1	GENERAL	3-1
3-2	LONG RECOIL DYNAMICS	3-1
3-3	SAMPLE PROBLEM _LONG RECOIL MACHINE GUN	3-1
3-3.1	SPECIFICATIONS	3-1
3-3.2	DESIGNDATA	3-1
3-4	SHORT RECOIL DYNAMICS	3-9
3-5	SAMPLE PROBLEM _SHORT RECOIL MACHINE GUN'	3-9
3-5.1	SPECIFICATIONS	3-9
3-5.2	DESIGNDATA	3-9
3_6	ACCELERATORS	2 15

3-5.2 DESIGNDATA 3-9 3-6 ACCELERATORS 3-15 3-7 SAMPLE PROBLEM _ACCELERATOR 3-17 3-7.1 SPECIFICATIONS 3-17 3-7.2 DESIGNDATA 3-17 3-8 RATING OF RECOIL-OPERATED GUNS 3-21

CHAPTER 4. GAS-OPERATED WEAPONS

4-1	GENERALREQUIREMENTS	4–1
4-2	TYPES OF GAS SYSTEMS	4-1
4-3	CUTOFF EXPANSION SYSTEM	4-1
4-3.1	MECHANICS OF THE SYSTEM	4-1
4-3.1.1	Gas Filling Period	4-6
4-3.1.2	Bolt Locking Cam	4-9
4-3.1.3	Cam Curve	4-15
4-3.2	SAMPLE PROBLEM FOR CUTOFF EXPANSION	
	SYSTEM	4-17
4 - 3.2.1	Specifications	4-17
4-3.2.2	Design Data, Computed	4-17
4-3.2.3	Counterrecoil Computed Data	4-19
4-3.2.4	Counterrecoil Time	4-20
4-3.2.5	Recoil Time	4-23
4-3.2.5.1	Recoil Time, Decelerating	4-23
4-3.2.5.2	Recoil Time, Accelerating	4-24
4-3.3	DIGITAL COMPUTER ROUTINE FOR CUTOFF	
	EXPANSION	4-28
4-3.3.1	Gas Dynamics Before Cutoff	4-28
4-3.3.2	Gas Dynamics After Cutoff	4-29
4-3.3.2.1	Bolt Unlocking During Helix Traverse	4-29
4-3.3.2.2	Bolt Unlocking During Parabola Traverse	4-29
4-3.3.2.3	Bolt Unlocked, Bolt Traveling With	
	Operating Rod	4-31

Ż

TABLE OF CONTENTS (Con't.)

Paragraph		Page
4-3.3.3	Dynamics After Gas Cylinder Operations	4-32
4-3.3.3.1	Recoil Dynamics	4-32
4-3.3.3.2	Counterrecoil Dynamics	4-35
4-3.3.3.3	Bolt Locking Dynamics	4-36
4-3.3.3.4	Firing Rate	4-37
4-3.4	SPRINGS	4-37
4-3.4.1	Driving Spring	4-37
4-3.4.2	Buffer Spring	4-37
4-4	THE TAPPET SYSTEM	4-38
4-4.1	SAMPLEPROBLEM	4-38
4-4.1.1	Specifications	4-38
4-4.1.2	Preliminary Design Data	4-38
4-4.1.3	Design Data. Computed	4-38
4-4.1.4	Spring Design Data	4-45

CHAPTER 5. REVOLVER-TYPE MACHINE GUNS

5-1	SINGLE BARREL TYPE	5-1
5-1.1	PRELIMINARY DYNAMICS OF FIRING CYCLE	5-2
5-1.1.1	Sample Problem of Preliminary Firing Rate Estimate	5-7
5-1.1.2	Analysis of Cam Action	5-8
5-1.1.2.1	Sample Calculation of Cam Action	5-14
5-1.1.2.2	Driving Spring	5-18
5-1.2	FINAL ESTIMATE OF THE COMPLETE FIRING CYCLE	5-18
5-1.2.1	Control of Recoil Travel During Propellant Gas Period	5-20
5-1.2.2	Operating Cylinder Design	5-23
5-1.2.3	Dynamics of Simultaneous Adapter-operating	
	Cylinder Action	5-31
5-1.2.4	Sample Calculation for Complete Firing Cycle	5-32
5-1.2.4.1	Counterrecoil Time of Recoiling Parts	5-33
5-1.2.4.2	Digital Computer Analyses of Barreldrum Dynamics	5-37
5-1.2.4.3	Firing Rate Computation	5-39
5-2	DOUBLE BARREL TYPE	5-46
5-2.1	FIRINGCYCLE	5-46
5-2.1.1	Cam Function	5-46
5-2.1.2	Loading and Ejecting	5-48
5-2.1.3	Ammunition Feed System	5-48
5-2.2	DYNAMICS OF FIRING CYCLE	5-49
5-2.2.1	Cam Analysis	5-50
5-2.2.2	Energy Concept	5-52
5-2.2.3	Digital Computer Program for Firing Cyclc	5-52

CHAPTER 6. MULTIBARREL MACHINE GUN

6-1	GENERAL	6-1
6-2	BOLT OPERATING CAM DEVELOPMENT	6-1
6–2.1	CAMACTION	6–1
6-2.1.1	Cam Kinematics	6-3
6-2.1.2	Definition of Symbols	6-4
6-2.1.3	Cam Forces	6–5
6–2.1.4	Locking Angle	6-6

iii

TABLE OF CONTENTS (Con't.)

.

Paragraph		Page
6-2.2	ROTOR KINEMATICS	6-7
6-2.3	ILLUSTRATIVE PROBLEM	6-9
6-2.3.1	Cam Analysis During Feed, Rotor at Constant Velocity	6-9
6-2.3.2	Cam Analysis During Ejection, Rotor at Constant	
	Velocity	6-11
6-2.3.3	Cam Analysis During Rotor Acceleration	6-12
6-2.3.4	Digital Computer Program for Gun Operating Power	6-13
6-3	RATING OF GAS-OPERATED AND EXTERNALLY	
	POWEREDGUNS	6-14

CHAPTER 7. COMPONENT DESIGN

7—1	GENERAL	7-1
7-2	FEED MECHANISM DESIGN	7–1
7-2.1	MAGAZINES	7-2
7–2.1.1	Box Magazines	7-2
7-2.1.2	Box Feed System	7-4
7-2.1.2.1	Flat Tape Spring	7-5
7-2.1.2.2	Rectangular Coil Spring	7-6
7-2.1.3	Example Problems	7-6
7-2.1.3.1	Flat Tape Spring	7-7
7-2.1.3.2	Rectangular Coil Spring	7-8
7-2.2	BOLT-OPERATED FEED SYSTEM	7-9
7-2.3	ROTATING FEED MECHANISM	7 - 10
7-2.3.1	Recoil-operated Feed Mechanism	7-10
7-2.3.2	Electrically Driven Feed Mcchanism	7-12
7-2.4	LINKLESS FEED SYSTEM	7-14
7-2.4.1	Power Required	7–19
7-2.4.2	Example Problem for Power Required	7-21
7-3	EXTRACTORS, EJECTORS, AND BOLT LOCKS	7-24
7-3.1	EXTRACTORS	7-24
7-3.2	EJECTORS	7-27
7-3.2.1	Ejector Dynamics	7-27
7-3.2.2	Sample Problem of Ejcctor Dynamics	7-27
7-3.3	BOLTLOCKS	7-30
7-4	FIRING MECHANISM	7-32
7-4.1	COMPONENTS, TYPES, AND ACTION	7-32
7-4.1.1	Trigger Pull	7-37
7-4 1.2	Firing Pin Design	7-39
7-5	LINKS	7-39
7-5.1	TYPES OF LINK	7-40
75.2	DESIGN REQUIREMENTS	7-40
7-6	MOUNTS	7-44
7-6.1	GEOMETRY AND RESOLUTION OF FORCES	7-44
7-6.2	SAMPLEPROBLEM	7-48

CHAPTER 8. LUBRICATION OF MACHINE GUNS

	GENERALCONCEPT	8-1 8-1
8-3	CASELUBRICANT	8-2

iv

v

TABLE OF CONTENTS (Con't.)

APPENDIXES

No.

Title

Page

Flow Chart for Delayed Blowback	A-1
Listing for Delayed Blowback Program	A-4
Flow Chart for Retarded Blowback	A-6
Listing for Retarded Blowback Program	A–9
Flow Chart for Cutoff Expansion	A-12
Listing for Cutoff Expansion Program	A-15
Flow Chart for Operating Cylinder	A-20
Listing for Operating Cylinder Program	A-22
Flow Chart for Cam and Drum Dynamics During Recoil	A-26
Listing for Cam and Drum Dynamics During Recoil	A-30
Flow Chart for Cam and Drum Dynamics During	
Counterrecoil	A-35
Listing for Cam and Drum Dynamics During	
Counterrecoil	A-38
Flow Chart for Double Barrel Machine Gun	A-43
Program Listing for Double Barrel Machine Gun	A–46
Flow Chart for Multibarrel Power	A-52
Program Listing for Multibarrel Power	A-59
Automatic Control of Rounds in a Burst for	
Weapon Effectiveness	B– 1
GLOŜSARY	G–1
REFERENCES	R-1
	Flow Chart for Delayed Blowback Listing for Delayed Blowback Program Flow Chart for Retarded Blowback Listing for Retarded Blowback Program Flow Chart for Cutoff Expansion Listing for Cutoff Expansion Program Flow Chart for Operating Cylinder Listing for Operating Cylinder Listing for Operating Cylinder Program Flow Chart for Cam and Drum Dynamics During Recoil Listing for Cam and Drum Dynamics During Recoil Listing for Cam and Drum Dynamics During Recoil Listing for Cam and Drum Dynamics During Counterrecoil Flow Chart for Cam and Drum Dynamics During Counterrecoil Flow Chart for Cam and Drum Dynamics During Flow Chart for Cam and Drum Dynamics During Counterrecoil Flow Chart for Double Barrel Machine Gun Flow Chart for Double Barrel Machine Gun Program Listing for Multibarrel Power Program Listing for Multibarrel Power Automatic Control of Rounds in a Burst for Weapon Effectiveness GLOSSARY REFERENCES REFERENCES

LIST OF ILLUSTRATIONS

Fig.No. Title Page Typical Pressure-time Curve 2 - 12 - 1Schematic of Simple Blowback Mcchanism 2 - 22 - 3Allowable Case Travel 2 - 32-4Pressure-time Curve of Cal .45(11.42 mm) Round 2 - 42 - 82-5Schematic of Advanced Primer Ignition System 2 - 132 - 6Locking System for Delayed Blowback 2 - 182 - 7Pressure-time Curve of 20 mm Round 2 - 252 - 402 - 8Schematic of Retarded Blowback Linkage 2 - 9Kinematics of Retarded Blowback Linkage 2 - 412 - 10Dynamics of Bolt and Linkagc 2 - 42Schematic of Long Recoil System 3 - 13 - 23 - 2Schematic of Short Recoil System 3 - 23-3 3 - 164 - 14 - 1Cutoff Expansion System 4 - 24 - 2Rotating Bolt Lock and Activating Cam 4-3 4 - 114 - 44 - 124-5 4 - 18Operating Distances of Moving Parts 4 - 64 - 19Tappet System 4 - 74 - 38Pressure-time Curve of 7.62 rrm Carbine Round 4-8 4 - 405 - 1Schematic of Single Barrel Revolver-type Machine Gun . . . 5 - 1Two Stage Ramming 5 - 25 - 2Force Diagram of Recoiling Parts and Slide 5 - 35-3 Schematic of Cam Geometry 5 - 45 - 5Cam-slide Force Diagrams 5-5 5-9 Single Barrel Drum Loading Diagram 5 - 65 - 10Single Barrel Drum Dynamics 5 - 75 - 11Interior Ballistics of 20 mm Revolver-type Gun 5-8 5 - 19Extractor Assembly With Antidouble Feed Mechanism 5 - 95 - 35Extractor Cam Assembly 5 - 105 - 36Location of Basic Operations 5 - 115 - 47Schematic of Double Barrel Drum-cam Arrangements 5 - 125-47 5-48 Schematic of Ammunition Fccd System 5 - 13Schematic of Ammunition Magazine 5 - 145 - 49Double Barrel Cam Force Diagrams 5 - 155 - 50Double Barrel Drum Loading Diagram 5 - 515-16 Double Barrel Drum Dynamics 5 - 175 - 51Force-time Curve of 20 mm Rcvolvcr-type Gun 5 - 185 - 535 - 195 - 556-1 6 - 2Loading Diagram of Bolt and Cam During Acceleration ... 6 - 26 - 2Feed Portion of Cam 6 - 36-3 Loading Diagram of Bolt and Cam During Deceleration ... 6-4 6 - 7Bolt Position Diagram for Computer Analysis 6 - 56 - 13

Vİ

LIST OF ILLUSTRATIONS (Con't.)

Fig.No.	Title	Page
7–1	Initial Contact of Bolt and Cartridge Case Base	7-1
7-2	Chamber-projectile Contact	7-2
7-3	Box Magazine	7-2
7-4	Lip Guides	7-3
7–5	Lip-cartridge Case Orientation	7-4
7–6	Geometry of Double Row Stacking	7-4
7 — 7	Box Magazine Follower	7-4
7-8	Flat Tape Spring and Loading Analogy	7-5
7–9	Rectangular Coil Spring and Loading Characteristics	7—7
7 - 10	Schematic of Feed System. End View	7-10
7-11	Feed System Illustrating Mechanics of Operation	7–11
7–12	Recoil-operated Rotating Feed Mechanism	7-13
7-13	Feed Wheel and Operating Lever Units	7-14
7-14	Electrically Operated Rotating Feed Mechanism	7-15
7–15	Outer Drum	7-16
7-16	Inner Drum Helix	7-16
7-17	Conveyor Elements	7-17
7-18	Schematic of Linkless Feed System	7-18
7-19	Path of Rounds in Single End System	7-19
7-20	Extractors	7-25
7-21	Extractor Loading Diagrams	7-26
7-22	Ejectors	7-28
7-23	Ejector Loading Diagram	7-29
7-24	Sliding Breech Lock	7-31
7-25	Tipping Bolt Lock	7-32
7-26	Firing Mechanism for Recoil Machine Gun	7-33
7-27	Firing Mechanism for Gas-operated Machine Gun	7-34
7-28	Three-position Firing Mechanism	7-36
7-29	Iriggering Mechanism Loading	7-38
7-30	Ammunition Link, Cal 50 Round	7-41
7 22	Nose Fanning Flexibility. 7.62 mm Link	7-42
7 22	Geometry of Pass Ferning	7-43
7 24	Unliced Floribility 7.62 mm Link	7-44
7 35	Tetel Felding 7.62 mm Ammunitien Delt	7-45
7 26	Total Folding 7.62 mm Ammunition Belt	7-46
7 27	Partial Folding 7.62 mm Ammunition Belt	7-46
7 38	Loading Link with KADRAZ Shield	7-47
7-30 P 1	Loauning Diagram of Mount	7-47
D- 1	mit prodabality vs number of Kounds in a Burst	В-2

LIST OF TABLES

Table No.	Title	Page
2-1	Case Travel of Cal .45(11.42 mm) Gun	2-11
2-2	Recoil Travel of 20 mm Gun	2-26
2-3	Symbolcode Correlation for Delayed Blowback Program	2-36
2-4	Input for Delayed Blowback Program	2-37
2-5	Counterrecoil Dynamics of Delayed Blowback Gun	2 - 38
2-6	Symbolcode Correlation for Retarded Blowback	2-46
2-7	Input Data for Retarded Blowback	2 - 47
2-8	Retarded Blowback Dynamics	2-48
3-1	Recoil Travel of 20 mm Gun	3-3
3-2	Spring Design Data of Recoil-operated Guns	3-8
3-3	Recoil Travel of 20 mm Gun Equipped With Accelerator	3-17
4-1	Computed Dynamics of Gas Cutoff System	4-25
4-2	Gas Expansion Time Calculations	4-29
4-3	Symbolcode Correlation for Cutoff Expansion	4-30
4-4	Input for Cutoff Expansion Program	4-31
4-5	Computed Dynamics Before Gas Cutoff	4-32
4-6	Computed Dynamics After Gas Cutoff Bolt Unlocking	
	During Helix Traverse	4-33
4–7	Computed Dynamics After Gas Cutoff Bolt Unlocking During Parabola Traverse	4-33
4-8	Computed Dynamics After Gas Cutoff Bolt	
0	and Rod Unit Recoiling After Cam Action	4-34
4-9	Computed Dynamics. Counterrecoil Bolt Locking During Parabola Traverse	4-35
4 - 10	Buffer Spring Design Data	4-39
4-11	Dynamics of Tappet	4-43
4_12	Critical Pressure Time Requirements	4-46
5_1	Free Recoil Data of 20 mm Revolver-type Machine Gun	5-21
5_2	Preliminary Recoil Adapter Data	5-22
5 3	Revised Preliminary Recoil Adapter Data	5 - 24
5-4	Operating Cylinder Data for 0.12 in. ²	5 26
	Onnee (Childar Plessure) $\dots \dots 2$ original	5-20
5-5	Operating Cylinder Data for 0.12 in. ² Orlfice	5 28
5-6	Operating Cylinder Data for 0.09 in. Onfice	5 20
5-7	Operating Cylinder Data for 0.06 in." Onlice	5 27
5-8	Symbolcode Correlation for Operating Cylinder	5 29
5-9	Symbolcode Correlation for Cam Dynamics	5 20
5 - 10	Input Data for Drum Dynamics During Recoil	5 20
5-11	Input Data for Drum Dynamics During Counterrecoil	3-39
5-12	Computed Recoil and Operating Cylinder Data for $Orifice Area of 0.042 \text{ in }^2$	5-40
5-13	Cam and Drum Dynamics During Recoil	5-41
5 - 14	Cam and Drum Dynamics During Counterrecoil	5-42
5-15	Symbolcode Correlation for Double Barrel Machine Gun	5-56
5-16	Input Data for Double Barrel Machine Gun	5-56
5-17	Double Barrel Machine Gun Dynamics	5-59

LIST OF TABLES (Con't.)

Table No.	Title	Page
6-1	Symbolcode Correlation of Variables for	
		6-14
6-2	Symbolcode Correlation and Input for Gun Operating	
	Power	6-15
6-3	Cam Dynamics	6-16
6-4	Gun Operating Power	6-17
7–1	Power Required for Linkless Belt Feed System	7-24
7-2	Firing Pin Dynamics	7-40

LIST OF SYMBOLS

A	= coefficient in equation defining the tube recoil travel	В	= coefficient in equation defining recoil travel; collective term in defining time during polytropic expansion of gas
A _b	= bore area	,	
A _c	 peripheral surface contact area between case and chamber; operating cylinder piston area 	b	=minor axis of an elliptical cam; length of long segment of rectangular coil spring; spring width
A _i	= differential area under pressure-time curve	b _{cr}	= minor axis of counterrecoil section of elliptical cam
A _o	= orifice area	b _r	=minor axis of recoil section of elliptical cam
A _{pt}	= area under pressure-time curve	с	= orifice coefficient
A_1, A_2,A_n	= coefficients of x in a series	~	—
-	= general expression for linear acceleration	С,	= end clearance of round
a	major axis of elliptical cam; length of short segment of rectangular coil spring	D	= mean coil diameter
	Succession of the multiplicate cost of the	D _b	= bore diameter
a _a	= average linear acceleration	D _r	= horizontal distance between trunnion and
a_c	= acceleration of chutes		rear support
	= counterrecoil acceleration	D _c	= diameter of cartridge case base
a _{crc}	= major axis of counterrecoil portion of elliptical cam	D _d	= drum diameter
		d	= wire diameter
a _d	= tangential acceleration of cam roller on cam path	d _c	= gas cylinder diameter
٤	= entrance unit acceleration; exit unit acceleration	d _p	=gas port diameter; piston diameter of operating cylinder
a _n	= nor: al acceleration of cam roller on cam	dt	= differential time
	pam	dx	= differential distance
	= recoil acceleration; retainer acceleration	E	= modulus of elasticity; energy
a _{rec}	= major axis of recoil portion of elliptical	Ea	= energy of ammunition belt
	cam, shue haver during shue decereration	E _b	=bolt energy; combined energy of buffer
a _s	= slide acceleration	0	and driving springs
	= acceleration of transfer unit	E_{hc}	= counterrecoil energy of buffer spring

E _c	=modulus of elasticity of case; energy at gas cutoff	E _{to}	= barrel energy when bolt is unlocked
	= counterrecoil energy	E_{ϵ}	= energy loss attributed to spring system
		E_{μ}	= total energy loss caused by friction
E _{cs}	= energy needed to bring slide up to speed	E _{ud}	= energy loss in drum
E _{crb}	= counterrecoil energy of barrel at end of buffer action	E _{µs}	= energy loss in slide
E _{cri}	= counterrecoil energy at beginning of incre-	е	= base of natural logarithms
E _{crt}	= maximum counterrecoil energy of barrel	F	= general expression for force; driving spring force; spring force at beginning of recoil
E _d	= energy of rotating parts, drum energy	Fa	= general expression for average force; aver- age driving spring force; axial inertial
E _{dcr}	= counterrecoil energy of drum		force
E _{ds}	= energy of drum-slide system	F ab	= average force of spring-buffer system
E _e	= ejection energy of case	Fas	= average force of spring system
E _i	=input energy of each increment; total	F_{b}	= buffer spring force
_	energy at any given increment	F_{c}	= operating cylinder force
Eo	= energy of operating rod	F ca	= average operating cylinder force
E _{oi}	= energy of operating rod at gas cutoff	F _{cr}	= counterrecoil force
E _r	=energy of recoiling parts; energy to be absorbed by mount	F _e	= general expression for effective force, exit force, entrance force, maximum extractor
E _{rb}	= recoil energy of bolt		load to clear cartridge case
Es	= energy transferred from slide to driving	F _{eb}	= effective force on barrel
-	spring, unving spring chergy	Fes	= load when cartridge is seated
E _{sc}	= total work done by all springs until start of unlocking of bolt	F_{g}	= residual propellant gas force; propellant gas force
E _{scr}	= slide counterrecoil energy	F_{i}	= initial spring force
Esr	= slide recoil energy		
E _{ss}	= energy transferred from driving spring to slide	F_L	= transverse force on locking lug; reaction on bolt
E _t	= barrel energy	F _m	= maximum spring force; spring force at end of recoil

xi

F_{mb} = acceleration due to gravity = maximum force of spring-buffer system g F_{ms} =maximum force of barrel and driving Η = command height spring HP = horsepower F_{mt} = maximum force of barrel spring; of H_{s} = solid height of spring adapter F_{o} = minimum spring force; minimum operath = depth of magazine storage space ing load h, = distance between trunnion and pintle-leg Fob = initial buffer spring system force intersection Fobs Ι = area moment of inertia; general term for = initial buffer spring force mass moment of inertia Fot = initial force of barrel spring; of adapter I_{b} = mass moment of inertia of bolt F_p = cam roller pin load I_d =mass moment of inertia of drum; mass F, moment of inertia of all rotating parts = average force during recoil F_{s} = sear spring force; centrifugal force of Ide = effective mass moment of inertia of drum cartridge case or round J = area polar moment of inertia Fsh = horizontal component of safety spring K = spring constant, general; driving spring force constant Fsv = safety spring force = coefficient in gas **flow** equation F_{t} = force of barrel spring; of adapter; vertical = combined spring constant during buffing K_h reaction of trigger spring pin \overline{F}_{t} K_{bs} = buffer spring constant = average adapter force for time interval dt=combined constant of barrel and driving F_{tb} K, = barrel spring force at end of propellant gas springs period = spring constant of barrel spring, of $F_{\mathbf{x}}$ K_t = resultant force of x-axis adapter F_{v} = resultant force of y-axis K_w =coefficient in the rate of gas flow equa- $F_{\mu s}$ tion = frictional force $Fdt, F\Delta t$ = general expressions for differential im-K_r = directional coefficient in F_r equation pulse K_v = directional coefficient in F_{v} equation f, = rate of fire = ratio of specific heats; radius of gyration; k bolt polar radius of gyration $f(T_c/T)$ = function of the ratio of compression time to surge time L = general expression for lengths; length of recoil; bolt travel; length of flat spring G = torsional modulus; shear modulus xii

LIST OF SYMBOLS (Con't.)

L _b	= length of buffer spring travel	M _o	= mass of operating rod; bending moment at
L _{bt}	= length of total bullet travel in barrel	M _n	= mass of projectile
L _c	= axial length of cam; length of slide travel; total peripheral length of cam	р М _r	= mass of recoiling parts
L _d	= decelerating distance prior to buffer con- tact; operating distance of operating rod	M _{re}	= effective mass of recoiling parts
	spring; length of drum; driving spring travel	M _s	= mass of slide; mass of spring
L _e	= extractor length	M _t	= mass of barrel
L_f	= length of front pintle leg	N	= number of coils; normal reaction on cam curve; normal force on roller; number of rounds; number of active segments in flat
L_p	= location of gas port along barrel		spring
L _r	= length of round; length of rear pintle leg	N _a	= axial component of normal force; number of links of ammunition
L _t	= tappet travel; barrel spring operating deflection	N _c	= number of chambers in drum
М	= mass, general; mass of accelerating parts;	N _r	= number of retainer partitions
	bending moment		
M _a	= mass of round; mass of ammunition unit	N _t	= transverse component of normal force
M _a M _{ae}	 = mass of round; mass of ammunition unit = effective mass of ammunition 	N_t N_μ	 transverse component of normal force cam tangential friction force
M _a M _{ae} M _b	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt 	N _t N _µ P	 = transverse component of normal force = cam tangential friction force = general term for power
M _a M _{ae} M _b M _{cc}	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case 	N_t N_μ P P_f	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system
M _a M _{ae} M _b M _{cc} M _d	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum 	N_t N_{μ} P P_f P_t	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull
M _a M _{ae} M _b M _{cc} M _d	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum = effective mass of drum and ammunition belt; effective mass of rotating drum 	N _t N _µ P P _f P _t P	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull = pressure, general; pressure in reservoir; general term for space between rounds (nich)
M _a M _{ae} M _b M _{cc} M _d M _{de}	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum = effective mass of drum and ammunition belt; effective mass of rotating drum = effective mass, general; of extractor unit 	N_t N_μ P P_f P_t P	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull = pressure, general; pressure in reservoir; general term for space between rounds (pitch)
M _a M _{ae} M _b M _{cc} M _d M _{de} M _e	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum = effective mass of drum and ammunition belt; effective mass of rotating drum = effective mass, general; of extractor unit = effective mass of extractor unit 	N _t N _µ P P _f P t P	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull = pressure, general; pressure in reservoir; general term for space between rounds (pitch) = average pressure; average bore pressure
M _a M _{ae} M _b M _{cc} M _d M _{de} M _e M _e M _e	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum = effective mass of drum and ammunition belt; effective mass of rotating drum = effective mass, general; of extractor unit = effective mass of extractor unit = mass of ejector 	N_t N_μ P P_f P_t P p_a p_b	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull = pressure, general; pressure in reservoir; general term for space between rounds (pitch) = average pressure; average bore pressure = bore pressure
M _a M _{ae} M _b M _{cc} M _d M _d M _e M _e M _e	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum = effective mass of drum and ammunition belt; effective mass of rotating drum = effective mass, general; of extractor unit = effective mass of extractor unit = mass of ejector = mass of propellant gas 	N_t N_μ P P_f P_t P p_a p_b p_c	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull = pressure, general; pressure in reservoir; general term for space between rounds (pitch) = average pressure; average bore pressure = bore pressure = average gas cylinder pressure
M _a M _{ae} M _b M _{cc} M _d M _d M _e M _e M _e M _g	 = mass of round; mass of ammunition unit = effective mass of ammunition = mass of bolt = mass of cartridge case = mass of drum = effective mass of drum and ammunition belt; effective mass of rotating drum = effective mass, general; of extractor unit = effective mass of extractor unit = mass of ejector = mass of propellant gas = momentum of recoiling or counterrecoil- 	N_t N_{μ} P P_f P_t P p_a p_b p_c p_{cr}	 = transverse component of normal force = cam tangential friction force = general term for power = power required to drive feed system = trigger pull = pressure, general; pressure in reservoir; general term for space between rounds (pitch) = average pressure; average bore pressure = bore pressure = average gas cylinder pressure =.critical pressure

AMCP 706-260

LIST OF SYMBOLS (Con't.)

p_i	= interface pressure	\$	= travel distance
p _m	=propellant gas pressure as bullet leaves muzzle	s a	= accelerating distance
P _u	= component of pressure that dilates cartridge case	^s b	= bore travel; distance of bolt retraction during recoil
р,	= initial pressure		= cutoff distance
p 2	= final pressure	s _{cr}	= cam follower travel during counterrecoil
R	= radius of bolt outer surface	^s d	
R _a	= reaction of rear support; radius to CG of round	s _n	= travel distance of operating unit at given time
R,	= reaction of front support		= initial distance
R _c	=cam radius	^s ocr	=straight length of cam during counter- recoil
R _{ch}	= radius of chamber centers of drum	'or	= straight length of cam during recoil; posi-
R _d	 distance from cam contact point to drum axis 		tion where slide contacts gas operating unit
R _L	= radius of locking lug pressure center	s _r	=cam follower travel during recoil; oper- ating rod travel before bolt pickup
R _r	roller radius; track reactions due to rota- tional forces	<i>s</i> ₁	<pre>= travel component due to change in veloci- ty</pre>
RT	= specific impetus	\$	= travel component due to velocity
R _t	= track reactions due to tipping forces; trig- ger reaction on sear	T	= surge time of spring; absolute tempera-
R,	= horizontal reaction on drum shaft		torque of trigger spring
r	= mean radius of case	T_c	= compression time of spring
\overline{r}	= distance from tipping point on rim to CG .of case	T _d	= required drum torque
r _b	= cam radius to contact point on bolt	T _g	=torque due to friction on drum bearing and case
r _e	= extractor radius	T_L	= locking lug torque
r _s	= striker radius	T _r	= required retainer torque
r_t	= cam radius to contact point on barrel	T,, T ₂	= applied torques

xiv

T_{α}	= accelerating torque	V_b	= bore volume
T_{μ}	= resisting torque	V_c	= gas volume in operating cylinder
T_{θ}	= applied torque	Vah	= chamber volume
t	= time	V.	= operating cylinder displacement
<i>t</i> ″	= time to complete counterrecoil of slide	V.	= equivalent gas volume
t_b	= buffer time	e V	= equivalent bore volume
t _{bc}	= buffer time during counterrecoil	ес V_	= chamber volume plus total bore volume
	= time of firing cycle	V ₂	= initial volume of gas operating cylinder
t _{cr}	= counterrecoil time	V.	= vertical component of spring load
t _{crb}	= time of buffer counterrecoil	V,	= initial volume in gas equations
t _{crt}	= counterrecod time of barrel after buffer action	V ₂	= final volume in gas equations
t _{ct}	= counterrecoil time of barrel	v	= velocity, general
t _d	= decelerating time of bolt before buffer is	va	= average velocity; axial velocity
	contacted	vb	= buffer velocity during recoil
t _e	= time of gas expansion	vbc	= bolt velocity during counterrecoil
t _g t _i	 duration of propellant gas period time interval of dwell between counter- recoil and recoil 	v _c	= linear velocity of cam follower along cam; velocity of chutes; linear ejected velocity of cartridge case
t _r	= recoil time of bolt	vcr	= counterrecoil velocity
t _{rb}	= bolt decelerating time during recoil	vcrb	= counterrecoil velocity of buffer
t _{rs}	= counterrecod time after buffer action	v_d	= peripheral velocity of drum
t _{rt}	= recoil time of barrel during pressure decay after bolt unlocking	v _{dm}	= maximum peripheral velocity of drum
t _s	= thickness of spring	v _e	= extractor velocity; maximum ejection velocity
t _{scr}	= counterrecoil time of slide	v _f	= velocity of free recoil
t _t	= barrel spring compression time	v _i	= impact velocity
ťα	= accelerating time of rotor	v _m	= muzzle velocity of projectile

vo	= initial velocity, general term	W _s	= work needed to compress spring; slide
vot	= initial velocity of barrel	TA J	- aquivalent weight of spring in motion
vr	= recoil velocity	w _{se}	
vs	= slide velocity	w _{sr}	= weight of slide with 2 rounds
''sa	=velocity of recoiling parts at end of accelerating travel	W _{srp}	=weight of slide, 2 rounds, and gas oper- ating unit
vscr	= counterrecoil velocity of slide	W _t	= barrel weight
v ['] scr	= slide velocity before impact	W	= rate of gas flow; width of magazine; width of flat spring
v _{sm}	= maximum slide velocity	w _c	= width of cam
v _t	= barrel velocity; tangential velocity of car- tridge case at ejection, velocity of transfer unit	X	= recoil travel, general; case travel; distance in x-direction
W	= general term for weight wall ratio work	X	= axial acceleration of bolt
w	= weight of round	<i>x</i> _b	= bolt travel
"a W	- holt weight	x_{bo}	= bolt travel at end of propellant gas period
"b		x _m	= axial length of parabola
w _c	er; weight of propellant charge	x _r	= recoil distance during propellant gas
W _{cc}	= weight of cartridge case; weight of empty case		period; recoil travel of drum and barrel assembly
W	= weight of gas at critical pressure	x _{rn}	= recoil travel during impulse period
W _d	= weight of drum	x _{ro}	 counterrecoiling travel during impulse period
W _e	= equivalent weight of moving parts	x _s	= slide travel; relative axial travel between cam follower and drum
Wg	= total weight of propellant or propellant gas	x _{rd}	= travel of recoiling parts during cam dwell
W _o	= weight of moving operating cylinder com- ponents	x _t	= barrel travel with respect to gun frame
W _{os}	= combined weight of components and slide	x _{tf}	= barrel travel during free recoil
W_p	= weight of projectile	x _{to}	= barrel travel during propellant gas period;
w,	= weight of recoiling parts		ing cam dwell period
xvi			

- y = distance in y-direction, spring deflection y_e = shear deflection = peripheral width of parabola; moment
- y_a = peripheral length of constant slope of cam y_m deflection

GREEK LETTERS

α	e = angular acceleration, general; angular acceleration of bolt; angular acceleration of rotor	θ_{e}	= angular shear deflection
		θ_m	= angular moment deflection
α _d	= angular acceleration of drum	λ	=angle of bolt locking cam; slope of lug helix
β	= cam angle	μ	= coefficient of friction
β_L	= cam locking angle		= index of friction
βο	= slope of cam helix	μ_i	
γ	= correction factor	μ,	= coefficient of rolling friction
	- 4	μ_{g}	= coefficient of sliding friction
Δt	- time differential	μ_t	= coefficient of friction of track
Δv	= velocity differential	ν	= Poisson's ratio
Δx	= distance differential	ρ	= ratio of spring energy to drum energy
Δy	= differential deflection; relative deflection of one spring segment	Σ	= summation
e	= efficiency of spring system	σ_t	= tensile stress
ϵ_{b}	= efficiency of buffer system	σ_w	= working stress of spring
ϵ_t	= efficiency of recoil adapter	au	= static stress of spring
		τ_{d}	= dynamic stress of spring
θ	= angular displacement, general; angular dis- placement of rotor; angle of elevation;	φ	= angle of double helix drive
	angular deflection in rectangular coil spring	ω	= angular velocity
θα	= rotor travel for constant cam slope	ω_d	= angular velocity of drum

PREFACE

This handbook is one of a series on Guns. It is part of a group of handbooks covering the engineering principles and fundamental data needed in the development of Army materiel, which (as a, group) constitutes the Engineering Design Handbook Series. This handbook presents information on the fundamental operating principles and design of automatic weapons and applies specifically to automatic weapons of all types such as blowback, recoil-operated, gas-operated, and externally powered. These include single, double, multibarrel, and revolver-type machine guns and range from the simple blowback to the intricate M61A1 Vulcan and Navy 20 mm Aircraft Gun Mark II Mod 5 Machine Guns. Methods are advanced for preparing engineering design data on firing cycle, spring design, gas dynamics, magazines, loaders, firing pins, etc. All components are considered except tube design which appears in another handbook, AMCP 706-252, *Gun Tubes*.

This handbook was prepared by The Franklin Institute, Philadelphia, Pennsylvania, for the Engineering Handbook Office of Duke University, prime contractor to the U.S. Army, and was under the technical guidance and coordination of a special subcommittee with representation from Watervliet Arsenal, Rock Island Arsenal, and Springfield Armory.

The Handbooks are readily available to all elements of AMC including personnel and contractors having a need and/or requirement. The Army Materiel Command policy is to release these Engineering Design Handbooks to other DOD activities and their contractors, and other Government agencies in accordance with current Army Regulation **70-31**, dated 9 September 1966. Procedures for acquiring these Handbooks follow:

a. Activities within AMC and other DOD agencies should direct their request on an official form to:

Commanding Officer Letterkenny Army Depot ATTN: AMXLE-ATD Publications Distribution Branch Chambersburg, Pennsylvania 17201

b. Contractors who have Department of Defense contracts should submit their request, through their contracting officer with proper justification, to the address indicated in par. a.

c. Government agencies other than DOD having need for the Handbooks may submit their request directly to the Letterkenny Army Depot, as indicated in par. a above, or to:

Commanding General U. S. Army Materiel Command ATTN: AMCAD-PP Washington, D. C. 20315

or

Director Defense Documentation Center ATTN: TCA Cameron Station Alexandria, Virginia **22314**

xviii

PREFACE (Con't.)

d. Industries not having a Government contract (this includes Universities) must forward their request to:

Commanding General U. S. Army Materiel Command ATTN: AMCRD-TV Washington, D. C. 20315

e. All foreign requests must be submitted through the Washington, D. C. Embassy to:

Office of the Assistant Chief of Staff for Intelligence ATTN: Foreign Liaison Office Department of the Army Washington, D. C. 20310

All requests, other than those originating within the DOD, must be accompanied by a valid justification.

Comments and suggestions on this handbook are welcome and should be addressed to Army Research Office–Durham, **Box** CM, Duke Station, Durham, N. C. 27706.

xix/xx

CHAPTER 1

INTRODUCTION*

1-1 SCOPE AND PURPOSE

This handbook presents and discusses procedures normally practiced for the design of automatic weapons, and explores the problems stemming from the functions of each weapon and its components. It is intended to assist and guide the designer of automatic weapons of the gun type, and to contain pertinent design information and references.

1-2 GENERAL

The purpose of the handbook is (1) to acquaint new personnel with the many phases of automatic weapon design, and (2) to serve as a useful reference for the experienced engineer. It does not duplicate material available in other handbooks of the weapon series. Those topics which are presented in detail in other handbooks are discussed here only in a general sense; consequently, the reader must depend on the referenced handbook for the details. Unless repetitive, the text - for cyclic analyses, time-displacement (T-D) curves, chamber design, strength requirements, springs, cams, and drive systems - includes mathematical analyses embodying sketches, curves, and illustrative problems. Topics such as ammunition characteristics, lubrication, handling and operating features, and advantages and disadvantages are generally described more qualitatively than quantitatively.

Appendix B is included to merely introduce the idea of the automatic control of a burst of rounds for weapon effectiveness in the point fire mode -a facet which the gun designer may wish to consider.

1-3 DEFINITIONS

An automatic weapon is a self-firing gun. To be fully automatic, the weapon must load, fire, extract, and eject continuously after the first round is loaded and fired – provided that the firing mechanism is held unlocked. Furthermore, the automatic weapon derives all its operating energy from the propellant. Some weapons have external power units attached and, although not automatic in the strictest sense, are still classified as such. There are three general classes of automatic weapons, all defined according to their system of operation, namely: blowback, gas-operated, and recoiloperated'**

a. Blowback is the system of operating the gun mechanism that uses propellant gas pressure to force the bolt to the rear; barrel and receiver remaining relatively fiied. The pressure force is transmitted directly by the cartridge case base to the bolt.

b. Gas-operated is the system that uses the propellant gases that have been vented from the bore to drive a piston linked to the bolt. The moving piston first unlocks the bolt, then drives it rearward.

c. Recoil-operated is the system that uses the energy of the recoiling parts to operate the gun.

Each system has variations that may borrow one or more operational features from the others. These variations, as well as the basic systems, are discussed thoroughly in later chapters.

1-4 DESIGN PRINCIPLES FOR AUTOMATIC WEAPONS

The automatic weapon, in the process of firing a round of ammunition, is essentially the same as any other gun. Its basic difference is having the ability to continue firing many rounds rapidly and automatically. An outer stimulus is needed only to start or stop firing, unless the latter occurs when ammunition supply is exhausted. The automatic features require major effort in design and development. The design philosophy has been established, then the gun is to fire as fast as required without stressing any component to the extent where damage and therefore malfunction is imminent.

An extremely short firing cycle being basic, the designer must exploit to the fullest the inherent properties of each type of automatic weapon. Generally, each type must meet certain requirements in addition to

^{*}Prepared by Martin Regina, Franklin Institute Research Laboratories, Philadelphia, Pennsylvania.

^{**}References are identified by a superscript number and are listed at the end of this handbook.

AMCP 706-260

being capable of operating automatically. These requirements or design features are:

- 1. Use part of the available energy of the propellant gases without materially affecting the ballistics.
- 2. Fire accurately at a sustained rate compatible with the required tactics.
- 3. Use standard ammunition.
- 4. Be light for easy handling.
- 5. Have a mechanism that is:
 - a. simple to operate

- b. safe
- c. easy to maintain
- d. economical with respect to manufacturing.
- 6. Have positive action for feeding, extracting, ejecting.
- 7. Insure effective breech closure until the propellant gas pressure has dropped to safe limits.

All successful automatic weapons meet these requirements but to a degree normally limited by type of weapon. Conflicting requirements are resolved by compromise.

CHAPTER 2

BLOWBACK WEAPONS

2-1 GENERAL

Controlling the response of the cartridge case to the propellant gas pressure is the basic design criterion of blowback weapons. The case responds by tending to move rearward under the influence of the axial force generated by the gas pressure on its base. Meanwhile, because of this same pressure, the case dilates to press on the inner wall of the chamber. The axial force tends to push the bolt rearward, opposed only by the resistance offered by the bolt inertia and the frictional resistance between case and chamber wall. The question now arises as to which response predominates, the impending axial motion or the frictional resistance inhibiting this motion.

Time studies resolve the problem. Fig. 2-1 is a typical pressure-time curve of a round of ammunition.

Figure 2-1. Typical Pressure-time Curve

2-1

For simplicity, assume unity for bore area and bolt weight. According to Fig. 2-1, the maximum pressure of 45,000 psi develops in 0.0005 sec. Again for simplicity, assume that the pressure varies linearly from t = 0 to t = 0.0005 sec. The pressure *p* at any time during the interval

$$p = \left(\frac{45000}{0.0005}\right) t = 9 \times 10^7 t \text{ lb/in.}^2$$
 (2-1)

The corresponding force F driving the cartridge case and bolt rearward is

$$F = A_h p = 9 \times 10^7 tA$$
 lb (2-2)

where A_{b} = bore area in square inches

but, by assumption, $A_b = 1.0$ in?, therefore

$$F = 9 \times 10^7 t = \text{Kt.}$$
 (2-3)

From mechanics

$$F = M_b a \tag{2-4}$$

where a = bolt acceleration

$$M_h$$
 = mass of bolt.

According to an earlier assumption $M_b = \frac{W}{g} = \frac{1.0}{g}$

Solve for a in Eq. 2-4

$$a = \frac{F}{M_b} = Kgt \qquad (2-5)$$

but

$$a = \frac{d^2s}{dt^2} = \text{Kgt}.$$
 (2-6)

Integration of Eq. 2-6 yields

$$v = \int \frac{d^2s}{dt^2} = \frac{ds}{dt} + C = \frac{1}{2} Kgt^2 + C_1$$
(2-7)
2-2

when t = 0, v = 0, therefore $C_1 = 0$.

Integration of Eq. 2-7 yields

$$s = \int \frac{ds}{dt} = \frac{1}{6} Kgt^3 + C_2$$
 (2-8)

when t = 0, s = 0, therefore, $C_2 = 0$.

Assume that the limiting clearance between case and chamber is equal to the case dilation as it reaches the ultimate strength, and assume further that the cartridge case has a nominal outside diameter of 1.5 in., a wall thickness of 0.05 in., and an ultimate strength of 50,000 psi. Then, according to the thin-walled pressure vessel formula, the pressure at which failure impends and which presses the case firmly against the chamber wall is p_{μ} .

$$p_u = \frac{\sigma_t t}{r} = \frac{50,000 \text{ x } 0.05}{0.725} = 3440 \text{ psi}$$
 (2-9)

where

r = 0.725 in., mean radius of case

 $t_c = 0.05$ in., wall thickness

 $\sigma_t = 50,000 \text{ lb/in.}^2$, tensile stress

From Eq. 2-1, t is the time elapsed to reach this pressure.

$$t = \frac{p_u}{9 \times 10^7} = 3.83 \times 10^{-5} \text{ sec}$$
 (2-10)

From Eq. 2-8, s is the distance that the case and bolt travel during this time, i.e., when only the inertia of the system is considered.

$$s = \frac{1}{6} Kgt^{3}$$

= $\frac{1}{6} \mathbf{x} \ 9 \ \mathbf{x} \ 10^{7} \ \mathbf{x} \ 386 \ \mathbf{x} \ 56 \ \mathbf{x} \ 10^{-15} \ll 0.001 \text{ in.}$

This analysis indicates that when optimum conditions prevail, the cartridge case scarcely moves before frictional resistance begins to take effect. Motion will continue until Eq. 2-11 is satisfied.

$$A_b p = \mu A_c p_i \tag{2-11}$$

where

$$A$$
, = bore area

- A, = peripheral surface contact area between case and chamber
 - p = propellant gas pressure
- p_i = interface pressure of case and chamber
- μ = coefficient of friction

With no initial clearance between the case and chamber, an approximate interface pressure p_i may be determined by equating the inside deflection of the chamber, due to this pressure, to the outside deflection of the cartridge case, due to both interface and propellant gas pressure, when both case and chamber are considered cylindrical. Solve for the interface pressure.

$$p_{i} = \frac{\frac{2p}{w_{i}^{2} - 1}}{\frac{E_{c}}{E} \cdot \frac{(W^{2} + 1)}{(W^{2} - 1)} + \nu} + \frac{W_{c}^{2} + 1}{W_{\ell}^{2} - 1} - \nu}{W_{\ell}^{2} - 1}$$
(2-12)

where

- E = modulus of elasticity of chamber
- E_{1} = modulus of elasticity of case
- W = wall ratio of chamber
- W_c = wall ratio of case
- ν = Poisson's ratio (assumed to be equal for both materials)

Spot checks indicate that those pressures which dilate unsupported cartridge cases to the limit of their strength are reasonably close to the difference in propellant gas pressure and computed interface pressure. Thus

$$p_u \approx p - p_i \tag{2-13}$$

Ample clearance between case and chamber is always provided but is never *so* large that barrel recovery exceeds case recovery after gas pressures subside; otherwise, interference develops, i.e., clamping the case to the chamber wall and rendering extraction difficult^{*}.

2-2 SIMPLE BLOWBACK

Simple blowback is the system wherein all the operating energy is derived from blowback with the inertia of the bolt alone restraining the rearward movement of the cartridge case.

2-2.1 SPECIFIC REQUIREMENTS

Being restricted to low rates of fire because massive bolts are needed for their inertial properties, simple blowback systems are suitable only for low impulse, relatively low rate of fire weapons³.

The restraining components of a simple blowback mechanism are the bolt and driving spring. Fig. 2-2 is a schematic of an assembled unit. Immediate resistance to case movement offered by the return spring is usually negligible. This burden falls almost totally on the bolt. It begins to move as soon as the projectile starts but at a much lower acceleration so that the cartridge case is still supported by the chamber until propellant gas pressure becomes too low to rupture the case. To realize a low acceleration, the bolt must be considerably heavier than needed as a load-supporting component. In high impulse guns, bolt sizes can be ridiculously large. The large mass, being subjected to the same impulse as that applied to propellant gas and projectile, will develop the same momentum; consequently, its velocity and corresponding kinetic energy will be comparatively low. The slowly moving bolt confines the gun to a low rate of fire.

Figure 2–2. Schematic of Simple Blowback Mechanism

Figure 2–3. Allowable Case Travel

Although the bolt moves slowly, it still permits the case to move. The permissible travel while gas pressures are still high enough to rupture an unsupported case is indicated by Fig. 2-3(A) for a standard cartridge case. Fig. 2-3(B) illustrates how a modified case can increase the permissible travel. The geometry of chamber and cartridge case are also involved. A slight taper or no taper at all presents no problem but, for a large taper, an axial displacement creates an appreciable gap between case and chamber, thereby, exposing the case to deflections verging on rupture. Therefore, for weapons adaptable to simple blowback operation, chamber and case design takes on special significance if bolt travel is reasonable while propellant gases are active. For high-powered guns, exploiting this same advantage gains little. How little effect an increase in travel has on reducing bolts to acceptable sizes is demonstrated later.

The driving spring has one basic function. It stores some of the energy of the recoiling bolt, later using this energy to slam the bolt back into firing position and in the process, cocks the firing mechanism, reloads, and trips the trigger to repeat the firing cycle. That the driving spring stores only some of the energy of the recoiling bolt when firing semiautomatic shotguns, rifles, and pistols is indicated by the forward momentum not being perceptible during reloading whereas the kick during firing is pronounced.

2-2.2 TIME OF CYCLE

The time of the firing cycle is determined by the impulse created by the propellant gases, and by the bolt and driving spring characteristics. The impulse $\int Fdt$ is computed from the area beneath the force-time curve. It is equated to the momentum of the bolt assembly, i.e.,

$$\int_{t_1}^{\infty} F_g dt = M_b v_f \qquad (2-14)$$

where

$$F_g$$
 = propellant gas force
 M_b = mass of bolt assembly
 ν_f = velocity of free recoil
dt = time differential

 $\int_{0}^{t_2} \mathbf{E} dt = \mathbf{M}$

The mass of the bolt assembly includes about one-third the spring as the equivalent mass of the spring in motion. However, the effect of the equivalent spring mass is usually very small and, for all practical purposes, may be neglected. After the energy of free recoil is known, the recoil energy E_r and the average driving spring force become available

E, =
$$\frac{1}{2} M_b v_f^2$$
 (2-15)

The average force F_a depends on the efficiency of the mechanical system

$$F_a = \frac{\epsilon E_r}{L} \tag{2-16}$$

where L =length of recoil or bolt travel

e = efficiency of system

2-4

2-2.2.1 Recoil Time

The bolt travel must be sufficient to permit ready cartridge loading and case extraction. The initial spring force F, is based on experience and, when feasible, is selected as four times the weight of the recoiling mass. The maximum spring force F_m , when the bolt is fully recoiled, is

$$F_m = 2F_a - F_o \tag{2-17}$$

The spring force at any time of recoil is

$$F = F_o + Kx \tag{2-18}$$

where K = spring constant

x = recoil distance at time t

At time t the energy remaining in the recoiling mass is

$$\frac{1}{2} M_b v_r^2 = \frac{1}{2} M_b v_f^2 - \frac{1}{\epsilon} \left(F_o x + \frac{1}{2} K x^2 \right)$$
(2-19)

where E is the efficiency of the spring system. An inefficient system helps to resist recoil by absorbing energy.

But
$$v_r = \frac{dx}{dt_r}$$
, therefore

$$\frac{dx}{dt_r} = \sqrt{\frac{2}{M_b}} \sqrt{\frac{M_b}{2} v_f^2 - \frac{1}{\epsilon} F_o x - \frac{1}{2\epsilon} Kx^2}$$
(2-20)

Solve for *dt*,.

$$dt_{r} = \frac{\sqrt{\frac{M_{b}}{2}} dx}{\sqrt{\frac{M_{b}}{2} v_{f}^{2} - \frac{1}{\epsilon} F_{o}x - \frac{1}{2\epsilon} Kx^{2}}}$$
(2-21)

Set $v_i = v_f$, the initial velocity at time zero, and integrate.

$$t_r = \left(\sqrt{\frac{\epsilon M_b}{K}} \quad \sin^{-1} \quad \frac{F_o + Kx}{\sqrt{F_o^2 + \epsilon K M_b v_o^2}}\right) \left| \begin{array}{c} x = L \\ x = 0 \end{array} \right|$$
(2-22)

2-5

AMCP 706-260

This computed time does not include the time while propellant gases are acting. The exclusion provides a simple solution without serious error. Since $M\nu_o^2 = \frac{L}{\epsilon} (F_m + F_o)$ and, by definition,

$$K = \frac{F_m - F_o}{L}$$
 and $\sqrt{F_o^2 + \epsilon K M v_o^2} = F_m$.

Therefore, the time elapsed during recoil t, from x = 0to x = L is

$$t_r = \sqrt{\frac{\epsilon M_b}{K}} \left(\frac{\pi}{2} - \sin^{-1} \frac{F_o}{F_m}\right) = \sqrt{\frac{\epsilon M_b}{K}} \cos^{-1} \frac{F_o}{F_m}.$$
 (2-23)

2-2.2.2 Counterrecoil Time

The counterrecoil time is determined by the same procedure as that for recoil, except that the low efficiency of springs deters rapid counterrecoil. The energy of the counterrecoiling mass of the bolt assembly at any time t_{cr} is

$$E_{cr} = \frac{1}{2} M_b v_{cr}^2 = \frac{1}{2} M_b v_o^2 + \epsilon (F_m x - \frac{1}{2} K x^2)$$
(2-24)

where $v_o =$ initial velocity

 v_{cr} = counterrecoil velocity at any time

Since
$$v_{,n} = \frac{dx}{dt_{cr}}$$

$$dt_{,} = \frac{\sqrt{\frac{M_b}{2}} dx}{\sqrt{\frac{M_b}{2} v_o^2 + \epsilon F_m x - \frac{\epsilon}{2} K x^2}}$$
(2-25)

Integrating

$$t_{cr} = \sqrt{\frac{M_b}{\epsilon K}} \left(\frac{\operatorname{Sin}^{-1} \frac{Kx - F_m}{\sqrt{F_m^2 + \frac{K}{\epsilon} M_b v_o^2}} - \operatorname{Sin}^{-1} \frac{-F_m}{\sqrt{F_m^2 + \frac{K}{\epsilon} M_b v_o^2}} \right)$$
(2-26)

When the initial velocity is zero, the time t_{cr} to counterrecoil the total distance is

$$t_{cr} = \sqrt{\frac{M_b}{\epsilon K}} \left(\operatorname{Sin}^{-1} \frac{-F_o}{F_m} - \frac{3\pi}{2} \right) = \sqrt{\frac{M_b}{\epsilon K}} \operatorname{Cos}^{-1} \frac{F_o}{F_m}$$
(2-27)

2—6

2-2.2.3 Total Cycle Time

The mass of the bolt assembly and the bolt travel are the controlling elements of a simple blowback system. Large values will decrease firing rate whereas the converse is true for small values. The driving spring characteristics are determined after mass and travel are established. The total weapon weight limits, to a great extent, the weight and travel of the bolt.

Because of the efficiency of the spring system, counterrecoil of the bolt will always take longer than recoil. The time t_c for the firing cycle is

$$t_i = t_i + t_{cr} + t_i$$
 (2-28)

where t_i is time elapsed at the end of counterrecod until the bolt mechanism begins to move in recoil. Since the firing rate is specified, t_i is

$$t, = \frac{60}{f_r} \quad , \text{sec/round} \qquad (2-29)$$

where f_r = firing rate in rounds/min.

Initial approximations of blowback parameters may be computed by relating average spring forces and acceleration to the recoil energy. The average spring force F_a needed to stop the recoiling mass is

$$F_a = \frac{\epsilon E_r}{L} = \frac{\epsilon M_b v_f^2}{2L} \qquad (2-30)$$

where, according to Eq. 2-15, $E_r = \frac{1}{2} M_b v_f^2$. Since $F_a = \epsilon M_b a_r$

$$a_r = \frac{F_a}{\epsilon M_b} = \frac{\nu_f^2}{2L}$$
(2-31)

From the general expression for computing distance in

terms of time and acceleration, $L = \frac{1}{2} a$, t_r^2 , the recoil time becomes

$$t_r = \sqrt{\frac{2L}{a_r}} = \sqrt{\frac{4L^2}{v_f^2}} = \frac{2L}{v_f}.$$
 (2-32)

During counterrecoil, the effectiveness of the spring force is reduced by the inefficiency of the system. This force is

$$F_{cr} = \epsilon F_a = M_b a, \qquad (2-33)$$

where a_{jj} is the counterrecoil acceleration. According to Eq. 2-30

$$\epsilon F_a = \frac{\epsilon^2 M_b v_f^2}{2L} = M_b a_{cr}. \qquad (2-34)$$

Proceed similarly as for recoil

$$t_{,,} = \sqrt{\frac{2L}{a_{cr}}} = \sqrt{\frac{4L^2}{\epsilon^2 v_f^2}} = \frac{2L}{\epsilon v_f}.$$
 (2-35)

The approximate time of the firing cycle becomes

$$t_r = t_r + t_{cr} = \frac{2L}{\nu_f} (1 + \frac{1}{\epsilon}).$$
 (2-36)

By knowing the required cycle time and the computed velocity of free recoil, the distance of bolt travel can be determined from Eq. 2-36. This computed distance will be less than the actual because the accelerations are not constant thereby having the effect of needing less time to negotiate the distance in Eq. 2-36. In order to compensate for the shorter time, the bolt travel is increased until the sum oft, and t, from Eqs. 2-23 and 2-27 equals the cycle time.

$$t_{r} = t_{r} + t_{cr}$$

$$= \left(\sqrt{\frac{eM_{b}}{K}} + \sqrt{\frac{M_{b}}{eK}}\right) Cos' \frac{E}{F_{m}} (2-37)$$

Substitute $2F_a - F_m$ for F_o and rewrite Eq. 2-37

os
$$\frac{t_c}{\sqrt{\epsilon M_b} + \sqrt{\frac{M_b}{\epsilon}}} \sqrt{K} = \frac{2F_a - F_m}{F_m}$$

 F_a is computed from Eq. 2-30. Note that

$$t_c / \left(\sqrt{\epsilon M_b} + \sqrt{\frac{M_b}{\epsilon}} \right)$$

is a constant for any given problem. Now by the judicious selection of L (using Eq. 2-36 for guidance) and K, the spring forces may be computed by iterative procedures so that (1) when substituted into Eq. 2-37 the specified time is matched, and (2) then into Eq. 2-17 to check whether F_a corresponds with the computed value obtained earlier from Eq. 2-30. The actual firing rate is determined from the final computed cycle time.

$$f_r = \frac{60}{t_c}$$
 rounds/min (2-39)

2-2.3 EXAMPLE OF SIMPLE BLOWBACK GUN

2-2.3.1 Specifications

Gun: 11.42 mm (Cal .45) machine gun

Firing Rate: 400 rounds per minute

Interior Ballistics: Pressure vs Time (Fig. 2–4) Velocity vs Time (Fig. 2–4)

Weight of moving bolt assembly: 3 lb

2-2.3.2 Computed Design Data

The area beneath the pressure-time curve of Fig. 2–4 represents an impulse of

$$\int F_g dt = 0.935 \, \text{lb-sec.}$$

Figure 2-4. Pressure-time Curve of Cal. 45 (1 1.42mm) Round

2–8

The velocity of free recoil according to Eq. 2-14 is

$$v_f = \frac{\int F_g dt}{M_b} = \frac{0.935 \text{ x } 386.4}{3} = 120.4 \text{ in./sec.}$$

The recoil energy from Eq. 2-15 is

$$E_r = \frac{1}{2} M_b v_f^2 = \frac{1}{2} \times \frac{3}{386.4} \times 14500 = 56.3 \text{ in.-lb}.$$

The time of the firing cycle for 400 rpm is

$$t_c = \frac{60}{400} = 0.15$$
 sec.

From Eq. 2-36, the approximate bolt travel is

$$L = \frac{1}{2} t_c v_f \left(\frac{\epsilon}{\epsilon+1}\right) = \frac{1}{2} \times 0.15 \times 120.4 \left(\frac{0.40}{0.40+1.0}\right) = 2.58 \text{ in.}$$

where $\epsilon = 0.40$, the efficiency of system.

K = 1.0 lb/in. is selected as practical for the first trials. This value may be revised if the bolt travel becomes excessive or other specifications cannot be met. From Eq. 2-30 the average spring force

$$F_a = \frac{\epsilon E_r}{L} = \frac{0.40 \text{ x } 56.3}{2.58} = 8.72 \text{ lb.}$$

From Eqs. 2–17 and 2–18 the minimum and maximum spring forces are

$$F_o = F_a - \frac{1}{2} KL = 8.72 - 1.29 = 7.43$$
 lb

$$F_m = F_o + KL = 7.43 + 2.58 = 10.01$$
 lb

Compute the characteristics of Eq. 2-37

$$\sqrt{\epsilon M_b} = \sqrt{\frac{0.4 \times 3}{386.4}} = \sqrt{0.003106} = 0.0557 \text{ lb-sec}^2/\text{in}.$$

$$\sqrt{\frac{M_{\dot{b}}}{\epsilon}} = \sqrt{\frac{3}{0.4 \times 386.4}} = \sqrt{0.01941} = 0.1393 \,\text{lb-sec}^2/\text{in}.$$

The time of the firing cycle for K = 1 lb/in. is

$$t_c = \left(\sqrt{\frac{\epsilon M_b}{K}} + \sqrt{\frac{M_b}{\epsilon K}}\right) \operatorname{Cos-'} \frac{F_o}{F_m} = (0.0557 + 0.1393) \frac{1}{\sqrt{1}} \operatorname{Cos^{-1}} \frac{7.43}{10.01}$$
$$= 0.195 \operatorname{Cos-'} 0.74226 = 0.195 \left(\frac{42.08}{57.3}\right) = 0.143 \operatorname{sec.}$$

2—9

therefore, to have $t_c = 0.15 \text{ sec}$, Cos-' $\overline{F_m} = 0.76923$ rad and cos 0.76923 rad = 0.7185 so that

$$\frac{F_o}{F_m} = \frac{F_o}{F_o + KL} = 0.7185.$$

Since
$$K = 1$$
, $\frac{F_o}{F_o + L} = 0.7185$ and $F_o = 2.552L$.

Also, since
$$\frac{1}{\epsilon}F_aL = \frac{(F_o + F_m)L}{2\mathbf{E}} = E_r = 56.3$$
 in.-lb

$$2F_o + L = 2F_a = \frac{2(0.40 \times 56.3)}{L} = \frac{45.04}{L}$$

Therefore

$$L^2 = 7.379 \text{ in}^2$$
 $L = 2.72 \text{ in}.$
 $F_o = 6.94 \text{ lb}$ $F_m = 9.62 \text{ lb}$

The spring work $W_s = \frac{1}{2}(F_o + F_m)L = 22.52$ in.-lb, which matches the input. The time t_c of the firing cycle for K = 1

$$t_c = \left(\sqrt{\frac{eM_b}{K}} + \sqrt{\frac{M_b}{eK}}\right) \operatorname{Cos}^{-1} \frac{F_o}{F_m}$$

= (0.557 + 0.1393) Cos-' $\frac{6.94}{9.62}$
= 0.195 Cos-' 0.7214 = 0.195 $\left(\frac{43.83}{57.3}\right)$
= 0.15 sec.

2-2.3.3 Case Travel During Propellant Gas Period

Case travel while propellant gas pressures are active is found by numerically integrating the interior ballistics pressure-time curve and the velocity-time curve of the

$$t \quad At \quad A_i \quad F_g \Delta t \quad Av \quad v \quad v_a \quad Ax$$

t = time, abscissa of pressure-time curve

- $At = t_n t_{n-1}$, differential time
- A_i = differential area under pressure-time curve

$$F_{g}\Delta t = A_{b}A_{i}$$
, differential impulse

$$A$$
, = bore area

$$\Delta v = F_o \Delta t / M_b$$
, differential velocity

$$M_{h}$$
 = mass of bolt

 $v = \Sigma \Delta v$ velocity at end of each time increment

 $v_a = \frac{1}{2}(v_n + v_{n-1})$ average velocity for each time increment

 $Ax = v_a \Delta t$, differential distance of case travel

 $x = \Sigma \Delta x$, case travel during propellant gas period

2-2.3.4 Sample Problem of Case Travel

The distance that the case is extracted as the projectile leaves the bore is determined by numerically integrating the pressure-time curve of Fig. 2-4.

$$A_{b} = \frac{\pi}{4} D_{b} = \frac{\pi}{4} \times 0.45^{2} = 0.159 \text{ in.}^{2} \text{ ,bore area}$$

$$A_{V} = F_{g} \Delta / M_{b} = \frac{32.2 \times 12 F_{g} \Delta t}{3} = \frac{386.4 F_{g} \Delta t}{3}$$

$$= 128.8 F_{g} \Delta t$$

Ax = 0.053 in., the case travel distance when the projectile leaves the muzzle. This unsupported distance of the case is still within the allowable travel illustrated in Fig. 2–3.

2-10

t, msec	Δt , msec	A_i , lb-sec/in. ²	$F_g \Delta t$, lb-sec	Δν, in./sec	v, in./sec	ν _a , in./sec	Δx , in.
0.1	0.1	0.07	0.011	1.4	1.4	0.70	0.00007
0.2	0.1	0.56	0.089	11.4	12.8	7.10	0.0007 1
0.3	0.1	1.73	0.275	35.4	48.2	30.50	0.00305
0.4	0.1	1.60	0.255	32.8	81.0	64.60	0.00646
0.5	0.1	0.88	0.140	18.0	99.0	90.00	0.00900
0.6	0.1	0.52	0.083	10.7	109.7	104.35	0.01043
0.7	0.1	0.36	0.057	7.3	117.0	113.35	0.01134
0.76	0.06	0.16	0.025	3.2	120.2	118.60	0.01186
Σ	0.76	5.88	0.935	120.2			0.05292

TABLE 2-1. CASE TRAVEL OF CAL .45 (11.42 mm) GUN

2-2.3.5 Driving Spring Design

Driving springs must be compatible with operation and with the space available for their assembly, two factors that limit their outside diameter, and assembled and solid heights. The driving springs must also be designed to meet the time and energy requirement of the firing cycle and still have the characteristics that are essential for maintaining low dynamic stresses. The criteria for dynamic stresses have been established by Springfield Armory⁴. The procedures in the subsequent analyses follow these criteria.

The spring design data developed for the firing cycle calculations are

K = 1.0 lb/in., spring constant

 F_{o} = 6.94 lb, spring force at assembled height

 F_m = 9.62 lb, static spring force at end of recoil

L = 2.72 in., bolt travel

$$t_c = 0.15$$
 sec, time of firing cycle

$$t_r = \left(\frac{0.0557}{0.195}\right) t_c = 0.0428$$
 sec, time of recoil
(see par. 2–2.3.2)

$$v_f = 120.4$$
 in./sec, spring velocity of free recoil

According to the theory of surge waves in springs, the dynamic stress increases only slightly over the static stress if the following conditions exist:

$$1.67 < \frac{T}{T} < 2.0 \text{ when } 25 < v_i < 50 \text{ fps}$$
(Ref. 4)

$$3.33 < \frac{T_c}{T} < 4.0 \text{ when } 20 < v_i < 25 \text{ fps}$$
(Ref. 4)

$$5.0 < \frac{T_c}{T} < 6.0 \text{ when } v_i < 20 \text{ fps}$$
(Ref. 4)

where T = surge time

 T_c = compression time of spring

 v_i = impact velocity, ft/sec

The impact velocity of 50 ft/sec should not be exceeded, neither should the velocity be less than the lower limit of each range, however, the limits of the ratio $\frac{T}{c}$ need not necessarily be restricted to the two T

lower ranges. For instance, if speeds are less than 20 ft/sec, the limits of $\frac{T_e}{T}$ may be shifted to the upper range T

which varies between 3.33 and 4.0, or even to the first range of limits 1.67 to 2.0. For speeds between 20 and 25 ft/sec, the limits of the ratio may be shifted to the upper range that varies between 1.67 and 2.0.

The surge time, in terms of spring characteristics is⁵

$$T = 35.5 \times 10^{-6} \left(\frac{D^2}{d}\right) N \tag{2-40}$$

2-11

where d = wire diameter

D = mean coil diameter

N = number of coils

Refer to the spring design data.

$$T_c = t_r = 0.0428$$
 sec, compression time of spring

Select
$$\frac{T_c}{T} = 3.8$$
, or
 $T = \frac{T_c}{3.8} = \frac{0.0428}{3.8} = 0.01125$ sec

$$K = \frac{Gd^4}{8D^3N}$$
 or $N = \frac{Gd^4}{8D^3K}$ (Ref. 6) (2-41)

K = spring constant

Substitute the expression for N of Eq. 2-41 into Eq. 2-40, insert known values, and solve for d

$$d = 0.27 \sqrt[3]{DKT}$$
 (2-42)

When D = 0.5 in., and K = 1.0 (from spring data)

$$d = 0.27 \sqrt[3]{9} 0.5 x 1.0 x 0.01126 = 0.048 \text{ in.}$$

From Eq. 2-41

$$N = \frac{Gd^4}{8D^3K} = \frac{11.5 \times 10^6 \times 530 \times 10^{-8}}{8 \times 0.125 \times 1.0} = 61 \text{ coils}$$

 $H_s = Nd = 61 \times 0.048 = 2.93$ in., solid height.

The static torsional stress τ is⁶

$$\tau = \frac{8F_m D}{\pi d^3} = \frac{8 \times 9.62 \times 0.5}{111 \times 10^{-6} \pi} = 110,000 \text{ lb/in.}^2$$
(2-43)

2-12

According to Eq. 34 in Ref. 4, the dynamic torsional stress is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right]$$

$$\tau_d = 110,000 \left(\frac{1}{3.8}\right) 4 = 116,000 \text{ lb/in.}^2$$
(2-44)

This stress is acceptable since the recommended maximum stress for music wire is 150,000 lb/in.² In Eq. 2-44, $f\left(\frac{T_c}{T}\right)$ is the next largest even whole number larger than the value of $\frac{T_c}{T}$ if this ratio is not an even whole number.

2-3 ADVANCED PRIMER IGNITION BLOW-BACK

Timing the ignition so that the new round is firedjust before the bolt seats gives the first part of the impulse created by the propellant gas force opportunity to act as a buffer for the returning bolt. The rest of the impulse provides the effort for recoiling the bolt. The system that absorbs a portion of the impulse in this manner is called Advanced Primer Ignition Blowback. This system has its artillery counterpart in the out-of-battery firing system, i.e., the firing of the artillery weapon being initiated during counterrecoil but with the breechblock closed.

2-3.1 SPECIFIC REQUIREMENTS

By virtue of its ability to dispose of the early influence of propellant gas force on recoil, the advanced primer ignition system is much more adaptable to high rates of fire than the simple blowback system. Reducing the effectiveness of the impulse by fifty percent alone reduces the bolt weight by a factor of two with a substantial increase in firing rate.

The restraining components may be considered as real and virtual; the real being the bolt and driving spring; the virtual, the momentum of the returning bolt. Fig. 2-5 is a schematic of the advanced primer ignition system. The firing cycle starts with the bolt latched open by a sear and the driving spring compressed. Releasing the sear, frees the bolt for the spring to drive it forward. The

Figure 2-5. Schematic of Advanced Primer Ignition System

moving bolt picks up a round from the feed mechanisms and pushes it into the chamber. Shortly before the round is seated, the firing mechanism activitates the primer. The firing mechanism is so positioned and timed that the case is adequately supported when propellant gas pressures reach case-damaging proportions. The case and bolt become fully seated just as the impulse of the propellant gas force equals the momentum of the returning bolt. This part of the impulse is usually approximately half the total, thus establishing the driving spring characteristics.

As soon as forward motion stops, the continuously applied propellant gas force drives the bolt rearward in recoil. During recoil, the case is extracted and the driving spring compressed until all the recoil energy is absorbed to stop the recoiling parts. If the sear is held in the released position, the cycle is repeated and firing continues automatically. Firing ceases when the sear moves to the latched position.

2-3.2 SAMPLE CALCULATIONS OF ADVANCED PRIMER IGNITION

2-3.2.1 Firing Rate

To illustrate the effectiveness of advanced primer type performance, start with the same initial conditions as for the simple blowback problem with the added provision that half the impulse of the propellant gas is used *to* stop the returning bolt just as the cartridge seats. Thus

$$\int F_g dt = \frac{0.935}{2} = 0.4675 \, \text{lb-sec}$$

Eqs. 2-14 through 2-39 are again used. Since only half the impulse is available to drive the bolt in recoil, its mass must be reduced by half in order to retain the 120.4 in./sec velocity of free recoil. Thus the weight of this bolt assembly is specified as 1.5 lb and

$$v_f = \frac{\int F_g dt}{M_b} = \frac{0.4675 \times 386.4}{1.5} = 120.4 \text{ in/sec}$$

$$E_r = \frac{1}{2} M_b v_f^2 = \frac{1}{2} \times \frac{1.5}{386.4} \times 14500$$

= 28.2 in.-lb.

According to Eq. 2–36, the approximate bolt travel is the same (2.58 in.) as that for the simple blowback gun in the preceding problem. Again, as in the earlier problem, the 2.58 in. bolt travel does not yield totally compatible results and must be modified to meet the rate of fire of 400 rounds per minute or the cycle time oft. = 0.15 sec.

Since the initial dynamic conditions, impulse and energy of recoil are half as much as those of the preceding problem, the spring constant must also be half in order to have the same bolt travel. Eq. 2-37 shows the firing cycle time to be

$$t_c = \left(\sqrt{\frac{\epsilon M_b}{K}} + \sqrt{\frac{M_b}{\epsilon K}}\right) \cos^{-1} \frac{E_o}{F_m}.$$

2-13
Since K = 0.5 lb/in., E = 0.40, $M_b = \frac{1.5}{386.4} \frac{\text{lb-sec}^2}{\text{in.}}$, and $t_c = 0.15$ sec,

$$\vec{E}_{9n} = \vec{F}_{0} \vec{F}_{0.5L} = \cos \left[\left(\frac{0.15}{0.195} \right) 57.3^{\circ} \right]$$
$$= \cos 44^{\circ}04' = 0.7185$$

Solve for F_{o}

$$F_o = 1.2762 L.$$

Also

$$2 F_o + KL = 2F_o + 0.5L = 2F_a = \frac{2\epsilon E_r}{L} - \frac{2 \times 0.4 \times 28.2}{L}.$$

Substitute for F_o and collect terms

$$L^{2} = \frac{22.56}{3.0524} = 7.39 \text{ in.}^{2}$$

L = 2.72 in.
 $F_{o} = 3.47 \text{ lb}$
 $F_{m} = 4.83 \text{ lb}$

Recompute the time for the firing cycle

$$t_c = \left(\sqrt{\frac{\epsilon M_b}{K}} + \sqrt{\frac{M_b}{\epsilon K}}\right) \operatorname{Cos}^{-1} \frac{F_o}{F_m}$$
$$= 0.195 \operatorname{Cos}^{-1} \left(\frac{3.47}{4.83}\right) = 0.195 \times 0.769 = 0.15 \operatorname{sec}^{-1}$$

Another approach illustrates the advantage of increasing the firing rate by incorporating the advanced primer technique. The length of recoil in the preceding problems was selected to balance the dynamics of the problem and is not necessarily the ideal minimum distance. Suppose that the ideal bolt travel is 1.5 in. and that the recoil force of the simple blowback gun is acceptable. The mass of the bolt is adjusted to suit the requirements.

 $\int F_g dt = 0.4675 \text{ lb-sec}$ $F_o = 7.49 \text{ lb, minimum spring load, simple blowback}$ $F_m = 10.08 \text{ lb, maximum}$

$$K = \frac{F_m - F_o}{L} = \frac{2.59}{1.5} = 1.727 \, \text{lb/in.}$$

e = 0.40, efficiency of spring system

The work W_s done to compress the springs is

$$W_s = \frac{1}{2} (F_o + F_m) L = 8.785 \text{ x } 1.5 = 13.18 \text{ in.-lb.}$$

The velocity v_f of free recoil is

$$v_f = \frac{\int F_g dt}{M_b} = \frac{g \int F_g dt}{W_b}.$$

The recoil energy $E_r = \frac{1}{2} M_b v_f^2 = \frac{1}{2} \left(\frac{W_b}{g} \right) v_f^2$.

Substitute for v_f

$$E_r = \frac{1}{2} (\int F_g dt)^2 \frac{g}{W} .$$

When the efficiency of the system is considered, the spring work is

$$W_s = 0.4E_r$$
 or $E_r = 2.5W_s$.

Substitute for E_r and solve for W_b , the weight of the bolt

$$2.5W_{g} = \frac{1}{2} (fF_{g}dt)^{2} \frac{g}{W_{b}}$$

$$32.95 = \frac{1}{2} \times 0.2185 \left(\frac{386.4}{W_{b}}\right)$$

$$W_{b} = \frac{42.214}{32.95} = 1.281 \text{ lb.}$$

The velocity of free recoil becomes

$$v_f = \frac{g \int F_g dt}{W_b} = \frac{386.4 \text{ x } 0.4675}{1.281} = 141 \text{ in./sec}$$

The recoil energy $E_r = \frac{1}{2} \left(M \nu_f^2 \right) = \frac{1}{2} \left(\frac{1.281}{386.4} \right) 19880 = 32.95$ in.-lb.

The time of a firing cycle is

$$t_c = \left(\sqrt{\frac{\epsilon M_b}{K}} + \sqrt{\frac{M_b}{\epsilon K}}\right) \cos^{-1} \frac{F_o}{F_m} = 0.0970 \times 0.733 = 0.071 \text{ sec}$$

where

$$\sqrt{\frac{\epsilon M_b}{K}} = \sqrt{\frac{0.40 \times 1.281}{\frac{1.727 \times 386.4}{1.727 \times 386.4}}} = \sqrt{0.000768} = 0.0277$$

$$\sqrt{\frac{M_b}{\epsilon K}} = \sqrt{\frac{1.281}{0.40 \text{ x } 1.727 \text{ x } 386.4}} = \sqrt{0.00480} = 0.0693$$

$$\cos^{-1} \frac{F_o}{F_m} = \cos^{-1} \left(\frac{7.49}{10.08}\right) = 42^\circ = 0.733 \text{ rad}$$

The firing rate is

$$f_r = \frac{60}{t_c} = \frac{60}{0.071} = 845 \text{ rounds/min}.$$

2-3.2.2 Driving Spring Design

The driving spring for the advanced primer ignition blowback gun has been assigned the following characteristics to comply with the requirements of the firing cycle for the simple blowback gun:

K = 0.5 lb/in., spring constant

 $F_o = 3.48$ lb, spring force at assembled height

 $F_m = 4.85$ lb, spring force at end of recoil

L = 2.73 in., bolt travel

- $t_r = T_c = 0.0428$ sec, compression time of spring
- $v_f = v_i = 120.4$ in./sec, velocity of free recoil, spring impact velocity

Select
$$\frac{T_c}{T}$$
 = 3.8. Therefore, T = $\frac{0.0428}{3.8}$ = 0.1 126 sec

When D = 0.5 in., according to Eq. 2-42

$$d = 0.27 \sqrt[3]{DKT} = 0.27 \sqrt[3]{0.5 \times 0.5 \times 0.01125} = 0.038$$
 in.

From Eq. 2-41

$$N = \frac{Gd^4}{8D^3K} = \frac{11.5 \times 10^6 \times 208 \times 10^{-8}}{8 \times 0.125 \times 0.5} = 48 \text{ coils}$$

$$H_s = Nd = 48 \times 0.038 = 1.83$$
 in., solid height.

The static torsional stress, Eq. 2-43, is

$$\tau = \frac{8F_mD}{\pi d^3} = \frac{8 \times 4.85 \times 0.5}{54.8 \times 10^{-6} \pi} = 113,000 \,\text{lb/in}^2$$

Eq. 2–44 has the dynamic stress of

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = 113000 \left(\frac{1}{3.8}\right) 4 = 119,000 \text{ lb/in.}^2$$

The driving spring for the advanced primer ignition when the recoil force is equal to that of the simple blowback gun has the following characteristics:

K = 1.727 lb/in., spring constant

 F_o = 7.49 lb, spring force at assembled height

 $F_m = 10.08$ lb, spring force at end of recoil

L = 1.5 in., bolt travel

- $t_r = T_c = 0.0203$ sec, compression time of spring
- $v_f = v_i = 141$ in./sec, velocity of free recoil

2—16

Select $\frac{T_c}{T}$ = 3.8. Therefore, $T = \frac{0.0203}{3.8} = 0.00535$ sec.

When D = 0.5, according to Eq. 2-42

$$d = 0.27 \sqrt[3]{DKT} = 0.27 \sqrt[3]{0.5 \times 1.727 \times 0.00535} = 0.045$$
 in

From Eq. 2-41

$$N = \frac{Gd^4}{8D^3K} = \frac{11.5 \times 10^6 \times 41 \times 10^{-7}}{8 \times 0.125 \times 1.727} = 27.3 \text{ coils}$$

 $H_s = Nd = 27.3 \times 0.045 = 1.23 \text{ in., solid height.}$

The static torsional stress, Eq. 2-43, is

$$\tau = \frac{8F_mD}{\pi d^3} = \frac{8 \times 10.08 \times 0.5}{91.1 \times 10^{-6} \pi} = 141,000 \text{ lb/in}^2$$

The dynamic stress, Eq. 2–44, is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = 141,000 \left(\frac{1}{3.8}\right) 4 = 148,500 \text{ lb/in.}^2$$

2-4 DELAYED BLOWBACK

Delayed blowback is the system that keeps the bolt locked until the projectile leaves the muzzle. At this instant an unlocking mechanism, responding to some influence such as recoil or propellant gas pressure, releases the bolt thereby permitting blowback to take effect.

2-4.1 SPECIFIC REQUIREMENTS

Since the tremendous impulse developed by the propellant gases while the projectile is in the bore is not available for operating the bolt, the recoiling mass — including driving, buffing, and barrel springs — need not be nearly so heavy as the two types of blowback discussed earlier. The smaller recoiling mass moves relatively faster and the rate of fire increases correspondingly.

Delayed blowback guns may borrow operating principles from other types of action, e.g., the piston action of the gas operating gun or the moving recoiling parts of the recoil operating gun. In either case, only unlocking activity is associated with these two types, the primary activity involving bolt action still functions according to the blowback principle. Fig. 2-6 shows a simple locking system.

Like any other automatic gun, bolt action is congruous with timing particularly with respect to unlocking time. If recoil operated, distance also becomes an important factor. For this type gun, the barrel must recoil a short distance before the moving parts force open the bolt lock. Sufficient time should elapse to permit the propellant gas pressure to drop to levels below the bursting pressure of the cartridge case but retain enough intensity to blow back the bolt.

Figure 2–6. Locking System for Delayed Blowback

The stiffness of the springs should not be so great as to interfere unduly with early recoil. Therefore, a system consisting of three springs is customarily used: (1) a barrel spring having an initial load slightly larger than the recoiling weight to insure almost free recoil and still have the capacity to hold the barrel in battery, (2) a buffer spring to stop the recoiling parts and return them, and (3) a bolt driving spring to control bolt activity. Before the bolt is unlocked, all moving parts recoil as one mass with only the barrel spring resisting recoil but this spring force is negligible compared to the propellant gas force and may be neglected during recoil. After the bolt becomes unlocked, the barrel spring combines with the buffer spring to arrest the recoiling barrel unit.

The unlocked bolt continues to be accelerated to the rear by the impetus of the decaying propellant gas pressure whose only resistance now is the force of the driving spring, a negligible resistance until the propellant gas pressure becomes almost zero. Thereafter, the spring stops the bolt and later closes it. Normally the barrel unit has completed counterrecoil long before the bolt has fully recoiled to provide the time and relative distance needed for extracting, ejecting, and loading. After the barrel unit is in battery, the bolt unit functions as a single spring unit.

2-4.2 DYNAMICS OF DELAYED BLOWBACK

While the complete unit is recoiling freely and later while all springs are operating effectively, the dynamics of the system are readily computed by an iterative process. Given the pressure-time curve, by knowing the size of the masses in motion, the dynamics at any given time are determined by the summations of computed values for all preceding increments of time. The impulse during each increment is

$$F\Delta t = A_b A_i \tag{2-45}$$

where $A_b = \text{bore area}$

 A_i = area under At of pressure-time curve

At = time increment

When the impulse is being determined during low pressure periods due consideration should be given to the resistance offered by the driving spring. $F_g \Delta t$ should be adjusted after the driving spring and gas pressure forces become relatively significant. During each increment, the differential velocity is

$$Av = \frac{F_g \Delta t}{M_r} \tag{2-46}$$

where M_r = mass of the recoiling parts influenced by FAt.

The velocity of recoil at the end of each increment becomes

$$v = v_{(n-1)} + Av$$
 (2-47)

where $v_{(n-1)}$ = velocity at the preceding increment

AMCP 706-260

The distance traveled by the bolt with respect to the gun frame during the increment is

$$\Delta x = v_a \Delta t = \left(v_{(n-1)} + \frac{1}{2} \, \mathrm{Av} \right) \, \mathrm{At} \tag{2-48}$$

where v_{α} = average velocity for the increment.

The total distance at the end of each increment is

$$\mathbf{x} = \Sigma \Delta x.$$

When the propellant gas pressures cease to be effective, the behavior of the barrel and bolt units depend entirely on springs. One such instance involving the buffer spring occurs when the bolt is unlocked. Although the gas pressure continues its effective action on the bolt, it can no longer influence the barrel unit except secondarily through the driving spring. Rewrite Eq. 2–19 for the isolated barrel unit and include the influence of the driving spring. Thus, the energy remaining in the recoiling mass is

(2-49)

$$\frac{1}{2}\left(M_t v_t^2\right) = \frac{1}{2}\left(M_t v_{ot}^2\right) - \frac{1}{\epsilon_b}\left[F_{ob} x_t + \frac{1}{2}\left(K_b x_t^2\right)\right] + \frac{1}{\epsilon}\left(Fx_t\right)$$
(2-50)

where F = drive spring force

 F_{oh} = initial buffer spring force

 K_{h} = spring constant of combined buffer and barrel springs

 M_{t} = mass of barrel unit

- v_{ot} = initial velocity of barrel unit
- v_t = final velocity of barrel unit

 x_t = travel of barrel with respect to gun frame

- ϵ = efficiency of drive spring unit
- ϵ_b = efficiency of buffer spring unit which includes the barrel spring

The buffer spring performs in unison with the barrel spring. During counterrecoil, at the end of buffer spring travel, the barrel spring continues to accelerate the barrel unit in its return to battery. During recoil, the propellant gas force is so much larger than the barrel spring force as to render the latter practically ineffective. Except for the last millisecond or two, the bolt driving spring also offers a negligible resistance to the propellant gas force. However, it does contribute a small force opposing the buffer spring and is represented in Eq. 2-50 by the expression $\frac{1}{e} (Fx_t)$, the effective force of the driving spring. The actual spring force F may be assumed to be the driving spring force at the time when the bolt is unlocked. Preliminary estimates should provide reasonable approximations at this stage of the design study.

An equation can be derived for the recoil time of the barrel unit by developing Eq. 2-50 by the same procedure used for Eq. 2-19. The recoil time for the barrel after bolt unlocking until pressure becomes zero is

$$t_{rt} = \sqrt{\frac{\epsilon_b M_t}{K_b}} \left[\sin^{-1} \frac{K_b x_{to} + F_{ob} - \left(\frac{\epsilon_b}{\epsilon}\right) F}{\sqrt{F_{ob} - \left(\frac{\epsilon_b}{\epsilon}\right)^2 + \epsilon_b K_b M_t v_{ot}^2}} - \sin^{-1} \sqrt{\frac{F_{ob} - \frac{\epsilon_b}{\epsilon} F}{\sqrt{F_{ob} - \left(\frac{\epsilon_b}{\epsilon}\right) F^2 + \epsilon_b K_b M_t v_{ot}^2}}} \right]$$

$$(2-51)$$

where x_{to} = barrel travel from time of buffer engagement to end of propellant gas period

All values are known except x_{to} . Since t_{rt} is the time elapsed from bolt unlocking to pressure effectiveness reaching zero, this distance may be computed from Eq. 2-51. It represents the buffer spring deflection. The total barrel travel with respect to the frame is

$$x_t = x_{to} + x_{tf} \tag{2-52}$$

where x_{tf} = barrel travel during free recoil.

The amount that the driving spring is compressed, while the barrel traverses x_t , is the relative travel distance between barrel and bolt, thus

$$x_b = x - x_t \tag{2-53a}$$

In terms of differential values, the equation becomes

$$\Delta x_h = A X - \Delta x_f \qquad (2-53b)$$

On the assumption that the recoil velocity of the bolt has been computed at the time corresponding to x_{to} , the energy of the bolt can be computed and converted to the potential energy of the driving spring from which the spring forces may be determined. The average driving spring force over the remaining distance, Eq. 2-16, is

$$F_a = \frac{\epsilon E_b}{L_b - x_b} \tag{2-54}$$

where E_b is calculated according to Eq. 2–15 and $L_b - x_b$ is the spring deflection remaining at the end of free recoil of the bolt.

For the remainder of the buffer stroke and for the time that the barrel unit is counterrecoiling, the dynamics of the system may be computed by dividing the time into convenient intervals, and by use of the relationship existing between impulse and momentum, computing the dynamics for each corresponding increment of travel. Both recoil and counterrecoil of the barrel take place while the bolt is recoiling which changes the effective buffer spring forces for the two directions. The expression of the driving spring effective force does not change since the bolt travel direction does not change. The force of the driving spring at the end of each increment of travel is

$$F = F_{(n-1)} + K\Delta x_h$$
 (2-55)

where

i

$$F_{(n-1)}$$
 = driving spring force at beginning of increment

K = driving spring constant

 Δx_h = incremental driving spring deflection

The buffer spring force at the end of its increment of travel is

$$F_b = F_{b(n-1)} + K_b \Delta x_t$$
 (2-56)

where

$$F_{b(n-1)}$$
 = buffer spring force at beginning of increment

- K_b = buffer spring constant which includes the barrel spring
- Ax, = incremental buffer spring deflection

The effective spring force on the bolt while it is recoiling is

$$F_{e} = \frac{F_{+}F_{(n-1)}}{2E}$$
(2-57)

The effective spring force on the barrel while it is recoiling is

$$F_{eb} = \frac{F_b + F_{b(n-1)}}{2\epsilon_b} - F_e .$$
 (2-58)

According to the relationship of impulse and momentum, Fdt = Mv, the general expression for differential velocity is

$$Av = \frac{F\Delta t}{M}.$$
 (2-59)

Based on this expression, the bolt travel during each increment is derived in a sequence of algebraic expressions. Thus

$$A_{X} = v_{(n-1)} \Delta t - \frac{1}{2} \left(\Delta v \Delta t \right) = v_{(n-1)} \Delta t - \frac{F_{e} \Delta t^{2}}{2M_{b}}$$
(2-60a)

$$\Delta x = v_{(n-1)} \Delta t - \frac{F_{(n-1)} \Delta t^2}{2\epsilon M_b} - \left(\frac{K \Delta t^2}{4\epsilon M_b}\right) \Delta x_b.$$
(2-60b)

But $\Delta x_b = \Delta x - \Delta x_t$ (see Eq. 2-53b). Substituting this expression and collecting terms, the incremental travel of the bolt becomes

$$\Delta x = \frac{4\epsilon M_b}{4\epsilon M_b + K\Delta t^2} \left[v_{(n-1)} \Delta t - \frac{F_{(n-1)} \Delta t^2}{2\epsilon M_b} + \left(\frac{K\Delta t^2}{4\epsilon M_b}\right) \Delta x_t \right].$$
(2-60c)

2–21

AMCP 706-260

The incremental travel for the barrel is a similar expression

$$\Delta x_t = v_{t(n-1)} \Delta t - \frac{1}{2} \left(\Delta v_t \Delta t \right) = v_{t(n-1)} \Delta t - \frac{F_{eb} \Delta t^2}{2M_t}$$
(2-61a)

$$Ax_{t} = v_{t(n-1)}\Delta t - \frac{\Delta t^{2}}{2M_{t}} \left[\frac{F_{b(n-1)}}{\epsilon} + \frac{K_{b}\Delta x_{t}}{\epsilon} - \frac{F_{(n-1)}}{\epsilon} - \frac{K\Delta x_{b}}{\epsilon} \right].$$
(2-61b)

Again substituting $\Delta x - Ax$, for Δx_b and collecting terms, the incremental travel of the barrel in recoil is

$$\Delta x_{t} = \frac{4\epsilon\epsilon_{b}M_{t}}{4\epsilon\epsilon_{b}M_{t} + \epsilon K_{b}\Delta t^{2} + \epsilon_{b}K\Delta t^{2}} \left[\nu_{t(n-1)}\Delta t - F_{b}(2\epsilon_{b}M_{f}\Delta t^{2} + F_{(n}2\epsilon_{M}_{f}\Delta t^{2} + \left(\frac{K\Delta t^{2}}{4\epsilon M_{t}}\right)\Delta x \right].$$

$$(2-61c)$$

While the barrel is counterrecoiling, and the bolt recoiling, the effective spring force on the barrel is

$$F_{eb} = \epsilon_b F_b - F_e = \epsilon_b F_{b(n-1)} - \left(\frac{\epsilon_b}{2}\right) K_b \Delta x_t - \frac{F_{(n-1)}}{\epsilon} - \frac{K \Delta x_b}{2\epsilon}.$$
(2-62)

The incremental travel of the barrel now becomes

$$\Delta x_{t} = v_{t(n-1)} \Delta t + \frac{1}{2} \left(\Delta v_{t} \Delta t \right) = v_{t(n-1)} \Delta t + \frac{F_{eb} \Delta t^{2}}{2M_{t}}$$
(2-63a)

$$\Delta x_t = v_{t(n-1)} \Delta t + \frac{\epsilon_b F_{b(n-1)} \Delta t^2}{2M_t} - \left(\frac{\epsilon_b K_b \Delta t^2}{4M_t}\right) \Delta x_t - \frac{F_{(n-1)} \Delta t^2}{2\epsilon M_t} - \left(\frac{K \Delta t^2}{4\epsilon M_t}\right) \Delta x_b. \quad (2-63b)$$

Substitute $\Delta x - \Delta x_t$ for Δx_b , collect terms and solve for Ax_b ,

$$\Delta x_{t} = \frac{4\epsilon M_{t}}{4\epsilon M_{t} + \epsilon \epsilon_{b} K_{b} \Delta t^{2} - K \Delta t^{2}} \left[v_{t(n-1)} \Delta t + \frac{\epsilon_{b} F_{b(n-1)} \Delta t^{2}}{2M_{t}} - \frac{F_{(n-1)} \Delta t^{2}}{2\epsilon M_{t}} - \left(\frac{K \Delta t^{2}}{4\epsilon M_{t}}\right) \Delta x \right]$$

$$(2-63c)$$

While both bolt and barrel are counterrecoiling, the effective spring force on the bolt is

$$F_e = \epsilon (F + F_{n-1}) / 2 = \epsilon F_{(n-1)} - \epsilon K \Delta x_b / 2.$$
 (2-64a)

Now, substitute for F_e and expand Eq. 2-60a so that

$$\Delta x = v_{(n-1)} \Delta t - \left[\frac{\epsilon F_{(n-1)}}{2M_b} - \left(\frac{\epsilon K}{4M_b} \right) \Delta x_b \right] \Delta t^2.$$
(2-64b)

But, according to Eq. 2-53b, $\Delta x_b = Ax - \Delta x_t$, therefore

$$\Delta x = v_{(n-1)} \Delta t - \left[\frac{\epsilon F_{(n-1)}}{2M_b}\right] \Delta t^2 + \left(\frac{\epsilon K}{4M_b}\right) \Delta t^2 \Delta x - \left(\frac{\epsilon K}{4M_b}\right) \Delta t^2 \Delta x_t.$$
(2-64c)

Collect terms and solve for Ax

$$\Delta x = \frac{4M_b}{4M_b - \epsilon K \Delta t^2} \left[v_{(n-1)} \Delta t - \frac{\epsilon F_{(n-1)} \Delta t^2}{2M_b} - \left(\frac{\epsilon K \Delta t^2}{4M_b}\right) \Delta x_t \right].$$
(2-64d)

The effective force on the barrel during this period is

$$F_{eb} = \epsilon_b F_b - F_e = \epsilon_b \left[F_{b(n-1)} - \frac{K_b \Delta x_t}{2} - \epsilon \left| F_{(n-1)} - \frac{K \Delta x_b}{2} \right].$$
(2-65a)

The incremental barrel travel is, according to Eq. 2-63a

$$\Delta x_t = V_{t(n-1)} \Delta t + \frac{F_{eb} \Delta t^2}{2M_t}.$$
 (2-65b)

Substitute the expression for F_{eb} of Eq. 2-65b, $\Delta x - \Delta x_t$ for Δx_b , and collect terms. The incremental barrel travel now becomes

$$Ax_{t} = \frac{4M_{t}}{4M_{t} + (\epsilon K + \epsilon_{b}K_{b})\Delta t^{2}} \begin{cases} \nu_{t(n-1)}\Delta t + \left[\frac{\epsilon_{b}F_{b(n-1)}}{2M_{t}}\right]\Delta t^{2} \\ -\left[\frac{\epsilon F_{(n-1)}}{2M_{t}}\right]\Delta t^{2} + \frac{\epsilon K}{4M_{t}}\Delta t^{2}\Delta x \end{cases}.$$

$$(2-65c)$$

2–23

To avoid repetition, general expressions are used to complete the analysis. The distinction between bolt and barrel activities will be demonstrated later in the sample problem. The spring force at the end of each increment is computed by Eqs. 2-55 and 2-56. The total energy absorbed by a spring system over a distance Ax is

$$\Delta E = \left[\frac{F_{(n-1)} + F}{2\epsilon} \right] \Delta x \,. \tag{2-66a}$$

The energy released by a spring system over a distance **Ax** is

$$A E = \epsilon \left[\frac{F_{(n-1)} + F}{2} \right] \Delta x.$$
 (2-66b)

The total energy at the end of the increment is found by adding the incremental energy to the total at the end of the preceding increment when energy is released, or subtracting when it is being absorbed.

$$E = E_{(n-1)} \pm AE$$
 (2-66c)

$$\nu = \sqrt{\frac{2E}{M}} \tag{2-66d}$$

2-4.3 SAMPLE PROBLEM FOR DELAYED BLOWBACKACTION

2-4.3.1 Specifications

Gun: 20 mm machine gun

Firing rate: corresponding to minimum bolt travel

Interior ballistics: Pressure vs Time, Fig. 2–7

$$A_b = 0.515 \text{ in.}^2$$
, bore area

2-4.3.2 Design Data

- L = 10 in., minimum bolt travel
- $W_b = 10$ lb, weight of bolt unit

 $W_t = 50$ lb, weight of barrel unit

- $x_{to} = 0.5$ in., recoil distance to unlock bolt
 - E = 0.5, efficiency of driving spring unit
- $\epsilon_b = 0.3$, efficiency of combined buffer and barrel spring system
- $\epsilon_t = 0.5$, efficiency of barrel spring unit

Table 2–2 has the numerical integration for a recoiling weight of 60 lb. In Table 2–2, the area A_i is measured under the pressure-time curve, Fig. 2–7

$$F_{g}\Delta t = A_{b}A_{i} = 0.515A_{i} \text{ lb-sec}$$

$$Av = \frac{F_{g}\Delta t}{M_{r}}$$

$$= 6.44 F\Delta t \text{ in/sec when } t \leq 0.003252 \text{ sec}$$

where

$$M_r = \frac{W_r}{g} = \frac{60}{386.4}$$

$$Av = \frac{F_g \Delta t}{M_b}$$

= 38.64 $F_g \Delta t$ in./sec when t > 0.003252 sec

where

$$M_b = \frac{W_b}{g} = \frac{10}{386.4}$$
$$Ax = v_a \Delta t = \left[\frac{v_{(n-1)} + v}{2} \right] \Delta t, \text{ in.}$$

When the bolt is unlocked at t = 3.252 msec, the velocity attained by the recoiling parts is 232.3 in./sec (see Table 2-2).

The energy of the barrel unit at this velocity is

$$E_{to} = \frac{1}{2} \left(M_t v_t^2 \right) = \frac{1}{2} \left(\frac{50}{386.4} \right) 53960$$

Figure 2–7. Pressure-time Curve of 20 mm Round

The velocity attained by the bolt at the end of the pressure period, $\nu = 285$ in./sec (see Table 2-2). The energy of the bolt is

$$E_b = \frac{1}{2} \left(M_b v^2 \right) = \frac{1}{2} \left(\frac{10}{386.4} \right) 81200$$

= 1051 in.-lb.

On the assumption that the driving spring system absorbs this energy over its total deflection of 10 in., the average force is

$$F_a = \frac{\epsilon_b E_b}{L} = \frac{0.5 \times 1051}{10} = 52.6 \text{ lb.}$$

Earlier, a spring constant of K=3 appeared practical, but the resulting stress was too large. Also an earlier attempt at having a buffer stroke of half an inch proved impractical from the dynamic stress point of view. Increasing the stroke to one inch and applying recommended dynamic spring behavior, meanwhile retaining an acceptable firing rate, led to a feasible spring constant for all three springs – driving, buffer,

and barrel. The allowable static shear stress of the spring is

$$\tau = \frac{8F_mD}{\pi d^3} \qquad (\text{see Eq. 2-43})$$

Since T = $3.55 \times 10^{-5} \left(\frac{D^2}{d}\right) N$ (Ref. 1) and $N = \frac{Gd^4}{8KD^3}$ (see Eqs. 2-40 and 2-41)

substitute for T and N and solve for $\frac{d^3}{D}$ in the equation for τ and T.

Thus

$$\frac{d^3}{D} = \frac{8F_m}{\pi\tau} = \frac{8KT}{3.55 \times 10^{-5}G} \qquad (2-67a)$$

where $G = 11.5 \times 10^6 \text{ lb/in}^2$, torsional modulus

 $\tau = 135,000 \text{ lb/in.}^2$, allowable static shear stress

$$KT = \frac{F_m}{1037}$$
 (2–67b)

Based on constant acceleration, an approximate time of spring compression will, in most applications, determine a spring constant compatible with both spring dynamics and allowable stresses. The approximate time of bolt recoil is

$$t_r = \frac{2x_b}{r} = \frac{2(10)}{285} = 0.070 \text{ sec.}$$

t, msec	Δt , msec	A _i , lb-sec/in?	$F_g \Delta t$, lb-sec	Δν, in./sec	v, in./sec	va' in./sec	Δ <i>x</i> , in.	x, in.
0.25	0.25	3.44	1.77	11.4	11.4	5.7	0.0014	0.0014
0.50	0.25	10.15	5.24	33.7	45.1	28.2	0.0071	0.0085
0.75	0.25	11.89	6.13	39.5	84.6	64.8	0.0162	0.0247
1.00	0.25	11.12	5.74	37.0	121.6	103.1	0.0258	0.0505
1.25	0.25	9.25	4.76	30.6	152.2	136.9	0.0342	0.0847
1.50	0.25	7.30	3.76	24.2	176.4	164.3	0.0411	0.1258
1.75	0.25	5.23	2.69	17.3	193.7	185.0	0.0462	0.1720
2.00	0.25	3.71	1.91	12.6	206.3	200.0	0.0500	0.2220
2.25	0.25	2.58	1.34	8.6	214.9	210.6	0.0526	0.2746
2.50	0.25	1.82	0.94	6.1	221.0	218.0	0.0545	0.3291
2.75	0.25	1.39	0.72	4.6	225.6	223.3	0.0588	0.3849
3.00	0.25	1.06	0.55	3.5	229.1	227.4	0.0569	0.4418
3.252	0.252	0.97	0.50	3.2	232.3	230.7	0.0582	0.5000
4.00	0.748	1.37	0.70	27.0	258.3	245 .3	0.1838	0.6838
5.00	1.00	0.97	0.50	19.3	278.6	269.0	0.2690	0.9528
6.00	1.00	0.32	0.165	6.4	285.0	281.8	0.2818	1.2346

TABLE 2-2. RECOIL TRAVEL OF 20 mm GUN

Since v < 25 ft/sec, (see par. 2-2.3.5), $\frac{Tc}{T} = 3.8$, $T_c = t_r$ and $F_m = F_a + \frac{1}{2}$ (KL) (Eqs. 2-17 and 2-18), Eq. 2-67b, after $T_c/3.8$ is substituted for T, becomes

$$KT, = \frac{F_a \pm 0.5KL}{273}$$
$$0.070K = \frac{52.6 + 5K}{273}.$$

Solve for K, thus

$$K = \frac{52.6}{14.11} = 3.72 \text{ lb/in.}$$

$$F_m = F_a + \frac{1}{2} (KL) = 52.6 + 5 \times 3.72 = 71.2 \text{ lb}$$

$$F_o = F_m - KL = 71.2 - 37.2 = 34.0 \text{ lb.}$$

Compute t from Eq. 2–23

$$t = \sqrt{\frac{\epsilon M_b}{K}} \cos^{-1} \frac{F_o}{F_m}$$
$$= \sqrt{\frac{3.72 \times 386.4}{3.72 \times 386.4}} \cos^{-1} \left(\frac{34.0}{71.2}\right)$$
$$= 0.059 \left(\frac{61.5}{57.3}\right) = 0.063 \text{ sec.}$$

Recomputing by inserting the newly calculated time t for T_c , the data converge to K = 4.4 lb/in. and t = 0.062 sec.

The first set of detailed calculations (not shown) yielded a bolt recoil time of $t = T_c = 51.5$ msec. For this time, the computed spring constant of K = 5.8 lb/in. becomes the final value for computing the dynamics of Table 2–3.

The spring constant of the buffer system is found by assuming that the energy E_{to} =3491 in.-lb will be absorbed over the 1-inch buffer stroke. Later, adjustments will be made to compensate for the small discrepancies involving the spring forces. The time t_b of buffer action during recoil is

$$t_b = \frac{2L_b}{v_b} = \frac{2 \times 1.0}{232.3} = 0.0086$$
sec

where $L_b =$ buffer stroke

$$v_b$$
 = recoil velocity of barrel when buffer
is contacted

The average buffer force F_{ab} is

$$F_{ab} = \frac{\epsilon_b E_{to}}{L_b} = \frac{0.3 \times 3491}{1.0} = 1047 \text{ lb.}$$

Follow the same procedure for the buffer as for the driving spring

$$K_b T_c = \frac{F_{ab} + 0.5 K_b L_b}{273}$$

$$273 \times 0.0086 K_h = 1047 + 0.5 K_h$$
.

Solve for K_b , thus

$$K_b = \frac{1047}{1.85} = 566$$
 lb/in., buffer spring constant

 $F_{mb} = 1047 + 283 = 1330$ Ib, max buffer force

 $F_{ob} = 1047 - 283 = 764$ lb, min buffer force

Compute t_b from Eq. 2-23

$$t_b = \sqrt{\frac{\epsilon_b M_t}{K_b}} \cos^{-1} \frac{F_{ob.}}{F_{mb}}$$
$$= \sqrt{\frac{0.3 \times 50}{566 \times 386.44}} \cos^{-1} \left(\frac{764}{1330}\right) = 0.0079 \text{sec.}$$

Recompute K_b by inserting the time 0.0079 sec for T_c . The new value of the spring constant K_b is 630 lb/in., but the new time remains $t_b = 0.0079$ sec.

2—27

The spring constant for the barrel spring is computed similarly but in this instance the spring force at the assembled height is set at $F_o = 70$ lb, a minimal value so that recoil distance and velocity are appropriate for bolt action. The time of barrel spring compression is the same as that for the buffer plus the propellant gas period.

$$t_t = t_h + t = 0.0079 + 0.006 = 0.0139 \,\mathrm{sec}$$

The barrel spring has an operating deflection of $L_t = 2.0$ in.

$$F_{mt} = \frac{F_{ot} + K_t L_t}{T} = 70 + 2K_t \text{ 'max barrel spring force}$$

With $T = \frac{T_c}{3.8} = \frac{0.0139}{3.8}$ sec,

Eq. 2–67b may be written as

$$0.0139K_t = \frac{70 + 2K_t}{273}$$

Thus

$$K_t = \frac{70}{1.8} = 39$$
 lb/in., barrel spring constant
 $F_{mt} = 70 + 78 = 148$ lb, max barrel spring force

Before recomputing time $t_{,,}$ according to Eq. 2–23, some allowance must be made for the effective barrel mass. Since both barrel and buffer springs are active over the buffer stroke, a logical distribution can be arranged according to the average spring forces. The effective mass for the barrel spring is

$$M_{e} = \frac{W_{t}}{g} \left(\frac{F_{ot} + F_{mt}}{F_{ob} + F_{mb}} \right) = \frac{50}{g} \left(\frac{218}{2096} \right) = \frac{5.2}{g}$$
$$t_{t} = \sqrt{\frac{\epsilon_{t} M_{e}}{K_{t}}} \cos^{-1} \frac{F_{ot}}{F_{mt}}$$
$$= \sqrt{\frac{0.5 \times 5.2}{39 \times 386.4}} \cos^{-1} \left(\frac{70}{148} \right)$$
$$= 0.0132 \left(\frac{61.8}{57.3} \right) = 0.0142 \text{ sec.}$$

Substitute the new value of $T_c = t_t$ and compute. The time and spring constant coverge to $t_t = 0.0143$ sec and $K_t = 37$ lb/in., and $F_m = 144$ lb. The buffer spring constant is

$$K_{bs} = K_b - K_t = 630 - 37 = 593$$
 lb/in.

Now that the constants of all three springs are firmly established, more exact values of the minimum and maximum spring forces of the buffer spring system are computed. Since the driving spring does deflect while the propellant gas pressure is still effective, less than the full spring deflection is available to absorb the bolt energy. For this reason, increasing the initial load to $F_o = 25$ lb for early estimates seems advisable. This spring force became effective and therefore is included in Table 2–2 after the 4 msec interval. In the meantime, the driving spring transfers some of the bolt energy to the moving barrel. The average driving spring force after bolt unlocking until, the barrel stops recoiling is approximately 27 lb.

$$E_t = E_{to} + \left(\frac{F_a}{\epsilon}\right) L'_t$$

= 3491 + $\left(\frac{27}{0.5}\right)$ 1.5 = 3572 in.-lb

where L'_t is the barrel travel after the bolt is unlocked. From Table 2-2, when t = 3.252, x = 0.5, then $L'_t = L$, -x = 2.0 - 0.5 = 1.5 in.

The energy absorbed by the barrel spring over the half-inch travel before the buffer is contacted is

$$\Delta E_t = \frac{1}{2} \left[\frac{(F'_t + F''_t)\Delta L}{\epsilon_t} \right] = \frac{(88.5 \pm 107)0.5}{2 \times 0.5}$$

= 98 in.-lb

where F'_t and F''_t are the barrel spring forces at half-inch and one-inch travel positions, respectively.

The average force of the buffer spring system found according to Eq. 2-30 is

$$F_{ab} = \frac{\epsilon_b (E_t - \Delta E_t)}{L_b} - \frac{0.3 \times 3474}{1.0} = 10421b.$$

2—28

The initial force of the buffer spring system is

$$F_{ob} = F_{ab} - \frac{1}{2} \left(K_b L_b \right) = 1042 - \frac{1}{2} \left(630 \right) 1.0 = 727 \text{ lb}$$

$$F_{obs} = F_{ob} - \left(F_{ot} + 1.0K_t \right) = 620 \text{ lb}$$

where $K_b = 630$ lb/in., the buffer spring system constant.

The maximum buffer spring system force is

$$F_{mb} = F_{ob} + K_b L_b = 727 + 630 \times 1.0 = 1357 \text{ lb}$$

 $F_{mbs} = F_{mb} - F_{mt} = 1213 \text{ lb}$

The impact velocity of the barrel on the buffer spring is

$$v_i = \sqrt{\frac{2(E_t - \Delta E_t)}{M_t}} = \sqrt{\frac{2(3572 - 98)386.4}{50}} = 231.7 \text{ in./sec.}$$

The bolt is unlocked at 3.252 msec and continues to be accelerated until 6 msec. During most of the remaining time of 2.748 msec the barrel spring is the sole resistance to barrel recoil. After the barrel recoils a half-inch farther, the barrel spring is joined by the buffer spring. Based on Eq. 2-51, the time increment for this half-inch travel is

$$\Delta t_{rt} = \sqrt{\frac{\epsilon_t M_t}{K_t}} \left[\operatorname{Sin}^{-1} \frac{F_t'' - \left(\frac{\epsilon_t}{\epsilon}\right) F}{Z} - \operatorname{Sin}^{-1} \frac{F_t' - \left(\frac{\epsilon_t}{\epsilon}\right) F}{Z} \right]$$
$$= \sqrt{\frac{0.5 \times 50}{37 \times 386.4}} \left[\operatorname{Sin}^{-1} \left(\frac{82}{369}\right) - \operatorname{Sin}^{-1} \left(\frac{63.5}{369}\right) \right]$$

 $\Delta t_{rt} = 0.0418 (12.84 - 9.91) / 57.3 = 0.002137 \text{ sec}$

AMCP 706-260

- where F = 25 Ib, estimated driving spring force during period
 - $F'_t = 88.5$ lb, barrel spring force when bolt is unlocked
 - $F_t'' = 107$ lb, barrel spring force when buffer is contacted
 - E = 0.50, efficiency of driving spring

 $\epsilon_t = 0.50$, efficiency of barrel spring

$$\left[F_t' - \left(\frac{\epsilon_t}{\epsilon}\right)F\right]^2 = 63.5^2 = 4032 \text{ lb}^2$$

$$\epsilon_t K_t M_t v_t^2 = 0.5 \times 37 \times 2E_t = 132,164 \ \text{lb}^2$$

$$Z = \sqrt{\left[F_t' - \left(\frac{\epsilon_t}{\epsilon}\right)F\right]^2 + \epsilon_t K_t M_t v_t^2} = \sqrt{136307} = 369 \text{ lb.}$$

The time still remaining during propellant gas activity is

$$t_{rt} = 0.006 - 0.003252 - 0.002137 = 0.000611 \text{ sec.}$$

During this time the barrel contacts the buffer and continues rearward over a distance that is computed according to Eq. 2-51.

$$t_{rt} = \sqrt{\frac{\epsilon_b M_t}{K_b}} \left(\operatorname{Sin}^{-1} \frac{F_{me}}{Z} - \operatorname{Sin}^{-1} \frac{F_{oe}}{Z} \right)$$

$$0.000611 = \sqrt{\frac{0.3 \times 50}{630 \times 386.4}} \left| \operatorname{Sin}^{-1} \left(\frac{630x^{to} + 711}{1348} \right) - \operatorname{Sin}^{-1} \left(\frac{711}{1348} \right) \right|$$

where

$$\epsilon_b = 0.3$$
, efficiency of buffer spring system

$$F_{oe} = F_{ob} - \left(\frac{\epsilon_b}{\epsilon}\right) F_a = 727 - \left(\frac{0.3}{0.5}\right) 27 = 711 \text{ lb}$$

$$F_{me} = K_b x_{to} + F_{oe} = 630 x_{to} + 711 \text{ lb}$$

$$\epsilon_b K_b M_t v_{ot}^2 = 2\epsilon_b K_b (E, -\Delta E_t) = 0.3 \times 630 \times 6948 = 1,313,172 \text{ lb}^2$$

$$Z = \sqrt{F_{oe}^2 + \epsilon_b K_b M_t v_{ot}^2} = \sqrt{1,818,693} = 1348 \text{ lb.}$$

Continuing

$$0.000611 = 0.00785 \left[\operatorname{Sin-'} \left(\frac{630x_{to} + 711}{1348} \right) - \operatorname{Sin^{-1}} \left(\frac{711}{1348} \right) \right]$$

$$0.0778 = \operatorname{Sin-'} (0.4674x_{to} + 0.5274) - \operatorname{Sin-'} 0.5274$$

$$\operatorname{Sin-'} (0.4674x_{to} + 0.5274) = 31" \ 50' + 4^{\circ} \ 28' = 36" \ 18'$$

$$0.4674x_{to} = 0.5920 - 0.5274 = 0.0646$$

$$x_{to} = 0.138 \text{ in.}$$

The barrel has 0.862 in. to go to complete its buffer stroke. The time needed to tranverse this distance is obtained from **Eqs.** 2–60c and 2–61c. Calculate the constants in **Eq.** 2–60c.

$$4\epsilon M_b = 4\left(0.5\right)\frac{10}{386.4} = 0.0518 \text{ lb-sec}^2/\text{in.}$$
$$\frac{1}{2\epsilon M_b} = \frac{386.4}{2 \times 0.5 \times 10} = 38.64 \text{ in.}/(\text{lb-sec}^2)$$
$$\frac{K}{4\epsilon M_b} = \frac{5.8 \times 386.4}{4 \times 0.5 \times 10} = 112/\text{sec}^2$$

Substitute these values into Eq. 2-60c.

Ax = B
$$\begin{bmatrix} v_{(n-1)} & \text{At} - 38.64 & F_{(n-1)} & \text{At'} \\ + 112 \Delta t^2 \Delta x_t \end{bmatrix}$$
 (2-68a)

where

$$B = \frac{0.0518}{0.0518 + 5.8 \,\Delta t^2}$$

Calculate the constants in Eq. 2-61c.

$$4\epsilon\epsilon_b M_t = \frac{4 \times 0.5 \times 0.3 \times 50}{386.4} = 0.0776 \text{ lb-sec}^2/\text{in}.$$

$$\epsilon K_b + \epsilon_b K = 0.5 \times 630 + 0.3 \times 5.8 = 316.7 \text{ lb/in.}$$

$$\frac{1}{2\epsilon_b M_t} = \frac{386.4}{2 \times 0.3 \times 50} = 12.88 \text{ in./(lb-sec}^2)$$
$$\frac{1}{2\epsilon M_t} = \frac{386.4}{2 \times 0.5 \times 50} = 7.73 \text{ in./(lb-sec}^2)$$
$$\frac{K}{4\epsilon M_t} = \frac{5.8 \times 386.4}{4 \times 0.5 \times 50} = 22.41/\text{sec}^2$$

Substitute in Eq. 2–61c.

$$\Delta x_{t} = A \left[v_{t(n-1)} At - 12.88 F_{b(n-1)} \Delta t^{2} + 7.73 F_{(n-1)} \Delta t^{2} + 22.41 \Delta t^{2} \Delta x \right]$$

$$(2-68b)$$

where A =
$$\frac{0.0776}{0.0776 + 316.7\Delta t^2}$$

Solve for the various parameters and then for At.

$$\Delta x_t = L_b - x_{to} = 1.00 - 0.138 = 0.862 \text{ in.}$$

The driving spring force is estimated as the average during this period

 $F_{(n-1)} = 27$ lb (assumed constant)

$$F_{b(n-1)} = F_{ob} + K_b x_{to} = 727 + 630 \times 0.138 = 814 \text{ lb}$$

$$\Delta E'_t = \frac{1}{2\epsilon_b} \left[F_{ob} + F_{b(n-1)} \right] x_{to} = 354 \text{ in.-lb}$$

$$E_{t(n-1)} = E_t - \Delta E_t - \Delta E'_t = 3572 - 98 - 354 = 3120 \text{ in.-lb}$$

Ax = 1.928 (assumed and then verified below)

$$v_{t(n-1)} = \sqrt{\frac{2E_{t(n-1)}}{M_t}} = \sqrt{\frac{6240 \text{ x } 386.4}{50}} = \sqrt{48223} = 219.6 \text{ in./sec}$$

$$0.862 = \left(\frac{0.0776}{0.0776 + 316.7 \,\Delta t^2}\right) (219.6 \text{ At} - 10484 \,\Delta t^2 + 209 \,\Delta t^2 + 43 \Delta t^2)$$

$$0.862 + 3518 \Delta t^2 = 219.6 \Delta t - 10232 \,\Delta t^2$$

$$\Delta t^2 - 15.97 \text{ x } 10^{-3} \text{ At} + 62.70 \text{ x } 10^{-6} = 0$$

$$\text{At} = 6.96 \text{ x } 10^{-3}$$

Since $\Delta t^2 = 48.4 \times 10^{-6}$, the fraction $\frac{0.0518}{0.0518 + 5.8\Delta t^2} = 0.9946$

$$\Delta x = 0.9946 \left[v_{(n-1)} \Delta t - 38.64 F_{(n-1)} \Delta t^2 + 112 \Delta t^2 \Delta x_t \right]$$

= 0.9946 \left[285 x 6.96 x 10^{-3} - (38.64 x 27 - 112 x 0.862) 48.4 x

Ax = 0.9946 (1.984 - 0.046) = 1.928 in.

The absolute distance traveled by the barrel at this time is 2.0 in., and x_b the distance that the bolt traveled with respect to the barrel is

$$x_b = \Sigma \Delta x - L$$
, $+Ax = 1.235 - 2.0 + 1.928 = 1.163$ in.

The total time of buffer spring action during recoil is

$$t_{br} = t_{rt} + At = 0.00061 + 0.00696 = 0.00757$$
 sec.

The prevailing conditions at the end of the propellant gas period are now computed. The barrel travel is

$$x_t = \Sigma \Delta x_t + x_{to} = 1.0 + 0.138 = 1.138$$
 in.

butters $\Delta \Delta 5,389$ in $\theta e cin. The arbeilt travel when hitting spacing deflection is$

$$x_{bo} = \Sigma \Delta x - x_t = 1.235 - 1.138 = 0.097$$
 in.

where $\sum \Delta x = 1.235$ in., absolute bolt travel at end of propellant gas period (Table 2–2). The average driving spring force for the remaining deflection is

$$F_a = \frac{\epsilon E_b}{\Gamma = \mathbf{x}_{bo}} = \frac{0.5 \text{ x } 1051}{10.0 - 0.097} = 53.1 \text{ lb.}$$

For K = 5.8, the force at 0.10 in. deflection is

$$F'_o = F_a - \frac{1}{2} K(L - x_{bo}) = 53.1 - 28.7 = 24.4 \text{ lb.}$$

The driving spring force when the bolt is fully retracted is

$$F_m = F'_o + K(L - x_{ho}) = 24.4 + 57.4 = 81.8$$
 lb.

The driving spring force at zero bolt travel is

$$F_o = F_m - KL = 81.8 - 58 = 23.8$$
 lb

The bolt travel from the time that the propellant gas becomes ineffective until the barrel is fully recoiled is

$$x'_b = x_b - x_{bo} = 1.163 - 0.097 = 1.066$$
 in.

The driving spring force F is

$$F = F'_o + K x'_b = 24.4 + 5.8 \times 1.066 = 30.6 \text{ lb}.$$

The absorbed energy expressed as the differential energy ΔE is

$$AE = \left[\frac{(F'_o \pm F)}{2\epsilon}\right] x'_b = \left(\frac{55}{2 \times 0.5}\right) 1.066 = 58.6 \text{ in.-lb.}$$

The energy remaining becomes

$$E = E_b - AE = 1051 - 58.6 = 992.4$$
 in.-lb.

The bolt velocity at this time becomes

$$\nu = \sqrt{\frac{2E}{M_b}} = \sqrt{\frac{2 \times 992.4 \times 386.4}{2 \times 9910 \times 386.4}}$$
$$= \sqrt{76693} = 276.9 \text{ in./sec}$$

The time t at full recoil of the barrel or when barrel begins to counterrecoil is

$$t = t_{\sigma} + \Delta t = 12.96$$
 msec

- where $t_g = 0.006$ sec, duration of propellant gas period
 - At = 0.00696 sec, time for barrel to complete recoil after t_{σ} .

2-4.4 COMPUTER ROUTINE FOR COUNTER-RECOILING BARREL DYNAMICS

A digital computer routine is programmed in FORTRAN IV language for computing the dynamics of the barrel during counterrecoil. Since time and distance are the most pertinent parameters, the program is generated about these data. During a given differential time, Eqs. 2–60c and 2–64d give the differential travel 'distance of the bolt while Eqs. 2–63c and 2–65c give the differential travel distance of the barrel. Eq. 2–53a provides the relative travel which is equivalent to the driving spring compression. The differential relative travel between barrel and bolt is computed from Eq. 2–53b.

After substituting the various known constants, Eqs. 2–60c and 2–64d are rewritten as Eqs. 2–68a and 2–70a to define the action of the bolt during recoil and counterrecoil, respectively. The substitution of constants into Eq. 2–63c yields equations for the barrel travel while the bolt is recoiling; Eq. 2–69a when the buffer is active; and Eq. 2–69b when the barrel spring acts alone. Eq. 2–65c, after the substitution of numerical constants, becomes Eq. 2–70b which defines the differential barrel travel if the buffer is still active. When the buffer is inactive, Eq. 2–70c defines the differential barrel travel.

Since the equation for solving Ax includes an expression that contains Ax,, and the equation for solving Δx_t includes an expression that contains Ax, the computer program contains an interative routine that approximates these two differential distances. The approximations for Ax and Ax, eventually approach the true values close enough to render any error negligible.

The computed values of the constants in Eq. 2-63c for the barrel counterrecoiling under the influence of the buffer while the bolt is still recoiling are

$$4\epsilon M_t = \frac{4 \times 0.5 \times 50}{386.4} = 0.2588 \, \text{lb-sec}^2/\text{in}.$$

$$\epsilon \epsilon_b K_b - K = 0.5 \times 0.3 \times 630 - 5.8 = 88.7$$
 lb/in.

$$\frac{\epsilon_b}{2M_t} - \frac{0.3 \times 386.4}{2 \times 50} = 1.159 \text{ in./(lb-sec^2)}$$

$$\frac{1}{2\epsilon M_t} = \frac{386.4}{2 \times 0.5 \times 50} = 7.73 \text{ in./(lb-sec^2)}$$

$$\frac{K}{4\epsilon M_t} = \frac{5.8 \times 386.4}{4 \times 0.5 \times 50} = 22.41 / \sec^2$$

Substitute these constants in Eq. 2-63c

Ax, = A[
$$v_{t(n-1)}\Delta t + (1.159F_{b(n-1)})$$

- 7.73 $F_{(n-1)}$) $\Delta t^2 - 22.41\Delta t^2$ Ax] (2-69a)

where

$$A = \frac{0.2558}{0.2558 + 88.7\Delta t^2}$$

At the end of buffer return, only barrel and driving springs remain effective. These design data for the barrel spring are

$$K_t = 37 \text{ lb/in.}, \quad F_{ot} = 107 \text{ lb}, \quad \epsilon_t = 0.5 \quad \epsilon/2M_t = 1.93.$$

2-34

The constants in Eq. 2-63c now become

$$\epsilon \epsilon_t K_t = K = 0.5 \times 0.5 \times 37 - 5.8 = 3.45$$
 lb/in.

$$\frac{\epsilon_t}{2M_t} = \frac{0.5 \times 386.4}{2 \times 50} = 1.932 \text{ in.}/(\text{lb·sec}^2).$$

Substitute the revised constants into Eq. 2-63c.

$$\Delta x_{t} = A \left\{ v_{t(n-1)} \Delta t + \left[1.932 F_{b(n-1)} - 7.73 F_{(n-1)} \right] \Delta t^{2} - 22.41 \Delta t^{2} \operatorname{Ax} \right\}$$

$$(2-69b)$$

where

$$A = \frac{0.2558}{0.2558 + 3.45 \Delta t^2}$$

The constants of Eq. 2-64d, when both bolt and barrel counterrecoil, are computed to be

$$4M_h = 0.1035 \, \text{lb-sec}^2/\text{in.}; \quad \epsilon K = 2.9 \, \text{lb/in.}$$

$$\epsilon/2M_b = 9.66 \text{ in.}/(\text{lb-sec}^2); \quad \epsilon K/4M_b = 28/\text{sec}^2$$

$$B = \frac{0.1035}{0.1035 - 2.9\Delta t^2}$$

Eq. 2-64d now becomes

Ax =
$$B \left[V_{(n-1)} \Delta t - 9.66 F_{(n-1)} \Delta t^2 - 28 \Delta t^2 \Delta x_t \right].$$
 (2-70a)

The constants of Eq. 2-65c also change.

$$4M_t = 0.518 \,\text{lb-sec}^2/\text{in}.$$
 $\epsilon K/4M_t = 5.6 \,/\,\text{sec}^2$

$$\epsilon/2M_t = 1.932 \text{ in.}/(\text{lb-sec}^2)$$

If the buffer is still active, the computed constants are

$$\epsilon K + \epsilon_b K_b = 0.5 \times 5.8 + 0.3 \times 630 = 191.9 \text{ lb/in}.$$

$$\epsilon_b/2M_t = 1.159 \text{ in.}/(16 \cdot \sec^2); \text{ A} = \frac{0.518}{+191.9\Delta t^2}$$

After substituting these constants into Eq. 2-65c, the differential barrel travel becomes

$$\Delta x_t = A \left\{ v_{t(n-1)} \Delta t + \left[1.159 F_{b(n-1)} - 1.932 F_{(n-1)} + 5.6 \Delta x \right] \Delta t^2 \right\}.$$
 (2-70b)

With the buffer no longer active, the constants become

$$\epsilon K + \epsilon_t K_t = 0.5 \text{ x } 5.8 + 0.5 \text{ x } 37 = 21.4 \text{ lb/in.}$$

$$\epsilon_t/2M_t = 1.932 \text{ in.}/(\text{lb-sec}^2); \text{ A} = \frac{0.518}{+21.4\Delta t^2}$$

After being assigned these constants, Eq. 2--65c becomes

$$\Delta x_t = A \left\{ v_{t(n-1)} \Delta t + \left[1.932F_{b(n-1)} - 1.932F_{(n-1)} + 5.6\Delta x \right] \Delta t^2 \right\}.$$
 (2-70c)

Although functions of the spring forces appear in

the equations for computing the distance traveled by bolt and barrel, the spring forces must be computed for each increment of time since those values are projected into the next increment. At the end of each increment, the spring forces on bolt and barrel are computed, respectively, from Eqs. 2–55 and 2–56. The driving spring force is

$$F = F_{(n-1)} + 5.8\Delta x_b.$$
 (2-71a)

While the buffer is operating, the counterrecoil force on the barrel becomes

$$F_b = F_{b(n-1)} - 630\Delta x_t.$$
 (2-71b)

When the barrel spring operates alone, this force is

$$F_b = F_{b(n-1)} - 37\Delta x_t. \qquad (2-71c)$$

After the spring forces are computed, the respective energies and velocities of the bolt and barrel are computed from formulas based on Eqs. 2–66a, 2–66b, and 2–66d.

For convenience, the computer program is divided into four periods: (1) during buffer action, (2) during bolt recoil, (3) after buffer action, and (4) during bolt counterrecoil. Bolt action occurs simultaneously with barrel action (buffer action being a part of barrel action), but usually continues after the barrel is fully counterrecoiled. When the bolt is fully recoiled at t =50.63 msec (Table 2–5), it immediately starts counterrecoiling with the barrel and these two now counterrecoil as one mass. The velocity at this instant is computed from the law of the conservation of momentum.

$$M_t v_t = (M_t + M_b) v_{t(n-1)}$$
(2-7 ld)

Table 2–3 lists the variables and corresponding **FORTRAN** code in alphabetical order. Table 2–4 lists the input and Table 2–5 lists the output or results of the computer. The program is found in Appendix A–1 and its flow chart in Appendix A–2.

After the barrel has fully counterrecoiled, all remaining activity is confined to the bolt. It still has to negotiate its complete counterrecoil stroke. The time elasped for the bolt to complete the remaining counterrecoil stroke is computed from Eq. 2-26.

$$t_{crb} = \sqrt{\frac{M_{h}}{eK}} \left(\frac{\sin^{-1} \frac{-F_{\rho}}{\sqrt{F^{2} + (\frac{K}{\epsilon})}M_{b}v^{2}}}{\sqrt{F^{2} + (\frac{K}{\epsilon})}M_{l}v^{2}} - \frac{\sin^{-1} \frac{-F}{\sqrt{F^{2} + (\frac{K}{\epsilon})}M_{l}v^{2}}}{\sqrt{F^{2} + (\frac{K}{\epsilon})}M_{l}v^{2}} \right)$$
(2-72)
$$t_{crb} = 0.0945 \left[\sin^{-1} \left(\frac{-81.77}{88.38} \right) \right]$$

$$= 0.0945$$
 [Sin-' (-) 0.2693 - Sin-' (-) 0.92521

$$= 0.0945 (344.37 - 292.3)/57.3 = 0.0859 \text{ sec}$$

Symbol	Code	Symbol	Code
Ε	Ε	n	Ι
AE	DE	t	Т
E _t	ЕТ	At	DT
ΔE_t	DET	V	V
F	F	ν_{t}	VT
F _b	FB	w _b	WB
F _o	FO	w _{bbl}	WBBL
g	G	Ax	DX
K	SK	x _b	XB
K _b	SKB	Δx_{h}	DXB
K _t	SKT	x,	ХТ
M _b	EMB	Δx_{t}	DXT
M,	EMIT	E	EPS
M_{b}^{ν}	BMV	ϵ_{b}	EPSB
$M_t v_t$	TMV	e,	EPST

TABLE 2-3. SYMBOL-CODE CORRELATION FOR DELAYED BLOWBACK PROGRAM

where
$$M_b = \frac{10}{386.4}$$
 lb-sec²/in., mass of bolt

K = 5.8 lb/in., driving spring rate

- $F_o = 23.8$ lb, spring force when bolt is closed
- F = 81.77 lb, last driving spring force in Table 2-5
- $M_b v^2 = 2E = 97$ in.-lb, (E is last value of bolt energy in Table 2-5)
 - E = 0.5, efficiency of driving spring

Time elapsed from the complete cycle of barrel action including free recoil, buffing, and counterrecoil is

 $t_{tc} = 54.73$ msec, elapsed time of barrel cycle (Table 2–5) $t_c = t_{tc} + t_{crb} = 0.0547 + 0.0859 = 0.1406 \,\mathrm{sec}.$

The firing rate is

$$f_r = \frac{co}{t_c} = \frac{co}{0.1406} = 426 \text{ rounds/min.}$$

The velocity of the bolt just as counterrecoil is completed is

$$v_{crb} = \sqrt{v_o^2 + \frac{2E}{M_b}} = \sqrt{v_o^2 + \frac{\epsilon(F_o + F)x_b}{M_b}}$$
$$= \sqrt{3745 + \frac{0.5 \times 105.57 \times 386.4 \times 9.995}{10}}$$
$$= 155.3 \text{ in/sec.}$$

2–36

Code	Input	Codc	Input
AI	0.2558	WB	10.0
A2	88.7	WBBL	50.0
A3	3.45	FO	23.8
A4	0.518	FST	107.0
A5	191.9	FKCR	9.66
A6	21.4	DKXTCR	28.0
B1	0.0518	DKXCR	5.603
B2	5.8	F (1)	30.6
B3	0.1035	FB(1)	1357.0
B4	2.9	V (1)	276.9
EPS	0.5	VT(1)	0.0
EPSB	0.3	XB(1)	1.163
EPST	0.5	XT(1)	0.0
FK	38.64	T(1)	12.96
DXKT	112.0	DX(1)	0.0
BUFK	1.159	DXB(1)	1.066
BBLK	1.932	DXT(1)	0.0
DKX	22.41	DE(1)	0.0
FBK	7.73	DET(1)	0.0
SK	5.8	E(1)	992.4
SKB	630.0	ET(1)	0.0
SKT	37.0	G	386.4

TABLE 2-4. INPUT FOR DELAYED BLOWBACK PROGRAM

2-4.5 SPRINGS

The driving, barrel, and buffer springs have been assigned characteristics in the dynamic analysis to meet the firing cycle requirements. The analyses which follow of the three springs determine their remaining characteristics that are congruous with the operational and strength requirements.

2-4.5.1 Driving Spring

Known Data:

K = 5.8 lb/in., spring constant

 $F_o = 23.8$ lb, spring force with bolt closed

 $F_m = 81.8$ lb, spring force at full recoil

- L = 10.0 in., bolt travel
- $T_c = t_{rb} = 0.0474$ sec, compression time of spring
- $v_i = v_f = 285$ in./sec, bolt velocity of free recoil, impact velocity

The compression time of the spring is measured from the time (3.252 msec, Table 2-2) that the bolt is unlocked until it has fully recoiled (t = 50.6 msec, when $x_b = 10.0$ in., Table 2-5).

Since
$$v_i < 25$$
 fps, select $\frac{T_c}{T} = 3.8$, or
 $T = \frac{0.0474}{3.8} = 0.0125$ sec

2–37

TABLE 2-5. COUNTERRECOIL DYNAMICS OF DELAYED BLOWBACK GUN

INCRE- MENT 1	KELATIVE DELTA TRAVEL INCH	DELIA DOLT TRAVEL INCH	JELTA JARKEL TRAVEL INCH	TOTAL BOLT TRAVEL I'CH	TOTAL Naprel Travel Inch	DRIVING SPRING FORCE POUND	BARREL SPRING FORCE POUND
1 2 3	•000 •549	1.060	•000 •005	l•163 1•717 2•272	.000 .005	30.60 33.76	1357.0 1353.7
4	•527	•555	•028	2.827	• 0.22	40.20	1325.2
с б	•514 •499	•554 •551	•040 •052	3•381 3.932	•142	43.41 46.61	1299.9 1267.2
7 8	•405 •405	•546 •540	•063 •074	4•478 5•018	•206 •280	49.77 52.91	1227.4 1180 7
9	•447	•532	•0F5	5.550	.365	55.99	1127.2
10 11	•426 •464	•521 •569	•095 •105	6.072 6.580	•460 •564	59.02 61.97	1067.4
12	. 330	• 404	•114	7•0 7 4	.678	64.83	929.9
13 14	• 354 • 326	•470 •455	•122 •130	7.550	•800 •930	67.59 70.23	853.0 771.3
15	.155	•225	.070	8.230	1.000	71.53	107.0
16 17	•278	•416 • 383	•138 •139	8•646 9•023	1.138	73.95	101.9
18	.206	• 346	•140	9.375	1.417	78.17	91.6
19 20	•103 •114	•365 •257	.142	9+680 9:937	1.559	79.94	86•3 81•0
21	• 017	•0£4	•047	10.000	1.749	81.80	79.3
22 23	•000 -•125	0000 -0003	•000 •122	10+000 9+997	1.749	81.80 81.78	79.3 74•8
24	125	002	•123	9.995	1.994	81.77	70.2
20	006	•000	•006	4.930	2.000	81+77	70.0
INCRE-	TIME	DELTA BOLT ENERGY	DELTA SARREL		BARREL		
I	MSEC	IN-L8	IN-LB	IN-LB	IN-LB	IN/SEC	IN/SEC
1	12.96	.0	• 0	992.4	• G	276.9	• 0
2	14.96	35.7	2.2	956.7	2.2	271.9	5.8
4	18.96	42.8	11.4	8/4.6	20.3	260.0	17.7
3	20.96	46.3	15.8	828.3	36.1 56.1	253.0 245.3	23•6 29 4
7	24.96	52.7	23.6	726 1	70.1	236.9	35.1
6 9		OL .	20.0	120+1	17 • 1		
10	26.96 28.96	55.5 57.9	26•A 29•4	670.6 612.7	106.5 135.9	227.7 217.6	40.6 45.8
10	26.96 28.96 30.96	55.5 57.9 60.0	26.A 29.4 31.3	670.6 612.7 552.7	106.5 135.9 167.2	227.7 217.6 206.7	40.6 45.8 50.d
10 11 12	26.96 28.96 30.96 32.96 34.96	55.5 57.9 50.0 61.5 52.6	26.A 29.4 31.3 32.5 32.9	670.6 612.7 552.7 491.2 428.6	106.5 135.9 167.2 199.6 232.6	227.7 217.6 206.7 194.8 182.0	40.6 45.8 50.d 55.5 60.0
10 11 12 15	26.96 28.96 30.96 32.96 34.96 36.96	55.5 57.9 60.0 61.5 62.6 63.0	26.A 29.4 31.3 32.5 32.9 32.6	670.6 612.7 552.7 491.2 428.6 305.6	106.5 135.9 167.2 199.6 232.6 265.2	227.7 217.6 206.7 194.8 182.0 168.1	40.6 45.8 50.d 55.5 60.0 64.0
10 1 12 15 14 15	26.96 28.96 30.96 32.96 34.96 36.96 36.96 39.99	55.5 57.9 60.0 61.5 62.6 63.0 62.8 31.9	26.8 29.4 31.3 32.5 32.9 32.6 31.6 15.7	670.6 612.7 552.7 491.2 428.6 355.6 302.8 2/1.0	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5	227.7 217.6 206.7 194.5 182.0 168.1 153.0 144.7	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5
10 11 12 15 14 15 16 17	26.96 28.96 30.96 32.96 36.96 36.96 38.96 39.99 41.99	55.5 57.9 50.0 61.5 52.6 63.0 62.8 31.9 60.5	26.A 29.4 31.3 32.5 32.9 32.6 31.6 15.7 7.2	670.6 612.7 552.7 491.2 428.6 305.6 302.8 2/1.0 210.5	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5 319.7	227.7 217.6 206.7 194.8 182.0 168.1 153.0 144.7 127.5	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5 70.3
10 11 12 15 14 15 16 17 18	26.96 28.96 30.96 32.96 34.96 36.96 38.96 39.99 41.99 43.99 45.99	55.5 57.9 60.0 61.5 62.6 63.0 62.8 31.9 60.5 57.4 53.4	26.8 29.4 31.3 32.5 32.9 32.6 31.6 15.7 7.2 6.9 6.6	670.6 612.7 552.7 491.2 428.6 305.6 302.8 2/1.0 210.5 153.0 99.6	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5 319.7 326.6 333.2	227.7 217.6 206.7 194.8 182.0 168.1 153.0 144.7 127.5 108.8 87.7	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5 70.3 71.1 71.8
10 11 12 15 14 15 16 17 18 19 20	26.96 28.96 30.96 32.96 36.96 36.96 39.99 41.99 43.99 45.99 45.99	55.5 57.9 60.0 61.5 62.6 63.0 62.8 31.9 60.5 57.4 53.4 46.3	26.A 29.4 31.3 32.5 32.9 32.6 31.6 15.7 7.2 6.9 6.6 6.3	670.6 612.7 552.7 491.2 428.6 365.6 302.8 2/1.0 210.5 153.0 99.6 51.4	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5 319.7 326.6 333.2 339.6	227.7 217.6 206.7 194.8 182.0 168.1 153.0 144.7 127.5 108.8 87.7 63.6 277	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5 70.3 71.1 71.8 72.4 73.1
10 11 12 15 14 15 16 17 18 19 20 21	26.96 28.96 30.96 32.96 36.96 38.96 39.99 41.99 43.99 45.99 45.99 49.09 50.63	55.5 57.9 60.0 61.5 62.6 63.0 62.8 31.9 60.5 57.4 53.4 45.5 41.4 10.4	26.A 29.4 31.3 32.5 32.9 32.6 31.6 15.7 7.2 6.9 6.6 6.3 6.0 1.9	670.6 670.6 612.7 552.7 491.2 428.6 305.6 302.8 2/1.0 210.5 153.0 99.6 51.4 9.9 .0	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5 319.7 326.6 333.2 339.6 345.5 347.4	227.7 217.6 206.7 194.8 182.0 168.1 153.0 144.7 127.5 108.8 87.7 63.0 27.7 .0	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5 70.3 71.1 71.8 72.4 73.1 73.3
11 12 15 14 15 16 17 18 19 20 21 22 22	26.96 28.96 30.96 32.96 36.96 38.96 39.99 41.99 43.99 43.99 43.99 47.99 47.99 50.63 50.63	55.5 57.9 60.0 61.5 62.6 63.0 62.8 31.9 60.5 57.4 53.4 46.5 57.4 53.4 41.4 10.4 48.3	26.A 29.4 31.3 32.5 32.9 32.6 31.6 15.7 7.2 6.9 6.6 6.3 6.0 1.9 106.2	670.6 670.6 612.7 552.7 491.2 428.6 305.6 302.8 2/1.0 210.5 153.0 99.6 51.4 9.9 .0 46.3 48.4	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5 319.7 326.6 333.2 339.6 345.5 347.4 241.3 246.0	227.7 217.6 206.7 194.8 182.0 168.1 153.0 144.7 127.5 108.8 87.7 63.0 27.7 0 -61.1	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5 70.3 71.1 71.8 72.4 73.1 73.3 61.1 61.7
10 11 12 15 14 15 16 17 18 19 20 21 22 23 24	$\begin{array}{c} 26.96\\ 28.96\\ 30.96\\ 32.96\\ 36.96\\ 36.96\\ 36.96\\ 39.99\\ 41.99\\ 43.99\\ 43.99\\ 45.99\\ 45.99\\ 47.99\\ 49.99\\ 50.63\\ 50.63\\ 50.63\\ 52.63\\ 54.63\end{array}$	55.5 57.9 60.0 61.5 62.6 62.6 31.9 60.5 57.4 53.4 45.3 41.4 10.4 48.3 .1 .1	26.4 29.4 31.3 32.5 32.9 32.6 31.6 15.7 7.2 6.9 6.6 6.3 6.0 1.9 106.2 4.7 4.5	$\begin{array}{c} 720.1\\ 670.6\\ 612.7\\ 552.7\\ 491.2\\ 428.6\\ 305.6\\ 302.8\\ 2/1.0\\ 210.5\\ 153.0\\ 99.6\\ 51.4\\ 9.0\\ 46.3\\ 48.4\\ 48.5\end{array}$	106.5 135.9 167.2 199.6 232.6 265.2 296.8 312.5 319.7 326.6 333.2 339.6 345.5 347.4 241.3 246.0 250.4	227.7 217.6 206.7 194.8 182.0 168.1 153.0 144.7 127.5 108.8 87.7 63.0 27.7 .0 -61.1 -61.1 -61.2	40.6 45.8 50.d 55.5 60.0 64.0 67.7 69.5 70.3 71.1 71.8 72.4 73.1 73.3 61.1 61.7 62.2

Select a mean coil diameter of 1.0 in. Then according to Eq. 2-42, the wire diameter is

$$d = 0.27 \sqrt[3]{DKT} = 0.27 \sqrt[3]{0.0725} = 0.113 \text{ in.}$$

From Eq. 2-41

$$N = \frac{Gd^4}{8KD^3} = \frac{11.5 \times 10^6 \times 1.63 \times 10^{-4}}{8 \times 5.8 \times 1.0} = 40.5 \text{ coils.}$$

Static shear stress is

$$\tau = \frac{8F_mD}{\pi d^3} = \frac{8 \times 81.8 \times 1.0 \times 10^3}{3.14 \times 1.442} = 144,500 \text{ lb/in}^2$$

Dynamic shear stress is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = \left(144,500\right) \frac{4.0}{3.8}$$

= 152,100 lb/in²

Select
$$\frac{T_c}{T} = 3.8$$
, or

 $T = \frac{T_c}{3.8} = \frac{0.013}{3.8} = 0.0034$ sec.

Select a mean coil diameter of 1.0 in. According to Eq. 2-42, the wire diameter is

d = 0.27
$$\sqrt[3]{DK_t T}$$
 = 0.27 $\sqrt[3]{0.1258}$ = 0.136 in.

From Eq. 2-41

$$N = \frac{Gd^4}{BK_t D^3} = \frac{11.5 \times 10^6 \times 3.42 \times 10^{-4}}{8 \times 37 \times 1.0} = 13 \text{ coils.}$$

The static shear stress is

$$\tau = \frac{8F_{mt}D}{\pi d^3} = \frac{8 \times 144 \times 1.0}{3.14 \times 2.52 \times 10^{-3}} = 145,500 \,\text{lb/in.}^2$$

The dynamic shear stress is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = \left(144,500\right) \frac{4.0}{3.8}$$

 $= 153,000 \text{ lb/in}^2$

2-4.5.3 Buffer Spring

Known Data:

- F_{obs} = 620 lb, spring force when first contacted
- $F_{mbs} = 1213$ lb, spring force at end of buffer stroke

 $K_{bs} = 593 \text{ lb/in., spring constant}$

L = 1.0 in., length of buffer stroke

- $T_c = t_{br} = 0.00757$ sec, compression time of spring (see p. 2-32)
- $v_i = 231.7$ in./sec, impact velocity of buffer (see p. 2–29)

2-39

2-4.5.2 Barrel Spring

Known Data:

 $K_t = 37 \text{ lb/in., spring constant}$

- $F_{ot} = 70$ Ib, spring force with barrel in battery
- $F_{mt} = 144$ Ib, spring force with barrel fully recoiled
 - L, = 2.0 in., barrel travel
- $T_c = t_r = 0.013$ sec, compression time of spring
- $v_i = v_f = 232.3$ in./sec, barrel velocity of free recoil, impact velocity

The compression time of the spring includes the time of free recoil and that for the rest of the recoil distance.

Select
$$\frac{T_c}{T} = 3.8$$
, or

$$T = \frac{T_c}{2.8} = \frac{0.00757}{2.8} = 0.00199 \text{ sec.}$$

Select a mean coil diameter of 1.75 in. The wire diameter, from Eq. 2-42, is

d =
$$0.27 \sqrt[3]{DK_{bs}T} = 0.27 \sqrt[3]{2.07} = 0.344$$
 in.

From Eq. 2-41

$$N = \frac{Gd^4}{8K_{hs}D^3} = \frac{11.5 \times 10^6 \times 0.014}{8 \times 593 \times 5.36} = 6.3 \text{ coils.}$$

The static shear stress is

$$\tau = \frac{8F_{mbs}D}{\pi d^{5}} = \frac{8 \times 1213 \times 1.75}{3.14 \times 0.0407} = 133,000 \text{ lb/in}^{2}$$

The dynamic stress is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = 133,000 \left(\frac{4.0}{3.8}\right)$$
$$= 140,000 \text{ lb/in.}^2$$

2-5 RETARDED BLOWBACK

The retarded blowback is similar to the simple blowback except that a linkage supplements the massiveness of the bolt as the primary resistance to the early rearward movement of the cartridge case.

2-5.1 SPECIFIC REQUIREMENTS

To develop the same resistance as the inertia of a large mass, a linkage must have a large mechanical disadvantage during the period of high propellant gas pressure and then gradually relax this resistance as the pressure subsides. A linkage showing these features is illustrated in Fig. 2–8. When the force is greatest, the largest component resisting that force is in line with the bolt; thus only a small component is available to accelerate the bolt and linkage. Later, as the link closes, a larger share of the propellant gas force becomes useful for bolt retraction. Although the gas force has degenerated substantially, the accelerating component has grown to the proportions needed for a short firing cycle and, hence, a high rate of fire.

2-5.2 DYNAMICS OF RETARDED BLOWBACK

Fig. 2–9 illustrates graphically the kinematics of a retarded blowback linkage. Point A represents the position of the bolt as it moves linearly on line AC. Point B represents the position of the common joint between links AB and BC as BC rotates about the fixed point C. The equations of dynamic equilibrium are developed from the graphic illustration of Fig. 2–10. The kinematics are found by writing the two equations that define the geometric constraints of the linkage and then differentiating twice; then writing all variables in terms of x and its derivatives.

2-5.2.1 Kinematics of the Linkage

The two equations defining the geometric constraint are obtained from the geometry of the linkage, (see Fig. 2-9)

$$AB \cos \phi + BC \cos \theta = AC - x \qquad (2-73a)$$

AB
$$\sin \phi - BC \sin \theta = 0$$
 (2-73b)

Figure 2–8. Schematic of Retarded Blowback Linkage

Figure 2–9. Kinematics of Retarded Blowback Linkage

Figure 2–10. Dynamics of Bolt and Linkage

where x is the distance between the breech face and the bolt at any given time t. Differentiate the above equations twice with respect to t.

.

AB
$$(\sin \phi) \dot{\phi} \pm BC (\sin \theta) \dot{\theta} = \dot{x}$$
 (2-74a)

$$AB [(\sin \phi) \ddot{\phi} + (\cos \phi) \dot{\phi}^2] + BC [(\sin \theta) \ddot{\theta}$$
$$\pm (\cos \theta) \dot{\theta}^2] = \ddot{x} \qquad (2-74b)$$

$$AB (\cos \phi) \dot{\phi} - BC (\cos \theta) \dot{\theta} = 0 \qquad (2-75a)$$

$$AB [(\cos \phi) \dot{\phi} - (\sin \phi) \dot{\phi}^2] - BC [(\cos \theta) \dot{\theta} - (\sin \theta) \dot{\theta}^2] = 0 \qquad (2-75b)$$

Multiply Eq. 2–74b by $\cos \phi$ and Eq. 2–75b by $\sin \phi$ and subtract.

$$AB \dot{\phi}^2 + BC [(\cos \phi \sin \theta + \cos \theta \sin \phi) \ddot{\theta} + (\cos \phi \cos \theta - \sin \phi \sin \theta) \dot{\theta}^2] = x \cos \phi$$

$$(2-76a)$$

or

$$AB \dot{\phi}^{2} \pm BC [\ddot{\theta} \sin(\theta + \phi) + \dot{\theta}^{2} \cos(\theta + \phi)] = \ddot{x} \cos \phi \qquad (2-76b)$$

Now multiply Eqs. 2–74b and 2–75b by
$$\cos \theta$$
 and $\sin 8$, respectively, and add.

$$AB [(\cos e \sin \phi + \cos \phi \sin e)\phi + (\cos e \cos \phi - \sin \phi \sin \theta)\dot{\phi}^2] + BC\dot{\theta}^2 = \ddot{x}\cos\theta \quad (2-77a)$$

× ••

or

$$4B \left[\dot{\phi} \sin \left(\theta + \phi \right) + \dot{\phi}^2 \cos \left(\theta + \phi \right) \right] \\ + BC \dot{\theta}^2 = x \cos \theta \qquad (2-77b)$$

Multiply Eq. 2–74a by $\cos \theta$ and Eq. 2–75a by $\sin \theta$ and add.

 $AB \ \dot{\phi} (\sin \phi \, \cos \theta \, + \, \cos \phi \, \sin \theta) = \dot{x} \, \cos \theta \quad (2-78a)$

or

AB
$$\dot{\phi} \sin(\theta \pm \phi) = \dot{x} \cos \theta$$
 (2-78b)

Multiply the same equations by $\cos \phi$ and $\sin \phi$, respectively, and subtract.

BC
$$\dot{\theta}$$
 (sin θ cos ϕ t cos θ sin ϕ) = \dot{x} cos ϕ (2-79a)

$$BC \theta \sin (\theta \pm \phi) = x \cos \phi \qquad (2-79b)$$

2-42

+

Solve for $\dot{\phi}$ and $\dot{\theta}$

$$\dot{\phi} = \frac{\dot{x} \cos \theta}{AB \sin (0 + \phi)}$$
(2-80)

$$\dot{\theta} = \frac{x \cos \phi}{BC \sin (0 + \phi)} \,. \tag{2-81}$$

Solve Eqs. 2–76b and 2–77b for $\ddot{\theta}$ and $\ddot{\phi}$, respectively

$$\ddot{\theta} = \frac{\ddot{x} \cos \phi - AB \dot{\phi}^2}{BC \sin (\theta + \phi)} - \frac{\dot{\theta}^2 \cos (c + \phi)}{\sin (\theta + \phi)} \qquad (2-82)$$

$$\ddot{\phi} = \frac{\ddot{x} \cos \theta - BC \dot{\theta}^2}{AB \sin(\theta + \phi)} \quad \frac{\dot{\phi}^2 \cos(\theta + \phi)}{\sin(\theta + \phi)} \quad (2-83)$$

2-5.2.2 Equations of Dynamic Equilibrium

Fig. 2-10 shows the applied and inertial forces of the bolt and linkage. The inertial forces are functions of the kinematics of Fig. 2-9.

Nomenclature of symbols in Figs. 2-9 and 2-10, and in the dynamic analysis follow*.

 a_{ab} = acceleration of A with respect to B

- a, = normal acceleration of A with respect to B
- a_b = acceleration of B
- a_{bn} = normal acceleration of B with respect to A
- a_{ba} = tangential acceleration of B with respect to A
- a_{bc} = tangential acceleration of B with respect to C
- a_{cn} = normal acceleration of B with respect to C
- AB = length of link AB
- BC = length of link BC

- F_a = applied force on recoiling parts
- F_{ab} = linear inertial force of link AB
- F_b = bolt inertial force
- F_{bn} = normal force of link AB
- F_{bt} = tangential inertial force of link AB

 F_{cn} = normal force of link *BC*

- F_{ct} = tangential inertial force of link BC
- F_g = propellant gas force
- F_s = driving spring force
- F_{so} = initial spring force
- I_{ab} = mass moment of inertia of link AB
- I_{bc} = mass moment of inertia of link BC
- K_s = spring constant
- $M_{ab} = \text{mass of link } AB$
- $M_b = \text{mass of bolt}$
- M_r = mass of recoiling parts
- $\mathbf{R}_{\mathbf{r}} = \text{vertical reaction at } A$
- R_{cx} = horizontal reaction at C
- R_{cv} = vertical reaction at C
- T_{ab} = inertial torque of link AB
- T_{hc} = inertial torque of link BC
- v_{ba} = velocity of B with respect to A
- v_{bc} = velocity of **B** with respect to C
- x = velocity of bolt at A
- \ddot{x} = acceleration of bolt at A
- E = efficiency of the spring system
- $E = 1/\epsilon$ during recoil; $E = \epsilon$ during counterrecoil

^{*}Since these symbols are unique for this par., they are not repeated in the general List of Symbols.

- θ = angle of BC with horizontal
- $\dot{\theta}$ = angular velocity of BC, shown positive
- $\dot{\theta}$ = angular acceleration of BC, shown positive
- ϕ = angle of AB with horizontal
- $\dot{\phi}$ = angular velocity of AB, shown positive
- $\ddot{\phi}$ = angular acceleration of AB, shown positive

To achieve equilibrium in the dynamic system, the applied forces and reactions of Fig. 2-10 are equated to the inertial forces. The reactions of the linkage ABC are computed by balancing the moments and forces of the complete system or of any individual link. The inertia forces and moments of each component are expressed in terms of the respective accelerations.

$$F_{ab} = M_{ab}\ddot{x} \tag{2-84a}$$

$$F_b = M_b \ddot{x} \tag{2-84b}$$

$$F_{bn} = M_{ab} \left(\frac{AB}{2}\right) \dot{\phi}^2 \qquad (2-84c)$$

$$F_{bt} = M_{ab} \left(\frac{AB}{2}\right) \ddot{\phi} \qquad (2-84d)$$

$$F_{cn} = M_{bc} \left(\frac{BC}{2}\right) \dot{\theta}^2 \qquad (2-84e)$$

$$F_{ct} = M_{bc} \left(\frac{BC}{2}\right) \ddot{\theta}$$
 (2-84f)

$$T_{ab} = I_{ab}\ddot{\phi} \tag{2-84g}$$

$$T_{bc} = I_{bc} \hat{\phi} \tag{2-84h}$$

 R_{rrr} the vertical reaction at C (Fig. 2–10) is found by computing the moments about A and dividing by length AC.

$$R_{cy} = \left\{ T_{ab} - T_{bc} - F_{ab} \left(\frac{AB}{2} \right) \sin \phi + \left(\frac{AB}{2} \right) F_{bt} - F_{cn} AB \sin (\theta \not \tau \phi) \right.$$
$$= \left. F_{ct} \left[AB \cos (\theta \not \tau \phi) + \frac{BC}{2} \right] \right\} / AC \quad (2-85)$$

 R_{cx} , the horizontal reaction at C, is found by isolating link BC and equating the applied moment to the inertial moment.

$$R_{cx} BC \sin \theta - R_{,,} BC \cos \theta = T_{bc} - F_{ct} \left(\frac{BC}{2}\right)$$

$$(2-86)$$

$$R_{cx} = R_{cy} \frac{\cos \theta}{SIN\theta} + \frac{T_{bc}}{BC \sin \theta} - \frac{F_{ct}}{2 \sin \theta} - \frac{-(2-87)}{2 \sin \theta}$$

The general equation for determining the dynamics of the system consists of the applied horizontal forces and reactions, and the horizontal components of the inertial forces. The inertial moments and vertical force components are not directly involved although they are needed to establish the general equation.

$$F_g - EF_s - R_{cx} = M_r x - F_{bn} \cos \phi - F_{bt} \sin \phi$$

$$t F_{cn} \cos \theta + F_{cn} \sin \theta \qquad (2-88)$$

...

where

$$M_r = M_{ab} + M_b$$

 $F_s = E \left(F_{so} + K_s x \right)$

Eq. 2-88 may be solved by numerical integration after the variables $\dot{\phi}$, $\dot{\theta}$, $\ddot{\theta}$, $\ddot{\theta}$ are written in terms of \dot{x} and x.

2-5.2.3 Digital Computer Program for the Dynamic Analysis

A digital computer program is compiled in FORTRAN IV language for the UNIVAC 1107 computer. The various parameters are solved for each one of many small increments of time into which the recoil and counterrecoil periods are divided. The

solution follows the procedure of the Runge-Kutta-Gill Method of numerical integration. The program listing is in Appendix A-3; the corresponding Flow Chart in Appendix A-4.

Because Eq. 2–88 becomes extremely unwieldly when the appropriate expressions are substituted for $\dot{\phi}$, $\dot{\theta}$, $\ddot{\phi}$, $\dot{\theta}$, simple coefficients are introduced in sequence to represent the cumbersome expressions. The continued substitution eventually leads to an equation of simple terms. The list of coefficients that follow are determined from Eqs. 2–80 to 2–83.

<i>C</i> 1	=	$\cos \phi/BC \sin (\theta + \phi)$
C2	-	- $AB/BC \sin (6 t \phi)$
С3	1	$-\cos(6+\phi)/\sin(6+\phi)$
C4	=	$\cos\theta/AB \sin(6+\phi)$
C5	z	- <i>BC</i> / <i>AB</i> sin (6 t φ)
C6	=	$C2 \cdot C4^2 + C3 \cdot C1^2$
C7	=	$C5 \cdot C1^2 + c3 \cdot C4^2$

Rewrite **Eqs.** 2-80 to 2-83 by inserting the proper coefficient.

$$\dot{\phi} = C4\dot{x} \tag{2-89a}$$

$$e = C1\dot{x}$$
 (2-89b)

$$\mathfrak{e} = C1\ddot{x} + C6\dot{x}^2 \qquad (2-89c)$$

$$\ddot{\phi} = C4\ddot{x} + C7\dot{x}^2$$
 (2-89d)

Rewrite Eq. 2-85

$$R_{cy} = E 3 (C4\ddot{x} + C7\dot{x}^2) - E4X$$

- E5 \cdot C1^2 \cdot \cdot \cdot + E6(C1\cdot + C6\cdot \cdot 2) (2-90a)

where

$$E1 = M_{ab} \cdot AB/2$$
$$E2 = M_{bc} \cdot BC/2$$

$$E3 = (I_{ab} + E1 \cdot AB/2)/AC$$

$$E4 = E1 \sin \phi/AC$$

$$E5 = E2 \cdot AB \sin (6 + \phi)/AC$$

$$E6 = \left\{ E2[AB \cos (6 + \phi) + BC/2] - I_{bc} \right\} /AC$$

Collect terms and assign new coefficients

$$R_{cy} = C8\ddot{x} + C9\dot{x}^2$$
 (2-90b)

where

$$C8 = E3 \cdot C4 - E4 + E6 \cdot C1$$

$$C9 = E3 \cdot C7 - E5 \cdot C1^{2} + E6 \cdot C6$$

Rewrite Eq. 2–87

$$R_{cx} = C8\left(\frac{\cos\theta}{\sin\theta}\right)\ddot{x} + C9\left(\frac{\cos\theta}{\sin\theta}\right) + E7\left(C1x + C6\dot{x}^2\right)/\sin 8 \qquad (2-91a)$$

$$R_{cx} = C10\ddot{x} + C12\dot{x}^2 \qquad (2-91b)$$

where

$$E7 = \frac{I_{bc}}{BC} - \frac{E2}{2}$$

$$C10 = (C8 \cos \theta + E7 \cdot C1)/\sin \theta$$

$$C12 = (C9 \cos \theta + E7 \cdot C6)/\sin \theta$$

Recall Eq. 2–88, solve for F and insert appropriate coefficients.

$$F_{g} = M_{r}x - E1(C4x + C7\dot{x}^{2})\sin\phi$$

- E1 · C4² $\dot{x}^{2}\cos\phi$
+ E2(C1 \ddot{x} + C6 \dot{x}^{2}) sin 8 + E2 · C1 $\dot{x}^{2}\cos\theta$
+ C10 \ddot{x} + C12 \dot{x}^{2} - E(F_o - K_sx) (2-92)

Collect terms and solve for \ddot{x}

$$C11\ddot{x} = F_g + C13\dot{x}^2 + C14 + C15x \qquad (2-93)$$

$$x = (F_{p} t C 13\dot{x}^{2} t C 15x t C 14)/C11 \qquad (2-94)$$

where

$$C11 = M_{\star} - E1 \cdot C4 \sin \phi + E2 \cdot C1 \sin \phi + C10$$

- $C13 = E1 \cdot C7 \sin \phi + C1 \cdot C4^2 \cos \phi$ $E2 \cdot C6 \sin \theta E2 \cdot C1^2 \cos \theta C12$
- $C14 = -EF_{so}$
- $C15 = -EK_s$

The computer solves for \ddot{x} and then all the other variables for each increment of time. The program is also arranged for the interpolation of the gas force F_g when the time, and therefore force, for any particular computations fall between two data points selected from the force-time curve of Fig. 2–7.

Initial spring characteristics are usually based on those of a similar gun. After trial computations, the values are altered to be more compatible with specifications. For instance, in the sample problem, the initial values of initial buffer force and spring constant were $F_{so} = 200$ lb and K, = 388 lb/in. This resulted in a buffer travel of almost twice the specified distance. After changing the spring constant to $K_s = 760$ lb/in. and $F_{so} = 800$ lb, the computed buffer stroke equalled that specified.

Table 2-6 lists the code for each symbol, Table 2-7 lists the input data for the computer program, and Table 2-8 lists the computed dynamics. Four series of computations are made for each increment I and, since there are almost 2000 increments, only the results of the fourth series of every 15th increment is printed. This procedure is followed except at the ends of the recoil and counterrecoil strokes where the results of each terminal increment are printed. By eliminating most of the output from the record, Table 2-8 is held to reasonable size but still contains enough data to show clearly, the trend in the dynamic behavior of the bolt mechanism during the firing cycle.

The final time (at increment I = 1889) of t = 0.067sec shows a firing rate of

$$f_r = \frac{60}{t} = 895 \text{ rounds/min.}$$

Symbol	Code	Symbol	Code
F	FA	'ab	WAB
F _a	FG	w _b	WB
\vec{F}_{so}	FSO	Whe	WBC
g	G	x	Χ
- I _{ab}	EYEB	ϵ	EPS
Ibo	EYEC	θ	THETA
KS	SK	ϕ	PHI
Mah	EMAB	sin $ heta$	STHETA
$M_{\rm h}$	EMB	$\cos heta$	CTHETA
<i>М</i> _	EMR	$\sin \phi$	SPHI
t'	Т	cosφ	CPHI
At	DT	$\sin(\theta + \phi)$	SUMSIN
V	VEL	$\cos\left(\theta+\phi\right)$	SUMCOS

TABLE 2–6. SYMBOL-CODE RELATIONSHIP FOR RETARDED BLOWBACK

The preferred method of increasing this rate is to increase the moment arm of the linkage, i. e., by decreasing the initial value of AC. A lower firing rate may be attained by decreasing the moment arm, i. e., by increasing the initial length of AC.

2.6 RATING OF BLOWBACK WEAPONS

The simple blowback machine gun, because of its simplicity, outranks all other types with respect to maintenance and relative cost. Moving parts are few, and normal care exercised in manufacture produces a gun whose reliability is considered good, i. e., ordinary malfunctions can be corrected in the field within 30 sec. Take-down, cleaning, lubricating, and reassembly requires little time and practically no tools. Although these attributes are encouraging, the simple blowback has its limitations. It is restricted to small caliber guns, low rates of fire, low muzzle velocities, and, therefore, short range. However, the gun is light enough to be carried by the foot soldier and is accurate enough at short ranges to make it a good antipersonnel weapon.

The delayed blowback machine gun is almost as easily maintained as the simple blowback but its relative cost is higher. It has a low to medium rate of fire and a medium to high muzzle velocity. The delayed blowback is not confined to small calibers. It outranges and has better accuracy than the simple blowback and, because of its greater fire power, is more versatile, being capable of destroying both materiel and personnel. The delayed blowback gun is durable and reliable, seldom becoming inoperative because of breakdown except after long usage, and can quickly be restored to operation after ordinary malfunction.

When compared with simple and delayed blowback guns, the advanced primer ignition and retarded blowback types are relegated to second position. The retarded blowback type, because it depends on a linkage system to control bolt recoil that is extremely sensitive to geometric proportions, does not have the reliability of the delayed type either in theory during design, or in practice during development and usage. The large loads applied to the linkage while in motion adversely affects the gun's durability. From these aspects alone the delayed blowback is preferred over the retarded type.

The advanced primer ignition gun is superior to the simple blowback because of its higher firing rate and lower recoil momentum. However, favorable performance depends on timing that must be precise. A slight delay in primer function, and the gun reverts to a simple blowback without the benefit of a massive bolt and stiffer driving spring to soften the recoil impact. Delayed primer ignition creates the hazard of extracting the cartridge case while subjected to pressures high enough to blow up the case. Although advanced primer ignition guns have been made, one by Becker, the exacting requirements in design and construction of gun and ammunition reduce this type almost to the point of academic interest only.

Code	Data	Code	Data
AB	7.0	NHEAD	630
AZ	12.9985	NPO	15
BC	6.0	N9	96
DT	0.000025	SK1	3.8
DTFG	0.0000625	SK2	760.0
DTNEW	0.00026	TCHANG	0.045
EPS	0.50	WAB	0.85
FS 1	63.0	WB	8.0
FS2	800.0	WBC	1.5
G	386.4	XLIM	9.0
Ν	3000	XREC	9.95859
		XBATY	0.010

TABLE 2-7. INPUT DATA FOR RETARDED BLOWBACK

TABLE 2-8. RETARDED BLOWBACK DYNAMICS

		APPLIEO	DISTANCE		
	TIME	FORCE	FROM BREECH	VELOCITY	ACCELERATION
T	SECOND	POUND	INCH	IN/SEC	IN/SEC/SEC
¹	.0000250	398.0	.000000	•0	180.5
15	.0003750	18774.0	.000165	1.6	10185.6
30	.0007500	23834•0	.001883	9.2	36242•9
45	.0011250	18663.9	.009210	34.6	109085.5
60	+0015000	12703.0	.032415	96.7	220112.1
75	.0018750	7733 4	• 085583	190 .0	260303.3
90	.0022500	4922.7	• 174304	281.2	224086.7
105	• 0026250	3801.8	.294690	350.9	187483.0
120	.0030000	2670.7	•441364	420.8	140860.9
135	•0033750	1794.4	•608063	466.0	100246.5
150	.0037500	1103.0	•788991	497.0	66704.3
165	.0041250	651.6	979433	517.3	43452.7
180	.0045000	425.1	1.176159	531.1	30363.6
195	0048750	218.5	1.377183	540.3	19058.6
210	0052500	107.0	1.580966	546•2	12324.8
225	0056250	-9.6	1.786483	549.6	5869.6
240	.0060000	-141.1	1,992836	550.6	-900.6
255	0063750	-142.7	2,199224	550.1	÷1938.7
233	.0067500	-144.3	2.405343	549.2	-2753 7
205	.0071250	-145.0	2 611077	548.0	-3410.0
300	.0075000	-147 4	2 816333	546.6	-3950.3
315	0078750	-149.0	3,021035	545.1	-4404.2
330	0082500	-150.5	3.225119	543.3	-4792.3
345	0086250	-152.1	3.428530	541.5	-5129.6
360	.0090000	-153.6	3.631220	539.5	-5427.2
375	.0093750	-155.1	3.833148	537 4	-5693.4
390	.0097500	-156.7	4.034276	535.2	-5934.5
405	0101250	-158+2	4.234569	533.0	-6155.4
420	.0105000	-159-7	4 433997	530.6	-6360.1
420	-0108750	-161.2	4.632531	520.2	-6551.7
450	-0112500	-162.7	4.830144	525.7	-6732 -7
465	.0116250	=164.2	5.026810	523.2	-6905.4
405	-0120000	=165.7	5,222506	520.5	-7071.6
400	0123750	+167-2	5.417207	517.9	-7232.8
495	.01237500	-168.6	5.610891	515.1	-7390-5
510	0131950	=170.1	5,803537	512.3	-7546.0
525	0131250	-170+1	5 005121	512.5	-7700.6
540	0139750	-171.0	5.995121	505.5	-7955.5
555	0140500		0 + 100020 6 - 2750 40	500.3	
570	0142300	-175.0	6 562200	500.5	-001210
282	● U14025U	-177.3	6 750411		
000	•U15UUUU	-170 7	01/30411 6 03/341	431.4	-0334 .9
615	.0153/50	T1/0+/	0.930301 7.101114	494.3	-8504+2
630	+012/200	-190 "I	/ • 1 2 4 4 4 4	491•1	-9091+5

)

1

Ì

TABLE 2-8. RETARDED BLOWBACK DYNAMICS (Con't.)

		APPLIED	DISTANCE			
	TIME	FORCE	FROM BREECH	VELOCITY	ACCELERATION	
I	SECOND	POUND	INCH	IN/SEC	IN/SEC/SEC	
645	.0161250	-181.5	7.304647	487.8	-8867.6	
660	.0165000	-182.9	7.486933	484.4	-9066.0	
675	0168750	-184.3	7. 667944	481.0	-9279.0	
690	.0172499	-185.6	7.847650	477.4	-9509 9	
705	• 0176249	-187.0	8.026019	473.8	-9762.8	
720	•U179999	-188.3	8.203013	470.1	-10042.5	
735	•U103749	-189.7	8.378596	466.3	-10355.1	
750	.0187499	-191.0	a 552722	462.3	-10708.1	
765	• 0191249	-192.3	8.725342	458.3	-11110.8	
700	0194999	-193.6	8.896399	454.0	-11575.0	
795	0198749	-1893.8	9.065089	439.4	-83221.1	
810	.0202499	-2136.3	9.223000	406.3	-92816-8	
825	• 0206249	-2358.8	9.369479	369.9	-101264.3	
840	• 0209999	-2559.6	9.500939	330.5	-108497-8	
855	0213749	-2737.2	9.617160	288.7	-114496-0	
870	0217499	-2890.1	9.717299	244.8	=119280 /	
685	0221249	=3017.5	9.800679	199.4	=122954.1	
900	0224999	=3118.5	9.866784	152.8	=125611.6	
915	0228749	-3192.5	9 915237	105.3	-127300.2	
910	0232499	=3239.2	9,945783	57.3	-12/355.2	
945	0236249	=3258-3	9.958274	9.0	-128860.8	
948	0236999	-614-7	9,958599	= .2	= 32217.9	
960	0239999	-614.1	9 957093	_99	=32205.7	
975	0243749	-511-8	9.951135	-22.0	-32157 0	
990	0247499	-807.8	9,940655	=34.0	= 32 167.0	
1005	0251249	-802.1	9.925667	-46.0	-31941 7	
1020	0254999	-794 7	9.906187	-58.0	-31769.7	
1035	• 0256749	-785.5	9.882240	-69.8	-31550.1	
1050	0262498	-774 -7	9.053856	-81.6	-31278.5	
1065	0266248	-762.2	9.821074	-93.3	-30950.7	
1080	0269998	-748.0	9.783940	-104.8	-30562 1	
1095	.0273748	-732.2	9.742508	-116.2	-30108.6	
1110	0277498	-714.7	9.696843	-127.4	-29586.5	
1125	0281248	-695 7	9.647018	-138-4	-28992.3	
1140	0284998	-675.1	9.593116	-149.1	-28323-7	
1155	0288748	=653.0	9.535232	=159.6	-27578-8	
1170	0292498	-629.4	9.473469	-169.8	=26756.7	
1185	0296248	-604.4	9.407945	-179.7	=25857.1	
1200	0299998	-578.0	9.338783	-189.2	-24880.7	
1215	• 0303748	-550.2	9 266123	-198.3	-23828.9	
1230	0307498	-521.2	9 190113	-207.1	-20703.7	
1245	0311248	-491.0	9,110909	-215.3	-21507.8	
1260	0314998	-459.6	9.028681	-223-2	-2100140	
1200	*******				7	
TABLE 2-8. RETARDED BLOWBACK DYNAMICS (Con't.)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			APPLIED	DISTANCE		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7 IME	FORCE	FROM BREECH	VELOCITY	ACCELERATION
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	SECOND	POUND	INCH	IN/SEC	IN/SEC/SEC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1275	•0315748	-48.5	8.944110	-226 • 5	-2930.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1290	•0322498	-48.3	8.858986	-227.5	-2867.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1305	• 0326248	-48.2	8.773458	-228.6	-2809.0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1320	• 0329998	-48.0	8•687536	-229•7	-2754.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1335	• 0333748	-47.8	8.601226	-230.7	-2704.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1350	•0337497	-47•7	8.514535	-231.7	-2657.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1365	•0341247	-47.5	8.427471	-232.7	-2612.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1380	0344997	-47 .3	8.340039	-233.6	-2571.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1395	•0348747	-47.2	8.252246	-234.6	-2531.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1410	0 352497	-47.0	8.164096	-235.5	-2494.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1425	• 0356247	-46.8	8.075596	-236.5	-2459.8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1440	•0359997	-46.7	<u>7</u> •986750	-237•4	-2426.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1455	•0363747	-46.5	7 •897561	-238 •3	-2394.7
1465 $.0371297$ -46.2 7.718179 -240.1 -2335.5 1500 $.0374997$ -46.0 7.627992 -240.9 -2307.8 1515 $.0378747$ -45.8 7.537482 -241.8 -2281.1 1530 $.0582497$ -45.6 7.446650 -242.6 -2255.4 1545 $.0386246$ -45.5 7.355502 -243.5 -2206.5 1550 $.0389996$ -45.3 7.264040 -244.3 -2206.5 1575 $.03937466$ -45.1 7.172267 -245.1 -2183.1 1590 $.0397496$ -44.8 6.987804 -246.0 -2160.4 1605 $.04049966$ -44.4 6.602138 -247.6 -2116.6 1620 $.0404996$ -44.4 6.602138 -249.1 -2074.6 1655 $.0416246$ -44.4 6.615293 -249.9 -2054.1 1665 $.0416246$ $-44.3.7$ 6.427293 -251.4 -2014.0 1710 $.0427496$ -43.5 6.332066 -252.2 -1994.3 1725 $.0438745$ -43.6 6.845159 -253.7 -1955.2 1755 $.0438745$ -43.6 6.952383 -255.1 -1974.7 1740 $.0434995$ -43.2 6.143175 -253.7 -1955.2 1755 $.0438745$ -43.6 5.952383 -255.1 -1977.8 1815 $.0446245$ -42.6 5.8565822 -255.8 -1897.2 1760 $.0442955$ <td>1470</td> <td>.0367497</td> <td>-46.3</td> <td>7.808036</td> <td>-239+2</td> <td>-2364.5</td>	1470	. 0367497	-46.3	7.808036	-239+2	-2364.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1485	. 0371297	-46.2	7.718179	-240 • 1	-2335.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1500	•0374997	-46+0	7. 627992	-240.9	-2307.8
1530 $.0582497$ -45.6 7.446650 -242.6 -2255.4 1545 $.0386246$ -45.5 7.355502 -243.5 -2230.5 1560 $.0389996$ -45.3 7.264040 -244.3 -2206.5 1575 $.0393746$ -45.0 7.080187 -246.0 -2160.4 1605 $.0401246$ -44.8 6.987804 -246.8 -2138.2 1620 $.0404996$ -44.6 6.895120 -247.6 -2116.6 1635 $.0408746$ -44.4 6.802138 -248.4 -2095.4 1650 $.0412496$ -44.2 6.708661 -249.1 -2074.6 1665 $.0416246$ -44.4 6.615293 -249.9 -2205.4 1680 $.0419996$ -43.9 6.521436 -250.7 -2033.9 1695 $.0423746$ -43.7 6.427293 -251.4 -2014.0 1710 $.0427496$ -43.4 6.238159 -252.2 -1994.3 1725 $.0438745$ -43.0 6.143175 -253.7 -1955.2 1775 $.0438745$ -42.8 5.952383 -255.1 -1945.5 1785 $.0446245$ -42.4 5.760514 -226.6 -1686.5 1830 $.0482495$ -42.8 5.952383 -255.1 -1995.2 1765 $.0446245$ -42.6 5.856582 -255.8 -1897.2 1860 $.048995$ -42.4 5.760514 -226.6 -1686.5	1515	. 0378747	-45.8	7. 537482	-241.8	-2281.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1530	•0582497	-45.6	7.446650	-242.6	-2255.4
1560 $.0389996$ -45.3 7.264040 -244.3 -2206.5 1575 $.0397496$ -45.1 7.172267 -245.1 -2183.1 1590 $.0397496$ -45.0 7.080187 -246.0 -2160.4 1605 $.0401246$ -44.8 6.987804 -2246.8 -2138.2 1620 $.0404996$ -44.6 6.895120 -247.6 -2116.6 1635 $.0408746$ -44.4 6.802138 -248.4 -2095.4 1650 $.0416246$ -44.2 6.708861 -249.1 -2074.6 1665 $.0416246$ -44.2 6.615293 -249.9 -2054.1 1680 $.0419996$ -43.9 6.521436 -250.7 -2033.9 1695 $.0423746$ -43.7 6.427293 -251.4 -2014.0 1710 $.0427496$ -43.5 6.332066 -252.2 -1994.3 1725 $.0431246$ -43.4 6.238159 -252.9 -1974.7 1740 $.0434995$ -43.2 6.143175 -253.7 -1955.2 1755 $.0438745$ -43.0 6.047915 -254.4 -1935.9 1770 $.0442495$ -42.6 5.856582 -255.8 -1877.8 1800 $.0485245$ -42.6 5.856582 -255.8 -1877.8 1801 $.0485245$ -42.6 5.856582 -255.8 -1877.8 1801 $.0485245$ -36.9 2.831350 -273.3 -996.2 1800 $.0597745$ <td< td=""><td>1545</td><td>• 0386246</td><td>-45.5</td><td>7.355502</td><td>-243.5</td><td>-2230.5</td></td<>	1545	• 0386246	-45.5	7.355502	-243.5	-2230.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1560	•0389996	-45 3	7.264040	-244.3	-2206.5
1590 $.0397496$ -45.0 7.080187 -246.0 -2160.4 1605 $.0401246$ -44.8 6.987804 -246.8 -2138.2 1620 $.0404996$ -44.6 6.895120 -247.6 -2116.6 1635 $.0408746$ -44.4 6.802138 -248.4 -2095.4 1650 $.0412496$ -44.2 6.708861 -249.1 -2074.6 1665 $.0416246$ -44.1 6.615293 -249.9 -2054.1 1680 $.0419996$ -43.9 6.521436 -250.7 -2033.9 1695 $.0423746$ -43.7 6.427293 -251.4 -2014.0 1710 $.0427496$ -43.5 6.32066 -252.2 -1994.3 1725 $.0431246$ -43.4 6.238159 -252.9 -1974.7 1740 $.0434995$ -43.2 6.143175 -253.7 -1955.2 1755 $.0438745$ -43.0 6.047915 -254.4 -1935.9 1770 $.0442495$ -42.8 5.952383 -255.1 -1916.5 1785 $.0446245$ -42.4 5.760514 -256.5 -1877.8 1800 $.048995$ -42.4 5.760514 -262.8 -1686.5 1830 $.052745$ -38.8 3.848134 -268.7 -1427.9 1045 $.0560245$ -36.9 2.831350 -273.3 -996.2 1860 $.0597745$ -34.9 1.801193 -275.4 88.0 1	1575	•0393746	-45.1	7.172267	-245.1	-2183.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1590	• 0397496	-45.0	7.080187	-246.0	-2160.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1605	.0401246	-44.8	6.987804	-246.8	-2138.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1620	•0404996	-44.6	6.895120	-247.6	-2116.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1635	•0408746	-44 4	6.802138	-248.4	-2095.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1650	.0412496	-44 e 2	6,708861	-249.1	-2074.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1665	•0416246	-44.1	6.615293	-249.9	-2054.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1680	• 0419996	-43.9	6.521436	-250.7	-2033.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1695	.0423746	-43.7	6.427293	-251.4	-2014.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1710	•0427496	-43.5	6.332066	-252.2	-1994.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1725	•0431246	-43 • 4	6.238159	-252.9	-1974.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1740	.0434995	-43.2	6.143175	-253.7	-1955.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1755	• 0438745	-43.0	6.047915	-254•4	-1935.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1770	• 0442495	-42.8	5.952383	-255•1	-1916.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1785	• 0446245	-42.6	5.856582	-255.8	-1897.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1800	• 0449995	-42.4	5,760514	-256.5	-1877•8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1815	• 0485245	-40.7	4.844994	-262•8	-1686.5
1045.0560245-36.92.831350-273.3-996.21860.0597745-34.91.801193-275.488.01875.0635245-33.0.776233-267.86102.31889.0670245-31.5.002236-53.0367185.9	1830	.0522745	-38.8	3.848134	-268.7	-1427.9
1860 .0597745 -34.9 1.801193 -275.4 88.0 1875 .0635245 -33.0 .776233 -267.8 6102.3 1889 .0670245 -31.5 .002236 -53.0 367185.9	1045	.0560245	-36.9	2.831350	-273.3	-996.2
1875 .0635245 -33.0 .776233 -267.8 6102.3 1889 .0670245 -31.5 .002236 -53.0 367185.9	1860	0597745	-34.9	1.801193	-275.4	88.0
1889 • 0670245 -31.5 • 002236 -53.0 367185.9	1875	0635245	-33.0	• 776233	-267.8	6102.3
	1889	.0670245	-31.5	• 002236	-53.0	367185.9

t

CHAPTER 3

RECOIL-OPERATED WEAPONS

3-1 GENERAL

Recoil-operated weapons are those weapons that rely on recoil activity to operate the bolt and related parts. The bolt, locked to the barrel during firing, is released during recoil after the chamber pressure has become safe. Action is confined to two general types; long recoil and short recoil.

Long recoil has the barrel and bolt recoiling as a unit for the entire distance (Fig. 3-1). This recoil distance must be greater than the length of the complete round to provide space for loading. At the end of the recoil stroke, the bolt is held while the barrel counterrecoils alone. When sufficient space develops between bolt and breech, the spent case is ejected. Later, as the barrel reaches the in-battery position, the bolt is released to reload the gun.

Short recoil has the barrel and bolt recoiling as a unit for a distance shorter than the length of the complete round (Fig. 3–2). The bolt is unlocked shortly before the barrel negotiates its full stroke. As the barrel stops, the momentum of the bolt carries it farther rearward opening a space – between it and barrel – large enough for extracting the spent case and reloading. The returning bolt, while reloading, may push the barrel into battery or the barrel may counterrecoil independently of the bolt.

3-2 LONG RECOIL DYNAMICS

The dynamics of the long recoil-operated gun are similar to those of the blowback types except that the barrel and bolt units recoil together. Time of recoil may be decreased by delaying energy of recoil absorption until near the end of the recoil stroke, which can be done with a heavy buffer spring operating over a short stroke. The barrel spring should be stiff enough to hold the recoiling parts in battery while the bolt is returning whereas the bolt driving spring should be capable of closing the bolt in minimal time. The stiffer the spring, the less time needed for the return. However, since the converse is not true, some compromise must be arranged to achieve an acceptable firing rate. For initial estimates, the driving spring should have properties that are approximate to those needed to absorb the recoil energy of the bolt. Later adjustments can be made in the properties of all the springs in the system to achieve appropriate time and velocity criteria.

The buffer characteristics should be \mathfrak{so} arranged that its useful potential energy, when fully compressed, approximately equals that of the barrel spring, yet still is compatible with other design requirements. This arrangement gives the barrel sufficient momentum at the beginning of the counterrecoil stroke for a quick return without inducing excessive impact when stopping the returning barrel.

3-3 SAMPLE PROBLEM - LONG RECOIL MACHINE GUN

3-3.1 SPECIFICATIONS

Gun: 20 mm machine gun

Firing Rate: corresponding to minimum bolt travel

Interior ballistics: Pressure vs Time, Fig. 2-7

 $A_b = 0.515 \text{ in.}^2$ bore area

3-3.2 DESIGN DATA

- L = 10 in, recoil distance
- $W_b = 10 \text{ Ib}$, weight of bolt unit
- $W_{\star} = 50 \text{ Ib}$, weight of barrel unit
- E = 0.5, efficiency of spring system

Table 3-1 has the numerical integration for a recoiling weight of 60 lb. The column A_i represents the area under the pressure-time curve, Fig. 3-1, for each interval of time.

$$F_g \Delta_t = 0.515 A_i$$
, lb-sec.

Figure 3-1. Schematic of Long Recoil System

Figure 3–2. Schematic of Short Recoil System

<i>t</i> , msec	Δt , msec	A_i , Ib-sec/in. ²	$F_g \Delta t$, lb-sec	Δv, in./sec	v, in./sec	v _a , in./sec	Δx , in.
0.25	0.25	3.44	1.77	11.4	11.4	5.7	0.0014
0.50	0.25	10.15	5.24	33.7	45.1	28.2	0.007 1
0.75	0.25	11.89	6.13	39.5	84.6	64.8	0.0 162
1.00	0.25	11.12	5.74	37.0	121.6	103.1	0.0258
1.25	0.25	9.25	4.76	30.6	152.0	131.9	0.0330
1.50	0.25	7.10	3.76	24.2	176.4	159.3	0.0398
1.75	0.25	5.23	2.69	17.3	193.7	185.0	0.0462
2.00	0.25	3.71	1.91	12.6	206.3	200.0	0.0500
2.25	0.25	2.58	1.34	8.6	214.9	210.6	0.0526
2.50	0.25	1.82	0.94	6.1	221.0	218.0	0.0545
2.75	0.25	1.39	0.72	4.6	225.6	223.3	0.0558
3.00	0.25	1.06	0.55	3.5	229.1	227.4	0.0569
4.00	1.00	2.34	0.97	6.2	235.3	232.2	0.2322
5.00	1.00	1.04	0.40	2.6	237.9	236.6	0.2366
6.00	1.00	0.40	0.09	0.6	238.5	238.2	0.2382

TABLE 3-1. RECOIL TRAVEL OF 20 mm GUN

$$A\nu = F_g\left(\frac{\Delta t}{M_r}\right) = \frac{g}{W_r}\left(F_g\Delta t\right) = \left(\frac{386.4}{60}\right)F_g\Delta t$$
$$= 6.44 F_g\Delta t \text{ in./sec}$$

where W_r = weight of recoiling parts

$$Ax = v_a \Delta t = \left(\frac{v_{(n-1)} + v}{2}\right) A t$$
, in.

The distance recoiled during the effective propellant gas pressure period

$$x_r = \Sigma \Delta x = 1.15$$
 in.

The recoil velocity at this time is $\nu = 238.5$ in/sec (Table 3-1).

Three springs are in the system (Fig. 3–1). The bolt driving spring and barrel spring work in unison during recoil until the buffer spring is contacted; then all three work as a unit until the barrel and bolt come to a stop whereupon the bolt is latched, permitting the barrel spring and buffer spring to force the barrel to counterrecoil. These two springs function as one until the buffer spring completes its short travel, thereafter the barrel spring alone continues to counterrecoil the barrel. Just as the barrel stops counterrecoiling, the **bolt** becomes unlatched and the driving spring closes it.

The energy of recoil is

$$E_r = \frac{1}{2} \left(\frac{W_r}{g}\right) v^2 = \frac{1}{2} \left(\frac{60}{386.4}\right) 56882$$

= 4416 in.-lb

where

$$g = 386.4 \text{ in./sec}^2$$

 $W_r = 60 \text{ lb. recoiling weight}$

v = 238.5 in./sec, velocity of recoil

Preliminary estimates of recoil time must be available to determine the spring characteristics. After an approximate recoil time has been established, some of the data used in early calculations may be altered for greater accuracy. A reasonable approach is achieved by absorbing 75% of the recoil energy before the buffer is reached thereby reducing the recoil velocity by 50% during the same period. Assigning more energy within limits to the buffer will increase the firing rate and conversely, less energy absorbed by the buffer will decrease the firing rate. The energy to be absorbed by the buffer is

$$E_b = 0.25 E_r = 0.25 \times 4416 = 1104$$
 in.-lb

The recoil velocity as the buffer is contacted becomes

$$v_b = \sqrt{\frac{2E_b}{M_r}} = \sqrt{\frac{2208 \times 386.4}{60}} = \sqrt{14220}$$

= 119.25 in./sec

The average force of the system which includes the driving, barrel, and buffer springs is

$$F_{as} = \frac{\epsilon E_b}{L_b} = \frac{0.5 \times 1104}{0.5} = 11041b$$

where L_b = length of buffer stroke.

For constant acceleration, the buffing time and therefore the compression time of the springs is

$$T_c = t_b = \frac{2L_b}{v_b} = \frac{2 \times 0.5}{119.25} = 0.0084 \text{ sec.}$$

The corresponding surge time is computed to be

$$\Gamma = \frac{T_c}{3.8} = \frac{0.0084}{3.8} = 0.0022 \text{ sec.}$$

From Eq. 2-67

$$K_b T = \frac{F_{as} + \frac{1}{2} \left(K_b L_b \right)}{1037}$$

$$1037 \times 0.0022 K_b = 1104 + 0.25 K_b$$

$$K_b = -\frac{1104}{2.031} = 543.6$$
 lb/in., combined spring constant
3-4

$$F_{mb} = F_{as} + 0.25 K_b = 1104 + 136 = 1240 \text{ lb}$$

$$F_{ob} = F_{as} - 0.25 K_b = 1104 - 136 = 968 \text{ lb}.$$

The new compression time of the springs, Eq. 2-23, becomes

$$T_c = \sqrt{\frac{\epsilon M_r}{K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}} = 0.0119 \times 0.675$$

= 0.0080 sec.

By repeating the above process, T_c remains at 0.0080 sec and K_b changes to 572 lb/in.

$$F_{mb} = F_{as} + \frac{1}{2} \left(K_b L_b \right) = 1104 + 143 = 12471b$$

$$F_{ob} = F_{as} - \frac{1}{2} \left(K_b L_b \right) = 1104 - 143 = 9611b$$

Assume constant deceleration, then the recoil time from the end of the accelerating period to buffer contact will be

$$t_r = \frac{2L_d}{v + v_h} = \frac{16.7}{238.5 + 119.25} = 0.0467 \text{ sec}$$

where $L_d = L - L_b - x = 10.0 - 0.5 - 1.15 = 8.35$ in.

 $\nu = 238.5$ in./sec, recoil velocity at end of acceleration

 $v_b = 119.25$ in./sec recoil velocity at start of buffing

The compression time of the springs includes the accelerating time and the buffing time.

$$T_c = t_a + t_r + t_b = 0.006 + 0.0467 + 0.008$$

= 0.0607 sec.

The corresponding surge time is

$$T = \frac{T_c}{3.8} = \frac{0.0607}{3.8} = 0.0160 \text{ sec.}$$

The average combined force of the driving and barrel springs, based on 75% recoil energy absorption, becomes

$$F_a = \frac{0.75 \,\epsilon E_r}{-L_d} = \frac{0.75 \,\mathrm{x} \,0.5 \,\mathrm{x} \,4416}{8.35} = 198.3 \,\mathrm{lb}.$$

According to Eq. 2-67b,

$$K_s T = \frac{F_m}{1037} = \frac{F_a + \frac{1}{2} \left(K_s L_d \right)}{1037}$$

 $1037 \ge 0.016 K_s = 198.3 \pm 4.175 K_s$ $K_s = \frac{198.3}{12.417} = 16.0 \, \text{lb/in}.$ $F_{ms} = F_a + 4.175 K_s = 198.3 + 66.8 = 265.1 \text{ lb}$ $F_{os} = F_{a} - 4.175 K_{s} = 198.3 - 66.8 = 131.5 \text{ lb}$

From Eq. $^{2-22}$ the time span between accelerating and buffing is

$$t_r = \sqrt{\frac{\epsilon M_r}{K_s}} \left(\operatorname{Sin}^{-1} \frac{F_{ms}}{Z} - \operatorname{Sin}^{-1} \frac{F_{os}}{Z} \right)$$
$$= 0.0697 \left(\operatorname{Sin}^{-1} 0.8938 - \operatorname{Sin}^{-1} 0.4434 \right)$$
$$= 0.0697 \times 0.647 = 0.0451 \operatorname{sec}$$

where $Z = \sqrt{F_{0.8}^2 + eK_8 M_r v_0^2} = \sqrt{87948} = 296.6$. The corresponding maximum forces are, respectively.

The new compression time becomes

$$T_c = t_a + t_b + t_b = 0.006 + 0.0451 + 0.008$$

= 0.0591 sec.

Repeating the above series of calculations has the time converging to $t_r = 0.044$ sec, or $T_c = 0.058$ sec and $K_{\rm e}$ = 16.7 lb/in. Before buffing, the driving and barrel

springs function as one spring. The combined minimum and maximum forces are

$$F_{os} = F_a - K_s \left(\frac{1}{2} L_d + x_r\right)$$

= 198.3 - 16.7 (4.175 + 1.15) = 198.3 - 88.9
= 109.4 lb

$$F_{ms} = F_{os} + K_s L = 109.4 + 16.7 \text{ x} \ 10 = 276.4 \text{ lb}$$

The combined spring forces at end of acceleration period and at the beginning of buffing are

$$F'_{os} = F_{os} + K_s x_r = 109.4 + 16.7 \text{ x } 1.15 = 128.6 \text{ lb}$$

 $F'_{ms} = F_{ms} - K_s L_b = 276.4 - 16.7 \text{ x } 0.5 = 268 \text{ lb}$

By setting the minimum driving spring force at $F_o = 25$ lb, the minimum barrel spring force becomes

$$F_{ot} = F_{os} - F_o = 109.4 - 25.0 = 84.4$$
 lb.

Maintain the same ratio between spring constants as for the initial forces. The driving and barrel spring constants become, respectively,

$$K = \left(\frac{F_o}{F_{os}}\right) K_s = \left(\frac{25}{109.4}\right) 16.7 = 3.8 \text{ lb/in.}$$
$$K_t = \left(\frac{F_{ot}}{F_{os}}\right) K_s = \left(\frac{84.4}{109.4}\right) 16.7 = 12.9 \text{ lb/in.}$$

$$F_m = F_o + KL = 25 + 3.8 \times 10 = 631b$$

$$F_{mt} = F_{ot} + K_t L = 84.4 + 12.9 \text{ x} \ 10 = 213.4 \text{ lb}.$$

The spring constant of the buffer spring is

$$K_{bs} = K_b - K_s = 572 - 16.7 = 555.3 \, \text{lb/in}.$$

The buffer spring force at initial contact with recoiling parts is

$$F_{obs} = F_{ob} - F'_{ms} = 961 - 268 = 693 \, \text{lb}.$$

At end of buffing, the maximum spring force is

$$F_{mbs} = F_{mb} - F_{ms} = 1247 - 276.4 = 970.6$$
 lb.

Table 3-2 lists design data and computed stresses for these three springs as well as for the springs of the three types of action employed in the short recoil gun. The calculations are based on the following formulas.

$$d = 0.27 \sqrt[3]{DKT}, \text{ (Based on Eq. 2-67a)}$$

$$N = \frac{Gd^4}{8KD^3} \text{ ,number of coils}$$

$$\tau = 2.55 \left(\frac{F_m D}{d^3}\right) \text{ ,static shear stress}$$

$$\tau_d = T_c \left[f\left(\frac{T_c}{T}\right) \right] \text{ , dy namic shear stress}$$

$$H_s = dN \text{ , solid height}$$

The available potential energy in the buffer spring for counterrecoil is

$$E_{bc} = \frac{e}{2} (F_{mbs} + F_{obs}) L_b = \frac{0.5}{2} (970.6 + 693) 0.5$$

= 208 in.-lb.

The available potential energy in the barrel spring for counterrecoil is

$$E_t = \frac{\epsilon}{2} (F_{mt} + F_{ot})L = \frac{0.5}{2} (213.4 + 84.4) 10$$

= 744.5 in.-lb.

The potential energy of the barrel spring that augments the buffer spring is

$$\Delta E_t = \frac{1}{2} (F_{mt} + F'_{mt}) L_b = \frac{1}{2} (213.4 + 207) 0.5$$

= 52.6 in.-lb.

where

$$F'_{mt} = F_{mt} - K_t L_b = 213.4 - 12.9 \times 0.5 = 207 \text{ lb.}$$

The total energy of the counterrecoiling barrel at the end of buffer action becomes

$$E_{crb} = E_{bc} + \Delta E_t = 260.6 \text{ in.-lb.}$$

The corresponding velocity is

$$v_{crb} = \sqrt{\frac{2E_{crb}}{M_t}} = \sqrt{\frac{521.2 \times 386.4}{50}} = \sqrt{4028}$$

= 63.5 in/sec.

The maximum energy of the counterrecoiling barrel is

$$E_{crt} = E_b + E_t = 208 + 744.5 = 952.5$$
 in.-lb.

The maximum velocity attained by the bolt in counterrecoil is

$$v_{crt} = \sqrt{\frac{2E_{crt}}{M_t}} = \sqrt{\frac{1905 \times 386.4}{50}} = \sqrt{14722}$$

= 121.3 in./sec.

The maximum energy of the counterrecoiling bolt is

$$E_{crd} = \frac{e}{2} (F_m + F_o) L = \frac{0.5}{2} (63 + 25) 10$$

= 220 in.-lb.

The maximum velocity attained by the bolt in counterrecoil is

$$v_{cr} = \sqrt{\frac{2E_{crd}}{M_b}} = \sqrt{\frac{440 \times 386.4}{10}} = \sqrt{17002}$$

= 130.4 in./sec

The time elapsed from the propellant gas period until the buffer is reached, obtained from Eq. 2-51, will be

$$t_r = \sqrt{\frac{\epsilon M_r}{K_s}} \left(\frac{\sin^{-1}}{Z} - \frac{F'_{ms}}{Z} - \frac{F'_{os}}{\Xi} \right)$$
$$t_r = 0.0682(\sin^{-1} 0.8904 - \sin^{-1} 0.4280)$$
$$= 0.0682(63.10 - 25.33)/57.3 = 0.045$$

3--6

$$F'_{os} = 128.6 \text{ lb} ; F'_{ms} = 268 \text{ lb}$$

$$\sqrt{\frac{\epsilon M_r}{K_s}} = \sqrt{\frac{0.5 \times 60}{16.7 \times 386.4}} = 0.068 \text{ sec}$$

$$Z = \sqrt{(F'_{os})^2 + \epsilon K_s M_r v_o^2} = \sqrt{16538 \pm 73747}$$

$$= 301 \text{ lb}$$

$$K_s = 16.7 \text{ lb/in.}$$

$$E = 0.5$$

where

The time elapsed during buffing, Eq. 2-23, becomes

 $M_r v_o^2 = 2E_r = 8832$ in.-lb

$$t_{b} = \sqrt{\frac{\epsilon M_{r}}{K_{b}}} \cos^{-1} \frac{F_{ob}}{F_{mb}}$$
$$= \sqrt{\frac{0.5 \times 60}{572 \times 386.4}} \cos^{-1} \frac{961}{1247}$$
$$= \sqrt{0.0001357} \cos^{-1} 0.7706 = 0.0116 \left(\frac{39.6}{57.3}\right)$$
$$= 0.008 \text{ sec.}$$

The time elapsed for counterrecoil at the end of buffer activity is obtained from Eq. 2-27.

$$t_{crb} = \sqrt{\frac{M_t}{\epsilon(K_{bs} + K_t)}} \cos^{-1} \frac{F_{obs} + F'_{mt}}{F_{mbs} + F_{mt}}$$
$$= \sqrt{\frac{50}{0.5 \times 568.2 \times 386.4}} \cos^{-1} \frac{900}{1184}$$
$$= 0.0214 \cos^{-1} 0.7601 = 0.0214 \left(\frac{40.53}{57.3}\right)$$
$$= 0.0151 \text{ sec.}$$

Compute the time elapsed for the barrel to negotiate the remaining distance in counterrecoil according to Eq. 2-26.

$$t_{crt} = \sqrt{\frac{M_t}{\epsilon K_t}} \left(\text{ Sin}^{-1} \frac{-F_{ot}}{Z} - \text{Sin}^{-1} \frac{-F'_{mt}}{Z} \right)$$
$$= 0.1418 \left[\text{Sin-'} (-0.3557) - \text{Sin-'} (-0.8723) \right]$$

= 0.1418 (339.17 - 299.27)/57.3 = 0.0987 sec

where
$$\sqrt{\frac{M_t}{\epsilon K_t}} = \sqrt{\frac{50}{0.5 \text{ x } 12.9 \text{ x } 386.4}}$$

= $\sqrt{0.0201} = 0.1418 \text{ sec}$

$$Z = \sqrt{\left(F'_{mt}\right)^2 + \left(\frac{K_t}{\epsilon}\right) M v_{crb}^2}$$
$$= \sqrt{207^2 + \left(\frac{12.9}{0.5}\right) 521.6} = \sqrt{56306} = 237.3 \text{ lb}$$

The time elapsed for counterrecoil of the bolt, Eq. 2-27, is

$$t_{cr} = \sqrt{\frac{M_b}{\epsilon K}} \cos^{-1} \frac{E_o}{F_m}$$
$$= \sqrt{\frac{10}{0.5 \times 3.8 \times 386.4}} \cos^{-1} \frac{25}{63}$$

$$= \sqrt{0.01362} \text{ Cos-'} \quad 0.3968$$
$$= 0.1167 \left(\frac{66.12}{57.3}\right) = 0.1347 \text{ sec}$$

Time of cycle will be

$$t_c = t_a + t_r + t_b + t_{crb} + t_{crt} + t_{cr}$$

= 0.006 ± 0.045 + 0.008 + 0.0151 + 0.0987 ± 0.1347

= 0.3075 sec

The rate of fire becomes

$$f_r = \frac{60}{t_c} = \frac{co}{0.3075} = .195 \text{ rounds/min.}$$

3—7

Туре						Short Recoil				
Spring	I	ong Recoil			Short Recoi	1	Bolt B	uffer	Bolt Acce	lerator
Data	Driving	Barrel	Buffer	Driving	Barrel	Buffer	Driving	Buffer	Driving	Barrel
K, 1b/in.	3.8	12.9	555.3	2.6	35.4	579.6	2.4	229.6	20	200
F_m , lb	63	213.4	970.6	53.1	159.4	1645.6	36	344	320	284
T_c , msec	0.058	0.058	0.0080	0.0743	0.0165	0.0105	0.0529	0.0060	0.0347	0.0076
(\tilde{T}_c/T)	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	1.8	3.8
T, msec	0.0153	0.0153	0.0021	0.0196	0.0043	0.0028	0.0139	0.0016	0.0193	0.0020
D, in.	0.5	2.0	1.5	0.5	2.0	1.875	0.5	0.875	1.0	0.5
D^{3} , in. ³	0.125	8.0	3.375	0.125	8.0	6.592	0.125	0.766	1.0	0.125
DKT	0.0291	0.395	1.749	0.0255	0.304	3.043	0.0167	0.321	0,386	0.200
$\sqrt[3]{DKT}$	0.307	0.734	1.205	0.294	0.672	1.449	0.256	0.685	0.728	0.585
<i>d</i> , in.	0.083	0.199	0.325	0.079	0.181	0.391	0.069	0.185	0.196	0.158
d ³ X 10 ³ , in3	0.572	7.880	34.33	0.493	5.930	59.78	0.329	6.331	7.530	3,944
$d^4 \times 10^4$, in. ⁴	0.475	15.68	111.6	0.390	10.73	233.7	0.227	11.71	14.76	6.232
G, kpsi	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
N –	144	21.8	8.6	173	5.5	8.8	109	9.4	106	34
au, kpsi	140	138	108	137	137	132	139	118	109	92
$f(T_c/T)$	4	4	4	4	4	4	4	4	2	4
$\tau_{\rm r}$, kpsi	148	145	114	144	144	139	146	125	115	97
H_s , in.	12.0	4.4	2.8	13.7	1.0	3.5	7.6	1.7	20.8	5.4

TABLE 3-2. SPRING DESIGN DATA OF RECOIL-OPERATED GUNS

3-8

1

٢

3-4 SHORT RECOIL DYNAMICS

The dynamics of the short recoil-operated gun approach those of the retarded blowback types more nearly than the long recoil. To eliminate all blowback tendencies, the bolt latch is not released until the propellant gas becomes ineffective. After unlatching, bolt and barrel continue recoiling, but as separate units. The barrel is arrested by the combined effort of the barrel spring and buffer. Having the same velocity of free recoil, but because it travels a much shorter distance than the bolt, the barrel will stop recoiling before the bolt. Both the bolt driving spring and buffer spring characteristics are determined from the recoil energy of the respective masses. The characteristics of the barrel spring are selected more arbitrarily but still must conform to the same initial load requirement as that for the long recoil barrel spring, i.e., sufficient to hold the barrel in battery.

3-5 SAMPLE PROBLEM - SHORT RECOIL MACHINE GUN

3–5.1 SPECIFICATIONS: Identical to long recoil problem (see par. 3–3.1)

3-5.2 DESIGN DATA

- L = 10 in., minimum bolt travel distance
- $W_b = 10$ lb, weight of bolt unit
- $W_t = 50$ lb, weight of barrel unit
- E = 0.5, efficiency of spring system

The numerical integration of Table 3–1 also applies to this problem, therefore, the distance recoiled during the effective pressure period of this propellant gas, $x_r = 1.15$ in. and the corresponding recoil velocity v = 238.5 in./sec. The recoil energy of the bolt is

$$E_{rb} = \frac{1}{2} \left(M_b v^2 \right) = \frac{1}{2} \left(\frac{10}{386.4} \right) 56882 = 736 \text{ in.-lb.}$$

The average force of the driving spring becomes

$$F_a = \frac{\epsilon E_{rb}}{L - x} = \frac{0.5 \times 736}{10.0 - 1.15} = 41.6$$
 lb.

To be compatible with allowable stresses, the spring characteristics must conform to computed data obtained from Eqs. 2–23 and 2–67b. When based on constant deceleration, the time required to stop the bolt in recoil is

$$t = \frac{2(L - x_r)}{v_r} = \frac{2 \times 8.85}{238.5} = 0.0743 \,\text{sec.}$$

Including the time of the effective gas period, the compression time of the driving spring is

 $T_c = t + t_a = 0.0743 + 0.006 = 0.0803 \text{sec.}$

The corresponding surge time will be

$$T = \frac{T_c}{3.8} = \frac{0.0803}{3.8} = 0.0211 \, \text{sec}$$

Apply Eq. 2–67b to compute the spring constant K.

$$KT = \frac{F_m}{1037} = \frac{F_a + \frac{1}{2} K(L - x_r)}{1037}$$
21.881 K = 41.6+ 4.425 K

$$K = \frac{41.6}{17.456} = 2.4 \text{ lb/in.}$$

$$F_m = F_a \pm 4.425 K = 41.6 \pm 10.6 = 52.2 \text{ lb}$$

$$F'_o = F_a - 4.425K = 41.6 - 10.6 = 31.0$$
 lb

The decelerating time, Eq. 2–23, is

$$t = \sqrt{\frac{\epsilon M_b}{K}} \cos^{-1} \frac{F'_o}{F_m} = \sqrt{\frac{0.5 \times 10}{2.4 \times 386.4}} \cos^{-1} \frac{31.0}{52.2}$$

= 0.0735x 0.935 = 0.0687sec.

The total compression time of the spring is

$$T_c = t + t_a = 0.0687 + 0.006 = 0.0747 \text{sec.}$$

Adjust the time and recompute Eqs. 2–67b and 2–23, the time and spring constant coverge to t = 0.075 sec and K = 2.6 lb/in., respectively.

The maximum driving spring force F_m is

$$F_m = F_a + \frac{1}{2}K(L - x_r) = 41.6 + 11.5 = 53.1 \text{ lb}.$$

The driving spring force at x = 1.15 in. is

$$F'_o = F_m - K(L - x_r) = 53.1 - 23.0 = 30.1 \text{ lb.}$$

The initial driving spring force is

$$F_o = F_m - \text{KL} = 53.1 - 26.0 = 27.1 \text{ lb}$$

According to Eq. 2-22 the time of bolt recoil is

$$t_r = \sqrt{\frac{\epsilon M_b}{K}} \cos^{-1} \frac{F'_o}{F_m}$$

= $\sqrt{\frac{0.5 \times 10}{2.6 \times 386.4}} \cos^{-1} \frac{30.1}{53.1}$
= $\sqrt{0.004976} \cos^{-1} 0.5669 = 0.0706 \left(\frac{55.47}{57.3}\right)$
= 0.0683 sec.

According to Eq. 2-27, the time of bolt counterrecoil is

$$t_{cr} = \sqrt{\frac{M_b}{\epsilon K}} \cos^{-1} \frac{F_o}{F_m}$$
$$= \sqrt{\frac{10}{0.5 \times 2.6 \times 386.4}} \cos^{-1} \frac{27.1}{53.1}$$
$$= \sqrt{0.0199} \cos^{-1} 0.5104 = 0.1411 \left(\frac{59.3}{57.3}\right)$$
$$= 0.1459 \text{ sec.}$$

The time elapsed during bolt action may determine the firing rate, provided that the barrel returns to battery before the bolt recoils fully. The recoil energy of the barrel is

$$E_{rt} = \frac{1}{2} \left(M_t v^2 \right) = \frac{1}{2} \left(\frac{50}{386.4} \right) 56882$$

= 3680 in.-lb.

The average buffing force, to be approximately the same as for the long recoil, should have a buffer travel of $L_b = 1.375$ in.

According to Eq. 2-16 the average spring force during buffing is

$$F_{ab} = \frac{\epsilon E_{rt}}{L_b} = \frac{0.5 \text{ x } 3680}{1.375} = 1338 \text{ lb.}$$

Assume constant deceleration *so* that the time needed to stop the barrel during recoil becomes

$$t_{rt} = \frac{2L_b}{\nu} = \frac{2.75}{238.5} = 0.0115 \,\mathrm{sec.}$$

This time is also the compression time T_c for the combined buffer and barrel springs. The surge time is

$$T = \frac{T_c}{3.8} = \frac{0.0115}{3.8} = 0.00302 \text{ sec.}$$

Apply Eq. 2-67b to solve for the spring constant and corresponding forces.

$$K_b T = \frac{F_{mb}}{1037} = \frac{F_{ab} + \frac{1}{2} (K_b L_b)}{1037}$$

3.132 K_b = 1338 + 0.688 K_b
K_b = $\frac{1338}{2.444}$ = 547 lb/in.
F_{mb} = 1338 + 0.688 K_b = 1338 + 376 = 1714 lb
F_{ob} = 1338 - 0.688 K_b = 1338 - 376 = 962 lb

The decelerating time, Eq. 2-23, will be

$$t = \sqrt{\frac{eM_t}{K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}}$$
$$= \sqrt{\frac{0.5 \times 50}{547 \times 386.4}} \cos^{-1} \frac{962}{1714}$$

$$= 0.0109 \times 0.975 = 0.0106 \text{ sec.}$$

By repeated computation, the time and spring constant quickly converge.

$$t_{rt} = 0.0105 \text{ sec}$$

 $K_b = 615 \text{ lb/in.}$
 $F_{ob} = F_{ab} - \frac{1}{2} \left(K_b L_b \right) = 1338 - 423 = 915 \text{ lb}.$

$$F_{mb} = F_{ob} + K_b L_b = 915 + 846 = 1761 \text{ lb}$$

To realize an acceptable firing rate, the barrel spring force at firing is set as $F_{ot} = 70$ lb, the initial barrel spring force.

The compression time includes the propellant gas period and becomes

$$T_c = t_{rt} + t_a = 0.0105 \pm 0.006 = 0.0165$$
 sec

The surge time T = $\frac{T_c}{3.8}$ = 0.00434 sec.

The appropriate spring constant is computed from Eq. 2-67b.

$$1037K_t T = F_m = F_{ot} + K, L, = 70 + 2.525 K_t$$

where $L_r = L_b + x_r = 1.375 + 1.15 = 2.525$ in.

$$K_{2} = \frac{70}{4.5 - 2.525} = \frac{70}{1.975} = 35.4 \, \text{lb/in}.$$

The barrel spring force at end of recoil is

$$F_{mt} = F_{ot} + K_t L_t = 70 + 89.4 = 159.4 \, \text{lb}.$$

The buffer spring constant is

$$K_{bs} = K_b - K_t = 615 - 35.4 = 579.6 \, \text{lb/in}.$$

The barrel spring force at the end of the propellant gas period is

$$F_{tb} = F_{ot} + K_t x_r = 70 + 35.4 \times 1.15 = 110.7 \text{ lb.}$$

The buffer spring force at the beginning of buffing is

$$F_{obs} = F_{ob} - F_{tb} = 915 - 110.7 = 804.3 \,\mathrm{lb}.$$

The maximum buffer spring force is

$$F_{mbs} = F_{mb} - F_{mt} = 1761 - 159.4 = 1601.6 \, \text{lb}.$$

The time of barrel recoil from Eq. 2-22 becomes

$$t_{rt} = \sqrt{\frac{\epsilon M_t}{K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}}$$
$$= \sqrt{\frac{0.5 \times 50}{615 \times 386.4}} \cos^{-1} \frac{915}{1761}$$
$$= \sqrt{0.000105} \cos^{-1} 0.5196 = 0.01025 \left(\frac{58.7}{57.3}\right)$$

= 0.0105 sec.

The available energy released by the spring system at the end of buffer travel is

$$E_{crb} = \frac{\epsilon}{2} (F_{mb} + F_{ob}) L_b = \frac{0.5}{2} (1761 + 915) 1.375$$

= 920 in.-lb.

3**—1**1

AMCP 706-260

The counterrecoil velocity at the end of buffer action becomes

$$v_{crb} = \sqrt{\frac{2E_{crb}}{M_t}} = \sqrt{\frac{1840 \times 386.4}{50}} = \sqrt{14220}$$

= 119.2 in /sec.

The time consumed for counterrecoil by buffer action, **Eq. 2–27**, is

$$t_{crb} = \sqrt{\frac{M_t}{\epsilon K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}} = \sqrt{\frac{50}{0.5 \times 615 \times 386.4}} \cos^{-1} \frac{915}{1761}$$
$$= \sqrt{0.00042} \cos^{-1} 0.5196 = 0.0205 \left(\frac{58.7}{57.3}\right) = 0.0210 \text{ sec.}$$

The time of counterrecoil for the remaining barrel travel of $x_r = 1.15$ in. via Eq. 2–26 is

$$t_{crt} = \sqrt{\frac{M_t}{eK_t}} \left(\text{Sin}^{-1} - \frac{F_{ot}}{Z} - \text{Sin}^{-1} - \frac{F_{tb}}{Z} \right)$$
$$= 0.0855 \text{ [Sin-'} (-0.1854) - \text{Sin-'} (-0.2934)\text{]}$$

$$= 0.0855 (349.32 - 342.93)/57.3 = 0.0095 \text{ sec}$$

where
$$\sqrt{\frac{M_t}{\epsilon K_t}} = \sqrt{\frac{50}{0.5 \text{ x } 35.4 \text{ x } 386.4}} = \sqrt{0.00731}$$

= 0.0855 sec

$$Z = \sqrt{F_{tb}^2 + \frac{K_t}{\epsilon} M v_{crb}^2}$$
$$= \sqrt{110.7^2 + \frac{35.4}{0.5} 1840}$$
$$= 377.5 \text{ lb}$$

The time elapsed for the complete barrel cycle is

$$t_{ct} = t_a + t_{rt} + t_{crb} + t_{crt}$$

= 0.0060 ± 0.0105 ± 0.0210 + 0.0095
= 0.0470 sec.

The time of the barrel cycle is considerably less than the recoil time of the bolt, $t_r = 0.0683$ sec, and therefore has no influence on the firing cycle if its present operation remains undisturbed. The cyle time of the bolt is

$$t_c = t_a^{+} t_r + t_{cr}$$

= 0.0060 + 0.0683 + 0.1459 = 0.2202 sec.

The firing rate is

$$f_r = \frac{60}{t_c} = \frac{60}{0.2202} = 272 \text{ rounds/min.}$$

This rate is faster than for long recoil ($f_r = 195$) but slower than the recoil-operated delayed blowback gun ($f_r = 420$). The rate of the short recoil gun can be improved by resorting to a softer driving spring and the addition of a bolt buffer. The time of bolt travel will then be less in both directions thereby increasing the rate of fire. For example, to initiate the computations, select a driving spring having these preliminary characteristics:

 $F_o = 12 \text{ lb}$ (2 lb greater than the 10 lb bolt weight)

K = 1.0 lb/in., preliminary spring constant

 $L_b = 0.5$ in., buffer travel

The driving spring force when the buffer is reached becomes

$$F_{db} = F_o + K (L - L_b) = 12 + 1 \times 9.5 = 21.5 \text{ lb.}$$

The initial driving spring force at x = 1.15 in. is

$$F = F_o + Kx_r = 12 + 1.15 = 13.15$$
 lb

The energy absorbed during this period will be

$$E_d = \frac{1}{2\epsilon} (F + F_{db}) L_d = \frac{1}{2 \times 0.5} \left(34.65 \right) 8.35$$

= 289 in.-lb

where

$$L_d = L - L_b - x_r = 10.0 - 0.5 - 1.15 = 8.35$$
 in.

The energy to be absorbed by the combined effort of buffer and driving springs is

$$E_b = E_{rb} - E_d = 736 - 289 = 447$$
 in.-lb

The velocity of the bolt as it contacts the buffer is also the buffer velocity v_b during recoil.

$$v_b = \sqrt{\frac{2E_b}{M_b}} = \sqrt{\frac{894 \times 386.4}{10}} = \sqrt{34544}$$

= 185.9 in./sec

The time during this decelerating period, based on constant deceleration, is

$$t_d = \frac{2L_d}{v + v_b} = \frac{2 x 8.35}{238.5 t 185.9} = 0.0393 \text{ sec.}$$

Buffing time, based on constant deceleration, is

$$t_b = \frac{2L_b}{v_b} = \frac{2 \times 0.5}{185.9} = 0.0054 \text{ sec}$$

The total time of driving spring compression will be

$$T_c = t_a + t_d + t_b = 0.0507 \text{ sec.}$$

The spring surge time $T = \frac{T_c}{3.8} = 0.0133$ sec.

The required spring constant that supersedes the preliminary K = 1.0 is computed from Eq. 2–67b.

$$KT = \frac{F_m}{1037} = \frac{F + KL_d}{1037} = \frac{13.2 + 8.35K}{1037}$$
$$K = \frac{13.2}{13.79 - 8.35} = 2.4 \text{ lb/in.}$$

The spring forces at the limits of L_d are

$$F_{d} = F_{o} + Kx_{r} = 12.0 + 2.4 \times 1.15 = 14.8 \text{ lb}$$

$$F_{db} = F_{o} + K(L - L_{b}) = 12.0 + 2.4 \times 9.5 = 34.8 \text{ lb}.$$

The time for this driving spring to compress from the propellant gas period to the buffer is obtained from Eq. 2-22.

$$t_{d} = \sqrt{\frac{\epsilon M_{b}}{K}} \left(\operatorname{Sin}^{-1} \frac{F_{db}}{Z} - \operatorname{Sin}^{-1} \frac{F_{d}}{Z} \right)$$

= 0.0735 (Sin-' 0.7807- Sin-' 0.3318)
= 0.0735 (51.18 - 19.28) / 57.3 = 0.0409 sec

where

$$\sqrt{\frac{\epsilon M_b}{K}} = \sqrt{\frac{0.5 \times 10}{2.4 \times 386.4}} = \sqrt{0.00539} = 0.0735 \text{ sec}$$
$$Z = \sqrt{F_d^2 + \epsilon K M_b v^2}$$
$$= \sqrt{219 + 0.5 \times 2.4 \times 1472} = 44.6 \text{ lb}$$
$$M_b v^2 = 2E_{rb} = 1472 \text{in.-lb.}$$

AMCP 706-260

 t_d is somewhat higher than the initial $T_c = 0.0507$ sec. Repeating the computation establishes these values. To continue the analysis of the spring system, compute the energy to be absorbed by the buffer system

$$E_b = E_{rb} - \left(\frac{F_d + F_{db}}{2\epsilon}\right)L_d = 736 - 414 = 322 \text{ lb}$$

where

$$L_d = 8.35 \text{ in.}$$

 $E = 0.5$

The average buffer spring system is

$$F_{as} = \frac{\epsilon E_b}{L_b} = \frac{0.5 \text{ X}322}{0.5} = 322 \text{ lb.}$$

The velocity at buffer contact is

$$v_b = \sqrt{\frac{2E_b}{M_b}} = \sqrt{\frac{644 \times 386.4}{10}} = \sqrt{24884}$$

= 157.7 in /sec.

For constant deceleration, the time of buffer action in recoil and also the compression time of the spring is

$$T_c = t_b = \frac{2L_b}{v_b} = \frac{2 \times 0.5}{157.7} \quad 0.0063 \text{ sec.}$$

The surgetime $T = \frac{T_c}{3.8} = 0.0016$ sec.

Iterative computation has the spring characteristics converging rapidly. The computed buffer time, according to the procedure which follows, was 0.006 sec. Thus $T_c = t_b = 0.006$ sec and T = 0.00158 sec.

The spring constant is computed from Eq. 2-67b.

$$K_b T = \frac{F_m}{1037} = \frac{F_{as} + \frac{1}{2} (L_b K_b)}{1037} = \frac{F_{as} + 0.25 K_b}{1037}$$

$$1037 \times 0.00158 K_b = 322 + 0.25 K_b$$

$$K_b = \frac{-322}{1.388} = 232 \text{ lb/in.}$$

$$F_{ob} = 322 - 0.25 K_b = 264 \text{ lb}$$

$$F_{mb} = 322 + 0.25 K_b = 380 \text{ lb.}$$

According to Eq. 2-23, the buffing time will be

$$t_b = \sqrt{\frac{\epsilon M_b}{K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}}$$
$$= \sqrt{\frac{0.5 \times 10}{232 \times 386.4}} \cos^{-2} \frac{264}{380}$$
$$= 10^{-3} \sqrt{55.78} \cos^{-2} 0.6947 = 0.00747 \times 0.803$$
$$= 0.0060 \sec^{-2} \cos^{-2} \cos$$

which verifies that $t_b = 0.0060$ sec and fixes the spring constant at $K_b = 232$ lb/in. The spring constant of the buffer spring alone becomes

$$K_{bs} = K_b - K = 232 - 2.4 = 229.6 \text{ lb/in.}$$

$$F_{obs} = F_{as} - 0.25 K_b - F_{db} = 322 - 58 - 34.8$$

= 229.2 lb

$$F_{mbs} = F_{obs} + K_{bs} L_b = 229.2 + 114.8 = 344 \text{ lb.}$$

The recoil time of the bolt and, therefore, the compression time of the driving spring is

$$t_{rb} = t_a + t_d + t_b = 0.0060 + 0.0409 + 0.0060$$

= 0.0529sec.

The time of bolt return from buffing action, Eq. 2–27, is

$$t_{crb} = \sqrt{\frac{M_b}{\epsilon K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}} - 0.0149 \times 0.803$$

= 0.012sec.

The energy of the moving bolt at the end of buffer return is

$$E_{crb} = \frac{\epsilon}{2} (F_{ob} + F_{mb}) L_b = \frac{0.5}{2} (380 + 264) 0.5$$

= 80.5in.-lb.

The time elapsed for completing the bolt return, Eq. 2-26, becomes

$$t_{cr} = \sqrt{\frac{M_b}{\epsilon K}} \left(\sin^{-1} \frac{-F_o}{Z} - \sin^{-1} \frac{-F_{db}}{Z} \right)$$
$$= \sqrt{\frac{10}{0.5 \times 2.4 \times 386.4}} \left(\sin^{-1} \frac{-12}{44.54} - \sin^{-1} \frac{-34.8}{44.54} \right)$$

$$= 0.1468 (344.37 - 308.62)/57.3 = 0.0916 \text{ sec}$$

where

$$Z = \sqrt{F_{db}^2 + \left(\frac{K}{\epsilon}\right) M \nu_{crb}^2} = \sqrt{34.8^2 + \left(\frac{2.4}{0.5}\right) 161}$$
$$= \sqrt{1984} = 44.54 \, \text{lb}.$$

$$Mv_{crb}^2 = 2E_{crb} = 161$$
 in.-lb.

Time of the complete cycle is

$$t_c = t_a + t_d + t_b + t_{crb} + t_{cr}$$

= 0.0060+ 0.0409+ 0.0060+ 0.0120+ 0.0916
= 0.1565 sec.

The rate of fire is

$$f_r = \frac{60}{t_c} = \frac{60}{0.1565} = 383$$
 rounds/min.

This rate is an increase of **28%** over the rate of the gun which does not have a buffer for the bolt.

3-6 ACCELERATORS

Recoil-operated machine guns are relatively slow firing because of their slow response to the propellant gas forces. This slow response is due primarily to the large inertial resistance that must be overcome while accelerating the recoiling parts. The entire dynamics structure depends on the velocity of free recoil; the higher the velocity, the higher the rate of fire, but the velocity of free recoil can be influenced only by the mass of the recoiling parts which, for any given gun, is usually limited by structural requirements. High speeds. therefore, must be gained by other means. One of these, as demonstrated in the preceding problem, involves the arrangement of springs whereby somewhat faster action develops by delaying large energy absorption until the buffer is reached. This constitutes the extent of control over firing rates of long recoil guns. However, for short recoil guns, higher rates can be achieved by installing accelerators.

An accelerator, Fig. 3-3, is merely a rotating cam arranged to transfer, over a short distance, some momentum from the rest of the recoiling parts to the bolt, thus augmenting its velocity. At any given instant, the cam and the two masses represent a rotating system. From the law of conservation of angular momentum, the total remains unchanged after an exchange of momentums.

$$r_t M_t v + r_b M_b v = r_t M_t v_t + r_b M_b v_b$$
(3-1)

where g = acceleration of gravity

$$M_b = \frac{W_b}{g}$$
 , mass of bolt

Figure 3–3. Accelerator Geometry

 $M_t = \frac{W_t}{g}$, mass of barrel and components

$$r_b$$
 = cam radius to contact point on bolt

- r_t = cam radius to contact point on barrel
- v = velocity of recoiling parts just prior to accelerator action
- v_b = velocity of bolt after accelerator action
- v_t = velocity of barrel and components
- W_b = weight of bolt
- W_t = weight of barrel and components

At the instant of parting from the accelerator, the bolt has acquired a velocity higher than the recoiling barrel. Solving for v_b Of Eq. 3–1

$$v_b = \frac{M_t(v - v_t)}{R_c M_b} + v$$
 (3-2)

3-16

where
$$R_c = \frac{r_b}{r_t}$$
.

The law of conservation of energy also applies.

$$\frac{1}{2} \left(M_t + M_b \right) v^2 = \frac{1}{2} \left(M_t v_t^2 \right) + \frac{1}{2} \left(M_b v_b^2 \right) \quad (3-3)$$

By substituting the expression for v_{b_t} Eq. 3–2, into Eq. 3–3 and collecting terms, we will have a quadratic equation having v_t as the only unknown. The solution for v_t in general terms is too unwieldy and hence not shown. A specific solution is demonstrated in the sample problem.

Other unknown factors are the energy absorbed by the driving and buffer springs and the subsequent change in recoil velocity while the accelerator functions. The procedure for computing these factors is interative. A specific analysis demonstrates this procedure far more readily than a general solution. If follows in the sample problem.

3-7 SAMPLE PROBLEM - ACCELERATOR

3–7.1 SPECIFICATIONS: Identical to long recoil problem (see par. 3–3.1)

3-7.2 DESIGN DATA:

- L = 10 in., minimum bolt travel distance
- $W_h = 10 \text{ lb}$, weight of bolt unit
- $W_t = 50 \text{ lb}$, weight of barrel unit
 - e = 0.5, efficiency of spring system

Table 3–3 has the numerical integration for a recoiling weight of 60 lb. The buffer or barrel spring and driving springs resist recoil from the start but are measureably effective only after 1/2 inch of recoil. The buffer spring is not compressed on installation. The accelerator (Fig.

3-3) is so designed that at final contact with the bolt, the bolt has moved 0.56 in., and the barrel, 0.28 in. The radii to the two contact points at this time, are

$$r_b = 0.90$$
 in. when $\Delta x_b = 0.56$ in.
 $r_t = 0.25$ in. when $\Delta x_t = 0.28$ in.
 $R_c = \frac{r_b}{r_r} = 3.6$

At the end of the propellant gas period, when t=6 msec, the barrel has recoiled $x_r = 1.14$ in. and has a velocity of free recoil $v_f = v = 234.1$ in./sec. A preliminary analysis, conducted by the same procedure that follows showed that the transfer of momentum to the bolt caused the barrel to reverse its direction of motion. Also, appropriate spring constants were selected.

K = 20 lb/in., driving spring constant

 $K_t = 200 \text{ lb/in., barrel spring constant}$

TABLE 3-3	RECOIL TRAVEL C)F 20 mm	GUN FOUIPPED	WITH ACCEL	FRATOR
TADLE 5-5.	NEOOIL INAVEL C		CONLOUNTED	NUMBER	

t, msec	Δt , msec	A _i , lb-sec/in?	FA t, lb-sec	$\Delta \nu$, in./sec	v, in./sec	v _a , in./sec	Δx , in.
0.25	0.25	3.44	1.77	11.4	11.4	5.7	0.0014
0.50	0.25	10.15	5.24	33.7	45.1	28.2	0.007 1
0.75	0.25	11.89	6.13	39.5	84.6	64.8	0.0 162
1.00	0.25	11.12	5.74	37.0	121.6	103.1	0.0258
1.25	0.25	9.25	4.76	30.6	152.0	131.9	0.0330
1.50	0.25	7.10	3.76	24.2	176.4	159.3	0.0398
1.75	0.25	5.23	2.69	17.3	193.7	185.0	0.0462
2.00	0.25	3.71	1.91	12.6	206.3	200.0	0.0500
2.25	0.25	2.58	1.34	8.6	214.9	210.6	0.0526
2.50	0.25	1.82	0.94	6.1	221.0	218.0	0.0545
2.75	0.25	1.39	0.72	4.6	225.6	223.3	0.0558
3.00	0.25	1.06	0.55	3.5	229.1	227.4	0.0569
3.263	0.263	1.00	0.52*	3.3	232.4	230.8	0.0607
4.00	0.737	1.34	0.40*	26	235.0	233.7	0.1711
5.00	1.00	1.04	0.12*	0.8	235.8	235.4	0.2354
6.00	1.00	0.40	-0.27*	-1.7	234.1	235.0	0.2350

*Reduced by resistance of springs

 $x_r = \Sigma \Delta x = 1.14$ in.

The energy absorbed by the springs during the bolt acceleration period reduced the recoil velocity to 225.4 in./sec. This velocity was obtained by iterative computation. The energy absorbed by the barrel spring is

$$\Delta E_t = \left(\frac{F_t + F_{mt}}{2\epsilon}\right) \Delta x_t = \left(\frac{228 + 284}{2 \times 0.5}\right) 0.28$$

= 143 in-lb

- $F_t = K_t x_r = 200 \times 1.14 = 228$ lb, barrel spring force at beginning of accelerator action
- $F_{mt} = K_t(x_r + Ax) = 200(1.14 + 0.28) = 284$ lb barrel spring force at end of barrel travel
 - E = 0.5, efficiency of spring system.

The two preceding sets of calculations had the energy absorbed by the driving spring equalling 3948 and 3923 in.-lb, respectively. With the average E = 3936 in.-lb, the average driving spring force over the remaining recoil distance becomes

$$F_a = \frac{\epsilon E}{L_{dr}} = \frac{0.5 \times 3936}{8.3} = 237 \text{ b}$$

where

$$L_{dr} = L_d - x_r - \Delta x_b = 10.0 - 1.14 - 0.56 = 8.3$$
 in

The driving spring force at the end of acceleration is

$$F_e = F_a - \frac{1}{2} \left(K L_{dr} \right) = 237 - 83 = 1541 \text{b}.$$

The driving spring force at the end of recoil is

$$F_m = F_a + \frac{1}{2} \left(KL_{dr} \right) = 237 + 83 = 320 \text{ lb}$$

The driving spring force at assembly is

$$F_o = F_m - KL_d = 320 - 200 = 120$$
 lb.

The energy absorbed by the driving spring force during acceleration is

$$\Delta E_i = \left(\frac{F_e + F}{2\epsilon}\right) \Delta x_b = \left(\frac{154 + 143}{2 \times 0.5}\right) 0.56$$
$$= 166 \text{ in-lb}$$

where $F = F_o + Kx$, $= 120 + 20 \times 1.14 = 143$ lb.

The total recoil energy is

$$E_r = \frac{1}{2} \left(\frac{W_t \pm W_b}{386.4} \right) v_f^2 = \frac{60 \times 54803}{772.8} = 4255 \text{ in.-lb.}$$

The energy remaining in the moving parts is

$$E = E_r - \Delta E_t - \Delta E_b = 4255 - 143 - 166$$

= 3946 in.-lb.

The corresponding velocity becomes

vb

$$\nu = \sqrt{\frac{2E}{M_r}} = \sqrt{\frac{7892 \times 386.4}{60}} = \sqrt{50824}$$
$$= 225.4 \text{ in./sec}$$
$$= \frac{M_t (\nu - \nu_t)}{R_c M_b} + \nu = \frac{50 (225.4 - \nu_t)}{3.6 \times 10} + 225.4$$
$$= 538.5 - 1.39 \nu_t$$

 $v_b^2 = 289982 - 1497.0v_t + 1.932v_t^2$

To solve for v_{t_i} multiply all terms by g and equate the equivalent energies

$$gE = \frac{1}{2} \left(W_t v_t^2 \right) + \frac{1}{2} \left(W_b v_b^2 \right)$$

 $386.4 \times 3946 = 25 v_t^2 + 5 (289982 - 1497 v_t)$

+ 1.932 v_t^2)

3-18

.

$$v_t^2 - 215.95 v_t - 2158.8 = 0$$

 $v_t = -9.57 \text{ in./sec.}$

The low negative velocity indicates a direction change near the end of the accelerating process.

$$v_b = 538.5 - 1.39v_t = 538.5 \pm 13.3 = 551.8$$
 in./sec.

Compute the energy of bolt and barrel

$$E_b = \frac{1}{2} \left(M_b v_b^2 \right) = \left(\frac{10}{772.8} \right) 304483 = 3940 \text{ in.-lb}$$
$$E_t = \frac{1}{2} \left(M_t v_t^2 \right) = \left(\frac{50}{772.8} \right) 92 = 6 \text{ in.-lb}$$

 $E = E_b + E_t = 3946$ in.-lb

This energy compares favorably with the earlier computed energy of 3946 in.-lb thereby rendering the last computed data substantially correct.

The time of bolt acceleration period is

$$t_{a}b = \frac{2\Delta x_{b}}{\nu + \nu_{b}} = \frac{2 \times 0.56}{225.4 + 551.8} = \frac{1.12}{777.2}$$
$$= 0.0014 \text{ sec.}$$

The time of bolt decelerating period during recoil, Eq. 2-23, is

= 0.0271 sec.

The time elapsed during recoil, which is the compression time of the barrel spring, is

$$t_{br} = t_{ab} + t_a = 0.0014 + 0.0060 = 0.0074 \,\mathrm{sec}$$

where $t_a = 0.0060$ sec, the propellant gas period.

The time elapsed during bolt recoil, which is the compression time of the driving spring, is

$$t_r = t_{br} + t_{rb} = 0.0074 + 0.0271 = 0.0345 \text{ sec.}$$

The time for the bolt to return as far as the latched barrel, Eq. 2-27, is

$$t_{crb} = \sqrt{\frac{M_b}{\epsilon K}} \quad \cos^{-1} \frac{F}{F_m}$$
$$= \sqrt{\frac{10}{0.5 \text{ x } 20 \text{ x } 386.4}} \quad \cos^{-1} \frac{148.4}{320}$$
$$= \sqrt{0.002588} \cos^{-1} 0.4638$$
$$= 0.0508 \left(\frac{62.367}{57.296}\right) = 0.0553 \text{ sec}$$

where $F = F_o + K(\Sigma \Delta x + \Delta x_t) = 120 + 20 \times 1.42$ = 148.4 lb, the driving spring force as the barrel latch is released.

The energy of the bolt at this time is

$$E_b = \epsilon \left(\frac{F_m + F}{2}\right) (L - \Sigma \Delta x - \Delta x_t)$$

= 0.5 $\left(\frac{320 + 148.4}{2}\right) 8.58 = 1004.7$ in.-lb.

AMCP 706-260

The bolt velocity at barrel pick-up is

$$v_{crb} = \sqrt{\frac{2E_b}{M_b}} = \sqrt{\frac{2009.4 \times 386.4}{10}} = \sqrt{7764}$$

278.6 in./sec.

The velocity of all counterrecoiling parts after the barrel is engaged by the bolt, according to the conservation of momentum, is

$$v_{cr} = \frac{M_b v_{crb}}{M_r} = 10 \left(\frac{278.6}{60}\right) = 46.4 \text{ in/sec.}$$

With both springs acting as a unit, the combined spring constant is

$$K_s = K t K_t = 20 t 200 = 220$$
 lb/in.

The spring force at the time of impact is

$$F_s = F + F_{mt} = 148.4 + 284 = 432.4$$
 lb.

The spring force at the end of counterrecoil, since the barrel spring force reduces to zero, is

$$F_o = 120 \, \text{lb.}$$

According to Eq. 2-26, the time elapsed for completing the recoiling parts return is

$$t_{cr} = \sqrt{\frac{M_r}{eK}} \left(\operatorname{Sin}^{-1} \frac{-F_o}{Z} - \operatorname{Sin}^{-1} \frac{-F_s}{Z} \right)$$
$$= \sqrt{\frac{0.5 \times 220 \times 386.4}{578}} \left(\operatorname{Sin}^{-1} \frac{-120}{578} - \operatorname{Sin}^{-1} \frac{-432.4}{578} \right)$$
$$= 0.0376 \left(\frac{348.02 - 311.55}{57.3} \right) = 0.0239 \text{ sec.}$$

3—20

where

$$Z = \sqrt{F_s^2 + \frac{K}{\epsilon} \left(M_r v_{cr}^2\right)}$$
$$= \sqrt{432.4^2 + \frac{220}{0.5} \left(\frac{.60}{.386.4}\right) 2153}$$
$$= \sqrt{334070} = 578 \text{ lb.}$$

The time consumed for the firing cycle is

$$t_c = t_{dr} + t_{crb} + t_{cr}$$

= 0.0345 + 0.0553 + 0.0239 = 0.1137 sec.

The rate of fire

$$f_r = \frac{b0}{0.1137} - 528$$
 rounds/min.

Recapitulating, the firing rates of the various types of recoil-operated guns are shown in the table which follows. All guns are identical except for the type of automatic action.

Туре	Rate of Fire, rounds/min
Blowback	420
Long Recoil	195
Short Recoil (without bolt buffer)	272
Short Recoil (without bolt buffer)	383
Short Recoil (with accelerator)	528

3-8 RATING OF RECOIL-OPERATED GUNS

The recoil-operated machine guns are idealy suited for large caliber weapons. Their inherent low rate of fire keeps them out of the small caliber field but, for large calibers, the firing rate is relatively high and therefore acceptable. Of the two types involved, the long recoil is superior to some extent although the short recoil has a higher firing rate. Both have the same range but the long recoil is more accurate because the high loading accelerations of the short recoil gun disturb the sighting. Also the higher accelerations require heavier feeders and correspondingly heavier associated parts. The large loads imposed to accelerate these components have a tendency to cause them to wear out faster, thus decreasing the reliability and durability of the weapon.

CHAPTER 4

GAS-OPERATED WEAPONS

4-1 GENERAL REQUIREMENTS

Gas-operated automatic weapons arc those weapons that have a gas driven mechanism to operate the bolt and its associated moving components. Except for the externally driven systems, all operating energy for automatic weapons is derived from the propellant gases. Nevertheless, gas-operated weapons are only those that draw a portion of the propellant gas through the barrel wall after the projectile has passed and then use this gas to activate a mechanism to retract the bolt. Timing and pressure are regulated by the location of the port along the barrel and by orifices restricting the gas flow. As soon as the projectile passes the port, propellant gases pour into the gas chamber and put pressure on the piston. The piston does not necessarily move at this time. Motion is delayed by bolt locks which are not released until chamber pressure has dropped to safe levels for cartridge case extraction.

4-2 TYPES OF GAS SYSTEMS

There are four basic types of gas systems: impingement, tappet, expansion, and cutoff expansion.

a. Impingement System: has a negligible gas volume at the cylinder; expansion depending on piston motion. As the piston moves, gas continues pouring through the port until the bullet exits at the muzzle. With the subsequent drop in pressure in the bore, the gas in the cylinder may either reverse its flow and return to the bore or it may exhaust through ports in the cylinder wall as shown in Fig. 4-1. The duration

Figure 4–1. Impingement System

of the applied pressure is short, being dependent solely on the position of the gas port.

b. Tappet System: an impingement system having a short piston travel. (See Fig. 4-7.) The pressure force imparts a relatively high velocity to the piston which moves the operating rod and bolt. The tappet travel is short and its motion ceases as it strikes the end of its cylinder.

c. Expansion System: in contrast, has an appreciable initial volume in its expansion chamber which requires more time to pressurize the chamber, and also more time to exhaust the gas. By judicious selection of port size and location, the required pressurized gas can be drained from the bore.

d. Cutoff Expansion: similar to the direct expansion type, except for a valve which closes the port after the piston moves. As the pressure builds up to a specific value, the piston moves, closing the port and leaving the gas to expand polytropically* to provide the effort needed to operate the moving components of the bolt assembly. Fig. 4-2 shows a cutoff expansion system.

4-3 CUTOFF EXPANSION SYSTEM

4-3.1 MECHANICS OF THE SYSTEM

The final size and location of the gas port are determined by experimental firing. However, for initial design studies, tentative size and location may be computed. The acceleration of the moving parts of the gas-operated system may be expressed generally as

$$\frac{d^2s}{dt^2} = \frac{F}{M_o} = \left(\frac{A_c}{M_o}\right) p_c \tag{4-1}$$

^{*}Polytropic is the name given to the change of state in a gas which is represented by the general equation pV^{k} = constant. $k = c_p/c_{\nu}$, where c_p is the specific heat at constant pressure and c_{ν} is the specific heat at constant volume. The specific heats vary with the temperature²⁷.

Figure 4-2. Cutoff Expansion System

Substitute for p in Eq. 4–1

where

- A, = piston area
- M_o = mass of accelerating parts of operating rod
- p_c = pressure in the gas cylinder at any but time

The gas expands polytropically so that

$$p_{c} = p_{1} \left(\frac{V_{1}}{V_{1} + A_{c}s} \right)^{k} = p_{1} \left(\frac{A_{c}s_{o}}{A_{c}s_{o} + A_{c}s} \right)^{k}$$
$$= p_{1} \left(\frac{s_{q}}{s_{o} + s} \right)^{k}$$
(4-2)

Substitute $v\left(\frac{dv}{ds}\right)$ for $\frac{d^2s}{dt^2}$ and rearrange the terms in Eq. 4-3. The expression for vdv appears in Eq. 4-4.

$$vdv = \frac{A_c p_1 s_o^k}{M_o} \left[\frac{1}{(s_o + s)^k} \right] ds \qquad (4-4)$$

Now integrate Eq. 4-4.

$$\nu^{2} = \frac{2A_{c}p_{1}s_{o}^{k}}{(1-k)M_{o}}\left[\frac{1}{(s_{o}+s)^{k-1}}\right] + C_{1}$$
 (4-5)

where

- *k* = ratio of specific heats
- p_1 = initial pressure
- s = travel distance of piston
- s_o = initial distance equivalent to V_1

$$V_1$$
 = initial gas volume

4–2

$$\frac{d^2s}{dt^2} = \frac{A_c p_1 s_o^k}{M_o} \left[\frac{1}{(s_o + s)^k} \right]$$
(4-3)

$$\frac{d^2s}{dt^2} = \frac{dv}{dt} = \left(\frac{ds}{dt}\right) \left(\frac{dv}{ds}\right) = v \left(\frac{dv}{ds}\right)$$

Solve for C_1

$$C_1 = v_o^2 + \frac{2A_c p_1 s_o}{(k-1)M_o}$$
(4-6)

When s = 0, $v = v_o$ generally, although $v_o = 0$ before the *piston* begins to move.

•

$$v = \frac{ds}{dt} = \sqrt{\frac{2A_c p_1}{(k-1)M_o}} \left[s_o - \frac{s_o^k}{(s_o+s)^{k-1}} \right] + v_o^2$$
(4-7)

$$\frac{ds}{dt} = \sqrt{K_a} \left[\frac{4}{s_o^{k-1}} - \frac{1}{(s_o + s)^{k-1}} \right] + v_e^{-1}$$
(4-8)

where

$$K_{a} = \frac{2A_{c}p_{1}s_{o}^{k}}{(k-1)M_{o}}$$

$$dt = \sqrt{\frac{s_{o}^{k-1}(s_{o}+s)^{k-1}}{K_{a}\left[(s_{o}+s)^{k-1}-s_{o}^{k-1}\right] + v_{o}^{2}s_{o}^{k-1}(s_{o}+s)^{k-1}} ds$$

$$= s_{o}^{(k-1)/2} \sqrt{\frac{\left(\frac{1+s}{s_{o}}\right)^{k-1}-\left(\frac{1+s}{s_{o}}\right)^{k-1}}{K_{a}\left[\left(1+\frac{s}{s_{o}}\right)^{k-1}-1\right] + v_{o}^{2}s_{o}^{k-1}\left(1+\frac{s}{s_{o}}\right)^{k-1}} ds$$
(4-9)

Let
$$a = 1 + \frac{s}{s_0}$$
; $ds = s_0 da$
 $dt = s_0^{(k+1)/2} \sqrt{\frac{a^{k-1}}{K_a(a^{k-1}-1) + v_0^2 s_0^{k-1} a^{k-1}}} da$
 $dt = \sqrt{\frac{s_0^{(k+1)/2}}{K_a}} \frac{da}{\sqrt{1 - a^{1-k} + v_0^2 s_0^{k-1}/K_a}}}$
(4-10)
4-3

Let
$$B = 1 + \left(\frac{v_o^2}{K_a}\right) s_o^{k^{-1}}$$

$$dt = \frac{s_o^{(k+1)/2}}{\sqrt{K_a}} \left[B\left(1 - \frac{a^{1-k}}{B}\right) \right]^{-1/2} da \qquad (4-11)$$

Expand according to the series $(1 - x)^{-1/2}$

$$(1-x)^{-1/2} = 1 + \frac{1}{2}x + \frac{1}{2} \cdot \frac{3}{4}x^{2} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}x^{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8}x^{4} + \dots = A + A_{1}x + A_{2}x^{2} + A_{3}x^{3} + A_{4}x^{4} + \dots$$
(4-12)

where A_1, A_2, A_3 , etc., are coefficients of x of the expanded series.

Now let $a^{1-k} = x$

$$dt = \frac{s_0^{(k+1)/2}}{\sqrt{K_a}} \left[1 + A_1 \frac{a^{(1-k)}}{B} + A_2 \frac{a^{2(1-k)}}{B^2} + A_3 \frac{a^{3(1-k)}}{B^3} + A_4 \frac{a^{4(1-k)}}{B^4} + \dots \right] da \qquad (4-13)$$

Now integrate

$$t = \frac{s_0^{(k+1)/2}}{\sqrt{\frac{k}{K_a}}} \left[a + A_1 \frac{a^{2-k}}{B(2-k)} + A_2 \frac{-2k}{B^2(3-2k)} + A_3 \frac{a^{4-3k}}{B^3(4-3k)} + A_4 \frac{-4k}{B^4(5-4k)} + \dots \right] + C_2 \quad (4-14)$$

when t = 0, s = 0 and a = 1.0, thus

$$C_{2} = -\frac{s_{o}^{(k+1)/2}}{\sqrt{K_{a}}} \left[1 + \frac{A_{1}}{(2-k)B} + \frac{A_{2}}{(3-2k)B^{2}} + \frac{A_{3}}{(4-3k)B^{3}} + \frac{A_{4}}{(5-4k)B^{4}} + \dots \right]$$
(4-15)

Before continuing with the analysis of the mechanics of the gas-operated system, several initial parameters must be established such as the characteristics of driving springs and buffers, time of recoil and counterrecoil, and port sizes and location. Since springs or their equivalent store energy for counterrecoil, they must be given the working capacity for reloading the gun and returning the recoiled parts in the prescribed time. Since the efficiency of the spring system involving recoil activity is relatively low in automatic guns, counterrecoil must necessarily take longer than recoil. Practice sets the preliminary estimate of counterrecoil time as

$$t_{cr} = 1.5t_r = 0.60t_c = \frac{36}{f_r}$$
 sec (4-16)

where

 f_r = firing rate, rounds/min t_c = time of firing cycle, sec t_r = time of recoil, sec

Driving and buffer springs, whether single springs or nests of two or more, are generally installed in series. The driving spring is the softer of the two and, during recoil, seats before the buffer springs begin to move. Its fully compressed load is less than the initial spring load of the buffers. Deflections are consistent with type, the driving spring has a large deflection whereas the much stiffer buffer springs deflect approximately 15% of the total recoil travel. In counterrecoil, the buffer springs complete their action first, then the driving spring continues the accelerating effort the rest of the way. Another proportion which must be considered during the preliminary design characteristics involves the ratio of counterrecoil energy contributed by the buffer springs to the total counterrecoil energy. A practical value is

$$\frac{E_{bc}}{E_{cr}} = 0.40.$$
 (4-17)

The counterrecoil velocity at the end of buffer spring action is computed from the kinetic energy equation.

$$v_{bc} = \sqrt{\frac{2 \times 0.4 E_{cr}}{M_r}} \tag{4-18}$$

The velocity at the end of counterrecoil is computed similarly.

$$v_{cr} = \sqrt{\frac{2E_{cr}}{M_r}} \tag{4-19}$$

Now

$$\frac{v_{bc}}{v_{cr}} - \sqrt{0.4}$$
 or $v_{bc} = 0.632v_{cr}$. (4-20)

Based on average velocities, the time required to negotiate the buffer spring travel becomes

$$t_{bc} = \frac{2L_b}{v_{bc}} = \frac{3.16L_b}{v_{cr}}$$
(4-21)

where

$$L_b$$
 = travel of buffer spring.

The time required for the remaining counterrecoil travel is

$$t_{rs} = \frac{2L_d}{\nu_{bc} + \nu_{cr}} = \frac{1.225L_d}{\nu_{cr}}$$
(4-22)

where

 L_d = driving spring travel

The total time of counterrecoil is approximately t_{cr} .

$$t_{cr} = t_{bc} + t_{rs} = \frac{3.16 L_b + 1.225 L_d}{v_{cr}}$$
 (4-23)

Since t_{cr} is know, Eq. 4–16, the approximate maximum counterrecoil velocity is

$$\nu_{cr} = \frac{3.16L_b + 1.225L_d}{t_{cr}}$$
(4-24)

Sufficient data are now known so that, via Eq. 2-26, practical values of characteristics for the various springs can be estimated. Spring constants may vary greatly among those in the whole system but the loads should be reasonably proportioned. The minimum load on the driving spring should be 3 to 4 times the weight of the recoiling parts. The minimum load of the buffer springs in series should be equal and in turn should be about twice the fully compressed load of the driving spring.

4-3.1.1 Gas Filling Period

The time must also be computed during the period while the initial volume of the operating cylinder is being filled with propellant gas. The operating piston and rod begin to move as soon as the gas force is sufficient to overcome friction. According to the equation of gas flow through an orifice, the rate w of gas flow is ⁷

$$w = CA_o p \sqrt{\left(\frac{g}{RT}\right) k \left(\frac{2}{k+l}\right)^{\frac{k+1}{k-1}}}, \text{lb/sec}$$
(4-25)

where

- A, = orifice area, in.²
- C = orifice coefficient
- g = 386.4 in./sec², acceleration of gravity
- k = ratio of specific heats
- $p = \text{pressure in reservoir, lb/in.}^2$
- RT = specific impetus, ft-lb/lb

Eq. 4-25 is valid as long as the discharge pressure does not exceed the critical flow pressure. For gases, the critical flow pressure p_{cr} is

$$p_{cr} = 0.53p.$$
 (4–26)

All the values of Eq. 4-25 are usually known except for orifice area and pressure so the equation

may be simplified by substituting K_w for the product of C times the term under the radical of Eq. 4-25, i.e.,

$$w = K_w A_o p_a \tag{4-27}$$

where the pressure now becomes p_a , the average pressure over a time interval. The time intervals should be short in duration so that the spread of values is small between average pressure and the maximum and minimum values, thereby minimizing the errors introduced by pressure variations over the interval. The weight ΔW_c of gas flowing into the operating cylinders during the time interval Δt is

$$A W_{a} = w \Delta t \qquad (4-28)$$

Pressures are read from the pressure-time curve, the initial pressure being that corresponding to the position of the orifice in the barrel. A tentative location of the orifice may correspond approximately with bullet location when approximately 50 to 70 percent of its time in the barrel has elapsed. Pressures in the operating cylinder may be adjusted by increasing the orifice area for higher pressures or decreasing it for lower pressures. If higher pressures are needed but a larger orifice is not deemed wise, these higher pressures are available by locating the orifice nearer to the breech. Conversely, lower pressures are available by shifting the orifice toward the muzzle. In both alternatives, these latter effects follow the prescription only if the orifice size remains unchanged.

There are so many variables in this exercise that some values must be assigned arbitrarily in order to approach a practical solution. An initial close approximation of these assigned values saves considerable time, which emphasizes the value of experience. By the time that the gas operating mechanism is being considered, good estimates should have been made on the weights of the bolt and its related moving parts and on the travel distance of these components. With the help of these estimates and with Eqs. 4-16 through 4-24, the early characteristics of counterrecoil are determined to serve as data for determining the recoil characteristics. As the first step, let the accelerating distance of the gas piston be indicated by s_a .

$$s_a = 0.3(L_d + L_b)$$
 (4-29)

The velocity of recoil at the end of the gas piston stroke is a function of the counterrecoil velocity at the same bolt position. The two velocities are related by the efficiency of the spring system. The counterrecoil velocity at this position is determined from Eq. 2-24, thus

$$p_{cr} = \sqrt{\nu_{bc}^2 + \frac{F_m (L_d - s_a) - \frac{1}{2} K (L_d - s_a)^2}{M_r}}$$
(4-30)

At any given position, the energy remaining to be absorbed by the spring may be expressed generally as ϵE_r

$$\epsilon E_r = \frac{\epsilon}{2} \left(M_r v_r^2 \right) = \begin{pmatrix} F_r + F_r \\ F_m - F_r \end{pmatrix} L. \qquad (4-31)$$

At the same position during counterrecoil, the energy released by the spring is indicated by Eq. 4-32.

$$E_{cr} = \frac{1}{2} \left(M_r v_{cr}^2 \right) = E \left(F_{rm} + F_{rm} - F_{rm} \right) L \qquad (4-32)$$

Solve for $\frac{F_m + F_o}{2}L$ in Eq. 4-32 and substitute the appropriate terms in Eq. 4-31 to obtain Eqs. 4-33 and 4-34.

$$\frac{\epsilon}{2} \left(M_r v_r^2 \right) = \frac{1}{2\epsilon} \left(M_r v_{cr}^2 \right)$$
(4-33)

$$v_r = \frac{v_{cr}}{E} \tag{4-34}$$

The work done during a polytropic expansion of a gas is defined in Eq. 4-35.

$$W = \frac{p_1 V_1 - p_2 V_2}{k - 1} \tag{4-35}$$

where

- k = ratio of specific heats
- p_1 = initial pressure
- p_2 = final pressure
- V_1 = initial volume of gas cylinder

 V_2 = final volume of gas cylinder

Since

$$p_2 = p_1 \left(\frac{V_1}{V_2}\right)^k$$

Eq. 4–35 may be written as

$$W = p_1 \left[\frac{V_1 - \left(\frac{V_1}{V_2}\right)^k V_2}{k - 1} \right]$$
(4-36)

By assigning a value to the ratio $\frac{V_2}{V_1}$ so that $V_2 = \left(\frac{V_2}{V_1}\right) V_1$, Eq. 4-36 may be written

$$W = \frac{p_1 V_1}{k - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{k - 1} \right] . \qquad (4-37)$$

Experience has indicated that k = 1.3 and that the ratio $\frac{V_1}{V^2} = \frac{3}{5}$ offers a practical beginning in the design study. Substitute these values in Eq. 4-37 to express the work done by the expanding gas so that

$$W = 0.473 p_1 V_1 . (4-38)$$

This work is equal to the kinetic energy of the recoiling mass. By substitution, the expression for the energy in Eq. 4-38 becomes

$$\frac{1}{2} \left(M_r v_r^2 \right) = 0.473 p_1 V_1 \tag{4-39}$$

$$p_1 V_1 = 1.06 M_r v_r^2 . \qquad (4-40)$$

Neither p_1 or V_1 are known but gas volume and corresponding dimensions must be compatible with the dimensions of the gun. The initial pressure must be low enough to assure its attainability and still perform according to time limits. An initial pressure in the neighborhood of 1000 to 1500 psi is appropriate.

On the assumption that the preliminary design is completed to the extent that tentative sizes have been established and the gas port in the barrel located, the pressure in the operating cylinder becomes the primary concern. Note that before the bullet passes the port, the gas operating cylinder is empty. As soon as the bullet passes the port, gases pour into the cylinder and, when the pressure becomes high enough, the piston begins to move. However, a finite time is required, however small, for the gas to fill the cylinder. Also, the pressure in the bore is rapidly diminishing. For this reason, the pressure in the operating cylinder does not have sufficient time to reach bore pressure before cut off when the port is closed. The gas pressure in the operating cylinder is found by establishing a relationship between the gas weight in the cylinder and the total propellant gas weight, and between the cylinder volume and the effective volume of the bore. The effective volume assumes the barrel to be extended beyond the muzzle to correspond with pressure decay. V_b is the effective bore volume after the bullet leaves the barrel.

$$V_b = V_m \left(\frac{p_m}{p_a}\right)^{k_b} \tag{4-41}$$

where

- k_b = ratio of specific heats of propellant gas in bore, usually considered to be 1.2 as compared to 1.3 in operating cylinder since the two locations have different temperatures. See footnote, par. 4-3.1.
- p_a = average propellant gas pressure
- p_m = propellant gas pressure as bullet leaves muzzle
- V_m = chamber volume plus total bore volume

The equivalent gas volume in the cylinder at p_a is shown as

$$V_e = \left(\frac{W_c}{W_g}\right) V_b \tag{4-42}$$

where

 $W_e = EAW_c$, weight of gas in the cylinder

 W_g = total weight of propellant gas

The gas pressure in the cylinder becomes

$$p_c = \left(\frac{V_e}{V_c}\right)^k p_a \tag{4-43}$$

where

- k = ratio of specific heats in operating cylinder
- p_a = average bore pressure over a time increment
- V_c = cylinder volume

4–8

The gas force applied to the piston in the operating cylinder

$$F_c = A_c p_c \tag{4-44}$$

The corresponding impulse $F_c \Delta t$ is obtained by multiplying the gas force by the differential time, At. Since momentum and impulse are the same dimensionally, the change in velocity of the recoiling unit during any given increment becomes Av.

$$4v = \frac{F_c \Delta t}{M_r}$$
 (4-45)

where

$$M_r$$
 = mass of the recoiling unit

The velocity v at the end of any given increment is the summation of the Av 's.

$$\mathbf{v} = \Sigma \Delta \mathbf{v} = \mathbf{v}_{n-1} + A \mathbf{v} \tag{4-46}$$

The distance s traveled by the operating unit at any given time of the s_i

$$s = s_1 + s_2 + s_{n-1} = \frac{1}{2} (\Delta \nu \Delta t) + \nu_{n-1} \Delta t + s_{n-1}$$
(4-47)

and the corresponding gas volume in the cylinder is

$$V_{a} = V_{aa} + A_{a}s.$$
 (4-48)

The entire computing procedure to arrange the dynamics of the recoiling system so that these data are compatible with counterrecoiling data is iterative and depends on the logical selection of initial values to hold the quantity of exploration to a minimum. Experience is the best guide in this respect but if lacking, definite trends in earlier computations should soon lead to the proper choice.

The initial orifice area is found by first solving for the weight of gas in the operating cylinder at cutoff and then, on the basis of average values, computing the area by Eq. 4-27. When the known or available values are substituted for the unkown in Eqs. 4-41, 4-42, 4-43, the solution for the weight of the gas becomes

$$W_{c} = W_{g} \left(\frac{V_{c}}{V_{m}}\right) \left(\frac{p_{c}^{1/k}}{p_{m}^{1/k_{b}}}\right) p_{a}^{(1/k_{b} - 1/k)}$$
(4-49)

Select an initial value of the cylinder pressure p_c . Assume that it is the critical flow pressure, thereby fixing the average bore pressure $p_a(p \text{ in Eq. } 4-26)$. Locate the pressure and the corresponding time on the pressure-time curve. Now measure the area under the pressure-time curve between the limits of the above time and when the bullet passes the gas port. The area divided by p_a gives the time needed to operate at the average pressure.

$$t = \frac{A_{pt}}{p_a} \tag{4-50}$$

where A_{pt} = area under pressure-time curve.

The rate of flow is now stated as

$$w = \frac{W_c}{t} \tag{4-51}$$

The orifice area A, may now be computed from Eq. **4–27**.

$$A_o = \frac{w}{K_w p_a} = \frac{W_c}{K_w A_{pt}}$$
 (4–52)

4-3.1.2 Bolt Locking Cam

The cam that controls the locking and unlocking of the bolt is arranged for the bolt to be released completely only after the propellant gas pressure in the chamber is no longer dangerous and, conversely, completely locks the bolt before the chambered round

AMCP 706-260

is fired. In a gas-operated machine gun such as the **7.62** mm, **M60**, the operating rod moves a short distance before bolt pickup. During this traverse, about half its axial length, the cam has a shallow constant slope to insure a small angular bolt travel and thereby exposes only the high strength end of the case at its rim. The cam then follows a parabolic curve to complete the unlocking process. A bolt having two locking lugs generally turns about sixty degrees (Fig. **4–3**).

To simplify the dynamics of cam operation, all components are assumed to be rigid *so* that transfer of momentum or energy from translation to rotation is made without considering the elasticity of the system. Therefore, as soon as the cam follower moves under the influence of the operating rod, the bolt immediately assumes the angular kinetics of the moving system. Linear velocity converted to angular velocity becomes

$$\omega = \left(\frac{\nu_o}{R_c}\right) \tan\beta, \text{ rad/unit time} \quad (4-53)$$

where

٧,

1

= operating rod velocity immediately preceding cam action

 β = cam rise angle

Apply the law of the conservation of momentum, thus

$$M_o v_o = M_o v + I_b \frac{\omega}{R_c}$$
$$= \left[M_o + M_b \left(\frac{k^2}{R_c^2} \right) \tan \beta \right] v \quad (4-54)$$

where

k = bolt polar radius of gyration

 M_b = mass of bolt

$$M_{o}$$
 = mass of operating rod assembly

4-10

Fig. 4-4 shows the accelerating force system involved in the cam dynamics. All forces and reactions are derived from the cam normal force and from the geometry of the bolt components.

- F_L = transverse force on locking lug; reaction on bolt
- N = cam normal force
- N_a = axial force on cam and locking lug
- N_c = tangential force on cam; reaction on bolt
- N_s = reaction normal force
- R = bolt radius
- R_c = cam radius
- R_L = radius of locking lug pressure center
- λ = locking lug helix angle
- μ_r = coefficient of rolling friction of cam roller
- μ_s = coefficient of sliding friction
- ω = angular velocity

From the geometry, the axial component of the normal cam force and the cam friction is

$$N_a = N(\sin\beta + \mu_\mu \cosh) \qquad (4-55)$$

Since the lug cam is analogous to a screw, the other forces and reactions are obtained by resolving the static forces accordingly. Let N_s be the reaction normal to the helix of the lug and $\mu_s N_s$, the frictional resistance. The axial component of these two forces is

$$N_a = N_e(\cos\lambda + \mu_e \sin\beta). \qquad (4-56)$$

The inertia force of the operating rod and the axial cam force must balance the accelerating force, thus

$$F_{c} = M_{0}a + N(\sin\beta + \mu_{r}\cos\beta) \qquad (4-57)$$

AMCP 706-260

where a = linear acceleration of locking lug.

where

i

The applied torque
$$N_c R_c$$
 of the transverse cam force
must balance the rotational inertia of the bolt, plus the
induced torque of the lug, plus the two components of
frictional resistance of the bolt.

$$N_{c}R_{c} = I_{b}\alpha - F_{L}R_{L} + \mu_{s}N_{c}R \pm \mu_{s}F_{L}R$$
 (4-58)

$$I_{b} = \text{mass moment of inertia of bolt}$$

$$N_{c} = N(\cos\beta - \mu_{r} \sin\beta)$$

$$F_{L} = N_{s}(\sin\lambda - \mu_{s}\cos\lambda)$$

$$H_{b}\alpha = M_{b}k^{2} \left(\frac{a}{R_{c}}\right) \tan\beta$$

a = angular acceleration of bolt

Figure 4-4. Force System of Bolt Cam

After these expressions are substituted into Eq. 4-58 and the terms collected, Eq. 4-59 may be compiled.

$$N(\cos\beta - \mu_r \sin\beta) (R_c - \mu_s R) = M_b \frac{k^2}{R_c} a \tan\beta - N_s (\sin\lambda - \mu_s \cos\lambda) (R_L - \mu_s R)$$
(4-59)

Solve for N_s in terms of N via Eqs. 4–55 and 4–56.

$$N_{s} = N \left(\frac{\sin\beta + \mu_{r} \cos\beta}{\cos\lambda + \mu_{s} \sin\lambda} \right)$$
(4-60)

4–12

Substitute for N_s in Eq. 4–59, collect terms and solve for N.

$$N = M_b a \frac{k^2 \tan\beta}{R_c \left[(R_c - \mu_s R) \left(\cos\beta - \mu_r \sin\beta \right) + C_\lambda \left(R_L - \mu_s R \right) \left(\sin\beta + \mu_r \cos\beta \right) \right]}$$
(4-61)

where

$$C_{\lambda} = \frac{\sin \lambda - \mu_s \cos \lambda}{\cosh + \mu_s \sin \lambda}$$

Now substitute for N in Eq. 4-57 so that

$$F = a \left\{ \begin{array}{c} M_o + M_b & \frac{k^2 \tan\beta}{R_c \left[\frac{(R_c - \mu_s R) \left(\cos\beta - \mu_r \sin\beta\right)}{\sin\beta + \mu_r \cos\beta} + C_\lambda (R_L - \mu_s R) \right]} \right\}$$
(4-62)

For unlocking, F is the gas pressure force on the operating rod. It is the driving spring force during locking. The expression in the braces of Eq. 4-62 is equivalent to an effective mass M_e . Eq. 4-62 may now be written as

$$F_c = M_e a \tag{4-63}$$

$$a = \frac{F}{M_e} \tag{4-64}$$

 $p_{,} = p_1 \left(\frac{s_o}{\frac{s_o}{s_o \pm \frac{s}{s}}}\right)^k$ (from Eq. 4–2)

Both p_c and F_c may be found by assigning small increments to the operating rod travel s.

$$s = {}^{s}n - 1 + As$$
 (4-65)

The average acceleration over the increment is

$$a_a = \frac{1}{2} (a_{n-1} + a_n) \tag{4-66}$$

The velocity at the end of each increment is obtained by first computing the energy E_o of the operating rod

where E_{oi} = energy of operating rod at gas cutoff

$$= A_c p_c$$
 (from Eq. 4-44) then $v = \sqrt{\frac{2E_o}{M_o}}$. (4-68)

4-13

$$a = \frac{F}{K}$$
 (4-

force according to Eq. 4-44.

 F_c

AMCP 706-260

The incremental time may be computed from the expression

$$\Delta s = v_{n-1} \Delta t_e + \frac{1}{2} \left(a_a \Delta t_e^2 \right). \tag{4-69}$$

Solving for At, the incremental time of the gas expansion stroke becomes

$$\Delta t_e = -\frac{v_{n-1}}{a_a} \pm \sqrt{\left(\frac{v_{n-1}}{a_a}\right)^2} + \frac{2\Delta s}{a_a}$$
(4-70)

The time for the total gas expansion stroke is t,.

 $t_{\rho} = \Sigma \Delta t_{\rho}$ (4-71)

During the locking period, the applied force is derived from the driving spring. The spring accelerating forces at any position of the operating rod when efficiency is considered is

$$F = \epsilon(F_i + Ks) = F_{n-1} + \epsilon K \Delta s \tag{4-72}$$

where

$$F_l$$
 = initial driving spring force as bolt seats

- F_{n-1} = spring accelerating force of previous increment
- Κ = spring constant
- = operating rod travel after bolt seats s
- As = incremental operating rod travel
- E = efficiency of the spring system

The breech end of the locking lugs carries the axial reaction on the bolt, thereby relieving the helix end of all loads during cam action. Therefore, in Eq. 4-62, $\lambda = 0$, and the effective mass becomes

$$M_e = M_o + M_b \left\{ \frac{k^2 \tan \beta}{R_c \left[\frac{(R_c - \mu_s R)(\cos \beta - \mu_r \sin \beta)}{\sin \beta + \mu_r \cos \beta} - \mu_s (R_L - \mu_s R) \right]} \right\}$$
(4-73)
Note that if the cam roller is not installed for either locking or unlocking, the Coefficient of rolling friction μ_r changes to μ_s the coefficient of sliding friction in Eqs. 4–62 and 4–73.

4-3.1.3 Cam Curve

The cam curves on the breech end of the bolt are helices, usually having identical slopes. The straight slope merges smoothly with the parabolic curve which may be expressed as

$$y = Ax^2 + Bx + C$$
. (4-74)

Locate the coordinate axes so that y = 0 when x = 0, thus C = 0 which reduces the equation to

$$y = Ax^2 + (4-75)$$

The slope of the curve is defined as

$$\frac{dy}{dx} - a \quad x \quad t \Rightarrow \tan \beta \tag{4-76}$$

when $\mathbf{x} = 0; \beta_o = \beta_{o} \frac{d\mathbf{y}}{d\mathbf{x}} = \tan\beta_o$, and $B = \tan\beta_o$,

the slope of the helix and therefore the slope of the parabola where it joins the helix. When x and y reach their respective limits, dimensions that have been assigned and then substituted in Eq. 4–75 will yield the value of the coefficient A.

$$A = \frac{y_m - Bx_m}{x_m^2}$$
(4-77)

where

 y_m = peripheral width of the parabola (see Fig. 4-3)

From Eq. 4–62, the equivalent mass for the unlocking system is a constant when the cam action involves the helix. The values assigned to the parameters in the equation are:

- k = 0.275 in., radius of gyration
- R = 0.39 in., bolt radius
- $R_c = 0.32$ in., cam radius
- μ_r = 0.034 coefficient of rolling friction
- $\mu_s = 0.30$ coefficient of sliding friction
- $\tan \beta_{o} = 0.007465$, slope of cam helix
 - R_L = 0.5 in., radius of locking lug
 - $W_b = 0.75$ lb, bolt weight

$$W_o = 2.5$$
 lb, operating rod weight

$$\cos \beta_{0} = 0.999972$$

- $\sin \beta_o = 0.0074648$
 - $\lambda = 3^{\circ}$, slope of lug helix

$$M_{e} = \frac{1}{386.4} \qquad W_{o} + W_{b} \frac{k^{2} \tan\beta_{o}}{R_{c} \left[\frac{(R_{c} - \mu_{s}R) (\cos\beta_{o} - \mu_{r} \sin\beta_{o})}{\sin\beta_{o} + \mu_{r} \cos\beta_{o}} + C_{\lambda} (R_{L} - \mu_{s}R) \right]}$$

$$= \frac{1}{386.4} \left\{ 2.5 + 0.75 \left[\frac{0.0756 \times 0.007465}{0.32 (0.203 \times 24.12 - 0.244 \times 0.383)} \right] \right\}$$

.

where

$$\frac{\cos\beta_o - \mu_r \sin\beta_o}{\sin\beta_o + \mu_r \cos\beta_o} = \frac{0.99997 - 0.00025}{0.00746 + 0.0340} = 24.12$$

$$C_{\lambda} = \frac{\sinh - \mu_{s} \cosh}{\cosh + \mu_{s} \sin \lambda} = \frac{0.05234 - 0.29959}{0.99863 + 0.01570} = -0.244$$

$$M_e = \frac{2.5 + 0.75 \times 1.18 \times 10^{-4}}{386.4} = \frac{2.50001}{386.4} = 0.00647 \text{ lb-sec}^2/\text{in}$$

The effective mass adds less than one percent to the operating rod mass as the cam follower progresses along the constant cam slope hence it need not bc considered in the calculations until the parabolic curvature is reached. Because the entire bolt mass without modification was entered in the analysis of the period before gas cutoff, this analysis may be considered conservative. The effective mass while the cam follower negotiates the parabolic curvature of the cam for the unlocking process becomes (Eqs. 4-63 and 4–62)

$$M_e = 6.47 \times 10^{-3} + \frac{4.58 \times 10^{-4} \tan\beta}{0.203 \left(\frac{\cos\beta - 0.034 \sin\beta}{\sin\beta + 0.034 \cos\beta}\right) - 0.093}$$

The effective mass for the locking process is obtained from Eq. 4-73.

$$M_e = 6.47 \times 10^{-3} + \frac{4.58 \times 10^{-4} \tan\beta}{0.203 \left(\frac{\cos\beta - 0.034 \sin\beta}{\sin\beta + 0.034 \cosh\beta}\right) - 0.115}$$

The straight slope of the cam is half the axial cam travel distance

$$x_c = \frac{1}{2} s_r = 0.5$$
 in.
 $x_m = s_r - s = 0.5$ in., axial length of parabola

According to Eq. 4-76, $B = \tan \beta_o = 0.007465$. The bolt must turn through an angle of 60° to unlock. The peripheral width of the parabola (see Fig 4-3) is

$$y_m = \left(\frac{60}{57.3} - B\right) R_c = 1.0397 \times 0.32 = 0.3327$$
 in

From Eq. 4-77, the constant A is

$$A = \frac{y_m - Bx_m}{x_m^2} = \frac{0.3327 - 0.007465 \times 0.5}{0.25}$$

= 1.316/in.

The slope of the curve, Eq. 4-76, is

$$\tan\beta = \frac{dy}{dx} = 2.632x + 0.007465.$$

4-3.2 SAMPLE PROBLEM FOR CUTOFF EXPANSION SYSTEM

4-3.2.1 Specifications

Gun: 7.62 mm machine gun

Firing Rate: 1000 rounds/min

Interior Ballistics: Pressure vs Time, Fig. 4–5 Velocity vs Time, Fig. 4–5

4-3.2.2 Design Data, Computed

The time for the firing cycle, from Eq. 2-29, is

$$t_c = \frac{60}{f_r} = \frac{60}{1000} = 0.060 \text{ sec.}$$

The counterrecoil time t_{cr} , Eq. 4–16, is

$$t_{cr} = 0.60 t_c = 0.036$$
 sec.

The recoil time

$$t_{1} = t_{1} - t_{1}$$
 = 0.060 - 0.036 = 0.024 sec.

Fig. 4–6 shows a sketch of the various distances involved in the operation of the moving mechanisms during the firing cycle. These initial distances are based on those of an earlier gun.

$$d_c = 0.874$$
 in., gas cylinder diameter

 $d_p = 0.135$ in., gas port diameter

 $L_b = 1.00$ in., buffer stroke

- $L_{b1} = 0.75$ in., operating distance of primary buffer spring
- $L_{b2} = 0.25$ in., operating distance of secondary buffer spring
- L_d = 5.5 in., operating distance of operating rod spring
- $s_a = 2.0$ in., accelerating distance of gas piston
- $s_b = 4.5$ in., distance of bolt retraction during recoil.
- $s_c = 0.20$ in., cutoff distance
- s_d = 1.8 in., dwell distance
- s_r = 1.00 in., operating rod travel before bolt pickup
- $V_o = 1.8$ in.³, initial gas volume of operating cylinder
- $W_b = 0.75$ lb, weight of bolt

 ϵ

- $W_o = 2.5$ lb, weight of moving operating mechanism
- $W_r = W_b + W_o = 3.25 \text{ lb}$, weight of recoiling parts
 - = 0.50, efficiency of spring system

Figure 4-5. Pressure-time Curve of 7.62 mm Round

Figure 4-6. Operating Distances of Moving Parts

4-3.2.3 Counterrecoil Computed Data

From Eq. 4-24 the approximate maximum counterrecoil velocity is computed to be

$$v_{cr} = \frac{3.16 L_b + 1.228 L_d}{t_{cr}} = \frac{3.16 + 6.75}{0.036}$$

= 275 in./sec.

 $L_d = 5.5$ in., operating distance of spring $5.5 F_a = \frac{1}{0.5} \left(\frac{1}{2}\right) \left(\frac{3.25}{338.4}\right) (75625 - 30276)$ $F_a = 69.3$ lb

For the first trial a spring constant of 4 lb/in. was selected but proved to be too highly stressed. However, the first trial indicated a compression time of 16.6 msec. With an impact velocity above 25 ft/sec, the spring surge time is

$$T = \frac{T_c}{1.8} = \frac{0.0166}{1.8} = 0.0092$$
 msec,

From Eq. 4-20 the approximate counterrecoil velocity at the end of buffer spring action becomes

$$v_{bc} = 0.632 v_{cr} = 174 \text{ in./sec.}$$

According to Eq. 2-67b,

According to Eq. 2–24, by substituting
$$F_a$$
 for

 $\left(F_m - \frac{1}{2}Kx\right)$ and L_d for **x**, the expression $L_d F_a$ is

$$L_d F_a = \frac{1}{\epsilon} \left[\frac{1}{2} \left(M_r v_{cr}^2 \right) - \frac{1}{2} \left(M_r v_{bc}^2 \right) \right]$$

where v_{bc} is equivalent to v_o of Eq. 2–24.

 F_q can now be determined.

$$M_r = \frac{W_r}{g}$$

g = 386.4 in./sec², acceleration of gravity

$$KT = \frac{F_{m_{-}}}{1037} = \frac{F_{a} + \frac{1}{2} \left(L_{d} K \right)}{1037}$$

$$0.0092K = \frac{69.3 + 2.75K}{1037}$$

$$K = 10.2 \, \text{lb/in}.$$

$$F_m = F_a + \frac{1}{2} (KL_d) = 69.3 + 28.1 = 97.4 \text{ lb}$$

$$F_o = F_m - KL_d = 97.4 - 56.1 = 41.3$$
 lb

For the buffer springs in series, the spring constant K_b is

$$K_{r} = 60 \text{ lb/in.}$$

$$L_{b} = 1.0 \text{ in.}$$

$$\frac{1}{2} \left(M_{r} v_{bc}^{2} \right) = \frac{1}{2} \left(F_{mb} L_{b} \right) - \frac{1}{4} \left(K_{b} L_{b}^{2} \right)$$

$$mu = 0 \text{ at the start of counterposel}$$

where $v_o = 0$, at the start of counterrecoil

$$\frac{1}{2} F_{mb} = \frac{1}{2} \left(\frac{3.25}{386.4} \right) 30,276 + \frac{1}{4}$$
 (60) 1.0

$$F_{mb} = 2(127.3 + 15) = 284.6$$
 lb, say, 285 lb

$$F_{ob} = F_m - K_b L_b = 285 - 60 = 225 \text{ lb.}$$

Since the buffer springs in series should have the same terminal loads, spring constants will vary inversely as their deflections. Thus,

$$\frac{K_1}{K_2} = \frac{L_{b2}}{L_{b1}} = \frac{0.25}{0.75} \text{ or } K_2 = 3K_1$$

The spring constants of the primary and secondary springs of the buffer are

$$K_{1} = \frac{F_{mb} - F_{ob}}{L_{b1}} = \frac{60}{0.75} = 80 \,\text{lb/in}.$$

$$K_{2} = 3K_{1} = 240 \,\text{lb/in}.$$

4-3.2.4 Counterrecoil Time

The counterrecoil time is divided into two periods, i.e., during buffer spring action and during driving spring action. Both are computed according to Eq. 2-26. For the buffer springs, $\nu_o = 0$ therefore

$$t_{bc} = \sqrt{\frac{M_r}{eK_b}} \left[\sin^{-1} \left(\frac{K_b L_b - F_{mb}}{F_{mb}} \right) - \frac{3\pi}{2} \right]$$

$$t_{bc} = \sqrt{\frac{2 \times 3.25}{386.4 \times 60}} \left[\sin^{-1} \left(\frac{1.0 \times 60 - 285}{285} \right) - \frac{3\pi}{2} \right]$$

$$= 0.01675 \left[\sin^{-1} \left(-0.78947 \right) - 4.71241 \right]$$

$$= 0.01675 \left(5.3733 - 4.7124 \right) = 0.0111 \text{ sec.}$$

From Eq. 2–24, the buffer counterrecoil velocity is expressed in terms of spring energy.

$$v_{bc}^{2} = \frac{F_{mb}L_{b} - \frac{1}{2}\left(K_{b}L_{b}^{2}\right)}{M_{r}}$$
$$= \frac{(285 \times 1.0 - 30 \times 1.0)386.4}{325}$$

$$v_{bc}^2 = \frac{255 \times 386.4}{3.25} = 30318 \text{ in.}^2/\text{sec}^2$$

 $v_{bc} = 174.1$ in./sec, buffer counterrecoil velocity

which checks favorably with the first computed velocity of 174 in./sec

The time consumed for counterrecoil during driving spring action also is divided into two periods, when the total recoiling mass is considered, and after the bolt stops when the moving mass consists only of the moving parts of the operating rod unit. According to Eq. 2–26, the first time component is

$$t'_{cr} = \sqrt{\frac{M_r}{\epsilon K}} \left[\sin^{-1} \left(\frac{Ks_b - F_m}{\sqrt{F_m^2 + 2KM_r v_{bc}^2}} \right) - \sin^{-1} \left(\frac{-F_m}{\sqrt{F_m^2 + 2KM_r v_{bc}^2}} \right) \right]$$
$$= \sqrt{\frac{3.25}{386.4 \text{ x } 0.5 \text{ x } 10.2}} \left[\sin^{-1} \frac{10.2 \text{ x } 4.5 - 97.4}{\sqrt{9487 + 5202}} - \sin^{-1} \frac{-97.4}{\sqrt{9487 + 5202}} \right]$$
$$= 0.04061 \left[\sin^{-1} (-0.4249) - \sin^{-1} (-0.8036) \right]$$
$$= 0.04061 (334.85 - 306.52)/57.3 = 0.04061 \text{ x } 0.4944 = 0.0201 \text{ sec}$$

where

$$F_m = 97.4 \text{ lb}$$
 $s_b = 4.5 \text{ in.}$
 $K = 10.2 \text{ lb/in.}$ $v_{bc}^2 = 30,318 \text{ in.}^2/\text{sec}^2$
 $M_r = \frac{3.25}{386.4} \text{ lb-sec}^2/\text{in.}$ $z = 0.50$

According to Eq. 2-24, the expression for the counterrecoil velocity is

$$\nu_{cr}^{2} = \nu_{bc}^{2} + \frac{2\epsilon \left[(F_{m}s_{b} - \frac{1}{2} \left(Ks_{b}^{2} \right) \right]}{M_{r}}$$

= 30318 + $\frac{97.4 \times 4.5 - 10.2 \times 20.25/2}{3.25}$ 386.4
= 30318 + 39832 = 70150 in.²/sec²

 $v_{cr} = 264.9$ in /sec = 22.08 ft/sec, maximum bolt velocity on return.

The terminal part of the counterrecoil stroke occurs after the bolt is in battery and the operating rod components are the remaining moving parts. From Eq. 2-26, the second time component is

$$t_{cr}'' = \sqrt{\frac{M_o}{\epsilon K}} \left[\sin^{-1} \quad \frac{K(L_d - s_b) - F_m}{\sqrt{F_m^2 + 2KM_o v_o^2}} - \sin^{-1} \quad \frac{-F_m}{\sqrt{F_m^2 + 2KM_o v_o^2}} \right]$$

$$4-21$$

$$t_{cr}'' = \sqrt{\frac{2.5}{386.4 \times 0.5 \times 10.2}} \left[\operatorname{Sin}^{-1} \frac{-41.3}{\sqrt{2652 + 9258}} - \operatorname{Sin}^{-1} \frac{-51.5}{\sqrt{2652 + 9258}} \right]$$
$$= 0.03562 \left[\operatorname{Sin}^{-1} (-0.3784) - \operatorname{Sin}^{-1} (-0.4719) \right]$$

$$= 0.03562 (337.77 - 331.85)/57.3 = 0.0037 \text{ sec}$$

where

$$F_m = 51.5 \text{ lb} \qquad M_o = \frac{2.5}{380.4} \text{ lb-sec}^2/\text{in}.$$

$$F_o = 41.3 \text{ lb} \qquad s_b = 4.5 \text{ in}.$$

$$K = 10.2 \text{ lb/in}. \qquad v_o^2 = 70147 \text{ in}^2./\text{sec}^2$$

$$L_d = 5.5 \text{ in}. \qquad E = 0.50$$

The total counterrecoil time is

$$t_{cr} = t_{bc} + t'_{cr} + t''_{cr} = 0.0349 \text{ sec.}$$

This computed time compares favorably with the assigned time (0.036 sec) for counterrecoil thus supporting the characteristics of the selected spring.

At the end of counterrecoil the velocity of the operating rod moving parts, according to Eq. 2-24 is

$$v_{cr} = \sqrt{v_o^2 + 2\epsilon \left[F_m (L_d - s_b) - \frac{1}{2} K (L_d - s_b)^2 \right] / M_o}$$
$$= \sqrt{70147 + (51.5 \times 1.0 - 10.2 \times 1.0/2) 386.4/2.5}$$

$$= \sqrt{77318} = 278 \text{ in./sec} = 23.08 \text{ ft/sec} = 277 \text{ in./sec}$$

which checks with the first computed velocity of 275 in./sec.

4-3.2.5 Recoil Time

The dynamics of the operating rod and bolt while propellant gases are active in the gas cylinder do not include the resistance of the driving spring since the spring forces are negligible as compared to gas forces. With respect to the dynamics, two periods are involved, i. e., accelerating and decelerating. Initially, the time of each is proportioned according to their respective distance of operation. The decelerating time is computed to be

$$t_d = \left(\frac{L_d + L_b - s_a}{L_d + L_b}\right) t_r = \left(\frac{5.5 + 1.0 - 2.0}{5.5 + 1.0}\right) 0.024$$

= 0.0166 sec

where $t_r = 0.024$ sec (sec par. 4-3.2.2) and

where $s_a = 2.0$ in., the distance that the piston moves while being accelerated by the propellant gas.

The counterrecoil velocity at this position is computed according to Eq. 2-24

$$v_{cr} = \sqrt{v_{bc}^2 + 2\epsilon \left[F_m(L_d - s_a) - \frac{1}{2}K(L_d - s_a)^2\right]/M_r}$$

= $\sqrt{30318 + (97.4 \times 3.5 - 10.2 \times 12.25/2)386.4/3.25}$
= 251.8 in./sec.

From Eq. 4-34, the velocity of recoil at this position becomes

$$v_r = \frac{1}{\epsilon} v_{cr} - \frac{251.8}{0.5} = 503.6 \text{ in./sec.}$$

4-3.2.5.1 Recoil Time, Decelerating

As computed above, the recoil velocity at the end of the operating cylinder stroke is **503.6** in./sec which becomes the initial velocity of the spring system as deceleration begins. At this time the driving spring has been compressed to the extent of the two inches that the operating gas piston has traveled. The design data include

$$F_{sa} = 41.3 + Ks_a = 41.3 + 20.4 = 61.7$$
 lb

- $K = 10.2 \, \text{lb/in., spring constant}$
- $M_r = 3.25/g$, lb-sec² in.
- $s_a = 2.0$ in.

 $v_o = 503.6$ in./sec, initial velocity

E = 0.5, efficiency of spring system

The working distance of the drive spring during the decelerating period of recoil is *L*₁.

$$L_r = L_d - s_a = 5.5 - 2.0 = 3.5$$
 in

Expand Eq. 2-22 to include the limits of x = 0 to $x = L_{y}$, thus the time to compress the drive spring is

$$t_{dr} = \sqrt{\frac{\epsilon M_r}{K}} \left(\operatorname{Sin}^{-1} \frac{F_{sa} + KL_r}{\sqrt{F_{sa}^2 + \epsilon K M_r v_o^2}} - \operatorname{Sin}^{-1} \frac{F_{sa}}{\sqrt{F^2 + \epsilon K M_r v_o^2}} \right)$$
$$= \sqrt{0.0004123} \left(\operatorname{Sin}^{-1} \frac{97.4}{121.2} - \operatorname{Sin}^{-1} \frac{61.7}{121.7} \right)$$

= 0.0081 sec.

The velocity of the recoiling parts as the buffer is contacted is

$$v_b^2 = v_o^2 - \frac{(2F_{sa} + KL_r)L_r}{\epsilon M_r}$$
$$= 253613 - \frac{159.1 \times 3.5 \times 386.4}{0.50 \times 3.25}$$

$$v_b = \sqrt{253613 - 132410} = \sqrt{121203} = 348.1 \text{ in./sec.}$$

4-23

Since the buffer absorbs the remaining energy,

$$\sqrt{F_{ob}^2 + \epsilon K_b M_r v_b^2} = F_{mb} ,$$

therefore, Eq. 2–23 becomes the expression for recoil time during buffing,

$$t_{b} = \sqrt{\frac{\epsilon M_{r}}{K}} \cos^{-1} \frac{F_{ab}}{F_{mb}} = \sqrt{\frac{0.5 \times 3.25}{60 \times 386.4}} \cos^{-1} \frac{225}{295}$$
$$= 0.00837 \ Cos^{-1} \ 0.78947 = 0.00837 \ \left(\frac{37.89}{57.3}\right)$$
$$= 0.0055 \ \text{sec.}$$

The total recoil time during deceleration

$$t'_r = t_{dr} + t_b = 0.0081 + 0.0055 = 0.0136 \sec d$$

4-3.2.5.2 Recoil Time, Accelerating

The time needed to accelerate the recoiling mass consists of two parts, i. e., time before cutoff and time after cutoff. First, the tentative size of the operating cylinder must be determined. According to Eq. 4-40, the work done by the expanding gas is

$$p_1 V_1 = 1.06 M_r v_r^2 = 1.06 \left(\frac{3.25}{386.4}\right) 253613$$

= 2261 in.-lb

Select $p_1 = 1250 \, \text{lb/in.}^2$

$$V_1 = \frac{p_1 V_1}{p_1} = \frac{2261}{1250} = 1.8 \text{ in.}^3$$

With the ratio $\frac{V_1}{V_2} = \frac{3}{5}$, the volume at the end of the

gas expansion stroke is V_2 .

$$V_2 = \frac{5}{3} V_1 = \left(\frac{5}{3}\right) 1.8 = 3.0 \text{ in.}^3$$

The selected cylinder pressure is $p_c = p_1 = 1250$ psi. Assume this pressure to be the critical flow pressure. Therefore, the average pressure in the barrel needed to provide it is, according to Eq. 4-26,

$$p_a = \frac{p_c}{0.53} = 2360 \text{ lb/in.}^2$$

Other values are

- k = 1.3, ratio of specific heats in operating cylinder
- $k_b = 1.2$, ratio of specific heats in bore
- $p_m = 9000 \text{ lb/in.}^2$, muzzle pressure from Fig. 4–5
- $V_{co} = V_1 = 1.8$ in.³, initial volume of operating cylinder
- $V_m = 1.74 \text{ in.}^3$, chamber volume plus bore volume

$$W_{\sigma} = 0.00629$$
 lb, weight of propellant

The weight of the gas in the operating cylinder at its maximum pressure, according to Eq. 4-49, is

$$W_{c} = W_{g} \left(\frac{V_{co}}{V_{m}}\right) p_{c}^{1/k} p_{a}^{(1/k_{b} - 1/k)} p_{m}^{1/k_{b}}$$
$$= 0.00629 \left(\frac{1.8}{1.74}\right) \left(\frac{241 \times 1.66}{1970}\right) = 0.00132 \text{ lb}$$

To insure total access, the diameter of the orifice should not exceed the cutoff distance; thus the two orifices of 0.162 in. diameter.

The measured area under the pressure-time curve between 0.0002 sec and 0.0032 sec is equivalent to $A_{pt} = 16.43$ lb-sec/in.² The first time (0.0002 sec) represents approximately 70% of the bullet travel and the second corresponds with the pressure, $p_a = 2360$ psi. From Eq. 4–52, the first estimate of the orifice area is

$$A_o = \frac{W_c}{K_w A_{pt}}$$
 $\frac{0.00132}{0.00192 \text{ x } 16.43} = 0.042 \text{ in.}^2$

where, in Eq. 4–25, the expression for the term K_w is

$$K_{w} = C \sqrt{\frac{g}{RT} k \left(\frac{2}{k+1}\right)^{(k+1)/(k-1)}}$$

= 0.00192/sec

C = 0.30, orifice coefficient

 $g = 32.2 \text{ ft/sec}^2$

- **k** = 1.3
- RT = 350,000 ft-lb/lb, specific impetus

With A, = 0.042 in.² detailed iterative computations arc performed in Table 4–1. These calculations indicate a cutoff at s = 0.20 in. of piston travel. Also, an orifice area of 0.042 in.² seems sufficient. A piston area of 0.60 in.² is suitable. Note that in the listed values of the cylinder pressure p_c never exceeds the critical flow pressure of $p_{cr} = 0.53 p_a$ except for the last increment. Here the computed pressure of 1134 psi via Eq. 4–43 is considered reasonable inasmuch as the pressure of polytropic expansion during the interval drops only to 1105 psi and the continued flew from the barrel should be enough so that the cylinder pressure will approach the 1134 psi.

$t \times 10^4$,	p _a , psi	A ₀ , in?	w , lb/sec	$\Delta W_c \mathop{\chi}_{\rm lb}^{\rm X \ 10^4,}$	$W_c \underset{\text{lb}}{\chi} 10^4$,	$V_{\rm L}$, in. ³	V _e , in. ³	<i>V_c</i> , in. ³
9	26000	0.042	2.096	2.096	2.096	0.837	0.0278	1.8000
10	19000	0.042	1.531	1.531	3.627	0.942	0.0543	1.8002
11	14800	0.042	1.193	1.193	4.820	1.147	0.0879	1.8003
12	11400	0.042	0.919	0.919	5.739	1.366	0.1246	1.8006
13	9600	0.042	0.774	0.774	6.513	1.600	0.1657	1.8011
18	6600	0.042	0.532	2.660	9.173	2.255	0.329	1.8080
23	4500	0.042	0.363	1.815	10.988	3.120	0.545	1.8236
28	3200	0.037	0.227	1.135	12.123	4.130	0.796	1.850
33	2400	0.025	0.1 15	0.575	12.698	5.240	1.058	1.888
36.31	1800	0.007	0.024	0.088	12.786	6.650	1.350	1.920
t X 10 ⁴ , sec	p _c , psi	F _c , lb	$F_c \Delta t$, lb-sec	$\Delta \nu$, in./sec	v, in./sec	s ₁ X 10 ⁴ , in.	s ₂ X 10 ⁴ , in.	s× 10 ⁴ , in.
<i>t X</i> 10 ⁴ , sec	р _с , psi 114	<i>F_c</i> , lb	$F_c \Delta t$, lb-sec	Δν, in./sec	v, in./sec 0.82	s ₁ X 10 ⁴ , in.	s ₂ X 10 ⁴ , in.	s×10 ⁴ , in.
<i>t</i> X 10 ⁴ , sec	<i>p_c</i> , psi 114 202	<i>F_c</i> , lb 69 121	$F_c \Delta t$, lb-sec 0.0069 0.0121	Δν, in./sec 0.82 1.44	v, in./sec 0.82 2.26	s ₁ X 10 ⁴ , in. 0 1	s ₂ X 10 ⁴ , in. 0 1	s×10 ⁴ , in. 0 2
<i>t X</i> 10 ⁴ , sec 9 10 11	<i>p_c</i> , psi 114 202 294	<i>F_c</i> , lb 69 121 176	$F_c \Delta t$, lb-sec 0.0069 0.0121 0.0176	Δν, in./sec 0.82 1.44 2.09	v, in./sec 0.82 2.26 4.35	s ₁ X 10 ⁴ , in. 0 1 1	s ₂ X 10 ⁴ , in. 0 1 2	s×10 ⁴ , in. 0 2 5
<i>t</i> X 10 ⁴ , sec 9 10 11 12	<i>p_c</i> , psi 114 202 294 354	<i>F_c</i> , lb 69 121 176 212	$F_{c}\Delta t,$ lb-sec 0.0069 0.0121 0.0176 0.0212	Δν, in./sec 0.82 1.44 2.09 2.52	v, in./sec 0.82 2.26 4.35 6.87	s ₁ X 10 ⁴ , in. 0 1 1 1	s ₂ X 10 ⁴ , in. 0 1 2 4	s × 10 ⁴ , in. 0 2 5 10
<i>t</i> X 10 ⁴ , sec 9 10 11 12 13	<i>p_c</i> , psi 114 202 294 354 425	<i>F_c</i> , lb 69 121 176 212 255	$F_{c}\Delta t,$ lb-sec 0.0069 0.0121 0.0176 0.0212 0.0255	Δν, in./sec 0.82 1.44 2.09 2.52 3.03	v, in./sec 0.82 2.26 4.35 6.87 9.90	s ₁ X 10 ⁴ , in. 0 1 1 1 2	s ₂ X 10 ⁴ , in. 0 1 2 4 7	s × 10 ⁴ , in. 0 2 5 10 19
<i>t</i> X 10 ⁴ , sec 9 10 11 12 13 18	<i>p_c</i> , psi 114 202 294 354 425 717	<i>F_c</i> , lb 69 121 176 212 255 430	$F_{c}\Delta t,$ lb-sec 0.0069 0.0121 0.0176 0.0212 0.0255 0.2150	Δν, in./sec 0.82 1.44 2.09 2.52 3.03 25.56	v, in./sec 0.82 2.26 4.35 6.87 9.90 35.46	s ₁ X 10 ⁴ , in. 0 1 1 1 2 64	s ₂ X 10 ⁴ , in. 0 1 2 4 7 50	s×10 ⁴ , in. 0 2 5 10 19 133
<i>t</i> X 10 ⁴ , sec 9 10 11 12 13 18 23	<i>P_c</i> , psi 114 202 294 354 425 717 934	<i>F_c</i> , lb 69 121 176 212 255 430 560	$F_{c}\Delta t,$ lb-sec 0.0069 0.0121 0.0176 0.0212 0.0255 0.2150 0.280	Δν, in./sec 0.82 1.44 2.09 2.52 3.03 25.56 33.29	v, in./sec 0.82 2.26 4.35 6.87 9.90 35.46 68.75	s ₁ X 10 ⁴ , in. 0 1 1 1 2 64 83	s ₂ X 10 ⁴ , in. 0 1 2 4 7 50 177	s×10 ⁴ , in. 0 2 5 10 19 133 393
<i>t</i> X 10 ⁴ , sec 9 10 11 12 13 18 23 28	<i>p_c</i> , psi 114 202 294 354 425 717 934 1069	<i>F_c</i> , lb 69 121 176 212 255 430 560 641	$F_{c}\Delta t,$ lb-sec 0.0069 0.0121 0.0176 0.0212 0.0255 0.2150 0.280 0.321	Δν, in./sec 0.82 1.44 2.09 2.52 3.03 25.56 33.29 38.17	v, in./sec 0.82 2.26 4.35 6.87 9.90 35.46 68.75 106.9	s ₁ X 10 ⁴ , in. 0 1 1 1 2 64 83 95	s ₂ X 10 ⁴ , in. 0 1 2 4 7 50 177 344	s × 10 ⁴ , in. 0 2 5 10 19 133 393 832
<i>t</i> X 10 ⁴ , sec 9 10 11 12 13 18 23 28 33	<i>p_c</i> , psi 114 202 294 354 425 717 934 1069 1128	<i>F_c</i> , lb 69 121 176 212 255 430 560 641 677	$F_{c}\Delta t,$ lb-sec 0.0069 0.0121 0.0176 0.0212 0.0255 0.2150 0.280 0.321 0.339	Δν, in./sec 0.82 1.44 2.09 2.52 3.03 25.56 33.29 38.17 40.3 1	v, in./sec 0.82 2.26 4.35 6.87 9.90 35.46 68.75 106.9 147.2	<i>s</i> ₁ X 10 ⁴ , in. 0 1 1 1 2 64 83 95 101	s ₂ X 10 ⁴ , in. 0 1 2 4 7 50 177 344 535	s × 10 ⁴ , in. 0 2 5 10 19 133 393 832 1468

TABLE 4-1. COMPUTED DYNAMICS OF GAS CUTOFF SYSTEM

AMCP 706-260

At cutoff, the velocity of the moving parts has reached 174 in./sec. This represents a kinetic energy of

$$E_c = \frac{1}{2} \left(M \nu^2 \right) = \frac{1}{2} \left(\frac{3.25}{386.4} \right) 30276 = 127.3 \text{ in.-lb}$$

The work done by polytropic expansion, Eq. 4-35, is

$$W = \frac{p_1 V_1 - p_2 V_2}{k - 1} = \frac{1134 \times 1.92 - 635 \times 3.0}{1.3 - 1.0}$$

= 907.6 in.-lb

where

$$p_2 = p_1 \left(\frac{V_1}{V_2}\right)^k = 1134 \left(\frac{1.92}{3}\right)^{1.3}$$
$$= 1134 \times 0.56 = 635 \text{ lb/in.}$$

$$V_1 = V_{co} + A_c s = 1.8 \pm 0.6 \ge 0.2 = 1.92 \text{ in.}^3$$

The total work done by the operating cylinder is

$$E_{1} = E_{1} + W = 127.3 + 907.6 = 1034.9$$
 in.-lb

The velocity of the system at the end of the accelerating period becomes

$$v_r = \sqrt{\frac{2E_r}{M_r}} = \sqrt{\frac{2069.8}{3.25}}^{386.4} = 496.07 \text{ in./sec.}$$

This velocity compares favorably with the required velocity of 503.6 in./sec (par. 4-3.2.5) and represents an error of only 1.5%. A slight increase in orifice area or location will match the two velocities, but the small error involved does not warrant further computation.

Although the weight of recoiling parts does not become 3.25 lb until the bolt is picked up after 1 inch of travel, the bolt weight is included to compenstate for whatever losses are experienced during the accelerating stroke.

The analysis which follows for the time, $t = 2.8 \times 10^{-3}$ sec, illustrates the mechanics for computing the results listed in Table 4–1. The increment of time

At = 0.0005 sec and the corresponding average pressure are read from the pressure decay-time curve (see insert) of Fig. 4-5, $p_a = 3200$ psi. Resorting to Eq. 4-57 to estimate the travel during the interval, observe that Av is unknown. However, in the preceding interval, the difference in Av

 $[Av \text{ for } (t = 2.3 \text{ x } 10^{-3})] - [Av \text{ for } (t = 1.8 \text{ x } 10^{-3})]$ < 8 in./sec. Add this increment to Av (t = 2.3 x 10^{-3}). Thus, Av = 33 + 7 = 40 in./sec.

The rate of flow by Eq. 4-27 is computed to be

$$w = K_w A_o p_a = 0.00192 \ge 0.037 \ge 3200$$

= 0.227 lb/sec.

The weight of the gas flowing through the orifice during the 0.0005 sec increment according to Eq. 4-28 is

$$\Delta W_c = w\Delta t = 0.227 \text{ x } 5 \text{ x } 10^{-4} = 1.135 \text{ x } 10^{-4} \text{ lb.}$$

The total weight of the gas in the cylinder

$$W_c = \Sigma \Delta W_c = W_{c(n-1)} + \Delta W_c$$

= (10.988 + 1.135)10⁻⁴ = 0.0012123 lb

By first trial, the distance traveled by the operating unit (Eq. 4-47) is

$$s = \frac{1}{2} \Delta \nu \Delta t + \nu_{n-1} \Delta t + s_{n-1}$$
$$= \frac{40}{2} (0.0005) + 68.75 \ge 0.0005 + 0.0393$$
$$= 0.0837 \text{ in.}$$

From Eq. 4-48, the cylinder volume

$$V_c = V_{co} + A_c s = 1.8 \pm 0.6 \ge 0.0837 = 1.850 \text{ in.}^3$$

According to Eq. 4-41,

$$V_b = V_m \left(\frac{p_m}{p_a}\right)^{1/k_b} = 1.74 \left(\frac{9000}{3200}\right)^{1/1.2}$$

= 1.74 x 2.37 = 4.13 in.³

From Eq. 4-42, the equivalent gas volume in the operating cylinder at the average bore pressure p_a becomes

$$V_e = \left(\frac{W_c}{W_g}\right) V_b = \left(\frac{0.0012123}{0.00629}\right) 4.13 = 0.796 \text{ in.}^3$$

From Eq. 4-43, the gas pressure in the operating cylinder is

$$p_c = \left(\frac{V_e}{V_c}\right)^k \quad p_a = \left(\frac{1}{V_c}\right)^{1.3} \quad 3200$$

$$= 0.334 \times 3200 = 1069 \text{ lb/in.}^3$$

The gas force applied to the operating rod, Eq. 4–44, is

$$F_c = A_c p_c = 0.6 \times 1069 = 641 \, \text{lb}$$

The impulse during the interval is

$$F_c \Delta t = 641 x \ 0.0005 = 0.321 \ \text{lb-sec.}$$

The velocity at the end of the time interval, Eq. 4-46, is

$$v = v_{n-1} + \frac{F_c At}{M_r} = 68.75 + \frac{0.321 \times 386.4}{3.25}$$

= 68.75 + 38.17 = 106.9 in./sec.

The distance traveled by the operating unit, Eq. 4-47, is

$$s = \frac{1}{2} \left(\Delta \nu \Delta t \right) + \nu_{n-1} A t + s_{n-1},$$
$$= \left(\frac{38.17}{2} + 68.75 \right) 0.0005 + 0.0393$$

= 0.0095 + 0.0344 + 0.0393 = 0.0832 in.

From Eq. 4-48, the chamber volume is

$$V_c = V_{co} + A_c s = 1.8 + 0.6 \times 0.0832 = 1.850 \text{ in.}^3$$

This volume matches the earlier estimate thereby completing this series of calculations. Had the volumes not checked, a new change in volume would be investigated and the series of calculations repeated.

The time elapsed between firing and complete, cutoff is the final figure (36.31) in the time column of Table 4-1.

$$t_{co} = 0.0036$$
 sec.

The time of the remaining accelerating period is determined by Eqs. 4-14 and 4-15. The known data follow:

- $A_{\rm r} = 0.60 \text{ in.}^2$, area of operating piston
- k = 1.3, ratio of specific heats

$$M_r = \frac{3.25}{386.4} \frac{\text{lb-sec}^2}{\text{in.}}$$
, mass of recoiling unit

- $p_1 = 1134 \, \text{lb/in.}^2$, initial pressure
- s = 1.8 in., total travel of piston
- $s_o = 3.2$ in., equivalent travel distance at p_1
- $v_o = 174$ in ./sec, initial velocity

Substitute the expression for C_2 , Eq. 4–15, in Eq. 4–14, and rewrite, for convenience, the time for the gas expansion stroke

$$t_e = \frac{s_o^{(k+1)/2}}{\sqrt{K_a}} \left[\left(a + \Sigma A_y \frac{a^z}{zB^y} \right) - \left(1 + \Sigma \frac{A_y}{zB^y} \right) \right]$$

$$t_e = \frac{3.81}{1563}$$
 (4.658 - 2.763) = 0.0046 sec

where

$$a = 1 + \frac{s}{s_o} = 1 + \frac{1.8}{3.2} = 1.562$$

$$K_a = \frac{2A_c p_1 s_o^k}{(k-1)M_r} = \frac{2 \times 0.6 \times 1134 \times 4.53 \times 386.4}{(1.3-1) 3.25}$$

 $= 2,443,000 \text{ in.}^2/\text{sec}^2$

$$\sqrt{K_a} = 1,563 \text{ in./sec}$$

$$B = 1 + \frac{v_o^2}{K_a} s_o^{k-1} = 1 + \frac{30276 \times 1.418}{2443000} = 1.018$$

$$s_o^{(k+1)/2} = 3.2^{1.15} = 3.81$$

$$y = 1, 2, 3 \dots$$

$$z = (y+1) - yk = 1.0 - 0.3y$$

$$\Sigma A_y = \frac{a^2}{zB^y} = 3.0959$$
 (summation of last column in
Table 4-2)

$$\Sigma \frac{A_y}{zB^y} = 1.763$$
 (summation of next to last column in
Table 4-2)

The detailed calculations are tabulated for convenience in Table 4-2.

4-28

The total recoil time is

$$t_r = t_{co} + t_e + t'_r$$

= 0.0036 + 0.0046 + 0.0136 = 0.0218 sec.

This is only 2.2 msec less that the specified 24 msec (par. 4-3.2.1) and, therefore, is acceptable. The time for the firing cycle is

$$t_c = t_{cr} + t_r = 0.0349 + 0.0218 = 0.0567$$
 sec.

The rate of fire is

$$f_r = \frac{60}{t_c} = 1058 \text{ rounds/min.}$$

This rate is only 5.8% over the specified rate of 1000 (par. 4-3.2.1) and is acceptable. Firing tests will determine the accuracy of the theoretical rate and any undesirable discrepancies are to be corrected in compliance with the test data.

4-3.3 DIGITAL COMPUTER ROUTINE FOR CUTOFF EXPANSION

This digital computer program is compiled in FORTRAN IV language for the UNIVAC 1107 Computer. The program considers the dynamics of the gas, the bolt operating cam, the bolt, and the operating rod. The specified and computed data are the same as those for the sample problem of par. 4-3.2. The program also follows the same sequence of computations except for the inclusions of the bolt unlocking and locking processes. Each set of computations is discussed in sequential order.

4-3.3.1 Gas Dynamics Before Cutoff

This analysis follows the same procedure as that for the preceding example of Table **4–1** except that the bolt is being turned by the helix portion of the cam. Bolt frictional and rotational inertia forces are considered by substituting the effective mass of Eq. **4–62** for the actual mass of the operating rod. At gas cutoff, the operating rod velocity is set for approximately **350** in./sec and to reach this velocity, the gas port is assigned an initial area of 0.40 in.² If the computed velocity at gas cutoff exceeds ±10 in./sec, the port area is adjusted accordingly and the

Y	A _y	B ^V	Z	a ^z	zB^{y}	A_y/zB^y	$A_y a^z / z B^y$
1	0.5000	1.018	0.7	1.366	0.713	0.7013	0.9580
2	0.3750	1.036	0.4	1.195	0.414	0.9058	1.0824
3	0.3 125	1.055	0.1	1.045	0.106	2.9481	3.0808
4	0.2734	1.074	-0.2	111.093	-0.215	-1.2716	-1.1634
5	0.2461	1.093	-0.5	1/1.25	-0.547	-0.4490	-0.3599
6	0.2256	1.113	-0.8	111.428	-0.890	-0.2535	-0.1775
7	0.2095	1.134	-1.1	1/1.634	- 1.247	-0.1680	-0.1028
8	0.1964	1.154	-1.4	1/1.868	-1.615	-0.1216	-0.065 1
9	0.1855	1.175	-1.7	112.14	-1.998	-0.0928	-0.0434
10	0.1762	1.196	-2.0	1/2.44	-2.392	-0.0736	-0.0302
11	0.1682	1.217	-2.3	1/2.79	-2.799	-0.0601	-0.0215
12	0.1612	1.238	-2.6	1/3.19	-3.219	-0.0501	-0.0157
13	0.1550	1.261	-2.9	1/3.65	-3.657	-0.0424	-0.0116
14	0.1495	1.284	-3.2	1/4.17	-4.109	-0.0364	-0.0087
15	0.1445	1.307	-3.5	1/4.76	-4.574	-0.0316	-0.0066
16	0.1400	1.331	-3.8	1/5.45	-5.058	-0.0277	-0.0051
17	0.1359	1.355	-4.1	1/6.22	-5.556	-0.0245	-0.0039
18	0.1321	1.380	-4.4	1/7.11	-6.072	-0.0218	-0.0030
19	0.1286	1.404	-4.7	118.12	-6.599	-0.0195	-0.0024
20	0.1254	1.429	-5.0	119.30	-7.145	-0.0176	-0.0019
21	0.1 224	1.455	-5.3	1110.65	-7.712	-0.0159	-0.0015
22	0.1 196	1.481	-5.6	1/12.2	-8.294	-0.0144	-0.0011
						$\Sigma = 1.7631$	$\Sigma = 3.0959$

TABLE 4-2. GAS EXPANSION TIME CALCULATIONS

computation is repeated. Operating rod travel is also computed and should not exceed the axial length of the cam helix. Table 4-5 lists the computed data.

4–3.3.2 Gas Dynamics After Cutoff

4-3.3.2.1 Bolt Unlocking During Helix Traverse

If a portion of the helix remains to be traversed by the cam follower, the time is computed according to Eqs. 4-6 through 4-15. This procedure was also used to compute the values of Table 4-2. The velocity at the end of the helix is obtained from Eq. 4-7. Although the bolt moves axially over the small distance permitted by the locking lug, the effects of this distance and corresponding velocity have a negligible effect on the dynamics of the system and, therefore, are not included in the analysis. Computed data are listed in Table 4-6.

4-3.3.2.2 Bolt Unlocking During Parabola Traverse

The major part of the unlocking process is done by the parabolic portion of the cam (see Figs. 4–3 and 4–4). For the same reason as for the helix analysis, only bolt rotational effects are considered. The axial length of the parabola is divided into short equal increments. Cam curve characteristics are then determined and these are integrated with the rest of the analysis. The equivalent mass of the system is found from Eq. 4–73. The cam constants and variables are determined elsewhere (see par. 4–3.1).

Symbol	Code	Symbol	Code	Symbol	Code
A	AO	pa	PA	V _c	vc
A _c	AC	p_c^{-}	PC	V _{co}	VCYL
A _v	AY	p_1	P1	V _e	VE
a	А	R	R	V	V
a ^z	AZ	R _c	RC	^v bc	VBCR
B^{y}	BY	R_L	RL	^v m	VMAX
C_{λ}	CLAMDA	s	S	vo	VO
dx	DX	s _a	SA	v _{sc}	VSCR
E_{b}	EB	s _c	SCYL	Av	DELV
0	EBCR	5 _m	SMAX	W _b	WB
E _{cr}	E		SO	Ŵ	WC
E,	ER	$s_r - x_m$	HELIXI	ΔW_c	DELW
E _{sc}	ESCR		S(1)	Wo	WO
F	F		si	w	W
F _{mb}	FBM	s ₂	S ₂	X	Х
Fob	FBO	t	TEP	x_m	HELIX2
AF	DELF	t_{bc}	TBRC	Y	Y
g	G	t _{hr}	TBR	Ζ	Ζ
K	DRK	t _{cr}	TDCR	β	В
K	SKA	t _{dr}	TDR	ϵ	EPS
к _b	BK		T 1	Х	DLAMDA
k	RADGYR	A t	DELT	μ_r	EMUR
L_{b}	BL	$tan\beta_o$	TANBO	μ_s	EMUS
М _е	EM	V	VB	-	

TABLE 4-3. SYMBOL-CODE CORRELATION FOR CUTOFF EXPANSION

 $x_m = 0.5$ in., axial length of parabola (Eq. 4-77)

 $y_m = 0.3327$ in., peripheral width of parabola (Eq. 4–77)

A = 1.3161 in. (Eq. 4-77)

$$B = 0.007465$$
 in. (Eq. 4–77)

- $y = Ax^2 + Bx = 1.316x^2 + 0.007465x$ (Eq. 4-75)
- $\frac{dy}{dx} = 2Ax + B = 2.632x + 0.007465$ (Eq. 4-76)

$$\tan \beta = \frac{dy}{dx}$$

At any given position of x,

$$x = \sum \Delta x = x_{n-1} + \Delta x$$

the corresponding length of the gas cylinder is

$$s = s_o + x = 3.5 + x$$
, in.

The operating cylinder pressure, according to Eq. 4-2, becomes

$$p_c = p_1 \left(\frac{s_o}{s}\right)^k = p_1 \left(\frac{3.5}{s}\right)^{1.3}$$
, psi

According to Eq. 4–7, the velocity at the end of each increment of travel is

$$v = \sqrt{4\left(\frac{p_1}{M_e}\right)} \quad (3.5 - \frac{5.09675}{3.5 + s^{0.3}}) \pm v_o^2}, \text{ in./sec.}$$

The corresponding time interval and total time are

At =
$$\frac{\Delta x}{\nu_a}$$
, sec; $t = \Sigma \Delta t$, sec

where

$$v_a$$
 = average velocity over the increment.

Computed data are listed in Table 4-7.

4–3.3.2.3 Bolt Unlocked, Bolt Traveling With Operating Rod

At the time that the bolt is completely unlocked, bolt and operating rod begin to travel as a unit. However, one inch of operating rod travel still remains under the influence of cylinder pressure. Except for the initial conditions involving velocity, pressure, distance, and mass; the analytic procedure is the same as mentioned in par. 4-3.3.2.1. Only linear motion prevails since cam action is complete; therefore, the mass of the bolt is no longer influenced by rotational effects. Now the bolt and operating rod are moving as a unit at the same velocity; the bolt acquired its initial velocity just as unlocking became complete. As all of the momentum just prior to this event was concentrated in the operating rod, some of it was transferred to the bolt with a subsequent reduction in velocity. Based on the law of conservation of momentum, this velocity is the velocity of the recoiling parts and has the value

$$v_r = \frac{M_o v_o}{M_r} = \frac{2.5 v_o}{3.25}$$
, in./sec.

where

$$M_o = W_o/g$$
, mass of operating rod

 $M_r = W_r/g$, mass of recoiling parts

 v_{o} = velocity of operating rod at transition

Table 4-8 has the computed data.

Code	Data	Code	Data
AC	0.60	RL	0.5
BK	60.0	SA	2.0
DELV(1)	0.5	SCYL	3.0
DLAMDA	3	SMAX	5.0
DRK	10.2	SO	3.5
DX	0.05	S (1)	0
EMUR	0.034	TANBO	0.007465
EMUS	0.3	T(1)	0.8
EPS	0.5	VCYL	1.8
G	386.4	VMAX	350
HELIX1	0.5	V(1)	0
HELIX2	0.5	WB	0.75
R	0.39	WC 1	0
RADGYR	0.275	WO	2.5
RC	0.32		

TABLE 4–4.	INPUT FOR CUTOFF EXPANSION PROGRAM

	TIME	PRESS	PORT	GAS FLOW RATE	GAS IN CYL	EQUIV SORE	EQUIV CYLI VOI
Ι	MSEC	PSI	SU-IN	LD/SEC	LB	CU-IN	CU-IN
2	.900	26000.	.0580	2.895	-00029	.837	•0385
3	1.000	19000.	.0580	2.116	000050	e 932	• 0743
4	1.100	14800.	.0580	10648	•00067	1.147	.1214
5	1.200	11400.	.0580	1.270	.00079	1.366	•1722
6	1.300	9600.	.0580	1.069	.00090	1.600	.2289
7	1.800	6600.	.0580	•735	.00127	2.255	•4543
8	2.300	4500.	.0580	•501	.00152	3.120	•7529
9	2.800	3200.	.0530	• 326	.00108	4.130	1.1035
10	3.300	2400.	.0410	•189	•00178	5.240	1.4788
11	3.605	1800.	.0230	∎079	•00180	6.650	1.9074
	CYL	CYL	PISTON		DELTA	ROD	ROD
_	VOL	PRESS	FORCE	IMPULSE	VEL	VEL	TRAVEL
1	CU-IN	PSI		LB-SEC	IN/SEC	IN/SEC	IN
2	1.8000	175.6	105.4	•011	1.63	1.6	.0001
3	1.8002	301.1	180.7	•018	2.79	4.4	•0004
	1.8006	444.5	266.7	•027	4.12	8.5	•0010
5	1.8013	538.8	323•3	• 032	5.00	13.5	00021
6	1.8023	656.4	393.9	• 039	6.09	19.6	.0038
7	1.8157	1089.8	653.9	• 327	50•53	70.2	.0262
8	1.8466	1401.8	841.1	e421	65.00	135.2	•0 776
9	1.8981	1581.0	948•6	•474	73.31	208.5	₀ 1635
10	1.9721	1650.7	990.4	•495	76.54	285.0	•2869
11	2.0406	1648.7	989.2	• 361	55+81	340.8	•401 <u>1</u>

TABLE 4-5. COMPUTED DYNAMICS BEFORE GAS CUTOFF

4-3.3.3 Dynamics After Gas Cylinder Operation

After the gas cylinder reaches its total displacement, the recoiling parts, consisting of operating rod and bolt, have only the driving and buffer springs to provide the external forces. These springs stop the recoiling parts and then force them to counterrecoil; the driving spring and momentum of the moving mass finally lock the bolt in the firing position.

Computed spring operating data appear in Table **4–6** and the computed locking data are listed in Table 4–9.

4-3.3.3.1 Recoil Dynamics

The remaining distance for bolt and rod to compress the driving spring fully is

$$L_r = L_d - s_a = 5.5 - 2.0 = 3.5$$
 in.

The energy to be absorbed by the driving and buffer springs is

$$E_r = 1/2M_r v_{sa}^2$$
 in.-lb

Y	AY	BY	Z	AZ	ZBY	QUOTI	QUOT2
1.0	.5000	1.0335	•7	1.0203	•7235	.6911	•7051
2.0	.3750	1.0681	• 4	1.0115	• 4273	•8777	•8878
3.0	.3125	1.1039	• 1	1.0029	.1104	2.8308	2.8389
4.0	.2734	1.1409	2	• 9943	2282	-1.1982	-1.1913
5.0	.2461	1.1792	5	•9858	- •5096	4174	4115
6.0	.2256	1.2187	8	• 9773	9749	2314	-•2262
7.0	.2095	1.2595	-1.1	• 9690	∸1 • 3055	1512	
8.0	.1964	1.3017	-1.4	•9607	-1.8224	1078	1035
Y.U	.1855	1.3433		+9524	_: 2871	0811	- 75
10.0	.1762	1.3904	-2.0	•9443	-2.7808	0634	- •0598
11.0	.1682	1.4370	=2.3	.9362	-3.3051	0509	0476
12.0	.1612	1.4851	-2.6	•9282	-3.8614	0417	~ •0387
13.0	.1550	1.5349	-2.9	•9202	-4.4512	0348	# •0320
14.0	.1495	1.5863	-3.2	e9123	-5.0763	- •0295	0269
15.0	01445	1.6395	-3.5	•9045	=5.7383	0252	0228
16. <u>0</u>	•1400	1.6944	-3.8	•8960	-6.4389	-0217	0195
17.0	+1 369	1:7512-			 1800	-,0189	0168
18.0	.1321	1:8099	-4.4	:8815	-7:9636	0166	0146
19.0	.1286	1.8705	-4.7	.8739	-8.7916	0146	0128
20.0	.1254	1.9332	-5.0	•8665	-9.6661	0130	-00112
21.0	•1224	1.9980	-5.3	.8590	-10. 894	0116	+.0099
22.0	•1196	200650	-5.6	•8517	-11.5638	0103	- •0088

TABLE 4-6. COMPUTED DYNAMICS AFTER GAS CUTOFF BOLT UNLOCKING DURING HELIX TRAVERSE

TOTALS 1.8603 1.9540

EXPANSION TIME DURING HELIX TRAVERSE (TEH) = .00022 SECONDS

V = 381.89 IN/SEC PC = 1588.4 PSI S = 3.5000 IN.

TABLE 4-7. COMPUTED DYNAMICS AFTER GAS CUTOFF BOLT UNLOCKING DURING PARABOLA TRAVERSE

	PARAB	EQUIV CYL LENGTH	CAM SLOPE	CYL	EQUIV RECOLL MASS		TIME
Ι	IN	IN	DEG	PSI	W/G	IN/SEC	MSEC
13	0050	3,550	7.917	1559.4	•006529	400.05	.1279
14	.100	3.600	15.145	1531.3	.006689	416.71	.2503
15	.150	3.650	21.913	1504.1	•006974	431.83	.3682
16	•200	3.700	28.096	1477.7	•007419	445.33	.4822
17	•250	3.750	330643	1452.1	.008072	457.19	.5930
18	.300	3.800	38.557	1427.3	•008999	467.39	.7011
19	0350	30850	420882	1403.3	.010303	475.98	.8071
20	•400	3.900	46.676	1379.9	.012142	483.03	.9114
21	0450	31950	50.003	1357.3	. 014778	488.66	1.0143
22	•500	4.000	52.926	1335.3	.018676	492.99	1.1162

Y (10)	ΑΥ	BY	Z	AZ	ZBY	QUOTI	QUOT2
1.0	.5000	1.0566	• 7	1,0859	.7396	.6760	.7341
2.0	.3750	1.1164	• 4	1.0482	•4466	•8397	,8802
3.0	.3125	1.1796		-1:0118	•1180	2.6491	2.6805
4.0	.2734	1.2464	2	•9767	2493	-1.0967	-1.0712
- 5.0	.2461	1.3170	5	•9428	6585	3737	3524
6.0	.2256	1.3916	8	.9101	-1.1133	2026	- •1844
7.0	.2095	1.4704	-1.1	•0785	-1.6174	1295	1138
8.0	.1964	1.5536	-1.4	•8480	-2.1751	0903	0766
A +0	•1855	1.0410	1.1	.8185	=2.7907	0665	=.0544
10.0	•1762	1.7345	-2.0	.7901	-3.4690	-0508	0401
fl. 6	.1682	1.8327	-2.3	e 7627	-4 e 2152	-•0399	• 0304
12.0	.1612	1.9365	-2.6	.7362	-5.0348	0320	0236
13.0	.1550	2.0461	-2.9	.7107	-5.9337	0261	
14.0	.1495	2.1620	-3.2	.6860	-6.9183	or0216	- •0148
15.0	.1445	2.2844	-	6622	-7.9953	0181	0120
16.0	.1400	2.4137	-3.8	,6392	-9.1720	0153	0098
17.0	.1359	2.5504	-4.1	.6170	-10.4564	0130	0080
18.0	.1321	2.6947	-4.4	•5956	-11.8569	-00111	0066
19.0	e1286	2.8473	-4.7	.5749	-13.3824	0096	0055
20.0	el254	3.0085	-5.0	•5549	-15.0426	0083	0046
21.0	.1224	3.1 789	-	15357	= 6+8479	0073	0039
22.0	1196	3.3588	-5.6	•5171	-18.8095	0064	0033

TABLE 4–8. COMPUTED DYNAMICS AFTER GAS CUTOFF BOLT AND ROD UNIT RECOILING AFTER CAM ACTION

TOTALS 1.9459 2.2608

EXPANSION TIME DURING HELIX TRAVERSE (TEH) = .00110 SECONDS

MINIMUM BUFFER FURC - 178. B
MAXIMUM BUFFER FORCE = 236.8 LB
URIVING SPRING RECOIL TIME = .000553 SEC
BUFFER RECOIL TIME = .006092 SEC
BUFFER COUNTERRECOIL TIME = .012190 SEC
DH SPRING COUNTERRECOIL TIME = .021407 SEC
BUFFER COUNTERRECOIL VELOCITY _ 6.81 IN/SEC
DR SPR COUNTEHRECOIL VELOCITY = 253.81 IN/SEC

where

4-34

v_{sa} = velocity of recoiling parts at s,

The driving spring force at s is $F_{sa} = 61.7$ lb (par. 4-3.2.5.1). Since the spring force when fully compressed is $F_m = 97.4$ lb (par. 4-3.2.4), the energy absorbed by the driving spring is

$$E_d = \frac{1}{2} (F_{sa} + F_m) L_r / \epsilon = 557 \text{ in-lb}$$

where e = 0.5, the efficiency of the system. The energy consumed by the buffer is

$$E_b = E_r - E_d = E_r - 557$$
 in.-lb.

The effective spring constant and the buffer stroke are. $K_b = 60$ lb/in. and $L_b = 1.0$ in., respectively. The initial and final spring forces are found by equating the spring work to the energy to be absorbed

$$\frac{1}{2} (F_{ob} + F_{mb})L_b/\epsilon = E_b$$

where

$$F_{mb} = F_o + K_b L_b, \text{ the initial buffer force is}$$
$$F_{ob} = \frac{\epsilon E_b}{L_b} - 1/2 K_b L_b = 0.5 E_r - 309, \text{ lb}$$

The recoil time while the driving spring is functioning is computed by expanding Eq. 2-22 to include the limits of x = 0 to $x = L_r$ and by proper substitution for the other variables.

$$t_{dr} = \sqrt{\frac{\epsilon M_r}{K}} \left(\sin^{-1} \frac{F_m}{Z} - \sin^{-1} \frac{F_{sa}}{Z} \right)$$
$$= 0.0203 \left(\sin^{-1} \frac{97.4}{Z} - \sin^{-1} \frac{61.7}{Z} \right), \text{ sec}$$

where

$$Z = \sqrt{F_{sa}^{2} + \epsilon K M_{r} v_{sa}^{2}} = \sqrt{3807 + 10.2E_{r}}$$

The buffer recoil time is found similarly. However, since the buffer absorbs the remaining energy, the buffer recoil time is computed according to Eq. 2-23.

$$t_{br} = \sqrt{\frac{\epsilon M_r}{K_b}} \cos^{-1} \frac{F_{ob}}{F_{mb}}$$
$$= 0.00837 \cos^{-1} \frac{F_{ob}}{F_{mb}}, \text{sec}$$

4-3.3.3.2 Counterrecoil Dynamics

The time required for counterrecoil during buffer action is found from Eq. 2-27.

$$t_{bc} = \sqrt{\frac{M_r}{\epsilon K_b}} \quad \cos^{-1} \frac{F_{ob}}{F_{mb}} = 0.01675 \operatorname{Cos}^{-1} \frac{'ob}{F_{mb}}, \sec^{-1} \frac{F_{ob}}{F_{mb}}$$

The velocity at the end of the buffer stroke is found by equating the work done by the springs to the expression for kinetic energy and then solving for the velocity

$$E_{bc} = \left(\frac{F_{mb} + F_{ob}}{2}\right) \epsilon L_b$$
$$= (F_{mb} + F_{ob})/4 = 1/2 M_r v_{bc}^2$$

$$v_{bc} = \sqrt{2E_b/M_r}$$
 .

TRAVEL	FORCE POUND	BETA DEGREE	MASS 1000x	DELTAT MILSEC	VELOCITY IN/SEC	TIME
• 05	50.99	50.003	.01582	• 1963	254•41	•1963
•10	50.48	46.676	•01219	• 1958	255.00	• 3921
• 15	49.97	42.882	•01006	• 1954	255.59	• 5875
.20	49•46	38.557	_ 008-71	• 1950	256.16	•7825
e 25	48.95	33 .643	•00783	• 1945	256•73	•9770
• 30	48.44	28.096	•00725	• 1941	257.30	1.1712
e 35	47.93	21.913	.00687	• 1937	257 85	1.3649
•40	47.42	15.145	•00664	• 1933	258.40	1 • 5581
_45	46.91	7.917	.00652	• 1929	258 94	1•7510
• 50	46.40	•428	•00647	• 1925	259.48	1.9435
1.00	41.30	• 428_	•00647	_ 1• 8730	264•45	3.8166

TABLE 4–9. COMPUTED DYNAMICS, COUNTERRECOIL BOLT LOCKING DURING PARABOLA TRAVERSE

The time required for counterrecoil during driving spring action and while bolt and operating rod are moving as a unit is computed from Eq. 2-26

$$t_{cr} = \sqrt{\frac{M_r}{\epsilon K}} \left(\sin^{-1} \frac{-F_{sb}}{Z} - \sin^{-1} \frac{-F_m}{Z} \right)$$
$$= 0.04061 \quad (\sin^{-1} \frac{-51.5}{Z} - \sin^{-1} \frac{-97.4}{Z})$$

where

$$F_{sb} = F_m - K(L_d - L_b)$$

= 97.4- 10.2 x 4.5 = 51.5 lb

$$Z = \sqrt{F_m^2 + KM, v_{bc}^2/\epsilon} + \sqrt{9487 + 40.8 E_{bc}}$$

The total work done by all springs until locking starts is

$$E_{sc} = E_{bc} + \left(\frac{F_m + F_{sb}}{2}\right) (L_d - L_b)\epsilon$$
$$= E_{bc} + 167.5 \text{, in.-lb.}$$

The velocity at this time is

$$v_{sc} = \sqrt{2E_{sc}/M_r}$$
 ,in./sec.

4-3.3.3.3 Bolt Locking Dynamics

When the bolt reaches the breech face, the operating rod continues on its linear path for the remaining one inch of travel. In the meantime, the cam follower on the operating rod locks the bolt, riding over the parabolic cam curve for a half inch of travel and over the helix for the other half inch. Meanwhile, the driving spring continues to force the moving parts into battery.

The cam action during locking is the reverse of that during unlocking but follows a similar pattern. The axial length of the parabola is divided into equal length increments. The spring force is determined at the end of each increment to compute the time and velocity for each increment. Eq. 2-26 yields the differential time with M_e being the effective mass obtained from **Eq.** 4-73. For counterrecoil, the cam follower is a sliding surface, therefore, $\mu_r = \mu_s$.

$$M_e = 0.00647 + \frac{0.000458 \tan\beta}{0.203 \left(\frac{\cos\beta - 0.3 \sin\beta}{\sin\beta + 0.3 \cos\beta} - 0.1149\right)}$$

While the cam follower is traversing the helix during the last stage of locking the bolt, the operating rod continues toward its in-battery position.

The differential time for any increment of travel is

$$t_{cr} = \sqrt{\frac{M_e}{eK}} \left(\sin^{-1} \frac{-F_{c2}}{Z} - \sin^{-1} \frac{-F_{c1}}{Z} \right)$$
$$= 0.4428 \sqrt{M_e} \left(\sin^{-1} \frac{-F_{c2}}{Z} - \sin^{-1} \frac{-F_{c1}}{Z} \right)$$

where

- $F_{c1} = \text{spring force at beginning of increment}$
- $F_{c2} = F_{c1} K \Delta s$, spring force at end of increment
- Δs = increment of counterrecoil travel

$$Z = \sqrt{F_{c1}^2 + KM_e v^2/\epsilon} = \sqrt{F_{c1}^2 + 40.8E_{cri}}$$

 E_{cri} = counterrecoil energy at beginning of increment

The energy at the end of each increment is

$$E_{cr} = E_{cri} + \frac{\epsilon}{2} (F_{c1} + F_{c2})\Delta s$$

= $E_{cri} + 0.25 (F_{c1} + F_{c2})As$, in.-lb.

4-36

The counterrecoil velocity at the end of each increment is

$$v_{cr} = \sqrt{2E_{cr}/M_e}$$
, in./sec.

4-3.3.4 Fining Rate

The time of each firing cycle is the total accumulated by all operations.

Time, sec	Operation	Table
0.003665	Before Gas Cutoff	4-5
0.000220	Bolt Unlocking, Helix	4-6
0.001116	Bolt Unlocking, Parabola	4-7
0.001100	Gas Expansion After Cam Action	4 8
0.000553	Driving Spring Recoil	4-8
0.006092	Buffer Recoil	4-8
0.012190	Buffer Counterrecoil	4 - 8
0.021407	Driving Spring Counterrecoil	4-8
0.003817	Bolt Locking	4-9
0.050160	Total Firing Cycle	

Firing rate
$$f_r = \frac{60.0}{0.05016} = 1196 \text{ rounds/min.}$$

4-3.4 SPRINGS

4-3.4.1 Driving Spring

The driving spring, in order to comply with the dynamic requirements of the gun, is assigned the following data

$$K = 10.2 \text{ lb/in., spring constant}$$

$$F_o = 41.3 \text{ lb, load at assembled height}$$

$$F_m = 97.4 \text{ lb, load at fully compressed}$$

$$L_d = 5.5 \text{ in., operating distance of spring}$$

$$t_b = 0.0055 \text{ sec (see par. 4-3.2.5.1)}$$

$$t_r = 0.0218 \text{ sec (see par. 4-3.2.5.2)}$$

 $v_i = v_i = 503.6$ in./sec, impact velocity (see par. 4-3.2.5)

Since
$$v_i \ge 25$$
 ft/sec, select $\frac{T_c}{T} = 1.8$; therefore

$$T = \frac{T_c}{1.8} = \frac{0.0163}{1.8} = 0.0906$$
 sec, surge time

where $T_c = t_r - t_b$, the compression time.

Set the coil diameter at D = 0.375 in. According to Eq. 2-42, the wire diameter is

$$d = 0.27 \quad \sqrt[3]{DKT} = 0.27 \quad \sqrt[3]{0.0333}$$
$$= 0.27 \times 0.322 - 0.087 \text{ in.}$$

The number of coils from Eq. 2-41 is

$$N = \frac{Gd^4}{8D^3K} = \frac{11.5 \times 10^6 \times 57.3 \times 10^{-6}}{8 \times 0.0527 \times 10.2} = 152 \text{ coils}$$

where G = shear modulus.

The static torsional stress, Eq. 2-43, is

$$\tau = \frac{.8F_m D}{\pi d^3} = \left(\frac{8 \times 97.4 \times 0.375}{3.14 \times 0.659}\right) 10^3$$
$$= 141,000 \,\text{lb/in.}^2$$

The dynamic torsional stress, Eq. 2-44, is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = 141,000 \left(\frac{2.0}{1.8}\right)$$

 $= 157,000 \, \text{lb/in.}^2$

The solid height is

$$H_s = Nd = 152 \times 0.087 = 13.22$$
 in.

4-3.4.2 Buffer Spring

During recoil, the buffer springs are contacted at an impact velocity of $v_i = v_b = 348.1$ in./sec (see par. 4-3.2.5.1). Since $v_i \ge 25$ ft/sec, the surge time

$$T = \frac{T_c}{1.8} = \frac{0.0055}{1.8} = 0.00306 \text{sec}$$

where

$$T_c = t_{br} = 0.0055 \text{ sec}$$
, compression time of buffer spring.

A nest of two springs is used in both primary and secondary systems. The inner spring has 40% of the load and spring constant of the system. The assigned and computed data are listed in Table 4-10. Design data are also listed for single primary and secondary springs and for a single buffer spring to offer comparative values.

The single buffer spring is, obviously, too highly stressed to be acceptable. Of the two other types, the stresses are satisfactory; this leaves the choice to available space, depending on which is the more critical length or diameter. The nested spring requires less longitudinal space whereas the single units require less diametral space.

4-4 THE TAPPET SYSTEM

The tappet system (Fig. 4–7), by virtue of its extremely short stroke, is usually confined to low muzzle velocity guns and to unlocking mechanisms. Since no initial cylinder volume exists, the delivered gases work at peak pressures immediately, no loss in pressure being suffered because a container must first be pressurized. However, the gas flow calculations will follow the same procedure that is outlined for the cutoff expansion system except that pressure on the tappet is considered to be the initial pressure unless the travel of the tappet creates a gas volume that is not compatible with the critical pressure.

4-4.1 SAMPLE PROBLEM

4-4.1.1 Specifications

Gun: Cal .30 Carbine (7.62mm)

- $A_{b} = 0.0732 \text{ in.}^{2}$, bore area
- $f_r = 600$ rounds/min, firing rate
- $L_{bt} = 16.2$ in., length of bullet travel in barrel

 $V_{ch} = 0.057$ in.³, chamber volume

 $W_g = 13$ grains = 0.00186 lb, weight of propellant

Interior Ballistics: Pressure vs Time, Fig. 4–8 Velocity vs Time, Fig. 4–8

4-4.1.2 Preliminary Design Data

- $d_{\star} = 0.40$ in., diameter of tappet
- L = 2.5 in., bolt travel
- $L_t = 0.15$ in., tappet travel
- $W_r = 0.67$ lb, weight of recoiling unit
- E = 0.40, efficiency of automatic mechanism

4-4.1.3 Design Data, Computed

The time for the firing cycle, Eq. 2-29, is

$$t_c = \frac{60}{f_r} = \frac{60}{600} = 0.100 \text{ sec.}$$

By employing Eq. 4-21 and assuming constant acceleration, the time for counterrecoil and recoil are, respectively,

$$t_{cr} = \frac{2L}{v_{cr}}$$
, $t_r = \frac{2L}{v_r} = \frac{2\epsilon L}{v_{cr}}$

Figure 4–7. Tappet System

Туре	Primary, Double		Seconda	ry, Double	Primary	Secondary	Single
Data	Inner	Outer	Inner	Outer	Single	Single	Only
K, lb/in.	32	48	96	144	80	240	60
F_m , lb	114	171	114	171	285	285	285
T, msec	3.06	3.06	3.06	3.06	3.06	3.06	3.06
D , in.	0.5	0.875	0.6	1.125	0.5	1.00	0.75
D ³ , in. ³	0.125	0.67	0.2	1.424	0.125	1.00	0.422
DKT	0.049	0.1285	0.1763	0.4957	0.1224	0.735	0.1377
∛DKT	0.366	0.505	0.561	0.79	0.497	0.902	0.516
d , in.	0.100	0.136	0.151	0.2 13	0.134	0.243	0.139
$d^3 imes 10^3$, in. ³	1.0	2.52	3.44	9.67	2.4	14.3	2-69
$d^4 \times 10^4$, in. ⁴	1.0	3.42	5.2	20.58	3.22	34.9	3.73
G X 10 ⁻⁶ , psi	11.5	11.5	1.5	11.5	1.5	11.5	11.5
Ν	36	15.3	36	14.4	46.3	20.9	21.2
τ X 10 ⁻³ , psi	145	151	51	46	151	51	202
τ _d X 10 ⁻³ , psi	162	168	56	51	168	56	225
H_{s} , in.	3.6	2.08	5.44	3.07	6.2	5.08	2.95

TABLE 4-10. BUFFER SPRING DESIGN DATA

₽_40

Solve both equation for $v_{\!\scriptscriptstyle T}$, equate and reduce to the simplest terms

$$t_r = Et_{rr} = 0.40t_{cr}$$
$$t_r + t_{cr} = 1.40t_{cr} = 0.100 \text{ sec}$$
$$t_{cr} = 0.071 \text{ sec}$$
$$t_r = 0.029 \text{ sec}$$

The counterrecoil velocity is

$$v_{cr} = \frac{2L}{t_{cr}} = \frac{2 \times 2.5}{0.071} = 70.4 \text{ in./sec.}$$

The recoil velocity is

$$v_r = \frac{2L}{t_r} = \frac{2 \times 2.5}{0.029} = 172 \text{ in./sec.}$$

The energy of the recoiling part, Eq. 2-15, is

$$E_r = \frac{1}{2} \left(\frac{W_r}{g}\right) v_r^2 = \frac{1}{2} \left(\frac{0.67}{386.4}\right) 29600$$

= 25.65 in.-lb.

The average force on the tappet, Eq. 2-16, is

$$F_a = \frac{E_r}{L_r} = \frac{25.65}{0.15} = 171 \, \text{lb}.$$

The momentum of the recoiling parts Mv_r is

$$Mv_r = \left(\frac{0.67}{386.4}\right)$$
 172 = 0.298 lb-sec.

Equate momentum and impulse, and solve for time t.

$$t = \frac{Mv_r}{F_a} = \frac{0.298}{171}$$
 lb = 0.00175 sec

This is the time needed for the tappet to reach the velocity of 172 in./sec. The average pressure in the tappet cylinder is

$$P_{,} = \frac{F_{a}}{A_{,}} \equiv \frac{171}{0.1257} = 1360 \,\mathrm{lb/in.^{2}}$$

where

$$A_t = \frac{\pi}{4} d_t^2 = 0.1257 \text{ in.}^2$$
, tappet area

 $d_{i} = 0.40$ in., tappet diameter

_

Assume that the pressure in the tappet cylinder is the critical pressure, then the corresponding pressure in the bore becomes, Eq. 4-26,

$$p_b = \frac{p_c}{0.53} = 2566 \text{ lb/in.}^2$$

The area of the pressure-time corresponding to the impulse of the tappet, Eq. 4-50, is

$$A_{pt} = p_b t = 2566 \times 0.00175 = 4.5 \text{ lb-sec/in.}^2$$

According to **Eq. 4–49**, when the bullet is still in the barrel, $p_m = p_b$ and $V_m = V_b$, therefore, if $k_b = k = 1.3$

$$W_c = W_g \left(\frac{V_c}{V_b}\right) \left(\frac{p_c}{p_b}\right)^{1/1.3} = 0.614 W_g \left(\frac{V_c}{V_b}\right)$$
$$= 0.614 \ \left(0.00186\right) \frac{0.0189}{1.245} = 1.728 \times 10^{-5} \text{ lb}$$

where

- $p_c = 0.53p_b$, the pressure in the tappet cylinder, considered to be the critical pressure
- $V_c = A_l L_l = 0.0189 \text{ in.}^3$, volume of tappet displacement
- $V_b = V_{ch} + A_b L_{bt} = 1.245 \text{ in.}^3$, chamber plus bore volumes

The estimated orifice area, Eq. 4-52, is

$$A_o = \frac{W_c}{K_w A_{pt}} = \frac{1.728 \times 10^{-5}}{1.92 \times 10^{-3} \text{ x}4.5} = 0.002 \text{ in.}^2$$

where

$$K_w = 0.00192$$
/sec (see par. 4-3.2.5.2)

The orifice diameter $d_o = 0.0505$ in.

If we proceed with the above computed parameters and with the assumed critical pressures, data similar to those in Table 4-11 were computed for the period of time starting at 0.53 msec and extending to the muzzle at 1.15 msec. The area under the pressure-time curve within these time limits equals the 4.5 area computed earlier. Although the required tappet velocity of 172 in./sec was obtained, the tappet travel of 0.072 in. was far short of the required 0.15 in. The required travel could be obtained by merely shifting the gas port toward the muzzle. However, the computed equivalent volumes V_e , Eq. 4-42, were always larger than the computed chamber volume V_c , Eq. 4-48. This created the illusion that the tappet cylinder pressure p_c , Eq. 4-43, was much higher that the available bore pressure, a physical impossibility substantiated by the rate of pressure decline in the bore, so that pressure in the cylinder cannot be maintained higher than that in the bore.

Based on the first computed data, the gas port was moved farther toward the muzzle. Minimum limits on size precluding the use of a port small enough to regulate the pressure to be compatible with velocity and distance had the original port location been kept. Tappet cylinder pressures were assumed to be bore pressure. The assumption is virtually correct since a much higher mass of gas can pass through the port than volume created to accommodate it on the other side by the accelerating tappet.

The pressure in the tappet cylinder now being the same as the bore pressure, the area under the pressure-time curve becomes

$$A_{pt} = p_c t = 1360 \times 0.00175 = 2.38 \text{ lb-sec/in.}^2$$

Now that the gas port has been moved closer to the muzzle, some of the area of the pressure time curve

beyond the muzzle must be considered to compensate for that lost by the relocation of the port. The first set of calculations is a good guide for locating the new port position. After the second set of calculations are completed, the exact velocity and tappet travel are determined by manipulating the areas under the pressure-time curve of the first and last increment. That amount subtracted from one must be added to the other to maintain the same area and hence velocity. If the travel distance is too short, the acceleration at the beginning is too high. Lowering the acceleration at the beginning grants the additional time needed at the end to cover the total required distance. A reduction of the area of the pressure-time curve at the start of the activity and its equal added to the end resolves this problem. If travel distance goes beyond that required, an increase in acceleration at the beginning is needed so that the terminal tappet velocity is realized at a shorter distance. A transfer of pressure-time area from the end to the beginning will serve the purpose. When both tappet travel distance and velocity comply with the required values, the gas port becomes located along the length of the barrel corresponding with the time when this activity started.

The data presented in Table 4–11 are the results of a series of computations arriving at a terminal tappet velocity of 172 in./sec on moving a distance of 0.15 in. the required value. The pressure is read from the pressure-time curve in Fig. 4–8 between the time limits 0.867 msec to 2.13 msec, which extends into the decay period after the bullet leaves the muzzle. While the bullet is still in the barrel, the pressures are read at the time interval and are assumed to be constant over the interval. To illustrate the procedure, the sequence of calculations for t = 1.1 msec follows.

At
$$t = 11.0 \times 10^{-4}$$
, $p_a = 3100$ lb/in.² (Fig.4-8)

(The average pressure for 1.65 and 2.13 msec is obtained by dividing the differential area of the pressure-time curve by the corresponding time increment.)

The increment of time, At = 0.00005 sec.

The impulse on the tappet is

$$F\Delta t = A_{t}p_{a}\Delta t = 0.0195$$
 lb-sec

where

$$A_{,} = 0.1257 \text{ in.}^2$$
, area of tapped

<i>t,</i>	$\Delta t \times 10^5$,	р _а ,	s _b ,	$F\Delta t \times 10^4$,	Av,	ν,	$\Delta s \times 10^5$,	
msec	nsec sec psi		in.	lb-scc	in/sec	in/sec	'sec in.	
0.876	1.7	5200	9.6	111	6.4	6.4	5	
0.90	5	4800	10.4	302	17.4	23.8	44	
0.95	5	4300	11.5	270	15.6	39.4	39	
1.00	5	3900	12.7	246	14.2	53.6	36	
1.05	5	3500	13.9	220	12.7	66.3	32	
1.10	5	3100	15.1	195	11.3	77.6	28	
1.15	5	2800	16.2	176	10.1	87.7	25	
1.65	50	1630	-	1022	58.9	146.6	1472	
2.13	48	730	-	440	25.4	172.0	610	
<i>t</i> ,	As, X 10 ⁵ ,	s X 10 ⁵ ,	$V_{c} \times 10^{3}$,	$\Delta W \times 10^6$,	V _h ,	$W_{c} x 10^{6}$,	$V_{\rho} X 10^{3}$,	
mscc	in.	in.	in. ³	lb	in. ³	lb	in. ³	
0.876	0	5	0.0063	0.340	0.759	0.34	0.139	
0.90	32	81	0.102	0.924	0.8 19	1.264	0.556	
0.95	119	239	0.300	0.826	0.899	2.09	1.010	
1.00	197	472	0.590	0.750	0.987	2.84	1.505	
1.05	268	772	0.970	0.622	1.075	3.462	2.00	
1.10	332	1132	1.42	0.595	1,165	4.06	2.54	
1.15	388	1545	1.95	0.538	1.245	4.60	3.08	
1.65	4385	7402	9.34	3.130	3.67	7.72	15.26	
2.13	7047	15059	18.9	1.344	6.24	9.07	30.4	

TABLE 4-11. DYNAMICS OF TAPPET

The velocity at the end of the time interval, Eqs. 4-45 and 4-46, is

$$v = v_{n-1} + \frac{F\Delta t}{M_r} = 66.3 + \frac{0.0195 \text{ x } 386.4}{0.67}$$

$$= 66.3 + 11.3 = 77.6$$
 in./sec.

The distance traveled by the tappet, Eq. 4-47, becomes

$$s = \frac{1}{2} \Delta \nu \Delta t + \nu_{n-1} \Delta t + s_{n-1}$$
$$= \left(\frac{11.3}{2} + 66.3\right) \ 0.00005 + 0.00772$$
$$= 0.00028 + 0.00332 + 0.00772 = 0.01\ 132\ \text{in.}$$

The gas volume in the cylinder according to Eq. 4-48 is

$$V_c = V_{co} + A_t s = 0.1257 \text{ x } 0.01132 = 0.00142 \text{ in.}^3$$

where the initial volume $V_{co} = 0$.

The rate of flow, Eq. 4-27, is

$$w = K_w A_o p_a = 0.00129 \times 0.002 \times 3100$$

= 0.01 190 lb/sec.

The weight of the gas flowing through the port during the interval, Eq. 4-28, is

AW, =
$$\Delta tw$$
 = 0.00005 x 0.01190 = 5.95 x 10⁻⁷ lb.

The total weight of the gas in the tappet cylinder is W_c .

$$W_c = W_{c(n-1)} + AW_r = (3.462 + 0.595) 10^{-6}$$

= 4.057 x 10⁻⁶ lb.

The equivalent volume of this gas at 3100 psi pressure, according to Eq. 4–42 becomes

$$V_e = \left(\frac{W_c}{W_g}\right) V_b = \frac{4.057 \times 10^{-6}}{1.86 \times 10^{-3}} \quad 1.165$$
$$= 0.00254 \text{ in.}^3$$

where V_b is the gas volume of the barrel.

.

 $V_b = V_o + A_b s_b = 0.057 + 0.0732 \times 15.1 = 1.165 \text{ in.}^3$

where

$$V_o = 0.057 \text{ in.}^3$$
, initial volume (chamber)
 $A_i = 0.0732 \text{ in.}^2$, bore area

$$s_b = \frac{15.1 \text{ in., bullet travel at } t = 1.1 \text{ msec}}{(\text{Fig. 4-8})}$$

According to Eq. 4-43

$$p_c = \left(\frac{V_e}{V_c}\right)^k p_a = \left(\frac{2.54}{1.42}\right)^{1.3} 3100$$

= 2.13 x 3100 = 6600 lb/in.²

4-44

This pressure is absurd but it does indicate that more gas is capable of flowing through the port than the cylinder, as the receiver, can admit; therefore, the assumption that cylinder pressure is nearly equal to bore pressure is highly probable particularly since $V_{\rho} > V_{c}$ throughout the operation. Further assurance is available by computing the time needed during each interval to bring the pressure in the cylinder to the critical. In each increment, the gas flow is rapid enough to reach the critical before the moving tappet creates the corresponding volume. This approach is conservative since the differential pressures in the computations were based solely on critical pressures as limits although considerable time is available for additional gas flow into the cylinder, thus tending to approach the bore pressure. For example, continue with the same sequence of calculations for t = 1.1msec. The critical pressure is

$$p_{cr} = 0.53 p_a = 0.53 \times 3100 = 1640 \text{ lb/in.}^2$$

The pressure due to expansion of the gas in the cylinder during the interval provided that gas flow ceases is p_e .

$$p_e = p_{cr-1} \left(\frac{V_{c-1}}{V_c}\right)^k = 1860 \left(\frac{0.97}{1.42}\right)^{1.3}$$

$$= 1135 \, lb/in.^2$$

where

- $p_{cr-1} = 1860 \text{ lb/in.}^2$, the critical pressure of the previous interval
- V_c = 0.00142 in.³, the gas volume in the tappet cylinder
- $V_{c-1} = 0.00097 \text{ in.}^3$, the gas volume of the previous interval

The differential pressure between the expanded gas in the cylinder and the critical pressure provided by gas flow

$$\Delta p_c = p_{cr} - p_e = 1640 - 1135 = 505 \, \text{lb/in.}^2$$

The equivalent bore volume of the gas expanded to the critical pressure is

$$V_{ec} = V_b \left(\frac{p_a}{p_c}\right)^k = 1.162 \left(\frac{3100}{1640}\right)^{\frac{1.43}{1}} = 1.90 \text{ in.}^3$$

The weight of the gas at the critical pressure in the tappet cylinder is

$$W_c = \left(\frac{V_c}{V_e}\right) W_g = \left(\frac{0.00142}{1.90}\right) 0.00186$$

= 1.39 × 10⁻⁶ Ib.

The weight of the gas flowing into the cylinder is that needed to increase the pressure from p_e to p_{cr} .

$$\Delta W_{ce} = \left(\frac{\Delta p_c}{p_{cr}}\right) \quad W_c = \frac{505}{1640} \quad (1.39) \quad 10^{-6}$$
$$= 4.28 \times 10^{-7} \text{ lb.}$$

The time needed for the flow is

$$At_{m} = \frac{\Delta W_{ce}}{w} = \frac{4.28 \times 10^{-7}}{0.0119} = 3.60 \times 10^{-5} \text{ sec.}$$

The time is about 70% that of the specified interval of 5×10^{-5} sec. The results of the rest of the calculations appear in Table 4–12. On further examination of the tabulated results –since time is available for gas flow beyond the critical – note that the pressure due to expansion p_e would be greater than shown, thereby reducing the time needed to reach the critical pressure, and meanwhile, providing more time for the tappet cylinder pressure to reach the bore pressure.

4-4.1.4 Spring Design Data

Spring characteristics are determined more readily during recoil since more data are immediately available. According to Eq. 2–15, after the bolt has traveled its full distance in recoil, the energy to be absorbed by the spring is E_n .

$$E_{,,} = \frac{1}{2} \left(M_b v_r^2 \right) = 25.65 \text{ in.-lb}$$

where

$$M_b = \frac{0.67}{386.4} \quad \frac{1b \cdot \sec^2}{in.}$$
, mass of bolt unit

 $v_{,,} = 172 \text{ in./sec, recoil velocity}$

From Eq. 2–67b

$$KT = \frac{F_m}{1037} = \frac{F_a + \frac{1}{2} \left(L_d K \right)}{1037}$$

where

$$K = \frac{4.36}{0.0071 \text{ x } 1037 \text{-} 1.175} = \frac{4.36}{6.188}$$

= 0.70 Ib, spring constant

$$T = \frac{T_c}{3.8} = 0.0071$$
 sec, surge time of spring

 $T_c = t_r - t = 0.029 - 0.0021 = 0.0269$ sec, preliminary estimate of compression time of spring

The average spring force, Eq. 2-30, is

$$F_a = \frac{\epsilon E_r}{L_d} = \frac{0.040 \ge 25.65}{2.35} = 4.36$$

where

$$L_d = L - L_t = 2.35$$
 in., spring

deflection after tappet stops.

١

1

١

t, msec	p _{cr} , psi	w X 10 ³ , 1b/sec	$V_c \ge 10^3$, in. ³	p _e , psi	Δp _c , psi	V _{ec} , in.	W _c X 10 ⁶ , lb	$\Delta W_{ce} \times 10^6,$ lb	$\Delta t_w \times 10^5$, sec
0.867	27 60	20.00	0.0063	0	27 60	1.24	0.001	0.001	0.05
0.90	2540	18,46	0.102	73	2467	1.34	0.142	0.138	0.77
0.95	2280	16.52	0.300	625	1655	1.47	0.380	0.276	1.67
1.00	1990	15.00	0.590	945	1045	1,61	0.683	0.376	2.50
1.05	1860	12.44	0.970	1040	820	1.75	1.03	0.453	3.64
1.10	1640	11.90	1.42	1135	505	1.90	1.39	0.428	3.60
1.15	1480	10.76	1.95	1088	392	2.03	1.79	0.474	4.40
1.65	87 0	6.26	9,34	182	688	5,98	2.90	2.290	36.60
2.13	387	2.80	18.90	348	39	10.18	3.46	0.348	12.40

i.

TABLE 4–12. CRITICAL PRESSURE TIME REQUIREMENTS

The driving spring force when the bolt is fully retracted is

$$F_m = F_a + \frac{1}{2} (KL_d) = 4.36 + \frac{1}{2} (2.35) 0.70$$

= 5.18 lb.

The driving spring force when tappet contacts bolt is

$$F_o = F_m - \text{KL}, = 5.18 - 2.35 \times 0.70 = 3.54 \text{ lb}.$$

The time for the bolt to recoil, excluding the time of the initial 0.15 in. of tappet travel, is computed via **Eq.** 2-23.

$$t_r = \sqrt{\frac{eM_b}{K}} \cos^{-1} \frac{F_o}{F_m}$$
$$= \sqrt{\frac{0.4 \times 0.67}{0.70 \times 386.4}} \cos^{-1} \frac{3.54}{5.18}$$
$$= 0.0315 \times 0.818 = 0.0258 \text{ sec}$$

Spring data and time are now computed for counterrecoil

$$F_o = F_m - \text{KL} = 5.18 - 0.70 \times 2.5 = 3.43 \text{ lb}$$

where

$$L = 2.5$$
 in., total length of bolt travel including tappet travel.

The time of counterrecoil, Eq. 2-27,

$$t_{cr} = \sqrt{\frac{M_b}{\epsilon K}} \quad \cos^{-1} \frac{F_o}{F_m}$$
$$= \sqrt{\frac{0.67}{0.4 \text{ x } 386.4 \text{ x } 0.70}} \quad \cos^{-1} \frac{3.43}{5.18}$$

= $0.079 \times 0.847 = 0.0669$ sec.

The time needed to accelerate the bolt during recoil is obtained from Table 4–11 where $t_a = t = 0.0021$ sec, the last value (rounded to 4 places) in the time column.

The elapsed time for the firing cycle becomes

$$t_c = t_a + t_r + t_{cr} = 0.0021 + 0.0258 + 0.0669$$

= 0.0948 sec.

The new firing rate of

 $f_r = \frac{60}{7} = \frac{60}{633}$ rounds/min is acceptable since it is only 5.5% higher than the specified rate.

The revised surge time of the spring becomes

$$T = \frac{T_c}{3.8} = \frac{t_a + t_r}{3.8} = \frac{0.0021 + 0.0258}{3.8} = 0.00734 \text{ sec.}$$

Having set the coil diameter at D = 0.25 in., we establish the spring constant at K = 0.70 lb/in., thus the wire diameter according to Eq. 2-42 becomes

$$d = 0.27 \quad \sqrt[3]{DKT} = 0.27 \quad \sqrt[3]{0.001286}$$
$$= 0.27 \times 0.1088 = 0.0294 \text{ in.}$$

The number of coils, Eq. 2-41, is N.

$$N = \frac{Gd^4}{8D^3K} = \frac{11.5 \times 10^6 \times 74.7 \times 10^{-8}}{8 \times 0.0156 \times 0.66} = 104 \text{ coils}$$

The static torsional shear stress becomes

$$\tau = \frac{8F_m D}{\pi d^3} = \frac{8 \times 5.18 \times 0.25}{3.14 \times 25.4 \times 10^{-6}} = 130,000 \, \text{lb/in.}^2$$

The dynamic stress is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right] = 130,000 \left(\frac{4.0}{3.8}\right)$$
$$= 137,000 \,\text{lb/in.}^2$$

The solid height is

$$H_s = Nd = 104 \times 0.0294 = 3.06$$
 in

4-47/4-48

CHAPTER 5

REVOLVER-TYPE MACHINE GUNS

5-1 SINGLE BARREL TYPE*

Revolver-type machine guns are distinguished from other types by the revolving drum, a feature borrowed from the revolver. The operational characteristics of the two weapons, machine gun and pistol, are basically similar except for refinements in the former that convert it from an ordinary repeater to a machine gun. These refinements involve automatic loading, firing, and ejecting operations. Fig. 5-1 is a schematic of a revolver type machine gun. Its essential components are receiver, drum cradle, drum, barrel, gas operating mechanism, slide, feeder, rammer, driving spring, and adapter.

Fig. 5-1 illustrates a gas-operated gun, however, external power may also be used for this type. When a round is fired, the recoiling parts comprising barrel, drum, and cradle recoil a short distance before being stopped by the adapter. In the meantime, the slide assembly recoils with these parts until a portion of the

propellant gas passing from barrel to operating cylinder induces a relative velocity between recoiling parts and slide. As the recoiling parts stop, the slide continues to be accelerated rearward until the piston in the operating cylinder stops. The slide now has sufficient momentum to operate all moving parts until the next round is fired.

Continuing rearward, the slide, through the medium of a cam, imparts motion to the drum and then comes to rest after transferring all its energy less substantial frictional losses to the drum and driving spring. The drum now has the momentum to continue all operations. As it rotates, it actuates the feeder which pulls the ammunition belt far enough to align the next round with an empty chamber and the rammer. Cam action now imparts forward motion to the slide and rammer, the two components being integral. Cam forces – augmented by the driving spring force – drive the slide forward, eject the spent cartridge case, ram a full round into a chamber, and stop the drum as the loaded chamber reaches alignment with the bore just before the round is fired and the whole sequence repeats.

Figure 5-1. Schematic of Single Barrel Revolver-type Machine Gun

^{*}General information was obtained from Refs. 8, 9, 10, and 11.

Ramming is a two-stage activity. The first stage involves stripping the round from the belt and pushing it about halfway along its path to the chamber. The second stage completes the chambering. Fig. 5-2shows this two-step action. Actually, the entire process occurs during one cycle but on two adjacent rounds. While first-stage activity is confined to a new round, second-stage activity simultaneously completes the ramming of the round introduced during the preceding firing sequence. This two-stage ramming process represents a major advantage over a single-chambered gun by its ability to reduce the ramming distance to half its usual length thereby decreasing cycle time and increasing the rate of fire. Another contributing factor is the reduction of shocks resulting in higher allowable slide velocities (up to 50 ft/sec) than those usually associated with conventional mechanisms.

5-1.1 PRELIMINARY DYNAMICS OF FIRING CYCLE

The normal approach to the study of the dynamics during the firing cycle is to consider the various operations in their operational sequence. By considering firing as the initial condition, the first response of the gun is recoil. In many applications, since propellant gas forces are appreciable, the effects of recoil mechanism resistance are assumed negligible without introducing serious errors. However, for revolver-type machine guns, the recoil stroke is so short that considerable resistance must be provided immediately to preclude high recoil velocities and to keep recoil travel to the desired minimum. Left unimpeded, the distance of free recoil of a 20 mm barrel (Table 2–2) is almost 5 times that of an existing (M39) gun.

Performing an analysis similar to that defined in Eqs. 2-45 through 2-49, with due attention to the adapter resistance, the following iterative procedure is suggested. Compute the free recoil characteristics similar to those of Table 3-2. After obtaining the velocity and distance of free recoil, efforts must be directed toward reducing the velocity to zero over the prescribed recoil distance. One way of computing a zero velocity is to employ the weighted arithmetic mean of the impulse which yields an average force

$$F_a = \frac{\Sigma F_g \Delta t}{\Sigma \Delta t}$$
 (5-1)

Let this average force become the adapter resistance and compute what may be considered to be a resisting

5-2

_ -

impulse for each increment of time, which, when subtracted from the original impulse, will yield an effective impulse.

$$(F\Delta t)_{\rho} = F_{\rho}\Delta t - F_{a}\Delta t \qquad (5-2)$$

The change in velocity during each time interval will be

$$\Delta v = \frac{(F\Delta t)_e}{M_r} \cdot$$

This procedure will always have $\Sigma \Delta \nu = 0$, thus meeting one of the design criteria. The recoil distance is obtained from Eqs. 2-47, 2-48, and 2-49.

The data of Table 2-2 can illustrate the above procedure

$$F_{g}^{L:F_{g}At} = \frac{37.42}{2\Delta t} = 6237 \text{ lb}$$

$$(F\Delta t)_{e} = (F_{g}\Delta t - F_{a}\Delta t) = 0$$

$$\Sigma \Delta v = \Sigma \left(\frac{F\Delta t_{e}}{M_{r}}\right) = 0$$

$$x = \Sigma \Delta x = 0.4313$$
 in.

If x is too large, F_a is increased; if too small, it is decreased. Based on the 0.25 in. recoil distance of the M39 Machine Gun, F_a must be increased. Although the

adapter resistance increases as recoil progresses, the error in assuming F_a constant is minimal since the distance over which it functions is extremely short.

The recoiling parts continue to accelerate until $(F\Delta t)_e$ becomes zero. When this happens, the recoiling parts begin to decelerate but the slide continues to move under its own inertia unless the projectile has already passed the operating cylinder's gas port. In this event, a strong probability, the slide continues to accelerate under the influence of the newly supplied force source. Fig. 5–3 is a force diagram showing the accumulated effect of the various applied and induced forces

where

 F_t = adapter force F_c = operating cylinder force F_g = propellant gas force M_s = mass of slide

When slide and recoiling parts act as a unit $M = M_r + M_s$ (otherwise $M = M_r$ the mass of the recoiling parts), the recoil acceleration becomes

$$a_{r} = \frac{F_{g} - F_{t} - F_{c}}{M_{r} + M_{s}}$$
 (5-4)

Figure 5–3. Force Diagram of Recoiling Parts and Slide

5—3
The slide acceleration becomes

$$a_s = a_r + \frac{F_c}{M_s} \quad . \tag{5-5}$$

The dynamics of the gas operating cylinder follow a procedure similar to that for the cutoff expansion system (see par. 4-3.1.1).

Before continuing with the gas system analysis, the required operating energy must be estimated which leads to the selection and analysis of the slide and drum dynamics. Transfer of energy of slide to drum and driving spring and then back to slide must be achieved with operative efficiency and tolerable forces. A system such as this is notorious for its high energy losses and large forces. These two characteristics are kept within bounds by an elliptical cam, although other curves may be used if they display similar properties with respect to cam action.

The physical dimensions of the drum are best suited to generate other design parameters. Drum length is dictated by round length. Its outer radius is based on the number of chambers and the strength of the outer wall. A minimum of 4 chambers is sufficient to meet the basic operating requirements of present revolver-type machine gun concepts but may prove awkward in actual practice because of large angular displacement for each firing cycle, thus reducing the firing rate and putting an added burden on the designer to provide more power and acceptable mechanisms such as rammers. A design study at Springfield Armory indicates an optimum number of 5 chambers when based on kinematics alone. When other factors were considered. 5 or 6 chambers showed little difference with 5 having a slightly lower firing rate but definitely lower forces and less weight, thus leaning toward 5 as the recommended number. With the number of chambers established, the linear dimensions are now available from which the mass of the drum can be estimated.

Present practice has the weight of the slide approximately 1/3 the weight of the drum. Another established criterion that provides acceptable design parameters of the cam is the relationship shown in Eq. 5–6a.

$$\frac{M}{M_d}\left(\frac{b^2}{a^2}\right) = 1.0 \tag{5-6a}$$

where

a	=	major axis of elliptical cam
b	=	minor axis of elliptical cam
M_d	=	mass of drum
M _s	=	mass of slide

When $M_d = 3M_s$,

$$a = 1.732 b.$$
 (5-6b)

Another design parameter, the index of friction,

$$\mu_i = n \left(\frac{a}{b} + \frac{b}{a}\right) \quad (\text{Ref. 14}) \qquad (5-7a)$$

Substitute the value for a in Eq. 5-6b into Eq. 5-7a

$$\mu_i = \pi (1.732 \pm 0.577) = 7.23.$$
 (5-7a)

This index may vary if other ratios of a and b become more attractive.

The slide travel relative to the receiver need be only slightly more than half the round length since ramming takes place in two stages. The addition to the half-length depends on the desired clearances between projectile nose and drum, and between rammer and cartridge case base. Straight portions of the cam provide a dwell period for the drum before and after firing; one over the first part of slide travel during recoil, the other over the last part of counterrecoil. These straight portions may be of different lengths as may be the width of the cam curves for recoil and counterrecoil. Because cam forces are inherently less severe during counterrecoil, a larger sweep of the curve for recoil has the tendency to equalize the forces of the two actions, thereby increasing the efficiency of the system. A separate study of the individual cases is recommended but the relative dimension of an existing system serves as a guide. Fig. 5-4 is a schematic of such an arrangement.

$$L_c = a_{rec} + s_{or} \tag{5-8}$$

$$L_c = a_{crc} + s_{ocr}$$

AMCP 706-260

$$\frac{a_{crc}}{a_{rec}} = 0.6 \tag{5-9}$$

$$\frac{b_{cr}}{b_r} = 0.75$$
 (5-10)

$$\frac{s_{or}}{a_{rec}} = 0.5 \tag{5-11}$$

$$\frac{s_{ocr}}{a_{crc}} = 1.5 \tag{5-12}$$

$$L_c = \frac{1}{2} L_r + C_r$$
, cam length (5–13)

where

L, = length of round

 C_r = total clearance of the round at both ends

The cam width is

$$w_c = b_r + b_{cr} = \frac{2\pi R_{ch}}{N_c}$$
 (5-14)

where

$$N_c$$
 = number of chambers in drum
 R_{ch} = radius of chamber about drum axis

After the preliminary cam dimensions have been estimated, attention is now directed toward the effort needed to operate all moving parts at speeds commensurate with the firing rate of the gun. Operations that require energy include feeding, ramming, and ejecting. Components that must be activated are slide and rammer, drum, feeder, and loaded ammunition belt. The size of the drum, based on present 20 mm data, has the length L_d and diameter D_d indicated in Eqs. 5–15a and 5–15b.

$$L_d = L_r$$
, drum length (5–15a)

$$D_d = 6D_b$$
, drum diameter (5–15b)

$$D_b$$
 = bore diameter.

The mass of the drum and rotating feeder components may be estimated as the solid cylinder having the above dimensions. For moving ammunition by the feeder, an additional 10 percent is added to the effort. For ramming, the mass of two rounds is added to that of slide and rammer, whose mass M_g is approximately equal to 1/3 of the drum components M_d , thus

$$M_s = 1/3 M_d.$$
 (5–16)

The spent cartridge case should be ejected at a velocity of approximately 70 ft/sec. The velocity of other moving parts depend on the rate of fire f_r . However, since the maximum velocity of the slide should not exceed 50 ft/sec, this limit may be used as the initial estimate of the maximum slide velocity. The energy of the slide at this velocity represents the input energy of the system.

Figure 5–4. Schematic of Cam Geometry

By the time that all moving parts have returned to the firing position, where all motion ceases, considerable energy has been expended to friction, loading, and ejection. According to Ref. 14 when x =L, the loss of energy from slide to drum due to friction is

$$E_{\mu d} = (1.\theta - e^{-\mu_i \mu}) E_d \qquad (5-17)$$

where E_d is the total energy transferred from slide to drum if the system were frictionless and μ is the coefficient of friction. The energy of the drum alone (belt energy is of no help because it cannot push) just as the slide starts to counterrecoil is computed from Eq. 59, Ref. 9, and shown in Eq. 5–18

$$E_{dcr} = \left(\frac{M_d}{M_{de}}\right) e^{-\mu_i \mu} E_d \qquad (5-18)$$

where

$$M_d$$
 = mass of drum

$$M_{de}$$
 = effective mass of drum and ammunition belt

According to **Eq.** 69, Ref. 9, when x = 0, the frictional energy loss in the slide when fully counterrecoiled is

$$E_{\mu s} = (1.\theta - e^{-\mu_i \mu}) E_{dcr} . \qquad (5-19)$$

The loss attributed to the driving spring is

$$E_{e} = E_{e}(1 - \epsilon^{2}) \tag{5-20}$$

where

$$E_s$$
 = energy transferred from slide to
driving spring

E = efficiency of spring system

The energy expended to eject the spent cartridge case at velocity v_e is

$$E_e = \frac{1}{2} \left(M_e v_e^2 \right) \tag{5-21}$$

where M_c = mass of cartridge case

The total expenditure of energy of the drum and its associated components during a firing cycle is expressed in Eq. 5-22.

$$E_{\mu} = E_{\mu d} + E_{\mu s} + E_{\epsilon} + E_{e} \qquad (5-22)$$

The energy of the slide derived from normal recoil and the gas operating cylinder is

$$E_{sr} = \frac{1}{2} \left(M_s v_{sm}^2 \right) \tag{5-23}$$

where

 $v_{sm} \leq 50$ ft/sec, maximum slide velocity

$$M_s$$
 = mass of slide

A relatively stiff driving spring is recommended to hold the maximum velocity of drum and belt to a minimum (Ref. 9). If p is the ratio of spring energy E, to drum energy E_d ,

$$\rho = \frac{E_s}{E_d} \quad (5-24)$$

Since the slide energy is converted to spring and drum energy, $E_{sr} = E$, $+ E_d$, the total energy transferred to the drum is shown to be

$$E_d = E_{sr}/(1+\rho)$$
. (5-25)

The preliminary firing rate is estimated from the times of recoil and counterrecoil when based on the relative velocity of the cam follower on the drum and the cam in the slide. The recoil time (Eq. 98, of Ref. 9) is

$$t_r = \gamma \left(\frac{2s_r}{v_{sm} + v_{dm}}\right)$$
(5-26)

where

$$v_{dm}$$
 = maximum peripheral velocity of drum

The counterrecoil time will be

$$t_{cr} = \gamma \left(\frac{2s_{cr}}{v_{dm} + v_{scr}}\right)$$
(5-27)

.

where

 $s_{s_{a}} = \text{cam length for counterrecoil}$

 v_{scr} = counterrecoil velocity of slide

Based on operating guns, the empirical $\gamma = 0.935$ (Ref. 9).

The firing rate is

$$\mathbf{f}_r = \frac{60}{t_r \perp t_{cr}}, \text{rounds/min.} \quad (5-28)$$

5-1.1.1 Sample Problem of Preliminary Fining Rate Estimate

Given data $W_d = 30$ lb, weight of drum

- $W_s = 10$ lb, weight of slide
- $W_a = 0.6$ lb, weight of round
- $W_{cc} = 0.2$ lb, weight of case

$$R_d$$
 = 3 in., radius of cam contact point
to drum axis

$$N_c = 5$$
 chambers

$$a_{rec} = \frac{L_c}{1.5} = 3.33$$
 in. (from Eqs. 5-8
and 5-11)

$$a_{crc} = 0.6 a_{rec} = 2.0$$
 in. (from Eq. 5-9)

$$b_r + b_{rr} = \frac{2\pi R_d}{5} = 3.77$$
 in., peripheral cam
travel

$$b_{r} = \frac{b_{r} b_{cr}}{1.75} = 2.15 \text{ (from Eq. 5-10)}$$

$$b_{r} = 3.77 - 2.15 = 1.62 \text{ in.}$$

$$s_{or} = L, -a_{rr} = 1.67 \text{ in.}$$

$$s_{ocr} = L, -a_{crc} = 3.0 \text{ in.}$$

$$s_{r} = s_{or} + \frac{\pi}{2} \sqrt{\frac{a_{rec}^{2} + b_{r}^{2}}{2}} - 1.67 + 4.40 = 6.07 \text{ in.},$$

cam follower travel during recoil

$$s_{cr} = s_{ocr} + \frac{\pi}{2} \sqrt{\frac{a_{crc}^2 + b_{cr}^2}{2}} = 3.0 + 2.86 = 5.86 \text{ in.},$$

cam follower travel during counterrecoil

- $v_e = 840$ in./sec, maximum recommended ejection velocity of cartridge
- v,, = 600 in./sec, maximum allowable slide velocity

$$E_{,,} = \frac{1}{2} \left(M_{s} v_{sm}^{2} \right) = \frac{10 \times 360000}{2 \times 386.4}$$

= 4658.4 in.-lb, maximum slide energy of recoil

Select $\rho = 0.25$

$$E_d = \frac{E_{sr}}{1 \pm \rho} = \frac{4658.4}{1.25}$$

= 3726.7 in.-lb, energy to be transferred

to drum

$$E_s = E_{sr} - E_d = 931.7$$
 in.-lb,

energy to be transferred to driving spring

At the end of slide recoil, the energy in the drum, Eq. 5-18. becomes

$$E_{dcr} = \left(\frac{M_d}{M_{de}}\right) e^{-\mu_i \mu} E_d = \frac{30}{33} \left(\frac{3726.7}{e^{0.723}}\right)$$
$$= \frac{111801}{68} = 1644.1 \text{ in.-lb}$$

where

$$M_{de} = 1.1 M_d = 33/g$$

 $\mu_{i}\mu = 7.23 \times 0.1 = 0.723$

$$E_{dcr} = \frac{1}{2} \left(I_d \omega_d^2 \right) = \frac{1}{2} \left(M_d k^2 \omega_d^2 \right)$$
$$= \frac{4}{2} \frac{M_d}{2} \left(\frac{R_d^2}{2} \right) \left(\frac{v_{dm}^2}{R_d^2} \right) = \frac{1}{4} M_d v_{dm}^2$$

where I_d = mass moment of inertia of drum

k = radius of gyration

 ω_d = angular velocity of drum

$$v_{dm} = \sqrt{\frac{4E_{dcr}}{M_d}} = \sqrt{\frac{4 \times 386.4 \times 1644.1}{30}}$$

= $\sqrt{84704} = 291$ in./sec, maximum

The energy transferred from drum to slide, from Eq. 5-19, is

$$E_{sd} = e^{-\mu_i \mu} E_{dcr} = \frac{1644.1}{2.06} - 798.1$$
 in.-lb.

The energy transferred from driving spring to slide, assuming 80% efficiency, Eq. 5–20, is

$$E_{ss} = \epsilon^2 E_s = 0.64 x 931.7 = 596.3 \text{ in.-lb.}$$

The energy expended for ejection, Eq. 5-21, is

$$E_e = \frac{1}{2} \left(M_{cc} v_e^2 \right) = \frac{0.2 \times 705600}{2 \times 386.4} = 182.6 \text{ in.-lb.}$$

The energy in the slide at end of counterrecoil is

$$E_{scr} = E_{sd} + E_{ss} - E_r = 1211.8$$
 in.-lb.

The velocity of the slide at end of counterrecoil when it bears the additional weight of two rounds is

$$v_{scr} = \sqrt{\frac{2E_{scr}}{M_s + 2M_a}} = \sqrt{\frac{2 \times 1211.8 \times 386.4}{10 \pm 2 \times 0.6}}$$

= $\sqrt{83614} = 289$ in./sec.

According to Eqs. 5-26 and 5-27, the firing cycle time becomes

$$t_{c} = 2\gamma \left(\frac{s_{r}}{v_{sm}} + v_{dm} + \frac{s_{cr}}{v_{dm}} + \frac{s_{cr}}{v_{scr}} \right)$$

= 1.87 $\left(\frac{6.07}{891} + \frac{5.86}{580} \right)$

= 1.87 (0.0068 + 0.0101) = 0.0316 sec

where $\gamma = 0.935$.

The firing rate, Eq. 5-28, is estimated to be

$$f = \frac{60}{t_c} = \frac{60}{0.0316} = 1898 \text{ rounds/min.}$$

If the firing rate is too high, the initial velocity of the slide may be reduced proportionately. If too low, other avenues of design improvement must be explored since the upper limit of slide velocity has been incorporated. A stiffer driving spring, variations in moving masses, and efficiency improved by lowering frictional resistance represent three means of achieving a higher firing rate. All involve refinements in design.

5-1.1.2 Analysis of Cam Action

The forces induced by cam action on the slide and drum roller are shown diagrammatically in Fig. 5-5

for both the recoiling and counterrecoiling slide. Because the slide and drum are constrained in the y- and x-directions, respectively, their motions are restricted to axial and peripheral travel, respectively. Other forces are also present; on the slide, the driving spring force and track reactions; on the drum, the thrust and radial bearing reactions. The accelerating forces on either slide or drum are affected only to the extent of the frictional resistances provided by these reactions. Before resolving the cam forces, the influence of the drum roller must be considered. If the cam follower were a sliding rather than a rolling element, the tangential frictional force on the cam would be merely μN . The roller reduces μN to a lesser value depending on the ratio of pin radius to roller radius. In the drum roller force diagram of Fig. 5–5, the friction resistance is generated between the roller and the pin since no sliding takes place on the rolling surface. Equate the moments about the pin center.

Figure 5–5. Cam-slide Force Diagrams

$$N_{\mu}R_{r} = \mu NR_{p} \tag{5-29}$$

$$N_{\mu} = \mu N \left(\frac{R_p}{R_r} \right) \tag{5-30}$$

$$N' = \mu N - N_{\mu} = \mu N \left(1 - \frac{R_{p}}{R_{r}}\right)$$
 (5-31)

The resultant load on the roller pin becomes

$$F_p = \mu N - N' = \mu N \left(\frac{R_p}{R_r}\right) = N_\mu . \qquad (5-32)$$

Resolve the cam forces during slide recoil so that

$$F_{x} = N \sin \beta + N_{\mu} \cos \beta$$
$$= N \left[\sin \beta + \mu \left(\frac{R_{p}}{R_{r}} \right) \cos \beta \right] = N K_{x} \quad (5-33)$$

$$F_{y} = N \cos \beta - N_{\mu} \sin \beta$$
$$= N \left[\cos \beta - \mu \left(\frac{R_{p}}{R_{r}} \right) \sin \beta \right] = N K_{y} . \quad (5-34)$$

Resolve the cam forces during counterrecoil

$$F_x = N \left[\sin \beta - \mu \left(\frac{R_p}{R_r} \right) \cos y \right] = N K_x \qquad (5-35)$$

$$F_{y} = -N \left[\cos \beta + \mu \left(\frac{R_{p}}{R_{r}} \right) \sin \beta \right] = NK_{y} \quad (5-36)$$

Fig. 5-6 shows the applied and induced forces on the drum. Except for the cam force F_y only the frictional components affect the dynamics. The horizontal reaction *on* the drum shaft is

$$R_y = F_y - \mu F_g \tag{5-37a}$$

Figure 5–6. Single Barrel Drum Loading Diagram

where

 F_g = residual propellant gas force of the round just fired

$$R_{,} = F_{x}$$
 (5-37b)

The frictional force on the thrust bearing μR_x is distributed over the entire annular area and its resultant in any direction is zero. All frictional forces on the drum affect its angular motion. The accelerating torque is expressed as

$$T_{\alpha} = T_{\theta} - T_{\mu} = I_d \alpha_d \tag{5-38}$$

where

5-37b)

- I_d = mass polar moment of inertia of drum about its shaft
- α_d = angular acceleration of drum

$$T_{\theta} = R_{d}F_{y} = NR_{d}K_{y}, \text{ applied torque}$$

$$(5-39)$$

$$T_{\mu} = R_{b}\mu R_{y} + \mu F_{x}\left[R_{t} + R_{d}\left(\frac{R_{p}}{R_{r}}\right)\right]$$

$$+ R_{ch}\mu F_{g}, \text{ resisting torque} \quad (5-40)$$

Note that $\mu F_x R_t$ has been substituted for $\mu R_x R_t$. (See Eq.

Observe in Eq. 5-40 that
$$\mu F_x R_d \left(\frac{R_p}{R_r}\right)$$
 is the

torque resistance contributed by the cam. This expression is derived from the axial component of the cam force, acts in the ydirection, and may be computed by substituting F_x for N in Eq. 5-30.

Substitute for R, and collect terms, thus

$$T_{\mu} = \mu \left[R_{b}F_{y} + \left[R_{t} + R_{d} \left(\frac{R_{p}}{R_{r}} \right) \right] \right]$$
$$F_{x} + (R_{ch} - \mu R_{b})F_{g} \left[(5-41) \right]$$

Substitute for F_x and F_y and let $\mu(R_{ch} - \mu R_b)F_g = T_g$.

$$T_{\mu} = \mu N \left\{ \left[R_t + R_d \left(\frac{R_p}{R_r} \right) \right] K_x + R_b K_y \right\} + T_g$$
(5-42)

An expression for α can be found from the kinematics of Fig. 5–7. As the cam moves, the relative velocity of the drum roller at any position is ν_c . The cam path being curved, the normal acceleration, again' at any given position, is

$$a_{v} = \frac{v_{c}^{2}}{Re}$$
 (5-43)

Figure 5–7. Single Barrel Drum Dynamics

AMCP 706-260

However, the roller on the drum can physically travel only in the direction indicated by its tangential velocity v_d , hence the tangential roller acceleration becomes

$$a_d = a_n \cos\beta = \frac{v_c^2}{R_c} \cos\beta \tag{5-44}$$

With $v_s = v_c \cos \beta$, the angular acceleration of the drum may be expressed in terms of the slide velocity.

$$\alpha_d = \frac{a_d}{R_d} = \frac{v_s^2}{R_c R_d \cos\beta}$$
(5-45)

Rewrite Eq. 5-38 with appropriate substitutions and solve for N. Thus,

$$NR_{d}K_{y} - \mu N \left\{ \left[R_{t} + R_{d} \left(\frac{R_{p}}{R_{r}} \right) \right] K_{x} + R_{b}K_{y} \right\} - T_{g} = I_{d} \left(\frac{\nu_{s}^{2}}{R_{c}R_{d}\cos\beta} \right)$$
(5-46)

$$N = \frac{\frac{I_d v_c^2 \cos p}{R_c R_d} + T_g}{(R_d - \mu R_b)K_y - \mu \left[R_t + R_d \left(\frac{R_p}{R_r}\right)\right]K_x}$$
(5-47)

In the meantime, the slide is subjected to cam forces as well as the driving spring force F and also the frictional resistance μF_y of the slide tracks.

The cam is the medium for transferring energy. The equation of an elliptical cam is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
(5-48)

or

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$
 (5-49)

where

a = half of the major axis in x direction

b = half of the minor axis in y-direction

The slope at any point is $\tan \beta$.

$$\tan \beta = \frac{dy}{dx} = \frac{b}{a} \left(\sqrt{x} - x^2 \right)$$
(5-50)

$$\frac{d^2y}{dx^2} = \frac{ab}{(a^2 - x^2)^{3/2}}$$
(5-51)

The radius of the curvature of the cam at any position is R_c

$$R_{c} = \frac{\left[1.0 + \left(\frac{dy}{dx}\right)^{2}\right]^{3/2}}{\frac{d^{2}y}{dx^{2}}} = \frac{\left[a^{2} - \frac{x^{2}}{a^{2}} - (a^{2} - b^{2})\right]^{3/2}}{ab}$$
(5-52)

The cam dynamics involve an iterative integration procedure for which the law of conservation of energy becomes a convenient basis for computing the values of each increment. For any increment

$$E_i = E_{sr} + E_d + \Delta E + E\mu = \frac{1}{2} \left(M_{svs} \right)^2 + I_d \left(\frac{\tan^2 \beta}{2R_d^2} \right) v_s^2 + \frac{1}{\epsilon} F_a \Delta x + E_\mu$$
(5-53)

where

 ΔE = differential driving spring energy

 E_d = drum energy at end of increment

- E_i = input energy of each increment
- E_{sr} = slide energy at end of increment
- F_a = average driving spring force
- Ax = incremental travel of slide
 - = frictional losses during increment
- ϵ = spring efficiency.

Note that for the next increment,

 $E_i = \text{preceding } E_i = E_{\mu}$ (5–54)

The object now is to put E_{μ} into terms of ν_s so that Eq. 5-53 may be solved. The resultant frictional force in the x-direction is composed of the frictional resistance of slide tracks and that of the cam in the xdirection

$$F_{\mu s} = \mu F_{y} + \mu F_{y} \left(\frac{R_{p}}{R_{r}}\right) = \mu F_{y} \left(1.0 + \frac{R_{p}}{R_{r}}\right)$$
(5-55)

Write F_{y} in terms of N.

$$F_{\mu s} = \mu N K_y \left(1.0 + \frac{R_p}{R_r} \right)$$
 (5-56)

The energy loss in the slide is

$$E_{\mu s} = \frac{1}{2} \left(F_{\mu s_1} + F_{\mu s_2} \right) \Delta x \,. \tag{5-57}$$

where subscripts 1 and 2 indicate values for adjacent increments.

The energy loss in the drum becomes

$$E_{\mu d} = \frac{1}{2} (T_{\mu 1} + T_{\mu 2}) \Delta \theta . \qquad (5-58)$$

The total frictional losses in drum and slide is the sum of the two components

$$E_{\mu} = E_{\mu d} + E_{\mu s} . \tag{5-59}$$

5-1.1.2.1 Sample Calculation of Cam Action

The sample problem is the continuation of the one outlined in par. 5-1.1.1, at a time when the slide has traveled 2.0 inches on the cam. Thus, $x_1 = 2.0$. From Eq. 5-49.

$$y_1 = \frac{b}{a}\sqrt{a^2 - x^2} = \frac{2.15}{3.33}\sqrt{11.09 - 4}$$
$$= 0.6456 \times 2.6627 = 1.719 \text{ in.}$$

$$\tan \beta_1 = \frac{b}{a} \left(\frac{x}{\sqrt{a^2 - x^2}} \right) = \frac{2.15}{3.33} \left(\frac{2.0}{2.6627} \right)$$
$$= 0.4850 \text{ (from Eq. 5-50)}$$

$$\beta_1 = 25^\circ 52.2' = 0.4470 \text{ rad}$$

$$\sin \beta_1 = 0.4364$$

$$\cos \beta_1 = 0.8998$$

$$\frac{d^2 y}{dx^2} = \frac{ab}{(a^2 - x^2)^{3/2}} = \frac{3.33 \times 2}{18.88}$$

$$= 0.379 \text{ (from Eq. 5-51).}$$

According to Eq. 5-52

$$R_{c1} = \frac{\left[a^2 - \frac{x^2}{a^2} (a^2 - b^2)\right]^{3/2}}{ab}$$
$$= \frac{\left[11.09 - \frac{4.0}{11.09} (11.09 - 4.62)\right]^{3/2}}{7.16}$$
$$= 3.62 \text{ in.}$$

x 2.15

At this time the driving spring has been compressed by

$$L_x = s_{or} t x = 1.67 + 2.0 = 3.67 in.$$

The energy absorbed by the spring at this position is Е,

$$E_{,} = \frac{3.67}{5.0}$$
 931.7 = 684 in.-lb

The energy confined to the drum-slide system is

$$E_{ds} = E_{s} - E_{s} = 3974.4$$
 in.-lb.

After losses have been deleted, the energy remaining in the system is

$$E'_{ds} = E_{ds}e^{-\mu_i\mu\frac{x}{a}}$$
 (Ref. 14) (5-60)

$$E'_{ds} = 3974.4 e^{-0.434} - \frac{3974.4}{1.543} = 2576$$
 in.-lb

where $-\mu_i \mu \frac{\mathbf{x}}{a} = -7.23 \times 0.1 \times 2.0/3.33 = -0.434$

$$E'_{ds} = \frac{1}{2} \left(I_{de} \omega_d^2 \right) + \frac{1}{2} \left(M_s v_s^2 \right)$$
$$= \left(\frac{1}{4} M_{de} \tan^2 \beta_1 + \frac{1}{2} M_s \right) v_s^2$$
$$v_s^2 = \frac{2576 \times 386.4}{1.94 + 5.0} = 143,425 \text{ in.}^2/\text{sec}^2$$
$$v_s = 378.7 \text{ in./sec}$$

where

$$\frac{1}{4} M_{de} \tan^2 \beta_1 = 1.94/g$$
$$\frac{1}{2} M_s = 5.0/g$$

The above given and computed values are assumed to be the values of the parameters at x = 2.0 in. To illustrate the integration process, assume an incremental travel of Ax = 0.05 in.

$$x_2 = x_1$$
 t Ax = 2.00 + 0.05 = 2.05 in.
 $y_2 = \frac{b}{a} \left(\sqrt{a^2 - x^2} \right) = \frac{2.15}{3.33} \sqrt{11.09 - 4.203}$
= 0.6456 x 2.6243 = 1.694 in.

$$\tan \beta_2 = \frac{b}{a} \left(\sqrt{\frac{x}{a^2 - x^2}}_{\sqrt{a^2 - x^2}} \right) = \frac{2.15 \times 2.05}{3.33 \times 2.6243}$$
$$= \frac{4.4075}{8.7389} = 0.5044$$

$$\beta_2 = 26^\circ, 46^\circ = 0.4672 \text{ rad}$$

 $\sin \beta_2 = 0.4504$
 $\cos \beta_2 = 0.8929$

$$\Delta y = y_1 - y_2 = 0.025$$

$$\Delta \theta = \frac{\Delta y}{R_d} = \frac{0.025}{3.0} = 0.00833 \text{ rad}$$

$$\frac{d^2 y}{dx^2} = \frac{ab}{(a^2 - x^2)^{3/2}} = \frac{3.33 \times 2.15}{18.07} = 0.396$$

$$R_{c \ 2} = \frac{\left[a^2 - \frac{x^2}{d}(a^2 - b^2)\right]^{1/2}}{ab}$$

$$= \frac{\left[11.09 - \left(\frac{4.203}{11.09}\right) 6.47\right]_{3/2}}{7.16} = 3.55 \text{ in.}$$

Additional given data are now listed.

 $F_g = 1000$ lb, propellant gas force (residual)

 R_b = 1.0 in., radius of radial bearing

- R_{ch} = 1.5 in., chamber center to drum axis
- $R_p = 0.25$ in., radius of roller pin
- $R_r = 0.5$ in., roller radius
- $R_t = 1.25$ in., thrust bearing pressure radius

$$\mu$$
 = 0.10, coefficient of friction

In Eq. 5-42,

$$T_g = \mu (R_{ch} - \mu R_b) F_g = 0.10(1.5 - 0.10 \times 1.0)1000$$

= 140 in.-lb

$$I_d = M_d k^2 = M_d \left(\frac{R_d^2}{2}\right) = \frac{30}{386.4} \left(\frac{9}{2}\right)$$

= 0.35 Ib-in.-sec', mass moment

of inertia of drum

During slide recoil when the ammunition must also be accelerated, the effective mass moment of inertia I_{de} changes from I_d to

$$I_{de} = (1.1)I_d = 0.385 \text{ lb-in.-sec}^2$$
.

From Eq. 5-33

$$K_{x1} = \sin \beta_1 + \mu \left(\frac{R_p}{R_r}\right) \cos \beta_1 = 0.4364 + 0.10 \times 0.5 \times 0.8998 = 0.4814$$
$$K_{x2} = \sin \beta_2 + \mu \left(\frac{R_p}{R_r}\right) \cos \beta_2 = 0.4505 + 0.10 \times 0.5 \times 0.8929 = 0.4950$$

-

From Eq. 5-34

$$K_{y1} = \cos\beta_1 - \left(\frac{R_p}{R_r}\right)\sin\beta_1 = 0.8998 - 0.10 \times 0.5 \times 0.4364 = 0.8780$$
$$K_{y2} = \cos\beta_1 - \left(\frac{R_p}{R_r}\right)\sin\beta_2 = 0.8929 - 0.10 \times 0.5 \times 0.4504 = 0.8704.$$

Since the slide is recoiling, substitute $\nu_s/\cos\beta$ for ν_c in Eq. 5-47, thus

$$N_{1} = \frac{\frac{I_{de}v_{s_{1}}^{2}}{R_{c_{1}}R_{d}\cos\beta_{1}} + T_{g}}{(R_{d} - \mu R_{b})K_{y1} - \mu \left[R_{t} + R_{d}\left(\frac{R_{p}}{R_{r}}\right)\right]K_{x_{1}}}$$

$$= \frac{\frac{0.385 \times 143425}{3.62 \times 3.0 \times 0.8998} + 140}{(3.0 - 0.10 \times 1.0) 0.8780 - 0.10 (1.25 + 3.0 \times 0.5) 0.4814} - \frac{5651 + 140}{2.546 - 0.132} = \frac{5791}{2.414} = 2399 \text{ lb}$$

$$N_{2} = \frac{\frac{I_{de} v_{s2}^{2}}{R_{c2}R_{d} \cos \beta_{2}} + T_{g}}{(R_{d} - \mu R_{b})K_{y2} - \mu \left[R_{t} + R_{d} \left(\frac{R_{p}}{R_{r}}\right)\right] K_{x2}} - \frac{\frac{0.385 v_{s2}^{2}}{2.9 \times 0.8704 - 0.275 \times 0.4950} + 140}{2.524 - 0.136} = 0.01696 v_{s2}^{2} + 59.$$

The preliminary characteristics of the driving spring are based on an assumed efficiency of 80% and for $F_m \approx 2F_o$. The average spring force F_a over the full recoil distance is now computed.

$$F_{a} = \frac{\epsilon E_{s}}{L_{s}} = \frac{0.8 \times 931.7}{5} = 149 \text{ lb}$$

$$F_{a} = \frac{F_{o} + F_{m}}{2} = \frac{F_{o} + 2F_{o}}{2} = 149$$

$$F_{o} = \frac{200}{3} = 99.3; F_{m} = 198.7 \text{lb}.$$

The spring constant

$$K = \frac{F_m - F_o}{L} = \frac{99.4}{5} = 19.88b/in.$$

$$F_{x1} = F_o + 3.67K = 99.3 + 73.0 = 172.3b$$

$$F_{x2} = F_o + 3.72K = 99.3 + 74.0 = 173.3b.$$

Isolate the components of Eq. 5-53 to compute the combined energy of drum and slide

$$E_{i} = E'_{ds} = 2576 \text{ in.-lb}$$

$$E_{sr} = \frac{1}{2} \left(M_{s} v_{s\,2}^{2} \right) = \frac{10 v_{s\,2}^{2}}{2 \times 386.4} = 0.01294 v_{s\,2}^{2}$$

$$E_{d} = \frac{1}{2} I_{de} \left(\frac{\tan^{2} \beta_{2}}{R_{d}^{2}} \right) v_{s\,2}^{2}$$

$$= \left(\frac{0.385 \times 0.2544}{2 \times 9} \right) v_{s\,2}^{2} = 0.00544 v_{s\,2}^{2}$$

$$AE = \frac{1}{2} F_{sa} Ax = \left(\frac{172.3 + 173.3}{0.8 \times 2} \right) 0.05$$

= 10.8in.-lb.

Insert the appropriate values in Eqs. 5-42 and 5-56 and compute the torsional and slide frictional resistance.

$$T_{\mu_{1}} = N_{1} (0.275K_{x1} + 0.1K_{y1}) + T_{g}$$

= 2399 (0.1324+ 0.0878)+ 140 = 668.3lb-in.
$$T_{\mu_{2}} = N_{2} (0.275K_{x2} + 0.1K_{y2}) + T_{g}$$

= (0.01696 v_{s2}^{2} + 59) (0.1361+ 0.0870)+ 140
= 0.00378 v_{s2}^{2} + 153.2lb-in.

$$F_{\mu s1} = 0.15 K_{y1} N_1 = 0.15 \times 0.8780 \times 2399$$

= 315.9lb

$$F_{\mu s \, 2} = 0.15 K_{y \, 2} N_2 = 0.15 \times 0.8704 (0.01696 v_s^2 + 59)$$
$$= 0.00221 v_{s \, 2}^2 + 7.7 \text{b}$$

According to Eqs. 5–57 and 5–58, the energy losses are

$$E_{\mu s} = \frac{1}{2} (315.9 + 7.7 + 0.00221 v_{s2}^2) 0.05$$

= 8.1 + 5.525 × 10⁻⁵ v_s^2
$$E_{\mu d} = \frac{4}{2} (668.3 + 153.2 + 0.00378 v_{s2}^2) 0.00833$$

= 3.4 + 1.574 × 10⁻⁵ v_{s2}^2

Insert computed values in Eq. 5–53 and solve for slide velocity v_s and the energy E_i .

$$2576 = (1294 + 544 + 5.525 + 1.574)\nu_{s2}^{2} \times 10^{-5}$$
$$+ 10.8 + 8.1 + 3.4$$

5–17

$$1845.1 \ge 10^{-5} v_{s2}^2 = 2553.7$$

$$v_{s2} = 4\overline{138,412} = 372 \text{ in./sec}$$

$$E_{\mu} = 11.5 + 7.099 \ge 10^{-5} v_{s2}^2 = 11.5 + 9.9$$

$$= 21.4 \text{ in.-lb}$$

$$E_i = E_{i(-1)} - AE - E_{\mu} = 2543.8 \text{ in.-lb}$$

5-1.1.2.2 Driving Spring

The average force on each of two driving springs over the decelerating period of the slide is computed from the known slide energy.

$$F_a = \frac{\epsilon E_s}{2a_{rec}} = \frac{0.8 \times 931.7}{2 \times 3.33} = 111.9 \text{ lb.}$$

where

$$a_{rec} = 3.33$$
 in., slide travel during slide deceleration

$$E_{i}$$
 = 931.7 in.-lb, slide energy

e = 0.80, system efficiency (assumed)

Investigation shows that K = 20 lb/in. is a practical spring constant. The compression time of the spring

$$T_c = t_r = 1.87 \times 0.0068 = 0.0127 \text{ sec}$$

(see par. 5-1.1.1).

The surge time $T = \frac{T_c}{1.8} = 0.00706$ sec (see par. 2-2.3.5).

Select a spring diameter of D = 1.0 in., then compute the wire diameter according to Eq. 2-42.

$$d = 0.27$$
 $\sqrt[3]{DKT} = 0.27$ $\sqrt[3]{0.1412} = 0.1406$ in.

Compute the number of coils from Eq. 2-41.

$$N = \frac{Gd^4}{8D^3K} = \frac{11.5 \times 10^6 \times 3.90 \times 10^{-4}}{8 \times 1.0 \times 20} = 28.1 \text{ coils}$$

The spring solid height is

$$H_{s} = Nd = 28.1 \ge 0.1406 = 4$$
 in.

Since
$$F_a = \frac{F_o \, F_m}{2}$$
 and $F_o = F_m - Ka_r$

 $F_m = F_a + \frac{1}{2} Ka_{rec} = 111.9 + 33.3 = 145.2 \text{ lb}$

The static torsional stress, Eq. 2-43, is

$$\pi = \frac{8F_m D}{\pi d^3} = \frac{8 \times 145.2 \times 1.0}{\pi \times 2.78 \times 10^{-3}} = 133,200 \text{ lb/in.}^2$$

The dynamic torsional stress, Eq. 2-44, is

$$\tau_d = \tau \left(\frac{T}{T_c}\right) \left[f\left(\frac{T_c}{T}\right) \right]$$
$$= 133,200 \left(\frac{1}{1.8}\right) 2 = 148,000 \text{ lb/in.}^2$$

5–1.2 FINAL ESTIMATE OF THE COMPLETE FIRING CYCLE

This sample problem involves the procedures for computing all the data involved for making an accurate estimate of the firing rate for a drum-type machine gun by analyzing the firing cycle in detail. The interior ballistics of Fig. 5–8 are for a 20 mm gun firing a 2000-gram projectile with a 500-grain propellant charge. The pressure has been modified so that the impulse generated by the gas force is congruous with the momentum of projectile and gas from the expression obtained from Eq. 2–14

$$F_g dt = (M_p + \frac{1}{2} M_g) dv$$

Figure 5-8. Interior Ballistics of 20 mm Revolver-type Gun

Only half the mass of the propellant gas is assumed in motion. This assumption is based on the theory that the velocity of the gas varies linearly as the distance that the projectile has traveled in the bore. It varies from zero in the chamber to the projectile velocity. Thus, if the projectile velocity is v, the momentum of the propellant gas at any time is $M_g v/2$, which indicates that the equivalent mass moving at projectile velocity is $1/2 M_g$.

5–1.2.1 Control of Recoil Travel During Propellant Gas Period

The given design data include all the given and computed data available from the preliminary firing rate and cam analyses. The additional design data include

- L = 0.25 in., recoil distance of barrel
- $L_p = 16$ in., location of gas port along barrel
- $W_r = 96$ Ib, weight of recoiling parts including 10-lb slide

Table 5–1 shows a free recoil distance of x = 0.572 in. that exceeds the specified travel L, = 0.25 in. To curb free recoiling tendencies, the adapter resists the propellant gas force at all times. To realize a shorter recoil stroke, the resistance of the adapter and the influence of the gas pressure force in the operating cylinder must be used. This effort is shown in Table 5–2. Since the gas activity in the slide operating cylinder has not been analyzed, its effect on the recoiling parts at this stage is assumed to be included in the adapter performance.

Before computing the data in Table 5–2, some of the data in Table 5–1 are modified to fit more closely the design requirements. The impulse of the propellant gas force forms the basis for the modified values, $F_g \Delta t = 29.65$ lb-sec. If left uninhibited, a free recoil velocity of **119.4** in./sec is induced, a condition that should not prevail. Lower velocities are achieved by establishing lower effective impulses. The total impulse at t = 1.375 msec when the projectile reaches the gas port $(\Sigma F_g \Delta t)_p = .20.31$ lb-sec. At this time, the force on the slide operating piston is arbitrarily assumed to exceed the component of the propellant gas force (see Fig. 5–1). $F_c > F_g \left(\frac{W_s}{W_r + W_s} \right)$

Thus separating the slide from the recoiling parts and reducing the latter's weight from 96 to 86 lb tends to increase recoil accelerations, provided that the parts are subjected to the same impulses. The average impulsive force corrected for the change of weight is

$$F_{a} = \frac{1}{t} \left\{ (\Sigma F_{g} \Delta t)_{p} + \left[\Sigma F_{g} \Delta t - (\Sigma F_{g} \Delta t)_{p} \right] \frac{86}{96} \right\}$$
$$= \frac{20.31 \text{ t} 8.37}{0.006} = 4780 \text{ lb}$$

(t = 0.006 sec from last entry in the first column Table 5-2).

The impulse of the propellant gas is present over the entire recoil stroke, therefore, to have the recoil velocity reach zero just at full recoil, a resisting impulse equal to the applied impulse must be made available. This impulse should be distributed so that the full stroke and zero velocity are reached simultaneously which can be achieved by iterative computation with time rather than distance determining the distribution of forces. The initial and final resisting forces are determined from the average with the former low enough not to limit recoil travel too severely, and the latter not to reach loads that cannot be tolerated with respect to handling and structural sizes. During the first 0.25 msec, the average gas force is $F_g = 5600$ lb. Since motion should not be totally impeded, a resisting force of about half this value, or F_{ot} = 3000 lb may serve as a first trial. The corresponding resistance offered by the adapter is the maximum adapter force.

$$F_{mt} = 2F_a - F_{ot} = 9560 - 3000 = 6560 \text{ lb}$$

The resisting force at any time is based on the initial force of F_{ot}

$$F_{t} = F_{ot} + \left(\frac{F_{mt} - F_{ot}}{\Delta t}\right) t = 3000 + \left(\frac{3560}{0.006}\right) t$$
$$= 3000 + 593333t$$

t, msec	Δt , msec	A_i , lb-sec/in. ²	$F_{g}\Delta t$, lb-sec	$\Delta \nu_f$, in./sec	v _f , in./sec	v _a , in./sec	Δx , in.	x, in.
0.25	0.25	2.72	1.40	5.6	5.6	2.8	0.0007	0.0007
0.50	0.25	8.06	4.15	16.7	22.3	14.0	0.0035	0.0042
0.75	0.25	9.44	4.86	19.6	41.9	32.1	0.0080	0.0 122
1.00	0.25	8.84	4.55	18.3	60.2	52.0	0.0130	0.0252
1.25	0.25	7.32	3.77	15.2	75.4	67.8	0.0 170	0.0422
1.375	0.125	3.06	1.58	6.4	81.8	78.6	0.0098	0.0520
1.50	0.125	2.72	1.40	5.6	87.4	84.6	0.0106	0.0626
1.75	0.25	4.14	2.13	8.6	96.0	91.7	0.0229	0.0855
2.00	0.25	2.95	1.52	6.1	102.1	99.0	0.0248	0.1103
2.25	0.25	2.06	1.06	4.3	106.4	104.2	0.0260	0.1363
2.50	0.25	1.46	0.75	3.0	109.4	107.9	0.0270	0.1633
2.80	0.30	1.51	0.78	3.1	112.5	111.0	0.0333	0.1966
3.00	0.20	0.73	0.38	1.5	114.0	113.2	0.0226	0.2192
4.00	1.00	1.57	0.8 1	3.3	117.3	115.6	0.1156	0.3348
5.00	1.00	0.75	0.39	1.6	118.9	118.1	0.1 181	0.4529
6.00	1.00	0.24	0.12	0.5	119.4	119.2	0.1 192	0.5721

TABLE 5-1. FREE RECOIL DATA OF 20 mm REVOLVER-TYPE MACHINE GUN

}

,

t,	F_{t}	$F_t \Delta t$,	$F_e \Delta t$,	Δv_{r} ,	v _r ,	v_a ,	Δx ,	<i>x</i> ,
msec	lb	lb-sec	lb-sec	in./sec	in./sec	in./sec	in.	in.
0.25	3150	0.79	0.6 1	2.5	2.5	1.2	0.0003	0.0003
0.50	3300	0.82	3.33	13.4	15.9	9.2	0.0023	0.0026
0.75	3440	0.86	4.00	16.1	32.0	24.0	0.0060	0.0086
1.00	3590	0.90	3.65	14.7	46.7	39.4	0.0098	0.0184
1.25	3740	0.94	2.83	11.4	58.1	52.4	0.0131	0.0315
1.375	3820	0.48	1.10	4.4	62.5	60.3	0.0075	0.0390
1.50	3890	0.49	0.91	4.1	66.6	64.6	0.008 1	0.0471
1.75	4040	1.01	1.12	5.0	71.6	69.1	0.0173	0.0644
2.00	4190	1.05	0.47	2.1	73.7	72.6	0.0182	0.0826
2.25	4330	1.08	-0.02	- 0.1	73.6	73.6	0.0184	0.1010
2.50	4480	1.12	-0.37	- 1.7	71.9	72.8	0.0182	0.1 192
2.80	4660	1.40	-0.62	- 2.8	69.1	70.5	0.0225	0.1417
3.00	4780	0.96	-0.58	- 2.6	66.5	67.8	0.0136	0.1553
4.00	5370	5.37	-4.56	-20.5	46.0	56.2	0.0562	0.2115
5.00	5970	5.97	- 5.58	-25.1	20.9	33.4	0.0334	0.2449
5.74	6410	4.74	-4.65	- 20.9	0	10.4	0.0077	0.2526

TABLE 5-2. PRELIMINARY RECOIL ADAPTER DATA

5-22

)

.

The resisting impulse at any increment of time is $F_a \Delta t$ and the effective impulse on the recoiling parts is

$$F_e \Delta t = (F_p \Delta t - F_t \Delta t)$$

where $F_g \Delta t$ is read from Table 5–1. The other data of Table 5–2 are computed similarly to those of Table 5–1. When completed, Table 5–2 (for the first trial) shows that the recoiling parts stop before the propellant gas pressure period ends but very close to the 0.25 in. allotted recoil stroke. This close proximity between computed and specified distance is attributed to the choice of $F_o = 3000$ lb, a shear coincidence. If recoil action over the whole gas period is desired, the adapter force is reduced proportionately and the values of Table 5–2 recomputed.

The recoil data are revised by proportioning the recoiling masses and the corresponding impulses according to time. Since the slide and recoiling parts move as a unit for 1.375 msec and the slide is a separate mass afterwards, the effective mass for the period is

$$M_e = \frac{1.375}{6} (M_s + M_r) + \left(\frac{4.625}{6}\right) M_r$$
$$= \frac{1}{6} \left(\frac{1.375 \times 96 + 4.625 \times 86}{386.4}\right) = \frac{529.75}{2318.4}$$
$$= 0.2285 \text{ lb-sec}^2/\text{in.}$$

A negative velocity of 7.5 in./sec at the end of 6 msec is eliminated by reducing the adapter force of Table 5-2 thereby permitting a larger portion of the gas impulse to act on the recoiling parts. Compute the momentum for the negative velocity and solve for the force of the equivalent impulse.

$$\Delta F = \frac{\Delta Ft}{t} - \frac{M_e \Delta v_r}{t} = \frac{0.2285 (-7.5)}{0.006}$$

= - 286, say, - 300 lb

By adding - 300 lb to each F_t in Table 5–2, a new set of data is computed and arranged in Table 5–3. The final results show practically zero velocity in the allotted time but a larger recoil stroke than the prescribed, which may be corrected by changing the slope of the adapter load while retaining the same area under the force-time curve. However, the data of Tables 5-2 and 5-3 need not be more accurate for preliminary estimates inasmuch as the adapter resistance varies with distance rather than with time. Later when the dynamics of the slide operating cylinder are developed, the recoil analysis will be more precise since the effects of all variables, such as time and distance, will be included.

5-1.2.2 Operating Cylinder Design

Aside from the requirements dictated by the slide, the design data of the operating cylinder are based on four parameters: orifice size, orifice location, cylinder diameter, and stroke. If the cam dwell corresponds with the power stroke, only three parameters need to be resolved. These three parameters may be resolved by searching for compatible relationships among bore pressure, cylinder pressure, and operating cylinder size. An early estimate may be had by calculating the average performance data. The known data at this stage are

- $s_{or} = 1.67$ in., length of power stroke
- $v_{so} = 62.5$ in./sec, slide velocity v_r at t = 1.375 msec (Table 5-2)
- $v_{sm} = 600$ in./sec, maximum slide velocity
- $W_o = 1.0$ lb, weight of moving operating cylinder components
- $W_{os} = W_o + W_s = 11.0$ lb, combined weight of components and slide
- $W_s = 10$ Ib, weight of slide

The slide velocity of 62.5 in./sec will be computed more accurately later but is sufficiently accurate for its intended purpose now.

The energy still needed to bring the slide to speed is

$$E_{cs} = \frac{\mu_{ss}}{g} (\nu_{sm}^2 - \nu_{so}^2) = \frac{11 \times 356100}{386.4}$$

= 10,140 in.-lb.

1

т.

t,	F_{t} ,	$F_t \Delta t$,	$F_e \Delta t$,	Δv_r ,	v _r ,	v_a ,	Δx ,	<i>x</i> ,			
msec	lb	lb-sec	lb-sec	in./sec	in./sec	in./sec	in.	in.			
0.25	2850	0.71	0.69	2.8	2.8	1.4	0.0004	0.0004			
0.50	3000	0.75	3.40	3.7	16.5	9.6	0.0024	0.0028			
0.75	3140	0.78	4.08	6.4	32.9	24.7	0.0062	0.0090			
1.00	3290	0.82	3.73	5.0	47.9	40.4	0.0101	0.0191			
1.25	3440	0.86	2.91	1.7	59.6	53.8	0.0134	0.0325			
1.375	3520	0.44	1.14	4.6	64.2	61.9	0.0077	0.0402			
1.50	3590	0.45	0.95	4.3	68.5	66.4	0.0083	0.0485			
1.75	3740	0.94	1.19	5.3	73.8	71.2	0.0178	0.0663			
2.00	3890	0.97	0.55	2.5	76.3	75.0	0.0188	0.0851			
2.25	4030	1.01	0.05	0.2	76.5	76.4	0.0191	0.1042			
2.50	4180	1.04	-0.29	- 1.3	75.2	75.8	0.0190	0.1232			
2.80	4360	1.31	-0.53	- 2.4	72.8	74.0	0.0222	0.1454			
3.00	4480	0.90	-0.52	- 2.3	70.5	71.6	0.0143	0.1597			
4.00	5070	5.07	- 4.26	- 19.1	51.4	61.0	0.0610	0.2207			
5.00	5670	5.67	- 5.28	- 23.7	27.7	39.6	0.0396	0.2603			
6.00	6260	6.26	-6.14	-27.6	0.1	13.9	0.0139	0.2742			
		27.98									

TABLE 5–3. REVISED PRELIMINARY RECOIL ADAPTER DATA

The average operating cylinder force is

$$F_{ca} = \frac{\dot{E}_{cs}}{s_{or}} = \frac{10140}{1.67} = 6072 \, \text{lb.}$$

Assume that the gas pressure in the cylinder does not drop below 1000 psi, therefore, flow from bore to operating cylinder ceases at 3.85 msec. The area under the pressure time curve from 1.375 to 3.85 msec is

$$A_i = 17 \, \text{lb-sec/in.}^2$$

The average bore pressure for this interval is

$$p_a = \frac{A_i}{\Delta t} = \frac{17}{0.00385 - 0.001375} = \frac{17}{0.002475}$$

= 6870 lb/in.²

Based on critical flow pressure, the average pressure in the operating cylinder during the same interval is

$$p_{a} = 0.53 p_{a} = 3640 \text{ lb/in.}^{2}$$

The required piston area is

$$A_{cr} = \frac{F_{ca}}{p_c} = \frac{6072}{3640} = 1.67 \text{ in.}^2$$

The corresponding piston diameter $d_p = 1.46$ in. A nominal diameter of 1.5 in., has an area of

$$A_{\rm r} = 1.767 \, {\rm in.}^2$$

The operating cylinder displacement is

$$V_{co} = s_{or}A_c = 1.67 \text{ x} 1.767 = 2.95 \text{ in.}^3$$

The initial orifice area is estimated by finding the quantity W_c of gas flowing into the operating clyinder. Eq. 4-49 serves the purpose by substituting p_a for p_m since the muzzle pressure does not apply, hence

$$W_c = W_g \left(\frac{V_{co}}{V_m}\right) \left(\frac{p_c}{p_a}\right)^{1/k} = 0.0039 \text{ lb}$$

where

k = 1.3, ratio of specific heats

 $V_m = 33.1 \text{ in.}^3$, bore volume plus chamber volume

$$W_g = 500 \text{ gr} = 0.0714 \text{ lb}, \text{ propellant gas}$$

weight

The rate of flow, Eq. 4-51, is

$$w = \frac{W_c}{At} = \frac{0.0039}{0.002475} = 1.58 \text{ lb/sec.}$$

The first estimate of orifice area, Eq. 4-52, is

$$A_{g} = \frac{W}{K_{w} P_{d}} \equiv \frac{1.58}{0.00192 \times 6870} = 0.120 \text{ in.}^{2}$$

The orifice diameter = 0.391 in.

Computed data of the operating cylinder are listed in Tables 5-4 to 5-7. The analyses do not consider the influence' of recoil adapter or driving spring since they are an attempt to learn how the gas behaves when entering the operating cylinder. After the nature of gas activity becomes known, all contributing factors to the operating cylinder dynamics will be included in the digital computer program where the effects of their simultaneous activity can be computed in a reasonable time.

Computations in the four tables follow essentially the same procedure. Three values are read directly from Fig 5-8: t, the time; s_b , the bore travel; and p_a , the average bore pressure selected as the pressure falling half way between time intervals. The time of t x 10³ = 4.00 in Table 5-7 illustrates the procedure. From Eq. 4-27

$$w = K_w A_o p_a = 0.00192 \ x \ 0.06 \ x \ 1700 = 0.196 \ lb/sec$$

where

$$K_w = 0.00192/\text{sec}$$
 (see par. 4-3.2.5.2)

The amount of gas capable of passing through the orifice at 1700 psi during the interval of 0.001 sec is

$$AW_c = w\Delta t = 0.196 \ge 0.001 = 1.96 \ge 10^{-4}$$
 lb.

5--26

t X 103, sec	s_b, in.	p _a , psi	w, lb/sec	$\Delta W_{c} \times 10^{3},$	<i>W_c</i> X 103, lb	V _b , in. ³	V _e , in. ³	p _c , psi
1.50	19.2	19200	4.424	1.106	1.106	12.1	0.187	4800
1.75	26.2	13700	3.156	0.789	1.895	15.7	0.4 16	7260
2.00	33.7	9500	2,189	0.547	2.442	19.6	0.669	5040
2.25	41.5	6800	1.567	0.392	2.834	23.6	0.935	3600
2.50	49.7	5200	1,198	0.300	3.134	27.8	1.219	2760
2.80	57.0	4400	1.014	0.304	3.438	31.6	1.519	2330
3.00	60.0	3400	0.783	0.157	3.595	37.9	1.907	1800
4.00		1700	0.392	0.393	3.987	67.5	3.769	900
5.00		740	0.170	0.170	4.157	135.0	7.860	390
6.00		250	0.058	0.058	4.215	334.3	19.73	130
t X 10 ³ , sec	F _c , lb	$F_c \Delta t$, lb/sec	Δv_s , in./sec	v _s , in./sec	s 1, in.	<i>s</i> 2, in.	s, in.	V _c , in. ³
1.50	8480	2.120	74.5	137.0	0.016	0.009	0.025	0.544
1.75	12800	3.200	112.4	249.4	0.034	0.014	0.073	0.629
2,00	8900	2.225	78.2	327.6	0.062	0.010	0.145	0.756
2.25	6400	1.600	56.2	383.8	0.096	0.007	0.248	0.938
2,50	4900	1.225	43.0	426.8	0.082	0.005	0.335	1.092
2.80	4100	1.230	43.2	470.0	0.128	0.005	0.468	1.327
3.00	3200	0.640	22.5	492.5	0.094	0.002	0.564	1.496
4.00	1600	1.600	56.2	548.7	0.492	0.028	1.084	2.415
5.00	690	0.690	24.2	572.9	0.549	0.012	1.645	3.407
6.00	230	0.230	8.1	581.0	0.573	0.004	2,222	4.926

ì

TABLE 5-4. OPERATING CYLINDER DATA FOR 0.12 in.² ORIFICE (CRITICAL PRESSURE)

$t \times 103$, sec	s _b , in.	p _a , psi	w, Ib/sec	$\Delta W_c \ge 10^3,$ lb	$W, \times 10^3$, lb	V_b , in. ³	<i>V_e</i> , in. ³	р _с , psi
1.50	19.2	19200	4.424	1.106	1.106	12.1	0.187	4800
1.75	26.2	13700	3.156	0.789	1.895	15.7	0.416	7690
2.00	33.7	9500	2.189	0.547	2.442	19.6	0.669	7880
2.25	41.5	6800	1.567	0.392	2.834	23.6	0.935	6530
2,50	49.7	5200	1.198	0.300	3.134	27.8	1.219	5200
2.80	57.0	4400	1.014	0.304	3.438	31.6	1.519	
3.00	60.0	3400	0.783	0.157	3.595	37.9	1.907	
4.00		1700	0.392	0.392	3.987	67.5	3.769	
5.00		740	0.170	0.170	4.157	135.0	7.860	
6.00		250	0.058	0.058	4.215	334.3	19.73	
$t \times 10^3$, sec	F _c , lb	$F_c \Delta t$, lb/sec	Δv_s , in./sec	ν _s , in./sec	s ₁ , in.	s2, in.	s, in.	V_c , in. ³
1.50	8480	2.120	74.5	137.0	0.016	0.009	0.025	0.544
1.75	14060	3.515	123 5	260.5	0.034	0.015	0.074	0.631
2.00	13920	3 480	122.2	382.7	0.065	0.015	0.154	0.772
2.00	11540	2 885	101.3	484.0	0.005	0.013	0.263	0.965
2.50	9190	2.385	80.7	564.7	0.121	0.010	0.394	1.196

TABLE 5-5. OPERATING CYLINDER DATA FOR 0.12 in.² ORIFICE

t X sec	103, s _b , in.	Pa, psi	w, Ib/sec	$\Delta W_{c} \underset{\text{lb}}{\times} 10^3,$	$W_c \stackrel{\times}{\underset{\text{lb}}{}} 10^3$,	V_b , in. ³	V_e , in. ³	p _c , psi	
1.50) 19.2	19200	3,318	0.830	0.830	12.1	0.141	3360	
1.75	5 26.2	13700	2.367	0.592	1.422	15.7	0.312	5710	
2.00) 33.7	9500	1.642	0.410	1.832	19.6	0.503	5940	
2.25	41.5	6800	1.175	0.294	2.126	23.6	0.702	5140	
2.50) 49.7	5200	0.898	0.224	2.350	27.8	0.915	4340	
2,80) 57.0	4400	0.760	0.228	2,578	31.6	1.140	3700	
3.00) 60.0	3400	0.588	0.1 18	2.696	37.9	1.430	3220	
4.00)	1700	0.294	0.294	2.990	67.5	2.826	1700	
5.00)	740	0.128	0.128	3.118	135.0	5.893		
6.00)	250	0.043	0.043	3.161	334.3	14.794		
t X sec	103, <i>F_c</i> , c lb	$F_c \Delta t$, lb-sec	Δv_s , in./sec	ν _s , in./sec	s ₁ , in.	s ₂ , in.	s, in.	<i>V_c</i> , in. ³	
1.50) 5940	1.485	52.2	114.7	0.016	0.007	0.023	0.541	
1.75	5 10090	2.522	88.6	203.3	0.029	0.01 1	0.063	0.611	
2.00) 10500	2.625	92.2	295.5	0.051	0.0 12	0.126	0.723	
2.25	5 9080	2.270	79.7	375.2	0.074	0.010	0.210	0.871	
2.50) 7670	1.917	67.3	442.5	0.094	0.008	0.312	1.05 1	
2.80) 6450	1.962	68 .9	511.4	0.133	0.010	0.455	1.304	
3.00	5690	1.138	40.0	551.4	0.102	0.004	0,561	1.491	
4.00) 3000	3.000	135.0	686.4	0.551	0.068	1.180	2,585	

i

)

2

TABLE 5-6. OPERATING CYLINDER DATA FOR 0.09 in.² ORIFICE

1

,

¢

t X sec	103, ^s b, ; in.	p _a , psi	w, lb/sec	$\Delta W_c x 103,$ lb	<i>W_c x</i> 103, lb	V_b , in. ³	<i>V_e</i> , in. ³	p _c , psi
1.50) 192	19200	2 212	0.553	0 553	12.1	0.094	2000
1.7	5 262	13700	1 578	0.395	0.948	15.7	0.208	3560
2.00) 33.7	9500	1.094	0.274	1 222	19.6	0.335	3870
2.00	5 415	6800	0.783	0.196	1 4 1 8	23.6	0.468	3550
2.50) 497	5200	0 599	0.150	1 568	27.8	0.598	3030
2.80	570	4400	0.507	0.150	1.200	31.6	0.761	2800
300) 60.0	3400	0.392	0.078	1 798	37.9	0.954	2490
4.00)	1700	0.196	0.196	1 994	67.5	1.884	1580
5.00)	740	0.085	0.085	2.079	135.0	3.929	740
6.00)	250	0.029	0.029	2.108	334.3	9.866	250
t X sec	103, F _c , lb	$F_c \Delta t$, lb-sec	Δv_s , in./sec	ν _s , in./sec	s ₁ , in.	s_{2 7} in.	s, in.	V_c , in. ³
1.50	3530	0.882	31.0	93.5	0.016	0.004	0.020	0.535
1.75	5 6290	1.572	55.2	148.7	0.023	0.007	0.050	0.588
2.00) 6840	1.710	60.1	208.8	0.037	0.008	0.095	0.668
2.25	6270	1,568	55.1	263.9	0.052	0.007	0.154	0.772
2.50) 5350	1,338	47.0	3 10,9	0,066	0,006	0.226	0,899
2.80) 4950	1.485	52.2	363.1	0.093	0.008	0.327	1.078
3.00) 4400	0.880	30.9	394.0	0.073	0.003	0.403	1.212
4.00) 2790	2.790	98.0	492.0	0.394	0.049	0.846	1.991
5.00) 1310	1,310	46.0	538.0	0.492	0.023	1,361	2,905
6.00) 440	0.440	15.5	553.5	0.538	0.008	1.907	3.869

TABLE 5-7. OPERATING CYLINDER DATA FOR 0.06 in.² ORIFICE

The total weight of gas in the operating cylinder is

$$W_c = W_{c(n-1)} \mathbf{t} \Delta W_c = (1.798 + 0.196) \times 10^{-3} = 1.994 \times 10^{-3} \text{ lb.}$$

The equivalent volume of the bore, since the projectile has left the muzzle, according to Eq. 4-51 is

$$V_b = V_m \left(\frac{p_m}{p_a}\right)^{1/k_b} = 67.5 \text{ in.}^3$$

where

$$p_m = 4000 \text{ lb/in.}^2$$
, muzzle pressure

- $V_m = 33.1 \text{ in.}^3$, bore volume plus chamber volume
- $k_b = 1.2$, ratio of specific heats of bore gas

The equivalent gas volume V_e in the cylinder at $p_a = 1700$ psi is

$$V_e = \left(\frac{W_c}{W_g}\right) V_b = \frac{1.994 \times 10^{-3}}{0.0714}$$
 67.5 = 1.884 in.³

Since the cylinder volume $V_c = 0.50 + A$, s = 0.50 + 1.767 s is not known at this time, a trial and error procedure is adopted. First anticipate a change in slide velocity; that for the preceding interval is adequate. Then calculate, in turn, the differential travel, the total travel, the new cylinder gas volume, its pressure, piston force, corresponding impulse and change in slide velocity, and continue until the values converge to prescribed limits. Convergence for these calculations is rapid.

	2110 1111	<u>510 111a</u>
$t = 4 \times 10^{-3} \text{ sec}$ from Table 5–7 $\Delta t = 0.001$		
n 1	2	3
$\Delta v_s = \Delta v_{s(n-1)}^* $ 30.9	101.8	98.0
$s_1 = v_{n-1} \Delta t \qquad 0.394$	0.394	0.394
$s_2 = \frac{1}{2} \left(\Delta \nu \Delta t \right) \qquad 0.015$	0.05 1	0.049

*Note that for the first trial $\Delta v_{s(n-1)} = 30.9$ is obtained from Table 5-7 for t = 0.003 sec.

	1st Trial	2nd Trial	<u>3rd Trial</u>
$s = s_{n-1} + s_1 + s_2$	0.812	0.848	0.846
$V_c = 0.50 + 1.767 s$	1.935	1.998	1.995
$(V_e/V_c)^{1.3}$	0.967	0.927	0.928
$p_c = p_a (V_e/V_c)^{1.3}$	1640	1580	1580
$F_c = A_c p_c = 1.767 p_c$	2900	2790	-
$F_c \Delta t = 0.001F$	2.90	2.79	
$\Delta v_{s(n)} = \frac{F_c A t}{M_{cs}} = 35.127 F_c \Delta t$	101.8	98.0	_

In the third trial, the cylinder pressure equals that of the second trial within three significant figures so that all values after $p_c = 1580$ psi in the second trial are final and the slide velocity at the end of this interval is

$$v = v_{n-1} + Av = 394.0 + 98.0 = 492.0$$
 in./sec.

The data in Table 5–4 were computed to ascertain whether the critical flow pressures could be used as the operating cylinder pressure. Under this condition, the travel and corresponding gas volume indicated that the gas flow during the first two increments was sufficient to drive the piston over the rest of its stroke by normal polytropic expansion without the benefit of continued gas flow through the orifice. Since continued gas flow is provided, higher than critical flow pressures are certain. For this reason, the data of Tables 5-5, 5-6, and 5-7 were computed. These tables although similar, show how variations in orifice area lead to specified slide velocity and travel, and help establish acceptable limits in computer programming.

The last values of Table 5-5 indicate that the slide velocity of 50 fps will be reached within less than 30 percent of the stroke. If permitted to function with an orifice of this size, slide velocities would far exceed their limit. **A** smaller orifice area and hence less pressure would make velocity and travel more compatible. The data of Table 5-6 indicate this trend and those in Table 5-7 almost meet the requirements. **A** velocity of slightly less than 50 fps is acceptable but to be an accurate estimate, it must be achieved during the complete piston travel. **A** computed overtravel, a physical impossibility, is not acceptable. Under the conditions enumerated in Table 5-7, the slide velocity lacks approximately 4.5 fps at a travel of 1.67 in. and is definitely acceptable at this stage even though the full 6 msec of effort are not used. The design analysis may now be organized to consider all variables simultaneously.

5–1.2.3 Dynamics of Simultaneous Adapter-Operating Cylinder Action

The resultant force on the recoiling parts (Fig. 5-3) is

$$F_r = F_g - F_c - F_t - F = p_a A_b - p_c A_c - F_t - F$$

where

$$A_b$$
 = bore area

- = piston area of slide operating cylinder
- F_t = adapter force
- F = driving spring force
- F_c = operating cylinder force
- F_g = propellant gas force
- P_a = average chamber pressure during each increment
- p_c = operating cylinder pressure

(5-61)

AMCP 706-260

During each time increment At, the recoiling parts are subjected to the impulse $F_g \Delta t$ that induces a change in velocity defined by Eq 4-55.

$$\Delta v_r = \frac{F_g A t}{M_r} \tag{5-62}$$

where M_r represents the mass of all the recoiling parts until the projectile passes the gas port where it loses the burden of the **slide** and moving operating cylinder components but picks up the operating cylinder force. During counterrecoil it regains the mass of the operating cylinder components. The velocity at the end of each increment is

$$v_r = \Sigma \Delta v_r = v_{r(n-1)} + \Delta v_r.$$
 (5-63)

The recoil travel is

$$x = x_{n-1} + x_1 + x_2$$

- $x_{n-1} + \Delta t \Delta v_{r(n-1)} + \frac{1}{2} \left(\Delta t \Delta v_r \right) \cdot (5-64)$

After the projectile passes the gas port and propellant gases begin to act on the slide operating mechanism, the kinematics of the recoiling parts are superimposed on the slide. If the slide unit is isolated, the dynamics of the system follow those expressed in Eqs. 4–51 to 4–58 but modified to fit the prevailing conditions. The resultant force on the piston of the operating cylinder is

$$F_c = A_c p_c - F_d$$
 (5–65)

The absolute differential velocity of the slide (absolute refers to the nonrecoiling parts as the fixed reference) is

$$Av = \Delta v_r t \Delta v_s = \Delta v_r + \frac{F_c \Delta t}{M_{cs}}$$
(5-66)

The absolute slide velocity and travel are the same as for the recoiling parts until the projectile passes the gas port. The absolute velocity is

$$\nu = \Sigma \Delta \nu = \nu_{n-1} + \Delta \nu , \qquad (5-67)$$

The absolute slide travel is

$$s = s_{n-1} + \Delta t v_{n-1} + \frac{1}{2} \left(\Delta t \Delta v \right)$$
 (5-68)

The slide travel with respect to recoil travel is the piston travel, thus

$$x_s = s - x.$$
 (5-69)

The corresponding gas volume in the operating cylinder becomes

$$V_c = V_{c0} + A_c x_s.$$
 (5–70)

5-1.2.4 Sample Calculation for Complete Fining Cycle

The preliminary calculations summarized in Tables 5–3 and 5–7 provide the initial values for the complete firing cycle analysis. The functioning times of each are identical to the propellant gas period and, although the final results do not conform exactly to specifications, they are close enough to be acceptable; all fall within design specification acceptance limits. To present simultaneous activity, the effects of the adapter and slide forces during the gas period must be synchronized. In Table 5–3, $\Sigma F_t \Delta t = 27.98$ lb-sec; in Table 5–7, $\Sigma F_c \Delta t = 13.98$ lb-sec. Based on time, the average adapter force

$$F_a = \frac{\Sigma F_t \Delta t - \Sigma F_c \Delta t}{t} = \frac{14}{0.006} = 23301b$$

Maintain the proportions of Table 5-3 where $F_a = 27.98/0.006 = 4660$ lb, thus the minimum F_{ot} and maximum F_{mt} adapter forces are

$$F_{ot} = \left(\frac{2330}{4660}\right)$$
 2850 = 1425 lb

where **2850** is first value in F_t column of Table 5–3, and

$$F_{mt} = \left(\frac{2330}{4660}\right) 6260 = 3130 \text{ lb}$$

where 6260 is the last value in F_t column of Table 5–3.

Convert these limits to forces of a ring spring having a conical angle $\alpha = 15^{\circ}$, a coefficient of friction $\mu = 0.10$, and an efficiency of $\epsilon = 0.45$ (Ref. 15),

$$F_o = F_{ot} = 0.45 \times 1425 = 6401b$$

$$F_m = F_{mt} = 0.45 \times 3130 = 1410 \text{ lb}$$

Distance now, as well as time, becomes a critical parameter in the analysis. For a recoil travel of 0.25 in., the equivalent spring constant of the ring spring is K_t .

$$K_t = \frac{F_m - F_g}{x} = \frac{1410 - 640}{0.25} = 3080 \text{ lb/in.}$$

The average adapter force for any differential recoil travel $A \mathbf{x}$ is

$$F_a = \frac{1}{\epsilon} \left[F_{n-1} + \frac{1}{2} \left(K_t \Delta x \right) \right] = \frac{1}{0.45} \left[F_{n-1} + 1540 \Delta x \right]$$

The two driving springs offer a similar but milder effort. Their combined characteristics follow:

K = 40 lb/in., spring constant $F_o = 85$ lb, minimum operating load $F_m = 285$ lb, maximum operating load e = 0.80, efficiency

The average driving spring load for any differential travel As of the operating slide is

$$F = \frac{1}{\epsilon} \left[F_{(n-1)} + \frac{1}{2} \left(K \Delta s \right) \right] = \frac{1}{0.80} \left[F_{(n-1)} + 20 \Delta s \right]$$

where $\Delta s = \Delta x$ until the projectile passes the gas port. Observe that after propellant gases become active in the operating cylinder, F loses its identity by becoming a component of F_c which heretofore had been zero.

5-1.2.4.1 Counterrecoil Time of Recoiling Parts

By restricting the barrel-drum unit to linear travel only during countenecoil, the time required for the activity according to Eq. 2-27 is

$$t_{cr} = \sqrt{\frac{M_r}{\epsilon_t K_t}} \cos^{-1} \frac{F_o}{F_m} = \sqrt{\frac{86}{0.45 \times 3080 \times 386.4}} \cos^{-1} \frac{640}{1410}$$

$$= 0.01303 \times \text{Cos}^{-1} 0.4539 = 0.01303 \times 1.1 = 0.01433 \text{ sec}$$

Earlier, the total time of recoil was estimated to be $t_r = 0.0127$ sec.^{*} Since 0.006 sec has been consumed for the 1.67 in. of recoil, the remaining time of 0.0067 sec indicates that the counterrecoil of barrel and slide will overlap and a component of the adapter force will be transmitted to the slide-rotating drum combination. Because of the simultaneous activity, the applied force on the slide will be modified according to the involved masses and the cam slope. The components of the adapter force allotted to recoiling parts, drum, and slide are found by a procedure based on the laws of conservation of momentum and energy. Equate the adapter impulse to the linear momentum of recoiling parts and slide so that

$$\bar{F}_{t}dt = M_{r}v_{cr} + M_{s}v_{s} = M_{r}v_{cr} + M_{s}v_{c} \cos\beta \quad (5-71)$$

where \overline{F}_t is the average adapter force for the time interval dt and v_c is the velocity of the cam follower along the cam. This form of showing the slide velocity is adopted to avoid the use of tan β which eventually becomes infinite and cannot be used in the digital computer. The energy of the adapter distributed to the various moving element is

$$\frac{1}{\epsilon_t} \quad \overline{F}_t \quad \Delta x = \frac{1}{2} \left(M_r v_{cr}^2 \right) + \frac{1}{2} \left(M_s v_c^2 \cos^2 \beta \right) \\ + \frac{1}{2} \left(M_{de} v_c^2 \sin 2 \beta \right)$$
(5-72)

where

$$M_{de}$$
 = effective mass of the rotating drum.

The two simultaneous equations may be solved by obtaining the expression for v_{cr} in Eq. 5–71 and substituting it into Eq. 5–72. This process merely involves algebraic gymnastics and, since the solution is unwieldly, the expressions for the two velocities are left in their present state. However, with the various constants known, the solutions reduce to a simple quadratic equation of the order

$$4v_c^2 + Bv_c - C = 0 \tag{5-73}$$

*Par. 5-1.1.2.2

5-34

One great advantage inherent in the revolver-type machine gun is the independence of loading and ejecting. Both occur simultaneously with neither interfering with the other. Cam action is illustrated in Figs. 5-9 and 5-10 which show the mechanics of operation. The striker and extractor are fixed to and move with the operating slide whereas the extractor mechanism is fixed to the drum housing and moves with it. As the drum completes its angular travel, the spent cartridge case has moved into contact with the extractor and, in the meantime, lifting the antidouble feed safety switch to break the electric firing circuit so that inadvertent firing of the newly positioned round is precluded. During counterrecoil, the return cam has enough clearance to avoid contact with the extractor cam but, at a prescribed position, the striker hits the extractor cam with the impact needed to rotate the extractor, thereby extracting and ejecting the empty case. After the cam leaves, the antidouble feed safety switch drops into place to reclose the firing circuit. Extraction failure maintains an open circuit until the malfunction is corrected.

During slide recoil, the extractor return cam forces the extractor cam into its normal position. The torsion spring does not activate the extractor, being used primarily as a safety to hold the extractor firmly in position. The cams transmit all effort from slide to extractor. Relative dimensions must comply with required ejection velocity. Once the counterrecoil velocity of the slide is estimated, the ratio of extractor radius to striker radius, r_e/r_s , can be arranged to fit the ejection velocity requirement. The required ratio

$$\frac{r_e}{r_s} = \frac{y_e}{v_{scr}}$$
(5-74)

where

v_{scr} = counterrecoil velocity of the slide

The ejection velocity is assumed immediately at impact of the striker on the ejector cam, resulting in a change of momentum of all involved moving parts. According to the conservation of momentum,

$$M_s v'_{scr} = M_s v_{scr} + M_{ee} v_e \qquad (5-75)$$

where

$$M_{ee}$$
 = effective mass of extractor unit
 v'_{ser} = slide velocity before impact.

Figure 5–9. Extractor Assembly With Antidouble Feed Mechanism

5--35

Figure 5–10. Extractor Cam Assembly

5– 1.2.4.2 Digital Computer Analyses of Barreldrum Dynamics

Three digital computer programs are compiled in FORTRAN IV language for the UNIVAC 1107 computer. The first computes the data and performance characteristics during the activity of the gas operating cylinder. This program follows the same general procedure that was used for computing the data of Table 5-7 where data cover the effective propellant gas period of 6 msec and the slide travel of 1-2/3 in. The symbol-code relationships are shown in Table 5-8, the input data as well as the computed results are printed in Table 5-12. In the Appendix, A-1 is the flow chart and A-8 is the program listing.

The second program begins where the first terminates; just as the follower enters the curved portion of the cam to start the drum rotating, then continuing until the follower has traversed the accelerating portion of the cam and the slide has completed its rearward travel. The third program begins here and computes the data for the decelerating portion of the cam and the first part of the slide travel during counterrecoil. Both programs follow the procedure outlined in par. 5-1.2.2. Since the second and third programs are similar, differing only because of direction, the symbol-code relationships (Table 5-9) serve both programs. Inputs are listed in Tables 5-10 and 5-11 for the recoil and the counterrecoil dynamics, respectively.

Computed results are printed in Table 5-13 for the cam and drum dynamics during recoil and in Table 5-14 for the dynamics during counterrecoil. The flow chart and program listing are found in Appendixes A-9 and A-10 for recoil and, in A-11 and A-12, respectively, for counterrecoil.

Symbol	Code	Symbol	Code
A	AO	V.	VB
F	FD	v V	VC
$F\Delta t$	FDT	V _c	vco
F _c	FC	V _c	VE
$F_c \Delta t$	FCDDT	v	V
F,	F	vs	VS
F _t	FA	Δν	DV
M _e	EME	$\Delta \nu_s$	DVS
p_a	PA	w	wc
p _c	PC	ΔW_c	DWC
S	S	w	W
<i>s</i> ₁	S1	X	Х
S2	s 2	x_1	X1
As	DS	<i>x</i> ₂	x 2
t	Т	xs	XS
At	DT	Ax	DX

TABLE 5-8. SYMBOL-CODE CORRELATION FOR OPERATING CYLINDER

Symbol	Code	Symbol	Code
C _x	cx	R_d	RD
	CY	s	S
Ε	E	As	DSI
E _{bb}	EBBL	s _x	SX
	DEBBL	Δs_x	DSX
Ed	ED	T_{g}	TG
E_i	EI	T_{μ}	TMU
E_{ii}	EMU	ť	TM
E_{ud}	EMD	At	DELT
$E_{\mu s}$	EMS	Δt_{cr}	DTCR
F	FD	v	V
F_t	FA	ν _c	vc
Å	FX	v_d	VD
$\vec{F_{v}}$	FY	vs	VS
, L	FUS	X	Х
I_d	DIE	Ax	DXI
- K _v	YK	Δx_o	DXIO
K _r	ХК	Δx_1	DXI 1
M _r	EMR	Y	Y
M	EMSL	β	BETAD
N	EN	θ	THETA
R _c	RC	riangle heta	DTHET

TABLE 5–9.	SYMBOL-CODE	CORRELATION	FOR	CAM DYNAMICS

TABLE 5-10. INPUT DATA FOR DRUM DYNAMICS DURING RECOIL

Symbol	Data	Code	Data
cx	0.275	FA (17)	1278.72
CY	2.9	FD (17)	151.8
DF	0.15	S (17)	1.67
DIE	0.385	TM (17)	6.0
EMR	0.22	VC (17)	478.8
EMSL	0.02588	VS (17)	478.8
RD	3.0	X (16)	0.224
TG	140.0	X (17)	0.224

5–38

Code	Data	Code	Data
СҮ	2.9	FX (2)	333.0
СХ	0.275	FY (2)	14.25
DF	0.15	S (2)	5.0
DIE	0.35	SX (2)	0.0
EMR	0.22	TM (1)	18.6
EMSLR	0.029	TM (2)	19.5968
RD	3.0	TMU (2)	50.014
TG	140.0	V (2)	0.0
BETAD (2)	90.0	VC (2)	199.1
E (2)	848.01	VD (2)	199.1
EN (2)	333.0	VS (2)	0.0
FA (2)	1256.0	X (1)	0.2112
FD (2)	285.0	X (2)	0.21 13
FUS (2)	2.1	Y (2)	0.0

TABLE 5-11. INPUT DATA FOR DRUM DYNAMICS DURING COUNTERRECOIL

5-1.2.4.3 Firing Rate Computation

Just as the cam completes its cycle, the drum reaches its next firing position and rotation has ceased. According to the print out of the values, neither recoiling parts nor slide has completed its return. The prevailing conditions are

 $t_e = 0.0329$ sec,* elapsed time since firing

 $s_{or} = 1.67$ in., position where slide contacts gas operating unit

- $F_t = 1210 \, \text{lb},^*$ recoil adapter force
- F = 204 lb,* driving spring force
- $K_t = 1780$ lb/in., recoil adapter spring constant
- K = 40 lb/in., driving spring constant of 2 springs
- $v_{cr} = 8.91$ in./sec,* barrel counterrecoil velocity
- $v_{scr} = 231.6$ in./sec,* slide counterrecoil velocity

*Obtained from Table 5-14.

- s = 2.974 in.,* remaining counterrecoil travel of slide
- x = 0.1854 in.," remaining counterrecoil travel of barrel
- W_r = 85 lb, weight of barrel and other recoiling parts
- $W_{sr} = 11.2$ lb, weight of slide with 2 rounds
- $W_{srp} = 12.2$ lb, W_{sr} + weight of gas operating unit
 - $\epsilon_t = 0.45$, efficiency of recoil adapter
 - $\epsilon = 0.80$, efficiency of driving spring

According to Eq. 2-26, the time of counterrecoil under spring action

$$t'_{cr} = \sqrt{\frac{M_r}{\epsilon_t K_t}} \left(\operatorname{Sin}^{-1} \frac{K_t x - F_t}{f(F)} - \operatorname{Sin}^{-1} \frac{-F_t}{f(F)} \right)$$

where

$$f(F) = \sqrt{F_t^2 + \frac{K_t}{\epsilon_t} \left(M_r v_{cr}^2\right)}$$
5-39
		AVERAGE	PROP		DRIVING	RESULT		DIFFER		DIFFER	
	BORE	BORE	GAS	ADAPTER	SPRING	RECOIL	RECOIL	RECOIL	RECOIL	RECOIL	RECOIL
TIME	VOLUME	PRESSURE	FORCE	FORCE	FORCE	FORCE	IMPULSE	VEL	VEL	TRAVEL	TRAVEL
MILSEC	CUIN	PSI	LB	LB	LB	Ш	LB-SEC	IN/SEC	IN/SEC	ÎN	ÎN
.250	2.2	10800.	5562.	880.	85.	3439.	e 8 7	3.5	3.3	.0004	.0004
•500	3.0	32200.	16583.	885.	85.	14510.	3.63	14.6	18.1	.0027	•0031
750	4.3	37700.	19415.	897.	85.	17315.	4.33	17.4	33.5	+0057	+0099
1.000	6.3	35300.	18179.	917.	86.	16035.	4.01	16.1	51.7	.0109	•0208
1.250	9.0	29300.	15089.	942.	86.	12887.	3.22	13.0	64.6	.0145	∎9353
1.375	10.5	24500.	12617.	957.	87.	10382.	1.30	5.2	69.9	.0084	. 0437
1.500	12.1	21800.	11227.	973.	87.	7745 .	. 97	4.4	74.3	.0040	.0527
1.750	15.7	16500.	8497.	1007.	88.	172!S.	.43	2.0	76.2	.0188	+0715
2.000	19.6	11800.	6077.	1040.	89.	-2650 -	00	-3.0	73.2	.0187	±0902
2.250	23.6	8200.	4223.	1072.	91.	-4565.	-1+14	-5.2	68.0	.0177	• 1079
2.500	27.8	5800.	2987.	1101.	94.	-4989.	-1.25	-5	62.4	.0163	• 1242
2.800	33.1	4500.	2317.	1132.	97.	-5093.	-1.53	-6.9	55.4	.0177	•1418
3.000	37.9	3700.	1905.	1151.	100.	=5042.	-1.01	-4.6	50.8	.0106	.1525
4.000	67.5	1600.	824.	1224.	115.	-4243	-4.24	-19.3	31.5	.0412	• 1937
5.000	135.0	760 .	391.	1265.	133.	-3 63.	-3.76	-17.1	14.4	.0230	.2167
6.000	334.3	230•	118.	1278.	152.	-3129.	-3.13	-14.2	•2	.0073	.2240
	GAS	OPER	EQUIV	OPER	OPER	OPER	OPER	DIFFER		DIFFER	
	ROW	CYL	CYL	CYL	CYL	PISTON	CYL	SLIDE	SLIDE	SLIDE	SLIDE
TIME	RATE	GAS	VOLUME	VOLUME	PRES	FORCE	IMPULSE	VEL	VEL	TRAVEL	TRAVEL
MILSEC	LB/SECXM	LBXM	CUIN	CU IN	PSI	LB	LB-SEC	IN/SEC	IN/SEC	IN	IN
250		000	000	000	0.	0	. 000	2 5	2.5	0000	. 000
-250	••	.000		- 100		0.	.000	14.5	16.1		
.750			000	.000	0.	0.	.000	47 4	25.5	.007	.010
-1.000	••	+000	000	•••••	<u> </u>		.000	17.4	50.0		. 021
1.000	••	000	•000	.000		0.	.000	13.0	64.6	.015	025
1.375	-0	- 000	000	. 000	<u>0.</u>	0.	.000	5.2	P:90	.008	.044
1.500	1763.0	. 220	.027	- 501	7/6	1318.	.151	5 3	75.2	.009	.053
4.750	1,00.0	-554		510	740.	4535.	1.105		114.0	- 028	.033
2 0 0 0	054 2	702	. 217	.510	26.24.	6445	1 576	55 4	169.4	.035	.112
2.000	504 13	659	1217		2626.	6415.	1.575	25.2	220 4	.035	161
2.250	460 1	1.070		.073	3420	5530	1.151	47.5	272 2	.061	222
2.500	107+1	1 1 8 3		• 6 / 3	3130.		1.4.52	47.5	322.5		
3.000	200 19	4 945	1343	807	24.85	4200	. 952	30.0	352.4	.067	_277
	<u> </u>	1.240			1328	4350.	2,203		429.0		
5 000	61 E	4.425	0 740	2 270	700	1343	1 177	44.2	474.4	440	1.201
5.000	01.0	1.435	2.713	2+437	/ 6Ue	1040 1040	.217	41.3	47101	442	
V • • • •	70.0	TEAAA	0.003	J • • J 2	2000	4004	• • • • •	/ • 0	7/0.0	1 100	A . 000

TABLE 5–12. COMPUTED RECOIL AND OPERATING CYLINDER DATA FOR ORIFICE AREA OF 0.042 ${\rm in.}^2$

5-40

AMCP 706-2 0

.

	RECOIL	DRIVING	NORMAL	AXIAL	PERIPH			COUNTER	COUNTER		
TIME	ADAPTER FOHCE	SPRING FORCE	CAM FORCE				DRUM VEL	RECOIL	RECOIL		SLIDE TRAVEL
MILSEC	LØ	LB	LB-	IN	IN	DEGREE	IN/SEC	IN/SEC	1N	IN/SEC	-IN-
6.18857	1279.	155.4	2010.	.0900	• 0009	1.0	8+3	.4308	.2240	476.2	1.760
6.37862	1278.	159.0	1988.	.1800	.0033	20	16.5	•7931	•2238	472.2	1.850
6.57050	1278.	162.6	1967.	.2700	.0072	3.0	24.6	1.1304	2237	467.9	1.940
6.70435	1278.	166.2	1947 🛯	•3600	.0128	4•0	32•5	1.4427	•2234	463.3	2.031
6.96032 7.15858	1277. 1276.	169.8 173.5	1928. 1911.	•4500 •5400	•0199 •0286	5+0 6+1	40•4 48•1	1.7303 1.9927	•2231 •2227	458 4 453.2	2.121 2.211
7.35930	1276.	177.1	1895.	• 6300	.0390	7.1	55. 7	2.2296	•2223	447.8	2.302
7.56266	1275.	180.7	1880.	•7200	•0510	8.1	63+2	2.4405	.2218	442.0	•
7.76886	1274.	184.3	1865.	.8100	.0647	9.2	70.0	2.6252	•22 3	436.0	2.483
1.97011	1270	10/.9	10020	• 2000	+0802	10.3	77.7	2.7020	•2200	427.0	2.573
840671	1271.	191.0	1829.	∎19 1∎0800	•0974	12.5	85.0 92•1	3 0123	•2202	425.0	2.754
8.62658	1270.	198.8	1819.	1,1700	1372	136	99.0	3-0823	2189	408./	2.845
8.84718	1268.	202.4	1859.	1.2600	.1600	14.8	105.9	3.1123	.2182	401.1	2.934
9.07557	1267.	206.0	1802.	1,3500	• 1847	16.0	112+6	3.1089	•2175	393 0 1	3.025
9.30510	1266.	209.6	1848.	1.4400	•2116	17.2	119+2	3.0679	•2168	384.9	3.114
9.78003	1265. 1263.	213.1 216.7	1845. 1842.	1.5300 1.6200	•2405 •2717	18.5 19•8	125•6 132•0	2.9786 2.8450	2161 2154	376.2 367.1	3.293
10 02648	1262.	220•3	1841.	1.1100	.3053	21.1	13LI.Z	2.0020	2147	357.7	3.382
10.28347	1261.	223.9	1777.	1.8000	.3413	22.5	144.3	2.4429	•2140	347.8	3.473
10.54794	1260.	227.5	1775.	1.8900	380	24.0	150.2	2.1809	.2134	331+5	3.564
10.82061	1259.	231.2	1775.	1.9800	.4215	25.5	156.0	1.8591	•2129	326•7	3.654
11.1023/ 11.39427	1258 1257	234.8 238.4	$\frac{1775}{1777}$	2.0700 2.1600	•466 •5138	2/01 28•8	161+6 167+1	1.0082	•2124 •2120	312.5 303.7	3.745 3.835
11.69750	1257.	242.0	1781.	2.2500	•5 5	30.6	1/2.4	•4612	.2118	291.3	3,925
11.93028	1257.	244.7	1785.	2.3166	•605 7	32.0	176.2	∎0000	.2118	281.7	3.992
12.25745 12.60215	1257. 1257.	248-3 251.9	1885. 1900.	2.4066 2.4966	•664 •7274	34•0 36•2	181•0 185•6	•0 00 •0000	•2117 •2117	253.8	4.082 4.172
12.96759	1257.	255.5	1918.	2.5866	.7960	38.5	189•9	.000	•2 16	238.5	4.262
A3.35799	1257.	259.1	1940.	2.6766	•8710	41•1	193.9	•0000	•2116	222.3	4.352
13.779.09	1257.	262 • 7	1968.	2.7666	•9535	43-9	197.5	•0 0	.2116	204.9	4.442
14.23911	1256.	266.3	2005.	2.8566	1.0452	47+1	200+6	•0000	•2115	180+2	4.532
14.75046	1256. 1256.	269•9 273.5	2056. 2133.	2.9466 3.0366	1•1485 1.2677	50.8 55.1	203+2 205.0	•0000 •0000	.2115	165.7 142.9	4.622
16-02666	1256.	277.1	2268.	3.1266	1.4102	60.4	205.6	.0000	.2114	116.7	4.802
16.92005	1256.	280.7	2605.	3.2166	1.5938	67.5	204•1	•0000	.2114	84+7	4.892
19.59680	1256.	285.2	-	3.3300	2 • 1500	90.0	199.1	.0000	.2113	- 0	

TABLE 5–13. CAM AND DRUM DYNAMICS DURING RECOIL

	RECOIL	DRIVING	NORMAL	AXIAL	PER IPH			COUNTER	COUNTER		
	ADAPTER	SPRING	CAM	CAM	CAM	CAM	DRUM	RECOIL R	ECOTL	SLIDE	SLIDE
TIME	FORCE	FORCE	FURCE	TRAVEL	TRAVEL	SLOPE	VEL	VEL	POSITIONN	VEL	TRAVEL
MILSEC	LB	LB	LB	IN	I N	DEGREE	INZSEC	IN/SEC	IN	IN/SEC	IN
22.17219	1254.	281.0	1405.	.100	e5058	67.9	193.3	•0000	e2103	78.4	4.899
23,26010	1253.	276.9	1346,	.200	.7061	59.1	179.4	.0000	.2093	107.2	4.798
24.11989	1251.	272.9	1238.	. 300	.8534	52.6	166.9	.0000	e2083	127.7	4•697
24:86381	1249.	268.8	1167.	•400	.9720	47.2	155.3	.0000	.2073	143.8	4.596
25.53465	1247.	264.8		00 ؤ	1.0715	42.6	144.4	.0000	•2063	157.2	4.495
20.15502	1245.	260.8	1114.	:900	1.1500	38.4	133.8	.0000	.2053	168.5	4.394
26.75740	1244.	256.7	1844:	200	1.2397	34•7	123.5	.0000	.2043	178.3	4.293
L7.28523	1244.	252.7	1029.	.800	1.2960	31.3	113.5	.0000	• 2043	185.9	4,193
27.81027	1243.	248.7	1006.	•900	1.3530	28.1	103.7	e2408	.2042	194.3	4.093
28.31741	1243.	244.7	986 e	1.000	1.4030	25.1	93.9	.6028	•2040	200.9	3.993
28.81013	1242.	240.7	970•	1.100	1.4467	22.2	84.4	1.0728	.2036	206.7	3.892
29.29120	1241.	236+7	957.	1.200	1.4848	19•5	74+9	1.6378	•2 Y	211.8	3.792
29.76285	1240.	232.6	945 🖬	1.300	1.5175	16.8	65•4	2.2897	e2020	216.2	3.691
30.22697	1237.	228.6	936	1.400	1.5454	14.3	56.0	3,0212	,2008	220,0	3.590
50°68518	1235.	224.5	929.	1.500	1.5686	11.8	46.7	3.8271	• 1992	223.3	3.488
31,13890	1231.	220 e 4	924.	1.600	1.5873	9.4	37.4	4.7035	.1973	220.0	3.386
31.58948	1227.	216.3	920.	1e 700	1a6017	7•0	28.0	5.6505	• 1950	228 2	3.284
32.03813	1222*	212.2	Y18.	1.800	1.6119	4.7	18.7	6.6670	.1923	229.8	3,181
32.48601	1217.	208.1	918.	1.900	1.6180	2.3	9.4	7.7509	•1891	231.0	3.078
32,93430	1210.	204 e 0	A18'	2.000	1.8200	• 0	•0	8,9058	,1854	231.8	2,974

TABLE 5–14. CAM AND DRUM DYNAMICS DURING COUNTERRECOIL

5-42

1

For counterrecoil of the barrel

$$f(F) = \sqrt{1210^2 + \frac{1780}{0.45} (0.22) 8.91^2} = 1238.2.$$

The time required to complete the counterrecoil of the barrel

$$t'_{cr} = \sqrt{\frac{0.22}{0.45 \times 1780}} \left(\operatorname{Sin}^{-1} \frac{1780 \times 0.1854 - 1210}{1238.2} - \operatorname{Sin}^{-1} \frac{-1210}{1238.2} \right)$$
$$= 0.01657 \left[\operatorname{Sin}^{-1} \left(-0.71070 \right) - \operatorname{Sin}^{-1} \left(-0.97722 \right) \right]$$
$$t'_{cr} = 0.01657 \left(\frac{314.71 - 282.25}{57.296} \right) = 0.0094 \text{ sec.}$$

The energy of the moving unit at the end of counterrecoil

$$E_{cr} = \frac{1}{2} \left(M_r v_o^2 \right) + \epsilon_t \left(F_t - \frac{1}{2} K_t x \right) x$$
$$= \frac{1}{2} \left(\frac{3854}{386.4} \right) 8.91^2 + 0.45 \left[1210 - \frac{1780}{2} \left(0.1854 \right) \right] 0.1854$$
$$= 95.9 \text{ in.-lb.}$$

The maximum counterrecoil velocity

$$v_{cr} = \sqrt{\frac{2E_{cr}}{M_r}} = \sqrt{871.9} = 29.53 \text{ in./sec.}$$

Compute the counterrecoil time of the slide in three steps, before the slide contacts the gas operating unit, the effect d cartridge case ejection, and after the slide picks up the operating unit. The distance traveled before contact is

$$s_c = s - s_{or} = 2.974 - 1.67 = 1.304$$
 in.

The time to traverse this distance, Eq. 2-26,

$$t'_{scr} = \sqrt{\frac{M_{sr}}{\epsilon K}} \left(\operatorname{Sin}^{-1} \frac{Ks_c - F}{f(F)} - \operatorname{Sin}^{-1} \frac{-F}{f(F)} \right)$$

AMCP 706-260

where

$$\sqrt{\frac{M_{sr}}{\epsilon K}} = \sqrt{\frac{0.8 \times \frac{11.2}{2.386.4}}{0.8 \times 40 \times 386.4}} = \sqrt{0.000906} = 0.0301$$
$$f(F) = \sqrt{F^2 + \frac{K}{\epsilon}} M_{sr} v_{scr}^2 = \sqrt{204^2 t \frac{40}{0.8} \times 0.029 \times 231.6} = 345.5.$$

Therefore

$$t'_{scr} = 0.0301 \left(\text{Sin-}^{2} \frac{40 \quad 1.304 - 204}{345.5} - \text{Sin-}^{2} \frac{3}{345.5} \right) = 0.0301 \left[\text{Sin-}^{2} \left(-0.43946 \right) - \text{Sin-}^{2} \left(-0.59045 \right) \right]$$
$$= 0.0301 \left(\frac{333.93 - 323.81}{57.3} \right) = 0.0053 \text{ sec.}$$

The slide energy at this position

$$E_{s} = \frac{1}{2} \left(M_{sr} v_{scr}^{2} \right) + \epsilon \left(F - \frac{1}{2} K s_{c} \right) s_{c} = \left(\frac{0.029}{2} \right) 231.6^{2} \pm 0.8 \left[20.7 + \left(1.304 \right) \right] 1.304$$

= 963.4 in.-lb

The corresponding velocity

$$vscr = \sqrt{\frac{2E_s}{M_{sr}}} = \sqrt{\frac{1926.8}{0.029}} = \sqrt{66441} = 257.8 \text{ in./sec.}$$

To avoid duplication of the above exercise, assume that cartridge case ejection and gas operating piston pick-up occur at the same time. When pick-up occurs, the slide gains one pound. From the conservation of momentum when the ejection velocity, $v_e = 840$ in./sec,

$$\left(\frac{W_{sr}}{g}\right)v'_{scr} = \left(\frac{W_{srp}}{g}\right)v_{scr} + \frac{W_{cc}}{g}v_{e}$$

$$\left(\frac{11.2}{386.4}\right)257.8 = \left(\frac{12.2}{386.4}\right)v_{scr} + \left(\frac{0.2}{386.4}\right)840$$

$$v_{scr} = \frac{2887 - 168}{12.2} = 222.9 \text{ in./sec}$$

where

$$W_{sr}$$
 = weight of slide with 2 rounds
 W_{srp} = weight of slide, 2 rounds, and gas
operating unit

The time to complete slide counterrecoil is

$$t_{scr}'' = \sqrt{\frac{M_{srp}}{\epsilon K}} \left(\sin^{-1} \frac{Ks_r - F}{f(F)} - \sin^{-1} \frac{-F}{f(F)} \right)$$

where

$$\sqrt{\frac{M_{srp}}{eK}} = \sqrt{\frac{12.2}{0.8 \times 40 \times 386.4}} = \sqrt{0.00987} = 0.0314$$

$$F = 204 - Ks_c = 204 - 52.16 = 151.84 \text{ lb.}$$

$$f(F) = \sqrt{F^2 + \frac{K}{\epsilon} \left(M_{srp} v_{scr}^2\right)} = \sqrt{151.84^2 + \frac{40}{0.0} (0.0316) 222.9^2} = 318.7.$$

Thus

$$t''_{scr} = 0.0314 \left(\operatorname{Sin}^{-1} \frac{40 \times 1.67 - 151.84}{318.7} - \operatorname{Sin}^{-1} - \frac{151.84}{318.7} \right) = 0.0314 \left[\operatorname{Sin}^{-1} \left(-0.26683 \right) - \operatorname{Sin}^{-1} \left(-0.47643 \right) \right]$$
$$= 0.0314 \left(\frac{344.52 - 331.55}{57.3} \right) = 0.0071 \text{ sec.}$$

The total slide counterrecoil time after cam action is

$$t_{scr} = t'_{scr} + t''_{scr} = 0.0053 + 0.0071 = 0.0124 \, \text{sec.}$$

The slide energy and velocity at the end of counterrecoil are

$$E_{s} = \frac{1}{2} \left(M_{srp} v_{scr}^{2} \right) + \epsilon \left(F - \frac{1}{2} K_{sor} \right) s_{or}$$

= $\left(\right) 222.9^{2} + 0.8 \left[151.84 - \frac{40}{2} (1.67) \right] 1.67 = 943.8 \text{ in.-lb.}$
 $v_{scr} = \sqrt{\frac{2E}{M_{srp}}} = \sqrt{\frac{1887.6}{0.0316}} = \sqrt{59734} = 244.4 \text{ in./sec.}$

The time of slide counterrecoil exceeds that for the barrel, therefore, the firing rate is based on the former. The total time to complete the firing cycle

$$t_c = t_e + t_{scr} = 0.0329 + 0.0124 = 0.0453$$
 sec.

The rate of fire

$$f_r = \frac{60}{t_c} = 1324 \text{ rounds/min.}$$

Originally, the maximum recoil velocity of the slide was assumed to be 600 in./sec but, to satisfy some of the other design criteria, this velocity reduces to 478.8 in./sec. Rather than manipulate other variables to reach the 600 in./sec velocity, 478.8 in./sec was accepted to continue the analysis. When this reduced velocity was introduced in the earlier time estimates of par. 5-1.1.1, a revised rate of fire of 1590 rounds/min was computed. These two firing rates — one obtained by means of a digital computer, the other by a short cut estimate — are within 80% agreement of each other.

5-2 DOUBLE BARREL TYPE

The Navy MK 11 Gun is an excellent example of a double barrel revolver-type machine gun. This gun is recoil-operated and fires 4000 rounds/min at a muzzle velocity of 3300 ft/sec (Ref. 16). The high rate of fire is attributed to (1) the simultaneous loading, firing, and ejection of two belts of ammunition for each operation, (2) the use of advance primer ignition technique, and (3) the absence of conventional recoil and counterrecoil shock absorbing elements.

5-2.1 FIRING CYCLE

The firing cycle involves three basic operations: ramming, firing, and case ejection. All perform simultaneously at six chambers of the eight-chambered drum. Fig. 5-11 locates the relative positions of these operations. One belt of ammunition enters the rear drum area from each side of the gun and assumes the respective positions. The rounds in the top and bottom chambers, properly aligned with the barrels, are fired simultaneously. Propellant gases, bled from one barrel only, actuate the rammers and eject the empty cases, all other mechanical functions depend on recoil activity. Since firing must precede ramming and ejecting, an imperceptible lag occurs between firing and the two other functions.

At the start of each burst, only one shot is fired, always from the same *first-fire* barrel. Thus, the momentum of the recoiling parts is equivalent to the impulse generated by the propellant of this single shot. During the latter part of the recoil travel, the energy of translation of the recoiling parts is converted to rotational energy of the drum by cam action. The drum now acts as a flywheel, delivering energy needed to operate the feed system, meanwhile storing the remainder that eventually would be reconverted, by continued action, into the translational energy of counterrecoil. Just before reaching the in-battery position, both barrels are fired. Part of the total impulse of the two shots compensate for the momentum of counterrecoil to stop the moving parts in their forward motion. The remaining impulse induces the recoil that follows. This action continues until the end of the burst when a single shot is fired in the *last-fire* barrel, as opposed to the *first-fire* barrel that starts the burst. The impulse of this shot stops the counterrecoiling parts. Any residual impulse is absorbed by a buffer which also absorbs the full counterrecoil shock in the event of a misfire.

5-2.1.1 Cam Function

The drum has eight elliptical cams cut into its outer surface in the arrangement shown in Fig. 5-12. Forward and rear cam followers, mounted on a pivoting arm, engage alternately forward and rear cams during successive rounds. Fig. 5-12(A) shows the gun in battery with the forward cam follower engaged in a forward cam. As the gun recoils, the follower moves along the straight portion of the cam. The relative motion between cam and follower is augmented by the rocker arm which pivots about its fixed center. As its lower end swings forward during recoil, it draws the cam followers forward thus increasing the relative motion between cam and follower. Fig. 5-12(B) shows the positions at full recoil. By this time the follower has traversed half the curved distance and rotated the drum 22-1/2 deg. All energy is now rotational energy with only the drum and associated parts in motion. As the drum continues to turn, it actuates the follower which induces counterrecoil thereby reversing all translational motion that occurred during recoil. Fig. 5-12(C) shows the positions of the various components after all rotation has reverted to translation. Fig. 5-12(D) shows the respective positions after the return to battery. The front follower has been lowered to disengage it from the cam while the rear follower has been raised to engage the next cam which reaches this position after the drum has completed the 45 deg of travel during the firing cycle.

Figure 5–11. Location of Basic Operations

5-2.1.2 Loading and Ejecting

Ammunition is conveyed to the gun in cylindrical links which are connected to form a belt. Each link has a pin and hook diametrically opposite to each other. The hook of one link engages the pin of the following link to form a joint of limited flexibility that permits the belt to be twisted or folded. Two belts feed the gun, one from each side. The intermittent rotation of the feed sprocket, which is splined to the drum shaft, pulls the ammunition belts into the loader. Two gas-operated rammers, diametrically opposite with reference to the drum, simultaneously strip a round from a link of each belt and ram the ammunition at a speed of 50 ft/sec into the empty chambers adjacent to the barrels. On the next cycle these two rounds are fired. The following cycle, after the drum rotates 45 deg, finds the chambers containing the spent cases and their corresponding links in line with the gas ejector ports and ejection ducts. Propellant gases, tapped from the first-fire barrel, issue from the ports at high velocity and blow the empty cases into the empty links. The case momentum is high enough to seat the cases in the links, slip the belt attachment, and carry the case-link unit into the mouth of the ejection ducts at a velocity of 75 ft/sec which is enough to insure emergence from the ducts at 50 ft/sec. During the next cycle, the emptied chambers remain empty and advance to the 3 and 9 o'clock positions, where the two ammunition belts enter the loader (see Fig. 5-11). By remaining empty, the two idle chambers provide the space requirements for efficient operation.

5-2.1.3 Ammunition Feed System

The ammunition feed system consists of a pneumatic motor, a drive system, and an ammunition magazine. The system functions as a unit - the motor provides the power, the drive transmits the power to the ammunition belts and magazine, while the magazine releases the ammunition and rotates to maintain proper alignment between stored belt and feed throat. Fig. 5--13 is a schematic of the feed system that illustrates the functions in sequence. Although the gun is self-feeding, the pneumatic power boosters at the magazine insure high rate of fire and high functional link belt reliability. The power is transmitted by drive shafts and gear boxes to the sprockets which (1) engage the ammunition belts, (2) pull the belts from the magazine, and (3) drive the ammunition toward the loader. Another power drive, reduced to low speeds, turns the magazine.

Figure 5–13. Schematic of Ammunition Feed System

Figure 5–14. Schematic of Ammunition Magazine

The feed system is equipped with two manually operated driving units that are turned by hand cranks. When the magazine is being loaded, a jaw clutch is disengaged, separating magazine drive from ammunition drive so that magazine and feed sprockets can be rotated independently. One unit turns the magazine worm drive which rotates the magazine to the desired loading position; the other manual drive turns the feed sprocket to move the ammunition belt into the magazine.

The magazine is a cylindrical drum that has an even number of radial partitions. Each partition houses 60 rounds of ammunition. The two ammunition belts are loaded symmetrically about the axis so that the belts can be withdrawn simultaneously from two diametrically opposite sectors. Fig. 5-14 shows the arrangement of the stored munition and the method of withdrawal. The end view shows the balanced nature of the stored ammunition while the arrow indicates the direction of rotation. The side view shows how a belt is folded in the partitions. The belts leave the magazine through the feed throat on the left. Ammunition in the sectors is so arranged that only a small segment of each belt is accelerated at any time during a burst. As the ammunition empties from one sector, the next loaded sector - by virtue of the slowly rotating magazine comes into line with the feed throat. Alignment is assured by synchronizing belt speed with the rotational speed of the magazine.

5-2.2 DYNAMICSOF FIRING CYCLE

To introduce the dynamics of the firing cycle, assume that the machine gun is operating normally, i. e., both barrels are firing simultaneously. Since the gun fires out of battery, the momentum of the counterrecoiling mass must be dissipated before recoil can begin. This momentum is counteracted by the initial impulse of the propellant gas force. The remaining impulse is converted to linear momentum of the recoiling parts and later, by cam action, the linear momentum is converted into angular momentum of the drum and its associated moving parts.

The cam arrangement is such that only linear motion of the recoiling parts occurs shortly before, during, and immediately following firing. The dynamics are readily computed if the firing time is divided into small increments of time. If the acceleration during this short time interval is assumed to be constant, the various parameters can be computed for each time increment. Thus, after the increment of time At, the momentum of the counterrecoiling parts at increment n is

$$M_n = M_{n-1} + F_g \Delta t \tag{5-76}$$

where F_g = propellant gas force during At

 M_{n-1} = momentum just preceding At

During counterrecoil, momentum and velocity are considered to be negative as opposed to positive during recoil. Propellant gas force is always positive. Momentum is defined as *Miz*, therefore the velocity after *At* is

$$\nu_n = \frac{M_n}{M_r} \tag{5-77}$$

where $M_r = \text{mass of recoiling parts.}$

The distance traveled during At is

$$\Delta x_r = (v_n + v_{n-1}) \Delta t/2. \qquad (5-78)$$

Designate x_r the distance that the recoiling parts are out of battery.

$$x_r = x_{r(n-1)} + \Delta x.$$
 (5-79)

During recoil, x_r is the recoil travel distance of barrel and drum assembly.

5-2.2.1 Cam Analysis

The forces induced by can action are shown diagrammatically in Fig. 5–15. Because the cam follower is constrained in the ydirection, motion in this direction is restricted to the peripheral travel of the drum. Because of the linkage arrangement shown in Fig. 5–12, the cam-to-cam follower position is determined by the relative displacement of the cam during recoil, or counterrecoil, and the movement of the cam follower that is determined by the link rotation.

The resolution of cam forces and the mutual influence of the various moving parts on one another are illustrated in Figs. 5-15, 5-16, and 5-17; and are

defined, except for those referring to the springs and slide, by the expressions of Eqs. 5–29 through 5–47. Because this cam, analysis follows the same procedure as that developed for the slide-cam analysis, only the pertinent equations will be given, thus avoiding repetition. According to Eqs. 5–33 through 5-36, the directional coefficients during recoil are

$$K_x = \sin\beta + \mu \left(\frac{R_p}{R_r}\right) \cos\beta$$
 (5-80)

$$K_y = \cos\beta - \mu \left(\frac{R_p}{R_r}\right) \sin\beta$$
 (5-81)

and during counterrecoil, they are

$$K_x = \sin\beta - \mu \left(\frac{R_p}{R_r}\right) \cos\beta$$
 (5-82)

$$K_y = \cos\beta + \mu \left(\frac{R_p}{R_r}\right) \sin\beta$$
 (5-83)

Figure 5–16. Double Barrel Drum Loading Diagram

Figure 5- 17. Double Barrel Drum Dynamics

The axial and tangential cam forces are, respectively,

$$F_{\chi} = NK_{\chi} \tag{5-84}$$

$$F_{y} = NK_{y} \tag{5-85}$$

From Eq. 5-41, the resisting torque induced by the residual propellant gas force is

$$T_{g} = \mu (R_{ch} - \mu R_{b}) F_{g}$$
 (5-86)

The cam normal force, Eq. 5-47, is

$$N = \frac{\frac{I_d v_s^2}{R_c R_d \cos \beta} + T_g}{(R_d - \mu R_b) K_y - \mu \left[R_t + R_d \left(\frac{R_p}{R_r} \right) \right] K_x}$$
(5-87)

where ν_s is the axial relative velocity between cam follower and cam which is also the slide velocity. The various parameters of the cam geometry are expressed in Eqs. 5–48 through 5–52.

5-2.2.2 Energy Concept

During the early part of the recoil stroke and the latter part of the counterrecoil stroke, the cam follower moves axially in the straight portion of the cam; therefore, no energy is exchanged between rotating and translating parts. When the cam follower is riding in the curved portion of the cam, an exchange of energy takes place. At any given time, by the law of conservation of energy, the total energy remains unchanged. By dividing the cam travel into short increments, the amount of energy E_i in each group of moving parts may be expressed with negligible error in terms of total energy and the changing geometry of cam.

$$E_{i} = E_{r} + E_{d} + E_{a} + E_{\mu} \tag{5-88}$$

where E_a = energy of ammuntion belt

 E_d = energy of rotating parts

$$E_i$$
 = total energy at any given increment
 E_r = energy of recoiling parts
 E_{μ} = energy losses due to friction

Note that for the next increment,

$$E_i = E_{i-1} - E_{\mu} . (5-89)$$

The individual energy terms are expressed in terms of the linear velocity of the recoiling parts as shown in the next three equations.

$$E_d = I_d \left(\frac{\tan^2\beta}{R_d^2}\right) v_r^2 \tag{5-90}$$

$$E_r = \frac{1}{2} \left(M_r v_r^2 \right) \tag{5-91}$$

$$E_a = \frac{1}{2} \left(\frac{N_a M_a r_a v_r^2}{2} \right) \tag{5-92}$$

where I_d = mass moment of inertia of drum

- M_a = mass of one link of ammunition
- M_r = mass of recoiling parts
- N_a = number of links of ammunition affected

$$R_d$$
 = distance of cam to center of drum

 r_a = effective ratio between v, and belt velocity

$$v_r$$
 = velocity of recoiling parts

5-2.2.3 Digital Computer Program for Firing Cycle

A digital computer program is arranged to compute the significant data occurring during the firing cycle. It is an iterative procedure that first computes the total impulse. The force-time curve of the interior ballistics is divided into small time increments from which the respective propellant gas force is read. The median force is assumed to be the average. The differential time

between any two adjacent forces is small enough so that the corresponding portion of the curve approximates a straight line; therefore, the assumption is considered accurate. The computed area under the curve is the total impulse. The force-time curve is shown in Fig. 5-18.

The velocity of free recoil is found by equating the impulse to the momentum of the recoiling parts. The energy of free recoil may now be computed. However, this energy is a fictitious value since the gun is fired out of battery. Also, frictional losses in the system account for additional energy loss. To compensate for this loss during the first set of computations, only 70 percent of the energy of free recoil is entered toward computing the counterrecoil velocity plus the initial momentum of counterrecoil just as the first two chambered rounds are fired simultaneously. Each differential impulse is subtracted from the momentum until zero velocity is achieved. Subsequently, the remaining impulse determines the new recoil velocity. The dynamics of the cam system are now computed and if the resulting counterrecoil velocity – after the cam is negotiated by the cam follower – does not match its **original** value, the initial counterrecoil is adjusted accordingly and the process continued.

The area under the force-time curve for a given time represents the cumulated impulse of the propellant gas force to that term. The area is computed by employing the trapezoid rule.

$$A_{,,} = A_{,,-} + F\Delta t \qquad (5-93)$$

$$F\Delta t = \frac{1}{2} \left[F_{g(n-1)} + F_{g(n)} \right] \Delta t.$$
 (5-94)

Figure 5-18. Force-time Curve of 20 mm Revolver-type Gun

The momentum during counterrecoil at any given time is

$$M_{n} = M_{n-1} - F\Delta t. (5-95)$$

The momentum during recoil is

$$M_n = M_{n-1} + F\Delta t. \tag{5-96}$$

The velocity, energy, and distance can now be computed at the end of each time interval. Note that no cam activity must take place while the projectiles are still in the bores. To insure this requirement, the cam follower rides the linear portion of the cam (the dwell period) until the propellant gas pressure has theoretically dropped to zero. Actually some residual gas pressure may still persist and is considered as one of the forces in the cam analysis.

The conservation of energy concept introduced earlier is generally followed with some variations to make the analysis more manageable. These variations are the various components of the energy lost to friction. Two primary components are the linear and angular sliding frictional losses. The linear component consists of the frictional resistance induced by the transverse cam force F_y and its reaction R_y on the drum bearing (see Fig. 5–16). The frictional resistance created by μR_y is relatively small and may be ignored. The work done by the average forces over small increments of travel is

$$E \qquad \left| F_{y(n-1)} + F_{y(n)} \right| \left(\frac{R_p}{R_r} \right) \Delta x + \left[R_{1} + R_{y(n)} \right] \Delta x_r \right| \qquad (5-97)$$

Note that Ax is influenced by the friction of the cam follower roller to the extent of the indicated ratio of two radii (see Eq. 5-32). According to Fig. 5-19, $p = r_c/r_d$. Since $R_y = F_y$ and $Ax_r = \Delta x/\rho$, and according to Eq. 5-85, $F_y = NK_y$, therefore

$$E_{\mu s(n)} = \frac{1}{2} \mu \left[\left(NK_y \right)_{(n-1)} + \left(NK_y \right)_{(n)} \right] \left(\frac{1}{\rho} + \frac{R_p}{R_r} \right) \Delta x.$$
 (5-98)

The respective velocities, v_s and v_r of the slide and recoiling parts during cam activity, are

$$v_s = v_c \cosh; v_r = v_s / \rho$$
 (5-99)

Figure 5-19. Geometry of Cam Actuating Lever

At the same time, the distances traveled are computed from the position of cam follower and cam as indicated in Eq. 5-49. Since the distance x on the curve indicates the relative travel along the x-axis between cam follower and cam, the total axial distance at any given interval is

$$x_s = s_{or} + x$$
 (5-100)

where s_{or} is the straight length of the cam. The corresponding travel x, of the recoiling parts (drum and barrel assemblies) is

$$x_r = x_s / \rho$$
. (5-101)

During the cam dwell period, the travel of the recoiling parts is

$$x_{rd} = x_{rd(n-1)} + \frac{1}{2} \left[v_{r(n-1)} + v_{r(n)} \right] \Delta t$$

(5—102)

where x_{rd} is used instead of x_r to differentiate between the dwell period and the active cam period. The interval Δt_1 spans the time when the follower enters the dwell and until the propellant gas forces of the next round become effective. Here, Δt_1 is the first time interval of the firing cycle.

$$\Delta t_1 = \left[\left(s_{or}/\rho \right) - x_{ro} \right] / v_{cr}$$
 (5-103)

where v_{cr} = counterrecoil velocity

 x_{ro} = counterrecoil travel during impulse period

The time interval after the impulse period and until cam action begins during recoil is

$$\Delta t_n = \left[\left(s_{or} / \rho \right) - x_{rn} \right] / \nu_m \qquad (5-104)$$

where $v_m = \max$ recoiledocity

$$x_{rn}$$
 = recoil travel during impulse period

Symbol	Code	Symbol	Code
a	Α	s _o	sc
A_n	FTAREA	sor/p	SR
b	В	t	Т
C _x	сх	At	DT
	CY	t_m	TM
Ε	E	T _g	TG
F _g	FG	v	V
<i>F</i> _{gr}	FGRES	v _c	vc
$F\Delta t$	FDT	v _d	VD
g	G	ν_s	VS
Id	DI	Wa	WA
K _x	ХК	w,	WR
K _v	YK	x	Х
L_c	CL	Ax	DX
L_r	RL	x_s	хс
M _a	EMA	x _{rd}	XR
M,	EMR	Δx_r	DXR
M _n	EMV	x,	XREC
N	EN	Ŷ	Y
R _h	RB	Δy	DY
R _{ch}	RCH	β	BETA
R _d	RD	е	ТНЕТА
R _n	RP	$\Delta heta$	DTHETA
R,	RR	μ	EMU
R _t	RT	ρ	RHO

TABLE 5-15. SYMBOL-CODE CORRELATION FOR DOUBLE BARREL MACH NE GUN

TABLE 5-16. INPUT DATA FOR DOUBLE BARREL MACHINE GUN

Code	Value	Code	Value
A	1.5	RD	3.25
В	1.276275	RHO	2.5
CL	3.125	RL	1.25
DI	0.81	RP	0.25
EMU	0.1	RR	0.5
FGRES*	200.0	RT	1.25
G	386.4	SR	0.65
RB	1.0	WA	12.256
RCH	2.25	WR	120.0

*The values of FG are listed in the output, Table 2-11.

5-56

~

Throughout the computer program, several combinations of values are repeated. Also, similar terms appearing in more than one equation are lifted from those equations and combined into another unique expression. To avoid recomputation and for programming convenience, each combination is treated as a coefficient which is identified by a new symbol. These coefficients, when isolated, have little physical significance, and therefore, can be defined best by association throughout the development of the computer program.

For any given increment *n*, both $N_{(n-1)}$ and $K_{v(n-1)}$ are known so that

$$E_{\mu s(n-1)} = \frac{1}{2} \left[\mu (NK_y)_{(n-1)} \right] \left(\frac{1}{\rho} + \frac{R_p}{R_r} \right) \Delta x$$
$$= C_{m(n-1)N(n-1)} \Delta x/2.$$
(5-105)

Note that in general, $C_m = \mu K_y \left(\frac{1}{\rho} \star \frac{R_p}{R_r}\right)$

The other part involving NK_{y} has unkown values and these are expressed in terms of computable parameters. Thus

$$E_{\mu s(n)} = \frac{1}{2} \mu \left(NK_y \right)_n \left[\frac{1}{\rho} + \frac{R_p}{R_r} \right] \Delta x$$
$$= C_{m(n)} N_{(n)} \Delta x/2 \qquad (5-106)$$

By combining the various expressions of Eq. 5-47 into simple terms

$$N = \frac{\left[C_{id}\left(\frac{\cos\beta}{R_c}\right)v_c^2 + T_g\right]}{\left(C_y K_y - C_x K_x\right). \qquad (5-107)$$

 $N = C_{vc} v_c^2 + T_{gn} \tag{3-1}$

Now substitute for N in Eq. 5-106

where

1

$$E_{\mu sm} = C_{fx} v_c^2 \tag{5-110}$$

The resolution of the angular component of sliding friction follows a similar procedure. The total energy lost to friction in the rotating drum is

$$E_{\mu d} = \frac{1}{2} \left[T_{\mu(n-1)} + T_{\mu(n)} \right] \Delta \theta. \quad (5-111)$$

where T_{μ} is the frictional torque. The equation for the frictional torque may be composed by referring to Fig. 5–16.

$$T_{\mu} = \mu F_{y}R_{b} + \mu F_{x} \left[R_{t} + R_{d} \left(\frac{R_{p}}{R_{r}} \right) \right] + 2\mu F_{gr}R_{ch}$$

$$(5-1.12)$$

$$T_{\mu} = N \quad \mu R_{b}K_{y} + C_{x}K_{x} + T_{g} = C_{t\mu}N + T_{g}.$$
(5-113)

At the beginning of each increment, all data are known.

$$T_{\mu(n-1)} = C_{t\mu(n-1)} N_{(n-1)} + T_g \qquad (5-114)$$

At the end of each increment, N is not known but may be expressed in terms of computable parameters

$$T_{\mu(n)} = C_{t\mu} N_{-} T_{g}$$
 (5-115)

$$t_{\mu}C_{\nu c}\nu_{c}^{2} + C_{t\mu}T_{gn} + T_{g}$$
. (5–116)

The various terms for energy may now be expressed by multiplying the frictional torques by $\Delta \theta/2$ and combining the terms when appropriate

Compute the energy of the $N_{(n-1)}$ term of Eq. 5–114.

$$E_{\mu s(n)} = E_{\mu sm} + C_{dx} T_{gn} \qquad (5-109) \qquad E_{\mu d1} = \frac{1}{2} \left[\Delta \theta \ C_{t \mu (n-1)} N_{(n-1)} \right] \qquad (5-117)$$

Compute the energy of the v_r term of Eq. 5–116

$$E_{\mu dn} = \frac{\Delta \theta}{2} \left(C_{t \mu} C_{\nu c} v_{c}^{2} \right) = C_{t q} v_{c}^{2} \qquad (5-1.18)$$

Compute the energy of the T_{gn} terms of Eqs. 5-109 and 5-116

$$E_{\mu r tg} = \left[C_{dx} + C_{t\mu} \left(\frac{\Delta \theta}{2} \right) \right] T_{gn} = \left(C_{dx} + C_{dt} \right) T_{gn}$$
(5-119)

Compute the energy of the T, terms of **Eqs.** 5–114 and 5–116.

$$E_{\mu dtg} = \frac{A\Theta}{2} \left(T_g + T_g \right) = A8 T_g. \quad (5-120)$$

The total readily computable energy loss is

$$E_{\mu 1} = E_{\mu s 1} + E_{\mu r t g} + E_{\mu d t g} + E_{\mu d t}. \qquad (5-121)$$

The effective masses of the recoiling parts (M_{re}) , ammunition (M_{ae}) , and drum (I_{de}) with respect to the cam velocity when energy is involved are

$$M_{re} = \frac{M_r}{2\rho^2}; \quad M_{ae} = \frac{M_a}{2\rho^2}, \qquad I_{de} = \frac{'d}{R_d^2 + \rho^2}.$$
(5-122)

The energy that remains in the system after the readily computable energy loss is subtracted

$$E_{ie} = E_{i-1} - E_{\mu 1} = E_r + E_a + E_d + E_{\mu sn} + E_{\mu dn}$$

= $\left| M_{re} \sin^2 \beta + \left(M_{ae} + I_{de} \right) \cos^2 \beta + C_{fx} + C_{tg} \right| v_c^2$
 $E_{ie} = \left(C_{mr} + C_{ma} + C_{id} + C_{fx} + C_{tg} \right) v_c^2 = C_e v_c^2$
(5-123)

where C, is the coefficient of ν_c^2

$$v_c = \sqrt{E_{ie}/C_e} \tag{5-124}$$

$$E_{\mu} = E^{\mu_1} + C_{fx} + \left(C^{fx} + C_{tg} \right)^{\nu_c^2} \qquad (5-125)$$

$$E_i = E_{i-1} - E_{\mu} \tag{5-126}$$

The computed results show the time for one cycle to be 26.2 msec (see Table 5–17) which indicates a firing rate of 4580 rounds/min since both barrels are firing simultaneously.

		PROPELLANI	1		AXIAL		AXIAL
		GAS		RECOIL	CAY	RECOIL	CAM
1	11Mc	FORCE	INPULSE	VEL	VEL	TRAVEL	TRAVEL
	MSEC	Lt	LH-SEC	IN/SEC	IN/SEC	IN	11
1	6.v71	• 0	•UÜ	97.6	243.9	. 0577	• 1442
2	6.190	2500.0	.16	96.0	241.4	•0456	•1139
3	6.3∠1	7000.0	•75	92.7	231.8	.0337	• 0843
	0.446	15200.0	2.14	83.8	209.5	•0227	• 0567
з	6.571	23600.0	4.50	68.2	170.4	.0132	•0330
б	6.046	28400.0	7.€1	47.2	118.1	•0060	+0150
7	6.621	29500.0	11.43	23.9	59.9	•0015	•0038
8	6.940	28600.0	15.06	•6	1.4	•0000	•0000
3	6.950	28573.6	18.55	∎0	• 0	0000	0000
10	7.190	24800.0	21.80	42.8	107.1	•0053	.0132
11	7.321	22000.0	24.72	61.7	154.2	•0118	. 0295
12	7.440	16200.0	27.11	77.0	192.6	.0205	0512
15	7.571	12400.0	28.90	88.6	221.4	L0308	•0771
14	7.696	10560.9	30.30	97.6	243.9	• 0425	• 1062
15	7.0ž1	8500.0	31.46	105.0	262.6	• 0551	•1378
10	7.946	7500.0	32.40	111.5	27R.7	.Oh87	•1717
17	8.071	6800.0	33.35	117.2	293.0	.0830	•2074
18	8.196	6400.0	34.17	122.5	306.3	.0979	•2449
19	8.321	6030.0	34.95	127.5	318.8	•1136	•2839
20	8.446	5500.0	35.67	132.1	330 4	• 1298	• 3245
21	8.571	5200.0	36.34	136.5	341.1	• 1466	• 3665
22	8.696	4800.0	36.96	140.5	351.2	• 1639	•4097
23	0.821	4500.0	37.54	144.2	360.6	•1817	• 4542
24	8.940	4200.0	38.09	147.7	369.3	• 1999	4998
25	9.071	3900.0	38.59	151.0	377.5	•2186	• 5465
26	9.821	1700.0	40.69	164.5	411.3	3369	.8423
27	10.571	700.0	41.59	170.3	425.0	.4625	1.1562
20	11.321	200.0	41.93	172.5	431.2	• 5910	1.4775
29	12.071	• 0	42.01	173.0	432.4	• 7206	1.8014
30	12.071	• 0	• (+1)	173.0	432.4	.6500	1.6250

TABLE 5-17. DOUBLE BARREL MACHINE GUN DYNAMICS

			CAN	PERIPh DRIJM	AXIAL CAM	RECOIL	PERIPH	A X I A L CAM	RECOIL
1	TIME	FORCE	SLOPE	VEL INZSEC					IRAVEL
	MOLU	LO	01.0	INV SEU	IN SEC	THY SEC			
31	12.2452	8450.0	2.44	18.3	430.6	172.3	•0016	1.7000	•6800
3L	12.4202	8416.9	4.09	36.5	426.6	170•7	•0064	1.7750	•7100
33	12.5970	8396.9	7.36	54.4	421.7	168.7	•0144	1.8500	•7400
34	12.7761	8390.0	9.85	72.2	415.9	166.4	• 0258	1.9250	•7700
3s	12.9579	6396.3	12.39	89.9	409.1	163.7	•0405	2.0000	•8000
30	13.1429	8416.1	14.98	107.4	401.4	160.5	• 0588	2.0750	•8300
37	13.3319	8449.8	17.64	124.8	392.5	157.0	•0807	2.1500	•8600
38	13.5254	8498.2	20.37	142.1	382.6	153.0	•1065	2.2250	•8900
39	13.7243	8562.2	23.21	159.2	371.4	148.6	•1365	2.3000	•9200
40	13.9297	8042.9	26.16	176.3	358.9	143.6	•1710	2.3750	•9500
41	14.4586	8937.7	34.37	218.9	320.1	128.0	•2815	2.5647	1 e 0259
42	14.9598	9274.3	41.53	250.0	282.3	112.9	• 3920	2.7067	1.0827
43	15.3018	9660.9	48.14	273.6	245.1	98.0	•5026	2.8179	1.1272
44	15.7730	10132.5	54.44	291.2	208.2	83.3	•6131	2.9066	1.1626
45	16.1442	10774.9	6U•55	303.9	171.6	68•6	• 7236	2.9771	1e 1908
4b	16.5027	11819.7	60.54	312.1	135.4	54.2	8342	3.0321	1.2128
47	16.8545	14079.2	72.45	315.5	99.8	39.9	.9447	3.0735	1.2294
48	17.2056	23522.3	78.32	312.0	64.5	25.8	1.0552	3.1023	1.2409
4 Y	17.5623	17832.9	84.17	303.9	31.1	12.4	1.1657	3.1194	1.2477
50	17.9252	96.6	90.00	299.8	• 0	•0	1.2763	3.1250	1.2500
51	18.2994	10835.0	84.17	294.9	30.1	12.1	1.3868	3.1194	1e2477
52	18.0825	7595.4	78.32	284 .5	58.8	23.5	1.4973	3.1023	1.2409
53	19.0602	6012.2	72.45	272.6	86.2	34.5	1.6079	3.0735	1.2294
54	19.497.5	5983.9	66.54	258.4	112.2	44.9	1.7184	3.0321	1.2128
55	19.9499	5470.2	60.55	241.9	136.6	54.6	1.8289	2.9771	1.1908
55	20.4164	5007.2	54.44	222.8	159.2	63.7	1.9394	2.9066	1.1626
57	20.4388	4572.5	4.4.14	201.1	180 1	72.1	2 0500	2,8179	1.1272
5r	21.5256	4157.6	41.53	176.4	199.1	79.7	2.1605	2 7067	1.0027
50	22.2093	3757.6	34.37	147.8	216.1	86.4	2 2710	2.5647	1.0259
60	23.0589	3365.8	20.16	113 3	230.6	92.2	2.3816	2.3750	-9500
61	23.3814	3243.0	23.21	100 6	234.5	93.8	2 4160	2 3000	. 9200
62	23.5991	3134.4	20.37	88.2	237.6	95.0	2 4460	2.2250	.8900
63	20:0991	3038-2	17.64	76.3	240.0	96.0	2.4400	2.1500	-8600
65	24+0131	0000•2 0050 0	14 99	70.5 6 J 7	2/1 0	96.0	2.4030	2 0750	.8300
64 65	24+3243	293209	12 30	E2 /	243.0	2001	2 5120	2.0750	. 80.00
65	24.00009	2011-0	14.35	23.4	243.0	77•C	2.5120	2.0000	.7700
67	24.7422	2010.4	7.36	42 U J 21 E	243.0	97.4 07 5	20208	1.8500	.7400
0/	20.2000	2100 H	4.80	30.9	243 4	97.3 07 9	2.5460	1.7750	.7100
60 40	20+0060	2097-4	9.60	20.08	243.4	97.3	2.5510	1 7000	• 7 1 0 0
70	20.0007	2034+1	2.174		242.0	9/00	2 . 2 . 2 . 1 U	1 6050	+0000
70	20+1101	2014+9	• U U	• 0	Z41.3	9 0 • 3	2.3323	1.6250	+0200

TABLE 5–17. DOUBLE BARREL MACHINE GUN DYNAMICS (Con't.)

5-60

}

٠

.

AMCP 706-260

CHAPTER 6

MULTIBARREL MACHINE GUN

6-1 GENERAL

The Gatling Gun type of machine gun provides very high rates of fire by being capable of what may essentially be called simultaneous loading, firing, extracting, and ejecting and still not overexpose any one barrel to the effects of rapid, continuous fire. Each of the above four functions are performed in separate barrels during the same interval thus fixing four as the lower limit for the number of barrels, to the gun. Physical size establishes the upper limit but five or six is the usual number of barrels in each cluster with six being preferred. Several of these six-barreled guns have proved successful and are production items.

6-2 BOLT OPERATING CAM DEVELOPMENT

The closing and opening of the bolts of a multibarreled gun are regulated by a cam attached to or cut into the inner housing wall. Each bolt has a cam follower equipped with a roller that rides in the cam. As the gun rotates, carrying the bolts with it, the cam followers force these bolts into prescribed directions. Fig. 6-1 shows a cam contour. It has two dwell periods, the rear when the bolt is fully retracted and the front when the bolt is closed. The rear dwell provides time to complete the cartridge case ejection and to receive a new round. The front dwell provides firing time and holds the bolt closed until propellant gas pressures reduce to safe limits. The feeding and ejection periods have three intervals: accelerating, constant velocity, and decelerating. Because of the differences in cam force during the two periods, the accelerating distance is generally three times that of the decelerating. The constant velocity period is not absolutely essential but incorporating it has the advantage of distributing power requirements.

6-2.1 CAM ACTION

Parabolic curves are selected for the accelerating and decelerating portions of the cams because of the constant acceleration characteristic. In the same sense, straight lines form the constant velocity portions of the cam. Fig. 6-2 shows the loading diagram on the bolt and cam arrangements during acceleration. Fig. 6-3 isolates the feeding portion of the cam path shown in Fig. 6-1. It consists of two parabolic curves tangent to a straight line. The analysis for feeding or ejecting are identical. Acceleration ends at P_1 and deceleration starts at P_2 , the slope β being the same at these two points. The expression for the accelerating curve is

$$y^2 = Kx. \tag{6-1}$$

The slope is

$$\frac{dx}{dy} = \frac{2y}{K} = \frac{2y}{v^2/x} = \frac{2x}{y} = \tan\beta.$$
 (6-2)

The slope at P_1 is

$$\left(\frac{dx}{dy}\right)_1 = \frac{2x_1}{y_1} \cdot \tag{6-3}$$

The expression for the decelerating curve is

$$(y_2 - y)^2 = K(x_2 - x) . \qquad (6-4)$$

Solve for x.

$$\mathbf{x} = x_2 - \frac{1}{K} (y_2 - y)^2 \tag{6-5}$$

$$\frac{d}{dy} = \frac{2}{K} (y_2 - y)$$
 (6-6)

when y = 0, x = 0, and
$$\frac{dx}{dy} > 0$$
, therefore $K = \frac{y_2^2}{x_2}$

The slope at P_2 , where y = 0, is

$$\left(\frac{dx}{dy}\right)_2 = \frac{2x_2}{y_2} \tag{6-7}$$

Figure 6-1. Cam Contour of Multibarrel Gun

Figure 6-2. Loading Diagram of Bolt and Cam During Acceleration

6 – 2

$$\frac{x_1}{y_1} = \frac{x_2}{y_2} \tag{6-8}$$

$$x_2 = \left(\frac{y_2}{y_1}\right) x_1 \,. \tag{6-9}$$

The rotor, after its accelerating period turns at a constant velocity and the lengths of y_1 and y_2 are known, is chosen to comply with desired design conditions.

$$y_1 = R_c \theta_1 = R_c \omega t_1 \tag{6-10}$$

$$y_2 = R_c \theta_1 = R_c \omega t_1 \tag{6-11}$$

where R_{i} = cam radius

 ω = angular velocity of the rotor

 L_{r} = total peripheral length of the cam.

$$L_c = 2\pi R_c \tag{6-12}$$

 y_a is the peripheral length of the constant slope of the cam

$$\mathcal{Y}_a = \theta_a R_c \qquad (6-13) \qquad x = o$$

6-3

(6-21)

$$x = \frac{1}{K} \left(y^2 \right) = \frac{1}{K} \left(R_c^2 \omega^2 t^2 \right)$$
 (6-16)

The axial velocity of the bolt becomes

$$\dot{x} = \frac{2}{K} \left(R_c^2 \omega^2 t \right). \tag{6-17}$$

The corresponding acceleration is

$$\ddot{x} = \frac{2}{K} \left(R_c^2 \omega^2 \right) \tag{6-18}$$

which is constant, conforming to the characteristics of the parabola. For the straight lines connecting the two parabolas where β is constant

$$x = y \tan \beta = R_c \omega t \tan \beta \qquad (6-19)$$

$$\dot{x} = R_c \omega \tan \beta \text{ (constant)}$$
 (6-20)

The mechanics of the cam during feed deceleration are determined by developing Eq. 6-5. Substitute $R_c \omega t$ for y.

$$x = x_2 - \frac{4}{K} \left(y_2^2 - 2y_2 R_c \omega t + R_c^2 \omega^2 t^2 \right) \qquad (6-22)$$

$$\dot{x} = \frac{2}{K} \left(y_2 R_c \omega - R_c^2 \omega^2 t \right)$$
(6-23)

$$\ddot{x} = -\frac{2}{K} \left(R_c^2 \omega^2 \right). \tag{6-24}$$

The ejection part of the cam behaves similarly but in the opposite direction. The curve for ejection acceleration is

$$-y^2 = Kx \tag{6-25}$$

$$x = -\frac{1}{K} \left(y^2 \right) \tag{6-26}$$

$$\frac{dx}{dy} = -\frac{2}{K}\left(y\right) \tag{6-27}$$

when $y = y_2$, $x = x_2$, and $\frac{dx}{dy} < 0$, therefore K > 0 and $K = \frac{y_2^2}{x_2}$.

Continue with the mechanics and substitute $R_c \omega t$ for y.

$$x = -\frac{1}{K} \left(R_c^2 \omega^2 t^2 \right) \tag{6-28}$$

$$x = -\frac{2}{K} \left(R_c^2 \omega^2 t \right) \tag{6-29}$$

$$\ddot{x} = -\frac{2}{K} \left(R_c^2 \omega^2 \right) \tag{6-30}$$

While ejecting over the straight portion of the cam, the mechanics are

$$x = -R_c \omega t \tan \beta \qquad (6-31)$$

$$\mathbf{x} = -R_c \omega \tan \beta \qquad (6-32)$$

$$x = 0.$$
 (6-33)

6-4

The curve for the ejection deceleration is defined as

$$-(y_2 - y)^2 = K(x_2 - x)$$
 (6-34)

when $y = 0, x = 0, x_2 < 0$

$$x = -x_2 + \frac{1}{K} \left(y_2^2 - 2y_2 y + y^2 \right)$$
 (6-35)

$$\frac{ah}{dy} - \frac{1}{K} (-2y_2 + 2y) = \frac{1}{K} (y - y_2) \qquad (6 - 36)$$

when
$$y = 0$$
, $\frac{dx}{dy} < 0$, therefore $K > 0$ and $K = \frac{y_2^2}{x_2}$

Continue the mechanics and substitute $R_c \omega t$ for y

$$x = -x_{2} + \frac{4}{K} (y_{2}^{2} - 2y_{2}R_{c}\omega t + R_{c}^{2}\omega^{2}t^{2})$$

$$K$$
(6-37)

$$\dot{x} = \frac{2}{K} \left(R_c^2 \omega^2 t - y_2 R_c \omega \right) \tag{6-38}$$

$$\ddot{x} = \frac{2}{K} (R_c^2 \omega^2)$$
 (6-39)

6-2.1.2 Definition of Symbols

- b = moment arm for tipping track reactions
- c = moment arm for rotating track reactions
- d = distance, CG of bolt to center of cam roller surface
- F = driving force
- F_a = axial inertial force of bolt and round or of bolt and case
- F_b = centrifugal force of bolt
- F_{ba} = tangential inertia force of bolt
- F_s = centrifugal force of round or of case
- F_{sa} = tangential inertia force of round or of case
- F_{α} = tangential inertia force of bolt and round or of bolt and case

- I_d = mass moment of inertia of all rotating parts
- L = length of bolt travel
- $M = M_b + M_a = \text{mass of bolt unit}$
- M_a = mass of round
- $M_b = \text{mass of bolt}$
- M_{cc} = mass of case
 - N = normal force on roller
- N_a = axial component of the normal force of the roller
- N_t = transverse component of the normal force of the roller
- R = radius, gun axis to bolt
- R, = cam radius
- R_{fa} = frictional resistance due to tangential inertia forces
- R_{fc} = frictional resistance due to centrifugal forces
- R_{fr} = frictional resistance due to track reactions
- R_r = track reactions due to rotational forces
- R_t = track reactions due to tipping forces
- T = torque about gun axis
- x = axial acceleration of bolt
- α = angular acceleration of rotor
- β = angle of cam path (slope)
- θ = angular displacement of rotor
- μ_r = coefficient of rolling friction
- μ_s = coefficient of friction of case
- μ_t = coefficient of friction of track
- ω = angular velocity of rotor

6-2.1.3 Cam Forces

The axial inertia force of the bolt and round is

$$F_a = (M_b + M_s)\ddot{x}$$
 (6-40)

The centrifugal force of the bolt is

$$F_b = M_b R \omega^2 \cdot (6-41)$$

The centrifugal force of the round is

$$F_s = M_s R \omega^2 . \qquad (6-42)$$

The frictional resistance due to centrifugal force is

$$R_{fc} = \pm (\mu_t F_b + \mu_s F_s). \qquad (6-43)$$

The tangential inertia force of bolt and round induced by angular acceleration is

$$F_{\alpha} = F_{ba} + F_{sa} = M_b R \alpha + M_s R \alpha . \quad (6-44)$$

The frictional resistance due to the tangential inertia forces is

$$R_{fa} = \pm (\mu_t F_{ba} + \mu_s F_{sa}) . \qquad (6-45)$$

The axial component of the normal force of the roller is

$$N_a = N \cos \beta - \mu_r N \sin \beta \qquad (6-46)$$

where $\mu_r N$ is the resistance induced by rolling friction.

The transverse component of the normal force is

$$N_t = N \sin \beta + \mu_r N \cos \beta. \qquad (6-47)$$

The driving force of the cam is

$$F = N_t = N(\sin\beta + \mu_r \cos\beta). \qquad (6-48)$$

The track reactions due to rotational forces are found by balancing moments in the plane perpendicular to the bolt axis.

$$cR_r = dF$$

 $R_r = \left(\frac{d}{c}\right)F$ (6-49)

The track reactions due to tipping forces are found by balancing moments in the vertical plane parallel to the bolt axis.

$$bR_t = dN_a$$

$$R_t = \left(\frac{d}{b}\right) N_a \qquad (6-50)$$

The frictional resistance due to track reactions is

$$R_{fr} = \pm 2\mu_t (R_r + R_t).$$

 R_{fa} , R_{fc} and R_{fr} have the same algebraic sign as x.

The normal force on the cam roller is found by balancing the axial forces thus $\Sigma F_x = 0$

$$F_a + \mu_t N_t + R_{fc} - N_a + R_{fr} + R_{fa} = 0 \qquad (6-51)$$

Substitute all values containing N for the terms in Eq. 6-51 and then solve for N. Note that N is always positive.

$$N = \left| (F_a + R_{fc} + R_{fa}) / \left[(\mu_r + \mu_t + 2\frac{d}{c} \mu_t - 2\frac{d}{b} \mu_r \mu_t) \sin \beta + (\mu_r \mu_t + 2\frac{d}{c} \mu_r \mu_t + 2\frac{d}{c} \mu_r \mu_t + 2\frac{d}{b} \mu_t - 1.0) \cos \beta \right] \right|$$
(6-52)

This force system also applies to the constant velocity portions of the cam, F_a being zero but all other force components acting in the same direction.

Fig. 6-4 shows the loading diagram on the bolt and cam arrangement during deceleration. All the developing equations are the same as for acceleration except

$$N_a = N \cos\beta + \mu_r N \sin\beta \qquad (6-53)$$

$$N_t = N \sin \beta - \mu_r N \cos \beta \qquad (6-54)$$

$$F = N_t = N(\sin\beta - \mu_r \ cosp). \qquad (6-55)$$

Equate the sum of the forces along the x-axis to zero, $\Sigma F_x = 0$.

$$F_a + \mu_t N_t + R_{fc} + N_a + R_{fr} + R_{fa} = 0$$
 (6–56)

Substitute all values containing N for the terms in Eq. 6-56 and solve for N.

$$N = \left| \left(F_a + R_{fc} + R_{fa} \right) / \left[\left(\mu_r \mu_t + 2 \frac{d}{c} \mu_r \mu_t \right) - 2 \frac{d}{b} \mu_t - 1.0 \right) \cos \beta - \left(\mu_r + \mu_t + 2 \frac{d}{b} \mu_r \mu_t \right) + 2 \frac{d}{c} \mu_t \sin \beta \right] \right|$$
(6-57)

The driving torque about the gun axis is

$$T = \Sigma FR_c + I_d \alpha \qquad (6-58)$$

where ΣF is the total driving force on all bolts.

6-2.1.4 Locking Angle

The cam becomes self-locking when the required driving force becomes infinite. Substitution of the expression for N of Eq. 6-52 into Eq. 6-48 indicates that $F = \infty$ when the denominator becomes zero. Equate the denominator to zero; divide by $\cos \beta$; and then solve for β_L , the locking angle, defined by Eq. 6-59.

$$\beta_L = \operatorname{Tan-'} \frac{\mu_r \mu_t \left(1 + 2 \frac{d}{c}\right) + 2 \mu_t \left(\frac{d}{b}\right) - 1.0}{\mu_t \left[2\mu_r \left(\frac{d}{b}\right) - 2 \left(\frac{d}{c}\right) - 1\right] - \mu_r}$$
(6-59)

6-6

4

Figure 6-4. Loading Diagram of Bolt and Cam During Deceleration

6-2.2 ROTOR KINEMATICS

The rotor is brought to speed under constant, varying, or a combination of both types angular acceleration during a prescribed period of time t. During the acceleration of the rotor, the acceleration of the round induced by the cam is modified by the components derived from the angular acceleration. If the acceleration is constant at a, the angular velocity is

$$\omega = at \tag{6-60}$$

and the angular travel becomes

$$\theta = \frac{1}{2} \left(\alpha t^2 \right) \cdot \tag{6-61}$$

While the rotor has constant acceleration when traversing the constant slope of the cam, the axial travel of the cam follower according to Eqs. 6-19 and 6-31 is

$$x = \pm \left(R_c\theta\right) \tan\beta = \pm \frac{1}{2} \left(R_c \alpha t^2\right) \tan\beta. \quad (6-62)$$

Positive indicates feed; negative, ejection. The linear velocity is

$$x = \pm R_{\alpha} \alpha t \, \tan \beta. \qquad (6-63)$$

The linear acceleration becomes

$$x = \pm R_c \alpha \tan \beta. \qquad (6-64)$$

When traversing the feed and ejection acceleration portions of the cam, in this case a parabola, the axial travel, Eq. 6-16, while the rotor has constant acceleration is defined by

$$x = \pm \frac{1}{K} \left(R_c^2 \ \theta^2 \right) = \frac{R_c^2}{4K} \left(\alpha^2 t^4 \right)$$
(6-65)

$$\dot{x} = \pm \frac{R_c^2}{K} \left(\alpha^2 t^3 \right) \tag{6-66}$$

$$x = \pm 3\left(\frac{R_c^2}{K}\right) \left(\alpha^2 t^2\right)$$
(6-67)

AMCP 706-260

Positive indicates feed acceleration whereas negative indicates ejection acceleration. During feed and ejection deceleration, Eq. 6-22, while the rotor has constant acceleration, Eq. 6-61, the mechanics alternate correspondingly.

$$\mathbf{x} = \pm x_2 \mp \frac{l}{K} \left[y_2^2 - y_2 R_c \alpha t^2 + \frac{1}{4} \left(R_c^2 \alpha^2 t^4 \right) \right]$$
(6-68)

$$x = \mp \frac{1}{K} \left(R_c^2 \alpha^2 t^3 - 2y_2 R_c \alpha t \right) \tag{6-69}$$

$$\ddot{x} = \mp \frac{1}{K} \left(3 R_c^2 \alpha^2 t^2 - 2 y_2 R_c \alpha \right)$$
(6-70)

During dwell periods at constant rotor acceleration; the travel, velocity, and acceleration are all zero, i.e., $x = 0, \dot{x} = 0$.

When the rotor has a variable acceleration, a constantly decreasing one is generally preferred, thus

$$\frac{d\alpha}{dt} = \frac{d^3\theta}{dt^3} = K_{\alpha} \qquad (6-71)$$

$$\alpha = \frac{d^2\theta}{dt^2} = K_{\alpha}t + C_1 \qquad (6-72)$$

$$\omega = \frac{d\theta}{dt} = \frac{1}{2} \left(K_{\alpha} t^2 \right) + C_1 t + C_2 \qquad (6-73)$$

$$e = \frac{1}{6} \left(K_{\alpha} t^{3} \right) + \frac{1}{2} \left(C_{1} t^{2} \right) + C_{2} t + C_{3} \qquad (6-74)$$

While traversing the constant slope of the cam for feed and ejection, **Eqs.** 6-19 and 6-31, when $x = \pm R_c \theta$, tan β , the mechanics are alternately

$$x = \pm R_c \left[\frac{1}{6} \left(K_{\alpha} t^3 \right) + \frac{1}{2} \left(C_1 t^2 \right) + C_2 t + C_3 \right] \tan \beta$$
(6-75)

$$x = \pm R_c \left[\frac{1}{2} \left(K_{\alpha} t^2 \right) + C_1 t + C_2 \right] \tan \beta \qquad (6-76)$$

$$\mathbf{x} = \pm R_c (K_{\alpha}t + C_1) \tan \beta$$
. (6-77)

While traversing the increasing slope of the cam, Eqs. 6-16 and 6-28, when $\mathbf{x} = \pm \frac{1}{K} \left(R_c^2 \theta^2 \right)$, the mechanics for feed and ejection appear, respectively,

$$x = \pm \frac{R_c^2}{K} \left[\left(\frac{K_\alpha^2}{36} \right) t^6 + \left(\frac{K_\alpha C_1}{6} \right) t^5 + \left(\frac{4K_\alpha C_2 + 3C_1^2}{12} \right) t^4 + \left(\frac{K_\alpha C_3 + 3C_1 C_2}{3} \right) t^3 + (C_1 C_3 + C_2^2) t^2 + 2C_2 C_3 t + C_3^2 \right] \quad (6-78)$$

$$\dot{x} = \pm \frac{R_c^2}{K} \left[\frac{K_{\alpha}^2 t^5}{6} + \left(\frac{5K_{\alpha}C_1}{6} \right) t^4 + \left(\frac{4K_{\alpha}C_2 - \frac{4}{3}C_1^2}{\frac{3}{3}} \right) t^3 + (K_{\alpha}C_3 + 3C_1C_2)t^2 + 2(C_1C_3 + C_2^2)t + 2C_2C_3 \right]$$
(6-79)

$$\begin{split} \ddot{x} &= \pm \overset{R^{2}}{\mathcal{L}} \left[\left(\frac{5K_{\alpha}^{2}}{6} \right) t^{4} + \left(\frac{10}{3} K_{\alpha}C_{1} \right) t^{3} \right. \\ &+ \left(4K_{\alpha}C_{2} + 3C_{1}^{2} \right) t^{2} \\ &+ 2(K_{\alpha}C_{3} + 3C_{1}C_{2})t + 2(C_{1}C_{3} + C_{2}^{2}) \right] \end{split}$$

$$(6-80)$$

If $F(K_{\alpha}t)$ represents the function in the brackets of **Eq.** 6-78, then the last three equations reduce to

$$x = \pm \frac{R_c^2}{K} \left[F(K_{\alpha}t) \right]$$
 (6-81)

$$x = \pm \frac{R_c^2}{K} \left[F'(K_{\alpha}t) \right]$$
 (6-82)

$$\ddot{x} = \pm \frac{R_c^2}{K} \left[F''(K_{\alpha}t) \right]. \qquad (6-83)$$

The mechanics for deceleration during feed, Eq. 6-22, and ejection, Eq. 6-37, are alternately

$$x = \pm x_{2} T \frac{1}{K} - 2y_{2}R_{c} \left[\left(\frac{1}{6}K_{\alpha} \right) t^{3} + \left(\frac{1}{2}C_{1} \right) t^{2} + C_{2}t + C_{3} \right] + R_{c}^{2} \left[F(K_{\alpha}t) \right] \right]$$
(6.84)

(6-84)

$$\dot{x} = \pm \frac{1}{K} \left\{ 2y_2 R_c \left[\left(\frac{1}{2} K_\alpha \right) t^2 + C_1 t + C_3 \right] - R_c^2 \left[F'(K_\alpha t) \right] \right\}$$

$$(6-85)$$

$$\ddot{x} = \pm \frac{1}{K} \left\{ 2y_2 R_c \left(K_{\alpha} t + C_1 \right) - R_c^2 \left[F''(K_{\alpha} t) \right] \right\}.$$

(6 - 86)

6-2.3 ILLUSTRATIVE PROBLEM

Compute the cam accelerating forces, the torque needed to develop these forces, and all associated data to operate a 20 mm, 6-barreled gun. The assigned data

- b = 3.0 in., moment arm of tipping track reactions
- c = 1.5 in., moment arm of rotational track reactions
- d = 0.732 in., CG of bolt to center of cam roller surface
- $f_r = 3000$ rounds/min, firing rate (equivalent to angular velocity of 52.36 rad/sec)
- $I_d = 11.2 \text{ lb-in.-sec}^2$, moment of inertia of all rotating parts
- L = 6.6 in., length of bolt travel
- R = 2.643 in., radius, gun axis to bolt CG

$$R_c = 3.375$$
 in., cam radius

- $t_{\alpha} = 0.35$ sec, accelerating time of rotor
- $W_b = 1.15$ lb, bolt weight
- $W_a = 0.57$ lb, weight of total round
- $W_{cc} = 0.25$ lb, weight of empty case
- $\alpha_m = 200 \text{ rad/sec}^2$, maximum acceleration of rotor
- $\mu_r = 0.063$, coefficient of rolling friction of cam roller
- $\mu_s = 0.22$, coefficient of friction of case
- $\mu_t = 0.125$, coefficient of friction of track

Fig. 6-1 illustrates the developed cam. For an effective firing cycle, the bolt travel in terms of peripheral travel of the rotor

- 8, = 36° , dwell while bolt is fully retracted
- 8, = 42°, acceleration distance with total round
- 8, = 90°, distances at constant velocity in each direction
- $\theta_d = 12^\circ$, decelerating distance in each direction

$$\theta_f = 40^\circ$$
, dwell while firing

 $\theta_c = 38^\circ$, acceleration distance with empty case

The total peripheral length of the cam, Eq. 6-12

$$L_c = 2\pi R_c = 6.75\pi = 21.2058$$
 in.

6–2.3.1 Cam Analysis During Feed, Rotor at Constant Velocity

The peripheral travel of the bolt while carrying the total round via Eq. 6-10

$$y_1 = R_c \theta_a = 3.375 \left(\frac{42\pi}{180}\right) = 2.4740$$
 in.
 $y_2 = R_c \theta_d = 3.375 \left(\frac{12\pi}{180}\right) = 0.7069$ in.
 $6-9$

The peripheral travel during constant velocity, Eq. 6-13

$$y_a - \frac{\pi}{2} R_c = 5.3014$$
 in.

From Eq. 6-15

$$x_1 = \frac{Ly_1}{2y_a + y_{1+Y_2}} = \frac{6.6 \times 2.474}{13.7837} = 1.1846$$
 in.

From Eq. 6-9

$$x_2 = \left(\frac{y_2}{y_1}\right) x_1 = \left(\begin{array}{c} 0.7069\\ 0.7069\\ 2.474\end{array}\right) 1.1846$$

= 0.3385 in.

From Eq. 6-2

$$\beta = \text{Tan-'} \quad \frac{2x_2}{y_2} = \text{Tan^{-1}} \quad \frac{0.677}{0.7069}$$
$$= \text{Tan-'} \quad 0.9577 = 43^{\circ}46'$$
$$\sin \beta = 0.69172$$
$$\cos \beta = 0.72216.$$

According to Eq. 6-2, for the accelerating curve

$$K_1 = \frac{2y_1}{\tan \beta} = \frac{4.948}{0.9577} = 5.1665$$
 in.

For the decelerating curve, K_2 is found when y = 0 in Eq. 6–6

$$K_2 = \frac{2y_2}{\tan\beta} - \frac{1.4138}{0.9577} = 1.4762$$
 in.

The firing rate of 3000 rounds/min is equivalent to 500 rpm since there are six barrels. The angular velocity is

$$\omega = \frac{2 \times 500\pi}{60} = 52.36 \text{ rad/sec.}$$

The bolt acceleration with total round, Eq. 6-18, is

$$\frac{1}{x} = \frac{2}{K_1} \left(R_c^2 \omega^2 \right) = \frac{22.78 \ x \ 2742}{5.1665}$$
$$= 12089 \text{ in./sec}^2 = 31.29 \text{ g.}$$

6-10

The inertia force of bolt and round, Eq. 6-40, is

$$F_a = (M_b + M_a)\ddot{x} = 1.72 \times 31.29 = 53.8 \text{ lb.}$$

The centrifugal forces of bolt and round according to Eqs. 6-41 and 6-42 are

$$F_b = \left(\frac{W_b}{g}\right) R\omega^2 = 1.15 \text{ x } 18.8 = 21.6 \text{ lb}$$

where

$$\frac{R\omega^2}{g} = \frac{2.643 \text{ x } 2742}{386.4} = 18.8 \text{ g}$$

$$F_s = M_s R\omega^2 = 0.57 \text{ x } 18.8 = 10.7 \text{ lb.}$$

The frictional resistance due to centrifugal force (Eq. 6-43; > 0)

$$R_{fc} = \mu_t F_b + \mu_s F_s = 0.125 \times 21.6 + 0.22 \times 10.7$$

= 5 lb.
$$R_{fa} = 0 \quad (\text{since } \alpha = 0)$$

If we substitute the numerical equivalents for the general terms, Eq. 6-52 may be written

$$N = \frac{58.8}{0.9234 \cos \beta - 0.3062 \sin \beta}$$

The locking angle, Eq. 6-59, is

$$\beta_L = \text{Tan-'} \quad \frac{0.9234}{0.3062} = \text{Tan-'} \quad 3.0157 = 71^\circ 39'.$$

The bolt deceleration with total round, Eq. 6-24, is

$$\ddot{x} = -\left(\frac{2}{K_2}\right) R_c^2 \omega^2 = \frac{-22.78 \times 2742}{1.4762}$$

= -42,313 in./sec² = -109.5 g,

The inertia force of bolt and round, Eq. 6-40, is

$$F_a = (M_b + M_a)\ddot{x} = 1.72 (-109.5) = -188.3 \text{ lb.}$$

By proper substitution of numerical equivalents, Eq. 6-57 reads $(\dot{x} \ge 0)$

$$N = \frac{183.3}{1.0454 \cos \beta + 0.3138 \sin \beta}$$

While the bolt moves along the constant slope of the cam, $\ddot{x} = 0$, and the normal force on the roller becomes

$$N = \frac{R_{fc}}{0.9234\cos\beta - 0.3062\sin\beta} = \frac{5}{0.6668 - 0.2118} = 11 \text{ lb.}$$

6-2.3.2 Cam Analysis During Ejection, Rotor at Constant Velocity

The peripheral travel of the bolt carrying the empty case during acceleration is computed from Eq. 6-10

$$y_1 = R_c \theta_c = 3.375 \left(\frac{38\pi}{180}\right) = 2.2384$$
 in.

 $y_2 = 0.7069$ in., $y_a = 5.3014$ in., same as for total round.

From Eq. 6–15

$$x_1 = \frac{Ly_1}{2y_a + y_1 + y_2} = \frac{6.6 \times 2.2384}{13.5481} = 1.0904$$
 in.

From Eq. 6-9

$$x_2 = \left(\frac{y_2}{y_1}\right) x_1 = \left(---\right)$$
 1.0904 = 0.3444 in.

From Eq. 6-2

$$\beta = \operatorname{Tan}^{-1} \frac{2x_1}{y_1} = \operatorname{Tan}^{-1} \frac{2.1808}{2.2384} = \operatorname{Tan}^{-1} 0.97426 = 44^{\circ}15'$$

sin $\beta = 0.69779$ cos $\beta = 0.71630$.

For the accelerating curve, Eq. 6-2,

$$K_1 = \frac{2y_1}{\tan \beta} = \frac{4.4768}{0.9743} = 4.5944$$
 in.

For the decelerating curve, K_2 is found when y = 0 in Eq. 6–6

$$K_2 = \frac{2y_2}{\tan \beta} = \frac{1.100}{0.9743} = 1.4509 \text{ in}$$

The bolt acceleration with empty case, Eq. 6-30, is

$$\ddot{x} = -\left(\frac{2}{K_1}\right) R_c^2 \omega^2 = -\frac{22.78 \times 2742}{4.5944}$$
$$= -13595 \text{ in./sec}^2 = -35.2 \text{ g.}$$

The inertia force of bolt and empty case, Eq. 6-40, is

$$F_a = (M_b + M_{cc}) \times = 1.40 (-35.2) = -49.3$$
 lb.

The forces during ejection have the same identification **as** those during feed since the same dynamic equations apply to both periods.

The centrifugal force F_s of the empty case, Eq. 6–42, is

$$F_s = M_{cc} R \omega^2 = 0.25 \text{ x} 18.8 = 4.7 \text{ lb}.$$

The frictional resistance due to centrifugal force (Eq. 6-43, $\dot{x} \leq 0$)

$$R_{fc} = -(\mu_t F_b + \mu_s F_s)$$

= -(0.125 x 21.6 + 0.22 x 4.7) = - 3.7 lb.
$$R_{fa} = 0$$

After numerical equivalents are substituted, Eq. 6-52 reads

$$N = \frac{53.0}{0.9234 \cos \beta - 0.3062 \sin \beta}$$

The bolt deceleration with empty case, Eq. 6-39, becomes

$$\ddot{x} = \left(\frac{2}{K_2}\right) R_c^2 \omega^2 = \frac{22.78 \times 2742}{1.4509}$$
$$= 43,051 \text{ in./sec}^2 = 111.4 \text{ g.}$$

From Eq. 6-40

$$F_a = (M_b + M_{cc})\ddot{x} - 1.40 \times 111.4 = 156 \text{ lb.}$$

The substitution of numerical equivalents makes Eq. $6-57 \operatorname{read} (\dot{x} < 0)$

$$N = \frac{152.3}{1.0454 \cos \beta + 0.3138 \sin \beta}$$

For the constant slope portion of the cam while $\ddot{x} = 0$,

$$N = \frac{R_{fc}}{0.9234 \cos \beta - 0.3062 \sin \beta} = \frac{3.7}{0.4452} = 8 \text{ lb.}$$

6-2.3.3 Cam Analysis During Rotor Acceleration

The rotor is brought to speed under a constant acceleration of 200 rad/sec² for 0.1736 sec and then at a constantly reducing acceleration that is defined in Eqs. 6-71 and 6-72. When t = 0 and α = 200, in Eq. 6-72, $C_1 = 200$; when $\alpha = 0$, $K_{\alpha}t = -200$. Under constant acceleration, the rotor has achieved an angular velocity of 34.72 rad/sec; therefore, for the initial conditions of Eq. 6-73, when t = 0, $\omega = 34.72$ and $C_2 = 34.72$,

$$\omega = \frac{d^{e}}{dt} - \frac{1}{2} \left(K_{\alpha} t^{2} \right) + 200t + 34.72 \quad (6-87)$$

substitute -200 for $K_{\alpha}t$ and 52.36 rad/sec for ω (see par. 6–2.3.1), the upper limit of the angular velocity

$$52.36 = -100t + 200t + 34.72$$
$$t = \frac{17.64}{100} = 0.1764 \text{ sec}$$

$$K_{\alpha} = - \frac{200}{0.1764} = - 1133.79.$$

Rewrite Eqs. 6-72 and 6-73 and include the time elapsed during constant acceleration

$$\alpha = \frac{d^2\theta}{dt^2} = -1133.79 (t - 0.1736) + 200$$
(6-88)
$$\omega = \frac{d\theta}{dt} = -566.895 (t - 0.1736)^2$$

$$+ 200 (t - 0.1736) + 34.72 \quad (6-89)$$

2

Substitute the proper values into Eq. 6-74 and integrate

$$e = -188.965 t^3 + 100 t^2 + 34.72 t + C_3$$
 (6-90)

when t = 0, $\theta = 3.014$, and $C_3 = 3.014$. Modify the time by compensating for the constant acceleration period

$$e = -188.965 (t - 0.1736)^3 + 100 (t - 0.1736)^2 + 34.72 (t - 0.1736) + 3.014 (6-91)$$

when t = 0.35 sec

$$\theta = -1.037 + 3.112 + 6.125 + 3.014 = 11.215$$
 rad

During constant acceleration of $\alpha = 200$,

$$\omega = \alpha t = 200 \text{ t when } t \le 0.1736 \qquad (6-92)$$

$$\theta = \frac{1}{2} \left(\alpha t^2 \right) = 100 t^2 \text{ when } t \le 0.1736 \qquad (6-93)$$

6-2.3.4 Digital Computer Routine for Gun Operating Power

A digital computer program has been compiled in FORTRAN IV language for the UNIVAC 1107 Computer. The program follows, in proper sequence, the computing procedures discussed throughout Chapter 6 i.e., begin with constant acceleration; continue at a reducing acceleration at a constant rate; and then complete the computations while the rotor is turning at constant velocity.

Fig. 6-5 is a visual concept of the analysis. The drum and, therefore, the projected cam periphery are divided into six equal zones, each zone being occupied by one cam follower and corresponding bolt which are numbered in sequence according to zone number. Although all bolts travel the full periphery during each rotor revolution, we assume that each travels, from θ_0 to θ_5 six times in one zone. Thus, in Fig. 6-5, Bolt No. 1 moves from 0" to 60". On reaching 60" (θ_5) it becomes Bolt No. 2. In the meantime, Bolt No. 2 moves from 60° (θ_0) to 120" (θ_5) where it becomes Bolt No. 3. The sequence continues until Bolt No. 6 becomes Bolt No. 1 and then the cycle repeats. This procedure is a convenient method for defining the dynamics of all bolts at any position on the cam. For the analysis, all bolts are assumed to start from θ_0 and in line, and traverse the distance to θ_5 . Fig. 6–1 shows the relative positions on the cam.

Figure 6-5. Bolt Position Diagram for Computer Analysis

Each accelerating period, constant and varying, is divided into 40 equal differential time increments. A time increment of one millisecond is then assigned to the period of constant velocity. The analysis continues the constant velocity period until one cycle of bolt travel, θ_0 to θ_5 is completed. After the torque, Eq. 6–58, has been computed for a given increment, the required horsepower to produce this torque is computed

$$HP = T\omega/6600$$

where 1 horsepower = 6600 in.-lb/sec.

Table 6–1 lists the symbol-code correlation for the computed variables of the computer program. Table 6–2 lists the symbol-code correlation and the numerical values of the constants. Computed cam dynamics for three increments of time are listed in Table 6–3 as a sample output, while Table 6–4 lists the computed torques and horsepower required for each increment. The flow chart, A–13, and the program listing, A–14, are in the Appendix.

6-3 RATING OF GAS-OPERATED AND EXTERNALLY POWERED GUNS

The choice of a gas-operated gun, or whether an externally powered weapon should be selected over a gas-operated one, is not the superiority of one type over

another but rather the tactical purpose of each type. The impingement and tappet types are usually assigned to carbines and subcaliber automatic guns with neither being markedly superior to the other. For small caliber machine guns, cal .30 and .50, firing at the rate of about 1000 rpm, the cut-off expansion or expansion types are appropriate. Rate of fire within limits is controlled by design detail. Everything being equal, the expansion type should be faster; its gas port is never sealed off from the bore gases.

High rates of fire for large caliber machine guns, cal .60 and above, are generally not feasible for the single chambered type. Long bolt travel for loading and extracting consumes too much time for high cyclic rates. The revolver-and Gatling-types restore the large calibers to the high firing rate category. The revolver-types may be gas-operated or may be driven by external power. Firing rates are in the order of 1000 to 1200 rpm. Gatling-types, because of ducting problems, are consigned to external drives and normally have the highest sustained rate of fire of all machine guns. The multiple barrels of the Gatling-type provide superiority over the single-barreled revolver-type in the areas of fire power, reliability and durability, and generally require less maintenance. On the other hand, the revolver-type has better handling characteristics and is more versatile with respect to efficiency, the Gatling-type being restricted to those periods of highly intensive fire for short periods of time such as in air-to-air combat.

Symbol	Code	Symbol	Code
F	F	t (msec)	TIMEM
F _a	FA	x	Х
FR _c	TORKB	x	V
ΣFR_c	BTSUM	x	А
HP	POWER	Y	Y
I _d α	тоw	a	ALPHA
Ň	EN	Р	В
R _{fa}	RFA	β°	BDEG
R _{fc}	RFC	8	THETA
T	TORK	8"	THETAD
t	Т	ω	OMEGA

TABLE 6–1. SYMBOL-CODE CORRELATION OF VARIABLES FOR MULTIBARREL GUN

No.	Symbol	Code	Data	No.	Symbol	Code	Data
1	K _{af}	AFK	5.1774	24	α	ALPHAO	200
2	K _{df}	DFK	1.4762	25	ω_{max}	OMEGAM	52.36
3	K _{ae}	AEK	4.5944	26	y_{1f}	Y1F	2.4740
4	K _{de}	DEK	1.4509	27	y_{2f}	Y2F	0.7069
5	Kα	AK	- 1133.79	28	x_{1f}	X1F	1.1846
6	C_1	C1	200.0	29	x_{2f}	X2F	0.3385
7	<i>C</i> ₂	c 2	34.72	30	tanβ _f	TANBF	0.9577
8	C_3	c 3	3.014	31	$tan \beta_e$	TANBE	0.9743
9	θ_1	ANGLE1	0.0698	32	y 10	Y1E	2.2384
10	θ2	ANGLE2	0.2094	33	. 1e Yae	Y2E	0.7069
11	θ_{3}	ANGLE3	0.4189	34	x, a	X1E	1.0904
12	θ_4	ANGLE4	0.7330	35	x 20	X2E	0.3444
13	θ_{f}	ANGLE5	1.0472	36	g	G	386.4
14	L	EL	6.6	37	Δt_1	DELT 1	0.00434
15	R	R	2.643	38	Δt_2	DELT2	0.00441
16	R_c	RC	3.375	39	Δt_3	DELT3	0.001
17	W _b	WB	1.15	40	μ_r	EMUR	0.063
18	W _s	WST	0.57	41	μ_s	EMUS	0.22
19	W _{cc}	WSE	0.25	42	μ_t	EMUT	0.125
20	K	COEFC1	0.9234	43	I	EYE	11.2
21	K _{c2}	COEFC2	1.0454	44	β_{f_1}	BF1	0.76387
22	K	COEFS1	0.3062	45	β	BE 1	0.75230
23	<i>K</i> ³ _{<i>s</i> ²}	COEFS2	0.3138		C 1		

TABLE 6-42. SYMBOL-CODE CORRELATION AND INPUT FOR GUN OPERATING POWER
	TABLE	6-3.	CAM	DYNAMICS
--	-------	------	-----	----------

		CAM UYNAMICS AT 116.59 MILLISECONDS										
			BOLT	AX TAL	NORMAL	ANGULAR	САМ	CAM	CAM	BOLT		
BOLT	BOLT	BOLT	AXIAL	INERTIA	FRICTION	INERTIA	CURVE	NORMAL	URIVING	DRIVING		
NO	ACCELERATION	VELOCITY	TRAVEL	FORCE	FORCE	FORCE	ANGLE	FORCE	FORCE	TORQUE		
	IN/SEC/SEC	INTSEC	INCH	POUND	POUND	POUND	DEGREE	POUND	POUND	8 ⇒ N		
1	54 。	5.91	2	U	1.	<u>.</u>	22.143	1.	1	2.		
2	640 .	75.37	3.209	3.	1.	0.	43.767	8.	D +	20 .		
- 3	536.	38.40	6.512	۲.	1.	0.	26.012	5.	2.	8.		
4	=34 .	-27.30	6.458	-0 -	1.	0.	19.133	1.	0.	1.		
5	-641	-74.72	3.530	-2.	- 1.	0.	43.517	1.	5.	17.		
6	-622。	-38.07	•88 8	-2.	1.	0.	25.817	4.	2.	7.		
				CAM DYNA	MICS AT 118	3.84 MILLIS	ECONDS					

			BOLT	AXIAL	NORMAL	ANGULAR	CAM	CAM	CAM	BOLT
BOLT	BOLT	BOLT	_AXIAL	INERTIA	FRICTION	INERTIA	CURVE	NORMAL	DRIVING	DRIVING
NO	ACCELERATION	VELOCITY	TRAVEL	FORCE	FORCE	FORCE	ANGLE	FORCE	FORCE	TORQUE
	IN/SEC/SEC	IN/SEC	INCH	POUND	POUND	POUND	DEGREE	POUND	POUND	L8-IN
1 2	72 . 646.	8.06	293 3•380	0. 3.		0.	25.449	2.	1.	3. 20 .
3	486.	19.75	6.578	2.	1	0.	13.831	4.	1.	4.
4	-50	-33.90	6.389	-0 -	1.	0.	22.911	1.	1.	2.
5	-6	-76 .16	3.361		1.	<u> </u>	43.517	1.	3.	17.
6	-599 -	-19.58	.023	-2.	1.	0.	13.716	4.	1.	4.

CAM DYNAMICS AT 121.08 MILLISECONDS

			BOLT	AXIAL	NORMAL	ANGULAR	CAM	CAM	CAM	BOLT
ND	BOLT ACCELERATION	BOLT VELOCITY	AXIAL TRAVEL	FORCE	FRICTION	INERTIA FORCE	ANGLE	FORCE	FORCE	DRIVING TORQUE
	N7SEC7SEC	IN/SEC	INCH	POUND	POUND	POUND	DEGREE	POUND	POUND	CB-IN
1 2	93 . 646 .	11.08 78.27	• 386 3 •554	U. 5.	1. 1. 1.	0.0.	28•641 43.767	2. 8.	Å 6 .	20
3 4	42/. -69.	02 -40.85	6.600 6.306	2. -U_	1.	0 • 0 •	013 26.555	3. 2	0. 1.	А З.
5 6	-6 -567.	- 0 _02	3.188 .801	- -2.		0.	43.31 / 013	3.	<u>s</u> 0.	1.

¥

_		ROTOR	ROTOR	ROTOR	BOLT	TOTAL			
N=		ANGULAR	ANGULAR	ANGULAR	PERIPHERAL	CAM	ROTOR	REQUIRED	REQUIRED
CRI-	TIME	ACCELERATION	VELOCITY	TRAVEL	TRAVEL	TORQUE	TORQUE	TORQUE	HORSE-
MENT	MILSEC	RAD/SEC/SEC	RAD/SEC	DEGREE	INCH	LB-IN	LB=IN	LB=IN	POWER
<u> </u>	26.420	200 00	E 20			69.	2240	2302	1.8
	201420	200 00	0.20 6 05	4. u	•230	67	2240	23021	1.0
- 2	31.255	200 00	0.25	5.0	• 330	03.	2240.	2303.	2.2
3	50.090	200.00	1.22	7.5		64.	2240.	2304.	2.3
4	40.923	200.00	0+19		000	00. h.7	2240+	2300.	217
5	45.760	200.00	10.10	14 6	1707	51	2240.	2307	7 6
— "	50+501	200.00	10.10	173	4.021	<u> </u>	2240.	22711	3.5
	50 092	200.00	12.00	20.6	1.214	49.	3240	2288.	4.2
<u> </u>	64.722	200.00	12.00	20.0	1.414	33	2240.	2293.	4.5
10	69 946	200.00	13.09	28.0	1.651	60.	2240.	2300.	49
11	75 169	200.00	13.03	32.4	1.907	12.	2240.	2312	33
12	80 392	200.00	16.08	37.0	2.181	87.	2240.	2327.	57
12	85.615	200.00	17.12	42.0	2.474	107.	2240	2347.	0.1
14	93 974	200.00	18 79	50.6	2.981	69.	2240.	2309.	6.6
15	102.333	200.00	20.47	60.0	3.534	71.	2240	2311.	
16	105.688	200.00	21.14	64.0	. 236	72.	2240.	2312.	7.4
-17-	107.291	200.00	21.46	66.0	.351	72.	2240.	2312	/+3
18	108.893	200.00	21.78	67.9	.468	73.	2240.	2313.	7.6
42	410,4960	200.00	22.10	70.0	.586	74.	2240.	2314.	7.7
20	112.098	200.00	22.42	72.0	.707	74.	2240.	2314.	7.9
21	114.344	200.00	22.87	74.9	.878	63.	2240.	2303.	8.0
22	116.590	200.00	23.32	77.9	1.053	55.	2240.	2295.	8.1
23	118.837	200.00	23.77	80.9	1.232	49.	2240.	2289.	8.2
24	121.083	200.00	24.22	84.0	1.414	44.	2240.	2284.	8.4
25	124.168	200.00	24.83	08.3	1.669	46.	2240.	2286.	8.5
26	127.253	200.00	25.45	92.8	1.931	50.	2240.	2290.	8.8
-27	130 339	Z00.00	26.07	97.3	2,199	54.	2240 .	2294.	9.1
28	133.424	200 .00	26.68	102.0	2.474	60.	2240.	2300.	9.3
29	139.072	200.00	27.81	110.8	2.993	79.	2240•	231Y.	9.8
	144.720	200.00	28.94	120.0	3.534	81.	2240.	2321.	10.2
ai	147.112	200 . uu	29.42	124.0	230		2240.	2322.	10.5
32	148.280	200.00	29+66	120.0	• 352	82.	2240.	2322.	10.4
33	149.447	200.00	27:07	120.0	.407	03 .	2240+	2323 .	10.5
	150.615	200.00	30.12	130.0	+ 588	84.	2240.	2324.	10.0
33	151+/03	200.00	30 50	135 0	•/0/	71	2240+	2323 -	10.9
	100.471	200.00	30.69	10210	+001		2240.		10.8
20	1551156	200.00	34 37	444.0	4.024	57	2240	2207	10.9
- 39	100.040	200.00	31.07	144.0-	- 1.414		2240.		11.0
10	160 938	200 00	32 19	144.4	1.673	53.	2240.	2293.	11 2
40	163.341	200.00	32.67	152.9	1.936	36 -	2240	-2296	11.4
42	165.745	200.00	33.15	157.4	2 203	60.	2240.	2300.	11.6
43	168-149	200.00	33.63	162.0-	2.474	03.	2240.	2305.	41.0
44	173,600	200.00	34.72	172.7	3,103	89.	2240.	2329.	12.3
45	177.237	195.88	35.44	180.0	3.534	84.	-2194-	2277.	12.2

TABLE 6-4. GUN OPERATING POWER

TABLE 6-4. GUN OPERATING POWER (Con't.)

		ROTOR	ROTOR	ROTOR	BOLT	TOTAL			
K-		ANGULAR	ANGULAR	ANGULAR		САМ	ROTOR	REQUIRED	REQUIRED
CR E-	TIME	ACCELERATION	.VELOCITY	TRAVEL	TRAVEL	TORQUE	TORQUE	TORQUE	HORSE-
MENT	MILSEC	RAD/SEC/SEC	RAD/SEC	DEGREE	INCH	F. K	L8- *	8- N	POLER
46	179.195	193.66	35.82	184.0	•23b	112.	2169.	2281.	12.4
47	180.159	192.56	36.01	186.0	•352	132.	2157.	2289.	12.5
48	181.122	191.47	36.19	188.0	• 470	147.	2144.	2291.	12.6
49	182.086	190.38	36 .38	190.0	• 588	162.	2132.	2294.	12.6
-50	383.049	189.29	36.56	192.0	. 707	177.	2120 🖬	2297.	12.7
51	184.458	187.69	36.82	195.0	.881	-437.	2102.	1665.	9.3
-52	185,867	186.09	37.09	197.9	1.056	-206.	2084.	1878.	10.5
53	187.276	184.49	37.35	200.9	1.233	18.	2066.	2084.	11.8
34	188.685	182.90	37.61	204.0	1.414	247.	2048.	2295.	13.1
55	190.738	180•57	37.98	208.4	1.673	296.	2022.	2319.	13.3
56	192 .791	178.24	38.35	212.9	1.930	354.	1996.	2350.	13.7
57	194.843	175.91	38.71	217.4	2.205	419.	1970.	2389.	14.0
38	196.896	173.59	39.07	222. 0	2.474	492.	1944.	2437.	14.4
59	200.852	169.10	39.75	230.9	3.000	93.	1894.	1987.	12.0
60	204.808	164+62	40.41	240.0	3 534	93.	1844.	1936.	11.9
61	206.531	162.66	40.69	244.0	• 236	120.	1822.	1942.	12.0
62	207 384	161.70	40.83	240.0	1333	141.	1011.	1952.	12.1
63	208.237	160+73	40.97	240.0	• 472	122.	1800.	1422.	12.1
65	209.091	109.10	41.1U 41.24	250 0	1070 707	196	17070	1044	12.3
- 60	209.944	150.75	71027		•/0/	100.	1//0+	17071	1210
67	212.451	155 95	41.63	255.0	+00 4 1-060	-420.	1747.	1551.	0.A
-60	211 704	154.53	41.00	261.0	1.236	27.	1751	4757	
69	214 957	153.11	42.02	264.0	1.414	250.	1715.	1965	12.5
-70-	216.801	151.02	42.30	268.5	1.675	300.	1691.	1991.	12.9
71	218.645	148.93	42.58	272.9	1.940	357.	1668.	2025.	13.1
-72-	220.489	146.84	42.85	277.4	2.206	421	1645.	2065	13.4
is	222.332	144.75	43.12	282.0	2.474	493	1621	2114.	13.8
74	225.931	40.67	43.63	290.9	3.000	100.	1575.	16/5.	11.1
75	229,530	136.59	44.13	300.0	3.534	100.	1530.	1630.	10.9
76	231.107	134.80	44.35	304.0	.236	126.	1510.	1636.	11.0
77	231.890	133.91	44.45	306.0	•352	147.	1500 .	1647.	11.1
78	232.673	133.02	44.50	308.0	•469	161.	1430.	1651.	11.1
79	233.456	132.14	44.66	310.0	•587	176.	1420.	1656.	11.2
80	234.238	131 .23	44.76	312.0	∎707	192 .	1470.	1662.	11:3
81	235.400	129 93	44.91	315.0	.881	-424.	1455.	1031.	7.0
82	236.561	128.62	45.06	318.0	1.057	-194.	14 0 -	1247 .	6+5
83	237.722	127 • 30	45.21	<u>3</u> 21.0	1.234	29.	1426.	1455.	10.0
84	2318084	125.98	45.36	324.0	1.414	234 .	1411.	1665.	11.4
85	240.597	124.04	45.57	328.4	1.675	303.	1389.	1692.	11.7
86	242.311	122.10	43.79	332.9	1.939	33Y .	1327.	1727.	12.9
07	244.025	120.15	45.99	337.4	2.204	423.	1346.	1768.	12.3
88	245.738	118 .21	46.20	341.9	2.474	495.	1.324.	1819.	12.1
89	249.122	114 .37	46.59	350.9	3.001	106.	1281.	1387.	9.8
90	252.505	110+54	46.97	360.0	3.334	106.	1238.	1344.	9.5

,

TABLE 6-4. GUN OPERATING POWER (Con't.)

		ROTOR	ROTOR	ROTOR	BOLT	TOTAL			
		ANGULAR	ANGULAR	ANGULAR	PERIPHERAL	CAM	ROTOR	REQUIRED	REQUIRED
	TIME	ACCELERATION	VELOCITY	IRAVEL	IRAVEL	TORQUE	TORQUE	TORQUE	HORSE-
MENT	MILSEL	RADISECISEC	RAD/SEC	DEGREE	INCH	FREIN	LR#1N	CONTN	PUWER
-91-	253.989	108.86	47.13	364.0	236	132.	1219.	1331	9.6
92	254.727	108.02	47.21	366.0	354	153.	1210.	1363.	9.7
-93-	255.465	- 107.18	47.29	368.0	.471	167.	1200.	1368.	9.8
94	256.203	106.35	47.37	370.0	• 589	182.	1191.	1373.	9.9
95	256.941	105.51 -	- 47.45	-372.0	•707	198.	1182.	1380.	7.9
96	258.040	104.26	47 .57	375.0	.884	-416.	1168.	752•	5.4
-97	259.139	103.02	47+68	378.0	1.060	=186.	1154.	968.	7.0
98	260.237	101.77	47.79	381 _e 0	1.237	36.	1140.	1176.	8.5
- 99	261.336	100.53	47.90	384 .0-	- 414	236+	1126.	1382.	10.0
100	262.965	98• 68	48.07	388.5	1•678	307.	1085.	1447.	10.3
101	264.594	96.83	48.22	393.0	1.943	363.			10.6
102	266.222	94 99	48.38	397.5	2.209	426+	1064.	1490.	10.9
103	267.851	93.14	48.53	402.0	2.474	497.	1043.	1540 .	11.3
104	271.069	89.49	48.83	411.0	3.004	110.	1002.	1113.	8.2
105	274.288	85.84	49.11	420.0	3.534	- 110.	46i 🛛	10717	8.u
106	275.707	84.23	49.23	424.0	_ 236	136.	943.	1079.	8r1
107	276.415	83.43	49.29	426.0	• 355	157.	Y34.	1092.	8.2
108	277.122	82•63	49.35	428.0	• 472	172.	925.	1097.	8+2
-109	2/1.830	81.83	49.41	430.0	590	187.	915.	1103.	b.3
110	278.537	81•02	49.46	432.0	<u>e 707</u>	202 🛛	907.	1110.	8.3
111	279.592	79.83	49.55	435.0	-885	-411.	894.	483.	J+D
112	280.648	70.63	49.63	438.0	1.061	-181.	881.	700	5.3
113	281.	11.43	79.72	441.0	1.238	40 .	867.	907.	0.0
114	282.759	76•24	49.00	444.0	1.414	259.	854 •	1112.	8.4
110	204.329	74.40		448.5	1.680	.aus "	034 .	1143 -	0+0
110	202+844	72•68	50.03	453.0	1•944	365•	814.	11/9.	0+3
110	201.409	70.90	50.14	457.5	2.210	428.	794 .	1077	2+3
-118	209.039	07+ 1Z	50.25	402.00	2•4/4	498	774+	12131	9.7
100	272+133	60.06	50.40	4/1.0	3.003	117	733 I	040 I 808	6.2
-121-	293.200	60.00		480.00	3 1034	113.	6950	808.	
100	270.040	50.70	50070	404.0	200	100.	6700	0110	0.3
122	297.330	59.12	50•79	480.0		160.	669	829•	0.4
104	290.017	20.74	50.83	400+0	+ 7 3	1/30	660.	033 -	0+4 6 E
-124-	290. 104	57.38	50.87	490-0		205	651*	841	015
106	200 417	56.22	50007	40E 0	0.05	-//07	6204	220	17
120	301 444	55-05	51.02	495.0	1,005	-178.	517		<u> </u>
128	302 470	53.89	51.08	501.0	1.239	43	604	647.	5r0
-120	318:40	52.72	51.13	504.0	1.414	260	591.	851.	0.0
130	305.028	50.99	51.21	508.5	1.680	311.	571.	882.	6.8
-13ĭ-	306.559	49.25	51.29	513.0	1.945 -	367.	552	918.	
132	308 090	47.52	51 • 36	517.5	2.211	430.	532.	962	75
135	309.622	45.78	51.44	<u> </u>	2.474		513.	1012.	1.5
134	312.668	42.33	51.57	531.0	3.006	116.	474 -	590.	4.6
135	313. /15	38.87	51.69	540.0	3.534	115.	435.	31.	4.3

TABLE 6-4. GUN OPERATING POWER (Con't.)

AMCP 706-260

		ROTOR	ROTOR	ROTOR	BOLT	TOTAL			DEALWORD
	TIME		ANGULAR	ANGULAR	TRAVEL		ROTOR	TOPOUE	-KEQUIKED
		ACCELERATION	PADZEEC				IURQUE		HORSE-
MCINI	MILSEC	RAU/SEC/SEC	RADI SEC	DEGREE	INCH		8- N		POWER
136	317.064	37 34	51.75	544 .0	.236	141.	418.	59Y .	4.4
137	317.738	36+58	51.77	540.0	• 305	162•	410	572	4+5
130	319 086	35.05	51 82	550.0	• 591	192	393 -	584.	46
140	319. t60		51.84	552.0	. 0	-207	384.	591.	4.0
141	320.768	33.14	51.88	555.0	•886	-405.	371.	-34	3
142	321.777	32.00	51.91	558.0	1.062	-176.	358.	182.	1.4
143	322.786	30.85	51.94	561+0	1.239	45 .	346.	390.	3.1
145	325.304	28.00	52.01	568.5	1.681	312.	314.	625	4.9
146	326.812	26.29	52.06	573 0	1.946	358.	294.	662.	3.2
147	328.320	24.58	52.09	577 🞝	2.211	430.	275.	706.	5.6
148 149	329•029 332.038	22•87 19•46	52.13 52,19	582.0 591.0	2.474 3.006	500. 117.	256. 218.	756. 335 .	2.6
150	335.848	16.05	52.25	600.0	3.534	116.	180•	296.	2.3
151	337.183	14.53	52.27	604.0	•236	142.	163.	304.	2.4
152	337.850	13.77	52.28	606.0	.353	163 .	154.	317.	2.5
153	338.518	13.02	52.29	608• ⁰	4 73	177.	146.	323.	2+6
154	339.185	12.26	52 29	610.0	•591	192 .	13/-	330.	2.0
100	339.852		52.30	615.0	• / U /	208.	129.	336.	201
167	341.854	9,24	52.32	618.0	1.062	-176.	103.	+73.	
158	342.855	8.10	52.33	621.0-	1.239	44	91	135.	
159	343.855	6.97	52.34	624.0	1.414	261.	78.	339 .	2.7
160	345.355	5.27	52.35	628.5	1.680	312.	59.	371.	2.9
161	346.854	3.57	52.35	633.0	1.945	367.	40.	407.	3.2
162	348 .354	1.87	52.36	637.5	2.210	430.	21 .	451.	3.5
163	350.000	00	52.36	642.5	2.474	500.	-0 -	500 ∎	4+0
164	333.000	.0	52.35	651.5	3.031	04.	u	64 .	•5
165	330.001		52:36	660.5	3 1034	64.	<u>v.</u>	64.	•5
167	358.000	-00 -00	52.36	666.5	• 381	132.	0.	132•	1.0
168	358.66/	.00	32 36	068.0	.498	132	Ų.	152.	1.2
169	359.333	00	52.36	670 _• >	•616	174.	0.	174,	1.4
170	360.000	_00	52.36	672.5	∎/07 • 911	191	0.	191.	1.5
172	363 001		52.36		1.1197	-0201		-283	- 500
173	363.001	•00 •00	52.36	681.5	1.264	43	0.	43 .	-2.2
174-	364,001	•00	52.36	684.5	1.414	314.	0.	314.	2+5
175	365.501	"O O "	52.36	689.0	1.706	384 🛛	0.	384.	3.0
176	367.001	. 00	52.36	693.5	1.971	457	0.	457.	3.0
177	360.500	<u>_00</u>	52.36	698.0	2+236	537 .	0.	537 .	4.3
470	370.000	•0	52.30	702.0	2021	013.	U.	013.	4.7
1/9	375.000	<u> </u>	52.30	711+5	3,031	64.	U. 	64.	+3

CHAPTER 7

COMPONENT DESIGN

7-1 GENERAL

Automatic weapons are equipped with practically the same components that other weapons need to insure effective and safe (to the operator) performance. Differences lie only in application since the components in the automatic weapon must be geared to automatic performance. These components include feed mechanisms, breech locking systems, sears, firing mechanisms, extractors, ejectors, and cocking mechanisms. Characteristics of other components such as muzzle devices which include silencers are presented in detail in other design handbooks ²⁵ or published reports ²⁶. Each component generally has features unique to automatic weapons.

7-2 FEED MECHANISM DESIGN

Automatic weapons are fed ammunition from magazines, clips, and belts; the type and capacity depending upon type of weapon. The bolt, moving in counterrecoil, strips the round from the feed mechanism and carries it into the chamber. The withdrawn round is instantly replaced by the next round of the supply.

The first step in designing a feed mechanism is defining the feed path. The feed path is the course of the round from mechanism to chamber. Two requisites take precedence: (1) to have the initial position of the projectile move as close to the chamber as the system permits, and (2) to have the base of the cartridge case as close in line to the center line of the bore as possible at the time of feed. The ideal would have the center lines of round and bore collinear. The ideal is not always possible; therefore, other arrangements must suffice but care must be exercised to avoid impact between bolt face and primer since bolt contacts cartridge during counterrecoil. The primer is the restricting element. The two views of Fig. 7-1 illustrate this characteristic. Unless surface contact is assured at impact, the outer edge of the bolt face must never extend into the primer surface, otherwise the edge may strike the primer with enough resulting penetration to set it off. To preclude premature discharge, a minimum space of 0.010 in. between the edges of the primer and bolt face is necessary. Because of override, impact cannot be eliminated; thereby, obviating this approach as a solution for premature firing. Override is the clearance between bolt face and cartridge case base needed to position the round before the bolt moves forward. Interference here cannot be tolerated, otherwise malfunction is inevitable.

Figure 7-1. Initial Contact of Bolt and Cartridge Case Base

Figure 7–2. Chamber-projectile Contact

Figure 7–3. Box Magazine

The next design operation is to provide a path for the round between the immediate receptacle and chamber, and guidance along this path. The receptacle—whether magazine, clip, or belt—provides the initial guidance which will be discussed later. The chamber provides the terminal guidance. The entrance to the chamber and the path of the round should be so arranged that any contact between chamber and projectile will take place on the ogive. Fig. 7–2 shows this arrangement. The chamber entrance may be enlarged by a ramp to eliminate the probability of the nose striking the chamber walls first.

7-2.1 MAGAZINES

Magazines, box or drum, are of limited capacity. Box magazines generally hold from 7 to 20 rounds in single or double rows; drums, up to 150 rounds.

7-2.1.1 Box Magazines

A box magazine may be attached to the receiver or it may be an integral part of it. Both types have a spring to keep forcing the rounds toward the bolt as firing continues. The box not only stores the rounds 'but also restrains their outward motion at the mouth and guides each round as the bolt strips it from the box. The restraining and guiding elements, called **lips**, are integral with the sides. Fig. 7-3 shows a box magazine with several rounds of ammunition.

Correct lip length is vital to dependable loading. Combined with the direction of the spring force, the lips control the position of the round as it enters the chamber. As indicated in Fig. 7–3, continuous control is exercised by the lips while they restrain the round and so long as the resultant spring force passes within their confines. If the resultant spring force falls forward of the lips, the round will have a tendency to tip excessively and increase the probability of jamming. Fig. 7-4 demonstrates how a short lip may fail to guide a round so that it enters the chamber without interference. Fig. 7-4 demonstrates how a longer lip will retain contact with the round long enough for the ogive to hit the ramp just prior to entering the chamber.

The shape of the lip has considerable influence on feeding. The round to be loaded should be restrained by line contact between the cartridge case and lip. Fig. 7-5shows how this effect can be arranged by making the inner radius of the lip less than the radius of the cartridge case. Absolute assurance of line contact is assured by forming the lip by a right angle bend. The spring load holds the round firmly until the bolt dislodges it. On the other hand, if the lip radius is larger than the cartridge case radius, accurate positioning of the rounds cannot be achieved with any degree of assurance. The cartridge case position, from round to round, may virtually float; thereby, causing an inconsistency in contact area between the bolt face and the rounds. Fig. 7-5 shows how the positions may vary with respect to the fixed bolt position. The larger the radius, the less assurance of sufficient contact area between the bolt face and cartridge case base. In extreme cases the bolt may hit the primer first and initiate it.

The dimensions of the cartridge and the intended capacity determine the size of the magazine. For a single row of cartridges, the width equals the diameter of the base plus 0.005 in.

$$w = D_c + 0.005$$
 (7-1)

where D_c = diameter of cartridge case base

$$w =$$
 inside width of magazine

Double rows of cartridges are stacked so that the centers form an equilateral triangle as shown in Fig. 7-6 where the inside width of the magazine is

$$w = 1.866 D_{c} + 0.005.$$
 (7-2)

The nominal depth of the magazine storage space with double rows is

$$h = \frac{1}{2} D_c (N+1)$$
 (7-3)

where h = depth

N = number of rounds

Figure 7-4. Lip Guides

(A) PROPER ARRANGEMENT, $R_{b} < R_{c}$

(B) POOR ARRANGEMENT, $R_b > R_c$

Figure 7-5. Lip-cartridge Case Orientation

Figure 7-6. Geometry of Double Row Stacking

7-2.1.2 Box Feed System

The box feed system has three major components, the box which has been discussed, the follower, and thc spring. The follower separates the column of cartridges from the spring, transmits the spring force to the cartridges, and provides the sliding surface for the last (single row) or last two (double row) cartridges. The follower also holds the stored rounds in alignment. It should never restrict spring activity. Fig. 7–7 shows three views of a follower. The spring may be a round wire spring shaped into rectangular coils or it may be a flat steel tape folded over at regular intervals to approximate the side view of a helix.

Figure 7-7. Box Magazine Follower

7–2.1.2.1 Flat Tape Spring

The flat steel spring functions in bending rather than in torsion. Each segment behaves as a cantilever beam that has the loaded end restrained from rotating. Fig. 7–8 shows this analogy and the loading diagram. Beginning at the follower, the bending moment M, at the bend, when the applied load is assumed to be concentrated at the middle of the follower is

$$M_o = -\frac{1}{2} (FL) \tag{7-4}$$

where F = spring force

L =length of each spring segment

The bending moment at the end of the first free segment

$$M = M_o + F_L = \frac{1}{2} (F_L).$$
 (7-5)

This moment is identical and, therefore, constant for all segments of the spring. The deflection of one end of each segment with respect to the opposite one is

$$Ay = \frac{M_o L^2}{2EI} + \frac{FL^3}{3EI} = \frac{FL^3}{12EI}$$
(7-6)

where E =modulus of elasticity

I = area moment of inertia of the spring cross section

The total deflection of a spring having N active segments is

$$y = \Sigma \Delta y = N \Delta y = \frac{NFL^3}{12EI}$$
(7-7)

Solve for the spring constant.

$$K = \frac{F}{Y} = \frac{12 EI}{NL^3}$$
(7-8)

Not only must the spring exert enough force to hold the ammunition in position but it must *also* provide the acceleration to advance the ammunition and the other moving parts over the distance of one cartridge space in time for the bolt to feed the next round. The equivalent mass of all moving parts in the ammunition box is

Figure 7–8. Flat Tape Spring and Loading Analogy

$$M_{e} = \left[(N-1) W_{a} + W_{f} + W_{se} \right] /g \qquad (7-9)$$

where g = acceleration of gravity

N = number of rounds in the box $W_f = \text{weight of follower}$ $W_a = \text{weight of each round}$ $W_s = \text{weight of spring}$ $W_{se} = \frac{l}{3} W_s, \text{ equivalent weight of spring in motion}$

The time required for any one particular displacement will be similar to that of Eq. 2-27

$$t = \sqrt{\frac{M_e}{\epsilon K}} \cos^{-1} \frac{F_o}{F_m}$$
(7-10)
7-5

where F_m = maximum spring force (preceding one cartridge displacement)

 F_o = minimum spring force (following one cartridge displacement)

$$K = (Eq.7-5)$$

$$M_e = ({\rm Eq.7-6})$$

E = efficiency of system, generally assumed to be 0.5 for initial design analysis

For initial estimates, provide a spring load of F_i pounds for an empty box and one of F_f for a full box.

The folded flat spring is less desirable than the rectangular coil spring because the latter can be compressed to its solid height whereas total compression of the flat spring is limited by the radius of the folds, thereby, requiring a longer box to house the spring and store the ammunition. Par. 7-2.1.2.2 discusses the rectangular coil spring.

7–2.1.2.2 Rectangular Coil Spring

The rectangular coil spring is a torsion element. Fig. 7-9 illustrates the mechanics of operation. Torsion in each straight segment rotates the adjacent segment. Although bending occurs along the span of each segment, the corners move with respect to each other only by torsional deflection. Bending deflections at the corners are neutralized by equal and opposite bending moments.

Rectangular coil spring characteristics are computed according to procedures similar to helical springs. The applied load is assumed to be concentrated on the axis. The torque T_1 on the long segment is

$$T_1 = \frac{1}{2} \left(aF \right) \tag{7-11}$$

and torque T_2 on the short segment is

$$T_2 = \frac{1}{2} \left(bF \right) \tag{7-12}$$

where a = length of short segment

1

$$b = \text{length of long segment}$$

$$F = \text{spring force}$$
 (7–13)

7-6

The corresponding angular deflections are

$$\ell_I = \frac{bT_1}{JG} = \frac{abF}{2JG}$$
(7-14)

$$\theta_2 = \frac{aT_2}{JG} = \frac{abF}{2JG}$$
(7-15)

where G = torsionalmodulus

J = area polar moment of inertia of wire

The axial deflection of each segment of a coil varies directly with the sum of the products of the two segment lengths times the sine of the angular deflection of the adjacent segment (see Fig. 7-9). Stated in algebraic expressions the two deflections are

$$\Delta y_1 = b \sin \theta_1 \tag{7-16}$$

$$\Delta y_2 = a \sin \theta_2 \quad . \tag{7-17}$$

But, according to Eqs. 7–14 and 7–15, $\theta_1 = \theta_2$, and if we let this angle be equal to 8, the deflection of two adjacent segments of a coil is

$$\Delta y = (\Delta y_1 + \Delta y_2) = (a + b) \sin 8 \qquad (7-18)$$

Since there are 4 segments to each coil, the total deflection of a spring having N active coils is

$$y = 2N\Delta y. \tag{7-19}$$

The spring constant, ify is based on a free spring, is

$$K = \frac{F}{y} \quad . \tag{7-20}$$

The time required for any given displacement can be computed from Eq. 7-10.

7-2.1.3 Example Problems

Compute the spring characteristics for a double row box feed system that holds 20 rounds. Each round weighs 420 grains and has a cartridge case base diameter of 0.48 in. To function properly in the box, the spring should fit in a projected area of 1.75×0.75 in. The initial spring load should be approximately 4 pounds.

Figure 7–9. Rectangular Coil Spring and Loading Characteristics

7-2.1.3.1 Flat Tape Spring

Set the following initial parameters:

- $F_i = 4.0$ lb, initial spring load
- 1.75 in., length of each spring segment
- N = 14, number of active segments, arbitrary choice but based on previous designs
- w = 0.75 in., width of spring
- $\sigma_w = 200,000 \text{ lb/in.}^2$, working stress of spring

The spring $d_{eflection}$ Eq. 7–3, inside the box caused by the cartridge displacement is

$$y_c = \frac{1}{2} D_c (N+1) = \frac{0.48}{2} (20+1) = 5.04$$
 in.

where N = 20 rounds.

Assume, as a first estimate, that the deflection on assembly approximates the total cartridge displacement.

 $y_i = 5.0$ in., the initial deflection

According to Eq. 7-8,
$$\mathbf{K} = \frac{F_i}{y_i} = \frac{4.0}{5.0} = 0.8 \text{ lb/in.}$$

Now solving for I in the same equation

$$I = \frac{KNL^3}{12E} = \frac{0.8 \times 14 \times 1.75^3}{12 \times 30 \times 10^6} = \frac{+}{6} \times \frac{10^{-6}}{10^{-6}}$$

Since
$$I = \frac{1}{12} w t_s^3, t_s^3 = \frac{12I}{w} = \frac{8}{3} \times 10^{-6}$$
.

Therefore $t_s = 0.014$ in. the required spring thickness. The bending moment, Eq. 7-5, is

$$M = \frac{1}{2} (FL) = \frac{1}{2} \times 8 \times 1.75 = 7$$
 lb-in.

where $F = Ky = 0.8 \times 10 = 8$ lb.

7 – 7

The bending stress is

$$\sigma = \frac{Mc}{I} = \frac{7 \times 0.007}{0.1667 \times 10^{-6}} = 294,000 \text{ lb/in.}^2$$

where $c = \frac{t_s}{2}$ in.

This stress is too high. To lower it to acceptable levels, the initial and final loads were reduced to 1.0 and 2.0 pounds, respectively. Subsequent computation produced the following data:

$$K = 0.2$$
 lb/in.
 $t_s = 0.00874$ in.
 $M = 1.75$ lb-in.
 $\sigma = 183,000$ lb/in.²

The bending stress is still uncomfortably high which almost rules out this type spring for the above application. However, a time analysis will give additional data. The time will be computed for spring action after the first and next to the last round are removed. If the spring weighs 0.063 lb and the follower 0.044 lb, the equivalent moving mass for 19 rounds, according to Eq. 7-9, is

$$M_e = (19 \times 0.06 + 0.044 + 0.063)/386.4$$

= 0.003 121b-sec²/in.

Substitute the appropriate values in Eq. 7-10 to compute the time for the first round

$$t = \sqrt{\frac{M_e}{\epsilon K}} \cos^{-1} \frac{F}{F_i} = \sqrt{\frac{0.00312}{0.5 \times 0.2}} \cos^{-1} \frac{1.952}{2.0}$$
$$= 40.0312 \operatorname{Cos}{}^{-1} 0.976 = 0.1765 \times 0.22$$
$$= 0.039 \operatorname{sec}$$

where E = 0.5, the efficiency of the system.

For the last round

$$M_e = \left(0.06 + 0.044 + \frac{0.063}{3}\right) / 386.4$$

= 0.000323 lb-sec²/in.

$$t = \sqrt{\frac{0.000323}{0.5 \times 0.2}} \operatorname{Cos}^{-1} \frac{F}{F_i} = \sqrt{0.00323} \operatorname{Cos}^{-1} \frac{1.0}{1.048}$$
$$= 0.057 \times 0.301 = 0.0172 \operatorname{sec}$$

The slower of the two is equivalent to 1500 rounds/min which is more than adequate.

7-2.1.3.2 Rectangular Coil Spring

Set the following initial parameters:

- a = 0.75 in., length of short segment
- b = 1.75 in., length of long segment
- $F_i = 4.0$ lb, initial spring load
- N = 7, number of coils, arbitrary choice but based on previous designs
- $y_c = 5.04$ in., cartridge displacement (see par. 7-2.1.3.1)

$$y_i = 5.0$$
 in., assembled deflection (see par.
7-2.1.3.1)

$$K = \frac{F_i}{y_i} = \frac{4.0}{5.0} = 0.8 \text{ lb/in.}$$

The total deflection for a full box of cartridgesis

$$y = y_{c} + y_{i} = 10.04$$
 in.

The deflection for two adjacent segments of a coil from Eq. 7-19 is

$$\Delta y = \frac{y}{2N} = \frac{10.04}{14} = 0.717$$
 in

The angular displacement according to Eq. 7-18 is

$$\sin \theta = \frac{\Delta y}{a+b} = \frac{0.717}{2.5} = 0.2868$$

$$8 = 16^{\circ}40' = 0.291$$
 rad.

Solve for J in Eq. 7–15.

$$J = \frac{abF}{2G8} = \frac{0.75 \times 1.75 \times 8.032}{2 \times 12 \times 10^6 \times 0.291} = 1.509 \times 10^{-6} \text{ in.}^4$$

7 – 8

where
$$F = Ky = 0.8 \times 10.04 = 8.032$$
 ll maximum spring load

$$G = 12 \times 10^6 \text{ lb/in.}^2$$
, torsional modulus of steel

Since J =
$$\left(\frac{\pi}{32}\right) d^4$$
 = 1.509 x 10⁻⁶
 d^4 = 15.37 x 10⁻⁶
 d = 0.0626 in., say, 0.0625 in.

Then J = 1.5×10^{-6} in.⁴ and the maximum spring force F_m is

$$F_m = \frac{2JG\theta}{ab} = \frac{36 \ge 0.291}{1.3125} = 8.0 \text{ lb}.$$

The maximum torque, Eq. 7-12, is

$$T_2 = \frac{1}{2} bF_{\rm m} = \frac{1}{2} (1.75) \quad 8.0 = 7.0 \,\text{lb-in.}$$

The torsional shear stress is

$$\tau = \frac{T_2 c}{J} = \frac{7.0 \times 0.03125}{1.5 \times 10^{-6}} = 146,000 \text{ lb/in.}^2$$

where $c = \frac{d}{2} = 0.03125$ in.

This stress is acceptable.

If the spring weighs 0.036 lb, and the follower 0.044 lb, the moving mass for 20 rounds, according to Eq. 7–9 is

$$M_e = (19 \times 0.06 + 0.044 + \frac{0.036}{3}) / 386.4$$

= 0.0031 lb-sec' /in.

For 19 cartridges, $y_c = 4.8$ in. and $F_o = (5.0 \pm 4.8) \ 0.8 = 7.84$ lb.

The time to move this mass through the space left by the departed projectile is computed by Eq. 7-10.

$$t = \sqrt{\frac{M_e}{\epsilon K}} \cos^{-1} \frac{F_o}{F_m} = \sqrt{\frac{0.0031}{0.5 \ge 0.8}} \cos^{-1} \frac{7.84}{8.0}$$

 $= 0.088 \times 0.201 = 0.018 \text{ sec}$

where E = 0.5, the efficiency of the system.

The time of 18 msec is far less than needed to operate under any existing conditions.

7-2.2 BOLT-OPERATED FEED SYSTEM

The bolt-operated feed system illustrated in Figs. 7-10 and 7-11 represents one of many similar types. The operating features are described by partially isolating each function and then later showing the coordination that exists in the whole system. Fig. 7-10shows the ammunition belt system including the components directly associated with it. Sketch (A) shows the position of all parts just as the chambered round has been fired. Sketch (B) shows all parts in the same position except that Round 1 and the empty case are partially extracted, and the feed slide has moved to the left with the feed pawl riding on Round 2. Note that if Round 1 had not been extracted from the belt, the pawl arm would ride over this round to lift the feed pawl above Round 2 to preclude engagement between pawl and Round 2. This operation prevents double feeding or jamming. With Round 1 extracted, the feed pawl carried by pawl arm and slide, continues across Round 2 and eventually engages it as shown in Sketch (C). In the meantime the holding pawl prevents the belt from moving backward.

After the slide completes its travel to the left, the extractor pushes Round 1 downward to align it with the chamber and eject the empty case. After this effort, the slide begins its return to the right and since the feed pawl has engaged Round 2, the slide forces the belt to move also. Two positions of the return are shown in Sketches (C) and (D). Round 3 forces the holding pawl downward to permit belt travel. As soon as Round 2 reaches the original position of Round 1 and all other rounds have simultaneously moved up one position, all feed belt activity will stop with all components taking the positions according to Sketch (A).

The feed slide is activated by the feed lever which in turn is activated by the bolt. The lever fulcrum is fitted to the cover of the receiver, one end activates the slide while the other end rides in a cam groove in the bolt's top surface. Each end of the cam is straight and parallel to the longitudinal axis of the bolt in order to permit a short dwell period for the slide at the end of each half cycle. Shifting the emphasis between the upper and lower illustrations of Fig. 7–11 provides the opportunity of outlining the whole loading and firing cycle. Assume that the bolt is in battery and firing is imminent. The upper picture shows, in phantom, Round 1 of Fig. 7–10 (A) ready 10 be stripped. The extractor lip is in the extractor groove of the cartridge case. At this same time, the

Figure 7–10. Schematic of Feed System, End View

lower picture, in phantom, shows the position of the feed slide and feed lever. None of the components is moving in this stage.

After firing the bolt has recoiled to the position shown in full view in the upper picture. As the bolt travels rearward, the extractor and the T-slot in the face of the bolt strip the round from the link at 1 and extract the empty casy from the chambers at 2. During this time, the bolt feed cam pivots the feed lever counterclockwise to move the feed slide outward, and a cam depresses the extractor to fit the cartridge case base into the T-slot. Also, the unattached link falls free of the belt just as the round is stripped. All of this action has been completed by the time that the rearmost bolt position has been reached. The cutaway of the slide shows the feed pawl in contact with the round it is about to push into the vacated position above the chamber.

The full view of the lower picture shows the bolt shortly after it began to counterrecoil. The cam has continued the downward movement of the extractor to align the live round with the chamber and eject the spent case. The cam on the bolt is now causing the feed lever to pivot clockwise and push the first round into position where the extractor, as the bolt reaches the inbattery position, will be lowered into the extractor groove to complete this cycle.

7-23 ROTATING FEED MECHANISM

The rotating feed mechanism operates on the chain-sprocket principle where the chain is represented by the belt of ammunition; the rounds being the rollers. The power that turns the sprockets, or their equivalent, may be derived from recoil or propellant gas operating mechanisms, or from electric motors.

7-2.3.1 Recoil-operated Feed Mechanism

In a recoil-operated mechanism such as shown schematically in Fig. 7-12, the recoil energy is transformed to rotational effort before it reaches the starwheel. Two starwheels are generally used, one engages the cartridge case back of the belt link while

Figure 7-11. Feed System Illustrating Mechanics of Operation

the other engages the projectile just ahead of the rotating band. As the belt and ammunition move with the starwheels, stripper cams wedge between the cartridge case and the clamps of the belt links and pry the links off the case. The freed single end of the link, with its double end still attached to the next round, is guided by the link deflector into the link chute. Freeing the double end releases the link completely from the belt. The detached link falls through the link chute for retrieval or discard. Meanwhile, the link-free round, guided by outer cover and starwheels, continues on its circular path. As it approaches the feed mouth, the round begins to fall away from its cradled position in the starwheels and into the lower contour of the cartridge guides (Fig. 7-12 (B)). The guides complete the path to the feed mouth entrance. Before reaching the mouth, the round contacts the spring-loaded, cartridge holding cams. Forced by the lag tooth of each starwheel, the round pushes the holding cams aside and enters the mouth. As the lag teeth ride over the round, gaps between round and cam surfaces occur to permit the cams to swing back to establish contact between cam surface and round (Fig. 7-12 (B)). The spring loads on the cams force the round downward and simultaneously prevent it from reversing its direction.

The round continues downward until it alights on top of the bolt which is locked in the firing position. It remains in this position until the chambered round is fired and the bolt recoils. The round now moves to the bottom of the mouth where it is retained by a constriction in the mouth. This constriction, or way, is sloped forward at an angle of about three degrees. The round is held in this position by the vertical component of the starwheel force transmitted by the round following. While counterrecoiling, the bolt contacts the lower portion of the cartridge case base and drives the round toward the chamber; the three-degree slope prescribes the desired projectile feed path. As the round clears the ways it is forced downward to become correctly aligned with the bolt. Its former space is now occupied with the next round.

Just prior to entering the feed mouth, the round contacts the lower edge of the spring-loaded cartridge control pawl (Fig. 7-12 (C)). Continued round travel raises the pawl which in turn lifts the holding dog. This action removes the 'obstruction that the normal position of the dog provides and gives free access at the feed mouth entrance to the preceding round. This process is continuous for the entire length of the ammunition belt except for the last round. Because no

round follows to lift the pawl, the dog remains undisturbed and holds the last round at the mouth entrance, but at a position low enough to clear the starwheel. If the last round should be able to drop to the top of the bolt as the next-to-last round is fired, all positivi: control over it is lost, thereby increasing the probability of jamming. But, since it is held, the counterrecoiling bolt merely closes on an empty chamber. Action resumes when the first round of a new belt reaches the control pawl.

7-2.3.2 Electrically Driven Feed Mechanism

The round and link control of an electrically driven feed mechanism consists of two operating units, the feed wheel unit and the operating lever unit. The feed wheel unit contains two feed wheels, two loading levers, and a bank of three link strippers. The operating lever unit contains two operating levers, two loading guides, and one round retaining finger. The related components between these two units are shown schematically in Fig. 7–13 where the round is used as a common reference. Loading lever and retaining finger are spring loaded; the spring force to the loading lever is transmitted by the operating lever. The retaining finger has its own spring.

The electric motor turns the feed wheel shaft through a gear and clutch system. The two feed wheels draw the belt of ammunition into the feeder at the stripper location (Fig. 7-14 (A)). The link stripper rotates with the feed wheel shaft and its three segments contact the crimp between the leading double and lagging single end of the link. The prying action of the link stripper force on the link crimp and the stripper cover reaction snaps the double end of the link off the lead round (Fig. 7-14(B)). But the single end of the link is still attached to the lag round. However, continued action of the stripper on, the crimp guides the link into the link chute while the freed round continues on its circular path, guided by the feed wheel and link chute support (Fig. 7-14 (C)). As the ammunition belt continues to advance, the prving action of the chute on the double end, combined with the restriction imposed on the lag round by feed wheel and chute support, releases the single end from the round, permitting the now freed link to fall through the link chute.

The freed round continues along the curved chute support until it reaches the entrance to the feed mouth where it contacts the loading guides on the opposite side of the mouth. These guides form the path for the round as it moves into the mouth. Here the round contacts the loading levers and retaining finger. As the feed wheel

WHEEL

Figure 7–13. Feed Wheel and Operating Lever Units

continues to push the round downward, forces transmitted through the round rotate loading levers and retaining finger outward until the round moves free of the feed wheel. At this stage, being free of the influence of the feed wheel, the loading levers are ready to return to their original position, meanwhile holding the round against the top of the bolt. As soon as the bolt recoils, the loading levers snap the round downward to the ways where it is held in proper alignment by the levers and retaining finger until pushed forward and chambered by the bolt. (This series of events is illustrated in parts (D), (E), (F) of Fig. 7-14.) Unlike the recoil-operated feed mechanism, the last round in the belt may be fired without fear of jamming because of the position control on the round exercised by the loading levers and retaining finger.

While each round is resting on top of the bolt waiting for recoil, the loading mechanism stops. Although these intervals are short, a friction clutch slips a short distance during each interval to prevent the motor from overloading.

7-2.4 LINKLESS FEED SYSTEM

The linkless feed system was developed in order to provide a reliable high speed method of feeding ammunition to a gun without inducing the tremendously high inertia forces that are normally experienced with the conventional link systems. Not only are accelerating forces in the conveyor held to a minimum, but the linkless feed system also provides a large, convenient storage capacity for the ammunition. The major components are the fixed outer drum that stores the ammunition, the rotating inner drum that advances the stored ammunition for loading and feeding purposes, the exit unit that transfers ammunition from drum to conveyor belt, and the conveyor system that carries the loaded ammunition to the gun and carries the spent cases to the entrance unit where these cases are returned to the drum assembly. Two transfer units, at the rear of .ne gun, transfer live and spent ammunition from conveyor belt to gun and later from gun to conveyor belt. There are two general classes of linkless ammunition feed, the double and

AMCP 706-260

uppe mut the tellined above a to see quipping of spinal cross in rater unit at by the gar

The noted ded that may hold a hirge exploder to partitions that to protrade rated

partitions have been side of the partition hold use colour in pl the sole. The partition extremeted althing t

uwode muri. T Institution Sime concrites Sime concrites

the hose of frame. It is a

(B)

(D)

(A)

(C)

AMCP 706-260

single end. The double end system has all the features defined above whereas the single end system has only those components that operate with live ammunition; all spent cases and unfired rounds that pass the transfer unit at the gun are dumped from the system by the gun.

The outer drum is a stationary storage compartment that may hold as many as 1200 20 mm rounds. It is a large cylinder that is lined with L-shaped double partitions that extend along the entire drum length and protrude radially toward the axis. Rounds of ammunition occupy the parallel spaces between the partitions. Near the drum wall, a longitudinal rib on each side of the partitions engages the extractor groove to hold the round in place with the nose pointed toward the axis. The partitions also guide the rounds as they are advanced along the drum. Fig. 7–15 is a typical outer drum showing the partition and ammunition arrangement. Two adjacent spaces near the exit and entrance units remain empty at all times to avoid jamming operation.

The inner drum is the rotating member of the two drums. It is a tube with thin sheet metal forming a

Figure 7–15. Outer Drum

double helix attached to the outer periphery (Fig. 7-16). The outer periphery of the helix is large enough to engage the ogive of each round. As the drum rotates, the helix advances the ammunition longitudinally along the outer drum. During each revolution, two radial layers of ammunition are carried to the conveyor by virtue of the double helix which assures continuous feed. Each exit and entrance of the double helix has a scoop dise arrangement, which is merely an extension of the helix, to remove or replace a component of ammunition as the scoop passes the respective storage space on the outer drum. A sprocket carries the round along the scoop and deposits it into a compartment in the retainer partition assembly.

The retainer partition assembly is mounted on the pnd cover of the outer drum and transfers the rounds from scoop disc to exit unit. The retainer has two less partitions (n-2) than the number of spaces in the outer drum. The fewer partitions compensate for the two kmpty storage spaces in the outer drum and permit a continuous flow of ammunition to the gun. All gearing iof the rotating components is timed to insure synchronization. The ammunition is removed from the retainer partition assembly by another scoop-sprocket mechanism and loaded in the ammunition conveyor.

Figure 7–16. Inner Drum Helix

7-16

The conveyor is an endless belt made of elements similar to conventional ammunition links. The belt travels in two chutes; the feed chute and the return chute. The former supports and guides the loaded ammunition belt from drum assembly to the gun while the latter supports and guides the empty belt from gun to drum. The chute consist of many links or frames that are hooked together to form a smooth, continuous track which can twist and bend to assume the desired path contours. The chute end frames have snap fasteners for ready attachment to other system components thus providing a good maintenance characteristic.

Each conveyor element is made of two semicircular loops of different size that are held together by a rivet. The larger loop has lugs that engage the extractor groove of the cartridge case. When connected, the smaller loop of one element rests under a tab in the forward part of the larger loop of the adjacent element. Fig. 7-17 shows several elements joined in this manner. One holds a round of ammunition. On the left, a small loop is shown free with its larger counterpart shown on the right. The element does not grip the case tightly and can fully support the round only with aid of the chutes. Once outside the chutes, the rounds or cases are easily lifted from or placed into the elements by the sprockets of the various transfer units. Once the element is relieved of the case, the belt can be easily disconnected or folded over itself. Since the belt is so folded as it passes through the feeder, two elements could part if at least one of them were empty while in the feed chute. Therefore, all elements should be loaded while in the feed chute.

Fig. 7–18 is a schematic of the operating features of a double end linkless feed system. Both conveyor belt and ammunition loop are continuous circuits. The stationary outer drum shows only one row of

ammunition. When the rotating elements turn (in the direction indicated by the heavy arrows) the helix on the inner drum advances the ammunition to the right where the scoop picks up the round as it leaves the helix at A. As the scoop continues toward the next stored row of ammunition, a sprocket in the scoop disc assembly carries the round to the retainer partition assembly where the transfer is made at B. To have an empty partition available for the next round, B must travel faster than A. The round leaves the retainer partition at C, the transfer point to the ammunition exit unit. In the meantime, the retainer partition assembly continues to rotate, but the partitions between C and D are empty and will not receiver any rounds until B passes C. The scoop disc at D, the end of the other helix, is diametrically opposite A. It too is collecting a round from each row of stored ammunition and depositing it into a retainer partition. Since the retainer is moving faster than the scoop, all partitions between D and B will be filled by the scoop at D, just as B passes C. However, because the exit unit at C occupies some space, the flow of ammunition from A to B must be interrupted to avoid jamming the rounds against the exit unit. For this reason, two rows of storage space, accurately indexed ahead of C, will interrupt the flow until the required clearance is achieved. Until pick-up is resumed, empty partitions continue to accumulate beyond C. Proper synchronization by gear trains insure continuous ammunition supply to the conveyor.

If there are *n* storage rows in the outer drum, then there are n - 2 rows of stored ammunition. Since two layers of rounds are removed for each revolution of the inner drum, the total number reaches N = 2 (n - 2). To retrieve this discharge, the retainer partition assembly must rotate at least twice the speed of the

Figure 7–17. Conveyor Elements

Figure 7–18. Schematic of Linkless Feed System

inner drums. However, while the scoop passes two rows, four empty partitions pass by C. Therefore, for proper indexing, the number of partitions in the retainer $N_r = n - 4$. But the retainer must pick up N rounds, hence its angular velocity ω_r must be

$$\omega_r = \left(\frac{N}{N_r}\right) \omega_d \tag{7-21}$$

where ω_d is the angular velocity of the inner drum. If **n** = 32 rows, then N = 60 rounds per revolution, and $N_r = 28$ compartments. Therefore $\omega_r = (15/7) \omega_d$, i.e., the retainer partition assembly must rotate 2-1/7 times faster than the drum.

After the ammunition leaves the retainer partition at C, it passes through the exit unit where it is loaded into the elements of the conveyor. The conveyor carries the ammunition through the feed chute to the transfer unit where it is loaded into the gun. After firing, the spent case is returned to the transfer unit and reloaded in the

conveyor which now moves through the return chute and back to the ammunition entrance unit. The entrance unit removes the cases, and the empty conveyor completes its loop to the exit unit. The empty cases now repeat .the same functions as the live rounds but in reverse order, eventually to be stored again in the outer drum.

The single end linkless feed system operates similarly to the double end system except that empty cases and unfired rounds are not returned to the drum but are ejected completely from the system. Therefore, the various ammunition handling units are needed only at the exit end of the drum. Fig. 7-19 shows the operation schematically. Since empty cases and unfired rounds no longer need to be reloaded into the conveyor, the transfer unit is simplified to the point where it actually becomes little more than a feeder. The drum is loaded by disconnecting the system at the exit unit and reversing the direction of moving units and ammunition.

Figure 7-19. Path of Rounds in Single-end System

All linkless feed systems, whether single or double ended, require continuous external power. Also the feeder must be declutched or disengaged from the gun to provide gun clearing after each burst or single shot to prevent "cook-off".

7-2.4.1 Power Required

The power required to operate a linkless feed system includes the power to accelerate the ammunition and all moving components, and that needed to overcome the frictional resistance to all motion. Velocities and accelerations vary from component to component of the feed system; therefore, to maintain a reasonable perspective of the action in each component, the velocity and acceleration of each component is given in terms of its counterpart in the gun. The action throughout the system may be demonstated more clearly by realizing that each time a new round is accepted by the gun: (1) the rounds in each component advance through the respective spaces between rounds, and (2) that the acceleration and velocity for any given component will vary as the linear distance between the rounds. The schematic of Fig. 7-18 illustrates and identifies the components.

The following symbols will be used in the equation for computing the power required to drive a linkless feed system:

- a = general term for linear acceleration
- F = general term for force
- I = general term for the mass moment of inertia
- P = general term for power
- p = general term for space between rounds (pitch)
- N = number of rounds or elements, loaded or empty in each component
- R = general term for radius; gun axis to chamber center

- T = general term for torque
- v = general term for linear velocity
- α = general term for angular acceleration
- ϕ = double helix drive angle
- ω = general term for angular velocity

The following subscripts refer to the specific component of the termsjust defined:

- c = chute; feed, bipass, or return
- d = drum, inner
- e = exit or entrance unit
- r = retainer partition
- t = transfer unit

The peripheral acceleration and velocity at the chamber axis are

$$a = \alpha R \qquad (7-22)$$

$$v = \omega R \,, \qquad (7-23)$$

The corresponding accelerations and velocities of the rounds in the other components of the feed system will vary according to the ratio of the pitches. In the transfer unit

$$a_t = a\left(\frac{p_t}{p}\right) \tag{7-24}$$

$$v_t = v\left(\frac{p_t}{p}\right). \tag{7-25}$$

In any of the chutes

$$= a_{t} \left(\frac{p_{c}}{p_{t}} \right) = a \left(\frac{p_{c}}{p} \right)$$
(7-26)

$$\nu_c = \nu_t \left(\frac{p_c}{p_t} \right) = \nu \left(\frac{p_c}{p} \right). \qquad (7-27)$$

In the ammunition entrance and exit units

$$a_e = a_c \left(\frac{p_e}{p_c}\right) = a \left(\frac{p_e}{p}\right)$$
(7-28)

$$\nu_e = \nu_c \left(\frac{p_e}{p_c}\right) = \nu \left(\frac{p_e}{p}\right). \qquad (7-29)$$

In the retainer partition assembly

$$a_r = a_e \left(\frac{p_r}{p_e}\right) = a \left(\frac{p_r}{p}\right) \tag{7-30}$$

$$v_r = v_e \left(\frac{p_r}{p_e}\right) = v \left(\frac{p_r}{p}\right)$$
 (7-31)

If the storage drum has N storage spaces of which two are empty, and the retainer has N - 4 partitions, the ratio of the kinematics of retainer partition to inner drum is

$$\rho_d = \frac{2(N-2)}{N-4} \cdot (7-32)$$

provided that the inner drum has a double helix drive. If ϕ is the angle of the double helix drive and p_d is the pitch, the slope of the helix is

$$\tan\phi = p_d / 2\pi R_d \, . \tag{7-33}$$

To express the axial acceleration and velocity along the outer drum spaces in terms of their retainer counterparts, the ratio of the radii of inner drum and retainer must also be included. The axial acceleration and velocity of the stored rounds are

$$a_{r} = \frac{a_{r}}{p_{d}} \left(\frac{R_{d}}{R_{r}}\right) \tan \phi$$
 (7-34)

$$\nu_a = \frac{\nu_r}{p_d} \left(\frac{R_d}{R_r}\right) \tan\phi \qquad (7-35)$$

Eqs. 7-22 through 7-35 contain the information needed to compute the power required to overcome the

resistance of friction and inertia. The axial force F_a on the helix that will drive the rounds contained in the outer drum is

$$F_a = N_d W_a \left(\frac{a_a}{g} + \mu\right) \tag{7-36}$$

where

g = acceleration of gravity N_d = total rounds in outer drum

W_a = weight of each round

 μ = coefficient of friction

The corresponding power required is

$$P_a = F_a v_a. \tag{7-37}$$

The torque required to turn the inner drum and overcome the sliding friction on the helix is

$$T_d = I_d \alpha_d + \mu F_a R_d \tag{7-38}$$

where $\alpha_d = \frac{a_a}{R, \tan \phi}$. The expression for power is

$$P_d = T_d \omega_d = T_d \left(\frac{v_a}{R_d \tan \phi} \right). \quad (7-39)$$

The torque required to turn the retainer partition will also include that necessary to turn the ammunition in half the partitions since this number of rounds is never exceeded.

$$T_r = I_r \alpha_r + N_r \left(\frac{W_a}{g}\right) a_r R \qquad (7-40)$$

where R_a = radius to the CG of the round

$$\alpha_r = a_r/R_r$$

The corresponding power is

$$P_r = T_r \omega_r = T_r \left(\frac{\nu_r}{R_r}\right) \tag{7-41}$$

Similar equations are used, where applicable, for the other components. In the ammunition entrance and exit units the force is

$$F_e = N_e \left(\frac{W_u}{g}\right) a_e \qquad (7-42)$$

where $W_u = W_e + W_a$ or $W_e + W_a$, for exit and entrance units, respectively.

$$T_e = I_e \alpha_e = I_e \left(\frac{a_e}{R_e}\right) \tag{7-43}$$

$$P_e = F_e v_e + T_e \left(\frac{v_e}{R_e}\right) \tag{7-44}$$

In the chutes

$$F_{c} = N_{c}W_{c}\left(\frac{a_{c}}{g} + \mu\right)$$

$$P_{c} = F_{c}v_{c}$$
(7-45)

Observe that N_c and W, represent the number and weight of round and conveyor element for the feed chute, the number and weight of only the empty cartridge case and conveyor element for the return chute, and the number and weight of the element above for the bypass chute. In the transfer unit

$$F_t = N_t \left(\frac{W_t}{g}\right) a_t \tag{7-46}$$

where W, may be W_a or W_{cc} , depending on whether the round is entering or the case emerging from the gun.

$$T_t = I_t \left(\frac{a_t}{R_t}\right) \tag{7-47}$$

$$\mathbf{P}_{t} = F_{t} \mathbf{v}_{t} + T_{t} \left(\frac{\mathbf{v}_{t}}{R_{t}} \right)$$
(7-48)

7-2.4.2 Example Problem for Power Required

Compute the power required for a double end linkless feed system having the following design data:

$$I_d = 9.32 \text{ lb-in.-sec}^2$$

 $I_e = 0.032 \text{ lb-in.-sec}^2$
 $I_r = 2.54 \text{ lb-in.-sec}^2$
 $I_t = 0.095 \text{ lb-in.-sec}^2$
 $N = 32 \text{ partitions}$
 $N_c = 45 \text{ feed}; 35 \text{ bypass}; 25 \text{ return}$

 $N_d = 1200$ rounds $N_{\rho} = 3$ rounds; 3 cases $N_t = 2$ rounds; 2 cases p = 2.77 in. $p_c = 1.62$ in. $p_d = 2.54$ in. $p_e = 2.09$ in. $p_r = 2.24$ in. $p_t = 2.09$ in. R = 2.643 in. $R_{a} = 6.0$ in. $R_d = 7.0$ in. $R_{\rho} = 2.0$ in. $R_{r} = 10.0$ in. $R_{t} = 2.0$ in. $W_{\sigma} = 0.57$ lb, weight of round $W_{cc} = 0.25$ lb, weight of case $W_e = 0.12 \text{ lb}$, weight of element $\mu = 0.22$, coefficient of friction All data computed from Eqs. 7-22 through 7-48 are put in terms of the gun kinematics. $a_t = \left(\frac{2.09}{2.77}\right) a = 0.755 a$ $v_{t} = 0.755 v$ $a_c = \left(\frac{1.62}{2.77}\right) a = 0.585 a$ $v_c = 0.585 v$ a, = $\left(\frac{2.09}{2.77}\right)$ a = 0.755 a $v_e = 0.755 v$

a, = $\left(\frac{2.24}{2.77}\right)$ a = 0.809 a $v_r = 0.809 v$

 $\rho_d = \frac{2(32-2)}{32-4} = \frac{60}{28} = 2.143$

 $\tan\phi = \frac{2.54}{14\pi} - 0.05775$

$$a_{a} = \left(\frac{0.809a}{2.143}\right) \left(\frac{7}{10}\right) 0.05775$$

= 0.0153 a, in./sec²; $v_{a} = 0.0153 v$, in./sec
$$\mathbf{I} = N_{d} W_{a} \left(\frac{a_{a}}{g} + \mu\right)$$

= 1200 x 0.57 (0.0000396 a t 0.22)
= 150.48 • 0.027 a, lb
$$P_{a} = F_{a} v_{a} = (2.302 + 0.00041 a) \tau, \text{ in.-lb/sec}$$

$$\mathbf{I}_{d} = I_{d} \alpha_{d} + \mu F_{a} I_{a} = 9.32 \left(\frac{0.0153 a}{0.404}\right)$$

t 0.22 (150.48 • 0.027 a) 7.0 = 0.3530 a
t 231.7 + 0.0416 a = 231.7 • 0.3946 a, lb-in.
$$P_{d} = T_{d} \omega_{d} = (231.7 + 0.3946 a) \left(\frac{0.0153 v}{0.404}\right)$$

=
$$(8.775 \pm 0.01494 a) \nu$$
, in.-lb/sec

$$T_{r} = 2.54 \left(\begin{array}{c} 0.809 \, a \\ 10.0^{\circ} \end{array} \right) \mathbf{f} \quad 14 \left(\begin{array}{c} 0.57 \\ 386.4 \end{array} \right) \left(0.809 \, a \right) 6.0$$
$$= (0.2055 \, \mathbf{t} \, 0.1002) \, a = 0.3057 \, a, \text{ lb-in.}$$

where

 $N_r = \frac{1}{2} (N - 4) = 14$

$$R_r = 10.0$$
 in.

$$P_{r} = T_{r} \left(\frac{\nu_{r}}{R_{r}}\right) = \left(0.3057 \, a\right) \left(\frac{0.809 \, \nu}{10.0}\right)$$
$$- 0.02473 \, a\nu, \text{ in.-lb/sec}$$

The combined data in the entrance and exit units according to Eqs. 7-42, 7-43, and 7-44 are

$$F_e = N_e \left(\frac{\Sigma W_u}{g}\right) a$$
, $= \frac{3(0.37 + 0.69)}{386.4} = 0.755 a = 0.00621 a$, lb

where $\Sigma W_u = (W_e + W_{cc}) + (W_e + W_{,l}) = (0.37 + 0.69).$

$$T_e = 2I_e \left(\frac{a_e}{R_e}\right) = 2 \times 0.032 \times 0.755 a/2.0 = 0.024160 a, \text{ lb-in.}$$

$$P_e = F_e v_e + T_e \left(\frac{v_e}{R_e}\right) = 0.00621 a \times 0.755 v + 0.02416 a \times 0.755 v/2.0 = 0.00469 av$$

$$+ 0.00912 av = 0.01381 av, \text{in.-lb/sec.}$$

The accumulated data in the chutes according to Eqs. 7-45 and 7-46 are

$$F_{c} = \left[N_{f}(W_{a} + W_{e}) + N_{p}W_{e} + N_{r}(W_{cc} + W_{e}) \right] \left(\frac{a_{c}}{g} + \mu \right)$$

= (45 x 0.69 + 35 x 0.12 + 25 x 0.37) $\left(\frac{0.585 a}{386.4} + 0.22 \right)$
= 9.79 + 0.06737 a, lb

where $N_f = N_c = 45$; $N_p = N_c = 35$; $N_r = N_c = 25$.

$$P_c = F_c v_c = 0.585 v F_c = (5.727 \pm 0.03941 a) v$$
, in.-lb/sec

The accumulated data in the transfer unit are computed according to Eqs. 7-44, 7-45, and 7-46.

$$F_t = N_t (W_a + W_{cc}) a_t / g = 2(0.57 + 0.25)0.755 a / 386.4 = 0.0032 a, \text{ lb}$$

$$T_t = I_t \left(\frac{a_t}{R_t}\right) = 0.095 \times 0.755 a / 2.0 = 0.03586 a, \text{ lb-in.}$$

$$P_t = F_t v_t + T_t \left(\frac{v_t}{R_t}\right) = 0.0032 a \times 0.755 v + 0.03586 a \left(\frac{0.755 v}{2.0}\right) = 0.00242 a v$$

$$+ 0.01353 a v = 0.01595 a v, \text{ in.-lb/sec.}$$

The total power required to drive the linkless feed system is

$$P_f = P_a + P_d + P_r + P_e + P_c + P_t = (2.302 + 0.00041a)v + (8.775 + 0.01494a)v + 0.02473av + 0.01381av + (5.727 + 0.03941a)v + 0.01595av$$
$$= 16.804v + 0.1093av = P_v + P_{av}, \text{ in.-lb/sec}$$

7–23

The power will be computed for several increments i taken from the tabulated values of Table 6-4, the Gun Operating Power computations. From Eqs. 7-22 and 7-23, the linear acceleration and velocity arc

The computed data are listed in Table 7–1. The two components of the total power are

$$P_{\nu} = 16.804\nu$$

$$P_{av} = 0.1093 av$$

7-3 EXTRACTORS, EJECTORS, AND BOLT LOCKS

7-3.1 EXTRACTORS

Extractors are machined components that pull the cartridge case from the chamber as the bolt recoils. Assembled near the breech face of the bolt, they are generally spring loaded to tilt toward the longitudinal axis of the bolt and thus direct a continuous clamping effort on the cartridge case. This clamping effort is sometimes supplemented by the restraining wall of the receiver or by the induced moment of the axial forces needed for extraction. The source of whatever effort is applied is determined by the type extractor.

Four types of extractor are shown in Fig. 7-20. Of these, (A) and (C) are similar insofar as spring installation is concerned but differ with respect to method of transmitting the tipping action. (A) is the extractor used in the 7.62 mm, M60 Machine Gun. The helical compression spring provides the clamping effort. The plunger transmits the spring force to the outer portion of the extractor while the bolt offers the reaction on the inner portion. Contact between extractor and bolt is effected by a boss on the extractor which rests in a recess in the bolt. The front surface of the boss is conical and is matched by its female counterpart. Tipping action uses this location as the fulcrum.

Springs must be reasonably stiff so that an appreciable effort is demanded to release the case rim. For instance, the nominal spring load is $F_s = 15$ lb on the extractor, (M60 Machine Gun). The horizontal reaction H_s (Fig. 7–21 (A)) has the same value but since it is on a slope of 20° 40′, it has a vertical component.

$$V_{a} = H_{a} \tan 20^{\circ} 40' = 15 \times 0.377 = 5.65 \text{ lb}$$

The vertical reactions on the pads at A and B (Fig. 7–21 (A)) do not contribute to the solution of F_e for the reaction at B gradually disappears as F_e increases to the value that displaces the extractor outward. The value

1	α , rad/sec ²	ω, rad/sec	a, in./sec ²	ν, in./sec	P_{ν} , inlb/sec	P _{av} , inlb/sec	P _f , inlb/sec	₩₽
	200.0	24 72	519 (01.9	1542	5204	6847	1.04
44	200.0	34.72	528.0	91.8	1545	5304	6017	1.04
58	173.6	39,07	458.8	103.3	1/3/	5180	6917	1.05
60	164.6	40.41	435.0	106.8	1795	5078	6873	1.04
73	144.8	43.12	382.7	114.0	1916	4768	6684	1.01
88	118.2	46.20	312.4	122.1	2052	4169	6221	0.94
100	98.7	48.07	260.9	127.0	2134	3622	5756	0.87
120	62.1	50.66	164.1	133.9	2250	2402	4652	0.70
130	51.0	51.21	134.8	135.3	2274	1993	4267	0.65
140	34.3	51.84	90.6	137.0	2302	1357	3659	0.55
150	16.1	52.25	42.6	138.1	2321	643	2964	0.45
162	1.9	52.36	5.0	138.4	2326	76	2402	0.36

TABLE 7-1. POWER REQUIRED FOR LINKLESS BELT FEED SYSTEM

Since the maximum power required to operate the gun is 14.4 HP., at increment i = 58 (see Table 6-4) the total power for gun and feed system totals 15.45 HP.

Figure 7–20. Extractors

of F_e , the maximum extractor load to clear the cartridge case, is found by balancing moments about A.

$$F_e = \frac{0.18F_s + 0.346V_s}{0.622} = \frac{2.70 + 1.96}{0.622} = 7.5$$
 lb.

If the outer slope of the lip is 8, the horizontal force on the extractor that will tilt it is

$$F_c = F_e \tan \theta$$

 F_c represents the force that the new round must exert on the extractor for proper engagement during loading. In the present example 8 = 47°, therefore,

$F_c = 7.5 \times 1.072 = 8.04$ lb.

The other extractors in Fig. 7-20 behave similarly except for (D), the integral flat spring type. Its initial force on the cartridge case base should be such that the spring is just free of contact with the bolt. The maximum outward force will be the force needed to snap the extractor far enough outward to clear the case rim.

case $F_e = 7.5$ lb, the same as in the earlier example, and the corresponding load when the case is scated, $F_{es} = 5$ lb. All design data are known except for spring thickness. L = 1.8 in., spring length

The sample problem involves the extractor shown in

Fig. 7-21 (B). Assume the maximum load to clear the

$$L_e = 0.2$$
 in., extractor length

- $E = 29 \times 10^6 \text{ lb/in.}^2$, modulus of elasticity of steel
- $\Delta y = 0.032$ in , outward displacement needed to clear rim

b = 0.4 in , spring width

The spring functions as a cantilever. F a r components of deflection are involved, the linear and angular deflections, both due to shear and end moment. The total deflection is

$$y = y_e + y_m + L_e \theta_e + L_e \theta_m = \left(\frac{2.66F_e}{EI}\right)$$

7 – 26

where

$$y_e = \frac{F_e L^3}{3EI} = \frac{5.832F_e}{3EI}$$
$$= \frac{1.944F_e}{EI} \text{ , shear deflection}$$
$$y_m = \frac{L_e F_e L^2}{2EI} = \frac{0.2 \times 3.24F_e}{2EI}$$
$$= \frac{0.324F_e}{EI} \text{ , moment deflection}$$
$$\theta_e = \frac{F_e L^2}{2EI} = \frac{3.24F_e}{3EI}$$
$$- \frac{1.62F_e}{EI} \text{ , angular shear deflection}$$
$$\theta_m = \frac{M_e L}{EI} = \frac{0.2 \times 1.8F_e}{EI}$$
$$= \frac{0.36F_e}{EI} \text{ , angular moment deflection}$$

The differential deflection from F_{es} to F_{e}

$$\Delta y = y_1 - y_2 = \frac{2.66}{EI} (F_e - F_{es})$$
$$- \frac{2.66}{29 \times 10^6 I} (7.5 - 5.0) = 0.032 \text{ in}$$

$$I = 7.16 \times 10^{-6} \text{ in.}^4$$

But $I = \frac{1}{12} \left(b t_s^3 \right)$, therefore

 $t_s = 0.06$ in., required spring thickness

7-3.2 EJECTORS

Ejectors are simple mechanisms that force the cartridge case from the receiver. They usually are spring-operated but may derive their energy from other sources such as small quantities of the propellant gas. There are perhaps as many kinds of ejectors as there are

of their immediate associates, the extractors. Ejectors may be assembled either in the bolt or they may be attached to the receiver. Fig. 7–22 shows four types of ejectors, three are housed in the bolt, one in the chamber; Fig. 7–22 (A) is like that in the 7.62 mm, M60 Machine Gun. The spring force, via the ejector, is always applied to the edge of the cartridge case base. As soon as all radial restraint is removed diametrically opposite, the ejector will flip out the case. The off-center spring force accelerates the case angularly as well as linearly. However, the recoiling velocity at the time will compensate to some degree the forward velocity derived from the spring.

7-3.2.1 Ejector Dynamics

Because of its mass relative to the masses of ejector and cartridge case, the spring must be considered in the dynamics of the ejection mechanism. One-third of the spring mass—when included in the expressions for energy, velocity, and time—will yield approximate but sufficiently accurate results. The equivalent mass of the whole unit is

$$M_e = \frac{1}{3} M_s + M_{ej} + \left(\frac{k^2 + \bar{r}^2}{\bar{r}^2}\right) M_{cc}$$
(7-49)

where M_{cc} = mass of the case

- M_{ei} = mass of the ejector
- M_s = mass of the spring
- k = radius of gyration of the case about itsCG
- \overline{r} = distance from tipping point on rim to CG of case

The equivalent mass of the case involves its mass moment of inertia since it is rotating. Fig. 7–23 shows a diagram of the pertinent dimensions. The equivalent mass may now be used in the appropriate formulas to determine the dynamics, Eq. 2–27 for the time, and the conventional equations for energy and velocity.

7-3.2.2 Sample Problem of Ejector Dynamics

The sample problem illustrating the ejector dynamics involves a cal .30 cartridge case. The known data together with the diagram in Fig. 7-23 provide the needed information

7 – 27

Figure 7-22. Ejectors

Figure 7-23. Ejector Loading Diagram

 $F_o = 14.5$ lb, minimum spring force

 $F_m = 24.0$, maximum spring force

- k = 0.794 in, radius of gyration of case about its CG
- $K = 68 \, \text{lb/in., spring constant}$
- $\overline{r} = 1.1$ in., distance from tipping point on rim to CG of case
- $W_{cc} = 0.0293$ lb, weight of case
- $W_{ei} = 0.0492$ lb, weight of ejector
- $W_s = 0.0039$ lb, weight of spring
- $\Delta y = 0.14$ in, spring deflection during ejector operation

From Eq. 7-49,

$$M_e = \frac{1}{g} \left(\frac{1}{3} W_s + W_{ej} + \frac{k^2 + \bar{r}^2}{\bar{r}^2} W_{cc} \right)$$

= $\frac{1}{386.4} \left[0.0013 + 0.0492 + \left(\frac{0.63 + 1.21}{1.21} \right) 0.0293 \right]$

$$= 2.46 \times 10^{-4} \text{ lb-sec}^2/\text{in}.$$

To find the time of case ejection, apply Eq. 2-27 and then assume that the spring is 90% effective

$$t_e = \sqrt{\frac{M_e}{\epsilon K}} \operatorname{Cos}^{-1} \frac{F_o}{F_m} = \sqrt{\frac{2.46 \times 10^{-4}}{0.9 \times 68}} \operatorname{Cos}^{-1} \frac{14.5}{24}$$
$$= 2.005 \times 10^{-3} \operatorname{Cos}^{-1} 0.604 = 0.002005 \left(\frac{52.8}{57.3}\right)$$
$$= 0.00184 \operatorname{sec.}$$

The velocity of the ejector at this time is found from the expressions for kinetic energy and the work done by the spring by resorting to the appropriate portions of Eq. 2-24 and solving for the velocity.

$$v_e = \sqrt{\frac{\epsilon(F_o + F_m) \Delta y}{M_e}} = \sqrt{\frac{0.9 \times 38.5 \times 0.14}{2.46 \times 10^{-4}}}$$

= 140 in./sec

During this time, with the extractor as the center of rotation, the case has traveled through the angle 8 (Fig. 7–23). The last point of contact between base of case and ejector is shown at **A**. The tangential velocity at this point, since the case is still rotating, is the component of ν_e that is perpendicular to the turning radius *r*.

$$v_t = v_a \cos 8 = 140 \ge 0.959 = 134.3$$
 in./sec

where 8 = Tan-'
$$\frac{0.14}{0.473}$$
 = Tan-' 0.296 = 16'30'.

The corresponding angular velocity is

$$a = \frac{v_t}{r} - \frac{134.3}{0.493}$$
 273 $\overline{r}ad/sec$

If the case comes free of the extractor at this instant, the tangential velocity ν_c becomes the linear ejected velocity.

$$v_c = \omega \bar{r} = 273 \times 1.1 = 300 \text{ in./sec}$$

This velocity is one of two components and is directed in a 16.5" angle forward. Chances are that the case will not become detached from the extractor simultaneously with the ejector, consequently the case path will be even less than 16.5". Regardless of the extractor behavior, the other velocity component, recoil velocity at the time of release may have the influence to direct the ejected case rearward.

The other three ejectors depend on the velocity of recoil for their effectiveness. The ejector in Fig. 7-22(B) becomes active near the end of the bolt recoil. Recoil velocity here is relatively slow, therefore, this type may not operate quickly enough for fast firing guns. The remaining two, Figs. 7-22(C) and 7-22(D), can be activated at any position along the recoil stroke. These two ejectors are cam-operated and the ejection speed is dependent on bolt recoil speed and cam angle. With the cam rise being as abrupt as can be tolerated, the maximum ejection speed becomes available immediately after the cartridge case clears the chamber where useful bolt recoil velocity is highest. But ejection may be delayed because those components assembled near the breech present structural difficulties that prohibit the size opening needed for the ejection port. Many other types of ejectors have been successful but almost all depend on recoil energy directly for ejection effort or indirectly by storing latent energy in springs to be released when appropriate for ejection. Some type machine guns are particularly adaptable to incorporate an ejection effort derived directly from the propellant gas. One such gun is the revolver-type whose case can remain in the chamber and then be blown out by the next round fired. The details of this type ejection appears elsewhere in the text with the discussion on the revolver-type machine gun.

7-3.3 BOLT LOCKS

The bolt is held tightly against the base of the cartridge case during firing. Lugs or some similar type of

projection bear against a cammed surface on the receiver, thereby locking it in position to provide the resistance to the rearward thrust of the propellant gas pressure. Some locking devices need not be integral with the bolt. One such is the breech lock shown in Fig. 7-24. This type, used on the M2 Cal .50 Machine Gun, has a breech lock that rises and falls in response to the action of one of two cams. Four positions of bolt and lock are illustrated. In the locked position, just before the round is fired, driving and buffer springs hold the bolt and recoiling parts in battery, with the breech lock holding them together and maintaining this state during the first part of the recoil stroke. Thus, all recoiling parts move as a unit until the lock pin, serving as a cam follower, contacts the depressor. By this time the projectile has emerged from the muzzle and gas pressures have dropped to safe levels for case extraction. When the pin first contacts the cammed surface of the depressor, it has already cleared the locking cam to permit a free downward unlocking movement which is effected by the depressor as the recoiling parts continue rearward. As soon as the lock exits from the bolt recess (Fig. 7-24 (C)), the now unattached bolt is accelerated rearward while the rest of the recoiling parts are stopped by the buffer and held in the fully recoiled position until the returning bolt releases them to reverse the activity. Shortly before reaching battery, the lock pin rides upward on the locking cam and enters the bolt recess to repeat its locking function.

Fig. 4-3 represents a bolt having integral locking lugs near its breech face. Locking and unlocking actions involve bolt rotation which is controlled by a cam cut into the wall of the bolt. The M60 7.62 mm Machine Gun has this type locking device. Bolt activity obtains all needed energy from the gas operating cylinder; the cam actuator, or follower, serving as the rigid link between operating rod and bolt. The actuator, moving rearward, rotates the bolt to unlock it according to the dictates of the cam. When the bolt is unlocked, the actuator forces it open by continued rearward motion. Bolt opening, and therefore case extraction, is delayed until propellant gas pressure drops to a safe level. Delay is controlled by: the location of the gas port along the barrel; the time needed to fill the gas chamber of the operating cylinder; and the time consumed for unlocking the bolt.

Locking action occurs during counterrecoil of the bolt. The driving spring forces the operating rod forward carrying the cam actuator and bolt with it. The locking lugs, riding in guides, prevent rotation while the concave recess at the beginning of the cam surface offers a

Figure 7–24. Sliding Breech Lock

convenient force transferring area. Somewhere along its return stroke, the bolt picks up a new round. Just as the cartridge case seats: the locking lugs leave the confines of the guides; angular restraint disappears; and the cam actuator, no longer restrained, leaves the recess to continue forward along the cam surface. Since the cam is forced to follow the path of the cam actuator, the bolt rotates into locked position to complete the cycle.

Several variations of the above lug type of bolt lock exist. Two such are the multiple lug lock and the interrupted thread lock. Both are adaptable to either gas- or recoil-operated machine guns. If recoil-operated, the receiver has a sleeve to perform the female function of the lock. **As** the gun recoils, a cam follower, integral with the sleeve, rotates it to free the lugs or interrupted threads on the bolt which then recoils by itself. The peripheral width of each lug or the length of each thread segment determines the angular distance through which the sleeve must turn to unlock the bolt. On gas-operated machine guns, the bolt is more apt to be the rotating element since the bolt, already actuated by the operating rod of the gas cylinder for linear motion, may just as readily be actuated by the rod for the angular motion of
unlocking. Actually, no set format applies to the unlocking method for any particular type gun. Design expediency usually controls the choice.

Another type of bolt lock that resorts to rotation, but in this case a tipping action, operates in the manner shown in Fig. 7–25. Rather than rotate in a vertical plane perpendicular to the bore axis, this one tips in a vertical plane along the bore axis. Locking and unlocking are readily accomplished by the action of the operating rod in a gas-operated gun. Locked in position when the round is fired, the bolt remains in this state until propellant gases in the operating cylinder force the rod and carrier rearward. This rearward action causes the unlocking link to rotate forward and pull the locking lug from its notch in the receiver.

7-4 FIRING MECHANISM

7-4.1 COMPONENTS, TYPES, AND ACTION

The firing mechanism is a linkage that releases the firing pin or its equivalent to initiate firing. It has several components including trigger, sear, hammer, firing pin, cocking device, locking device, and safety. Each may be a separate component or may be integral with another. For instance, the trigger may also provide the sear and cocking facility as in some revolvers or pistols. However, in machine guns, the sear is generally a separate link. It engages the sear notch on the hammer, firing pin, or bolt or some appendage attached rigidly to one of those components. Cocking devices are arrangements that arm the firing mechanism by retracting the pertinent components to the position where the sear engages the sear notch to be held until triggered. Loading devices are mostly spring installations that provide the impetus to the firing pin. Safeties are machine elements that lock trigger, sear, or hammer to preclude inadvertent firing. A safety which locks the sear or hammer is more positive than one which locks only the trigger and is to be preferred. Fig. 7–26, 7–27, and 7–28 shown three types of firing mechanism.

Fig. 7–26 shows a firing mechanism similar to that of the M2, Cal SO Machine Gun. Three positions are represented: in battery, start of recoil, and fully recoiled positions. Except for a hammer, this example has all the components mentioned earlier. In battery, the spring-loaded sear holds the cocked firing pin by means of the sear notch at the end of the firing pin extension. Downward displacement of the sear releases the firing pin to be snapped toward the primer by the firing pin spring. Being somewhat remote from the sear, the trigger depresses it by lifting the tripper bar on one end thereby rotating the other end downward on the sear. The sear contacting surface of the trigger bar is cammed to minimize impact during counterrecoil when the sear end is held down for continuous firing.

Cocking the firing pin automatically is achieved by the cocking lever which rides in a stationary V-slot actuator. During recoil, the actuator flips the cocking lever forward thus rotating the lower end. The rotating lower end engages the firing pin extension and forces it rearward, meanwhile compressing the firing pin spring. In the fully recoiled position the cocking lever holds the sear beyond the sear notch to provide sufficient

Figure 7–25. Tipping Bolt Lock

Figure 7-27. Firing Mechanism for Gas-operated Machine Gun

clearance and time for the sear to engage the notch properly thereby reducing the possibility of a prematurely released firing pin. A spring forces the sear upward into the latching position. As the bolt counterrecoils, the cocking lever continues to hold the firing pin in its most rearward position until the lever is rotated by the actuator to free the firing pin and permit it to slide forward a short distance to engage the sear notch. This action is completed when the recoiling parts are almost in battery and just short of the position where the sear passes beneath the trigger.

This firing mechanism is essentially one for automatic operation. Although adaptable to other types, this firing mechanism was designed for a recoil-operated gun, a type whose firing rate is largely determined by the inertial properties of the recoiling parts. Another limit on the firing rate is imposed by the sear spring. Since the spring force must be compatible with trigger pull, the spring may not have the capacity of lifting the sear into latching position before the cocking lever tends to release the firing pin if the bolt is moving too fast. In this event, the unrestrained firing pin will follow the cocking lever and lose the effectiveness of its spring, thus reducing the striking velocity on the primer. Should the firing pin velocity be lowered too much, the primer may not initiate, reducing the gun to inadvertent single shot operation. Planned single shot operation depends on the quick reflexes of the gunner to release the trigger before the sear hits the trigger bar during second round activity. However, positive single shot control is available by installing a bolt latch unit to the receiver. This unit latches to the recoiled bolt and retains it, thus interrupting the firing sequence until released manually. The interruption permits single shot firing.

Fig. 7–27 shows the type firing mechanism used in the M60, 7.62 mm Machine Gun. Two views of the bolt show the travel limits of it and the firing pin. Trigger and sear are shown only in the cocked position but their directions of motion and relative displacements when actuated are readily visualized in the sketch. The sear functions through the notch in the operating rod by holding rod, bolt, and all associated moving parts in the cocked position – the bolt being fully retracted except for the length of buffer travel. Here the sear engages the sear notch to stop all further counterrecoil progress. The sear pivots on a pin and is held in the cocked position by the trigger on one end and by sear plunger and safety on the other. All three are spring loaded. Trigger travel is limited on either end by a fixed limit stop. When the trigger is squeezed, it lifts its end of the sear and depresses the other end against (1) the resistance of sear and safety springs and (2) the frictional resistance induced by the driving spring between sear and sear notch. As the sear clears the sear notch, the driving spring forces the operating rod, bolt, and firing pin forward; closing the bolt and firing the round.

A voke connects the operating rod to the bolt and firing pin. It is fastened rigidly to the operating rod but rides in a cammed slot in the wall of the bolt and cradles the firing pin. As the rod moves, the voke carries the bolt in the same direction. This action is described in detail in par. 4-3.1.2. Relative linear motion between the yoke and bolt causes the firing pin to slide inside the bolt. Only linear travel of the firing pin is essential. Any angular motion between it and its adjacent components is inconsequential, contributing nothing to firing efforts. The firing pin rests in the saddle of the yoke, the two integral collars serving as force transmitters, guides, and retainers. As retainers, they prevent relative linear motion between yoke and pin. As a guide, the front collar helps center the firing pins. As force transmitters, the front collar serves during firing activity whereas the rear one serves during retraction as well as the transmitter of the firing pin spring force. The firing pin opening becomes useful after the locking lug engages the lock to provide the necessary external reaction. This arrangement augments the driving spring effort in maintaining a counterrecoil velocity and, subsequently, a firing pin velocity conducive to rapid bolt closing and primer initiation. Designed for automatic operation only, this mechanism continues to fire as long as the trigger is held depressed. When released, all elements return to the cocked position as the sear catches the operating rod during the early part counterrecoil to stop further firing activity. of Afterwards the firing mechanism may be put on safe by rotating the safety until its plunger is seated to establish a rigid link between sear and trigger housing. No matter what position the trigger now assumes, the rest of the firing mechanism is firmly locked to eliminate accidental firing.

Fig. 7–28 illustrates a method whereby firing control is achieved by a three-position lever: the first for automatic, the intermediate for semi-automatic, and the third for putting the gun on safety. The safety is a secondary lever integral with the selector lever. It bears against the sear, holding that component firmly in the slot. When in this position, any pull on the trigger will not disturb the bolt. In either firing position, the safety swings free of the sear and offers no further interference.

Figure 7–28. Three-position Firing Mechanism (2 of 2)

1

With the selector in the semiautomatic position and as the trigger is being pressed, the selector pushes the actuator upward to rotate the sear and release the bolt. As trigger and sear rotate, the actuator moves rearward on the trigger and eventually slips off the stop to release the sear and permit it to resume its normal position and latch the bolt as it begins to close again—the depressed trigger meanwhile being limited in its movement by the selector. Before the next shot can be fired, the trigger must be released so that the sear actuator too can assume its original cocked position.

Automatic firing is achieved by turning the selector until the trigger can clear it entirely and sweep through the semiautomatic position. The advanced trigger position continues pressure on the sear actuator, thereby, holding the sear in its uncocked position leaving the bolt free to travel at will in either direction, continuing to fire until the trigger is released.

7-4.1.1 Trigger Pull

Computing the trigger pull is primarily an exercise in statics. Fig. 7-29 represents a typical triggering mechanism showing the applied loads on the various links. The trigger pull is found by balancing the moments about S, the pivot of the sear, and therefore, resolving the reaction between sear and trigger. This reaction – when applied to the trigger as a load – and the effects of the trigger spring, determine the trigger pull by balancing the moments about S.

$$28 R_t = 0.84 F_s + 1.30 F_{sv} + 0.13 F_{sh}$$
$$+ 0.46 F + 1.02 \mu F$$

$$= 13.4 + 26.0 + 2.6 + 12.0 + 2.7 = 56.7$$
 lb-in

where F = 26 lb, driving spring force

- $\mu F = 2.6$ lb, frictional resistance at sear notch
- $F_s = 16$ lb, sear spring force
- $F_{sv} = 20$ lb, safety spring force
- $F_{sh} = 20$ lb, horizontal component of safety spring force
- R_t = trigger reaction on sear
- $\mu = 0.10$, coefficient of friction

The trigger reaction on the sear is

$$R_t = \frac{56.7}{1.28} = 44.3 \, \text{lb}$$

Balance moments about 0,

$$1.06 P_t = 0.23 R$$
, $+T + 0.63 F_t$
= 10.0 + 1.0 + 0.6 = 11.6 lb-in.
7-37

Figure 7-29. Triggering Mechanism Loading

7–38

where T = 1.0 lb-in, applied torque of trigger spring, and P_t is the trigger pull.

$$F_t = \frac{T}{1.12}$$

= 0.89 lb, vertical reaction of trigger spring pin

The trigger pull becomes

$$P_t = \frac{11.6}{1.06} - 10.9$$
 lb

7-4.1.2 Firing Pin Design

Design criteria for firing pins are published elsewhere²² but two basic requirements are essential for all percussion primers. A minimum amount of energy must be transmitted from firing pin to primer at a minimum striking velocity of 7 ft/sec. The energy is specified in inch-ounces. An upper limit of striking velocity also is specified to avoid puncturing the primer cap. Specifying both energy and velocity removes considerable control over the dynamics of a mechanism; control that normally should be available. For a given firing pin energy, the corresponding striking velocity is

$$\nu = \sqrt{\frac{2E}{M_e}} \tag{7-50}$$

where

E = energy available

 $M_e = \frac{W_e}{g}$ = equivalent mass of the moving parts

 W_e = equivalent weight of the moving parts

A compressed coil spring provides the energy.

$$E = \frac{\epsilon \left(F_o + F_m\right)}{2} \mathbf{x} \tag{7-51}$$

where $F_m = F_o$ **t** Kx, maximum spring force (in initial position)

 F_o = minimum spring force (in final position)

K = spring constant

- \mathbf{x} = length of travel
- E = spring efficiency

The time elapsed during firing pin action according to Eq. 2-27

$$t = \sqrt{\frac{M_e}{\epsilon K}} \quad \cos^{-1} \frac{F_o}{F_m} \tag{7-52}$$

Because M_e is generally small and E relatively large, the striking velocity τ will be large. If ν exceeds safe limits, the energy should be reduced to its lower limit and the weight of the firing pin increased to proportions that are compatible with good design. Table 7-2 lists various combinations of design parameters and how they affect the velocity and time. The firing pin energy will be held constant at E = 60 in.-oz. The efficiency of the firing pin spring system is also a constant at $\mathbf{E} = 0.80$. By holding the equivalent weight constant and varying the spring characteristics to be compatible with the distance, the time interval increases with respect to distance but the terminal velocity remains constant. But when weight varies and distance is constant, the time increases while terminal velocity decreases. A review of the data in Table 7-2 indicates a wide latitude in spring selection exists for any given firing pin weight. The tabulated data also show that the striking velocity can be lowered only by increasing the firing pin weight. A word of caution should be introduced here. An increase in weight may not be helpful because the vibration of the firing pin mechanism may be out of phase with the mechanical action. Past experience has proved that correcting this type of disorder can be achieved only by reducing the weight of the firing pin; altering the spring characteristics was not effective.

7-5 LINKS

Early machine gun ammunition belts were made of cloth fabric but the susceptibility of cloth to adverse climatic conditions led to its replacement by the modern metallic link belts. The metal belts consist of many links joined in series by some type of mechanical fastener, such as a pin. Many belts use the rounds themselves as pins. In addition to being able to survive most climatic conditions, the metal links have other desirable characteristics, two of which are: (1) the strength needed to transmit the high accelerations imposed by the loading devices of rapid fire guns, and (2) the ability to extend belt lengths quickly by merely joining the last link of one to the first link of another belt.

W_e ,	<i>x</i> ,	К,	F_o ,	F_m ,	t,	ν,
OZ	in.	lb/in.	lb	lb	sec	in./sec
0.5	0.50	13.5	6.00	12.75	0.00296	304
1.0	0.50	13.5	6.00	12.75	0.00418	21.5
1.5	0.50	13.5	6.00	12.75	0.00513	175
2.0	0.50	13.5	6.00	12.75	0.00592	152
0.5	0.75	8.0	3.25	9.25	0.00445	304
1.0	0.75	8.0	3.25	9.25	0.00629	21.5
1.5	0.75	8.0	3.25	9.25	0.00771	175
2.0	0.75	8.0	3.25	9.25	0.00890	152
0.5	1.00	3.5	2.94	·6.44	0.00590	304
1.0	1.00	3.5	2.94	6.44	0.00834	215
1.5	1.00	3.5	2.94	6.44	0.01022	175
2.0	1.00	3.5	2.94	6.44	0.01180	152

TABLE 7-2. FIRING PIN DYNAMICS

7-5.1 TYPES OF LINK

There are three general types of link: the old or extracting type, and the new push through and side stripping types. The extracting type has its round gripped in the cannelure of the cartridge case base and then pulled rearward from the link. When completely withdrawn, the round is lowered into the bolt path and rammed, by the bolt, into the chamber. The push through type depends on a rammer or bolt to push the round directly through the link toward the chamber. The round in the side stripping type link is forced out by applying a force, usually by cam action, perpendicular to the axis of the round. After leaving the link, the round continues its sidewards path until in line with rammer or bolt.

7-5.2 DESIGN REQUIREMENTS

Fig. 7–30 shows a link that may fit any of the above three categories. It components consist of two retaining loops, a connecting loop, and a retaining arm. The retainer loops grip the cartridge case and hold it firmly with respect to any lateral motion between round and link. The retaining arm prevents longitudinal relative motion between round and link. The connecting loop fits loosely over the preceding round to preserve the continuation of the belt. For this link configuration, the rounds are analogous to pins in a chain. Clearances between connecting loop and cartridge case determine the amount of free flexibility in an ammunition belt. The attachment between the connecting loop and the retaining loops, if not rigid, also lend a degree of free flexibility to the belt. Free flexibility is the flexing of the belt so that it will assume a fan-like position or form a helix, made available by taking up the slack provided by the accumulated clearances in all the links. Its counterpart, induced or forced flexibility, may be either helical or fanning but the deflection is derived from the elastic deflection within the individual links. Allowable induced flexibility is determined experimentally; helical by measuring the torque necessary to twist the belt through a given angle, and fanning by fixing one end of the belt in a guided circle and hanging a weight on the other end. Either type of induced flexibility must always perform within the elastic range of the link material.

The ammunition belt may assume two positions for fanning flexibility, the nose fanning of Fig. 7–31 where touching is not permissible, and the base fanning of Fig. 7–32 where touching is permissible. Only free flexibility is represented since the ends of the belts are not constrained which is necessary to induce elastic deflection. Fig. 7–33 shows the geometry of two adjacent rounds in a base fanned belt. Free helical flexibility is shown in Fig. 7–34. Another type of belt configuration involves the fold radius. When the connector is a loop over the case (see Fig. 7–30), the linked round can rotate through a complete circle except for the interference of the adjacent round. Thus when a belt of ammunition in 7.62 mm M13 Links is housed in

Figure 7–30. Ammunition Link, Cal .50 Round

a magazine or storage container (Fig. 7–35), little space is wasted since the belt can be stacked in horizontal rows. When the connector does not wrap around the case but instead merely joins the retaining loops of adjacent links, the rotation of one round about its neighbor is severely limited since the rotation center is near the case surface instead of being at the axis of the round. Ammunition belts made of links with this type connector will have some waste space when stored (see Fig 7–36 for 7.62 mm links). Another type connector, called a connecting member, operates similarly to a universal joint, i.e., it permits rotation between links about two perpendicular axes. All belts, so equipped, have unlimited free flexibility.

Initial link design is based on past experience. Belt strength is the most important requirement, to be followed closely by retention capability. Forces imposed on the belt are determined by the type of feed system (drum, chute, magazine) and the feed accelerations. Deflections in the ,links and, therefore, in the belt are not necessarily objectionable provided that round retention is maintained. Any variation in pitch due to belt stretch is corrected by the holding pawl which insures constant pitch and, therefore, proper feeding. Later, the feeding pawl controls the round as it is extracted from the link.

Usage determines the configuration and type of link. If the belts are to be discarded after firing, *disintegrating* ones are used where the link drops from the belt immediately after the round is stripped from it, or is forced from the belt by the ejected cartridge case. If the belts are to be retained, then maintaining the empty belt as a unit may be desired. Open links may also be desired. They are good for camming out the round but are relatively poor with respect to belt strength, and round retention can be a problem. For this reason, tolerances are small, to insure a reasonable consistency in retention loads. Should these loads prove to be too high, lightening holes (see Fig. 7-34) are made to provide more flexibility and less snap-in force when joining two belts. The snap-in technique is superior to and preferred over the older *push-through* technique. In contrast to

Figure 7–31. Nose Fanning Flexibility, 7.62 mm Link

Figure 7-33. Geometry of Base Fanning

open links, closed loop links provide excellent belt strength and retentivity. Extracting the round may be a bit more troublesome than that experienced for the open loop but if a removable cover is used to complete the loop, an effective open loop link can be had by first stripping off the cover thus exposing the round to the extracting mechanism.

A unique means has been devised to protect electric primers from being initiated inadvertently. This hazard is usually associated with aircraft since radiation emanating from communication (radio), detection (radar), and fire direction (usually on shipboard) facilities are generally associated with air terminals. A compatible antenna, such as a screwdriver, with a different potential in the established radiation field, may induce a spark at the primer to initiate it. This hazard is primarily a ground handling one which is most prevalent during loading, connecting, or breaking ammunition belts. Effective protection is available through the use of a *RADHAZ* (radiation hazard) shown in Fig. 7–37. It is merely an extension of the link bent over the primer to form a cover. The primer is thus shielded from any metal rod that is brought near it.

After the initial design or subsequent modification, pilot lots are made to determine acceptability. The links are stamped out in the annealed state, then heat treated. Extreme care must be exercised to hold the small tolerances. The pilot lots are tested in accordance with operating requirements. One of these is the catenary test to check retention under shock loads. If a free span of belt exists in the installation, a similar length of belt is lifted at midspan to a prescribed height and released to approximate belt whip. If the link is found wanting from this or any of the other tests, the design is modified to strengthen the weak areas, and the manufacturing and testing procedures repeated until an acceptable link evolves. Because of its trial and error nature and because of demanding manufacturing technique, long periods of time, in some cases more than a year, are devoted to designing and producing a successful link.

7-6 MOUNTS

Machine gun mounts are either fixed to vehicles or rest on the ground. Generally simple structures, mounts are adapted to the required limits of elevation and traverse and must be stable within these limits. Stability is readily achieved on vehicles by merely fastening the mount rigidly to the structure of the vehicle. But, if it rests on the ground, a mount such as the tripod type must depend on geometric proportions for stability. For this type, stability is a function of recoil force, command height, total weight, and length of the legs. If traverse is limited to the spread of the rear legs, the position of any given angle of elevation is that at zero traverse.

7-6.1 GEOMETRY AND RESOLUTION OF FORCES

Fig. 7-38 shows the forces involved in the side view projection. Take moments about A and solve for the reaction at B $\,$

$$R_b = \left[D_r \left(W + F_r \sin \theta \right) - H F_r \cos \theta \right] / L \qquad (7-53)$$

Figure 7–34. Helical Flexibility, 7.62mm Link

Figure 7–35. Total Folding 7.62 mm Ammunition Belt

Figure 7-36. Partial Folding 7.62mm Ammunition Belt

7 – 46

Figure 7–37. Loading Link With RADHAZ Shield

Figure 7-38. Loading Diagram of Mount

- where D_r = horizontal distance between trunnion and rear support
 - F_r = recoil force
 - H = commandheight
 - L = distance between front and rear leg supports
 - R_a = reaction at rear support
 - R_b = reaction at front support
 - θ = angle of elevation

If R_a is positive or zero, the weapon is stable.

The recoil force F_r is assumed to be the average force during the recoil cycle. It may be computed by resolving the impulse-momentum characteristics of the recoiling parts. Add the expressions for the time recoil t, and counterrecoil t_{cr} of Eqs. 2–23 and 2–27 for the total time of one cycle t_c period of oscillation.

$$t_c = \frac{\epsilon + 1}{\sqrt{\epsilon}} \sqrt{\frac{M_r}{K}} \quad \cos^{-1} \frac{F_o}{F_m}$$
(7–54)

- where F_m = spring force at end of recoil
 - F = spring force at beginning of recoil
 - K = spring constant
 - M_r = mass of recoiling parts

 ϵ = efficiency of spring

The impulse on the recoiling parts induced by the propellant charge may be obtained by measuring the area under the propellant gas force-time curve or by computing the velocity of free recoil and then the momentum of the recoiling parts which is equal numerically to the impulse. The momentum of recoil

$$M_{n} = \left(\frac{W_{r}}{g}\right) v_{f} = (W_{p}v_{m} + 4700 W_{g})/g \qquad (\text{Ref. 23})$$
(7-55)

where g = acceleration due to gravity

- v_f = velocity of free recoil
- v_m = muzzle velocity of projectile
- W_{g} = weight of propellant charge
- W_p = weight of projectile
- W_r = weight of recoiling parts
- **4700** = empirical value of the propellant gas velocity in ft/sec, therefore, the other kinematic parameters must be dimensioned in ft and sec.

Since impulse is numerically equal to momentum, Eq. **2–14**, the average recoil force is

$$F_r = \frac{\int Fdt}{t_c} = \frac{M_n}{t_c} \quad . \tag{7-56}$$

The length of the rear legs extending from the spade to the intersection of leg and pintle is computed by first equating the weight and force moments about **A** at zero elevation.

$$D_{\mathcal{F}}W = HF, \qquad (7-57)$$

7–48

The projected horizontal distance between spade and trunnion is

$$D_r = \frac{HF_r}{W} \tag{7-58}$$

The rear leg length becomes

$$L_{r} = \sqrt{D_{r}^{2} + (H - h_{t})^{2}} / \cos\phi \qquad (7-59)$$

where h, = distance between trunnion and pintle leg intersection

 ϕ = half of the angular spread between the rear legs.

Half of the average force during the recoil cycle is assumed to be the applied forward acting force just as the cycle is completed. The distance needed to balance this forward upsetting moment with the weight moment is

$$D_f = \frac{HF}{2W} = \frac{1}{2} D_r \quad . \tag{7-60}$$

The length of the front leg is

$$L_f = \sqrt{D_f^2 + (H - h_t)^2} \quad . \tag{7-61}$$

The structural requirements of the legs, size, strength, and rigidity are satisfied through the usual procedure for computing stresses and deflections of an eccentrically loaded column of uniform cross section²⁴. If the leg varies in cross section, the area moment of inertia of the cross section is a function of the distance, and the bending moment is a function of the distance and of the deflection. Unless some simplifying assumptions are made, the alternative rigorous analysis is performed most conveniently with a digital computer.

7-6.2 SAMPLE PROBLEM

Compute the recoil spring characteristics and lengths of the legs of a tripod mount for a gun having the following data:

H = 14 in., command height

- h, = 5 in., height of trunnion above pintle
- K = 2000 lb/in., spring constant (ring spring)

- L = 0.5 in., length of recoil
- $v_m = 3000$ ft/sec, muzzle velocity
- W = 225 lb, estimated weight of weapon
- $W_g = 0.09$ lb, weight of propellant charge
- $W_p = 0.2$ lb, weight of projectile
- $W_r = 110$ lb, weight of recoiling parts
- $\epsilon = 0.50$, efficiency of ring spring
- e = 0", angle of elevation
- $2\phi = 50^{\circ}$, spread of rear legs

From Eq. 7–55, the velocity of free recoil is

$$v_f = \frac{0.2 \times 3000 + 4700 \times 0.09}{110} = 9.3 \text{ ft/sec.}$$

The energy to absorbed during recoil is

$$E_r = \frac{1}{2} \left(M_r v_f^2 \right) = \left(\frac{110}{64.4} \right)$$
 86.49 = 147.73 ft-lb.

The total average recoil force is

$$F_r = \frac{E_r}{L} = \frac{147.73 \times 12}{0.5} = 3546 \,\text{lb}.$$

Since the efficiency of the spring, E = 0.50, assists in stopping the recoiling parts, the actual average spring force is

$$F_{as} = \epsilon F_r = 1773 \, \text{lb}$$

But

$$F_{as} = \frac{1}{2} (F_o + F_m) = \frac{1}{2} (F_o + F_o + KL)$$
$$= \frac{F_o + \frac{1}{2} KL}{KL}$$

$$F_o = F_{as} - \frac{1}{2} KL = 1773 - \frac{1}{2} (2000) 0.5$$

= 1273 lb.

$$F_m = F_o + KL = 1273 + 1000 = 2273 \, \text{lb}$$

According to Eq. 7-54

$$t_{c} = \frac{\epsilon + 1}{\sqrt{\epsilon}} \sqrt{\frac{M_{r}}{K}} \cos^{-1} \frac{F_{o}}{F_{m}}$$
$$= \frac{1.5}{0.707} \sqrt{\frac{110}{2000 \times 386.4}} Cos^{-1} 0.56005$$

= $2.122 \times 0.0119 \times 0.976$ = 0.0246 sec.

The average impulsive force during the recoil cycle, Eq. 7–56, is

$$F_r = \frac{M_n}{t_c} = \frac{110 \times 9.3}{322 \times 0.0246} = \frac{1023}{0.792} = 12921b.$$

The projected horizontal distance of the rear leg, Eq. 7-58, is

$$D_r = \frac{HF_r}{W} = \frac{14 \times 1292}{225} = 80.4$$
 in.

The length of this rear leg, Eq. 7-59, is

$$L_r = \sqrt{D_r^2 + (H - h_t)^2} / \cos \phi = \sqrt{\frac{6545.16}{0.906}} = 89.3 \text{ in.}$$

The length of the front leg, Eqs. 7-60 and 7-61, is

$$L_f = \sqrt{D_f^2 + (H - h_t)^2} = \sqrt{1697.04} = 41.2$$
 in.

7-49/7-50

CHAPTER 8

LUBRICATION OF MACHINE GUNS

Conventional, good lubrication design practice is required in machine gun design. Excess, rather than insufficient, lubricant is to be avoided on most sliding parts. If the coat of oil or grease is too thick, dust will readily collect, cause excessive wear, and impede action sometimes to the extent of malfunction. Maintenance instructions stress this fact by emphasizing that all excess lubricant be wiped off all surfaces. Not all selfoperating machine guns require reservoirs of lubrication. In some cases, the recoil adapter spring or the driving spring may be lubricated with **a** graphite grease. In electric or hydraulic-driven machine guns, the driving units are lubricated by applying grease or oil to the moving parts which are usually protected from exposure to dirt by their housings.

A well-designed machine gun is inherently a readily lubricated one, particularly if only a thin coating of lubricant is needed on the sliding part. The lubricant is usually applied after cleaning, which procedure follows after prolonged firing or during periodic inspection and maintenance. Because of this practice, emphasis is generally placed on the lubricant rather than on specific design practices that are controlled by lubrication requirements.

8-1 GENERAL CONCEPT

The machine gun designer must be cognizant of the lubrication requirements for the sliding surfaces of his design. His primary objective is smooth surfaces coupled with his acquaintance with available lubricants, and their general properties and uses. If lubricant properties and required lubricating properties are compatible, the designer's problem is solved. If a proper lubricant is not available, a search for one must be made or the weapon relegated to limited specific conditions, which normally is undesirable. Another alternative involves auxiliary equipment such as heaters to keep the viscosity level of the lubricant in an acceptable range.

The lubrication of machine guns is usually confined to applying a thin film of oil, grease, or other material to sliding surfaces with the expectation that it will last until the next general cleaning time. Military Specifications define in detail the properties of available lubricants. Substitutes are acceptable only after extensive tests prove that the new product has all the necessary properties. The Specifications enumerate all known data from preparation to delivery and storage. A general outline is prepared for illustration.

- 1. **SCOPE.** Type of lubricant, general usage, and operating temperature range.
- 2. APPLICABLE DOCUMENTS
 - **2.1** A list of Federal and Military Specifications supplementing the given specifications.
 - 2.2 Standards prepared by accepted private organizations.
- 3. REQUIREMENTS
 - **3.1** Qualification. The material must have passed qualifying tests.
 - **3.2** Material. The ingredients of the material must conform to specification.
 - **3.3** Physical and chemical requirements. Some of these are listed as flash point, pour point, viscosity at temperature limits, hydroelectric stability, oxidation stability, storage stability, rust prevention, gun performance, workmanship (homogeneous, clear, and with no visibly suspended matter).
- 4. QUALITY ASSURANCE PROVISIONS
 - 4.1 Specified inspection procedure.
 - 4.2 Specified tests.

8-2 EXAMPLES OF LUBRICANTS

Unless a smoother finish is required, an RMS (rough machine surface) of 16 to 32 *pin*. will provide proper sliding action when covered with a thin layer of lubricant. However, under extremely adverse conditions, the designer may be helpless to cope with the sliding surface preparation. A number of activities associated with machine gun fire at high altitudes demonstrates the difficulties experienced in attempts to eliminate malfunctions. These activities deal with lubricant rather than design.

During World War 11, high-flying airplanes had gun malfunction at temperatures below -20°F. This led to gun heaters, but the added weight and not complete reliability led to attempts to develop new lubricants that would correct the malfunctioning components'⁷. The investigation yielded success in three operations. Low temperature exposure at high altitude followed by condensation at warmer levels and again freezing after returning to high altitudes caused the triggering solenoid to become frozen in place. A free-moving solenoid was assured by spraying the unit with silicone oil to prevent the water condensate from collecting. The material is an open chain methyl silicone having a viscosity of 20 cSt at 77°F and 300 cSt at -65°F, and a pour point of -75°F. Dodecane phosphoric acid (0.1 percent by weight) was added for lubrication. This material was labeled NRL S-75-G interim. In the meantime, special attention to ammunition feeders led to "trouble-free lifetime lubrication" with the application of MIL-G-15793 (BuOrd) grease. Also, synthetic oil MIL-L-17353 (BuOrd) with 2 percent by weight of trecresyl phosphate for wear prevention was discovered to perform adequately for other moving parts of the gun.

In contrast, tests conducted with the Cal .SO M3 Machine Gun, to prove the reliability of removing gun heaters, when lubricated with PD 500 oil gave totally negative results' ⁸. Remember that this oil made feasible the removal of heaters from the 20 mm M24A1 Gun without the gun malfunctioning at low temperatures. Apparently some inherent feature in each type of gun rendered acceptance and rejection in the particular weapon. Unfortunately, the tests were not sufficiently broad in scope to determine what design features were responsible.

A semi-fluid grease and an oil blend were developed with satisfactory performance at extreme temperatures for the M61 Multibarreled Gun⁹. Test results indicate that either lubricant satisfied all requirements, but the semi-fluid grease had longer life and was therefore selected as the lubricant for the M61 Gun.

Dry lubricants are recommended for slowly moving parts with relatively few cycles of operation. Tests of 18 resin systems pigmented with molybdenum disulfide were tested²⁰. A pigment-to-resin ratio of 9: 1 was found most effective. Epoxy-phenolic and epoxy-polyamide resin systems were best for both lubrication and storage stability.

Although the gun designer is not directly involved with ammunition design, he is directly concerned with handling, loading, and extracting during firing. A smooth chamber is essential for extraction and a properly lubricated case is a decided asset. The lubricant should be a dry lubricant and should be applied at the factory. Considerable effort has been made to find suitable lubricants for this purpose. Some success has been achieved but continued search is still being advised, especially since two independent facilities are not in total agreement.

The Naval Research Laboratories conducted tests of brass and steel cartridge cases coated with films of polytetrafluoroethylene (Teflon)²⁸. Results were outstanding in meeting required protection and lubrication properties. Laboratory results, later confirmed by firing tests, showed low friction and consequently less wear in gun barrels. Other desirable features include freedom from cartridge malfunction, no chamber deposits, decreased ice adhesion, and less chance of thermal "cook-off". Teflon can be applied to steel and brass ammunition by mass production methods. Its protective ability permits prebelting and packaging of ammunition since no further handling prior to use is necessary. Its supply is abundant and its cost reasonable. Thus the use of Teflon in this capacity seems ideal.

Aberdeen Proving Ground is more reserved in its appraisal of Teflon coating²¹. Whether or not the techniques of applying the coatings were similar, those used at APG were not free of coating defects; a high cull rate existed. When tested with cartridges coated with microcrystalline wax, ceresin wax, and uncoated ammunition; the Teflon-coated wax showed many advantages but was also found wanting in some respects. Teflon and micro-wax had better extraction properties and Teflon left a much cleaner chamber than the others: micro-wax was second best. About SO percent of the Teflon-coated cases had slight bulges after extraction: other types also were similarly damaged but with no apparent significance attached to a definite choice. For dusted ammunition, the Teflon and micro-wax were far superior to the other two types with Teflon having a slight advantage, although when fired in a comparatively rough chamber, Teflon was outperformed by all. Reiterating, the gun designer, aside from providing smooth sliding surfaces, is almost totally dependent on the physical properties of the lubricant to make his gun perform satisfactorily under all assigned conditions.

APPENDIX A

A –3

002255 002255 002255 002255 002255 002265 002265 002265 002265 002265 002265 002265 002265 002265 002265 002265 002275 00225 002275 00225 00225 00225 00225 0025 00	000222 000222 000222 000222 000222 000222 000222 000222 000222 000222 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00002 0000 0002 000 0002 000 0002 0000		99101 90101 90103 90103 90103 90103 90163 90163 901652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001652 9001752 9001752 9001652 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 9001755 900000000000000000000000000000000000
8788787772668566555555555555555555555555			2222957657555555555555555555555555555555
11 JUNE 31	な くの しち N ト	Cu	
FN(1-1)=FS(1-1) FN(1-1)=FS(1-1) FN(1-1)=FS(1-1) FN(1-1)=FS(1-1) FN(1-1)=FS(1-1) FN(1-1)=FS(1-1) FN(1-1)=FS(1-1)+	GO TO 42 GG TO 42 GG TO 42 GG TO 42 FA = FKCR LXXT=-DK X CR AJ=A4 A2=A5 AJ=A4 A2=A5 AJ=A4 A=A1/(A1+A2+D150) GO TO 5 FBK-BULK FFKFEIL1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FFK*F(I-1)*DT50 FBBL2=FKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*F(I-1)*DT50 FFKK*FKK*FKK*FKK*FKK*FKK*FKK*FKK*FKK*FK	XT(I)=XT(I-1) XB(I)=I0.000 F(I)=FB(I-1) FNU=EMI+VT(I-1) BMV=EMI+VT(I-1) BMV=EMI+VT(I)= VT(I)=(TAV(I-1) VT(I)=(TAV(I)+2 E(I)=0.54EMI+VT(I)+2 E(I)=0.54EMI+VT(I)+2 E(I)=0.54EMI+VT(I)+2 DE(I)=E(I)=I GET(I)=E(I)=I IF(I)=0.54EMI+VT(I)+2 DE(I)=E(I)=I GET(I)=E(I)=I IF(I)=0.54EMI+VT(I)+2 DE(I)=E(I)=I GET(I)=E(I)=I IF(I)=0.54EMI+VT(I)+2 DE(I)=E(I)=I IF(I)=0.54EMI+VT(I)+2 DE(I)=0.54	DIMENSION T(30), DE(30), DE(30), READ(5)[0] EPS(EPS),EPS),I(30), 1 BBLK, DKX, FUK, SK, SKB, SKT, V 2 V(1),VT(1),XD(1),XT(1),TT(1),DZ 3 DET(1),E(1),ET(1),A4,A5,A6,FKCP 6 = 3A6(4) 6 = 3A6(4) 6 = 3A6(4) 6 = 3A6(4) 6 = 3A6(4) 6 = 0 6 = 0 10 100 1=2 30 N=0 1 = 0 1 = 0
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1 2 3 3 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0), DXT(30), V(30), XT(30), F(30), ;A3;B1;B2;FK;DXXT;BUFK, WB, WBBL, F0, FST, F(1),FB(1), (1),FXB(1);DXT(1),FE(1), R:DKXTCR:DXT(1),DE(1), 11 R:DKXTCR:DKXCR:B3;84 11 11 12 12 12 12 12 12 12 12 12 12 12

A-4

)

.

A-2. LISTING FOR DELAYED BLOWBACK PROGRAM

)

(20202	70	12 OF VT=1.0-XT(1)	70
(30302	15.	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	71-2
00303	80.	15 1F (AHS(DELX)) 61.0.002/60 10 16	11-6
00305	81.	14 $IF(XT(I-1) \cdot LT \cdot 1 \cdot 0) GO TO 15$	73
00307	h2.	xt(1)=2.0	74
00710	37	A TO 19	
00310	63.	60 10 18	30
00311	84.	15 XT(1)=1+0	76
00312	65.	GO TO 18	77
00212	96	16 1E(N-0E-0)60 10 18	78
00313	00.		70
00315	87.		12
00317	80.	IF(M.EG.0)GO TO 18	80
00321	89.	17 DT=ARS(DT+(DXT(T)+DF) XT)/DXT(T))	81
00500	0		82
00522	90.	D120-D1++2	02
00323	91.	M=M+1	85
00324	92.	IF(M.GT.25)GO TO 26	84
00226	02	GO TO 3	85
00320	33.		66
00327	94.	18 DXB(1)=DX(1)+DX1(1)	00
00330	95.	X3(I)=X8(I-1)+DX8(I)	87
00531	96.	IE(1,GT, (K+1))GO, TO, 22	88
00001	07		
00333	97.		
00334	9d.	IF(ABS(DELXB)+61+0+002)G0 10 20	90
00336	99.	19 XB(I)=10.0	
00537	100.	K = 1	92
00007	100		07
00340	101.	60 10 22	90
00541	102.	20 IF(DELX8+LT+0+0)60 TO 21	94
00343	103.	IE(U.EQ.D)60 TO 22	95
00245	1.00	21	96
00345	104.		~~~~
-00346	105.	DTSQ=UT**2	97
00347	100.	N=N+1	98.
100350	107.	IE(N.GT.25)60 TO 26	
000050	1010		100
00352	109.	G0 10 3	100
00353	109.	22 F(I)=F0+SK*XB(I)	101
00554	110	IE(I.GT.K)60 TO 23	102
DD TE 4	111	F(T) = F(T) + F(T) + F(T-1) + f(2, 0) + F(T) + (-1) + (-	103-
00356	111.		105
00357	112.	E(I) = E(I-1) - DE(I)	104
00360	- 113;	IF(E(I).GT.0.0)GO TO 28	105A
00362	114	F(T)=0.0	1058
00002	117.		
00363	115+		1050
00364	116.	$\kappa = 1$	1050
-00365	117.	60 TO 27	-105E
00266	114	28 V(1)=S(PT(2, 0*F(1)/FMA)	105E
00300			
-00367	119.	GO TO 27	106
	119.	G0 T0 27 23 DE(1)=ABS(DXB(1)+(F(I)+F(I-1))*EPS/2.0)	106 107
00367 00367 00370	119. 120.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) F(I)=F(I-1) +DF(I)	106 107 108
00367 00370 00371	119. 120. 121.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=C(1)(0)+C(1)(C)+D(1)	106 107 108
00367 00370 00371 00372	119. 120. 121. 122.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR)	106 107 108 109
00367 00370 00371 00372 00373	119. 120. 121. 122. 123.	G0 TO 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMB) 27 IF(XT(I-1).LT.1.0)G0 TO 24	106 107 108 109 110
00366 00367 00370 00371 00372 00373 00575	119. 120. 121. 122. 123. 124.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)==SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)+LT.1.0)G3 T0 24 EPS6=EPST	106 107 108 109
00367 00367 00370 00371 00372 00373 00575	119. 120. 121. 122. 123. 124. 125	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSU=EPST EB(1)=EST=SVT*(VT(I)=1.0)	106 107 108 109 109 110 111
00367 00367 00370 00371 00372 00373 00575 00376	119. 120. 121. 122. 123. 124. 125.	G0 TO 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMB) 27 IF(XT(1-1).LT.1.0)G0 TO 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0)	106 107 108 109 109 110 111 111 112
-00367 00370 00371 00372 00373 00575 00376 00577	119. 120. 121. 122. 123. 124. 125. 120.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST=SKT*(XT(I)-1.0) G0 T0 25	106 107 108 109 110 111 - 112 113
00367 00367 00370 00371 00372 00373 00575 00376 00577 00400	119. 120. 121. 122. 123. 124. 125. 120. 127.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)==SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FA(I)=FST=SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)=SKB*XT(I)	- 106 107 108 109 - 110 111 - 112 113 - 114
-00367 00370 00371 00372 00373 00575 00376 00577 00400	119. 120. 121. 122. 123. 124. 125. 120. 127. 124.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 DE(I)=FB(1)-SKB*XT(I) 25 DE(I)=FB(1)+FB(1-1)+FB(I))*FPSB/2.0	- 106 107 108 109
00367 00367 00371 00371 00372 00373 00575 00376 00577 00400 00400	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 128.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)*LT.1.0)G0 T0 24 EPSBEPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+FB(I))*EPSB/2.0 C(1)=CXT(1)*(FB(I-1)+FB(I))*EPSB/2.0	- 106 107 108 109 - 110 111 - 112 113 - 114 115
00367 00370 00371 00372 00373 00575 00376 00577 00400 00401 00402	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 129.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(I)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I)	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116
-00367 -00370 00371 00372 00373 00575 00376 00577 00400 00401 00402 00403	119 120 121 122 123 124 125 120 127 128 129 130	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)*LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(I)=CXT(1)*(FB(I-1)*Fb(I))*EPSB/2.0 ET(I)=ET(I-1)*0ET(I) VT(I)=SQRT(2.0*ET(I)/EMT)	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 117
-00367 00370 00371 00372 00373 00575 00376 00575 00376 00577 00400 00401 00402 00403 00404	119	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).tT.1.0)G0 T0 24 EPSG=EPST FB(1)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FG(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=FT(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT	106 107 108 109 110 111 112 113 114 115 116 117 118
	119. 120. 121. 122. 123. 124. 125. 120. 127. 120. 127. 129. 130. 131. 132.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 LET(I)=CXT(I)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+OET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 F0 100	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 117 - 118 - 119A
00367 00370 00371 00373 00575 00373 00575 00376 00577 00400 00402 00402 00403 00404 00405	119	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)*LT.1*0)65 T0 24 EPS6=EPST FB(I)=FST-SKT*(XT(I)-1*0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)*Fb(I))*EPSB/2*0 ET(I)=ET(I-1)*DET(I) VT(I)=SGRT(2:0*ET(I)/EMT) T(I)=T(I-1)*1000.0*DT IF(XT(1)*LT.2*0)G0 T0 100 C0 T0 25	106 107 108 109 110 111 112 113 114 115 116 117 118 1194
- 00367 00371 00371 00373 00575 00373 00575 00376 00577 00400 00401 00402 00403 00405 00407	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 129. 130. 131. 132. 133.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(1)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=EXI(1)*(FB(I=1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26	- 106 107 108 109 - 110 - 111 - 112 113 - 114 115 - 116 117 - 118 - 119A - 119B
	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 129. 130. 131. 132. 134.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)+LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+0ET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I)+LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119B - 120
	119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 133. 134. 135.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FR(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FR(I)=FB(1)-SKB*XT(I) 25 DET(I)=CXT(I)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102)	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 129. 130. 131. 132. 133. 134. 135. 130.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(1)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(I)=EXT(I)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+0ET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 TO 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WEDE(6.102)	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 120 - 1212 - 120 - 120
	119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 133. 134. 135. 135. 135. 135.	<pre>G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).tT.1.0)G0 T0 24 EPSB=EPST FB(1)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(I)*(FB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).tT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J),</pre>	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 122 - 123 - 108 - 107 - 108 - 110 - 110 - 111 - 112 - 111 - 112 - 114 - 115 - 116 - 117 - 118 - 118 - 119 - 120 - 121 - 122 - 122
	119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 129. 130. 131. 132. 133. 134. 135. 135. 135. 135.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(1)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(I)=CXT(I)*(FB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+0ET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1D00.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J.DXB(J).DXT(J).XB(J).XT(J), F(J).FB(J).	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 122 - 123 - 123 - 123 - 108 - 109 - 110 - 120 - 121 - 122 - 123 -
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 120. 129. 130. 131. 132. 135. 135. 135. 136. 138.	<pre>G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)*LT.1.0)G0 T0 24 EPSG=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FG(1)-SKE*XT(I) 25 LET(1)=EXT(1)*(FB(I-1)*FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+L000.0*DT IF(XT(I)*LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6:102) WRITE(6:103)(J;DXB(J);DXB(J);XB(J);XT(J);FG(J);FB(J); 1 J = 1;I) WRITE(6:104)</pre>	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 123 - 123 - 124
	119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 133. 134. 135. 135. 135. 136. 137. 138. 139.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 LET(I)=CXT(I)*(FB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=SGRT(2.0*ET(I)/EMT) T(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1.1) WRITE(6.104) 102 EDMAT(IHI/12X,57HTABLE 2-5 COUNTERFECOL ONNAMICS OF DELAYED BLOW	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 117 - 118 - 119A - 119A - 119B - 120 - 121 - 122 - 123 - 124 - 124 - 125 - 124 - 125 - 124 - 125 - 124 - 125 - 124 - 124 - 125 - 124 - 1
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 120. 129. 130. 131. 132. 135. 136. 136. 137. 138. 139. 140.	<pre>G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).tT.1.0)60 T0 24 EPS6=EPST FB(1)=FST-SKT*(XT(I)-1.0) 60 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+L0C0.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6,102) WRITE(6,103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1:1) wRITE(6,104) 102 FORMAT(1H1/12X,57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW</pre>	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 - 117 - 118 - 1198 - 120 - 121 - 122 - 123 - 124 - 125
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 134. 135. 136. 137. 136. 137. 138. 139. 140.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(I)=FB(1)-SKB*XT(I) 25 UET(I)=EXT(I)*(FB(I=1)+Fb(I))*EPSB/2.0 ET(I)=ET(I=1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I=1)+1000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J.DX(J).DXB(J).DXT(J).XB(J).XT(J).F(J).FB(J). 1 J = 1.1) WRITE(6.104) 102 FORMAT(IH1/12X.57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN//	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119A - 121 - 122 - 123 - 124 - 125A - 1258
	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).T.1.0)G0 T0 24 EPSGEEPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(1) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+L000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTHAGE 26 WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), I J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X,57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X,63H RELATIVE DELTA DELTA TOTAL TOTAL D	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 1258 - 126 - 126
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 130. 131. 134. 135. 135. 135. 135. 135. 136. 137. 138. 139. 140. 140. 141. 142.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMB) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) VT(I)=SGRT(2.0*ET(I)/EMT) VT(I)=SGRT(2.0*ET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=SGRT(2.0*ET(I)/EMT) VT(I)=T(I-1)+DET(I)/EMT) VT(I)=T(I)=T(I)/E	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125A - 125B - 126 - 127
	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)*LT.1.0)G0 T0 24 EPSGEPEST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)=SKB*XT(I) 25 LET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=SGRT(2.0*ET(I)/EMT) T(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+L000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), I J = 1.1) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X,57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING EARREL/77H INCRE- DELTA BOLT BARBEL 80L	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 117 - 118 - 120 - 121 - 122 - 123 - 124 - 1258 - 126 - 127 - 128 - 12
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 130. 131. 132. 133. 134. 135. 135. 135. 136. 137. 138. 139. 140. 141. 142. 143.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).UT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 DET(1)=ET(I)+VEB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).UT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J.DX(J).DXB(J).DXT(J).XB(J).XT(J).F(J).FB(J). 1 J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X.57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING BARREL/77H INCRE- DELTA BOLT BARREL BOL 4T BARREL SPRING/5X.70H MENT TRAVEL TRAVEL T	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 117 - 118 - 118 - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125 - 127 - 128 - 127 - 127 - 128 - 127 - 127 - 127 - 128 - 127 - 127 - 128 - 127 - 127 - 128 - 128
	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 144.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).T1.0)G5 T0 24 EPS6EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(I)=FB(1)-SKB*XT(I) 25 UET(I)=CXT(I)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+D00.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1.1) WRITE(6.104) 102 FORMAT(IH1/12X.57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING LARREL SPRIVG SPRIVG/SX.70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X.1HI.7X.60H INCH I	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 135. 140. 140. 145.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).tT.1.0)G0 T0 24 EPSB=EPST FB(1)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(I)*(FB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+100.0*DT IF(XT(I).tT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J.DX(J).DXB(J).DXT(J).XB(J).XT(J).F(J).FB(J). 1 J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X.57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING EARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRIVG SPRIVG/SX.70H MENT TRAVEL TRAVEL T SRAVEL TRAVEL TRAVEL FORCE FORCE/8X.1H1.7X.60H INCH I 6NCH INCH INCH INCH POUND POUND//)	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129 - 130
	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 144. 145. 144. 145. 144. 145.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1)*LT.1.0)G5 T0 24 EPS6EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(I)=FB(1)-SKB*XT(I) 25 UET(I)=CXT(I)*(FB(I-1)*Fb(I))*EPSB/2.0 ET(I)=ET(I-1)*DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)*D00.0*DT IF(XT(I)*LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.103)(J,DX(J)*DXB(J)*DXT(J)*XB(J)*XT(J)*F(J)*FB(J)* WRITE(6.103)(J,DX(J)*DXB(J)*DXT(J)*XB(J)*XT(J)*F(J)*FB(J)* 102 FORMAT(IH1/12X*57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X*63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRIVG SPRIVG(5X*70H MENT TRAVEL TRAVEL T SRAVEL TRAVEL TRAVEL FORCE FORCE/8X*1HI*7X*60H INCH I 6NCH INCH INCH INCH POUND POUND//)	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119A - 129 - 125 - 125 - 125 - 126 - 127 - 128 - 129 - 130 - 131 - 119 - 110 - 120 -
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 136. 137. 138. 139. 141. 142. 143. 144. 145. 145. 145. 145. 145. 145. 145. 146. 146. 147. 146. 147.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).T.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+10D(0.0*DT IF(XT(I).LT.2.0)G0 TO 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J.DX(J).DXB(J).DXT(J).XB(J).XT(J).F(J).FB(J). 1 J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X.57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 HACK GUN// 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING EARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRIVG SPRING/6X.70H MENT TRAVEL TRAVEL T SRAVEL TRAVEL TRAVEL FORCE FORCE/8X.HI.7X.60H INCH I 60CH INCH INCH INCH POUND//) 103 FORMAT(19:F12.3.2F9.3:F10.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3:F10.3:F9.2:F10.1)	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129 - 130 - 131
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 134. 135. 136. 137. 138. 139. 140. 141. 142. 144. 145.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(I)=FB(1)-SKB*XT(I) 25 LET(I)=ET(I-1)+GB(I=1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1.1) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1.1) WRITE(6.104) 102 FORMAT(IH1/12X*57HTABLE 2=5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 HACK GUN// 2 14X*63H RELATIVE DELTA DELTA TOTAL DATAL D 3RIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X.70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X*1H1,7X*60H INCH I 6NCH INCH INCH INCH POUND POUND//) 103 FORMAT(IH1/9:F12.3;29:3;F10.3;F9.3;F9.2;F10.1) 104 FORMAT(IH1/9:4:62HTABLE 2=5 CONTD-COUNTERRECOIL DYNAMICS OF DELAYED	106 107 108 109 110 111 112 113 114 115 116 117 118 119A 119B 120 121 122 123 124 125A 125A 125A 125B 126 127 128 129 130 131
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 136. 137. 140. 141. 145. 145. 145. 145. 145. 145. 146. 145. 146. 147. 146.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).T.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 UET(1)=CXT(1)*(FB(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+0ET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+10D(0.0*)T IF(XT(I).LT.2.0)G0 TO 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J.DX(J).DXB(J).DXT(J).XB(J).XT(J).F(J).FB(J). 1 J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X.57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN/7 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING EARREL/77H INCRE- DELTA BOLT BARREL BOL 4T BARREL SPRIVG SPRING/6X.70H MENT TRAVEL TRAVEL T 5FAVEL TRAVEL TRAVEL FORCE FORCE/8X.1H1.7X.60H INCH I 6NCH INCH INCH INCH POUND POUND/7) 103 FORMAT(19:F12.3.2F9.3.F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3:F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3:F10.3:F9.3:F9.2:F10.1)	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 123 - 124 - 125A - 126 - 127 - 128 - 129 - 130 - 131 - 132A - 132B
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 134. 135. 135. 135. 135. 135. 135. 135. 136. 137. 138. 139. 140. 141. 143. 144. 145. 145. 145. 145. 149.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(I)=FB(1)-SKB*XT(I) 25 UET(I)=CXT(I)*(FB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1.1) WRITE(6.104) 102 FORMAT(IH1/12X,57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X.63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X,70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X:HII,7X.60H INCH I 6NCH INCH INCH INCH POUND POUND//) 103 FORMAT(I)+1/9X.62HTABLE 2-5 CONTE-COUNTERRCOIL DYNAMICS OF DELAYED 1 BLOWBACK GUN// 2 25X:14H DELTA DELTA/6X:6HINCRE-:13X,53H BOLT BARREL 2 5X:14H DELTA DELTA/6X:6HINCRE-:13X,53H BOLT BARREL	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125A - 125A - 125A - 125A - 125A - 125A - 126 - 127 - 128 - 129 - 130 - 131 - 132A - 132B - 133 - 133 - 133 - 132B - 133 - 132B - 133 - 132B - 133 - 132B - 133 - 132B - 133 - 135 -
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 130. 131. 132. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 135. 136. 137. 138. 139. 141. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 156. 157. 157.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).T.1.0)G0 T0 24 EPSG=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FG(1)-SKE*XT(I) 25 UET(1)=CXT(1)*(F3(I-1)+Fb(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+1000.0*DT IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6,102) WRITE(6,103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1:1) WRITE(6,104) 102 FORMAT(1H1/12X,57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 HACK GUN// 2 14X,63H RELATIVE DELTA DELTA TOTAL TOTAL D 3KIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X,70H MENT TRAVEL TRAVEL T 5GRAAT(19:F12:3,2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11)/9;F12:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(14)/12X;57H DELTA DELTA/CYTCH DUND 2 25X:14H DELTA DELTA/CYTCH DARCE-;13X;53H BOLT BARREL 3 BOLI BARREL 77H DELTA/CYTCH DARCE-;13X;53H BOLT BARREL 3 BOLI BARREL 71H DELTA/CYTCH DARCE-;13X;53H BOLT BARREL 3 BOLI BARREL FOR SOLL BARREL/CYTCH DARCE-;13X;53H BOLT BARREL 3 BOLI BARREL 71H DELTA/CYTCH TTAL TOTAL TOTAL DARCE FOR THAT THA PLAYEN TTAL FOR PLAYEN THAT THAN PLAYEN THAT THAT THAT THAT THAT THAT THAT THA	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 - 117 - 118 - 119 - 120 - 121 - 123 - 124 - 1258 - 126 - 127 - 128 - 129 - 130 - 131 - 1328 - 133 - 134
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 129. 130. 131. 134. 135. 135. 135. 135. 135. 136. 137. 138. 139. 140. 141. 145. 145. 145. 145. 145. 145. 145. 149.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(I-1) +DE(I) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(I-1).LT.1.0)G0 T0 24 EPSB=EPST FB(I)=FST-SKT*(XT(I)-1.0) G0 T0 25 24 FB(1)=FB(1)-SKB*XT(I) 25 DET(1)=ET(I)+VFB(I-1)+FB(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0*ET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) T(I)=T(I-1)+DET(I)/EMT) IF(XT(I).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J)+DXB(J)+DXT(J),XB(J),XT(J), F(J)+FB(J), 1 J = 1.1) WRITE(6.104) 102 FORMAT(IH1/12X,57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X+63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X,70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X,HII,7X,60H INCH I 6NCH INCH INCH POUND POUND//) 103 FORMAT(IH1/9,62HTABLE 2-5 CONTD-COUNTERRCOIL DYNAMICS OF DELAYED 1 BLOWBACK GUN// 2 25X+14H DELTA DELTA/6X,6HINCRE-,13X,53H BOLT BARREL 3 BOLT BARREL SOL BARREL FORCE FORCE/74H MENT TIME ENE WERE FORMAT(I) BARREL FORCE FORCE/10X,74H MENT TIME ENE	- 106 107 108 109 - 110 - 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129 - 120 - 130 - 131 - 132A - 133 - 134 - 155 - 155
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 130. 132. 130. 135. 135. 135. 135. 135. 135. 135. 138. 139. 141. 142. 145. 145. 145. 145. 145. 145. 151. 151. 151. 151. 151. 151. 151. 151. 151. 151. 151. 151. 151. 151. 151. 155.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(1)+F(1-1))*EPS/2.0) E(1)=E(1-1) +DE(1) V(1)=-SGRT(2.0*E(1)/EMB) 27 IF(XT(1-1).LT.1.0)G0 T0 24 EPSD=EPST FB(1)=FB(1)-SKD*XT(1) 25 DET(1)=CXT(1)*(FB(1-1)+FD(1))*EPSD/2.0 ET(1)=ET(1-1)+DET(1) VT(1)=SGRT(2.0*ET(1)/EMT) T(1)=T(1-1)+10D0.0*hT IF(XT(1).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.103)(0.DX(U)*DXB(U)*XB(U)*XT(U)*FG(U)* WRITE(6.103)(0.DX(U)*DXB(U)*DXT(U)*XB(U)*XT(U)*FG(U)* WRITE(6.104) 102 FORMAT(1H1/12X*57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X*63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING EARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X*70H MENT TRAVEL TRAVEL T SRAVEL TRAVEL TRAVEL FORCE FORCE/AX*1H1*7X*60H INCH I 6NCH INCH INCH INCH POUND POUND//) 103 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 105 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 105 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 105 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 104 FORMAT(19:F12.3*2F9.3:F10.3:F9.2*F10.1) 105 FORMAT(19:F12.3*F173LE 2=5 CONTD-COUNTERCOIL DYNAMICS OF DELAYED 1 BLOWBACK GUN// 2 25x+14H DELTA DELTA/6X*6HINCE-*13X*53H BOLT BARREL 3 BOLT BARREL BOLT BARREL FORCE F	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 123 - 124 - 1258 - 126 - 127 - 128 - 129 - 130 - 131 - 1328 - 133 - 134 - 135 - 1
	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 129. 130. 131. 134. 135. 135. 135. 135. 135. 136. 137. 138. 139. 140. 141. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 135. 136. 137. 138. 139. 140. 145. 145. 140. 152. 145. 145. 145. 155.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(1)+F(1-1))*EPS/2.0) E(1)=E(1-1) +DE(1) V(1)=-SGRT(2.0*E(1)/EMR) 27 IF(XT(1-1)*LT.1.0)GD T0 24 EPSD=EPST FB(1)=FST-SKT*(XT(1)-1.0) G0 T0 25 24 FB(1)=FS(1)-SKD*XT(1) 25 DET(1)=CXT(1)*(FB(1-1)+FD(1))*EPSB/2.0 ET(1)=ET(1-1)+DET(1) VT(1)=SGRT(2.0*E(1)/EMT) T(1)=T(1-1)+1000.0*DT IF(XT(1).LT.2.0)GO TO 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.102) WRITE(6.103)(J,DXB(J)*DXT(J)*XB(J)*XT(J)*F(J)*FB(J)* 1 J = 1.1) WRITE(6.104) 102 FORMAT(1H1/12X*57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X*63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING bAREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X*70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/AX*H1*7X*60H INCH I 6NCH INCH INCH INCH POUND POUND//) 103 FORMAT(1H1/12.*57+T0.3)F9.3)F9.2*F10.1] 104 FORMAT(1H1/9*62+TABLE 2-5 CONTD-COUNTERRECOIL DYNAMICS OF DELAYED 1 BLOWBACK GUN// 2 25X*14H DELTA DELTA/6X*6HNCRE-*13X*53H BOLT BARREL 3 BOLT BARREL EDLT BARREL/6X*74H MENT TIME ENE 4RGY ENERGY ENERGY VELOCITY VELOCITY/8X*1H1*7X*63H 5 M5EC IN-LB IN-LB IN-LB IN/SEC IN/SEC//)	- 106 107 108 109 - 110 111 - 112 113 - 114 115 - 116 117 - 118 - 118 - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129 - 130 - 131 - 132A - 133 - 135 - 136 - 135 - 136
$\begin{array}{c} -00366\\ -00367\\ 00371\\ 00371\\ 00373\\ 00575\\ 00376\\ 00575\\ 00376\\ 00577\\ 00400\\ 00402\\ 00403\\ 00403\\ 00403\\ 00403\\ 00405\\ 00407\\ 00414\\ 00414\\ 00414\\ 00414\\ 00431\\ 00433\\ 00435\\ $	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 130. 132. 130. 135. 136. 137. 138. 139. 141. 142. 143. 144. 145. 155. 156. 157. 156. 157. 156. 157. 156. 157. 156. 157. 156. 157. 156. 157. 156. 157. 156. 157. 156. 157.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(1)+F(1-1))*EPS/2.0) E(1)=E(1-1) +DE(1) V(1)==SGRT(2.0*E(1)/EMA) 27 IF(XT(1-1)+LT.1.0)G0 T0 24 EPSD=EPST FB(1)=FST=SKT*(XT(1)-1.0) G0 T0 25 24 FB(1)=FS(1)=SKB*XT(1) 25 UET(1)=ET(1-1)*(FB(1-1)*Fb(1))*EPSB/2.0 ET(1)=ET(1-1)*0ET(1) VT(1)=SGRT(2.0*ET(1)/EMT) T(1)=T(1-1)*1000.0*DT IF(XT(1).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J+DX(J)*DXB(J)*DXT(J)*XB(J)*XT(J)*F(J)*FB(J)* 1 J = 1.1) WRITE(6.103)(J+DX(J)*DXB(J)*DXT(J)*XB(J)*XT(J)*F(J)*FB(J)* 1 BACK GUN/// 2 14X*63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING LARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRIYG SPRING/6X*70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X*1H:7X*60H INCH I 6NCH INCH INCH POUND POUND//) 103 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 105 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 106 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 107 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 108 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 109 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 105 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F9.2*F10.1) 104 FORMAT(19)*F12.3*2F9.3*F10.3*F9.3*F70.2*F10.3*F70.3*F70.3*F70.3*F70.3*F70.3*F70.3*F70.3*F70.3*F70.3*	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 122 - 123 - 124 - 1258 - 126 - 127 - 128 - 129 - 130 - 131 - 1328 - 133 - 134 - 135 - 136 - 137
$\begin{array}{c} -00366\\ -00367\\ 00370\\ 00371\\ 00373\\ 00575\\ 00373\\ 00575\\ 00376\\ 00577\\ 00400\\ 00402\\ 00403\\ 00403\\ 00403\\ 00403\\ 00412\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00431\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00435\\ 0045\\ 005\\ 005\\ 005\\ 005\\ 005\\ 005\\ 0$	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 134. 135. 136. 137. 136. 137. 136. 137. 138. 139. 140. 141. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 137. 138. 138. 139. 140. 145. 145. 145. 137. 138. 137. 138. 137. 138. 145. 145. 145. 145. 155. 137. 138. 145. 155.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(1)+F(1-1))*EPS/2.0) E(1)=E(1-1) +DE(1) V(1)=-SGRT(2*E(1)/EVR) 27 IF(XT(1-1).LT.1.0)G0 T0 24 EPS6=EPST FB(1)=FST-SKT*(XT(1)-1.0) G0 T0 25 24 FB(1)=FS(1)-SK5*XT(1) 25 DET(1)=CXT(1)*(FB(1-1)+FD(1))*EPSB/2.0 ET(1)=ET(1-1)+0ET(1) vT(1)=SGRT(2*ET(1)/ENT) T(1)=T(1-1)+1000.0*DT IF(XT(1).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6:102) WRITE(6:103)(J,DX(J);DXB(J);DXT(J);XB(J);XT(J);F(J);FU(J); 1 J = 1;1) WRITE(6:104) 102 FORMAT(111/2X:57HTABLE 2=5 COUNTERRECOIL DYNAMICS OF DELAYED BLGW 1 HACK GUN// 2 14X:63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X:70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X:HI;7X:60H INCH I 6NCH INCH INCH INCH POUND POUND//) 103 FORMAT(11):9;F12:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 104 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;2F9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;ZF9:3;F10:3;F9:2;F10:1) 105 FORMAT(11):9;F2:3;ZF9:3;F10:3;F9:2;F10:1) 106 FORMAT(11):9;F2:3;ZF9:3;F10:3;F9:2;F10:1) 107 FORMAT(11):9;F2:3;F2:4;F10:3;F1:3;F3:F10:5;F10:5;F2:2;F3:F10:5) 108 FORMAT(11):9;F2:3;F2:4;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;F2:5;F3:F10:5;	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 120 - 121 - 122 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129 - 130 - 131 - 132A - 135 - 137 - 136 - 137 - 138 - 138 - 137 - 138 - 137 - 138 -
$\begin{array}{c} -00366\\ -00367\\ 00371\\ 00371\\ 00373\\ 00575\\ 00373\\ 00575\\ 00376\\ 00577\\ 00400\\ 00401\\ 00401\\ 00403\\ 00403\\ 00403\\ 00403\\ 00403\\ 00412\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00433\\ 00435\\ 0045\\ 005\\ 005\\ 005\\ 005\\ 005\\ 005\\ 0$	119. 120. 121. 122. 123. 124. 125. 120. 127. 128. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 144. 145. 140. 144. 145. 140. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 145. 150. 151. 152. 153. 154.	G0 T0 -27 23 DE(1)=ABS(DXB(1)*(F(1)+F(1-1))*EPS/2.0) E(1)=E(1-1) +DE(1) V(1)==SGRT(2*E(1)/EVA) 27 IF(XT(1-1).LT.1.0)G0 T0 24 EPS6=EPST FB(1)=FST-SKT*(XT(1)-1.0) G0 T0 25 24 FB(1)=FST(1)+G1(1)+FD(1))*EPSB/2.0 ET(1)=ET(1-1)+DET(1) VT(1)=SGRT(2*ET(1)/EMT) T(1)=T(1-1)+1000.0*DT IF(XT(1).LT.2.0)G0 TO 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J),DXE(J),DXT(J),XE(J),XT(J), F(J),FB(J), 1 J = 1:1) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1:1) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 J = 1:1) WRITE(6.103)(J,DX(J),DXB(J),DXT(J),XB(J),XT(J), F(J),FB(J), 1 BACK GUN// 2 142×63H RELATIVE DELTA DELTA TOTAL TOTAL D 3 RIVING bARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/5X.70H MENT TRAVEL TRAVEL T 5 RAVEL TRAVEL FORCE FORCE/8X.1HI,7X:60H INCH I 6 NCH INCH INCH INCH POUND POUND//) 103 FORMAT(19:F12.3.2F9.3:F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3:F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.3:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.3:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.3:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F9.3:F9.3:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F10.2:F10.1) 104 FORMAT(19:F12.3.2F9.3):F10.3:F10.2:F10.1) 105 FORMAT(19:F12.3.2:F10.2:F10.2:F10.2:F10.1) 104 FORMAT(19:F12.3.2:F10.2	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 122 - 123 - 124 - 125 - 126 - 127 - 128 - 126 - 127 - 128 - 128 - 129 - 130 - 131 - 132A - 135 - 135 - 136 - 137 - 138 - 137 - 137 - 138 - 137 - 138 - 137 - 137 - 138 - 137 - 138 - 137 - 137 - 138 - 138 - 137 - 138 - 13
$\begin{array}{c} -00366\\ -00367\\ 00370\\ 00371\\ 00373\\ 00575\\ 00373\\ 00575\\ 00376\\ 00577\\ 00400\\ 00402\\ 00403\\ 00403\\ 00403\\ 00403\\ 00412\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00431\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00435\\ 0045\\ 0045\\ 0045\\ 005\\ 005\\ 005\\ 005\\$	119. 119. 120. 121. 122. 123. 124. 125. 120. 127. 129. 130. 131. 134. 135. 136. 137. 138. 137. 138. 139. 140. 142. 143. 145. 140. 145. 140. 145. 140. 145. 140. 145. 140. 145. 145. 145. 145. 155.	G0 T0 27 23 DE(1)=ABS(DXB(1)*(F(1)+F(1-1))*EPS/2.0) E(1)=E(1-1) +DE(1) V(1)==SGRT(2*E(1)/EWN) 27 IF(XT(1-1).LT.1.0)G0 T0 24 EPSUE=EPST FB(1)=FST=SKT*(XT(1)-1.0) G0 T0 25 24 FB(1)=FS(1)=SKB*XT(1) 25 DET(1)=EXT(1)*(F3(1-1)+Fb(1))*EPSB/2.0 ET(1)=EXT(1)+(F3(1-1)+Fb(1))*EPSB/2.0 ET(1)=EXT(1)+(F3(1-1)+Fb(1))*EPSB/2.0 ET(1)=EXT(1)+(F3(1-1)+Fb(1))*EPSB/2.0 ET(1)=T(1-1)+D00.0*DT IF(XT(1).LT.2.0)G0 T0 100 G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(J,DX(J)*DXG(J)*DXT(J)*XB(J)*XT(J)*F(J)*FB(J)* 1 J = 1;1) WRITE(6.104) 102 FOFMAT(1H1/12X*57HTABLE 2-5 COUNTERRECOIL DYNAMICS OF DELAYED BLOW 1 BACK GUN// 2 14X*63H RELATIVE DELTA DELTA TOTAL TOTAL D 3RIVING EARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X*70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL TRAVEL FORCE FORCE/8X*1H1*7X*60H INCH 1 6NCH INCH INCH INCH POUND POUND//) 103 FORMAT(1H1/12X*62HTABLE 2-5 CONTD-COUNTERRCOIL DYNAMICS OF DELAYED 1 BLOWBACK GUN// 2 25*14H DELTA DELTA/6X*6HINCRE-+13X*53H BOLT BARREL 3 BOLT BARREL SOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT BARREL/6X*74H MENT TIME ENER 4RGY ENERGY ENERGY ENERGY VELOCITY VELOCITY78X*1H1*7X*63H 3 BOLT BARREL FOLT FOLTY*555 TIN*555 TIN*555 TIN*555 TIN*555 TIN*555 TIN*555 TIN*555 TIN*	- 106 107 108 109 - 110 111 - 112 113 - 114 - 115 - 116 - 117 - 118 - 119A - 119B - 120 - 121 - 122 - 123 - 124 - 125A - 125B - 126 - 127 - 128 - 129 - 130 - 131 - 132A - 135 - 136 - 137 - 138 - 139 - 138 - 139 - 138 - 139 - 138 - 138 - 139 - 138 - 138
$\begin{array}{c} -00366\\ -00367\\ 00371\\ 00371\\ 00373\\ 00575\\ 00373\\ 00575\\ 00376\\ 00577\\ 00400\\ 00403\\ 00403\\ 00403\\ 00403\\ 00405\\ 00407\\ 00414\\ 00414\\ 00414\\ 00414\\ 00414\\ 00413\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00433\\ 00435\\ 00453\\ 00453\\ 00453\\ 00453\\ 00453\\ 00455\\ 005\\ 00$	119. 119. 120. 121. 122. 123. 124. 122. 123. 124. 125. 120. 127. 129. 130. 131. 132. 134. 135. 135. 136. 137. 138. 139. 140. 141. 143. 145. 145. 145. 149. 151. 155. 150.	G0 T0 27 23 DE(1)=ABS(0xB(1)*(F(I)+F(I-1))*EPS/2.0) E(I)=E(1-1) +DE(I) V(1)==SGRT(2.0#E(1)/EMR) 27 F(XT(1-1).LT.1.0)G0 T0 24 EPSGEEPST FR(I)=FST=SKT*(XT(I)-1.0) G0 T0 25 24 FR(1)=FR(1)-SKD*XT(I) 25 LET(1)=CXT(I)*(FR(I-1)+FD(I))*EPSB/2.0 ET(I)=ET(I-1)+DET(I) VT(I)=SGRT(2.0#ET(I)/EMT) T(I)=T(I-1)+DET(I) VT(I)=SGRT(2.0#ET(I)/EMT) T(I)=T(I-1)+ID(I) G0 T0 26 100 CONTINUE 26 WRITE(6.102) WRITE(6.103)(U+DX(U)+DXR(U)+XR(U)+XT(U)+F(U)+FB(U)+ 1 J = 1.1) WRITE(6.103)(U+DX(U)+DXR(U)+DXT(U)+XR(U)+XT(U)+F(U)+FB(U)+ 1 J = 1.1) WRITE(6.103)(U+DX(U)+DXR(U)+DXT(U)+XR(U)+XT(U)+F(U)+FB(U)+ 1 SRTTE(6.103)(U+DX(U)+DXR(U)+DXT(U)+XR(U)+XT(U)+FB(U)+ 2 (14X+63H RELATIVE DELTA DELTA TOTAL D 3RIVING LARREL/77H INCRE- DELTA BOLT BARREL 80L 4T BARREL SPRING SPRING/6X+70H MENT TRAVEL TRAVEL T 5RAVEL TRAVEL FORCE FORCE/8X+111,7X+60H INCH I 6NCH INCH INCH FORCE FORCE/8X+111,7X+60H INCH I 103 FORMAT(1H)/9X+62HTABLE 2=5 CONTO-COUNTERRCOIL DYNAMICS OF DELAYED 1 BACK GUN// 2 25X+14H DELTA DELTA/6X+6HINCRE-+13X+53H BOLT BARREL 3 BOLT BARREL FORCE FORCE/12X+74H MENT TIME ENE 4 RGY ENERGY ENERGY ENERGY VELOCITY VELOCITY/8X+1H+7X+55H 5 MSEC IN-LB IN-LP IN-LB IN-LB IN/SEC IN/SEC//) WRITE(6,105) (U+T(U)+DE(U)+DET(U)+F(U)+V(U)+V(U)+V(U)+V(U)+ 105 FORMAT(19+F12-Z+2F9-1+F10+1+F9+17Z+10+1) 105 FORMA	- 106 107 108 109 - 110 111 112 113 - 114 115 - 116 - 117 - 118 - 117 - 118 - 119A - 119A - 120 - 121 - 122 - 123 - 124 - 125 - 126 - 127 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 133 - 134 - 135 - 135 - 136 - 137 - 138 - 139 - 140

A-2. (Con't.)

A – 5

A-3. FLOW CHART FOR RETARDED BLOWBACK

A--6

A-3. (Con't.)

A–3. (Con't.)

A-4.	LISTING	FOR	RETARDED	BLOWBACK	PROGRAM
				-	

00101	1.	DIMENSION FG(96)+Z(3)+Q(3)+AK(3)+TG(96)+A(4)+B(4)+C(4)	1
00103	<u> </u>	COMMON AZ ABC ABSQ AB BC EYEB E1 E2 EYEC E7 EMR EPS XLIM SK1 FS1	8
00103	<u>s</u> ı	15K2/F52/E3/E4/E3/E6/C1/C2/C3/C4/C5/C6/C7/C8/C9/C10/C11/C12/C13/C14	- 3
00103	4.	21013/ACTADIBUICULE SU SOMSINI SOMOUSISENTICENTISTICE TACTUETA	4
00104	5.	EQUIVALENCE (Z(1),T),(Z(2),X),(Z(3),VEL)	2
00105	6.	DATA A(1),C(1),C(4),B(1),B(4),B(2),B(3),A(3),C(3),A(2),C(2),A(4)/	3
00105	7.	D 3*.5;2*2.;2*1.;2*1.;0710678;2*.292893219;1666666667/	4
00122	8.	READ (5+1) N+DT+N9+DTFG+NPU+TCHANG+DTNEW+NHEAD	5
00134	10.	1 FURMAINIG/EL2-0/IO/EL2-0/IO/2L2-0/IO/ DEAD/5-2)YDEC-YU IM-A020/200/WA02-WDC/GCV14CV2-EC14EC2-A7-EDC-YDATY	5
00135	11.	ARAD SIZIARESIALIMIADIDE WDIWADIWESISISKIISKEITSITTSZIAZIEPSIADATT	86
00150	12		88
00160	13.	ABC = ABSQ - BCSQ	80
00161	14•	EMB = WB/G	8D
00162	15.	EMAB = WAB/G	8E
00163	16.	EVR = EMB + EMAB	8F
00164	17•	EYEB = EMAB*ABSQ/12.0	86
00165	18	EVBC = WEC/6	- 8 <u>4</u> -
00100	20.	$c_{1}c_{2} = c_{1}c_{2}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3$	61
00170	21.	READ(5.15) (FG(1+1).T=1.N9)	10
00176	22.	15 FORMAT(96.0)	11
00177	23.	$EI = EMAB * AB/2 \cdot 0$	12A
00200	24.	E2=EMBC+BC/2.U	128
-00201	25.	E7=EYEC/BC-E2/2.0	12c
00202	26 a	FG(1)=0.0	13A
00203	27.	TG(1)=0	13B
00204	26.		13C
00203	290	20 1-1/1/3 20 TG(1)+DTEG	14
00212	- 31		
00212	32.	C T=Z(1)	17
00212	33.	\hat{C} $x=\bar{z}(\hat{z})$	18
00212	34.	C VEL=Z(3)	19A
00213	35.	WRITE(6,3)	19B
00215	36.	3 FORMAT(1H1/25X, 37H TABLE 2-8 RETARDED BLOWBACK DYNAMICS/)	
00210	37.		190
00220	30.	1 EDOM REFECH VELOCITY ACCELERATION/20H S	195
00220		ZECONDILIX5HPOUNDILIX4HINCH-LIX.25H IN/SEC IN/SEC/SEC)	19G
00221	41.	00 10 I=1,3	20
00224	42.	Q(I)=0.0	21
00225	43.	10 2(1)=0.0	22
00227	44.	MINT=2	23
00230	45.	800 DO 100 I=1/N	24A
00233	40.	$\frac{1}{1} (1 + EQ \cdot 1/60 + 10 / 3)$	248
00235	44.	$IF ((1) MHEAD + 1) MEAD + 1 \cdot NE \cdot 1 / GU U / G$	25A 250
00241	49.	WRITE (6,708)	250
00243	50.	707 FORMAT(1H1/22x,44H TABLE 2-8 CONTD, RETARDED BLOWBACK DYNAMICS/)	250
00244	51.	75 1F(1.GT.TCHANG)DT=DTNEW	25E
00246	52.	DO 300 J=1,4	26
00251	53.	CALL FACOEF(Z)	52
00252	54.		64
00255	50. 56.	1F(1,6L),15(NB)/CALLINTERF(1G)FG/T0F/MINT/NB) FA = F+(C14+C15+C(2))	65 -
00255	57	FA = FT(UTT(UTT(UTT(UTT(UTT(UTT(UTT(UTT(UTT(U	55
00257	58.		50 67
00260	59.	DO 300 K=1,3	60
00263	60.	ĀŘBQ=A (J) * (ĀK (K)−B (J) *Q(K))	69
00264	61.	Z(K)=Z(K)+DT*AKBQ	70
00265	62.	300 Q(K)=Q(K)+3.0*AKBQ-C(J)*AK(K)	71

A-4.	(Con't.)

00270	63.		IF(I.EQ.1)G0 TO 51	71X
00272	64.		IF(Z(2).LT.0.0)GO TO 900	72
00279	65.		IF(Z(2).GT.XREC)GO TO 51	73A
00276	66.		IF(Z(3).GT.0.0)GO TO 50	738
00300	67.		IF(Z(2).LT.XBATY)GO TO 51	73c
00302	68.	50	NP=NP0	730
00303	69.		GO TO 52	73E
00304	70•	51	NP=1	74
00305	71.	52	IF((I/NP)*NP.NE.I)GO TO 100	15
00307	72.		F = 0.0	71
00310	73.		IF(T.LT.TG(N8))CALLINTERP(TG,FG,T,F,MINT,N8)	71
00312	74.		CALL FACOEF(Z)	72
00313	75.		FA = F+(C14+C15+Z(2))	73
00314	76.		AK(3)=(FA+C13+2(3)++2)/C11	74
00315	77.		WRITE(6+6)I+Z(1)+FA+Z(2)+Z(3)+AK(3)	76
00325	78.		IF(2(3).GT.0.)GO TO 100	
00327	79.		IF(Z(2)+LT+XBATY)STOP	77A
00331	80.	100	CONTINUE	77
00333	81.	6	FORMAT(16+F15+7+F15+1+F17+6+F16+1+F17+1)	78
00334	82.	900	STOP	79
00335	83.		END	00

AMCP 706-260

A-4. (Con't.)

	INPUT CARD COUNT
SUBROUTINE INTERP(TT)FF,T)F,K OIMENSION TT(1),FF(1)	
IF(N+E0+1)60 TO 20 IF(T+GE+TT(N))60 TO 20	
DO 1 I=K;N IF(T.EQ+TT(I-1))GO TO 2	S107 0
1F(1.1.1.1T(1))GO TO 4 1 CONTINUE	
2 K=I F=F+(K-1)	
4 K=I	13
D1FF = TT(K) - TT(K-1) A1=(T-T)(K-1)/D1FF	
A2=(TF(K)-T)/DIFF F=A1*FF(K)+A2*FF(K-1)	16
20 F=FF(N)	
HETUHN END	19 19

00101	1.	SUBROUTINE FACOEF(Z)	\$1
00103	2.	COMMON AZ/ARC/ABSG/AB/BC/FYFB/E1/E2/EYEC/E7/EMR/FPS/XI IM/SK1/FS1/	52
00103	3.	15K2+E52+E3+E4+E5+E6+C1+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12+C13+C14	5
00102	<u> </u>		3
00103			4
00104	5.	DIMENSION 2(3)	54
00105	0.	AC=AZ=Z(2)	27
06106	7.	AD=(ABC+AC++2)/(2.0+AC)	28
00107	8.	BRAC=ABSQ-AD**2	29A
00110	9.	BD=0 .	298
00111	10.	TE (BRAC, GT, O,)BD=SORT (BRAC)	200
00112	11.		290
00113	10		30
00114	120		31
00115	13.	CPHI = A07AB	32
00116	14.	STHETA = BD/BC	33
00117	15.	CTHETA = CO/BC	34
00120	16.	SUMSIN = STHETA*CPHI + CTHETA*SPHI	35
00121	17.	SUMCOS = CTHETA*CPHI - STHETA*SPHI	36
00122	18.	BCSUM = BC*SUMSIN	37
00123	19	$\Delta BSLIM = \Delta B + SLIMSTN$	20
00120	00		30
00124	20.0	E3 = (ETEB + EI*AB/2.0)/AC	39A
00125	21.	E4=E1*SPHI/AC	39B
00126	22e	E5=E2+ABSUM/AC	39c
00127	23 e	E6 = (E2*(AB*SUMCOS + BC/2.0) - EYEC)/AC	390
00130	24 e	C1 = CPH1/BCSUM	40
00131	25 .	C2 = -AB/BCSUM	414
00132	26.	C3 = -SUMCOS/SUMSTN	110
00133	27.		410
00134	28.		42
00135	20-		43
00135	200		44
00130	30e		45A
00137	3 1e	C6 = C2*C450+C3*C150	455
00140	32e	$c_{1} = c_{5*}c_{150}+c_{3*}c_{450}$	46
00141	33e	C8=E3*C4+E6*C1-E4	47
00142	34.	C9=E3+C7+E6+C6=E5+C1SQ	48
00143	35.	C10=(C8+CTHETA+E7+C1)/STHETA	49
00144	36 e	C12=(C9+CTHETA+E7+C6)/STHETA	50
00145	37 -	C11=FMR+F2*C1*STHFTA=F1*C4*SPHT+C10	50
00146	38.	C13=E1*C4SQ*CPHI+E1*C7*SPHI=E2*C1SQ*CTHFTA=E2*C6*STHFTA=C12	51
00147	39	EPSIL = EPS	52
00150	40		53
00152	41.		54
00152	40.		55
00154	420		57
00155	430		58
00155	44 .		59
00157	40e	4 SK^{-} SKITSKZ	60
00160	46 e	FSO = FS1+FS2-SK2*XLIM	61
00161	47.	5 C15 = -SK*EPSIL	62
00162	48 e	C14 = -FSO*EPSIL	63
00163	49.	RETURN	54B
00164	50.	END	C40
			377

A-5. FLOW CHART FOR CUTOFF EXPANSION

A-6. LISTING FOR CUTOFF EXPANSION PROGROM

		÷	0245
		F	0 02 4 0
	$IF(A+G_{1}(5)+F(1)+F(1)+F(1)+F(1)+F(1)+F(1)+F(1)+F(1$	44	0 0 2 4 2
	$\mathbf{D} \mathbf{I} \mathbf{F} \mathbf{V} \mathbf{E} \mathbf{v} (1 \mathbf{L}) + \mathbf{V} \mathbf{W} \mathbf{A} \mathbf{X}$	ţ.	00241
		42.	u 0237
_		41.	00236
		4 0.	0235
	JELV(I)=WELVI	39.	0 02 34
	1F(C16F]022)60 TO 80	36.	u 02 3 2
	85 LIFF= ABS 【14章,VI号,VI号,VIELVI】	57.	0 62 3-1
	IF(K+6T+30)60 TO 2	50.	u 02 27
	·22.V4 = 15,50*FUT1(2)	ს. ს •	00226
		6.	0 4 4 5
	F(1)=u.60*FC(1)	33.	0 02 24
	PC(1)=(VE(1)/VC(1))**1.3*PA(1)	51.	0 42 23
	VC(1)=VCYL+AC+S(1)	31.	00222
	S(1)32+52+5(1-1)	30.	00221
	525V(1-1)*UELI(I)	29.	00-20
	S1=0.5*UV*LEL1(1)	23.	11217
	8 UV=DELVI	27.	00210
	75 UELVI2 UELV(1-1)+2.0	26.	91212
	0 UL A	N 01 •	00~14
	70 L1 🛱 V 1 2 3 1 V (1 - 1 🕷 0	24.	0 ULL 1 3
	60 T0 bù	23.	0 12
	65 [JELVI = $21 - 0(1 - 0) + 1$	22.	11700
	IF(] GT=7)60 10 3	21	00207
		10.	
	WARDER AND		
	1 1F(L.51.50/60 10 2	10	0.01 20
		12.	00172
	30 FORMAT (41.2+0)	11.	1447
	35(1) FREL 18 - FELT 8 SC K	10.	5 C 10 U
第 · B ス · V (1) ·	1SA+EMUR+ER SIPTANDUPE B + RADGYR+ SMAX+DXI	ν •	5 C 10 U
	利 習いの "355 in Vir Ativ 目上で(1) v A C v Lio MB v MC(1) v V C Y L v DH AMA	•	UPL SS
	NETION I	7.	00452
	40 FUMPAT (LUF7.J)	с •	15100
		σ •	50700
1),	0HEAD 400+(1(1)+I=2+11)+(DELT(1)+I=2+11)+(PA(1)+I=2+1)	•	0010G
	3EM(50),V(50),VE(50),FUT(50),X(50),DTM(50),TEPM(50)	•	00101
	1 + (50) + C(50) + AY(50) + (50) + S(50) + PC(50) + BDEG(50) + C(50) + C(50) + BDEG(50) + C(50) + C(•	06101
0) • VC (50) •	UDIMENSION INDOVIDELINDOVIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOVINIAUNOV	•	

|--|

00247	47.	00 5 I=2+11	46
00252	48.	5 AO(1) = AO(1) + 0.0010	47
00254	49.		
00255	5u.	GO TO 1	49
00256	51.	6 D0 7 I=2,11	50
00261	52.	7 AO(1) = AO(1) = 0.0010	51
00263	53.	L=L+1	52
00264	54.	GO TO 1	53
00265	- 55.	2 MEI	54
00266	56.	PRINT 23, (1, T(1), PA(1), AO(1), W(1), WC(1), VB(1), VE(1), I=2, 11)	55
00303	57.	PRINT 24, (I, VC(I), PC(I), F(I), FDT(I), DELV(I), V(I), S(I), I=2,11)	56
00320	58.	230FORMAT (1H1/ 9X+46H TABLE 4-5 COMPUTED DYNAMICS BEFORE GAS	57
00320	59.	1 CUTOFF//33X+31H GAS GAS EQUIV EQUIV/24X+39H PORT F	58A
00520	60.	2LOW IN BORE CYL/ 7X 56H TIME PRES	588
-00320		35 AREA RATE CYL VOL VOL/64H I MSEC PS	- 59 -
00320	62.	4I SQ-IN LB/SEC LB CU-IN CU-IN//(I4+F8+3+F9+0+F9+4	60
00320	ь3.	5+F8+3+F9+5+F8+3+F9+4))	61
00321	64.	240FORMAT(//6X/23H CYL CYL PISTON/12X/20HUELTA ROD ROD	62
00521	65.	1/8X+57H VOL PRESS FORCE IMPULSE VEL VEL TRAVEL/6	63
00321	60.	23H 1 CU-IN PSI L3 LB-SEC IN/SEC IN/SEC IN/	64
00321	67.		65
00322	66.	1=12	66
00523	69.	READ 350/(AY(J)/J=1/22)	67
00331	7u.	V0=V(11)	68
00332	71.	50=5(11)+5CYL	69
00333	72.	S1=HELIX1 -S(11)	70
00334	73.	ACE=2.6*AC/0.3	- 71
00335	74.	P1=PC(11)	72
00336	75.	A=1.0+S1/SG	73
00537	70.	KLANDA=DLANDA/57+296	74
00340	77.	BOHATAN (TANBO)	75
00341	70.	SINLAM≑SIN(RLAMDA)	76
00342		COSLAM=COS (RLAMDA)	77
00343	80.	CLAMUA=SII:LAM=EMUS*COSLA=/(COSLAM+EMUS*SINLAM)	78
00344	81.	ENUMER ≒wE≉RADGYR**2*TAN30/RC	79
00345	02 ·	UENOM1=(RC-EMUS*R)*(COS(UO)-EMUR*SIN(BO))/(SIN(BO)+EMUR*COS(BO))	80
00346	83.	DENOM2=CLAMDA*(RL-EMUS*R)	81
00347	84.	EM(12)=(wC+WB+ ENUMER/(DENOM1+DENOM2))/G	82
00350	85.	XKA=ACE+P1+S0++1.3/EM(12)	83
00351	80.	SK = S0**1.15/SQRT(XKA)	84
00352	87.	SHELX=SCYL+HELIXI	85
Ob353	60.	PRINT 41	86
00555	89.	41 FORMATCIHI /	87
00355	90.	1 17X.45H TABLE 4-6 COMPUTED DYNAMICS AFTER GAS CUTOFF/21X.37H BOL	88
00355	91.	2T UNLOCKING DURING HELIX TRAVERSE// 3X:2H Y:6X:3H AY:7X:3H BY:	89
00555	92.	37X,2H Z, 6X,3H AZ,7X,4H 28Y,6X,6H QUOT1, 5X,6H QUOT2/)	90
00356	95.	1=12	91A
00357	94.	200 SUMA=0	918
00360	95.	SUMB = U	92
00301	90.	$DO \ DU \ J = 1.22$	93
00364	91.		94
00365	98.	$BY = (1 \cdot 0 + (\sqrt{0} + 2/XKA) + 50 + 10 \cdot 5) + 10 \cdot 5)$	95
00366	23.	$Z = 1 \cdot \mathbf{U} - \mathbf{U} \cdot 3 \cdot \mathbf{Y}$	96
00367	100.	$A \neq A + 2$	97
00370	101.	ZBT = Z + 8T	98
00371	102.		99
00372	103.	$g_{00} z = A2*g_{00}T_1$	100
Ob373	104+	SUMA - SUMA + QUOTI	101

_
00374	105.	SUMB = SUMB + GUOT2	102
00375	106.	50 PRINT 21/Y/AY(J)/BY/ Z/ AZ/ 28Y/ QUOT1/ QUOT2	103
00410	107.	21 FORMAT (F6.1, 2F10.4, F8.1, F10.4, 3F11.4)	104
00411	108.	$VHE1 x = SORT(XK_x + (1, 0/SO(x+0, 3) + 1, 0/SHE1 X + x0, 3) + VO(x+2)$	105
00412	100		100
00412	107.		100
00413	110.	$(EH= SK + (A+SUMB - 1 \cdot U-SUMA)$	107
00414	111.	1F(1.LG.12)G0 TO 201	108
00416	112.	S(23)=S(22)+HELIX2	109A
00417	1.	V(23)=VHELX	109B
00420	1131	PC(23)=PHELX	110
00421	115.	GO TO 202	111
00422	116		112
00422	110.		112
00425	11/.		1154
00424	118.	S(12)=SHELX	1138
00425	119.	202 PRINT 51, SUMA, SUMB, TEH, V(I), PC(I), S(I)	114
00435	120.	51 FORMAT(//49XIOHTOTALS/2F11.4//9XI44HEXPANSION TIME OURING HELIX TR	115
00435	121.	1AVERSE (TEH) = F8.5/6H SECONDS //9X/3HV =F7.2/7H IN/SEC/5X/5H PC =	116
00435	122.	2F7.1/4H PSI/5X/3HS =F7.4/4H IN.)	117
00436	123.	1F(1,+6,12)60 TO 300	118
00440	126.	15(1-56-23)60 TO 500	110
00440	125		
00442	123.		
00443	120.		121
00444	127.	X(I)=0.0	122
00445	128.	TEP = 0.0	123A
00446	129.	VSQAR=V(12)**2	123B
00447	130.	BDEG(12)=0,4426	124
00450	131,	ENUMER=WB*RADGYR*#2/RC	125
00451	132.	COEFB=RC-EMUS*R	126
00452	133.	DO 301 I=13 (NSTEP	127
00455	1.34 .	$y(\tau) = x(\tau - 1) + nx$	128
00455	135	AN 1/-AN 1 // UA TANDAO 63947/1) TANDA	120
00450	133.		129
00457	136,	BEATANCIAND	130
00460	137.	BDEG(I)=57.296*B	
00461	130,	SNCN =SIN(b)+EMUR*COS(B)	132
00462	139.	CNSN ≃COS(b)-EMUR*SIN(B)	133
00463	140.	UENOM1=CUEFB*CNSN/SNCN	134
00464	141.	EM(D=(wo+EnumER*TANG/(DENOM1+DENOM2))/G	135
00465	142.	S(T) = S(T-1) + DX	136
-00465	143		
00400	1400		107
00467	144.		138
00470	140.	DELVSQ-XKA+(S(I=I)-S(I=I)**1.3/S(I)**0.3)	139
00471	146.	VSQAR-DELVSQ+VSQAR	140
00472	147.	V(I)=SQR((VSQAR)	141
00473	148.	$DELT_{2*0} + U_{(1)} + U_{(1-1)})$	142
00474	149.		143
00475	150.	TEPM(I)=1000.0*TEP	144
00476	151.	301 CONTINUE	145
00500	152.	PRINT 302+(I+X(I)+S(I)+BUFG(I)+PC(I)+FM(T)+V(T)+TFPM(T)+T=13-22)	146
00515	153.	3020F0RMAT(1)1/	1474
00515	154	4 12YA45H TADLE 4-7 COMPLITED DYNAMICS AFTED CAS CUTOES (149 400 DOL	1470
00515	1041	T TRACTON TABLE TO COMPUTED DYNAMICS AFTER GAS CUTUFF/14X/40H BOL	<u>1478</u>
00212	100,	21 UNLOCKING DURING PARADULA IRAVERSE//14X/6H EQUIV/21X/6H EQUIV/55	148
00515	156.	3H PARAB CYL CAM CYL RECOIL ROD/65H	149
00515	157.	4 DIST LENGTH SLOPE PRESS MASS VEL TIME/65H	150
00515	158.	51 IN IN DEG PSI W/G IN/SEC MSEC// (151A
00515	159.		1518
00516	160.	405 S0=S(22)	152
-00517	161.		
00500	160		154 ^
00520	T02.	r1-rv122/	154A

A-6. (Con't.)

115200	16.5.	6=1.()+\$17\$(15/8
00522	164.		1540
-00523	165.		155
04524	160.	$\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_{j$	156
00525	107.		157
00525	160		150
00520	1.0	5N-5U+*1+10	120
00527	17.		1574
00531	171		1370
00532	1/1.		1590
00533	172.	4100F ORMATTINIZ IZX 43H TABLE 4-8 COMPTED DINAMICS AFTER GAS C	160
00533	170.	INTOFF INA ABE BOLT AND ROD ONLY RECOLLING AFTER CAM ACTION // 32/28	161
00533	1/4.	2 116X13H ATT7X13H BT77X1H276X13H AZT7X14H ZBT16X16H QU01115X16H Q	162
00533	1/5.	300127)	165
00534	1/0.	500 VSA=V(23)	164
00535	177.	ER=EM*VSA**2/2.0	165
00536	178.	EB=ER-562.0	166
00537	17Y•	BK≐60•0	167
00540	180.	8L=1.0	168
00541	181.	FBU=EPS*ED=BK+BL/2+0	169
00542	182.	Z=SQR((3807.0+20.4+ER)	170
-00543 -	183.	TDR=0.00203*(ASIN(97.4/Z)-ASIN(61.7/Z))	171
01,544	184.	F8M=F60 +6K+864	172
00545	185.	TBR=0.00837*ACOS(FB0/FBM)	173
00546	180 .	TBCR=0+01675*ACOS(FB0/FBM)	174
00547	187.	FBCR=(FBM+EBU)/4.0	175
00550	180.	VBCR=SART(2,0*FBCR/FM)	176
111551	184	7=CAPT(9467,0+40,84FB(7))	177
00552	19	TDCD-1,040614(ACIN(97.4/2)-ACIN(51.5/7))	178
00552	141.		170
00555	197.		180
000004	10	VOLK-OVENIX 600-COLVENIX DON'T 601-COLVENIX TOCO-TOCO-VOCO-VCCO	100
00555	100	PRINT SUFFEMPTON INFINITED FOR FOR YORK AS A	101
00567	194.	SUIDE ORMAT(7/720X/23) MINIRUM BUFFER FORCE =F7.1,34 LB/20X/23H MAXIMUM	102
00367	193.	BUFFCR FGRCE -F /: 1:3H LG/20X/29H DRIVING SPRING RECOIL TIME =F9:6 -	103
00567	190	274H SEC/20X 21H UUFFLH RECOIL TIME = F9.674H SEC/20X 28H BUFFER COU	184
00567	197.	3NTERRECOIL TIME =F9.6.4H SEC/20X.31H DR SPRING COUNTENHECOIL TIME	185
00567	196.	4= F9.574H SEC/20X, 32H BUFFER COUMTERRECOIL VELOCITY =F7.2.7H IN/SE	186
00567	199.	5C/20X+32H LR SPR COUNTERRECOIL VELOCITY =F7.2+7H IN/SEC)	187
00570	20u.	510 V(23)=VSCk	188
-00571	201:	F(23)=51.5	189
00572	202 .	X(23)≠0•S	190
00573	203.	S(23)=0.0	191A
00574	204.	E=ESCK	1918
00515	205.	BDEG(23)=52+926 🖌	192
00576	200.	F(23)=51.5	193
-00577	207.	DTM(23)=0.0	194
00600	208.	TEPM(23)=0.0	195
00601	209.		196
00602	210.	NSTEP=34	197
00603	211	00 550 1=24.NSTEP	198
00000	212.	IE (I.E.C.NSTEP)GO TO 575	199
00010			
00611	214		201
00612	215		201
00012	210+	GUI DATREAA	202
00013	210.		203A
00614	217.		2036
00615	210.	5/6 5(1)=5(1=1)+UX	204
00016	514.	TANE = 2.032#X(I) + TANEU	205
00617	220.	B = ATAN(TANB)	206

	A – 6.	(Con't.)
--	--------	----------

00620	221.	BDEG(I)=57.296*B	207
00621	222.	SNCN = SIN(B) + EMUR + COS(B)	208
00622	225.	CNSN = COS(B) - EMUR + SIN(B)	209
00623	224.	EM(I)=.00647 +(0.000345*TANB/(0.203*CNSN/SNCN~0.1149))	210
00624	225.	$F(\mathbf{I})=F(\mathbf{I}-\mathbf{I})-\mathbf{D}\mathbf{L}\mathbf{F}$	211
00625	220.	E=E+0+25*(F(I-1)+F(I))*DX	212
00626	227.	V(I)=SQRT(2.0*E/EM)	213
00627	228.	Z=S&RT(F(I~1)**2+40.8*E)	214
00630	229.	DT=0.4428+SQRT(EM)*(ASIN(F(1-1)/2)-ASIN(F(1)/2))	215
00631	230.	DTM(I)=1000.0*DT	216
00632	231.	TEPM(I)=TEPM(I-1)+DTM(I)	217
00633	232.	550 CONTINUE	218A
00635	233.	DX=DX	218B
00636	234.	PRINT 551,(S(I),F(I),BDEG(I),EM(I),DTM(I),V(I),TEPM(I),I=24,NSTEP)	219
00652	235	551 FORMAT (IH1/	220
00652	230.	1 15x,42H TABLE 4-9 COMPUTED DYNAMICS;COUNTERRECOIL/17x,37HBOLT LOC	221
00652	237.	2KING UURING PARABOLA TRAVERSE // 2X,6HTRAVEL,4X,5HFORCE,6X,4HBETA,	222
00052	238.	36X+5HMASS +6X+6HDELTAT+4X+8HVELOCITY+5X+4HTIME+/3X+4HINCH+5X+5HPOU	223
00652	239.	4ND+5X+6HDEGREC+5X+5H1000X+6X+6HMILSEC+5X+6HIN/SEC+5X+6HMILSEC//	224
00652	240.	5 (F7.2,F10.2, F11.3, F11.5, F11.4, F11.2, F11.4))	225
00653	241.	STOP	226
00654	. 242.	END	227

A-7. FLOW CHART FOR OPERATING CYLINDER

A-8. LISTING FOR OPERATING CYLINDER PROGRAM

		-					
	COMPILATION BY	UNIVAC 1	07 FORTRAN	IV DATED-	MAY 10,196	6 F4010	
	MAIN PROGRAM		ENTRY POIN	т оооооо			
	STORAGE USED	(BLOCK)	NAME + LENG	TH)			
	0001	*CODE	000610				
	0002	*DATA *BLANK	001211				-
	EXTERNAL REF	ERENCES	BLOCK . NAM	E)			
	0003	NRDCS					
_	7884						_

	0003	INRUGO	
	0004	NIOIS	
	0005	NI025	
	0006	NSTOP\$	
	0007	NPRTB	
	0010	NEXP6\$	
_	0011	NWDU\$	

STORAGE ASSIGNMENT FOR VARIABLES (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0001 000036 1L	0000 000652 10F	0000 001133 101F	0001 000557 103L	0001 000004 1056
0001 000014 113G	0001 000024 1216	0001 000235 14L	0001 000212 15L	- 0001 000072 1516
0001 000303 17L	0001 000305 18L	0001 000436 301 6	0001 000501 3246	0000 000650 350F
0001 000105 4L	0001 000413 97L	0000 001006 98F	0000 001017 YYF	0000
0000 R 000645 DFA	0000 R 000624 DIFV	0000 R 000643 DIFVS	0000 R 000566 DS	0000 R 000647 DSA
0000 R 000046 DSN	0000 H 000636 05P		0000 R 000614 DI	UUUU R 000210-DV-
0000 R 000016 DVI	0000 R 000617 DVK	0000 R 000231 DVS	0000 R 000632 DVSI	0000 R 000633 DVSK
0000 R 000627 DWC	0000-R-000336 DX	0000 R 000622 DXP	0000 R 000612 FMF	0000 8 000314 F
0000 R 000063 FA	0000 R 000524 FC	0000 R 000642 FCD	0000 R 000545 FCDDT	0000 R 000252 FD
	0000 8-000273 FG	0000 000607	0000 I 000612 K	0000 - 10
0000 T 000631 M	0000 R 000021 PA			8888 # 888148 5
0000 1 000031 M	0000 K 000021 FA	0000 K 000303 FC		0000 1 000140 3
0000 R 000625 SP	0000 R 000637 SXP	0000 R 000634 SI	0000 R 000633 52	
0000 R 000125 V	0000 K 000644 VA	0000 R 000042 VB	0000 R 000462 VC	0000 R 000613 VCO
0000 R 000441 VE	0000 R 000167 VS	0000 R 000626 W	0000 K 000630 WC	
0000 R 000377 WM	0000 R 000104 X	0000 R 000623 XP	0000 R 000620 X1	0000 B 000620 V29
				COOP IL COUCER REIT

	1.	DIMENSION T(17), PA(17), VB(17), FA(17), X(17), V(17), S(17), VS(17),		
00101	2.	1DV(17)+DVS(17)+FD(17)+FG(17)+F(17)+FDT(17)+DX(17)+WM(17)+WCM(17)+	4	
00101	-3.	2VE(17);VC(17);PC(17);FC(17);FC0DT(17);DS(17)		
00103	4.	READ 350, (T(I), I=2,17)	6	
00111	5.	READ 350, (PA(1), 1=2,17)		
00117	6.	READ 350, (VB(I), I=2,17)	8	
00125	7.	350 FORMAT (BF9.0)		
00126	8.	500 L = 1	10	
00127	3.	AO = 0.042	11	
00130	10.	FA(1) = 680.0	12	

1

A--8. (Con't.)

12100-001	11		
00131	11.		14
00133	120		- 15
00136	13	$50(1) = -35 \cdot 0$	16
	16		17
00140	15.		10
00141	10.		10
00142	17.	$V_{S(1)} = 0.0$	19
00143	18.		- 20
00144	19.	DV(1) = 2.0	a
_ 00145	20.	EME = 0.2285	22
00146	21.	VCO = 0.50	23
00147	22.	10 FORMAT(1H1/16X,74HTABLE 2-12 COMPUTED RECOIL AND OPERATING CYLINDE	24
00147	23.	IR DATA FOR ORIFICE AREA OF F5.3,6H SQ IN//21X,86HAVERAGE PROP	25
00147	24 e	2 URIVING RESULT DIFFER DIF	26
00147	25.	3FER/12X,105H LORF BORE GAS ADAPTER SPRING, RECO	27
00147-	26.	41L RECOIL RECOIL RECOIL- RECOIL RECOIL/117H TIME	28
00147	27.	5 VOLUME PRESSURE FURCE FORCE FORCE FORCE IMPUL	29
	28.	6SE VEL VEL TRAVEL TRAVEL/115H MILSEC CUIN	30
00147	29.	7 PSI LB LB LB LB LB LB LB-SEC IN/SE	- 31
00147	30.	BC IN/SEC IN IN/)	32
00150	31.	DO 100 1=2:17	33
00153	32.	DT = (T(I) - T(I - 1)) / 1000.0	34
- 00154	33	FG(T) = 0.515 * PA(T)	35
00155	34-		36
	35	3 DVI = DV(I-1)	37
00157	35		3.8
00137	37		
00100	20		
00101	30.		40
00162	39.	UAP = AI + AZ	41
00163	40.	AP = DAP + X(1-1)	42
00164	41.	$FA(1) = FA(1-1) + 1/80 + 0 + 0 \times P$	4.5
00165	42e		
00167	4.3.	5 FD(1) = FD(1-1) + 40.0 mDAP	45
00170	44.	F(1) = FG(1) - FA(1)/0.45 - FO(1)/0.80	46
00171	45.	FOT(I) = F(I) * DT	47
. 00172	46.	DVI = 4.025 * FDT (I)	48
00173	47.	$\kappa = \kappa + 1$	49
00174	48.	IF(K.GT.30)STOP	50
00176	49e	a5 DIFV = ABS((DVI-DVK)/DVI)	51
00177	50.	IF(DIFV.61.003)60 TO 4	52
00201	51.	6 DV(1) = DVI	53
00202	52.	DX(I) = DXP	54
00203	53.	OVS(I) = UV(I)	55
00204	54.	DS(I) = DX(I)	56
- 00205	55	_ SP = XP	57
00206	56.	WM(I) = 0.0	58A
00207	57.	$WCM(1) \approx 0.0$	58B
00210	58 e	VE(1) ≈ 0.0	58C
00211	59.	vC(1) = 0.0	58D
00212	60.	PC(I) = 0.0	58E
00213	61.	60 T0 97	59
00214	62.	$15 \text{ wM(I)} = 1.92 \pm AO \pm PA(I)$	60A
00215	63.	W = WM(1)/1000.0	60B
00216	64	DWC = W*DT	61
00217	b5.	$wCM(I) = WCM(I-1) + 1000 \cdot 0 * DWC$	62A
00220	66.	WC = WCM(1)/1000.0	62B
00221	67.	$VE(I) = I4 \cdot 0 * WC * VB(I)$	63
00222	68.		64
~~===	0.04	The first of the second	

A-8. (Con't.)

D-24

- 00223	69.	13 DVSI = DVS(I-I)	65
00224	70.	14 OVSK = DVSI + DVI	66
00225	71.	S1 = VS(I-1)*OT	67
00226	72.	$S2 = 0.5 \pm DVSK \pm DT$	68
- 00227	73	05P= 51 + 52	69
00227	74	SP = (SP + S(1-1))	70+71
- 00230	75	SYP = SP = YP	72
00231	76.		73
00232	77	V(T) = V(D + 1)/(2 + 2)	
00233	78.	$\nabla (\mathbf{r}) = \nabla (\mathbf{r}) + \nabla (\mathbf{r}) + \mathbf{r} + \mathbf{r} + \mathbf{r} $	75
- 00234	70.		76
00235	80.		77
00237	01.		78
00240	610		70
- 00241 - 003#3	02.		
00242	63.	10 FU(1) = 10(0) FU(1)	00
00243	84.	F(1) = F(1) = F(1) + 40.000 pm	
00244	05.	F(U) = F(U) = F(U) + 0	02
00245	00.		0.3
00246	87.	DVS1 = 35.12/*FCDD1(1)	04
00247	88.		65
00250	89.		00
00252	90.	95 DIFVS = ABS((DVSI - DVSK+ DVI)/DVSI)	87
00253	91.	IF(DIFVS.61.0.002)60 10 14	88
00255	92.	96 F(I) = FG(I) - FA(I)/0.45 - FC(I)	89
00256	93.	- FDT(I) = F(I) * DT	90
00257	94.	DVI = 4.546*FDT(I)	91
00260	95.	$ \mathbf{k} = \mathbf{k} + 1$	92
00261	96.	IF (K.GT. 30/STOP	93
60263	97.	35 DIFV = ABS((DVI-DVK)/DVI)	94
00264	98.		95
-03266	99.		90
00267	100.		
00270	101.		90
00271	102.		
00272	103.	$3/\sqrt{11} = \sqrt{1-1} + D\sqrt{1}$	100
00273	104.	$V_{S(1)} = V_{S(1-1)} + DV_{S(1)}$	
00274	105.	$\frac{1}{100} \frac{1}{100} \frac{1}$	102
00275	1001		103
002/7	107+-		1040
00277	- 100+		1040
00320	110	WRITE(6)777 Awrite(6)777(1)(T(T), ww(T), went), went), went), ee(T), ee(T), ee(T), ee(T),	1064
- 00322	111		1004
00322	110	100311/0311/0311/0311/04=204/0 40 CONMATICS 3.510 1.2510 0.2510 0.510 0.510 3.2510 4.2510.4)	107
00343	112.	78 FURMATIF 0.57F10.172F10.072 700F10.07F10.272F10.172F10.47	
00344	113.	770FURMAT(7/17A7/300AS VEER EQ01V VEER VER V	100
00344	115-		
00344	11	2 CIL CIL CIL FISION CIL SLIDE SLIDE	111
00344		AND INC SELECTION THE RATE VEL VEL VEL VEL	
00344	110.	S TOAVEL/115H MTLEEF LD/SECYM LDYM CILITAL CILITA	113
00344	110.	2 DET - THE BEST BALLER CONTRACT THE THE THE	
00345	120	0 + 51 ED ED 540 10 500 10 500 10 10 10 10 10 10 10 10 10 10 10 10 1	115
- 00345	121		
00340	122	TE(VAL) T.0.5160 TO 103	117
	122	105 DFA =0.30+FMF+V(17)/(T(17)/1000-0)	
00351	124.	$\mathbf{F}_{\mathbf{A}}(\mathbf{i}) = \mathbf{F}_{\mathbf{A}}(\mathbf{i}) + \mathbf{F}_{\mathbf{A}}$	119
00352	125		120
00354	126	60 10 1	121
00304	120.		

A-8. (Con't.)

00355	127.	103 DSN = 5(17)-1.67	122
00356	128.	DSA = ABS(DSN)	123
-00357	129.	IF (DSA.LT.0.004) STOP	124
00361	130.	115 A0 = A0 * (1.0 - DSN/1.67)	125
00362	131.	L # L + 1	126
00363	132.	60 TO 1	127
00364	133.	900 STOP	128
00365	134.	END	129
	_		
PHASE PHASE PHASE PHASE	END OF 1 1 TIME = 2 TIME = 3 TIME = 4 TIME =	LISTING. 0 *DIAGNOSTIC* MESSAGE(S), 2 SEC. 0 SEC. 3 SEC. 0 SEC.	

TOTAL COMPILATION TIME = 9 SEC

A-9. FLOW CHART FOR CAM AND DRUM DYNAMICS DURING RECOIL

A-26

_

A-10. LISTING FOR CAM AND DRUM DYNAMICS DUR NG RECOIL

	0000 R 002331 FDI	0000 h 002347 FMVS0	0000 R 002354 FS1N	0000 R 001210 FUS	0000 R 002322 FUSI
	0000 2 002002 FX	0000 x 002337 FX1	0000 R 002070 FY	0000 R 002340 FYI	0 0 00 I 002255 I
	0000 1 002266 JJ	0000 1 002312 KK	0000 1 002254 KKLUE	0 00 0 I 002313 LL	0000 R 002277 RAD
	0000 R 002303 RC	0000 R 002244 RD	0000 R 002372 RVI	U000 R 000066 S	0000 K 002376 SI
	0005 R 000000 SIN	U000 R 002276 SQ	0003 R 000000 SUKT	0000 R 000660 SX	0000 R 002274 5XBAT
	- 0000 R 002275 SXI	0000 A 002317 TF	0000 R 002245 16	0000 R 001452 THETA	0000 R 000572 TM
-	0000 R 002377 TMI	0000 K 001276 TMU	0000 R 002324 TMUI	0000 R 000154 V	0000 R 001540 VC
	0000 R 002314 VCI	UDUO R 002315 VCIK	000U R 001626 VU	000J R 002335 VDI	00 0 0 R 002371 VI
	0000 R 000242 VS	UUUO K 002271 VSI	0000 R 002370 VSQ	0000 R 000000 X	0000 R 002262 XDIFF
	0000 R 002375 XI	0000 R 002305 XK	0000 K 000746 Y	0000 R 002301 YI	0000 R 002300 YIX
	0000 R 002304 YK				

00101	1.	01714ENETON 2(54).5(54).4(54).45(54).66(54).60(54).68(54).74(54).	1
00101	2.	154(54) . Y(54) . HETAD (54) . BSTN (54) . FUIS (54) . TMU (54) . F (54) . THETA (54) .	2
00101	3.	2VC (54) - VII (54) - BCOS (54) - FX (54) - FX (54) - FBBI (54)	3
00103	4.	$BEAD(5, 360)BD(1G)EMB(D)F(CY, CX)DE(EMS) \times (16) \times (17) \times (17) \times (17)$	ų.
00103	5.	1VC(17),FA(17),FD(17),TM(17)	5
00125	6.	360 FORMAT (HE10-U)	6
00126	7.	V(17) = 0.0	7
00127	8.	FN(17) = 0.0	à
00130	9.	SX(17) = 0.0	9
00131	10	$E(17) = 0.5 \pm EMSL \pm VS(17) \pm 2$	10
00132	11.	$F_{X}(17) = 0.0$	11
00133	12.	FY(17) = 0.0	12 -
00134	13.	Y(17) = 0.0	13
00135	14.	FUS(17) = 0.0	14
00136	15.	TMU(17) = TG	15
00137	16.	EBBL(17)=0.0	16
00140	17.	KKLUE = 1	17
00141	18.	007001 = 18,54	18
00144	19.	IF(X(I-1).6T.0.0)60 TO 532	19
00146	20.	531 DXI = 0.0	-20 -
00147	21.	DSX = USXBAT	21
00150	22.	KKLUE = -1	22
00151	23.	GO TO 511	23
00152	24.	532 DXI2 = 2.0*(X(1-2)-X(1-1))	24
00153	25.	XDIFF=X(1-1)-UXI2	25
00154	26.	1F(XD1FF+LT+0+0)60 10 570	26
00156	27.	510 IF(1.6T.18)60 TO 992	27
00160	28.	991 DXI = 0.00004	28
00161	29.	GO TO 993	29
00162	30.	992 DELT - (TM(I-1)-TM(I-2))/1000.0	30
00163	31.	DXI1 = V(I-1) * DELT	31
00164	32.	IF(DX11.61.00 GO TO 1002	32
00166	33.	IF(DXI1+L1+0+0)G0 TO 1001	33
00170	34.	<u>GO TO 991</u>	34
00171	35.	1001 Dx I0 = 0.25 - x (1-1)	35
00172	36.	IF(1.5*DX10.61.ABS(DX11)/G0 TU 1002	36
00174	37.	1003 DXI = DXIO	37
00175	38.	GO TO 993	38
00176	39.	1002 DXI = DXII	39
00177	40.	993 JJ=0	40
00200	41.	DSX = 0.09	41A
00201	42.	<u>GO TO 511</u>	418
00202	-2.	5/0 KRL0E - 0	42

D I Ø

ł

1

A-10. (Con't.)

00203	44.	$px_1 = x(1-1)$	43
00204	45.	DTCR = DXI/V(1-1)	44
00205	40.	DTI = DTCR	45
00206	47.	$v_{SI} = v_{S(I-1)}$	46
00207	48.	DSI = VSI+DTI	47
00210	49.	USX = DS1 + DXI	48
00211	50.	AB = 1	49
00212	51.	SXHAT = 54.0 - AB	50
00213	52.	USX6AT = (5.0 - 5x(1-1) - DSX)/SXBAT	51
00214	53.	511 Sx I = Sx(1-1) + DSx	52
00215	54.	SX(1) = SXI	53
00216	55.	SQ = 11.0889 - SX(1) * * 2	54
00217	50.	IF(1.1.54)60 10 533	55
06221	57.	534 RAD = 0.0	56
00222	58.	USx=3.33-5X(53)	57
00223	59.	SX(1)=3.33	58
00224	60.	Sw = u.0	59
00225	61.	GO TO 333	60
00226	62.	533 RAUSSURT(SG)	61
00227	63.	333 YIX= 0.6456*RAD	62
00230	64.	YI = 2.15 - YIX	63
00231	65.	$\lambda(I) = \lambda I$	64
00232	60.	$THETA(I) = 19.0987 \pm i(I)$	65
00233	67.	1F(54.6T.U.0)60 TO 507	66
00235	bd.	500 DETA = 1.5708	67
00236	69.	60 TU 508	68
00237	70.	507 BETA = ATAN(0.6456*SX(1)/RAD)	- 69
00240	71.	508 BETAD(I) = 57.296+BETA	70
00241	72.	KC = (11.0889 - 0.5831*5X(1)**2)**1.5/7.1595	71
00242	73.	$USIN(1) = SI_{ii}(BETA)$	72
0v∠43	74.	BCOS(1)= COS(BETA)	73
00244	73.	YK = DCGS(1) - 0.05 * BSIN(1)	. 74
00245	70.	λK = 65IN(1) + 0.05+8C05(1)	75
00246	77.	CG = CY + YK - CX + XK	76
00247	70.	CI = UIE * is Cus(I) / (RD * RC * CG)	77
00250	79.	CF = 0.15 + YK	78
00251	80.	CT = CX*AK + D.1*YK	79
00252	61.	IF (KKLUE-LG-0)60 TO 573	80
00254	82.	575 USI = DSA - UXI	81
00255	83.	573 KK = U	82
00256	64.		83
00257	65.	vc1 = vc(1-1)	84
00200	00.	509 VCIK = VCI	85
00201	81.	UXIK = UXI	86
00202	60.	TF = TG/CG	87
00203	69.	Er4VC = C1#VC1K++2	. 88
00204	90.	ENI = ENVC + TF	89
00205	91.	EN(I) = ENI	90
00406	94.	FUSI = (F*EN(I)	91
00267	93.	FUS(I) = FUSI	92
00270	94	S USIK = USI	93
00271	95.	590 TMUI = $CT + E_{1}(I) + TG$	94
UU272	90.		- 95
0V273	97.	EMS = 0.5*(FUS(I-1) + FUS(I))*USIK	. 96
00274	96.	LTHETA = ()(1) - YTI-1)/RD	97
00275	99.	といし = G.5*(TAU(I-1) + TMU(I))*()THETA	98
	- 100		
00276	100-	ENU - EN2 * LND	

(Con't.)	
A-10.	

101	201	501	104	501 106	101	108	109	110		112	113	114	115	116	711	118	611		122	123	124	125 -	126	121	521	130	121	132	123		136	137	138	601	140	142	143	144	f	146	147	-6#1	150	151	152	150	1554	1558	156
																						8															1.4	10	ļ										10 - ST
	Common Common				-				1						ŀ										Contraction of the local distribution of the							-														e F			1
	The second second				-				1.4.1													1			-																						1		
	1																			3		I																	1					3					
			1844	1744					25									2				i.					-					i								1		100		1			25		
			100/14	TVRU											5												-	1		-									1						-				•0
	¥T.		10100	INTCO				-	-				ł	24	65 01	1						-	1									-	4		1100					1				ł			-		:
			1.5.	L'ULET				3*0*(2					1											Å	1			0.010 MEG					1				* * *					
	0.0+1	-	1.441				12	(I-I)S	1		1 I			((I))	100				0 1007	001_0	010		-	TULE	1		1	-1)**			**2*E	-					344			1		LINON	(WON				1200		CHU)
11/01	FU/F	- -	Dene I	(DEN)	1	-	10 5	> + I	1				:	1)+FX	1		• #2	1007	1 09(160 T	T0 1			2				I 1 1*H		X	(1-1)	XR			WICh	STOP	60 10			1000	IDCH	A/DE	MB/DE	TOP	_		010	:	- DEN
	+ 11.	E L	- 17T		10 200	SINCI	.0)60	IL UVS	T0*0.	*Xr		*YK	1	-I)X4	FA(1-	FA	-1-1	ED TO	T.u.0	T. 6.0	.0160	+	- C. F.			+01	I*UXIK	• 0*EM	+ ENX	LXUXY	02.6*V	C + EN			+ + 0	(0.0.	10.0.			1110		SIENU	S (ENU	SID.I.	(FSIN	5748	1.016		NUNA
			C EL	Auk	VCI*	VC L *	.UE.EG	DSIK	1000	EN(I)	EX1 =	EN(I)	EY7 =	0.5*(0.45	ENFLE		THE TAN	9.(1-1	1-11-1	X.6T.(0.000	1007	10.0	1001	-0.000	901.09	109 =	F P P X	1955	557 =	E F R)	ENXH	ET AN	- ENV	VSG-L	15.021	= 1.L	- I.	****	1	= AE	H AF	11.61.	TSAS	100	IN 61	362	-
I not			E ILI		- 152	= 101	IF (KKI	LTI =	UTIM	= IXJ	FX(I)	FY1 =	FY(I)	ENF =	EFA =	ENX	EFAR		IF (V(IFUU	IF (EN)	LXIKE	60 10	I'X IK	60 10	UXIN=	FAX =	FMVSW	ENUMA:	EAV =	FMVSQ	ENUMA	N X Z J	- 413	DOLT I	IF (LE	IF (UE)	ESIN :	FSIN	01 09	FNUMH	ESIN	FSIN	IF UFS	ANGLEI	01 09	IF LES	60 10	DFAX
								572							61			-	1022		1000	1008	11111	1111		1012	1001			6001		1		1413	CTAT			106		100	ţ			356	545	111	190		1200
••••					00.	.03.	10.	.11.	.16.	.1	.+1	.15.	10.	.17.	.16.	.19.			23.	.24.	. 65.	.02	.27.		.00	.161	.25.			36.	.151	.36.	.95.			+	. ++.	.45.			.64	.20.	.141	.76			.00	.157.	.96.
2:	1	2	20	5 4	90	1	10	12 1	13	14	15	16 1	1-11	20 1	51	25	3	20	22	31	53	35	2	53	-	1	t t	12	0	05	212	25	20			22	10	63	10	00	229	R	11	21	1	92		01	202
200	CON	COD COD	000	200	200	0030	000	003.	000	003	003	003	003.	003	000	003	200		200	003.	003.	003	200	200	003	003	003	C D D	200	200	003	500	500		200	200	003	003	Sug	COU.	200	500	500	500	200	003	200	100	100

A-10. (Con't.)

00404	4 16u.	IF (LL.EQ.100) STOP	158
00400	6 161.	1201. 1F(V(I-1).LT.0.0)60 TO 1207	159
0041	0 162.	1208 DXI = DXIK - DFAX/801.0	
0041	1 163.	60 TO 509	161
0041	2 164.	1207 GXI = UXIK - UFAX/3955.6	162
0041	3 105.	GO TO 509	163
00414	4 166.	362 IF (KK+LT+10)G0 TO 366	164
0041	6 167.	370 IF(ESIN.LT.0.999990) GO TO 366	165
00421	168.	364 ANGLEE = 1.5708	
0042	1 169.	DELANG=ANGLEF=1.5708	167
0042	2 170	IF (DELANG.GT.0.0) GD TO 1088	168
00420	4 171.	IF (DELANG+LT+U+0)60 TO 1088	160
0042	6 172.	GO TO 1220	170
0042	7 173	1000 LTCD = (SOBT(SMB/ROL, 0)) + ABC(DELANC)	171
0043	174.	IF (ABS () I = D CR) AD CR) GT O TO TO TO A	1721
004.5	2 175.	GO TO 1220	1729
0043	3 176.	$1087 \text{ DSx}=\text{DICR}*(VS(I-1)+VSI)/2 \cdot 0$	173
00434	177.	DXT = V(J-1) + DICR/2 = 0	174
0043	5 178.		175
00436	179.	366 ANGLEFEASIN (ESIN)	176
0043	7 180.	446 UELANG = ANGLEF ANGLEE	111
00440	181.	IE (DEL ANG. GT. D. 0) GO TO 1017	178
0044	2 182.	IF (DEI ANG.) [.0.0] GO TO 1017	179
0044	4 183.		190
0044	5 184.	GO TO 1015	181
0044	6 185.	$1017 \text{ IF}(Y(1-1) \cdot 1 \cdot 0 \cdot 0) = 0 \text{ TO } 1016$	192
00450	186.	1014 DTCR = (SORT(EMR/801.0))* ARS(DFLANG)	
0045	1 187.	GO TO 1015	104
0045	2 168	1016 DTCR= (SURT (EMR/3955.67)) * ABS (MET ANG)	185
0045	3 189.	1015 DTCRM = 1000.0*DTCR	196
00454	190	DELTM = DTIM = DTCBM	
0045	5 191.		188
00450	6 192		189-
00460	193.	585 DIFT = DTT - DTCR	190
0046	194.	IF(DIFT.GT.0.0)GO TO 542	<u> </u>
0046	2 195.		192
0046	5 196.	G TO 512	193
0046	6 197.	541 ALDIF = (i) (FT/DTCR)	194
0046	/ 198.	GO TO 5rl	195
06470	199.	542 ALDER = $(DIET/DII)$	196
00471	200.	577 IF (ABS (ALDIF) GT 0.01) GO TO 587	<u> </u>
00473	3 201.	GO TO 512	1978
0047	4 202.	587 DXT = 0 XIK (1.0 + ALDTE74.0)	198
0047	5 203.		199
00478	204.	GO TO 509	200
00477	205.	512 (1=1)+1	201
00500	206.	IF(JJ-E0-100)STOP	202
00502	2 207.	819 DEBBL = ABS(DXIK)*(-ENUMA)	203
00503	3 208.	$EBBL(\mathbf{I}) = EBBL(\mathbf{I}-\mathbf{I}) + DEBBL$	204
00504	4 209.	VSQ = 2.0*EBBL(I)/EMR	20s
00505	210.	VI = SGRT(ABS(VSQ))	205
00506	5 211.	IF(VI.GT.0.10)GO TO 1090	207
00210	212.	1089 VI=0.0	208
00511	213.	EBBL(1)=0.0	209
00512	2 214.	1090 IF(V(I-1).GT.0.0)GO TO 1202	
9954-	815 .	IF(V(I-1).LT.0.0)GO TO 1203	211
00516	216.	GO TO 822	212
00517	217.	1202 IF(EBBL(I-1)+DEBBL.LT.0.0)G0 TO 823	213

D-ww

A-10. (Con't.)

00221 213 2010 822(1-1)+DEBBL).6T.0.0160 TD 823 213 00225 213 120 DUF (DB82(1-1)+DEBBL).6T.0.0160 TD 823 211 00255 223 121 (ABS (V(1-1)) 211 00525 223 831 VI = 0.0 211 00530 223 831 VI = 0.0 211 00531 224 00 TO 824 211 00532 225 621 DDT = DT14(1.0 - (ABS(V(1-1))/((ABS(V(1-1)) + VI)*4*.0)) 221 00533 226 DSX = DOS + DOSI + DOXI 221 00534 227 DDSI = VS(1-1)*DOTI 221 00535 228 DESX = DOSI + DOXI 222 00534 227 PDSI = VS(1 + 0.256 OT 0 *25 226 00543 233 825 V(1) = -VI 229 00544 233 12 (1 + 1.0 + 256 OT 0 *25 231 00554 238 K(1) = 0.2 233 00555 240 515 ST = ST(-11 + OSTK 233 00555 249 K(1) = 0.1 236 00555		1 0		
00524 221 102 00 00 00 00 00 00 00 00 00 00 00 00 0	00521	210.	60 10 822 1203 IE((FBR)(I=1)+0FBR))+6T-0+0)60 TO 823	219
00525 221 623 RV1 = Vi7Ass (V(1-1)) 217 00526 222 1F (RV1-(F*O.IDFG TO 821 210 00530 223 631 V1 = 0.0 210 00531 224 60 TO 824 201 211 00532 225 621 DDT1 = DT14(1.0 - (ABS(V(1-1))/((ABS(V(1-1)) + VI)*4*0))) 221 00533 226 DX1 = VV1-11*0DT1 223 00534 227 DDS1 = VS1(1-1)*0DT1 224 00535 228 DBX = DOST + DX1 224 00536 228 DDST + DX1 225 00537 228 DDST + DX1 225 00544 231 824 V1 = 0.0 225 00544 234 625 V11 = -V1 229 00544 234 625 V11 = 0.2 231 00551 238 GO TO 515 232 00552 239 K11 = 0.2 230 00554 241 TV1 = VD1 + VD1 230 00555 249 V11 = 0.0 231 <	00522	220.		215
00552 222. TF(RV16)T.01)60 TO 821 211 00531 224. 60 TO 824 211 00532 225. 60 DT1 = DT1+(1.0 - (ABS(V(I-1)) + VI)+4.0))) 221 00533 226. CXI = V(I-1)#ODT1 223 00535 228. DSX = DOSI + DXI 225 00535 228. DSX = DOSI + DXI 225 00537 200. 822 TF(EBBL(I)-I.F.0.0)60 TO 825 225 00537 201. 822 TF(EBBL(I)-I.F.0.0)60 TO 825 226 00542 235. IF(XI,LT.0.0)260 TO 829 227 00542 235. IF(XI,LT.0.0)260 TO 829 231 00545 235. IF(XI,LT.0.0)260 TO 829 231 00550 237. V(I) = 0.0 233 00551 237. V(I) = 0.0 233 00552 239. 829 X(I) = XI 230 00553 240. 515 SI = 51(-1) + 051K 230 00555 243. TM(I) = TMI 235 00556 243. TM(I)	00525	221.	823 RVI = VI/ABS (V(I-1))	217
00530 223, 831 VI = 0.0 210 00531 224, 60 TO B24 60 TO B24 220 00532 225, 621 DDTI = DTI+(1,0 - (ABS(V(I-1))/((ABS(V(I-1)) + VI)+4,0))) 221 00533 227, DDSI = VS(I-1)+0DTI 223 00535 228, DOSI + VSI 224 00536 229, GO TO 511 225 00537 230, 822 IF(EBBL(I),LT+0.0)60 TO 825 226 00541 231, 824 V(I) = VI 227 00542 235, 60 TO 827 226 00543 235, 825 V(I) = -V. 228 00544 235, 825 V(I) = 0.25 233 00557 236, 1F(XI,I-1.0.25)60 TO 829 231 00551 235, 828 V(I) = SI 239 00552 235, 828 V(I) = VI 239 00553 243, TMI = TMI-TI+ 1051K 239 00555 242, TMI = TMI-TI+ 1051K 239 00555 243, TMI = TMI-TI+	00526	222.	IF (RVI.GT.0.10)60 TO 821	2111
00531 224. GO TO 824 221 00532 225. 02 DOTI = DTI+(1.0 - (ABS(V(I-1)) + VI)+4.0))) 221 00533 226. 0X I = V(I-1)+0DTI 223 00535 228. DSX = DOSI + DXI 225 00537 230. 822 F(FEBBL(I).I.T.0.0)60 TO 825 225 00537 230. 822 F(FEBBL(I).I.T.0.0)60 TO 825 227 00542 232. 60 TO 827 229 00544 234. E - VI 229 00542 235. IF(XI.I.T.0.25)60 TO 829 231 00551 235. IF(XI.I.T.0.25)60 TO 829 233 00551 235. GO TO 515 234 00552 242. TMI = TMI = 25 233 00553 240. 515 SI = 5(I=1) + VI 236 00554 244. S(I) = ZI 237 00555 242. TMI = TMI = 100.0+DTI 233 00555 243. IMI = TMI 233 00555 244. TMI = TMI = CI	00530	223.	831 VI = 0.0	219
00532 225. 621 DOTI = DTI*(1.0 - (ABS(V(1-1))*((ABS(V(1-1)) + V()*4.0))) 221 00533 226. DXI = V5(1-1)*DOTI 223 00534 227. DDSI = V5(1-1)*DOTI 223 00535 228. DOSI = V5(1-1)*DOTI 224 00536 224. DOSI = V5(1-1)*DOTI 224 00537 230. B22 IF(EBEL(1).1.1.0.0)60 TO B25 226 00541 231. B24 V(1) = V1 227 00542 233. B25 V(1) = -11 229 00543 235. IF(X,1.1.0.0.25)60 TO 829 233 00551 236. GO TO 515 233 00552 239. 60 TO 515 233 00552 239. 60 TO 515 233 00553 240. 515 ST E 5(T = T) + DSIK 237 00555 242. TMI = TMIT-T) + DSIK 239 00555 242. TMI = TMIT-T) + DOTO 241 00555 242. TMI = TMIT-T) + DSIK 239 00555 242. TMI = TMIT-T) + DSIK 239 00555 242. TI = (00531	224.	GO TO 824	220
00533 227. DXI = V(1=1)*0DTI 223 00535 228. DXX = VSIT=1)*0DTI 223 00535 228. DXX = DOST + DXI 225 00537 230. 822 IF(EBBL(1).LT.0.0360 TO 825 226 00537 230. 822 IF(EBBL(1).LT.0.0360 TO 825 227 00542 233. 824 V(1) = VI 227 00542 233. 60 TO 827 228 00544 234. IF (II.LT.0.25)60 TO 829 231 00542 234. IF (II.LT.0.25)60 TO 829 233 00551 236. 828 X(1) = 0.25 232 00552 235. 828 X(1) = 0.0 233 00553 240. 515 ST = 5(1-1) 051K 235 00553 240. 515 ST = 5(1-1) 051K 237 00553 244. 511 = 71(-1) 1000.0+0 DTI 233 00555 244. 101 = voi 239 00556 244. VII = 0.0 245 00562 244. V	00532	225.	$\frac{321 \text{ DDTI} = \text{DTI} + (1.0 - (ABS(V(I-1))/((ABS(V(I-1)) + VI) + 4.0)))}{(1.0 + 1.0 +$	221
00534 224 DDS1 = VOI 224 00535 228 CO TO 511 225 00536 229 CO TO 511 225 00537 230 822 IFLEBL(1).L.T.0.0)60 TO 825 226 00537 230 822 IFLEBL(1).L.T.0.0)60 TO 825 227 00541 233 825 V(1) = -V1 229 00542 233 825 V(1) = -V1 229 00543 233 825 V(1) = -V1 229 00544 233 825 V(1) = -V1 229 00545 234 F(X1+LT.0.0.25)60 TO 829 233 00555 236 GO TO 515 232 00555 237 V(1) = 0.0 233 00555 249 S15 ST E S(1-1) + DSIK 230 00555 243 TML1 = TML 233 00556 243 V(1) = VDI 240 00556 244 V(1) = VDI 240 00556 245 V(1) = VDI 240 00556 245	00533	220.	DXI = V(I-1) + DDTI	222
00535 228. DSX - DOS 1 T 0A1 224 00537 230. 822 IF(EBBL(1).LT.0.0)60 TO B25 225 00541 231. 824 V(1) = V1 227 00542 233. 825 V(1) = -V1 229 00544 234. Image: Control (Image: Control	00534	2271		223
00553 250. 922 07 (2001) 221 223	00535	228.	DSX = DOST + UAL	224
00541 231. 824 V(I) = VI 221 00542 232. 825 V(I) = VI 229 00543 233. 825 V(I) = VI 229 00544 234. 224. 229 00545 235. IF (XI.LT.0.25)60 TO 829 231 00550 237. 829 X(I) = 0.2 233 00551 238. GO TO 515 232 00552 239. 829 X(I) = XI 233 00552 234. GO TO 515 233 00553 240. 515 SI = S(I-1) + 051K 230 00554 241. S(I) = TM 233 00555 242. TMI = TMI-1'I + 051K 233 00555 242. TMI = TMI-1'I + 000.0*DT1 233 00555 242. TMI = TMI-1'I + 000.0*DT1 243 00555 242. TIM = TMI-1'I + 000.0*DT1 245 00555 246. VC(I) = VCI 245 00556 249. VI = 0.0 245<	00537	230.	822 IE(FBBL(I).LI.0.0)60 TO 825	-225
00552 232. 260 T0 627 229 00544 234. 825 VI) = -VI 229 00545 235. JF FXI.LT.0.25)60 T0 829 231 00547 235. 828 X(1) = 0.25 232 00550 237. V(1) = 0.0 233 00551 238. GO TO 515 234 00552 239. 829 X(1) = XI 230 00551 238. GO TO 515 234 00552 249. 829 X(1) = TXI 230 00554 241. 515 ST = 5(1-1) + USIK 230 00555 242. TMI = TMI 235 00556 243. V0(1) = VDI 241 00557 244. V0(1) = VDI 241 00562 247. IF(X(1-1).6T.0.0)GO TO 513 245 00565 249. VI = 0.0 245 00566 251. XI = 0.0 245 00567 251. XI = 0.0 245 00567 251. XI = 0	00541	231.	824 V(1) = V1	227
00543 233. 825 V(1) = -VI 229 00544 234. F(X1.VI.0.25)60 T0 829 231 00547 235. IF(X1.VI.0.25)60 T0 829 231 00550 237. V(1) = 0.0 233 00551 238. GO TO 515 235 00552 239. 829 X(1) = XI 235 00553 240. 515 ST = 5(1-1) + DSIK 235 00554 241. S(1) = SI 237 00555 242. TMI = TMI = TH 237 00556 243. TMI = TMI 239 00556 244. VIII = VDI 239 00556 244. VIII = VVI 239 00556 247. IF(KI(-1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00566 250. VIII = VI 200 245 00565 249. VI = 0.0 245 00567 251. XI = 0.0 247 00573 255.	00542	232.	GO TO 827	228
00544 234. = 270 00545 235. IF (X1LT.0.25) 60 TO 829 231 00547 236. 828 X(I) = 6.25 232 00550 237. V(I) = 0.0 233 00551 238. GO 70 515 235 00552 239. 829 X(I) = XI 235 00553 240. 515 SI = SI (-1) + DSIK 230 00555 242. TMI = TMI = TMI = 1000.0#DT1 235 00555 242. TMI = TMI = TMI 239 00556 243. TM(I) = TMI 236 00560 245. VD(I) = VDI 246 00562 247. IF(X(I-1).6T.0.0)GO TO 513 249 00565 249. VI = 0.0 245 00565 250. VI I = VI 246 00571 253. GO TO 516 249 00572 251. XI = 0.0 245 00571 255. GO TO 516 269 00571 255.	00543	233.	825 V(I) = -VI	229
00545 235. IF (XI.LT.0.25) 60 TO 829 231 00550 237. V(I) = 0.0 233 00551 238. 60 TO 515 234 00552 239. 829 X(I) = XI 235 00553 240. 515 SI = SI [-1) + DSIK 235 00554 241. S(I) = SI 237 00555 242. TMI = TMI [-1] + 1000.04011 238 00555 243. TM(I) = TMI 233 00556 243. TM(I) = TMI 233 00557 244. VS(I) = VDI 241 00551 244. VS(I) = VDI 241 00551 245. VD(I) = VDI 241 00551 245. VI = 0.0 245 00565 249. VI = 0.0 245 00565 249. VI = 0.0 245 00565 249. VI = 0.0 245 00567 251. XI = 0.0 245 00567 251. XI = 0.0 245 00571 253. GO TO 516 257	00544	234.		230
00547 235. 828 X(1) = 0.0 233 00551 238. GO TO 515 234 00551 238. GO TO 515 234 00553 240. 515 SI = S(I-1) + D51K 230 00554 241. 5(1) = sI 237 00555 242. TMI T TMI(T)+ 1000.0#DT1 238 00556 243. TM(1) = TMI 239 00557 244. VS1) 241 00550 245. VO(1) = VDI 241 00562 247. IF(X(I-1).6T.0.0)60 TO 513 243 00562 247. IF(X(I-1).eT.0.0)60 TO 513 245 00562 247. IF(X(I-1).eT.0.0)60 TO 513 245 00562 249. VI = 0.0 245 00564 250. VII = VI 245 00573 251. XI = 0.0 245 00574 254. SI = FAI 251 00573 255. FAI = FAI 251 00574 255. 315 FAI = FAI 251 006057 251. 257 <td< td=""><td>00545</td><td>i 235.</td><td>IF(XI.LT.0.25)60 TO 829</td><td>231</td></td<>	00545	i 235.	IF(XI.LT.0.25)60 TO 829	231
00550 231 V(1) = 00 233 00551 238 GO TO 515 234 00552 239 829 X(1) = X1 235 00553 240. 515 SI = 5(1-1) + D51K 230 00555 242. TMI = TMI 237 00556 243. TM(1) = TMI 239 00556 243. TM(1) = VDI 231 00556 243. TM(1) = VDI 231 00560 245. VC(1) = VDI 241 00561 246. VC(1) = VDI 241 00562 247. FK(1/= 0.0 245 00565 249. VI = 0.0 245 00566 250. VII = VI 240 00571 252. XII = 0.0 245 00571 253. GO TO 516 249 00572 254. 513 FAI = 80.0 + 1780.0 *X(1) 251 00571 253. GO TO 516 252 00572 315 FICSUTIAS.0 *S0.0 *X(1) 251	00547	236.	828 X(I) = 0.25	232
00551 2-36. G0 TO 513 2-44. 5(1) = XI 235 00553 240. 515 SI = 5(1-1) + USIK 237 00554 241. 5(1) = SI 237 00555 242. TMI = TMI(T-1) + 1000.0+DT1 238 00556 243. TMI I) = TMI 239 00556 243. V0(1) = VS1 240 00560 245. V0(1) = VD1 240 00562 247. IF(X(1-1).6T.0.0)60 TO 513 242 00562 247. IF(X(1-1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00565 249. VI = 0.0 245 00567 251. XI = 0.0 247 00571 253. G0 TO 516 259 00571 253. G0 TO 516 251 00571 253. G0 TO 516 251 00576 257. 700 CONTINUE 251 00576 257. 700 CONTINUE 253 00602 259. 110 FORMAT(1H1/38/46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// <td< td=""><td>00550</td><td>237.</td><td></td><td>233</td></td<>	00550	237.		233
00332 259. 223 241. 233 00554 241. 5(1) = SI 237 238 00555 242. TM(1=1)+ 1000.0+0T1 238 00556 243. TM(1) = TMI 239 00556 243. TM(1) = VDI 230 00560 245. VO(1) = VDI 241 00561 245. VO(1) = VDI 241 00562 247. IF(X(1-1).6T.0.0)60 TO 513 242 00565 249. V(1) = 0.0 245 00566 250. V(1) = VI 245 00567 251. X1 = 0.0 247 00567 251. X1 = 0.0 247 00571 253. GO TO 516 249 00572 254. Y1 = 7.1 247 00572 254. Y1 = 7.1 247 00573 255. FA(1) = FAI 251 00572 254. 700 CONTINUE 253 00502 250.	00551	238.	GO TO 515	234
00535 240. 515 517 237 00555 242. TMI = TMI = TMI = TMI 238 00555 243. TMI = TMI 239 00556 244. VS(1) = VS1 240 00560 245. VD(1) = VDI 241 00561 246. VC(1) = VC1 241 00562 247. IF(X(I=1).6T.0.0)60 TO 513 242 00562 247. IF(X(I=1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00565 250. V(1) = VI 246 00567 251. XI = 0.0 246 00570 252. X(1) = XI 246 00571 253. GO TO 516 249 00571 253. GO TO 516 259 00574 257. 700 CONTINUE 251 00574 256. 700 CONTINUE 251 00602 259. 110 FORMAT(1H1/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 259. 110 FORMAT(1H1/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL//	00552	2 239.		235
00555 242. TMT = TMT = TMT 1000.0*DT1 235 00555 243. TMT = TMT 1000.0*DT1 236 00555 243. TMT = TMT 239 239 00555 243. VOLD = TMT 240 240 00560 245. VOLD = VDT 241 241 00562 247. IF(X(I=1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00565 249. VI = 0.0 245 00566 250. VII = 0.0 245 00571 252. XII = 0.0 247 00572 251. XI = 0.0 247 00571 252. XII) = TAI 249 00572 254. 513 FAI = 880.0 * 1780.0*XII) 250 00573 255. FAII = FAI 249 251 00576 257. 700 CONTINUE 253 253 00576 257. 700 CONTINUE 253 00576 <	00554	241.	SI = S(1) + (1) + SI = S(1) + (1)	230
00556 243, TM(I) = TMI 239 00557 244, VS(I) = VSI 240 00560 245. VD(I) = VDI 241 00561 246. VC(I) = VCI 241 00562 247. IF(X(I-1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00565 249. VI = 0.0 245 00567 251. XI = 0.0 247 00572 252. XII) = VI 247 00571 253. GO TO 516 249 00572 254. 516 249 00571 255. FA(I) = FAI 250 00573 255. FA(I) = FAI 251 00574 257. 700 CONTINUE 252 00575 257. 700 CONTINUE 253 00102 258. 701 TRNITEIS, 1107 255 00102 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00102 260. 113X*46HREUOIL DRINGRAL AXIAL PERIPH:2X*17HCOUNT 2	00555	242.	TMT = TM(1-1) + 1000.0 + DT1	238
700557 244. VS(1) = VSI 240 00560 245. VD(1) = VDI 241 00561 246. VC(1) = Vc1 242 00562 247. IF(X(I-1).6T.0.0)GO TO 513 243 00565 249. VI = 0.0 245 00566 250. V(1) = VI 246 00567 251. XI = 0.0 247 00570 252. X(1) = XI 248 00571 253. GO TO 516 249 00572 254. 515 FAI = 880.0 + 1780.0*X(1) 246 00573 255. FA(1) = FA1 251 00576 257. 700 CONTINUE 252 00576 259. 101 FORMAT(1).FIT:0.5.3.33/GD TO 701 253 00602 259. 110 FORMAT(2.4:105H ADAPTER SPRING CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 260. 113X-45HHECUL DRIVING NORMAL AXIAL PERIPH.2X.71FUCUNT 256 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL TRAVEL 259 258 00502 264. 5 COPE VEL VEL VEL POSITION VEL TRAVEL TRAVEL 259 258 <	00556	5 243.	TM(I) = TMI	239
00560 245. VO(1) = VDI 241 00561 246. VC(1) = VCI 242 00562 247. IF(X(I-1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00566 250. V(1) = VI 245 00567 251. XI = 0.0 247 00567 251. XI = 0.0 247 00570 252. X(1) = XI 248 00571 253. GO TO 516 249 00572 254. 513 FAI = 880.0 + 1780.0*X(I) 248 00573 255. FA(I) = FAI 251 00574 256. 700 CONTINUE 253 00502 259. 110 FORMAT(1H/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(1H/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(1H/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(1H/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 254 00502 256. 110X,rederHECCIL	700557	244.	VS(I) = VS1	Z40-
00551 246. VC1() - VC1 242 00562 247. IF(x(I-1).6T.0.0)60 TO 513 243 00565 249. VI = 0.0 245 00566 250. VI) - VI 245 00567 251. XI = 0.0 247 00570 252. XI = 0.0 247 00571 253. GO TO 516 249 00572 254. 515 FAI = 880.0 + 1780.0*X(I) 247 00572 254. 515 FAI = 880.0 + 1780.0*X(I) 247 00573 255. FAI = 781 250 251 00576 257. 700 CONTINUE 253 00502 259. 110 FORMAT(1H1/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(1H1/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00502 259. 110 FORMAT(1H1/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 259. 110 FORMAT(1H1/38X+46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 263. 43X+114H TIME FORGE FORCE FORCE TRAVEL TRAVEL <td>00560</td> <td>) 245.</td> <td>VD(I) = VDI</td> <td>241</td>	00560) 245.	VD(I) = VDI	241
00562 247. IF (X(I-1).GT.0.0.00 TO 513 243 00565 249. VI = 0.0 245 00565 249. VI = 0.0 245 00566 250. V(I) = VI 246 00567 251. XI = 0.0 247 00570 252. XII) = XI 248 00571 253. GO TO 516 249 00572 254. 513 FAI = 880.0 + 1780.0*XXII) 250 00573 255. FA(I) = FAI 251 00574 258. 701 WRITELD.100 253 00502 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 260. 113X.494HKCOIL DRIVING NORMAL AXIAL PEIPH.22X.17HCOUNT 256 00602 261. 2ER COUNTER/12X.105H ADAPTER SPRING<	00561	246.		242
00565 249. VI = 0.0 245 00565 250. VIJ = VI 246 00567 251. XI = 0.0 247 00570 252. XIJ = XI 247 00571 253. GO TO 516 249 00572 254. 513 FAI = 880.0 + 1780.0 * XII' 250 00573 255. FA(I) = FAI 251 00574 255. JE IF(SX(I).61.3.33) GO TO 701 252 00576 257. 700 CONTINUE 253 00502 259. 110 FORMAT (1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 254 00502 259. 110 FORMAT (1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 256 00502 250. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH?22X.17HCOUNT 256 256 00502 262. 3 LAM UKM RECOIL RECOIL RECOIL SLIDE/ 258 258 00502 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL TRAVEL 259 259 00502 265. 62X.113H MISEC LB LB LB LB IN IN 261 261 00502 265. 7 DEGREE IN/SEC IN/SEC IN IN/SEC IN/1 NOTO 262 <td>00562</td> <td>2 247.</td> <td>IF (X(1-1).61.0.0)60 TO 513</td> <td>243</td>	00562	2 247.	IF (X(1-1).61.0.0)60 TO 513	243
00303 243 243 00566 251. XI = 0.0 247 00571 252. XII) - XI 248 00571 253. GO TO 516 249 00572 254. 513 FAI = 880.0 + 1780.0*X(I) 250 00573 255. FA(I) = FAI 251 00574 255. 31b IF(SX(I).6I.5.53)GO 10 701 252 00576 257. 700 CONTINUE 253 00602 259. 110 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 259. 110 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 260. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH:22X.17HCOUNT 256 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL TRAVEL 259 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL TRAVEL 259 260 00602 265. 62X.113H MILSEC LB LB LB LB	00564	240.		045
00567 251. XI = 0.0 247 00570 252. X(I) - XI 248 00571 253. GO TO 516 249 00572 254. 513 FAI = 880.0 + 1780.0*X(I) 250 00573 255. FA(I) = FAI 251 00574 255. FA(I) = FAI 251 00576 257. 700 CONTINUE 253 00502 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00502 259. 113 FORMAT(2H1/2X105H ADAPTER SPRING CAM CAM CAM CAM CAM CAM 257 256 00502 260. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH.22X.17HCOUNT 256 256 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL TRAVEL 259 258 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL TRAVEL 259 260 00602 265. 62X.113H MILSEC LB LB LB LB LN IN IN 261 261 00602 265. 62X.113H MILSEC LB LB LB LB LB IN IN IN 261 262 00603 267. </td <td>00566</td> <td>250</td> <td></td> <td>245</td>	00566	250		245
00570 252. X(1) - X1 243 00571 253. GO TO 516 249 00572 254. 513 FAI = 880.0 + 1780.0*X(1) 250 00573 255. FA(I) = FAI 251 00574 255. FA(I) = FAI 251 00576 257. 700 CONTINUE 253 00502 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 260. 113X.46HTRCUIL DRIVING NORMAL AXIAL PERIPH.22X.17HCOUNT 256 00602 260. 113X.46HTRCUIL DRIVING NORMAL AXIAL PERIPH.22X.17HCOUNT 256 00602 263. 43X.114H TIME FORGE FORCE TRAVEL 746 00602 265. 62X.113H MILSEC LB LB IN IN 261 00602 265. 62X.113H MILSEC LB LB IN IN 262 00602 265.	0056	7 251.		247
00571 253. GO TO 516 249 00572 255. FAI = 880.0 + 1/80.0*X(I) 250 00573 255. FAI = 880.0 + 1/80.0*X(I) 251 00574 255. FAI = 880.0 + 1/80.0*X(I) 252 00574 255. 31b IF(SX(I).6I.3.33)GO 10 701 252 00576 257. 700 CONTINUE 253 00602 259. 110 FORMAT(1H/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 250. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH.2X:17HCOUNT 256 00602 261. 22R COUNTER/12X.105H ADAPTER SPRING CAM CAM 257 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL 250 00602 265. 62X.113H MILSEC LB LB IN IN 261 0060	00570	252.		248
00572 254. 513 FAI = 880.0 + 1780.0*X(I) 250 00573 255. FA(I) = FAI 251 00574 255. 315 FF(SX(1),61,5.3,53)GO TO 701 252 00576 257. 700 CONTINUE 253 00602 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(21H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 260. 113X,46HRECOIL DRIVING NORMAL AXIAL PERIPH:22X:17HCOUNT 256 00602 263. 43X,114H TIME FORGE FORCE TRAVEL 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL 250 00602 265. 62X,113H MILSEC LB LB IN IN 261 00602 265. 62X,113H MILSEC LB </td <td>• 00571</td> <td>L 253.</td> <td>GO TO 516</td> <td>249</td>	• 00571	L 253.	GO TO 516	249
00573 255. FA(I) = FAI 251 00574 255. 31b IF(SX(I).GI.S.S.3)GO TO 701 252 00576 257. 700 CONTINUE 253 00502 259. 110 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 254 00602 259. 110 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 254 00602 259. 113 FORMAT(IHI/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 254 00602 250. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH.22X.17HCOUNT 256 00602 260. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH.22X.17HCOUNT 256 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL TRAVEL 259 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL TRAVEL 259 260 00602 265. 62X.113H MILSEC LB LB LB IN IN 261 1N 261 00602 265. 62X.113H MILSEC IN/SEC IN	00572	254.	513 FAI = 880.0 + 1780.0*X(I)	250
00574 255. 31b IF(SX(I).61.5.3)60 10 701 252 00576 257. 700 CONTINUE 253 00500 258. 701 WRITE1b.1107 254 00602 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X.46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 256 00602 260. 113X.46HRECOIL DRIVING NORMAL AXIAL PERIPH.22X.17HCOUNT 256 00602 261. 22E 3 LAM UKUM RECOIL RECOIL SLIDE/ 258 00602 263. 43X.114H TIME FORGE FORCE TRAVEL 259 00602 265. 62X.113H MILSEC LB LB IN IN 261 00602 265. 7 DEGREE IN/SEC IN IN/SEC IN/ 262 00602 265. 7 DEGREE IN/SEC IN IN 261 00602 265. 7 DEGREE IN/SEC IN IN 262 <td>00573</td> <td>3 255.</td> <td>FA(I) = FAI</td> <td>251</td>	00573	3 255.	FA(I) = FAI	251
000376 253 701 WRITE1b,1107 254 00602 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00602 260. 113X,46HRECOIL DRIVING NORMAL AXIAL PERIPH,22X;17HCOUNT 256 00602 261. 2ER COUNTER/12X:105H ADAPTER SPRING CAM CAM 257 00602 263. 43X,114H TIME FORCE FORCE TRAVEL 784 00602 265. 43X,114H TIME FORGE FORCE TRAVEL 784 00602 265. 5LOPE VEL VEL POSITION VEL TRAVEL 259 00602 265. 7 DEGREE IN/SEC IN IN 261 00602 265. 7 DEGREE IN/SEC IN IN 262 00602 265. 7 DEGREE IN/SEC IN/SEC IN/I	00574	250.	$\frac{316}{700}$ CONTINUE	252
005000 259. 101 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 259. 110 FORMAT(1H1/38X,46HTABLE 5-13 CAM AND DRUM DYNAMICS DURING RECOIL// 255 00502 250. 113X,46HRECUIL DRIVING NORMAL AXIAL PERIPH:22X:17HCOUNT 256 00502 260. 113X,46HRECUIL DRIVING NORMAL AXIAL PERIPH:22X:17HCOUNT 256 00502 262. 3 LAM URUM RECUIL SECIE SIDE 258 00602 263. 43X,114H TIME FORGE FORCE FORCE TRAVEL 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL 260 00602 265. 62X:113H MILSEC LB LB IN IN 261 00502 265. 7 DEGREE IN/SEC IN/SEC IN/ 262 00503 267. WRITE(6,702)(TM(1),FA(1),FD(1),FD(1),FN(1),SX(1),Y(1),BETAD(1),VD(1), 263 00503 268. 1V(1),X(1),YY(1),YE15(3),F(1),I=15,54) 264 <td></td> <td>258</td> <td></td> <td>203</td>		258		203
00002 250. 113X*46HRECOIL DRIVING NORMAL AXIAL PERIPH/22X*17HC0UNT 256 00602 261. 2ER COUNTER/12X*105H ADAPTER SPRING CAM CAM CAM 257 00602 262. 3 LAM URUM RECOIL RECOIL RECOIL SLIDE SLIDE 258 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL 259 00602 263. 43X.114H TIME FORGE FORCE FORCE TRAVEL 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL 259 00602 265. 62X+113H MILSEC LB LB LB IN IN 261 00602 266. 7 DEGREE IN/SEC IN IN/SEC IN/ 262 00603 267. WRITE(6,702)(TM(1),FA(1),FA(1),FD(1),EN(1),SX(1),Y(1),BETAD(1),YD(1), 263<	00600	259	11) FORMAT(141/38X,46HTABLE 5-13 CAN AND DRUM DYNAMICS DURING RECOIL//	255
00602 261. 2ER COUNTER/12X+105H ADAPTER SPRING CAM CAM 257 00602 262. 3 LAM UKUM RECOIL RECOIL SLIDE SLIDE SLIDE 258 00602 263. 43X,114H TIME FORGE FORCE FORCE TRAVEL 259 00602 264. 5 5 SLOPE VEL VEL POSITION VEL TRAVEL 260 00602 265. 62X,113H MILSEC LB LB LB IN IN 261 00602 266. 7 DEGREE IN/SEC IN IN/SEC IN/ 263 00603 267. WRITE(6,702)(TM(I),FA(I),FD(I),EN(I),SX(I),Y(I),BETAD(I),VD(I), 263 264 00624 269. 7020FORMAT (F10.5)F9.0)F9.1)F11.0,2F10.4,F8.1)F10.1.2F10.4,F10.1. 265 00624 272. IF10.37 265 266 266 00625 271. 900 STOP	00602	260.	113X, 46HRECOIL DRIVING NORMAL AXIAL PERIPH/22X, 17HCOUNT	236
00602 262. 3 LAM UKUM RECOIL RECOIL SLIDE SLIDE/ 258 00602 263. 43x,114H TIME FORGE FORCE FORCE TRAVEL 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL 259 00602 265. 62x,113H MILSEC LB LB LB IN IN 261 00602 265. 62x,113H MILSEC LB LB LB IN IN 261 00602 265. 7 DEGREE IN/SEC IN/SEC IN/SEC IN/ 263 00603 267. WRITE(6,702)(TM(I),FA(I)*FD(I)*FO(I)*FN(I)*SX(I)*Y(I)*SX(I)*Y(I)*SU)*S(I)*S(I)*S(I)*S(I)*S(I)*S(I)*S(I)*S(I	00602	261.	2ER COUNTER/12X/105H ADAPTER SPRING CAM CAM CAM	257
00602 263. 43x,114H TIME FORCE FORCE TRAVEL TRAVEL 259 00602 264. 5 SLOPE VEL VEL POSITION VEL TRAVEL 260 00602 265. 5 SLOPE VEL VEL POSITION VEL TRAVEL 260 00602 265. 62x.113H HILSEC LB LB IN IN 261 00602 265. 7 DEGREE IN/SEC IN IN/SEC IN/1 262 00603 267. WRITE(6,702)(TM(1),FA(1),FD(1),FN(1),SX(1),Y(1),BETAD(1),VD(1), 263 264 00624 269. 7020FORMAT (F10.5+F9.0+F9.1+F11.0+2F10.4+F8.1+F10.1+2F10.4+F10.1) 264 00624 270. IFI0.3 266 266 267 00625 271. 900 STOP 266 268 268 268	00602	202.	3 LAM UKUM RECOIL RECOIL SLIDE SLIDE/	258
00602 264, 5 5 5 260 260 260 260 260 261 261 261 00602 265, 62x,113H MILSEC LB LB LB IN IN 261 261 00602 266, 7 DEGREE IN/SEC IN/SEC IN IN 262 262 262 262 262 262 262 263 00503 267, WRITE(6,702)(TM(1),FA(1),FD(I),EN(I),SX(I),Y(1),BETAD(I),VD(I), 263 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 265 7020F0RMAT (F10.5),F9.0),F9.1),F11.0),2F10.4,F8.1),F10.1),2F10.4,F10.1) 265 266 266 266 266 266 266 266 266 266 266 266 266 266 266 264 264 264 264 264 264 265 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 <td>00602</td> <td>2 263.</td> <td>43X,114H TIME FORGE FORCE FORCE TRAVEL TRAVEL</td> <td>259</td>	00602	2 263.	43X,114H TIME FORGE FORCE FORCE TRAVEL TRAVEL	259
00602 265. 62X,113H MILSEC LB LB LB IN IN 261 00602 266. 7 DEGREE IN/SEC IN IN/SEC IN/ 262 00602 266. 7 DEGREE IN/SEC IN IN/SEC IN/ 262 00603 267. WRITE(6,702)(TM(1),FA(1),FD(1),EN(1),SX(1),Y(1),BETAD(1),VD(1), 263 264 00604 269. 1V(1)+X(1)+VS(1),S(1),I=18,54) 264 264 00624 269. 7020FORMAT (F10.5)+F9.0)+F9.1)+F11.0)+2F10.4)+F8.1)+F10.1)+2F10.4)+F10.1) 265 00624 270. IF10.3) 266 266 00625 271. 900 STOP 267 268 00626 272. END 268 268	00602	2 264.	5 SLOPE VEL VEL POSITION VEL TRAVEL	260
00602 266. / DEGREE IN/SEC IN IN/SEC II/SEC II/SEC II/SEC II/SEC	00602	2 265.	62X,113H MILSEC LB LB LB IN IN	201
00503 201. WRITE to 102/time internet interne	00602	200.	(UEGREE IN/SEC IN/SEC IN IN/SEC IN/) HOTTO(4,20)(TM(T),CO(T),CN(T),CV(T),CT)	263
00624 269. 7020FORMAT (F10.5)F9.0)F9.1)F11.0)2F10.4)F8.1)F10.1)2F10.4)F10.1) 265 00624 270. IFI0.3) 266 00625 271. 900 STOP 267 00626 272. END 268	00603	201.	WT11E (0) (02) (M(1)) FA(1) (D(1)) FA(1) (SA(1)) (SA(1)) (D(1)) (
00624 270. 1F10.3) 266 00625 271. 900 STOP 267 00626 272. END 268	00603	269	702600MAT (F10.5,F9.0,F9.1,F11.0,2F10.4,F8.1,F10.1,2F10.4,F10.1)	265
00625 271. 900 STOP 267 00626 272. END 268	00624	270-	1F10.3)	266
UU626 272. END 268	00625	271.	900 STOP	267
	00626	272	END	268

END OF LISTING. PHASE 1 TIME = 4 SEC. U #UIAGNUSTIC# MESSAGE(S).

D-34

AMCP 706-260

A-11. FLOW CHART FOR CAM AND DRUM DYNAMICS DURING COUNTERRECOIL

A-12. LISTING FOR CAM AND DRUM DYNAMICS DURING COUNTERRECOIL

8888 R 881342 FOS	0000 R 001035 FAX 0000 R 000642 FX	0000 R 000306 FD 0000 R 000670 FY	0000 R 001036 FMV59 0000 I 000756 I	0000 R 001045 FSIN
8888 H 000774	0000 I 000754 KKLUE 0000 R 000744 RO	8888 ¥ 881889 ₩vi	8888 x 883883 ¥	0000 R 001065 SI
0005 R 000000 SI 0000 R 000130 THETA	00000 SORT 0003 R 000436 TM	0000 R 000102 SX 0000 R 001066 TMI	0000 R 000770 SXBAT 0000 R 000410 TMU	0000 R 000745 TG 0000 R 000512 V
8888 R 881548 ¥7	8888 R 881916 VSI	8888 R 801011 VCIK	8888 R 881814 VSe	8888 R 881826 XOI
0000 R 001064 XI	0000 B 001000 XK	0000 R 000026 Y	00C0 R 001001 YK	0000 R 000776 TSO

)

1

00101	1.	ODIMENSION X(22)+Y(22)+S(22)+SX(22)+THETA(22)+BETAD(22)+BSIN(22)+	1
00101	2.	1BCO5(22),FA(22),FD(22),EN(22),FUS(22),TMU(22),FA(22),E(22),V(22),	2
00101	3.	2VC(22)+V5(22)+VD(22)+FX(22)+FY(22)+EBBL(22)	3
00103	4.	READ(5,370)RD+TG+EMR+DIE+CY+CX+DF+ EMSLR+X(2)+S(2)+SX(2)+	4
00103	5	1FA(2)+FD(2)+EN(2)+V(2)+VC(2)+VS(2)+FX(2)+FV(2)+FUS(2)+VD(2)+E(2)+	5
00143	5.	2TM(2),TMU(2),Y(2),BETAD(2),TM(1),X(1) 370 FORMAT (6F12.0)	6 7
00142 00143	, 8 :		89
00144	10.	DO 700 I = $3/22$	10
00147	11.	IF(X(I-1).GT.0.0)60 TO 732	11
00151	12.	731 DXI - 0.0	12
00152	13.	DSX = OSXBAT	13
00153	14.	KKLUE1	14
00154	15.	60 TO 711	15
00155	16.	$732 \text{ DX12} = 2 \cdot 0 * (X(1-2) - X(1-1))$	16
00156	17.	IF((X(I-1)-DXI2).GT.6.0)60 TO 710	17
00160	18.	770 KKLUE = 0	18
00161	19.	DXI = X(I-I)	19
00162	20.	$\frac{DTCR = DXY/V(1-1)}{DTI = OTCR}$	20 21
00164	22.	VSI = VS(1-1)	22
00165	23.	DSI = VSI+OTI	23
00166	24.		24
00167	25.	AB = I	25
00170	26.	SXBAT = 22.0 - AB	26
00171	27.	OSXBAT = (2.0 - SX(I-1) - DSX)/SXBAT	27
001,72	28,	GO TO 711'	28
00173	29.	710 IF(V(I-1).6I.0.0)60 .TO 992	29
00175	30.	IF(Y(I-1),LT.0.0)60 TO 992	30
00177	31.	991 DXI = 0.001	31
00200	32.	60 TO 993	32
00201	33.	992 DELT = (TM(I-1)-TM(I-2))/1000.0	33
00202	34.	DXI1 = V(I-1)*DELT	34
00203	_ 35.	IF(DXI1.6T.0.0)60 To 1002	35
00205	36.	IF(DX11.LT.0.0)60 TO 1001	36
00207	37.	GO TO 991	37
00210	38.	$1001 \text{ DX10} = 0.25 \times (1-1)$	38
00211	39.	IF((1.5+DXI0-ABS(DXI1)).6T.0.0)60 TO 10U2	- 24
00213	40.		40
00214	41.	60 10 443	
00215	42.		42
00216	43.	995 JJ=0	
00217	44.	$USX = U \cdot 10$	
00220	45.	/11 SX(1) = SX(1-1) + OSX	+5

00221	46.	IF(I.LT.22)GO TO 704	
00223	47.	$706 \text{ DSX} = 2 \cdot 0 - 5 \times (21)$	47
00224	48.	SX(1) = 20	48
00225	49.	Y(1) = 1.62	49
00226	50.	BETA = 0.0	50
00227	51.	GO TO 705	51
00230	52.	704 Y50 = SQRT(4.0-(2.0 - SX(1))**2)	52
00231	53.	Y(I) = 0.81 * Y S Q	53
00232	54.	BETA = ATAN(0.81*(2.0-5X(1))/Y50)	54
00233	55.	BETAD(I)=57.296*BETA	55
00234	56.	705 BSIN(I) = SIN(BETA)	56
00235	57.	BCOS(I) = COS(BETA)	57
00236	58.	HE(A(1) = 19.0987*(Y(1)+2.15)	58
00237	<u> </u>	$\frac{RC}{2} = \frac{4 \cdot 0}{100} - \frac{0 \cdot 3439 \cdot (2 \cdot 0 - 5 \times (1)) \cdot (1 \cdot 2) \cdot (1 \cdot 5 \cdot 3 \cdot 2)}{100} = \frac{100}{100} + 10$	59
00240	00.		00
00241			<u> </u>
00242	02.		
00243	63. hu		
00245	65	CT = CYAYK + 0.1 AYK	65
- 00246			
00250	57.	775 DST = DST +DXI	67
00251	08.	//3 RL - U	68
00252	69.	LL = 0	69
00253	10.	<u>VCI - VC(I-1)</u>	70
00254	71.	709 VCIK = VCI	71
00255	72.		72
00256	75.	EN(I)= ABS(CI*VCIK**2 + TG/CG)	73
00257	74.	FUS(1) = CF + EN(1)	*
00260	75.	GSIK = DSI	75
00261-	76.	TMU(I) - CT + IG	76
00262	77.	EMS = 0.5*(FUS(I-1) + FUS(I))*DSIK	77
00263	78.	DTHETA = (Y(I) = YII = I))/RD	<i>It)</i>
00264	79.	EMD = 0.5*(TMU(I-1) + TMU(I))*DTHETA	79
00265	80.		во
00266	81.	$FD(I) = FD(I-1) - 40.0 \times OSIK$	81
00267	82.		82
00270	83.	$\underbrace{E(I)}_{\text{E}(I-1)+\text{E}} = \underbrace{E(I-1)+\text{E}}_{\text{E}(I-1)}$	83A
00271	85		008
00272	85		840
00274	87.		840
00275	88		840
00276	89.	VCT = SQRI(FI/DEN)	85
00210	20.		
00300	91.	VDI = VCI+BSIN(I)	87
00301	92.	IF(KKLUE EG.U) GU TO 711	88
00303	93.	772 DII = DSIK/((VSI + VS(I-1)) + 0.5)	89
00304	94.	DIIM - 1000.0*DTI	90
00305	95.	FX(I) = EN(I) * XK	91
00306	90.	FTTI TENTITYK	92
00307	97.	ENF = 0.5 + (FX(I-1) + FX(I))	93
-00310	98.	LFA = 0.45#FA(I=	94
00311	99.	ENX = ENF-EFA	95
00312	100.	EFAR - FATI-1/0.45	96
00313	101.	ENXR = ENF EFAR	97
00314	102.	IF (V(1=1), G1.0, U)G0 TO 1007	78
00316	103.	$I = \{V I = 1\}$, $T = 0 = 0$, $G = T = 1009$	99

A-12. (Con't.)

A-12. (Con't.)

١

i

00320	104.	1006 IF(X(I-1),GT.0,0)GO TO 999	100
00322	105.	GO TO 1011	101
00323	106.	999 IF (ENX.GT.0.0)60 TO 1010	102
00325	107.	3007 IF(DXIK.GT.0.0)60 TO 1007	103
00327	108.	IF (DXIK.LT.0.0) 60 TO 1012	104
00331	109.	3008 DXIK=0+001	105
00332	110.	GO TO 1007	106
00333	111.	1010 IF(ENXR.GT.0.0)GO TO 1012	107
00335	112.	1011 DXIK = 0.0	108
00336	113.	GO TO 1007	109
00337	114.	1012 DXIK = - ABS(DXIK)	110
00340	115.	GO TO 1009	111
00341	116.	1007 FAX = 801.0*DXIK	112
00342	117.	FMVSG = 801.0*EMR*V(1-1)**2	113
00343	-118.	ENUMAT FAX + ENX	114
00344	119.	GO TO 1013	115
00345	120.	$1009 \text{ FAX} = 3955.6 \pm D \text{XIK}$	-116
00346	121.	FMVSQ = 3955.6+V(I+1)**2*EMR	.117
00347	122.	ENUMA = FAX + ENXR	118
00350	123.		119
00351	124.	EFA = EFAR	120
00352	125.	1013 FASG = ENX**2	121
00353	126.	DENSO = FASO + FMVSO	122
00354	127.	IF (DENSG.GT.0.0) GO TO 344	123
00356	128.		124
00360	129.		
00361	130.	S44 DENOM = SORT(DENSO)	126
00362	131.		12/
00363	137		120
00364	13.		
00365	135.	$901 \ \text{FSTM} = 1 \cdot 0$	130
00367	136.		132
00370	137.		133
00371	138.	356 IE (ESTN. 1 - 1, 0)60 TO 445	134
00373	139.	444 ANGLEE 1.5708	135
00374	140.	60 T0 361	136
00375	141.	445 ANGLEF =ASIN(FSIN)	137
00376	142.	361 1F(ESIN.GT.1.0)G0 TO 1200	138
00400	143.	G0 TO 362	139
00401	144.	1200 DFAX = (ENUMA - DENOM)	140
00402	145.	LL = LL+1	141
00403	146.	IF(LL.EG.100)STOP	142
00405	147.	1201 IF(V(I-1).LT:0.0)GO TO 1207	143
00407	148.	1208 DXI = DXIK - DFAX/801.0	144
00410	149.	GO TO 709	145
00411	150.	1207 DXI = DXIK - DFAX/3955.6	146
00412	151.	GO TO 709	147
00413	152.	362 IF (KL.LT. 10) 60 TO 366	148
00415	153.	1370 IF(ESIN+LT+0+999990)GO TO 366	149
00417	154.	364 ANGLEE = 1.5708	150
00420	155.	DELANG=ANGLEF~1.5708	151
00421	156.	IF (DELANG.GT.0.0)60 TO 1088	152
00425	157.	1F (DELANG, LT. U. U) GO TO 1088	153_
00425	158.	60 10 1220 1000 07077 (Cartific (001 0))+ (pt/(Dr) (001)	154
00426	159.	1088 DICR= (SGRT(EMR/801.0))* ABS(DELANG)	155
00427	160.	IF (ABS (DTI-DICK)/DTCK) + 61 + 0 + 01/60 TO 1087	156
00431	101*	60 10 1220	157

D-40

)

AMCP 706-260

00432	162,	1087 DSX=DTCR+(VS(I-1)+VSI)/2.0	158
00433	163.	DXI_=V(I-1)*DTCR/2.0	159
00434	165.	GUTU (11 366 ANGLEFEASTN/ESTN)	100
00436	166.		162-
00437	167.	IF (DELANG, GT.0.0)60 TO 1017	162
- 00441	-168	IF (DELANG.LT.U.0)60 TO 1017	
00443	169.	1220 DICREDII	165
00444	170.	GO TO 1015	106
00445	171.	1017 IF(V(I-1).LT.0.0)GO TO 1016	167
00447	172.	1014 DTCR = (SQRT(EMR/801.07)* ABS(DELANG)	168
00450	173.	GO TO 1015	169
00451	174.	1016 DTCR= (SQR1(EMR/3955.67))* ABS(DELANG)	170A
06452	175.	1015 DTCRM = 1000.0*DTCR	1708
- 00453	176.	DELIM = DTIM - DTCRM	1/1
00454	177.		172
00455	170		173
00457	180		174
00460	101		
00462	181.		164
00465	183.	541 ALDER = (DIET/DICR)	170
	180		$-\frac{178}{174}$
00467	185.	542 ALDER $=$ (DIFI/DI)	100
	180.	577 IF (-ABS (ALD TF) GT .0. U1) GO TO 587	
00472	187.	GO TO 712	102
00475	188.	$587 \text{ DXI} = \text{DXI} \text{K} + (1 \cdot 0 + \text{A} \cdot 0 \text{F} - 4 \cdot 0)$	105
00474	189.	DSI = DSX + DXI	184
00475	190.	GO TO 709	185
00476	191.	712 JJ=JJ+1	186
00477	192.	1F(JJ-EQ. 0)STOP	187
00501	193.	819 DEBBL = ABS(DXIK)*(-ENUMA)	188
00502	194.	EBBL(1) = EBBL(1=1) + DEBBL	189
00503	195.	$vsq = 2.0 \pm BBL(I) / EMR$	190
00504	196.	VI=SORT (ABS(VSQ))	191
00505	197.	IF(VI.6T.0.10)60 TO 1090	192
00507	198.		175
00510	199.	EBBL(I)=0.0	194
00511	200.		195
00513	2010		196
00515	203.	00 10 022 1202 TE((FBR) (T=1)+DEBR)).(T=0.0)60 TO 823	17/
00510	204		198
00521	205.	1203 IF ((FBBL (I=1)+DFBBL)) GT_0.0 (TO 823	
	-205	60 10 822	<u> </u>
00524	207.	823 RVI = $VI \neq ABS(V(I-1))$	202
.00525	208.	IF(RVI.6T.0.10)60 To 421	203
00527	209.	GO TO 831	204
00530	210 .	821 DDTI - DTI*(1.0 - (ABS(V(I=1))/((ABS(V(I=1)) + VI)*4.0)))	205
06531	211.	DXI = V(I-1) * DDTI	206
00532	612.	0051 VS(I=1)*0DTI	207
00533	213.	GSX = DDSI + DXI	208
00534	214.		209
00535	215.	831 VI = 0.0	210
00536	216.		211
00537	217.	822 IF (EBBL (1) .LT.0.0)60 TO 825	212
00541	218.	824 V(1) = V1	213
00542	219.	GO TO 827	214

A-12. (Con't.)

D-41

A-12. (Con't.)

00543	220.	825 V(I) = -VI	215
00544	221.	827 XI = X(I-1) - DXI	216
00545	222.	IF(XI.LT.0.25)60 TO 829	217
00547	223.	828 X(I) = 0.25	218
00550	224.	v(t) = 0.0	219
_00551	225.	GO TO 515	220
00552	226 o	829 X(I) = XI	221
00553	227.	515 SI = S(I-1) - DSIK	222
00554	228.	S(1) = S(1)	223
00555	229.	$\underline{TMI} = TM(\underline{I}-\underline{I}) + 1000.0 * DTI $	224
00556	230.	TM(I) = TMI	225
00557	231,	VS(I) = VSI	226
00560	232.	VD(I) = VOI	227
00561	200,		228
00562	234.	IF(X(1-1).GT.0.0)GO TO 513	229
_00564	235.	514 FA(1) = 0.0	230
00565	236.	V(1) = 0.0	231
00566	237.		232
00567	298,		233
00570	239.	513 FA(1)=880.0 + 1/80.0 + X(1)	234
00571	240.	516 1F (5X(1).61.1.9999)GO 10 /01	235
00573	241.		230
005/5	242.	701 WRITE (0/170) 770 Econd (1/0/170) Econd (1/0/170) Econd (1/0/170) Econd (1/0/170)	231
00577	243.	IFCOTIZITATION AND AND AND AND AND AND AND AND AND AN	238
00577	245		2.07
00377			240
00577	247	4 CAM DRIM RECOIL RECOIL SLIDE SLIDE/	242
00577	200		0/12
00577	240.	A CODE VEL DOSITIONN VEL TRAVEL TRAVEL	243
00577	297.		244
00577	251.	A DEGREF IN/SEC IN/SEC IN IN/SEC IN IN/SEC IN	245
00200			240
00200	253;	1v(1),x(1),v(1),s(1),1=3,22)	248
00621	254	702 FORMAT(F10.5, F9.0, F9. 1, F10.0, F10.3, 111.4, F8.1, F10.1, F10.4, F10.4,	249
00621	255.	1F10.1/F10.3)	250
00622	256.	900 STOP	251
00623	257.	END	252

	DIND OF -L		U +DIRGNUSIIC+ MESSAGE(S/)	
PHASE	1 TÍME -	3 SEC•		
PHASE	2 TIME =	O SEC.		
PHASE	3 TIME =	4 SEC.		
PHASE	4 TIME =	1 SEC.		
PHASE	5 TIME =	3 SEC.		
PHASE	6 TIME =	3 SEC.		

I

•

TOTAL COMPILATION TIME = 14 SEC

A-14. PROGRAM LISTING FOR DOUBLE BARREL MACHINE GUN

															Anne in company
0000	I 003353	M	0000 I	003357	N	0000	R 003444	RADELV	0000 F	003306	RB	0000	R 003		
0000	R 003343	RCFRAC	<u>0000 R</u>	003307	RCH	0000	<u>r 003313</u>	RD	0000	<u>003330</u>	RDSe	0000	R 003	1.1	
0000	R 003344	RHOSQ	0000 R	003301	RL.	0000	R 003310	RP	0000 F	₹ 003322	RPORR	0000	R 003	511	
0000	R 003312	RT	0000 R	003333	SC	0005	<u>R_00000</u> 0	SIN	0000 F	003403	SINB	0000	R 003	405.	SINC
0003	R 000000	SORT	0000 R	003317	SR	0000 1	R 002373	T	0000 F	003402	TANB	0000	R. 003	401	
0000	R 003325	TG	0000 R	003420	TGN	0000	R_003047	TM	0000 F	003352	TOTIMP	0000	R 003	372	F1
0000	R 003360	T2	0000 R	003447	USEIMP	0000	R 000454	V	0000 F	003440	VC	0000	R 003	433	CCOL
0000	R 003434	VCSQ	0000 R	002145	VD	0000	R 003454	VRATIO	0000 F	002032	VS	0000	R 003	453	VS#70
0000	R 003350	VZERO	0000 R	003442	V1	0000	R 003450	V30	0000 F	003441	V70	0000	R 003	211	74
0000	R 003276	WR	0000 R	001356	X	0000	R 002506	XC	0000 F	003373	XCL	0000	R 003	414	KK .
0000	R 001015	XR	0000 R	002621	XREC	0000	R 003374	XRL	0000 6	003400	YSOLIAR	0000	R 001	243	· ·····
0000	R 003415	YK	0000 R	003162	YPERIE	0000	R 003377	YSQUAR							
00101	1.										λ				
ööiöi	2	1 /E	N(75),	Y(75)+X	(75) #BETA(75) • CO	EFM(75)	CTMU(75)+	VS(75) + VC	(7	16				
00101		2517		DETAD / 7		C(7E) . V	050(75).	CTADEA (75	1.		30				
00101	4	3TM(75).	YPERTE	(75)	5//// <i>13//</i> X	C(15/7A)	RECUISIV	PIAKEAV79	,,,		30				
00101	ч.	0545 50-	IEG(T)								50				
88103	5.	DEAD SO	WD. WA	· 01. 01		a. pun.	OB. DAU	. DD. DO.	. PT. PD.		5Ã				
	<u></u>	READ SUI	MIL GA				RDI RUN								
001125	8.	50 EODHAT(6	E12.01	54							58				
00135	91	SU FURMATIO	F 12+V/								1/69				
00136	, 2.	EMBEWB/G									7B				
00137	10.	EMA-RA/0									7				
00140	11.	RPORRERP.	788-00	-							16				-
00141	12+	CTRIG=EM	UTRPOR	ĸ							-				
00142	13.	CIDEDIZE	0								9				
00143	14.	TG=FGRES	* (RCH-	EMU#RB)	FEMU						10				
00144	15.	CY=RD -	EMU*R8								<u>ା</u>				
00105	16.	CX=EMU+(RT+RD*	RPORR							12				
00146	1/+	RDSQ=RD*	*2								13				
00147	18.	EMURB=EM	U*RB								14				
00150	19 🛯	CMUF=EMU	* (RPOR	R+1.0/R	107						15				
00151	20.	SC =CL+A									18				
00152	21+	DELY=0.0	866025	*8											0.0
00153	22.	DELX=A/2	0.0								18				
00154	23.	ASQUAR=A	¥A								13				
00155	24.	BSQUAR=B	*B								20				
00156	25+	AOVERB≍A	78								21				
00157	26.	BOVERA=B	/Α								22				
00160	27.	AB=A*B									23			_	
00161	28.	RCFRAC=(ASQUAR	- BSQUA	AR)/ASQUAR						24				
00162	27.	RHOSQ=RH	0**2								25		_		
00163	30.	EFMR ≍0	.5*EMR	RHOSQ							26				
00164	31.	EEMA =0	.5*EMA	RHOSQ							21				
00165	32.	EFID=0.5	+DI/(R	DSQ + RH	1059)						28				
00166	33.	XR (1)=D-	0								29				ن
00167	34.	T(1)=0.0	-								30				
00170	35.	EN(30)=0	.0								31				
00171	36.	EN(70)=0	.0								32				
00172	3/.	FGLSU	n								35				
00173	38.	FTAREA(3	0)=0-0								34				
	37.	V0(30)=0	0								35				
00175	40.	YPERIE (3	0)=0_0	l i							36				
00175	41.	BETADING	1=0-0								30				
00177	42.	COFF MIN	n)=0.0	1							38				-
	· - ·										00				

1

CTMU(30)=0.0 30 00200 43. 00201 44. Y(30)=B 40 x(30)=0.0 00202 45. 41 FTAREA(1)=0.0 00203 40. 42 ···· · DO 100 1=2:29 43 00204 00207 48. IF(1.LT.26)G0 T0 1 44 00211 49. DT(1)=0.00075 45 46 21500 50. 60 TO 2 1 DT(1)=0.000125 00213 51. 47 2 FDT(I) =0.5*(FG(I)+FG(I-1))*DT(I) 00214 52. 48 00215 530 FTAREA(I)=FTAKEA(I=1)+FDT(I) 49 50 00216 54. 100 CONTINUE 00220 55. VZER0=FTAREA(29)/EMR 51 EZERO = 0.5*EMR*VZERO**2 00221 52 56. 53 E(1)=0.7*EZER0 00222 3 V(1)=SQRT(2.0*E(1)/EMR) 54 00223 50. EMV(1)=EMR*V(1) 55A 00224 59. TOTIMP = 2.0*FTAREA(29) 00225 60. 558 610 M=1 56 00226 00227 62. 60 K=1 57 00230 63. L=500 58A LL=500 588 00231 64. 00232 65. N = 1 58C VS(1)=V(1)*RH0 59 00233 66. 00 200 1=2:29 00234 67. 60 IF (K.EQ.1) GO TO 4 00237 61 68. 00241 69. DT(1)=T2+0.000125 62 FDTX2=2.0*(FDT(1)+A2) 00242 70. 63 64 00243 к = к-1 71. 00244 72. GO TO 7 65 4 IF(I.LT.26)60 TO 5 66 00245 73. 00247 74. DT(1)=0.00075 67 -60 TO 6 68 00250 75. 5 UT(1)=0.000125 00251 76. 69 00252 77. 6 FDTX2 = 2.0*FUT(1) 70 IF(I.GT.L)GO TO 24 71 00253 78. 00255 79. EMV(I)=EMV(I-1)-FDTX2 72 00256 GO TO 10 73A 80. 24 1F(1.GT.LL)GO TO 7 00257 - 81 -73B EMV(I)=FDTX2 73C 00261 82. -730 00262 83. GO TO 11 00263 84. 7 EMV(I)=EMV(I-1)+FDTX2 73E 85. GO TO 11 74 00264 00265 86. 10 IF(EMV(I).GT.0.0)GO TO 11 75 00267 87. FDTX2 = EMV(I-D) 76 77 88. EMV(I)=0.0 00270 00271 89. A1=FDTX2/2.0 78 DF= ABS(FG(I)-FG(I-1)) 90. 79A 00272 FGI = FG(I) 798 00273 91. 92. DTI=DT(I) 79C 00274 BE= FGI*DTT/DF 93. 00275 80 00276 BESQAR=BE**2 81 94. 95. FOURAC=2.0*DTI*A1/DF 82 00277 00300 96. FG1=FG(I-1) 83 97. DTI=DT(I) 84 00301 IF(I.LE.7)60 TO 8 00302 98. 85 TI=BE-SORT(BESGAR-FOURAC) -00304 -43. 86 00305 100. FGI=FGI-DF*T1/DT1 87 . --

D

\$

A-14. (Con't.)

A-14. (Con't.)

)

00706			
00306	101.		00
00307	102.		09
00311	103.		90
00312	105.		91
00313	105.	FGI	93
00314	107.	DT(I)=I1	94
00315	108.		95
00316	109.	LEI	04.4
00317	110.		968
00320	111.	11 V(I)=EMV(I)/EMR	97A
00321	112.	VS(I)=V(I)*RH0	97B
00322	113.	DXR(I)=0.5*(V(I-1)+V(I))*DT(I)	98
00323	114.	IF(I.NE.(L+1))GO TO 12	99A
00325	115.	XCL=XR(L)*RHO	99B
00326	116	xRL=xR(L)	990
00327	117.	XR(I)=DXR(I)	9 9 D
00330	118.	60 TO 13	100
00331	119.	12 xR(I) = xR(I-1) + DxR(I)	101
00332	120.	13_E(1)=EMR*V(1)**2/2.0	102
00333	121.	200 CONTINUE	103
00335	122.	IF (XCL.LT.SC) GO TO 70	104
00337	123.	DXR(1)=0.0	105A
00340	124.		1058
00341	125.		1050
00342	120.		1050
00343	12/+	$\frac{1}{1} \frac{1}{1} \frac{1}$	1004
00345	120.		1066
00346	130.		1074
00347	131.	YC(1)=YRFC(1)*BH0	1078
00350	132.	00 300 1=2,29	1084
00353	133.	IF(1.LE.L)60 10 72	1088
00355	134.	x RFC(1) = x REC(1-1) + 0 x R(1)	1080
00356	135.	60 TO 73	1080
00357	136.	72 $XREC(I)=XREC(I-1)-DXR(I)$	108E
00360	137.	73 XC(I)=XREC(I)*RH0	108F
00361	138.	T(I) = T(I-1) + OT(I)	108G
00362	139.	TM(I)=1000.0+T(I)	108H
00363	140.	300 CONTINUE	1081
00365	141.	IF(XC(29).LT.SC)GO TO 74	109A
00367	142.	Dxr(30)=0.0	109B
00370	143.	07(30)=0.0	1090
00371	144.	1(30)=1(29)	109D
00372	145.	60 10 75	109E
00373	146.	74 DXR(30) = SR - XR(29)	110A
00374	147.	D(1) =	1108
00375	148.	1(30)=1(29)+01(30)	1100
003/0	160	13 41301-41231	1100
00377	150.	G100/-C127/	11VE
00400	152.		1100
10701	153.		1100
00402	154.	VS(30)=VS(29)	1107
00404	155.		
00405	156	COFFM(30)=CMUF	110K
00406	157.	xc(30)=sc	
00407	158.	XREC (30) = XC (30) / RHO	1118
			0

D-48

)

AMCP 706-260

A-14. (Con't.)

00410	159.	PRINT 105, (TM(I), FG(P'FTAREA(I)'V(I), VS(I), XREC(I), XC(I),	1110
00425	161	105 FORMAT (1H1/12%+47H TABLE 2-11 DOUBLE BARREL MACHINE GUN DYNAMICS	-11 <u>1</u> 2-
00425	162.	1 //14X,11H PROPELLANT,19X,6H AXIAL,13X,6H AXIAL/17X,4H GA	111F
00425	163.	25-14X-33H RECOIL CAM RECOIL CAM/70H ■ TIME FOR	1116
00425	164.	3CE IMPULSE VEL VEL TRAVEL TRAVEL/68H MSEC	111H
00425	105.	4 LB LP-SEC IN/SEC IN/SEC IN IN//	1111
00426	167.	5(13)(9,3)(11,1)(9,2)(2+9,1)(2+10,4))	112
00431	168.	IF(I.LT.41)G0 TO 16	113
00433	169.	IF (I.GT.60) GO TO 16	114
00435	170.		115_
00436	171		116
00441	173.	IF(I.NE.50)GO TO 15	118A-
00443	174.	Y(50)=0.0	1188
00444	175.	X(50)=A	1180
00445	176.	$\sum x = x(50) - x(49) = $	1180
00446	176:	GU IO 18 14 Y(I)=Y(I-1)+DY	119
00450	179.	15 YSGUAR=Y(I) **2	121
00451	180.	x(I)=AOVERB+SGRT(BSQUAR-YSQUAR)	122A
88452	181.	$\vec{v} = \vec{v} \vec{v} (\mathbf{i} - \mathbf{i}) = \mathbf{x} (\mathbf{i})$	1228
00455	102.		123
00455	184.	IF(I.LT.41)G0 TO 17	125
00457	185.	x(I)=x(I-1)-Dx	126
00460	100.		127
00461	187.	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	128
00463	188:	¹⁰ Xkėć(ī)=xc(1)/kho	129B
00464	190.	XSQUAR=X(I) **2	129C
00465	191.	IF(I.EG.50) GO TO 31	1290
00467	192.		130
00471	194.	BETA(I)=ATAN(TANB)	132
00472	195.	GO TO 32	133
00473	196+	31 TANDEN=0.0	134A
00474	198.		1340
00476	199.	CosB=0.0	1340
00477	200.	GO TO 35	135A
00500	381.	32 SINHESIN (BETA(1))	135B
00501	202.		1350
00502	203.	COSSG=COSB≠≠2 COSSG=COSB≠≠2	135E
00504	205.	COEFMR=EFMR+COSSO	135F
00505	200.	COEFMA=EFMA*SINSO	1356
00506	207.	UUEFIU-EFIUFSINSU	TOOH
00507	209:	F(LT.41760 TO 33	137A
00512	210.	IF(1.6T.60)GO TO 33	1378
00514	211.	GO TO 34	1370
00515	212.	33 Y(1)=BOVERA+TANDEN DY=ARS(Y(1+1)=Y(1))	137
00517	214.	34 DTHETA=DY/RD	139
00520	215.	IF(1.61.50)60 TO 19	140
00522	216.	XK=SINB+CTRIG*COSB	141

A-14. (Con't.)

00523	217.	YK = COSB - CTRIG*SINB	142
00524	218.	60 TO 20	143
00525	219.	19 XK=SINB-CTRIG*COSB	144
00526	220.	YK=COSB+CTRIG*SINB	145
00527	221.	20 DENOMNEABS(CY*YK-CX*XK)	146
00530	222+	COEFVC=CID+COSB/(RC+DENOMN)	147
00531	223.	TGN=TG/DENOMN	148
00532	224.	COEFM(I)=CMUF+YK	149
00533	225.	CTMU(I)=(CX*XK + EMURB*Y K)	150
00534-	226.	EMUS1=COEFM(I-1)*EN(I-1)*DX/2.0	151
00535	227.	EMUD1=CTMU(I-1)+EN(I-1)+DTHETA/2+0	152
00536	228+	COEFDX=COEFM(I)+DX/2.0	153
00537	229.	COEFDT=CTMU(I)*DTHETA/2.0	154
00540	230.	EMURIGE (COEFDX+COEFDI) * IGN	155
00541	231.	EMUDTG=TG*DTHETA	156
00542	232+		157
00543	233.	COEFTG=COEFUT*COEFVC	158
00544	234.	HALFFE=EMUS1+EMUD1+EMURTG+EMUDTG	159
00545	235.		160
00546	236.	VCCOEF = COEF MR+COEF MA+COEF ID+COEFF X+COEF IG	161
00547	231.		102
00550	238.	EMUR2=COEFFX+VCSQ	103
00551	239.	EMUD2=COEFIQ*VCSQ	- 164
00552	240+	ESUBMUTHALFFE + EMUR2 + EMUD2	100
00553	241.		167
00554	242+		- EAT-
00555	243+		169
00556	244.	VUA D-VCASIND	176
00557	243+		171
00560	240.		172
00562	248.	(FLAT(1) = FLAT(1) + FLAT(1)	173
00563	249.	$D_1(1) = 2 \cdot 0 + D_2(1) + V_2(1)$	- In -
00564	250.		175
00565	251.	$T_{M}(T) = 1000.0 + T(T)$	176A
00566	252.		1768
00570	253	v70=v(70)	1760-
00571	254.	v1=v(1)	176D
00572	255.	DELV=V1-V70	176E
00573	256.	RADELV-VI	176F
00574	257.	IF (ABS (RADELV).GT.0.02)G0 TO 36	176G
00576	258+	36 PRINT 110.(I,TM(I),EN(I),BETAD(I),VD(I),VS(I),V(I),TPERIF(I)	177
00576	259.	1,XC(1),XREC(1),I=31,(0)	178
00615	260.	110 FORMAT (1H1/20X, 53H TABLE 2-11 CONT, DOUBLE BARREL MACHINE GUN DIN	_ 179
00615	261	1AMICS //18X.7H NORMAL, 11X, 15H PERIPH AXIAL, 12X, 1/H PERIPH	101
00615	202.	2 AXIAL/194//IH CAM CAY URUM CAM RECOIL DRUM	- 101
00615	203+	3 CAM RECOLLIGHT I TIME FORCE SLOPE VEL	182
00615	204.	4 VEL VEL IRAVEL IRAVEL IRAVEL/00H MSEC	103
00615	265.	5 Lo DEG INVEC INVEC INVEC IN IN IN	104
00615	- 260+	D INV/VID/LII.4/LIU.1/LA.5/01/4/LID.1/LA.5/01/4//	100-0
00617	268.		188
1000	-760		189
00623	270.		190
00524	271	$21 \text{ V1} = (\text{V1}+\text{V70})/2 \cdot 0$	191
00625	272	ERATIO = E(70)/E(30)	192
00626	273	22 TE (N-6T-20160 TO 23	-193-
00630	274.	EMOM=V1+EMR	194

D-50

i.

A-14. (Con't.)

	00631	275.	USEIMP=TOTIMP-EMOM	195
	00632	276.		196
	00633	277.	E30=EMR*V30**2/2.0	197A
	00634	278.	E70=ERAT10*E30	197B
-	00635	279.	VS070=2.0*E70/EMR	1970
	00636	280.	V70=SQR1(VSQ70)	197D
	00637	281.	$VRATIO=A\Theta S(1+0-V1/V70)$	197E
	00640	282.	IF(VRATIO.LT.0.02)GO TO 23	197F
	00642	283.	v1=(v1+v70)/2+0	1976
	00643	284	N=1+1	198
•	00644	285.	60 TO 22	199
	00645	286.	$23 v(1) = v_1$	200
-	00646	287.	EMV(1)=EMR*V(1)	201
	00647	288.	E(1)=EMR*V(1)**2/2.0	202
-	00650	289.	GO TO 60	203
	00651	290.	30 PRINT 80+V(1)+T(70)+RADELV+M+N	204
	00660	291.	80 FORMAT(////3E18.8.215)	205
_	00661	29L•	99 STOP	206
-	00b62	293.	END	207
-	PHASE PHASE PHASE PHASE	END OF L 1 TIME = 2 TIME = 3 TIME = 4 TIME =	_ NST NG. 0 +DIAGNOSTIC* MESSAGE(5), 3 SEC. 1 SEC. 5 SEC. 0 SEC. 	
	PHASE	6 TIME =	4 SEC.	
			5 8 8 9 98 98 • 8 16 F	

TOTAL COMPLIATION TIME = 17 SEC

A−5

A-15. FLOW CHART FOR MULTIBARREL POWER

A-15. (Con't.)

A-16. PROGRAM LISTING FOR MULTIBARREL POWER

DIMENSION TIMEM(180)/ALPMA(180)/OMEGA(180)/THETA(180)/DEG(6)/ 3 1 DIMENSION TIMEN(160)/ALPMA(180)/NC(6)/N			INPUT CARD COUNT
1BTCDWT1BD0 / TORK (1ED) / TORK (1ED) / YCE) / A (51 / YCE) / A (DIMENSION TIMEM(180) AL PHA(180) AMEGA(180) THETA(180) TH	FTAD(180) . 3	1
2FALGLIMPACIGITENCIPACIONECLIPACE 5 1 0TREADUST/SDAFK.DEX.ARK.DEX.RK.C1/T2C.T37ANGEEL; 6 7 1 ANGLE2, ANGLE3, ANGLE3, ANGLE3, EL.R.RC.WB.WST, 7 5 2 XLF.X2F.TANGF.TANGE.Y.LEL.R.RC.WB.WST, 7 6 3 XLF.X2F.TANGF.TANGE.Y.LEL.R.RC.WB.WST, 7 6 7 DEUTITITELTENDANIE EMUR.EMUS.ENUT.FY.BFI.BEI 11 9 7 TENE 13 7 7 DEUTITITELTENDANIE EMUR.EMUS.ENUT.FY.BFI.BEI 11 9 7 TENE 13 7 7 TERESTOCONCELT 15A 12 7 TERESTOCONCELT <	1BTSUM(180) TORKI(180) TORK(180) Y(6) . V(6) A(6) Y(180)	1 BDFG(6)4	
THERDIGS/TSJAFA/DPK/AEK+OEK+AKGLEPAAGUEPA	254(6).0F(6).0CA(6).5E(6).5(6).5(6).70F(6)(6).80(6)1400		II 3
1 ANGLE2: ANGLE3: ANGLE4: ANGLE5: EL. R. RC. WG. WGT. 7 5 2WSEC: COFFSI: COFFSI	TREADIS. 75) AFK ACK AFK AFK AFK AFK AK AT A A A A A A A A A A A A A A A A		
Particle Part of the set o	A MALEY AND A MALEY AND AN AND AN AND AN AND AN AND AND AND	NCT . 7	5
3 1.1 1.0 7 Y 0.11 7 7 TIME 12 9 17 5 7 18 11 12 9 19 11 12 9 11 13 10 1 14 11 RCAI 15A 12 RCAI 15B 13 RCAI 15B 13 RCAI 15C 14 RCAI 15D 15D AUGE 2.0 15D AUGE 2.0 15D AUGE 15G 15D AUGE 15G 15D AUGE 2.0 15G AUGE 15G 15D AUGE 15G 15D AUGE 15G 15D AUGE 15G 23 AUADE 2.0 15G AUGE 15G 23 AUADE 2.0 15G AUGE 15G 23 A	ANDLEST ANDLEST ANDLEST ANDLEST ELT RT RUT WHI	WS17 /	
DET TARE LINED. I ANDEL ILE ILEZ ALE SET ACE SET ILE ILEZ ALE ALE ALE SET ILE ILEZ ADDANI. FUNCT. END S. EMDT. FY, BF1. BE1 ID ID <thid< th=""> ID ID ID<</thid<>	3 VIE VS- TANDER TANDER VIE VIE VIE AND THE VIE	10	7
75 DORMAT UDC1 11 0 TTWE U.0 12 14 11 RCAT RCAT 15A 12 RCAT RCAT 15B 13 RCAT RCAT 15G 14 RCAT RCAT 15G 14 RCAT RCAT 15D 15 RCAT RCAT 15D 15 VLF ONE GAMARCTF 15G 17 ALAAT 2.0 ARCAT 15L 20 ALAAT 2.0 ARCAT 15L 20 ALAAT RCALPHAO 15L 22 ALAAT RCALPHAO 15N 23 ALAAT RCAT 15N 23 ALAAT RCAT 15N 22 ALAAT RCAT 15N 22 ALAAT RCAT 15N 23 ALAAT RCAT 15N 24 RCAT RCAT 15N 24 RCAT RCAT <	AIF AZET TANDET TANDET TANDET TEL ZET AIET AZET OF		
13 13 13 13 14 11 RCAI = Ke*ANAGLET 15A 12 RCTF = Ke*TANABE 15D 15A RCTF = Ke*TANABE 15D 15 RSD = Ke*TANABE 15D 15 VJF = OMEGAM*RCTF 15D 15 VJF = OMEGAM*RCTE 15G 14 RAJA = X.JAS/AFK 15I 19 AJAJ = X.JAS/AFK 15I 19 AJAF = AJAS/AFK 15L 20 AJAF = AJAS/AFK 15L 20 AJAF = AJAS/AFK 15L 21 AJAF = AJAS/AFK 15L 22 AJAF = COMEGAM*RCTE 15N 23 AJAF = COMEGAM*RCTE 15N 24 XKIF = NCTF*(ANGLE4) 15N	75 FORMAT 1909 01	1 DEL 12	å
112 12 14 12 RCS1 15A 11 RCS1 15B 12 RCTF = RC*ANDP 15C 14 RCTF = RC*ANDP 15C 14 RCTE = RC*ANDP 15D 15 VLF = OMEGAM*RCTF 15F 16 VLF = OMEGAM*RCTE 15H 18 ALAF = ALASJARK 15L 19 ALAF = ALASJARK 15L 22 ALAF = ALASJARK 15L 22 ALAP = RCT*ANDPAN 15N 24 XKIE = RCT*(ANGLES-ANGLEN) 15N 24 XKIE = RCT*(ANGLES-ANGLEN) 150 25 XKIE = RCT*(ANGLES-ANGLEN) 150 25 XKIE = RCT*(ANGLES-ANGLEN) 150 26 XKIE = RCT*(ANGLES-ANGLEN) 150 27 XKIE = RCT*(ANGLES-ANGLEN) 15S 29 XKIE = RCT*(A			
NGX PRCANCLET 14 RCTF INCATION 158 13 RCTF INCATION 150 15 RSD ISD 15 15 VJP INCATION 156 17 AAA3 Z.DARCT+ZEONEGARK+2 156 17 AAA3 Z.DARCT+ZEONEGARK+2 151 19 ADAF Z.DARCT+ZEONEGARK+2 151 19 ADAF Z.DARCT+ZEONEGARK+2 151 19 ADAF Z.DARCT+ZEONEGARK+2 151 19 ADAF TAJA3/AFK 151 19 ADAF TAJA3/AFK 151 20 ADAF TAJA3/AFK 151 21 ADAF TAJA3/AFK 151 23 AJAF TRCTFALPHAD 150 22 ALAN TRCTFALPHAD 150 23 XXIF RCTFALPHAD 150 25 XXIF RCTFALPHAD 150 27 XXSE XRZF		1.5	11
NCTF = NC+TAILE* 150 15 NCTF = NC+TAILE* 150 16 NCTF = NC+TAILE* 150 17 AUAF = AUA3/AFK 151 18 AUAF = AUA3/AFK 151 20 AUAF = AUA3/AFK 151 21 AUAF = NCTF+ALPHAD 158 22 AUAF = NCTF+ALPHAD 158 23 XILF = NCTF+ALPHAD 158 24 XKIF = NCTF+ALPHAD 159 26 XKIF = NCTF+ALPHAD 158 27 XKEF = NCTF+ALPHAD 158 27 XKEF = NCTF+ALPHAD 158 28 XKIF = NCTF+ALPHAD 158 27 XKEF = NCTF+ALPHAD 158 29 </td <td></td> <td>15.</td> <td></td>		15.	
RCT = RC + RCT = RCT = RC + RCT =	DATE - HOTANDEL	150	13
NSD = P(1+2) 1-50 15 NSD = P(1+2) 15 16 VLF = -OWEGANRCTF 15 16 VLF = -OWEGANRCTE 15 17 ALAF = Z.D SP(2+YZ)OWEGAN*2 151 18 ALAF = Z.D SP(2+YZ)OWEGAN*2 151 20 ALAF = Z.D SP(2+YZ)OWEGAN*2 151 21 ALAF = Z.D SP(2+YZ)OWEGAN*2 158 22 ALAF = PRCTE*ALPHAD 158 22 ALAF = RCTE*ALPHAD 158 24 XKIF = RCTE*ALPHAD 158 26 XKIF = RCTE*ALPHAD 158 27 XKZF = RCTE*ALPHAD 158 28 XKSF = XKZE + RCTE*ANGLEA 158 29 XKSF = XKZE + RCTE*ANGLEA 158 29 XKSF = XKZE + RCTE*ANGLEA 159 30 YF2 = 2-0SYZE*RC 159 32 AYF2 = YF2*ALPHAD 158 33 AYF2 = YF2*ALPHAD 158 33 AJSE = AJJS/AFK <	RCTF = RCTTANDE	150	100 I
UD DMECAMARCT DD DD DD VUE DMECAMARCTE 15G 17 AUA3 Z.OMRCAMARCTE 15G 17 AUAF AUAF 15G 17 AUAF AUAF 15G 17 AUAF AUAF 15L 19 AUAF AUASTAFK 15L 20 AUAE TAUASTAFK 15L 20 AUAF TRCTPALPHAD 15L 22 AUAF TRCTPALPHAD 15M 23 AUAF TRCTPALPHAD 15M 23 XKIF RCTFALPHAD 15M 25 XKIF RCTFALPHAD 15D 25 XKIF RCTFALPHAD 15S 26 XKIF RCTFALPHAD 15S 26 XKIF RCTFALPHAD 15S 27 XKIF RCTFALPHAD 15S 26 XKIF RCTFALPHAD 15S 27 XKIF RCTFALPHAD	PCO = P(++2)	150	15
UDL UDL <thudl< th=""> <thudl< th=""> <thudl< th=""></thudl<></thudl<></thudl<>	VIE = AMECAMADOTE	150	
AUAS DS 11 AUAF 2.10476****0MEGAM**2 15H 15 AJAF AJAS/AFK 15J 19 AJAF AJAS/AFK 15J 19 AJAF AJAS/AFK 15J 20 AJAF AJAS/AFK 15J 21 AJAF AJAS/AFK 15L 22 AJAF AJAS/AFK 15L 22 AJAF AJAS/AFK 15L 22 AJAF TRCTE*ALPHAD 15M 24 AJAF TRCTE*ALAPHAD 15N 24 XKIF TRCTE*ALAPHAD 15N 24 XKIF TRCTE*ALAPHAD 15N 24 XKIF TRCTE*ALAPLES-ANGLE#1 15S 25 XKSE TRCTE*ANGLES-ANGLE#1 15N 27 XKSE TRCTE*ANGLE 15S 29 XKSE TRCTE*ANGLE#1 15S 24 XKSE TRCTE*ANGLE#1 15S 24 XKSE TRCTE*ANGLE#1 </td <td>V.IF = -OMEGAM+DOTE</td> <td>150</td> <td>17</td>	V.IF = -OMEGAM+DOTE	150	17
AJAF AJAF 157 15 AJAF AJAS/JEK 151 29 AJAF AJAF 151 20 AJAF AJAF 154 21 AJAF AJAF 15K 21 AJAF RCTF+ALPHAD 15K 23 AJAF RCTF+ALPHAD 15M 23 AJAF RCTF+ALPHAD 150 25 XK1F RCTF+ALPHAD 150 25 XK1F RCTF+ALPHAD 150 25 XK1F RCTF+ALPHAD 150 25 XK1F RCTF+ANGLE5-ANGLE4) 150 25 XK2F RCTF+ANGLE5-ANGLE4) 158 29 XK3F XK2F RCTF+ANGLE2 155 XK3F XK3F 33 35 YF2F 2.00+Y2F+RC	$A_{1}A_{3} = 2 \cdot 0 \pm 80 \times 2 \pm 0 \text{MF} GAM \pm 2$	150	<u> </u>
AUDF = "AUA3/DEK 15J 20 AUAE = "AUA3/DEK 15K 21 AUAE = "AUA3/DEK 15K 21 AUAE = "AUA3/DEK 15L 22 AUAP = KCTF+ALPHAD 15M 23 AUAT = "RCTF+ALPHAD 15M 24 XKIF = KCTF+(ANGLE5-ANGLE4) 15N 24 XKIF = KCTF+(2, 0*ANGLE5-ANGLE4) 15G 25 XKXF = KCTF+(2, 0*ANGLE5-ANGLE4) 15G 27 KKZF = KCTF+(2, 0*ANGLE5-ANGLE4) 15G 30 YF2 = 2:0*Y2F*RC 15U 31 YF2 = 2:0*Y2F*RC 15U 31 AJJF = XJJYAFK 15Z 35 AJJF = AJJYAF		151	19
AURE = AJA3/AEK 15K 21 AUDE = AJA3/AEK 15K 21 AUDE = AJA3/DEK 15M 23 AJAR = RCTF+ALPHAD 15M 23 AJAR = RCTF+ALPHAD 15M 24 XKJF = RCTF+(ALPHAD) 15G 24 XKJF = RCTF+(ANGLE5-ANGLE4) 15G 25 XKJF = RCTF+(ANGLE5-ANGLE4) 15G 27 XKZF = RCTF+(2,0*ANGLE5-ANGLE4) 15G 27 XKJF = KCT+(2,0*ANGLE5-ANGLE4) 15G 27 XKJF = XK2E + RCTF+ANGLE2 15S 29 XKJF = XK2E + RCTF+ANGLE2 15S 29 XKJF = Z00*12F*RC 15U 31 YF2 = 200*12F*RC 15V 32 AYF2 = TF2*ALPHAD 15V 32 AYF2 = TF2*ALPHAD 15V 32 AJJ = 3.0*RC**2*ALPHAO 15X 34 AJ3 = 3.0*RC**2*ALPHAO**2 15X 34 AJ3 = AJJJAEK 15A 37 DJJZ = AYF2/DFK 15A 37 DJJZ = AYF2/DFK 15A 37 DJJZ = AYF2/DFK 15AF 42		151 - 151	
AURE AURY AURY <th< td=""><td></td><td>156</td><td>21</td></th<>		156	21
AJAP 15M 23 AJAN TRCT+ALPHA0 15M 24 XKLF RCT+ALPHAO 15N 24 XKLF RCT+ALPHAO 15N 24 XKLF RCT+ALNOLES-ANGLE4) 15D 25 XKLF RCTF+(INOLES-ANGLE4) 15D 26 XK2E RCTF+(INOLES-ANGLE4) 15A 27 XK2E RCTF+(INOLES-ANGLE4) 15S 29 XK3F RCTF+ALDANGLE2 15S 29 YK3E 2.0 & YZE + RCTF+ANGLE2 15V 31 YE2 2.0 & YZE + RCTF+ANGLE2 15V 31 YE2 2.0 & YZE + RCTF 15U 31 YE2 2.0 & YZE + RCTF+ANGLE2 15V 32 AYF2 YF2ALPHAO 15W 33 AYF2 YF2ALPHAO 15X 34 AJ3 3.0 & ARC+*2 + ALPHAO**2 15X 34 AJ3 3.0 & ARC+*2 + ALPHAO**2 15X 35 AJ3 3.0 & ARC+*2 + ALPHAO**2 15X 34 AJ3 3.0 & ARC+*2 + ALPHAO**2 15X 34 AJ3 3.0 & ALF 15X 35 AJ3 AJAF YF2 + ALPHAO 15X JUJ2 AYF2 + Z	AJDE = AJA3ZDEK	15i 10 · · · · ·	
AJAN = "RCTE*ALPHA0 15N 24 XK1F = RCTF*(ANGLE5-ANGLE4) 150 25 XK1F = RCTF*(2.0*ANGLE5-ANGLE4) 150 26 XK2F = RCTF*(2.0*ANGLE5-ANGLE4) 150 27 XK2F = RCTF*(2.0*ANGLE5-ANGLE4) 150 27 XK3F = XK2F + RCTF*ANGLE2-ANGLE4) 158 28 XK3F = XK2F + RCTF*ANGLE2 155 29 YK3F = XK2F + RCTF*ANGLE2 151 30 YF2 = 2+0*Y2F*RC 150 31 YF2 = 2+0*Y2F*RC 155 32 AYF2 = YF2*ALPHA0 155X 34 AJ3 = 3+0*RC**Z*ALPHA0 155X 34 AJ3 = 3+0*RC**Z*ALPHA0 15X 34 AJ3F = AJ3/AFK 15A 37 DJ2F = AYF2/DFK 15AB 37 DJ3E = AJ3/AFK 15AC 39 DJ3E = AJ3/DFK 15AF 42 DJ3E = AJ3/DFK 15AF 42 AJT3 = 10.0*RS0*AK*C1/3.0 15AF 42 AJT4 = 2.0*RS0*(AK*C3 + 3.0*C1*C2) 15AI 43 AJT1 = 2.0*RS0*(AK*C3 + 3.0*C1*C2) 15AI 44 AJT1 = 2.0*RS0*(AK*C3 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RS0*(AK*C3 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RS0*(AK*C3 + 3.0*C1*C2) <	A.IAP = RCTE to PHAD	154	23
XK1F = MCTF*(ANGLE5-ANGLE4) 150 25 XK1E = RCTF*(ANGLE5-ANGLE4) 15P 26 XK2E = RCTF*(2.0*ANGLE5-ANGLE4) 15G 27 XK3F = XK2F + RCTF*(3.0*ANGLE5-ANGLE4) 15G 28 XK3F = XK2F + RCTF*(ANGLE2 15S 29 XK3F = XK2F + RCTF*ANGLE2 15T 30 YF2 = 2·0*Y2F*RC 15U 31 YF2 = 2·0*Y2F*RC 15W 32 AYF2 = YF2*ALPHAD 15W 33 AYF2 = YF2*ALPHAD 15W 33 AYF2 = YF2*ALPHAD 15Y 35 AUJS = AUJA/AFK 15Z 35 AUJS = AUJA/AFK 15A 37 DU2F = AYF2/DFK 15A 37 DU2F = AYF2/DFK 15AC 39 DU3F = AUJA/DFK 15AF 42 AUT = 5.0*RS0*AK**2/6.0 15AF 41 AUT = 5.0*RS0*AK**2/6.0 15AF 42 AUT = 10.0*RS0*AK**2/6.0 15AF 42 AUT = 5.0*RS0*AK**2/6.0 15AF 42 AUT = 10.0*RS0*AK**2/6.0 15AF 42 AUT = 10.0*RS0*AK**2/6.0 15AF 42 AUT = 2.0*RS0*AK**2/6.0 15AF 42 AUT = 0.0*RS0*AK**2/6.0 15AF 43 AUT = 10.0*R	AJAN = TROTE + AL PHAD	15N	
XK1E = RCTE*(ANGLES=ANGLE4) 15p 26 XK2F = KCTF*(2,0*ANGLES=ANGLE4) 15g 27 XK3F = XK2F + RCTE*ANGLES=ANGLE4) 15g 28 XK3F = XK2F + RCTE*ANGLE2 15S 29 XK3F = XK2F + RCTE*ANGLE2 15V 30 YF2 = 2.0%Y2F*RC 15U 31 YF2 = 2.0%Y2F*RC 15V 32 AYF2 = YF2*ALPHAD 15W 33 AJ3 = 3.0*RC*Z*ALPHAO*2 15Y 35 AJ3F = XJ3/AFK 15Z 36 AJ3F = AJ3/AFK 15Z 36 AJ3F = AJ3/AFK 15A 37 DJ2F = AYF2/DFK 15BB 38 DJ2F = AYF2/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AF 42 AJT = 10.0*RS0*AK*(1/3.0 15AF 42 AJT = 2.0*RS0*AK*(1/3.0 15AF 42 AJT = 2.0*RS0*(AK*C3 + 3.0*C1*2) 15AI	XK1F = KCTF* (ANGLES-ANGLE4)	150	25
XX2F HCTF*(2.0*ANGLE5-ANGLE4) 150 27 XX2E HCTF*(2.0*ANGLE5-ANGLE4) 15R 28 XX3F XX3F HCTF*ANGLE2 15S 29 XX3E XX3F HCTF*ANGLE2 15T 30 YE2 2.0*Y2F*RC 15U 31 YE2 2.0*Y2F*RC 15V 32 AYF2 YF2ALPHA0 15V 32 AYF2 YF2ALPHA0 15V 33 AJ3 3.0*RC**2*ALPHA0*2 15V 33 AJ3 3.0*RC**2*ALPHA0*2 15V 33 AJ3 3.0*RC**2*ALPHA0*2 15X 34 AJ3 3.0*RC**2*ALPHA0*2 15X 34 AJ3 3.0*RC**2*ALPHA0*2 15X 35 AJ3 AJ3/AFK 15A 37 DJ2F AYF2/DFK 15AA 37 DJ3F AJ3/DFK 15AC 39 DJ3F AJ3/DFK 15AC 41 AJT3 10.0*RSG*AK*2/5.0 15AC 41 AJT4 T 5.0*RSG*AK*2/5.0 15AF 42 AJT3 10.0*RSG*AK*2/5.0 15AI 43 AJT3 10.0*RSG*AK*2/5.0 15AI 44 AJT1	XK1E = RCTE * (ANGLE5-ANGLE4)	15P	26
XK2E = RCTE*(2.0*ANGLE5-ANGLE4) 157 28 XK3F = XK2F + RCTF*ANGLE2 155 29 XK3F = XK2F + RCTF*ANGLE2 157 30 YF2 = 2+0*Y2F*RC 150 31 YF2 = 2+0*Y2F*RC 15V 32 AYF2 = YF2*ALPHA0 15W 33 AVE2 = YF2*ALPHA0 15W 33 AJS = 3-0*RC**2*ALPHA0**2 15Y 35 AJJF = AJJYAFK 15Z 36 AJJF = AJJYAFK 15Z 36 AJJE = AJJYAFK 15A 37 AJJE = AJJYAFK 15BB 38 DJZE = AYF2ZOFK 15AC 39 DJJE = AJJOFK 15AF 40 DJJE = AJJOFK 15AF 40 DJJE = AJJOFK 15AF 40 DJJE = AJJOFK 15AF 42 AJT1 = 5.0*RS@*AK*C1/3.0 15AF 42 AJT1 = 2.0*RS@*(AK*C2 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RS@*(AK*C2 + 3.0*C1*C2) 15AI 45 AJT1 = 2.0*RS@*(AK*C2 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RS@*(AK*C2 + 3.0*C1*C2) 15AL 48	XK2F = KCTF+(2.0+ANGLE5+ANGLE4)	159	27
xk3r = xk2r + RCTF + ANGLE2 155 29 xk3r = xk2r + RCTF + ANGLE2 157 30 YF2 = 2.0 #Y2F + RC 150 31 YF2 = 2.0 #Y2F + RC 157 32 AYF2 = YF2F + ALPHA0 158 33 AYE2 = YF2F + ALPHA0 157 34 AJ3 = 3.0 #RC** 2*ALPHA0 157 35 AJ3 = AJ3/AFK 152 36 AJ3F = AJ3/AFK 15AA 37 DJ2E = AYE2/DFK 15AB 36 DJ2E = AYE2/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 40 AJT2 = SUB*SO+K(1/3.0 15AF 41 AJT2 = SUB*SO+K(4.0*AK*C2 + 3.0*C1**2) 15AF 42 AJT2 = KSG+(4.0*AK*C2 + 3.0*C1**2) 15AI 45 AJT2 = SUB*SO+(1/3.0 15A 45	XK2E = RCTE*(2.0*ANGLE5-ANGLE4)	15R	28
Xk3E = Xk2E + RCTE+ANGLE2 15T 30 Yr2 = 2+0*Y2F*RC 15U 31 AYF2 = YF2*ALPHA0 15V 32 AYF2 = YF2*ALPHA0 15W 33 AYE2 = YF2*ALPHA0 15W 33 AJS = 3+0*RC**2*ALPHA0**2 15Y 35 AJS = AJJARK 15Z 36 DJ2F = AYF2/DFK 15A 37 DJ2F = AYF2/DFK 15A 37 DJ2F = AYF2/DFK 15A 37 DJ2F = AJJACK 15A 37 DJ2F = AJJOFK 15A 37 DJ2F = AJJOFK 15A 37 DJ3F = AJJOFK 15A 40 DJ3F = AJJOFK 15A 40 DJ3F = AJJOFK 15A 40 DJ3F = AJJOFK 15AF 42 AJT2 = NSQ*(A:+276.0 15AF 42 AJT3 = 10.0*RSQ*AK*C1/3.0 15AF 43 AJT2 = RSQ*(A:+2*3.0*C1**2) 15AI 45 AJT0 = 2.0*RSQ*(A:+2 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RSQ*(A:+2 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RSQ*(A:+2	XK3F = XK2F + RCTF + ANGLE2	155	29
YF2 = 2 + 0 * Y2F * RC 15U 31 YF2 = 2 + 0 * Y2E * RC 15V 32 AYF2 = YF2 * ALPHAD 15W 33 AJ3 = 3 + 0 * 72 * F2 + ALPHAD 15X 34 AJ3 = 3 + 0 * 72 * F2 + ALPHAD 15X 34 AJ3 = 3 + 0 * 72 * F2 + ALPHAD 15X 35 AJ3 = 3 + 0 * 72 * F2 + ALPHAD 15X 35 AJ3 = 3 + 0 * 72 * F2 + ALPHAD 15X 36 AJ3 = 2 + 0 * 72 * F2 + ALPHAD 15X 35 AJ3 = 2 + 0 * 72 * F2 + ALPHAD 15A 37 DJ2 = A YF2 / D FK 15A 37 DJ2 = A YF2 / D FK 15AC 39 DJ3 = 1 + 0 * 7 * 50 * R 50 * AL * * 2 / 5 + 0 15AC 39 DJ3 = 1 + 0 + 0 * AL * 2 + 3 + 0 + (1 + 3 + 0) 15AF 42 AUT = 5 + 0 * R 50 * AL * * 2 / 5 + 0 15AF 42 AUT = 2 + 0 * R 50 * (1 + C 3 + C 2 + 3 + 0) + (1 + 2 + 2) 15AI 45 AUT = 2 + 0 * R 50 * (1 + C 3 + C 2 + 3 + 0) + (1 + 2 + 2) 15AL 48 AUT = 2 + 0 * R 50 * (1 + C 3 + C 2 + 3 + 0) + (1 + 2 + 2 + 2) 15AL 48 BSUE BX * 2 15AL 48 C X = 2 + 0	XK3E = XK2E + RCTE + ANGLE2	157	30
YE2 = 2.0% Y2E + RC 15V 32 AYF2 = YF2 * ALPHAD 15W 33 AYF2 = YF2 * ALPHAD 15X 34 AJ3 = 3.0*RC ** 2* ALPHAD 15X 34 AJ3 = 3.0*RC ** 2* ALPHAD 15X 35 AJ3 = AJ3/AEK 15Z 35 DJ2F = AYF2/DFK 15BB 38 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 40 DJ3E = AJ3/DFK 15AC 41 AJT3 = 10.0*RSQ*AK*C1/3.0 15AE 41 AJT2 = KSQ*4K (* 1 3.0*C1**2) 15AG 43 AJT1 = 2.0*RSQ*(AK*C3 + 3.0*C1**2) 15AL 44 AJT0 = 2.0*RSQ*(C1*C3 + C2**2) 15AL 45 AJT0 = 2.0*RSQ*(C1*C3 + C2**2) 15AL 45 BSO=DSX**2 15	$YF2 = 2 \cdot 0 * Y2F * RC$	150	31
AYF2 = $Y E 2 * ALPHA0$ 15w 33 AYE2 = $Y E 2 * ALPHA0$ 15x 34 AJ3 = $3 \cdot 0 * C * 2 * ALPHA0 * * 2$ 15Y 35 AJ3F = AJ3/AFK 15Z 36 AJ3E = AJ3/AFK 15Z 35 AJ3E = AJ3/AFK 15A 37 DJ2F = AYF2/DFK 15BB 38 DJ2E = AYE2/DEK 15AC 39 DJ3F = AJ3/DFK 15AE 40 DJ3F = AJ3/DFK 15AE 41 AJT3 = 10.0*RS0*AK*2/6.0 15AF 42 AJT3 = 10.0*RS0*AK*2/6.0 15AF 42 AJT3 = 10.0*RS0*AK*2/5.0 15AF 42 AJT3 = 2.0*RS0*AK*2/5.0 15AF 42 AJT3 = 2.0*RS0*(Ak*C2 + 3.0*C1**2) 15AH 44 AJT1 = 2.0*RS0*(Ak*C2 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*RS0*(C1*C3 + C2**2) 15AI 45 BS0=BSX*2 15AK 47 BS0=BX*2 15AK 49 CX=2.0/C1 16 50 I15 = 10*I1 A1 51 I15 = 10*I1 A3 53 <	YEZ = 2.0. Y2E +RC	157	32
AYE2 $YE2*ALPHA0$ 15X 34 AJ3 = 3.0*RC**2*ALPHA0*2 15Y 35 AJ3F = AJ3/AFK 15Z 36 AJ3E = AJ3/AEK 15A 37 DJ2F = AYF2/DFK 15A 37 DJ2F = AYE2/DFK 15AB 38 DJ2F = AJ3/DFK 15AC 39 DJ3E = AJ3/DFK 15AC 40 DJ3E = AJ3/DFK 15AC 40 DJ3E = AJ3/DFK 15AC 41 AJT4 = 5.0*RS0*AK**2/6.0 15AG 41 AJT2 = RSQ*(4.0*AK*C2 + 3.0*C1**2) 15AF 42 AJT2 = RSQ*(4.0*AK*C2 + 3.0*C1**2) 15AH 44 AJT1 = 2.0*RSQ*(AK*C3 + 3.0*C1**2) 15AH 44 AJT1 = 2.0*RSQ*(AK*C3 + 3.0*C1*C2) 15AJ 45 BX=C2/C1 15AK 47 BSQ=BX**2 15AK 47 CX=2.0/C1 15AM 49 AD 0 8 11.180 16 50 I1 = (I1-1)/15 A1 51 51 II = 11b + 1 A3 53 52 II = 11b + 1 A3	AYF2 = YF2+ALPHAD	15W	33
AJ3 = $3.0 + RC + 2 + ALPHA0 + + 2$ 15Y 35 AJ3F = AJ3/AFK 15Z 35 AJ3F = AJ3/AFK 15A 37 DJ2F = AYF2/DFK 15BB 38 DJ2F = AYF2/DFK 15AD 39 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AD 40 DJ3F = AJ3/DFK 15AF 40 DJ3F = AJ3/DFK 15AF 40 DJ3F = AJ3/DFK 15AF 40 AJT4 = 5.0#R\$G*AK*2/6.0 15AF 41 AJT2 = R\$G*(4.0*AK*C2 + 3.0*C1*2) 15AF 42 AJT2 = R\$G*(4.0*AK*C2 + 3.0*C1*2) 15AH 44 AJT2 = 2.0*R\$G*(AK*C3 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*R\$G*(AK*C3 + 3.0*C1*C2) 15AI 45 BS0=BX*2 15AL 48 CX=2.0/C1 15AK 47 BS0=BX*2 15AH 49 0D 0 6 1=1*1*B0 16 50 I1 = (1-1)/15 A1 51 I15 = 15*11 A2 52 II = 115 + 1 A3 53 ZZ = I1	AYEZ =YE2*ALPHA0	15X	
AJ3F = AJ3/AFK 15Z 36 AJ3E = AJ3/AFK 15AA 37 DJ2F = AYF2/DFK 15BB 38 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AC 40 DJ3E = AJ3/DFK 15AF 40 AJT = 5.0*R\$G*AK**2/6.0 15AF 42 AJT3 = 10.0*R\$G*AK**2/6.0 15AF 42 AJT3 = 10.0*R\$G*AK**1/3.0 15AG 43 AJT2 = R\$G*(4.0*AF\$C2 + 3.0*C1**2) 15AF 43 AJT0 = 2.0*R\$G*(AK*C3 + 3.0*C1*C2) 15AH 44 AJT0 = 2.0*R\$G*(C1*C3 + C2**2) 15AJ 45 BX=C2/C1 15AK 47 BS0=BX**2 15AK 47 BS0=BX**2 15AK 47 BS0=BX**2 15AK 49 80 D0 6 1=1,180 16 50 I1 = (1-1)/15 A1 51 I15 = 15*I1 A2 52 II = 115 + 1 A3 53 ZZ = I1 A4	AJ3 = 3.0*RC**2*ALPHA0**2	15Y	35
AJ3E = AJ3/AEK 15AA 37 DJ2F = AYF2/DFK 15BB 38 DJ3F = AJ3/DFK 15AC 39 DJ3F = AJ3/DFK 15AD 40 DJ3E = AJ3/DFK 15AF 42 AJT4 = 5.0#R\$G@*AK**2/6.0 15AF 42 AJT3 = 10.0*R\$G@*AK*C1/3.0 15AG 43 AJT2 = R\$G@*(4.0*AK*C2 + 3.0*C1**2) 15AH 49 AJT1 = 2.0*R\$G@*(AK*C3 + 3.0*C1*C2) 15AI 45 BX=C2/C1 15AJ 45 BX=C2/C1 15AK 47 BS0=BX**2 15AK 47 CX=2.0/C1 15AM 49 80 D0 & I=1.180 16 50 I1 = (I-1)/15 A1 51 I15 = 15*I1 A2 52 II = 115 + 1 A3 53 Z2 = I1 A4 54	AJ3F = AJ3/AFK	15Z	36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AJ3E = AJ3/AEK	15AA	37
DJ2EAYE2/DEK15AC39DJ3F= AJ3/DFK15AD40DJ3E= AJ3/DFK15AE41AJT4= 5.0*RSQ*AK*2/5.015AF42AJT3= 10.0*RSQ*AK*2/5.015AF42AJT3= 10.0*RSQ*AK*C1/3.015AG43AJT2= RSQ*(4.0*AK*C2 + 3.0*C1*2)15AH44AJT1= 2.0*RSQ*(AK*C3 + 3.0*C1*C2)15AI45AJT0= 2.0*RSQ*(C1*C3 + C2**2)15AJ46BSC=BX**215AL48CX=2.0/C115AM4980D0 61=1.18016I1 = (IT1)/15A151I15 = 15*I1A252II = 115 + 1A353Z2 = I1A454	DJ2F = AYF2/DFK	1588	38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DJ2E = AYE2/DEK	15AC	39
DJ3E = AJ3/DEK 15AE 41 AJT4 = 5.0*R\$G@*AK**2/6.0 15AF 42 AJT3 = 10.*R\$G@*AK**2/7.0 15AG 43 AJT2 = KSQ*(4.0*AK*C2 + 3.0*C1**2) 15AF 44 AJT1 = 2.0*R\$G@*(AK*C3 + 3.0*C1*C2) 15AH 44 AJT0 = 2.0*R\$G@*(AK*C3 + 3.0*C1*C2) 15AI 45 AJT0 = 2.0*R\$G@*(C1*C3 + C2**2) 15AJ 46 BX=C2/C1 15AK 47 BS0=BX**2 15AK 47 CX=2.0/C1 15AM 49 60 D0 & 1=1.180 16 50 I1 = (I^1)/15 A1 51 I15 = 15*I1 A2 52 II = 115 + 1 A3 53 Z2 = I1 A4 54	DJ3F = AJ3/DFK	15AD	40
AJT4 = $5.04RSG@*AK**2/6.0$ 15AF 42 AJT3 = $10.0*RSG@*AK**2/6.0$ 15AG 43 AJT2 = $RSG@*AK*C1/3.0$ 15AG 43 AJT1 = $2.0*RSG@*AK*C2 + 3.0*C1**2)$ 15AH 44 AJT1 = $2.0*RSG@*(4.0*AK*C2 + 3.0*C1*C2)$ 15AI 45 AJT0 = $2.0*RSG@*(1*C3 + C2**2)$ 15AI 45 BX=C2/C1 15AK 47 BS0=BX**2 15AL 48 CX=2.0/C1 15AM 49 80 D0 6 1=1:1:80 16 50 I1 = (I-1)/15 A1 51 I15 = 15*I1 A2 52 II = 115 + 1 A3 53 Z2 = I1 34 54	DJ3E = AJ3/DEK	15AE	41
AJT3 = 10.0*RSQ*AK*(1/3.0 15AG 43 AJT2 = KSQ*(4.0*AK*C2 + 3.0*C1**2) 15AH 44 AJT1 = 2.0*RSQ*(AK*C3 + 3.0*C1*2) 15AI 45 AJT0 = 2.0*RSQ*(C1*C3 + C2**2) 15AJ 46 BX=C2/C1 15AK 47 BSQ=BX**2 15AL 48 CX=2.0/C1 15AM 49 80 D0 & 1=1.180 16 50 I1 = (I-1)/15 A1 51 I15 = 15*I1 A2 52 II = 115 + 1 A3 53 Z2 = I1 A4 54	AUT4 = 5.0+RS0+AK++2/6.0	15AF	42
AJT2 = RSQ*(4,0*AK*C2 + 3.0*C1**2) 15AH 44 AJT1 = $2.0*RSQ*(AK*C3 + 3.0*C1*C2)$ 15AI 45 AJT0 = $2.0*RSQ*(AK*C3 + 3.0*C1*C2)$ 15AJ 45 BX=C2/C1 15AJ 46 BS0=DX**2 15AK 47 CX=2.0/C1 15AK 47 B0 D0 & 1=1:180 16 50 I1 = (I-1)/15 A1 51 I15 = 15*I1' A2 52 I2 = I1 A3 53	AJT3 = 10.0 + RS0 + AK + C1/3.0	15AG	43
AJT1 = $2.0 \pm 850 \pm (AK \pm C3 + 3.0 \pm C1 \pm C2)$ 15AI 45 AJT0 = $2.0 \pm 850 \pm (C1 \pm C3 + C2 \pm 2)$ 15AJ 46 BX=C2/C1 15AK 47 BS0=BX \pm 2 15AL 48 CX=2.0/C1 15AM 49 80 D0 6 1=1:180 16 50 11 = (1-1)/15 A1 51 I15 = 15 \pm 11 A2 52 I22 = I1 A4 54	AJT2 = HSQ + (4.0 + AK + C2 + 3.0 + C1 + + 2)	15AH	44
AJTD = $2.0*RSQ*(C1*C3 + C2**2)$ 15AJ 46 BX=C2/C1 15AK 47 BS0=BX**2 15AL 48 CX=2.0/C1 15AM 49 80 D0 6 1=1+180 16 50 I1 = (I-1)/15 A1 51 I15 = 15*I1 A2 52 II = I15 + 1 A3 53	AJT1 = 2.0*RSQ*(AK*C3 + 3.0*C1*C2)	15AI	45
BX=C2/C1 15Ak 47 BSQ=BX**2 15AL 48 CX=2.0/C1 15AM 49 80 D0 6 1=1.180 16 50 I1 = (I=1)/15 A1 51 I15 = 15*I1 A2 52 II = I15 + 1 A3 53 Z2 = I1 A4 54	AJTD = 2.0 + RSQ + (C1 + C3 + C2 + 2)	15AJ	46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BX=C2/C1	15AK	47
$CX=2\cdot0/C1$ 15AM 49 80 D0 6 1=1:180 16 50 I1 = (I=1)/15 A1 51 I15 = 15*I1 A2 52 II = I15 + 1 A3 53 Z2 = I1 A4 54	B20=BX**2	15AL	48
80 $00 \ 6 \ 1 = 1 \cdot 180$ 16 50 11 = (1-1)/15 A1 51 115 = 15*11 A2 52 11 = 115 + 1 A3 53 22 = 11 44 54	CX=2.0/C1	15AM	49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80 D0 8 1=1,180	16	50
$ \begin{array}{c} 115 = 15 * 11 \\ 11 = 115 + 1 \\ 22 = 11 \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ \overline{11} \\ $	$II = (I^{-1})/15$	A1	51
$\begin{array}{c} 11 = 115 + 1 \\ 22 = 11 \\ 44 \\ 54 \\ 54 \\ \end{array}$	115 = 13 * 11	AZ	52
22 = 11 A4	II = I12 + 1	A3	53
	22 = 11	A4	54

A–16. (Con't.)

D-60

IF	(11.NE.1)GO TO 702	A6	56
AN	GA1 = ANGLE1 + ZANGLE	Α7	57
AN	VGD1 = ANGLE2 + ZANGLE	88	58
	GU2 = ANGLE3 + ZANGLE	A9	59
		A10	-60
AD	VUAZ - ANGLEY Y ZANGLE	A11	61
11	· (11.EQ.2)GO TO 701		01
EN EN	NDANG = ANGLE5 + ZANGLE	A12	62
GC	0 TO 755	A13	63
701 EM	DANG - ENDAN1 + ZANGLE	A14	64
755 T.		A15A	65
	0 0	A15B	66
	-0.0	A150	67
15	=U•O		
14	AC=0.0	AISD	66
TF	F=0.0	A15E	69
1/	NA=0.0	A15F	70
702 IF	(11.GE.3)60 TO 713	A16	71
10	(1.). GL. 1) GO TO 703	A17	72
÷.	CONT(2 0+ANCA1 (ALDLAD)		73
	THE ADVICTOR AND ALL ALL AND ALL ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		
12	2 = SQRT(2.0*ANGU1/ALPHAU)	AIY	14
т з	5 = SQKT(2.0+ANGD2/ALPHAU)	AZU	15
74	+ = SORT(2.0+ANGA2/ALPHAD)	A21	76
TS	5 = SORT(2.0+ENDANG/ALPHAQ)	A22	77
TE	T. GT.1160 TO 750	A23A	78
		A238	79
GC	0 10 738	A230	80
750 IF	-(IJ.NE.1)GO TO 703	AZSU	81
D'	T = T1 - TIMEM(I-1)/1000.0	A24	82
GC	D TO 738	A25	83
703 16	(1.). NE. 21GO TO 704	A25	84
	$r_2 = (12 - T_1)/4 - 0$	A27	85
700 78	(1) cl 5) c0 T0 705	A28	86
104 10		429	87
<u> </u>		A27	
- G(0 10 738	ASU	66
705 IF	F(1J.NE.6)GO TO 706	A 3 I	
D1	$T3 = (13 - T2)/4 \cdot 0$	A32	90
706 18	F(1J.GI.9)GO TO 707	A 33	91
		A34	
		A35	03
G	0 10 758	AGO AGO	
707 1	F(IJ.NE.10)GO 10 708	ADD	94
D.	T4 = (14-T3)/4.0	A37	95
708 I	F(IJ.GT.13)GO TO 709	A38	96
D1	T = 0T4	A39	97
	10 738	44 0	98
700 1	CITI EN 2100 TO 711	A41	99
109 11			
11	F(1J-NE-14)GO 10 /10	A42	100
751 D	$T5 = (15 - T4)/2 \cdot 0$	A43	101
710 D	T = DT5	A44-5	102
G	0 10 738	A46	103
211 TI	F(T.I.FQ. 15)60 TO 712	A47	104
	T = TheT#	A48	105
<u>U</u>			
G	0 10 738	84 7	TUG
712 D	THETA = 3.0+ANGLE5	A50	107
G	O TO 727	A51-2	108
713 T	F(11.EQ.11)GO TO 718	A53	109
ti	FITT NE TIGO TO 714	454	
÷.	TO #TTNEW/To1)/1000.0-051T1	A55	111
1	IN-11WCM/1-1//INN/0-DEFIT		
0.	THEIA - ANGAI	ADD	112
U			

١

1

κ.

A-16. (Con't.)

	714 IF(IJ.NE.2)60 TO 715		A59		114
	DTHETA = ANGD1		A60		115
	60 TO 727		461		- 116
	716 TC/T + + E ELCO TO 770		/(01		117
	115 1F(1J.LE.5/60 10 /38	ET 10 EL 20 EL	A62	_	117
	IF(IJ.NE.6)GO TO 716		A63		118
	DTHETA = ANGO2		A64		119
	CO TO 707	the second se	A 6 5		- Tzu
	60 10 727		A65		1211-
	716 IF(1J.LE.9)GO TO 738		A66		121
	TE(1.1.NE.10)60 TO 71	7	A67		122
			160		102
	UTHETA - ANGAZ		ACO		123
	GO TO 727		A69		125—-
	717 IF(IJ, LE, 13)60 TO 73	4	A70		125
	15/11 50 10100 To 72		A 7 4		125
			A/1		407
	1+ (1J.NE.14)60 TO 74		A/2		127
	DTHETA - ENDANG		A73		128
	60 TO 727		A 74		129
- 111	THE CO TO 750		A75-0		
	745 60 10 738		Aro-a		130
	718 IF(1J.GI.1)GO TO 719		A79		131
	OT = ANGLE1/OMEGAN		A80		132
	CO TO 746		A 9 1		133
	60 10 736		AOI		133
	719 IF(IJ.NE.2)GO TO 720		A82		1.54
	$012 \equiv (ANGLE2 - ANGLE)$	F1)/(4.0+OMEGAM)	A83		135
	720 IE ([+ CT - 5160 TO 72]		484		136
	720 IP (10.01.5760 10 721		A04		100
	DI = DIZ		A85		137
	GO TO 738		A86		138
	721 1E(1.J.NE.6)60 TO 722		A87		139
		AT ITE TANKET IN THE		-	
	UIS = (ANGLES - ANGLE	21/14.UFUMEGAM)	A88	-	110-
	722 IF(IJ.GI.9)GO TO 723	•	A89		141
	DT # DT3		A90		- 142
	CO TO 714		A 0 1		1\/3
	60 10 758		A91	•	1 V J
	723 IF(IJ.NE.10)GO TO 724	•	A92		144
	DT4 = (ANGLE4 - ANGLE	E3)/(4.U+OMEGAM)	A93		145
	724 TE(T.I.GT. 13)60 TO 72	E			146
		5	A07		147
	DI = 014		A95		147
	GO TO 738		A96		148
	725 IF(I.L.NE. 14)60 TO 720	8	A97		149
			A08		150
	UIS = TANGLES - ANGLE	L4// VZ+UFUMEGAM/	Aao		150
	726 DT = DT5		A99		151
	60 10 758 -		AIUO		
	707 IK = 1		A101		153
		A-C311-DY	A 100		
	IT=20KI/B20+CX*(DIHE	A-COTT-BX	ATUZ		- 134
	728 ANGT = AK+TI++3/6.0	+ C1*T1**2/2.0 + C2*TI + C3	A103		155
	TTRAV = DTHETA = ANG	T	A104		156
	IF (ABS(DTRAV), IT.O.O	1160 TO 731	A105		157
			A100		
	RUIKAV - UIKAV/(UTHE	A-C37	A106		130
	TI =TI*(1.0 + RDTRAV)		A107		159
	JK = JK+1		A 108	10 ° C 100	160
	15/ W 61 25160 TO 72	~	A 100		161
			Alus		
	• GO TU 728		ALLU		102
	729 WRITE(6+730) JK+ANGT+1	THETA, UTRAV, RDTRAV, T1	A111		163
	730 E0041113.5E15 41		A112		164
	100 FORMAT(+J/JL10+0/				105
	GO TO 900		A113		105
	731 IF(11.NE.2)G0 TO 732		A114		166
			A115		167
			A 4 4 E		168
			A115		100
	60 TO 738		_ A116		169
	732 IF(IJ.NL.1)60 TO 733		A117		170
	$T1 = T1 \pm 0E1 T1$		A118		171
	1 IT.DCCIT		R110		

D-61

D--62

A-16. (Con't.)

	CO TO 750		TATIO	172
-			A120	173
	33 IF(10.61.5760 10 734	and the second second second second	101	
	$12 = 11^{+}UEL11$		A100	175
			A103	
/.	34 1F(1J.61.9760 10 735		ALZJ	170
	13 = TI+DELTI		A124	1//
	GO TO 705		A125	1/8
7	35 IF(IJ.GI-13)GO TO 736		A126	179
	T4 = TI + DELT1		A12/	180
	60 10 707		A128	181
- 7	36 IF(II.EQ.10)GO TO 737		A129	182
	T5 = TI + DELT1		A130	183
	GO TO 751		A131	184
7	37 DT = TI - T4		A132	185
7	38 CONTINUE		A133	186
N N	T=T+DT		A134	187
	TAC=TAC+DT		A135	188
	IF(IJ.G.1)GO TO 741		A136A	189
	GO TO 763		A136B	190
7	41 TE=TE+DI	Latin The second	A136C	191
	IF(IJ.G).5)GO TO 761		A137	192
	GO TO 763		A138	193
7	61 TAC=0.0		A139	194
	TF=TF+DI		A140	195
	IF(IJ.G1.9)60 TO 762		A141	196
	GO TO 763		A142	197
	62 TF=U.0		A143	198
	TAC=0.0		A144	199
	IF(IJ.GT.13)GO TO 742	-	- A145	200
	GO TO 703		A146	201
7	42 TF=0.0		17A	202
	TAC=0.0		178	203
	TE=0.0		170	204
	TAA=TAA+DT		170	205
7	63 IJ=IJ+1		17E	206
	IF(I.NE.44)GO TO 739		17F	207
	TIME = DELTI		176	208
	GO TO 740		17н	209
7	39 IFTI.NE.163160 TO 1		171	210
	TIME = VELT2		17J	211
	GO TO 740		17K	212
	1 TIME = IME+DT		18	213
7	40 TC= TIME		19A	214
	IE(1.GT+44)60 TO 2		198	215
	ALPHA(I) = ALPHAO		20	216
	OMEGA(T) = ALPHA(T)+TC		21	217
	THETA(II = OMEGA(I) +TC/2.0		22	218
	60 TO 200		23	219
	2 15/1. 61.163160 10 4	CT CONTRACTOR OF CONTRACTOR	24-5	220
	$T_{c} = T_{1}M_{c} = OFLT1$		26	221
	ALPHATT = AK*TC+ C1		27	222
	ONEGA(1)=AK+TC++2/2.+C1+TC+C2		28	223
	TUETA/ TJ=AK +TC++2/2+TC++14TC++2	/2.+02*T0+03	20	223
	CO TO 200	- Ctruckiu uv	30	225
	WITCH TTHE - ICH TO		31-2	22J
	4 10 - 11MC = DEL12		37	220
	AUTIALLY - 0+0		34	
	THEIALLY - UMEGAM	(141)	34	220
	INCIALIT = UMEGALITTICT THETA	103/	55	667

200 IF(IJ.EG. 2)60 TO 743 36A 230 IF(IJ.EQ. 6)GO TO 744 36B 231 IF(IJ.E0.10760 TO 777 232 36C IF(IJ.EQ.14)GO TO 746 IF(IJ.EQ.16)GO TO 747 233 36D 234 36E THETA1 = THETA(I)-ZANGLE 235 37A GO TO 748 378 236 743 THETA1 = ANGLE1 237 38A GO TO 748 38B 238 744 THETA1 = ANGLE2 239 38C GO TO 748 240 38D 777 THETA1 = ANGLE3 39A 241 GO TO 748 39B 242 746 THETA1 = ANGLE4 39C 243 GO TO 748 39D 244 747 THETA1 = ANGLES 39E 245 748 Y(I) =RC+THETAT 40A 246 YI = Y(1)-RC*ANGLE2 247 40B VP = RC+OMEGA(1) 400 248 THETAD(1) = 57.296*THETA(1) 41 249 TORKI(I) = EYE*ALPHA(I) 42 250 TIMEM(I) = 1000.0*TIME 251 43 99 BTSUM(1)=0.0 44 252 DO 6 J=1+6 IF(1+GT+44)GO TO 20 45 253 254 46 10 GO TO (101, 102, 103, 104, 105, 106),J 255 47 101 IFITHETAL.GT.ANGLE4160 TO 13 48 256 12 A(J)=AJ3F*T **2 49 257 TANB = 2.0+Y(1)/AFK 50A 58 V(J)=VP**TANB 50B 259 X(J) = T(1)*+27AFK 51 B(J) = ATAN (TANB)52 261 GO TO 500 53 262 13 A(J) = AJAP 54 263 VTJ) = TANBF*VP 55 283 X(J) = X1F + ((Y(I)-Y1F)*TANBF)56 B(J) = 8F1 57 266 267 GO TO 500 58 102 IF(THETAL.GT.ANGLES) GO TO 103 -59 268 14 A(J) = AJAP 60 269 270 V(J) = TANBF*VP 61 X(J) = Y(1) * TANBF + X1F + XK1F271 62 B(J) = BF1 ---63 272 273 GO TO 500 64 103 IFITHETAI.GT.ANGLE27GO TO 16 65 274 $15 \times (J) = Y(I) * TANBF + X1F + XK2F$ 66 275 A(J) = AJAP 67 276 V(J) = VP+TANBF 277 68 B(J) = BFT 69 278 GO TO 500 70 279 16 IF THETAL GT .ANGLEST GO TO 334 71 280 17 A(J)=DJ2F-DJ3F+TE ++2 72 281 TANB = 2.0*(Y2F-YI)/DFK 282 73A V(J)= TANB*VP 73B 283 x(J)=x2F=(Y2F-YI) ##2/DFK+X1F+XK3F 74 284 B(J) = ATAN (TANB)75 285 GO TO 500 76 286 104 IF (THETA1.LE.ANGLE1) GO TO 334 77 287

A- 16. (Con't.)

A-16. (Con't.)

	IF (THETAL.GT.ANGLE47GO TO 21	78	- 288
19	A(J) = -AJ3E*TE **2	79	209
	TANE = 2.D+(Y(I)-RCAI)/AEK	80A	290
	V(J) = -TANB + VP	808	291
	$xk = (Y \downarrow I) - RCaI) + 2/aFK$	81	292
	X(.) = EL-XK	82	293
	R(.) = ATAN (TANR)	83	294
		84	295
		85	296
	V(1) = TANBE VP	06	297
	YK = YIE + ((Y(T) - Y)E - R(AT) + TANBE)	87	298
		88	200
		89	300
		90	301
105	THE THE TAL GT ANGLES CO. TO 106	91	
200		92	303
		93	308
	ALQZ - TANDEYAF VV - VIE A VIELATANGE I YKIF	94	305
		0.0	305
		96	207
			307
104	UV IV 340 Teltuetal et ancientes en 24	00	308
100	IF (Inclaired and color of 24	90	
23		400	310
	V(J) = TANBE VP	100	311
	XK = XIE + XR2E + (T(I) + (ANDE))	101	312
	$\lambda(0) = U = X - X$	- 102	
		103	314
		104	315
24	IF (HE IAI.GI.ANGLES) GO TO 555	105	310
		106	
	JANB = 2.04(12E-11)/DEK	1078	318
	V(J) = -1 ANB + VP	10/8	319
	XK=X1E+AK2F+X2E-(12E-11)*+2/DEK	108	320
-8-82	X(J) = EL-XK	109	321
	B(J) = ATAN (TANB)	110	322
-	60 10 500	111	323
20	IF(1-61-163)60 TO 40	112	324
	GO TO (201,202,203,204,205,206),J	115	325
201	IF(THETA1.GT.ANGLE4)GO TO 113	114	326
8	AJ = AJI4+T++4 + AJT3+T++3 + AJT2+T++2 + AJT1+T + AJT0	116A	327
	A(J)= AJ/AFK	1168	328
	TANB = 2.0+Y(1)/AFK	117	329
	V(J)= TANB+VP	118	330
	X(J) = T(I)**2/AFK	119	331
	B(J) = ATAN (TANB)	120	332
	GO TO 500	121	333
	A(J)=RCTF+(AK+TAA+C1) ·	122	334
	V(J) = VP+TANBF	123	335
	X(J) = X1F+(Y(I)-Y1F)+TANBF	124	336
	B(J) = 8F1	125	337
	GO TO 500	126	358
202	IF(THETA1.GT.ANGLE5)GO TO 203	127	339
	A(J)=RCTF*(AK*T +CI)	128	340
	V(J) = VP*TANBF	129	341
	X(J) = XIF + Y(I)+TANBF + XKIF	130	342
	B(J) = 6F1	131A	343
	60 10 500	1318	
203	F(THETA1.GT.ANGLE2)G0 T0 116	132	345
200	TTTTLTTATVITRIVELETVV TT ATV		343

)

D-64

AMCP 706-260

A-16. (Con't.)

A(J)=RCTF*(AK*TAC+C1)	133	346
V(J) = VP * TANBF	134	347
X(J) = XIF + Y(I) + TANBF + XK2F	135	348
B(J) = BF1	136	349
60 10 500	137	350
116 IF(THETA1.GT.ANGLE3)GO 10 334	138	351
117 DJF = YF2*(AK*TF+C1)	139	352
AJ = AJI4*TF**4 + AJT3*TF**3 + AJT2*TF**2 + AJT1*TF + AJT0	140	353
A(J) = (DJF - AJ)/DFK	141	354
	142	333
	143	350
	144	307
CO TO ENO	140	350
	147	357
204 IF (THE FALLELANGLE I/GO TO 334	140	361
	149	201
AJ = AJI4*IE*** + AJI3*IE**3 + AJI2*IE**2 + AJI1*IE + AJIU	150	363
	153	360
$TAND = C_0 U + (T(1) - RCAI) / ACR$	153	365
	155	
	155	367
=	155	368
	157	369
	158	370
	159	371
YK = YIE + TY(f) - YIE - BCGIT + TANBE		372
	161A	373
B(J) = Bf1	1618	374
GO TO 540	162	375
205 IF (THETAL.GT.ANGLES) GO TO 206	163	376
A(J) = -RCTE + (AK + T + C1)	164	377
V(J) =-VP*TANBE	165	378
XK = X1L + Y(I) + TANBE + XK1E	166	379
	167	380
B(J) = BE1	168	381
GO TO 500	169	382
206 IF(THETA1.GT.ANGLE2)GO TO 124	170	383
A(J)=-RCTE*(AK*TAC+C1)	171	384
V(J) =-VP*TANBE	172	385
XK = X1E+XK2E + (Y(I) * TANBE)	173	386
X(J) = EL-XK	174	387
B(JT = BE1	175	388
60 10 500	176	389
124 IFTTHETA1.GT.ANGLE37GO TO 333	1//	390
AJ = AJ + + + + + AJ + + + + + + + + + + + +	178	241
125 UJE = 122 + (AK + 1F + CI)	179	392
A(J) = (JJE + AJ)/DEK	180	393
$\frac{1}{10} \frac{1}{10} \frac$	181	394
	102	
010/-AIAN(IANB) VV-VICTVV3C-/V3C-/V3C-VI)*+3/DEV	184	398
	185	377
	186	378
	187	400
	188	400
	189	
TANH = 2.04Y(T)/AFK	1904	403
		100

A-16. (Con't.)

A--66

V(J) = VP*TANB	190B	404
X(J) = Y(I) * 2/AFK	191	405
B(J) = ATAN (TANB)	192	406
GO TO 500	193	407
213^{213}	194	408
v(J) = VJF	195	409
X(J) = XIF + (Y(I) - YIF) * TANBF	196	410
B(J) = BF1	197	411
GO 10 500	198	412
302 IF (THETA1.GT.ANGLE5) GO 10 303	199	413
214 A(J) = 0	200	414
V(J) = VJF	201	415
X(J) = Y(I) * TANBF + XIF + XK1F	202	416
$B(J) = \forall F1$	203	417
GO TO 500	204	418
303 IF(THETA1.GT.ANGLE2)GD TO 216	205	419
215 A(J) = 0	206	420
$V(J) = V_{J}F_{J}$	207	421
X(J) = Y(I) * TANBF + XIF + XK2F	208	422
B(J) = BF1	209	423
<u> </u>	210	424
216 IF (THETA1.GT.ANGLE3) GO TO 334	211	425
217 A(J) = AJDF	212	425
TANB = 2.0*(Y2F-YI)/DFK	213A	427
V(J) = VP * TANB	213B	428
X(J)=X2F-(Y2F-YI)**2/DFK+X1F+XK3F	214	429
= B(J) = ATAN (TANB)	215	430
GO TO 500	216	431
304 IF(THETA1.LE.ANGLE1)GO TO 334	217	432
218 IF(THETA1.GT.ANGLE4)60 TO 221	218	433
219 A(J) = AJAE	219	434
IANB = 2.0*(T(I)-RCA1)/AEK	2204	433
VIJI-VY*TANB	221	430
$\chi(J) = E - (T(J) - RCAJ) + ZAEK$	222	
B(J)= A(ANB) CO TO EUX	222	430
	223	4J7
	225	
	225	
A(0) = C - (AIE + (T(1) - (AE - KCAI) + (ANDE))	207	442
$\frac{\mathbf{P}(\mathbf{r})}{\mathbf{P}(\mathbf{r})} = \mathbf{O}(\mathbf{r})$	221	
305 EC(1) = 500	229	445
	230	
	231	447
	232	
A(0) = CE = (AIE + (VI/+(MNOL + AVIL)))	233	14Q
	234 0 0010100	
306 10 300	235	451
JUD IF THE ALGORIANGLEZ TOU TO 224	236	152
	237	453
	238	454
B(I) = E[I] = Kateraket (Kateraket)	239	455
	240	456
224 E (THETAL GT ANGLE 3) 60 TO 333	241	457
	242	458-
$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$	243	459
	244	460
YL) = YFT FARD YL) = YFT FARD	245	461
AND/TE ALE ANDE ALE TAPTE PER		· · · · · · · · · · · · · · · · · · ·

)

AMCP 706-260

B(J) = ATAN (TANB)	246	462
	247	40.5
$333 \times 10^{-1} = 0.0$	2404	465
	2408	865
$335 \times (0) = 0.0$	2400	467
	250	468
B(J) = 0.0	251	469
500 BDEG(J) = 57.296*8(J)	252	470
IF(J,GT+3)60 T0 351	253	471
251 FA(J) = A(J) * (WB+WST)/G	254	472
RFC(J) = R*OMEGA(I)**2*(EMUT*WR+EMUS*WST)/G	255	473
RFA(J) = R*ALPHA(I)*(EMUT*WB+EMUS*WST)/G	256	474
IF(FA(J).GE.0.)GO TO 254	257	475
252 IF (FA(J)+RFC(J)+RFA(J))253,253,254	258	476
253 EN(J)=(FA(J)+RFC(J)+RFA(J))/(-COEFC2*C0S (B(J))-COEFS2*SIN (B)	(J))) 259	477
F(J) =EN(J)*(EMUR*COS (B(J))-SIN (B(J)))	260	478
GO TO 375	261	479
254 EN(J)=(FA(J)+RFC(J)+RFA(J))/(COEFC1+COS (B(J))-COEFS1+SIN (B(J))	1))) 262	480
F(J) = EN(J) * (SIN (B(J)) + EMUR * COS (B(J)))	263	481
<u> </u>	264	482
351 FA(J) = A(J)*(WB + WSE)/G	265	483
RFC(J) = R*OMEGA(I)**2*(EMUT*WB+EMÜS*WSEJ7G	266	484
RFA(J) = R*ALPHA(1)*(EMUT*W8+EMUS*WSE)/G	267	485
IF(FA(J).GE.0.0)GO TO 354	268	485
352 IF (FA(J)-RFC(J)-RFA(J))354,354,353	269	487
353 EN(3)=(FA(3)-RFC(3)-RFA(3))/(COEFC2*COS (B(3))+COEFS2*SIN (B(3))	1111 270	488
F(J)=EN(J)*(EMUR*COS (B(J))+SIN (B(J)))	2/18	407
	2718	490
	774	491
$\frac{1}{10}$	275	476
	9754	100
	2750	495
TORKITI = BISIMIT) + TORKITI	2150	
$POWER(T) = TORK(T) + OWEGA(T)/6600_0$	277	497
	278	498-
803 IF(1.NF+13)G0 T0 66	279	499
5 WRITE(6/501)		
L = L+1	281	501
501 FORMAT (1H1/37X, 43HTABLE 6-2 OUTPUT OF EACH BOLT AT GIVEN TIME/	282	502
66 WRITE(6+601)TIMEM(1)+(J+A(J)+V(J)+X(J)+FA(J)+RFC(J)+RFA(J)+BDE	G(J) 283	503
1.EN(J), F(J), TORKB(J), J=1,6)	284	504
601 FORMATE /41X,15HCAM OYNAMICS AT F7.2,13H MILLISECONDS//33X74	1BOLT 285	505
I AXIAL NORMAL ANGULAR CAM CAM CAM	286	506
2BOLT/108H BOLT BOLT BOLT AXIAL INERTIA FR	RICTI 287	507
30N INERTIA CURVE NORMAL DRIVING DRIVING/108H NO	ACCE 288	508
4LERATION VELOCITY TRAVEL FORCE FORCE FORCE	ANGL 289	509
5E FORCE FORCE TORQUE/7X,100HIN/SEC/SEC IN/SEC	290	510
DINCH POUND POUND POUND VEGREE POUNO POU	JNO 291	511
7 LB=IN//(I4;F12.0;F12.2;F10.3;F9.0;2F10.0;F10.3;3F10.0;)	292	512
F CONT NUL	293A	513
$\kappa = 0$	293B	514
	293C	515
K 2 - K**2+1	2930	310
IF(1, NE, 1)60, TO 1051	293E	517
MKT15/0,10351	2938	
GO TO 1054	2936 _	519

A-16. (Con't.)

A-16. (Con't.)

D-68

)

1052 FORMAT (1H1/33X, 29HTABLE 6-3 GUN OPERATING POWER/)	293H	520
802 FORMAT(1H1/30X,35HTABLE 6-3 CONTD GUN UPERATING POWER/)	2931	521
1051 IF (1.NE .K2)60 TO 9	294	522
7 WRITE(6:802)	295A	523
1054 WRITE(6+1053)	2958	524
$\kappa = \kappa + 1$	296	525
9 WRITE (6:801)1, TIMEM(I): ALPHA(I): OMEGA(I): THE TAD(I): Y(I): BTSUM(I)	297	526
1, TORKI(1), TORK(I), POWER(I)	298	527
1053 FORMAT (19X:46HROTOR ROTOR	299	528
1 ROTOR BOLT TOTAL/5H IN-+13X+78HANGULAR ANGULAR AN	300	529
ZGULAR PERIPHERAL CAM ROTOR REQUIRED REQUIRED/95H CRI-	301	530
STIME ACCELERATION VELOCITY TRAVEL TRAVEL TORQUE TORQ	302	531
4UE TORQUE HORSE-194H MENT MILSEC RAD/SEC/SEC RAD/SEC	303	532
5DEGREE INCH LB-IN LB-IN LB-IN POWER/)	304	533
801 FORMAT (14+F9.3+2F11.2+F11.1+F10.3+3F9.0+F11.1)	305	534
900 STOP	306	535
END	307	536

)

APPENDIX B

AUTOMATIC CONTROL OF ROUNDS IN A BURST FOR WEAPON EFFECTIVENESS

Since it is not generally possible to automatically vary the number of rounds in a burst from modern automatic weapons, it is of interest to know whether or not advantage could be taken of such a capability to increase the cost effectiveness of such weapons.

In the most general case, hit probability $(Pr)_{eh}$ is a variational problem because hit probability is represented as

$$(Pr)_{eh} = 1 - \int_{0}^{1} \left[1 - \frac{A}{2\pi\sigma_d^2} \times \frac{\sigma_b^2 / \sigma_d^2}{2\pi\sigma_d^2} \right]^n dx$$
(B-1)

where

 $(Pr)_{eh}$ = engagement hit probability

A = area of target

$$\sigma_d^2$$
 = variance of dispersion

$$\frac{1}{5}$$
 = variance of bias

n = number of rounds in burst (each round assumed independent)

$$x = \exp\left[r^2 / 2\sigma_b^2\right]$$

r = radial distance from target center

The reference for Eq. B-1 and its derivation is Eq. 4-413, AMCP 706-327, *Fire Control Systems – General.*

Observe that $(Pr)_{eh}$ is a function of, among other parameters, *n*. Thus, there is an optimum value of *n* for a burst. To exceed this optimum value of *n* increases the use and cost of rounds without appreciably increasing the hit probability. Use of an *n* smaller than the optimum value decreases hit probability, thereby, decreasing the effectiveness of the weapon. Extensive studies to date with plotted curves for various values of n have shown that, in terms of $(Pr)_{eh}$, a tight control of n should reduce an excess use of ammunition. Since the value of n is generally under the trigger control of the gunner who cannot concentrate on or control discrete number of rounds in most circumstances, it appears logical that consideration should be given to the evaluation and design of a capability in the trigger or sear area to easily preselect an automatic number of rounds in a burst. Fig. B-1 illustrates the nature of $(Pr)_{eh}$ in relation to the number of rounds n in a burst. In interpreting this figure

$$\alpha = \frac{A}{2\pi \sigma_d^2}$$

$$R = \frac{\sigma_b^2}{\sigma_d^2}$$

For additional information on effectiveness vs the number of rounds in a burst for point fire refer to

- 1. Summary of Test Data and Effectiveness Evaluation for Special Purpose Individual Weapon, Ballistic Research Laboratories Technical Note 1542, Aberdeen Proving Ground, Md., August 1964.
- Dispersions for Effective Automatic Small Arms Fire and a Comparison of the M14 Rifle With a Weapon Yielding Effective Automatic Fire, Ballistic Research Laboratories Technical Note 1372, Aberdeen Proving Ground, Md., January 1961.

The methods for automatically controlling the number of rounds in a burst are limited only by the ingenuity of the designer. Several methods that have been successfully employed are described briefly:

a. The M61A1 Vulcan Machine Gun employs a burst length control device which is essentially an electrical accessory that is preset by the operator. The accessory controls the length of time that power is supplied to the gun drive and firing circuits. The original design required bursts of 10, 30, 60, and 100 rounds. These were later reduced to 10 and 60 because of operational difficulties.

b. A second type which performed successfully is a burst circuit located on the side of the gun cradle, which counts the number of rounds and then cams the trip lever down on the last round fired to end the burst. As the gun returns to full battery position, a torsion spring is activated which sets the circuit for the next burst. The number of rounds per burst is manually set only once. On the assumption that the circuit is set for a 10-round burst and the trigger is released after 6 rounds have been fired, the lug will cam the lever down and the sear will move over the trip lever. The gun will now settle into full battery position, and the circuit reset and ready to count 10 rounds. The trigger must be pulled and released for each burst.

c. A third type, more applicable to self-powered guns, consists of an escapement mechanism which is preset to some desired number of rounds up to maximum capacity. As each round is fired, the escapement rotates closer to zero or to stopping the gun through holding of the sear or trigger control.

Figure B-1. Hit Probability vs Number of Rounds in a Burst

B-2

GLOSSARY

accelerator. A cam arrangement that converts barrel momentum to bolt momentum thereby increasing bolt velocity and decreasing time.

automatic weapon. A rapid, self-firing weapon.

barrel spring. The driving spring equivalent for the barrel.

belt, ammunition. Fabric or metal band with loops for carrying cartridges that are fed from it to an automatic weapon.

belt, **disintegrating**. An ammunition belt whose empty links are detached as the individual rounds are removed.

blowback. The class of automatic weapon that uses the propellant gas pressure on the cartridge case base to force the bolt open, barrel and receiver remaining relatively fixed.

blowback, advanced primer ignition. A blowback gun that fires before the round is fully chambered.

blowback, delayed. A blowback gun that keeps the bolt locked until the projectile leaves the muzzle.

blowback, retarded. A blowback gun that has a linkage to provide a large, early resistance to recoil.

blowback, simple. A blowback gun that relies on bolt inertia for early recoil resistance.

breech closure. Complete closing of the breech by bolt or breechblock.

buffer spring. A spring that augments either driving or barrel spring during the last stages of either bolt or barrel travel.

compression time. The time during which a spring becomes compressed..

cutoff. The closing of the gas port between bore and operating cylinder.

cutoff expansion system. An expansion system that has a valve to close the gas inlet port after the operating piston moves a prescribed distance.

counterrecoil time. Time required for a counterrecoiling part to return to battery.

critical pressure. The pressure on the discharge end of a nozzle at which flow rate becomes independent regardless of how much the down stream pressure is reduced.

cycle, time of. The time required for a gun to negotiate the firing cycle.

driving spring. The spring that stores some of the bolt recoil energy, stops the recoiling bolt, then drives it into the in-battery position.

ejector. A device in the breech mechanism which automatically throws out an empty cartridge case or unfired cartridge from the breech or receiver.

expansion system. An operating cylinder of a machine gun that has an initial expansion chamber at the gas inlet port.

external power unit. A unit that drives some or all operating components of an automatic weapon by deriving its power from a source other than the propellant gases.

extractor. A device in the breech mechanism that pulls an empty cartridge case or unfired cartridge from the chamber.

firing cycle. The sequential activity that takes place from the time a round is fired until the next round is about to be fired.

firing mechanism. The mechanism that actuates and controls the firing of a gun.

firing pin. The component of a firing mechanism that contacts the primer and relays the detonating energy of the firing mechanism to the primer.

flexibility. The flexing of an ammunition belt so that it will assume a fan-like attitude or form a helix.

flexibility, base fanning. The fan-like flexibility where the cartridge case bases form the inner arc.

flexibility, free. The flexibility that becomes available by taking up the slack provided by the accumulated clearances of the links.

G-1

flexibility, helical. The flexibility that forms a helix.

flexibility, induced or forced. The flexibility that is derived from the elastic deflection of the individual links.

flexibility, nose fanning. The fan-like flexibility where the cartridge noses form the inner arc.

gas filling period. The time of gas activity in the operating cylinder.

gas-operated. The class of automatic weapon that uses propellant gases vented through the barrel wall to operate all moving components.

hammer. The striking component of a firing mechanism.

impingement system. A gas-operated gun that has no initial expansion chamber at the gas inlet port.

link. The unit of an ammunition belt that firmly holds and carries one round.

link, extracting type. A link from which the round is removed axially by pulling it rearward.

link, push through type. A link from which the round is removed axially by pushing it forward by bolt or rammer.

line, side stripping type. A link from which the round is removed perpendicular to the axis.

locking cam, bolt. The cam that controls the locking and unlocking of the bolt.

locking period. The time needed to lock the bolt in its closed position.

machine gun. An automatic weapon that can sustain relatively long bursts of firing.

magazine, box. A magazine, usually detachable, of rectangular construction and of small capacity.

magazine, drum. A magazine of drum construction whose capacity is larger than that of the box magazine.

operating cylinder. The gas pressure system that powers a gas-operated machine gun.

override. The clearance between bolt face and cartridge case base when the bolt is in its rearmost position.

propellant gas period. The time that propellant gas pressures are effective.

rate of fire. The number of rounds fired per minute.

recoil, long. A recoil-operated gun that has the barrel recoiling as far as the bolt, both recoiling as a unit but counterrecoiling separately.

recoil-operated. The class of automatic weapon that uses the energy of all recoiling parts to operate the gun.

recoil, **short**. A recoil-operated gun that has the barrel recoiling a short distance, with barrel and bolt moving as a unit for part of that distance, whereupon the bolt is released to continue its rearward motion.

recoil time. The time required for a recoiling part to negotiate its rearward travel.

recoil time, accelerating. The time required to accelerate the recoiling parts.

recoil time, decelerating. The time required to stop the recoilingparts.

sear. The component of a firing mechanism that releases the hammer.

safety. A locking or cutoff device that prevents a weapon from being fired accidentally.

semiautomatic. A gun that functions automatically except that each round fired must be triggered manually.

specific impetus. The unit energy, ft-lb/lb, of a propellant.

surge time. The period of time required for a compression wave to traverse a spring.

tappet system. An impingement system that has a very short piston travel.

trigger. The component of a firing mechanism that releases the sear to initiate all firing.

trigger pull. The force that is required to actuate the trigger.

unlocking period. The time needed to release the bolt from its closed position.

velocity of free recoil. The maximum velocity that a recoiling part would attain if left unimpeded during recoil.

wall ratio. The ratio of outer to inner diameter of a hollow cylinder.

REFERENCES

- 1. Thomas J. Hays, *Elements of Ordnance*, John Wiley and Sons, Inc., N. Y., 1938, page 632.
- 2. AMCP 706-252, Engineering Design Handbook, Guns Series, *Gun Tubes*, par. VI-C-1.
- George M. Chinn, *The Machine Gun*, Vol. IV, U. S. Government Printing Office, Washington, D. C., 1955, Chapter 1.
- Driving Springs for Automatic Guns: Study of Static and Dynamic Loading, Springfield Armory Memorandum Report SA-MR15-1001, Springfield, Mass., 26 July 1950.
- 5. Reference 4, Equation 19.
- 6. Handbook of Mechanical Spring Design, Associated Spring Corporation, Bristol, Conn.
- Marks Mechanical Engineers' Handbook, Fifth Edition, McGraw-Hill Book Company, Inc., N. Y., 1951, page 334.
- 8. TM 9-2310, Caliber .60 Automatic Guns M38 and T130E3 and 20 mm Automatic Guns M39 and T260E3.
- Kinematic Analysis of the 20 mm Automatic Gun of the T74 Type, Springfield Armory Technical Report SA-TR7-1003, Springfield, Mass., March 1950.
- Precalculation of the Cyclic Function for Drum-Type Guns, Cal .50, Cal .60, and 20 mm, Springfield Armory Technical Report SA-TR5-3003, Springfield, Mass., Jan. 1950.
- 11. Notes on Development Type Material Pertaining to Gun, Automatic, 20 mm, T160 and Gun, Automatic, Cal. 60, T130, Armour Research Foundation (now IIT Research Institute), Chicago, Ill., April 1952.
- 12. Equation 16, Reference 10.
- 13. Equation 29, Reference 10.

R-1/R-2

- 14. Equation 55', Reference 9.
- AMCP 706-342, Engineering Design Handbook, Carriages and Mounts Series, *Recoil Systems*, page 62, Fig. 41.
- OP-2719, Gun Pod MK 4 Mod 0, Description, Operation, and Maintenance, Bureau of Naval Weapons, Dept. of Navy.
- NRL Report 4175, All-Weather Lubrication of the 20 mm M-3 Aircraft Machine Gun and Accessories, May 27, 1953.
- 18. AFAC-TN-57-8, January 1957.
- Lubricants for Rapid Fire Automatic Weapons, Frankford Arsenal Report A64-18, Philadelphia, Pa., June 1964.
- 20. Rock Island Arsenal Report No. 59-1515, Investigation of Resin Systems or Bonding Agents for Dry Lubricants, Rock Island, Ill., 4 June 1959.
- 21. Test of Teflon and Microcrystalline Wax, 41st Report, Project No. TS1-47, Aberdeen Proving Ground, Md., 1 Dec. 1954.
- 22. AMCP 706-270, Engineering Design Handbook, *Propellant Actuated Devices.*
- AMCP 706-340, Engineering Design Handbook, Carriages and Mounts Series, *Carriages and Mounts* – *General*, Eq. 5a, page 16.
- S. Timoshenko, *Strength of Materials*, Part 11, Second Ed., Chapter I, D. Van Nostrand Company, Inc., N. Y., 1948.
- AMCP 706-251, Engineering Design Handbook, Guns Series, Muzzle Devices.
- Silencers, Frankford Arsenal Report R-1896, Philadelphia, Pa., August 1968.
- 27. Reference 7, page 295.
- 28. NRL Report No. 4278, Dry Lubricants and Preservative Coatings for Ammunition, November 1953.

-

(AMCRD-TV)

AMCP 706-260

FOR THE COMMANDER:

OFEICTAL: P. R. HORNE COL, GS Chief, Administrative Office

LEO B. JONES Major General, USA Chief of Staff

DISTRIBUTION : Special

 $\widehat{}$

ENGINEERING DESIGN HANDBOOKS

Listed below are the Handbooks which have been published or are currently under preparation. Handbooks with publica-tion dates prior to 1 August 1962 were published as 20-series Ordnance Corps pamphlets. AMC Circular 310-38, 19 July 1963, redesignated those publications as 706-series AMC pamphlets (e.g., ORDP 20-138 was redesignated AMCP 706-138). All new, reprinted, or revised Handbooks are being published as 706-series AMC pamphlets.

1

Title

Nh

Τ.		
NO -		
· · · ·		

100	*Design Guidance for Producibility	202	*Ro
104	*Value Engineering		1
104	Elemente of Americant Engineering Dept One	203	*R 0
106	Elements of Armament Engineering, Part One,	205	Ru
	Sources of Energy		
107	Elements of Armament Engineering, Part Two,	205	*Tir
	Ballistics	210	Fu
108	Elements of Armament Engineering Part Three	211(C)	- Fu
100	Women Systems and Components	212/61	Ēu
110	weapon systems and components	212(3)	- Tu
110	Experimental Statistics, Section I, Basic Con-	213(5)	ru
	cepts and Analysis of Measurement Data	214(S)	– Fu
111	Experimental Statistics, Section 2, Analysis of	215(C)	Fu
	Enumerative and Classificatory Data	235	*Ha
112	Experimental Statistics Section 2 Planning	239(5)	*Sm
112	Experimental Statistics, Section 5, Flamming	240(0)	
	and Analysis of Comparative Experiments	240(0)	UU U
113	Experimental Statistics, Section 4, Special	241(S)	*Laı
	Topics	242	De
114	Experimental Statistics Section 5 Tables		(
115	Basic Environmental Concents	244	An
115	*Dasic Environmental Eastern	211	
116	Basic Environmental Factors		
120	*Design Criteria for Environmental Control of		. 6
	Mobile Systems	245(C)	Amr
121	Packaging and Pack Engineering		1
123	*Hudraulic Fluide	246	+ Amr
125	Electrical Wire and Cable	210	
123	Electrical whe and Cable	247	
127	"initated Military Systems, Part One	247	AM
128(S)	*Infrared Military Systems, Part Two (U)	248	+Am
130	Design for Air Transport and Airdrop of		
	Materiel	249	Amr
134	Maintainahility Guide for Design	217	
134	Maintainaointy Oulde 101 Design	250	
155	Inventions, Patents, and Related Matters	250	Gu
136	Servomechanisms, Section 1, Theory	251	Μı
137	Servomechanisms, Section 2, Measurement and	252	Gu
	Signal Converters	255	Sn
138	Servomechanisms Section 3 Amplification	260	Δn
120	Servemeehenisms, Section 4, Deven Elements	200	D.
139	Servomechanisms, Section 4, Power Elements	270	r I
	and System Design	280	De
140	Trajectories, Differential Effects, and Data		
	for Projectiles	(10)	Wa
	101 110 0000000	51(3-60)	
145	*Dynamics of a Tracking Gimbal System	282	+Pro
145 150	*Dynamics of a Tracking Gimbal System	282 283	tPro
145 150	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns	282 283 284(c)	tPro Ae
145 150 160(8)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One,	282 283 284(C)	tPro Ae Tr
145 150 160(S)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U)	282 283 284(C) 285	tPro Ae Tr Ele
145 150 160(S) 161(S)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two,	282 283 284(C) 285 286	tPro Ae Tr Ele St
145 150 160(8) 161(8)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning	282 283 284(C) 285 286 290(C)	tPro Ae Tr Ele St: Wa
145 150 160(S) 161(S)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)	282 283 284(C) 285 286 290(C) 291	tPro Ae Tr Ele St: Wa
145 150 160(S) 161(S)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U) Elements of Terminal Ballistics, Part Three	282 283 284(C) 285 286 290(C) 291	tPro Ae Tr Ele St: Wa Su
145 150 160(S) 161(S) 162(S-RD)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Amplication to Missile and Same Termets (U)	282 283 284(C) 285 286 290(C) 291	tPro Ae Tr Ele St: Su Su
145 150 160(S) 161(S) 162(S-RD)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)	282 283 284(C) 285 286 290(C) 291 292	tPro Ae Tr Ele St: Wa Su
145 150 160(S) 161(S) 162(S-RD) 165	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design	282 283 284(C) 285 286 290(C) 291 292	tPro Ae Tr Ele St: Wa Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U)	282 283 284(C) 285 286 290(C) 291 292 293	tPro Ae Tr Ele St: Wa Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propel lants, Part One	282 283 284(C) 285 286 290(C) 291 292 293 294(S)	tPro Ae Tr Ele St: Wa Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part Two (U)	282 283 284(C) 285 286 290(C) 291 292 293 294(S)	tPro Ae Tr Ele St: Wa Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K II Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part Two Oli Propellants, Part Two Solid Propellants, Part Two Solid Propellants, Part Two (U)	282 283 284(c) 285 286 290(c) 291 292 293 294(s) 295(s)	tPro Ae Tr Ele St: Wa Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 178(C)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S)	tPro Ae Tr Ele St: Wa Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest +Properties of Explosives of Military Interest,	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S)	tPro Ae Tr Ele St: Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C)	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part Two Solid Propellants, Part Two Solid Propellants, Part Two Solid Properties of Explosives of Military Interest, Section 2 (U)	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296	tPro Ae Tr Ele St: Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest tProperties of Explosives of Military Interest, Section 2 (U) Explosive Trains	282 283 284(c) 285 286 290(c) 291 292 293 294(s) 295(s) 296	tPro Ae Tr Ele St: Wa Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior	282 283 284(c) 285 286 290(c) 291 292 293 294(s) 295(s) 296 297(s)	tPro Ae Trr Ela St: Su Su Su Su Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part One, Theory and	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S)	tPro Ace Tr Ekk Sti Su Su Su Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosive Sehavior *Principles of Explosive Behavior Mi itary Pyrotechnics, Part One, Theory and Annotation 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327	tProd tProd Ace Tr Ek Stu Su Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest Properties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Two Safety	282 283 284(c) 285 286 290(c) 291 292 293 294(s) 295(s) 296 297(s) 327 329	tProd Ace Trr Elk Str Su Su Su Su Su Fi
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest tProperties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part Two, Safety, Procedures and Glossery.	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 295(S) 296 297(S) 327 329 331	+Prod +Prod Ace Tr Eld Stu Su Su Su Su Su Su Su Su Su S
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part Two, Safety, Procedures and Glossary	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331(C BB)	tProd tProd Ace Tr Eld St: Wa Su Su Su Su Su Su Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest Procerties of Explosive Sof Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Three, Properties	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD)	*Protection of the second seco
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosive Sof Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions 	282 283 284(c) 285 286 290(c) 291 292 293 294(s) 295(s) 296 297(s) 327 329 331 335(S-RD) 340	tproduction there are the stat
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188	*Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary M 11tary Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340	+Prrc Ace +Prrc Ace Trr Eld St Su Su Su Su Su Su Su Su Su Su
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosive Soft Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part Two, Safety, Procedures and Glossary M 11 tary Pyrotechnics, Part Tore, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342	tproduction of the second seco
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 189	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest +Properties of Explosive of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary M 1'tary Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 243	*Price of the second se
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 189 190	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosive of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Five, Bibliography 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343	*Price Ace Triperior Ace Tripe
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 187 188	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosive Behavior *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Besign of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Besign of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Five, Bibliography *Dycelonment Guide for Reliability Part Ore 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343 344	*Protection of the second seco
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 189 190 195 196	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest tProperties of Explosives of Military Interest *Principles of Explosive Behavior Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics Effects Military Pyrotechnics, Part Five, Bibliography *Amw Weapon System Analysis *Development Guide for Reliability, Part One 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343 344 344 344	*Protection of the second seco
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 188 187 188 189 190 195 196	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part Two, Safety, Procedures and Glossary Mi litary Pyrotechnics, Part Tore, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Five, Bibliography *Amy Weapon System Analysis *Development Guide for Reliability, Part Ore 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343 344 345 346	*Provent and the second
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 188 189 190 195 196 197	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosives of Military Interest *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Tree, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Hiltory, Bibliography *Amy Weapon System Analysis *Development Guide for Reliability, Part One *Development Guide for Reliability, Part Three 	282 283 284(c) 285 286 290(c) 291 292 293 294(s) 295(s) 295(s) 296 297(s) 327 329 331 335(s-RD) 340 341 342 343 344 345 346 347	*Pre- *Pre- *Pre- *Pre- *Pre- *Pre- *Pre- *Pre- *Pre- * Fillow * F
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 187 188 189 190 195 196 197 198	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosive Soft Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Five, Bibliography *Amy Weapon System Analysis *Development Guide for Reliability, Part Two *Development Guide for Reliability, Part Two *Development Guide for Reliability, Part Four 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 341 342 343 344 345 344 345 344 345	*Preerrection of the second se
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 189 190 195 196 197 198	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosive Sof Military Interest *Procetties of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Five, Bibliography *Amy Weapon System Analysis *Development Guide for Reliability, Part Three *Development Guide for Reliability, Part Five 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343 344 345 346 347 355	*Pretrices of the second secon
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 188 188 189 190 195 196 197 198 199 200	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part One Solid Propellants, Part Wo (U) Properties of Explosives of Military Interest *Properties of Explosives of Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Ammunition for Reliability, Part One *Development Guide for Reliability, Part Three *Development Guide for Reliability, Part Three *Development Guide for Reliability, Part Five *Development Guide for Reliability, Part Six 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 341 342 343 344 344 344 344 345 355 356	*Pretries of the second
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 188 189 190 195 196 197 198 199 200 201	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propellants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Procerties of Explosive Soft Military Interest, Section 2 (U) Explosive Trains *Principles of Explosive Behavior Mi litary Pyrotechnics, Part Two, Safety, Procedures and Glossary M 11 tary Pyrotechnics, Part Two, Safety, Procedures and Glossary Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic, Part Two, Bibliography *Amy Weapon System Analysis *Development Guide for Reliability, Part Twe *Development Guide for Reliability, Part Twe *Development Guide for Reliability, Part Five 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343 344 345 346 347 350 355 356 357	<pre>tPrce T relevant tPrce T relevant With S u u u u u u u u u u S u u u u u u S u u u u</pre>
145 150 160(S) 161(S) 162(S-RD) 165 170(C) 175 176(C) 177 178(C) 179 180 185 186 187 188 189 190 195 196 197 198 199 200 201	 *Dynamics of a Tracking Gimbal System Interior Ballistics of Guns Elements of Terminal Ballistics, Part One, K 11 Mechanisms and Vulnerability (U) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Tarqets (U) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Liquid-Filled Projectile Design Armor and Its Application to Vehicles (U) Solid Propel lants, Part One Solid Propellants, Part Two (U) Properties of Explosives of Military Interest *Properties of Explosives of Military Interest *Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary M11tary Pyrotechnics, Part Four, Design of Amnunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Amnunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Amnunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Amnunition for Pyrotechnic Effects Military Pyrotechnics, Part Four, Design of Amnunition for Pyrotechnic Effects Military Pyrotechnics, Part Five, Bibliography *Amy Weapon System Analysis *Development Guide for Reliability, Part Twe *Development Guide for Reliability, Part Three *Development Guide for Reliability, Part Three *Development Guide for Reliability, Part Six *Rotorcraft Engineering, Part One, Preliminary Design 	282 283 284(C) 285 286 290(C) 291 292 293 294(S) 295(S) 295(S) 296 297(S) 327 329 331 335(S-RD) 340 341 342 343 344 345 346 347 355 356 357	*Proe Trices Survey Sur

* UNDER PREPARATION -- not available

t OBSOLETE--out of stock

Title torcraft Engineering, Part Two, Detail Design torcraft Engineering, Part Three, Qualification Assurance ming Systems and Components zes 12cs azes, Proximity, Electrical, Part One (U) 1zes, Proximity, Electrical, Part Two (U) 1zes, Proximity, Electrical, Part Three (U) 1zes, Proximity, Electrical, Part Four (U) 1zes, Proximity, Electrical, Part Five (U) nall Amos Ammunition (U) renades (U) nd Mines (U) ssign for Control of Projectile Flight Resign for Control of Projectile Flight Characteristics mmunition, Section 1, Artillery Ammunition--General, with Table of Contents, Glossary and Index for Series mmunition, Section 2, Design for Terminal Effects (U) mmunition, Section 3, Design for Control of Flight Characteristics mmunition, Section 4, Design for Projection mmunition, Section 5, Inspection Aspects of Artillery Ammunition Design mmunition, Section 6, Manufacture of Metallic Components of Artillery Ammunition uns-General luzzle Devices zzle Devices in Tubes pectral Characteristics of Muzzle Flash tomatic Weapons opellant Actuated Devices sign of Aerodynamically Stabilized Free Rockets eapon System Effectiveness (U) opulsion and Propellants erodynamics ajectories (U) ements of Aircraft and Missile Propulsion ructures arheads--General (U) rface-to-Air Missiles, Part One, System Integration rface-to-Air Missiles, Part Two, Weapon Control irface-to-Air Missiles, Part Three, Computers irface-to-Air Missiles, Part Four, Missile Armament (U) rface-to-Air Missiles, Part Five, Countermeasures (U) inface-to-Air Missiles, Part Six, Structures and Power Sources and Power Sources urface-to-Air Missiles, Part Seven, Sample Problem (U) ire Control Systems-General ire Control Computing Systems mpensating Elements iclear Effects on Weapon Systems (U) arriages and Mounts--General radles ecoil Systems op Carriages ottom Carriages uilibrators

- levating Mechanisms aversing Mechanisms heeled Amphibians
- e Automotive Assembly
- itomotive Suspensions tomotive Bodies and Hulls