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ABSTRACT

A mathematical model of a multicomponent reacting nonsimilar laminar or turbulent
boundary layer flow including transverse curvature effects is presented, and a
method of solution is given. The formulation is an extension of an earlier work
in which thermal and molecular diffusion were treated in terms of a bifurcation
approximation for binary diffusion coefficients. In the present analysis, a tur-
bulent model is added which employs a mixing length model for eddy viscosity in
the wall region with consideration of injection or suction effects. The wake re-
gion eddy viscosity is taken to be proportional to the free stream velocity and
local velocity defect thickness. Transverse curvature effects are also incorpo-
rated into the present analysis. A modification of the Levy-Lees transformation
is used to transform the equatione of motion to the (£{,n) coordinate plane, where
the conservation equations are integrated across boundary layer strips. Deriva-
tives in the normal direction are related to one another by Tayler series trun-
cated to reflect a quadratic or cubic approximation, and streamwise derivatiwves
are expressed in finite difference form. The resultant set of equations is solved
by general Newton-Raphson iteration.

(Distribution Limitation Statement No., 2)
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SYMBOLS

parameter used in the solution of the mixing length equation (de-
fined by Eguation (131))

parameter used in the solution of the mixing length equation (de-
fined by Equation (132))

constant introduced in the o, constraint (Equation (58))

H

constant introduced in the approximation for multicomponent ther-
mal diffusion coefficients embcdied in Equation (25). Tentatively
established by correlation of data to be -C.5

product of density and viscosity normalized by their reference
values (defined by Equation (66))

frozen specific heat of the gas mixture (defined by Equation {(17))

property of the gas mixture which reduces to C, when diffusion co-
efficients are assumed equal for all species (defined by Equa-
tion (26))

specific heat of species i

coefficients defined in finite-difference representation of stream-
wise derivatives (defined in Equations (112) and (113) for two-
and three-point difference relations, respectively)

a reference binary diffusion coefficient introduced by the approx-
imation for binary diffusion coefficients embodied in Equation (19)

multicomponent thermal diffusion coeftficient for species i
multicomponent diffusion coefficient for species i and j
diffusion coefficient for all species when all ﬁij are equal
binary diffusion coefficient for species i and j

errors for the various equations during Newton-Raphson iteration
(driven toward zero in the iteration)

stream function (azfined by Equation (59))

diffusion factor for species i introduced by the approximation for
binary diffusion coefficients embodied in Equation (19)
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SYMBOLS
(continued)
h static enthalpv of the gas (defined by Equation (15))
hw static enthalpy of the gas at the wall :
h property of the gas mixture which reduces to the static enthalpy
h when diffusion coefficients are assumed equal for all species
(defined by Eguation (27)) <
i
hc enthalpy of surface material (e.g., char) removed by combustion, 3
sublimation, or vaporization
h enthalpy of gas which enters boundary layer withcut phase change
g at the surface (e.g., pyroclysis gases) 3
*
4
hi enthalpy of species i (defined by Equation (16)) é
i
i
ng heat of formatiun g
%
h2 enthalpy of 2th component surface material (e.g., silica) removed ]
in the condensed phase (e.g., by melting with subsequent liquid §
' runoff or by spallation) 3
H, total enthalpy (defined by Equation (14)) ?
ji diffusional mass flux of species i per unit area away from the é
surface %
jk diffusional mass flux of element k per unit area away from the {
surface
K total number of elements; also mixing length constant :
K, mass fraction of molecular species i
Rc total mass fraction of element (or base gas) k contained in sur-
k face material (e.yg., char) removed hy combustion, sublimation, or
vaporization
L K total mass fraction of element (or base gas) k contained in gas
% which enters boundary layer without phase change at the surface
(e.g., pyrolysis gases)
ik total mass fraction of element (or base gas) k irrespective of mo-
lecular configuration (defined by Equation (17))
ix
e
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SYMBOLS
(continued)

mixing length (defined by Equation (55))
dimensionless mixing length (defined by Equation (71))

parameter used in rixing length formulation (defined by Equation
(128))

mass flow rate per unit area

mass removal rate per unit area of surface material (e.g., char)
by combustion, sublimation, or vaporization

mass flow rate per unit area of gas which enters boundary layer
without phase change at the surface (e.g., pyrolysis gases)

mass removal rate per unit area of ch component surface material
(e.g., silica) in the condensed phase (e.g., by melting with sub-
sequent liquid runoff or by spallation)

molecular weight of the gas mixture
molecular weight of species i

number of nodal points across the boundary layer selected for the
purpose of the numerical solution procedure

dummy variable representing £', Hpn, or K

pressure; also a parameter used in the mixing length formulation
(defined by Equation (125))

partial pressure of species 1

frozen Frandtl number of the gas mixture (defined by Equation (§6))
turbulent Prandtl number (defined by Equation (69))

diffusional heat flux per unit area away from the surface

heat conduction per unit area into the surface material

one-dimensional radiant heat flux (toward the surface), that is,
the net rate per unit area at which radiant energy is transferred
across a plane in the boundary layer parallel to the surface
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SYMBOLS
{continued)

local radius in the boundary layer in a meridan pl-ne for an axi-
symmetric shape

local radius of body in a meridian plane for an axisymmetric shape
universal gas constant

Reynolds number; subscripted with the length scale if other than s
effective nose radius for Newtonian flow

distance along body from stagnation point or leading edge
reference system Schmidt number (defined by Equation (88))
turbulent Schmidt number (defined by Equation (68))

parameter defined to cimplify problems with transverse curvature;
see Equation (55)

static temperature

velocity component parallel to body surface
shear velocity, defined in Equation (49)
velocity component normal to body surface
mole fraction of species i

truncated series obtained in Taylor series expansion of

f1 f'p dn (defined by Equation (117))
i-1

distance from surface into the boundary layer, measured normal to
the surface

dimensionless y-coordinate defined by Equation (49))

constant in the mixing length differential equation (see Equation
(45))
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SYMBOLS
{(continued)

a quantity for species i which is introduced as a result of the
approximation for binary diffusion coefficients and reduces to K;j
when all diffusion coefficients are assumed equal (defined by
Equation (20))

a quantity for element (or base species) k which is introduced as
a result of the approximation for binary diffusion coefficients
and reduces to Kx when all diffusion coefficients are assumed
equal (defined by Equation (28))

truncated series obtained in Taylor series expansion of integrals
invelving nonsimilar terms (defined by Equation (124))

flux normalizing parameter (defined by Equation (82))

normalizing parameter used in definition of N (see Equation (59))
defined implicitly by use of a constraint such as Equation (60)

mass fraction of element (or base species) k in species i
streamwise pressure-gradient parameter (defined by Equation (67))
y-dimension normalizing parameter (defined by Equation (70))

logarithmic distance between two streamwise positions denoted by
the subscripts 2 and 2-1 (defined by Equation (114))

corrections for fi’ fi,..., during Newton-Raphson iteration
displacement thickness (defined by Equation (52))

incompressible or wvelocity displacement thickness {defined by
Equation (53))

distance between two boundary layer nodal points (defined by
Equation (105))
transformed coordinate in a direction normal to the surface (de-

fined by Equation (61)). Note: the hat is dropped from n through-
out most of the report

angle between a surface normal and a normal to the body center-
line; also time in discussions of a charring ablation program

thermal conductivity

xXii




AFWL-TR-69-106

ullule3lu4

edge

equil

SYMBOLS
(continued)

shear viscosity

properties of the gas mixture (defined by Equations (21) and (24))
which reduce to unity, to 7, to 1/%, and to &n 4%, respectively,
for assumed equal diffusion coefficients

kinematic viscosity

transfcrmed streamwise cgordinate (defined by Equation (51)). Note:
the hat is dropped from ¢ throughout most of the report

density
total mass flux per unit aiz2a into the boundary layer

individual species turbulent eddy diffusivity (defined by Equation
(2))

average turbulent eddy diffusivity, where it is assumed that all
PE, = pE
D D

1

turbulent eddy conductivity (defined by Equation (18))
turbulent eddy viscosity (defined by Equation (12))
dimensionless eddy viscosity (defined by Equation (73))
Stefan-Boltzmann constant

local shear stress
"elemental” source term (defined by Equation (29))

rate of mass generation of species i per unit volume due to chemi-
cal reaction

Subscripts

pertains to boundary-layer edge

pertains to surface equilibrium requirement

xiii
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SYMBCLS
(concluded)

pertains to the ith species or to the ith nodal point in the bound-
ary layer, starting with i = 1 at the surface

pertains to jth species

th

pertains to k™ element (or base species)

h

. t . s
percains to % streamwise position

pertains to mth iteration during the Newton-Raphson iteration

process

pertains to the nth nodal points, corresponding to the outer edge

of the boundary layer solution

pertains to the stagnation point

pertains to the steady state energy balance requirement
pertains to wall

reference conditicn, usually taken as zero streamline from invis~
cid solution (synonymous with boundary-layer edge in the abssnce
of an entropy layer)

Superscripts

equal to unity for axisymmetric bodies and zero for two-dimensional
bodies

signifies that guantity is normalized by o* (e.q., jﬁ = jk/a*)

represents partial differentiation with respect to n or n (usually
n unless otherwise notecd). Represents turbulent fluctuation in
Gection II.
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SECTICN I

INTRODUCTION

A computational procedure is described which is suitable for obtaining accu-
rate numerical solutions of the nonsimilar multicomponent laminar and/or turbulent.
boundary layer with arbitrary equilibrium or nonequilibrium chemical systems, un-
equal diffusion and thermal diffusion coefficients for all species, radiation
absorption and emission, second order transverse curvature effects, and a variety
of surface boundary conditions including intimate coupling with transient char-
ring-ablation energy and mass balances. A Fortran IV computer program has been
developed in accordance with this analysis with the exceptions that 1) the chemi-
cal system is presently limited to equilibrium in the boundary layer, with or
without selected rate-controlled surface reactions or surface catalyzed reactions,
and 2) radiation absorption and emission within the boundary layer is ot permit-
ted in the version of the program reported here. This computer program, desig-
nated BLIMP, for Boundary Layer Integral Matrix Procedure, is descriked in ref-
erence 1. The analysis and computer program described herein are extensions of
the previously developed BLIMP program for laminar boundary layer flows described
in reference 2. The turbulent model which has been incorporated was reported
earlier with a restriction to incompressible flows 1in reference 3.

The computational procedure was developed while attempting to take advantage
of the most attractive features of other boundary-layer procedures. In light of
the application of the procedure to be adopted, certain specific reguirements
were appropriate. 1In particular, minimization of the number of "nodal points"
required to obtain a solution was judged to be of prime importance as a conse-
quence of the relatively large times associated with state calculations for a gen-
eral chemical environment and, in the streamwise direction, because of the desire
to couple the boundary layer procedure to a transient internal conduction or abla-
tion solution.

For a given accuracy., the number of necessary "nodal points” in the surface
normal direction is contrclled primarily by the nature of the functions which re-
late the dependent variables (and their derivatives) to the independent variable.
Thus the continuous functions typically used in integral relations approaches re-
quire fewer "nodal points" than the functions with discontinuous first derivatives
implied by most finite difference approximations. In order to permit relatively
flexible profiles, sets of connected quadratics and cubics were selected to rep-
regsent enthalpy, velocity, and elemental concentrations. The first derivatives
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(and second derivatives with cubics) of these functions were made continucus at
the connecting points. The advantages of such a "spline fit" are considered,
for example, in reference 4.

If the general integral relations approach is followed, weighting functions
must be selected. In the present study, as in reference 2, step weighting func-
tions similar to those used by Pallone (reference 5) were used. That is, the
conservation equations are integrat~d between nodal points (over strips) with a
unity weighting function.

In the past when relatively large spacing in the streamwise direction has
been desired, iterative procedures have generally heen used to assure accuracy
and stability. Some of these procedures have treated the solution in a manner
resembling that used for a similar solution but with the addition of finite dif-
ference representations for the nonsimilar terms, a procedure which eliminates

the necessity of special starting techniques. Using this basic approach, the
specific treatment adopted in the current study follows most closely the matrix
procedure used by Leigh (reference 6) wherein the iteration is a consequence of
the solution of a set of linear and nonlinear algebraic relations. The general
Newton-Raphson technique was used in the present procedure to solve these simui-
taneous equations. This technique results in linearized coupling between all
relations required to characterize the boundary layer, and thus assures a more
general, rapid and stable iterative convergence.

'This document is the second report to describe completely the analysis and
solution procedure associated with the BLIMP program, reference 2 being the first
The addition of a turbulent boundary layer capability and transverse curvature
effects to the program provided the impetus for this report, therefore these two
topics will receive perhaps a disproportionate share of discussion. Much of the
rest of the analysis and solution procedure is the same as was reported in ref-

erence 2; the reader is referred to that document for more complete discussions.

This report concentrates on the fluid mechanical aspects of the problem
and describes the basic numerical solution procedure. The procedures employed
for calculating the equilibrium state of the gas and suggested for including
rate-controlled reactions are described elsewhere (reference 7) since they are
conveniently treated as subroutines to the basic boundary layer computational
procedure. However, the terms which are directly involved in the boundary layer
equations such as the "elemental source term"” which arises from kinetic consid-
erations are included in the present development. Similarly, radiation absorp-
tion and emission enters directly into the conservation equations only as a net
radiation flux term in the energy equation. The calculation of this term can be
conveniently accomplished by a subroutine. Multicomponent transport properties
are based on the approximation reported in reference 8. Modification of the
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conservation equaticns as a consequence of this approximation is described
briefly here, and more completely in reference 2. The procedures employed for
coupling to a transient charring ablation program are also described here.

Section II includes the entire mathematical modeling of the boundary layer
flow including discussions of the general conservation equations, turbulent flow
considerations, transverse curvature effects, coordinate transformations, and
boundary conditions. Section III outlines the integral matrix method for solving
the simultaneous differential equations including the integral strip relations,
the mixing length solution procedure, and the Newtun-Raphson iteration technigque.
Section IV presents some of the results obtained with the program. Section V de-
scribes the CABLE (Charring Ablation and Boundary Layer Environment) program
wherein the boundary layer analysis is coupled to a cne-dimensicnal charring
ablation analysis at each body station and presents the results of a sample run.
Section VI contains the summary, conclusions, and recommendations for further
study.
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SECTION II

MATHEMATICAL MODEL OF THE BOUNDARY LAYER

1. GENERAL CONSERVATION EQUATIONS

In the present analysis, the usual turbulent flow technique of breaking the
species, velocity, and enthalpy fields into mean and fluctuating compcnents, time
averaging, and making appropriate order of magnitude approximations is used. Tak-
ing the results of these manipulations as a point of departure, the species mass
balance equation becomes

] )
= (puKir") * % (pvxir“) = [(peDi Sy—l - 3 )r"jl + oy 8 (1)

where s and y are the streamwis= and normal coordinates, respectively, u and v
are the velocity components in the s and y directions, respectively, Ky is the
mass fraction of species i, r is the radius from the body centerline to the
point of interest in a meridian plane for an axisymmetric shape, ¥ is zero for a
flat plate and unity for a body of revolution, p is the density, and wi repre-
sents the rate of mass generation of species i per unit volume due to chemical
reaction. The individual species turbulent eddy diffusivity peDi is defined in
terms of the correlation of the fluctuating components of concentration and nor-
mal velocity, that is,

S T v T (2)

and ji is the mass-diffusion rate of species i due to molecular processes. Since
transverse curvature is to be included in the present analysis, r must be treated
as a function of y whereas in the typical boundary layer analysis, r is set equal
to Eor the surface radius. The relationship between r, L and y is

x(s,y) = rj(s) +y cos 6 (3)

Figure 1 helps orient the reader to the nomenclature being used.

In equation (1) and in other conservation equations to follow, turbulent .
transport terms are expressed in Boussinesqg form, that is, eddy viscosity, eddy

M
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diffusivity, and eddy conductivity. Hence all terms are time~averaged quanti-
ties and no need exists for using a superscript bar. In the order-of-magnitude
arguments, terms of the following types have been eliminated: 1) triple corre-
lations, 2) derivatives of turbulent correlations parallel to the wall, and 3)
correlations involving turbulent components of molecular transport mechanisms.

When equation (1) is summed over all species, the global continuity equa-
tion results:

dpur”® dpve” -
s Ty =0

(4)

Combining equations (1) and (4), one obtains the species conservation equation

3K, oK

9K,
i i _ 13 K i _ . R (5)
PU g~ T oV Yy 5 Y [r (DeDi oy Ji)] Vs

which can be written for each species i under consideration., The molecular dif-
fusion rate ji is expressed in general as

. _ P z; X
J. = T Wz.m.D.. - T 3
i~ m S 17373 551 D} 3y lIn T (6)

where Dij is the multicomponent diffusion coefficient of species i into j, DT

i
is the multicomponent thermal diffusion coefficient of species i, f is the local
gas mixture molecular weight, and mi is the molecular weizlit of species i. The

Stefan-Maxwell relations may also be used

i, , s, 4 pr o An T
5 e DR R - i (7)
oy pd, . K. K,

K] 1]

Fl

where Xy is the mcle fraction of species i and.ﬁij is the binary diffusion coef-
ficient of species i into j. Both of these expressions are complex in that the
multicomponent diffusion coefficients are difficult to evaluate, and the Stefan-
Maxwell relations provide only implicit expressions for the ji’ For the special
case when all diffusion coefficients can be asgssumed equal and thermal diffusion
can be ignored, Fick's law results:
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) axi
3 = - pb 3y (8)

This technique is not used in this analysis. A different simplification is

used to work in terms of "elemental" conservation racher than species conserva-
tion however. The term”element” (in quotes) is used to refer to taose atoms or
groupings of atoms which according to equilibrium relations are conserved. Ref-
erence 7 discusses the merits of this approach in more detail. Defining a; as
the mass fraction of "element" k in species i, multiplying the species equations
by Upso and summing over all species results in the following conservation of

"elements" equations:

3K 3K .or *
k k_1 3 1.« .
s rm—— S e e | o~ 9
pu ==+ oV Y 3 (9)
r .
where ik is the mass fraction of "element' =x . ¢!, ed by
KT 2k, (10)
1
It has alsc been assumed that all €p; = €p- Tne "elemental” approach results in

significantly fewer simultaneous equations than the conservation of species ap-
preoach, and the equating of all eDi gives sufficiently accurate solutions for

most types of problems.

The streamwise momentum equation can be written as

au du _ 1 9 K dufl _ 9sp :
pu5—5-+pv—y-—;-,;3—3;[pr(v+em)3§] S (11)

where P is the local static pressure, and eddy viscosity €y is defined in terms
of the Reynolds' stresses of turbulent flow by

<

peM = - —&——u_ (12)

[ 3

The transverse direction momentum equation reduces to zero when longitudinal

curvature effects are ignored.

2>

.
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The energy equation for this general chemistry boundary layer is

9H 9H,
T_1 3 K .y du?/2
PU ===+ PV - ;E 3y pr (eM + V) 3y + :

K, 3
K = T K i .
r (XA + peHCP) 3y +r E (psD T - i)hi -
i

v S .
X.D; Js I
I_RT B S et S § K 13
P ZZ”&%;‘(:L Kj)+rqr 2
i3

H,=h + = (14)

h is the static enthalpy including chemical as well as sensible contributions

h= Y Kh, (15)
i
hi is the static enthalpy of species i

T
h. =f C_dT + h? (16)
7° Pj

T is the temperature, hg is the heat of formation of spcies i at the reference

temperature T°, Cpi is the specific heat of spcies i, 5? is the frozen specific
heat of the gaseous mixture

T = 2 KcC (17

A is the thermal conductivity, R is the gas constant, xj is the mole fraction of
s+ ecies j, the turbulent enthalpy transport coefficient is defined by
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L K; Tov) 'y
1

Py = (18)

é‘lxi(ahi/ay)

and q, is the net one-dimensional energy flux towards the surface due to radia-
tion absorption and emission.

In the energy equation, as in the species conservation equations, it is nec-
essary to evaluate molecular diffusion flux ji‘ As discussed earlier, the gen-
eral expressions for these terms are difficult to work with, therefore an approx-
imate technique for multicomponent diffusion has been derived in reference 8 and
is used in the present analysis. Since the present emphasis is on turbulent
flow problems rather than molecular diffusion, only the results of the approxi-~
mations for diffusion are presented here. Approximating jij by

bis =~ F

D(T,P)
ij 3 (19)

and defining

2. = (20)
1 Fiua
u, = ?xjf‘j (21)
X,
My E zzé*_l (22)
i 3
Z.
b
My E 2= (23)
3 i
S
My E 1n(u,T ) (24)
¢, ~ =0.5 (25)
c_ = 2.C (28
P Zl: i“pg 5)
h = Zi:zihi (27)

iR, M
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Iy E zi':aklzl (28)
o zi:“ki‘l'l (29)
the species and "elemental" laminar flux relations can be expressed as
pDu., |92, Ju
.=~ —2 |1 - 3
1T T um [ay + 2y - Ky ay] (30)
PDU, aik - - au4
I = - W [ay + (zk Kk) 5y (31)
Diffusive energy flux therefore becomes
3 lli)
- - 2 g 2T 3h _ & 3T
q, = p(eM + V) v + (A + peHCp) 3y + pep (ay CP ay)
pDu ~ . c, R u v ]
2 |3h t T 3 ~ 4
+ — - —- L -
ulm v (Cp + ulu2> 3y + CtRT 3y + (h h + CtRTu3) §§—
(32)
The "elemental" species conservation equation becnmes
aK 3K 3K
k LS Y P 5 (33
Pu 35—+ PV 3y K Y [r (peD oy Jk)] + by )
while the energy equation can be expressed as
oH aH
T M 13 [ ] (34)
QUF"'pVay Kaé-l—,[r(qa*'qr)

[a

If equal diffusion coefficients are assumed, My = /%, Ep = Cp, and h = h. When

thermal diffusion is to be neglected, Cy = 0 and Mg = 1n My

Equations (4), (11), (33), and (34) comprise the boundary layer conservation
equations, including the approximations for unegual thermal and multicomponent
diffusion coefficients of reference 8. The equations are parabolic in nature,
therefore requiring specifications of the dependent variables, their derivatives,

-10~
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or a linear combinatior thereof along the wall (y = 0), edge of the boundary
layer, and at the initial body station. Typical sets of boundary conditions

will be discussed later in this report. Also necessary in the mathematical for-
mulation of the proklem is the specification of the molecular transport proper-
ties, equation of state and equilibrium (or nonequilibrium) relations for the
multicomponent gas, and a description of the eddy viscosity, conductivity and
diffusivity. The molecular transport properties, equation of state, and equilib-
rium relations are discussed in references 2 and 7. The turbulent flow model is

discussed in the next subsection.

2. TURBULENT FLOW CONSIDERATIONS

In the conservation equations developea above, .he concepts of eddy viscos~-
ity, eddy diffusivity, and eddy conductivity were used to express the correla-
tions of fluctuating velocity, species, and enthalpy fields in terms of mean
field quantities. This is only one of several possible techniques of closing
the set of equations (assuming satisfactory expressions for the eddy parameters
are available), and it does not provide any information regarding the evolution
of the turbulent correlations as the flow progresses downstream. Admittedly, it
would be more desirable to describe the turbulent fluctuations in a more complete
manner such as with an entrainment relation, turbulent kinetic energy relation,
or a local turbulent constitutive equation (reference 9). However, these tech-
niques are still in early stages of development even for incompressible single
component flows, therefore a more proven approach was selected for the present
analysis. The Boussinesg description of turbulent boundary layers has proved to
be very useful, particularly for complex reacting flows such as are being de-
scribed here, and will be used exclusively in the present analysis.

There is a wide amount of latitude possible even within the eddy viscosity
framework of turbulence, particularly in applying classical incompressible models
to compressible flows. The following two subsections describe how the turbulence
model described in references 3 and 10 was applied to the present compressible

flow problem.

a. Wall Region

Following the work of Clauser (reference 1ll) the boundary layer is di-
vided into a law of the wall region and a wake region. The relatively thin wall
ragion of the turbulent boundary layer is characterized by very steep gradients
in the turbulent transport and mean field properties. Turbulent stress varies
from zero at the wall to near its waximum value at the outer edge of the wall
region. There is a vast amount of empirical evideace that these turbulent
stresses and also the mean flow field properties can be described entirely in
terms of the wall state, wall fluxes, thermodynamic and transport properties of

-11-
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the fluid, and the normal coordinate y. Since the streamwise coordinate does not
enter the solution for this region, the problem becomes a one-dimensional initial
value problem. Eliminating s derivatives from the continuity equation and neg-
lecting variations in r due to the thinness of the layer results in

dlpv) _
a_E_.y =0 (35)

or
pV = p V. (36)

where the subscript w refers to the wall value. Thus the wall injection rate,
PV which may be a function of s, determines the transverse mass flux through
the entire wall region. Using the same technique for the momentum equation and

substituting equation (36)

= du _
PV = pl{v + eM) 3y Ty (37)

where the wall shear, Ty is also typically a function of s. For flows over an
impermeable wall with constant properties, this equation reduces to

plv + eM) g% =T, (38)
or
T=T, (39)

indicating that shear can be considered constant in the wall region. For flows
with injection or ablation, it is seen that shear varies with the mass injection
rate and local velocity, that is,

T =T, toeVN (40)

This one-dimensional description of turbulence in the wall region will be useful
in formulating a mixing length model for eddy viscosity as described in the fol-
lowing paragraphs. It should be made clear however, that only the wall region
turbulent shear stress is assumed to behave in a one-dimensional fashion. 1In
the solution procedure, the complete two-dimensional equations of motion are
solved over the entire boundary layer.

~12-
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§

A complete investigation of the validity of the mixing length postulate for %

flows with injection has been reported in reference 12. The analysis used in .

this investigation is an extension of that work; therefore, the reader should 2
refer to reference 12 for more details. § 3

£

Because of the current lack of understanding of turbulenrt mechanisms, "theo-~
retical” predictions of the variation of turbulence near the wall must rely on
empirical input into relations based on some phenomenological dependence. The y
generality of the ultimate goals of this analysis and the desire to approximate ’
the physical situation dictated certain prerequisites for the turbulent transport
relations. These were:

a) The relations must indicate a continuous variation of the turbulent

transport properties from the wall to the fully turbulent region

b) The relations must be generally applicable to mass, momentum, and energy ;
transport

c) The relations must be applicable to compressible or incompressible flows
with real gas properties

d) The relations should be suitable for transpired and untranspired bound-
ary layers without any, or a minimum, modification of form.

Two basic variations of the eddy viscosity hypothesis have been proposed in
the past. The first type predicts the variation of turbulent viscosity from the
wall to the fully turbulent region. Reichardt, Rannie, and Deissler, in refer-
ences 13 through 15, have proposed such variations. The second type of hypothe-
sis involves a variation of mixing length from the wall into the fully turxbuient
portion of the boundary layer. Rotta, von Kdrmdn, and van Driest (references 16
to 18), have adopted this procedure. Data indicate that surface mass addition
strongly affects the eddy viscosity profile, and it was found that the first
type of hypothesis could not be simply modified to predict this variation. On
the other hand, success of the mixing length theory in predicting profiles in
the fully turbulent portion of the boundary layer with surface mass addition has
been noted, for example, in references 19 and 20. It has generally been concluded
that the slope of the linear relation between mixing length and distance from the
wall is insensitive to surface mass addition. As a consequence of this apparent
generality of the mixing length approach, it was adopted for the present studies.

The basic mixing length postulate can be expressed as

2
{(ovy'u’ = p&? (%%) = pey %% (41)

where the mixing length, %, is a combination of various correlations, but re-
tains some relationship to the scale of turbulence. Prandtl proposed that this

-13-
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length will, in its simplest form, be related to the distance from a wall, at
least in the region of development of turbulence. His proposition that

g% = constant, K (42) 1

has been tested under a variety of conditions and found to be quite adequate in
the fully turbulent portion of the wall region.

As the wall is approached however, this simple relation is no longer appro-
priate, and, in fact, it can be shown theoretically that

£im 2
y+o 0
(43)
2im %& =0
yro %

This is a consequence of the Reichardt-Eilrod criterion (see reference 12). Thus,
two criteria are specified, namely, Prandtl's hypothesis which is appropriate in
the fully turbulent portion of the wall region and the Reichardt-Elrod wall cri-
terion as expressed by equation (43).

Several means o expressing a relation covering the full range of y and in- .
cluding these limiting criteria have been used by other investigators. It is
advantageous in considering extensions of mixing length theory to establish some
physical logic for the selected relation. Unfortunately, the understanding of
transition from the laminar to the turbulent portions of the layer has not
reached a state permitting any quantitative specification. Therefore, the se-
lected model can he based only on qualitative understanding of the process, di-
mensional considerations, and the above limiting criteria. These criteria are
satisfied for incompressible flows by a simple implicit relation of the form

as
iy © (Ry - %) (44)

which implies that the rate of increase of the mixing length is proportional to
the difference between the value postulated by Prandtl (Ky) and its actual value.
This rate of increase is assumed to be augmented by the local shear and retarded
by the local viscosity. Using these parameters to nondimensionalize the above
relation yields

£ ky - 0 iZe (45)
Y s

-14-
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where y; is the constant of proportionality. The coefficients K and y; were
shown in reference 12 to be invariant for a wide variety of flow conditions at
values of 0.44 and 11.83, respectively.

For compressible flows, the physical arguments must be changed somewhat.
Rather than describing the scale of a turbulent eddy, it seems appropriate to
describe the mass of the eddy, pf, with respect to the mass available, f p dy.
Thus, by analogy to eguation (44), the rate of increase of the mass of an eddy
will be taken to be proportional to the difference between the mass available
between the wall and the point of interest (times an appropriate constant) and
the mass of the eddy:

y
%g{;}-«x/ pdy - p& (46)

Nondimensionalizing as above,

dpi _ Y - Y1/p
3§L— (K‘/; pdy pz) + (47

YoV

The constants K and y: are left at their incompressible valuas of 0.44 and 11.83
for the time being. The integral-differential character of this mixing length
equation indicates a difficult solution procedure in the physical coordinate
plane. However, in the (n,f) coordinates introduced by the Levy-Lees transfor-
mation, the mixing length equation simplifies somewhat. This will be discussed
further in Section II.3.

For the special case of constant properties and zero injection {(constant
shear), equation (47) can be integrated to yield

+
% = %2 y+ ~ y; 1~ exp(} 1;) (48)
T Y,
where
=
= o/ ¥
u, = 5
(49)
yu
AR §
Yy =

-15-
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It can be seen that the Reichardt-Elrod criteria is satisfied at the wall. For

large y, Rotta's (reference 16) expression

_Kv o+ _ o+
z-uT (y ya) (50) 1

is obtained. This special case result for constant property zero injection flows
is not used in the general analysis technique presented here.

b. Wake Region

The wake region of a turbulent boundary layer is so named because the
flow in this region tends to have a wake-like character. In particular, the
outer 80 to 90 percent of the boundary layer combined with the local turbulent
eddies dominates the mixing processes within the flow, and the viscous effects
become second order. Gradients in the wake region are typically much smaller
than those of the wall region. Since the pressure gradient and streamwise deriv-~
ative terms are important in the wake region, the two-dimensional character of
the turbulence must be considered in its entirety, as opposed to the approxima-

tions of the wall region.

A fortunate feature of the wake portion of the boundary layer is that eddy
viscosity is nearly constant across this region, at least for equilibrium* in-
compressible flows. 1In particular, Clauser (reference 1ll) was able to relate the
eddy viscosity to edge velocity and a length scale &% .

€y = 0.018 uls* (51)

for a great quantity of experimental data taken in equilibrium flows.

The quantity &* in this relation is the displacement thickness

< [T, - _pvu
6*—-/ (1 3g-q>dy (52)

o
in which the densities cancel out for incompressible flows. For compressible

flows, this length scale is inappropriate since under some conditions 6* can be
negative. Defining a velocity displacement thickness as

e
Equilibrium as used here refers to a particular pressure gradient, (6*/Tw)
(dP/dx), which results in self-similar velocity profiles (reference 11).

-16~
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* _ © u
Gi = (l - q)dy (53)
o]

the eddy viscosity in the wake portion of the flow will be taken as

= * \
A satisfactory technique for choosing the correct €m expression at any particu-
lar body station is to use the wall region expression

€y = L2 ay (55)

until €M exceeds the wake value, equation (54), at which point €y is held con-
stant at the wake value for the remainder of the boundary layer thickness.

c¢. Boundary Layer Transition

As can be seen from the form of the conservation equation, both the
molecular and turbulent transport terms are considered simultanecusly. This is
necessary since an accurate description of the turbulent boundary layer requires
that the time-averaged fluctwation terms disappear near the wall. Another rea-
son for the inclusion of these terms is the description of laminar or transi-
tional flows. From the form of equation (54), it can be seen that for very small
6; the turbulent stresses will be small compared to the laminar ones. Without
any constraints on the equations as stated above, kinematic and eddy viscosities
are equal at a velocity displacement thickness Reynolds number of 56:

*
L= Eﬂ _ 0.018 “151
v v
S ReG* = 56
i

This "natural" transition Reynolds number is too low for most situations, there-
fore €y is artificially set to zero until some other criterion is satisfied. A
Reynolds number on momentum thickness, Reg, is currently used to trigger transi-
tion. Once the prespecified transition value for Re, is exceeded, turbulent
transport rroperties are immediately brought into the solution. Being a non-
similar solution, the influence of the upstream laminar profile is felt for some
distance downstream, thus simulating a transitional region which is not too un-
like the physical situation.

-17-
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3. COORDINATE TRANSFORMATIONS

The equations of motion for a boundary layer flow can be solved in the phys-
ical (s,y) plane by numerous techniques, however it is generally advantageous to
transform the problem to another coordinate system. The transformed coordinates s
offer the advantages of nondimensionalizing the solution, confining the solution
to a narrower region, minimizing changes in the dependent variables, simplifying
boundary conditions and occasionally result in the deletion of streamwise deriv-
ative terms. This latter possibility occurs only under very restrictive sets of
boundary conditions. The coordinate transformation in the present analysis is a
variation of the Levy-Lees transformation and is derived in its entirety in Ap-
pendix I. The standard Levy-Lees transformation takes the form

«

LE]
£ = f Prugu o ds
[¢]

K
! fyp ay
V2E o

(56)

3
I

The first alteration of this transformation is actually a mathematical conven- ¢
ience for carrying out the numerical solution. Introducing a stretching param-~
eter ay in the normal coordinate, a new coordinate system is defined by

E=¢
- =N (57)
" a

The parameter o, is taken as a function of T only and is determined implicitly
during the solution. Its purpose is to strewch +tr2 n coordinate such that the

boundary layer remains of constant thickness in the N coordinates.

Since a new variable aH(E) is introduced, an additional relation is required
This is conveniently supplied by constraining some arbitrary point near the bound-
ary-layer edge, ﬁc, to have a specified streamwise velocity, c, near (but some~
thing less than) the edge value:

— (58)
nedge ‘

£!
C

-18-
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where f is the transformed stream function defined as

n n
= U an = U an
£f- £, -/ a7 an = ay / ¥ dn (59)
o

£' = q, 3 {(60)

Examples of the utility of the stretching parameter a, are contained in refer-
ence 2.

The second change in the Levy-L¢es transformation has to do with the trans-
verse curvature effect. For very thin axisymmetric bodies, it is possible to
have boundary layer thicknesses on the order of the body radius r,e In this in~
stance, it is necessary to treat r as a function of y, thereby including its
variation through the boundary layer. The coordinate transformations become

Lag b
i

S 2k
= PruIH Ty ds
o

(61)

=
]

u Y
__l_.._ / erdY
Oy J2§ °

Utilization of the above coordinate transformation relations results in a
new set of governing equations in the (E,ﬁ) coordinate plane which will be given
below. The hat (") notation will be dropped for the remainder of the text for
simplicity, however { and n are given by equation (6)). Primes will refer to
derivatives with respect to n except when noted otherwise.

The global continuity equation is automatically satisfied by the definition
of a transformed stream function £(g,n), shown in equation (59), and redefined
here in the final coordinate system:

n

— u
f-fw—aH/a—dn (62)
A 1
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g PV
£ = - 3 YW g (63)

w o K
2T J,  Paup T,
The other governing equations will be discussed separately.

Streamwise momentum equation

o H

[ 1

M
tc(1 + -4 0
g0 4 |— )f" + e<a2 2. f"")
” p

¢ 1ln o
= « of' - f12 H - €" of
2<f snE ' vmE " v (64)

In this equation, utilizing the technique of reference 21, the transverse curva-

ture effect is included entirely in the coordinate transformation and in the def-
inition of t:

2 20, v2E cos® A
tz(ri)=1+-—“———2—/bl-dn (65)
[o] ulro

where 8 is the angle between the surface normal and a plane ncrmal to the body
centerline (see Figure 1l). Other definitions of interest are:

= U

C = Py (66)

8 = 2 9 1ln ul 67)
- ? In £

For solutions without consideration of transverse curvature, t is set to 1.0
throughout the boundary layer.

Turbulent model egquations

The turbulent fluctuations are related to the mean field through the eddy
models described in equations (2), (12), and (18). Eddy viscosity is described
by a wall law and wake law, while eddy diffusivity and conductivity are related
to eddy viscosity by turbulent Schmidt and Prandtl numbers:
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€
Sc, = & (68)
)
‘ €
- M
Pr, = — (69)
t EH
Defining 3
§ = ___.5_»’2"'( (70)
P1¥1%o 1
s _ pl
L=z L
3;3 (71) |
_ P96 :
R66 = 1‘1 (72)
2
pe
A M
Ey 51i; (73)
The wall region eddy viscosity relation becomes
. p(Rec) -~
&y = LEE" (wall region) (74)
P1oq
2
g, = 0.018 (E—) Re,,  (wake region) (75)
VAN

where

* - Cf pl
§; = Say /(1 - E)p— dn (76)

Transverse curvature is not considered in determining the wake region length
scale 6{. The governing equation for wmiuing length, which must be solved for
the entire boundary layer although it is used only in the wall region, is

ap _ Py 8rT/p 7\ )
aﬁ = ——-—-—Y+u — <K(‘LHH‘2/ (77}
a
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Since mixing length is used only in the wall region, it is valid to use the one-
dimensional expression for shear stress, equation (40). In transformed coordi-
nates, this becomes

u? p, IC_ £" PV
T 2l w w  ww (78)
p aH p aa Re6 plu1

Energy equation

. ' , 3By Y
Ehy *{*“q; * q;.’] = 2(f TIhE M S—rn—r> (79)

where q; is the normalized diffusive energy flux away from the surface including

turbulent fluxes and q; is the normalized radiant energy flux toward the surface:

q3 = q,/o* (80)
9 = q,/a* (81)

The flux normalizing parameter a* is defined by

K
RS by L S

V2%

o (82)

Diffusive energy flux q, in the transformed coordinates is defined later in thisz
section.

"Elemental" species equations

~ EM =~ ' aRk ~, of
[ & = ] - '
fxi + t(aHSct Kk Jk) + aﬂ¢k 2 3 In £ Kk 9 1ln ¢ (83)
where ji is the normalized diffusive flux of "element" k:
s 4
3, = dfa* (84)
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o

Diffusive fluxes

R PR

The normalized diffusive energy flux is given by

PR 'N

C. 2n
__C |ggn 1 [~ ~ C
-l uf ¥ EE T 4 = h"(° + o )T'

e B

' o -
+ °tRT“3 + (h h + ctRTu3)“i

> C .
e .5 1 - \ )
—aH [_0‘;‘;— ul + Prt T + ﬁ: (h' - CPT' )] (85) 4

where Pr is the Prandtl number based on the frozen specific heat

Pr

C.u
_g_ (86)

The turbulent contribution to the diffusive energy flux is contained in the last
bracketed term, which is left uncombined with the other terms for clarity. The
fact that the gross simplifications of the turbuient model are included in the
same equation with the rather sophisticated unequal molecular diffusion model is
merely a mathematical convenience stimulated by the requirement for calculations
in all types of flow situations, including both laminar and turbulent flows. Un-
equal molecular diffusion and thermal diffusion effects may be important in the
laminar sublayer region of a turbulent boundary layer, however.

Normalized molecular diffusive flux of species i is

it =~ L [Ei + (2 - ﬁi“‘i] (87)

aHSc
where Sc is a system property defined by

ulum
Sc = (88)
PDU,

The Sc is a Schmidt number based on the self-diffusion coefficient for a ficti-
tious species resprasentative of the system as a whole. The normalized molecular
diffusive flux of the kth "elemental" species is
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Lk C - ~ -~
e [Z,; + (3 - Kk)u‘;] (85)

When certain groupings of parameters are constant so that the flow simi-
larity assumption is valid, the terms on the right-hand side of the conservation
3 equations (equations (64), (79) and (83)) vanish, in which case the conservat.on
] equations become ordinary differential equations. It should be emphasized that
the equations as presented herein are equivalent to the corresponding boundary-
layer equations presented in Section II.l. That is, no similarity assumptions
have been made in their development.

Equations (82), (67), and (63) for a*, B, and fw' respectively, are inde-
terminant at the stagnation point of a blunt body. Special forms for these equa-
tions valid at the stagnation point are shown in reference 2 to be given by

]
* du
%p = | P14 51///8

cals

(90)
sp
E £ ( /ot ) (91)
A = ~{p Vv /a
wsp wWw sp
where for Newtonian flow
Bsp =1/(x + 1) (92)
and
du 1/2
1 -
ds - (zp/p)sp N (93)
sp

with R gg @D effective nose radius taking into account the shock shape. Alter-
natively, Bsp and (dul/ds)sp can be computed from curve fits of the inviscid
pressure distribution. The transverse carvature parameter t also requires some

special treatment at a stagnation point. The troublesome term is cos e/rO

3 which is evaluated at a stagnation point by
] r /2
o
(cose ) = e dz(1-'_5—) (94)
b3 sp 2
o ds
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In addition, to improve the accuracy of numerical integration procedures
in the nose region, % and fw can be computed by the following relations

2K+2
2
_ 1 ° (“_1) (fg) ) d(s2%t2) (95)
E= T+ D P1M1 \5) \ s N
°
-/, s¥tl r «
2
£0 = - Yé—%LI) J[ PuVw <*§) d(SK+1) (96)
0

which take advantage of the fact that ul/s and ro/s vary more nearly linearly in
the stagnation region than do Uy and r,- These equaticns are alsc discussed
more thoroughly in reference 2,

4. BOUNDARY CONDITIONS

The usual set of boundary conditions for the boundary layer flow problem
consists of the specification of initial profiles for the dependent variables
£, Hp, and Rk’ plus additicnal specifications of these guantities along the
wall ané at the edge of the boundary layer, and the specification of fw along
the wall. However, since the main utilization for the analytical technigue pre-
sented here is to compute boundary layer properties for flows over ablating or
transpired surfaces (heat shields, rocket nozzles, etc.), these boundary condi-
tions have been greatly generalized. The numerous options resulting from this
generalization are discussed below.

The boundary layer edge conditions typically are found from an isentropic
expansion from known elemental gas composition and stagnation conditions. Thus,
given a set of stagnation conditions and a description of local static pressure
along the surface of interest, the techniques of reference 7 may be used to es-
tablish the entropy of the gaseous mixture which, when combined with the speci-
fied pressures, can be used to establish the complete equilibrium edge gas state
at each body station. Edge boundary conditions then would consist of

] -
fedge = ¢

H
H = H | (97
Tedge Tedge i actual )
R = K
kedge kedge | actual
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where the subscript "edge" refers to conditions specified at nedge » chosen to be
outside the boundary layer (see Section II.3). An additional constraint at the
boundary layer edge which is necessary only when cubics are used is the require-

ment of zero slope; i.e.,

fedge =0
]
Hedge =0 (97a)
~ 1
=0
Kkedge

It is possible to specify edge entropy as well as pressure. The techniques of
reference 7 are then used to establish the complete edge gas state for a non-
isentropic expansion around the body of interest.

Initial profiles of £f°', HT, and Rk are more difficult to establish for
the general problem, therefore calculations are often started with reasonable
assumed profiles far upstream of the region of interest so that effects of erron-
eous assumptions will die out. Another possibility for initially laminar prob-
lems is to assume a similar solution as a starting profile. This assumption
reduces the equations to ordinary differential equations at the starting point,
which may be solved simultaneously for a set of prcfiles unique to the assumed
edge and wall state. The similar solution is exact at a body stagnation point,
therefore this option is particularly valuable for blunt body problems.

The wall boundary conditions allow the widest selection of options. The
simplest combination is the straightforward assignment of velocities, enthalpy,
and elemental concentrations at the wall:

. ,
fw =0 no slip
£, = £, (&) specified o v
Hp = h (§) specified enthalpy of gas (98)
w at the wall
K =K (&) specified wall gas elemental
w Rw composition*

Wa.l temperature may be used to find wall enthalpy in the above formulation.
Also, wall mass diffusive fluxes of up to three individual injectants may be

* ] 3, s . .
It is physically unrealistic in most cases to assign ka when diffusion coeffi-

cients are unequal since the contribution to Rkw by preferential diffusion of
the various "elements" to the surface is not known a priori.
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assigned in lieu of ikw and p v, . With the values of the dependent variables

all directly assignea in this manner, the boundary layer problem is uncoupled
from the surface chemistry interaction.

The inclusion of surface material/boundary layer gas interaction chemistry
in the boundary layer problem forms the second major set of wall boundary condi-
tion options. Using the surface thermochemistry techniques of reference 7, it
is possible to specify given mass fluxes of the (up to) three injectants at the
wall and require chemical equilibrium between the injectants, the wall material,
fnd the adjacent gas stream. 1In this instance, the values of HTw {i.e., Tw) and
ka are found by simultaneous solution of the local surface chemical equilibrium
equations, surface mass balances, and the no-slip velocity boundary conditions.
Alternatively, selected chemical reactions at the wall can be kinetically con-
trolled through Arrhenius-type rate law formulations and included in the surface

chemistry description,

In the use of this boundary layer technique in conjunction with in-depth
charring ablation analyses, the chemically active injectants might result from
the pyrolysis of an internally decomposing material, surface material combustion
or phase change, and mechanical removal. A variation of this type of wall boungd-
ary condition is to specify the wall temperature or enthalpy and allow the sur-
face chemistry calculations to compute the necessary ¢ and Rk". In summary,
the surface equilibrium wall boundary condition is "

7
W\W

f& = 0 no slip
£, = £,08) specified R
HTw = HTW (99)
. equil from surface equi-
K, = ik librium reguirement
v wequil

The final wall boundary condition category involves the use of a steady
state energy balance at the surface. A general surface energy balance can best
be understocd by examination of a schematic representation of the energy fluxes
to an ablating or nonablating (ﬁc = 0) surface:

éa ér (ov) by, infinitesimally thin
control veclume at
_{ _’ i surface
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Summing terms,

0 (100)

which is valid in either a transient or steady-state situation. 1In general, an
in-depth charring ablation solution would be needed to provide the conduction
term écond and the pyrolysis gas rate, ﬁg. Under steady state conditions, the
internal pyrolysis "front" and the charred surface are assumed to be receding at
the same rate, therefore requiring that the energy conducted into the wall mate-
rial must equal the enthalpy rise of the wall material and pyrolysis gases. 1In
equation form

m_(h

o] . o, _
9cong T M T hc) - mg(hg - hg) =0 (101)

W w
Substituting into equation (100), the steady state energy balance becomes

ay " érw - (V) b, + ﬁchz + ﬁghg =0 (102)
In this equation, éaw is the wall value of the energy flux defined in equation
(85), and is found in the course of the boundary layer solution. The surface
equilibrium requirement is always used in conjunction with the steady state en-
ergy balance. Therefore, if one specifies the compositions and heats of forma-
tion of the pyrolysis gas and char materials, the simultaneous solution of the
energy equation above and the surface chemistry relations mentioned earlier com-
pletely couples the boundary layer flow to the surface response. The steady
state assumption is good even in transient situations for large ablation rates
or small thermal diffusivity of the ablation material (reference 22). In sum-
mary, the use of the steady state energy balance results in the following:

] — -~ .
fw =0 ne slip
HT = HT steady state
w L. energy balance
U (103)
£, = £
w w .
equil surface equilibrium
Kk = Rk requirement
v wequil
-28~-
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SECTION III

INTEGRAL MATRIX SOLUTION PROCEDURE

The solution of the transformed boundary layer equations presented in Sec-
tion II uses an integral matrix method which has been developed specifically for
the solution of chemically reacting, nonsimilar, coupled boundary layers. A com-
plete presentation of the integral matrix procedure was included in reference 2,
where solution of laminar flow problems was discussed. In the present effort,
this technique has remained essentially unchanged, however new variables and
equations have been added to describe the turbulent aspects of the flow and to
include transverse curvature effects. The present discussion will therefore re-
view only the highlights of the method, and the reader may refer to reference 2

for more details.

In the integral matrix procedure, the primary dependent variables and
their derivat.wcs with respect to n are related by Taylor series expansions such
that these dependent variables are represented by connected quadratics or cubics
(either option is available). That is, f', Hpy and ik are expanded in Taylor
series form and the series are truncated to reflect the proper polynomial repre-
sentation. A nodal network is defined through the boundary layer and the Taylor
series expansions are assumed valid between each set of nodes, with an additional
requirement of continuous first and second derivatives (a spline fit). Primarily
for convenience, the conservation equations are inteqrated across each "strip"
(between nodal points) using a unity weighting function., The linear Taylor ser-
ies expansions together with linear boundary conditions form a very sparse ma-
trix which has to be inverted only once for a given problem. The nonlinear
boundary layer equations and nonlinear boundary conditions are then linearized,
the errors being driven to zero using Newton-Raphson iteration.

In Section III.l, the Taylor series expansions are presented, the inte-
grated form of the momentum equation is discussed, and techniques for evaluati.g
integral terms are demonstrated. In Section II1I.2, the special techniques ap-
plied to the mixing length differential eguation are discussed, and in Section
II1.3 the actual simultaneous equation solution procedure is summarized.

1. INTEGRAL STRIP EQUATIONS WITH SPLINED INTERPOLATION FUNCTIONS

Consider the boundary layer in the region of a given streamwise station s
as being divided into N-1 strips connecting N nodal points. These nodal points
are designated by uf where i = 1 at the wall and N at the edge of the boundary
layer. Consider a function p(n) which with all its derivatives is continuous

-29.-
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in the neighborhood of the pcint n = n;. Then, for any value of 7 in this neigh-
borhood, p(n) may be expressed in a Taylor series expansion as

- ' " (én)z QL) (67])3 1y (671)“ .y
Pigy = P; ¥ pién *P] S5t P piu - + ... (104)

where
n = n. - n; (105)

i+l i

Conventional finite difference schemes, in effect, typically truncate the Taylor
series after the first term and use the resulting expression to relate p' to p,
etc., that is

p!:pli‘].‘_-__}ij;

(106)
1 &n

Round-off error is then of order (6n)? and many nodes must be chosen to bring
this value down to acceptable limits. One can achieve a reduction in the number
of nodes for a given accuracy by employing a quadratic or cubic relation repre-
senting the function p over the interval of interest. This can be achieved by
truncating the Taylor series after the third or fourth term. The cubic approxi-
mation will be used for the remainder of this discussion. The p; can be consid-

i'
est derivatives of the dependent variables which appear in the boundary layer

ered to be any of fi' ! f;, fi“, HTi, H+ilﬂ%i' Rki'i*i'or Kii. Since the high-

equations are f;', H§i and iﬂi, it is reasonable to truncate the series at the
next highest derivative and to consider that derivative as being constant be-

tween N and N4l that is,
Fon - 1
Cfry o i+l £
itirl on
" - [X]

" HTi'“l HTi

. _ 3
iHT. = =5 (107)

i+l

" - "
.ga" = Kki+l Kki
PR on

Thus, rather than using finite difference approximations similar to equation
(106) which are substitued directly into the governing differential equations,

-30-
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a set of linear relations between the dependent variables and their derivatives
is obtained and is solved simultaneously with the governing fifferential equa-

tions. These linear relations are of the form

2 3 3
- £+ £+ El6n 4 f;&is-'z‘—’— + £ (‘Sg’ + e ig-]’— =0 (108)
2 2
= Pjyy t Pyt RSN+ opy —"(63) * Pis1 “""—(62) =0 (109)
i .6
~ Pisqa Y Py YR} §2ﬂ + Pl T =0 (110)

where in equations (109) and (110) the p; represents fi, represents HTi, and
represents each of the K sets of iki'

Notice that f' has been taken to be a cubic over each strip, rather than
the stream function, £, since it was desired to represent velocity (u = ulf'/aH)
with the cubic. Equations (108) through (110) above, when written for each adja-
cent pair of nodes; give (3 + 2K) (N - 1) simultaneous algebraic equations for
the N(4 + 3K) + 1 unknowns, £, £1. £3, £1', ay, Hp , Hén, Hp Rkn' Rin' Rﬂn
at each streamwise station, where K is the number of elemental species.* The
Taylor series equations are written for only K-1 species since the overall mass
bialance equation supplies the remaining elemental concentration. Additional re-
lations must come from the governing differential equations and the boundary
conditions. It is important to note that the £, f', etc., are treated as indi-
vidual variables related by algebraic equations. It is also important to note
that the coefficients in equations (108) through (110) are functions of én only;
therefore, this portion of the resulting matrix need be inverted only once for a

given problem.

The conservation equations (64), (72), and (83) contain streamwise deriva-
tive or "nonsimilar" terms. In the present solution technique, two or three
point finite difference formulas are considered sufficient to express these de-
rivatives, since gradients in this direction are not severe. As in reference 2

a() =
2[m]z—do( )Q,+d1( )2_1+d2( )2_2 (111)

vhere ( ), ; refers to the previous streamwise station,

v

*
The mixing length is not included in this variables count since mixing length
(as well as €y in the wake region) is treated as a state property.
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N d, = — ;, 4 =2 - ———, &, =0 (112)
: °  ghey ! 2Be-1 2
ﬁ?g for two-point difference and
A A
3 d(): 2 2 z—l z i’ 2-2 , d,=-2 QAQ-Z .
| 200-1 28%e-2 T L Tl a8y v
K WL (113)
! =2 X % L:;-—-
N 2 abge2 g-18ge,
g for three-point difference where typically
i; 2A£~1 = 1ln £y - in &2_1 = ln(gg/az_l) (114)
3 The three-point difference relation is generally used unless a similar solution
J;% is desired (in which case do = d1 = d2 = Q) o. unless the point in guestion is
e the first point after either (1) a similar soluiion or (2) a discontinuity (e.g.,
. where the body changes shape abruptly, or where mass injecticn is suddenly ter-

o minated).

. The next step in the treatment of “he conservation equations is their in-
tegration acvoss the boundary layer "strips". The primary reason for this inte-
%3 gration is to simplify the n-derivative terms in the energy and species conser-
vation equations. since it is not convenient to express the complex q; and jﬁ

E terms in derivative form. The solution can actually proceed very nicely with-
s out integrating across strips (see reference 10) without any noticeable change
in speed, accuracy, or stability for simplified problems such as incompressible,
nonreacting fu .s. The weighting function for integration between nodes in this
P integral method is unity. 1In the terminology of the general method of integral
‘43 relations, where integrals are carried from 0 to «» in n (reference 23), a square
wave weightin~ function is used which is unity across the strip in question and
zero elsewhe~e. The equaticns are then integrated N-1 times with the <guare

: wave applied tc each strip in succsssion. Using che momentum eanzcion as an ex-
B amplw, the integration from i-l to i results in
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i t(c + EM) l i Py
f ££"dn + | —————— £"|  +Bal / —=dn - s/ £'2an
dy H p
i-1 i-1 i-1 i-}
i i
= - 2
= / £1(a,f' + ayf) , + dfy L)dn f f! [doln ay
i~ i-1
i
i-1
+ d, €, o)dn (115)

The Taylor series approximations introduced earlier can also be used to express
the integral terms above. As demonstrated in reference 2, the term } lf'p dn

l—
becomes
rl
fl f: l.l it LN}
j pAn = £ XPy+ £ xp, 4 £ %P, 4 £1" XP, (116)
-1
where
= 6 . 6n n (8n 2 " (5n)2
*P1 ”(Pl R R
o ,&'Pi 61 11(6n}?
xl)z = (‘Sv;} —2— - pi —3- + p; _I:( 'ro_n" + p; 1 (Gn )
\ (117)
XP w  5(6n)?
3 17420 ~ * Pi-1 7507 )

P &1 v 5(8n)2 w  (6n)?2

\
. (Gn)s<%§ - py UM, L Li(en)
(zz'° P{ 30 * Pi S04 ~ * Pi-y '533‘)

This technique is used to rewrite each of the integral terms in equation (115)
abova of the form J;}l f'p dn. The remaining integral term in the momentum
equationfl (pl/p)dn, and the "elemental® scurce term in the "elemental" con-
sarvation equatlon are evaluated by approximating these functions as cubics over
the strip and integrating directly. This yields

i |
P an {2, P Yen, /o105 °1"i~1\ n? (118)
o P pi_1/ 2 2 2 12

i-1 Pj Pi-1 /
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Similarly for the integral of ¢

i
f 0y dn = (o, + ¢ki_l) Sn - (¢,;i - ¢,'<i_l)ii—“2)—2 (119)

i-1

These approximations are not quite as good as the approximations for f', HT and

Ky since continuity of derivatives is not guaranteed at the nodal point.

Direct substitution of these approximations for integral terms into the
governing equations results in the following forms.

Momentum

t(C + EM)

[11 1
— £" + £ ((1 +A)E + A f, )+ dyE,
i-1

" " - "
+ fi XP3 + fi_lXP4 2 fj'-ZPl + fiZP

t f'-” ZP
= H
p. f.

2

+ £ _7p =0
i-17"4 p;=f! (129)

[t(— q; + q;) + Hy, Ql + dO) f + dlfz—l + d2f2-2

(1 + 2do)l}ixpl + £1XP, + £1'XP, + f;;lxp4]

- " n 111 4
[fizpl + £i2P, + £1' 2Py + fi_lzp4]

H, 2P, + H.) ZP, + HY ZP, + HJ A ] = 0 (121)
[ R R S S Rt P 51

Lo
Y
|

A S B CO R AR Y SR kit
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DY SRV,

"Elemental" Species

(1 + do) £f+4d

o+
Q
.'I:m -
QX
[ad
=
-
i
[UN
~*
N—
+
-
/‘\

i
f + d, £
1 "2-1 2 4-2 ) i-1

(6n) ?
+ ¢, + 9 b ¢! -~ P! ——
o (50 )P - (o )

- (1 + 2d0) [fi XPl + fi'xpz + fi" xp3 + fg:l XP4]
P;

=%,

1

- | £ 2P, + £ 2P, + fi** Zp, + fi''. ZP
[-1 1 i 2 i 3 i-1 4] _
p; = Ky
-1% zp, + R zp, + K 2ZP, + K ZpP ] = 0 (122)
[Kki I I A

P; = £}

The following definitions are necessary:

_ - 8n (Sn) 2 (6n)?
ZPl = 6n <YP1 YPZ W + YP3 -8 + YP4 T
Yp 2 2
- . 1 sn 11(8n) (6n)
zp, (8n) < 3 YP, S5 + YPy ==y7p— t+ YP, -5 )
(123)
YP 2 2
_ N Gt 116n 11(8n)?, ., 5(8n)
28y = (6m) (—e'“ YRy Tz * YRy Tqmm YRy _5‘0'71'>
YP 2 2
2P, = (&n)° 1 _ n 5(8n) (én)
4 = (8n) ('EZ YP, 35 * YP3 554 — t YPy “3%2
with
YP) = diPyy,i * 9Pgon,i
YPy = d1pg 3,1 T doPpoa,i (124)
YPy = dippy,; T doPgoa,i
YP, = dipg y,5-1 * 92Ppo, i1

-35=~
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and P is defined adjacent to the brackets in each term that uses these defini-
tions.

The conservation eguations provide (K+1) (N-1) more equations for the
N(3K + 4) + 1 unknowns, thereby closing the problem. However, before discussing
how this set of algebraic equations is solved, Section III.2 describes in detail
how the mixing length differential equation is solved.

2. SOLUTION OF THE MIXING LENGTH EQUATION

The mixing length equation is a first order linear differential equation
whose solution can be written directly in general terms. The differential equa-

tion is
g.: = M (Ku, n _i) (77)
danr + H
YaH
Defining
aledV17p
P(n) = —_— (125)
YaH
results in
Q: = (Ko,.n ~ 2P (125)
dn H o
The solution to this equation is
n)
P dn'
fn efo dn']
5 [}
L = KU.H n - (127)
f "p an’
o)
e
The remaining problem is to evaluvate the integral terms. Defining
nl
P dn"
n
_/~ e” © dn'
L(n) z =2 - (128)
f P dn'
e ©
_36_
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yields

g = Koy (n - L) (129)

Appendix II presents a complete description of the technique used to evaluate
L(n). In essence, P(n) is assumed to vary linearly over the interval n;_; to
Ty and the integrals are expressed in a more tractable form. The final expres-

sion is
2P, AP, |
= J ___}_ - . i-1 ,
Li = BLy 4 + A{Dw< 2) B:)w<__2___) ’ (130)
where
X
ZAﬁi
A= |p——i (131)
Pl Pi-l
_An_[Pi"Pi-l]
Bze * 2 (132)
Ani R PR PR (133)

_en2 U 2
b () =e ') JC Mgy (134)

The Dawson Integral, Dw( ), can be evaluated from tables (reference 24) or by a

series method. A series evaluation method is used in the present analysis. Thus,

combining equations (129) and (130), an explicit recursion formula for mixing

length at sach node is obtained. This mixing length is a function of local shear,

viscosity, and density through the variation of P(n), and is re-evaluated at
each node on each iteration during the course of a solution.

3. NEWTON-RAPHSON ITERATION FOR A SOLUTION

A complete description of the Newton-Raphson iteration procedure as ap-
plied to the laminar equations of motion was given in reference 2. Since the
procedure is basically unchanged with the addition of turbulent flow and trans-
versec curvature equations, it will be reviewed only briefly here, with emphasis

on the recent additions.
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To illustrate the Newton-Raphson method, consider two simultaneous non-

linear algebraic equations \

F(x,y}) =0 G(x,y) = 0 (135)

the solution for which is given by x = X, y = §. Define X and Y as the values

of x and y for the mth iteration. The desired solutiorn f(X,y) can be expressed

in a Taylor series expansion

- _ aF(xm,ym)
0 = F(x,y) = F(Xmlym) + (x - xm) 5%
- oF (x_,y. )
+ Uy -y a? o4 ...
(136)
- - SG(xm,ym)
0 = G(x,y) = G(xm,ym) + (x - xm) 3%
_ 3G{x_,y )
Y - yp) a? Loy ...

The Newton-Raphson method consists of replacing (x,y) by (xm+l'ym+l) on the right-
hand side of these expressions and neglectinc nonlinear terms in X+l = *m and
This yields the set of simultaneous eguations

Ynt1 T Yo
F(x_,y ) F(x_,y )
m’¥m m'm _
Axm ox + Aym oy F(xm'ym)
(137)
3G(x ,y, } 3G(x_,y )
m’Tm nm
by ox + by oy B G(xm’ym)
or in matrix form
raF(xm,ym) OF (% ,y ) ) - E(
X 3y “xm xerm)
= (138)
3G(x_,v ) 3G(x_,y.)
m'?n m'‘m
i ax _537—__-] _Aymj i G(xm’ym)d
-38-
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where

Ax = x - X by

m m+1 m (139)

m - Ymel " Ym
The Axm and Aym are the corrections to be added to X and Yo’ respectively, to

th iteration. Here

yield the values of the dependent variables for the m+ 1
F(xm,ym) and G(xm,ym) are the values of the criginal functions F(x,y) and G(x,y)
evaluated for x = X0 and y = Ym® As the corrections approach zero, the F(xm,ym)
and G(xm,ym) approach zero. Hence, it is appropriate to look upon these as errors
associated with the original equation (135). It is apparent that this procedure
can be extended to an arbitrary number of functions and a corresponding number of

primary variakles.

For the purpose of the present analysis, it has been found most convenient
Eo consider the primary variables as fi' fi, f;, f;', HTi, H@i, H%i, Kki’ Kii,
Kﬂi, and Oy This amounts to (3K + 4)N + 1 unknowns where N is the number of
nodes and K is the number of elemental species to be considered in the boundary
layer. Recounting the number of equations, we have

Egn. Numbers No. of Equations
Taylor series expansions (103) - (110) (N - 1)[5 + 2(K - 1))
Boundary layer equations (120) - (122) (N - IY(K+ 1)
Boundary corditions (97).,(97a), (93) 3K + 4
or equivalent
oy definition (58) 1
Total N(3K + 4) + 1

Other secondary variables such as €, p, T, etc. are expressed in terms of those
listed above. The corrections in these secondary variables are therefore found
in terms of the corrections to the primary variables.

The use of the Newton-Raphson technique for the current set of equations
requires the evaluation of the partial derivatives of each eguation with respect
to each variable. The partial derivatives of the Taylor series eguations and
linear boundary conditions are exactly the same as in reference 2. The deriva-
tives of the conservation eguations are:

Momentum
t{C + €, )" A€ Ao
M Af" AC M H At -
— 7t Tt ] T *tT | (1 + do)f + dltz—l + dzfg-z Af?
H M H
i P P}
- - gar P16 sn Pi, o en o,
+ £' (1 + do)Af SQH iz 5 1+ 3 b, Ap1 € Api
i-1
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/ - \2 r p! P [
+ L 1 - ;; 1-1 Bp; o + 8n Bpf_1] )+ Boydn L+ 2
Pi-1 Pi-1 + 0 Pi Pi-1
L N
! p. p! oy + dyay
LY e .1 i-1 by -| 1+ 8+ a - =1 g=2

Afy

PYe r ? A\ " "y "e ") ®
x Lfi &Xpy + £ MXP, + £3' AXP, + f£Y', MXP, + XP,Af: + XP,

1%, dzaﬁz-z\
XP, AV + XP,AfY! - £iXp, + £UXP
3771 47 i-1 =f1 2 / i1 it2
Pi=tj oy

+

+ f;'XP3 + f§L1XP4] AaH - Z[ZPlAfi + ZP2Af£ + ZP3Afg
P

i=f

<+

ZP4Af;Ll] = - ERROR +140)
P

i<t

where the ERROR is given by the left-hand side of eguation (120) evaluated for

the mth iiteration.

Energy

{t(—Aq; + Aq;) + (—q; + q;)At + ((1 + do) f + dlfz—l + d2f£_2>AHT

i
+ HT(l + d°)Af]i-l - (1 + 2do){fi AXPl + f; AXPz + f?'AXP3

7

<+

5 XN " n £t - '
AAP4 + XPlAIi 4 szAfi +XP3Afi'+ XP4AIi_£] [%PlAfi

" - weoo " ~{ap A '
+ szAfi + APBAfi + ZP4Afi_1] [uPlAHTi + ZP2AHTi

+

Ti1 e

ZP3AH%i + 2P L Hp ] = ~ ERROR (141)
p,=f}
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where the ERROR is given by the left-hand side of equation (121) for the mth

iteration and Aq; is given by

-~ 2 ~
(C + €,)£'f"u A€ " Aa cc T
M 1§ AC M Af! Af H p AC
* T - — — - —
Aqa 3 C o + £ + £ 3 Q + o Pr C
(v} € H H
H M
AC Ao £C T [AE AC ba
¢ R4 AT _H_LPr Mp M, p, A H
C T o Pr a..Pr ~ = T o
H H Tt \eM ¢ H
p
2
ciR
. C YT 4 __E__ o ¢ e : ¢ QQ
+ —— |h Cp oo T F CgRTH 4 (h = h + ¢, RTuglug | 5
aHSc 172
L.
- AGH - égg} + _EE__ h' - C 7t ﬁiﬂ - Eiﬂ + S lane
o - a..5¢C p ~ a R *
H Sc H" ™t €M H aHSc
B 2 2
. ciR - CLRT'
-tCc_ + t JAT' - TFAC. + —t A(uyu,) + ¢ _RTU! AT
p ulu2 (1 u )2 172 t 3 T
172
Bug - . Buqy
- [} [} - an —_—
+ ﬁ§' + (h ~h + ctRTuB)Au4 +ouy Ah Ah + ctRxpa .
AT g:M = =
—— ' o | - []
+ 5 * 58S [Ah CpAT T Acp] (142)
H "t
"Elemental"” Species
8K t AR, ba AE
. . M7k K H M At
- * - * e = s — ——
tAjk jkAt + 5 Sc = 3 + - + T + ((1 + do) £+ dlfz—l
HY "¢ Kk H €
M
i
% SNE 1
; d2f2_2) AKk + Kk(l + dO)Af + ay —5-[A¢ki + A¢ki .
i~1 -
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. SY'] ‘- Nl - AN 3 ‘n 4 4+ A L - ’ 6“
— Lowy, ay * - ¥ ¢ - W. ] - Aa
3 < i ki_l> ) [ kT kg k; T %k, ) 6 | %

- ? + I.I f l.ll £ |.l !
(1 + 2d°)[}iAXPl flAXPZ + i AXP3 + ‘1L1AXP4 + XPlAf1

+ KPLAEY + XPAEY 4 xpéAfiLl} - [ZPIAfi + 2P, MY
Pi=Ky .
1
AFM L o " - % by tru
+ ZE A7 Zp 0Ly ] ) [%PlAKki + zpzaxki + ZP3AKki
Py =Ky
x
+ 2P 0Ky ] = - ERROR (143)
i-1
pi=f

where the ERROR is given by the left-hand side of equation (122) evaluated for

the mth iteration and Aji is given by

- Kk)Aua + ua(AZk - AKk) (144)

-

The technigque of relating corrections on secondary variables such as C,
o, T, Pr, etc., to corrections in primary variables was fully explained in ref-

erence 2. ‘The same techniques are used for the new corrections At and A€M.

Once the correction coefficients (partial derivatives with reepect to
each primary variable) for each eguation at each nodal point are found, they
are arranged in matrix form for further manipulation. The order of the primary
variables and the order of the equations is of some importance in the matrix
formulation. It is most convenient to divide the variables into "linear"

(symbol L} and "nonlinear" (symbol NL) sets, namely
AL ' BL | [wi EL
e e B Lol B Rt (145)
ANL ¢ ENLJ AVNL ENL
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where the linear equations are the Taylor series equations and some of the bound-
ary conditions. The purpose of the partitioning is to allow operations on sec-
tions of the coefficient matrix which resulr in significant simplification of

the overall inversion. In particular, since the coefficients of the linear equa-
tions are all constant or functions of the fixed nodal spacing, this portion of
the matrix (the AL portion) can be diagonalized once and for all in any given
problem. In essence, the corrections on the linear variables AVL are always ex-
pressed in terms of the nonlinear variable correcticns AVNL. The choice of
linear and nonlinear labels for the variables is somewhat arbitrary, but care
must be taken that the AL matrix not be singular. It has been found convenient
to arrange the variables into the linear and nonlinear groups as follows:
AVLF(Afz, Af3,..., af., A 20 Afg,... Af;, A i’, Af;’,... Af;’); AYLH (AHTn,

Oy, OHY roee ABp . MHR . AHR ... ORp )} and K-1 sets of AVL, {8Ky . ARk,

AR% rees Kin, &K , AKﬂ seos Kﬂn). Tge nonlinear variables are then arranged
in the following order: AVNL, (day, Af , BAfL, Af:, Afé:... Afﬁ); AVNLI:5 (Aﬂéw,
AHTw, AHTz"'* AHT“_I); and X-1 sets of AVNLK { Kiw, ka, Kkz,... Kkn_l).

The order of the linear equations in the present matrix procedure is:

No. of
Equations Description of Equations
3N-2 Linear boundary conditions and
Taylor series for £, £f', £", £
2N Linear boundary conditions and
Taylor series for Hpo HY, H;
(X - 1) (2N) Linear boundary conditions_and

Taylor series for K. Ki, Kﬂ

The nonlinear equations are sequenced as follows:

No. of
Equations Description of Equations
4 Nonlinear boundary conditions
and GH constraint
N -1 Momentum equation for each pair
of nodes
N Energy equation for each pair of
nodes plus wall enthalpy equation
(K —i)(N) K-1 sets of "elemental" species

equaticns for each pair of nodes
plus wall species equation

Special logic has been written for the matrix inversion, taking advantage
of the regular sparseness of the matrix. Once the corrections for th: linear
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At e —————— e w———— Vo

and nonlinear variables are found, these corrections are added to the variacles
to form the new yuesses. The magnitude of the errors for each equation are
checked and the procedure advances to the next iteration if the absolute values
of the errors exceed prescribed upper limits. If the errors are acceptabie,

' iteration is completed for the current streamwise position £. Typically, three
to six iterations are required to reach a satisfactory solution.
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SECTION 1V

SOME RESULTS FOR MULTICOMPONENT BOUNDARY LAYERS

The fact that the BLIMP computer program works well for a myriad of multi-
component reacting laminar flow situations including stagnation peoints, trans-
piration cooled surfaces and rocket nozzles is well documented in references 25
through 27, among others. The purpose of this section is to present results for
the recent additions of turbulent flow and transverse curvature.

1. ABLATING FLAT PLATE IN TURBULENT FLOW

This sample problem is the formulation of a typical turbulent channel or
turbulent pipe flow situation such as might be found in some of the major test
facilities around the country. The flow stagnation conditions were P, = 43.4
atmospheres, Ho = 2100 Btu/lb. The flat plate model was taken to be constructad
of graphi’- phenolic, and the wall temperature was assigned at Ty = 4760°R.
Assuming that the plate ablates in a steady state mode,the chemical composition
of the virgin material exactly equals the chemical composition of the char plus
pyrolysis gas ablation products. The chemical composition of graphite phenolic
which was used is

0.9236 lbs. C/1b.
0.0209 lbs. H/1lb.
0.0554 1lbs. 0/1b.

These numbers were calculated from data on graphite phenolic given in reference
28, Pressure and ablation rate or mass flux were also input to the BLIMP pro-
gram. The variations of these quantities in the streamwise direction are shown
in Figures 2 and 3. The decision to specify both the wall temperature and abla-
tion rate precluded the possibility of using either the surface equilibrium or
steady state energy balance logic in the BLIMP program. Indeed, no surface chem-
istry is needed at all when T, and m are specified. This choice was made how-
ever, since it was felt that a more representative boundary layer would be ob-
tained by foregoing surface equilibrium than by demanding equilibrium and attempt-
ing to calculate Ty in the sensitive diffusion controlled ablation region (see
Section V).

Using the above information, the calculation was started at S = 0.03125
feet. At the first station, streamwise derivative terms are automatically
dropped since no upstream information is available. The solution was turbulent
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over the entire length of the 2.40 foot ablating plate. Additional solutions
were found at S = 0.3646, 0.6979, 1.1562, 1.6979 and 2.3646 feet. The variations
of calculated local drag coefficient, Reynolds number on momentum thickness, and
shape factor may be seen in Figures 4, 5, and 6. The flow is actually transi-
tional in nature, being weakly turbulent at the beginning of the plate and
strongly turbulent at the end. This fact combined with the free sti'eam accelera-
tion and decreasing rate of blowing along the plate produces the unusual Reg and
shape factor variations.

Velocity profiles at three representative stations may be seen in Figure
7. These curves clearly show the transitional nature of the flow, with a nearly
laminar velocity profile shape near the beginning of the plate and a more char-
acteristic turbulent profile near the end of the plate. Figure 8 presents the
velocity profile at S = 0.03125 feet again, this time in semi-logarithmic coor-
dinates. The laminar sublayer, transitional wall region, and the wake region
are clearly visible in these coordinates, with the data points shown actually
representing solution points or nodes in the computer solution. This smooth vari-
ation of the velocity ratio from the wall to the wake region with this solution
technique is of particular interest in this figure. Eddy viscosity normalized
by the edge value of kinematic viscosity is shown in Figure 9. The eddy viscos-
ity is seen to decrease to vidlues far below the molecular viscosity as the wall
is approached. Chemical species mole fraction profiles at three stations are
shown in Figures 19, 11, and 12. Only the majcr species distributions are shown
in these figures, although a total of 42 species were considered. Table I belaw
lists the species that were considered and their maximum concentration in mole
fraction at the 8 = 0.6979 foot station.

Total central processor run time for this problem vith 13 nodes, 6 body
stations, and 42 chemical species including 4 elements was 419 seconds on a CDC
6600.

2. SPHERE-CONE CONFIGURATION WITH LAMINAR AND TURBULENT FLOW

A second sample problem was selected which demonstrates some of the flex-~
ibility of the BLIMP prograin. The configuration chosen was a 0.500 inch nose
radius, 7.5 degree half angle sphere-cone consisting of three surface materials:
graphite, pyrolytic boron nitride, and phenolic carbon. Stagnation conditions
were representative of a single time in a severe reentry trajectory with P, =
242 atmospheres, Ho = 5520 Btu/lb. Figure 13 is a schematic of the sphere-cone
configuration. A total surface running length of 5.0164 feet was analyzed in
this problem, which required 29 body stations and thirteen nodes through the
boundary layer. Figure 14 shows a portion of the pressure distribution which
was assumed, the remainder of the running length being deleted from the
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MOLE FRACTION
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Figure 10. Mole Fraction Profiles at S = 0.03125 Feet
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Figure 11. Mole Fraction Profiles at S = 0.6979 Feet
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Table I

SPECIES CONSIDERED IN GRAPHITE PHENOLIC

FLAT PLATE PROBLEM

Maximum Mole Fraction
Species at S = 0.6979 ft.
-5 %
c, 4.700 x 10
co 3.405 x 107"
H 2.037 x 10°2
N, 7.774 x 10~}
e- 5.084 x 10"
C(s) c.
0, 2.009 x 107}
-6%
c 1.487 x 10
CH 3.217 x 107"
CHN 5.546 x 10°2"
CHO 6.167 x 10™°
CH, 9.211 x 10~°%"
- X
CH, 3.088 » 10"
cH, 4.455 x 10°°"
CN 2.667 x 10°*"
co, 6.358 x 10~°
c, 1.898 x 10~°"
-3k
c,H 1.698 x 10~°
C.H 6.622 x 107"
2H2 o
C.N 1.392 x 10
22 =3%
C,H 3.903 x 10
C.H 4.818 x 10°°"
372 —6%
C,H, 2.928 x 10
HN 5.014 x 10”°
HO 1.355 x 10°°
H, 1.868 x 10~2F
H,N 2.447 x 107
H,0 1.184 x 10°°
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Table I (concluded)

Maximum Mole Fraction

Species at S = 0.6979 ft.
N 3.511 x 10~°
NO 3.211 x 10°2
) 2.509 x 1072
c, 2.404 x 10":
Cg 1.427 x 10~° ,
ct 5.872 x 10"
N+ 1.362 x 10”7
N% 6.549 x 10 '°
0, 6.540 x 10°'°
cot 5.506 x 10~'°
not 5.211 x 10
ot 2.881 x 10~ "
0, 8.032 x 102
0 1.133 x 10~°

*
At the surface

~-59-

AR L L Ton C T VR T

W’ m’ dtesyr

MRCOIRTR

o

o —r. -

——

P VRN




uot3zeandbTyuod suon-o1oyds piepuels 3JO OTIWdYDS

‘€1 @xnbTa

ﬁ r—
,
| 1:1:z:l|:n|:|:n:|n::nnnn:ns:nnnrrlllznn:|: ‘NI 00570 - ¥
v — — ——
&
a
) NOGYYD I ITON3IHd
* upﬂxawww/uv
Vel
o
ﬂ -~
| N
_ ¥
£ o)
& 0671 ¢ 6 JGINLIN NOWO8 JILATO¥Ad
8
=
-
[P siiistamhiat IEWECIT i b i T el G o it e e - L ) ot-w o




AFWL-TR-69-106

uoTINQTIISTA 2InSsaxd paryroadsaad

KPR Skt

*pT Sanbra

3993 ~ S “3IINVISIQ 3ISIMWVIYLS

02°0 0L"0

INIOd Viva LNdNI O

qL/n3g 02sS
sadaydsowie 242
03¢

‘uL §°0

non
= U 0O O
da

[}
[~

NOILVYNOIANOI 3INOD 3IYIHIS

iy em S "

¢'0

LARY

9°0

© 8°0

il

Fev RN ot F st

P

NTAL O

od/d ‘0ILVY 3¥NSS3yd




© o -

AFWL-TR-69-106

presentation here in order to expand the region of most interest. The resulting
B distribution may be seen in Figure 15. It is apparent that a great deal of
care must be exercised in choosing the pressure distribution data points, since
B is calculated from the pressure gradient implicit in that data.

Table II summarizes the vehicle configuration in more detail. For this
sample problem the option of a quasi-steady energy balance at the wall was used,
in addition to demanding surface equilibrium, for all three surface materials.
The program then calculates its own ablation rate, wall species concentrations,
and temperature levels based on the energy balance and chemical equilibrium re-
guirements. The quasi~-steady ablation mode was selected to allow specification
of a minimum of boundary condition information and to demonstrate the use of
this option as opposed to arriving at an accurate ablation prediction. Indeed,
the emphasis in the current program development has been the incorporation of a
turbulent model into an existing laminar houndary layer code. The selection of
an ablation model and the corresponding boundary conditions for a given surface
material is a difficult problem in itself, requiring careful examination of the
possible condensed phase products of reaction at the surface, kinetically con-
trolled surface reactions, mechanical failure, interaction with pyrolysis gases,
etc. (reference 29). For these sample problems, the intent was to de-emphasize
this procedure in order to concentrate on the actual boundary layer behavior.
The calculation was started at the stagnation point and allowed to transist at
Rey = 250. Figure 16 illustrates the distribution of Cf/2 over the first 0.30
feet of zurface running length. As can be seen in the Cf/2 distribution, transi-
tion, occurred between S = 00,0268 and S = 0.0323 feet. Reynolds number on momen-
tum thickness and shape factor streamwise distributions may be seen in Figures
17 and 18. Figure 19 illustrates the wall temperature distribution that results
from the steady state energy balance and surface equilibrium assumption. Figure
20 illustrates the calculated quasi-steady surface recession rate.

Profile information for this problem is particularly interesting since
both boundary layer transition and surface material changes occur over the for-
ward portion of the body. Velocity profiles are presented in Figure 21. The
body stations selected include the stagnation point (6.0 ft.), flow just ahead
of transition (0.02681 ft.), flow just after transition which happens to be over
the boron nitride just past the C-BN discontinuity (0.03231 ft.), and flow over
the phenolic carbon just past the BN-phenolic carbon discontinuity (0.06273 ft.).
The first two profiles are clearly laminar in nature, whereas the third is more
transitional. The last profile appears to have the shape of a fully turbulent
flow. This gradual evolution of a turbulent shape occurs because both laminar
and turbulent transport terms are retained in the equations of motion (once the
Reg criterion has been satisfied) and because the nonsimilar analysis retains
the upstream "history"” of the flow. Species concentration profiles for the same
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Table II

SPHERE-CONE CONFIGURATION SURFACE MATERIALS DETAILS

Surface Material

(feet)

%i Surface Running Length

0.
0.004174
0.008390
0.012695
0.017146
0.021817
0.026813

graphite
graphite
graphite
graphite
graphite
graphite
graphite

0.032308 pyrolytic boron nitride
E- 0.038637

| 0.046657

i 0.059975 pyrolytic boren nitride
| 0.062727 phenolic carbon

i 0.070000

; 0.075000
! 0.077500
0.087500
0.100000
0.125000
, 0.150000 '
0.200000
0.300000
0.500000
0.700000
1.000000
1.500000
2.000000
3.000000
¥ 4,000000 |
g 5.016400 phenolic carbon
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four stations are presented in Figures 22 through 25. It is interesting to ob-
serve that the region of greatest chemical interaction appears to shrink further
and further away from the outer edge of the boundary layer as the flow progresses
downstream. This is consistent with the knowledge that the laminar sublayer
grows at a slower rate than the turbulent core flow. Another interesting fzature
of these species profiles is in Figure 25, where it can be seen that a signifi-
cant mole fraction of boron compounds persists in the boundary layer although

the flow is adjacent to a phenolic carbon surface at that station. A total of

60 species were considered in this problem, but only those exhibiting a mole

Eraction greater than 0.001 somewhere in the boundary layer are shown graphically.

Finally, Figure 26 presents the electron concentration profile at 8 = 0.03231
feet over the BN surface. The y-scale is left unlogged in this graph in order

to present a better picture of the actual dimensions of the regions of importance.

3. TRANSVERSE CURVATURE EFFECTS

The transverse curvature option of the BLIMP program is operational for
either laminar or turbulent reacting flows. The simplest of these, all laminar
flow, was chosen for a sample problem. Air was assumed tc hLe flowing over a
sharp cone at the following conditions:

Po = 11,27 atmospheres
Ho = 1650 Btu/lb
Medge 6.38

cone half angle = 9°

Seven nodes were chosen through the boundary layer, and the problem was run both
with and without consideration of transverse curvature (TVC). Some of the re-
sults are presented in Figures 27 through 29. Figure 27 shows the TVC effect on
drag coefficient. Inclusion of transverse curvature on this 9° c¢cne increased
Ce by as much as 25 percent. A comparison of Reynolds number on momentum thick-
negs is presented in Figure 28. ¢fince r/r° is everywhere greater than one, one
might expect from the definition of 6 that momentum thickness will be larger
when TVC effects are considered. The steeper slope of the momentum thickness
curve (d6/ds) for this zero pressure gradient prcblem is also apparent. This
increase in slope is expected for the TVC case since the drag coefficient is
larger. Figure 29 shows the velocity profile comparison at S = 0.025 feet.
Transverse curvature effects are se :. to decrease the boundary layer thickness,
thereby increasing wall shear.
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Figure 27. Variation ol Drag Coefficient
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SECTION V

CQUPLED ABLATOR BOUNDARY LAYER ENVIRONMENT ROGRAM

The usual ablating heat shield or nozzle material performance analysis ce-
quires separate determinations of the inviscid flow field over the body, the
boundary layer flow near the surface, and the surface ind in-depth response of
the ablating material. The thought has no doubt crossed the mind of most thermo-
dynamics-fluid dynamics enygineers working in this field that some or all of these
analyses should be combined to represent the coupled physical processes nore ccr-
rectly and to eliminate some of the wasted effort in carrying out separate analy-
ses. Indeed, a coupled approach is desirable since the material response affect:
the structure of the boundary layer, and the boundary layer determines the enerc:
and mass fluxes at the material surface which in turn control the heat shield
response. Of course, any change in body shape will affect the inviscid flow
field. The totally coupled analysis is, unfortunately, an enormous prcblem if
accurate boundary layer and material response calculations are required, hence
the present separate analysis state of the art. Still, it 15 possible to 1nves-
tigate coupled charring material, multicomponent boundary layer flow problems
within the context of certain limiting assumptions. The CABLE program Lncor-
porates subroutine versions of the BLIMP program, described earlier in this re-
port, and the Charring Material Ablation (CMA) program, described in reference
30, to accomplish this coupling. An earlier version of the CABLE prograrm has
been described elsewhere (reference 31) therefore its operation will only be sur-
marized in Section V.l. Section V.2 describes recent results obtained with the
program.

1. COUPLING THE CMA AND BLIMP PROGRAMS

The CMA program is an implicit finite difference one-dimrensional charrin:
ablation material analysis program which accounts for area chanie due to mate-
rial curvature in a general fashion, with planar, cylindrical, and spherical
geometries as special cases. Temperature dependent therma! properties are al-
lowed, and the user may specify kinetically controlled pyrolysis reactions. Due
to its one-dimensional nature however, the CMA program may not be particularly
accurate 1n regions where lateral conduction is significant, such as sharp nose
tips. Al-o, since local static pressure is input into the BLIMP proygram, no
account is taken of the body shape change on the pressure distribution 1. i
coupled analysis. Within these limitations, tne CABLE progyrar - ves a very de-

tailed, accurate picture of the ablation-boundary layer interaction.
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There are a number of ways in which the boundary layer and charring abla-
tion programs can be coupled. In the procedure which has been adopted, the CMA
program is effectively the controlling program, calling BLIMP whenever necessary.
Since the time (8) steps in a charring ablation analysis are typically quite
small (0.001-1.0 seconds), yet the times of significant change in a boundary
layer flow are fairly far apart (0.5-10.0 seconds), it would be uneconomical to
require a boundary layer solution at every CMA time step. Therefors the CABLE
technique is to input mandatory solution times at which complete boundary layer
solutions are carried out. Between these mandatory times boundary layer param-
eters are found by interpolation, and these boundary layer parameters are pro-
vided tu the CMA program as boundary conditions. Another computer time saving
device is the use of discrete values of normalized pyrolysis gas mass flow rates
(ﬁ;) and normalized char mass flow rates (ﬁ;). As the charring ablation program
proceeds in time, a new combination of m; and mé evolves from the CMA solution
at each time step. It would not be possible to anticipate and calculate the
boundary layer flows for each of these ﬁ;-&é combinations at every mandatory so-
lution time, therefore a grid of ma—mé values is preselected at which BLIMP cal-
culations may be run. The BLIMP program is automatically run at several of the
preselected grid points in the assigned injection, surface equilibrium (or kinet-
ically controlled reaction) mode, and the required boundary layer parameters are
found from a three way interpolation of the boundary layer solutions in the 6;,
mé, 6 coordinate array. It is significant that not all BLIMP solutions in the
m;, mé, § array need be run, but rather only those which are needed to provide
interpolation values for the current CMA solution. Initially, eight BLIMP solu-
tions are required, which consist of two values of ﬁ; with two values of ﬁ;, all
at the first two mandatory times. The CMA solution then proceeds until the solu-
tion "path" exceeds the limits of the "cube" defined by the first eight (ﬁ;, ﬁé,
8) coordinate points. Additional BLIMP solutions are then called for at the new
required grid points (&;, ﬁé, 8) such that ordinary interpolation can take place,
whereupon the CMA program again proceeds. Thus, although a fairly extensive
array of 65, ﬁé, ¢ values may be defined, only the required BLIMP solutions will
be run. This procedure will be explained more thoroughly by an example below.

In the procedure which has been adopted, the transient charring ablation
solution is effectively the controlling program. The charring ablation solution
at a given station proceeds noniteratively, calling the boundary-layer procedure
as needed to fill in the surface bounaary condition matrix. The complete time
history at each body station is performed prior to advanci.g Lo the next body
station. As an example of the procedure, consider a single body point being ana-
lyzed by the coupled program between two mandatory solution times 61 and 62. The
diagrams below indicate the projections in the planes 6 = el and 6 = 92 of a
hypothetical history of h; and hé as generated by the CMA program between the two
mandatory times.

-81-




s

e e
e

irsaltat

e

| 7T e e

AFWL-TR-69-106

TIME 01 TIME 02
4 Y Y 4 .
3 - 3 f
. »0 o)
m* 2 - 4 n* < "L
9 1= "y 2 *t
' «”
1 44T 1 -9
0 0
0 1 ‘E 3 4 0 1 .2 3 4
mc m;

The solution at time 61 is indicated by asterisks, whereas the solution
?t time 62 is indicated by circles. The grid values for ﬁ; =0, 1, 2,... and
m; =0, 1, 2,... are the preselected values for these parameters at which para-
metric boundary layer solutions are conducted if and when needed. Based on the
point (*) at time 91, boundary-layer solutions are generated for the (ﬁ;, &é)
points (1,1), (1,2), (2,1), and (2,2) at times 61 and 62. Charring ablation so-
%utions.can be obtained for times 61 < 8 < 62 by linear interpolation as long as
m* and mé stay within these values. Suppose that the course of the calculation
between times 6, and 8, 1s as indicated in the sketch. Then, additional solu-
tions at m;, mé of (1,3) and (2,3), then (3,2) and (3,3) and finally (2,4) and
(3,4) would be required, each at both times. When time 62 (point © ) is ap-
proached, the BLIMP program is called upon for a solution at time 02 for the
exact values of m* and mé required by CMA. This boundary-layer solution is
printed out and that information needed for future reference (at downstream sta-
tions) is saved on tape. Solutions are then performed for time 03 for the cur-
rent bracketing values of m;, mé (in the present example, values of (ma, mé) of
(2,3), (3,3), (2,4), and (3,4)). These boundary layer sclutions at time 93 are
placed over those for el by a tape flip-flop since the latter are no longer
needed. The charring ablation solution next proceeds from time 62 to time 63,
calling the BLIMP program only in the event that this range of (és, &E) is

exceeded.

The above described procedure is over-simplified to scme extent since for
many materials of interest in certain ablation regions the use of ﬁé as an in-
dependent variable is a poor choice. Consider the peculiarities of carbon ablat-
ing with air, for example, as illustrated in Figure 30, which shows the depen-
dence on temperature of carbon ablation rates in air. Over a wide range of tem-
perature ﬁé is for all practical purposes independent of temperature; in this
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range the only useful independent variable in the surface thermochemical solution
process is temperature, since it would be nearly impossible to select a sequence
of ﬁé values distributed along the platea?. At high tenperatures, however, ﬁg
becomes strongly dependent on T, so that mé is the preferred indepe?dent variable.
The CABLE program logic has been altered recently to accept either mg or T as

an independent variable. In the typical problem situation, the user begins his
sequence of independent variables with temperature entries starting at the low-
est temperature of interest and extending up to (as a minimum objective) the
point where ﬁ; begins to rise above the plateau value for the lowest pressure to
be encountered. It would be conservative and preferable to add temperatures even
beyond the "rise point" at the highest pressure in case these points should be
needed during the solution. After these temperature values, ﬁ;'s are added to

p] Pz > p]
&
mC t |
|
H I
1
| i
= T
|
KINETICS o— PLATEAU -w=sa— SUBLIMATION
REGION | REGION : REGION

Figure 30. Ablation Rate hé Versus Temperature for Carbon in Air

span the expected range of ﬁé. The user is careful to pick a minimum ﬁé slightly
above the plateau value. An ﬁé value near the start of the plateau or cff the
plateau in the low temperature region is extremely undesirable for two reasons:

1. The lowest assigned m; determ%nes the break betwe?n assigned temper-
ature solutions an? assigned mg solutions; a low mé will in effect
"disgqualify" all of the assigned temperature points across the pla-
teau and leave a large "hole" in the array of svrface thermochemical
solutions.

2. For equilibrium calculations, assigned ﬁé solutions at ﬁ; values be-
low the plateau have a high probability of nonconvergence.

The coupling procedure which has been summarized above is very straight-
forward in practice, although difficult to describe in words. The sample prob-
lem presented in Section V.2 should clarify some of the more difficult points.
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The storage requirements for this coupling procedure are surprisingly
small. In the first place, the charrirg ablation solutions are noniterative ard
the complete solution for all times at any one station is accomplished and the
rosults printed out before advancing to the next station. Thus no historic in-
formation relative to the charring ablation solution has to be stored. With re-
gard to the boundary layer, only two mandatory times with four (ﬁa, ﬁé) combina-
tions at each of these times need to be considered at the same time. The only
quantities in the boundary layer which need to be dimensioned for the full time
array are three input quantities of time, total pressure, and total enthalpy.
Edge conditions are computed around the body at the time of the stagnation-point
calculation since the necessary integrations are performed by curve fitting.

This necessitates that streamwise dimension, static pressure, edge velocity, edge
density, edge viscosity, edge temperature, body curvature (ro), transformed
streamwise dimension (£), pressure gradient parameter (8), and the flux normaliz-
ing parameter (a*) be dimensioned for the number of streamwise positions (but
not for time). About 300 numbers must be stored during the flip-flop operation
associated with the two times which are being considered simultaneously, whereas
about 500 numbers must be stored on tape to reenter the boundary layer at the
same time but at the next downstream station (used for first guesses and for cal-
culation of nonsimilar terms). Thus, both permanent machine storage requirements
and tape storage requirements are not excessive as a consequence of coupling.

This coupling approach has the important feature that the CMA pregram op-
erates very nearly as it does when used in conjunction with the ACE program (see
reference 32). 1In the CMA/ACE approach, complete surface tables are computed
a priori and independently with the ACE program and these are available to the
CMA solution. In the coupled approach, these surface tables are initialized
with the word VOID. When the CMA program encounters this word, the BLIMP program
is called to supply the requisite information for that 6, ﬁ; and ﬁg (or Tw). It
is thus significant that the CMA/ACE approaches have been used extensively and
very successfully for a wide variety of materials and environments. Likewise,
the boundary-layer calculations are performed with assigned ﬁa and ﬁ; or assigned
ﬁa and T, together with the requirement of surface equilibrium (with possible
specified rate-controlled surface reactions), options of the BLIMP program which
also have been exercised extensively with success. Furthermore, this replacement
of the wall mass and energy balances by these simple assignment statements adds
stability to the boundary-~layer solution.

2. A SAMPLE PROBLEM AND RESULTS

As a demcnstration of the CABLE program, a coupled transient solution was
run for a sphere-cone reentry body with a nose radius of 0.5 inches and a cone
half-angle of eight degrees. A single body point at a surface running length of
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10 inches (based on the original body shape) was analyzed althcugh there is no
reason other than computer time limitations why more body stations could not

have been specified. Laminar flow was assumed for the boundary layer to hecld

the required number of nodes to a minimum. The heat shield material was one-
inch thick phenolic carbon with properties as descriked in reference 28 and was
insulated at the back face. The vehicle trajectory is shown in Figure 31. Total
flight time from 300,000 feet is 27 seconds with an impact velocity of 17,000 ft/
sec. Pressure ratio P/Po at the body station of interest was assumed to be
0.0262 for the entire 27 seconds. Mandatory BLIMP solution times were 0.0, 7.0,
14.0, 18.0, 21.0, 23.0, 25.0, and 27.0 seconds. A total of 144 BLIMP solutions
in the assigned injection, surface equilibrium mode exclusive of these mandatory
solutions were run to provide the CMA program with boundary conditions.

Typical CABLE results are shown in Figures 32-40. Surface temperature
history is shown in Figure 32, where it is seen that a maximum temperature of
4480°R was reached at the end of the flight. Figure 33 illustrates the pyroly-
sis gas flow rate history at the surface. Little or no pyrolysis occurs during
the first ten seconds of flight, with a peak outgassing rate of approximately
0.028 lbs/ft?’sec reached near the end of the flight. Figure 34 describes the
progression of the pyrolysis and char fronts into the heat shield material. The {
pyrolysis front is arbitrarily defined as the point where the local material den-
sity is equal to the char density plus 98 percent of the difference between the
virgin and char densities. The char front is similarly defined as that point
where the local material density is equal to the char density plus 2 percent of
the difference between the virgin and char densities. The pyrolysis front pene-
trates 0.208 inches of the heat shield during this trajectory, whereas the fully
charred material reaches a depth of only 0.067 inches by the end of the flight.

No surface recession occurs at this body station.

Figures 35-37 show profiles for some of the thermodynamic variables of
interest for this particular body station at t = 21 seconds. The subsurface
density profile of Figure 35 indicates the extent of the pyrolysis region. Fig-
ure 36 contains che velocity profile for the boundary layer flow, while Figure 37
presents temperature profile information. The coupling of the boundary layer to
the subsurface material is particularly apparent in the surface temperature con-
tinuity illustrated in Figure 37. Figures 38-40 contain the species mole fraction

-~

-

profiles through the boundary layer at three times of interest. At t = 0.0
seconds, the cold wall forces a recombination of N atoms to Nz, 0 atoms to 02,
etc., giving the unusual profiles of Fiqure 38. At t = 21 seconds (Figure 39)
significant pyrolysis has occurred with the resulting gases being injected into
the boundary layer flow. Hydrogen, carbon, and species containing these atoms
are evident in the boundary layer gas. At t = 27 seconds (Figure 40) the boundary
layer species are much the same, however the lower edge temperature caused by the
slowing down of the vehicle has allowed many more trace species to be formed.
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Figure 31. Trajectory for CABLE Sample Problem
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Figure 33. Pyrolysis Gas Flow Rate History at
S = 10.0 Inches
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The above~-described CABLE run, comprised of a total of 152 BLIMP solutions
plus the in-depth charring material solution, required approximately 30 minutes
on a UNIVAC 1108 computer. Solutions at succeeding body stations should proceed
scmewhat faster due to the better initial guesses provided by the upstream solu-
tion, however if turbulent flow situations are expected, about twice as many
boundary layer nodes would be needed. Thus, it is estimated that a complete re-
entry vehicle body solution with the CABLE program, including 29 body stations in
a 27 second trajectory, would require from 10 to 20 hours of UNIVAC 1108 computer
time.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

The BLIMP boundary layer code has been successfully extended to include
turbulent flows and flows with transverse curvature. The basic analytical tech-
nigue offers the advantages of completely general multicomponent chemistry, pre-
servation of nonsimilar terms in the equations of motion, and intimate coupling
to the surface material behavior. The coupling occurs through requirements of
surface equilibrium and/or a surface energy balance, or a complete coupling with
an in-depth conduction and charring ablation code.

There are several areas where the code and the analytical model which it
includes can be improved or extended. One of these is in the general area of
modeling turbulence in the equations of motion. The purpose of the work pre-
sented in this report was to incorporate a turbulent model into the BLIMP pro-
gram. The model that was used is perhaps the best available for general hyper-
sonic flows with arbitrary species injection, however an extensive investigation
into the generality of the model in all flow situations is called for. Experi-
mental data comparisons at high Mach numbers and possible model changes to match
these data would be most valuable.

Two smaller changes in the program would make it more accurate and conven-
ient to use on some problems. The first of these involves the ay or coordinate
stretching parameter. On very long bodies, the boundary layer thickness varies
over two or three orders of magnitude. The ay parameter forces the boundary
layer thickness to remain constant in the solution plane, thereby eliminating
the need for a large number of nodes which are unused near the stagnation point
or leading edge. For turbulent flows, the laminar sublayer grows at a much
slower rate than the total boundary layer. As the normal coordinate is stretched
in the solution plane, the nodes nearest the wall eventually can be pulled out-
side the sublayer altogether, resulting in poor convergence of the numerical
technique and inaccurate solutions. A different stretching technique scaled to
the sublayer as well as the boundary layer edge must be invented to avoid this
problem. The second change involves nonisentropic expansions. It is currently
possible to specify entropy and pressure in order to fix the edge state of the
boundary layer gas for "entropy layer" flows. This technique introduces some
inaccuracy however since an entropy gradient in the streamwise direction also re-
quires a velocity gradient in the normal direction (nonzero vorticity). The
analysis should be modified to include this edge velocity gradient for nonisen-

tropic expansions.
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The final recommendation is in the general category of electron collision
models. At present, a very simple clean air collision frequency model is in-
cluded in the program, and electron distributions are calculated assuming equi-
librium chemistry. More accurate clean air collision frequency models are avail-
able and could be incorporated into the program. However, based on the level of
sophistication of the rest of the boundary layer analysis, it seems appropriate
to attempt to take into account the effect of the ablation products on the elec-
tron collision frequencies. Also, charge separation effects may alter the equi-
librium electron distribution significantly. It is recommended that a study be
undertaken to establish the importance of charge separation and ablation products

on the basic parameters of interest in communications and that these effects be
included in the BLIMP code if necessary.
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- APPENDIX I

COORDINATE TRANSFORMATIONS

A convenient cocrdinate transformation for use in boundary layer problems
with transverse curvature, and the one used in the present analysis, can be
arrived at by nondimensionalizing and simplifying the continuity and momentum
equations in a relatively straightforward manner. The momentum equation for a
turbulent flow with transverse curvature is

K ou K du _ 9 K sul _ _k 9P
pur” == + pvr v - 3y [pr (v + cM) 3?] rtoas (146)
while the requirement of continuity yields
K K
Jpur Ipvr  _
s + 5y =0 (147)

The two equations can be conveniently combined by the definition of a stream

, function £, with an arbitrary wall value, fw:

w K
prurro

Y K
f-f=/—°—“£——§g£ (148)
o
The stream function is made dimensionless by the introduction of reference condi
tions Pr and u. and by the v-dimension scaling parameter §(x). The reference
condition ( )r will be taken as the isentropic boundary layer edge condition,
while the scaling length § remains to be defined. Solving the continuity equa-
tion for per, it is easily shown that

K _ « _ 3 [ x -
PV = PyuVuFo oS [ropruré(f fw)] (149)

Using this result in the momentum equation yields

K 3u 5 RS N IS du
pur + {p. V x [roprurd(f - fh)]} 3y

3 K 2 ¢ 3P -
= 2. {pr (v cp) 5}‘;] - N e (150)
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Introducing
~ u
qu=—
Yr
(151)
y=%
The momentum equation becomes
du ~ o ~
~ K = _ L au _ y 46 a3d K _
pur u,. [“ G T Y% 3T Y% Tds 3?].+ {pwvwro
~ ~-jfu ~
-2 K - §d8 3 [« - f r du
3s [roprurés(f fwﬂ S aE - l}"opruré(f £ T =
) oy
u ~
=12 o X v B - E (152)
oy oy

A new normal coordinate is now defined which allows a simple relationship be-
tween the dimensionless stream function f and dimensionless velocity 4. Noting
that

K

3f _ _pur” . (153)
3y Pr¥yTs
then if we define
1 ng ~
dn = a—— - < dy (154)
H prro
the relation between £ and U becomes
of _ o, _ .
= f' = S (155)

The ay is a stretching parameter on the normal coordinate n such that the bound-

ary layer is contained within a constant n range, 0 to nedge (see Section I1I.3).

Using the new n coordinate and expressing 4 in terms of f', the momentum equa-
tinn takes the form
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K
- d 1In u, s 3f* _i_daﬂ fi2 S P wEo
ds s ay ds .
prur o) i
1 3 « d 1n rgpruré g
+ o ;? 35 FoPrBpof,) | - of ds g
rr o ;
' -
ae (£ 1 2k " %y
R §=m<°2r ‘V*em-‘f)"‘:% (156)
ago®u ro ou.

Since fw is as yet undefined, the equation can be simplified by defining fw such

P

that the square bracket term [ ] goes to zero. This yields

p.u or®

s

S | K

fw = / vawrods (157)
r'r "o Yo

It is convenient to define some new dependent variables at this point:

C = 62%“ (158)
? rr
2
P E
~ M
\ €M=r\u (159)
‘r'r
~ r 2K
. t= (;—) (160)
o

Also, the static pressure gradient is related to the reference velocity gradient

du
] gg =7 Ppby dsr (161) .
] Inserting these new definitions
J 2
£12 - Py} @ 1n u, 4+ g OF_£'2 iﬁg - gn|of

] o ds 0s  a, ds 9s (162)
.\A ‘ K ]

. £ d(ln rODruré) _ Ur t(c + E":'M)fu

N e T
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An addational coordinate transformation will bring the equation to a more com-
pact form. Defining

d¢ = Qds (163)

where Q(s) is as vet undefined, the streamwise derivatives become

da() _ed()
ds ~t£dln ¥ (264)
d In u d lInu
r_Q_ T _9f (165)
ds £ dling 28 |
which leads to
D\ ] d In a
8f|2_ _£ |af - 12 H_ " [‘ of
( o )+ 2 S -2 g o f L? T InE
K ~ n'
v 26 d ln(ropruré) _ 2ur£ t(C + sM)f ]
d lIng P l (166)

0820, u_ %y

Defiring Q and ¢ properly will yield unity for two groups of terms in the current
version of the equation. Choosing the group in the left hand side first

K
d ln(ropruré)

2TIne =1 (167)
which requires
§ = Z?E (168)
FoPrYr
The second group of terms is
2u_q
—F— =1 (169)
Q6%p u
wiich requires
- 2K
Q=P uM.I, (170)

tiith tnese changes, the <me' tum equation becomes
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o t(c + €,
££" - s(f'2 - a? -E) +[_-———__-”-

The final coordinate transformation is

-

-
= 2K
£ / ppu b r "t ds
o

P ur S er
n=--12. dy

(oY K

egves Jo Prfo

while the other definitions take the form

f-fw=-1—/ our¥dy
/ﬁo

S
1 K

f o= - = p.V r ds
w fi‘g‘.[ wwo
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APPENDIX I
DEVELOPMENT OF A RECURSION FORMULA
FOR MIXING LENGTH

The mixing length differential equation has been shown to be of the form

~

ar _ o
an = (KaHn - )P (176)
where
aH015/17d
P(n) = —_— (177)
Y M
The general solution is
% = Koy (n - L) (178)
where
n' "
n j; Pdn
.L e dn'
L{n) = — (179)
J ' pdn'
(o]
e
In the definition of L at the i'th node, the integrals from 0 to n; can ke
broken into two parts, 0 to n, , and Nj-p to n; to give
n
f ' pant
/n Ni-1
i e - dn
L n.
i-1 i-1
Li = — + (180)
i n.
f Pdn ll Pdn
Ni-1 i-1
e e

Assuming a linegar variation of P(n) over the interval ni—l to ni, the first

term of the Li expression becones
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L,
izt (181)
n BLi1
f i pan
o -1
where
L, Pi+P; o
UFY B e (182)
Bz e
An, =

(183)

The second term is more difficult; however, the linear assumption for P(n) plus
sufficient algebraic manipulation yields

n.
L 1 Pdn'
n i-1 n-n, An
1 1
{ e dn Ang [j' Pa(n-n;_,) - j' Pd(n-n;)
i-1 _ °
m = e d(n-n;_,)
f Pdn ‘o
e i-1
(n=n;_,) 12 2
Ang [ = L °| - %3+c
= / e d(n"nl_l)
[o]
2 q 2
_ -d N 4w
=e / Ae” dn (184)
(o]
where
28 ]k
A= — (185)
Pl Pl-lJ
.. APy 1 (186)
2
d = _Aﬂ‘. + C (187;
- A
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This last integral term can b2 broken into two pieces to give

_ f”i pan’

-1 an
p,_ _a2 ~2 C ~2
i-1 -_-ed[f Ae”c‘xﬁ-/ ae af
Ni ) o

A[Dw(d) - BDw(c)] (188)

The Dawson Integral, Dw( )*, can be evaluated from tables (Ref. 23) or, in the
case of the present analysis, by a series method. The quantity Li is given hy

- APy > APy
by = BLyj, *+ 294Ey ("7_ - BDy, < 2 > (189)

which is a recursion formula for Li in texrms of the value for L at the previous
node and the local values of P(n).

* 2 X Aoyy 2
Dw(x) = e f/ﬁ e ¥ gy
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