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ABSTRACT

A mathematical model of a multicomponent reacting nonsimilar laminar or turbulent
boundary layer flow including transverse curvature effects is presented, and a
method of solution is given. The formulation is an extension of an earlier work
in which thermal and molecular diffusion were treated in terms of a bifurcation
approximation for binary diffusion coefficients. In the present analysis, a tur-
bulent model is added which employs a mixing length model for eddy viscosity in
the wall region with consideration of injection or suction effects. The wake re-
gion eddy viscosity is taken to be proportional to the free stream velocity and
local velocity defect thickness. Transverse curvature effects are also incorpo-
rated into the present analysis. A modification of the Levy-Lees transformation
is used to transform the equations of motion to the (E,n) coordinate plane, where
the conservation equations are integrated across boundary layer strips. Deriva-
tives in the normal direction are related to one another by Taylor series trun-
cated to reflect a quadratic or cubic approximation, and streamwise derivatives
are expressed in finite difference form. The resultant set of equations is solved
by general Newton-Raphson iteration.

(Distribution Limitation Statement No. 2)
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SYMBOLS

A parameter used in the solution of the mixing length equation (de-
fined by Equation (131))

B parameter used in the solution of the mixing length equation (de-

fined by Equation (132))

c constant introduced in the aH constrain (Equation (58))

ct  constant introduced in the approximation for multicomponent ther-
mal diffusion coefficients embcdied in Equation (25). Tentatively
established by correlation of data to be -0.5

C product of density and viscosity normalized by their reference
values (defined by Equation (66))

C frozen specific heat of the gas mixture (defined by Equation (17))P

C property of the gas mixture which reduces to Cp when diffusion co-
efficients are assumed equal for all species (defined by Equa-
tion (26))

Cpi specific heat of species i

do0 drd 2  coefficients defined in finite-difference representation of stream-
wise derivatives (defined in Equations (112) and (113) for two-

and three-point difference relations, respectively)

Da reference binary diffusion coefficient introduced by the approx-
imation for binary diffusion coefficients embodied in Equation (19)

D.T multicomponent thermal diffusion coefficient for species i

D. ijmulticomponent diffusion coefficient for species i and j

diffusion coefficient for all species when all are equal

binary diffusion coefficient for species i and j

ERROR errors for the various equations during Newton-Raphson iteration
(driven toward zero in the iteration)

f stream function (a fined by Equation (59))

F. diffusion factor for species i introduced by the approximation for
1 binary diffusion coefficients embodied in Equation (19)

viii
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SYMBOLS
(continued)

h static enthalpy of the gas (defined by Equation (15))

hw  static enthalpy of the gas at the wall

h property of the gas mixture which reduces to the static enthalpy
h when diffusion coefficients are assumed equal for all species
(defined by Equation (27))

hc enthalpy of surface material (e.g., char) removed by combustion,
sublimation, or vaporization

h enthalpy of gas which enters boundary layer without phase change
g at the surface (e.g., pyrolysis gases)

h enthalpy of species i (defined by Equation (16))

o heat of formatiun

h£ enthalpy of Zth component surface material (e.g., silica) removed

in the condensed phase (e.g., by melting with subsequent liquid

runoff or by spallation)

HT total enthalpy (defined by Equation (14))

ji diffusional mass flux of species i per unit area away from the
surface

diffusional mass flux of element k per unit area away from the
surface

K total number of elements; also mixing length constant

Ki  mass fraction of molecular species i

Ktotal mass fraction of element (or base gas) k contained in sur-ck face material (e.g., char) removed by combustion, sublimation, or

vaporization

Ktotal mass fraction of element (or base gas) k contained in gas
gk which enters boundary layer without phase change at the surface

(e.g,, pyrolysis gases)

K total mass fraction of element (or base gas) k irrespective of mo-lecular configuration (defined by Equation (IA))
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SYMBOLS
(continued)

Z mixing length (defined by Equation (55))

2dimensionless mixing length (defined by Equation (71))

L parameter used in rixing length formulation (defined by Equation

(128))

mmass flow rate per unit area

mc mass removal rate per unit area of surface material (e.g., char)
by combustion, sublimation, or vaporization

mass flow rate per unit area of gas which enters boundary layer
mg without phase change at the surface (e.g., pyrolysis gases)

mass removal rate per unit area of k th component surface materialrk (e.g., silica) in the condensed phase (e.g., by melting with sub-

sequent liquid runoff or by spallation)

7molecular weight of the gas mixture

TI molecular weight of species i

N number of nodal points across the boundary layer selected for the

purpose of the numerical solution procedure

p dummy variable representing f', HT, or Kk

P pressure; also a parameter used in the mixing length formulation
(defined by Equation (125))

Pi partial pressure of species i

Pr frozen Prandtl number of the gas mixture (defined by Equation (66))

Prt turbulent Prandtl number (defined by Equation (69))

qa diffusional heat flux per unit area away from the surface

q cond heat conduction per unit area into the surface material

q qr one-dimensional radiant heat flux (toward the surface), that is,
the net rate per unit area at which radiant energy is transferred
across a plane in the boundary layer parallel to the surface

x
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SYMBOLS

(onti nUed)

r local radius in the boundary layer in a meridan plxne for an axi-I
symmetric shape

ro  local radius of body in a meridian plane for an axisymmetric shape

R universal gas constant

Re Reynolds number; subscripted with the length scale if other than s

Ref f  effective nose radius for Newtonian flow

s distance along body from stagnation point or leading edge

Sc reference system Schmidt number (defined by Equation (88))

Sct turbulent Schmidt number (defined by Equation (68))

t parameter defined to simplify problems with transverse curvature;
see Equation (55)

T static temperature

u velocity component parallel to body surface

u Tshear velocity, defined in Equation (49)

v velocity component normal to body surface

xi  mole fraction of species i

XPIXP 2 ,... truncated series obtained in Taylor series expansion of

f' f'p dn (defined by Equation (117))

i-1

y distance from surface into the boundary layer, measured normal to
the surface

+ dimensionless y-coordinate defined by Equation (49))
y

Y+ constant in the mixing length differential equation (see Equation
(45))

xi
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SYMBOLS
(continued)

Z. a quantity for species i which is introduced as a result of the

1 approximation for binary diffusion coefficients and reduces to Ki

when all diffusion coefficients are assumed equal (defined by
iEquation (20))

Zk a quantity for element (or base species) k which is introduced as
a result of the approximation for binary diffusion coefficients
and reduces to Kk when all diffusion coefficients are assumed
equal (defined by Equation (28))

ZP1,ZP2 ,... truncated series obtained in Taylor series expansion of integrals
involving nonsimilar terms (defined by Equation (124))

a* flux normalizing parameter (defined by Equation (82))

aH normalizing parameter used in definition of n (see Equation (59))

defined implicitly by use of a constraint such as Equation (60)

a ki mass fraction of element (or base species) k in species i

8 streamwise pressure-gradient parameter (defined by Equation (67))

y-dimension normalizing parameter (defined by Equation (70))

logarithmic distance between two streamwise positions denoted by
the subscripts k and Z-1 (defined by Equation (114))

Afi, f_ .... corrections for fi' f!,'''' during Newton-Raphson iteration

6* displacement thickness (defined by Equation (52))

incompressible or velocity displacement thickness (defined by
1 Equation (53))

6n distance between two boundary layer nodal points (defined by
Equation (105))

n,fi transformed coordinate in a direction normal to the surface (de-
fined by Equation (61)). Note: the hat is dropped from n through-
out most of the report

6 angle between a surface normal and a normal to the body center-
line; also time in discussions of a charring ablation program

thermal conductivity

xii
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SYMBOLS
(continued)

shear viscosity

1i1"2143,"4 properties of the gas mixture (defined by Equations (21) and (24))
which reduce to unity, to V?, to l/T, and to Ln V, respectively,
for assumed equal diffusion coefficients

V kinematic viscosity

transfcrmed streamwise coordinate (defined by Equation (61)). Note:
the hat is dropped from g throughout most of the report

P density

PwVw total mass flux per unit aL.a into the boundary layer

PCD. individual species turbulent eddy diffusivity (defined by Equation
1 (2))

P D average turbulent eddy diffusivity, where it is assumed that all
PED PED

PC H turbulent eddy conductivity (defined by Equation (18))

PCM turbulent eddy viscosity (defined by Equation (12))

PE M dimensionless eddy viscosity (defined by Equation (73))

a Stefan-Boltzmann constant

local shear stress

"elemental"source term (defined by Equation (29))

i. rate of mass generation of species i per unit volume due to chemi-
cal reaction

Subscripts

edge pertains to boundary-layer edge

equil pertains to surface equilibrium requirement

xiii
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SYMBOLS
(concluded)

i pertains to the ith species or to the i th nodal point in the bound-
ary layer, starting with i = 1 at the surface

pertains to jth species

k pertains to kth element (or base species)

Z pertains to kth streamwise position

m pertains to mth iteration during the Newton-Raphson iteration
process

n pertains to the nth nodal points, corresponding to the outer edge
of the boundary layer solution

sp pertains to the stagnation point

s.s. pertains to the steady state energy balance requirement

w pertains to wall

1 reference conditicn, usually taken as zero streamline from invis--
cid solution (synonymous with boundary-layer edge in the absence
of an entropy layer)

Superscripts

K equal to unity for axisymmetric bodies and zero for two-dimensional
bodies

signifies that quantity is normalized by * (e.g., jk = jk/*)

Kepresents partial differentiation with respect to ri or (usually
n unless otherwise noted). Represents turbulent fluctuation in
Section II.

xiv
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SECTION I

INTRODUCTION

A computational procedure is described which is suitable for obtaining accu-

rate numerical solutions of the nonsimilar multicomponent laminar and/or turbulent
boundary layer with arbitrary equilibrium or nonequilibrium chemical systems, un-

equal diffusion and thenal. diffusion coefficients for all species, radiation

absorption and emission, second order transverse curvature effects, and a variety

of surface boundary conditions including intimate coupling with transient char-

ring-ablation energy and mass balances. A Fortran IV computer program has been
developed in accordance with this analysis with the exceptions that 1) the chemi-

cal system is presently limited to equilibrium in the boundary layer, with or

without selected rate-controlled surface reactions or surface catalyzed reactions,

and 2) radiation absorption and emission within the boundary layer is not permit-

ted in the version of the program reported here. This computer program, desig-

nated BLIMP, for Boundary Layer Integral Matrix Procedure, is descrihed in ref-

erenco 1. The analysis and computer program described herein are extensions of

the previously developed BLIMP program for laminar boundary layer flows described

in reference 2. The turbulent model which has been incorporated was reported
earlier with a restriction to incompressible flows in reference 3.

The computational procedure was developed while attempting to take advantage

of the most attractive features of other boundary-layer procedures. In light of
the application of the procedure to be adopted, certain specific requirements

were appropriate. In particular, minimization of the number of "nodal points"
required to obtain a solution was judged to be of prime importance as a conse-

quence of the relatively large times associated with state calculations for a gen-

eral chemical environment and, in the streamwise direction, because of the desire

to couple the boundary layer procedure to a transient internal conduction or abla-

tion solution.

For a given accuracy, the number of necessary "nodal points" in the surface

normal direction is controlled primarily by the nature of the functions which re-
late the dependent variables (and their derivatives) to the independent variable.

Thus the continuous functins typically used in integral relations approaches re-

quire fewer "nodal points" than the functions with discontinuous first derivatives
implied by most finite difference approximations. In order to permit relatively

flexible profiles, sets of connected quadratics and cubics were selected to rep-
resent enthalpy, velocity, and elemental concentrations. The first derivatives
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(and second derivatives with cubics) of these functions were made continuous at

the connecting points. The advantages of such a "spline fit" are considered,

for example, in reference 4.

If the general integral relations approach is followed, weighting functions

must be selected. In the present study, as in reference 2, step weighting func-

tions similar to those used by Pallone (reference 5) were used. That is, the

conservation equations are integrated between nodal points (over strips) with a

unity weighting function.

In the past when relatively large spacing in the streamwise direction has

been desired, iterative procedures have generally been used to assure accuracy

and stability. Some of these procedures have treated the solution in a manner

resembling that used for a similar solution but with the addition of finite dif-

ference representations for the nonsimilar terms, a procedure which eliminates

the necessity of special starting techniques. Using this basic approach, the

specific treatment adopted in the current study follows most closely the matrix

procedure used by Leigh (reference 6) wherein the iteration is a consequence of
the solution of a set of linear and nonlinear algebraic relations. The general

Newton-Raphson technique was used in the present procedure to solve these simul-

taneous equations. This technique results in linearized coupling between all

relations required to characterize the boundary layer, and thus assures a more

general, rapid and stable iterative convergence.

This document is the second report to describe completely the analysis and

solution procedure associated with the BLIMP program, reference 2 being the first.

The addition of a turbulent boundary layer capability and transverse curvature

effects to the program provided the impetus for this report, therefore these two

topics will receive perhaps a disproportionate share of discussion. Much of the

rest of the analysis and solution procedure is the same as was reported in ref-

erence 2; the reader is referred to that document for more complete discussions.

This report concentrates on the fluid mechanical aspects of the problem

and describes the basic numerical solution procedure. The procedures employed

for calculating the equilibrium state of the gas and suggested for including

rate-controlled reactions are described elsewhere (reference 7) since they are

conveniently treated as subroutines to the basic boundary layer computational

procedure. However, the terms which are directly involved in the boundary layer

equations such as the "elemental source term" which arises from kinetic consid-

erations are included in the present development. Similarly, radiation absorp-

tion and emission enters directly into the conservation equations only as a net

radiation flux term in the energy equation. The calculation of this term can be

conveniently accomplished by a subroutine. Multicomponent transport properties

are based on the approximation reported in reference 8. Modification of the

-2-
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conservation equations as a consequence of this approximation is described

briefly here, and more completely in reference 2. The procedures employed for

coupling to a transient charring ablation program are also described here.

Section II includes the entire mathematical modeling of the boundary layer

flow including discussions of the general conservation equations, turbulent flow

considerations, transverse curvature effects, coordinate transformations, and

boundary conditions. Section III outlines the integral matrix method for solving

the simultaneous differential equations including the integral strip relations,

the mixing length solution procedure, and the Newton-Raphson iteration technique.

Section IV presents some of the results obtained with the program. Section V de-

scribes the CABLE (Charring Ablation and Boundary Layer Environment) program

wherein the boundaLy layer analysis is coupled to a one-dimensional charring

ablation analysis at each body station and presents the results of a sample run.

Section VI contains the summary, conclusions, and recommendations for further

study.

-3-
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SECTION II

MATHEMATICAL MODEL OF THE BOUNDARY LAYER

1. GENERAL CONSERVATION EQUATIONS

In the present analysis, the usual turbulent flow technique of breaking the

species, velocity, and enthalpy fields into mean and fluctuating components, time

averaging, and making appropriate order of magnitude approximations is used. Tak-

ing the results of these manipulations as a point of departure, the species mass

balance equation becomes

7-a (puKir') + L lpvKir ) = [Di K Ji )r I+ irK (i)

where s and y are the streamwise and normal coordinates, respectively, u and v

are the velocity components in the s and y directions, respectively, Ki is the

mass fraction of species i, r is the radius from the body centerline to the

point of interest in a meridian plane for an axisymmetric shape, K is zero for a

flat plate and unity for a body of revolution, p is the density, and i repre-

sents the rate of mass generation of species i per unit volume due to chemical

reaction. The individual species turbulent eddy diffusivity PeDi is defined in

terms of the correlation of the fluctuating components of concentration and nor-

mal velocity, that is,

(pv)'K.'
1 1

and ji is the mass-diffusion rate of species i due to molecular processes. Since

transverse curvature is to be included in the present analysis, r must be treated

as a function of y whereas in the typical boundary layer analysis, r is set equal

to r0 , the surface radius. The relationship between r, r0 , and y is

r(s,y) = ro(s) + y cos e (3)

Figure 1 helps orient the reader to the nomenclature being used.

In equation (1) and in other conservation equations to follow, turbulent

transport terms are expressed in Boussinesq form, that is, eddy viscosity, eddy

-4-
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diffusivity, and eddy conductivity. Hence all terms are time-averaged quanti-

ties and no need exists for using a superscript bar. In the order-of-magnitude

arguments, terms of the following types have been eliminated: 1) triple corre-

lations, 2) derivatives of turbulent correlations parallel to the wall, and 3)
correlations involving turbulent components of molecular transport mechanisms.

When equation (1) is summed over all species, the global continuity equa-

tion results:

apur K apvrK
as + ay =0

(4)

Combining equations (1) and (4), one obtains the species conservation equation

aK. Fri 1 a + y (5)
pu -- +pv L + i K a Ji) + 1

which can be written for each species i under consideration. The molecular dif-

fusion rate ji is expressed in general as

ji = P iv?-D..ax. T
1 j3 La ji - D in T (6)j,'i ay ia

where Dij is the multicomponent diffusion coefficient of species i into j, DT

is the multicomponent thermal diffusion coefficient of species i, VZ is the local

gas mixture molecular weight, and Ti is the molecular we'.,!it of species i. The

Stefan-Maxwell relations may also be used

[ + D T a nT a In T
ax~ _ z x X. ay ji ay 17
TKj K i  (7)

where xi is the mole fraction of species i and.&ij is the binary diffusion coef-

ficient of species i into j. Both of these expressions are complex in that the

multicomponent diffusion coefficients are difficult to evaluate, and the Stefan-

Maxwell relations provide only implicit expressions for the ji. For the special

case when all diffusion coefficients can be assumed equal and thermal diffusion

can be ignored, Fick's law results:

-6-
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3K.j - p 6 (8)

This technique is not used in this analysis. A different simplification is

used to work in terms of "elemental" conservation rather than species conserva-.

tion however. The term"element" (in quotes) is used to refer to those atoms or

groupings of atoms which according to equilibrium relations are conserved. Ref-

erence 7 discusses the merits of this approach in more detail. Defining a ki as

the mass fraction of "element" k in species i, multiplying the species equations

by aki' and summing over all species results in the following conservation of
"elements" equations:

PU ' + Pv k = 1 (9)

Pu Ty r' K -j

where Kk is the mass fraction of "element' l .-oi by

Kk 1ki (10)
1

It has also been assumed that all ED. ED. Tne "elemental" approach results in
significantly fewer simultaneous equations than the conservation of species ap-

proach, and the equating of all eDi gives sufficiently accurate solutions for

most types of problems.

The streamwise momentum equation can be written as

u u =~ 1 Kp( M ]_ (i

pu - + pv - r Y (v + u P

where P is the local static pressure, and eddy viscosity EM is defined in terms

of the Reynolds' stresses of turbulent flow by

PM-_(pv) 'u' (2PCM a u (12)
au

The transverse directlon momentum equation reduces to zero when longitudinal

curvature effects are ignored.

-7-
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The energy equation for this general chemistry boundary layer is

aH T 3H T 3 [pK( M +"v) u/2 +pu - + Pv = r- [p rK u/

PK - DT rK

1*(XPeH Cp P r~ E: D a h / i.

T jrK RT  X I Kq
L j +Ir1 q (13)

j 3]

where H T is the total enthalpy (static plus kinetic)

u2
H = h + - (14)

h is the static enthalpy including chemical as well as sensible contributions

h = Kih i  (15)
i1

hi is the static enthalpy of species i

T
hi=f C dT + ho (16)

T

T is the temperature, h? is the heat of formation of spcies i at the reference
1

temperature T° , Cpi is the specific heat of spcies i, C is the frozen specific

heat of the gaseous mixture

S KiC pi(17)

X is the thermal conductivity, R is the gas constant, xj is the mole fraction of

ecies j, the turbulent enthalpy transport coefficient is defined by

-8-
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K~i (pv)'hi'

H = - K ahi/ay )  (18)

1

and qr is the net one-dimensional energy flux towards the surface due to radia-

tion absorption and emission.

In the energy equation, as in the species conservation equations, it is nec-

essary to evaluate molecular diffusion flux Ji. As discussed earlier, the gen-

eral expressions for these terms are difficult to work with, therefore an approx-

imate technique for multicomponent diffusion has been derived in reference 8 and

is used in the present analysis. Since the present emphasis is on turbulent

flow problems rather than molecular diffusion, only the results of the approxi-

mations for diffusion are presented here. Approximating hij by

D U(T,P) (19)

and defining

zi  Fix2 (20)

XF (21)
(

2 - . . (22)
2 F.

Z.
3  (23)i%

114 In(I 2T ) (24)

ct  -0.5 (25)

V .ZiC t26)
1

~h~Zih i  (27)
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Zk a .kiZi (28)

k .kii (29)

the species and "elemental" laminar flux relations can be expressed as

Ji 2 l- I- + (Z -Ki) ay (30)

3k I 'lT Ly + (Zk- Kk) yj (31)

Diffusive energy flux therefore becomes

0 j tip ctRT - + (h -h + ctT 3

(32)

The "elemental" species conservation equation becomes

au +  rK k (33)

PV ~ j~ay I-( -h+ c 1

while the energy equation can be expressed as

DHT 'HT 1 [ K ( (34)
T-- + ay r K (r a + qr)J

If equal diffusion coefficients are assumed, p 3 = l/%, Cp = Cp, and h = h. When

thermal diffusion is to be neglected, ct = 0 and P4 
= ln V2"

Equations (4), (11), (33), and (34) comprise the boundary layer conservation

equations, including the approximations for unequal thermal and multicomponent

diffusion coefficients of reference 8. The equations are parabolic in nature,

therefore requiring specifications of the dependent variables, their derivatives,
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or a linear combination thereof along the wall (y = 0), edge of the boundary
layer, and at the initial body station. Typical sets of boundary conditions

will be discussed later in this report. Also necessary in the mathematical for-

mulation of the problem is the specification of the molecular transport proper-
ties, equation of state and equilibrium (or nonequilibrium) relations for the
multicomponent gas, and a description of the eddy viscosity, conductivity and

diffusivity. The molecular transport properties, equation of state, and equilib-
rium relations are discussed in references 2 and 7. The turbulent flow model is

discussed in the next subsection.

2. TURBULENT FLOW CONSIDERATIONS

In the conservation equations developea above, .he concepts of eddy viscos-

ity, eddy diffusivity, and eddy conductivity were used to express the correla-
tions of fluctuating velocity, species, and enthalpy fields in terms of mean
field quantities. This is only one of several possible techniques of closing

the set of equations (assuming satisfactory expressions for the eddy parameters

are available), and it does not provide any information regarding the evolution

of the turbulent correlations as the flow progresses downstream. Admittedly, it

would be more desirable to describe the turbulent fluctuations in a more complete
manner such as with an entrainment relation, turbulent kinetic energy relation,

or a local turbulent constitutive equation (reference 9). However, these tech-
niques are still in early stages of development even for incompressible single

component flows, therefore a more proven approach was selected for the present
analysis. The Boussinesq description of turbulent boundary layers has proved to

be very useful, particularly for complex reacting flows such as are being de-

scribed here, and will be used exclusively in the present analysis.

There is a wide amount of latitude possible even within the eddy viscosity
framework of turbulence, particularly in applying classical incompressible models

to compressible flows. The following two subsections describe how the turbulence
model described in references 3 and 10 was applied to the present compressible

flow problem.

a. Wall Region

Following the work of Clauser (reference 11) the boundary layer is di-
vided into a law of the wall region and a wake region. The relatively thin wall

region of the turbulent boundary layer is characterized by very steep gradients

in the turbulent transport and mean field properties. Turbulent stress varies
from zero at the wall to near itb maximum value at the outer edge of the wall

region. There is a vast amount of empirical evidence that these turbulent
stresses and also the mean flow field properties can be described entirely in

terms of the wall state, wall fluxes, thermodynamic and transport properties of
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the fluid, and the normal coordinate y. Since the streamwise coordinate does not
enter the solution for this region, the problem becomes a one-dimensional initial
value problem. Eliminating s derivatives from the continuity equation and neg-

lecting variations in r due to the thinness of the layer results in

) 0 (35)

or

pv = PwVw (36)

where the subscript w refers to the wall value. Thus the wall injection rate,

Pwvw, which may be a function of s, determines the transverse mass flux through
the entire wall region. Using the same technique for the momentum equation and

substituting equation (36)

Pwvwu = p(V + CM) du - Tw (37)

where the wall shear, Tw, is also typically a function of s. For flows over an

impermeable wall with constant properties, this equation reduces to

p(V + CM) du = Tw (38)

or

T tw (39)

indicating that shear can be considered constant in the wall region. For flows
with injection or ablation, it is seen that shear varies with the mass injection

rate and local velocity, that is,

T= T w + Pwvwu (40)

This one-dimensional description of turbulence in the wall region will be useful

in formulating a mixing length model for eddy viscosity as described in the fol-
lowing paragraphs. It should be made clear however, that only the wall region

turbulent shear stress is assumed to behave in a one-dimensional fashion. In
the solution procedure, the complete two-dimensional equations of motion are

solved over the entire boundary layer.
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A complete investigation of the validity of the mixing length postulate for

flows with injection has been reported in reference 12. The analysis used in

this investigation is an extension of that work; therefore, the reader should

refer to reference 12 for more details.

Because of the current lack of understanding of turbulent mechanisms, "theo-

retical" predictions of the variation of turbulence near the wall must rely on

empirical input into relations based on some phenomenological dependence. The

generality of the ultimate goals of this &nalysis and the desire to approximate

the physical situation dictated certain prerequisites for the turbulent transport

relations. These were:

a) The relations must indicate a continuous variation of the turbulent

transport properties from the wall to the fully turbulent region

b) The relations must be generally applicable to mass, momentum, and energy

transport

c) The relations must be applicable to compressible or incompressible flows

with real gas properties

d) The relations should be suitable for transpired and untranspired bound-

ary layers without any, or a minimum, modification of form.

Two basic variations of the eddy viscosity hypothesis have been proposed in

the past. The first type predicts the variation of turbulent viscosity from the
wall to the fully turbulent region. Reichardt, Rannie, and Deissler, in refer-

ences 13 through 15, have proposed such variations. The second type of hypothe-

sis involves a variation of mixing length from the wall into the fully turbulent
portion of the boundary layer. Rotta, von Kirmin, and van Driest (references 16

to 18), have adopted this procedure. Data indicate that surface mass addition

strongly affects the eddy viscosity profile, and it was found that the first

type of hypothesis could not be simply modified to predict this variation. On

the other hand, success of the mixing length theory in predicting profiles in

the fully turbulent portion of the boundary layer with surface mass addition has

been noted, for example, in references 19 and 20. It has generally been concluded

that the slope of the linear relation between mixing length and distance from the

wall is insensitive to surface mass addition. As a consequence of this apparent

generality of the mixing length approach, it was adopted for the present studies.

Th6 basic mixing length postulate can be expressed as

= 2 (d 2 (41)
(Qv)'u' = p' \dy) = PEM 24y

where the mixing length, Z, is a combination of various correlations, but re-

tains some relationship to the scale of turbulence. Prandtl proposed that this
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length will, in its simplest form, be related to the distance from a wall, at

least in the region of development of turbulence. His proposition that

dl = constant, K (42)

has been tested under a variety of conditions and found to be quite adequate in

the fully turbulent portion of the wall region.

As the wall is approached however, this simple relation is no longer appro-

priate, and, in fact, it can be shown theoretically that

2im £ =
y~o

(43)

£im d9= 0
y-*o dy

This is a consequence of the Reichardt-Elrod criterion (see reference 12). Thus,

two criteria are specified, namely, Prandtl's hypothesis which is appropriate in

the fully turbulent portion of the wall region and the Reichardt-Elrod wall cri-

terion as expressed by equation (43).

Several means o' expressing a relation covering the full range of y and in-

cluding these limiting criteria have been used by other investigators. It is

advantageous in considering extensions of mixing length theory to establish some

physical logic for the selected relation. Unfortunately, the understanding of

transition from the laminar to the turbulent portions of the layer has not

reached a state permitting any quantitative specification. Therefore, the se-

lected model can be based only on qualitative understanding of the process, di-

mensional considerations, and the above limiting criteria. These criteria are

satisfied for incompressible flows by a simple implicit relation of the form

d (Ky - ) (44)
dy

which implies that the rate of increase of the mixing length is proportional to

the difference between the value postulated by Prandtl (Ky) and its actual value.

This rate of increase is assumed to be augmented by the local shear and retarded

by the local viscosity. Using these parameters to nondimensionalize the above

relation yields

= (Ky - Z)! (5
YaV
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+ werewhere ya is the constant of proportionality. The coefficients K and ya

shown in reference 12 to be invariant for a wide variety of flow conditions at
values of 0.44 and 11.83, respectively.

For compressible flows, tho physical arguments must be changed somewhat.
Rather than describing the scale of a turbulent eddy, it seems appropriate to

describe the mass of the eddy, pi, with respect to the mass available, f p dy.
Thus, by analogy to equation (44), the rate of increase of the mass of an eddy

will be taken to be proportional to the difference between the mass available

between the wall and the point of interest (times an appropriate constant) and

the mass of the eddy:

I I K pdy - pt (46)

Nondimensionalizing as above,

Y= (K fjY pdy - T P (47)
0 Ya

The constants K and ya are left at their incompressible values of 0.44 and 11.83a
for the time being. The integral-differential character of this mixing length

equation indicates a difficult solution procedure in the physical coordinate
plane. However, in the (n,F) coordinates introduced by the Levy-Lees transfor-
mation, the mixing length equation simplifies somewhat. This will be discussed

further in Section 11.3.

For the special case of constant properties and zero injection (constant

shear), equation (47) can be integrated to yield

= - Ya 1 - exp DI48a+

where

U =

(49)

+ yuT
y =v
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It can be seen that the Reichardt-Elrod criteria is satisfied at the wall. For
large y, Rotta's (reference 16) expression

- (y + - ya )  (50)

is obtained. This special case result for constant property zero injection flows

is not used in the general analysis technique presented here.

b. Wake Region

The wake region of a turbulent boundary layer is so named because the

flow in this region tends to have a wake-like character. In particular, the
outer 80 to 90 percent of the boundary layer combined with the local turbulent

eddies dominates the mixing processes within the flow, and the viscous effects
become second order. Gradients in the wake region are typically much smaller

than those of the wall region. Since the pressure gradient and streamwise deriv-

ative terms are important in the wake region, the two-dimensional character of

the turbulence must be considered in its entirety, as opposed to the approxima-
tions of the wall region.

A fortunate feature of the wake portion of the boundary layer is that eddy

viscosity is nearly constant across this region, at least for equilibrium* in-

compressible flows. In particular, Clauser (reference 11) was able to relate the

eddy viscosity to edge velocity and a length scale 6*

CM = 0.018 u16* (51)

for a great quantity of experimental data taken in equilibrium flows.

The quantity 6* in this relation is the displacement thickness

6* = 1 - Pu dy (52)

0

in which the densities cancel out for incompressible flows. For compressible

flows, this length scale is inappropriate since under some conditions 6 can be

negative. Defining a velocity displacement thickness as

Equilibrium as used here refers to a particular pressure gradient, (6*/T )
(dP/dx), which results in self-similar velocity profiles (reference 11).w
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6 = f - dy (53)

the eddy viscosity in the wake portion of the flow will be taken as

CM = 0.018 u1 6 i* (54)

A satisfactory technique for choosing the correct e.M expression at any particu-

lar body station is to use the wall region expression

CM =2 du (55)

until cM exceeds the wake value, equation (54), at which point cM is held con-

stant at the wake value for the remainder of the boundary layer thickness.

c. Boundary Layer Transition

As can be seen from the form of the conservation equation, both the

molecular and turbulent transport terms are considered simultaneously. This is

necessary since an accurate description of the turbulent boundary layer requires

that the time-averaged fluctuation terms disappear near the wall. Another rea-

son for the inclusion of these terms is the description of laminar or transi-

tional flows. From the form of equation (54), it can be seen that for very small

6* the turbulent stresses will be small compared to the laminar ones. Without

any constraints on the equations as stated above, kinematic and eddy viscosities

are equal at a velocity displacement thickness Reynolds number of 56:

*

CM 0.018 u 16i

V V

:.Re 56

This "natural" transition Reynolds number is too low for most situations, there-

fore eM is artificially set to zero until some other criterion is satisfied. A
Reynolds number on momentum thickness, Ree, is currently used to trigger transi-

tion. Once the prespecified transition value for ReA is exceeded, turbulent

transport rroperties are immediately brought into the solution. Being a non-

similar solution, the influence of the upstream laminar profile is felt for some

distance downstream, thus simulating a transitional region which is not too un-

like the physical situation.
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3. COORDINATE TRANSFORMATIONS

The equations of motion for a boundary layer flow can be solved in the phys-

ical (s,y) plane by numerous techniques, however it is generally advantageous to
transform the problem to another coordinate system. The transformed coordinates

offer the advantages of nondimensionalizing the solution, confining the solution
to a narrower region, ninimizing changes in the dependent variables, simplifying

boundary conditions and occasionally result in the deletion of streamwise deriv-
ative terms. This latter possibility occurs only under very restrictive sets of

boundary conditions. The coordinate transformation in the present analysis is a
variation of the Levy-Lees transformation and is derived in its entirety in Ap-
pendix I. The standard Levy-Lees transformation takes the form

= plUpiro2K ds
0

Ku 
(56)

n= rul fYp dy

The first alteration of this transformation is actually a mathematical conven-

ience for carrying out the numerical solution. Introducing a stretching param-
eter aH in the normal coordinate, a new coordinate system is defined by

= (57)
T) H

The parameter a H is taken as a function of _ only and is determined implicitly
during the solution. Its purpose is to stretch ta n coordinate such that the
boundary layer remains of constant thickness in the iT coordinates.

Since a new variable aH( ) is introduced, an additional relation is required.
This is conveniently supplied by constraining some arbitrary point near the bound-

ary-layer edge, n c' to have a specified streamwise velocity, c, near (but some-
thing less than) the edge value:

f'c cf' nedge  (58)

-18-



AFWL-TR-69-106

where f is the transformed stream function defined as

I4
f- fw U ( T7 59)

0 0

and the prime denotes differentiation with respect to j so that

V =a U- (60)

Examples of the utility of the stretching parameter aH are contained in refer-
ence 2.

The second change in the Levy-Lees transformation has to do with the trans-

verse curvature effect. For very thin axisymmetric bodies, it is possible to

have boundary layer thicknesses on the order of the body radius r0 . In this in-
stance, it is necessary to treat r as a function of y, thereby including its

variation through the boundary layer. The coordinate transformations become

= sp 1 1pj 2K ds

(61)u1 1
= 

prKdy

Utilization of the above coordinate transformation relations results in a
new set of governing equations in the (z,n) coordinate plane which will be given

below. The hat (^) notation will be dropped for the remainder of the text for

simplicity, however & and n are given by equation (61). Primes will refer to
derivatives with respect to n except when noted otherwise.

The global continuity equation is automatically satisfied by the definition

of a transformed stream function f(,n), shown in equation (59), and redefined
here in the final coordinate system:

f fW fu=dn (62)
H -
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fw Kl- d (63)

The other governing equations will be discussed separately.

Streamwise momentum equation

tC (i + M
ff" + [ fit]' + 1 - f12)

2 ___ -af f2 H _ fit Df (64)2(f f n T nc )

In this equation, utilizing the technique of reference 21, the transverse curva-

ture effect is included entirely in the coordinate transformation and in the def-

inition of t:

2a12TA cos
= 1 + ul J 1 dri (65)

where 0 is the angle between the surface normal and a plane normal to the body

centerline (see Figure 1). Other definitions of interest are:

C = P) (66)P l 1

3 in u1
8 E 2 D In - (67)

For solutions without consideration of transverse curvature, t is set to 1.0

throughout the boundary layer.

Turbulent model equations

The turbulent fluctuations are related to the mean field through the eddy
modals described in equations (2), (12), and (18). Eddy viscosity is described

by a wall law and wake law, while eddy diffusivity and conductivity are related

to eddy viscosity by turbulent Schmidt and Prandtl numbers:

-20-



AFWL-TR-69-106

CM

Se (68)

e M

Prt (69)

Defining

(70)

PI (71)

Re6  (72)

P2M (73)
M P1.1

The wall region eddy viscosity relation becomes

Sp(Re ) 2fo# (wall region) (74)

E 0.018 (-)Re 6* (wake region) (75)

where

6a -
6. = 6cz (1 -'-

H f( a drj (76)

00

Transverse curvature is not considered in determining the wake region length

scale 6*. The governing equation for mixing length, which must be solved for
the entire boundary layer although it is used only in the wall region, is

i+ KaH- k(77)

a2

r-21- 
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Since mixing length is used only in the wall region, it is valid to use the one-
dimensional expression for shear stress, equation (40). In transformed coordi-
nates, this becomes

C L1 w f + PO fl (78)

Energy equation

f + (-qa + q*) = 2( ' H4 f - (79)

where q* is the normalized diffusive energy flux away from the surface includinga
turbulent fluxes and q* is the normalized radiant energy flux toward the surface:

q= qa/a* (80)

Sq* = qr/a* (81)

The flux normalizing parameter a* is defined by

j = T (82)

Diffusive energy flux qa in the transformed coordinates is defined later in this

section.

"Elemental" species equations

fk + t K - jJ + aHok = 2f' - K' l (83)

where j* is t' e normalized diffusive flux of "element" k:

2 = *(R)
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Diffusive fluxes

The normalized diffusive energy flux is given by

, C= - [,ff U2  r T' i Tv

+ ctRT j + (h - h + ctRTP4

3t 4)]

[ - u + T + (h, - (85)

where Pr is the Prandtl number based on the frozen specific heat

Pr E (86)

The turbulent contribution to the diffusive energy flux is contained in the last

bracketed term, which is left uncombined with the other terms for clarity. The
fact that the gross simplifications of the turbtlent model are included in the

same equation with the rather sophisticated unequal molecular diffusion model is
merely a mathematical convenience stimulated by the requirement for calculations
in all types of flow situations, including both laminar and turbulent flows. Un-

equal molecular diffusion and thermal diffusion effects may be important in the

laminar sublayer region of a turbulent boundary layer, however.

Normalized molecular diffusive flux of species i is

j# = C  [i + (Zi - K (87)

where Sc is a system property defined by

scE - (88)

The S9c is a Schmidt number based on the self-diffusion coefficient for a ficti-

tious species representaLive of the system as a whole. The normalized molecular
diffusive flux of the k th "elemental" species is
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* r]
Jk - z + ('k -Kk)N (89)

aHSC

When certain groupings of parameters are constant so that the flow simi-

larity assumption is valid, the terms on the right-hand side of the conservation

equations (equations (64), (79) and (83)) vanish, in which case the conservation

equations become ordinary differential equations. It should be emphasized that

the equations as presented herein are equivalent to the corresponding boundary-

layer equations presented in Section II.l. That is, no similarity assumptions

have been made in their development.

Equations (82), (67), and (63) for a*, 8, and fw, respectively, are inde-

terminant at the stagnation point of a blunt body. Special forms for these equa-

tions valid at the stagnation point are shown in reference 2 to be given by

fw = (- lw w/6 8) (90)

sp

( p Pwvw/Oa* )s (91) .
where for Newtonian flow

8sp =1/(K + l) (92)

and

= (2P/p) s Reff 
(93)

sp

with Reff an effective nose radius taking into account the shock shape. Alter-

natively, 8sp and (du1/ds)sp can be computed from curve fits of the inviscid

pressure distribution. The transverse curvature parameter t also requires some

special treatment at a stagnation point. The troublesome term is cos 6/r_

which is evaluated at a stagnation point by

- /2

cose [6) 94
r0  sp
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In addition, to improve the accuracy of numerical integration procedures

in the nose region, ' and fw can be computed by the following relations

12 [K(95d
2 ( + )] 11 d(s2K+2 (95)

w = - _ fJ d(sK+l) (96)0

which take advantage of the fact that ul/s and ro/s vary more nearly linearly in

the stagnation region than do u1 and ro. These equations are also discussed

more thoroughly in reference 2.

4. BOUNDARY CONDITIONS

The usual set of boundary conditions for the boundary layer flow problem

consists of the specification of initial profiles for the dependent variables

and Kk' plus additional specifications of these quantities along the

wall and at the edge of the boundary layer, and the specification of fw along

the wall. However, since the main utilization for the analytical technique pre-

sented here is to compute boundary layer properties for flows over ablating or

transpired surfaces (heat shields, rocket nozzles, etc.), these boundary condi-

tions have been greatly generalized. The numerous options resulting from this

generalization are discussed below.

The boundary layer edge conditions typically are found from an ipentropic

expansion from known elementa. gas composition and stagnation conditions. Thus,

given a set of stagnation conditions and a description of local static pressure

along the surface of interest, the techniques of reference 7 may be used to es-

tablish the entropy of the gaseous mixture which, when combined with the speci-

fied pressures, can be used to establish the complete equilibrium edge gas state

at each body station. Edge boundary conditions then would consist of

fV = U
edge H

HT H (97)Tedge Tedge actual

edge edge actual
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where the subscript "edge" refers to conditions specified at nedge ,chosen to be

outside the boundary layer (see Section 11.3). An additional constraint at the

boundary layer edge which is necessary only when cubics are used is the require-
ment of zero slope, i.e.,

fedge 0

Hedge =0 (97a)
edge =

=k 0
edge

It is possible to specify edge entropy as well as pressure. The techniques of
reference 7 are then used to establish the complete edge gas state for a non-

isentropic expansion around the body of interest.

Initial profiles of f', HT, and Kk are more difficult to establish for
the general problem, therefore calculations are often started with reasonable
assumed profiles far upstream of the region of interest so that effects of erron-

eous assumptions will die out. Another possibility for initially laminar prob-

lems is to assume a similar solution as a starting profile. This assumption

reduces the equations to ordinary differential equations at the starting point,
which may be solved simultaneously for a set of profiles unique to the assumed

edge and wall state. The similar solution is exact at a body stagnation point,

therefore this option is particularly valuable for blunt body problems.

The wall boundary conditions allow the widest selection of options. The
simplest combination is the straightforward assignment of velocities, enthalpy,

and elemental concentrations at the wall:

f' = 0 no slip

fw = f() specified pwvw

HT  = h w() specified enthalpy of gas (98)
w at the wall

Kk  = Kk, () specified wall gas elemental
w w composition*

Wa-i temperature may be used to find wall enthalpy in the above formulation.

Also, wall mass diffusive fluxes of up to three individual injectants may be

It is physiallv unrealistic in most cases to assign Kkw when diffusion coeffi-

cients are unequal since the contribution to Kkw by preferential diffusion of

the various "elements" to the surface is not known a priori.
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assigned in lieu of Kkw and Pw" With the values of the dependent variables

all directly assignea in this manner, the boundary layer problem is uncoupled

from the surface chemistry interaction.

The inclusion of surface material/boundary layer gas interaction chemistry
in the boundary layer problem forms the second major set of wall boundary condi-

tion options. Using the surface thermochemistry techniques of reference 7, it
is possible to specify given mass fluxes of the (up to) three injectants at the
wall and require chemical equilibrium between the injectants, the wall material,

and the adjacent gas stream. In this instance, the values of HT (e., Tw) and

Kkw are found by simultaneous solution of the local surface chemical equilibrium

equations, surface mass balances, and the no-slip velocity boundary conditions.

Alternatively, selected chemical reactions at the wall can be kinetically con-

trolled through Arrhenius-type rate law formulations and included in the surface

chemistry description.

in the use of this boundary layer technique in conjunction with in-depth

charring ablation analyses, the chemically active injectants might result from

the pyrolysis of an internally decomposing material, surface material combustion

or phase change, and mechanical removal. A variation of this type of wall bound-

ary condition is to specify the wall temperature or enthalpy and allow the sur-

face chemistry calculations to compute the necessary PwVw and Kk. In summary,

the surface equilibrium wall boundary condition is

= 0 no slip

fw = fw(  specified Pwvw

= H(99)HTw g Twequil from surface equi-

Kk = Kk librium requirement

w wequil

The final wall boundary condition category involves the use of a steady

state energy balance at the surface. A general surface energy balance can best

be understood by examination of a schematic representation of the energy fluxes

to an ablating or nonablating (mc = 0) surface:

(pv) whw (infinitesimally thinqa i{control 
vclume at

_surface

- - surface
// //X/ / / //, / / / / //// / / / / /

cond Cc w m gw
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Summing terms,

ghgw + mchcw + qa - qr - (pv)whw - cond 0 (100)

which is valid in either a transient or steady-state situation. In general, an

in-depth charring ablation solution would be needed to provide the conduction

term qcond and the pyrolysis gas rate, mg. Under steady state conditions, the

internal pyrolysis "front" and the charred surface are assumed to be receding at

the same rate, therefore requiring that the energy conducted into the wall mate-

rial must equal the enthalpy rise of the wall material and pyrolysis gases. In

equation form

-cond m(hcw - h)- mg(hgw - h) 0 (101)

Substituting into equation (100), the steady state energy balance becomes

qaw - i - (pv)wh + mho + mh' = 0 (102)
aw rww cc gg9

In this equation, qaw is the wall value of the energy flux defined in equation

(85), and is found in the course of the boundary layer solution. The surface

equilibrium requirement is always used in conjunction with the steady state en-

ergy balance. Therefore, if one specifies the compositions and heats of forma-

tion of the pyrolysis gas and char materials, the simultaneous solution of the

energy equation above and the surface chemistry relations mentioned earlier com-

pletely couples the boundary layer flow to the surface response. The steady

state assumption is good even in transient situations for large ablation rates

or small thermal diffusivity of the ablation material (reference 22). In sum-

mary, the use of the steady state energy balance results in the following:

f' = 0 no slip

HT = HT steady state
w ws.s. energy balance (103)

fw =f ) qiw fWequil surface equilibrium

~ Kke requirementKw W equili
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SECTION III

INTEGRAL MATRIX SOLUTION PROCEDURE

The solution of the transformed boundary layer equations presented in Sec-

tion II uses an integral matrix method which has been developed specifically for

the solution of chemically reacting, nonsimilar, coupled boundary layers. A com-

plete presentation of the integral matrix procedure was included in reference 2,

where solution of laminar flow problems was discussed. In the present effort,

this technique has remained essentially unchanged, however new variables and

equations have been added to describe the turbulent aspects of the flow and to

include transverse curvature effects. The present discussion will therefore re-

view only the highlights of the method, and the reader may refer to reference 2

for more details.

In the integral matrix procedure, the primary dependent variables and

their derivat:v.-.a with respect to n are related by Taylor series expansions such

that these dependent variables are represented by connected quadratics or cubics

(either option is available). That is, f', HT, and Kk are expanded in Taylor

series form and the series are truncated to reflect the proper polynomial repre-

sentation. A nodal network is defined through the boundary layer and the Taylor

series expansions are assumed valid between each set of nodes, with an additional

requirement of continuous first and second derivatives (a spline fit). Primarily

for convenience, the conservation equations are integrated across each "strip"

(between nodal points) using a unity weighting function. The linear Taylor ser-

ies expansions together with linear boundary conditions form a very sparse ma-

trix which has to be inverted only once for a given problem. The nonlinear

boundary layer equations and nonlinear boundary conditions are then linearized,

the errors being driven to zero using Newton-Raphson iteration.

In Section III.1, the Taylor series expansions are presented, the inte-

grated form of the momentum equation is discussed, and techniques for evaluati..g

integral terms are demonstrated. In Section 111.2, the special techniques ap-

plied to the mixing length differential equation are discussed, and in Section

111.3 the actual simultaneous equation solution procedure is summarized.

1. INTEGRAL STRIP EQUATIONS WITH SPLINED INTERPOLATION FUNCTIONS

Consider the boundary layer in the region of a given streamwise station s

as being divided into N-1 strips connecting N nodal points. These nodal points

are designated by ni where i = 1 at the wall and N at the edge of the boundary

layer. Consider a function p(n) which with all its derivatives is continuous
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in the neighborhood of the point n = ni. Then, for any value of i in this neigh-

borhood, p(n) may be expressed in a Taylor series expansion as

it (6 n) 2 (rI n) (6n)
Pi+l Pi + Pi" + Pi 2 + i 6 + Pi 24 + (104)

where

= il - ri (105)

Conventional finite difference schemes, in effect, typically truncate the Taylor

series after the first term and use the resultinq expression to relate p' to p,

etc., that is

Pi+1 - P
Pji = (106)

Round-off error is then of order (6n)2 and many nodes must be chosen to bring

this value down to acceptable limits. One can achieve a reduction in the number

of nodes for a given accuracy by employing a quadratic or cubic relation repre-

senting the function p over the interval of interest. This can be achiev.,d by

truncating the Taylor series after the third or fourth term. The cubic approxi-

mation will be used for the remainder of this discussion. The pi can be consid-

ered to be any of fi f!, f", f!'" HTi, H 'UT k,4,or k"' . Since the high-I I fI ii '  'Kk ' k '  Kk "

est derivatives of the dependent variables which appear in the boundary layer

equations are f"', F".i and K"., it is reasonable to truncate the series at the1 ' i k i .

next highest derivative and to consider that derivative as being constant be-

tween ni and ni+l' that is,

fl' - f,,,
i+l i

i ii-l 6Oi

H" - H"

Alti+ 1  T

Ti 1 6 (107)

i j
ii+I  6TI

Thus, rather than using finite difference approximations similar to equation

(106) which are substitued directly into the governing differential equations,
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a set of linear relations between the dependent variables and their derivatives

is obtained and is solved simultaneously with the governing eifferential equa-

tions. These linear relations are of the form

- fi+l + fi 1 1 n+ " ('S) 2 + "' ('Sr) 3 
+( 4 A~i~= 18

f + f!Sn + f'-- + f --- + f'''i l  = 0 (108)

( 2 (n) 2
Pi+l + Pi + P16n + Pi 36 = (109)

,i + + +1 + p , 0
p i+1 1 3i 2 6~

- + i+ ! Pi --T + Pi+l -2- 10

where in equations (109) and (110) the pi represents fV, represents Mri,, and

represents each of the K sets of Kki.

Notice that f' has been taken to be a cubic over each strip, rather than

the stream function, f, since it was desired to represent velocity (u = ulf'/aH)

with the cubic. Equations (108) through (110) above, when written for each adja-

cent pair of nodes; give (3 + 2K) (N - 1) simultaneous algebraic equations for

the N(4 + 3K) + 1 unknowns, fn' fn: f' f ' ' UH' HTn, Hn, Hof Kk Roln
n : n" f"' H'H~' ' n n' n n

at each streamwise station, where K is the number of elemental species.* The

Taylor serias equations are written for only K-1 species since the overall mass

bilance equation supplies the remaining elemental concentration. Additional re-

lations must come from the governing differential equations and the boundary

conditions. It is important to note that the f, V, etc., are treated as indi-

vidual variables related by algebraic equations. It is also important to note

that the coefficients in equations (108) through (110) are functions of 6q only;

therefore, this portion of the resulting matrix need be inverted only once for a

given problem.

The conservation equations (64), (79), and (83) contain streamwise deriva-

tive or "nonsimilar" terms. In the present solution technique, two or three

point finite difference formulas are considered sufficient to express these de-

rivatives, since gradients in this direction are not severe. As in reference 2

[ d( ) it = d ( )~ + d1  -1 + d 2( ) -2(1)
T 0 1 k

where -I refers t6 the previous streamwise station,

The mixing length is not included in this variables count since mixing length
(as well as cM in the wake region) is treated as a state property.
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do  d 1  a d = 0 (112)
Z - Z1 1 A Z1 2

for two-point difference and

d = 2 , X-1 + k.A k-2 dl=-2-,, P-2
0 d A-

Z -1 k k-2 X 2-1 k- L-2

Z ZJ,(113)e2= 2 A A
t k-2 Z-i .Z

for three-point difference where typically

k L Z_1 = in - In ,-i = ln(/ ZI/- 1 ) (114)

The three-point difference relation is generally used unless a similar solution

is desired (in which case do = d1 = d2 = 0) oL unless the point in question is

the first point after either (1) a similar solution or (2) a discontinuity (e.g.,

where the body changes shape abruptly, or where mass injection is suddenly ter-

minated).

The next step in the treatment of the conservation equations is their in-

tegratLon across the boundary layer "strips". The primary reason for this inte-

gration is to simplify the n-derivative terms in the energy and species conser-

vation equations. since it is not convenient to express the complex q* and j*

terms in derivative form. The solution can actually proceed very nicely with-

out integrating across strips (see reference 10) without any noticeable change

in speed, accuracy, or stability for simplified problems such as incompressible,

nonreacting ft. ,s. The weighting function for integration between nodes in this

integral method is unity. In the terminology of the general method of integral

relations, where integrals are carried from 0 to - in n (reference 23), a square

wave weightin- function is used which is unity across the strip in question and

zero esewhe-e. The equations are then integrated N-I times with the 'quare

wave applied to each strip in succzssion. Using the momentum ea'iucion as an ex-

ampltb, the integration from i-i to i results in
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f f d -, l , : + H -+ da -- p r f ' it,

i-i a1 i -i - i 'd

i i

Ji-1

+ d2f2Z 2) dn (115)

The Taylor series approximations introduced earlier can also be used to express

the integral terms above. As demonstrated in reference 2, the termJi f
1'p dn

becomes 
I

A.
f' di XP I + f  X P 2 + f .'XP + f' xp (116)pd i XP 2 + 3 i-i 4l-i

where

6n 2• XP, 6n P + ,, (6 ,, (S
.~~P - Pi iP-!- -

=Pi , rl ,, l (6n,' (6.XP2  (6r - - P! -- + P P1 1 n -
+ *(117)

XP3  P( i1)3(Pi , llOn) 1 11(6n) 2  , 5(6n))-- Pi 120 i 42 i- 0

X (6n)( p  , " 52(6n) (6r)2
P 4 6n Pi + Pi 504 + Pi-1 1

This technique is used to rerrite each of the integral terms in equation (115)

above of the form f'p dn. The remaining integral term in the momentum

equation,f. I (pl/p)dr, and the Helementar source term in the "elemental" con-

c@rvation equation are evaluated by approximating these functions as cubics over

the strip and integrating directly. This yields

ii-i
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Similarly for the integral of bk

j

f + - - k+Oi 2--0 (119)
i-i i

These approximations are not quite as good as the approximations for f', H T and

Kk since continuity of derivatives is not guaranteed at the nodal point.

Direct substitution of these approximations for integral terms into the

governing equations results in the following forms.

Momentum

C Mf + f, (1 + do)f + dlf 1 + d 2f 2)1
(x 0 1Z-1 2 -

F1[(0 Pl\ I _q i plp i-l'\(6n)2

+ )E
ILpi pi-/ 2 i- / 12

d( + + d l f-l XP + fP XP2

+ f." XP3 + fl-l" 4  i - 2 !ZP + f"ZP + f"' ZP

+ f"' - ZP 4]0

+P4f. (120)

[ q* + q9) + '1  l+ do) f + d fi + d f T)la 2 i Z- 1 2 2l

- (1 + 2do) [f[XP1 + f:XP + f?'XP3 + fl,Xp.

- [fzp + f1ZP 2  + f 'zp3  + f4 .zP ] T.iZ2 i i .i=T '

-[HT ZP1 + H ,ZP 4H",ZPJ + " I" = 0 (121)TT . 2 i 3 Ti -i 1 pi=f!
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"Elemental" Species

j + (1 + d f + d f 1
+ d2k Yki01f-1 2f - 1

+H kH + Ok 1 2 - L1

(l+ [ xP + f!,,xP+ f!" XP3 + f,, x
iP 'ki. -

! ZP i + f!'ZP + f!" ZP + f'" 1 ZP4
1 1 1 1 3 1 4]Pi = g

- Zpj + 'i Zp2 + I, Zp3 + ZI Zp4 ] . ! 0 (122)1 1 i-i 1i= f

The following definitions are necessary:

ZP1  6n YPI YP n + YP (n) 2 + (6n)
1- 2 2 3 8 Y4 2T

2=2 3 3 120 4 30

ZP 3 = (68) 3  - 120 3 +  
( (4

Zp4 = (6n) (-YPI n+ 54(6r2 + (6n)2)4 2-"-Y2 30 + Y3 -5 +0P4 252

with

YP1 = dip£-li + d2P£-2,i

YP2 = dlpi,i + d2Pi-2,i (124)

YP3 = dlpz- li + d2P-2,i

YP4 = dpz-l,i-1 + d2Pk-2,i-1
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and pi is defined adjacent to the brackets in each term that uses these defini-

tions.

The conservation equations provide (K+l) (N-I) more equations for the

N(3K + 4) + 1 unknowns, thereby closing the problem. However, before discussing

how this set of algebraic equations is solved, Section 111.2 describes in detail

how the mixing length differential equation is solved.

2. SOLUTION OF THE MIXING LENGTH EQUATION

The mixing length equation is a first order linear differential equation

whose solution can be written directly in general terms. The differential equa-

tion is

d-i a +HPl . 7  (KuA -4) (77)
dn +Ya

Defining

P(n) HP16/P (125)
Yap

results in

dt = (Ka n - 1)P (126)

The solution to this equation is

e Pdn' dn'l

=K Hrflfo fo P dn' j (127)

The remaining problem is to evaluate the integral terms. Defining

,f 'P d,"

L(n) f e d(128)
n p dn'

e

-36-
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yields

KaH (rI - L) (129)

Appendix II presents a complete description of the technique used to evaluate

L(n). In essence, P(n) is assumed to vary linearly over the interval nil to

ni' and the integrals are e:cpressed in a more tractable form. The final expres-

sion is

= BLi I +A D( )- ( AP 1 (130)

where

A li (131)

_ n i r - _

B e (132)

" i ni n-i-i (133)

e( Jo e( Y e y (134)
Dw ()=e Ody

The Dawson Integral, Dw( ), can be evaluated from tables (reference 24) or by a

series method. A series evaluation method is used in the present analysis. Thus,

combining equations (129) and (130), an explicit recursion formula for mixing

length at each node is obtained. This mixing length is a function of local shear,

viscosity, and density through the variation of P(n), and is re-evaluated at

each node on each iteration during the course of a solution.

3. NEWTON-RAPHSON ITERATION FOR A SOLUTION

A complete description of the Newton-Raphson iteration procedure as ap-

plied to the laminar equations of motion was given in reference 2. Since the

procedure is basically unchanged with the addition of turbulent flow and trans-

verse curvature equations, it will be reviewed only briefly here, with emphasis

on the recent additions.
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To illustrate the Newton-Raphson method, consider two simultaneous non-

linear algebraic equations

F(x,y) = 0 G(x,y) = 0 (135)

the solution for which is given by x = x, y = T. Define xm and ym as the values

of x and y for the mth iteration. The desired solution f(x,y) can be expressed

in a Taylor series expansion

0 = F(x,y) = F(xm,Ym) + (X - x m) x

+(jy)aF(x mlym)(Y - Ym)  aym+
(136)

(Xm,Ym)(16
0 = G(x,y) = G(xm,Ym) + (x - m Gx

aG(xy_)

The Newton-Raphson method consists of replacing (x,y) by (xm+l,Ym+l) on the right-

hand side of these expressions and neglecting nonlinear terms in xm+ 1 - xm and

Ym+l - Ym" This yields the set of simultaneous equations

aF(xm,y m) + F(xmY m )

m ax m ay m'm
(137)

aG(x 'y ) G(xm 'ym=-Gx,
m ax m ay mm

or in matrix form

aF(xmY m) aF(xm,Ym) i
x y AX - F(xY

3 = I M(138)
;G (XmY m )  aG(X mY in)tx ay Ym [yJ - G(xmym)
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where

AXm m+l Xm Ay Ym+l - Ym (139)

The Axm and Aym are the corrections to be added to xm and y , respectively, to

yield the values of the dependent variables for the m + I iteration. Here

F(XmY m ) and G(xmY m ) are the values of the criginal functions F(x,y) and G(x,y)

evaluated for x = xm and y = ym" As the corrections approach zero, the F(XmY)

and G(xmYm) approach zero. Hence, it is appropriate to look upon these as errors

associated with the original equation (135). It is apparent that this procedure

can be extended to an arbitrary number of functions and a corresponding number of

primary variables.

For the purpose of the present analysis, it has been found most convenient

to consider the primary variables as fi' fV f"' , HTi, H+,, H", Kk., K

Kki' and aH" This amounts to (3K + 4)N + 1 unknowns where N is the number of

nodes and K is the number of elemental species to be considered in the boundary

layer. Recounting the number of equations, we have

Eqn. Numbers No. of Equations

Taylor series expansions (103) - (110) (N - 1)[5 + 2(K - 1)]

Boundary layer equations (120) - (122) (N - I) (K + 1)

Boundary conditions (97),(97a),(98) 3K + 4
or equivalent

aH definition (58) 1

Total N(3K + 4) + 1

Other secondary variables such as e, p, T, etc. are expressed in terms of those

listed above. The corrections in these secondary variables are therefore found

in terms of the corrections to the primary variables.

The use of the Newton-Raphson technique for the current set of equations

requires the evaluation of the partial derivatives of each equation with respect

to each variable. The partial derivatives of the Taylor series equations and

tives of the conservation equations are:

Momentum

tC f + + 'M+ t)+ [(1 + do)f + dlf_ 1 + d2fz_]Af'

H + d 0 ) f Ca H _ 1 +

Pi 3 . i n~
(1 + do 1 + p L0 i 2 2 3 1) z 6-
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1 1

+ fq P + a 2q + P q* A + (1 V. + d0 f dAf'.1  +d)

+lX + 1 4oA] 1 - (1 + 3d~f X 1 + AP
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where the ERROR is given by the left-hand side of equation (121) for the mth

iteration and Aq* is given by

(c + Ml A M + Af' Af" H
a a 3 (c + r a H ) a H Pr (

AC AaH +AZM + MT AT' AaH+ C + Apr) + AT' +

+ c C__ -- + ciR)T' CtRTpj + (h-h + ctRT . d [A-

° H M' M AHJ+ C L-- + (h ' - T . .. a'

c )  2

+ -- )+ (h - h + ctRTp 3)Ap + (Ah - Ah + otRT-'IP3

+ + AhI - TAT - T'AC (142)T p
"Elemental" Species

EMk t(k Aal AEM
-tAj - j*At + H-kt=-- - - + - + A ( + d o ) f + dlf._L k k( 'H~kI aH M _

+ d2 f - 2 ARKk + Kk(l + do) Af] + c + A k

-41-
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. k 6

(1+2d) fAP fAP f! -
( + iXPl + fiXP2 + 1 AXP 3  f'-lAXP4 + XPlAf i

+ XP2Af + XP3 Af i + XP 4Af 7-  - ZPIAfI + ZP fl

Pi=Kk.
1

Z3Af' Af -[zPA + ZP2AKk + ZP3 AK"3 4 1.11ki iA1 +iPAk
-Pi=Kk.

+ ZP4AKki1 = - ERROR (143)

41 k
iP

where the ERROR is given by the left-hand side of equation (122) evaluated for

the mt h iteration and Aj* is given by

A J] = - C + ( k -, A A H A c :
__ - HS c  c

+ AZ (Zk - Kk)Av + P(AZk - A ,k 1  (144)

The technique of relating corrections on secondary variables such as C,

0, T, Pr, etc., to corrections in primary variables was fully explained in ref-

erence 2. The same techniques are used for the new corrections At and AEM"

Once the correction coefficients (partial derivatives with respect to

each primary variable) for each equation at each nodal point are found, they

are arranged in matrix form for further manipulation. The order of the primary

variables and the order of the equations is of some importance in the matrix

formulation. It is most convenient to divide the variables into "linear"

(symbol L) and "nonlinear" (symbol NL) sets, namely

FAL_ BLI [E~ FLl
LANL BNLJ VJ= j(14)

-42-



AFWL-TR-69-106

where the linear equations are the Taylor series equations and some of the bound-

ary conditions. The purpose of the partitioning is to allow operations on sec-

tions of the coefficient matrix which result in significant simplification of

the overall inversion. In particular, since the coefficients of the linear equa-

tions are all constant or functions of the fixed nodal spacing, this portion of

the matrix (the AL portion) can be diagonalized once and for all in any given

problem. In essence, the corrections on the linear variables AVL are always ex-

pressed in terms of the nonlinear variable corrections AVNL. The choice of

linear and nonlinear labels for the variables is somewhat arbitrary, but care

must be taken that the AL matrix not be singular. It has been found convenient

to arrange the variables into the linear and nonlinear groups as follows:

AVLF(Af2  Af3,. , Af f,"3'" n f' -Af_' ,. Af"'); AVL (AHTn
AT AH AN, AH AH.. AH ); and K-1 sets of AVLK(AKk, AK 2,T2 HT r,... A T I HT I A T I',...Ak2

, AV A,'W ii ) Tfle nonlinear variables are then arranged..3 .. kn P , ,kw ,  '.k2 l" , . kn ,

in the following order: AVNLF (AA, w' f j Af w Af~ ~ Af AVNLH (AH,

AHTw, AHT2,... AHTn 1 ); and K-1 sets of AVNLK ( Kkw, Kkw, Kk2 .... Kkn-l).

The order of the linear equations in the present matrix procedure is:

No. of
Equations Description of Equations

3N-2 Linear boundary conditions and
Taylor series for f, f', f", f"'

2N Linear boundary conditions and
Taylor series for HT HT , H"

(K - 1) (2N) Linear boundary conditions-and
Taylor series for Kk K , X11'k' k

The nonlinear equations are sequenced as follows:

No. of
Equations Description of Equations

4 Nonlinear boundary conditions
and aH constraint

N - 1 Momentum equation for each pair
of nodes

N Energy equation for each pair of
nodes plus wall enthalpy equation

(K -1),N) K-1 sets of "elemental" species
equations for each pair of nodes
plus wall species equation

Special logic has been written for the matrix inversion, taking advantage

of the regular sparseness of the matrix. One the corrections for th, linear
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and nonlinear variables are found, these corrections are added to the variatles

to form the new guesses. The magnitude of the errors for each equation are

checked and the procedure advances to the next iteration if the absolute values

of the errors exceed prescribed upper limits. If the errors are acceptable,

iteration is completed for the current streamwise position F. Typically, three

to six iterations are required to reach a satisfactory solution.
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SECTION IV

SOME RESULTS FOR MULTICOMPONENT BOUNDARY LAYERS

The fact that the BLIMP computer program works well for a myriad of multi-

component reacting laminar flow situations including stagnation points, trans-
piration cooled surfaces and rocket nozzles is well documented in references 25

through 27, among others. The purpose of this section is to present results for

the recent additions of turbulent flow and transverse curvature.

1. ABLATING FLAT PLATE IN TURBULENT FLOW

This sample problem is the formulation of a typical turbulent channel or
turbulent pipe flow situation such as might be found in some of the major test

facilities around the country. The flow stagnation conditions were P0 = 43.4
atmospheres, Ho = 2100 Btu/lb. The flat plate model was taken to be constructed

of graphi'- phenolic, and the wall temperature was assigned at Tw = 4760°R.
Asslaming that the plate ablates in a steady state mode,the chemical composition

of the virgin material exactly equals the chemical composition of the char plus
pyrolysis gas ablation products. The chemical composition of graphite phenolic

which was used is

0.9236 lbs. C/lb.

0.0209 lbs. H/lb.
0.0554 lbs. O/lb.

These numbers were calculated from data on graphite phenolic given in reference
28. Pressure and ablation rate or mass flux were also input to the BLIMP pro-
gram. The variations of these quantities in the streamwise direction are shown

in Figures 2 and 3. The decision to specify both the wall temperature and abla-

tion rate precluded the possibility of using either the surface equilibrium or
steady state energy balance logic in the BLIMP program. Indeed, no surface chem-

istry is needed at all when Tw and m are specified. This choice was made how-

ever, since it was felt that a more representative boundary layer would be ob-
tained by foregoing surface equilibrium than by demanding equilibrium and attempt-
ing to calculate Tw in the sensitive diffusion controlled ablation region (see

Section V).

Using the above information, the calculation was started at S = 0.03125

feet. At the first station, streamuise derivative terms are automatically

dropped since no upstream information is available. The solution was turbulent
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over the entire length of the 2.40 foot ablating plate. Additional solutions
were found at S = 0.3646, 0.6979, 1.1562, 1.6979 and 2.3646 feet. The variations

of calculated local drag coefficient, Reynolds number on momentum thickness, and

shape factor may be seen in Figures 4, 5, and 6. The flow is actually transi-

tional in nature, being weakly turbulent at the beginning of the plate and

strongly turbulent at the end. This fact combined with the free stream accelera-

tion an . decreasing rate of blowing along the plate produces the unusual Re0 and
shape factor variations.

Velocity profiles at three representative stations may be seen in Figure

7. These curves clearly show the transitional nature of the flow, with a nearly
laminar velocity profile shape near the beginning of the plate and a more char-

acteristic turbulent profile near the end of the plate. Figure 8 presents the

velocity profile at S = 0.03125 feet again, this time in semi-logarithmic coor-

dinates. The laminar sublayer, transitional wall region, and the wake region

are clearly visible in these coordinates, with the data points shown actually

representing solution points or nodes in the computer solution. This smooth vari-

ation of the velocity ratio from the wall to the wake region with this solution

technique is of particular interest in this figure. Eddy viscosity normalized

by the edge value of kinematic viscosity is shown in Figure 9. The eddy viscos-

ity is seen to decrease to values far below the molecular viscosity as the wall

is approached. Chemical species mole fraction profiles at three stations are

shown in Figures 13, 11, and 12. On~y the major species distributions are shown
in these figures, although a total of 42 species were considered. Table I below

lists the species that were considered and their maximum concentration in mole

fraction at the S = 0.6979 foot station.

Total central processor run time for this problem rith 13 nodes, 6 body

stations, and 42 chemical species including 4 elements was 419 seconds on a CDC

6600.

2. SPHERE-CONE CONFIGURATION WITH LAMINAR AND TURBULENT FLOW

A second sample problem was selected which demonstrates some of the flex-

ibility of the BLIMP program. The configuration chosen was a 0.500 inch nose

radius, 7.5 degree half angle sphere-cone consisting of three surface materials:

graphite, pyrolytic boron nitride, and pbenolic carbon. Stagnation conditions
were representative of a single time in a severe reentry trajectory with Po =

242 atmospheres, Ho = 5520 Btu/lb. Figure 13 is a schematic of the sphere-cone

configuration. A total surface running length of 5.0164 feet was analyzed in

this problem, which required 29 body stations and thirteen nodes through the

boundary layer. Figure 14 shows a portion of the prossure distribution which

was assumed, the remainder of the running length being deleted from the

-48-



AFWL-TR-69-106

4 .J

.44

44

LU 0

N uN . c

La m oww C

..a 0.. -j C LU 0

0 to CO I-- -

0- .J 1% 0 U -

0

0 -
wI UL H

o ~ :s
z 0 0-J 1.

Lco .I-1

a. 9

Clz

0~ ~ C;N*~



AFWL-TR-69-106

>i

".4
z
44

w *o

I-1

-C 
3

0~~ 0 X j )
1. F) - IL. w w

I,--
43

oo -oO

-50)

.!D

a 0

D0w
Io

IH -500



AFWL-TR-69--106

LL. U l L
00

w 0 -o

X w. 4A

0000 < 41

o 0o
N4 (4rz

-51-I



AFWL-TR-69-106

4-i

1:1

00

w r4

~ 0
0n 0D 44

(A H- U -* -

0

U~- 0 k Co" >M0 --. c
u .4 C 4

if~4 0 1 N

0 0 C -J4

C))

U)

-52-



AFW-TR-69-106

.4J

j -j 0

0 40

r= 0

00 .4

W CO

0 0 0

4

00

0~C Co(0o

Ln/

-53.-



AZiWL-TR--E9-106

-Ii

4)

LnL

4LO CA4.)

0
0- 4.

0' H

U. ~ ~ 0
E 0 1=0 o

0 --
.Jw 0Ar C D

t*- CXaO

0 .4

0. 0 0s 3:-1c

= a~. 0 0- <~

-54



AFWL-TR-69-106

NO

00

3-

U-O
w2

22

PHNLI ABO LT LT

H 0 10Bul

* y -feetkFigure 10. Mole Fraction Profiles at S =0.03125 Feet

-55-



AFWL-TR-69-106

1.0 N 2  -

02

10-1

10-2 CO2  --

H 20

0

10-3 -

PHENOLIC CARBON FLAT PLATE

Po = 43.4 atmospheres

H a 2100 Btu/Ib

Tw a 4760
0 R

w10-4 ALL TURBULENT FLOW

10-4 10-3 10-2 10-I

Figure 11. Mole Fraction Profiles at S 0.6979 Feet

-56-



AFWL--TR-69-106

1.0

N2

10~0

-.0............

100.2

HI 2
Fiue1. MoeFato0Poie-tS3.66Fe

PHEOLI CABO F-T57- T



AFWL-TR-69-106

Table I

SPECIES CONSIDERED IN GRAPHITE PHENOLIC
FLAT PLATE PROBLEM

I Maximum Mole Fraction
Species at S = 0.6979 ft.

C3  4.700 x 10

CO 3.405 x 10-

H 2.037 x 10- 2

N2  7.774 x 10- 1

e- 5.084 x 10- 8

C (s) 0.

02 2.009 x 10- 1

C 1.487 x 10- 6*

CH 3.217 x 10 - 7*

CHN 5.546 x 10

CHO 6.167 x 10-

CH 9.211 x 10- 8*

CH3  3.088 y 10 -

CH4  
4.455 x 10-2

*

CN 2.667 X 10- 4*

CO2  
6.358 x 10- 2

C2 
1.898 x 10- 6 *

C2H 1.698 x 10- 3 *

C2H 6.622 x 10-
3 *

C2N2  
1.392 x 10- 3 *

C3H 3.903 x 10- 3 *

3
C3H 4.818 x 10

C3H 2.928 x 10- 6 *

HN 5.014 x 10-

HO 1.355 x 10- 2

H2  1.868 X 10- 2*

2
H2N 2.44718 x 10- 2
H20 1.184 x 10-2

-- g
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- Table I (concluded)

I. I Maximum Mole Fraction I
Species Iat S = 0.6979 ft.

N 3.511 xlo

NO 3.211 x 102'

04  2.404 x lo-,I
O 2.509 x 10O'

0 5 1.427 x 106
C+ ~5.872 X 10-14

N+ ~1.362 x 10-17

2N+ 6.549 x 10-15
0 2 6.540 x 101

C 8.02 x 101

O 1.213 x 10'

0* .8 01

At the surface
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presentation here in order to expand the region of most interest. The resulting

8 distribution may be seen in Figure 15. It is apparent that a great deal of
care must be exercised in choosing the pressure distribution data points, since

8 is calculated from the pressure gradient implicit in that data.

Table II summarizes the vehicle configuration in more detail. For this

sample problem the option of a quasi-steady energy balance at the wall was used,

in addition to demanding surface equilibrium, for all three surface materials.
The program then calculates its own ablation rate, wall species concentrations,

and temperature levels based on the energy balance and chemical equilibrium re-

quirements. The quasi-steady ablation mode was selected to allow specification

of a minimum of boundary condition information and to demonstrate the use of

this option as opposed to arriving at an accurate ablation prediction. Indeed,

the emphasis in the current program development has been the incorporation of a
turbulent model into an existing laminar boundary layer code. The selection of

an ablation model and the corresponding boundary conditions for a given surface
material is a difficult problem in itself, requiring careful examination of the

possible condensed phase products of reaction at the surface, kinetically con-

trolled surface reactions, mechanical failure, interaction with pyrolysis gases,

etc. (reference 29). For these sample problems, the intent was to de-emphasize
this procedure in order to concentrate on the actual boundary layer behavior.

The calculation was started at the stagnation point and allowed to transist at

Re8 = 250. Figure 16 illustrates the distribution of Cf/2 over the first 0.30
feet of surface running length. As can be seen in the Cf/2 distribution, transi-

tion, occurred between S = 0.0268 and S = 0.0323 feet. Reynolds number on momen-

tum thickness and shape factor streamwise distributions may be seen in Figures

17 and 18. Figure 19 illustrates the wall temperature distribution that results

from the steady state energy balance and surface equilibrium assumption. Figure

20 illustrates the calculated quasi-steady surface recession rate.

Profile information for this problem is particularly interesting since

both boundary layer transition and surface material changes occur over the for-

ward portion of the body. Velocity profiles are presented in Figure 21. The

body stations selected include the stagnation point (0.0 ft.), flow just ahead
of transition (0.02681 ft.), flow just after transition which happens to be over
the boron nitride just past the C-BN discontinuity (0.03231 ft.), and flow over

the phenolic carbon just past the BN-phenolic carbon discontinuity (0.06273 ft.).

The first two profiles are clearly laminar in nature, whereas the third is more

transitional. The last profile appears to have the shape of a fully turbulent

flow. This gradual evolution of a turbulent sbape occurs because both laminar

and turbulent transport terms are retained in the equations of motion (once the

Re0 criterion has been satisfied) and because the nonsimilar analysis retains

the upstream "history" of the flow. Species concentration profiles for the same
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Table II

SPHERE-CONE CONFIGURATION SURFACE MATERIALS DETAILS

Surface Running Length Surface Material

(feet)

0. graphite

0.004174 graphite

0.008390 graphite

0.012695 graphite

0.017146 graphite

0.021817 graphite

* 0.026813 graphite

0.032308 pyrolytic boron nitride

0.038637

0.046657

0.059975 pyrolytic boron nitride

0.062727 phenolic carbon

0.070000

0.075000

0.077500

0.087500

0.100000

0.125000

0.150000

0.200000

0.300000

0.500000

0.700000

1.000000

1.500000

2.000000

3.000000

4.000000

5.016400 phenolic carbon
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four stations are presented in Figures 22 through 25. It is interesting to ob-

serve that the region of greatest chemical interaction appears to shrink further

and further away from the outer edge of the boundary layer as the flow progresses

downstream. This is consistent with the knowledge that the laminar sublayer

grows at a slower rate than the turbulent core flow. Another interesting feature

of these species profiles is in Figure 25, where it can be seen that a signifi-

cant mole fraction of boron compounds persists in the boundary layer although

the flow is adjacent to a phenolic carbon surface at that station. A total of

60 species were considered in this problem, but only those exhibiting a mole

fraction greater than 0.001 somewhere in the boundary layer are shown graphically.

Finally, Figure 26 presents the electron concentration profile at S = 0.03231
feet over the BN surface. The y-scale is left unloqged in this graph in order

to present a better picture of the actual dimensions of the regions of importance.

3. TRANSVERSE CURVATURE EFFECTS

The transverse curvature option of the BLIMP program is operational for

either laminar or turbulent reacting flows. The simplest of these, all laminar
flow, was chosen for a sample problem. Air was assumed tc be flowing over a

sharp cone at the following conditions:

P = 11.27 atmospheres

H = 1650 Btu/lb

M edge = 6.38

cone half angle = 90

Seven nodes were chosen through the boundary layer, and the problem was run both

with and without consideration of transverse curvature (TVC). Some of the re-

sults are presented in Figures 27 through 29. Figure 27 shows the TVC effect on

drag coefficient. Inclusion of transverse curvature on this 90 ccne increased

Cf by as much as 25 percent. A comparison of Reynolds number on momentum thick-

ness is presented in Figure 28. Eince r/r0 is everywhere greater than one, one

might expect from the definition of 0 that momentum thickness will be larger

when TVC effects are considered. The steeper slope of the momentum thickness

curve (dO/ds) for this zero pressure gradient problem is also apparent. This

increase in slope is expected for the TVC case since the drag coefficient is

larger. Figure 29 shows the velocity profile comparison at S = 0.025 feet.

Transverse curvature effects are seiL to decrease the boundary layer thickness,

thereby increasing wall shear.
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SECTION V

COUPLED ABLATOR BOUNDARY LAYER ENVIRONMENT ?PO.M

The usual ablating heat shield or nozzle material prrformance analysis re-

quires separate determinations of the inviscid flow field over the body, the

boundary layer flow near the surface, and the surface ind in-depth response o

the ablating material. The thought has no doubt crossed the mind of most thermo-

dynamics-fluid dynamics engineers working in this field that some or all of these

analyses should be combined to represent the coupled physical processes more cor-

rectly and to eliminate some of the wasted effort in carrying out separate analy-

ses. Indeed, a coupled approach is desirable since the material response affect;

the structure of the boundary layer, and the boundary layer determines the (ner(-

and mass fluxes at the material surface which in turn control the heat shielu

response. Of course, any change in body shape will affect the inviscid flow

field. The totally coupled analysis is, unfortunately, an enormous problem if

accuratc boundary layer and material response calculations aro required, hence

the present separate analysis state of the art. Still, it iq possible to inves-

tigate couled charring material, multicomponent boundary layer flow problems

within the context of certain limiting assumptions. The CABLE proqram incor-

porates subroutine versions of the BLIMP program, described earlier in this re-

port, and the Charring Material Ablation (CMA) program, described in reference

30, to accomplish this coupling. An earlier version of the CABLE program has

been described elsewhere (reference 31) therefore its operation will only be su:-

marized in Section V.1. Section V.2 describes recent results obtained with the

program.

1. COUPLING THE CMA AND BLIMP PROGRAMS

The CMA program is an implicit finite difference one-dimensional charrin.,

ablation material analysis program which accounts for area chan;e due to mate-

rial curvature in a general fashion, with planar, cylindrical, and spherical

geometries as special cases. Temperature dependent thermal properties aic al-

lowed, and the user may specify kinetically controlled pyrolysis reactions. Due

to its one-dimensional nature however, the CMA program may not be particularly

accurate in regions where lateral conduction is significant, such as sharp nose

tips. AIo, since local static pressure is input into the BIW program, no

account is taken of the body shape change on the pressure distribution i,,. t1L

coupled analysis. Within these limitations, tne CABLE proqia.n yes a vety de-

tailed, accurate picture of the ablation-boundary layer interaction.
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There are a number of ways in which the boundary layer and charring abla-

tion programs can be coupled. In the procedure which has been adopted, the CMA

program is effectively the controlling program, calling BLIMP whenever necessary.

Since the time (0) steps in a charring ablation analysis are typically quite

small (0.001-1.0 seconds), yet the times of significant change in a boundary

layer flow are fairly far apart (0.5-10.0 seconds), it would be uneconomical to

require a boundary layer solution at every CMA time step. Therefore the CABLE

technique is to input mandatory solution times at which complete boundary layer

solutions are carried out. Between these mandatory tines boundary layer param-

eters are found by interpolation, and these boundary layer parameters are pro-

vided to the CMA program as boundary conditions. Another computer time saving

device is the use of discrete values of normalized pyrolysis gas mass flow rates

( *) and normalized char mass flow rates (m*). As the charring ablation programg o g
proceeds in time, a new combination of m* and m* evolves from the CMA solution

g c
at each time step. It would not be possible to anticipate and calculate the

boundary layer flows for each of these ;*-m* combinations at every mandatory so-
g c

lution time, therefore a grid of m*-m* values is preselected at which BLIMP cal-g c
culations may be run. The BLIMP program is automatically run at several of the

preselected grid points in the assigned injection, surface equilibrium (or kinet-

ically controlled reaction) mode, and the required boundary layer parameters are

found from a three way interpolation of the boundary layer solutions in the m*,

m*, 6 coordinate array. It is significant that not all BLIMP solutions in the
m*, m*, 6 array need be run, but rather only those which are needed to provide

g c
interpolation values for the current CMA solution. Initially, eight BLIMP solu-

tions are required, which consist of two values of m* with two values of rn*, all
g C

at the first two mandatory times. The CMA solution then proceeds until the solu-
tion "path" exceeds the limits of the "cube" defined by the first eight (*, m*,

g c
8) coordinate points. Additional BLIMP solutions are then called for at the new

required grid points (m;*, m*, 0) such that ordinary interpolation can take place,g c
whereupon the CMA program again proceeds. Thus, although a fairly extensive

array of m*, m*, 0 values may be defined, only the required BLIMP solutions willg c
be run. This procedure will be explained more thoroughly by an example below.

In the procedure which has been adopted, the transient charring ablation

solution is effectively the controlling program. The charring ablation solution

at a given station proceeds noniteratively, calling the boundary-layer procedure

as needed to fill in the surface bounaacy condition matrix. The complete time

history at each body station is performed prior to advanci.ng to the next body

station. As an example of the procedure, consider a single body point being ana-

lyzed by the coupled program between two mandatory solution times 01 and 02. The
diagrams below indicate the projections in the planes 0 = eI and 0 = 02 of a

hypothetical history of m* and m* as generated by the CMA program between the two
g c

mandatory times.
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TIME 1 TIME 02

4 -4

3 3

2 2

9 9

0 -0
0 1 2 3 4 0 1 2 3 4

C C

The solution at time e1 is indicated by asterisks, whereas the solution

at time 62 is indicated by circles. The grid values for m* = 0, 1, 2 ... and

= 1 1, 2,... are the preselected values for these parameters at which para-cmetric boundary layer solutions are conducted if and when needed. Based on the
point (*) at time e1, boundary-layer solutions are generated for the (m*, m*)

g c
points (1,1), (1,2), (2,1), and (2,2) at times 61 and 02. Charring ablation so-

lutions can be obtained for times 81 < 0 < 02 by linear interpolation as long as
m* and m* stay within these values. Suppose that the course of the calculation
g c

between times 01 and 02 is as indicated in the sketch. Then, additional solu-

tions at m*, m* of (1,3) and (2,3), then (3,2) and (3,3) and finally (2,4) andg c
(3,4) would be required, each at both times. When time 02 (point 0) is ap-

proached, the BLIMP program is called upon for a solution at time 02 for the

_xact values of m* and m* required by CMA. This boundary-layer solution is
-ac c

printed out and that information needed for future reference (at downstream sta-

tions) is saved on tape. Solutions are then performed for time 03 for the cur-

rent bracketing values of m, m* (in the present example, values of (m*, *) ofg c g c
(2,3), (3,3), (2,4), and (3,4)). These boundary layer sclutions at time 03 are

placed over those for 01 by a tape flip-flop since the latter are no longer

needed. The charring ablation solution next proceeds from time 02 to time 03'

calling the BLIMP program only in the event that this range of (r*, ;*) is
g c

exceeded.

The above described procedure is over-simplified to some extent since for

many materials of interest in certain ablation regions the use of m* as an in-c
dependent variable is a poor choice. Consider the peculiarities of carbon ablat-

ing with air, for example, as illustrated in Figure 30, which shows the depen-

dence on temperature of carbon ablation rates in air. Ovpr a wide range of tem-

perature m is for all practical purposes independent of temperature; in thiset
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range the only useful independent variable in the surface thermochemical solution

process is temperature, since it would be nearly impossible to select a sequence

of ;* values distributed along the plateau. At high temperatures, however, m*c c
becomes strongly dependent on T, so that m* is the preferred independent variable.c
The CABLE program logic has been altered recently to accept either m* or T asc w
an independent variable. In the typical problem situation, the user begins his

sequence of independent variables with temperature entries starting at the low-

est temperature of interest and extending up to (as a minimum objective) the

point where m* begins to rise above the plateau value for the lowest pressure toc
be encountezed. It would be conservative and preferable to add temperatures even

beyond the "rise point" at the highest pressure in case these points should be

needed during the solution. After these temperature values, m*'s are added to
c

P1 P2 >  P1

CI

I I

KINETICS PLATEAU -6000 SUBLIMATION
REGION REGION REGION

Figure 30. Ablation Rate mi* Versus Temperature for Carbon in Air

span the expected range of m*. The user is careful to pick a minimum m* slightlyC. c
above the plateau value. An m* value near the start of the plateau or off the

c
plateau in the low temperature region is extremely undesirable for two reasons:

1. The lowest assigned m* determines the break between assigned temper-
"

ature solutions ane assigned m* solutions; a low * will in effectc c
"disqualify" all of the assigned temperature points across the pla-

teau and leave a large "hole" in the array of surface thermochemical

solutions.

2. For equilibrium calculations, assigned m* solutions at m* values be-c c
low the plateau have a high probability of nonconvergence.

The coupling procedure which has been summarized above is very straight-

forward in practice, although difficult to describe in words. The sample prob-

lem presented in Section V.2 should clarify some of the more difficult points.
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The storage requirements for this coupling procedure are surprisingly

small. In the first place, the charrirg ablation solutions are noniterative an

the complete solution for all times at any one station is accomplished and the

rosults printed out before advancing to the next station. Thus no historic in-

formation relative to the charring ablation solution has to be stored. With re-

gard to the boundary layer, only two mandatory times with four (m*, m*) combina-g c
tions at each of these times need to be considered at the same time. The only

quantities in the boundary layer which need to be dimensioned for the full time

array are three input quantities of time, total pressure, and total enthalpy.

Edge conditions are computed around th4 body at the time of the stagnation-point

calculation since the necessary integrations are performed by curve fitting.

This necessitates that streamwise dimension, static pressure, edge velocity, edge

density, edge viscosity, edge temperature, body curvature (r0 ), transformed

streamwise dimension (C), pressure gradient parameter (a), and the flux normaliz-

ing parameter (a*) be dimensioned for the number of streamwise positions (but

not for time). About 300 numbers must be stored during the flip-flop operation

associated with the two times which are being considered simultaneously, whereas

about 500 numbers must be stored on tape to reenter the boundary layer at the

same time but at the next downstream station (used for first guesses and for cal-

culation of nonsimilar terms). Thus, both permanent machine storage requirements

and tape storage requirements are not excessive as a consequence of coupling.

This coupling approach has the important feature that the CMA program op-

erates very nearly as it does when used in conjunction with the ACE program (see

reference 32). In the CMA/ACE approach, complete surface tables are computed

a priori and independently with the ACE program and these are available to the

CMA solution. In the coupled approach, these surface tables are initialized

with the word VOID. When the CMA program encounters this word, the BLIMP program

is called to supply the requisite information for that e, mn* and i* (or T ). It

is thus significant that the CMA/ACE approaches have been used extensively and

very successfully for a wide variety of materials and environments. Likewise,

the boundary-layer calculations are performed with assigned m and m * or assigned
g c

m* and Tw, together with the requirement of surface equilibrium (with possible

specified rate-controlled surface reactions), options of the BLIMP program which

also have been exercised extensively with success. Furthermore, this replacement

of the wall mass and energy balances by these simple assignment statements adds

stability to the boundary-layer solution.

2. A SAMPLE PROBLEM AND RESULTS

As a demonstration of the CABLE program, a coupled transient solution was

run for a sphere-cone reentry body with a nose radius of 0.5 inches and a cone

half-angle of eight degrees. A single body point at a surface running length of
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10 inches (based on the original body shape) was analyzed although there is no

reason other than computer time limitations why more body stations could not

have been specified. Laminar flow was assumed for the boundary layer to hold

the required number of nodes to a minimum. The heat shield material was one-

inch thick phenolic carbon with properties as described in reference 28 and was

insulated at the back face. The vehicle trajectory is shown in Figure 31. Total

flight time from 300,000 feet is 27 seconds with an impact velocity of 17,000 ft/

sec. Pressure ratio P/P at the body station of interest was assumed to be

0.0262 for the entire 27 seconds. Mandatory BLIMP solution times were 0.0, 7.0,

14.0, 18.0, 21.0, 23.0, 25.0, and 27.0 seconds. A total of 144 BLIMP solutions

in the assigned injection, surface equilibrium mode exclusive of these mandatory

solutions were run to provide the CMA program with boundary conditions.

Typical CABLE results are shown in Figures 32-40. Surface temperature

history is shown in Figure 32, where it is seen that a maximum temperature of

4480°R was reached at the end of the flight. Figure 33 illustrates the pyroly-

sis gas flow rate history at the surface. Little or no pyrolysis occurs during

the first ten seconds of flight, with a peak outgassing rate of approximately

0.028 lbs/ft 2sec reached near the end of the flight. Figure 34 describes the

progression of the pyrolysis and char fronts into the heat shield material The

pyrolysis front is arbitrarily defined as the point where the local material den-

sity is equal to the char density plus 98 percent of the difference between the

virgin and char densities. The char front is similarly defined as that point

where the local material density is equal to the char density plus 2 percent of

the difference between the virgin and char densities. The pyrolysis front pene-

trates 0.208 inches of the heat shield during this trajectory, whereas the fully

charred material reaches a depth of only 0.067 inches by the end of the flight.

No surface recession occurs at this body station.

Figures 35-37 show profiles for some of the thermodynamic variables of

interest for this particular body station at t = 21 seconds. The subsurface

density profile of Figure 35 indicates the extent of the pyrolysis region. Fig-

ure 36 contains the velocity profile for the boundary layer flow, while Figure 37

presents temperature profile information. The coupling of the boundary layer to

the subsurface material is particularly apparent in the surface temperature con-

tinuity illustrated in Figure 37. Figures 38-40 contain the species mole fraction

profiles through the boundary layer at three times of interest. At t = 0.0

seconds, the cold wall forces a recombination of N atoms to N2, 0 atoms to 021

etc., giving the unusual profiles of Figure 38. At t = 21 seconds (Figure 39)

significant pyrolysis has occurred with the resulting gases being injected into

the boundary layer flow. Hydrogen, carbon, and species containing these atoms

are evident in the boundary layer gas. At t = 27 seconds(Figure 40) the boundary

layer species are much the same, however the lower edge temperature caused by the

slowing down of the vehicle has allowed many more trace species to be formed.
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Figure 31. Trajectory for CABLE: Sample Problem
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The above-described CABLE run, comprised of a total of 152 BLIMP solutions

plus the in-depth charring material solution, required approximately 30 minutes

on a UNIVAC 1108 computer. Solutions at succeeding body stations should proceed

somewhat faster due to the better initial guesses provided by the upstream solu-

tion, however if turbulent flow situations are expected, about twice as many

boundary layer nodes would be needed. Thus, it is estimated that a complete re-

entry vehicle body solution with the CABLE program, including 29 body stations in

a 27 second trajectory, would require from 10 to 20 hours of UNIVAC 1108 computer

time.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

The BLIMP boundary layer code has been successfully extended to include

turbulent flows and flows with transverse curvature. The basic analytical tech-

nique offers the advantages of completely general multicomponent chemistry, pre-

servation of nonsimilar terms in the equations of motion, and intimate coupling

to the surface material behavior. The coupling occurs through requirements of

surface equilibrium and/or a surface energy balance, or a complete coupling with

an in-depth conduction and charring ablation code.

There are several areas where the code and the analytical model which it

includes can be improved or extended. One of these is in the general area of

modeling turbulence in the equations of motion. The purpose of the work pre-

sented in this report was to incorporate a turbulent model into the BLIMP pro-

gram. The model that was used is perhaps the best available for general hyper.-

sonic flows with arbitrary species injection, however an extensive investigation

into the generality of the model in all flow situations is called for. Experi-

mental data comparisons at high Mach numbers and possible model changes to match

these data would be most valuable.

Two smaller changes in the program would make it more accurate and conven-

ient to use on some problems. The first of these involves the aH or coordinate

stretching parameter. On very long bodies, the boundary layer thickness varies

over two or three orders of magnitude. The aH parameter forces the boundary

layer thickness to remain constant in the solution plane, thereby eliminating

the need for a large number of nodes which are unused near the stagnation point

or leading edge. For turbulent flows, the laminar sublayer grows at a much

slower rate than the total boundary layer. As the normal coordinate is stretched

in the solution plane, the nodes nearest the wall eventually can be pulled out-

side the sublayer altogether, resulting in poor convergence of the numerical

technique and inaccurate solutions. A different stretching technique scaled to

the sublayer as well as the boundary layer edge must be invented to avoid this

problem. The second change involves nonisentropic expansions. It is currently

possible to specify entropy and pressure in order to fix the edge state of the

boundary layer gas for "entropy layer" flows. This technique introduces some

inaccuracy however since an entropy gradient in the streamwise direction also re-

quires a velocity gradient in the normal direction (nonzero vorticity). The

analysis should be modified to include this edge velocity gradient for nonisen-

tropic expansions.
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The final recommendation is in the general category of electron collision

models. At present, a very simple clean air collision frequency model is in-

cluded in the program, and electron distributions are calculated assuming equi-

librium chemistry. More accurate clean air collision frequency models are avail-

able and could be incorporated into the program. However, based on the level of

sophistication of the rest of the boundary layer analysis, it seems appropriate

to attempt to take into account the effect of the ablation products on the elec-

tron collision frequencies. Also, charge separation effects may alter the equi-

librium electron distribution significantly. It is recommended that a study be

undertaken to establish the importance of charge separation and ablation products

on the basic parameters of interest in communications and that these effects be

included in the BLIMP code if necessary.
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APPENDIX I

COORDINATE TRANSFORMATIONS

A convenient coordinate transformation for use in boundary layer problems

with transverse curvature, and the one used in the present analysis, can be

arrived at by nondimensionalizing and simplifying the continuity and momentum

equations in a relatively straightforward manner. The momentum equation for a

turbulent flow with transverse curvature is

pur K a + QvrK  u PrK(v + cM)K P (146)

while the requirement of continuity yields

apurK + a vrK = 0 (147)
as ay

The two equations can be conveniently combined by the definition of a stream

function f, with an arbitrary wall value, fw:

y pur (148)

fo r ro

The stream function is made dimensionless by the introduction of reference condi-

tions pr and ur and by the y-dimension scaling parameter 6(x). The reference

condition ( )r will be taken as the isentropic boundary layer edge condition,

while the scaling length 6 remains to be defined. Solving the continuity equa-

tion for pvr , it is easily shown that

pvrK = wwrK 6(f - f (249)

Using this result in the momentum equation yields

purK -s + P wv r -_- [rpU 6(f - f )] au

= r K ( M ayj r K--P (150)
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Introducing

U
ur

(151)

The momentum equation becomes

pa Fduud a + K
rur a r usr + ur s -Ur - + w -

a [r K )]+ [ 6 yr r( _ fw] r ]y

s roPrurd (f - fwJ 6 ds oPrur6 ( ffw)J

r Ur
K -r (V + CM) r _152)

A new normal coordinate is now defined which allows a simple relationship be-

tween the dimensionless stream function f and dimensionless velocity a. Noting

that

2f = pur (153)

then if we define

K (154)d a =H PrK
prro

the relation between f and fi becomes

a f = iU (155)

The aH is a stretching parameter on the normal coordinate n such that the bound-

ary layer is contained within a constant n range, 0 to nedge (see Section 11.3).

Using the new n coordinate and expressing a .n terms of f', the momentum equa-

tion takes the form
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d In u aPwd vr°

fr2 + f t Wf' + W WTs as aH ds fr

1 a K d in rKPU6

Ka orrrW d
+ -K s (roP U 6f w 6f ds

PrUrr o

af f" 1 2K(v + H dP (156)-6M" pu rdv +156)
-- P2urr r2K M, pu2

H ro0 / r

Since fw is as yet undefined, the equation can be simplified by defining fw such

that the square bracket term [ ] goes to zero. This yields

s

fw Prr6rO f Pwvwr Kds (157)

It is convenient to define some new dependent variables at this point:

C l (158)
P r11r

PE£M

EM Ple (159)
r r

, t \r (160 )

Also, the static pressure gradient is related to the reference velocity gradient

dP dur (161)
- = rUr ds

Inserting these new definitions

f12 - XPr dlnur + f' f1 2 daH  f

C as aH as - -s (162)

d(ln rKPrU1 r Ft(C )f
+ f ds I r r+

j 6ZPrur[ {
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An additional coordinate transformation will bring the equation to a more com-

pact form. Defining

d = Qds (163)

where Q(s) is as yet undefined, the streamwise derivatives become

d( ) Q d( )
du d In

in u r  Q d in ur 2L Q_= (165)
ds d in C 2r

which leads to

o2 d in aH
8 f2 r\ + 2f' 2f' f, f---- i-n-- -- 2f' 2  

Hfi -e-

8(fIL [ ~ln

d ln(ro r 2Pr t(C + M)fl
+ 2f d-in 0 rr Qr2rU[.(166)

Defining Q and 6 properly will yield unity for two groups of terms in the current

version of the equation. Choosing the group in the left hand side first

d In (r P ur6)
2 d I=1 (167)

which requires

6 = (168)
K
r r ur

The second group ot terms is

2Pr

- 1 (169)Q62 pr r

wiLcl requires

=Prur r (170)

With taese changes, the cnc- tur equation becomes
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2 (f fft2 d ln a) H (171)
If

-=.ff f*2 - +__ dinH

2F f' _ , - f'2  (171)

The final coordinate transformation is

= f 11 rrK ds (172)

r ro Y prrr°oy pr dy (173)
H0 Prro

while the other definitions take the form

*"f- ff purKdy (174)

s

f - 1 O VwrKds (175)
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APPENDIX II

DEVELOPMENT OF A RECURSION FORMULA
FOR MIXING LENGTH

The mixing length differential equation has been shown to be of the form

dRZ=- ) (176)
Un (KcaHn

where

P (n) Hil (177)

The general solution is

Z = Ka Onr - L) (178)

where

L (n) -= 
(179)0 

o d" n
Pdn'(19

In the definition of L at the i'th r'ode, the integrals from 0 to ni can bc

broken into two parts, 0 to n i 1 and n il to n i to give

fn dn

n i e " i 1  P d n
L. L i-l + -- (180)

Sffl Pd ,n d 10

e i i-l i-

Assuming a lineaz- variation of P(n) over the interval n il to nit the first
term of the L.i expression beconoes
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- = (181)

fi Pdn

ni- 1

where

fPi+P i-
ni I -T(182)

B--

Ani -i - ni-i (183)

The second term is more difficult; however, the linear assumption for P(n) plus

sufficient algebraic manipulation yields

n i  
Pdn 'i-i /

ie Pd(n-n i - 1 ) - f Pd(n-ni

r ni-f = f e d(n-ni 1 )
f n  Pdn "o

ni-(
e ji (-i ;i) + c] 2 [;])

e 2)(n-ni-l)

0

e-d 2  Ae d (184)

c

where

A - Pi (185)

AP i-1  (186)
2

tAn.

d - + c (187A
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This last integral term can be broken into two pieces to give

fni Pan I
f e i d r c
ni-i _1 __ = edd Aen d - f Aen dF

f Pd0

Ieqi-i

= A[Dw (d) - BDw (c)] (188)

The Dawson Integral, Dw( )*, can be evaluated from tables (Ref. 23) or, in the

case of the present analysis, by a series method. The quantity Li is given by

L. = BLi + A Dw (i BDw (1i9

1-i I -- f-/ (189)

which is a recursion formula for Li in terms of the value for L at the previous

node and the local values of P(n).

Dw(x) = e o e+dy
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