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ABSTRACT 

Sensitivity tenting as applied to one-shot items consists of subjecting 

individual one-shot test items to discrete levels of a test environment, operat- 

ing the test item and noting whether or not the item functions properly.   From 

this type of test a direct measurement of the strength of the test item is not 

obtained, only the information that the strength is either greater than or less 

than the test level used.   In order to obtain more meaningful information from 

these "quantal response" data it is necessary to use special techniques or 

procedures both to conduct the tests and to analyze the data. 

This investigation was directed toward testing one-shot items associated 

with Army missiles, e.g., thermal batteries, squibs, explosive, etc.   The 

specific objectives of the investigations were (1) to evaluate available tech- 

niques for conducting sensitivity tests of one-shot items,  (2)  to improve exist- 

ing techniques or develop an improved one,  (3) to identify the best technique, 

and (4)  to identify and evaluate any limitations of the best technique as 

identified from (3) above. 

The approach taken was to simulate sensitivity testing with the different 

techniques on a digital computer.   A simulation program was developed and the 

different techniques programmed for testing under closeby controlled conditions. 

In this wa3r it was possible to control all inputs, providing accurate data for 

comparison and evaluation of the testing techniques, 

ii 
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The Bruceton or Up and Down technique, and a technique developed by an 

Army missile contractor referred to as the missile technique, were the two 

techniques given primary consideration.   The investigations revealed that the 

missile technique was superior to the standard Bruceton in providing estimates 

of the mean failure strength of test items.   The missile technique estimates 

were from 1 to 32 percent more efficient than the Bruceton.   Other character- 

istics of both techniques were evaluated and specific limitations of each tech- 

nique identified. 

ill 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

1.   The Requirement for Sensitivity Testing 

Sensitivity testing consists of testing items at increasingly severe test 

levels and noting the effects on the operation or functioning of the Item.   A 

variation of this technique is the test-to-failure (TTF) approach wherein the 

test levels are deliberately Increased to the point at which failure occurs, thus 

determining the inherent test item strength.   Usually In this situation it is 

possible to operate the test item long enough to hunt for the exact value of the 

test environment which causes failure:  But for a certain class of hardware, 

known as "one-shot" items, this is not possible due to their extremely short 

operating lives.   To conduct sensitivity tests of these items It is necessary to 

select a single, discrete value or level of the test environment, subject the 

item to this test level, then operate the item and note whether or not it func- 

tions properly.  A direct measurement of the strength of the test item is not 

obtained, only the Information that the strength is either greater than or less 

than the test level used.   This type of data is known in various forms as "all 

or none" data, "sensitivity" data, and "quantal responses."  In order to 

obtain more meaningful information from quantal response data it is necessary 
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to use special techniques or procedures to both conduct the tests and analyze 

the data. 

The primary objective of testing as described above Is to obtain a 

measure of the strength of the test Item and the variation of the strength within 

a group or population of test items.   Testing must therefore produce data from 

which statistical estimates of the mean strength, x", and standard deviation, s, 

can be calculated.   These estimates may then be used for various evaluations 

of the test items as required.   One of the earlier requirements for sensitivity 

testing of one-shot items and analysis of the quantal responses appeared in 

the field of biological assay.1 The requirement here was to estimate the 

mean response of a subject (some living matter such as an animal, a piece of 

animal tissue, a plant, or a bacterial culture) to a stimulus (a vitamin, a 

drug, or a fungicide).   In this situation the intensity of the stimulus is usually 

varied by varying the measured dosage of the stimulus.   The mean response is 

expressed as the dosage which produces the specified response.   The specified 

response could be weight gain, an analytical value such as sugar count or pulse 

rate, death, or some other measurable bodily characteristic. 

In the general area of explosives research, sensitivity testing with 

quantal responses assumes a major role.   Interest in the sensitivity of explo- 

sives has been heightened during recent years by the Increased use of solid 

propellant rockets in military applications and liquid propellant rockets in both 

military and space exploration applications, and the associated safety aspects. 

It should also be noted that the safety problems associated with tactical military 

rockets are greatly complicated by the inherent field handling environment to 
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which such rockets are exposed. 

This greatly increased concern with the safety aspect of explosives has 

resulted In the development and use of many techniques for the testing and 

measuring of explosive sensitivity.2 The great majority of these sensitivity 

testing techniques result in quantal response data. 

Usually these data are analyzed to provide a statistical estimate of the 

mean value of some physical stimulus which produces explosions in the test 

specimen.   This information is then used to establish a qualitative evaluation 

of the particular explosive being tested.   The evaluation usually consists of 

comparing the mean value of the stimulus with similar results for other 

explosives, establishing a relative sensitivity ranking.   The stimuli used in 

these sensitivity tests have included impact of a weight falling from a measured 

height,3 sympathetic detonation by a donor charge of a specified size and type 

operating through a controlled medium,4,5 and container diameter for detona- 

tion propagation.6 

Another technological area which has generated requirements for the 

statistical analysis of quantal data is the development of electro-explosive 

devices (EED).   This area has also been stimulated in recent years by the 

Increased emphasis on military and space rocket programs. 

Electro-explosive devices are devices used on rockets to perform func- 

tions such as initiation of the main propulsion system and warheads, separa- 

tion of stages, initiation of power supplies, and operating valves.   It is evident 

that if an EED which initiates the propulsion system or warhead of a rocket is 

Inadvertently initiated at any time after manufacture, a disastrous accident 
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could result.   It Is known that EED's can be Initiated by ambient electromag- 

netic energy from miscellaneous sources In the vicinity if these energy levels 

are high enough.7 It is therefore necessary that the sensitivity characteristics 

of EED's be well defined and only those which are compatible with the electro- 

magnetic environment be used. 

The analysis of quantal response data also plays an important role in 

reliability evaluation.   There are many items, both commercial and military, 

which exhibit one-shot performance and produce quantal response data when 

tested.   Here, as in the associated area of quality assurance testing, the 

primary emphasis is on calculating the mean critical response value above 

which the item fails and below which it operates properly.   It is also necessary 

to analyze the data to obtain an estimate of the standard deviation which is 

needed to establish confidence levels for reliability estimates and for hypothesis 

testing as used in quality assurance activities. 

2.   Sensitivity Testing of Missile and Rocket Hardware 

The technological areas described to this point generated the original 

requirements for analysis of quantal response data.   It is pertinent to note that 

all these technologies, with the exception of bio-assay work, are included in 

rocket and missile development.   As a result, the analysis of quantal response 

data has received a tremendous amount of attention by the industries working in 

this area as well as by the responsible government military and space 

agencies.   The technical complexity of the hardware being developed and the 
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corresponding high cost of this hardware have placed emphasis on being able 

to completely understand its operation and reduce the possibility (t 

performance failures. 

A further complicating factor for military hardware is the use environ- 

ment to which the hardware is exposed.   This environment includes all the 

conditions present from the time the hardware leaves the production line until 

it is expended in the field.   The use environment of army equipment is thought 

to be the most severe, presenting the greatest challenge to the developer of 

such hardware.   Thus the testing problem presented by one-shot items used in 

army missiles is especially significant. 

Generally, development testing of missile hardware has the following 

broad objectives:   (1) to determine/verify design characteristics,  (2) to 

assess reliability, and (3) to determine safety characteristics.   For one-shot 

items, test-to-failure data may be used to satisfy all three of these objectives. 

To do this the concept of "safety margins" is used. 

The use of safety margins was first advocated by Robert Lusser.8  The 

advantage of this philosophy as opposed to qualification testing, for example, 

is that statements regarding very high reliability can be made with reasonable 

confidence on the basis of relatively small samples. 

Design evaluation by safety margin is accomplished by testing the 

critical components of the missile in their most critical operating environ- 

ment.   The test-to-failure establishes the mean level of the environment at 

which the component will fail.   This value is then compared with the environ- 

mental level at which the component is required to operate and the safety 



margin established.   Since the standard deviation can also be calculated from 

the test-to-failure data, the safety margin can be expressed as so many 

standard deviations, or sigmas.   The greater the number of sigmas, the better 

the design.   The components which have safety margins of only 2 or 3 sigmas 

would be considered marginal and would have to be redesigned.   A component 

with too large a safety margin could be considered over-designed, and 

redesigned if desired. 

The same information (i. e., safety margins expressed as a number of 

sigmas above a required level) could be evaluated for reliability by referring 

to tables for the standardized Normal deviate.   By doing this it is possible to 

express the reliability of the component for operation at the required environ- 

ment level.   Safety assessment may be accomplished by using either of the two 

procedures.9 

3.   Program Objectives 

The particular aspect of testing one-shot items of army missile hard- 

ware and evaluating the results as described above is the general subject of 

this paper.   More specifically, investigations of the statistical analysis of the 

quantal response data within the constraints imposed by army missile hardware 

are described.   The specific objectives of these investigations were (1) to 

evaluate available techniques for conducting sensitivity tests,  (2) to improve 

existing techniques or develop an improved one,  (3) to identi^v the best tech- 

nique, and (4) to identify and evaluate any limitations of the best technique as 

6 



identified from (3) above. 

The approach taken was to simulate sensitivity testing with the different 

techniques on a digital computer.   A simulation program was developed and the 

different techniques programmed for testing under closely controlled conditions. 

In this way it was possible to control all inputs, providing accurate data for 

comparison and evaluation of the testing techniques. 

4.   Selection of Techniques for Evaluation 

If quanta! data analysis techniques which are nonparametric, such as 

the Spearman-Karber10 and Robblns-Monro11 methods, are ruled out because of 

the relatively large sample sizes required, the choice of which technique to use 

Is one between the Probit12'13 and Brucetcn. l4,ls Investigations by Gayle* in 

which the Probit and Bruceton techniques were used to analyze Identical sets 

of data under closely controlled conditions reveal that the Bruceton estimates 

are. In general, superior to the Probit estimates for equal sample sizes. 

Since test costs (and hence sample sizes) are the predominate factors in any 

sensitivity test program (except perhaps In the field of medicine), the Probit 

technique was eliminated from further consideration. 

In rejecting the nonparametric techniques and the Probit technique 

solely on the fact that more samples of test hardware are required, more 

elaboration on this point is indicated.   The primary field of sensitivity testing 

being considered is the aerospace field, more specifically military missile and 

rocket components.   Included are such items as thermal batteries, explosive 
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switches and relays, special Infrared and visible light sources, gyroscopes, 

and solid propellant rocket motors.   These Items, especially when produced 

In small, development-sized quantities, can be two or three orders of magni- 

tude more expensive than laboratory specimen or test animals used in dosage 

mortality and biological assay work.   Further, the actual testing of the afore- 

mentioned hardware (e.g., vibration testing of a gyro) can cost orders of 

magnitude more.   Thus any reduction in sample size at all can result in a very 

substantial savings of test program costs.   One further point is that laboratory 

tests in which the Probit technique is used are usually more conducive to 

concurrent testing of Individual test specimens;  that is, the testing of twenty 

mice by injecting them with a serum Is more practical than testing them one at 

a time.   The opposite is generally true with aerospace hardware.   There 

usually are not enough facilities or the tests are too hazardous to permit 

testing more than a few items at a time. 

Thus, a technique for analyzing quantal data Is desired wMch will 

provide reasonably accurate statistical estimates from relatively small 

samples of test hardware, and which will allow tests to be conducted essentially 

one at a time.   Based on the author's personal experience it is felt that 

"relatively small samples" should be interpreted as meaning sample sizes of 

up to 40 to 50 specimens maximum allowed, and samples of 15 to 25 specimens 

desired.   Based on the information discussed to this point, the Bruceton tech- 

nique more nearly meets these restrictions. 

There is another technique for sensitivity testing which was desigied 

for and used during development and production testing of a U. S. Army 

8 
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missile system. n This technique, which will be called the Missile technique, 

permits one-at-a-tlme testing and can be used with sample sizes as small as 

15 specimens.   It appeared to be superior to the Bruceton in sample size 

requirements and thus more suitable for aerospace sensitivity testing.   Thus, 

the choice of which technique to use was between the Bruceton and Missile 

techniques, with the ultimate answer being br ^td primarily on sample size 

required and accuracy. 

There ar»    number of similarities between the Bruceton and Missile 

techniques.   Both require the assumption that the critical responses be distri- 

buted Norma+ly.   Both also provide maximum likelihood estimates of the 

statistical parameters.   The test levels required by both techniques are 

generated sequentially, the levels being determined   irtlally from earlier 

results as testing progresses through the sample. 

The most apparent difference between the Brucetcn and Missile methods 

is the manner in which the individual test levels arc generated as the test 

program progresses.   The test level for a particular Bruceton test item is set 

at a constant increment above or below the previous test level, depending upon 

whether or not the previous test was a success or a failure.   A test level for 

the Missile method is also dependent upon the results of the previous item 

tested.   In this method, however, the increment by which the previous test 

level is changed is not a constant, but is varied according to a simple 

algorithm. 

A furthei* basic difference between the two methods is that the Missile 

method requires no a priori assumptions regarding the mean or standard 
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deviation of critical responses. The Bruceton method requires estimates of 

both before the tests can be planned. The accuracy of these estimates has a 

direct influence on the efficienc3' of the test program. 

t 
5.   The Assumption^ Normality 

Since these were basically the only techniques considered for further 

investigation, the Normality assumption common to both should be discussed 

in more detail.   The requirement of this assumption is that the critical 

response or some transformation of it be distributed Normally.   This require- 

ment is not considered to be particularly restrictive since there are many 

functions which might provide the required transformation.   Also the Normal 

distribution is the most common one found in nature and could reasonably be 

expected to occur frequently with aerospace hardware.   That this is true has 

been well documented by test results from the biological assay field, * many 

tests of EED's,9 explosive shock sensitivity test data,3,4,5,18 and metal fatigue 

testing. 19 

The alternatives to an assumption of Normality (or any other form of 

distribution) are either (1) the use of nonparametric (distribution free) tech- 

niques or (2) conducting enough tests to determine the form of the distribu- 

tion.   Neither of these is considered practical because of the large sample 

sizes required.20 Hence, the situation is that an assumption be accepted about 

the form of the distribution, or no practical technique is available at all. 

The effects of using the Normal assumption with non-Normal data have 
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been investigated by Gayle* and Hampton.21 The general conclusion from 

these investigations is that the Bruceton tests provided results which were 

"optimistic."  That is, the standard deviation estimates were smaller than the 

actual population standard deviation.   By using the concept of "safety margins" 

as described by Lusser,8 this problem is minimized. 

6.   Other Characteristics of the Bruceton and Missile Techniques 

In considering the choice between the Bruceton and the Missile tech- 

niques , it is pertinent to realize that the Bruceton has been in use much longer 

than the Missile technique.   The Bruceton was first described in open litera- 

ture in 1944 and since that time has been used many times by investigators in 

various experimental situations.   It would thus appear that the Bruceton tech- 

nique should be better defined and its capabilities well documented.   This does 

indeed appear to be true, but the basic technique has not changed appreciably 

from that originally described in 1944.   This is particularly significant when 

the availability of high-speed computing equipment is considered.   No such 

capabilities were available in 1944, when the Bruceton technique was develop- 

ed, but the general field of quantal data analysis has since been the subject 

of many computer-aided investigations.22'28 Similar investigations of the 

Bruceton technique have been somewh it limited, and that is one of the reasons 

for this investigation. 

Probably the most significant problem or weak point of the Bruceton 

technique is the requirement to have an estimate of the mean and standard 

11 



deviation prior to starting the teats.   The mean Is used to establish the initial 

test level, and the standard deviation Is used to establish the constant Incre- 

ment by which test levels are changed to obtain subsequent test levels.   The 

accuracy of these estimates influences the results depending on (1) the posi- 

tion of the population mean relative to the testing levels and (2) the ratio of the 

test increment, d,  (1. e., the estimated standard deviation) to the population 

standard deviation, a. 

From his investigations of the Bruceton technique, Hampton21 concluded 

that the correlation between the estimated standard deviation, s, and the 

population standard deviation, a, was poor for sample sizes of 25.   This fact 

has been substantiated by others and must be considered In any evaluations 

of Bruceton data. 

There are other more subtle points made by Hampton from his investi- 

gations, but these are considered insignificant so far as this particular paper 

is concerned.   The other conclusions discussed above are considered more 

pertinent and were used during this investigation. 

12 



CHAPTER II 

DESIGN AND DEVELOPMENT 
OF A SENSITIVITY TEST SIMULATION PROGRAM 

1.   General Philosophy 

The use of a digital computer simulation program with a simple Monte 

Carlo technique to generate artificial test results was selected as the only 

practical means of obtaining the desired information.   The ideal way would be 

to test actual hardware of the type being considered and use these results in 

conjunction with further analytical work.   Since this approach is impractical 

from the standpoint of time and cost, the simulation approach was selected 

as the most practical alternate.   It was possible, however, to make use of 

results available from limited sensitivity tests of appropriate test hardware in 

establishing certain conditions required for the simulation program. 

In considering the total simulation effort three phases were planned. 

The first was a comparison/evaluation phase in which the two techniques were 

used to analyze the same data under closely controlled conditions.   This 

permitted a direct comparison of the two techniques and provided results for a 

detailed evaluation of each.   The results from this phase were also used to 

identify any weaknesses in technique capability and to guide subsequent 

attempts at improvement.   The next phase of simulation consisted of attempts 

13 
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to improve the two techniques by modification of the earlier programs.   These 

modification fi were based on the demonstrated weaknesses and were guided by 

statistical approaches revealed by literature research in the field of sensitivity 

testing and quantal data analysis.   The last phase consisted of evaluating the 

final version of the best technique.   The input data for this phase were the 

same as the initial simulation, permitting a direct comparison and demonstra- 

tion of any improvement. 

In designing the simulation program it was decided that all conditions 

and inputs would be held as closely as possible to practical, real-world jondl- 

üons.   This was done to prevent getting results which might be good in an ideal 

sense but would be Impractical for implementation in the real-world 

environment. 

For assistance in following the development of the simulation program, 

a glossary is presented on page 124 and brief descriptions of the Bruceton and 

Missile techniques are presented in Appendixes I and II, respectively.   For 

more detailed information reference should be made to Princeton Statistical 

Research Group14 and Dixon and Mood ß for the Bruceton technique and Langlie17 

for the Missile technique.   The simulation was programmed on an IBM 7094 

computer in FORTRAN IV computer language.   Th J computer program listing 

is presented in Appendix III. 

Basically, the simulation program was designed to generate a sample 

of "test hardware, " as represented by a set or sample of appropriate random 

numbers.   The "test Item" was then "tested" according to the Bruceton and 

then the Missile technique.   This procedure was continued until the complete 

14 



sample of "hardware" was tested.   The mean and standard deviation was then 

computed according to the respective techniques and recorded.   The sample 

mean and standard deviation were also computed in the usual manner for 

Normally distributed data and recorded for comparison.   The required number 

of samples was generated, tested, and analyzed in this manner, and then the 

standard error of all the sample estimates was calculated.   These standard 

errors were used for final evaluation of the techniques.   Additionally, correla- 

tion coefficients between the Bruceton and Normal and between the Missile 

and Normal standard deviation estimates were calculated and recorded.   This 

procedure was followed, in general, for all simulation work. 

The test conditions for the simulation work were determined based on 

the range of sample sizes to be investigated and on actual results of sensitivity 

tests of missile component hardware.   The test conditions selected are shown 

in Table 1, and the test data used in determining the conditions are in Table 2. 

Table 1.   Simulated Test Conditions 

Sample Sizes                           | 
15 35 55 

00 

§ 
cd 

i 

Population No.  1 

/u= 100 
(T = 0. 02 

T.C.*No.  1 

100 
Samples 

T.C. No. 4 

100 
Samp1 es 

T.C. No. 5 

100 
Samples 

Population No. 2 

/i = 1. 00 
a = 0. 09 

T.C. No. 2 

100 
Samples 

T.C. No. o 

100 
Samples 

T.C. No. 8 

100 
Samples 

Population No, 3 

M= 1.00 
a = 0. 26 

T.C. No. 3 

100 
Samples 

T.C. No. 7 

100 
Samples 

T.C. No. 9 

100 
Samples 

* T. C. = Test condition 

15 
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Table 2.   Missile Component Test Data 

Missile High Low Mechanical 
Component Temperature Temperature Vibration Shock 

r F) (0F) (g2/Hz) g) 
X s X 8 X s X s 

Thermal battery 208.6 15.14 -104.9 7.82 742 0. 171* 
No.  1 

551 0. 112* 

Thermal battery 199.5 20.4 -133.9 7.49 
No. 2 

345.9 6.01 

Infrared source 271.7 10. 33 -125,3 4.5 0.228 0.1095* 
No. 1 

Infrared source 0.300 0.9747* 
No. 2 

0.310 

0.160 

0.7063* 

0.7193* 

2.   Establishing Starting Conditions 

After the simulation test conditions were established, the next step was 

to program the two techniques for the computer.   For the Bruceton technique 

it is necessary to have preliminary estimates of the mean and the standard 

deviation in order to determine the initial test level and the constant increment 

by which subsequent test levels should be changed.   The decision to be made 

is to what accuracy could the mean and standard deviation be estimated.   Since 

*In terms of natural logarithms. 
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these estimates would ordinarily be based on similar data from other test 

programs, it was decided to use the data in Table 2 for this purpose.   A simple 

statistical analysis of these data was performed which was considered to 

represent that which would be done under "real-world" conditions.   The 

"estimates" thus derived as inputs are shown below. 

Population No. Estimated fi Estimated a 

1 (1, 0.02) 

2  (1, 0.09) 

1.07 

1.07 

0.035 

0.135 

3 (1, 0.26) 1,07 0.390 

The Bruceton technique estimate of the standard deviation, s, is cal- 

culated by first computing a value of the expression (Appendix I) 

M=   (ZihA/N- (sinj/NV 

The value of M is then used to enter Table 3 or Figures 1 and 2 for a value of 

S.   The value of s is now determined from 

s = DS, 

where D Is the test level increment. 

For values of M greater than approximately 0.325 the graph used is 

linear (Figure 1).   For values of M less than 0. 325, however, a family of four 

curves must be considered (Figure 2).   The curve used is selected based on 

the relative location of the estimated mean to one of the test levels; i.e., if 

the mean were located half-way between two test levels, one specific curve 

would be used.   Since only tour curves are presented, interpolation between 

them is required. 
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To find exact mathematical functions for these four graphs and a tech- 

nique for interpolating between them, all suitable for the computer, presented 

a formidable, if not impossible, task, and an alternate procedure was 

necessary.   For values of M greater than 0.325 an expression for the linear 

portion of the graph is used as follows s: 

s = DS, 

where S = 1.620 (M + 0. 029).   Again, this solution is only good when M is 

greater than 0. S25. 

For values of M less than 0. 325 a different method was used to compute 

both the estimated m^an, x", and the estimated standard deviation, s.   This 

method is described in Appendix IV by Dixcn and Mood, 8 and, while not 

specifically intended for use for the reasons given here, was evaluated and 

found to be acceptable.   The method provides simultaneous solutions of the two 

maximum likelihood equations by iteration.   The iteration procedure was set up 

and checked out to obtain solutions to an accuracy of ±0.0001. 

There is only one initial condition to be set for the Missile technique, 

the test interval.   The test interval is described as an interval of the test 

environment or stimulus large enough to contain all values of the critical 

responses of the test items.   To obtain realistic values for this Interval the 

test data of Table 2 were again analyzed, and the results were: 

Population No. Test Interval 

1 (1.0, 0.02) 

2 (1.0, 0.09) 

3 (1.0, 0.26) 

0.364 to 2.20 

0.364 to 2-20 

0. 000 to 2.63 
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The input conditions for the simulation program are summarized in 

Table 4 for the initial nine test conditions shown in Table 1.   The last three 

items listed under "Program Input" are concerned with the Bruceton iterative 

solution and random number generation.   These inputs wil be discussed sub- 

sequently in another section of this document. 

Up to this point in the simulation, efforts have been described for 

generating the artificial test items and testing these items using the Bruceton 

and Missile techniques.   At this point the simulation program was satisfactorily 

designed to accomplish this, and subsequent programming for computations 

necessary in the evaluation of the results were formulated.   Since the basic 

objective was to compare and evaluate the two techniques, a basis for compari- 

son was necessary. 

Each technique estimates the mean and standard deviation using the 

quantal responses.   Since the actual values of the critical responses (i.e., 

the RNN) are available, it is possible to estimate the mean and standard 

deviation of the samples using this information in the standard manner (i. e., 

using the equations for continuous. Normally distributed data).   It can be 

shown that the sample estimates using the Normal equations are the best 

obtainable, and hence could be used as a basis for comparing the other esti- 

mates.   Thus the Bruceton and Missile estimates can only approach the Normal 

estimates in accuracy and repeatability.   Any comparison of estimates must 

consider the magnitude by which the estimate differs from the true value as 

well as the repeatability of the estimate.   The means of the estimated means, 

X-,   and the estimated standard deviation, IT , should thus be used.   Also, the 
x s 
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Table 4.   Simulation Program Computer Inputs 

Program 
Input 

PXB 
(population mean) 

PS 
(population stindard 
deviation) 

H  (initial test 
level — Eruceion) 

DELTA (test level 
increment — Bruceton) 

NS (sample size) 

NO (number of 
samples) 

BETA (standard devia- 
tion bias correction — 
Missile) 

ULIM (test interval 
upper limit — 
Missile) 

LLK! (test interval 
lower limit — 
Vlissiie) 

XMULT ^x'incremdnt 

Test Conditions 

for Bruceton Iterative 
pr jcess) 

SMULT (s increment 
for Bruceton iterative 
process) 

Mf.T 
(random number 
generator) 

1.00 

0.02 

1.07 

0.030 

15 

100 

0.762 

2.20 

0.364 

0.05 

0.25 

18974 
35261 

1.00 

0.09 

1.07 

0.135 

15 

1.00 

0.26 

1.07 

0.390 

35 

100      100 

0.762 

2.20 

0.364 

0.20 

0.33 

19847 
53021 

0.762 

2.63 

0.0 

0.40 

0.50 

19847 
53623 

1.00 

0.02 

1.07 

0.030 

35 

100 

0.865 

? 20   2.20 

1.00 

0.02 

1.07 

0.030 

55 

100 

0.875 

6 

1.00 

0.09 

1.07 

0. 135 

35        35 

1.00 

0.26 

1.07 

0.390 

0.364 

0.05 

0.20 

18974 
35263 

0.364 

0.05 

0.15 

18974 
35265 

100 

0.865 

2.20 

0.364 

0.10 

0.25 

19847 
53625 

100 

0.865 

2.63 

0.0 

0.20 

0.35 

19847 
3627 

1.00 

0.09 

1.07 

0.135 

55 

100 

0.875 

2.20 

0.364 

0.05 

0.20 

29874 
53621 

1.00 

0.26 

1.07 

0.390 

55 

100 

0.875 

2.63 

0.0 

0.10 

0.25 

29874 
53625 
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'standard devlatlonb of the estimated means, SL, and the estimated standard 
x 

deviations, S , should be used to evaluate repeatability. 
s 

Therefore, in addition to the sample means and standard deviations 

estimated by the Normal, Bruceton, and Missile techniques for each sample 

of test items, the means of the estimated means and standard deviations from 

the 100 different samples as well as the standard deviations of the data were 

computed for each analysis technique. 

It '* as also an objective of this simulation program to investigate the 

degree of correlation between the individual sample Bruceton and Missile 

estimates of the standard deviation with the corresponding Normal estimates. 

The correlation between the sample Bruceton mean estimates was reported by 

Hampton21 to be very good, 1. e., closely and positively correlated with the 

calculated coefficient of correlation approaching a value of+ 1.0.   Therefore, 

no further Investigation of mean correlation was necessary.   The coefficient of 

correlation of the standard deviations for the 100 samples from each test 

condition was calculated by the formula given by Hoel.2i 

Checkout of the computer simulation program was accomplished with 

two objectives in mind.   First of all, It was necessary to see that the computer 

had been programmed properly to accomplish the desired calculations In 

correct sequence and to see that the program logic was operating as intended. 

Second, if the calculations and program logic were correct, it was necessary 

to see that all operations on the computer were being accomplished as effi- 

ciently as reasonably possible.   This was done to reduce the cost of conducting 

the program and was aimed prim reducing the computer running time. 

24 



i The checkout was accomplished by running the simulation through a 

small number of small sample size tests.   The computer was programmed to 

print out the results of significant intermediate steps which would not ordi- 

narily be required.   With this information it was possible to follow the simu- 

lation step by step and check the results by manual computations on a desk 

calculator. 

These Initial efforts did indicate excessive computer run time, and 

certain changes were necessary.   The most significant of these changes was 

concerned with the Bruceton iteration technique described earlier (Appendix 

IV).   Analysis of the test results was requiring too many iterations for con- 

vergence of the solutions.   The Iterative procedure used by the Bruceton 

technique requires trial solutions on both sides (positive and negative) of zero 

in order to Interpolate for the solution at zero (the maximum likelihood value). 

The computer logic required is to first determine whether the initial trial 

solution is positive (or negative) and then to increment this trial value by such 

an amount to get a solution with the opposite sign.   This process is repeated 

until the absolute magnitude is sufficiently small to permit accurate solutions 

at zero from the linear interpolation. 

The logic originally designed Into the computer program required that 

the initial values ofTand s (obtained by the standard Bruceton calculations) 

be incremented by an amount equal to the a priori estimates of x"and s, 1. e., 

1. 07 "Fand 1.5 s.      (Initial conditions have been discussed earlier.) After 

evaluating the initial runs with this logic it was concluded that these increments 

were too large. 

25 

i    < 

i 
f       * 

. )•**•**& tr *'*&*■,*& 



In determining the size of the required increment two conflicting con- 
I 
sideratlons are present.  A large increment is desired in order to get a sign 

change, but at the same time a smaller increment is desired to get more 

accurate results.   As a compromise the following reasoning was used.   It is 

known that the standard error of estimating a is a direct function of N/IT (where 

n is the sample size).   By using s at n = 15 as the base, the ratio of N/tTat the 

differen*. sample sizes was obtained.   This, when multiplied by the increment 

at n = 15, should give similar increments for the larger sample sizes.   The 

initial increments of s for the three values of a were determined based on 

analysis of the preliminary runs as 25 percent of s for a = 0. 02, 33 percent 

for a = 0.09, and 50 percent for CT = 0.26.   These percentages are essentially 

estimates of the maximum error anticipated in the Bruceton estimates of the 

population standard deviation.   Increments for x^ were calculated in a similar 

manner.   The above calculations are summarized in Table 5. 

Table 5.   As and Ax Calculations 

As Calculations 

n 
Standard 

Error Ratio 
Increment 

(As) @or= 0.02 @a= 0.09 @a=0.26   | 

15 

35 

1   55 

1 (base) 

0.67 

0.53 

0.25 

0.20 (0.67) 0.25 

0.15 (0.53) 0.25 

0.33 

0.25 

0.20 

0.50 

0.35 

0.25 

|                                              Ax Calculations 

1    n 
Standard 

Error Ratio 
Increment 

(Ä) @a = 0. 02 @a= 0.09 @a = 0. 26 

15 1 0.05 0.20 0.40 
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Table 5.   As and Ax Calculations   (Concluded) 

Ax Calculations 

n 
Standard 

Error Ratio 
Increment 

(Ax) @a = 0. 02 @a= 0.09 @(T = 0. 26 

35 

55 

0.428 

0.275 

0.05 

0.05 

0.10 

0.05 

0.20 

0.10 

The increments in Table 5 were programmed into the computer as 

initial inputs, SMULT (s multiplier) and XMULT (x multiplier).   Checkout 

runs with these inputs provided satisfactory results and this approach was 

made a permanent part of the simulation program. 

3.   Summary of Computer Simulation Program 

With the required changes finalized and checked out the computer simu- 

lation program design was complete.   It consisted of a main computer routine 

and the subroutines summarized below.   The complete program is presented 

in Appendix III, and is structured as shown in the diagram below. 

Main Program Routine 

Bruceton Technique Subroutine 

It 
(BRUCMf) 

Failure Level Analysis Subroutine 
(CHEK) 

Missile Technique Subroutine 
,4(MISSMT) 

Integration Subroutine (IGRAT) 

-Bruceton Iteration Subroutine 
i (INTERP) 

•—Interpolation Subroutine (ITR) 

Ü 
—Solution of Simultaneous 

Equation Subroutine (SESOMI) 

The main program routine accepts the test condition inputs, generates 

27 



the random Normal numbers, arid calculates the overall statistical param- 

eters using the Normal, Bruceton, and Missile estimates.   The Brückten 

technique subroutine (BRUCMT) accepts the random ITormal numbers from 

the main routine, generates test levels, accomplishes the tests, tabulates 

results, and computes estimates of ß and a which are returned to the main pro- 

gram routine.   The Missile technique subroutine (MISSMT) operates in a 

similar manner. 

The Failure Level Analysis subroutine (CHEK) was used to analyze the 

failure/success/test-level data and compute certain parameters from these 

data required for the Bruceton estimates.   The Bruceton Iteration subroutine 

(INTERP) was used where the values of M were less than 0. 325 and required 

the iteration procedure for estimating.   The Interpolation subroutine (ITR) 

was used for interpolating between values in two tables used in the Bruceton 

iteration procedure. 

The Integration subroutine (IGRAT) was used in the Missile technique 

to integrate the expression 

-00 

■..(=1) e ^'     dt. 

SESOMI is a subroutine used in the Missile technique to solve systems of 

simultaneous equations. fl 
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CHAPTER III 

COMPARISON OF THE STANDARD BRUCETON 
AND MISSILE TECHNIQUES 

The first use of the simulation program was to compare the perfor- 

mance of the two basic techniques as they are presently used and described in 

the literature, w»15»17  This was accomplished by running the test conditions 

shown in Table 1.   The results of this particular simulation effort were used 

initially to determine the relative performance of the two technioues and to 

identify more detailed characteristics of their performance.   The results also 

provided the primary guidance for subsequent efforts described in Chapter IV 

to improve the two techniques, and ultimately to define restrictions of the 

techniques (Chapter V). 

Evaluation of the simulation results was accomplished in two phases. 

The first, preliminary, evaluation was accomplished using a relatively simple 

estimating efficiency approach designed to provide quick, quantitative answers 

to guide subsequent activity.   The second phase, or final analysis, was based on 

standard statistical analysis technioues, and only those conclusions which result 

from the statistical analysis are considered in the final evaluation of the project. 

The detailed statistical analysis is presented in Appendix V. 

In developing the estimating efficiency approach for the preliminary 
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evaluation it was recognized that the Normal estimates of n and a are the best 

available and could be used as a basis for comparison of the other two tech- 

niques.   Thus, if the efficiencies of the three different estimators were calcu- 

lated on the same basis, the Bruceton and Missile efficiencies could be com- 

pared directly to see which was better and the Normal efficiencies used as a 

measure of the degree of potential improvement possible in the other two. 

The following two expressions were chosen as expressing the desired 

efficiency characteristic: 

E
8=   ("-'"-V-Ss)/"' 

where 

M and a = the true population parameters as programmed into the com- 

puter 

X—= the mean of the means from the 100 samples of test results 
x 

X  = the mean of the standard deviations from the 100 samples of 
8 

test results 

S—= the standard deviation of the means estimated from the 100 
x 

samples 

S = the standard deviation of the standard deviations estimated 
s 

from the 100 samples. 

In deriving the above expressions it was reasoned that the accuracy of 

any estimator is measured by two factors, (1) the amount by which the esti- 

mate differs from the true value of the parameter being estimated and (2) the 

repeatability of the estimator. 
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These two factors were defined as the displacement and deviation, 

respectively, and are expressed as 

Displacement = \ n - X— |, and \ a - X    | 

Deviation = S_ and S . 
x s 

Since the "perfect" estimator would have values of zero for both of these 

factors, the efficiency expressions given earlier would have an efficiency of 

1. 0 for the perfect eslimator, and anything less than perfect would have a value 

less than 1.0.   It is recognized that the expressions are not efficiencies in the 

true sense of the word since, under certain conditions, it is possible to calcu- 

late negative values.   It is not felt that this possibility significantly detracts 

from its use. 

Data from the comparison simulation are presented in Table 6.   These 

data were calculated from the 100 individual sample estimates of A' and a by 

each of the three techniques.   From the data in Table 6, efficiencies were 

computed (Table 7) and graphs plotted.   The graphs are shown as Figure 3 

for E_ and Figure 4 for E .   The efficiencies E_ and E   are the means of the 
X 8 X S 

efficiencies obtained for the individual test conditions of the same sample 

size, or population. 

A review of Figures 3 and 4 result in the following observations: 

1.   All the Normal estimates are better than the corresponding Bruce- 

ton or Missile estimates.   This verifies the statement made earlier 

that the Normal cstimavs^ are the best possible. 
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Table 6.   Summary Analysis of 100 Sample Estimates 

Test 
Conditions 

No.   (ß , a. N) Technique 
X_ 

X \ 
X 

s 
S 

B 

Normal 1. 00044 0.00496 0. 01965 0.00384 
1 (1.0, 0.02, 15) Bruceton 0.99124 0.01951 0. 01854 0.00728 

Missile 1. 00406 0. 01774 0. 00445 0. 01429 

Normal 0 99935 0. 02086 0. 08744 0. 01567 
2 (1.0, 0.09, 15) Biuceton 0.96131 0. 08037 0. 08332 0. 03003 

Missile 1. 00155 0,04309 0. 07653 0. 06176 

Normal 0.99410 0.06653 0. 25533 0. 04683 
3 (1.0, 0.26, 15) Bruceton 0.95598 0.26766 0.28946 0. 07630 

Missile 0.98708 0.10306 0.22876 0.16474 

Normal 1.00034 0.00361 0.01961 0. 00237 
4 (1.0, 0.02, 05) Bruceton 0.98146 0. 01483 0. 02093 0. 00532 

Missile 1.00005 0.00796 0. 01559 0. 01015 

Normal 1.00024 0.00294 0. 01984 0.00191 
5 (1.0, 0.02, 55) Bruceton 0.98240 0.01590 0. 02015 0.00366 

Missile 1.00021 0.00522 0. 02023 0.00677 

Normal 1.00009 0.01544 0. 08920 0.01020 
6 (1.0, 0.09, 35) Bruceton 0.93108 0. 08667 0.09032 0. 02076 

Missile 0.99814 0.02341 0. 08379 0. 03209 

Normal 0.99889 0.04277 0.25828 0.03111 
7 (1.0, 0.26, 35) Bruceton 0.92697 0.31330 0.30910 0. 16804 

Missile 0.99664 0.06430 0.24926 0.09518 

Normal 0.99947 0.12460 0. 09037 0.00974 
8 (1.0, 0.09, 55) Bruceton 0.94012 0.09557 0. 09241 0. 01531 

Missile 0.99815 0.02075 0. 09151 0.03210 

Normal 1.00591 0.03656 0.25757 0.02252 
9 (1.0. 0.26, 55) Bruceton 1.00920 0.28431 0. 29013 0. 04480 

Missile 1. 00437 0.05123 0.26647 0.07416 

32 

i 

tmm 



I 

(0 

I o 

§ 

| 

CO 
Ü 

I 

(C N ao o ■«*• i-t CO © iH © © 
(A 0) <o o H in in CJ © « n 

S •* t-i in CM CO ■* t- ^ CO s t- t-i 
■* (0 o in CO t» t- r-t © eo o 
N M ■* »J* r- CO CO C- t- « © 

O C o O o o o o o o o 

oo ea o ao m •«»< m t^ •* n © 
rH 00 o N t- •* o rf 00 00 « 

w PQ m ■f t- t- 00 in t- n © lw PQ © t- 
«e V iH m •f oo t> r-i © ■«t n 
» «0 CO t- 00 t- esi 00 © © © 

o o o o o o o © o o o 

CJ o CO i-t 00 in eo eo © © o 
U3 ^- n in in eo eo ■* i-t I-t 

55 rt N CO in rH ■«• •* CM t- Ä a © 
■* •* CO o> N o OS iH l-l « © 
oo oo oo oo OS OS 00 © © © « 
o o o o O o o © o o o 

IH CO o o xf rH in 00 © © 

E 
rH N o o t CO m 00 S t- © 
■* CO CM ^ ^ N © © © © 
«O '"!}' t~ in t» OS o © s t- 
iH CM CSJ CO m m © © •* 

o o o o o o o o o o o 

o rH eo o o 00 m l-l © © © 
oo o t-t OJ in m t- 00 rl © i   a t- Pi 

W 0 CO N CO t- OS in Tf eo l-t lw rn N © 
«0 OS o> 00 o CO CO o r-i © « 
U3 w in CO 00 t> rH 00 t- © © 

o o o o o o o o © O o 

o ■* OJ o o 00 eo tj« n CM © 
w ■<*, OJ o in t- t- •>* o © iH 

» 
o t- IH 04 CO t- eo t* ■^ z © iH 
01 os o CO o> t- t- 00 o © t- 
r> t- 00 00 00 oo 00 00 © t- « 
o o o o o o o © o O o 

o co O) OS t- eo OS o o © t- 

?! N n o as in t- eo "t "«*< 
j? 

i-t © 
00 in Tf >-t ■* Tf N t- •* © © c» in 00 OS OS t- CO t- •<*• •" n © 
o> o> 00 OS OS os OS © © © © 

^ 

o o o o o o o © o © o 

« T»< 04 n o T-t t~ in © o •* 
t- •«t eo CO in ■f CO in © Jx o CM 

PQ fH o 00 CO CO Tf eo ■^ © w PQ t- © 
t- 00 00 CO CO Tf iH "<!*< CM ■* o 
05 (O CO OS OS 00 CO 00 © © © 

o o o o o o © o © o o 

o 0J t- in N t- N 1-t n © © 
(0 •^ w o 00 •* iH o © © © 

* 
Tf oo t- CO CO ^< © c- t-  ' Z © ao 
OS t- M OS OS 00 m 00 © © t- a> 05 o> OS OS OS © © © © © 

o o o o o o o © © o o 

us m in U3 in in ir © © 
in W 

CO  " N o> CO 
m 

Ol OS © c « 
s  - O © OJ O o o CM ^J 

4- .2 b so 33 
• 

O d • 
o 

« 
o 

• 
o 

• 
o d • 

o d z © 
I-l 

w 
00 

u, "C a. o a> o o o o o © «~ 
O • " 
04 N-* >—- 

S5 r-t N n ■* m CO t- © © 

!  . 

3;i 



r 

'S 
'S 
■—I o e o u 

oo 
4» 
3 
C 

I o 
® 

0D 
S» 
Ü e 
4) 
u 
s 
M 
T3 
4) 
ed 

3 
Ü 

■—i 
e« 
Ü 

^ o> (0 (O m 

S (O t- 5S in in ^4 
'Ü* t- t- CO fi^ 

^■^ CO in t- 00 p^ 
t- in ^f in <o 

• • • • • 
o o o o o 

N oo t- lH in 
o o o ■* t- 

|w ffl ■>4, 

00 
o Iw m 

in m 
00 
in 

t- «e t- t- in 
• t • • • 

o o o o o 

o o» o A OS 
r-t t- M ■«*< CO 

^ t- Tt z (O CO rH 
rH 00 00 00 00 
Oi oo 00 00 00 

a • a • • 
O o o o o 

00 oo w CO t- 
•* t CO o in 

g Ui n g t- in O) 
m N o in © 
CO rf n -* in 

• 
O O o o o 

o N t- CO CO 
.     OB 00 CO .   «o co n o» Iw CQ n Iw « CO 

00 
o o» 

oo 
t> (O CO t- Tf< 

• a s a a 

o O O O O 

OJ O t- M o» 
<3> CO co M 00 

JS in Tj< ^ OJ Tf< OJ 
(T> in ■* in in 
oo oo 00 00 00 

• , a a • 
o o o O o 

M eo in CO t~ 
fH N n rH M 

S (N OJ g oo <7> o 
t- in 00 CO eg 
a> a> o> O» o> 
d • 

o 
• 

o d d 

t- o OJ co oo 
.    IX (O CO Jx N CO o> Iw 05 i-t CJ w « 00 CO lH 

lH N i^^ CO in •* 
00 00 0» 00 CO 

■ d d d d o 

cs cq M M t- 
t- in oo CO o 

^ P3 C£l ^ in CO t- 
00 t- 05 00 Tj* 
0) 0J 0) o> Oi 

• a • a a 

L   o O o O o 

I 

N OJ CO 

< 
O o Cl 

» in 
b d • 

o 
• 

o 

34 



1.3 

1.2 

1.1 

0.5 

O    NORMAL EFFICIENCIES 
Ä    BRUCETON EFFICIENCIES 
D   MISSILE EFFICIENCIES 

0.4 
15 

J. 
35 55 

SAMPLE SIZE 

ALL 0.02 0.09 0.26 

STANDARD  DEVIATION 

Figure 3.   Mean Estimating Efficiency Versus Sample Si 
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2. The Missile estimates of ß are better in all instances than the 

Bruceton estimates.   Further, there is very little difference 

between the Missile and Normal estimates, indicating very little 

potential for improving the Missile estimate of the mean. 

3. The Bruceton estimates of o are better than the Missile estimates 

except for the population of /u= 1.0 and a = 0, 26, specifically for 

a sample size of 35 items (Table 7).   Estimates of cr from the 

/<= 1, 0 and a = 0.26 population with sample sizes of 15 and 55 are 

both more efficient than for a sample of 35, 

4. Estimates of ß are fairly insensitive to different sample sizes when 

samples from the three different populations are considered.   This 

can probably be explained by noting the decrease in efficiency with 

increasing a, and reasoning that this decrease offsets the increased 

efficiency expected with larger sample sizes. 

5. The Bruceton estimates, of both M and a, are not statistically con- 

sistent, whereas the others, Missile and Normal, are. 

Based only on the above observations, it is not possible to conclude 

which of the two techniques is best for estimating ^ and a, the basic objective. 

To do this requires consideration of the relative "weights" of )U and a esti- 

mating efficiencies which must be given in combining them into an overall tech- 

nique efficiency, E.   To establish a basis for conbining the statistical esti- 

mates of jj. and a it was reasoned that the estimates are usually used to define 

an interval in which the true population parameter will lie.   This interval may 

be of varying widths (X ±1S, x' ±2S, etc.), as desired, with a "3-8igma" 
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interval (i. e., 3? ±3S) typical for aerospace testing.   By substituting the asso- 

ciated efficiency in place of the respective parameter in the Interval expression 

(since the interval is the usual ultimate objective), an expression for overall 

technique efficiency is possible; i.e., F = ( E_+ 3 E ^ /4.   This is a weighted 

average in which E   is given three times the weight of E_. Obviously an infinite 
S X 

number of weight combinations are possible, although the one shown above was 

used predominately throughout this project. 

By using the above expression, the overall efficiency, E, for each 

individual test condition was calculated, and from these values mean overall 

efficiencies, F, for each sample size and population were calculated.   The 

individual and mean overall efficiencies are presented in Table 7 and the mean 

overall efficiencies are shown plotted versus sample size and population in 

Figure 5.   Finally, all the overall efficiencies (i.e., for all sample sizes and 

populations) were averaged for each technique.   The overall mean efficiency 

thus calculated for the Missile technique was 0. 55779 and for the Bruceton 

techniaue was 0. 69009. 

Data on the coefficient of correlation are presented in Table 8 and shown 

plotted in Figure 6.   These results show that the Bruceton estimates of a, 

when aH the data are considered, are only slightly better correlated with the 

Normal estimates than are the Missile estimates (TAUB= 0.27064 versus 

TAUM = 0.26100, Table 8).   Further review of the data indicates that the 

Bruceton is superior to the Missile at fairly small values of a (i. e., a 

= 0. 02 and 0. 09);  otherwise, the Missile estimates have stronger correlation. 

Thus, the correlation data indicate that the Bruceton technique is probably equal 
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Table 8.   Correlation Coefficients 

Test Significant Significant 
Conditions 

TAUB* 
at 90-Percent 

Confidence TAUM** 
at 90-Percent 

Confidence No.   (n, ff, N) 

1 (1.0, 0.02,  15) 0.27107 No 0.22563 No 

2 (1.0, 0.09,  15) 0.38936 Yes 0.19008 No 

3 (1.0, 0.26,  15) 0.05514 No 0.36246 Yes 

4 (1.0,  0.02, 35) 0.27362 Yes 0.28438 Yes 

5 (1.0,  0.02, 55) 0.43154 Yes 0.26276 Yes 

6 (1.0,  0.09, 35) 0.29722 Yes 0.15984 No 

7 (1.0,  0.26, 35) 0.04650 No 0.34815 Yes 

8  (1.0, 0.09, 55) 0.44835 Yes 0.30630 Yes 

9 (1.0,  0.26, 55) 0.36763 Yes 0.25950 Yes 

Significant Significant 

N 
at 90-Percent 

Confidence 
at 90-Percent 

Confidence TAUB TAUM 

15 0.23852 No 0.25939 No 

35 0. 20578 No 0.26412 Yes 

55 0.36763 Yes 0.25950 Yes 

All 0.27064 Yes 0.26100 Yes 

Significant Significant 

a 
at 90-Percent 

Confidence 
at 90-Percent 

Confidence TAUB TAUM 

0.02 0.32541 Yes 0.25759 Yes 

0.09 0.37831 Yes 0.21874 No 

0.26 0.10821 No 0. 30668 Yes 

* TAUB = correlation coefficient of Bruceton estimatep 

**TAUM = correlation coefficient of Missile estimates. 
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to the Missile in the degree of correlation between estimates of a by the Normal 

technique.   The column in Table 8 headed "Significant at 90-Percent Confidence" 

indicates those correlation coefficients which were determined to be statisti- 

cally significant as described in Appendix V on page 120.  Further evaluation of 

these coefficients is presented in Chapter V. 
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CHAPTER IV 

TECHNIQUE IMPROVEMENT 

The primary objective of the comparison simulations described in 

Chapter III was to determine the better of the two techniques.   Additionally, 

these results were used to guide subsequent effort toward technique improve- 

ment.   The approach taken for technique improvement was to concentrate first 

on Improving the standard deviation estimates, and then on improving the 

mean estimates.   Technique improvement of both the mean and standard 

deviation estimates simultaneously was not attempted, per se.   In addition to 

the many attempts made at improving the Bruceton and Missile estimates of 

H and CT, several totally new techniques were developed and evaluated.   Only 

the mere pertinent portion of the imrrovement effort will be described here. 

In evaluating the different modified techniques the efficiency approach 

as described earlier was used.   More specifically, the modifications were 

checked out by changing the simulation program as required and running a 

small number (5 to 15) of samples at certain of the test conditions specified in 

Table 1.   The test conditions were selected to permit the greatest amount of 

improvement.   For instance, if an improvement in Bruceton standard devia- 

tion estimating was being evaluated,  test condition No. 7 would be run since 
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(Table 7) for this particular test condition the Bruceton standard deviation 

estimating efficiency was minimum.   If the modification being evaluated 

produced Improvement, It was further evaluated at other of the test conditions 

by running more samples (usually 100). 

The expression "test condition" In Chapter III had two Implied mean- 

ings.   First it specified the values of ^ ^> and N (sample size) used In the 

simulation program (1. e. , test condition No. 1 Implied values ot JX = 1. 0, 

cr = 0. 02, and N = 15) (Table 1).   Second, "test condition" was used to refer to 

a certain specific portion of the simulation effort;  I.e., test condition No. 1 

referred to the 100 tests simulated at the specified conditions.   As used in this 

Chapter the expression test condition will refer only to the specific portions 

of the simulation effort described 1 ■ Chapter III.   Similarly the expression 

"re-test" will refer to simulation effort accomplished subsequent to that 

described In Chapter III.   This distinction is desired for convenience in 

distinguishing between the results of simulation work described in this chapter 

when compared with the results of work described in the preceding chapter. 

The first attempt at technique improvement resulted from the realiza- 

tion that the Bruceton technique required more a priori information than did 

the Missile, and it was decided to take this information and use it to establish 

a "tighter" test interval and different '"degenerate solution" logic for the 

Missile technique. 

Degenerate solutions for the estimated standard deviation (1. e., a 

<0. 0) sometimes result from the Missile technique when the true value of a 

is small.   Langlie^ states that when degenerate solutions occur the actual value 
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of a is small and thus the estimate should be set equal to zero.   This logic was 

followed in the simulation.   It was reasoned, however, that perhaps the rough 

estimate of a used for the Bruceton might be a better estimate for the degener- 

ate cases.   Therefore, this was programmed into the computer along with 

logic to set the test interval limits at X ±4S, where X and S are the a priori 

Bruceton estimates.   These changes result in the Missile technique using the 

same a prioi-i information as the Bruceton. 

Fifteen san pies at /i = 1. 00, a = 0. 02, sample size 15 were run with 

these program changes as re-test No.  1 (RT No. 1).   The Missile estimates 

from this run are presented below together with Missile technique estimates 

from test condition No.  1 (TC No.  1) for comparison. 

Re-Test No. 1 Test Condition No.  1 

E   0.44806 0.24455 

E- 0.99276 0.97820 
x 

E   0.28650 0 
ü 

All criteria increased in magnitude, indicating improvement in all estimates. 

It was noted that RT No. 1 had only 47 percent degenerate solutions as com- 

pared with 90 percent for the Chapter III results.   This reduction is apparently 

the result of the smaller test interval used, and is the reason for the improve- 

ment in estimates of M and cr.   The improvement in E   is particularly signifi- 

cant, and it is concluded that these two changes should be adopted for the 

Missile technique whenever possible.   These two changes were not, however, 

i adopted for further simulation work described in this report.   This decision 

was made to permit a more valid determination of improvement of subsequent 
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changes In the basic technique. 

1.   Improvement In Estimating the Standard Deviation 

Efforts to improve the estimates of cr were based primarily on prin- 

ciples developed by Friedman.25  Friedman proved that minimum variance 

estimates of cr result when sensitivity tests are conoucted at two test levels of 

n ±1. 57 a.   This principle was investigated thoroughly by several different 

approaches, with no practical, favorable results.   A theoretical improvement 

in estimating a was demonstrated using this principle, however, and will be 

described. 

This approach used the Friedman principle in conjunction with the 

Missile technique.   Logic was developed to cluster the Missile test levels 

around the values of X ±KS as follows: 

1.    Calculate the standard Missile test level (MTL). 

MTL+X"+ KS 
2.    If MTL 2 x, calculate TL = 

IfMTL<x", calculate TL = 

2 
MTL + X" - KS 

2 

3.     Use the calculated value of TL as the test level. 

This logic clustered all the test levels within ±15 percent X of the 

desired values (X ±1. 57 a). 

This modified Missile technique was investigated with the simulation 

program at various values of X, K, and S.   Only when X was set at 1. 07 //, and 

KS at 1.60- was improvement in E   demonstrated.   These values were run as RT 
s 

No. 8 for the ß = 1,0, a - 0, 26, N= 35 condition, and the results are shown 
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below together -vlth the results of TC No. 7 for comparison. 

RT No. 8       TC No. 7 
il    0.80596       n:,'m6 

B 

The results show a rather significant Improvement In E .   It is not only better 
s 

than the standard Missile estimate of 0. 59376, but also approaches the Normal 

estimate of 0. 88346.   There was also a slight Improvement In E_ (0. 90200 
x 

versus 0. 89433). 

Although these results indicate significant improvement in E , it must 

be pointed out that actual population values of ß and cr were used In establishing 

the test levels.   These values would not be known In an actual testing situation, 

only rough estimates.   For this reason the demonstrated Improvement In E 
s 

must be described as "theoretical. " 

Other approaches at improving estimates of a were also unsuccessful, 

and it was concluded that the Bruceton estimate of a is the best available. 

2,    Improvement in Estimating the Mean 

During his discussion of the Missile technique, Langlie17 stated that the 

accuracy of the estimates of the standard deviation should be Improved with 

more precise estimates of a for use as the initial value, a0, in the iterative 

solution of the Missile technique.   It was reason jd that Bruceton estimates of 

a would be very good as initial values for this purpose.   To accomplish this, 

the Bruceton technique must be used to conduct the test and obtain estimates 

of a, which would then be used by the Missile technique as values of a0 in con- 

ducting the final analysis. 
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The necessary changes were made In the simulation program and four 

simu'atlon runs conducted as RT No. 22-25 at values of ^. CT, and N corres- 

ponding to TC No.  1, 3, 2, and 6, respectively.   The results of these re-tests 

were very similar and only the results of RT No. 22 (a nine-sample run) will 

be presented.   These results are shown In Table 9. 

The results show that for four of the nine tests, the Missile Iteration 

procedure could not be successfully applied.   This was because the first value 

of /i calculated by the procedure was negative, and the computer logic was 

set up to return the last, non-negative value of ß.   The values of the estimated 

mean and standard deviation shown in Tabk 9 are those calculated by the 

Normal, Bruceton, and Missile techniques for each sample tested.   The 

Bruceton esM.nates were used as initial values in the Missile iterative solu- 

tion procedure, and for those samples where iteration was not accomplished 

(I.e. ,1=0), the Bruceton and Missile estimates are Identical.   Of the five 

samples where iteration occurred, only one (No. 5) resulted in an improved 

estimate of a over that started with initially. 

As stated before, RT No. 25 was run at /u = 1. 00, cr = 0. 09, and N 

= 35, one of the poorer conditions for making Bruceton estimates.   However, 

during review of the RT No. 25 data it was noted that Bruceton estimates of ß 

were much closer to the Normal estimates whenever M ^ 0. 325.   It was 

further recognized that the Bruceton simulation contained logic which 

resulted in an iterative solution whenever M ^ 0, 325.   The reasons for this 

logic were given In Chapter II.   Since both iterative solutions (Iterative 

Bruceton and Missile) solve the maximum likelihood equations, it was at first 
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Table 9.   Results of Re-Test No. 22 

Sample 
No. Technique 

Estimated 
Mean 

Estimated 
Standard 
Deviation I* M 

1 
Normal 
Bruceton 
Missile 

1.00010 
0.96500 
0. 96500 

0.02109 
0.03381 
0.03381 

0 0.66667 

2 
Normal 
Bruceton 
Missile 

0.99231 
0. 98002 
0.98000 

0.01546 
0.01721 
0.02701 13 

0. 25000 

3 
Normal 
Bruceton 
Missile 

0.99535 
0. 98953 
0.98449 

0.01450 
0.01083 
0. 00609 13 

0.13889 

4 
Normal 
Bruceton 
Missile 

1.00261 
0.97000 
0.97000 

0.01912 
0.02436 
0.02436 0 

0.47222 

5 
Normal 
Bruceton 
Missile 

0. 99356 
0.99501 
0.99500 

0. 02593 
0.01944 
0.02032 4 

0.28571 

6 
Normal 
Bruceton 
Missile 

1.00896 
1.01507 
1.01101 

0.01810 
0.01568 
0.00735 11 

0. 22222 

7 
Normal 
Bruceton 
Missile 

0.99829 
0.96500 
0.96500 

0.01362 
0.01761 
0.01761 0 

0. 33333 

8 
Normal 
Bruceton 
Missile 

0.99233 
0.96929 
0.96929 

0. 02285 
0.02125 
0.02125 0 

0.40816 

9 
Normal 
Bruceton 
Missile 

0.99625 
i.00497 
1.00404 

0.02019 
0. 01563 
0.00909 1 

0.22222 

* I = number of iterations accomplished in the modified Missile 
technique. 
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thought that the two procedures were the same with only some variations 

between them.   Further consideration ruled this out since iteration is used with 

the Bruceton technique only for about 50 percent of the time (1. e., only when 

M ^ 0. 325), but it is uced with the Missile technique all the time.   Also, the 

Bruceton iterative procedure is being used only because of the difficulty of 

programming the standard technique for the M ^ 0. 325 situation. 

To obtain further evaluation of iterative Bruceton solutions, the original 

nine 100-sample runs (Chapter III) were reviewed.   Although no particularly 

significant information was obtained from this review, it wp.e noted, at least 

for the TC No. 7 data, that for those samples where two iterative solutions 

were obtained the answers were very similar.    For the samples where only one 

Iterative solution was obtained (1. e., M > 0. 325 and thus only the Missile 

estimate was an iterative solution), the iterative solution was the most 

accurate.   Therefore, it appeared that the iterative Bruceton estimates of n 

were as good as the Missile estimates and that both approached the Normal 

estimates in accuracy.   Obviously, data were needed which allowed evaluation 

of the iterative Bruceton solutions for the situation where M > 0. 325. 

The additional simulation was required at the larger values of M, since, 

evidently, the noniterative or standard Bruceton estimates produced greater 

inaccuracies at these values.   Further review of the nine 100-sample runs 

Indicated that TC No. 7 would be satisfactory.   Thus RT No. 26 was run at 

H= 1.0, a« 0.26, and N= 35, providing Normal, standard Bruceton, and 

Missile estimates of n and a, as well as estimates by the iterative Bruceton 

technique of all samples regardless of the value of M.   The results of RT No. 
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26 are presented in Table 10. 

Table 10.   Results of Re-Test No. 26 

Bruceton 
Technique 

Iterative 
Bruceton 

Missile 
Technique 

Normal 
Technique 

E_ 
X 

E 
s 

0.62461 

0 

0.92651 

0 

0.93360 

0.60000 

0.95241 

0.84630 

It is seen that, as before, the Missile estimates of )u are better than 

the Bruceton.   There is also a significant improvement of the iterative Bruce- 

ton over the standard Bruceton.   No conclusion can be made concerning the 

estimates of a other than to say that the Missile estimates are better than the 

others (excluding the Normal) for this particular test condition.   This was 

also true in the earlier simulations. 

In summary, it appeared that the iterative Bruceton estimates of " 

were about as accurate as the Missile estimates.   If this could be verified 

over all test conditions, then an improvement in overall technique could be 

obtained by combining the iterative Bruceton estimates of ß with standard 

Bruceton estimates of a. 

The technique combining iterative Bruceton estimates of ß and standard 

Bruceton estimates of a was designated the Improved Bruceton technique.   To 

obtain data for a complete evaluation of this technique it was necessary to 

simulate the nine test conditions as before (Table 1) and obtain iterative 

Bruceton estimates of f..   The standard Bruceton estimates of v would be the 

same as those obtained earlier during the comparison simulations of Chapter 

III, and those data (Tables 6 and 7) were used to complete the evaluation of the 
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Improved Bruceton technique.   Thus, eight additional lOO-sample runn were 

required (the ninth having already been run as RT No. 26).   These were run 

as RT No. 27 and 28 and RT No. 31-36 at values of /i, cr, and N corresponding 

to TC No. 9, 3, 1, 2, 4, 5, 6, and 8, respectively. 

The nine re-tests were analyzed as described previously and the 

results are presented in Table 11 and plotted in Figure 7.   It is seen that the 

Iterative Bruceton estimates of the mean are very good over all sample sizes 

and standard deviations, varying from a value of 0. 91486 for the 0. 26 popula- 

tion up to 0. 9925P for the 0. 02 population.   The standard deviation estimates 

are not nearly so efficient,  varying from a low value of 0. 10374 for the 0.26 

population up to a value of 0. 55270 for the 0. 09 population.   Thus tlie Iterative 

Bruceton mean estimates are much better than the standard Bruceton mean 

estimates while the standard deviation estimates are not as good.   It is also 

noted that the iterative Bruceton estimates of the mean are more consistent 

than the standard Bruceton, and are fairly constant over the conditions 

simulated. 

Based on these results the final, best technique should be as described 

before, the standard Bruceton test procedure with iterated Bruceton estimates 

of the mean, and standard Bruceton estimates of the standard deviation. This 

will be referred tc as the Improved Bruceton technique. 

Thus, while the attempts at technique improvement described in this 

chapter were not totally successful  in that no improvement In standard devia- 

tion estimates was developed, the Improvement demonstrated for estimating 

the mean was significant and represents further accomplishment towards the 
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0.8 

A MEAN ESTIMATING EFFICIENCY 

D STANDARD DEVIATION 
ESTIMATING EFFICIENCY 

Q OVERALL ESTIMATING 
EFFICIENCY 

0.02 0.09 0.26 

STANDARD DEVIATION 

Figure 7.   Iterativoi Bruceton Technique Estimating Efficiencies 
Versus Sample Size and Standard Deviation 
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overall project objectivep.   The Improved Bruceton technique Is further 

analyzed and evaluated in the next chaptc ter. 

55 



i.L,     auBPiw^MwmiB^^ 

CHAPTER V 

FINAL EVALUATION AND CONCLUSIONS 

Evaluation of the Improved Bruceton technique to this point has con- 

sisted only of analysis of the portion concerned with estimating the mean.   It 

n.mains to be determined how well the overall technique survives further 

evaluation.   In this chapter simulation data from Chapters III and IV will be 

combined so that the evaluation can be completed. 

The data presented in Table 11 and Figure 7 relate only to the mean 

estimating capability of the Improved Bruceton technique.   To complete the 

overall evaluation, data are required on the standard deviation estimating 

capability also.   Since the standard deviation estimating procedure is the same 

as that of the standard Bruceton technique, the Bruceton data obtained during 

the comparison simulations described in Chapter III can be used.   These data 

(Tables 6 and 7) have been appropriately combined with those obtained from 

the iterative Bruceton simulations of Chapter IV (Table 11) and are presented 

in Table 12 and Figures 8 through 10.   These data are thus the same as those 

which would have resulted had the complete Improved Bruceton technique been 

simulated and the original nine test conditions run.   The final evaluations of 

the technique will be based on these data. 
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Table 12.   Summary Analysis and Calculated Efficiencies of the 
Improved Bruceton Estimates   (Concluded) 

a ■v E s E 

0.02 0.99259 0.68667 0.76315 

0.09 0.97293 0.73033 0.78348 

0.26 0.91486 0. 48996 0.59618 

Review of Figure 10 indicates that, based on efficiency only, the Improved 

Bruceton estimates are the best of the one-shot techniques.   Statistical analysis 

(Appendix V) of these results does not completely substantiate this conclusion. 

This analysis shows that both the Missile and Improved Bruceton techniaues are 

superior to the Bruceton, and no statistically significant difference between the 

Missile and Improved Bruceton techniques was shown for estimating the mean. 

The improvement in overall performance by the Improved Bruceton technique 

is indicated as only approximately 2.5 percent, but it should be remembered 

that in calculating the overall efficiencies the standard deviation efficiency is 

given three times more weight than the mean efficiencies.   All of the technique 

improvement is the result of improvement in estimating the mean, which was 

actually 13 percent.   This improvement becomes more significant for testing 

items which have only a small amount of variation in strength (i.e., small (x 

as compared with JU).   In this situation, errors in estimating the standard 

deviation are not nearly as significant. 

Correlation of the Improved Bruceton standard deviation estimates 

remains the same as for the Bruceton estimates discussed before, since the 

estimates are the same.   The values for TC No.  1, 3, and 7 (Table 8) indicate 
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O      NORMAL EFFICIENCIES 
A      BRUCETON EFFICIENCIES 

I-   O     MISSILE EFFICIENCIES 
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EFFICIENCIES 

"k- 35 55 

SAMPLE SIZE 
0.26 

STANDARD DEVIATION 

Figure 8.   Comparison of the Mean Estimating Efficiency of the 
Four Techniques 
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Figure 9.   Comparison of the Standard Deviation Estimating 
Efficiencies of the Four Techniques 
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zero correlation for estimates of cr.   This means that estimates of the standard 

deviation at these conditions should be disregarded.   Test condition No. 3 and 7 

are both conditions with tests from the 0. 26 test population with samples of the 

two smaller sizes.   Since TC No. 9 is also from the a= 0. 26 population but at 

the largest sample size, it is concluded that smaller size is causing the lower 

degree of correlation.   Thus, in order for the a estimates to have a reasonable 

degree of correlation, the minimum sample size for testing hardware with 

relatively large variation in strength should be 55 items. 

The above discussion of TC No.  1,3, and 7 is also substantiated from 

the standpoint of estimating efficiency.   The values of E   for TC No. 1, 3, and 
s 

7 are generally lower than the others (Table 12).   Thus, of the nine conditions 

investigated, restrictions on sample sizes should be placed on four.   The 

restrictions, in effect, are that sample sizes smaller than 35 should not be 

used for estimating a of any population, and for populations with relatively 

large cr the sample size should be increased to a minimum of 55.   These same 

restrictions apply to the Improved Bruceton technique. 

In continuing the individual test condition evaluation further, the Table 7 

data, were compared with the Table 12 data.    The Improved Bruceton technique 

efficiency for estimating the mean is greater for all nine conditions, ranging 

from a minimum improvement of 1. 7 percent at TC No. 1 to a maximum of 

31. 3 percent at TC No. 7.   Based only on the Table 7 data, the standard Bruce- 

ton estimates of the mean of TC No. 3, 7, and 9 would not have been acceptable, 

and the estimates of TC No. 2,6, and 8 would be marginal.   This indicates 

that the standard Bruceton technique probably has a weakness for estimating the 
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mean of any hardware which has relatively large variation in strength (i. e., 

a/ß ^ 0.09).   The Improved Bruceton technique completely eliminates this 

particular weakness, a very significant improvement. 

So far as the Missile technique is concerned the data In Table 7 reveal 

that the Missile mean estimator is more efficient than the standard Bruceton, 

with the opposite generally true for the standard deviation.   This Is substanti- 

ated by the statistical analysis presented in Appendix V.   Review of the Missile 

correlation coefficient data (Table 8) shows that standard deviation estimates 

at TC No. 1, 2, and 6 are not correlated and thus should be disregarded. These 

are essentially small sample/small a conditions and thus a minimum sample 

size of 35 should probably be specified and increased to 55 for TC No. 6. 

Thus, of the nine test conditions investigated, four (TC No.  1-3, and 

(J) have been restricted for use with the Missile technique, and also four (TC 

No,  1-3, and 7) for the standard Bruceton and Improved Bruceton techniques. 

The basic objective of this investigation was originally stated as that of 

providing an answer to the question, "Which technique, Bruceton or Missile, is 

the better for sensitivity testing of one-shot items with sample sizes ranging 

from 15 to 50 items? "   It was also planned to determine whether one technique 

should be preferred over another under different situations.   Finally, efforts 

were planned for Improving either one of the two techniques or developing a 

new, improved technique.   Investigations have been completed as described 

previously towards all these objectives with varying degrees of success. 

It is felt that the question as to which of the two techniques, Bruceton or 

Missile, is the better for conducting sensitivity tests was satisfactorily 
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answered.   Based on the analysis of variance results and sign tests described 

in Appendix V, it must be concluded that between the standard Missile and 

Bruceton test techniques, the Missile technique is the better.   It was deter- 

mined that limitations should be placed on the use of both techniques as 

described earlier. 

Improvement was demonstrated for the Bruceton technique.  An iterative 

solution is proposed for calculating the estimates of the mean.   These solutions 

were shown to be significantly better than those provided by the standard 

Bruceton technique and equal to those of the Missile technique.   However, since 

no improvement over the standard Bruceton estimates for cr was developed, the 

standard Bruceton estimate must be used with the limitation that for estimating 

a, minimum sample sizes of 35 items should be used under any conditions, and 

increased to 55 for situations similar to TC No. 6.   It was not possible to 

determine any statistically significant differences between the Improved Bruce- 

ton and Missile techniques.   Mean estimates of both techniques were shown to 

be significantly better than the standard Bruceton estimates (both the estimates, 

X_, and their standard deviations, S_, were significantly better).   Analysis of 
X X 

the standard deviation estimates of the three techniques was inconclusive.   The 

means of the Missile standard deviation ( X  ) were shown to be better, but the 

standard deviation of the standard deviation estimates ( S   ) were shown to oe 

larger than the standard Bruceton (or Improved Bruceton) estimates. 

Thus, two test techniques of apparently equal capability are available 

for small-sample sensitivity testing of one-shot items.   Both, however, offer 

certain advantages under different situations.  The Improved Bruceton technique 
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is amenable to manual computations, while the Missile technique requires a 

computer for analysis of the test data.   On the other hand, the Missile tech- 

nique requires no prior estimates of n and a, whereas the Bruceton technique 

does.   Further, if such prior information is available and used with the Missile 

technique, some improvement in the estimates can be expected. 

Finally, some comments are in order regarding approaches for further 

investigation.   It is felt that the mean estimates, since they now approach the 

Normal in efficiency, are probably as good as they could ever be.   It is there- 

fore concluded that any future investigations should be directed toward improv- 

ing the efficiency and correlation of the standard deviation estimates, especially 

for those conditions described as limitations.   More specifically, it is thought 

that further effort toward utilizing the Friedman theory25 in conjunction with 

some test level clustering method has good potential. 
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APPENDIX I 

THE BRUCETON TECHNIQUE FOR SENSITIVITY TESTS 

1.     The Experimental Procedure 

The technique consists of the following steps: 

1. Choose a test level, h, at which the first specimen will be tested, 

and an interval, d, which will be the distance between testing 

levels. 

2. If the first specimen fails when tested at test level h, the second 

specimen will be tested at h-d.   If the first specimen does not 

fail, the second specimen will be tested at h+d. 

3. In general a specimen will be tested at a test level d below the 

level at which the previous specimen was tested if that specimen 

failed and d above the level at which the previous one was tested 

if it did not fail. 

In this manner one will obtain a sequence of failures and successes 

which may be recorded as in Figure 11.   The x's denote failures and the O's 

denote successes. 

Here the first specimen did not fail, so the second one was tested at 

hf d;  the second did fail, so the third was tested at h, the level just below hH; 
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TEST LEVELS 

h+3d 

h+2d 

h+d 

h 

h.2d 

h-3d 

Figure 11.   Example of Bruceton Test Levels and Results 

the third failed, so the fourth was tested at h-d;  the fourth failed, so the fifth 

was tested at h-2d;  the fifth did not fail, so the sixth was tested at h-d, the 

level just above h-2d. 

On the basis of past experience it is usually possible to make rough 

estimates of the mean and standard deviation for the item to be tested.   Such 

estimates are used in choosing h and d for the experiment to be performed. 

If a and a are the estimated mean and standard deviation respectively, then 

choices for h and d are simply h = a and d= a. 

2.    Statistical Analysis 

The methods provided for estimating the mean and standard deviation 

are based on the assumption that the critical responses (or some known func- 

tion of them) have a Normal probability distribution.   It is important that 

this assumption be reasonably well satisfied.   If the critical responses are 

not Normally distributed, it is desirable to transform to a new variable which 
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will have a Normal distribution.   In biological research It is usually found that 

the logarithms of the critical concentrations rather than the concentrations 

themselves are Normally distributed.   There is some evidence in explosives 

research that logarithms of testing heights are also more nearly Normally 

distributed than the heights themselves, but the evidence is not so conclusive 

or so generally accepted in this field.   This is a question, therefore, which 

will usually require some preliminary investigation.   Any effort devoted to 

finding it the rasponses are Normally distributed, and if not, what function 

of the responses is Normally distributed, will be well worthwhile.   It is 

assumed that there is known or has been found by preliminary investigation a 

variable, x, which is Normally distributed.   Any reference to test levels in 

the following discussion will be to these "Normalized" levels.   The original 

testing level, h, and the interval, d, will be measured in terms of the Normal- 

ized level.   If, for example, the Normalized level is the logarithm of the 

actual level and the Normalized interval is one, then corresponding to normal- 

ized level-1, 0, 1, 2, 3, would be actual testing levels of Vm, 1, 10,  100, and 

1000. 

The statistical methods will be described by illustrating their use for 

an actual drop test of an explosive.   In this situation the drop height is the 

critical response variable.   Figure 12 is a chart showing the results of the 

test of 100 specimens of the explosive.   On the left the lines on which there 

were tests are numbered from 0 to 4.   In the table below the chart are given 

the line numbers, the actual testing heights (in centimeters), the logarithms 

of the testing heights, the number of explosions (failures), and the number of 
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nonexplosions (successes) at each level.   The set of numbers is the same in 

both columns, as will always be the case when there are equal numbers of 0*s 

and x's.   When the total number of O's is unequal to the total number of x's, 

the number of O's at a given height will not differ by more than one from the 

number of x's at the next greater height. 

The actual heights were chosen so that their logarithms were equally 

spaced, since previous investigation of similar explosives revealed that the 

logarithms of the critical heights could be assumed to be Normally distri- 

buted.   The interval h = 0. 093 in log units was used because another experi- 

ment with a similar explosive gave this value for the standard deviation. 

The mean and standard deviation will be estimated from either the O's 

or the x's depending on which occur in fewer numbers.   In the particular 

example given in Figure 12, either the O's or the x's mav be used, but had 

there been 49 O's and 51 x's, the O's would have been used. 

Let nn, nj, ty, ... be the number of O's (or x's as the case may be) 

on the 0   ,1   ,2     ... lines, respectively, and let N be the total number of 

O's (or x's).   Let c be the normalized height of the lowest line on which there 

was a test recorded.   In the example, the x's will be used and the O's disre- 

garded;  the numbers just defined will then be 

N= 50, c= 0.928, n0= 0, n^ 8, ^ = 35, n3 = 6, ^ = 1. 

The formula for the estimate of the mean is 

m = c+df^2ini+ 
XU (1) 

if the O's are used, or 
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m 
-+d(^lni-^ 

(2) 

if the x's are used. 

The standard deviation will be determined by computing 

2 i2n 
M = 

i 
N ^)" (3) 

then using this number to find s from Table 3 or from Figure 1.   After s is 

found, the estimated standard deviation is 

(T=ds. (4) 

The sums appearing in Equations (1),  (2), and (3) can easily be 

computed in a tabular form, 

i 
i 

in 
i 

izn 
i 

0 0 0 0 
1 8 8 8 
2 35 70 140 
3 6 18 54 
4 1 4 16 

N= 50      A= 100      B= 218 

where the data of the example in Figure 12 have been used and the two sums 

2 in. and 2 i2n have been represented by A and B.   In terms of A and B, the 

formulas (1),  (2), and (3) may be written 

--+d M (6) 

. 

M = 
NB-A^ 

N2 
(6) 

where in Equation (5) the plus sign is to be taken If the O's are used and the 

minus sign taken if the x's are used. 

71 



All computations involving the heights are to be done in terms of the 

Normalized heights and only final results transformed to actual heights.   Thus, 

for the particular example, the mean is 

m = 0. 928 ^ 0. 093 

= 1. 068, 

'100     1 
i 50 " 2 

(7) 

and the number M is 

M = 
50(218) - (100)' 

502 

= 0.360. (8) 

From Table 3 or Figure 1 it is found that the value of s corresponding to M 

= 0.360 is s = 0.625;  the standard deviation is therefore estimated as 

a= 0.093 (0.625) = 0.058, (9) 

which is considerably smaller than the value (0. 093) anticipated and used for 

the interval between heights. 

In terms of actual heights, the mean m = 1. 068 corresponds to 11. 69 

centimeters, and this is not, strictly speaking, the mean height but the median 

height;  that is, the height at which there is an even chance that a particular 

specimen will or will not explode.   The term cr must always be used in Normal 

units (log units in this case), so there is no point in transforming it to 

centimeters. 

The value of s depends on the position of the mean relative to the test- 

ing height, but this dependence is not important unless M is less than 0.35. 

Figure 2 provides curves giving the value of s as a function of M for various 
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poditions of the mean when M la email.   The curve marked m-h = 0 Is for the 

case where the mean Is at one of the testing heights; the curve marked m-h 

= 0. 5d is for tho case where the mean Is midway between two testing heights; 

the curve marked m-h = 0.25d Is lor the case where the mean Is one quarter 

of d away from the nearest testing height. 

If, for example, M In Figure 2 had been 0.20 Instead of 0.36, then s 

would have been determined as follows:  The mean m Is 1. 068 and Is 0. 046 

units away from the nearest testing height, 1.114, and since d = 0. 093, 

the mean is ■■'■■,   = 0. 495d ui its from the nearest testing height.   This 

happens to be so near 0.5d that the Interpolation Is hardly worthwhile, but it 

will be carried through as an Illustration.   The interpolation Is between the 

0. 25d curve and the 0. 5d curve In Figure 2.    From the 0. 25d curve, s' 

* 0.382, and from the 0.5d curve, s" = 0.409.   By using linear Interpolation, 

. .  0.495-0.25   . „    ,. 
8=8 +    0.5-0.25     (S-8) 

= 0.382+ 0.98 (0.027) 

= 0.408. (10) 

Table 3 may be employed for values of M greater than 0. 30.   The 

values In the table are for the case where the mean falls on one of the testing 

heights.   The differences Inserted for M between 0.30 and 0. 72 give the 

amounts by which the tabulated values are changed when the mean falls midway 

between two testing heights.   The differences are 0 (to four decimal places) 

beyond M = 0. 72.   When the mean does not fall on a testing height, or falls 

midway between two of them, interpolation may be employed as above.   Thus, 
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if M were 0.33 and If the mean were 0.2d from the nearest testing height, a 

would be 

8= 0.5711+^4 (0.0070) 

=0.5739. (11) 
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APPENDIX II 

THF MISSILE TECHNIQUE FOR SENSITIVITY TESTS 

1.    Determining the Test Interval 

The first step to be performed in this technique Is the determination 

of the test interval which is used as the basis for generating the stress or test 

levels.   This interval should be selected large enough to include all possible 

ranges of strengths (test environment) of the parts to be tested.   This interval 

can be made conservatively large, since the Missile method has been designed 

to cause the stress levels to be generated in the vicinity of Interest (i.e., In 

the vicinity of the distribution of strengths) as the test proceeds.   As a sample 

illustration, the range for a drop height test for glass containers designed to 

withstand say, a 6-lnch drop, could be chosen to have a lower limit of 0 and an 

upper limit of 3 feet.   The method of analysis of the data is such that the 

particular choice of the endpoints of the test interval does not have an appreci- 

able effect on the results for sample sizes of 15 or more.   In the event that 

the test interval turns out, as the test proceeds, to be inappropriately chosen, 

then the stress levels will tend to converge towards one limit or the other.   In 

Figure 13 are represented the results of an actual one-shot test on thermal 

batteries to determine their reliability with regard to high temperature.   In 

75 



Ul'JiHLUÜ'.H! < .U1..1., 

o  — o   — 

> 
tu a 

it 

(1) 

S 
0! & 
s 
(1) 
H 

-a 
s 
.S 
m 
(0 
•ß 
4J 

•? ?I 43 
8:  o H 
!-    c« «M o H         II 

+J _,•     • as 
a     b 4) 

H 

ß 

CO 
r-( 

0) 

•1-4 

*» o ^-«Nto^m«^«* o •— fn f» •*   «n 

76 

•***mmg.i 



mrnmrn 

( 
I 

this instance, the batteries were designed to perform reliably at 145,"F.   On 

the basis of conservative engineering judgement and some limited development 

test data, the lower limit was selected to be 100° F (the level at which all 

thermal batteries would be expected to perform satisfactorily) and the higher 

limit was selected to be 350° F (the level at which all thermal batteries would 

be expected to fail). 

2.    Selecting the Test Levels 

Once the test interval has been established, the test is begun by select- 

ing the first test level at the midpoint of the Interval.   After the first speci- 

men Is exposed to this environmental level and activated, a 1 or 0 Is recorded 

to indicate the outcome as a success or failure, respectively (Figure 13). 

st 
The general rule for obtaining the (n + 1)     test level, after complet- 

th 
Ing n trials. Is to work backward in the test sequence, starting at the n 

trial, until a previous trial (call it the p    trial) is found such that there are 

as many successes as failures In the p    through the n    trials.   The (n+ 1) 

th th 
test level is then obtained by averaging the n    test level with the p    test 

level.   If there exists no previous test level satisfying the requirement stated 

above, then the (n + 1)    test level is obtained by averaging the n    test level 

with the lower or upper limits of the test interval according to whether the n 

result was a failure or a success.   To illustrate, suppose It is desired to find 

the second test level in Figure 13.   Since there was only one previous observa- 

tion (I. e., first unit failed), it Is not possible to find a level where all 
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intervening results even out.   That is, the second test level is obtained by 

averaging the first with the lower limit.   To find the eighth test level, it is 

observed that results from tests 4 through 7 (1. e., the last four results) 

cancel each other out.   Thus, the eighth test level is obtained by averaging the 

fourth level with the seventh. 

The test level is designated by the letter s and the outcome is desig- 

nated by the letter u.   The lower limit of the test interval is designated A and 

the upper limit is designated B.   Upon the conclusion of the test, the test 

levels fBj, 82, .... s   \ and the corresponding outcome [uj, U2, .... \x \ , 

where N equals the test sample size, are used to perform the analysis. 

'> • • •» 

3.    Berforming the Analysis 

The stress levels rei, 82, .... s   \ and the outcomes [uj, U2, 

u TN arfe'analyzed tg calculate the sample mean and standard deviation (n N / •          1   e 

anS c.\ .   This appendix describes the procedure for performing these calcu- 

lations.   Included«Iso is an analysis, by way of illustration, of the thermal 

battery data presented in Figure 13. 

In sftmmary, the steps to be followecHn performing the analysis are 

(1) calculate the mean and standard deviation of the sample and (2) correct 

the calculated standard deviation for bias. 

4.    Calculating the Sample Mean and Standard Deviatio 

The maximum MV*>lihood equations for n   and a   are as follows: 
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p(VcreN=2gh=0 

(1) 

where the sum is taken over N samples and where t, g, and h are given for 

each sample by 

Ve 
t = = normalized stress deviate 

g = (2n)      2 exp -'A-M). Gaussian ordinate for t 

h = -—— - —-—= "outcome" weighting parameter 
1 - G        G 

and 

G = j    gdt = Gaussian area from -« to t. 
-00 

Tables for G and g are available in almost any engineering or mathe- 

matical handbook (for example, Handbook of Mathematical Tables and Formu- 

las by R. S. Burington, Handbook Publishers, Inc., Sandusky, Ohio).   The 

problem is to find values of ju   and a  which, when used with the stresses and 
e e 

outcomes obtained in the laboratory, cause the summations in Equation (1) 

to be 0.   The procedure used is to obtain a Taylor's expansion about the solu- 

tion point /ij.,a\ for p and q and iterate until the sums in Equation (1) 

become sufficiently close to 0.   The formulas for this analysis are given 
H 

subsequently.   This method requires that an initial approximation  {ß0, a0), 

be made of the solution point so that t, g, and h can be calculated in the itera- 

tive process.   The initial approximation is made as follows: 

1.   Denote the highest stress for which a success occurred as ^j. 
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2. Denote the lowest stress for which a failure occurred as ^0. 

3. Count the number of remaining stress levels which fall in between 

#0 and il> y   Denote this as n . 

4. Calculate 

5. If (T0 is negative, the calculation terminates.   The outcome is said 

to be degenerate and the conclusion should be as follows: 

M   lies between Wi) and {4>0) 

a  = 0 (i. e., too small to be measured), 
e 

A degenerate outcome does not preclude the possibility that the 

population mean might be outside the interval 4)\ to i/v   However, 

if a degenerate outcome occurs for samples of N = 15 or more, it 

is indicative of very small variation in strength (failure point) 

from sample to sample. 

Example 

From Figure 13, 

$1= 215      ^0= 187     n   - 2, 

therefore 

Mo- Vz (215+ 187) = 201 

_ 15 (215 - 187)   = 

8 (2+2) ^o = o /« . "»: = 13. 0 . 

Given the values ju0 and a0, t, g, and h cm be calculated for each stress 

"^^^'m-.^- 
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level-outcome pair.   After the corrections A/u and Ao- are obtained, new values 

of t, g, and h, and sums (1) are calculated to obtain still closer approxima- 

tions to ß   and a   until convergence is reached. 

Once the maximum likelihood estimates of ix and a are calculated, it is 

necessary to correct the estimate, a , for bias.   The unbiased standard devla- 

tion, denoted a, is given by 

where /?= bias, and is the ordinate of Figure 14. 

5.    Calculation Methods 

In order to calculate values of /u and a satisfying Equations (1), a 

Taylor's expansion about the solution point ( y.  , a \ was used.    For points 

{H, a) in the neighborhood oi (n  , a \, the following formulas hold approxi- 

mately: 

0= p /Me. O = P ^' ff) + AM P   + ACT p^ 

0=q (n  , a \ = q  (n, v) + A/i qi + ACT q^ , 

where p , etc., indicate partial derivatives.   These partial derivatives are 

(2) 

given as 

p^cT1 [2tgh-2  (gh)2]^-1 Ip-Z (gh)2] 

p^ = CT- * 2 t g h (t - g h) 

- ^-i -1 q   = a-1 [2 t g h (t - g h) - Z g h] = p   - pa 

qa=CT-1[2t2gh (t-gh)-q]. 

By using Equations (1) and the above expressions for the partial derivatives. 
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Equations (2) can be solved for Aft and Av, for each given outcome, u. 

Then, since 

V4^ 
adj 

(3) 

the adjusted values can be resubstituted into (2) to obtain still closer approxi- 

mations.   Any suitable criterion of comparison can be used to terminate the 

calculation, such as: 

(ACT | +  |AM| <5.10-5. 

6.    Sample Analysis 

Figure 13 presents the results of a high temperature sensitivity test 

for fifteen thermal batteries.   The three columns to the left in Table 13 contain 

the results in tabulated form suitable for calculation purposes.    By using the 

initial estimates for the mean and standard deviation calculated earlier in the 

example, a high speed digital computer can be used to iterate by using the 

equations given in the preceding section until the sums of gh and tgh are 0 to 

four decimal places.   To illustrate the calculation of these quantities, columns 

1 through 5 are tabulated for /u = ^   and a - a .   The items appearing in the 

first row are discussed separately below:    (see formulas for reference). 

Column 1:  t= (225- 199. 8)/20. 39 = 1.234 

1/ 
Column 2:  g= {2n)~ /2 exp - (1. 2342/2) = 0. 1863 
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Column 3:   l/h «= -area (-«to t)* = -0. 8914 

Column 4:  gh = (column ?.)/ (column 3) » -0.2090 

Column 5:  tgh= (column 1) x (column 4) ■ -0.2579. 

From Table 13, it can be observed that columns 4 and 5 run to 0, thereby indi- 

cating that ß   = 199. 8 and a  = 20.39 are truly maximum likelihood estimates. 

The final step in the analyyis is to eliminate the bias in a .   From Figure 
6 

14, /J = 0.76 for N = 15.   Hence, 

(7= 20.39/0.76 = 26.83. 

♦Area (-«>to t) means area under the Normalized curve from -«> to t calcu- 
lated for n = n   and a= o . e e 
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APPENDIX III 

BASIC COMPUTER SIMULATION PROGRAM 
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IMf« -    EFM       S3JR:E  STATEtEIT IF^IISI 

10 

-mroi-nTOII    OF   5ENSITTfIT?     TESTS   
REAL     «t.MMEiNOE.LLIH 
OIME^SUN    (IH!«(&0J,AJ>)f8151,SIß<l60j 
C3Mmi  «N0;f.0l,H,OeLTA,^S,3ETA,U(fc0I,ütIN,LLIN,PS,r*BI*lOl   «SNULT, 

I «HJLT 
DATA     A.S/2.$15^17, .802853..01032Stl.O278B.. 189269,.001»08/ 
mifH.nr /li«/ PXB.PS.H.DELTA.MS.^O.BETA.NNT.JLlH.LLlM.SNVtt.XNÜLT 
NANELIST   /OUTMMO.RtH.Si:*» 
* = W*,IH) 
rilllTEtlilNI 
TAB  ■   3. 
03   S   I«2,*10 
TAB(I)   >   TABCl-U   ♦   .01 
CIMTHJE 
SXBVt   •   0. 
SÄB*12   •   0. 
SSRM   •   3. 
SSRM2   •   0. 
SXB<(   •   3. 
SXB<42   >   0. 
SX&3   ■   3. 
S(B92   •   0. 
SSB  >   3. 
SSB2   ■   3. 
SS« -   3. 
SSM2   «   3. 
SSBSU   •   0. 
SSHS«^   >   0. 
)(«ITE(SI2305) 
ii*iTEUi2000)P«tt,PS.VS 
03  O  l»l,H3 
SJHl-3. 
SJM2   «   3. 
03  23     J>1,NS 
SISHU)   ■   1. 
(Uf43   >   «6SUN(^ST)I 
IFI.5   .ST.   ÄÄNDSGO  T3   10 
RAN3   ■   I.   - RAHU 
SI51«J!   ■  -1. 
T<1  >   S31TIAL0G( l./RAN0«*2)) 
RNM(J) « (IM- IAm»AI2)*M*A(3)*TM*i2l/(l.»&(l)M^BI2l*TN*»2» 

1       3(3)*rH*«3)) • Si:.MIJ) 
• 'S RNOU) • PXB ♦ ^N(J) 

SJMl ■ SUM1 ♦ «MOIJI 
SJN2 • SUM2 ♦ «40CJ)»»2 

20 COMTMJr 
CALL 3)JCMT(XB3«S0f 
CALL MlSSHTiXb^.S^i *<)) 
XDRN ■ SUHl/FLOATI^!») 
%\H  '   S3RT(ABS( (SUM2 
SX9X • SXBKN ♦ XBRN 
SXB^^IZ ■ SXBRH2 ♦ XU%»(«»2 
SSKM ■ SSKN ♦ SHN 
SSRM2 « SSRN2 ♦ SRH«»2 
SXOH • SXBH * XQH 

M) 

Sjm»»2/F-1AT(,<S)I/FL3ATINS-1) ) » 
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<4MN - EfH       $3UR:E STATMEVr IF^IIS) 

SXB12 
 STfT« 

SIBB2 
S» ■ 
SSB2 > 
SSI > 
SSM2 ■ 

 SSBS<t 
SSMSm 
«'ITE( 

2ÖJ1 FJ«i»r 
«0 C3HTIH 

fHHl   • 
FVO « 
XBXSI 
X3XB) 
X3X3<^ 
STXBRN 
STXBB 
STXBM 
XBSRN 
X^SB - 
XBSM • 
STSRN 
ST SB ■ 
STSH • 
TAUB - 

1 
TA UM « 

1 
PXBH ■ 
PXBM ■ 
PXBAN 
PSXSB 
PSXSM 
PSXSftM 
QNt « 
33E • 
Mfc ■ 
HDE • 
i*ure( 

1 
MUTE! 
53 ra 

2300 F3RM*r 
1 
2 
3 

2002 F3RMAT 
1 
2 
3 

2003 FORMAT 
1    1 

2005 FOPMAf 
EVO 

■   SXBM2   ♦   XBN«»2 
5XBB ♦   XBB 

-   SXBB2   »  XB8*»2 
SSB  ♦  SB 

SSB2  ♦   SD**2 
SSM  ♦  SM 

SSM2  ♦   S1"2 
SSBSRH  ♦  SB»SRV 

■ SSMSRH   ♦   SM>SKy 
&»2001)l.XBRS.XBB.<3<(>S3MtSB>SMt<l 
I11X.I5.7(3X.F11.S)) 
Je 

HO -  1 
M3 
• SXBM/F^D 
• SXBB/F^3 
■ SXBRN/FNO 
■ S0Rr(ABS(ISXBRM2  -   $*&**••2/fHJl/tHn 

< SORT(ABS((SXBB2 -  SXBB«*2/FNa)/FNMn) 
< SQRT(ABS((SXBM2-   SXBM*«2/FNOI/FNMi)   ) 
>   SSRN/FNO 
SSB/FNO 
SSM/FNU 

■   SORTURS((SSRN2 -  SSRN*«2/FM0)/FMM1 > 
SORT|ABS(($$B2  - SSB»«2/FN0)/FNM1   )) 
SORT(ABS((SSK2 - SSM«*2/FM0)/FNM1)) 
IFNO*SSBSRN -  SS6*SSRN)/SQRr(   (FNO*SSB 

SSRN2  -   SSRN**2.t   ) 
(FNO»SSMSRN  -  SSH»SSRN)/S0RT((FNO«SSM2 

SSRN2   -   SS«N»»2)   ) 
ABSIPXb-XBXBB) 
ABS(PXB-XBXBM) 

'   ABSIPXO-   XDXORNI 
ASSIPS   -   XBSS« 
ABS(PS   -  XBSM) 

■ ABS(PS   -  XBSi<N» 
PXBMN/PXBO 
»SXSR^/   PSXSB 
»<HRN/PXÖ>1 
PSXSRV/PSXSM 
».2002)XBX6R:*iSrX;^S.XnSRNtSTSRN.PXB^t 

XBS8iSTS3,PXaBiPS«S3,OXB"«, STXBM, XBSIt 
&, 2003)BibtMMfc-|B0E,H3EtTAJ)»TAUM 
1 
(15X,l0HP3PuL*TI0Mf nx.ftH  <4J     >F8.5,3X, 

18HTEST     SAMPLE    Silt ,6X, I 5////UX,5H 
5HKBIB),   9X,5HX»m,   9X,9-IS(RN),   9X,V-< 
IHM  //» 

(////UX.^HPROCCüJ^E.rx.SHXBIMEAH).   RX. 
BHXBIS.O.),8X,7HS(S.0.)ft3Xf9HMU-XX,lI 
&NNORMAL>3Xl6(^X,F11.9)/ltX>BHB»j:ET3y 
7HMISSILC,2X,6(5XfF11.9)   ) 

(////IIX,5HBMC  «Fll.S, tOX.SHMME   -FU.S/ 
OXtSHMOfc   ■F11.9//tlX,9HTAU3-Fll.9,10XfS 
I1H1) 

I)   ) 

2-SS6»«2)«   (FNO» 

-  S$M»«2)»   (FNO 

PSXS^M.XBXBB,STXBB, 
STSN,PXBM,PSXSM 

7HSI3HA  ■F6.9/11X. 
TESTt»X.6HXB(RN),   9X, 
S(B))10X,4HS(M),12Xf 

THSIHEAN),   9X, 
X.6HSIG-XS///UX, 
.lX,6(SX,FU.9)/UXf 

/MX.SHBOE   ■Fll.9, 
HrAUN-Fll.9) 
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iM -   EFN     S3UR:E STATEMENT IF1ISI 

SUBAOJI 
R3umE 
REAL   <l 
zom-3% 

I MJ 
1 )IME^S1 

—T —     r 
I «AMeLIS 
NANHLIS 
)ATA   IT 
.T*3,. 
.66),. 

'   T .995.. 
.529.. 

.%9)..% 

.199..) 

.1*2,.! 

.291..2 

.2*5,.2 

.20*..2 

.169..1 

.1)7..! 

.11..13 
.099.. 
.099.. 
.051.. 
.039.. 
.029.. 
.021.. 

( )»T» (r 
3«.311 
16*.33 
.933.. 
.919,. 
1.339, 
1.079, 
1.1*1, 
1.23,1 
1.313, 
1.399, 
l.*99. 
1.999, 
1.999, 
1.7*9, 
1.931, 
1.922, 
2.319, 
2.132, 
2.197, 

1 )ATAir* 
12.399.? 
2 2.*93, 
3 2.9*2. 
% 2.9*1. 
9 2.7*1. 

TNE BRJCMTUB.St 
FOR  BKUCET04 

RNOI60).H.DELTA.>9 
LT 
3N STSL(60).F0S(6 

Y1(60),TAB20(*10I. 
T/OT/SLN,SLMX,FN, 
r/OTl/N,SL,FOS,TX 
ABZP(I).I-1.256)/ 
7*1,.739..729,.72 
963,.697,, .692,.6 
989,.98*,.578,.57 
919,.91*,.909,.50 
9*,.**9,.**5,.**. 
9*..389..385..381 
38,.33*,.33,.326. 
88..28*..28..277. 
*2,.239,.235,.232 
31,.198,.195,.193 
99,.163..16..198. 
3*..132..13..128, 
9..106,.10*,.102. 
383..082,.08,.079 
369,.06*,.062,.09 
39..0*9..0*8..3*7 
338,.037,.036..03 
328,.027,.027,.02 
32,.92,.019,.019. 
ABZPm.1-257,367 
,*o.01,**.009,9*. 
2,31*.03t,0./,(TA 
936,.8*3,.8*9..65 
923,.929,.936,.9* 
1.012,1.019,1.329 
1.083,1.390.1.307 
1.156.1.163.1.171 
.237,1.2*5,1.253, 
1.321,1.329,1.336 
l.*06,l.*l*,l.*22 
l.*93,1.901,1.509 
1.573,1.981,1.99, 
1.663,1.671,1.679 
1.75*.1.762.1.77. 
1.8*6.1.85*.1.862 
1.93,1.9)8,1.9*7, 
2.02*,2.033,2.0*1 
2.11,2.119,2.128, 
2.206,2.215,2.223 
BZttm,I>192,*03> 
.36*,2.373,2.381. 
2.*62.2.*7,2.*79, 
2.551,2.56,2.569. 
2.69,2.699,2.668, 
2.79,2.799,2.768. 

1 
BXHOO 

.3ETA.Ut60I.ÜLIN.LLIM.PS.rAB(*10)   .SNULT. 

).SLI60),TXBI79).rS(79), 
A9ZPI367) 
.STSL.S. 
,rS.EQl,EQ2,XI,ANl,AN2 
798,.792..789..779..773 
,.717..711,.709,.»99,.6 
6..6*0..63*,.629,.923.. 
..967..962..996..951..9 
..*99..*9*..*89).*9*,.* 
*35,.*3,.*26,.*21..*17. 
.376,.372,.368..363..35 
322..319..31*..31..306. 
273..269,.266,.262,.259 
.229,.226,.223,.219,.21 
.19,.187,.18*,.181,.179 
155,.153,.15,.1*8,.1*6, 
126,.12*,.121,.119,.117 
1..098..397,.095,.393,. 
.377,.076,.07*,.073,.07 
,.06,.0)9,.358,.099,.09 
.3*6,.3*9,.0**,.0*3..0* 
,.03*,.33*,.033,.032,.3 
,.329,.329,.02*,.32*,.0 
319,.013,.018,.017,.017 
/.019,.319,.01*,.31*,.0 
08,5».337,5«.036,71.005 
29(1).I«l.191)/.798..80 
..863..969,.876..892..8 

ac       ««•,      U&A      at      AW 
..m>2..aa'.,.sfij,.03K,.o 

,.99,.957,.46*,.97,.977 
1.033,1.3*0,1.3*7,1.09* 

E31(75).EQ2I75_I.X._ 

.OBO.     <. Wr.<.3UO.C. 917 

.978.2.187,2.996.2.909. 

.677,2.987,2.696.2.709, 

.777.2.786,2.799.2.IDS. 

i» 
7.. 
* 
t . 

*12 

766. 
68 

5*0 
*7 
.. 

335 
133 
2 59 

76, t 
t ■ 

15,. 
..09 

.07. 

.05* 

.0*1 

..03 
,.02 
316, 
,3«. 
• .00 
.811 
,.89 
98*, 
.062 
.13* 
37,1 
9.1. 
379, 
*61. 
.9*9 
63.1 
.72. 
812, 
.909 
99 1 

i 
l. 

i 
i2 

92* 
1*. 
I*. 
l*i 

38* 
171 
267 
329 

*2A 

63..75*. 
.681..679. 
t•6061« 61 
.539,.930. 
r*69,.*6*. 
7,.*03. 
39It. 3*6. 

99,.299. 
292..2*9. 
21..207. 
73..171, 

*1..139, 
3..111. 

..088..087. 
069..068. 
093..092. 
06..039. 
.03..029. 
.022..022. 
16..016/ 
3.3«.012. 
11».003, 
817..82*. 

..902..909. 
991..998. 
.069. 
.1*1. 

.19.1.222« 
98.1.306. 

383.1.391. 
*69.1.*77. 
.997. 
38,1,6*6, 
729.1.737, 
82.1.829. 

..913. 
998.2.907. 

093. 
18.2.188. 
276.2.289/ 

.338.2.3*6. 
*3S.2.***. 
^.933, 
629.2.632. 
723,2.732. 
»23.2.132, 
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an EFN       SJURCE   SrATE«IEir IFHCSI 

6  2.B«lt2.85t2.8$9.2.86S.2.B78, 

8 2.3«}i3.052.9.061.3.07.).979. 
^ l,U*,J.l5f,3.Ul,3.1T2,B.l8l 
4 3.2«&.3.259.3.269.3.274.3.283 
83.348.3.358.3.367,3.376.3.386. 
C 3.451.3.46.3.47.3.479,3.488.3 

"Df J.If l,T. m. 3.573,3.512, 3.591 
E 3.&57.3.667,3.676,3.685.3.695 
P 3.751.3.761.3.77,3.78,3.789.3 
3 3.855,3.865.3.874,3.884.3.893 
■< 3.95»,3.969,3.978,3.988.3.997 
I 4.354,4.064,4.373,4.083,4.092 

~i' t.'1?7,«.169,4.178,4.l80.4.rrr 
DATA irABZa(n,l<'«04,410)/4.25 

1   4.312/ 
1X8:31   ■   0 
ISCOV   •  0 
■H   •   1 
NF   •   3 
ISS  •   3 
SLM « ^^ 
SL«<   •   iH 
03   15   I>1,NS 
IFm3(I)   .GE.   lH)üO   TO  5 

HH 

2.987.2 
2.9B7.2 
3.389.3 
.3.19,1 
.3.292. 
3.395.3 
.4)8.3. 
.3.601. 
.3.704. 
.799,3. 
.3.902» 
.4.007, 
.4.102. 
",4,206, 
4,4.264 

.896.2.905.2 
7W77i:^Ö6.7 
.098.3.107.3 
;2,3.239,3.2 
3.302,3.311, 
,404.3.413.3 
937.3.116.3. 
3.61.3.62,3. 
3.714,3.723. 
80B.3.S17.3. 
3.912,3.992. 
4.316,4.026, 
4.111,4.121, 
4.216,4.226, 
,4.273,4.283 

.914.2.923,2.932, 

.&15.3.SM.S.S33, 

.116.3.126,3.139, 
1B.3.12-T,-S.T§'  
3.32,3.33,   3.? 
.423,3.432,3.4 
526,3.535,3.94< 
629^T.'6fS,jn646. 
3.732.3.742. 
827.3.836.3.846. 
3.931.3.94.3.99. 
4.035.4.045. 
4.13.4.14.4.149. 
4.23i.A.2«7 
.4.292.4.302. 

STSL(I)   - 
Jl I)   •   3. 
HP   *   HF   * 
m « -H - 
33   73   13 

5   J(I)   >   1. 
SrSL(I)   > 
Hi • ^^ ♦ 
ISS ■  <ss 

10  SLH 
SLMX 

1 
DELT4 

HH 
DELTA 
♦   l 

MmjSLifSTsum 
«MAXKSL^XiSTSLd) 

15   CONTMJE 
fH   ■   A^INOCNF.NSSI 
02-1. 
IF(V:   .t£.   HU) U  ■  0. 
CALL  :-IEK(SLM,Sl.MX,:)^,STSL,FaS,<,SL) 
132   •   32   ♦   1. 
SJM1   ■   3. 
SJK   •   3. 
03   23   I>l,K 
FIN   .   I   -   l 
SJM   •   SJM  ♦  F1H*^0S<I) 
SJM1   •   SUM1   ♦   FIh»»:»FOSm 

25  CDNTmS 
S3  73   (30,35),132 

30  X3   •   SLi   ♦  DELTA  »(SJM/M   ♦   .51 
33   73   43 

35   «   ■   SLH  ♦  DELTA  »«SüM/Fl   -   .5» 
40  S  ■   1.620  •   DELTA  •flFCJtSJ^l   -   SJ*»«2)/F1»i2  ♦  0.029) 

N  ■   SJHl/FN  -ISJM/FN)»»^ 
IF(«I  .Sl.   .325)UTUR>J 
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mj'M^'.'^n. '«>i~. n 

B<1                  -     EFi       SDÜRCE  STATE*IE^r     -     IF^IIS».    t_ 

•I  ■  1   
-TFrmr.Eo. nso TO $0 
JJ • < 

30 Ki   JN-1|K 
F3SIJmi   "  FOSIJJ) 
JJ  >  JJ   -  1 

*5  CONTMJE 
-5U TXrnT   •  XB 

TSIMI   •   S 
E31HJ   >  0. 
£92111   ■  0. 
03 IS   E-l.K 
Kill)   •   ISLm-XB,/S 

"     "Ifll   .i3.   1)50   13  85 
H*  ■   1 
tnni > i 
mxiii-n  .LT.  0.)NXN1  «  2 
IFJXIJIJ   .LT.   9.)NX   -   2 
G3   r](SS,60).N^Hl 

55   «'41  «   «.312 
IF(XIII-1S   .GT.   *.09J30   T3   65 
CALL   IMTERPIXMl-lJ,TAB,T»3£a,413,*,AH1,16<*J 
S3  T3  55 

50   All   *   3. 
IF(A)S(XIII-11)   .ST.   3.65)^3   TO   55 
AAA  ■   A3Slxm-l>) 
CALL   MTERPIAAA .TAB.TA3ZP,367.A.AXl, ME)«) 

65   (13  T:,73,75).N» 
70  A«   i   3. 

IFIXKI )   ,BT.   3.66)33   T3   83 
CALL   MTERP.XK I ) , T AB. TA3Z> . 367, V. A^a.^lE))) 
G3  T3  S3 

75   A12  '   V.Ji: 
iFUJSumn .>i. A.09)J3 T3 HO 
AAA   «   A»$(XI(1)) 
CALL   MTERPfiUA     . T AB. TA3Z3. A10, A, $.N2, MER«) 

80   Eaill)   '   EOUN)   ♦   FOSUJKAHJ   -   «N2) 
E32H)   >   E02(N)   *  FUS(i)   »(XI (l-l) »AHl   -   Xl(l)»AM2) 

85   C3MTHJ: 
1FIH   .ME.   1)30   T3   <)0 
IFIX3 .31. l.)<J»XB - IXHJLT«X8) 
IFIX3 .LE. 1.)X:-XB ♦ (X1JLT*XB) 
S ■ S * (5NULT • &) 
N ■ M ♦ 1 
33  n  53 

90   1FII<3:3N  .ES.   DUO   TJ   135 
CALL   ITR(M,eai,IXH.XB,A133) 
IFir<3<l) .ST. l.)XO«XB - (XHULTtXBI 
iFIT<3(l) .LE. l.)Xb-<0 ♦ (XMJLTMB) 

100 IF|A3SIXB-TXB(M)).Cr. .3331)C3 T3 105 
l^BCSM   •   1 

135   Ir(Is:3V   .£0.   1)311   TO   113 
CALL   tM(M,E32,TS,S,*106) 
S   ■   S   ♦   tSMJLT»S) 

106   IHA3S(S-1S(N)I   .ÜT.   .0031)30  T3   115 
ISC3M  ■   1 
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3<«l -     tf-H       SDJR't   ST»TE1tNT IM(S»     - 

113   IFIIS:3M   .tO.   1   .ANO.   1X3:3^   .£3.   IMtTU^N 
119  N  >   S   »   1 

33   r3   10 
CIO 
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EF1       S3UR:E  STATE4E^r IFIISl 

TJBWJTINE CMEKrSMIN,SHAi(,32,STSL,F0S,K,$Ln 

94 

.ST.   .00001130   13   5 

0INEMSI3N FaS(60i,STSLI63).SLl(b3) 
C3H13M   «NO(60)tH.OELTA.^S.3ETA.J(60ltUlIMlL.IM,PS(T*BU10l   •SMULT« 

I t*Jl1 
K   ■   1 
SL   -  S«<IN 

1   F3SHI   •   0. 
Ü3  5 1-l.NS 
IFIASSISL   -STSL(1I)/ABS(SLI 
IFlUm    .NE.   0Z)C0   TO   5 
F3Sm   -   FOS«K»   ♦   I. 

5  C3NTMJ: 
SLiK»   «   SL 
K ■  <   ♦   1 
SL   •   SL   ♦   UELr» 
iF«stM .I.E. SLiuo ra i 
R   •  <   -   1 

EtO 



rMl -    EM      S3UKC6  STATgWIir    -     IFWCSi 

»UBRJUI INI:   initmARC.mi. VTIIclltllPTSTITCtfElin miAöio 
c TRPI0020 
c I.   ARS    THE   MOEPEMDEUr VARIAHE ft» TN£ fililREO TRP10030 
c 

■- - 

JVKNOMN. TRP10040 
c 7. tT»B TAILE OT INDEPENDENT VALUES. NUST IE IN TRPI0090 
c l«:itEASMS ORDER. TRP10060 
c 3.   TIAB  l«BLb  DF DEPENDEiT VALUES. TIMflflTö c - «. Nx     HU<I»CR or POINTS   It  XTAB. TRP10080 
t~ 5.  NPTS «J^BEI  Dr POINTS  JSED  1*1 HI inrcwoLArifiiTRPioo9o 
c 

— F3RNUI.A. (NPTS-I) S   THE  DECREE OF THE TRPIOIOO 
c IWERPOLtriON FDRHJLA DSEDT^ TRPIÖIIÖ 
c 6.   ANS    THE  DEPENDENT  »ALUi CORRESPONDING T0_ THE TRP10120 
c #*LJfc  DF ARB. • rilMBlH 
c 7.   NERR  rfILL   BE   SET  UMESUAl ZERO  IF ARC IS NOT  ON TRP10I40 
c mi.  ROJTINE MILL EXTRAPOL'Att. TRP10150 
c ^E^R   •   I, ARC   .LT. XTABIll TRP10160 
c «U   -   2, ARS  .It, XTABlNXI TRP10170 
c — 10 SEPT 6« TRPlOieO 
C" ftALM SeLURWPl0190 

DINEMSION  XTABINXI.YTABI^X) TRP.0200 
sen* - 3 TR( 10210 
NP   ■   *?TS TRP10220 
IF(H«   .LT.   MPl   NP  ■   NX TRP10230 
NS   ■   MXM69)/26 TRP102*0 
I-f -   H»f2 TRP10250 
I   •   1 TRP10260 
IF   (XTABIII   -   ««(,»30,20,10 TRP10270 

10 M  •   3 TRP102R0 
12 NER«   •   31 

&3   T3   73 
TRP10290 
TRPIOIOO 

13 HERR   •   2 
33   T3   73 

TRP10310 
TRP10320 

20 MS   ■   rTABII) 
03   T3   999 

TRP10330 
TRP103*0 

30 1   >   HK 
IF   ixrtail)   -   4^)13,20,50 

TRP10350 
TKP10360 

50 L   «   M   f   1 
IS   •   «SK 
IF|<«X-ISI98,58,52 

TRPI037Ü 
TRPlOtRO 
TRP10390 

S2 33  5*        I>IS.NX,NS 
IF(xr«3II)-ARS)5*,20,96 

TAPIO^OO 
TRPIO^IO 

5« L   •   1 
33   73   98 

rRP10A20 
TRPIO^IO 

56 L   -   I   -   NS THP13M0 
58 03  63        I'L.NX 

IF   (XfABin   -   *<rjl60,20,73 
TRP10450 
rRPl0460 

60 C3NrMJk T«P10*70 
70 «   •   I    -    IH 

M   ■   <   ♦   NP   -   1 
AMS   •   3.0 
IF   IH   -   NXI90,90,B0 

TRPIO«80 
TRP10«90 
TRPIOSOO 
TRP10910 

80 THP10520 
fRPl0530 

90 03   123     J-K,N 
P   ■   1.3 

MP10540 
TRP10550 
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n 

npi -     tfH S3Ui:f  STATEKEMT IFMCSI 

03   113     l-K.N 
IF   CI-JII00.110,100 

100  P   -  P   •   (ARG  -  XTAB(I)) 
110  C3NTHJE 
120  AMS  ■   4HS   *   vrADIJI   •   P 
99V  RETim 

E^D 

/   UTABU)   -   XTAB(II) 

TRP10S60 

TRPIOMO 
TIIP10S90 
TM10600 
TftPI0610 
rKP106?0 

96 

■■"»«•(Sldiä*,. 

«Ma J 



W  ' 

I 

l\ tFN        SOURCE   STATEHEMT     -      IMCS» 

SJBUjriNE     m(N,Xty,AMS,   •      ) 
OINE^SIDN   X(?OJ,Y(JO» 
Nil   •   »   -   I 
03  13   J*l,mi 
J<   *   H   -  J 
iMxm • X(JK)  .ir. o.»;3 TO ir> 

10  CDNriMJt 
«ETJ^ 

15   A«   •   f(JK)   «•   (0.-X«JK)»/l«(V)-Xt JK»>   •   «r(NI-Y<J<)» 
RtTJ^N     1 
CVO 
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T^ 

»w tfH       S3UK:E   STATfeNE^T IFNISI     - 

SJBHUJTINE «ISSMT(ÄB,SHCt   •   ) 
SliBAOjriNE     FOR     THE     MISSILE     METHOD 
REAI .     LLIM.MISL.MXSL.^T.<<J,NCO 
DIMI ■Hil3H     POI2.3).SLI60i 
COM» 13^  RNOI60).H,DELTA.MS.BETA, UI60).ULIMfLLIM,PS.rABI410)   iSNULT. 

I 1MJLT 
mm ■LIST   /OT/  MISL.MXSL.H.I.SM.SL.U.NT.J 
SIO 1  •   -I. 
SL   • >   IJ.1M  *■  LLlM)/2. 

* 

MI SI .   •   l.E»10 
HXSt •   3^ 
03  • O   I-l.NS 
U(I >   3. . 
IFI' 1*311)   .Gfc.   SL(I))U(I)>1. 
MJ  > >   JIM   ♦   1. 
IF(I •:3.   1IGO   TO  20 
HZO •   1. 
JJ  • 2 

10 IF(. 
J   • 
NJ   « 
t)3  1 
NJ  < 
J • 

U   .ST.   1163   TO  20 
I 

>   3 
19   <«1,JJ 
'   <J   ♦  UIJ) 
J  -   1 

IS C3N1 
IFC^ 
JJ   < 
HZO 
&3  1 

IJ   .EC.   HCOIGO  TU   18 
■   JJ   ♦   2 
•   HZO   ♦   1. 
3  13 

18 SLil 
33  1 

♦ n - iSLin ♦ j>L(a*iH/2. 
r3   130.40).Mil 

20 G3  1 rj   I29.35).MJ , 
29 SL( HJ   -   ISLII)   ♦ LL|M)/2. 
10 MI SI 

S3   1 
.   •   AMINKMIU.SLmi 
rs 53 

15 SUI ♦IJ   ■   ISLI1)   ♦  ULIM)/2. 
«0 MUSI .   ■   AMAX1IMXSL.SLI1)1 
90 C3N1 

NT   ' 
03  ! 

rujfe 
«   3. 
ii   l-l.NS 

IF(< i.JI)   .ST.   >41$L   .A^D.   <1XSL   . GT.   SLlI))Mr ■ sr ♦ i. 
99 C3N1 

X3 
nyjE 

»   .9MMXSL   ♦  MISL) 
SM  • ■   IFLOA1INS)   •   (MXSL  -   IISL) l/IB.XVT  ♦ 2.)l 
J   • 3 
IM! •1   .ST.   O.ISÜ  TO  60 
S«IC« 3. 
<feT. KM 

60 SJM 
SJMI 
SJMi 
pan 
paii 
03  i 
i ■ 

•   3. 
«   3. 

'   ■   3. 
.9)   >  0. 
'.})   ■  0. 
•9   I*1,NS 
ISLII)   -   tH   )/SM 
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«MT -     EFt       S3U«:e  STATEMEMr IFN(S)     - 

1./S0RTI6.7831853) 

r 
.sr. 

T 
3. 

•  E«P(-T   ••2/2.1 

0.IG3  TO  61 

IS%«iriTlT,r2T,.l 
.sr. O.IBS-BG^.S 
.LE.   0.)HS«.5-aC 
j(n/ii.-B(i) 
3) - *>aii.3) 

B3tU 

ll.-J(M)/DG 
US   •   Hi 

SS  - 
-      TIT - 

T2T  • 
IFjr 
T1T  - 
T2T  - 

61  C«LL 
IFir 
IFir 
HM   ■ 
pan» 
n  » r  • GS • H«i 
T2   «   r   -   GS»HM 
PQ(2»3)   -  P0I2,))   ♦   Tl 
SUM  *   SUM   ♦   (GS   •   HM)**2 
SJN1   •   SUMl   ♦   ri*T2 
SJM2   •   SUM2   ♦   T»»2   •   GS   •   Hl   •   T2 

63  C3NrmE 
> l./S<1   •   (PU(2i3l   -   SUN) 
■   l./SM   •   SUM1 
> PQI!•?>   -   PQIliS)   •   l./SM 
'   l./SM   •(SUM2  -  P3f2»3>) 
'   PÖJ1.3J   •   SIG>I 
> P0(2.))   •   SIGM 

SESOM|JP0.2,l,O,2.3»0l»»l,E> 
.ES.   O.JGO  TO   70 

P3(l»l) 
P3ll,2J 
P0(2.I) 
Pai2.2) 
Pail»3) 
pai2f3) 
CALL 
IFIE 
rt%ITE(St2000)Rl 

2300 F3«H4rt 19H     tftmR 
RiLTJiH   1 

70 XJ • «3 * PQt It 1) 
SM • Si ♦ P8(2»n 
IF(A3S(PO(l.n/<(0) 

i    .oooi )äa 
j ■ j ♦ i 
IHU .LE. 10013) in 
rfme(S(2001) 

2301 F3RMAr(27H  MA< 
75 SMC • SM/BETA 

IN  SES3Mli £15.81 

.LT. 
TU   75 

60 

.0001 ANU.   ABS(P3I2.II/SM»   .LT. 

NO.     3F     ITEmiUMS   I 
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I3<T tfH      S3UK:6  jUTJJIIMl    -     IMISI 

C 
C 
C 
C 
C 
r- 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

-SUBmartME TdUTTCl.UL.DELTt.lMS.NOEQI rSSTÖÖiÖ 
1 LL LIME«  LIMIT  OF   INTESUrHWrKMTIWG PI,}   IGRT0020 
2 UL J>F«< UWnUrTNTlfMm^  ISRfOOJO 
i 0ELT4 STEP  SUE fORSOUTION IGRT0040 
4 ANS       miJE'D*   flif EfiUL IMT0090 
5 NOEO    >IL  EOU^TIOXS TO SE   IWTESIUTED MUST  Ig       IGHT0060 

   zTwmrj rn K suinjriwt :ALHB remr.- reirfgyfö 
^3EQ IS TO BE JSE9 BV THIS SUBROUTINE ICRTOOBO 
TO SEVCT TN6 PROPER EQÜATlM FOR IGRT0090 
INTEGRATION IE. N3E3-1 MILL BE TO INTECRAIGRTOIOO 
I3u«rim r, nofQ-zro iNfigWf i5uATT?N" icRfbiio 
2. ETC. THE FORM 3F INTEaS MUST BE...   IGRT0120 

X    MJEPENOEit VARIABLE     IGRTOUO 
V    DEPENDENT VAR. IE. V>F(XIICRT0I90 
NOES SA«IE AS ABOVE. PROBABLV  IGRT0160 

USED IN A COHPUTEO 60 TO. 
II SEPT 64 
RAL^H SELLERS 

DIN?>t$|]N  Ft6).ü(6)fM3i 
DATA  UIDi   I>1,6)  /   .U930959,-.11930999,.33060469.-.33060469» 

A   .4S623476(-.46623476  / 
DATA   Uli).   1-1.3)   / .23399697..18038079,.S9662246E-1  / 

co n 9 

REAL LLIM.NULT.LL 
ULM •   JL 
LLM •   LL 
MJLT >   1.0 
IFIJl H   .Gt. LLIM 
T<«P1 •   LLIM 
LLM •   JLIM 
JLM •   THPl 
NJLT •-1.0 

.00331)80,83.10 

9  A   •   LLIH 
DEL   >   ABSI0ELT4I 
LAST   -   1 
ANS   •   3.0 
tFIASS   IULM-LLIM) 

10  B   ■   *   ♦   4.0»0EL 
IFia-JLIM)40.30,20 

20 H   •   J.JH 
30 LASt   ■   2 
40 03   93       l-l.« 

X   -   M-A)»UIII   ♦   .f*IA*a) 
CALL   MrE0SIX.FIII.N3tU) 

90  C3NTMJE 
60  ANS   •   ANS   *   IB-A|t|.mi*IFI 1I*FI2)) 

A   (FM)fF|6))l 
li3 73 170.SOLLEST 

70 A ■ 8 
33 r3 13 

80 ANS • ANS • MULI 
HtTJiN 
END 

♦ )I2)*IFI3I»F|4)) ♦ ROM 

.IGRT0170 
IGRT0I80 
IGRTOI90 
IGRT0200 
ICRT0210 
IGRT0220 
IGRT0230 
lGRr0240 
ICRT0290 
ISRTÖ260 
IGRT0270 
IGRT0260 
IS«T0290 
IGKT0300 
IGRT0310 
lbRT0320 
IGRT0530 
IGRT0340 
IGRT0390 
lbRT0360 
IGRT0370 
liiRTOfSO 
IGRr0390 
Ib<ir0400 
I3RT0410 
16*70420 
ISRT04 30 
IGRT0440 
ISRr0490 
IURI0460 
URT04 70 
iG4T0480 
ISHr0490 
IG%T3900 
!URr0910 
I (.«70920 
13470930 
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sesosi eFM     S3MC6 tuTüirii IFNISI 

t     i SESDOOIO 
SUSROUTINE SESOMI|X.N.N«tMStMlltNN2(0*RtE) SES00020 

m SfSÖWid 
'.                                       I   X         FIRST LOCATim OF   IN^UT «KR^ftOIN AS XIMN1.NN2ISES00040 

2 N       NUNICft Of IflUArilMI siioooso 
9 MB      NUMHR OF RI6HT HANO COLUMN VfCTORS SESOOOAO 

fESBMTfi 
4  MS       CHECK FOR SIM.   EOS OR   INVERSE SESOOOBO 

MWTf»  SIN.  IA. $1$000*0 
MS-1 FOR  INVERSE SES00100 

rmn  ROW OININIIOII a* M ICXIMMLMNK iHöoiio 
6 MN2    MN2 ■ NNI*Nt SES00120 

: TTJ VALUE DT THE DeTCRMINANT  - ■  ittmU 
8  R         RANK OF  THE MATRIX SES00140 
9  E         ERWir WTOIkM SESOOtSO 

E>0 FOR NO ERROR SES00I60 
E-l-FB» «ROI  SES00170 

SES001B0 
DIMENSION X(MN1.MN2I.UORKI99I.SAVRIS0I StSöölW 
DIMENSION   IHLOI90) SES00200 

( DOUBLE  PRECISION     X.NORK.SA^K.SAVES.V.Ö.SUM,TEST SE$00210 
E-O. SES00220 
R-O.                                                                         -     -    . SES00230 
DO 27   I-1,N St$00240 

-2T S«VRM»«X(l,n                   - -                  —  " fESOCQfSO 
DO 21   I-I.N SES00260 

21   HLOJU-I SES00270 
IF(<IS)&>4,6 SfcS00260 

6  NH*%*% SES00290 
Hi'H SESUOJOO 
RN»<»1 SESÖ0310 
03   U   I'l.N $1500120 
03  U   J»*H,'*H SESOOJJO 

Ik  X(I.J)«3.00 $E$00)40 
03  11   1*1,H sesoosso 
J*l*H $ES00360 

15  X(I>J)>1.D0 $£$00370 
S3  13  16 SE$003BO 

* NI-iHt^B $£$00390 
16 JJ-X* $t$00400 

S«VES««(l,N*l» $£$00410 
HHS'H'l $£$00420 
0>1.33 $6500430 
1)3  S   t*l,H $t$00440 
K<»M-I $£$00490 
IFKOIO.10,26 $£$00460 

26 Ll'XOl $£$00470 
JJJ»t $£$00480 
l«I $£$00490 
N3R«»< $£$00900 
03   17   IIM.LL $£$00910 
03   17   J-l.LL $£500920 
IF(ASSI<«ORK)-*EiS(X(II,Jini8,17,17 $£$00930 

18  N3RK*((II,J) $£$00940 
L»JM-l $£$00990 
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SESOSB -    EFN      S3Ut:i  STA7INI«tT IMISI    - 

IJJ-J SE|OO960 
■     1/ umiui Jtlft65»e 

IFCIJJ-il2.2,19 SES00980 
I» 03 23  ll-l.N                                                                                             .- SESO0S90 

V-XIII.ll .    »^00600 
xm.n-xMi.uj) SES00610 

20  XIIl.UJl-V SES00620 
* - -inrmBin sesMiu 

HL0in>IHL0(L) SES006«0 
HLOILI-IY   "SE$00650 
0«-D SES00660 

2  03   I fl.KK                                           ■               ■ "       s'ESOOiro 
IFUaSIX)-*B$(XIL«l.l)H7.1tl SES006I0   -■■ TTj»=ir                                          "-          ■ ■            -.   .    - §«66690- 
03 9  J-l.JJ SES00700 
V-Xll.J) SESO0T10 
X(l.J)>X(L«l.J) SESO0720 

9  X(L»l.J)-V SESQ0730 
1   C3NTMJE SES007«0 

10 JJ-JJ-I                                                                             - -    - SISÖÖ750 
IF(X)ll,8.11 SES00760 

11   D-0*< SES00770 
«•«♦1. SES007M 
03   12   J-l.JJ SES00790 

12  U3IU(J)-XI|,JMI/X SE$00600 
KK-JJ»1 SES00810 
IFIH^^.EO.OIGO TO 33 *7     0S1S 
03   3   <»I,N*1 SES00820 
03  i   J>2iKK SLSO0830 

3  XJK,J-n»IIX*l,J)-X{H*l,l>»WO«KtJ-l> SES00840 
33 03  5   J«1,JJ 67    0845 

9  X(N,J)«rfORKIJ) SES00860 
HH'H-l SESO0670 
IFCNMcea.OJGO  TJ  3* 67     0875 
03   22   l'l,HH $ES00880 
L"l»l SES00890 
03  22    !-L,N SES00900 
IF(| :L3(I)-lHLü(JII22,22,23 SES00910 

23   ir-HL3ll) SES00920 
IHL0(II>lHL0IJ) SESOOOSO 
HL3I J)>IY $ES00960 
03  25   W.NB SES00950 
VXd.O Sfc$00960 
XI ItO-XI JiK) $»■$00970 

a x(j,*i»v $tS009«0 
22 C3NTI4JE <ES0099n 
3*   SJPO. 67     099% 

1)3   29   1'lrN Sfcsoioin 
2(1   SjM-SJ<UX(ia)*SAVR(ll StSU10?0 

TeST>»BSIIS«Vi:U-SUM)/SAVCBI SESOIOIO 
IFITSSr-.OOOODil.U.H SfeSÜ13*0 

13  ItfJX* stsoioso 
a t-i. SESUlOfcO 

53   TJ   13 SESÜ1DT0 
EVO sesuioio 
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APPENDIX IV 

BRUCETON ITERATION PROCEDURE 

When the chosen testing interval is larger than 2 a, or when the inter- 

vals are of unequal size, it is necessary to solve Equations (1) and (2) for n 

and a. 

/z z \ 
(1) 

(2) 2    .Vifki.Vi^o. 
^   qi-i      pi 

The intervals will be of unequal size, for example, when the normalizing 

transformation is unknown in advance of the experiment and must be deduced 

from the results of the experiment itself.   A method of trial and error is 

probably as good as any other for solving the equations.   One would first choose 

preliminary estimates, say m and s, of the roots.   These preliminary esti- 

mates would be adjusted until the equations were satisfied to the desired degree 

of approximation.   The left side of Equation (1) will be positiv .■ wi on the trial 

value of M is too small, and negative when it is too large.   The l-.ft Hide of 

Equation (2) will be positive when s < a, and negative when s > a .  Equation 

(1) is relatively insensitive to changes in s, while the same is true of Equation 
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(2) for changes in m. 

In order to facilitate the computation«, the accompanying tables of 

z/p (Table 14) and z/q (Table 15) are provided.   For negative values of K, 

p, and q are interchanged, that is 

z(x) _ z(-x) 
p(x)      q(-x) 

The compi mtion can be illustrated by using the data of Figure 15.   The 

normalized heights are 0.1, 0.9, 1.5, and 1.9, as indicated in the figure. 

The levels are numbered 0, 1, 2, and 3 beginning with the lowest level. 

Since there are more successes than failures, the latter are used to deter- 

mine the estimates.   A preliminary estimate of ß may be obtained by using 

the average of the midpoints of the intervals weighted by the numbers n ; 

thus, 

mj =  1/29 [2  (1.7) + 26 (1.2) + (0.5)] 

s 1.2. 

A rough estimate of a may be determined by observing that the interval 0.9 

NORMALIZED NUMBER OF 
HEIGHT x'i    0*t 

1*9 x                                         x                                                             x              3 
1»5 xxxxxxxxxxOxxxxxx      xxxxxxxx0xxx27        2 
0.9 OOC^COOOOO      00000x000000000     00      1     26 
0.1 0                                                        1 

Figure 15.   Record of a Sample of Sixty Tests 
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to 1.5 appears to contain 26/29 or about 90 percent of the distribution, 

hence 

1.645 s, e y% (1. 5 - 0.9) = 0. 3 

Si= 0.18 

may be used. 

In adjusting these estimates one might be tempted to adjust mj first by 

Equation (1) and then go to Equation (2) and adjust sj by using a good estimate 

oi li.   It turns out, however, that the job can be done much more rapidly by 

considering both equations together.   The following computational form may 

be used: 

1 
"l hi Xl «iM Vl 

ql 

Vi 
Pi 

A-iVivA 

2 2 1.9 3.89 4.17 0 6.96 

2 26 1.5 1.67 0.00 3.48 0.174 -9.05 

1 1 0.9 -1.67 -2.08 -0. 174 -3.48 3.48 

0 0.1 -6.11 0 

2.09 1.39 

Note that thia table is arranged so that the frequencies of either the 0's or x's 

will be entered in the table as though they were x's.   The symbol x represents 

/sj where h  is the height and mx and Sj are the first approximations 
(hl-mi)/8 

to /i and a.   The other computations are defined by the column headings.   Thus 

the figure 4.17 at the top of the fifth column is obtained as 2 (2.084 - 0.000); 

2.084 being read from Table 15 at x = 1.67, and 0.000 being the value of z/v 

at x = 3.89, as shown by Table 14.   The sums, 2.09 and 1.39, of the fifth and 
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eighth columns give the values of the left-hand sides of Equations (1) and (2), 
i 

respectively, since both sums are positive.   It may be concluded that both mi 

and si are too small.   By using m2 «= 1.3 and s2« 0.19, the above calculation is 

repeated. 

i n. ±1 'i xl2i Vi 
'i 

n. 
Xl-lZl-lXi2l 

Vl 

26 

1.9 

1.5 

0.9 

0.1 

3.16 

1.05 

■2.11 

-6.32 

3.12 

-5.85 

-2.47 

1.64 

•0. 093 

0 

0.01 

0.282 

•5.21 

3.28 

-9.75 

5.21 

5.20 -1.26 

These results show that the roots are bracketed, and good estimates of 

M and a may be obtained by interpolation between the sums.   Interpolating 

between 1.2 and 1.3 using 2.09, 0, and -5.20, one finds that m3 - 1. 23, simi- 

larly s3= 0.185.   By doing two more calculations similar to the two illustrated 

above, one would verify the third figures in m and sand obtain good estimates for 

the fourth figures.   Here, the results to three figures are m= 1.21 and s = 0.187. 

However, the data do not warrant any more accuracy in the roots than is given 

by m2 and S2, and one would not do the two extra computations. 
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APPENDIX V 

STATISTICAL ANALYSIS 

The simulation work described previously in this document was planned 

and executed under very closely controlled conditions.   The specific random 

normal numbers selected for the 100 samples for each of the nine basic test 

conditions were generated such that it was possible to repeat them exactly for 

any subsequent retesting.   Not only did this approach eliminate any simulation 

effects which vary with time, but it also simplified the analysis of subsequent 

test techniques.   Thus, the initial simulations were run with essentially three 

test techniques:   Normal, Bruceton, and Missile.   Subsequently the Improved 

Bruceton technique was simulated over the same nine test conditions, and was 

combined with the earlier simulation work for analysis as a factorial 

experiment. 

1.    Analysis of the Estimated Means 

The estimated means provided by the different techniques were analyzed 

by analysis of variance.   The experimental design was a 3 x 3 x Z factorial 

with test technique (T), population (P), and sample size (S) as the three factors. 

The levels of all factors were fixed;  two factors (population and sample size) 

were quantitative and the technique factor was qualitative.  The three techniques 
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analyzed were the Bruceton, Missile and Improved Bruceton.   The so-called 

Normal technique was not included since it is not a sensitivity testing technique, 

but only a data analysis procedure. 

The experimental design arrangement and data for analysis are shown 

in Table 16.   The response variable selected and tabulated in the table is X 

from Tables 6 (Bruceton and Missile) and 12 (Improved Bruceton).   This 

variable is the mean of the 100 sample means from each of the nine test condi- 

tions.   To simplify analysis, the data from Tables 6 and 12 were coded by first 

subtracting -. 00000 from e-3 ^h X_, and then multiplying the result by 100,000. 

The coded data are shown in Table 16. 

Table 16.   Coded Simulation Values of X_ x 

Sample 
Size 

Techii Ique 
Bruceton Missile Improved Bruceton 

■H 
- CM 

O O 

15 -876 +406 +239 

1 

i 
•H   O 

II     II 
a. b 

35 

55 

-1854 

-1760 

+ 5 

+ 21 

+ 127 

+70 

o 

1
.0

, 
0
.0

9
 15 

35 

-3869 

-6892 

+ 155 

-186 

-50 

-189 

t Z ll   ll 
a. b 

55 -5988 -185 +67 

CO 

15 -4402 -1292 -498 

ö >H    O 35 -7303 -331 + 885 
55 11   II 

a. b 
55 +920 +437 + 1312 

T-i 
-32,024 -970 -1963 

5i 
-3558 -108 +218 

Coded X_= (x^.- l.OOOOo)  105 
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The mathematical model for the experimental design and analysis is 

given as 

V' ^ v v Tv v PTki+ ^kj4 v ■ 

In this model 

X.,, = observations on the response variable X_ 
ijk x 

M = a common effct in all observations 

T =» the test*-if, technique effect whyre i = 1, 2, 3 

S = sample size effect where j = 1, 2, 3 

P   = population effect where k= 1, 2, 3 

e     = the randon' experimental orror. 

The other terms represent the interactions between the main factors T, S, and 

P. 

The results of the analysis of variance calculations are shown in Table 

17.   Two of the three factors were found to be significant.   Technique was found 

to be highly significant, the F test resulting in significance at a confidence level 

exceeding 99 percent.   A similar test of the population effect revealed signifi- 

cance at the 90 percent confidence level. 

Multiple-range tests of both factors were conducted according to 

Duncan's procedure.26  It was found that the means of the Improved Bruceton 

and Missile techniques were both significantly different from (at the 99-pei cent 

confidence level) and better than the Bruceton technique.   Also, no significant 

difference was detected between the Improved Bruceton and Missile techniques. 1 

I I Thus, the Improved Bruceton and Missile techniques give essentially the same 
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Table 17.   Analysis of Variance of Simulation X_ Data 
x 

Degrees 
Source of of Sum of Mean A 

Variation Freedom Squares Square F 

Technique (T) 2 78,  817, 492 39, 408, 746 24.69* 

Population (P) 2 10,  148, 468 5, 074, 234 3. 18** 

Sample size (S) 2 6, 286, 428 3. 143, 214 1.97 

T x P interaction 4 15, 954,  136 3, 988, 534 2.50 

T x S Interaction 4 9,  888,  806 2, 472,  201 1.55 

P x S interaction 4 14, 927,  324 3, 731,  831 2.34 

eijk-error 8 12,  770,  064 1. 596, 258 — 

26 148, 792, 718 

♦Significant at 99-percent confidence level. 

♦♦Significant at 90-percent confidence level. 

results for estimating the means, and both techniques are significantly better 

than the Bruceton technique. 

Multiple-range tests of the population effect revealed that thei-e was no 

significant difference (at the 95-percent confidence level) between the estimates 

of the means from populations No. 1 and 3, and populations No. 2 and 3.   There 

was a significant difference detected between estimates from populations No. 1 

and 2.   These results indicate that the population effect is nonlinear since the 

estimates from populations No. 1 and 3 (a= 0. 02 and a= 0.26, respectively) 

are more accurate than estimates from population No. 2 (a= 0. 09).   This 

effect is probably due to not controlling the mean of the samples from the 
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CT «= 0. 09 population closely enough to the desired value of ß - 1. 00. 

These results indicate that the most accurate mean estimates will 

result when either the Improved Bruceton or Missile technique is used, and 

further, that accuracy will be greatest from populations of /u = 1- 00, CT = 0. 02; 

/u = 1. 00, <T = 0. 26;  and /u = 1. 00, <T = 0. 09, accuracy decreasing in that order. 

To further evaluate the mean estimates, the standard deviations of 

these estimates fS^\ werp analyzed by the sign test as described by Dixon and 

Massey.27  The hypotheses listed below were tested: 

Hö: MS(M) " ^S(N) 

Ho: ßS(l)   = ^S(N) 

Ho: "Sih) = ^S(M) 

Ho: ^S(B) = MS(1) 

Ho: MS(I)   = ^(M) 

Hi:   ^(M) * MS(N) 

H,:   M S(I) * ß ■S(N) 

Hi:   MS(B)   * M3(M) 

H':   MS(B) * ^S(I) 

Hi:   ^S(I)   #MS(M)   ' 

where the expression, /u , refers to the mean of the standard deviations of 
S(M) 

the Missile technique.   The subscripts I, B, and N refer to the Improved 

Bruceton, Bruceton, and Normal estimates, respectively.   Only the last null 

hypothesis listed above was accepted;  the other four were rejected n\ the 99- 

percent confidence level.   Inspection of the values of Ai   ,„>, M0       . and 
S(B)      S(\>/ 

ß   . . showed that ß was the largest, indicating that the Improved Bruceton 
S (I) S(B) 

and Missile techniques are both better than the Bruceton. 

It is concluded that the standard deviations of the mean estimates of the 

Missile and Improved Bruceton techniques are equivalent, and both are better 

(i.e., smaller) than the Bruceton mean estimate standard deviations. 
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2.    Analysis of the Estimated Standard Devlatlons 

The distributions of the estimated standard deviations of the three tech- 

niques are not known, and therefore only distribution-free tests were applied In 

the analysis of these estimates.   Thus, sign tests of the values of X   from 

Table 6 were conducted.   Since the standard deviation estimating procedures of 

the Improved Bruceton and Bruceton techniques are identical, only a compari- 

son between the Bruceton and Missile techniques was conducted.   The 

hypothesis tested was 

Ho:   /JS(B) = MS(M) Hi:   MS(B) ^SW) ' 

The null hypothesis was rejected at the 95-percent confidence level, and it was 

concluded that the mean of the Bruceton standard deviation estimates is signifi- 

cantly different from the mean of the Missile estimates.   This hypothesis test 

did not give any information as to which of the two techniques is the most 

accurate, and further testing was necessary to complete the evaluation.   The 

following additional hypothesis test on the means was conducted: 

Ho:   MS(M)= MS(N) Hi:   ^S(M) * MS(N) • 

The null hypothesis was accepted at the 95-percent confidence level. 

Hypothesis tests of the mean standard deviation of the standard deviation esti- 

mates [S ) were also conducted.   These were as follows: 

Ho:   MSS(M) = MSS(N) Hi:   MSS{M) ,tMSS(N) 

Ho:   MSS(B) "''SS(N) Hi:   MSS(B)  ,tMSS(N) 

Ko:   ^SSW) = MSS(B) Hi:   MSS(M) #MSS(B) * 

All three null hypotheses were rejected at the 95-percent confidence level. 
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Inspection of the values of ü and ß„„,... showed that ßac/ri. 'z the 

smallest, and It is concluded that the Bruceton technique provides standard 

deviation estimates with the best repeatability (i.e., smallest variation;. 

In summary, the sign tests of the standard deviation estimates of the 

three techniques were Inconclusive.   The tests Indicated that the means of the 

Missile estimates are better but that the standard deviations of the Missile 

estimates are not as good as the Bruceton (and Improved Bruceton). 

3.    Analysis of the Correlation Coefficients 

The values of TAUB and TAUM tabulated in Table 8 are estimates of the 

true correlation coefficients p   and p   , respectively.   Analysis of these data 

consisted of making the following hypothesis tests at each of the nine test 

conditions: 

H0:  PB = 0 H,:   PB > 0 

Ho:PM=0 H1:pM>0. 

Similar tests were made with combined or mean estimates at the different 

values of sample size and for the different populations.   All tests were made at 

a confidence level of 90 percent according to the procedures described by 

Dixon and Massey.27    These procedures make use of the fact that the 

variable 

Z= (0.5) in (1+y/l -y) 

is normally distributed with mean and standard deviation 

Mz= (0.5) in (1+p/l-p) 
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where y Is the eetlmate of p. 

The results of this analysis are Indicated in Table 8.   A "yes" in the 

column headed ' Significant at 90-Pernent Confidence" Indicates that the null 

hypothesis is rejected and the conclusion is made that there is positive correla- 

tion.   A "no" Indicates no correlation between the Bruceton (or Missile) 

estimates of standard deviation and the corresponding Normal estimate, i. e., 

p = 0.   Standard deviation estimates at these test conditions (where p* 0) are 

unacceptable and these particular test conditions should be avoided. 
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GLOSSARY 

Bruceton Iterative procedure — one of three procedures available for calculat- 

ing estimates of /u and a from Bruceton tesv. data.   It is not the procedui'e 

described for the standard Bruceton technique.   The procedure is of an 

iterative type in that initial values are chosen and manipulated through 

the mathematical procedures and more accurate values obtained.   This 

may be continued until the change between successive iterations is as 

small aa desired.   This procedure is described in detail in Appendix IV. 

Comparison simulations — the simulation effort described in Chapter III in 

which tests at the nine basic test conditions shown in Table 1 were sim- 

ulated with the standard Bruceton and Missile techniques. 

Degenerate solution — under certain conditions estimates of the standard devia- 

tion from test data generated by the Missile technique assume negative 

values.   These negative solutions for a are called "degenerate solutions" 

by Langlie, 17 and he states that when such solutions occur, the value of 

a = 0 should be used. 

Improved Bruceton technique — a sensitivity test technique which combines the 

standard Bruceton test procedure, standard Bruceton estimates of a, 

and iter'tive (as opposed to the standard) Bruceton mean estimates Into 

a single overall technique.   This technique is the same as the standard 
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Bruceton except that an iterative procedure is substituted for estimating 

the mean. 

Missile iterative procedure — a procedure by which the test data generated by 

the Missile technique are analyzed and estimates of ß and a are calcu- 

lated. The procedure is of the iterative type and is the only procedure 

used with the Missile technique. 

Re-Test — Simulation effort at one of the nine specific test conditions other 

than the comparison simulations.   Re-tests are done primarily to evalu- 

ate changes of the standard sensitivity test techniques. 

Sample — a group of random Normal numbers generated by the simulation 

program to represent one-shot hardware undergoing sensitivity test. 

The number of random Normal numbers in the sample (i. e., the sample 

size) is specified by ehe particular test condition.   The "Items" In a 

sample are also referred to as "test Items. " 

Simulation run size — the number of samples of random Normal numbers 

"tested" during a particular simulation effort. 

Test or simulated test — the activity of comparing an individual random Normal 

number of a sample to a test level generated by one of the sensitivity 

test techniques, and noting whether the number is greater than, less 

than, or equal to the test level.   If the number is greater than or equal to 

the test level, the test is scored a success, otherwise the test is scored 

a failure. 

Test level — a specific value of the test stimulus or environment, as determin- 

ed by the sensitivity test techn que, at which a particular test item is 
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tested.   Test levels are represented In the simulations by appropriately 

derived numbers. 
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consideration.   The investigations revealed that the 
missile was superior to the standard Bruceton in 
providing estimites of the mean failure strength of 
test items.   The missile technique estimates were 
from 1 to 32 percent more efficient than the Bruceton, 
Other characteristics of both techniques were 
evaluated and specific limitations of each technique 
identified. 
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