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FOREWORD

[T

This document replaces NEL Technical Memorandum 600, A
Review of Power Spectrum and Cross Analysis by Digital Methods, 15
April 1963, which was a compilation of lecture notes on power-spectrum
analysis by Dr. E. E. Gossard. The information has been reorganized

and expanded. Ilustrations and pertinent literature references have been

addcd: e

I a0 uLuhlllvt.HllihlwﬂulllulwMwull‘ﬂ“l\ulum“““ N

5
=
=
E
==
=

WWWWW““WNHWWW'

1
e g W R e .

B gl

REVERSE SIDE 31LANK ]




- —— - = -

0o

| o . el e T IR .
- eow d) @ @ 9 aov W B O A& @G S v W D e .

CONTENTS

INTRODUCTION . . . page 7
POWER-SPECTRUM ANALYSIS - GENERAL . . . 8
THE COVARIANCE FUNCTION . . . 9

POWER-SPECTRUM COMPUTATION . . . 10
Systematic Errors . . . 11
Random Errais . . . 14
Stationarity and Filtering . . . I6

Sample Problem (Power Spectrum) . . . 18

CROSS-SPECTRUM COMPUTATION . . . 21

Sample Problem Applying Cross-Spectrum Analysis to Time
Related Functions . . . 27

Application of Cross-Spectrum Analysis to Spatially Separated
Recordings . . . 29

Sample Problem Applying Cross-Spectrum Analysis to Spatially

Separated Recordings . . . 39

REFERENCES . . . 43

APPENDIX A: CONVENIENT NUMERICAL FILTERS . . . A-1

APPENDIX B:  USEFUL FORMULAE FOR DIGITAL COMPUTATION
OF SPECTRA . . . B-1

Ao S, AR, o s A 1

Pl e darl

] ol bt b




-y

6

-]

10

11

13

11

ILLUSTRATIONS

Ninety percent confidence limits relating degrees of freedom to the ratio
of computed energy to true energy density . . . page 15

Sample record of /E .. . 17

Sample magnetometer record showing micropulsations of carth’s
magnetic field . . . 18

Product of power spectral density and frequency for magnetometer
record shown in figure 3. .. 20

Cumulative distribution of sample coherence as a function of degrees
of freedom for a population coherence of zero . . . 25

Cumulative distribution of sample coherence as a function of population
coherence for 10 degrees of freedom . . . 26

Ninety-five percent confidence limits for phase angles as functions of
degrees of freedom . . . 27

Coherence between /_E and Fﬁ as a function of ordinate number or
period . . . 28

Geometry of wave trains passing spatially separated recording
sites . . . 30

Dependence of / coherence on recorder separation and wavelength . . . 33

Contours of \/ coherence as angle between direction of station separation
and direction of propagation (x direction) is changed . . . 37

’ . . ~ . 3 N . H 1
Dependence of v/ coherence on recorder separation and wavelength when

the integration extends over all angles (isotropie case) . . . 38

Geometry of multiple-receiver experiment to measure movement of

irregularitios of electron density in the tonusphere ., . {0

Sample record produced by wave motions in the lower ionosphere ... 42

s

ETIN CIRe TS T AL R LI

L TN ] YRR T

FEP T FRar G

A il

a e

Lt Sy

bl o 45 W ot

bt

'--“““ﬂ----------‘“’---ﬂﬂuwwum

O]

el




o g

P

- -

—

Al

A2

Ilustrations (Continued)

Low-pass filtor response curves for two simple numerical
filters . . . page A-2 '

High-pass filter response resulting from usc of a linearly weighted
running average . . . A-5

RENERSE SIDE, BLANK D

- ——



.—”—-‘-——-'-——-—-—.—-—-——-—---.

INTRODUCTION

Complicated interactions of physical processes often oceur in
nature and their recorded measurements appear random or pseudorandom
.in character. Such records occur especially often in dealing with atmos-
pheric turbulence or broadband wave phenomena. The medium is usually
far too complicated to be predicted or even described in detail.

The autocorrelation function was first used as an independent

‘ariabie in geophysical problems by G. I. Taylor! in his studies of turbu-
lence. It represented an important advance in studving complicated .
physical processes and forms the basis of modern turbulence theory. The
notions of Taylor were extended and explored by Von Karmen and others.
The mathematical theory relating correlation functions and spectra has
been examined in detail by Wiener.?

The usefulness of the cross or autocorrelation function is based
on the fact that the statistical character of an extremely complicated re-
cord may often be described by a rater simple correlation function
(Gaussian, Markov, ctc.). While details of the notion are not considered,

~ much more information is available than if only such parameters as the

mean or the variance were considered.

Blackman and Tukey ® have formulated the general problem of
speetrum analysis of digital samples and provided quantitative guidance
in estimating confidence levels of the analyses.

In recent years, cross-spectrum analysis has been applied exten-
sively in several branches of geophysics and has proved to be a powerful
tool for studying certain types of problems. This technique has been
effective in the study of atmospherice turbulence * and the refractive-index
structure of the atmosphere.® Munk, Snodgrass, and Tucker® have applied
cross=spectrum techniques extensively in angle-of-arrival and coherence
studies of ocean waves.

Description of the methodology of spectrum and cross-spectrum
analvsis and its application is widely scattered through the literature of
several disciplines. [t is our purpose to bring together in one document

PSyperseript numbers identity references histed ot end of report.
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all of the digital formulation required by most engineers and applied
physicists. Elementary derivations of the basic formulae are given. The
various errors that may contaminate the analysis are discussed together
with the confidence limits applicable to samples of finite length, Exam-
ples are given iilustrating the application and the step-by-step procedure
for obtaining spectra and cross spectra. Two very different applications
of cross-spectrum analysis are described, and the significance of cross-
power and coherence is discussed.

POWER SPECTRUM ANALYSIS - GENERAL

The straightforward way to obtain the power for a continuous
(noise) process, xt0), would be to simply Fourier-analvze the data sample.

Thus

T 1 T* 2 T* 2
~E() P2 T /_T*x(l) coswt dt ] + LT*x(t) sinwt d! (»

where the total sample length is 2 T*.

If we digitize x(0) with the reading interval A, we can in principle
compute T* A t harmonics from the sample and the bandwidth is therefore
(2T*)~*' As T* is increased, the bandwidth correspondingly decreases
and although the total amount of data is increased, the information content
in the bandwidth remains the same. Therefore the scatter of spectral
ordinates is not reduced and we find the surprising result that increasing
the sample length does not improve the reliability of our spectral estimate.
The problem, then, is to find a way of getting a smooth, reliable estimate
of the spectrum of the population and to be able to state confidence limits
for the estimates. There are two wavs of doing this. We might carry out
the harmonic analysis, computing the amplitude of the individual harmonics
as just described, and then smooth the spectrum by some algebraic smooth-
g process. This would be the equivalent of drawing a smooih curve

through the points. Alternatively we might carry out the harmonic analysis
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of the autocorrelogram. The first method is time-consuming and laborious,
and in practice the hest method is usually to carry out a harmonic analysis
of the autocorrelogram. The speetral bandwidth in the analysis is then
(27,) 7" where 7, is the maximum time lag in the correlation analysis.
The bandwidth therefore remains constant (for a given total lag) and, as
the sample is increased, more and more statistical information is included

in each frequency band leading to a corresponding improvement in the
spectral estimates.

THE COVARIANCE FUNCTION

The power spectrum is obtained from the auto~-covariance function,
and the cross-power spectrum from the cross-covariance function. For two
continuous functions x(t) and y(t) whose average is zero the covariance
function is defined to he

—_— T*
Rx‘v(-r) -x() v(t i) T* 300 2_1¥;f’1‘* x(0) y(t+1) dt (2)

where 2 T* is the record length, the bar represents the mean, and 7is the
time lag of x relative to y. The function R(7) is obtained by letting v vary
from 0 to some maximum value 1, . If the records are obtained by sampling
at an interval A t, equation 2 is approximated by

i " N~p
R(p) V‘_l‘,; Z XiVitp (3)

i1

where p is now an integral number of A ¢ steps and /7 is the sequential num-
ber in the sample ranging from 1 to N.
If the auto~covariance is computed, x (1) and v(f) are identical and

i N-p
R(p) F\_L-{_) X;Xi.p 4)

-~
—
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In this case R(p) is symmetrical around p-0 and only one side of the cor-
relation function nced be calculated. When two records are involved both

positive and negative values of p are required, and p must take all integral
values 0, 1, £2, ... £+m. The delay time Tis given by pA ¢ and the maxi-

mum delay time 7,, is mAt. For a fixed m, 1, decreases as At decreases.

POWER-SPECTRUM COMPUTATION

For a continuous covariance function R{1) the power spectrum
E(w) is given by the relation

E(wi:—f—r ,[O R(7) coswrdT (5)!"

where wis 2nf and f is cycles per unit time.
When R (1) is obtained by sampling a record at intervals At, the
power spectral estimate E(h) is

p=m
E(h = 28 Z R (p) cos TP ®
m m
p=0
where
_ | % when p = 0, m
1whenO<p<m
and h - 0, 1,2, ... m. The frequency in cycles per unit time associated

with the spectral estimate at h is given by

- (7)
2mAt

The frequeney bandwidth A [ in eveles for cach his [7h or
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Thus, EXf), the energy in a bandwidth of one cvele, is related to E(h) as

E() = 2mA t E(h) $2)

Systematic Errors

Two systematic errors in [£ (/) arise because of truncation, First,
the covariance function is terminated at p - m. Secondly, the sample is
truncated because it is finite.

The termination of R(p) at p = m creates ‘‘corner effects’’ in
cquation 5 and produces sidebands in E(h). This is partially avoided by

forcing R(7) to zero at p - m by multiplication of R(p) in equation 5 by

(1 + COS T-r—'-)>
m

The other truncation error arises hecause of the truncation of the
sample itself and is a result of the finite sample length. Thus there are
artificial abrupt steps in practically every data sample subjected to cor-
relation analysis, and transients are introduced which can contaminate the
spectrum.  Prefiltering of the records to remove frequencies lower than
those being analyzed can reduce this effect but it cannot be entirely elim-
inated.  Furthermore the heginning and end of the sample should be chosen
near zero values of the variate to minimize the end effects. However
truncation is removed only from the zero order lag and will appear in sub-
sequent lags. In specetrum analysis, truncation error is often the limiting
factor and even for large sample sizes it will usually limit the validity of
the spectrum to frequencies whose speetral density is within five or six
orders of magnitude of the maximum spectral density in the spectrum.

If the spectral density varies rapidly with frequency, the energy
contributed to the spectrum by the side-lobes of the speetral window on
the low-energy side of the center frequeney will be greater relative

R



to the true spectrum than that contributed by the lobe on the high-energy

side. The effect is to shift energy in the true spectrum toward lower-energy

regions in the spectrum. It may therefore be advisable to arrange the sam-
ple so that the energy is more or less evenly distributed through the
spectrum before carrying out the actual analysis. This is sometimes
called *‘prewhitening.”” One method of prewhitening ¢ modifies the data
sample x; in the following way. Let

v
1

where b lies between +1 and ~1. Consider one Fourier component,

x;=C cos Zndt i. Then
T
x;_, = Ccos 2T8L (;_1) (11
T N
7 ~and ¥; represents a sum of the form
CoTT T % - Qa COs(‘Z TTTAt 0() + brcos (2 o ! ﬁ) (12)

where a =1,a =0, and § = - 2—’%4-’ . The amplitude of y is the resultant

of the sum of two vectors of magnitude a, b and phases &, B so

‘. 2
(}é) = at+ b + 2ab cos (o =) (13)

Therefore the filter response of this prewhitening scheme is

F‘f,-l.d)’"_)bcosg-,]’:T At (14

T =~ F=1:b IfT=2At(the highest frequency in the analysis),

F -1 < b, Therefore, if b - =0.75, the energy at high frequencies is in-
creased by a factor of 49 16 and the energy at low frequencies is decreased
to 1 16 its actual value.
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The effeets of averaging within each data point must also be con-
sidered. The time series is devoid of the highest frequencies if the obser-
vations are from averaged data. In other words, averaging acts like a low-
pass filter. The nature of this filter function is well known. If E(f) is the

spectrum of some variable x, the spectrum of the mean x averaged over a
period {, is given by

. si t,\
SRV ONTS! (q":;{ ") (15)
‘a

Therefore it is easy to obtain the spectrum of x if the spectrum of ¥ is
known.

Tukey coined the phrase ““alizsing™ for the phenomenon that

causes energy from one frequency to appear under the ‘‘alias’’ of another
frequency. The effect is due to the discrete sampling or digitizing of
records for analysis by digital computer. The highest frequency in the
analysis has a period twice that of the sampling interval. However, if
higher frequencies are present in the record, these higher frequencies may

still appear in the analvsis but disguised as a lower frequency. Consider
the following figure:

Supposé that this sinusoidal record of frequency [ is sampled at the points
circled. Then the highest frequency in the spectrum analysis, (2A 0 ™7,
will be about half the frequeney prominent in the record. However, since
the sampling interval At is a little less than the wavelength in the record,
the sampling points fall first on the crests, later in the troughs, then again
on the crests producing the dashed curve of frequency [ - (A 0™'. The
original record contained no such frequency. Instead, it was introduced
artificially by the large spacing between observations.  Frequencies higher
than those analyzed appear under the alias of the lower frequency

[ - (A 07", and resemble a modulation not unlike a ““heating™ of the fro-

quencies fand (A 07 The effect of aliasing is most pronounced at the
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high-frequency end of the spectrum. Therefore, one method of minimizing
the effects of aliasing is to ‘‘over-sample’’ the record and then ignore the
higher spectral ordinates.

Random Erross

Random errors due to finite sampling must also be considered.
Different samples from the population would lead to different spectral
estimates, each representing a summation over the harmonics in the sam-
ple. If samples are drawn at random from a statistically stationary record
and if the variate is normally distributed, the spectral estimate for a given
frequency will vary about the population spectrum according to the chi-

- square distribution which is widely tabulated. The value of chi-square for
a given significance depends only on the number of degrees of freedom,
- which is defined as the number of independent normally distributed quan-
tities that are summed -- in our case the number of harmonics in the sum-
mation. The effective width of the main lobe of the window of the Tukey
filter (Hanning function) is 2. Since this will pass N-'m harmonics through
‘each of the two windows, the number of degrees of freedom is approximately
2N.'m. Actually, Tukey suggests that the number of degrees of freedom,
v, 18 more like 2.5(N/m)-1/2 but he recommends the use of 2(N/m)-1/2
because of uncertainties such as the assumption of 2 normal distribution
of the variate, the appropriateness of the chi-square distribution, and the
statistical stationarity of the record. The confidence limits for the spec-

tral ordinates are related to the degrees of freedom in figure 1.

It is evident that the confidence limits depend directly on sample
size, N, and on the total amount the record is lagged, m. The expression
2(N/m) -1/2 relating degrees of freedom to sample size and total lag is
important, and several things can be immediately pointed out. First of all,
when the sample size is large compared to the total lag, v is nearly pro-
portional to the ratio of sample size, N, to maxinum lag length, m. There-
fore this ratio 1s the important factor in determining the confidence limits
of the spectrum analysis. Furthermore, the maximum lag, 1,,. determines
the lowest frequeney (ongest period) that can be analyzed in the data
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sample since f.,;, - (21,) ~', while the digitizing interval, At, determines
the highest frequency since f, ., = (2A n~". This means that the lowest
frequency of interest in the analysis determines the sample length, 2T*,
required in order to obtain a satisfactory confidence level in the spectrum
analysis. This 1s a point to be emphasized because sometimes attempts
are made to get increased reliability by just sampling the record more often
to get a larger N without increasing T*. The sampling frequency determines
the highest frequency capable of detection in the record just as the maxi-
mum lag (time) determines the lowest frequency. Since the highest fre-
quency in the spectrum will be (2 A ) ™', increasing the sampling rate

b

(that is decreasing the sampling interval A ) simply extends the analysis

to higher frequencies and the confidence limits of the spectrum remain un-
changed if T*/1,, is unchanged.

B Stationarity and Filtering

o b Gol et D BN M WS O G G B Bl Gy G N
et Cew witkhbdnt

The foregoing discussion has pointed out the adverse effects pro-
__duced by frequencies outside the range of those being considered in the

[+

spectrum analysis. They lead to errors from aliasing and to erroneous

confidence estimates related to nonstationarity. =
A sample must be stationary if it is to be considered representative

of the population. Stationarity normally means that the lower-order statis- -

tics should not vary throughout the record. If the mean and variance of

the record are constant everywhere in.the record it is generally considered

stationary. Consider the record }_E shown at the top of figure 2. fE is an

[ ™)

Ml

[

average of fE about local noon and indicates the average ionospheric
electron density.* The record gives E for 180 dayvs and contains a grad-
ual decrease in the running average (averaged over five to ten days) which
is caused by the annual change in the solar zenith angle. Thus the record
of fT, is not stationary relative to the mean, the first-order statistic.

* [E is the critical frequency for radio penetration of the F Region of the
10nosphere.
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A portion of a record of [ E (sce text for definition). The

90 100 110 120 130 140 150 160 170 180

upper record is the unfiltered raw data: the lower record is data filtered

using equation A-7 with m = 100 days.

If the record of I—E- extended over four vears, four annual cycles

would be present. The record should not be considered stationary because

10 to 20 cveles at the lowest frequency in a record is considered neces-

sary for stationarity.

An eleven-year record of E would show a longer-period variation
associated with the 11-to-12-year sunspot cycle, and again the record
would be nonstationary. Further extension of the record might reveal
longer-period variations which might be associated with climatic changes.
Most geophysical data are correspondingly nonstationary and shouid be

converted to a stationary form relative to the mean.

Nonstationarity in

the mean can be removed by numerically prefiltering the data as shown by

the bottom record of figure 2

Some data show a change of variance throughout the record and

the record is considered nonstationary.

Nonstationarity in the variance

cannot be removed by prefiltering. Unless the variation is judged to be
excessive by some method, the nonstationarity of the variance is usually

1gnored.

will not be considered here.

Nonstationarity in the variance or other higher-order statistic

Low- or high-frequency components in a record may be removed by
mechanical-electrical devices during recording or by mathematical methods

after recording.

Inductors or capacitors are often used to remove low fre-

quencies and a time constant may be introduced by an RC circuit to remove

high frequencies prior to recording a signal.
] 4

Various mathematical filtors

are avatlable for operating on recorded data, depending on what frequencies

one desires to remove or reduce inanplitude.

The important requirement
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1s that the frequency response of the filter must be known so that the
analysis of the spectral information can be objective. Mechanical or elec-
trical filter responses will not be examined. Examples of two convenient
numerical filters are given in Appendix A.

The foregoing discussion of the main elements involved in auto-
correlatinn and power-spectrum analysis leads now to consideration of a
simple example.

Sample Problem (Power Spectrum)

Consider the record of geomagnetic fluctuations shown in figure
3. The first step in any spectrum analysis is to decide the range of fre-

~ quencies of interest. In the present record, it is obvious that we have a

strong 60-Hz component. We will therefore wish to terminate the spectrum
aanalysis at a frequency much less than 60 Hz -- say 30 Hz. In this data
-sample, we are looking for earth-cavity resonance effects. Theory offers
some guidance and we know that the fundamental frequency should be
some few Hz. We might therefore decide to analyze the spectrum down to
a frequency of perhaps 0.5 Hz. This frequency determines the value of
T, to be used in the analyvsis. 7, not only determines the longest period
(271, that we can analyze in the record, but it also determines the reso-
lution in the spectrum analysis (Af= (21,) ). The smaller the maximum
lag, m, compared to the number of observations, N, the more smoothing is
obtained in the spectrum. Also, it is important to remember that less com-
puter time is required. However, a small value of m limits the resolution

0.157_milli y-

Figure 3. Portion of magnetometer record showing micropulsations of
carth’s magnetic field. Record 15 contaminated with 60-cyele “noise™ .
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and may obscure significant characteristics in the spectrum of the popu-

——

lation. If we wish to examine frequencies as low as 0.5 Hz, the maximum

lag, m, in the correlation analvsis must extend over at least a 1-second
time interval. At the other end of the spectrum, if we wish to examine
frequencies as high as 30 Hz, we must sample the records at twice that

e

frequency, or 60 samples per second. At a sampling rate of G0 Hz, there
are 60 lags in a time interval of 1 second, therefore m 60, We have now

S

selected the range of frequencies of interest and the maximum lag number
m in the correlation analysis. It remains to determine how long a data
sample will be required to achieve the ordinate confidence we require.
Suppose we decide that 100 degrees of freedom is adequate. This means
that 90 percent of the time the estimated ordinate value will lie between

wpnp e

approximately 0.77 and 1.25 of the true spectral value for the population.
For 100 degrees of freedom and a lag of 60, we find that our required sam-

Ve g

ple length is 3000. We are now ready to carry out the spectrum analyvsis.
We will usually wish to express the spectral values as the variance of the
data per cyvcle per unit time. That is, if the record is recorded in seconds

|1

we will usually wish to express the energy as variance per cycle per sec-

s Ll

ond. This has been done in the sample shown and the resulting units
are (milli y)2"Hz.

‘umw”lu Hran

In geophysical problems, it often happens that the spectrum falls
off rapidly as we proceed toward higher frequencies. and it may in fact
drop several orders of magnitude within the range of frequencies analyvzed.

11 il["(‘ju,pnr] I
l

1t is therefore often convenient to plot log E as function of frequency.

il

= Alternatively, it may be convement to multiply each spectral value by its

1) b1 ]

frequency to obtain a spectral function with dimensions of variance and a
reduced range of variation. The spectrum can usually then be conveniently
plotted on linear paper without the undue suppression of spectral lines that

may occur at the higher frequencies. This is the method chosen for pres-
entation in figure 4.
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Figure 4. The product of power speuvtral density and frequency for the
magnetometer record shown in figure 3. The brackets indicate confidence
limits for 100 degrees of freedom in the analysis., Units of fE(f) are
L
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CROSS-SPECTRUM COMPUTATION

The power spectrum provides information about the frequency
content of a time series. Cross-spectrum analysis provides information
about the relationship between two or more time series in the frequency
domain, i.e., the coherence and phase lag. Goodman’ ¢ discusses the
theory and principles of cross-spectrum analysis. The multiple coherence
1s analogous to the multiple-correlation coefficient. In a two-parameter
analysis the phase lag is analogous to the intercepts of the regression
line of best fit in the correlation analysis. Just as significance levels
are required in a correlation analysis, confidence levels are also required
in cross-spectrum analvsis. This section will present some elementary
concepts of coherence and phase lag and present some examples in which
confidence levels are used.

Just as the power spectrum can be obtained by Fourier-transform-
ing the auto-covariance function, the cross spectrum is obtained by trans-
forming the cross-covariance function. If the cross-covariance function
is asymmetrical, both even and odd terms are required to represent it and
the cross spectrum will therefore be complex. Therefore

E. () - C - @ ~;1r-./‘ Ri: (D exp Gwt) dr
(16)

] ~ ~N
- -“-f R., (1) cos wrdT - il-f R, (1) sin wrdT

Now R,;(7) can be decomposed into a symmetric term and an antisymmetric
term as

R, (1) - R, + R, (7)) Ry(1) - Ry (1)
Y 2

- r4

a7

where the symmetric and antisymmetric terms are as shown schematically:

s i AL S S B

=
=
=
=
=
=
=
=
=
=

W

A A s

b
L

e




g

Bidd  Gmid Qe G

i
i
|
1.
Therefore @ -
r
Clw) = .2.f " Ry (T)‘+ Ry (-1) cos wrdT (18) 1
T Jo 2 i
1 m R, (1) - R, ¢ ) 1
Qle) = f pl = Rulom) G ae (19)
)=, 2 |
1
: The smoothed spectral estimates of C{(f) and @(f)} at h (corres- 1
ponding to frequency f = h-(2m AD) can be numerically calculated from
i
p-m=—1 %
-2 R+ S Bulp - RuCpl o omp) oo Tk (o)
y» 2 m m 1
p=1
i
D= nﬂz-—l :
Q(f) :2Af Z ng(p)"“Ru (Mp)<l t COS TlB)SinTl)Lh (2]) -
l 2 m m H
p =
i

‘e

When records 1 and 2 are identical R,; = K., = R,; is symmetrical
about 1~ 0, and C(f) becomes the power-spectral estimate while @ (/)

[

vanishes.
The phase relationship between frequencies in records being cross-
spectrum analyvzed is given by

tan wr = %&% (22)
w

while the cross-power is

lElzl V2. Q3 2.3
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. The coherence is defined as the square of the cross-power divided
) by the product of the powers in the two records being analyzed, or

coh () = (;;JPL’ (21)
' I

Coherence measures the fraction of the variance of one variable
(record 1) that can be specified by another variable (record 2) because of
phase coherence due to some direet or indirect association between the
records at frequency w. The coherence should vary only from 0 to 1, but

coherence quickly becomes unreliable if the degrees of freedom in the

= analysis are insufficient and mav even exceed unity if the confidence in
T the numerical analysis is low,

When more than two records are involved, multiple coherence can

be calculated with interpretations <imilar to multiple-correlation coceffi-

[T

cients. Multiple coherence will not be considered here.
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There is a subtle difficulty that appears when we work with data
of finite length. The problem is very well stated by Madden,® as follows:
“The cross-correlation of tico transients does not
Hdose any of the power of the transients, and this would ap-
pear to guaranice a coherency of 1. This difficully is over-
come by making the spectral window average together the
cross-power of a group of neighboring frequencies. When
the two noise signals are random to cach other, the phases
of cach [requency component are random, and a vector
addition of the cross-powers of a group of neighboring fre-
quencies tends to cancel. When the two noise signals are
coherent, the phases of cach frequency in the cross-power
are those of the phase spectrum of the linear operator
which generates one signal jrom the other. If tais spec-

trum is slowly varying as a function of frequency, the ad-
dition of neighboring cross-powers does not cancel oul.

This necessitates some care in cvaluating cohereney eosti-

e

mates If time delays are involved, or if very sharp frequency
structure exists in the relationship between the data.”’

The probahility of obtaining a particular coherence by chance

I

(the Tevel of confidence) must be specified if the statistical analvsis is
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to be considered complete. The confidence level implies a reliability
level for coherence. The probability density P of coherence has been
considered by Goodman’ and is approximately given by:

B B3 /12 .
Plcoht 2= CoW” %0 op) (1 ..conav/2)-2
Y vV
")z )

(25)
§ cob "T2(2 . h) (coh®)"

y 2
< Fe(hs1)

where coh® 1s the population coherence. Alexander and Volk!® have tabu-
lated the cumulative distribition of sample coherence as a function of the
degrees of freedom [v = (2N 'm) -- 0.5] and the true or population cohercnce.
Unfortunatelv. v ranges from 2 to only 21 in the tables. Population coher-
-ence ranges from 0 to 0.99. The true coherence is the coherence expected
from the population having v degrees of freedom. Figure 5 shows the cumu-
lative distribution function of coherence for 5, 10, 15, and 20 degrees of
freedom when the population coherence is zero. Figure 6 shows the cumu-
lative distribution function of coherence for population coherences of 0, 5.

10, 15, 20, 30, and 40 when v is 10. These data were taken from reference 10.

The probability P that phase will lie within a certain increment
Af s

| _ coh* 2 |
sm‘A9=—1—£hoT-[(l~-P)" Vv -ﬂl] (26)

Lo

()

Lot

Koiad

[NV

b

)

e gy Gl e

a R

A A

e 5. deeme




e
UTION

3

DISTRI

\
1

ATIVE,

CUMU

— vty e Gy e s mae e wee  wlt W e

e B s Eewp
3

0.5 0.6 0.7 0.8 0.9 1.0

SAMPLE COHERENCE (COHD

Frgure 5. The cunsulative distribution of sample eoherence as o function
of degrees of frecdon tor o population coherence of zero. (After Alexander

eind Yok see rets 10




CDISTRIBUTION

CUMULANTIVE

0 i1 0,2 0,3 0.4 0.5 0.6 n,7 0,8 1,9 1.0
SAMPLE COHERENCE (COID
Faogure 6. The cumulative disiribution of sienple cohercnee s Tt ton,

ol poputation coherence tor 10 degrees of frcedonm, CAGr Aexoiater and
Vok. sve ref, 10.)

(2N

Froyee

[T oo

Nuut--ﬁ—n—-h-i"l-ﬂu'-‘

Hile &

(il

vl




T g

e

e

NI

a

|

The limits for P - 0,95 are shown in figure 7 (taken from ref. 6).

1.0

(0.8

0.6

0.4

Figure 7.  Ninety-tive pereent confidence limits for phase angles
“as functions of degrees of treedom, v, Thus for v = 100 degrees

of freedom there are nincteen chances in twenty if coh® = 0.3 that

the true phase s within 0.25 radian of the computed phase.

(IFrom Munk et al.: see ref. 6.Y

Sample Problem Applying Cross-Spectrum Analysis to
Time-Related Functions

The electron density in the ionosphere is known to be controlled
primarily by the intensity of the solar ionizing energy. Aside from the
diurnal and annual variation, the clectron density varies with the sunspot
number which has a long-term -year cyele and a short-term 27-day evele.
A Ta-day or semitunar eyele has also been found. A study by Noonkester
was made to determine the behavior of two lonospherie lavers (K and )
at the 13- and 27-day periods. Daily measures of [ and [F represent the
variation of electron density at the I and I lovels. They were obtained

for 2722 consecutive davs and the annual evele was removed (see filtered




data in the sample record, fig, 2). The power spectrum and the coherence
spectrum were then obtained for [E and [F.

The power spectra of fE and jF showed a significant maximum
near a period of 27 days, but did not show any maximum near the 13-day
period. The power spectra of each quarter of the data showed that the 27-
day period was dependent on the portion of the records considered.

A coherence spectrum between [E and [F (fig. 8) showed that
they were related near the 27- and 15-day periods. The spectral estimates
have 42 degrees of freedom and are separated by 4x107° eyvcles ‘dayv. The
confidence limits cannot be determined from the tables of Alexander and
Vok® because these tables do not consider v greater than 21. However, an
cstimate of the significance level was made at a v of 21. The population
ccherence was assumed to be the average of the 125 estimates of coher-
ence in the spectrum. According to the tables, at 21 degrees of freedom
a coherence of 0.35 or greater has a probability of less than 0.01 of occur-
ring by chance. Certainly the coherence estimates in figure 8 at the 27-
and 15-day periods have a small probability of occurring by chance.
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The value of the coherence is shown in the above example. The
power spectra of f—E_ and f—ﬁ indicated that the amplitude of the 15-day
period was at the background noise level, but the coherence between these
variables indicated that they were related at the 15-day period. Although
the amplitude was small at the 15-day period, fE and fF varied coherently
at the 15-day period. This is equivalent to using phase coherence to ob-
tain a signal out of a noisy record.

According to equations 22 and 26, [E was found to precede [F by
1:2 days near the 27-day period within confidence limits of + 2.0 days 90
percent of the time. fE and [F were found to be in phase at the 15-day
period and within confidence limits of + 1.2 days 90 percent of the time.

Application of Cross-Spectrum Analysis to
Spatially Separated Recordings

In this application, we consider two separate records of a time-
varying function received at two spatially separated stations A,, A; shown
schematically in figure 9. The function might be generated by the steady
drift across the stations of a spatially varying medium perturbed by turbu-
lent processes; or it might be generated by a wave motion of significant
bandwidth propagating through the medium where the different frequency
components may propagate in different directions with different velocities.
Figure 9A shows the case for a single Fourier component of a wave struc-
ture propagating in the x direction. In figure 9A let 7, be the time lag
between the arrival of the wave crest at A, and A,. From cquations 22
and 23

Cle) = |Ey; ()] cos wTo (27)
Q(w) = IE12(CO)|Sin C\)Tu (28)

If 1, = 0, Q) = 0. If 7, is not zero, tan w7, = R(w)’ Clw) gives the
phase lag between the records corresponding to the distance of travel

A1, L sing. Since w QCm/MNV RV, tan| Cm. M(Lsin®)]. QN C(,

so the wavelength, A, and the average angle-of-arrival, 8 (see fig. 9\, can
be found as a function of frequency f.
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A, GEOMETRY OF WAVE TRAIN OF WAVELENGTH. A. PASSING
RECORDERS LOCATED AT A, AND A, SEPARATED BY A
DISTANCE L. THE LINE JOINING THE STATIONS MAKES THE
ANGLE 6 WITH THE v AXIS. o IS THEREFORE THE AVERAGE
ANGLE OFF PROPAGATION OF THE WAVE TRAIN WITH RESPECT
TO THE ORIENTATION OF THE RECORDER PAIRS.
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B. GEOMETRY OF TWO INTERFERING WAVE TRAINS WHOSE
NORMALS MAKE THE ANGLE oWITH THE x AXIS. THEY MAKE
ANGLES 6 * ¢ WITH RESPECT TO THE NORMAL TO THE LINE

OF STATION SEPARATION.
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The co-spectrum C(f) corresponds to the in-phase frequencies of
the spectrum, and the quadrature spectrum, @(f), corresponds to the out-
of-phase components. Since the cosine transform (co-spectrum) is an even

il

function, the corresponding correlation function must he symmetric. The

o 0o

correlation function corresponding to the sine transform (quadrature spec-

=

trum) is anti-svmmetric. Since the autocorrelation function is always

=
3
7
rur
=
E

svmmetric for a stationary time series, the corresponding quadrature spec-

v

trunm is always zero, and the co-spectrum is identical to the power spectrum.

ERRET

A cross-correlation function is, in general, nonsymmetric about 0, and
@{(f) is not zero. The argument w7, is then the phase lag between the two
records which were cross-correlated and represents the phase cross-spec-
trum between the records.
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The normalized magnitude squared of the cross-spectrum between
two records 1s called the coherence. It is sometimes stated that coherence
is like a correlation function representative of a frequency band in the
spectrum.  This can be a useful concept if used cautiously, but factors

T G R

that can reduce the coherence between records are now considered.

et |1t

Suppose we are receiving some signal at two recording sites
spatially seprrated. Suppose the signal is modulated by temporal changes
in the propagation medium and we wish to obtain information about these

[

LT

changes by examining the ccherence of the fluctuations in the two records.
The coherence will be degraded by

=
=
=
=
=
=
=
=
=

i

1. Random or noiselike phenomena such as turbulence in the
neighborhood of each recorder.

Anything that causes the same frequency to have a variable
travel time between the recorders such as a changing direce-

g

it i

tion of propagation during the sampling, or nonlincar processes

I

e

in wave phenomena.

3. Source or sink located between recorders.

4. The same frequencies coming simultaneously from different

e

directions as would be the case if wavelike phenomena in

the medium had a significant “bheam width™ or a distributed

ol

sonrce. Then interference between waves coming from

v
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different directions at the same frequency will *‘smear’’ the

phase difference between recording stations and reduce the
coherence.

The last mechanism is of both theoretical and practical interest and has
been used by oceanographers (i.e., Cox; see ref. 12) to study the ‘‘beam
width’” of ocean waves. The problem will now be formulated.

It is clear from the preceding development of the expressions for
the cross-spectra that the \/—c_(m is just the normalized modulus of
the complex cross-spectrum and the phase angle, wT,, is its argument.

Suppose now that waves of the same frequency arrive at the re-
corders from different directions, 6 + ¢, where 6 is the average direction
(sce fig. 9B). Let the co- and quadrature spectra represent the average
of spectral components over all directions of arrival. Then w T, = kL sin
(6 + )= kL(sin 8 cos ¢+ cos 8 sin ¢). Let x and y be the components of
L in, and normal to, the average direction of propagation, respectively.
Then from equations 27 and 28 we have

oy L fhe : .
Clw) = m./-—Aq> E.: (w,9) cos (kx cosgt kysing) d¢ (29)
1_[he

Q () :‘m ~ ‘PE“ (w,q) sin (kx cosg+kysing) do (30)

Now if we consider the coherence to be degraded only by the interference
of waves of the same frequency coming from different directions with dif-
fering w Ts, cquations 27 and 28 show thatlE,;l = E, E,. Furthermore, if
the wave structure is spatially homogenecous, E, (w, @) = E, (o, ¢) =
Elw,¢). IfE (w,9) is assumed to be uniform for ~A ¢« ¢ +Agpand zero
elsewhere it can be removed from the integral so that equations 29 and 30
give:

(C.iQ (w09 _ 1 (A9
(o) Sho -0

oxp |=ik(x cosptysinplde (3D

Thus coherence, equation 24, which is just the square of the cross-power
normalized to the auto powers, can be used as a measure of the ““heam
width™™ of wave components.

32
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An alternative concept of the dependence of the cross-power on

wave pattern is to define a ‘‘radiation pattern’’ F (g) of the recorder array.
Stated formally

F(¢)jE(w,@) dcpZIE( w,9) exp [~ik(x cosp+ ysing)ldo (32)
so that

/E(m.cp) exp [~ik(x cosp+ ¥y sing)ldo

[E(o;,q)) do

Fg) =

(33)

where E (w, p) is the directional spectrum of the radiation.
If, as before, E(w) is constant for —A ¢< ¢ < Aoand zero else-

where, E (w) can be removed from the integral and the limits will be ~A ¢
and A ¢ so that

Ao
F(Ag) = 2—-—2—(};/_Aq)exp [~ik(x cosp+ ysing)ldo 34

and we thus identify F(A¢)! withy/coherence by equation 31. Equation
34 can be written

Ag
[cos(ky sing) —i sin (kv sing)lexp(~ikxcos @) do
200/-89 (35)

But pwas chosen as the angle off the x axis so the integral of the sin
(ky sin ¢) function from —A ¢to Agis zero.
Therefore

b ¢
Flag) = A—l—j;) cos (kysing) exp(—ikx cos ) do (36)
P

A limiting case that 1s interesting to consider is that of a very

narrow beam (Ag- - 1.0), Then ¢is small and equation 36 is approximately

33
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Flag s - b9 J by (1-%)| d
¢ 2Aq> —Aq:u)b Vo exp | —1Rx ( —%) do

- exploiky) Bo [exp (ik@’)][exp(iﬂw) t exp (ihyel] 4o
2A9 Ay 2 2
. A(p .
- exp(—iky) RN A AR (7
4A 09 -Aq>e'\p{ 2 ( .\‘) (\) do ‘

1t

i ' gy f V2
e exp{—zl\.\[l +(1. z>(;)]

- Transforming variables so that v4+* - (2xAN@ 2y x)? and being careful in
rearranging terms according to appropriate limits, equation 37 can be
written as follows:

—

. Y
, ) {1’/:.\!1 +(1 2)<‘.)]] . “
e ' — [ cos = ridv / cos 2 vide
2 [£2 A <0 2 Jo 2
X ¢

(38)
'f( + - [ -
t sth= (2 dr +1 sin = 7 duv
0 2 0 2

which i1s the convenient form since the integrals are the Fresnel integral
which is commonly tabulated. To arrive at this form, note that both the
cosine and sine terms are even functions.

For station separation in the x direction only (stations located
along the direction of propagation) » is zero and the equation simplifies
to just two Fresnel integrals. The result is plotted as the black curves
corresponding to various beam widths, A g, in figure 10, Note that the

34
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left-hand scale is to be used and its great expansion shows immediately

that coherence falls off very slowly for separations along the direction of
propagation cven for fairly large beam widths.
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Figure 100 Dependence of y “cohorence ol recorder separation and 4 /

wavelength, xis separttion in the dircetion of propagation, VOIS

separation perpendicular 1o the dircetion of propogation.

IFor station separation in the v direction, x - O, (The line of
stations is then perpendicular to the direetion of propagation.) For this

case, it s convenient to return to equation 36 <o that with v 0, we have

|I"(A;))I —,\-I— /“ cos Uy sing? oy :3¢h

A D
[y 0



which for Ag-. . 1 gives

IF(A@‘I - |sin ky Agl (40

kyvio

Forao: - 1.0, ApZsinde so kA= k.= 2n A (see fig. 9. There-

fore the \7 coherence provides a measure of the dimension perpendicular

to the direction of propagation, i.c., the ‘long-crestedness’™ of the waves.

The \ coherence for separation in the v direction is shown plotted

as the white curves in figure 10 and the right-hand scale should be used.
~ It 15 immiediately seen that the coherence falls off much more rapidly (for

a given heam width) for station separation perpendicular to the direction
__of propagation than for separation along the propagation direction.

' The general situation when E(w) is independent of ¢ and A ¢ - 1.0
is summarized in figure 11 where the \ conerences for arbitrary direc-
tions of separation are shown for an assumed station separation of '

- L A \,'-‘2- -

The other limiting case that is interesting to consider is that of
nondirectional radiation (uniform in all directions) so that Ag= m. Then
we see {rom equation 39 that

‘F‘(}\{\')i -}—JJ{:W cos (kRysing) do|= !Jo”\“."" 4D

The v coherence then falls off with station separation (y - L) as the o, (ky)!
~eurve shown in figare 12, The coherence becomes negligible in all direc-
tions when the separation is about 0.4 wavelength,
I the recorders are located very near a large source region it is
ol nterest to consider the integral taken over the whole half-plane that

meludes tie source t-m 20 ¢ w20 Then

oy e = 1 cos thvysing) oxpl-ikacosgld (12)
| . , } PUE

NN T2

For separation along the vdirection v 01 the inte@al s again L, Gey)

sthcee on changing the vartable g to o0 where s 61 21 —g
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Figure 11, Contours of - coherence as angle between direction of

stiation separation and direction of propagation (x direction) 1s changed.
= Assumed station separation sy 2 wavelengths, Top, rigorous plot from
o cquation 3%, Bottom. corresponding plot from cquation 40 using only v
= component of separation. loxcellent agreement shows that coherence
depends almest exclusively on the conponent of station separation

= perpendiculin to the direction of propagation.
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Figure 12.  Dependence ni'\—i;)herence on recorder separation and
wavelength when the integration extends over all angles (isotropic
-~ —case). y coherence then decreases equally for all directions of
separation according to Jo (ky). When integration 1s over the whole
half-plane of the source, \ coh falls oft according to [F (kx|

for separation in the v direction and according to EP‘(/{\')! for
separation in the s direction.

T
Fky) = _1’-;/() cos (hycosy) dy = do(ky) (43)

i
|
'
-t b e e G SN e W G W M e A b el e

FFor separation along the v direction (v = 0)

[ L

i -T2 .2
Fihy) = ~ j cos (kyvcos o) do -~ ’—/ sinthycosglde 44
mJ-m2 LLIVARES ) P

By a transformation similar to that above (i.e., letting v = (7 2)-¢ the
first integral s

L T B U R
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1 7 , .
- / cos (hasiny) dy = J,thy) Ny
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b= - = S - . e ) ) . . ; . mpmarEiES, 0

The second integral is more complicated. Again transforming to a variable
ranging from limits of 0 to m,

1 T 2

™
sin (kxcos @) d:p:l/O sin (kxsiny) dy
it

T J-m/

The integrand sin (kx sin y) can be represented as a series (see, for ex-

| ample, ref. 13) so that =
i oc
H m ; m

= %-T,/O Sin(kainy)dy=% Z J,,Hl(k.x)jo sm[(2n+1)y]dy

:: n=0

:E% i 2 N 2 .

:f . n=0

- i[J, (k) + Lolhn) ds k) }
™ 3

9]
=
£ ‘ So for separations in the x direction F (kx) is simply evaluated from
=
L Flhy) = do(hy) = 3 1[.1,”&1—) k) dy () ]
s ™ 3 b)

) For kx - . 2 only a few terms are needed and the Bessel functions are
i— conveniently tabuiated in many places. F{(kx)! is shown in figure 12 for

i A L e L e i “ %\M%M

kx < 2.

Sample Problem Applying Cross-Spectrum Analysis to
- Spatially Separated Recordings

Figure 13 shows the configuration of an experiment reported by
Gossard and Paulson 4. Radio waves at a frequency of 44.3 kHz were
| reflected off the lower ionosphere and received at a triangle of spaced
receivers. The receiver sites are indicated by MW, OR, and GL and their
separations in kilometers are shown on the figure. It is assumed that the

"ih“hl!‘ w'"1"“I.!-1:||1!H!|5]-Hli'-i|-|,,m'llmﬂ - e A

39

e
plid

1
i




g —————————

§ f—~————

moverient of ionospheric irregularities in electron density causes a simi-
lar movement of the diffraction pattern of reflected radio waves received
at the surface of the earth. The observed movement of the diffraction
pattern is then compared with ionospheric wind measurements obtained by
photographing the drift of chemiluminescent trails produced by contami-
nants injected into the lower ionosphere by a gun-launched projectile!®
located near midpath.
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Figure 13, Perspective drawing showing geometry of multiple receiver
experitiont to measure movement of irregularitios ol electron density in
the 1onosphere. Length units in MW, OR. GL receiver triangle are kilo-
meters.  Transmitter i« near Sentinel, Arizona. Data are analyzed for
tonospheric wave motiols, Using cross-spectram techilque,
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Sample records of amplitude fluctuations observed at the three
receiver sites on 13 and 14 June 1966 are shown in figure 14, together

with height contours of the 500-mb pressure surface two days earlier. The
time lag is roughly in accord with the theoretical time required for energy
to flow from the troposphere to the ionosphere for typical atmospheric
wind and temperature distributions. Therefore it is of interest to inquire

whether the direction of propagation of the diffraction pattern and its
“"beam width'" are compatible with such a source.
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A cross-spectrum analysis of the records of the three stations
was performed, and it was found that the velocity of propagation of a
prominent spectral line with a period of 3.8 minutes was 47 mps toward
a direction 14 degrees west of north. The wave crests were therefore only
about 12 ° from alignment with the MW-GL line of separation of receivers.
The indicated coherence between MW and GL for this spectral line was
about 0.44. The wavelength of this wave component was 17 km and the
station separation was 21 km, so L "A= 1.24. Figure 10 shows that A g
is therefore about 0.3 radian so that the transverse wavelength is abhout
triple that normal to the crests. We therefore conclude that the direction
of propagation of the 3.8-minute spectral line is compatible with the ob-
served position of the tropospheric disturbance and the “*beam width™
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indicated by the coherence analysis is appropriate to an extended source
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Figure 14, Sample record of radio amplitude tluctuations (tep! produced
by wave motions in the lower onosphere. Radio froquency is 44.3 kHz,

time 15 MST . and amplitudes are normalized to the record average.
weather nap {hottom) shows height contours of the 300-mb pressure
surface twe days carlier. The white triangie shows the location of the

oxpernuental site.
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APPENDIX A: CONVENIENT NUMERICAL FILTERS

One of the simplest mathematical filters is a running average.
Consider the effect of a running average on the Fourier component

x:Acosgl! (A-1)

When the running average extends from — ¢,72 to + ¢ _/2 the average is
taken symmetrically about the maximum of a cosine curve, and we have
for the running average, ©

t, 2 -
f~if° cos 21 4 (A-2)
tq ~tg/2 T

Integration of (A-2) gives the filter response F(T) as

{
F(T) - ;%. sin E'F (A-3)
a

The power at each period T is reduced according to

t
F(D) ( L ) sin’(zﬁfi) (A-d)
i a

Figure Al shows F*(T) or the filter response of the simple running average
as the white curve. The high frequencies are suppressed but f2{(T) contains
large side lobes, the first of which has an amplitude of about one-tenth of
the main lobe. This filter is undesirable because side-lobe frequencies
would be accented in a speciral analysis.

A more desirable filter results from a triangularly weighted average

given by

(-7(-7 - )(‘()\ —t dt
= (A-D)
- L9
= I \
./0 (% - 1) dt
A-1
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with a filter response

e
F(T) = _21)’ sin? —2 (A-6)
i, 27T

F?(T) from equation A-6 is shown as the black curve in figure Al. The
function has smaller side lobes than that of the filter given by equation
A-4, but the frequency cutoff is less abrupt.

The low-pass filter (eq. A-6) can be used as a high-pass filter by
subtracting the filtered data from the unfiltered (raw) data. The response
of this high-pass filter is given in figure A2 calculated using A-7.

The filter can be written for digitized data as the right-hand term of the

t
following equation where ¥; = x; ~X and m = %(A_at_ - )

YiFXim= ¥ me1 Y Byt =Dy tmx t =D,y

(A-7)

Tt Uiimg +"i+m.1]

where i is the i-th value in the time series and m is the half-width of the
triangularly weighted averaging interval. The sample size is reduced by
2m (m points are lost both at the beginning and the end of the sample) and
the mean of the filtered data is zero. Other filters can be designed but
those given by equation A-4 or A-6 are convenient and adequate for

many purposes. _

The data shown in figure 2 were filtered using an m of 100 to
remove the lower frequencies. This filter reduced the amplitude of the
annual cycle of E to about 0.05 of its original value while leaving com-
ponents having periods less than 100 days essentially unchanged. The
filtered data are shown as the bottom record of figure 2. Because the
first and last 100 data values were eliminated by the filter, the raw data
extended 100 days before and 100 days after days numbered 0 and
180, respectively.

Examination of the filtered data in figure 2 clearly shows that the
higher frequencies are almost unaffected by the filter. The reduction in
the amplitude of the component having the period of the annual cycle is

A-3

|
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obvious but no obvious reduction is noted in periods of 100 to 200 days.

Analvsis of the filtered [—[:—, should not extend <o periods much :
greater than 100 dayvs. This study used a sample size of 2722 (days). =
For the Fourier component having a period of 100 dayvs, f_é has 27 possible j
cyeles in the record. Twenty-seven cycles are considered adequate and 1
are considered to be within the large sample category. £
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APPENDIX B: USEFUL FORMULAE FOR DIGITAL
COMPUTATION OF SPECTRA

Y |

Auto-Covariance:

i~ N-p
1 _ _
Ri (p) - ;:) Z (0, =X (a -3,
=1
where
i~ N-p {== N
- 1 ) - 1
X, = "\"-‘D .\I- X, \.’_-?[; z \l«' P
i1 (=1-p

Cross-Covariance Function:

- Nep
. 1 - =
R\ (p) = Ny Z X=X, =3y p
-1

where
i N-~p i=N ’
P ;\,_p A .VA\.—-,') 2. Fiwp
i=1 i=114p

Power Spectrum (per eyele per unit time):

p .m
172 for p-0, m
E() =4A18 2 R, (p) cos’”hwhereS,; P
m 1forQ "pm

p.0

/ o
Power Spectrum ¢lacludes Hanning filter window)(per cycle per unit time):

n fi:‘l
S R (l))(] oS IT—Q)(-”:,' M
lead .
J

m Hi

pol

3-1




Cross-Power Spectra: <
H
p-.m~1 .

(I ~COS -ﬂ)) Ccos Tﬂ-)lz
m m

t Rut=p)
D

=<

R..(p)
oo -2ar, . N R
! 2

p-1

p-m=1

Py - Ry, (<p) ,
QU -241 z I - Rulop (11—(‘05 "—p)slnﬂ e
2 m m

p-1 i

Bandwidth of Analysis: :
A= Rmap™? 7 *f

_ Highest Frequency in Digital Analyvsis (N_\'guistrfrequonc_v): R

,‘mux -2an™ :

_CH) @) s
—i.. .. Coherence (f) = _m

- Phase Cross Spectrum:

D
=
=
-
:

5

tanwt = tan 2 nfv=
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