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SUMMARY

This report considers the problem of predicting tafget ceocoiwli=
nates, given a temporal and spatial distributioh of shots frem a
multiplicity of targets. Our method is based on analyzing multi-
fold polarity-coincidence correlations of acoustic signals're-

celved at a configuration of azimuth-determining arrays.

We review the process of generating multifold correlation
functions, with emphasis on those properties which are of'concern
in azimuth determination. We describe an azimuth determination
algorithm designed to make most effective use of the information
contained in the correlation function.

ur discussion of generalized triangulation points out the
weaknesses of traditional methods, and outlines a probabilistic
approach to triangulation that would yield an optimal prediction
for a given set of azimuths. secause thils probabilistic approach
would be extremely demanding in computational requirements, we
present an alternative method based on similar concepts but yield-
ing a closed-form solution. This new method of generalized tri-
angulation is tested with synthetic data, and found consistently

more accurate than the traditional method.
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FOREWORD

This report documents progress in research and development
of a signal processing technique for sound ranging. Some of the
technical discussion requires & general knowledge of previous re=
ports; but the reader unfamiliar with those reports should still
ffind the problems discussed here both coherent and éenerally in-

teresting.

Overall, this investigation aims at designing a data-process-
ing system that will performn most accurately and rapidly the sig-
nal analysis required by the BBN sound-ranging system. In the
previously reported work, we described a system capable of yield-
ing correlograms automatilcally in virtually real time. These
correlograms represent, as a function of the azimuthal angle, the
values of a fourfold correlation of acoustic signals received gt
the microphones of an array. The laboratory sound-ranging system
generates a correlogram approximately every half second, with a
resolution of one-half degree of azimuthal angle. In the absence
of noise, maxima in the correlograms should occur at angles which
correspond, within ¢t 1/4°, to the azimuths from which sounds are
received. In the current report, we begin by assuming many cor-
relation functions. Our problem is to obtain valid target coordis

nates from such & sequence of correlograms.




TABLE OF CONTENTS

page
CUMMBEY chEh ot 7o a B oW 5 a0 TED b as b oo omrardits 2 ke TS SRS el i Pl 158
PORERORD oo omes mirappEse » miod § DEOE BE.-'Te & et Ok TR Tl & R iv
SIS O WEBEUIRES . & o cufbslt St BTl (i e oot 5 T AR TR G L o et = \VRLD
LLSY OF TEBEES ooe . obtendes et 908 imeh ot clnh iradnecbl i e B e viii
ERGHNTERIE (SN SEIMON] o e (o i) sutesl Cre D e R R R N R R T T 1
1,0 IIREREHUSHELROR ¢ perpweiEaees B L EtEREEE e € DL il
240 AxTivith DeteritdetSSal & ou ol i ssaats s Al Sl ee G LIk 6
2.1 The Correlation Function: Its Generation and
ChErett I8 01e8 5 105 00 ds vud o nin Soraet tLOBLE 6
24 ™e Azimuth Determination ALgePEBUR +osyvsvosb 15
2.2.1 Correlation threshold and maximum test 15
2:2+2 Group WeLght CEEE .. aes caraeme e son 16
2.2.3 Group azimuths and proup overlap test. 16
2.2.h Use of overlapping azimuth intervals . 1
5«0 (Generealinet TrlBwmgul StToM: .o .t.b.fu ol S8Ew G b 19
3.1 Generalized Triangulation Using Azimuth
LTSS RTUN-OME ¢ GEEEEEE : © LG D 5 DI NG BIEKE ol [ 19
3.1.1 Method of the mean of the
irtnfEpesctions: (ML) si2eltif-nioinpe bk 21
Ak Inadequacies of the MI method .......e 21
g% The Predabilistiec MiPDreeth itvedudaiies:bothe rid
3.3 Generalized Triangulation Using Azimuth
DI S L C@REREE o i b o AT B N RN ENIE R 25
3.3.1 Method of the minimum mean-square
displecement (BMD) .cdepptak «ibdocbassh 25
3.4 Qualitative Comparison of MD and MI
Prediebioi® 4.3 os8wsipont ol bede Bt istoniat 26
3.5 Quantitative Comparison of MD and MI
PrRAICHEIORE « 6 36 r6wEEEEETEP 06 ©0EE &6 D0 e & CEG 29
he® Rucommendalvliols .owveesnaoowssssin otsh s o Ed e 0ot Shd 34




APPENDIX A:

APPENDIX B:

REFERENCES ..

DISTRIBUTION

Derivation of Formulas for the MD Method of
Gansrdliged TriMERISCI 0N s wiorssopseioeesd S0be s

Generation of Synthetic Data for Testing
of the Generalized Trianguletion ALgOriTh@s :.s¢

LIPE 3o e90 5 vonied i B e 0.0 s b Bie o6 Bt poe'y

vi

page

Lo
W7
I8




Figune 1.

10,

L

2.

LIST OF FIGURES

The process of generating target predictions from
PREE SLE@UALE wiiib, vosie s s adid By Fiedll St usnlias b

The four-element azimuth-determining array ...... '

Simulated noiseless signals and PCC function:
PPEssUTe PULE BE B5Y (v pes 5 9520 ¢ BT 08 DG EE

Simulated nolseless signals and PCC function: two
simultaneous pressure pulses at 65° and 76.5°

Simulated noiseless T-23 responses and PCC
funation: piresiure pulde &t 65° ,.ovesscspacaas e

3imulated nolseless T=23 responses and PCC
function: two simultaneocus pressure pulses at
05? @al TEB:i%59 wibin retvivadied bui oot baion g AE e

Simulated signals, with independent noise, 2nd
PCC Pfunction: pressure pulss at $5°, 'Lhput

N

tiiiesheld semSTEITIEG @t 05 o SameniE C-crors Cra Ca
An exemple of tThe group cverlap TEeST Lot . ueels

Sensitivity of an MI prediction to azimuth
UnCEFEAUVELS® "o op e s Brda Dl enee L vl e SR B g b

Example of prediction shifts for perturbations
off one hearing line,oul Of CIIREE S erae kb I

Example of prediction shifts for perturbation of
two bearing Lihés oubt off, BOWE v thft e ks A3 e ban et

Maps of shot azimuths and predictions in the
Viiedmirty off ‘thie tiue shot NoCabileing o el ernd e ere e

Construction for computing bearing line
Adspl@cem@nt oo dbads L Lo b Svesd G S EEYer0 Ee e

The four-array equilateral array configuration
Mip of Azsuped TeErpet LOGEELONE s sp-saeseper e

Distribution of simulated shot azimuth errors

vii

page

Lu

L2

13

14
15

2%

28

32

36
n1
I2
16




Table 1.

B-I.

B-ITI.

B-IIT.

LIST OF TABLES

page
Comparison of MD and MI shot locatiom
predidctlons .« vosdms v b e bE 5@ ¢ 560 EEE e EE RE e Sl
Assumed terget locations end shot times & uwwesaue. 43
True target azimuths at each array (to
GEARESE 5T Lol e L o T e S R e Yo, L Wy
Shot azimuth sets with simulated errors ..«:s:wiss Le

Vbt




TECHNICAL DISCUSSION

1.0 INTRODUCTION

The process of sound ranging locates a target by means of a
multi-array configuration of azimuth-determining arrays. In pre-

15253 ye described how e¢ach array yields, as a func-

vious reports,
tion of azimuthal angle, a multifold polérity-coincidence correlas=
tion (PCC) count of the signals detected at 1ts constituent re=-
celvers. This report examines the problem of determining weighted
sets of target coordinates from the information conteined in these
correlation functions. The procedure to be followed consists ol

a series of relatively independent steps, illustrated in Fig. 1

and outlined below.

Assume that there exists in the vicinity of the sound—ranging
system a number of targets, each of which produces a series of
shots at unknown times. when the signal from a shot impinges on
an array, ‘it generates a peak inh the correlation count sbtalned at
that array. As a flrst step then, we must determine the diregtibn
of each shot relative to each array. Although one can approximate
these directions simply by observing the angular positlion of esegh
correlation maximum, the approximation will be distorted by am-
bient noise and the microphone spectral charecteristics, which
give rise to spurious correlation maxima, and shift and distort the
true maxima. In addition, closely spaced peaks may be attributed
to either the 4distortion of a single peak or To The aFFli¥el ol &
number of shot signhals from almost the same direction &t almost
the same time. The azimuth determination algorithm should take
these difficulties into account, reject all spurious azlimuths, and
arrive at the best approximations to the true azimuths. The result
of the azimuth determiﬁation algorithm is a 1list, for each array,
of the azimuths and associated reception times of the shot sighals.
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The second etep in the precedure 15 te sepri the aEimuth Liscs
and ebtain, for each sghot, a set of N azimuths; oné for each of
the N arrays in the configuration. If the shots are amply spaced
in time and azimuth, this is a simple task. But, during rapid-
fire seguences, shot signals are preceived at shert ilntervals [Iro
the same general direction. Further, the individual azimuth de-
terminations are inexact owing to the effects of noise and also
to the system's intrinsic quantization of azimuthal angle (0.5°9)
and reception times (0.5 sec). In some cases, it may actually be
impossible to establish unambiguously a unique set or sorting of
azimuths for each detected shot. Through the use of heuristic
programming, the system rapidly decides on a best-possible sort-
ing of azimuths in cases where there is no unique correct sorting.
The inherent uncertainties can be incorporated into a we'lghting

factor for each set of shot azimuths.

In the ideal case, each set of shot azimuths would intersect
at a single point, thus specifying uniguely the oprigin of e&aéh
shot. In reality, the shot aZimuths intersect in pwirs at dif=
ferent locations; the derivation of a pair of shot cooPFdinates
requires a generalized triangulation algorithm. 'The specification
of the shot coordinates by means of some average and variance of
the shot azimuth intersection points (the usual approach to the
problem) has little basis in theory and may lead to serious dif-
ficulties; for example, small errors in azimuth determination may
induce extremely large (even infinite) errors in shot location.

By congidering the bearing lines themselwes; rather than Tthely 1n-

tersection points, one can derive generalized trlangulation
methods - with a sounder basis in theory - that reduce these dif-

el i es. .

In the event that more than one shot emanates from each tar-
get, as a final step we must deduce target coordinates from the
maltitude of shot coordinates. VFor this purposé, theé tapget sorts
ing algorithm decides how far apart two shot locations must be in




order to be assigned to separate targets. We ezpeet that the

welghts generated in the sorting procedure and the variances com-
puted in the gereralized triangulation procedure will play a prin-
cipal role here, both in distinguishing the targets and in assign-

ing final weights to them.

In the entire sound-ranging process, one must consider the
influence of the array configuration itself on the accuracy of the
flnal target locations. For a given error distribution funetion
of the individual azimuth determinations, the target location er-
ror (as a function of range and azimuth) will'depend critically
on the number of arrays and on the manner in which they are de-
ployed. If we can obtain an analytical representation of the tar-
get location error as a funcétion of the multi=-array geometry, we
can then study the problem of optimizing the array deployment

using logistic considerations as constraints.

In the absence of actugl field date, we have Pegorted o the
use of synthetic data for initial study of the effectiveness of
the various algorithms, By assuming shot locetions and tTimes,
meteorological conditions, array deployment, microphone character=
istlces, and source and noise .spectra, we can simulate reasonably
aceurately the correlation funetions whieh would be obtalned Irom
each array in the field.! To test only the triangulation scheme
itself we simulated shot azimuths directly by postulating a par-
ticular error distribution for the azimuth determination algorithm.
Although ®ach step in the target loeation procedure has a sommd
analytical basis, we may expect that the use of such synthetle
data will be of great help in arriving #¢ the flmnel ICPm ef The

program.

In thi® report, we limit ouwr dlscussion To the sudjeets of
azimuth determination and generalized triangulation. ‘e have com-
pleted the development of a satisfectory heuristic safimith sorbihg
algorithm, and preliminary hand analysis with synthetlc data 1indi-
cates that the algorithm yields 2ieellent results in sorCing Shels




recorded within small spreads of time and azimuth. However, we
expect that the algorithm will be subjected to a number of refine-
ments and improvements during the course of the extenslve tests of
the computer programs now underway. We shall therefore postpone
our presentation of thke azimuth scorffing algorithm te a future re-

port.
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2.0 AZIMUTH DETERMINATION

Before proceeding to a description of our azimuth determinas
tion algorithm, we review briefly the process by which the corre-
lation functions are generated and the difficulties whic¢h must be
overcome in order to extract azimuths from them. More detailed

accounts of these matters may be found in our previous reports.

2.1 The Correlation Function: Its Generation and Characteristics

Each azimuth-determining array is composed of four 71-23 mi-
crophones situated at the vertices and center of an equilateral
triangle with sides of 80 m. (Fig. 2). The recorded sound levels
are analyzed by the computer in one-second time-vytes, each byte
overlapping the preceding byte by .46 seconds. For shot signal
durations less than a few tenths of a second, this proecedure en-
sures a high probability of capturing the entirety of each signal
in one or another byte. Each of the four one-cecond signal sam=-
ples 1is converted into an ordered tiﬁe—sequence of 1000 digits:
each digit is either +1, O, ir -1 depending on whether the ampli-
tude of that one millisecond sample has an average value greater
than a, between -a and +a, or less than -a, respectively. (The
adjustable constant "a" is the center clipping level.) The time-
sequences are analyzed with respect to azimuthal angle by making
use of the azimuthal dependence of the differences in times of
arrival of a signal at the four microphones. For each 0.5° incre=
ment between 0° and 180°, we have derived a set of four integers
(incremental time-delay vector) which specifies the respective
shifts (in milliseconds) of the four sample sequences required to
simulate most closely the theoretically determined arrival time
differences for that angle. The shifted sequences are compared
and the PCC count is defined as the number of instances in which

all four are +1 or all four are -1.
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In this manner we generate a set of 360 PCC counts which may
be displayed in the form of a bar graph of PCC versus azimuth.
The directions of any shot signals which reach the array during
the one-second time byte must be deduced from this set of 360 cor-

relation counts.

The maximum possible PCC count is 1000. However, for typi-=
cal center clipping levels and shot signal duretions, the ma&ximum

counts will rarely exceed 100,

The major purpose of the center clipping iz to reduce the
deleterious effects of extranecous noise. In the absence of any
shot signal and with no center c¢lipping, independent random noise
at each microphone generates an average PCC count of 125 at each
angle since, in each millisecond, there is a 1/16 probability that
all four samples are positive and a 1/16 probability that all four
are negative. When a shot signal is also present, this constant
"{CC background noise" makes the azlmuth determination analysis
more difficult. A center clipping level "a" equal to the rms
noise level reduces the average PCC noise contribution by 99K, *

Of course, the shot signal level must be appreciabhly larger than
the noise level in order that it not be removed also; but an in-
put signal-to-noisec ratio of one to two dB appears to ensure ade-

juate performance.

The followinz Figures of simulated signhal recordings and
their assocliated PCC bar graphs i1llustrate th: important aspects
of the correlation function. n Fig. 3, we reproduce the record-
ings which would he obtained at the four microphones of an array
under the following ideal conditions: (1) a typical "li-wave" pres-
sure pulse incident on the array at an azimuthal angle of 65°,

2) no background noise, (3) microphones having infinite spectral
response, (l) no center clipping. The corresponding PCC bar graph

has a single, well defined maximum at the correct azimuth and is
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zero everywhere else. The maximum PCC count of only fifteen* is

indicative of the extremely short duration of the shot signal.

Figure U4 shows the effect of having two such N-wave pressure
pulses incident at the same time but at different angles (65° and
76.5°), all other conditions the same. The correlation function

again has unique maxima at the correct azimuths.
/

Figure 5 duplicates the conditions in Flg. 3, except that we
have simulated the response of actual T=23 microphones to the
pulse. Acting essentially as narrowband filterg, the microphones
convert the pulse into a temporally extended tone burst. The
principal effect on the correlation function is that the maximum
PCC count is increased (from 15 to #47) as a result of the longer

duration of the recorded signals.

In Fig. 6, we have the T=23 responses to the same two simul-
taneous pulses as in Fig. 4. Although the responses appear to be
from a single shot, the correlogram shows the ability of the sys-

tem to clearly separate the two signals.

In consideration of the influence of random noise on the cor-
relation function, Fig. 7 shows the effect of superimposing inde-
nendent noise on the pressure pulses of Fig. 3. In produclng the

correlogram, the center clipping level "a&a" was set so that the

noise observed on the recordings, without the signal, exceeded "a"
approximately 5% of the time. Comparing the correlograms of

Figs. 3 and 7, we note the following consequences of the 1lntroduc-
tion of noise: (1) a random medulation of the corpelation pesi;
which in turn distorts the angular locetlion of the maxlimum PCC
ount, (2) small localized correlation counts at angles far re-

moved fron the signal maximum (the correlation response for angles

¥*The bar graphs in these Figures represent the PCC counts normal-
ized to the largest count; the actual number of counts corre-
sponding to each bar is indicated by the number &t its base.
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outside the range illustrated was no higher than the highest noise
response in the displayed portion) and, (3) the center clipping
used to reduce tl2 noise responge also reduces the correlation re=

sponse of the signal itself (in this case, from 15 to 6).

The preceding examplee 1llustrate the principal difficulties
which must be overcome by a satisfactory azimuth determination al-
gorithm; it must (1) reject all secondary correlations due to
noilse, (2) recognize and accept all correlations due to actual
shot signals, (3) decide whether 6verlappinp correlation peaks
represent distortion of a single peak or the presence of more TCham
one shot signal and, (4) make best-possible estimates of the azi-

muths of all shot signals.

2.2 The Azimuth Determination Algorithm

The following subsections describe elements of the algorithm
as implemented in our present system; we have also suggested pos=
gible improvements for & future system. The algorithm involves &
number of constants whose values we have not specified. The opti-
mal choices for these constants must await the exercising of the
program with synthetic data or, where possible, with actual field
data.

2.2.1 Correlation threshold and maximum test

This test is designed to eliminate the small local PCC counts
caused by nolse and to identify any present signal correlation
peaks. We define the mean correlation M as the average of the
360 PCC counts. The mintmal signal corvelation S is defined as
a2 linear function bM # ¢ of the mean. If the largest count 18
less than S, we assume that no signal 1s present and the analysis

is terminated. The correlation threshold T 1s defined as another

15




linear function dM + e of the mean, such that only a small frac-
tion (perhaps 10%) of all the nonzero counts are greater than T.
The threshold is subtracted from each count, thugs removing most

and possibly all, of the noise contribution.

2.2.2 Group weight test

A ecorrelation group is defined as a set of thiree opF more con=
secutive nongero PCC counts. All counts which do not belong to
any group are eliminated. The weight of a group is the sum of its
component counts. The quverage weight of a group is its weight
divided by the number of counts it contains. Any group whose aver-
age welght 1s less than a predetermined minimum weight W 1is elimi-

nated. This test should remove any vestigal noise contributions.

2.2.3 Group azimuths and group overlap test

Starting at the beginning of each group, we add the eounts in
the group until the sum most nearly equals half the group weight.
The azimuth of the last count in the sum is the group astmudh.
Thus, the azimuth associated with each group is the azimuth which
bisects the "area" of the group (which is not necessarily the azi-
muth having the largest PCC count in the group). The most prob-
able positien of this half-area azimuth ig the positiocm oI ‘The
original (noiseless) peak, since the random noise adds, on the
average, as many counts to one side of the original peak as to the
other. Thus, the above procedure should provide an effective means

of allowing Pfor noise-induced distortion of the correlation peaks.

If either (a) the PCC count at the group azimuth is the maxi-
mum count in the group, or (b) the maximum count in the group ex-
ceeds the group-azimuth count by less than a predetermined overlap

test comstant G, then the original group azimuth is retained.




However, 1f the maximum count in the group exceeds the group-
azimuth count by more than G, we subtract the group-azimuth count
from each count in the group and repeat the analysis (i.e., find
group azimuth, do overlap test) for each of the new groups thus
generated. In Fig. 8, we illustrate the overlap test with a typi-

cal example of owerlapping correlation groups.

We may expéct thét this analysis will fall if two signel

groups overlap to such an extent that their "sideskirts" sum to

a larger count than either of their maxima. It would then be ex-
tremely difficult to detect the presence of two separate shot sig-
nals, This problem might be circumvented under certaln conditions
by making use of the shot azimuths determined at the other arrays
of the configuration during the same time byte. If the two sig-
nal groups at the other arrays have sufficient angular separation
to be resolved, it would then be clear that there was a "missing"
azimuth at one array; the single azimuth found at that array would

be counted twice in the azimuth sorting proecess.

2.2.4 Use of overlapping azimuth intervals

In the algorithm described above, we analyze all counts in
the entire 180° azimuth span at once; but we can reduce the com-
puter storage requirements by dividing the correlation function in-
to a number of azimuthal segments and exercising the algorithm on
each segment separately. To ensure that individual groups are not
split up, the segments should overlap by an amount that is large
in comparison to the maximum expected azimuthal spread of a signal
group. We currently use five 50° segments with 17.5° overlaps.

1




(D) SPECIFY OVERLAP TEST CONSTANT: G = 3
(@ EXHIBIT THE GROUP:

() CALCULATE:

Group weight=138
Group azimuth=34.5

PCC COUNT

N = = . N
32 33 34 35 36 37
AZIMUTH (degrees)

PERFORM OVERLAP TEST: (Max. count - aroup azimuth count):(26-13) -6

AT

SUBTRACT GROUP-AZIMUTH COUNT, EXHIBIT NEW GROUPS:

rreee-
(- | Ak
5 % (6) CALCULATE
8 / Group weights=15,17
O # Group azimuths=33.5
O 7 35.5
O ,
o '/
Frgg1g /
L
35
AZ IMUTH (degrees)
() PERFORM OVERLAP TEST: (Max. count - groun azimuth count)=vﬁ}g: 3323

FINAL GROUP AZIMUTHS: 33.5%. 35.8

F16.8 AN EXAMPLE OF THE AROUP QVERLAP TEST




3.0 GENERALIZED TRIANGULATION

When we have a set of shot azimuths generated by several
shots at different targets and no a priori knowledge of .Tthe. gors
respondence of shots and azimuths, we must firet select subsets
of shot azimuths corresponding to in&ividual shots. By azimuth
sorting, we obtain sets of N shot azimuths (assuming an N-array
configuration), each set corresponding to a unique shot. We must
then consider the mosteappropriate generalized triangulation pro-
cedure for deducing a shot location given a set of N intersecting

bearing lines.

Traditionai sorting methods tend to rely to some degree on
finding azimuths.whn:v pairwise 1intersection points are grouped
in small clusters. Such sorting methods involve implicit assump-
tions that the subsequent generalized triangulation procedure
should be based primarily on the positions of the intercepts, and
that the closeness of intercepts is a valld criterion for the re=
liability of a target prediction. In this Section, we shall show
that these assumptions do not necessarily lead to Tealistliec tar-
ret locations. Instead, a proper generalized triangulation scheme
should emphasize the relationship of the shot prediction to the
bearing lines themselves, rather than to thelr intersection poimts.
In a future report, we will explore this concept in connection
with the sorting procedure.

3.1 Generalized Triangulation Using Azimuth Intersections

Consider first the simplest case of Jjust two intersecting
bearing lines. The point of intersection is then the only reason-
able ghot location predietion. The dlsplacement of Chis. pFeldle=
tion from the true shot location depends on the accuracy of the
bearings and on the angle at which they intersect. Suppose that
the bearings intersect at a small angle ¢, that the uncertainty of
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each bearing ls an angle A¢, that the range from the cehter of the
array configuration to the intersection peoint is R, and that B is
much greater than the interarray spacing. Then there is an un-
certainty of approximately 2RA¢/¢ in the range to the shot, and an
uncertainty of approximately RA¢ In a direction perpendicular to
the direction of the range. For shot locations whose bearings sub-
tend small angles with respect to the line Jjoining the two arrays,

the range uncertainty is & large fraction of the range itselfl.

We might intuitively expect that, if we obtain a third bear-
ing, the triangle deteérmined by the addition of the third bearing
would have a high probability of enclosing the true shot location.
To understand why this 1s not in facét the case, let us sssume tTht
the bearing errors are distributed symmetrically; i.e., the true
shot location i& egually likely to be on either side of any bear=
ing line. [t follows then that the prohability of the shot being
in any one of the four sectors ¢reated by the intersection of two
bearing lines is one-{ourth. third bearing line could determine
a4 triangle by closing off either of two opposing sectors. The
triangle formed by closing off eéither sector would have a 1/8
probability of &hclosing the ghot. 'he total probability that
the shot is within the triangle is therefore one-fourth. With
only 25% confidence that the shot 18 in the triangle, we conclude
that the triangle gzenerated by the intérsections of three bearing
lines 1% a questionable improvement over the single point gener-

ated by the intersection of twe bearing lines.

shen an even larger number of bearings are available, the
intersection points may be distributed over & large area and will
not usSually define a single closed polygonh. An intuitlve approach
might lead us to specify the 8hot location by means of sSome aver=
ageé of all the intersection points. 1In the next subsectlon, we

lescribe an &lgorithm vased on this epproach end show some of

the difficultie asaociated with it.

-




3.1.1 Method of the mean of the intersections (MI)

A set of N shot azimuths in general defines N(N-1)/2 inter-
section points; ti:e number of intersections is smalier il some of
the azimuths are parallel. Given the position of each azimuth-
determining array, the x and y coordinates of the intersectlon
peints relative to some fixed origin can be ealculeted by meéans
of standard trigonometric formulas. The shot location coordinates
are obtained by averaging separately the x and y coordinates of
all the intersection polnts. We hengeforth Fefer to this slgoritim
as the MI method.

3.1.2 Inadequacies of the MI method

The most obvious fault of the MI method is that it fails com-
pletely if any azimuths are parallel: the predicted shot location
is then &t Snflnity.

Another drawback is that the prediction may be very sensitive
to small errors in the individual azimuth determinations. Con-

sider, for example, the intersections of the four bearing lines

shown in Flg. 9. The solid lines create six intersections whose
mean is shown by the dot enclosed by a solid circle. The dashed
lines represent an alternative set of bearing lines chosen at ran-
iom under the condltion that their directions differ from the

original directions by no more than a small assumed angular uncer-
tainty. The alternate bearing lines form intersections that shift
the prediction to the point indicated by the dot enclosed by a
dashied cirecle. ssume that the original prediction is close to
the true shot location. Although two. of The alternate bhearing
lines pass closer to the shot than the corresponding solld lines,
the alternate prediction is nonetheless poorer than the original

DSk clsAcnT,

24




Fl€.9 SENSITIVITY OF AN M! PREDICTION TO AZIMUTH UNCERTAINTIES




A common method of redueing these difficulties is simply to
discard (or assign small welght to) intersections which are far
removed from the mean. This is a rather artifidial procedure and,
moreover; 1t offers no guarantee that the prediction obtfeined [al
the surviving azimuths will be better than the original prediction.
Furthermore, 1f we have only three bearing lines, there is no ob=
vious criterion for determining v"ch\intersection is the "bBad"

~—

éne.,

3.2 The Probabilistic Approach

The preceding discussion leads to the conclusion that the MI
triangulation method ig mot based on sound analytical concepts.
Indeed, thus far 1little fundamental research has been devoted to
the problem of determining an optimal generalized trimngulation
algorithm. We outline below an extremely general approach to this
problem, the implications of which we hope tc develop more fully

in our future work.

Our main polint is that the prédiétion of @ shot location is
essentially a statistlical process. ‘e are presented with a set
of bearing lines and associated statistical uncertainties; our
goal should be to determine that point. on the plane which has the
greatest probability of coincliding with the shot location: To
accomplish this, we may transform the probability functions of
the individuzl azimuth uncertainties into a prob@bility functiocn
for points on the plane. The resulting two-dimensional probabil-
ity function would contalin a large amount of useful information.
Its maximum would, of course, determine the best shot location
prediction. The height at the mgximum polnt, the steepness ol the
probabllity surface in the vicinity of the maximum point, and the
mean level of the probability function outside the region of the

maximum would be some measure of the reliability of the prediection.




A simple way to visualize the process is to imagine & set of
translucent overlays, on each of which 1s imprinted a variable :
density optical image of a bearing line and its associated prob-
eability density. The image is most dense along the bearing line.
The density decreases for azimuths on either side of the bearing
line and approaches zero (1.8., tPanspirency) for azimuths further
from the bearing line than the assumed uncertainty of the szimuth
determination. 'The overlays are placed on top of one anotheéer on
a target map in such a way that each bearing line passes through
the appropriate array position at the correct angle. The point
on the map at which the combined overlays are most opeque would

then be the most protasalz shot location.

The analytical implementation of the process réeguires an k=
sumption as to the statistics of the aszimuth uncertainties. ke
could assume & Caussian distribution of the fdeviation ofT an azi=
muth from the mean, with a variance proportional to the expected
uncertainty. We must then find the pgeometrical transformation
between x,y coordinates relative to some fixed origin, and range
and azimuthal deviation relative to the array. The Jacobian of
this transformation is reguired to perform the trensformetion of
probability densities to ¥,y toordinates. hen this is dene for
each array in the configuration, the final two-dimension&l prob=
abjlity function is. calculated &5 the produet of the individusl
functions.

Because this method is hased on the statistics of the azimuth
iirections themselves, #and not on the statistics of the azimuth
intérsection point%, we would expect that the prediction obtained
would be quite insensitive to small individual ezimuth uncertain-

ties.

The principal drawback of the general method is that although
quite simple in concept, it would be extremely demanding in compu-
E £ f P

tatlonal requirements, and thus, beyond the scope of the present
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system. In the next Section, we outline an alternative method
which also relies on the bearing lines themselves but is more

feasible in practice.

3.3 Generalized Triangulation Using Azimuth Displacements

In lieu of the rlgorous probabilistic approach described
above, we seek a generalized triangulation procedure which satis-

fies the following criteria:

l. The procedure should be based on some relation involving the
bearing lines themselves, rather than theilr intersection

points.

2. The shot prediction should be relatively insensitive to small

deviations of the bearing line directions.

]

3. The method should be reasonable in computational requirements;
preferably, the coordinates of the shot prediction should be

expressible as a closed analytical formula, rather than as the

result of a search procedure.

A method which seems to satisfy all of these criteria is based on
the perpendicular distances from an assumed shot location to all

ot the bearing Lines.

3.3.1 Method of the minimum mean-square displacement (MD)

The MD prediction is defined as that point which minimizes
the mean-square perpendicular distance to &ll bearing lines. In
Appendix A, we derive simple closed formulas expressing the coor-
dinates of the MD predic¢tion in terme of the coordihates of the
N arrays and the azimuths of the N bearing lines.

The actual value of the root-mean-:square displacement of the
prediction from the bearings might be a suitable measure of the




uncertainty tc be assigned to the prediction. However, other mea-
sures of uncertainty should also be considered. A valid uncer=-
tainty measure should be well correlated with the actual distance

from the prediction to the true shot location.

In the following subsection, we compare the relative sensi-
tivities of the MI and MD methods to small deviations of the bear-

ing lime directions.

3.4 Qualitative Comparison of MD and MI Predictions

We may illustrate the major «dvantages of the MD method by
means of some simple qualitative examples. First, we consider a
linear deployment of three arrays with an interarray separation
D, and a shot originating on the central axis of the configuration
at a distance ED (Fig. 10). With a perfeet azimuth determination
routine, the three bearing lines would intersect at the shot leca=
tion and either the MI or MD method would yield a perfect predic-
tion (Fig. 10a). We now assume progressively larger errors in
the bearing line associated with the leftmost array so that it
gradually becomes parallel to the center bearing line. Figure 10b
shows that 1f the perturbéation is small, the predistions of the
two methods almost coincide. As the enclosed. triangle becomes
more elongsted; as in Fig. 10e; the MI prediction mo¥es o0t Tromn
the true shot location much more rapidly than does thée MD predic-
tion. When the bearing lines become parallel, as in Fig. 104, the
MI prediction moves out to infinity, while the MD method still
produces a finite prediction (although at considerable distance

from the shot, displaced by apprcximately a 50% increase in range).

Wwe can conatruct another example for which the Ml method
fails completely while the MD method actually yields a perfect
prediction. We consider a lihear foursdfray configuration with

vhe shot again on the central axis (Fig. 11) and study the effect
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of errors which tend to make the two inner bearing lines pargllel.
fhe MI prediction again repidly diverges as the bearing Lines ap=-
proach parallelism. The MD prediction moves only a small maximum
distance from the shot location and then moves back to coincidence
with the shot location in the limiting case. The example admif-
tedly has an extremely unlikely symmetry; nevertheless, it dra-
matically illustrates the general tendency of the MD method to
retain a reasonable prediction even when the MI method faills.

These examples 1illustrate the following important general
result: an MD prediction exists as long as at least two bearing
lines are net parallel. This cohnclusion &lso follows dLPRET.LY
from the analytical formulas in Appendix A. In contrast, the MI
method ylelds a prediction at infinity with the presence of any

parallel bearing lines.

Another property of the MD method is that two parallel bear-
ings may be replaced by a single bhearing originating at a virtual
array located midway between their respective arrays — and the
prediction will remain unaltered. For-example, in Fig, 10d the
prediction 1s at the intersection of the bearing from the right-
most array and a bearing, parallel to the two parallel bearings,
emanating from a virtual array mldway between the leftmost array
and the center array. Figure 114 cé&n be described in a similar

manner,

3.5 AQuantitative Comparison of MD and MI Predictions

The generation of the synthetic data uSed To Test our gen=
eralized triangulation algorithm is described in Appendix B. We
assumed a four-array configuration consisting of arrays at the
vertices and center of an equilateral triangle of side 875 m.
(Fig. ©“=1). We postulated a set of 19 targets at various ranges

and azimuths from the center of the configuration (Fig. B=2).




The ranges vary between 1.5 and 4.0 km. We further postulated that
a total of 37 shots originate at the targets at speciflied times
(Table B-I). We calculated the precise azimuth of each shot rela-
tive to the center of each array (Table B-iI) and then polluted the
data to simulate the adzimuthal errors to be expected in a real sys-
tem (Table B-III). .e also computed the arrival times (rounded off

to 0.5 sec) of each shot at each array.

In this subsection, we study the results of applying both the
MI and MD methods to each of the 37 sets of shot azimuths in
Table B=III. (We realize that in doing this, we are temporarily
lgnoring the azimuth sorting problem; we know tha&t each of the 37
shot azimuths sets correponds to a unique shot because of the way

in which they were generated.)

The results of the calculatlions are presénted in Table 1.

For each shot, we give the difference in range and azimuth (rela-
tive to the center of the configuration) between the actual and
predictéed shot locations. We also give the radisl error, whieh is
the total distance of the prediction from The true shot 1ocELION:
In Fig. 12, we plot Bcale maps of the vicinity of target 1, show=
Iing the converging shot azimuths and the locations of the MI and
MD predictions for shots 4y 8, and 30. Target 1 is at a rauge of
5000 M., so that the position of the center of the errey contlige
uration would be 11 in. to the left of the target on these maps.

The array configuration would be gbout 2 in. on a side.

The error guantity of greatest "“interest ln sound ranging is
the normalized radial error, defined as the ratio of the radial
error to the actual range of the shot. From the data of Table I,
we calculated an average normalized radial error of 3.9% for the
37 MD predictions. In considerfing the NI predictions, we &re
Taced with the difficulty that two predictions are inlihite gue Fo
the existernce of parallel bearing llnes. Ignoring these twxoc 'all=

ures and averaging the other 35 MI predictions, we obtained &n
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TABLE I. Comparison of MD and MI shot location predictions.
Radial Error Range Error Azimuthal Error

Shot Range MD MI MD Ml MD MI
: (km) (m) (m) (m) (m) (deg) (deg)
1 9550 6 dloal -7 15 0.0 L.
2 3L 18 15 3L/ -0 2 )
3 1.5 14 32 1 - 30 -.5 - .4
Yy S oll) Sl hé62 310 h62 e :
) ,0 L5 2 BT =152 -1110 1% [0) 3
6 4,0 23° 225 -235 - 223 0.0 -.4
7 b, 1272 545 -121 - 545 0.0 ol
o} 5.0 390 608 -390 - 608 .3 ol
9 4.0 160 572 -160 =B 2 0.0 -4
10 Foll) 145 | INFINITE -145 | INFINITE 0.0 5
L3 B8N0 154 305 -154 - 305 0.0 -.1
13 s Y0 46 183 - 42 - 182 -.3 = .3
1L Ao 64 109 63 -108 0. o=
14 3.0 144 Th -144 - 74 .3 -.2
5 Bt 55 86 154 86 0.0 =1
16 See 219 339 -210a =353 Ol )
L 3.4 3 87 2 - 36 =f e
18 By 2LL 558 Bl 558 ol -.2
19 Rl 75 1620 i -120 -.3 -.0
20 87 207 1409 204 1408 = - .6
Ak Dl 142 JELT 136 - 49 55 )
22 4,0 160 SN2 -160 =i OFE -l
So 4.0 78 oy -70 4oy 0. -.2
24 &, 22 54¢ -121 - 545 O S
25 250 14 164 i3 164 =5%3 -.1
26 Y, 15 5565 -153 = 5O 0.0 = 1€
2 5.0 500 48 505 - 24 - .7 = 5
28 %0 s 39 -07 5 s 5 .6
29 .0 76 INFINITE -7¢ INFINITE -9 36D
30 350 88 245 8l 2Uut o 9 . &b
g 5.0 224 > 3¢ 22 - 23F - -.0
32 4.0 152 1118 =fp a5 0. <1,3
33 .0 334 216 334 - 21° 0.0 3
34 4.0 186 203 -18¢6 73 0.0 =2
35 2.0 bl L2 =01 15158 e RO
—%f U.J c-‘f'; 6 ¢ 61 '“ O.‘ .?
SN 2.0 15 23 -1 -23 =08 =5
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average normalized radial error of 8.9% for the MI method. In
summary, we find an average radial error of about 40 m. per km.
for the MD method and more than 90 m. per km. for the MI method.

'The MD prediction is superior to the MI predietion in fully

28 of the 37 cases.

we are currently carrying out a similar analysis using syn=
thetic data generated with an assumed set of targets having ranges
of up to several dozen kilometers. We expect that the results will

not differ markedly from those obtained here.
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4.0 RECOMMENDATIONS

We have outlined the general procedure for predicting target
locations by means of multifold correlations of receivéd acoustiec
signals. We have considered in detail the steps in the procedure
concerned with azimuth determination and generalized triangula-

tion. The sorting problem will be considered in a future report.

In regard to azimuth determination, we recommend that further
refinements of our algorithm be examined when the results of field
teats are avallable. In particulear, such field @ata should emable
us to determine the optimal values of the various test constants
involved in the algorithm.

In regard to generalized triangulation, we precommend that the
method of minimum mean-square displacement (MD) be used in future
studies:. 1In addition, the more rigorous probabilistic approach
should be studied further in order to determine whether it might

be implemented in & practical systen:

al




APPENDIX A

Derivation of Formulas for the MD Method
( of Generalized Triangulation

We wish to find expressions for the coordinates of thet point
whose mean-:quare displacement from a set of N bearing lines is
minimal. Figure A-1 illustrates the geometry of the arrays, bear-
ings, target, and coordinate origin. The directions of the x and
y axes are sgspecified by the unit vectors i and 3, respectively.
The locations of the arrays relative to the origin are specified
by the vectors - 8 (a=1,¢,...,0). The direction of the bearing line
determined at the ath array is speciflied by the unit vector ﬁu, ‘

which makes an angle ¢a Wwith The y axis.

Lhe peinit e be determined is specified by the variable vec-

tor R, relative to the origin, and by the variable vector X rela-
tive to the ath array. The displacement of the point fireth the @bl
bearinp line is given by the magnitude of the vector €q" The dis-
tance from the eth array te the foot ol the veelor €y ls glven by

da'

Since ﬁa is a unit vector perpendicular to €y ¥E have

. » 8 ® ]
a o 1
{
B fg = 4 -1
lg ¥ 8y =0 (#=1)
Sinee 3 xpresse 8§ R=r_ o s +4d.n ‘e ob-
n Xq Can be expressed either as R r, or as g +d.n , we ob
tain
8 T R=§F =4aii « -2
~Q ~ ~Q o o (A )}

Taking the scalar product of Eq. A-2 with the unit vector ﬁa, and
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applying Egq. A-1, we obtain an expression for da:

& =R :(B=p. ) . (A=3)

If we substitute this expression back into Eq. A=2, and then form
the scalar product of the resulting equation with itself, we ar-
rive at an expression for the squared magnitude of the displace-

ment vector:

. 2 - Y
g, " = |B-r

. o= LA (Ber )12 . (A=)

The mean-square displacement of the assumed shot location from

the N bearing 1ines is thus )

<|R=r|’ >=<[A+(B-p)1%> . (A=5)

iy 2
7 “N%'El

)

(The angular brackets denote an average over the N arrays of the
expression they enclose; for convenience, we delete all subscPipts

within the bracketcs.)

We now assume that the function o? describes a concave sur-
face as & Tunetion of the wvariable positien »f Ehe veeEtelP f. L5
find the minimum of thils surface, we must equate the gradient of
g% to zero. hls procedure determines two equations Tor the mini=

num point:

<(R-p)+i>-<fi*(R-p) n+i> = 0

(A=6)

((B—E).E’-<a.(8.l') 6-3)

Expressing all vectors in terms of their certedign colipehents

5




~ ~
B, =% &N % J- coB
sing  + J cosg,

(63

r =1 x +3

Lo TS0 i
B 2 0T o

we obtain the following pair of coupled linear equations:

<cos?¢> - <sindcos¢>\[ X <cosdé(xcos¢-,5ing)>
- <gsingcos¢> <sin‘¢> Y - <zsing( -ysing¢)> (A-T7)
% ] <8 1n siné(xcosé¢-ysing g 1

The condition for thU 'xi:t~noo of solutions of £g. A=7 is
that the determinant of th# coefficient matrix does not wvanish.
Note that the coeff{icient matrix is entirely independent of the
array locations; the array locations enter only in the inhomoge-=
neous term. y means of simples algebdreaie manipulations, we can

ezpress the determinant in the form

DET = ]H [<(cus;‘¢—<;c.-2¢>)’> + <(sin2¢—<;'in2¢>>)2>] : (4-8)

The determinant i:s the sum of the mecan=square deviation of the
cosine of twice the azimuth and the sine of twice the azimuth.
Hoth of these werms can vanis only if all of the azimuths are
equal. ‘¢ conclude therefore L..at the MD prediction Tails To

exist only if all the hearing lines are parallel.

If the determinant does not vanish, the solution of Yg. A-7

for the coordinates of the MD prediction is
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!
X <sin?¢><cos¢(xcos¢-ysing)>=-<sindcosd><sind(xcosd-ysing)>
<sin?¢><cos?¢> - [(<cingcos¢>]?
Y <sin¢cos¢><cos¢ (xcos¢=-ysing)>=<cos?¢><sin¢(xcos¢-,/sing)> . . |
2

<sin?¢><cos?¢> - [<singcos¢>]?
(A=9) i

Having obtained values of X and Y from this equation, we can find

the rms deviation of the prediction from the bearing lines direetly

with Egu. A-4 and A=-5.




APPENDIX B

Generation of Synthetic Data for Testing of
the Generalized Triangulation Algorithms

We assume a four-array configuration of azimuth-determining
arrays as shown in Fig. b-1. Fach individual array is the same as
in Fig. 2. We postulate a group of 19 targets at locations shown
on the map of Fig. B-2. The range and atimuth of eaeh Tafpei pal=
ative to the center of the configuration (located at the central
microphone of array 4) is given 1In Table B-I. The target field
inciudes three closely spaced clusters along lines making differ-

ent angles with the baseliné of the configuration:

We postulate a series of one or more shots originating at each
target at times given in Table B=I1. Sohe targects are responsible
for shots spaced lezs than thirty s&conds apért. .in additiong The
shots emanating from each cluster of targets all occur in the same
two= or three-second interval. he shot times are referred to the
time of the first shet, which oceurs at target 17. We number ‘the
shots from one to thirty-seven in order of their times of initla-

tion.

From the geometry of the target and array locétions, we cal=
culate the true azimutl f each target relative to the center of

each array (Table B-] ; These are the azimuths which would bes
letermined by a perfect azimuth determination algorithm.

'he next step is polluting the azimuthal data to simulate the
results of an imperfect azimuth determination algorithm (which is
subject to azimuthal quantization and other errors). fe altered
each of the 148 shot azimuths (four azimuths for each of 37 shots)

accorcding to the following scheme:

(1) To each azimuth, id an increment of either -0.75°, -0.25°,
+0.25°, or +0.75° with a one={ourth prcbability for each in=

erement .
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FIG.B-1 THE TOUR-ARRAY EQUILATERAL ARRAY CONFIGURATION
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TABLE B-1I.

Assumed target locations and shot times.

Target Range Azimuth Shot Times
(km) (deg) (sec)

1 ; b3, 30, 61, 68, 130, 100.2%; $90
2 I 3 33, 82, 95, 120, 18042¢ 209
3 I £r 34,5, 60, 110, 186, @10
n ! 168 3

c < 6:

€ 3 RIS - B2.°

7 3 h D

8 3 B 1o t3

) 3 s ol

it 3. 30¢ ¢ 71

188 3. 403 345 .5 7

L RS 345 .4

- 2 Sy LG, | T1

14 3. B 346, 7 71

1 21,448 L0 < 00, S

1f U 31" 100, 280, 34

| |
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1.8 ’ 1 20U o
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TABLE B-~1I1. True target azimuths at each array (to nearest 5'). |

i |
I
Target Azimuth at Azimuth at Azimuth at Azimuth at A
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(1i) Round off each azimuth to the nearest half degree.
The distribution of errors resulting from this procedure 1is shown
37 shots are

to test the

in Pig. B=3. Tha final shot aziguth sete for all
presénted in Table B-ITI. 'his is the data we use

generalized triangulation methods in Sec. 3.
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TABLE B-I11. Shot azimuth sets with simulated errors.

Shot Target Azimuth at Azimuth at Azimuth at Azimuth at
Array 1 Array 2 Array 3 Array 4
1 17 287,50 30k .50° 32BA00° 305.50°
2 18 286.00° 304 .00° 324.00° 305.50°
3 19 254, 50° 302.50° 323.00° 303.50°
4 1 46,%50° RY BN 43:50° h2.%50°
3 2 In, 0O° 2.2.50° 2B DI0° 29 50°
6 3 T2.80° e T 11 6h.00° odi. S50°
X 3 T2:50° 59.00° 64.00° §%.. 50*
g 1 &6 .50° 36.00° W, 50° h2.00°
) 2 3L, B0 2. e 3,00 30.50°
10 ) . 0 352.00° B.Q0® ~50°
IS 7 & Q0 Sro ) o0 UL 2 ¢ B2 85012
11 ¢ R.00° 353 oA0" Q.,00° L«50°
135 i 358.00° 150.50° LYo 01 358.50°
14 8 By ® () 57 BIOC 19 .0 5, 50¢
1% 9 9.50° 360, 00° ihB0° 50"
1¢ 10 52 . 00° 339.00° 358.50¢° 145.50°
17 o) 38,50 339.50° it 1 1Al 345.50°
18 12 344.00° 34 1. 00°® 835 3.00° 345 .50°
19 168 34 . 00® 340 .50° 343.00° 346.50°
2C ot 3l , 00° 343.00° 3654 ,00¢ 347.00°
21 i k6.50° i A% 116 g 44, 50° g, S0e
) 2 34.,.50° 22" 2R NEIge 3050
x\', 1' ?r"l‘. ')n Kl?.: ) © ‘{“‘W.LJO llu.‘.loo
24 3 T Raanal G . 00° 64 .00° 65.50°
. L 302.00° RN 322.00¢ 3118 .50°
2! 2 34.00° 23 o™ 33.50¢ 30550
27 1 6. 00° 37. 0f 43.50° 31,507
28 3 7(.r-o 23 o £5.00° {'S.F){')O
29 ‘ S 3 = e 33 =509 20 . =@e
3 1 47 = 37500 43.50° §2 .50
8 | 4% .50° 37 . 00° b, op° k2.00°
32 p . 00° d2.%50° B38.550° 29.50°
33 2 34 ) © 23 = 2BWRIDEL 20,509
34 1t 30%.00° 313.50¢ 322.50° 314,500
B TH P24 08 * 32 % 55 0C 330.00° 314 .50°
3¢ B, 309.50° 313.50¢ 324:50" 35 .50°
37 15 30 S Balils = | 329.00° 31k.50°
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