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PREFACE

EI

This study is the result of a suggestion by Professor

T. L. Regulinski, who later became my thesis advisor, that

the methods of reliability allocation needed further devel-

opment.,

o W R B T

4 While I was searching through the literature dealing

4 with reliability allocation, I discovered that allocation

§ models had been developed in each of the areas in which I

g was interested. This reduced my problem from one of devel-
§ oping and comparing an allocation model in each of the three
% areas of Lagrange multipliers, mathematical programming, and

dynamic programming to one of merely comparing the three al-

T

location models that had been previously developed.
The dynamic programming allocation model was developed

by John D. Kettle (Ref 10:249) and the Lagrange multiplier

L

allocation model was developed by Hugh Everett III

g,

(Ref 4:399). The algorithm presented here for mathematical '
programming is based on a heuristic argument that was sug-
gested by Peter J. Kolesar (Ref 21:317).

I wish to express my thanks to Professor Regulinski
for the helpful advice and constructive criticism without

which 1 probably would never have completed tiais study.
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Preface (Contd)
1 also wish to express thanks to my recent lride for her
encouragement during the times when I felt that I was mak-
ing no progress. Finally, I claim responsibility for any

errors that may be found in this work.

William Z. Spivey
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ABSTRACT

The reliability allocation problem has previously
been solved by methods other than the classical optimiza-
tion methods. This thesis brings together and compares
three allocation models that are based on optimization
methods.

It was found that dynamic programming gives the opti-
mal solution to the allocation problem. The model based
on Lagrange multipliers gave a solution that was within
0.5% of the optimal solution given by dynamic programming.
The mathematical programming algorithm gave a solution

that was within 0.6% of the optimal solution,

vii
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COMPARISON OF RELIABILITY

ALLOCATION OPTIMIZATION METHODS

T. INTRODUCTION

Reliability allocation models that are now in use are
based on assignment of reliability goals to the various sub-
systems to fulfill the requirement that the system failure
rate equal the sum of :he failure r+‘es of the various sub-
systems. These methods of allocation are based on the as-
sumptions that times to integrant failure are exponentially
distributed. The two models most frequently used are the
complexity ind the failure rate weighting models.

When the complexity model is used, the most complex
subsystem is assigned the highest failure rate. This fail-
ure rate will be equal to the ratio of the number of inte-
grants in the subsystem under consideration to the number of
integrants in the entire system multiplied times the desired
system failure rate. The end result of this model is to
assign lower reliability goals to the more complex subsys-
tems and higher reliability goals to the more simple sub-
systems,

The failure rate weighting model assigns failure rates

to the various subsystems based on failure rates that have
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been achieved on similar subsystems in the past. Parts
‘that have had low failure rates are assigned reliability
goals that are harder to achieve than parts that have had

high failure rates.

PROBLEM

The problem is to develop three reliability allocation
models, one using Lagrange multipliers, one using mathe-
matical programming, and one using dynamic programming. The
allocation will be made in such a way that one of the system
parameters will be minimized subject to a constraint placed
on the system reliability. These system parameters are such
as cost, weight, development time, and test cost.

These three models will be compared and the advantages

and disadvantages of each will be discussed.

SCOPE

The study will apply the mathematical methods of La-
grange multipliers, mathematical programming, and dynamic
programming to the allocation problem. Any discussion of
the theory behind these methods will be limited to that
necessary for the application of the method.

The comparison will point out the advantages and dis-

advantages of each method and will also discuss, for each

S p——— |
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method, any changes in assumptions that could be made to

make the method more general.

ASSUMPTIONS
The main assumptions are that the operation of any sub-

system is independent of the operation of any other subsys-

R T Y T P T

tem and that the system will operate as long as all of the

subsystems are operating.

These assumptions imply that the re” .bility of the
i system will be the product of the reliabilities of all sub-

systems.

RS = TI. R. (1)

Furthermore, each subsystem is assumed to be composed
of N identical components, N-1 of which are redundant. The
reliability of each subsystem will be

R, = 1-(l-r i (2)
i i
The subsystem cost is assumed to be a linear function

of the number of components in the subsystem.

C. = N.c, (3)

; . e = D iR = . amem S ST o ST ASgmeiies i— t SRA S Vowm gt
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STANDARDS

The comparison of the allocation models will be made
on the basis of optimality of the solution, flexibility of
the algorithm, and simplicity of computation.

Optimality of the solution was chosen as a basis for
comparison because the main objective of allocation is to do
it in the most optimal manner. If the algorithm does not
give a solution that is at least near optimal, then it is
of no value.

A flexible algorithm is desirable because an algorithm
that can be used for a general reliability allocation pro=-
blem is better than an algorithm that is limited to more
restricting assumptions. In particular, a good algorithm
should be able to handle the situation where the cost func-
tion is not linear.

Simplicity of computation was chosen as a basis for
comparison because a very long algorithm that gives an opti-
mal solution is not necessarily superior to a shorter algo-
rithm that gives a near optimal solution. This is especially
true in the situation where the model is only a rough approx-

imation of the actual situation.

APPROACH

The approach to solving the problem will be to first

il
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develop the necessary algorithms. Then these algorithms
will be applied to solving an allccation problem for a re-
presentative system with component reliabilities and costs
that are randomly selected. From the results of this allo-
cation, the limitations of each algorithm will be deter-
mined and will be compared with the limitations of the other
algorithms. Then the advantages and disadvantages of each

model will be discussed.
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I1. LAGRANGE MULTIPLIERS

As most often used, Lagrange multipliers are introduced
in context with differentiable functions. 1In these cases
they are used to produce constrained stationary points.

Another technique involving the use of Lagrange multi-
pliers has been practiced at the Weapons Systems Evaluation
Division, Institute for Defense Analysis. The objective of
this technique is the maximization of a function with con-

straints, rather than the location of stationary points

(Ref 4:399-417).

THEORY

The basic problem can be described by defining an ar-
bitrary set, S, which is the set of all possible actions.
Defined on this set, S is a payoff function, H. There are
N real valued functions, Ck(x) (k=1,...,N), defined on S

which are called the resource functions. The problem is to

find
Max H(X) 4)
X contained in S
subject to Ck(X) = Ck (5)

for all k, where c® is the maximum permissible value of

this resource function.
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This technique is based on the following theorem
(Ref 4:401).
Theorem 1.

k .
1. 27, k=1,...,N, are nonnegative real numbers,

2. X¥* contained in S maximizes the function
N
HEK) - L 2°CF(X)
k=1
over all X contained in S.
3. X* maximizes H(X) over all those X contained in S
such that CK(x*) cK for all k.

This theorem says, that for any choice Zk, k=1,...N,

that if an unconstrained maximum of the new function
N

Y - L 240 (x) (6)
can be found, then this solution is a solution to that con-
strained maximization problem with constraints equal to the
amount of each resource expended in achieving the uncon-
strained solution.

According to this theorem, it is possible to select an
arbitrary, nonnegative set of Z's, find an unconstrained
maximum for equation (6) and this gives the solution to a
constrained problem. The only difficulty is that there is
no way of knowing in advance which constrained problem will
be solved, This diffuculty may be avoided through the use

of an iterative procedure that will examine the spectrum of




GRE/EE/69-2

Z's and isolate the desired constrained solution.

For the general problem this procedure does not guaran-
tee a solution in every case. It does guarantee that if a
solution can be found, then it will be optimal.

A subclass of the general problem is one that may be
called the cell problem., - The cell problem is the problem
in which there are a number, M, of independent areas into
which the resources may be committed and for which the total
payoff is the sum of the payoffs from each independent area.

For this type problem there exists for each cell a
strategy set, Si; a payoff function, H; defined on Si; and
N resource functions Ci defined on S;- The problem is to
find a strategy set, one element for each cell, that maxi-
mizes the total payoff subject to constraints on the total

resource expended. That is, find:
M

—

Max l;
all choices of [Xi] i=1 Hi(xi) (7)
Xi contained in Si

M k k .
subject to r ¢ ¢ for all k. (8)
i=1

This problem may be put in the form of equation (6)

by noting that
M
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M
and that HX) =& H. (X) (10)
i=1l 1
M
k
and that Koy = & X ) for all k. (11)
1:1 1 1

By applying the theorem to equations (9), (10), and (11) it
is seen that finding the maximum of the constrained function
(7) is equivalent to finding

Max M

M M N
mined in s 1L - L2 L cx, 12
X contained in i=lsi [i=1 Hi(xi)] k=12 [i=1Ci( l)- (12)

By interchanging the order of summation, the function (12)

becomes
Max M M N
X contained tn s, L [y - L2y av)
M
Since S =£§1 Si (9)

the function (13) is ma ximized by maximizing

N
Bk - L 240 ®)) (14)
independently for each cell.
The theorem guarantees that if the Lagrangian in each
cell has been correctly maximized then the result is a glo-

bal maximum for the centire problem.

9
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APPLICATION
Applying this to the problem of reliability allocation,

the system reliability is given by

Ny

M
RS = Zzl[l-(l—ri) ] (15)

Since the logarithm is a monotonic increasing function,
maximizing the logarithm is the same as maximizing the func-
tion itself, So the payoff is taken to be the logarithm of
the reliability.

M Ny

H = La(R) = £ Ln[l-(l-ri) ] (16)
Now the equation is in the form of the cell problem.
To maximize equation (16), it is only necessary to maximize

independently for each cell or subsystem the expression
N,) = Ln[1-(1 Ni Z N 17
H (N) = In[1-(1-ry) 1]-Z ¢4N, (17)

Since the functions, Hi(Ni)’ are concave, each of them
can be maximized analvtically by differentiation. The in-
teger maximum for all integers equal to or greater than 1
can be found by checking the integers on each side of the
real maximum to see which gives the larger payoff. The

result is obtained as

10
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dH )  -(l-r.) M La(l-r,)
1 1 = 1 1 -7 Ci (18)
an, [1-(1-r ) i]
i i
or
Ln (Z ci) - In (2 ¢i -Ln (1l-r,))
i” In (1-ri) . (19)

for real N..
i

This formula is applied for each subsystem, [Ni] and
[Ni + 1] are examined to find which integer maximizes, then
the reliabilities and costs are summed to produce an optimal
solution.

This procedure is repeated for a series of Z's greater
than zero. For each Z, the maximum reliability for a given
cost is found. The series of reliabilities is then exam-
ined to find which solution gives the reliability nearest
to but greater than the required system reliability. This
solution gives the allocation for minimum cost that gives
the required system reliability.

Appendix I contains a listing of a computer program

to perform the necessary calculations.

11
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III. MATHEMATICAL PROGRAMMING

Sequential Integer Programming

Mathematical programming is defined as a programming
procedure in which the goal is to optimize an objective

“unction subject to one or more constraints.

THEORY AND APPLICATION

Consider the problem of trying to improve the reli-~
ability of a system by adding one more redundant component
to one subsystem., Assume each subsystem already has Nk
components, The increase in reliability of the system by
adding one component to the ith subsystem will be

N Ni+1

k
Ei = [k=i 1-(1-rk) ] [1-(1_ri) ]-

1-(1-rk)Nk. (20)

If the object is to get the greatest reliabillity im-
provement per unit cost, the addiftional redundant component

should be added to the subsystem where the quantity Ai is

the largest where A; 1s defined as in equation (21).

A =
1

(21)

O|L‘fl
o

12
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The problem is then expanded to the problem of trying
to achieve a system reliability, RS>R. It is intuitively
appealing that this can be done in an optimal manner by an
iterative scheme composed of an unknown number of steps if
at each step the set, Ai,(i=1,.'.,M), is generated and the
one additional component is added to the subsystem where the
quantity Ai is the greatest. The iterative scheme continues
until a system reliability, R2 RS, is achieved.

For the reliability allocation problem at hand, the in-
itial solution was selected such that each subsystem would
have a reliability equal to or greater than the desired
system reliability, RS.

Appendix II contains a listing of a computer program

to make these calculations.

13
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IV. DYNAMIC PROGRAMMING = 5

Dynamic programming has been developed since 1950.
The idea is that starting at the last stage of an alloca-
tion process, it is possible to ennumerate all of the al-
ternatives. Thus, it is possible to select the alternative
that gives the optimum policy for the last stage. Now,
since the optimal policy for the last stage is known, it is
possible to find the optimum policy for the next to last
stage. Then the process is repeated for each stage working

from the last stage toward the first stage.

THEORY
The basic theorem of dynamic programming is '"The Prin- *
ciple of Optimality." It states that "An optimal policy
has the property that whatever the initial state and ini-
tial decision are, the remaining decisions must constiture
an optimal policy with regard to the state resulting from
the first decision'. A proof of this theorem is given by : j

Bellman and Dreyfus (Ref 2:15).

APPLICATION

The application of this theory to a reliability allo-
cation process is as follows:

(1) Plan a sequence for combining the stages or

14
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i subsystems. Continue until all subsystems have been com-
bined.

The plan used for the process discussed here is to
combine the first and second subsystems, then join this
combination with the third subsystem. 1In general, the Jth
subsystem is joined with the combination of the J-1 pre-
vious subsystems.

(2) Determine the minimum number of components for

i Y RS R o R

each subsystem that will give the subsystem under consider-
ation a reliability greater than or equal to the required

system reliability, RS. This will be the base requirement.

The optimal policy will consider only the extra costs and

reliabilities above the base requirements.

e I gL A L R A

(3) Prepare the cost-reliability sequence for each

subsystem.

N T

(4) Combine the first grouping and select the domin-

ating sequence. The dominating sequence is the optimal

[NV DTN, RN

policy such that for any given entry, Ri,C.1 (i=1),...,M),

o 30t

that entry is the cheapest entry in the group with reli-

ability exceeding R,-1.

arllag® e

(5) Proceed in this same manner until all of the sub-
systems have been combined.

The allocation is found from the final entry that

gives a reliability greater than or equal to the required

15
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system reliability, RS.

The procedure is demonstrated by the following exam-
ple. Example: Given a system of 4 subsystems, a required
system reliability of .99, and component costs and relia-
bilities as given in Table I, find the optimum allocation
of reliability.

Table I
Component Reliability and Cost for Each Subsystem

Subsystem Integrant Base
Cost Reliability Unreliability Requirements

1 10 .90 .10 2
2 15 .95 .05 2
3 13 .93 .07 2
4 17 .92 .08 2

16
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/
Jequence Number [} P-4 3 4
Cost 20 30 40 S0
Unreliability N-N .00l . 0001 . 00001
(n > (2) > (3]
!
30 §0 60 70 g0
L0025 0128 L0035 //{0026 0028
(A f——> (5)F——>(4)
2
46 b8 73 g5 95
2 000128 NIy .oones 000225 /| .000138
A7) H—— ()
2
14 80 q0 100 /10
00000625 .0lo .00/0 ,000/06 .0000/b
4
.5 L X /105 "Hs 25
.000000312.5 .0l0 .00/2 .o00/0 . 0000i03

Fig.
The order of combination will be 1 and 2,

nation of 1 and 2 with 3, and finally, the combination of

Combining Subsystems 1 and 2

1, 2, and 3 with 4.

The unreliability of the combination of the entries

of column i and row j is given by equation (22).

reliability is close to 1, the unreliability of the

17
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combination is approximately the sum of the unreliability

of each.

column i and row j is given by equation (23).

The cost of the combination of the entries in

162
Sequence Number ! 2 3 4 Yy
Cost ) bo N 70 15 85
Unreliability .ol2s 0035 .o02b 00128 | 00225
n » (2) —(3)
{
6 76 86 96 10/ il
0049 01724 .00 94 / 00178 00602F . 008128
A ——— (Y ——— () —— (D
2
39 e9 CL ] 109 e 124
3 .@oo343 | ,012%43 .003643 ;002943 .00 ¥6% .00056%
3
5 102 12 122 127 137
o0002% | 0260 .00352% 002624 .o00l14+9 < 000249
4
&5 "s 125 135 140 150
L00008188 |  oi250 .00350 00260 .o0liaé | _poo224s¥
Fig. 2. Combining Subsystems 1 and 2 with 3
UR, ,=(1-R,)+(1-R.)-(1-Ri) (1-R.) (22)
ij 1 J J
C..=C +C, (23)
1) i 3

18
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After all subsystems have been combined, the allocation
is found by examining the last combination to find the entry
that meets the required reliability and has the lowest cost,
then working back through each subsystem to find the allo-
cation for that subsystem. For this example the final

allocation is given in Table II.

L,z¢&3
Sequence Number ) 2 3 4 s
Cost 76 §é 96 99 109
Unreliability | .c/74 .co%¢ L0075 .003943 . 002943
@ (3] > (4)
]
3¢ o 120 130 <~ 133 143
0064 | 0239 .0/4? - 0139 0/024 00934
v o
4 ()
2
5/ 27 137 197 180 /60
o008i2 | Lol1912, L0082 .oov012 L004356 | 003485
3
'3 /44 164 164 67 177
.000010%| .o01744 00749 .00164 2003873 | 002993
Fig. 3  Combining Subsystems 1, 2, and 3 with &

19

b — TR L b o4 s e e P F e s S+ T

PO s

TR TR

R

O oy




Basiitiagy, |

e T “TPTTYR SR AT T

e

GRE/EE/69-2

Table IIL
Final Allocation of Example

System Cost 137
System Reliability .9911

Subsystem Cost  Unreliability Reliability

1 30 .001 .999

2 30 .0025 .9975

3 26 . 0049 .9951

4 51 .00051 . 99949

There are two refinements for this procedure that
will reduce the time required. These improvements restrict
the number of entries that must be examined in order to
find the next element in the dominating sequence.

(1) A row or column for which the unreliability is
greater than the unreliability of the present entry in the
dominating sequence need not be examined to find the next
element in the dominating sequence.

(2) 1If the present entry in the dominating sequence
is in column i and row j, then the next entry will either
be in column k=i or row 1=j.

A computer listing of a program to make these cal-

culations is given in Appendix III.

20
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: V. CONCLUSIONS

After each of the allocation models had been developed,

the vehicle with which to compare them had to be selected.
The decision was made to compare them using a system com-
posed of 20 subsystems. The component reliabilities and

costs for each of these 20 subsystems were selected at ran-

2 A BLEHRIREY I R LR

dom. The component reliabilities were selected from the

uniform distribution from 0.5 to 1.0. The component costs

LRI [T TR 1T R R

were selected from the uniform distribution from 0.0 to
1000.0. (See Appendix IV) The system reliability require- i

ment was selected to be .998. L

RESULTS
As seen from Table IV, the solution given by the dynam-

ic programming method was optimel. The system cost from the i

allocation made by the Lagrange multiplier method was within
0.5 per cent of the optimal solution. The solution given by

the mathematical programming algorithm was within 0.6 per

A {adzz T T b RO - sivite] oy

cent of the optimal solution. From this it is seen that all

of the allocation algorithms give solutions that are either

e

optimal or close to optimal,
According to the theory of dynamic programming, an

optimal solution is guaranteed, so the result from this part

21
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of the problem was as expected.
Now consider the result of the Lagrange multiplier
algorithm. The theory guarantees that the allocation given

by this method is optimal. However, it is an optimal solu-

tion of a reliability allocation problem where the desired
system reliability is equal to .99808056. A gap exists '
around the area that gives a system reliability equal to
.998. The Lagrange multiplier technique is unable to find
the optimal solution in this area. Thiz gap is due to a
ronconcavity in the function of optimum payoff in terms of
resource constraints (Ref 4:407).
The mathematical programming method is based on a heur-
istic argument and does not guarantee an optimal solution.
The solution given, which is within 0.6 per cent of the
optimal solution is as good as expected.
The major disadvantage of the dynamic programming al-
gorithm is the large compu“er memory required to make the
calculations. In the problem considered here, at stage 19
the optimal sequence contained 667 entries. Each entry re-
quires a storage space for cost and one for unreliability.
In addition, if the program is to print out a final solution,
enough space is required to store the locafion of each entry

in the optimal sequence for each stage in dynamic program-

ming process. In this problem a matrix of more than 20 x 667

22




[

N
GRE/EE/69-2 ‘ 3
is required to store the location of each entry in the

optimal sequence for each stage. The total memory required

for the dyuamic programming algorithm was 22695 bits. This

is approximately 50 times the memory required for either

the Lagrange multiplier technique or the mathematical pro-

gramming technique.

Table III
Component Reliability and Cost
for Each Subsystem in the Representative System

o TN G RGO otk RN e e

Subsystem Cost Reliability
1 593 . 50000069 :
2 641 .50001587 =
3 750 .50036501 :
4 253 .50839523
5 824 . 69309029 :
6 956 . 94107663
7 984 . 064476239
8 641 .82953494
9 752 .47390355 .
10 285 .82398152 :
11 554 .95175489
12 744 .88622°37 :
13 101 .88311443 :
14 314 .81163169
15 228 .66752880
16 245 .8531637
17 635 .62273432
18 599 .82288922
19 767 .92645199
20 630 .80839568

- S
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As a further comparison of the relative length of com-
putation for the three algorithms, consider the computer
time required for each. The dynamic programming algorithm
required 9 minutes and 55 seconds, the mathematical pro-
gramming algorithm required 50 seconds, and the Lagrange
multiplier technique required only 36 seconds.

One other area of comparison is the area of flexibil-
ity. All three cof the allocation methods could, with little
effort, be made to handle the situation where the cost func-
tion is nonlinear.

The change required in the Lagrange multiplier tech-
nique would be to substitute the new cost function in equa-
tion (17). The change required of the dynamic programming
algorithm would be to read into the computer tae new reli=-
ability cost sequence for cach stage. The change in the
mathematical programming algorithm would require a method
for calculating tne increase in system cost by adding one
component at the ith subsystem similar to the method for
calculating the increase in reliability as given in

equation (20).
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SUMMARY

From the resuits of the problem considered here, it
is felt that the Lagrange multiplier technique is best.
Although the solution obtained by fhe use of dynamic program-
ming was optimal, it is felt that the large time requirement

offsets this fact.
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VI. RECOMMENDATIONS FOR FURTHER STUDY

The next direction to be followed in this course of

<1y

study should be to consider the problem of maximizing the
reliability of the system subject to multiple constraints.
Bellman and Drefus (Ref 2) and Proschan and Bray (Ref 14)

have examined the dynamic programming aspects of the problem

KGR ol B

involving multiple constraints., Everett (Ref 4) has formed
the basis for study in this area using Lagrange multipliers.
Koelesar (Ref 11) has considered the solution of this pro-
blem by the use of linear programming.

It is felt that each of these areas is worth further

examination.
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APPENDIX 1

Lagrange Multiplier Method

This appendix contains a description of the program
that was used for the Lagrange multiplier allocation method.
The program was written using Fortran IV for the IBM

7044/7094 system,

Table V
Symbols Used in the Lagrange Multiplier Method

Symbol Description of Meaning
Input Variables *
RS The required system reliability.
ML Number of subsystems in the system. ML
must be less than or equal to 20.
RC(1) Reliability of the components used in the
Ith subsystem.
CcC(1) Cost of the components used in the Ith
subsystem.

Program Variables

ZL The Lagrange multiplier,

Us Required system unreliability.

Uc(1) Unreliability of components used in the
Ith subsystem.

N(I) £

K(I)] ggggﬁgtgm.components allocated to the Ith

N] Matrix th?t coRtaigs the numbeir of com-

K ponents of each subsystem.

XZL Increment to find the Lagrange multiplier
that gives a system reliability less than
RS.

L Level of the Lagrange multiplier increment.
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Table V (Contd)

Symbol Description of Meaning

Program Variables

DZ (L) Lagrange multiplier increment.
DZ(1l) = XZL/10 DzZ(2) = XZL/100.
TZL Lower limit of the Lagrange multiplier.

Program Subroutines

BEST(ZL,K) Program to calculate the optimal number
of components for each subsystem, K, given
the Lagrange multiplier, Z,.

URS (K) Program to calculate the system unreliabil-
ity, given K.

COST(K) Program to calculate the system cost given
K.

COSTS(1,J) Cost of the Ith subsystem when it consists
of J components.

R(1,J) Reliability of the Ith subsystem when it
consists of J components.

PROGRAM SUMMARY

After the input data is received, the program starts an
iterative procedure (statements 7 through 12) to find a La-
grange multiplier that will give a system reliability less
than required. This is done because the system reliability
is a monctonic decreasing function of the Lagrange multiplier
(Ref 4:406).

The next section (statements 15 through 17) define the
limits to be searched and the Lagrange multiplier increment.

The third section compares the allocation for two

31
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3 different values of the Lagrange multiplier. Statements 25

through 29 check for one change in the allocation. If no

changes occur, ZL is decreased and the search is made again.

If a change does occur, the five statements after statement

v ey

30 search for a second change. If two changes have occurred,

t

= statements 40 through 50 reduce the interval and the machine
is sent back to find the level where only one change has
occurred. If two changesa have not occurred, the machine

prints out the result, then continues the search.
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APPENDIX II

Mathematical Programming Method

This appendix contains a description of the program

that was used for mathematical programming. The program was

written in Fortran IV for the IBM 7044/7094 operating system.

Table VI
Symbols Used in Mathematical Programming

Symbol Description of Meaning

Input Variables

RS The required system reliability.

ML The number of subsystems in the system.

RC(1) Reliability of components in the Ith
subsystem.

Ccc(1) Cost of Components in the I subsystem.

Program Variables

N(I) Number of components in the Ith subsystem.

N1(1) N(I) + 1, N1{J) = N(J) for all J unequal
to I.

A(D) Increase in reliability per unit cost by

adding one component to the Ith subsystem,

Program Subroutines

RST(N) System reliapnility given N(I) components
at each stage,

R(I,J) Reliability of the Jth subsyster ...en it
consists of J components.

COST(N) System cost given N(IL) components at each
stage.

Cc(1,J) Cost of the Ith subsystem when it contains

J coumpunents,
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PROGRAM SUMMARY

After the input data has been read, the five statements
before statement 10 calculate the initial sclution. The
next section has the machine print out the present solution.
The third section (statements 13 through 20) calculate A(I),
the increase in reliability per unit cost for the Ith sub-
system, Statements 25 through 31 add one component to the
subsystem for which the value of A(I) is the largest. Next,
the machine is sent back to statement 12 to check if the pre-
sent solution gives a system reliability as large as requir-
ed. 1If it does, the results is printed out and the program
ends. If it does not, the procedure is repeated until the

solution does meet the reliability requirement.
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APPENDIX III
Dynamic Programming Method
This appendix contains the program description for the
dynamic programming algorithm. The program was written in
Fortran IV for use on the IBM 7044/7094 operating system.

Table VII
Symbols used in the Dynamic Programming Method

Symbol Description of Meaning

Input Variables

RS The required system reliability.

ML Number of subsystems in the system.

RC(I) Reliability of the components used in the
Ith subsystem.

CC(I) Cost of the components used in the Ith sub-
system.

Program Variables

u(n) Unreliability of components used in the Ith
subsystem.

U(1,3) s

C(I,J)] Unreliability-cost sequence for the Ith
subsystem.

M Number of the subsystem that is being that

is being combined with the combination of
the M-1 previous subsystems.

YU(I)) Unreliability-cost sequence for the Mth

YC(T) subsystem.

ig(l)] Unreliability-cost sequence for the combi-
(1) nation of the M-1 previous subsystems.

Qgg%§] Dominating sequence for the combination of

the Mth subsystem with the M-1 previous
subsystems,

L(M,I) Location of the two elements that were com-
bined to give the Ith entry in the dominat-
ing sequence for the M subsystem combination.
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Table VII (Contd)

Symbol Description of Meaning

Program Variables

ggi] Candidate for the next entry in the dominat-
ing sequence.
ggzl Candidate for the next entry in the dominat-

ing sequence.

Program Subroutines

OUTPUT(N) Subprogram to print out the dominating se-
quence, which is of length N, resulting from
the combination of the Mth subsystem with
the M-1 previous subsystems.

ANSWER(N) Subprogram to print out the final alloca-
tion given the dominating sequence of length
N after all subsystems have been combined.

PROGRAM SUMMARY

After the data has been read, statements 11 through 20
calculate the base requirements for each subsystem. State-
ments 21 through 39 calculate the reliability-cost sequence
for each subsystem and write out this information. State-
ments after 39, through 40 make a block transfer of the
reliability=-cost sequence for the first subsystem into the
location (XU, XC) for the dominating sequence of the M-1
previous subsystems, Since M equals ¢, this combination is

the reliability-cost sequence of subsystem 1.
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The next section (statements 50 through 55) is a block
transfer to move the reliability-cost sequence of the Mth
subsystem into the location to be combined with the combi-
nation cf the M-l previous subsystems.

The following section (statements 60 through 110) find
the dominating sequence, one element at a time, of the com-
bination of the Mth subsystem and the M-l previous subsys-
tems and write out this sequence.

The last section makes a block transfer of the dominat-
ing sequence obtained in the previous section into the loca=-
tion to be combined with the next subsystem. It also
increments M to the next subsystem and tests to see if all
subsystems have been combined. 1If they have, the final
allocation is printed out. If they have not, the machine

is sent back to statement 50 to continue the procedure.
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APPENDIX IV

Random Number Generator

This appendix descrises the program that was used to
generate the component cost and reliability for each sub-
system. The program was written in the Forgo version of
Fortran 1I. In the particular compiler used, the arctan-
gent subroutine had been replaced with a random number gen-
erator. This program was written for the IBM 1620.

Table VIII

Symbols Used
in Random Number Generator

Symbol Meaning
R(I) Component reliability.
c(I) Component cost.
X Temporary locationm.
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