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ABSTRACT

Sensitivity testing as applied to one-shot items consists of subjecting
individual one-shot test items to discrete levels of a test environment, operat-
ing the test item and noting whether or not theitem functions properly. From
this type of test a direct measurement of the strgngth of the test item is not
obtained, only the information that the strength is either greater than or less
than the test level used. In order to obtain more meaningful information from
these ""quantal response'’ data it is necessary to use special techniques or
procedures both to conduct the tests and to analyze the data.

This investigation was directed toward testing one-shot items associated
with Army missiles, e.g., thermal batteries, squibs, explosive, etc. The
specific objectives of the investigations were (1) to evaluate available tech-
niques for conducting sensitivity tests of one-shot items, (2) to improve exist-
ing techniques or develop an improved one, (3) to identify the best technique,
and (4) to identify and evaluate any limitations of the best technique as
identified from (3) above. |

The approach taken was to simulate sensitivity testing with the different
techniques on a digital computer. A simulation program was developed and the
different techniques programmed for testing under closeby controlled conditions.
In this way it was possible to control all inputs, providing accurate data for

comparison and evaluation of the testing techniques.

ii




.
i o 2t i ST

P

L T

The Bruceton or Up and Down technique, and a technique developed by an
Army missile contractor referred to as the missile technique, were the two
techniques given primary consideration. The investigations revealed that the
missile technique was supericr to the standard Bruceton in providing estimates
of the mean failure strength of test items. The missile technique estimates
were from 1 to 32 percent more efficient than the Bruceton. Other character-
istics of both techniques were evaluated and specific limitations of each tech-

nique identified.
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CHAPTER I

INTRODUCTION AND BACKGROUND “

1. The Requirement for Sensitivity Testing

Sensitivity testing consists of testing items at increasingly severe test
levels and noting the effects on the operation or functioning of the item. A
variation of this technique is the test-to-failure (TTF) approach wherein the ¥
test levels are deliberately increased to the point at which failure occurs, thus ;
determining the inherent test item strength. Usually in this situation it is
possible to operate the test item long enough to hunt for the exact value of the
test environment which causes failure.; But for a certain class of hardware, ;,
known as "one-sﬁot" items, this is not possible due to their extremely short
operating lives. To conduct sensitivity tests of these items it is necessary to

select a single, discrete value or level of the test environment, subject the

o

. item to this test level, then operate the item and note whether or not it func- PE
tions properly. A direct measurement of the strength of the test item is not
obtained, only the information that the strength is either greater than or less
than the test level used. This type of data is known in various forms as '""all

or none'" data, "sensitivity'' data, and "quantal responses." In order to

i ¢ A YGRS TS i, 2

obtain more meaningful information from quantal response data it is necessary
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to use special technigues or procedures to both conduct the tests and analyze
the data.

The primary objective of testing as described above 18 to obtain a
measure of the strength of the test item and the variation of the strength within
a group or population of test items. Testing must therefore produce data from
which statistical estimates of the mean strength, X, and standard deviation, s,
can be calculated. These estimates may then be used for various evaluations
of the test items as required. One of the earlier requirements for sensitivity
testing of one-shot items and analysis of the quantal responses appeared in
the field of biological assay.! The requirement here was to estimate the
mean response of a subject (some living matter such as an animal, a piece of
animal tissue, a plant, or a bacterial culture) to a stimulus (a vitamin, a
drug, or a fungicide). In this situation the intensity of the stimulus is usually
varied by varying the measured dosage of the stimulus. The mean response is
expressed as the dosage which produces the specified response. The specified
response could be weight gain, an analytical value such as sugar count or pulse
rate, death, or some other measurable bodily characteristic.

In the general area of explosives research, sensitivity testing with
quantal responses assumes a major role. Interest in the sensitivity of explo-
sives has been heightened during recent years by the increased use of solid
propellant rockets in military applications and liquid pro;)ellant rockets in both
military and space exploration applications, and the associated safety aspects.
It should also be noted that tlge safety problems associated with tactical military

rockets are greatly complicated by the inherent field handling environment to
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which such rockets are exposed. L
This greatly increased concern with the safety aspect of explosives has
resulted in the development and use of many techniques for the testing and

measuring of explosive sensitivity.? The great majority of these sensitivity

i .

testing techniques result in quantal response data.
Usually these data are analyzed to provide a statistical estimate of the i 8

mean value of some physical stimulus which produces explosions in the test

specimen. This information is then used to establish a qualitative evaluation
of the particular explosive being tested. The evaluation usually consists of
comparing the mean value of the stimulus with similar results for other
explosives, establishing a relative sensitivity ranking. The stimuli used in
these sensitivity tests have included impact of a weight falling from a measured
height, 3 sympathetic detonation by a donor charge of a specified size and type
operating through a controlled medium, 45 and container diameter for detona-
tion propagation.

Another technological area which has generated requirements for the
statistical analysis of quantal data is the development of electro-explosive
devices (EED). This area has also been stimulated in recent years by the
increased emphasis on military and space rocket programs.

Electro-explosive devices are devices used on rockets to perform func-
tions such as initiation of the main propulsion system and warheads, separa-
tion of stages, initiation of power supplies, and operating valves. It is evident
that if an EED which initlates the propulsion system or warhead of a rocket is

inadvertently initlated at any time after manufacture, a disastrous accident

‘_‘_‘ [P .. g v e




could result. It is known that EED's can be initlated by ambient electromag-
netic energy from miscellaneous sources In the vicinity if these energy levels
are high enough.’ It is therefore necessary that the sensitivity characteristics
of EED's be well defined and only those which are compatible with the electro-
magnetic environment be used.

The analysis of quantal response data also plays an important role in
reliability evaluation. There are many items, both commercial and military,
which exhibit one-shot performance and produce quantal response data when
tested. Here, as in the associated area of quality assurance testiny, the
primary emphasis is on calculating the mean critical response value above
which the item fails and below which it operates properly. It is also necessary
to analyze the data to obtain an estimate of the standard deviation which is
needed to establish confidence levels for reliability estimates and for hypothesis

testing as used in quality assurance activities.

2. Sensitivity Testing of Missile and Rocket Hardware

The technological areas described to this point generated the original
requirements for analysis of quantal response data. It is pertinent to note that
all these technologies, with the exception of bio-assay work, are included in
rocket and missile development. As a result, the analysis of quantal response
data has received a tremendous amount of attention by the industries working in
this area as well as by the responsible government military and space

agencies. The technical complexity of the hardware being developed and the
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corresponding high cost of this hardware have placed emphasis on being able
to completely understand its operation and reduce the possibility «t
performance failures.

A further complicating factor for military hardware is the use environ-
ment to which the hardware is exposed. This environment includes all the
conditions present from the time the hardware leaves the production line until
it is expended in the field. The use environment of army equipment is thought
to be the most severe, presenting the greatest challenge to the devel~per of
such hardware. Thus the testing problem presented by one-shot items usedin
army missiles is especially significant.

Generally, development testing of missile hardware has the following
broad objectives: (1) to determine/verify design characteristics, (2) to
assess reliability, and (3) to determine safety characteristics. For one-shot
items, test-to-failure data may be used to satisfy all three of these objectives.
To do this the concept of '"safety margins'' is used.

The use of safety margins was first advocated by Robert Lusser.?® The
advantage of this philosophy as oppdsed to qualification testing, for example,
1s that statements regarding very high reliability can be made with reasonable
confidence on the basis of relatively small samples.

Design evaluation by safety margin is accomplished by testing the
critical components of the missile in their most critical operating environ-
ment. The test-to-failure establishes the mean level of the environment at
which the component will fail. This value is then compared with the environ-

mental level at which the component is required to operate and the safety
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margin established. Since the standard deviation can also be calculated from
the test-to-failure data, the safety margin can be expressed as so many
standard deviations, or sigmas. The greater the number of sigmas, the better
the design. The components which have safety margins of only 2 or 3 sigmas
would be considered marginal and would have to be redesigned. A component
with too large a safety margin could be considered over-designed, and
redesigned if desired.

The same information (i.e., safety margins expressed as a number of
sigmas above a required level) could be evaluated for reliability by referring
to tables for the standardized Normal deviate. By doing this it is possible to
express the reliability of the component for operation at the required environ-
ment level. Safety assessment may be accomplished by using either of the two

procedures. ®

3. Program Objectives

The particular aspect of testing one-shot items of army missile hard-
ware and evaluating the results as described above is the general subject of
this paper. More specifically, investigations of the statistical analysis of the
quantal response data within the constraints imposed by army missile hardware
are described. The specific objectives of these investigations were (1) to
evaluate available techniques for conducting sensitivity tests, (2) to improve
existing techniques or develop an improved one, (3) to identifv the best tech-

nique, and (4) to identify and evaluate any limitations of the best technique as
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identified from (3) above.

The approach taken was to simulate sensitivity testing with the different
techniques on a digital computer. A simulation program was developed and the
different techniques programmed for testing under rlosely controlled conditions.
In this way it was possible to control all inputs, providing accurate data for

comparison and evaluation of the testing techniques.

4. Selection of Techniques for Evaluation

If quantal data analysis techniques which are nonparametric, such as
the Spearman-Karber® and Robbins-Monro!! methods, are ruled out because of
the relatively large sample sizes required, the choice of which technique to use
is one between the Probit>' and Bruceton, %% Investigations by Gayle® in
which the Probit and Bruceton techniques were used to analyze identical sets
of data under closely controlled conditions reveal that the Bruceton estimates
are, in general, superior to the Probit estimates for equal sample sizes.

Since test costs (and hence sample sizes) are the predominate factors in any
sensitivity test program (except perhaps in the field of medicine), the Probit
technique was eliminated from further consideration.

In rejecting the nonparametric techniques and the Probit technique
solely on the fact that more samples of test hardware are required, more
elaboration on this point is indicated. The primary field of sensitivity testing
being considered is the azrospace field, more specifically military missile and

rocket components. Included are such items as thermal batteries, explosive




switches and relays, special infrared and visibie light sources, gyroscopes,

and solid propellant rocket motors. These items, especially when produced
in small, development-sized quantities, can be two or three orders of magni-
tude more expensive than laboratory specimen or test animals used in dosage
mortality and biological assay work. Further, the actual testing of the afore-
mentioned hardware (e.g., vibration testing of a gyro) can cost orders of
magnitude more. Thus any reduction in sample size at all can result in a very
substantial savings of test program costs. One further point is that laboratory
tests in which the Probit technique is used are usually more conducive to
concurrent testing of individual test specimens; that is, the testing of twenty
mice by injecting them with a serum is more practical than testing them one at
a time. The opposite is generally true with aerospace hardware. There
usually are not enough facilities or the tests are too hazardous to permit
testing more than a few items at a time.

Thus, a technique for analyzing quantal data is desired which will
provide reasonably accurate statistical estimates from relatively small
samples of test hardware, and which will allow tests to be conducted essentially
one at a time. Based on the author's personal cxperience it is felt that i
"relatively small samples' should be interpreted as meaning sample sizes of
up to 40 to 50 specimens maximum allowed, and samples of 15 to 25 specimene
desired. Based on the information discussed to this point, the Bruceton tech-
nique more nearly meets these restrictions.

There is another technique for sensitivity testing which was designed

for and used during development and production testing of a U. S. Army

8
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missile system. " This technique, which will be called the Missile technique,
permits one-at-a-time testing and can be used with sample sizes as small as
15 specimens. It appeared to be superior to the Bruceton in sample size
requirements and thus more suitable for aerospace sensitivity testing. Thus,
the choice of which technique to use was between the Bruceton and Missile
techniques, with the ultimate answev being bi .cd primarily on sample size
required and accuracy.

There are ' number of similarities between the Bruceton and Missile
techniques. Both require the assumption that the critical responses be distri-
buted Norma,r. Both also provide maximum likelthood estimates of the
statistical p;arameters. The test levels required by both techniques are
generated sequentially, the levels being determined irtially from earlier
results as testing progresses through the sa.mple.

The most apparent difference between the Bruceton and Missile methods
is the manner in which the individual test levels are generated as the test
program progresses. The test level for a particular Bruceton test item is set
at a constant increment above or below the previous test level, depenuing upon
whether or not the previous test was a success or a failure. A test level for
the Missile method is also dependent upon the results of the previous item
tested. In this method, however, the increment by which the previous test
level is changed is not a constant, but is varied according to a simple
algorlthm*

A furthe? basic difference between the two methods is that the Missile

vav ¥

method requires no a priori assumptions regarding the mean or standard




deviation of critical respor:ses. The Bruceton method requires estimates of
both before the tests can be planned. The accuracy of these estimates has a

direct influence on the efficiency of the test program.

B
5. The Assumptiony®f Normality

Since these were basically the only techniques considered for further
investigation, the Normality assumption.common to both should be discussed
in more detail. The requirement of this assumption is that the critical
response or some transformation of it be distributed Normally. This require-
ment is not considered to be particularly restrictive since there are many
functions which might provide the required transformation. Also the Normal
distribution is the most common one found in nature and could reasonably be
expected to occur frequently with aerospace hardware. That this is true has
been well documented by test results from the biological assay field, ! many
tests of EED's,? explosive shock sensitivity test data,3:4%® and metal fatigue
testing. ¥

The alternatives to an assumption of Normality (or any other form of
distribution) are either (1) the use of nonparametric (distribution free) tech-
niques or (2) conducting enough tests to determine the form of the distribu-
tion. Neither of these is considered practical because of the large sample
sizes required.?® Hence, the situation is that an assumption be accepted about
the form of the distribution, or no practical technique is available at all.

The effects of using the Normal assumption with non-Normal data have

10
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been investigated by Gayle ® and Hampton.?! The general conclusion from

these investigations is that the Bruceton tests provided results which were

"optimistic.'" That is, the standard deviation estimates were smaller than the

actual population standard deviation. By using the concept of ''safety margins"

as described by Lusser, ? this problem is miniraized.

6. Other Characteristics of the Bruceton anud Miseile Techniques

In considering the choice between the Bruceton and the Missile tech-

niques, it is pertinent to realize that the Bruceton has been in use much longer

than the Missile technique. The Bruceton was first described in open litera-
ture in 1944 and since that time has been used many times by investigators in

various experimental situations. It would thus appear that the Bruceton tech-

nique should be better defined and its capabilities well documented. This does

indeed appear to be true, but the basic technique has not changed appreciably
from that originally described in 1944. This is particularly sigrificant when
the availability of high-speed computing equipment is consldered. No such
capabilities were available in 1944, when the Bruceton technique was develop-
ed, but the general field of quantal data analysis has since been the subject

of many computer-aided investigations. %' Similar investigations of the

Bruceton technique have been somewhit limited, and that is one of the reasons

for this investigation.
Probably the most significant problem or weak point of the Bruceton

technique is the requirement to have an estimate of the mean and standard

11
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deviation prior to starting the tests. The mean is used to establish the initial

test level, and the standard deviation is used to establish the constant incre-
ment by which test levels are changed to obtain subsequent test levels. The
accuracy of these estimates influences the results depending on (1) the posi-
tion of the population mean relative to the testing levels and (2) the ratio of the
test increment, d, (i.e., the estimated standard deviation) to the population
standard deviation, o.

From his investigations of the Bruceton technique, Hampton? concluded
that the correlation between the estimated standard deviation, s, and the
population standard deviation, o, was poor for sample sizes of 25. This fact
has been substantiated by others and must be considered in any evaluations
of Bruceton data.

There are other more subtle points made by Hampton from his investi-
gations, but these are considered insignificant so far as this particular paper
is concerned. The other conclusions discussed above are considered more

pertinent and were used during this investigation.

i2
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DESIGN AND DEVELOPMENT
OF A SENSITIVITY TEST SIMULATION PROGRAM '

1. General Philosophy 2 u

The use of a digital computer simulation program with a simple Monte

Carlo technique to generate artificial test results was selected as the only

practical means of obtaining the desired information. The ideal way would be
to test actual hardware of the type being considered and use these results in
conjunction with further analytical work. Since this approach is impractical
from the standpoint of time and cost, the simulation approach was selected

as the most practical alternate. It was possible, however, to make use of

results available from limited sensitivity tests of appropriate test hardware in
establisiﬁng certain conditions required for the simulation program.
In considering the total simulation effort three phases were planned.
The first was a comparison/ evaluation phase in which the two techniques were ' E
used to analyze the same data under closely controlled conditions. This
permitted a direct comparison of the two techniques and provided results for a
detailed evaluation of each. The results from this phase were also used to
identify any weaknesses in technique capability and to guide subsequent

attempts at improvement. The next phase of simulation consisted of attempts

13




to improve the two techniques by modification of the earlier programs. These
modifications were based on the demonstrated weaknesses and were guided by
statistical approaches revealed by literature research in the field of sensitivity
testing and quantal data analysis. The last phase consisted of evaluating the
final version of the best technique. The input data for this phase were the
same as the initial simulation, permitting a direct comparison and demonstra-
tion of any improvement.

In designing the simulation program it was decided that all conditions
and inputs would be held as closely as possible to practical, real-world :ondi-
tions. This was done to prevent getting results which might be good in an ideal
sense but would be impractical for implementation in the real-world
environment.

For assistance in following the development of the simul:tion program,
a glossary is presented on page 124 and brief descriptions of the Bruceton and
Missile techniques are presented in Appendixes I and II, respectively. For
more detailed information reference should be made to Princeton Statistical
Research Group ¥ and Dixon and Mood ® for the Bruceton technique and Langlie ¥’
for the Missile technique. The simulation was programmed on an IBM 7094
computer in FORTRAN IV computer language. Thz computer program listing
is presented in Appendix III.

Basically, the simulation program was designed to generate a sample
of "test hardware, ' as represented by a set or sample of appropriate random
numbers. The "test item" was then '"tested" according to the Bruceton and

then the Missile technique. This procedure was continued until the complete

14
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sample of "hardware' was tested. The mean and standard deviation was then
computed according to the respective techniques and recorded. The sample
mean and standard deviation were also computed in the usual manner for
Normally distributed data and recorded for comparison. The required number
of samples was generated, tested, and analyzed in this manner, and then the
standard error of all the sample estimates was calculated. These standard
errors were used for final evaluation of the techniques. Additionally, correla-
tion coefficients between the Bruceton and Normal and between the Missile
and Normal standard deviation estimates were calculated and recorded. This
procedure was followed, in general, for all simulation work.

The test conditions for the simulation work were determined based on
the range of sample sizes to be investigated and on actual results of sensitivity
tests of missile component hardware. The test conditions selected are shown

in Table 1, and the test data used in determining the conditions are in Table 2.

Table 1. Simulated Test Conditions

Sample Sizes
15 35 55
Population No. 1 |T.C.*No. 1| T.C. No. 4 |T.C. No. 5
u =100 100 100 100
%’ o= 0.02 Samples Samp'es Samrles
=
= | Population No. 2 |T.C. No. 2 | T.C. No. & |T.C. No. 8
a
g p=1.00 100 100 100
,g. o=0.09 Samples Samples Samples
g
a Population No. 3 |T.C. No. 3 T.C. No. 7 | T.C. No. 9
u=1.00 100 100 100
0=0.26 Samples Samples Samples

*T,C. = Test condition

15
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Table 2. Missile Component Test Data

No. 1

Missile High Low Mechanical
Component Temperature | Temperature Vibration Shock
___(°F) _(°F) (g%/Hz) (®)
— — = —
X 8 X 8 X 8 X 8
Thermal battery | 208.6 |15. 14 | -104.9|7. 82 742 0. 171*
No. 1
551]0. 112%
Thermal battery | 199.520.4 |-133.9(7.49
No. 2
345.9] 6.01
Infrared source {271.7(10.33 |-125.3|4.5 0.228 [0. 1095%

Infrared source
No. 2

0. 300 |0.9747*
0.310 |0.7063%*

0. 160 f0. 7193*

2. Establishing Starting Conditions

After the simulation test conditions were established, the next step was

to program the two tecnniques for the computer.

For the Bruceton technique

it is necessary to have preliminary estimates of the mean and the standard

deviation in order to determine the initial test level and the constant increment

by which subsequent test levels should be changed. The decision to be made

is to what accuracy could the mean and standard deviation be estimated. Since

*In terms of natural logarithms.
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these estimates would ordinarily be based on similar data from other test

programs, it was decided to use the data in Table 2 for this purpose. A simple
statistical analysis of these data was performed which was considered *o
represent that which would be done under '"real-world" conditions. The

"estimates' thus derived as inputs are shown below.

Population No. Estimated u Estimated ¢
1 (1, 0.02) 1. 07 0. 035 X
2 (1, 0.09) 1.07 0.135
3 (1, 0.26) 1.07 0.390 1

The Bruceton technique estimate of the standard deviation, 8, is cal-

culated by first computing a value of the expression (Appendix I)
M = (2'12 ng)/N - (z i ni/N)z :

The value of M is then used to enter Table 3 or Figures 1 and 2 for a value of
S. The value of s is now determined from ,
8 =DS,
where D is the test level increment.
For values of M greater than approximately 0. 325 the graph used is
' linear (Figure 1). For values of M less than 0. 325, however, a family of four Y
curves must be considered (Figure 2). The curve used is selected based on
the relative location of the estimated mean to one of the test levels; i.e., if
the mean were located half-way between two test levels, one specific curve
would be used. Since only four curves are presented, interpolation between

them is required.
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To find exact mathematical functions for these four graphs and a tech-
nique for interpolating between them, all suitable for the computer, presented
a formidable, if noi impossible, task, and an alternate procedure was
necessary. For values of M greater than 0. 325 an expression for the linear
portion of the graph is used as follows %:

8= DS,
where S= 1.620 (M+ 0.029). Again, this solution is only good when M is
greater than 0. 525.

For values of M less than 0. 325 a different method was used to compute
both the estimated mran, X, and the estimated standard deviation, s. This
method is described in Appendix IV by Dixcn and Mood, ® and, while not
specifically intended for use for the reasons given here, was evaluated and
found to be acceptable. The method provides simultaneous solutions of the two
maximum likelihood equations by iteration. The iteration procedure was set up
and checked out to obtain solutions to an accuracy of +0.G001.

There is only one initial condition to be set for the Missile technique,
the test interval. The test interval is described as an interval of the test
environment or stimulus large enough to contain all values of the critical
responses of the test items. To obtain realistic values for this interval the

test data of Table 2 were again analyzed, and the results were:

Population No. Test Interval
1 (1.0, 0.02) 0.364 to 2.20
2 (1.6, 0.09) 0. 364 to 2.20
3 (1.0, 0.26) 0. 000 to 2.63
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The input conditions for the simulation program are summarized in
Table 4 for the initial nine test conditions shown in Table 1. The last three
items listed under "Program Input' are concerned with the Bruceton iterative
solution and random number generation. These inputs wil be discussed sub-
sequently in another section of this document.

Up to this point in the simulation, efforts have been described for
generating the artificial test items and testing these items using the Bruceton
and Missile techniques. At this point the simulation program was satisfactorily
deeigned to accomplish this, and subsequent programming for computations
necessary in the evaluation of the results were formulated. Since the basic
objective was to compare and evaluate the two techniques, a basis for compari-
8Son was necessary.

Each technique estimates the mean and standard deviation using the
quantal responses. Since the actual values of the critical responses (i.e.,
the RNN) are available, it is possible to estimate the mean and standard
deviation of the samples using this information in the standard manner (.e.,
using the equations for continuous, Normally distributed data). It can be
shown that the sample estimates using the Normal equations are the best g
okitainable, and hence could be used as a basis for comparing the other esti-
mates. Thue the Bruceton and Missile estimates can only approach the Normal
estimates in accuracy and repeatability. Any comparison of estimates must
consider the magnitude by which the estimate differs from the true value as
well as the repeatability of the estimate. The means of the estimated means,
i’-(-, and the estimated standard deviation, Ys’ should thus be used. Also, the
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Table 4. Simulation Program Computer Inputs
Program Test Conditions
Input 1 2 3 4 5 6 7 8 9

PXB 1.00 {1.00 §1.00 |1.00 [1.00 [1.00 {1.00 |1.00 |1.00
(population mean)

PS 0.02 |0.09 {0.26 {0.02 |0.02 [0.09 }0.26 |0.09 |0.26
(population stindard

deviation)
[H (initial test 1.07 |1.07 [1.07 [1.07 {1.07 (1.07 |1.07 |]1.07 |1.07
level — Brucecon)

DELTA (test level 0. 030]0. 135]0. 390|0. 030{0. 030}0. 135]0. 390}0. 135{0.390
increment — Bruceton)

NS (sample size) 15 15 15 35 55 35 35 55 55
NO (number of 100 (100 {100 100 (100 ({100 {100 |100 {100
samples)
[BETA (standard devia-|0.762]0.762|0.762]0.865}0.875[0. 865[0. 865]0. 875]0.875
tion bias correction —

Missile)

ULIM (test iuter.al 2.20 [2.20 |2.62 [2.20 }2.20 ]|2.20 |2.63 [2.20 |2.63
upper limit —

Missile)

LLI:? (test interva!l 0.264)0. 364]0.0 !0.364]|0.364]0.364]0.0 ]0.364]0.0
lower limit --

Missile) |

XMULT /X increment |0.05 |0.20 [0.+0 [0.05 |0.05 |o.10 [0.20 |o.05 |o. 10
for Bruceton iterative

pr.cess)
ISMULT (s increment [0.25 [0.33 ]0.50 {0.20 (0.15 [0.25 ]0.35 [0.20 [0.25
for Bruceton iterative

process)

MMT 18974|19847{19847|18974;18974 (19847 |19847129874|29874
(random number 35261]53(21{53623]35263]35265|53625173627|53621|53625
generator)
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standard deviations of the estimated means, S’_(, and the estimated standard ’
deviations, Ss. should be used to evaluate repeatability. lJ
Therefore, in addition to the sample means and standard deviations ;
estimated by the Normal, Bruceton, and Missile techniques for each sample !
of test items, the means of the estimated means and standard deviations from 1
the 100 different samples as well as the standard deviations of the data were
! computed for each analysis technique. 1
It was also an objective of this simulation program to investigate the
degree of correlation between the individual sample Bruceton and Missile
estimates of the standard deviation with the corresponding Normal estimates.
The correlation between the sample Bruceton mean estimates was reported by
Hampton? to be very good, i.e., closely and positively correlated with the

calculated coefficient of correlation approaching a value of +1. 0. Therefore,

no further investigation of mean correlation was necessary. The coefficient of

z correlation of the standard deviations for the 100 samples from each test
| condition was calculated by the formula given by Hoel. %
Checkout of the computer simulation program was accomplished with
two objectives in mind. First of all, it was necessary to see that the computer .

had been programmed properly to accomplish the desired calculations in

- correct sequence and to see that the program logic was operating as intended.
Second, if the calculations and program logic were correct, it was necessary
to see that all operations on the computer were being accomplished as effi-
ciently as reasonably possible. This was done to reduce the cost of conducting

the program and was aimed prim reducing the computer running time.
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. The checkout was accomplished by running the simulation through a
small number of small sample size tests. The computer was programmed to

print out the results of significant intermediate steps which would not ordi-

- B

narily be required. With this information it was possible to follow the simu-

lation step by step and check the results by manual computations on a desk

calculator.

These initial efforts did indicate excessive computer run time, and

e dan T e S RG s ah

certain changes were necessary. The most significant of these changes was
concerned with the Bruceton iteration technique described earlier (Appendix
IV). Analysis of the test results was requiring too many ite -ations for con- 3

vergence of the solutions. The iterative procedure used by the Bruceton

¥ i g bR VG

technique requires trial solutions on both sides (positive and negative) of zero
in order to interpolate for the solution at zero (the maximum likelihood value).
The computer logic required is to first determine whether the initial trial
solution is positive (or negative) and then to increment this trial value by such
an amount to get a solution with the opposite sign. This process is repeated
until the absolute magnitude is sufficiently small to permit accurate solutions
at zero from the linear interpolation.

The logic originally designed into the computer program required that )
the initial values of X and s (obtained by the standard Bruceton calculations)
be incremented by an amount equal to the a priori estimates of X and s, i.e.,
1.07xand 1.5 8.  (Initlal conditions have been discussed earlier.) After
evaluating the initial runs with this logic i1t was concluded that these increments

were too large.
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. In determining the size of the required increment two conflicting con-
Isiderations are present. A large increment is desired in order to get a sign
change, but at the same time a smaller increment is desired to get more
accurate results. As a compromise the following reasoning was used. It is
known that the standard error of estimating o is a direct function of Nn' (where
n is the sample size). By using s at n= 15 as the base, the ratio of Nn at the
different sample sizes was obtained. This, when multiplied by the increment
at n =15, should give similar increments for the larger sample sizes. The
initial increments of s for the three values of o were determined based on
analysis of the preliminary runs as 25 percent of s for ¢ = 0. 02, 33 percent
for o = 0. 09, and 50 percent for 0 = 0.26. These percentages are essentially
estimates of the maximum error anticipated in the Bruceton estimates of the

population standard deviation. Increments for X were calculated in a similar

manner. The above calculations are summarized in Table 5.

Table 5. As and AX Calculations

As Calculations

Standard Increment
n Error Ratio (As) @o = 0. 02 @o= .09 @o= 0.26

15 1 (base) 0.25 0.33 0.50
35 0. 67 0.20 (0.67) 0.25 0.25 0.35
55 0.53 0.15 (0.53) 0.25 0.20 0.25

AX Calculations

Standard Increment
n Error Ratio (AX) @o = 0. 02 @o = 0.09 @o = 0.26

15 1 0. 05 0.20 0.40
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Table 5. As and Ax Calculations (Concluded)

AX Calculations

Standard Increment
n Error Ratio (Ax) @o = 0.02 @o = 0.09 @o = 0.26
35 0.428 0.05 0.10 0.20
55 0.275 0.05 0. 05 0.10

The increments in Table 5 were programmed into the computer as
initial inputs, SMULT (s multiplier) and XMULT (x multiplier). Checkout
runs with these inputs provided satisfactory results and this approach was

made a permanent part of the simulation program.

3. Summary of Computer Simulation Program

With the required changes finalized and checked out the computer simu-
lation program design was complete. It consisted of a main computer routine
and the subroutines summarized below. The complete program is presented
in Appendix III, and is structured as shown in the diagram below.

Main Program Routine

Bruceton Technioue Subroutine Missile Technique Subroutine
T_(BRUCMT) T.(MISSMT )
Failure Level Analysis Subroutine Integration Subroutine (IGRAT)
(CHEK)
Bruceton Iteration Subroutine Solution of Simultaneous
tINTERP) Equation Subroutine (SESOMi)
e Interpolation Subroutine (ITR)

The main program routine accepts the test condition inputs, generates
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the random Normal numbers, and calculates the overall statistical param-
'eters using the Normal, Bruceton, and Missile estimates. The Bruceton
technique subroutine (BRUCMT) accepts the random llormal numbers from
the main routine, generates test levels, accomplishes the tests, tabulates
results, and computes estimates of u and o which are returned to the main pro-
gram routine. The Missile technique subroutine (MISSMT) operates in a
similar manner.

The Failure Level Analysis subroutine (CHEK) was used to analyze the
failure/ succeas/ test-level data and compute certain parameters from these
data required for the Bruceton estimates. The Bruceton Iteration subroutine
(INTERP) was used where the values of M were less than 0. 325 and required
the iterat'on procedure for estimating. The Interpolation subroutine (ITR)
was used for interpolating between values in two tables used in the Bruceton
iteration procedure.

The Integration subroutine (IGRAT) was used in the Missile technique

to integrate the expression

SESOMI is a subroutine used in the Missile technique to solve systems of

simultaneous equations. n
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CHAPTER III

COMPARISON OF THE STANDARD BR.UCETON
AND MISSILE TECHNIQUES

The first use of the simulation program was to compare the perfor-
mance of the two basic techniques as they are presently used and described in
the literature. ¥ %7 This was accomplished by running the test conditions
shown in Table 1. The results of this particular simulation effort were used
initially to determine the relative periormance of the two techniques and to
identify more detailed characteristics of their performance. The results also
provided the primary guidance for subsequent efforts described in Chapter IV
to improve the two techniques, and ultimately to define restrictions of the
techniques (Chapter V).

Evaluation of the simulation results was accomplished in two phases.
The first, preliminary, evaluation was accomplished using a relatively simple
estimating efficiency approach designed to provide quick, quantitative answers
to guide subsequent activity. The second phase, or final analysis, was based on
standard statistical analysis techniques, and only those conclusions which result
from the statistical analysis are considered in the final evaluation of the project.
The detailed statistical analysis is presented in Appendix V.

In developing the estimating efficiency approach for the preliminary
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evaluation it was recognized that the Normal estimates of 1 and o are the best
available and could be used as a basis for comparison of the other two tech-
niques. Thus, if the efficiencies of the three different estimators were calcu-
lated on the same basis, the Bruceton and Missile efficiencies could be com-
pared directly to see which was better and the Normal efficiencies used as a
measure of the degree of potential improvement possible in the other two.

The following two expressions were chosen as expressing the desired

efficiency characteristic:

E-§= (#'IIJ-X)—‘-I'S;)/#
E=<0'-|0-3(_|-S)/a,
8 8 8

w and o = the true population parameters as programmed into the com-

where

puter

i;.(_= the mean of the means from the 100 samples of test results

-}_(; = the mean of the standard deviations from the 100 samples of
test results
S;= the standard deviation of the means estimated from the 100
samples
Ss = the standard deviation of the standard deviations estimated
from the 100 samples.
In deriving the above expressions it was reasoned that the accuracy of
any estimator is measured by two factors, (1) the amount by which the esti-

mate differs from the true value of the parameter being estimated and (2) the

repeatability of the estimator.
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These two factors were defined as the displacement and deviation,
respectively, and are expressed as

Displacement = | u —ii_l, and | o --X-B |

Deviation= S_and S .
X 8

Since the ''perfect' estimator would have values of zero for both of these
factors, the efficiency expressions given earlier would have an efficiency of
1. 0 for the perfect estimator, and anvthing less than perfect would have a value
less than 1.0. It is recognizéd that the expressions are not efficiencies in the
true sense of the word since. under certain conditions. it is possible to calcu-
late negative values. It is not felt that this possibility significantly detracts
from its use.

Data from the comparison simulation are presented in Table 6. These
data were calculated from the 100 individual sample estimates of ¢ and o by
each of the three techniques. From the data in Table 6, efficiencies were
computed (Table 7) and graphs plotted. The graphs are shown as Figure 3
for Ei and Figure 4 for Es' The efficiencies E; and Es are the means of the
efficiencies obtained for the individual test conditions of the same sample
size, or population.

A review of Figures 3 and 4 result in the following observations:

1. All the Normal estimates are better than the corresponding Bruce-

ton or Missile estimates. This verifies the statement made earlier

that the Normal cstimaie: are the best possible.
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Table 6. Summary Analysis of 100 Sample Estimates

Test
Conditions = = <
No. (u, o, N) Technique X:? DSF xs Ss
Normal 1. 00044 0. 00496 0. 01965 0. 00384
1 (1.0, 0.02, 15)| Bruceton | 0.99124 0.01951 0. 01854 0. 00728
Missile 1. 00406 0.01774 0. 00445 G. 01429 a
]
Normal 0. 99935 0. 02086 0. 08744 0. 01567
2 (1.0, 0.09, 15)| Bruceton | 0.96131 C. 08037 0. 08332 0. 03003
Missile 1. 00155 0.04309 0. 07653 0.06176
Normal 0.99410 0. 06653 0. 25533 0. 04683
3 (1.0, 0.26, 15)| Bruceton | 0.95598 0.26766 0. 28946 0. 07630
Missile 0.98708 0.10306 0. 22876 0. 16474
Normal 1. 00034 0. 09361 0. 01961 0. 00237
4 (1.0, 0.02, 35)| Bruceton | 0.98146 0.01483 0. 02093 0. 00532
Missile 1. 00005 0.00796 0. 01559 0.01015
Normal 1. 00024 0.00294 0.01984 0.00191
5 (1.0, 0.02, 55)] Bruceton | 0.98240 0.01590 0. 02015 0. 00366
Missile 1. 00021 0.00522 0. 02023 0. 00677
Normal 1, 00009 0.01544 0. 08920 0.01020
6 (1.0, 0.09, 35)] Bruceton | 0.93108 0. 08667 0. 09032 0. 02076
Missile 0.99814 0.02341 0. 08379 0. 03209
Normal 0.99889 0.04277 0. 25828 0.03111
7 (1.0, 0.26, 35)| Bruceton | 0.92697 0.31330 0. 30910 0. 16804
Missile 0. 99664 0. 06430 0. 24926 0.09518
Normal 0. 99947 0. 12460 0. 095037 0. 00974
8 (1.0, 0.09, 55)| Bruceton | 0.94012 0. 09557 0. 09241 0.01531
Missile 0.99815 0. 02075 0. 09151 0. 03210
Normal 1. 00591 0. 03656 0. 25757 0. 02252
9 (1.0, 0.26, 55)] Bruceton | 1.00920 0.28431 0.29013 0. 04480
Missile 1, 00437 0. 05123 0. 26647 0.07416
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2. The Missile estimates of uare better in all instances than the
Bruceton estimates. Further, there is very little difference
between the Missile and Normal estimates, indicating very little
potential for improving the Missile estimate of the mean.

3. The Bruzeton estimates of o are better than the Missile estimates
except for the population of u= 1.0 and o = 0. 26, specifically for
a sample size of 35 items (Table 7). Estimates of ¢ from the
p= 1.0 and 0 = 0. 26 population with sample sizes of 15 and 55 are
both more efficient than for a sample of 35.

4. Estimates of uare fairly insensitive to different sample sizes when
samples from the three different populations are considered. This
can probably be explained by noting the decrease in efficiency with
increasing o, and reasoning that this decrease offsets the increased
efficiency expected with larger sample sizes.

5. The Bruceton estimates, of both u and o, are not statistically con-
sistent, whereasthe others, Missile and Normal, are.

Based only on the above observations, it is not possible to conclude
which of the two techniques is best for estimating n and o, the basic objective.
To do this requires consideration of the relative "weights' of u and ¢ esti-
mating efficiencies which must be given in combining them into an overall tech-
nique efficiency, E. To establish a basis for coribining the statistical esti-
mates of u and o it was reasoned that the estimates are usually used to define
an interval in which the true population parameter will lie. This interval may

be of varying widths (X %18, X 228, etc. ), as desired, with a "3-sigma'




interval (i.e., X 13S) typical for aerospace testing. By substituting the asso-
ciated efficiency in place of the respective parameter in the interval expression
(since the interval is the usual ultimate objective), an expression for overall
technique efficiency is possible; i.e., F = ( E§+ 3 Es) /4. This is a weighted
average in which ES is given three times the weight of Ei' Obviously an infinite
number of weight combinations are possible, although the one shown above was
used predominately throughout this project.

By using the above expression, the overall efficiency, E, for each
individual test condition was calculated, and from these values mean overall
efficiencies, F, for each sample size and population were calculated. The
individual and mean overall efficiencies are presented in Table 7 and the mean
overall efficiencies are shown plotted versus sample size and population in
Figure 5. Finally, all the overall efficiencies (i.e., for all sample sizes and
populations) were averaged for each technique. The overall mean efficiency
thus calculated for the Missile technique was 0.55779 and for the Bruceton
techniaue was 0. 69009.

Data on the coefficiint of correlation are presented in Table € and shown
plotted in Figure 6. These results show that the Bruceton estimates of ¢,
when all the data are considered, are only slightly better correlated with the
Normal estimates than are the Missile estimates (TAUB = 0.27064 versus
TAUM = 0.26100, Table 8). Further review of the data indicates that the
Bruceton is superior to the Missile at fairly small values of o (i.e., o
= 0.02 and 0.09); otherwise, the Missile estimates have stronger correlation.

Thus, the correlation data indicate that the Bruceton technique is probably equal
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Table 8. Correlation Coefficients

Test Significant Significant
Conditions at 90-Percent at 90-Percent
No. (u#, o, N) TAUB* Confidence TAUM** | Confidence
1 (1.0, 0.02, 15) | 0.27107 No 0.22563 No
2 (1.0, 0.09, 15) | 0.38936 Yes 0. 19008 No
3 (1.0, 0.26, 15) | 0.05514 No 0.36246 Yes
4 (1.0, 0.02, 35) | 0.27362 Yes 0.28438 Yes
5 (1.0, 0.02, 55) | 0.43154 Yes 0.26276 Yes
6 (1.0, 0.09, 35) | 0.29722 Yes 0.15984 No
7 (1.0, 0.26, 35) | 0.04650 No 0. 34815 Yes
§ (1.0, 0.09, 55) | 0.44835 Yes 0.30630 Yes
9 (1.0, 0.26, 55) | 0.36763 Yes 0.25950 Yes
Significant Significant
at 90-Percent at 90-Percent
N TAUB Confidence TAUM Confidence
15 0.23852 No 0.25939 No
35 0.20578 No 0.26412 Yes
55 0.36763 Yes 0.25950 Yes
All 0.27064 Yes 0.26100 Yes
Significant Significant
at 90-Percent at 90-Percent
o TAUB Confidence TAUM Confidence
0. 02 0. 32541 Yes 0.25759 Yes
0.09 0. 37831 Yes 0.21874 No
0.26 0.10821 No 0.30668 Yes

* TAUB = correlation coefficient of Bruceton estimates

*% TAUM = correlation coefficient of Missile estimates.
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to the Missile in the degree of correlation between estimates of ¢ by the Normal
technique. The column in Table 8 headed '"Significant at 90- Percent Confidence"
indicates those correlation coefficients which were determined to be statisti-
cally significant as described in Appendix V on page 120. Further evaluation of

these coefficients is presented in Chapter V.
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CHAPTER IV

TECHNIQUE IMPROVEMENT

The primary objective of the comparison simulations described in
Chapter III was to determine the better of the two techniques. Additionally,
these results were used to guide subsequent effort toward technique improve-
ment. The approach taken for technique improvement was to concentrate first
on improving the standard deviation estimates, and then on improvix;g the
mean cstimates. Technique improvement of both the mean and standard
deviation estimates simultaneously was not attempted, per se. In addition to
the many attempts made at improving the Bruceton and Missile estimates of
u and g, several totally new techniques were developed and evaluated. Only
the mcre pertinent portion of tne imrrovement effort will be described here.

In evaluating the different modified techniques the efficiency approach
as described earlier was used. More specifically, the modifications were
checked out by changing the simulation program as required and running a
small number (5 to 15) of samples at certain of the test ccnditions specified in
Table 1. The test conditions were selected to permit the greatest amount of
improvement. For instance, if an improvement in Bruceton standard devia-

tion estimating was being evaluated, test condition No. 7 would be run since
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(Table 7) for this particular test condition the Bruceton standard deviation
estimating efficiency was minimum. If the modification being evaluated
produced improvement, it was further evaluated at other of the test conditions
by running more samples (usually 100).

The expression ''test condition" in Chapter III had two implied mean-
ings. First it specified the values of u, 0, and N (sample size) used in the
simulation program (i.e., test condition No. 1implied values of u = 1.0,
o=0.02, and N= 15) (Table 1). Second, 'teest condition'" was used to refer to
a certain specific portion of the simulation effort; i.e., test condition No. 1
referred tc the 100 tests simulated at the specified conditions. As used in this
Chapter the expression test condition will refer only to the specific portions
of the simulation effort described i: Chapter III. Similarly the expression
"re-test" will refer to simulation effort accomplished subsequent to that
described in Chapter I1II. This distinction is desired for convenience in
distinguishing between the results of simulation work described in this chapter
when compared with the results of work described in the preceding chapter.

The first attempt at technique improvement resulted from the realiza-
tion that the Bruceton technique required more a priori information than did
the Missile, and it was .'ecided to take this information and use it to establish
a 'tighter' test interval and different "degenerate solution' logic for the
Missile technique.

Degenerate solutions for the estimated standard deviation (i.e., o
<0. 0) sometimes result from the Missile technique when the true value of o

is small. Langlie states that when degenerate solutions occur the actual value
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of o is small and thus the estimate should be set equal to zero. This logic was
followed in the simulation. It was reasoned, however, that perhaps the rough
estimate of o used for the Bruceton might be a better estimate for the degener-
ate cases. Therefore, this was programmed into the computer along with
logic to set the test interval limits atf +48, wheresc—and S are the a priori
Bruceton estimaies. These changes result in the Missile technique using the
same a priowi information as the Bruceton.

Fifteen sanples at u = 1, 00, o= 0.02, sample size 15 were run with
these program changes as re-test No. 1 (RT No. 1). The Missile estim.ies
from this run are presented below together with Missile technique estimates

from test condition No. 1 (TC No. 1) for comparison.

Re-Test No. 1 Test Condition No. 1
E 0.44806 0. 24455
E; 0.99276 0.97820
E&J 0.28650 0

All criteriaincreasedin magnitude, indicating improvement in all estimates.

It was noted that RT No. 1 had only 47 percent degenerate solutions as com-
pared with 90 percent for the Chapter III results. This reduction is apparently
the result of the smaller test interval used, and is the reason for the improve-
ment in estimates of u and ¢. The improvement 1n Es is particularly signifi-
cant, and it is concluded that these two changes should be adopted for the
Miss;le technique whenever possible. These two changes were not, however,
adopted fof further simulation work described in this report. This decision
was made to permit a more valid determination of improvement of subsequent
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changes in the basic technique.

1. Improvement in Estimating the Standard Deviation

Efforts to improve the estimates of ¢ were based primarily on prin-
ciples deveioped by Friedman.?® Friedman proved that minimum variance
estimates of o result when sensitivity tests are conaucted at two test levels of
1t £1,570. This principle was investigated thoroughly by several different
approaches, with no practical, favorable results. A theoretical improvement
in estimating 0 was demonstrated using this principle, however, and will be
described.

This approach used the Friedman principle in conjunction with the
Missile technique. Logic was developed to cluster the Missile test levels
around the values of X *KS as follows:

1. Calculate the standard Missile test level (MTL).

- + X+

2. If MTL = X, calculate TL = i 2X ho .
= +X -

If MTL < X, calculate TL = MIL 2X KS .

3. Use the calculated value of TL as the test level.

This logic clustered all the test levels within £15 percent X of the
desired values (X +1.57 o).

This modified Missile technique was investigated with the simulation
program at various values of X, K, and S. Only when X was set at 1. 07 u, and
KS at 1. 60 was improvement in Es demonstrated. These values were runas R1

No. 8 for the u = 1.0, 0= 0.26, N= 35 condition, and the results are shown
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below together with the results of TC No. 7 for comparison.

RT No. 8 T No. 7
£ 0.80596 1. 39376

The results show a rather significant improvement in Es' It is not only better
than the standard Missile estimate of 0.59376, hut also approaches the Normal
estimate of 0.88346. There was also a slight improvement in EY (0.90200
versus 0. 89433).

Although these results indicate significant improvement in Es, it must
be pointed out that actual population values of ¢ and o0 were used in establishing
the test levels. These values would not be known in an actual testing situation,
only rough estimates. For this reason the demonstrated improvement in EB
must be described as 'theoretical. "

Other approaches at improving estimates of ¢ were also unsuccessful,

and it was concluded that the Bruceton estimate of o is the best available.

2. Improvement in Estimating the Mean

During his discussion of the Missile technique, Langlie” stated that the
accuracy of the estimates of the standard deviation should be improved with
more precise estimates of o for use as the initial value, o, in the iterative
solution of the Missile technique. It was reason:d that Bruceton estimates of
g would be very good as initial values for this purpose. To accomplish this,
the Bruceton technique must be used to conduct the test and obtain estimates
of o, which would then be used by the Missile technique as values of o, in con-

ducting the final analysis.
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The necessary changes were made in the simulation program and four
simu'ation runs conducted as RT No. 22-25 at values of u, o, and N corres-
ponding to TC No. 1, 3, 2, and €, respectively. The results of these re-tests
were very similar and only the results of RT No. 22 (a nine-sample run) will
be presented. These results are shown in Table 9.

The results show that for four of the nine tests, the Missile iteration
procedure could not be successfuily applied. This was because the first value
of p cal~alated by the procedure was negative, and the computer logic was
set up to return the last, non-negative value of u. The values of the estimated
mean and standard deviation shown in Tabic 9 are those calculated by the
Normal, Bruceton, and Missile techniques for each sample tested. The
Bruceton egti.nates were used as initial values in the Missile iterative solu-
tion procedure, and for those samples where iteration was not accomplished
(i.e., 1= 0), the Bruceton and Missile estimates are identical. Of the five
samples where iteration occurred, only one (No. 5) resulted in an improved
estimate of o over that started with initially.

As stated before, RT No. 25 was run at ¢ =1.00, o= 0.09, and N
= 35, one of the poorer conditions for making Bruceton estimates. However,
during review of the RT No. 25 data it was noted that Bruceton estimates of p
were much closer to the Normal estimates whenever M = 0.325. It was
further recognized that the Bruceton simulation contained logic which
resulted in an iterative solution whenever M = 0.325. The reasons for this
logic were given in Chapter II. Since both iterative solutions (iterative

Bruceton and Missile) solve the maximum likelihood equations, it was at first
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Tabl= 9. Results of Re-Test No. 22
Estimated
Sample Estimated | Standard

No. Technique Mean Deviation I* M
Normal 1.00010 0.02109

1 Bruceton 0. 96500 0.03381 0 0.66667
Missile 0. 96500 0.03381
Normal 0.99231 0.01546

2 Bruceton 0.98002 0.01721 0.25000
Missile 0.98000 0.02701 13
Normal 0.99535 0.01450

3 Bruceton 0.98953 0.01083 0. 13889
Missile 0.98449 0.00609 13
Normal 1.00261 0.01912

4 Bruceton 0. 97000 0.02436 0.47222
Missile 0.97000 0. 02436 0
Normal 0. 99356 0.02593

5 Bruceton 0.99501 0.01944 0.28571
Missile 0.99500 0.02032 4
Normal 1. 00895 0.01810

6 Bruceton 1.01507 0.015638 0.22222
Missile 1.01101 0.00735 11
Normal 0.99829 0.01362

7 Bruceton 0. 96500 0.01761 0. 33333
Misagile 0.96500 0.01761 9
Normal 0.99233 0. 02285

8 Bruceton 0.96929 0.02125 0.40816
Missile 0.96929 0.02125 0
Normal 0.99625 0.02019

9 Bruceton 1.00497 0.01563 0.22222
Missile 1. 00404 0.00909 | 1

*] = number of iterations accomplished in the modified Missile
technique.




thought that the two procedures were the same with only some variations
between them. Further consideration ruled this out since iteration is used with
the Bruceton technique w for about 50 percent of the time (i.e., only when
M = 0.325), but it is ured with the Missile technique all the time. Also, the
Bruceton iterative procedure is being used cnly because of the difficulty of
programming the standard technique for the M = 0. 325 situation.

To obtain further evaluation of iterative Bruceton solutions, the original
nine 100-sample runs (Chapter III) were reviewed. Although no particularly
significant information was obtained from this review, it wee noted, at least
for tke TC No. 7 data, that for those samples where two iterative solutions
were obtained the answers were very similar. For the samples where only one
iterative solution was obtained (i.e., M > 0. 325 and thus only the Missile
estimate was an iterative solution), the iterative solution was the most
accurate. Therefore, it appeared that the iterative Bruceton estimates of u
were as good as the Missile estimates and that both approached the Normal
estimates in accuracy. Obviously, data were needed which allowed evaluation
of the iterative Bruceton solutions for the situation where M > 0. 325.

The additional simulation was required at the larger values of M, since,
evidently, the noniterative or standard Bruceton estimates produced greater
inaccuracies at these values. Further review of the nine 100-sample runs
incdicated that TC No. 7 would be satisfactory. Thus RT No. 26 was run at
u=10, o= 0.26, and N= 35, providing Normal, standard Bruceton, and
Missile estimates of u and o, as well as estimates by the iterative Bruceton

technique of all samples regardless of the value of M. The results of RT No.
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26 are presented in Table 10.

Table 10. Results of Re-Test No. 26

Bruceton Iterative Missile Normal
Technique Bruceton Technique Technique

E')? 0.62461 0.92651 0.93360 0.95241

ES 0 0 0.60000 0.84630

It is seen that, as before, the Missile estimates of u are better than

the Bruceton. There is also a significant improvement of the iterative Bruce-
ton over the standard Biuceton. No conclusion can be made concerning the
estimates of ¢ other than to say that the Missile estimates are better than the
others (excluding the Normal) for this particular test condition. This was
also true in the earlier simulations.

In summary, it appeared that the iterative Bruceton estimates of ¢
were about as accurate as the Missile estimates. If this could be verified
over all test conditions, then an improvement in overall technique could be
obtained by combining the iterative Bruceton estimates of u with standard
Bruceton estimates of o,

The technique combining iterative Bruceton estimates of 1 and standard
Bruceton estimates of ¢ was designated the Improved Bruceton technique. To
obtain data for a complete evaluation of this technique it was necessary to
simulate the nine test conditions as before (Table 1) and obtain iterative
Bruceton estimates of .. The standard Bruceton estimates of ¢ would be the
same as those obtained earlier during the comparison simulations of Chapter

. III, andthose data (Tables 6 and 7) were used to complete the evaluation of the
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Improved Bruceton technique. Thus, eight additional 100-sample runs were
required (the ninth having already been run as RT No. 26). These were run
as RT No. 27 and 28 and RT No. 31-36 at values of 4, o, and N corresponding
to TCNo. 9, 3, 1, 2, 4, 5, 6, and 8, respectively.

The nine re-tests were analyzed as described previously and the
results are presented in Table 11 and plotted iz Figure 7. It is seen that the
iterative Bruceton estimates of the mean are very good over all sample sizes
and standard deviations, varying from a value of 0.91486 for the 0. 26 popula-
tion up to 0. 99259 for the 0. 02 population. The standard deviation estimates
are not nearly so efficient, varying from a low value of 0. 10374 for the 0. 26
population up to a value of 0.55270 for the 0. 09 population. Thus tiie iterative
Bruceton mean estimates are much better than the standard Bruceton mean
estimates while the standard deviation estimates arc not as good. It is also
noted that the iterative Bruceton estimates of the mean are more consistent
than the standard Bruceton, and are fairly constant over the conditions
simulated.

Based on these results the final, best technique should be as described
before, the standard Bruceton test procedure with iterated Bruceton estimates
of the mean, and standard Bruceton estimates of the standard deviation. This
will be referred tc as the Improved Bruceton technique.

Thus, while the attempts at technique improvement described in this
chapter were not totally successful in that no improvement in standard devia-
tion estimates was developed, the improvement demonstrated for estimating

the mean was significant and represents further accomplishment towards the
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overall project objectiver. The Improved Bruceton technique is further

analyzed and evaluated in the next chapter.
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CHAPTER V

FINAL EVALUATION AND CONCLUSIONS

Evaluation of the Improved Bruceton technique to this point has con-
sisted only of analysis of the portion concerned with estimating the mean. It
rumains to be determined how well the overall technique survives further
evaluation. In this chapter simulation data from Chapters III and IV will be
combined so that the evaluation can be completed.

The data presented in Table 11 and Figure 7 relate only to the mean

estimating capability of the Improved Bruceton technique. To complete the
overall evaluation, data are required on the standard deviation estimating
capability also. Since the standard deviation estimating procedure is the same
as that of the standard Bruceton technique, the Bruceton data obtained during
the comparison simulations described in Chapter III can be used. These data
(Tables 6 and 7) have been appropriately combined with those obtained from
the iterative Bruceton simulations of Chapter IV (Table 11) and are presented
in Teble 12 and Figures 8 through 10. These data are thus the same as those
which would have resulted had the complete Improved Bruceton technique been
simulated and the original nin¢ test conditions run. The final evaluations of

the technique will be based on these data.
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Table 12, Summary Analysis and Calculated Efficiencies of the
Improved Bruceton Estimates (Concluded)

(1] FY EB E

0. 02 0. 99259 0.68667 0.76315

0.09 0.97293 0.73033 0.78348

0.26 0.91486 0. 48996 0.59618

Review of Figure 10 indicates that, based on efficiency only, the Improved
Bruceton estimates are the best of the one-shot techniques. Statistical analysis
(Appendix V) of these results does not completely substantiate this conclusion.
This analysis shows that both the Missile and Improved Bruceton techniques are
superior to the Bruceton, and no statistically significant difference between the
Missile and Improved Bruceton techniques was shown for estimating the mean.
The improvement in overall performance by the Improved Bruceton technique
is indicated as onlv approximately 2.5 percent, but it should be remembered
that in calculating the overall efficiencies the standard devization efficiency is
given three times more weight than the mean efficiencies. All of the technique
improvement is the result of improvement in estimating the mean, which was
actually 13 percent. This improvement becomes more significant for testing
items which have only a small amount of variation in strength (i.e., small o
as compared with p). In this situation, errors in estimating the standard
deviation are not nearly as significant.

Correlation of the Improved Bruceton standard deviation estimates
remains the same as for the Bruceton estimates discussed before, since the

estimates are the same. The values for TC No. 1, 3, and 7 (Table 8) indicate
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zero correlation for estimates of . This means that estimates of the standard

deviation at these conditions should be disregarded. Test condition No. 3 and 7
are both conditions with tests from the 0. 26 test population with samples of the
two smaller sizes. Since TC No. 9 is also from the o = 0. 26 population but at
the largest sample size, it is concluded that smaller size is caucing the lower
degree of correlation. Thus, in crder for the o estima‘es to have a reasonable
degree of correlation, the minimum sample size for testing hardware with
relatively large variation in strength should be 55 items.

The above discussion of TC No. 1, 3, and 7 is also substantiated from
the standpoint of estimating efficiency. The values of Es for TC No. 1, 3, and
7 are generally lower than the others (Table 12). Thus, of the nine conditions
investigated, restrictions on sample sizes should be placed on four. The
restrictions, in effect, are that sample sizes smaller than 35 should not be
used for estimating o of any population, and for populations with relatively
large o the sample size should be increased to 2 minimum of 55. These same
restrictions apply tc the Improved Bruceton technique.

In continuing the individual test condition evaluation further, the Table 7
dats were comparcd with the Table 12 data. The Improved Bruceton technique
efficiency for estimating the mean is greater for all nine conditions, ranging
from a minimum improvement of 1.7 percent at TC No. 1to a maximum of
31. 3 percent at TC No. 7. Based only on the Table 7 data, the standard Bruce-
ton estimates of the mean of TC No. 3, 7, and 9 would not have been acceptable,
and the estimates of TC No. 2, 6, and 8 would be marginal. This indicates

that the standard Bruceton technique probably has a weakness for estimating the
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mean of any hardware which has relatively large variation in strength (i.e.,
o/ = 0.09). The Improved Bruceton technique completely eliminates this
particular weakness, a very significant improvement.

So far as the Missile technique is concerned the data in Table 7 reveal
that the Missile mean estimator is more efficient than the standard Bruceton,
with the opposite generally true for the standard deviation. This is substanti-
ated by the statistical analysis presented in Appendix V. Review of the Missile
correlation coefficient data (Table 8) shows that standard deviation estimates
at TC No. 1, 2, and 6 are not correlated and thus should be disregarded. These
are essentially small sample/smali o conditions and thus a minimum sample
size of 35 should probably be specified and increased to 55 for TC No. 6.

Thus, of the nine test conditions investigated, four (TC No. 1-3, ani
6) have been restricted for use with the Missile techrique, and also four (TC
No. 1-3, and 7) for the standard Bruceton and Improved Bruceton techniques.

The Lasic objective of this investigation was originally stated as that of
providing an answer to the question, "Which technique, Bruceton or Missile, is
the better for sensitivity testing of one-shot items with sample sizes ranging
from 15 to 50 items? " It was also planned to determine whether one technique
should be preferred over another under different situations. Finally, efforts
were planned for improving either one of the two techniques or developing a
new, improved technique. Investigations have been completed as described
previously towards all these objectives with varying degrees of success.

It is felt that the question as to which of the two techniques, Bruceton or

Missile, is the better for conducting sensitivity tests was satisfactorily
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answered. Based on the analysis of variance results and sign tests described
in Appendix V, it must be concluded that between the standard Missile and
Bruceton test techniques, the Missile technique is the better. It was deter-
mined that limitations should be placed on the use of both techniques as
described earlier.

Improvement was demonstrated for the Bruceton technique. Aniterative
solution is proposed for calculating the estimates of the mean. These solutions
were shown to be significantly better than those provided by the standard
Bruceton technique and equal to those of the Missile technique. However, since
no improvement over the standard Bruceton estimates for ¢ was developed, the
standard Bruceton estimate must be used with the limitation that for estimating
o, minimum sample sizes of 35 items should be used under any conditions, and
increased to 55 for situations similar to TC No. 6. It was not possible to
determine any statistically significant differences between the Improved Bruce-
ton and Missile techniques. Mean estimates of both techniques were shown to
be significantly better than the standard Bruceton estimates (both the estimates,
RS’(’ and their standard deviations, S§, were significantly better). Analysis of
the standard deviation estimates of the threc techniques was inconclusive. The
means of the Missile standard deviation (-fs) were shown to be better, but the
standard deviation of the standard deviation estimatcs ( SS) were shown to pe
larger than the standard Bruceton (or Improved Bruceton) estimates.

Thus, two test techniques of apparently equal capability are available
for small-sample sensitivity testing of one-shot items. Both, however, offer

certain advantages under different situations. The Improved Bruceton technique
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is amenable to manual computations, while the Missile technique requires a
computer for analysis of the test data. On the other hand, the Missile tech-
nique requires no prior estimates of 1 and o, whereas the Bruceton technique
does. Further, if such prior information is available and used with the Missile
technique, some improvement in the estimates can be expected.

Finally, some comments are in order regarding approaches for further
investigation. It is felt that the mean estimates, since they now approach the
Normal in efficiency, are probably as good as they could ever be. It is there-
fore concluded that any future investigations should be directed toward improv-
ing the efficiency and correlation of the standard deviation estimates, especially
for those conditions described as limitations. More specifically, it is thought

that further effort toward utilizing the Friedman theory® in conjunction with

some test level clustering method has good potential.
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APPENDIX 1

THE BRUCETON TECHNIQUE FOR SENSITIVITY TESTS

1. The Experimental Procedure

The technique consists of the following steps:

1. Choose a test level, h, at which the first speciinen will be tested,
and an interval, d, which will be the distance between testing
levels.

2. [If the first specimen fails when tested at test level h, the second
specimen will be tested at h-d. If the first specimen does not
fail, the second specimen will be tested at ht+d.

3. Ingeneral a specimen will be tested at a test level d below the
level at which the previous specimen was tested if that specimen
failed and d above the level at which the previous one was tested
if it did not fail.

In this manner one will obtain a sequence of failures and successes

which may be recorded as in Figure 11. The x's denote failures and the 0's
denote successes.

Here the first specimen did not fail, 8o the second one was tested at

htd; the second did fail, so the third was tested at h, the level just below h+4;
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h-3d

Figure 11. Example of Bruceton Test Levels and Results
the third failed, so the fourth was tested at h-d; the fourth failed, so the fifth
was tested at h-2d; the fifth did not fail, so the sixth was tested at h-d, the
level just above h-2d.

On the basis of past experience it is usually possible to make rough
estimates of the mean and standard deviation for the item to be tested. Such
estimates are used in choosing h and d for the experiment to be performed.

If a and o are the estimated mean and standard deviation respectively, then

choices for h and d are simply h=a and d= o.

2. Statistical Analysis

The methods provided for estimating the mean and standard deviation
are based on the assumption that the criiical responses (or some known func-
tion of them) have a Normal probability distribution. It is important that
this assumption be reasonably well satisfied. If the critical responses are

not Normally distributed, it is desirable to transform to a new variable which
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will have a Normal distribution. In biological research it 18 usually found that
the logarithms of the critical concentrations rather than the concentrations
themselves are Normally distributed. There is some evidence in explosives
research that logarithms of testing heights are also more ncarly Normally
distributed than the heights themselves, but the evidence is not so conclusive
or so generally accepted in this field. This is a queetion, therefore, which
will usually require some preliminary investigation. Any effort devoted to
finding it ihe rasponses are Normally distributed, and if not, what function

of the responses is Normally distributed, will be well worthwhile. It is
assumed that there is known or has been found by preliminary investigation a
variable, x, which is Normally distributed. Any reference to test levels in
the following discussion will be to these "Normalized'" levels. The original
testing level, h, and the interval, d, will be measured in terms of the Normal-
ized level. If, for example, the Normalized level is the logarithm of the

actual level and the Normalized interval is one, then corresponding to ncrmal-

ized level -1, 0, 1, 2, 3, would be actual testing levels of 1/m, 1, 10, 100, and
1000.

The statistical methods will be described by illusfrating their use for
an actual drop test of an explosive. In this gituation the drop height is the
critical response variable. Figure 12 is a chart showing the results of the
test of 100 specimens of the explosive. On the left the lines on which there
were tests are numbered from 0 to 4. In the table below the chart are given
the line numbers, the actual testing heights (in centimeters), the logarithms
of the testing heights, the numbter of explosions (failures), and the number of
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nonexplosions (successes) at each level. The set of numbers is the same in
both columns, as will always be the case when there are equal numbers of 0's
and x's. When the total number of 0's is unequal to the total number of x's,
the number of 0's at a given height will not differ by more than one from the
number of x's at the next greater height.

The actual heights were chosen 8o that their logsrithms were equally
spaced, since previous investigation of similar explosives revealed that the
logarithms of the critical heights could be assumed to be Normally distri-
buted. The interval h = 0. 093 in log units was used because another experi-
ment with a similar explosive gave this value for the standard deviation.

The mean and standard deviation will be estimated from either the 0's

or the x's depending on which occur in fewer numbers. In the particular

example given in Figure 12, either the 0's or the x's mav be used, but had
there been 49 0's and 51 x's, the 0's would have been used.
Let ny, ny, ny, ... be the number of 0's (or x's as the case may be)
th st _nd
onthe 0", 177, 2 ... lines, respectively, and let N be the total number of
0's (or x's). Let c be the normalized height of the lowest line on which there
was a test recorded. In the example, the x's will be used and the 0's disre-
garded; the numbers just defined will then be

N=50, c= 0.928, n,= 0, n;= 8, n,= 35, ng= 6, n,= 1,

The formula for the estimate of the mean is
1 1
m=c+d{xZin+ Vo (1)
if the 0's are used, or
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m=é+d(l2hﬁ-%> (2)

N

if the x's are used.
The standard deviation will be determined by computing

T i%n Z in, \? &
M= — - | — (3) :
N N -

then using this number to find s from Table 3 or from Figure 1. After 8 is
found, the estimated standard deviation is
o= ds. 4)
The sums appearing in Equations (1), (2), and (3) can easily be

computed in a tabular form,

i n, in, i"’ni

0 0 0 0

1 8 8 8

2 35 70 140

3 6 18 54 ;
4 1 4 16

N=50 A=100 B=218 :
where the data of the example in Figure 12 have been used and the two sums
p> ini and Z i"’ni have been represented bv A and B. In terms of A and B, the

formulas (1), (2), and (3) may be written

m=c+d<‘%i%> (5)
_Al
M=NBA ’ (6)
NZ

where in Equation (5) the plus sign is to be taken if the 0's are used and the

minus sign taken if the x's are used.
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All computations involving the heights are to be done in terms of the
Normalized heights and only final results transformed to actual heights. Thus,

for the particular example, the mean is

100
m= 0.928+ 0.093 (—- 'l)

§ 50 2
¢
= 1. 068, (7)
and the number M s
g
§ _50(218) - (100)?
‘ - 502
{
i = 0. 360. (8)

From Table 3 or Figure 1 it is found that the value of s corresponding to M

= 0,360 18 8 = 0.625; the standard deviation is therefore estimated as

{ o= 0.093 (0.625) = 0.058, (9)
which is considerably smaller than the value (0.093) anticipated and used for

the interval between heights.

In terms of actual heights, the mean m = 1, 068 corresponds to 11. 69

2% e i v )

centimeters, and this is not, strictly speaking, the mean height but the median
height; that is, the height at which there is an even chance that a particular
specimen will or will not explode. The term ¢ must always be used in Normal
units (log units in this case), so there is no point in transforming it to
centimeters.

The value of 8 depends on the position of the mean relative to the test-
ing height, but this dependence is not important unless M is less than 0. 35,

Figure 2 provides curves giving the value of s as a function of M for various
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positions of the mean when M i3 small. The curve marked m-h= 0 is for the
case where the mean is at one of the testing heights; the curve marked m-h
= 0. 5d is for the case where the mean is midway between two testing heights;
the curve marked m-h = 0. 25d is tor the case where the mean 1s one quarter
of d away from the nearest testing height.

If, for example, M in Figure 2 had been 0. 20 instead of 0. 36, then s
would have been determined as follows: The mean m is 1. 068 and is 0. 046

units away from the nearest testing height, 1.114, and since d = 0. 093,

0. 046

the mean is 0.093

= 0. 495d w.its from the nearest testing height. This
happens to be so near 0. 5d that the interpolation is hardly worthwhile, but it
will be carried through as an illustration. The interpolation is between the

0.25d curve and the 0.5d curve in Figure 2. From the 0.25d curve, 8’

= (. 382, and from the 0.5d curve, s" = 0.409. By using linear interpolation,

o SRS oy

= 0.382 + 0.98 (0.027)

= 0. 408. (10)

Table 3 may be employed for values of M greater than 0. 30. The

values in the table are for the case where the mean falls on one of the testing
heights. The differences inserted for M between 0. 30 and 0. 72 give the
amounts by which the tabulated values are changed when the mean falls riidway
between two testing heights. The differences are 0 (to four decimal places)
beyond M = 0.72. When the mean does not fall on a testing height, or falls

midway between two of them, interpolation may be empl>yed as above, Thus,
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if M were 0. 33 and if the mean were 0.2d from the nearest testing height, s

would be

0.2
= (. + — "]
8= 0.5711 0.5 (0.0070)

= 0.5739. (11)
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APPENDIX II

- B

THE MISSILE TECHNIQUE FOR SENSITIVITY TESTS

1. Determining the Test Interval

The first step to be performed in this technique is the determination

of the test interval which is used as the basis for generating the stress or test
levels. This interval should be selected large enough to include all possible
ranges of strengths (test environment) of the parts to be tested. This interval
can be made conservatively large, since the Missile method has been designed
to cause the stress levels to be generated in the vicinity of interest (i.e., in
the vicinity of the distribution of strengths) as the test proceeds. As a sample
illustration, the range for a drop height test for glass containers designed to
withstand say, a 6-inch drop, could be chosen to have a lower limit of 0 and an
upper limit of 3 feet. The method of analysis of the data is such that the
particular choice of the endpoints of the test interval does not have an appreci-
able effect on the results for sample sizes of 15 or more. In the event that

the test interval turns out, as the test proceeds, to be inappropriately chosen,

then the stress levels will tend to converge towards one limit or the other. In
' | Figure 13 are represented the results of an actual one-shot test on thermal

batteries to determine their reliability with regard to high temperature. In

I
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this instance, the batteries were designed to perform reliably at 145*F. On
the basis of conservative engineering judgement and some limited development
test data, the lower limit was selected to be 100°F (the level at which all

thermal batteries would be expected to perform satisfactorily) and the higher

.
S

limit was selected to be 350°F (the level at which all thermal batteries would

~pre g

be expected to fail).

2. Selecting the Test Levels u

Once the test interval has been established, the test is begun by select-
ing the first test level at the midpoint of the interval. After the first speci-

men i8 exposed to this environmental level and activated, a 1 or 0 is recorded

C o mp e . el N e -~

to indicate the outcome as a success or failure, respectively (Figure 13).
The general rule for obtaining the (n+ 1)St test level, after complet-
ing n trials, is to work backward in the test sequence, starting at the nth
trial, until a previous trial (call it the pth trial) is found such that there are
as many successes as failures in the pth through the nth trials. The (n+ 1)Bt
test level is then obtained by averaging the nth test level with the pth test
level. If there exists no previous test level satisfying the requirement stated ,
above, then the (n+ 1)’Bt test level is obtained by averaging the nth test level
with the lower or upper limits of the test interval according to whether the n'Ch
result was a failure or a success. To illustrate, suppose it is desired to find
the second test level in Figure 13. Since there was only one previous observa- :

tion (i.e., first unit failed), it is not possible to find a level where all
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intervening results even out. That is, the second test level {8 obtained by
averaging the first with the lower limit. To find the eighth test level, it is
observed that results from tests 4 through 7 ({.e., the last four results)
cancel each other out. Thus, the eighth test level is obtained by averaging the
fourth level with the seventh.

The test level s designated by the letter s and the outcome is desig-

v

nated by the letter u. The lower limit of the test interval is designated A and
the upper limit is designated B. Upon the conclusion of the test, the test

levels (sy, 8,, ..., 8. )and the corresponding outcome (uy, u,, ..., u_\,
i - 2 N

N

where N equals the test sample size, are used to perform the analysis.

3. _gteriorming the Analysis
The stress levels (s,, By - vas SN) and the outcomes (u 1p Ugy vuuy

uN) are’ arlalyzed tg calculate the sample mean and standard deviation ( #e

andl o é.) . This appendix describes the procedure for performing these calcu-
lations. Includedalso is an anal¥sis, by way of illustration, of the thermal
battery data presglted in Figure 13.
b .
In stmmary, the steps to be followedtin nrforming ‘he analysis are
(1) calculate the mean and standard deviation of the sample and (2) correct

the calculated standard deviation for bias.

4. Calculating the Sample Mean and Standard Deviatic:

The maximum !ikelihood equations for Mo and oy are as follows:
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= % =
q (“e’ oe> Z tgh=0, (1)
where the sum is taken over N samples and where t, g, and h are given for

each sample by

SR T T N A A Oy

8, - U
€= normalized stress deviate

t=
e
~t2

(%)
g= (2m) Z exp 2 /] = Gaussian ordinate for t

h=—Y oY giteomer weighting parameter

1-G G

and

Rt e o o P S D GNP Ny ST TR -

t
G= f gdt = Gaussian area from -« to t.

-0
Tables for G and g are available in almost any engineering or mathe- '

matical handbook (for example, Handbook of Mathematical Tables and Formu-

_l_a_g_by R. S. Burington, Handbook Publishers, Inc., Sandusky, Ohio). The

problem is to find values of "o and v, which, when used with‘ the stresses and

outcomes obtained in the laboratory, cause the summations in Equation (1) i
to be 0. The procedure used is to obtain a Taylor's expansion about the solu-

tion point (“e’ ore) for p and q and iterate until the sums in Equation (1)

become sufficiently close to 0. The fprmulas for this analysis are given

subsequently. This method requiresﬁthat an initial approximation (u,, o,),

be made of the solution point so that t, g, and h can be calculated in the itera-

tive process. The initial approximation is made as follows:

1. Denote the highest stress for which a success occurred as ¥4,
79




TR T—

Denote the lowest stress for which a failure occurred as ¥,.

Count the number of remaining stress levels which fall in between

Y, and ¢,. Denote this as n "
Calculate

o=y Wi+ by)

N (41~ ¥)

=7 (n¢+ 2

If o, is negative, the calculation terminates. The outcome is said
to be degenerate and the conclusion should be as follows:
He lies beiween (¥;) and (¥,)

oe= 0 (i.e., too small to be measured).
A degenerate outcome does not preclude the possibility that the
population mean might be outside the interval ¢, to ¥,. However,
if a degenerate outcome occurs for samples of N = 15 or more, it
is indicative of very small variation in strength (failure point)
from sample to sample.
Example

From Figure 13,

41215 =187 n =2,

therefore

Bo= Y, (215+ 187) = 201

_ 15 (215-187)

Given the values u; and gy, t, g, and h can be calculated for each stress

T e,
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level-outcome pair. After the corrections Au and Ao are obtained, new values ‘-,
of t, g, and h, and sums (1) are calculated to obtain still closer approxima-

tions to “e and ae until convergence is reached.

Once the maximum likelthood estimates of 1 and ¢ are calculated, it is

necessary to correct the estimate, oe, for bias. The unbiased standard devia-

tion, denoted 3, is given by

<;=oe/l3,

where 8= bias, and is the ordinate of Figure 14.

W b R st 3 I AL N L,

e

5. Calculation Methods

R S A T N g

In order to calculate values of p and o satisfying Equations (1), a
Taylor's expansion about the solution point (ue, ae) was used. For points
(4, o) in the neighborhcod of (“e' ae) , the following formulas hold approxi-
mately:

0=p (ue. Ge) =P (K, 0)+Aup + AP
0=q<ue. oe)=q(u,o)+Auqu+Aaqa, (2)
where pa, etc., indicate partial derivatives. These partial derivatives are
given as
pu=0" [Ztgh-Z (gh)?]=0"'[p-Z (gh)?]
pa=o"2 tgh (t-gh)
q,=¢"'[Ztgh(t-gh -Zghl=p -po~!
g =o' [Zt'gh (t-gh)-ql.

By using Equations (1) and the above expressions for the partial derivatives,

8l
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Equations (2) can be solved for Au and Ao, for each given outcome, u.
Then, since

= 4+
uadj ut Ap

adj=o+ Ao, (3)

the adjusted values can be resubstituted into (2) to obtain still closer approxi- l ,

o
mations. Any suitable criterion of comparison can be used to terminate the

calculation, such as:

|AC |+ |Ap ] <5.10-5,

6. Sample Analysis

Figure 13 presents the results of a high temperature sensitivity test
for fifteen thermal batteries. The three columns to the left in Table 13 contain ,
the results in tabuiated form suitable for calculation purposes. By using the
initial estimates for the mean and standard deviation calculated earlier in the
example, a high speed digital computer can be used to iterate by using the
equations given in the preceding section unti) the sums of gh and tgh are 0 to
four decimal places., To illustrate the calculation of these quantities, columns
1 through 5 are tabulated for u = ue ando = oe. The items appearing in the
first row are discussed separately below: (see formulas for reference).
Column 1: t= (225 - 199.8)/20. 39 = 1,234

v,

exp - (1.234%/2) = 0. 1863

Column 2: g= (2m)
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" Column 3: 1/h= -area (-otot)* = -0.8914 |
Column 4: gh = (column 2)/ (column 3) = -0. 2090
Column 5: tgh= (column 1) X (column 4) = -0.2579.
: From Table 13, it can be observed that columns 4 and 5 run to 0, thereby indi-
cating that b= 199. 8 and o = 20. 39 are truly maximum likelihood estimates.
The final step in the analysis is to eliminate the bias in T From Figure
14, 8= 0.76 for N = 15. Hence,

o = 20.39/0.76 = 26. 83.

! j *Area (-oto t) means area under the Normalized curve from -« to t calcu-
lated for u = #e and o = ce.
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APPENDIX III

BASIC COMPUTER SIMULATION PROGRAM
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T T " STRULKTION " OF "SENSITIVITY TESTS — ~

1

© TAB(I) = TAB(I-1}) ¢+ .01

10

20

IN - EFN SDURCE STATEMENT - [FvIS) -

cem e my s e —— - —

REAL M MME,MDE,LLIM

DIMENSIIN RNN{6O),A(3),8(3),SIGVL60)

CIMMIN AND:60)yHyDELTAZNSy3ETA,U(60),ULIM,LLIM,PS,TAB{410) ,SMULT,
LILTY

DATA A,8/2.515517,.802853,.010328,1.432788,.189259,.001308/

RANCLIST JIN/ PXBoPSeHyDELTAZNS ROBETA NN, JLIM LLEM, SMLT, XRULT

NAMELIST /0UT/INOSRNN,SISN

REAM S, IN)

WRITE(S, IN)

TAB = ),

D) § Is2,410

S

CINTINJE

SXBN = 0.

SKBRN2 = 0.

SSRN = ).

SSRY2 = 0.

5X8% & ).

SKXBw2 = 0.

SKA3 = J.

Sx832 = 0.

$S8 = ),

$s8e = ).

SSM = ),

SS542 = ).

SSBSI = O,

SSMSeN = O,

ARITELS,2005) g

ARITZ(%,2000)Px,PS,NS

DY %) I=1,N]

SJML=),

SJM2 = ).

DI 2) Js],N\S

SISNLY) = 1,

RAND = ABS(RN{UNT))

IFl.5 3T, RANDISOD I 1D

RAND = 1, - RAND

SIGNLS) = -I,

TH = SQAT(ALOGIL./RAaNDes2))

RNN(J) s (TIM = (ACL)¢A(2)aTueA(3)oTMen2)/(1.¢tD(1)0TMeB(2)eTMHe02¢
3(3)efMeel)) & SISN(Y)

RVOLJ) = PXB + 2WN{J) o 3§

SUML = SUML + INDLY)

SJM2 s SUM2 ¢ 4D{J)es2

CONTINJE

CALL 3JCMT{XB3,50, v)

CALL MISSMT(XHM,SM, $9)

XBRN = SUML/FLOAT(NS)

SAN = SQRT(ABS((SUM2 - SJMLee2/F_OJATINS))/FLIAT{NS=1) ) )

SXBIN » SXBRN ¢ XBRN

SXBIV2 = SXBRNZ + XulNes?

SSRN = SSRN ¢ SKN

SSRN2 = SSRNZ ¢ $RANwe2

SXOM = SXBM ¢ XOM

T M R rF3
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T T SKE3 s SXKBB ¢+ X688

YALN - EFN SJURCE STATEMENT - [IFNS) -

SXBY2 = SXBM2 ¢ XBMee2 At BT et
SKBB2 = SXBB2 ¢ XBbde2

SS8 = SSB + S8

$582 = $5B2 ¢+ SBee?

SSH = 55M ¢ SM

SSM2 = SSM2 ¢ SMes?

. ——— —————————

s STBSIV & SSBSRY ¢ SBeSAN

SSMSIVY = SSMSRN ¢ SMeSRN
W2ITE(S5,2001) 1, XBRN,XBB, X34, SAN,S5B,5M, 4
2631 FIRMATTL1IX,15,T13X,FL1.5))
40 CINTINJE
FNML = NO - 1

T OFND s N)

XBX3M = SXBM/END

X3XB3 = SXB8/FN)

X3X33¥ = SXBRN/FNO

STXBRN = SQRT(ABS({SXBRNZ - SXBIN®e2/FN))/FNML) )
STXBB = SQRT{ABS({SXtB2 - SXBBe®2/FNO)/FNM1})
STXBM = SQRT{ABS((SXBM2- SXBMee2/FNO)/FNML) )
XBSRN = SSAN/FNO

X8S8 = SSB/FNO

XBSM = SSM/FND

STSRN = SQRT(ARSU{(SSRN2 - SSRN®#2/FNO)/FNM1) )
STSB = SQRT{ABS((SSB82 - SSBee2/FNO)/FNML ))

STSM = SORT(ABS((SSM2 - SSMee2/FNO)/FNML))

TAUB = (FNO®SSBSRN - SSBeSSRN)/SQRT( {FNOeSSB2-SSBee2)e (FND®

1 SSRNZ = SSRNes2) )
TAUM = (FNO®SSMSRN - SSMeSSRN)/SQRT((FNOeSSM2 - SSMee2)e (FNO o
1 SSRN2 =~ SSRN#e2) )

PXBH = ABS(PXb-XBXBB)
PXBM = ABS{PXR-XBxBM)
PXBRN = ABS{PXB- XBX4RN)
PSXSB = ABS(PS ~ XBSB)
PSXSM = ABSIPS ~ XBSM)
PSXSRY = ABS{PS - XRSRN)
BME = PXBRN/PXBD
BI)E = 2SXSRN/ PsxSE
MME = PRKHMRN/PXBM
MIE = PSXSRN/PSXSM ’
WAETc(59)2002) XBXOLRN,STXIAINg XNSRNy STSRNyPXBIN, PSXSAN, XBXBB, STXBE,
1 XBSBySTSD,PXDByPSXSI XOXBV,STKIMy XBSY, STSM, PXBM,PSKSM
WIITE(592003)BML ) MME,BOE,MIETAJI,TAUM
I rii
2300 FIRMATILSXs LOHPOPULATION 1IX,6H 4y  =FB8,5,30, THSIGHA aFB,5/11X,
LBHTEST CAMPLE SI12t,6X,15//7/7711X954 TEST,5X,6HXB(RN)y 9X,
SHKBIB)y 9XySHXBIM)y 9IXyS4SIRN)y IXe%4S(B) 10X, 4HS (M) ¢ L2X,
LHM /7))
2002 FORMAT(///7/11Xy IHPROCEDJRE, TXy BHKB(MEAN) s AL, THS(MEAN), 9X,

W N e

1 BHXBISeD.)yB8X,THS{S.0e) s 1IX g SHMU-XXy 11X, 6HS1G=XS///711X,
2 OHNORMAL y 3X 3 6{SXy)FLlLleS) /711X, BHBAJUTETINGIX 68X FLLo8) /11X,
3 THMISSILEC,2X,)6(5XsF11.5) )
2003 FORMAT(/7/7/7/7101%X,S5HBME sF11.5, 10X, SHMME =sFL1.5//11%X,SHBDE =sF1ll.5,
1 10X 9 SHMDE sFL11.5//711XKySHTAU3ISFL1.%,10X, SHTAUMeFLL,5)
2005 FOPMATILHL)
EVD
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""" SUBRUJTINE BRJUCMT(XB,S,% ")

T e e NI VI T — CTRR g — T —— e ppe—_ MESSSSNSSSSSNN

339 - EFN  SJURCE STATEMENT - [IFWIS) = __

P reresr ¢ rmm——

RJUTINE FOR BRUCETON METHID
REAL ¥

COMMON RNO(60) ¢HyDELTA(MS,3ETA,UI60)ULIMeLLIM,PS, TAB(410) ,SMULT,
1 LILT

DIMENSIIN STSLU60),FOSI63),SLI60) , TXBITS),TS(TS),EAL(TS) ,EQ2(TS)y
1T CX1(60), TABZA(410), TAB2ZP(367)

NAMELIST/OT/SLMySLMRFNy JpSTSL,S.
NAMZLIST/OT1/NySL,FOS,TX3,TS,EQ1,EQ2,X1,AN1,AN2
DATA (TABZPI1)o1219256)/oT79890aT929007059077990T7739.7669476D94754,
1 o788, .7610e735,e729,eT23, 0717171197059 086999.693,.687,.681,4.6735,
2 0679056390657, 06529665 0640906349.629925239.8179e612906069.6,
g 3".595..509..586,.578..573..567..562..556..55!.-5569.5‘0..535..530.
& 05255 05199¢518,.5009.50%90099,.494,.483,.056,.479,.474,469,.464,
5.55’..656..649..565..66,.635..63'.‘026'.521..517..6[2..507..‘03.
$6399,.394,.389,.385,.381,.376,.372,3689.3639.3%9,.33%,.351,.346,
Te34290338903349.33903260032200318903144.314.3069.303,.299,.295,
80291 9028B800284)0289027T902739028790206690262902599025%,42%5290249,
Ve28590262902%990235902320229).226902239021990216902134421,.207,
l.?OS..ZJl..l98..195.-191..l?,oll’.olﬂ#ulalul79.-l76..173901719
Bel6350158%,01639.1690015B8015590153941590108,.146,.103,,141,.139,
:.l!?..l!ﬁp-UZ..131.128'-126..126..121..119“ll?..llS..llSoolllo
D-llp-lD!..lOb,-lO#..102..l..090..097..095..393.-092..09..0’.0-0!79
0085,.383,,082,.08,.07994377,.0768,.076,.073,.,072,.07,.,069,.0068,
.055..365,.06‘..062..051..06..059..350..055..055..056..053;.052.
005192590009, .068,.007,.046,.345,.0664,.003,.042,.061,.06,.039,
.039..338..037.¢036.-015-.036..)36..03”00320.3319-0310003'0029.
¢02370328,.0274002790025¢602590)259002640226,.023,.023,.022,.022,
002109329 0029¢0199¢019903199.013y.018,.017,.0174.31649.016,.016/
DATA (TABZP{I)yI3257,367)/.0159¢3159.0049.016,.016430,013,3¢,012,
30,011,42,01¢40,009,%50,008,50.0337,50,006,7¢,005,00,004,110.003,
160,332,310,001,40./04TA3ZI(1)olel,191)/.798,.8064,.811,.0817,.82¢,
.833..!36..86"..8‘9..655..Gb’p-969,.076.-332..809..896'-9029-909!
e 9199092396929,093690983)0959009579.9649.979.9779,3864,.991,.998,
16335,14012,1601991432551:03350.424040.2467,1:0%4,1.062,1.0069,
1075914083, 1.09090.097, 1109, 1.112,0.119:1.L2h510130,).1601,
1al08,1.156010063) 0017, 0T0,;1.0088,1.0+3;1.241420741.21541.222,
16239162379 010265906253 9 1albnla2b8yLe27%;1.29%,142991.290,1.308,
1e313910321914329,10336, 0304, 1.3%2:0.20,01867,0.37%,1.30%,1,391,
1.399.19606.1.616.1.622.1.41.ldll.l.ﬂhl.i!hl.‘bl.l.tb’.lo‘"p
10685,0.493,1.50191.509 La50Tsla525:1.933,01.%%101.%69,1.537,
L1e55500e57391e%8L00e89)0a50R; o508, 1abltylat22,1.93)1.6308,1,046,
16855016839 106T1910e679 1obAT 1098, laTO%, aT1201.72,1.729,1.737,
o783, 07500 0e76208e?T ol a7, LaTAT LaT959,1.804,1.812,1.82,1.029,
1.838,1.84691.0856,1.862)1.8T1;1.079:1,.808,1.698,1.90%8,1.913,
109220069391 e 3R 1 a6 7ol a@9%, LoPbbylaT2,1:7981:1099,91.998,2.007,
26315,240260,2.033,2.061,2.0%,2:2%8,2.08742.3T8,;2.R84,2.093,
20102)201192011992412892.13652.185,2.194,2.0062,2.17152.18,42.188,
2.197,2.2006024215¢2.22392.2%292.20142.859,2.298,2.267,2.276,2.,20%/
DATALTARZQ(1),15192)403)/2:29%42:303;2.3114s2+32124329,2.338,2.306,
12035992.364,2.373,2.30192:39,2.379,2.808,2.817:2.826,2.,435,2,064,
2 2.6!3.2.462.2.67.2.679.2.!!5. 2.‘97.2.50&.!.51!.2.524.2-533.
3 2.56292.55192:5602.569,2.578,2.507,2.99692.505,2.514,2.,62%,2.632,
& 24960192065924659912.066892457792.50792.69692.708,2,T716,2.723,2.732,
S 2701927502789 2.768,2.777,2.706,2.795%5,2.005,2,.014,2,823,2,832,
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1

10
15

5
30

35
40

33y = EFN_ SJURCE STATEMENT - IFN(S)

Y y¢:951,2.95,2:989, 2. » Y4 06,3, 03.

8 2.0¢3,3.052,3.061,3.07,3, 919.3 J89,3. 090.3 10793.11653.126¢3.135, .
TTTT O 3 16405.18%,3.163,3.172,3.181,3.19,302,3.209,3.218,2.227,3.23"

A 3,265030255030265,3.27443.283,3.292,3.302,3.311,3.32,3.33, 3,2 o

83.348,3.358,3.367,3.37643.386,3.395,3,40¢,3.413,3,623,3, saz.;.
3.05003.4603.6743.479,3.668,3.438,3.577,3.516,3.526,3.535,3.54:
“3.854,5.583,3.573,3.%82, 3. 591.3 60143.6193.562,3, ozq”i.eis.fosa.
3. 557.3 66703.67603.685,3.695,3.704,3. 114.;.723.3 732,3.742,
3.751.3.161.3.77.3.18.3.789.3.799'3-000.3.![7.3-827.3.316.3.0#6.
3-855.3.06503-87'0.3.08#.3-893.3.902.3-91203.992.3.931.3.95.3.95! N
3¢95903.969:3.978,3.988,3.99754.007,4716,%.026,4.,035,6.045,
4.05806.068,6.073,4.083,4.092964.10296.010,%.121,6.13,8.16,4,149,
T RIS 169,4.178,4. 188,84, 197,4,208,4.206,0.226,4.238,4,24%7 T —
DATA (TABZQII))1=404,410)/6.2564,4.266,4.273,6.283,4.292,4%.302,

%312/
IXBLIN = O
ISCOY = O
4 = 4
NF = )
NS§ » 3
SLM = 44
SLMX = 4H .
DJ 15 [=1,NS :
IF{NIII) «GE. nH)GO TO 5
STSL(I) = HH 0
JUI) = 2.
NF = NF ¢+ 1
H4 = 449 - DELFA
3 13 1)
JUi) = 1.
STSL(I) = HAH
H4 s 44 ¢ DELTA
NSS = NSS ¢ 1}
SLM = AMINL(SLM,STSLUIN)
SLMX = AMAXL(SLMX,STSL{I))
CONTLNJE
FN = AMINI(NF,NSS)
0l = 1.
[F(N® oiLEe NSS)IL = O,
CALL CHEKISLM, SLMX,LoSTSLeFOSyK,SL)
NIZ = 3T ¢+ .
SJML = ),
SJK = ),
D) 25 [=1,K
FiM s ] -1
SJUM s 3JM ¢+ FIWe}p0S(1])
SJML = SUML ¢ FlmealoFQS(])
CINTINJE
3) TD 130,35),N2
X3 = SLY ¢ DELVTA #(SUM/EN ¢ ,5)
3 1) &)
X3 = SLY ¢ DELVTA #(SUM/FN - .S}
S = 1,520 @ DELTA s{(FNOSUMN] - SJMee2)/FNee2 + 0.029)
M = SJUL/FN =(SUM/EN)ee
IF(W ¢3Ee «325)ETURN

5 2,860142.85,2.859,2.868,2.878,2.587,2. 096.2-905.2.91‘.2 923,2.932,
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83 - EFM  SIURCE STATEMENT -~ [FW(S) =

N1 S
— ———FPOr .EQ. 1130 TOSD T T C T T e e
JJ = ¢
00 45 JIN=]1,K
FIStJJel) = FOSLJI)
Jl = 43 -1
o5 CONTINJE N .
T SUTTREIV) = X8
TSiN) = S
EQLiV) = O,
EJ2(N) = O.
0) 85 I=1,K
XI(l) = (SL(V}-XB,/S
TUTTTTTTT TR .23. 1030 1D 85
NE = ]
NKM]l = |
IFIRI(I=1) oLT. O.)INXMLl = 2
6 13(5%,60),N2M1
55 A1l = 4,312
IF{XILE-1} .GTs 4.09)0350 TD 65
CALL INTERPIXI{I-1),TAB,TA3ZQ,461),4,AN],NERN)
GJ) F) 55
60 ANl = ),
TFLA3SEXTI(I-1)) 5T, 3.65)3) TO 55
AAA = A3SIXI(1-1))
cALL INTERP(AAA 1TAB,TA3ZP,367,4,AN1,NERR])
65 G T2 T7TI,75),N2
70 AN2 + ).
IFICE{])} .GT. 3.66)50 7)) 8)
CALL INTERP XI(1),T7aBsoyTA3IL?,387,%,AN2,NER])
63 1) %
TS AN2 = &,310
TIFCAISIXI(L)) oulfe &.09)33 T RO
AAA = ABSIXI(1))
CALL INTERP{AAA ,TAB,TA3Z2D,410,6,5H2,NERR)
B0 EQL(N) = EQL(N) ¢ FOS({I)e(AN] - AN2)
EJ2(N) = EQ2IN) + FOSCI) s(XI(I-1)eAN]l - XI(1)eAN2)
85 CONTINJ:
IF{N <NE. 1130 TJ 90
IFIX3 43T, l.)X33XR = (X4JLTeXB)
IFIX3 JLEs 1o)X2aXB ¢ (X4)_TexB)
S =85 ¢ {(SMULT & §)
Ns N ¢ ]
3 1) %2 '
90 IFUIK3CIN €Q. 1160 TI 105
CALL ITR{N,EILyIXByXBy$1ID)
IFITX3{1) .OT. l.)XB=XB =~ {XMULY®XB)
IFITX3(L) JLE. lo)Xus(D ¢ (XMULTeXB)
100 IF(A3SIXB-TXBI(N)).0F. .I2231)G] T 105
1r82Jv = |
105 I[FACIS5IN L€Q. 1)50 TD 11D
SALL ETA(N,EQ2,T7S+S,510%)
S = 5 ¢ [SMJLTeS)
106 TF(A3S(S=1S(N)) «GT. 00010GD 7D 1S
1SCIv = 1
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3y - EFN SJURE STATEMENT - [FY(S) -

1D IFCISSIN «£Q. 1 +AND. IX32IN LEJ. 1)RETURN
115 N s § ¢ |

91 1) %)
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4 - EFN SDURCE STATE4ENT - [IFWIS) -

- e oam—

=" T "SUBRIJTINE CHEK(SMIN,SMAX,J2,STSL,FOS,K,SL1)

c
ODIMENSIJN FOS(60),STSLI6D),SLL1{6D)
CIMMIN INOLG60) s HyDELTA NS, IETA,ULS0) ULIM) L. I MyPS,TABI4LD) ,SMULT,
1 XWJLT
K =1
St = SVIN
1 FIs(<) = 0.

DI S Ts1,NS
IF(ABS(SL -STSL(I))/ABSISL) .GT. .00001)30 7) S

IFtutl) .NE. OZ1GO TO 5
FJS(<) = FOS(K) ¢+ 1.
8 CONTIvI:
SLi(C) = SL
K= ¢ ]
SL = SL + DELTA
IF(S9AX LLE. SLIGO TO L
Ks¢ -1
RETJRN
END

T
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el - EFN  SOURCE STATEMENT - JFN(S) - .

T T SUBKRIJTINE INVERPTARG,XVKW, VYIU, VX, RPTS, ANS, VEXNT TRPI0010

c TRP10020

T & "I. ARG “THE INDEPENDENT VARTAKRLE FOR YHE OESIRED TRP10030

C JNKNOWN. TAP10040

== SR L 2. XTA® " TN TRFL00%0

c INCREASING OROER. TRP10060

-t === 3

c 4. NX  NUMBER OF POINTS IV XTAB. TRP10080

=T S. NPTS VWJYBEN OF PUINTS JSED IN Y4t INTERPOLATINGTAPiIO090

t FORMULA. (NPTVS~1) IS THE DEGREE OF THE TRPLO100

ISt - i o 5 RPi0110

c 6. ANS THE DEPENDENT YALUE ZORRESPONDING TO THE TRP1OL120
= T i . g TR

c 7. NERR 4ILL BE SET UVEJUAL ZERO IF ARG IS NOT ON TRPLO140

c XTAB. ROJTINE WILL EXTRAPOUATE. ‘ TRP10150

(d NEIR = 1, ARG .LT., KTAB(]) TRP10160

¢ NEX = 2, ARG .57. XTAB(NX) TRP10170

C 10 SEPT 66  TRP1D180

= R e N B T O SR ERSTRPI01 90

DEMENSION XTAB(NX),YTAB(NX) TRP".0200

NERY = 3 TRI-10210

NP = NPTS TRP10220

TFINK LT, NP) NP = NX TRP10230

NS = (NK+169)/26 TRP1D240

14 = 372 TRP102%0

1 =1 TRPLOZ60O

IF (XTAB{I) - ARL)30,20,10 TRPL0270

10 14 = ) TRPLDZRO

12 NERR = O} TRP10290

6 13 719 TRP10300

13 NERR = 2 TRP10310

3 13 12 TRP10320

20 ANS = YTAB(I) TRP10330

Gl TI 999 TRP10340

301 = ¥X TRP10350

IF (xT&3(1) - A%5)13,20,50 TRP10360

SO L = [4 ¢ 1 TRP10370

1S = wSeL TRP1OAO

IF(NK=15)58,58,52 TRP10390

52 31 56 IsIS,NKX,\S TAP1O00

1F(XTA3(1)-ARG)54,20,%6 TRPLO&LO

56 L s | TAP10420

53 T 58 TRPL040

S6 L =1 - NS TRPEO4 4D

$8 D) 43  leL,NX TRP1O4SO

IF (XTAB(L) - A35)60,20,7) TRP10460

60 CINTINJE TRPLO4TO

TOK s | = [N TRPLOGBO

N = ¢ ¢ NP -] TRP10490

ANS = 2.0 TRP10500

IF N = NX)90,90,80 TRP10510

80 ¥ s NG TRP10520

K = NK=VPe] TRP10530

90 03 129 Jak,N TRP10560

P s 1.) TRP10550
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rri - EFN SJURZE STATEMENT -

D) 113 [=Kk,N
' IF (1-3)100,110,100
100 P = P o (ARG - KTAB(I)) /7 (XTAB{)) ~ XTAB(I!}
110 CINTFINJE
120 ANS = ANS ¢ YTABUIJ) o P
999 RETUN
END

1ENLS)

TRP10560
TRPLCSTO
TRPLOSA0
TRP10S90
TRP10600
TRP10610
TRP10620
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R - tFN SIURZE STATEMENT - IEN(S)

SJG‘JJFINE ll’%(M.X.V.AVS. L4 )
DIMENSIIN X(30;,Y(30)

NMYL = § - )

0J 1) Js]l,NM]

JC =y -

IFIXIN) » X{JK) LT, 0.)3) 10 15
CINTIVJE

RETIRY

ANS = v {JK) ¢ (0.'X‘JK,,/“(V,"(JK’, s (YIN)-Y(JIK))
RETURY |

£ND
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c

10

15

18
20
23
30
35

40
30

59

60

wry - EFN  SJURCE STATEMENT -~ [FNI(S) -~

Cea e . * -

"STBROJTINE MISSMT({XB,SHC, ® )
SUBRJOJTINE FOR THE MISSILE METHOD
REAL LLIM,MISL,MXSLyNT;NJyNCD
DIMENSION PQt2,3),S5L(60)

COMMIN RNO(60) yHyDELTASNSoBEFA UL 60) ,ULTIMyLLIM,PS,TABLAL0)

1 X4JLT
NRMELIST /077 MISL,MXSL, M., SM, SLoUyNT,4J
SIGY = =],

SL = (J.IM ¢ LLIM)/2.

MISL = L.E*10

HXSL = D,
DI 5) Is]1,NS

utr) = J.

IFERNIMI) .Gk« SLII)IU(I)=]),

My o= UI) ¢ ),

IF(l +.23. 1)GO 10 20

NZO = 1.

JJ = 2

IF{J) 5T, 11G] TD 20

J = |

NJ s )

DI 1% <=1,J4)

NJ = NJ ¢+ ULJ)

Jd=J -1

CONTINCE

IF(NJ «EL. NCDIGD TO 18

JJ s JJ) ¢+ 2

NCO = N2O ¢ 1.

6 1) 1D

SL{Iel) = (SLIL) + SLJel))/2,
5) T (30,40),Mu

3) 1) (25,35),%

SLEIeY) = (SLET) + LLIMI/Z,
MISL s AMINLIMISL,SL(1))

%) 1) %2

SLilel) = (SLII) ¢ uLIM)/2,
MXSL = AMAXL{MXSL,SL(I))
CONTINJE

NT = ),

DI 55 I=1,NS

TFISLUT) 6T, MISL AND. MXSL .GT. SLUTIINT = NT ¢ |,
CINTINJE

X3 = Se(MXSL ¢ MISL)

SY = (FLOATINS) ® (MXSL = MISL) )/(8.0(NT ¢ 2,))
J =

IF(SY «3T. 340350 TN 60

SuC= ).

LTI

SJM = 3,

SJML =« .

SJM2 = ),

PAl(Ls3) = 0,

P(2,3) = 0.

D) 65 Is1,MS
1 = (SLUD) = XB )/SM

o SMULT,




-
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61

65

2000
70

1

wr = EFN  SJURCE STATEMENT - IFN(S)

GS = 1./7SQRT(6.2831853) & EXP(-T #e2/2,)
TiT = ).

T2y = ¥

IFE(T «5fa 0.)G] TO 61

nmr =70

727 = 3,

CALL ISRATITLIT,12T,.14 B8541)

IF(T .5T. 0.)BG=BG*.5

IFLT JLE. 0.)85G2.5-80

HM = J(1)/(1.-BG) - (1.-u(1)}/8G
PAi1,3) = PQILy3) + GS » HY

L =7 @« GS ® Hv

T2 = [ - GSeHM

PQl2,3) = PQ(2,3) + T1

SUM = SUM ¢ (GS » HM)ee2

SJM) = SUMLl ¢+ TleT2

SUM2 = SUM2 + Tee2 o GS & HY ¢ T2

CINTINJE

PA(lel) = 1./75% @ (PQ(2y3) - SUM)
PA{1,2) = 1./5% « Suml

PQ{2,1) = PQU1s2) - PQl1,3) @ 1./SM

PAL2,2) = 1./754 olSUM2 -~ PJ12,3))
PA{1+3) PQIly3) » SIGN

PA(243) = PQI2,3) » SIGY

CALL SESOMI(PQy2419002434D14R1,E)
IF{E .EQ. 0.)GO YO 70

aAITE(S,2000)1R1
FORBAT(19H ERRIR IN SESI%I, E15.8)
RETJN ]

X3 s K3 ¢ PJ(1,1)
SY = SW ¢ PQ(2,41)

IFULA3S(PQ(L,1)/XB) .LT. .0001 «AND. ABS(PI(2,1)/SM) .LT,

.0001 130 10 7S
4=l
1F{J «LEe. 100150 1D 60
AATE(S5,2001)

2001 FORMAT(27H MAX, NO. IJF [TERATIUNS )
75 SUC » SH/BETA

RETUN
END
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132t - EFN_ SJURCE STATEMENT -~ [FENIS) - -

=l * “SUBRIITINE "IGRATILL; UL, DELTX, KNS, NUEQT TGRT0010

c 1L LINER LINIT OF INTESRATION(FLOATING PT.) IGRT0020

c 2 U JPPEC LIATY OF TuTESmATION 1GRY0030

, c 3 DELTA STEP SIZE FOR SOLJFION IGRT0040
: c 4 ANS  VALUE DR "INTEGRAL I1GRT00S0
g C 3 NOEQ ALL EQUATIONS TO SE INTESRATED MUST BE  1GRT0060
. N ’ "‘“11!71t!7'nr1r!Ul‘jJTTﬂF‘!l[t!!'fﬁ'!g!. TERTH0 70
) c NIEQ IS TD BE USED BY TMIS SUBROUTEINE IGRT0080
i c TO SELE-Y THE PROPER EQUATION FOR 1GRY0090
: c INVEGRATION IE. NJEJsl WILL BE YO INTEGRAIGRTOL00
c - EAUATION I, NOEU=2 10O INTEGRAT EQUATION IGRTOL10

¢ __ 2y ETC. THE FORM JF INTEQS NUST BE...  1GRTOL20

T KoV, VORQ) “THERE - "{GRTO130

i c 1 x INJEPENDENT VARIABLE IGRTO140
c 2y DEPENDENT VAR, [E. YeF(X)IGRYOLS50

( 3 NDEQ SAME AS ABOVE. PROBABLY I[GRTO160

; c USED IN A COMPUTED GO TO.LGRTOL70
! c 11 SEPT 64 IGRTOL 80
c RALPH SELLERS [GRTOL190

DIMENSIIN FL6),Ul6),R(3) 1GRT0200

DATA (J(1)y I=s1,e6) / 411930959,-.11930959,.33060669,-.33060469, IGRTO210

' ‘ A .45623476,-.46623476 / 1GRY0220

‘ DATA (1), I=1,3) / .23395697,.18038079,.85662246E-1 / IGRT0230

REAL LLIMyMULT,LL IGRT0240

‘ uLIw s L 1GR10250

LLiv = 1L 1GRT0260

MILT » 1.0 IGRT0270

| : IF(JLIY .GE. LLIM) GO T2 S 1GR70260

. TY4PL s LLINM 15370290

| LLIN = JLIn 1GRT"300

; JLIN « THPL 1GRT0310

| MJLT s-1.0 16370320

- S A = LIV 1GRT0330

: DEL = ABS(DELTA) 1GRT0340

; LesT = 1 1GRT03%0

: ANS = D,0 16270360

IFUA3S (ULTY-LLIM) - .0031)80,68),10 1GRT0370

L. 108 = A ¢ 4,0eDEL 1GRT0380

? . IF13-JLIM)40,30,20 1GRT0390

20 W = M 164706400

30 LAST » 2 IGRTD410

40 D) 53 Isl,s IGRT0420

. X = (3=A)oU(l) ¢ .SelAe8) 15R70430

: CALL INTEQSIXoF(1),N2EQ) IGRTD#40

SO CONTINJE IGRTO&50

6O ANS s ANS ¢ (B-2)el(R(L)elFIL1)eFI2)) ¢ RU2)0(F(IIeF{d]) o R(D)e IGRIO460

! A (FIS)eF(6))) [RT04 70

i 51 1) (70,80),LAST 163710680

70 A s 8 15K10490

l 33 13 1) 16379500

80 ANS * ANS @ MUL] 16210510

HETJAN 16bR70520

P END 15470330
|
ot
»
A
4

100
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_SE30SB - EFN  SIURCE STATEMENT - 1ENIS) - L
—_T T 2l SESUOOI0
SUBROUT INE SESOMT (X o NoNBsMS)MN1,NN2, O, Ry E) $€$00020
L , SEI000%0
g 1 FIRST LOCATION OF INPUT ARRAY,DIN AS xannn.nnznsggogo;g___
(4 3 N8 NUNBER OF RIGHT HAND COLUMN VECTORS 4%5*%%3%%‘“‘
c 4 NS CHECK FOR SIM, EQS OR INVERSE SES00080
. c HS=d | n. EQ. $€300090
c MSs) FOR INVERSE S 00
C T TTTTETRNT oo X ' MN2) gi ll:
c 6 MN2 HN2 = WNLleNB
5T TV VALUE OF YHE OETEXRNINARY 35535*56"‘
C 8 R ° RANK OF THE MATRIX ) _ _SES00L140
c 9 E ERRON RETURN ~ SESO01%0
c €20 FOR NO ERROR L _SES00160
c €=1 FORERRDK SESDOLTO
c , SES00180
T T T DIWERSTUN XTWNT,WNZT, WORKTYYT, SAVRT 30T SES
OIMENSION IHLO(50) X SES00200
c DOUBLE PRECISION X, WORK, SAVN, SAVEB,v,D, SUM, TEST SES00210
E=0. L $ES00220
Re0. . $€500230
00 27 ts1,N o o SESD0240
T T2V SAVRIIDEX(1,1) I §€s002%0
00 2) Isi,N $E$00260
21 14L0(1) .t SES00270
TFL4S) 8,606 S£S00200
6 Nu=Ney SES00290
N3N SESV0300
TANENe) $E€$00310
0) 16 Isl,N SESD0320
02 1% JsMN,NN $SES00330
16 x(1,4)23.00 $SES00340
DI 18 1s1,N SESDO3S0
Jelen SES003A0
15 X{1,4)*1.00 SESD0370
53 1) 1s SES00380
& NN=N+ YD $£$00390
16 JJsNN S£S006400
SAVESSX(1,Nel) SESOD810
NNNaY-] SES00620
Dal.)) SES00430
0 S fal,N SESD0440
K<uy-{ SESOD4S0
1IF1¢<)1D,10,26 SESD0460
26 Lis=k<e] SES00470
19421 SES00480
L= SESD0490
NIRK s K SESD0500
DI 17 Ilsl,LL SESV0%10
D3 17 Jel,lLL $ES00520
1F{ABSIMORK)-ABSI(X{IT,J)))10,17,17 St$S00%30
18 WIRKSK(1[,J) SES00340
Lsdel-1 SES008%0
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SESOSB - EFN SJURCE STATENENY - IPMIS) - -
13J29 $E300560
——=—""TTTINTIVIE ~~~~~ SESO0ST0
1F{10)-1)2,2,19 : o o o . _ SESDOSS®O
19 D3 2) Il=1,N ) - — SES00%%0
Yex(ll,1) o e N o 0600
XUII,1)ex{11,104) — €500610
20 X(LI,040)mY SESD0620
it 2.1 & 1 ¢+ 1 8 R {4
I4LDC1) sIHLD(L) o e ... _SESDOS6D
I4L0tL) =]y - §ES006%0
0=-D o L N ~ SES00860
200 1 Lal4KK . — SESD06 0
TFLABSIX)-ABSIXIL+Lo1)))T7,1,1 SESD0880
TorYsy T/ T SES00690
D3 9 J=l, 0 SESDOTOC
YsXil,J) SESD0T10
X(lyJ)ex(Lel,yd) $€S00720
9 X(LélyJ)ey $ESO0730
1 CINTINJE , . ___SESDOT40
10 JJ=))-1 T T ' stsoorso
IFIX)LL,8,11 SESO0T60
11 D=Dex SESDOTT0
ReRel, SESD0780
03 12 Jel,dd SESDO790
12 WIRK(J) sXE1ydel/X SES00800
KK=JJe} SESD0810
IF(NNV.EQ.0)GD TD 33 AT 0815
DI 3 (=1,NNN $ES00820
03 3 Js2,KK $£$00830
3 X(Kypd-l)aXikel, J)=X{Kely1)auORK(J=1) SESOOR40
3303 5 Jsl,JJ AT 0845
S X{N,J)sdORK(J) SESD0860
NNsN-1 SESO08T0
IFINV.EQ.01G0 TO 34 AT 0878
03 22 sl NN $ES00880 :
Lalel SESD0A90
D) 22 !sL,N $ES00900
TRULSLCE)-TnLD0d))22,22,2) $SESN0910
23 1vsi4LI(1) , SESD0920
14000 1) = IHLDILJ) $ESN0930
IR IS IFIEEL SES00940
D) 23 <=1,NB SESD0950
YaX(ls4) $tS09960
XEaC)aX1dyK) SESN0970
25 N(Jy<)sy $ES00980
22 CINTINJE SES00990
34 SJyks), AT 0995
VY 29 Is1¢N SESOLO1D
26 SJMeSJMeX{I,1)eSAVRI1} St$01020 .
TESTsABS( (SAVEB-SUM)/SAVCS) SESO1030
IFITEST~,00008)13,13,3 SESULDAO
13 WrJy sSt$a10s0
8 tel, SESULDAD
53 1) 13 SESULDT0
ENOD SESVL0M0
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APPENDIX IV

BRUCETON ITERATION PROCEDURE

A T T T I WLl

When the chosen testing interval is larger than 2 o, or when the inter-

vals are of unequal size, it is necessary to solve Equations (1) and (2) for u

A e M $iae Ya il e

and o,
a
%3 :
Ly f——=ai)ugp (1) |
%1 B :
X Z X, Z
E n 1"1 i"l . i i = 0 . (2)

AR
The intervals will be of unequal size, for example, when the normalizing
transformation is unknown in advance of the experiment and must be deduced
from the results of the experiment itself. A method of trial and error is
probably as good as any other for solving the equations. One would first choose
preliminary estimates, say m and s, of the roots. These preliminary esti-
mates would be adjusted until the equations were satisfi~d t» the desired degree
of approximation. The left side of Equation (1) will be positiv:: wi.en the trial
value of u is too small, and negative when it i8 too large. The ! ft side of
Equation (2) will be positive when s < ¢, and negative when s > 0. Equation

(1) is relatively insensitive to changes in 8, while the same is true of Equation

103
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(2) for changes in m.

In order to facilitate the computations, the accompanying tables of
z/p (Table 14) and z/q (Table 15) are provided. For negative values of x,
p, and q are interchanged, that is

z(x) _ z2(-x)
P(x) q(-x)’

The compuintion can be illustrated by using the data of Figure 15. The
normalized heights are 0.1, 0.9, 1.5, and 1,9, as indicated in the figure.
The levels are numbered 0, 1, 2, and 3 beginning with the lowest level.
Since there are more successes than failures, the latter are used to deter-
mine the estimates. A preliminary estimate of u1 may be obtained by using
the average of the midpoints of the intervals weighted by the numbers n; ‘
thus,

my;= 1/29 [2 (1.7) + 26 (1.2) + (0.5)]

> 1.2,

A rough estimate of 0 may be determined by observing that the interval 0.9

NORMALIZEZD NUMBER OF
HEIGHT x's 0's '
1.9 x x x 3
1.5 x x x xxxxxxx0xxxxxx xxxxxxxx0xxx 27 2
8.? 000°"C00000 00000!0000000000 00 2?
(]

Figure 35. Record of a Sample of Sixty Tests
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to 1.5 appears to contain 26/29 or about 90 percent of the distribution,

hence

may be used.

8= 0.18

1.645 8.2 !/, (1.5-0.9) = 0.3

In adjusting these estimates one might be tempted to adjust m, first by

Equation (1) and then go to Equation (2) and adjust 8, by using a good estimate

of pu. It turns out, however, that the job can be done much more rapidly by

considering both equations together. The following computational form may

be used:
1 " hi . ?__]-} x:I z, x:)zi 5 xi;l zi-l_x:) z,
i-1 "1 1 i i-1 i
2 2119 3.89 4. 17 0 6. 96
2] 26| L5 1.67 0. 00 3.48 0.174 -9.05
1 1109 {-1.67 -2.08 -0.174) -3.48 3.48
0 0.1 | -6.11 0

2.09 1.39

Note that this table is arranged so that the frequencies of either the 0's or x's

will be entered in the table as though they were x's. The symbol X, represents

(hi - m,) /31 where hl is the height and m and s are the first approximations

to 1 and 0. The other computations are defined by the column headings.

Thus

the figure 4. 17 at the top of the fifth column is obtained as 2 (2.084 - 0.000);

2. 084 being read from Table 15 at x = 1. 67, and 0. 000 being the value of z/p

at x = 3. 89, as shown by Table 14. The sums, 2.09 and 1. 39, of the fifth and
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eighth columns give the values of the left-hand sides of Equations (1) and (2),

respectively, since both sums are positive. It may be concluded that both m

and 84 are too small. Byusingm,= 1.3 and s, = 0. 19, the above calculation is

repeated.

, : hi B ZL-.!_:;! xiqz1 x; 2 . xi;l zl__]-xipzi
i-171 i i i-1 1

3 2] 1.9 3.16 3.12 0. 01 3.28

3 |26| 1.5 1. 05 -5,85 1.64 0. 282 -9.75

1 110.9 -2.11 -2.47 -0.093 {-5.21 5.21

0 0.1 -6.32 0
5.20 -1.26

These results show that the roots are bracketed, and good estimates of

¢ and 0 may be obtained by interpolation between the sums. Interpolating

between 1.2 and 1.3 using 2.09, 0, and-5. 20, one finds that mg = 1. 23, simi-

larly s;= 0.185. By doing two more calculations similar to the two illustrated

above, one would verify the third figures in m and s andobtain good estimates for

the fourth figures. Here, the results tothree figuresarem=1.21ands = 0. 187.

However, the data do not warrant any more accuracy in the roots than is given

by m, and 8,, and one would not do the two extra computations.
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APPENDIX V i |
STATISTICAL ANALYSIS

The simulation work described previously in this document was planned
and executed under very closely controlled conditions. The specific random
normal numbers selected for the 100 samples for each of the nine basic test
conditions were generated such that it was possible to repeat them exactly for
any subsequent retesting. Not only did this approach eliminate any simulation
effects which vary with time, but it also simplified the analysis of subsequent
test techniques. Thus, the initial simulations were run with essentially three
test techniques: Normal, Bruceton, and Missile. Subsequently the Improved
Bruceton technigue was simulated over the same nine test conditions, and was
combined with the earlier simulation work for analysis as a factorial

experiment.

1. Analysis of the Estimated Means -

The estimated means provided by the different techniques were analyzed
by analysis of variance. The experimental design was a 3 x 3 x T factorial
with test technique (T), population (P), and sample size (S) asthethree factors.
The levels of all factors were fixed; twe factors (population and sample size)

were quantitative and the technique factor was qualitative. Thethree techniques
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analyzed were the Bruceton, Missile and Improved Bruceton. The so-called
Normal technique was not included since it i8 not a sensitivity testing technique,
but only a data analysis procedure.

The experimental design arrangement and data for analysis are shown
in Table 16. The response variable sclected and tabulated in the table is ix
from Tables 6 (Bruceton and Missile) and 12 (Improved Bruceton). This
variable is the mean of the 100 sample means from each of the nine test condi-
tions. To simplify analysis, the data from Tables 6 and 12 were coded by first
subtracting .. 00000 from e~ :h ')—(5(_, and then multiplying the result by 100, 000.

The coded data are shown in Table 16.

Table 16. Coded Simulation Values of 32)_(

Sample Tecl.aique
Size Bruceton Missile | Improved Bruceton
15 -876 +406 +239
- oS3
& e 35 -1854 +5 +127
AL
3 b
55 -1760 +21 +70
g 15 -3869 +155 -50
(=} - N
b o o
s “°S| 3 -6892 -186 -189
alz o
g 1b
55 -5988 -185 +67
15 -4402 -1292 -498
w o8
& '© 35 -7303 -331 +885
uwon
3 b
55 +920 +437 +1312
T.j -32,024 -970 -1963
X j -3558 -108 +218
Coded X_= (? -1 ooooo) 10°
X b3
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The mathematical model for the experimental design and analysis is

glven as
= +8 + + + + .
g S AR TR B R AT P BT SR8 0 Ok
In this model
X, k= observations on the response variable -)Ei

# = a common eff ct in all observations
Ti = the testiig technique effect wherei= 1, 2, 3

S, = sample size effect where j= 1, 2, 3

J
Pk = population effect where k=1, 2, 3
eijk = the randonm experimental arror.

The other terms represent the interactions between the main factors T, S, and
P.

The results of the analysis of variance calculations are shown in Table
17. Two of the three factors were found to be significant. Technique was found
to be highly significant, the F test resulting in significance at a confidence level
exceeding 99 percent. A similar test of the popuiation effect revealed signifi-
cance at the 90 percent confidence level.

Multiple-range tests of both factors were conducted according tu
Duncan's procedure. 2 It was found that the means of the Improved Bruceton
and Missile techniques were both significantly different from (at the 99-pe1 cent
confidence level) and better than the Bruceton technique. Also, no significant
difference was detected between the Improved Bruceton and Missile techniques.

Thus, the Improved Bruvceton and Missile techniques give essentially the same
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Table 17. Analysis of Variance of Simulation ii Data
Degrees

Source of of Sum of Mean A

Variation Freedom Squares Square F
Technique (T) 2 78, 817, 492 39, 408, 746 | 24.69*
Population (P) 2 10, 148, 468 5, 074, 234 | 3. 18%*
Sample size (S) 2 6, 286, 428 3, 143, 214 1.97
T x P interaction 4 15, 954, 136 3, 988, 534 | 2.50
T x S interaction 4 9, 888, 806 2, 472, 201 1.55
P x S interaction 4 14, 927, 324 3, 731, 831 | 2.34
eijk- error 8 12, 770, 064 1, 596, 258 -

26 148, 792, 718

* Significant at 99-percent confidence level.

*% Significant at 90-percent confidence level.

results for estimating the means, and both techniques are significantly better
than the Bruceton technique.
Multiple-range tests of the population effect revealed that there was no
significant difference (at the 95-percent confidence level) between the estimates ;
of the means from populations No. 1 and 3, and populations No. 2 and 3. There
was a significant difference detected between estimates from populations No. 1
and 2. These results indicate that the population effect is nonlinear since the
estimates from populations No. 1 and 3 (0= 0.02 and 0 = 0.2§, respectively)
are more accurate than estimates from population No. 2 (¢ = 0.09). This

effect is probably due to not controlling the mean of the samples from the
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o = 0. 09 population closely enough to the desired value of u = 1.00.
These results indicate that the most accurate mean estimates will

result when either the Improved Bruceton or Missile technique is used, and

further, that accuracy will be greatest from populations of ¢ = 1. 00, g = 0. 02;

p=100, 0= 0.26; and u = 1,00, 0= 0,09, accuracy decreasing in that order.
To further evaluate the mean estimates, the standard deviations of

these estimates (Si) were analyzed by the sign test as described by Dixon and

Massey.? The hypotheses listed below were tested:

Ho: Bgomy = Fsny B Fsomy # Hsv)
He Bsoy 8o B¢ Hfsm * Psv)
Ho: Bgp) sy e H5m) * Psm)
Ho: Hgg) = Mgy  Hr Hgm) * Fsq ‘
B Bsmy “Fsony BF Bs *Hsqm
where the expression, , refers to the mean of the standard deviations of /

S(M)
the Missile technique. The subscripts I, B, and N refer to the Improved

Bruceton, Bruceton, and Normal estimates, respectively. Only the last null
hypothesis listed above was accepted; the other four were rejected n¢ the 99-

percent confidence level. Inspection of the values of u , and

s(B)’ “s(m)
7] S (1) showed that S(B) was the largest, indicating that the Improved Bruceton ‘
and Missile techniques are both better than the Bruceton.

It is concluded that the standard deviations of the mean estimates of the

Missile and Improved Bruceton techniques are equivalent, and both are better

(1.e., smaller) than the Bruceton mean estimate standard deviations.
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2. Analysis of the Estimated Standard Deviations

The distributions of the estimated standard deviations of the three tech-
nlques are not known, and therefore only distribution-free tests were applied in
the analysis of these estimates. Thus, sign tests of the values of Xs from
Table 6 were conducted. Since the standard deviation estimating procedures of
the Improved Bruceton and Bruceton techniques are identical, only a compari-
ron between the Bruceton and Missile techniques was conducted. The
hypothesis tested was

H,: Hy:

“s8) " *sm) “sm) * Hsm) -

The rull hypothesis was rejected at the 95-percent confidence level, and it was
concludcd that the mean of the Bruceton standard deviation estimates is signifi-
cantly different from the mean of the Missile estimates. This hypothesis test
did not give any information as to which of the two techniques is the most
accurate, and further testing was necessary to complete the evaluation. The
following additional hypothesis test on the means was conducted:

HO: H"l:

Ksim) = Hs(n) bsom) * Fsw)
The null hypothesis was acceptec at the 95-percent confidence level.

Hypothesis tests of the mean standard deviation of the standard deviation esti-

mates (SS> were also conducted. These were as follows:

Ho: Hosom) = Pss(N) Hi Hssm) * Pss(N)
Ho: Heg@) = Hss(N) He HssB) *Hssav)
Ho' Mg m) = *ss (B) He Fosm) *Hssp)

All three null hypotheses were rejected at the 95-percent confidence level.
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showed that u ' the

Inspection of the values of u SS (M) SS (B)

SS (B) and u

smallest, and it 18 concluded that the Bruceton technique provides standard

deviation estimates with the best repeatability (i.e., smallest variation).
In summary, the sign tests of the standard deviation estimates of the

three techniques were inconclusive. The tests indicated that the means of the

Missile estimates are better but that the standard deviations of the Missile

estimates are not as good as the Bruceton (and Improved Bruceton).

3. Analysis of the Correlation Coefficients

The values of TAUB and TAUM tabulated in Table 8 are estimates of the

true correlation coefficients p_ and p

B M respectively. Analysis of these data

consisted of making the following hypothesis tests at each of the nine test

conditions:

Similar tests were made with combined or mean estimates at the different
values of sample size and for the different populations. All tests were made at
a confidence level of 90 percent according to the procedures described by
Dixon and Massey.?” These procedures make use of the fact that the
variable

Z= (0.5)tn (1+y/1-4y)
is normally distributed with mean and standard deviation

Hp= (0.5)In (1+ o/1-p)
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- T T T, M
‘ l

= /NN-3,
where y is the estimate of p.

The results of this analysis are indicated in Table 8. A '"yes" in the
column headed ' Significant at 90-Percent Confidence' indicates that the null
hypothesis is rejected and the conclusion is made that there is positive correla-
tion. A '"no" indicates no correlation between the Bruceton (or Missile)
est!mates of standard deviation and the corresponding Normal estimate, i.e.,

p = 0, Standard deviation estimates at these test conditions (where p= 0) are

unacceptable and these particular test conditions should be avoided.
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GLOSSARY

Bruceton iterative procedure — one of three procedures available for calculat-

ing estimates of 4 and o from Rruceton test data. It isnotthe procedure
described for the standard Bruceton technique. The procedure is of an
iterative type in that initial values are chosen and manipulated through
the :nathematical procedures and more accurate values obtained. This
may be continued until the change between successive iterations is as
small as desired. This procedure is described in detail in Appendix IV.

Comparison gimulations — the simulation effort described in Chapter I1I in
which tests at the nine basic test conditions shown in Table 1 were sim-
ulated with the standard Bruceton and Missile techniques.

Degenerate solution — under certain conditions estimates of the standard devia-
tion from test data generai~d by the Missile technique assume negative
values. These negative solutions for ¢ are called ""degenerate solutions"
by Langlie, ¥ and he states that when such solutions occur, the value of
o = 0 should be used.

Improved Bruceton technique — a sensitivity test technique which combines the
standard Bruceton test procedure, standard Bruceton estimates of o,
and iter+tive (as opposed to the standard) Bruceton mean estimates into

a single overall technique. This technique is the snme as the standard

125




Bruceton except that an iterative procedure is substituted for estimating
the mean.

Missile iterative procedure — a procedure by which the test data generated by
the Missile technique are analyzed and estimates of 1 and o are calcu-
lated. The procedure is of the iterative type and is the only procedure
used with the Missile technique.

Re-Test — Simulation effort at one of the nine specific test conditions other
than the comparison simulations. Re-tests are done primarily to evalu-
ate changes of the standard sensitivity test techniques.

Sample — a group of random Normal numbers generated by the simulation
program to represent one-shot hardware undergoing sensitivity test.
The number of random Normal numbers in the sample (i.e., the sample
size) is specified by che particular test condition. The "items' in a
sample are also referred to as ""test items. "

Simulation run size — the number of samples of random Normal numbers
"tested" during a partlcular simulation effort.

Test or simulated test — the activity of comparing an individual random Normal
number of a sample to a test level generated by one of the sensitivity
test techniques, and noting whether the number is greater than, less
than, or equal to the test level. If the number is greater than or equal to
the test level, the test is scored a success, otherwise the test is scored
a failure.

Test level — a specific value of the test stimulus or environment, as determin-

ed by the sensitivity test techn que, at which a particular test item is
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tested. Test levels are represented in the simulations by appropriately

derived numbers.
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