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ABSTRACT 

The maximum strength of Initially imperfect, axially compressed, circular 

cylindrical shells has been studied with the use of Reissner's variation- 

al principle, von KÄrmän-Donnell shell theory, and a deformation theory of 

plasticity. The results of the present analysis reflect families of load- 

end shortening curves for long circular cylinders. For a given material, 

each curve relates not only to an imperfection parameter which provides a 

loading path into the inelastic range but PIGO to the radius-to-wall 

thickness ratio. Significant maximum strength reductions are obtained, 

relative to predictions based on linear-elastic theory, for specific 

materials in the range of radlus-to-thickness ratios of practical inter- 

est. 
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IMTRODUCTION 

For almost forty years, many investigators have attempted to resolve the 

discrepancy between classical theory and experiment for thin circular 

cylindrical shells subjected to uniform axial compression. Within the last 

several years, three comprehensive survey papers on shell buckling have 
12       3 

been prepared by Hoff ' and Stein , with the strongest emphasis directed 

to thin-walled, circular cylindrical shells in axial compression. Both 

survey authors attribute the discrepancy between the theory and experiment 

to the combined effects, in varying degrees, of pre buckling deformations, 

initial imperfections, and boundary conditions; yet, except for noting the 

possible limitation of linear elastic thoory, the quantitative effect of 

inelastic deformations on the initial buckling (maximum) strength of such 

shells is neither discussed nor estimated by either of the authors on the 

basis of the literature surveyed. However, in view of the experimental 

work of a number of investigators directed to initially imperfect, axial Ty 

compressed, circular cylindrical shells (see refs. ^,5,6,and 7)/ not only 

have Inelastic deformations been detected at buckling (maximum load) but 

they have been shown to reduce the load-carrying capacity significantly as 

a result. Further, several approximate analyses (refs. 4,7,8, and 9) have 

indicated the presence of inelastic deformations at initial buckling of 

imperfect shells. (The inelastic buckling of imperfect shells investigated 

by Lee  is noted here but not discussed further, as Interest Is being 

centered on shells which, in the absence of imperfections, would buckle 

only in the elastic range.) Since the circular cylindrical shell is a basic 

structural element in aerospace design and since its Initial buckling load 

is indeed its maximum load, a clear understanding of all of the factors 

influencing its Initial or maximum load under axial compression and the 

relative magnitudes of these factors is necessary. 

Now, in the case of plates compressed beyond the classical buckling load, 

it is well known that a unique load-shortening curve exists for all plates 

of a given material independent of width-to-thlckness ratio, is long as the 

material follows a linear-elastic, stress-strain law. However, a series of 
11 12 13 

analyses by Mayers et al. *    '    , leading to an essentially exact solution 

for the maximum strength of compressed rectangular plates, based upon 



von KÄrmän's large-deflection, strain-displacement relations, has shown 

that every plate of a given material, but different width-to-thickness 

ratio, compressed beyond the classical buckling load into the inelastic 

range, possesses a unique load-end shortening curve and, hence, maximum 

load. Similarly, existing von IfttrmÄn-Donnell-type elastic postbuckling 

analyses of axially compressed, long, thin cylinders indicate again a 

unique load-shortening relationship for all radius-to-thickness ratios. 

Now, as a result of the present study, families of load-shortening curves 

have been obtained for initially imperfect, long circular cylinders. 

Each curve for a given material relates to a particular value of the 

radius-to-wall thickness ratio and to an initial imperfection pattern 

which provides a loading path into the inelastic range, since the classi- 

cal buckling load for compressed cylinders, unlike plates, is never 

reached in reality. In the range of radius-to-thickness ratios of 

practical interest for both unstiffened and stiffened shells, significant 

maximum strength reductions are obtained relative to predictions based on 

any theory utilizing linear stress-strain behavior. 

The maximum strength behavior of initially imperfect, axially compressed, 

circular cylindrical shells has been studied with the use of a modified 

form of Reissner's variational principle  and the von Kärmän-Donnell 

strain displacement relations. In general, Reissner's variational prin- 

ciple not only permits the selection of the stresses independent of the 

displacements but also facilitates the incorporation of inelastic effects 

into the analysis. Confidence in the inelastic analysis based on 

Reissner's principle has been established herein by comparing the special 

case of the purely elastic solution with that obtained by Kempner 

through the use of the minimum total potential energy principle. A sim- 

ilar procedure was followed with respect to plates in the analyses of 

reference 13. With confidence thus established in the method of solution, 

inelastic, maximum strength, radius-to-thickness-dependent, load - she. ten- 

ing curves have been obtained for shells of different materials. To 

obtain the present maximum strength criteria for thin shells, the problem 

ig" investigated qualitatively and economically by using a beam-arch analog 

for the cylinder and quantitatively by analyzing the circular cylindrical 

shell on the basis of analog-generated trends. 
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GENERAL THEQR1 

STATEMENT OF THE PROBLEM AMD BASIC ASSUMPTIONS 

The problem considered is that of the maximum strength analysis of a 

long, initially imperfect,circular cylindrical shell. The solution for 

the shell maximum strength is obtained through the use of Reissner's 

variational principle modified to include the effects of nonlinear- 

elastic material behavior. No unloading in the nonlinear-elastic range 

is assumed to occur; thus, the terms nonlinear-elastic and inelastic are 

used interchangeably. The presence of unloading in the plastic range is 

investigated a posteriori,and the effect of unloading, if any, on the 

solution obtained is assessed in the discussion of the results of the 

analysis. To establish confidence in the inelastic analysis, the elastic 

solution for the postbuckling prob.'.em is extracted and compared vith that 

developed on the basis of the minimum total potential energy 

principle. 

As in the plate analyses of references 11-13, a two-element description 

of the shell cross section (Figure l) is used to avoid the complexity, due 

to inelastic effects, of integrating a nonlinear stress distribution 

throu^i the cylinder wall. The core separating the two elements is 

assumed to be rigid in shear, and the inelastic behavior (constitutive 

equations and yield criterion) is based upon simple deformation theory. 

Material compressibility effects in the inelastic analysis are assumed 

to be negligible; therefore, Poisson's ratio is taken as one-half when- 

ever the load-shortening relationship reflects nonlinear behavior. 

The von KÄrmÄn-Donnell strain-displacement equations for an initially 

imperfect, thin-walled, circular cylindrical shell are used in the 

present analysis. For the radial deflection-thickness ratio magnitudes 

involved in an initial buckling or maximum strength analysis of a thir 
o 

shell in compression, and in view of the findings of Mayers and Rehfield^ 

based on a more accurate nonlinear theory for thin shells, the use of the 

von Kärmän-Donnell strain-displacement relations is deemed Justified. 

mam 



BASIC EQUATIONS 

The von KdrmÄn-Donne 11 strain-displacement relations for the circular 

cylindrical shell are modified to include the effect of initial imperfec- 

tions. Initial imperfections, as defined herein, are deviations from the 

exact circular cylindrical shape of the shell which are present before 

any axial compression takes place. 

The total displacements of the shell can be expressed as 

^   - u 

=  V 

(1) 

where w is the initial radial deviation of the shell from its exact o 
shape and u, v, and w (see Figure l) are the additional displacements of 

the shell from the initial shape during the loading process. The mid- 

surface strain-displacement equations in terms of total displacements are 

2 
U'X + 2(wT,x 

1/2 
v'y 

+ 2(wT,y 

- w  ) o^' 

- w2 ) - 
w ) o' 

R 

rxy = u^  + v, 
y     x + WT,xWT,y "W   w 

o,x o,y 
(2) 

The curvature-displacement equations are 

K  a -w_    + w 
x     T,xx    o,xx 

T,yy 
+ w 

o>yy 

xy 
-w_    + w T,xy    o,xy 

(3) 

The total strains are given by 

6 
X 

= e' 
X 

+ ZK 
X 

e 
y 

= €' 
y 

+ ZK 
y 

rxy 
IB Y' + 2ZK 

xy 

VARIATIONAL PRINCIPLE 

(M 

The Reissner variational principle for prescribed surface displacement 
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(shell under controlled end-shortening) selects from among all states of 

stress and displacement which satisfy the boundary conditions of prescribed 

surface displacement, the true state of stress and displacement by requir- 

ing tha  satisfaction of the equation 

8U {j!ijr(axex+Vy +Vxy-F,)dv)   =0 M 

vhere the stress and displacement states are varied independently.    F', 

the stress energy density,  is a function of the stresses such that the 

stresses and strains are related by the constitutive equations 

e  = ^.     e   . g:     Y   = ^_ (6) x       55" y        ST V        3^ ^ x y xy 

For linear problems.. F' becomes the complementary energy density. The 

principle establishes the Euler equations, which consist of three equi- 

librium equations and three stress-displacement relationa, as well as the 

associated boundary integrals from which natural boundary conditions, 

if any, can be established. The Euler equations and  boundary conditions 

for the circular cylindrical shell behaving according to the von Kärmän- 

Donnell theory are developed in Appendix I. 

The stress energy density F' is defined, in general, as 

(7) 

From the secant-modulus deformation theory of plasticity,  for an incom- 

pressible material, the  "effective" strain can be written as 

eff>    =   -pJc2 + e2 + e €    +   -^ 
eff ^3- ¥ x        y        x y 4 (8) 

and "effective" stress as 

a 
"X fy T rxy 

e dof 
X     X 

+ 
V 

/    e da 
J     y  y 
0 

+ 
/ 
0 

y   dr 
'xy   xy 

I  2   2 2^ 
eff   V x   y   x y   xy (9) 
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vhere 

^ff    "   E8eeff 

and E    is the secant modulus of the uniaxial stress-strain curve of the s 
material.    For the present analysis, the uniaxial-stress strain curves in 

tension and compression are taken as identical.    Based upon equation (7), 

the incremental form of P' can be written as 

dF1    =    e der    + e dö   + Y   dx xx       y   y      'xy   xy (10) 

As shown in reference 11, the incremental quantity dF' can be expressed 

also in the form 

^ "" eeffd<Jeff (11) 

Therefore, 

p. ./ 
eff 

eeffdöeff (12) 

The Reissner functional is then expressed as 

eff 
u" " #'* 

e    + ö e    + T x       y y       xy 

r en 

■V -j eeffd<,eff)dV (13) 

With the introduction of the Ramberg-Osgood  three-parameter representation 

of a uniaxial stress-strain curve in the form 

eff   E     V E i 

the functional    U"   becomes 

U" = 

(IM 

o e    + cr e    + T   Y  • xx       y y       xyxy 
rqeff   , KE   ^eff^l^j 
|_  2E        n+1 \  E    /      JJ dV (15) 

1 

Consistent with the two-element description of the shell and after inte- 

gration over the thickness h, the result, as developed in Appendix I» is 

1. ■ 
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1 1, 

^//((^(?k*(^ 
0 0 

where co = x/L, € = y/2nR, and V = 4jttfLR. 

The total stresses and strains are written in terms of mldsurface and bend- 

ing contributions,as denoted by the primed and double-primed quantities. 

The subscript t refers to the top face and the subscript b refers to 

the bottom face of the two-element cross section. With the von Kirman- 

Donnell strain-displacement equations and the relations for the effective 

stress in terms of the primed and double-primed quantities, as expressed 

in reference 13, the Reissner functional becomes 

^=//l^[U,x+i(wT,x"Wo,x)] 

0 0^ 

If        .  ^  2 2    .      (wT " Vl 

+ -^[v,    + u,    + w_   wm      - w      w      ] Ex        'y        T,x T,y        o,x O,Y 

n c\ T" 

/rt"\ /(t"\ rt" rt" / T" v   "1 

(17) 
b    JJ 
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In consideration of the linear-elastic problem for a homogeneous cylinder, 

and with the bending stresses related to the curvatures through Hooke's 

law, a modified Beissner function (following ref. 13) is expressed in the 

form 

1 1 

^B // l rK + i(wT,x -Wo,w)] 

0 0    V 

if 1,2 2     ,       W-J^l 
E   LVV + 2(wT,y-Wo,y) R J 

0 0 

E 

T' 
+ _Sl[v,     + u,     + w_    w_       - w       w       ] 

E      'x        'y       T,x T,y        o,x o,yJ 

+ SÄ) t'-+ "^+ 2m"^-yy * 2(1-v)u?J} ^     tl6) 

mils modified form of Relssner's principle leaves only the displacements 

and mldsurface stresses as the variational quantities. As described in 

the next section, equation (l8) is used as the basis of correlation with 

Kempner's minimum potential energy solution (ref. 15) for the postbuckling 

load-shortening curve. 

METHOD OF SOLUTION 

Previous investigators (Cox , Tsien , and Hoff y) have approximated the 

postbuckling behavior of both axially compressed and uniformly hetted, 

circular cylindrical shells by analyzing various one-dimensional models. 

These models consist of a basic beam member supported by one or more 

springs whose load-deflection curves are chosen such as to force the models' 

load-shcrtening curves to provide the snap-through behavior associated with 

the postbuckling behavior of thin shells in compression. 

In the present analysis, a model consisting of a beam resting on a series 

of shallow sinusoidally curved arches, as shown in Figure 2, is selected 

8 
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to be the analog of the shell. The behavior of an arch under radial 

loading, shown In Figure 3, provides a nonlinear foundation for the beam 

so as to yield the snap-through behavior associated with axially com- 

pressed, cylindrical shells. The beam length is equivalent to the cylinder 

length; the arch length is taken as a circumferential wave length of one 

buckle. The spacing between arches is equivalent to the axial wave length 

of one buckle of the cylinder. The radius R of the cylinder is brought 

into the analog geometry through the rise parameter for circularly curved 

plates of small chord; that is, the maximum rise a  of the sinusoidally 

curved arch in Figure 3 is equated to the rise of a shallow, circularly 

curved plate through the relationship 

SHALLOW ARCH BEHAVIOR 

Ä2/8R. 

A Reissner functional for a shallow arch subjected to a prescribed uniform 

loading is 

EA J    IE   LV': 
. 1    2 

2    'l pJ      E L2    'yyJ 

I[(/M(?)2IM/A- (19) 

where    V" 

1 
P 

■ potential of the prescribed loading 

=    variable curvature = 
o^yy 

w  = initial shape 
o 

p  = uniform load 

DISPLACEMENT AND STRESS FORMULATIONS 

Functions for the displacements and stresses are chosen in the form 

w   a 

A 

m 

h = h 8in ^ 

v = 0 

• 



E E 

JL 
E 

1A . Jty 
- 8lH r*- h E (20) 

The use of a vanishing v-dlsplacement in conjunction with the modlfied- 

ReiBsner-prlnclple approach and the von KÄrtnän strain- displacement 

equations has been justified in reference 13 for plates. For the arch, 

with the kinematics described by a specialization of the von Karman- 

Donnell curved plate equations, the stresses and v  displacement can be 

determined from the first variation of the Reissner functional regardless 

of the Fourier-series representation for v. Thus, in the absence of any 

possible coupling of 0  and v in the strain energy, it is obvious that 

v can be equated to zero without any loss in generality. 

LQAD-DEFLECTION CURVE 

Substitution of equation (20) into equation (19^ with subsequent integra- 

tion over the arch length and variation with respect to the amplitudes of 

the displacements and stresses,results in three simultaneous equations for 

the determination of the nondimensionallzed displacement and stress param- 

eters for a, 0&,and ö... defined in equation (20). The simultaneous 

equations can be written conveniently in terms of only one of the param- 

eters (equation (60) of Appendix II); that is, 

.3  3fl2 .2 ^ fiik       lu  ,16x2 p (21) 

where 

1 = a/h 

T) 
«2h 

= 2   ao 

P EAV 

plot of   p vs.    i    is shown in Figure 3. 
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It is interesting to note that the single variationally derived equation 

above, for the case of a linear-elastic constitutive law (Hooke's law), 

reproduces exactly the load-deflection curve for a shallow arch constructed 
20 

by Timoshenko      from two equations derived from beam theory with midplane 

stretching effects included. 

BEAM-ARCH AMALOG 

The Reissner functional for ths entire beam-arch model, including the 

effects of inelastic behavior   and the use of the two-element   "escription 

for the beam and arch cross sections,  is written as 

üÄtlS    rY'ir   .is.        1 

4[i«'j-C(r)2+(?)2] 
K 

2(n+i; KH + (M ]) am 

a 

E ̂ |VH-W] 
0 

E 

K 
2(n+l) 

(22) 

where   q) = lr/\> "> = X
/^D' 

DISPLACEMEHT AMD STRESS FCRMÜLATIONS 

In addition to equation (20), expressions for the beam displacement and 

stresses are 
u ■ -ex 

F = Cf 

'' " E 

11 

mum 



0        0. 
r=F8in^ (25) 

where    e = prescribed end shortening.    The use of midsurface displacements 

involving no free parameters in conjunction with the raodif ied-Re issner- 

principle approach has been justified for plates and shells in references 

9 and 13 and Is demonstrated herein for the arch.    Thus, the stresses and 

w    displacement can be determined from the first variation of the Reissner 

functional regardless of any additional Fourier-series representation for 

u; therefore,  it is sufficient to describe   u   as    -ex. 

LOAD-SHORTEMINS RELATIONSHIP (ELASTIC PROBLEM) 

For elastic behavior,    K    is set equal to zero in equation (22).    As shown 

in Appendix II, substitution   of  equations (20) and (23) for the assumed 

stresses and displacements of the arch and beam, respectively,  into the 

total Reissner functional (eq.  (22)) for the analog, followed by integra- 

tion over one wave length in each direction and variation with respect to 

all free parameters, leads to five simultaneous equations which can be 

reduced by elimination to only two equations] that is. 

and 

i3 

l6B 
+ 1 +  ' 

These equations are solved in the following manner.    First, for given values 

of the parameters    eR/h,  \i,  r\,    and    5 ,    equation   (25)    is evaluated 

numerically for   |.    Then,  for the given parameter values and the corre- 

sponding    |*s,    equation    {2k) is  solved numerically to establish the 

relationship between   <JR/Eh    and    eR/h;    namely,  the family of imperfection- 

dependent load-shortening curves shown in Figure k. 

12 

. 



LQAD-SHQRTEMIMG RELATIONSHIP (INELASTIC PROBLEM) 

The inelastic behavior is studied by retaining the two terms multiplied 

by the parameter K in equation (22). To enter the inelastic range^ an 

elastic analysis is repeated at an end-shortening value which insures 

elastic behavior. The parameter values obtained are utilized as starting 

points for the inelastic analysis. A Newton-Raphson procedure is employed 

to establish the load-shortening curves for inelastic behavior with 

increasing values of the end shortening. Families of radius-to-thickness- 

dependent, load-shortening curves are then obtained for E, K, and n 

values corresponding to electroformed nickel (see stress-strain curve in 

Figure 5). Such load-shortening curves are presented in Figure 6. The 

thickness t of the homogeneous material is related to the distance 

separating the two faces of the model by setting the critical load 

of the two-element shell equal to the critical load of the homogeneous 

shell of given R/t. The resulting relationship between h and t is 

simply h/t = l//3. 

CIRCULAR CYLINDRICAL SHELL 

DISPLACEMENT AND STRESS FORMULATIONS 

The maximum strength of a long,circular cylindrical shell is studied for 

both the elastic and inelastic problems by enforcing the vanishing of the 

first variation of functionals given by equations (l8) and (17), respec- 

tively. The variations are carried out with respect to assumed states of 

stress and displacement, with the latter being kinematically admissible. 

The approach followed is that of prescribing the stresses and the radial 

deflection pattern in the same form as those formulated by Kempner . 

After a point on Kempnsr's elastic postbuckling curve is reproduced by 

the elastic results of the present analysis (K = 0 in eq. (22))^ confi- 

dence in the elastic analysis is established. The radial displacement 

in any one buckle of the shell is selected to be 

00 
«x __ ity ^ e    _ 2nx ^ .    _ 2ny, " ■ »U™ * ^oo* ? coB ^ + i,„cos |2 +. C0B -a:, A 20^ =02 (26) 
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The corresponding midsurface displacemeros would in general be taken as 

u ex + u sin ^ cos p 
x     y 

v = 

J= 
x     y 

However, the use of expressions for u and v involving no free 

parameters in conjunction with the modified-Reissner-principle approach 

has been demonstrated in references 9 and 13 and discussed earlier with 

reference to both the arch and the beam-arch analag. It has been shown 

that the stresses and radial displacement may be determined from the first 

variation of the Reissner functional, regardless of the values of u. . 

and v ., when the von Kdmnan-Donnell strain-displacement relations are 

used along with Fourier-series representations for both displacements and 

stresses. Thus, it is once more concluded that and can be ^ij 'ij 
equated to zero without any loss in generality; the midsurface displace- 

ments become simply 

u = -ex 

v = 0 
(S?f) 

(23) 

The rationale underlying the utilization of midsurface displacements 

reflecting no free parameters in references 9 and 13 as well as the present 

work is simply the realization that either nonexistent or very weak cou- 

pling exists between free midsurface stresses and displacements in a 

Reissner formulation,depending upon the degree of nonllnearity in the plate 

or shell kinematics being employed. 

The simplification of the expressions for the midsurface displacements 

involving no free parameters permits the equilibrium equations in the x 

and y directions to be satisfied independently of the magnitudes of the 

free stress coefficients. 

The inplane stresses, in addition to the average axial stress, consist of 

the Fourier harmonics found in Kempner's stress function (ref. 15) and are 

expressed in the form 

111 
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JE.. s 
E (_E + AiiC08rC08A     -22 

x y 
? + ^ 4jrv 

COB i~ cos «--*• + 9A,,  COB i— • r 
X 

nx 
N 
X 

3^ + cos ^ + A31 

y 

3Jtx ity      |, . 2ity   j 
cos ^ cos ^ + U^ cos ^ 

x y y   J 
(29) 

ja E -H ["^ sin ^ sin ^ + 4A_ sin fH 8in ^ + 3. r 
X 

22 
2«x r 

X 
—ein r- ^ oAi38in r 

sin F * "31 ^ F Sl" ^ X J 
(30) 

/= -^LcosHcos^+iiA^ 
L x y 

COS  s—^  COS !—«-   +  ^^   COS 
2Jtx 
K 
X 

nx 3ity 
rC087r 
x y 

+   9A-,    COB r-~  cos 3nx 

y 
%+ ^0 - Is] 

y x J 
(31) 

It is noted that the variable coefficients in a'/E,  T" /E, and a1/2 x' ' xy'       y' 
are the same. This equivalence is established automatically from the 

satisfaction of the inplane equilibrium equations in the x- and y-directions, 

respectively, prior to employing the variational principle, because the dis- 

placements u and v in equations (27) and (28) are not arbitrary. 

Now, instead of relating the bending stresses to the curvatures through 

Hooke's law, they are selected in the form of the curvatures, but with 

arbitrary coefficients, and are written as 

nx   ny        2nx        2ny 
all C0S T C08 X + a20 COS — + a02 cos TT x    y x y 

[• 

nx   ny j ,     2nx   . 
bll C08 r COS A + b20 C08 — + b02 C08 X x    y x y y J 

T 
JS: 
E 

u \ d^, sin x—  sin -*■ 
x ?] v -J 

(32) 

(33) 

(3l|) f- 

The Justification for this assumption is established in references 9 and 

13 through comparison of results with those of well-known, essentially 

exact solutions for postbuckling analyses of shells and plates, respec- 

tively. 
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Because of the periodic nature of the assumed expressions for the nonunlform 

stresses and displacements, the boundary Integrals derived on the basis of 

the Relssner varlatlonal principle In Appendix I can be reduced to 

/ 
0 

/ 

tf'dx    = 0 for any   y (35) 

T'dx = 0 for any    y (36) xy 
0 

2«R 

2nR ii J    ^x^= "0 for any x (3T^ 

It can be seen immediately that expressions (29), (30), and (3l) for the 

stresses satisfy the Integral conditions (35), (36), and (37). 

IHITIAL IMPERFECTION PATTERN 

21 In a recent report by Tennyson and Welles , the authors note that the 

first terms to be observed experimentally at the inception of buckling are 

those described by the combination of an asymmetric plus an axisymmetric 

term. Moreover, from their analysis of free vibrations of thin-walled 
22 cylinders, Mayers and Wrenn  point out that for finite displacements of 

the order of magnitude of the shell thickness, the minimum energy is 

related to a slightly "modified-chessboard" radial deflection pattern 

given by the same harmonics as those in reference 21. It is conjectured, 

therefore, that in view of the random nature of Imperfections in thin 

shells, a reasonable imperfection shape to which the shell might be partic- 

ularly sensitive is 

w^hf^ cos^cos^+^0 cosfH| (38) 
L  o    x    y    0    x J 

LOAD-SHORTENING RELATIONSHIP (ELASTIC PROBLEM) 

To establish the all-elastic, load-shortening curves for the circular 

cylindrical shell, a stationary value of the Relssner functional U" with 

respect to the free parameters i    ,  A , and cf/E    is sought (see Appendix 
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III). The set of equations established from the vanishing of the first 

variation is reducible to four equations in the four unknowns o/E, g,,; 

| -^ and 50p. This set of four equations is then used to construct the 

imperfection-dependent, elastic load-shortening curves presented in 

Figure 7 for n = 1 and t]  = O.it-5. These equations are used also to 

reproduce a point on the Kempner load-shortening curve for n = 0.3899* 

t]  = 0,226, eR/t = 0.4, and A = 0.0 as a means of establishing the 

accuracy of the analysis. 

LQAD-SHQRTEMIHG RELATIONSHIP (IKELASTIC PROBLEM) 

In the inelastic problem, the load-shortening curve for the circular 

cylindrical shell is obtained by finding the extrema of the following 

functional: 

U"  U" .,  .,   IK - = w elastic - - j^. rjff 
0 0 

n+1 n+l- 

(39) 

which consists initially of 17 free parameters. 

The additional free parameters over the four required for the elastic 

solution appear because the bending stresses, even though taken in the 

form of the curvatures, require seven additional free parameters when the 

deflection function is as given by equation (26),' further, the six mid- 

surface stress components, A. , cannot be eliminated in terms of the 

I . and cr/E because the inelastic contribution to the total Reissner 

functional, which contains the £.  and cr/E, requires that the extrema 

of equation (39) be found numerically. As a result, equation (39) is 

written in terms of the 17 free parameters ?!;52^3^11^22^13^13^02' 
A20,ail,a20,a02'bll,b20,b02,dii' and ff/E' The double integral in equa- 
tion (39) is evaluated numerically by a Newton-Raphson iteration technique, 

and maximum-strength, radius-to-thickness-dependent, load-shortening 

curves are obtained for three kinds of materials: 2024-T3 aluminum, 

electroformed nickel, and electroformed copper. Except for the radius- 

to-thlckness ratio, the parameter values used are the same as those taken 

for the elastic analysis which is applicable to all values of R/t. A 
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unique load-shortening curve (independent of R/t) for all-elastic 

analyses is typical of solutions based on the von Kivm&n theory for 

plates and the von Rärmän-Donnell theory for shells  (see, for example, 

refs. 1, 2,  3, and 13). 

RESULTS AND DISCUSS!ON 

The maximum strength of initially imperfect,  axially compressed,  circular 

cylindrical shells has been studied through the use of modified forms of 

Reissner's variational principle,  in conjunction with the von Kärmän- 

Donnell theory and a deformation theory of plasticity.    Maximum-strength, 

radius-to-thicknes8-dependent, load-shortening curves have been obtained 

for three different materials,utilizing both a beam-arch analog to represent 

the cylinder and a two-dimensional analysis of the circular cylindrical 

shell itself.    The fundamental materials considered are nickel and copper, 

in view of the fact that most of the experimental work carried out in 

recent years to study imperfection sensitivity relative to axial compression 

loading of carefully manufactured (electroformed) shells has dealt with 

these materials.    Results are presented also for 2024-T3 aluminum shells, 

since design practice reflects such a more conventional material. 

BEAM-ARCH AKALOG 

With the use of the beam-arch analog, maximum-strength, radius-to-thickness- 

dependent,  load-shortening curves have been obtained that represent cylin- 
ders with material properties corresponding to electroformed nickel.    For a 

given imperfection amplitude, the load-shortening curves for  electroformed 

nickel reflect a radius-to-thickness dependence of significant magnitude, as 

depicted graphically in Figure 6.    The upper curve represents the results 

of an all-elastic analysis.    The family of curves belOT; the purely elastic- 

analysis curve is obtained by incorporating Inelastic effects into the 

variational principle,   using the stress-strain curve of Figure 5 and per- 

turbing from the original elastic-sclutlon parameters established in 

developing the all-elastic behavior curve.    It is noted that for   R/t = 300 

and   & = 0.1, the reduction in maximum load from the maximum load obtained 

in the purely elastic analysis Is l6^.    Also,  for this arbitrary case,  it 

may be seen that for a sufficiently "thin" shell, say,    R/t > 1000,  the 
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inelastic analysis reflects the absence of .'.nelastic strains and coalesces 

with the unique elastic analysis result (aT I R/t). 

CIRCULAR CYLIMDRICAL SHELL 

For circular cylindrical shells, maximum-strength^  radius-to-thickness 

dependent, load-shortening curves have been obtained utilizing stress- 

strain curves representing several different materials.    The survey papers 
12 3 of Hoff '    and Stein    indicate that a number of investigators have achieved 

unusually high buckling stresses relative to the classical stress by 

performing exacting experiments on very carefully fabricated specimens. 

The results of these investigators are included in Figure 8, along with a 

band encompassing the myriad tests performed prior to i960.    The source of 

the band is an indication of the significant discrepancy and scatter that 

existed betveen experiment and classical theory over a period of about 

30 years. 

Above the upper bound of the scatter band, results are shown for the veiy 
23 5 

specialized tests carried out by Babcock and Sechler , Horton and Durham , 
21 24 

Tennyson and Welles , and Almroth et al.  The Babcock and Sechler tests 

were performed on electroformed copper cylinders, the Horton et al. and 

Almroth et al. tests were performed on electroformed nickel cylinders, 

and the Tennyson and Welles tests were performed on a series of spun-cast 

plastic cylinders. In each instance, relatively small cylinders were 

involved, and the control of any irregularities in the shell geometries Is 

obvious due to the fact that the classical load is approached within 10 

percent on one end (R/t = IOO) and 25 percent on the other (R/t = IOOO), 

which is well above the upper bound of the scatter band for much larger 

shells fabricated in accordance with common shop practices over several decades. 

From Figure 8, it would appear that the Almroth et al. and Babcoik and 

Sechler electroformed nickel and copper shells are the most imperfection 

sensitive; thus, these particular materials are of analysis interest. The 

uniaxlal stress-strain curve utilized in the analysis of the electroformed 

nickel shells has been presented previously as Figure 5> in conjunction 

with the inelastic beam-arch analog leading to the load-shortening curves 

shown in Figure 6. Now, with this stress-strain curve, the cylinder 

analysis yields the load-shortening relationships presented in Figure 9« 
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The results show that for n ■ 1 and A = 0.1, the reduction from all- 

elastic behavior to the R/t ■ 300 cylinder Is about 25 percent. It Is 

noted then that (l) Inelastic deformations can be present in cylinders 

which if perfect would buckle at the classical elastic load and that (2) 

the phenomenon of inelastic deformations produces a significant R/t-depen- 

dence of the load-shortening curve for a cylinder of a given material and 

imperfection parameter. 

The family of load-shortening curves shown in Figure 9 is related to only 

one value of this imperfection parameter. However, for usual allowable 

design tolerances, imperfections for cylinders corresponding to large 

radlus-to-thickness ratios would be expected to be "effectively" greater 

than those of cylinders corresponding to relatively small radius-to- 

thiclmess ratios. Therefore, the radius-to-thickness ratio» are corre- 

lated to reasonable imperfection parameters (namely, the average values 

of the scatter hand for practically fabricated shells of Figore 8) to 

establish the imperfection parameter as a function of R/t; the ensuing 

load-shortening curves are shown in Fisure 10. 

Each set of curves for various R/t values in Figure 10 is related to a 

given imperfection parameter; the imperfection parameter increases as the 

radius-to-thickness ratio increases. Clearly, as should be expected, 

cylinders corresponding to large radius-to-thlckness ratios (for example, 

R/t ■ 800) possess lower maximum loads than cylinders of significantly 

smaller radius-to-thickness ratios (for example, R/t ■ k-OO).    This 
25 

phenomenon has been demonstrated experimentally by Kanemitsu and Nojima 

and Weingarten et al.  it may be seen from Figures 9 and 10 that as the 

radius-to-thickness ratio decreases, the effect of inelastic deformations 

increases. In Figure 10, the load-shortening curves for R/t ■ kO0}  600, 

and 800 depart significantly from the elastic curves for the same imper- 

fection amplitude, ranging from about 8 percent for the thinnest cylinder 

to 25 percent for the thickest cylinder, which Is still relatively thin 

by design standards. It may be noted also that cylinders of different 

geometries may exhibit the same maximum load as shown in Figure 10. A 

cylinder of R/t ■ 600 and A = 0.1 has essentially the same maximum load as 

a very thin cylinder (that is, R/t >. 1000) and A = 0.16. The maximum load 
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of the first cylinder depjnds not only on the Initial Imperfection ampli- 

tude but also on local yielding of the material, whereas the maximum 

load of the second cylinder depends only upon the relatively large Imper- 

fection.    This   Is attributed to the fact that bending predominates and 

prevents the development of membrane strains which are of sufficient 

magnitude to combine with the bending strains and cause local yielding 

of the material.    As a result, the total effective stress remains well 

below the yield point of the uniaxlal stress-strain curve for the materi- 

al,   and essentially elastic behavior governs. 

Now, it is essential to study more closely the actual nickel and copper 

cylinder tests reported by Almroth et al. and Babcock and Sechler for 

cylinders of about R/t = 850 and 890, respectively.    The stress-strain 

curve for electroformed copper is shown in Figure 11; the corresponding 

stress-strain curve for electroformed nickel appears in Figure 5«    With 

the fit of the appropriate imperfection parameters, the maximum strengths 

produced by the cylinder inelastic analysis are shown in Figure 12.    The 

results are obtained on the basis of equal buckle wavelengths (p = l) 

and imperfection amplitudes    (A = 0.02).    When it Is assumed that the 

materials behave in linear elastic fashion,  the cylinder analysis predicts 

maximum strengths some 10-lU percent higher.    In other wordsf the rela- 

tively high ratio of o/<3ci reached in the careful tests on carefully 

fabricated cylinders could have been higher and closer to the classical 

theory results reported by Stein . had the materials behaved in ■perfectly 

elastic fashion. 

It is believed that sufficient theoretical evidence has been given, 

in consideration of the results of the recent experimental references 

presented, to reach the conclusion that inelastic deformation should 

not be excluded from initial buckling or maximum strength analyses. 

However, electroformed nickel and copper are not typical of practical 

construction materials.    Thus, attention is next directed to aluminum, 

the most common material utilized in aerospace construction.    For 

analysis purpose,  the stress-strain curve of 2024-T3   aluminum alloy 

(Figure 13)  is utilized.    The resulting load-shortening curves are 

shown on Figure Ik.  Surprisingly, the behavior of 2024-T3   aluminum 

21 



cylinders In the maximum strength analysis is markedly different from that 

of the electroformed copper and nickel cylinders. The separation of 

the load-shortening curves as a function of R/t does not begin until 

the R/t ratio reaches the neighborhood of 200. In fact, appreciable 

reduction in maximum strength does not occur until a radius-to-thlckness 

ratio of about 100 is approached. Obviously, there is an effect of the 

nature of the stress-strain curve on the sensitivity to inelastic effects 

at a given R/t ratio. Aluminum and other conventional materials exhibit 

much sharper knees of the stress-strain curve, and this can be noted 

quickly from the exponent in the Ramberg-Osgood stress-strain curve 

representation. Whereas the electroformed copper and nickel stress- 

strain curves reflect exponents of 3, aluminum and most other conventional 

aerospace metals reflect exponents of 9 or greater. One exception is 

stainless steel; the uniaxial stress-strain curve is represented quite 

accurately by an exponent of 3. 

Little comfort can be taken from the fact that the 2024-T3 aluminum 

shells exhibit purely elastic behavior in the range R/t > 300. Regard- 

less of choice of conventional structural material, thin shells for 

resisting compression loads are utilized either in orthotropically 

stiffened or sandwich forms. As pointed out by Hoff , such shells 

possess "effective" R/t ratios as small as 50. Hence, maximum 

strength determination for such shells should be based on analyses 

such as the one described here, which can account for the presence of 

Inelastic deformaticns. It should be noted that for "effectively" 

thick shells, initial imperfections would tend to be minimized and the 

effects of inelastic deformation maximized. In reported compression 

tests on large design-scale sandwich and orthotropically stiffened shells 

(refs. 26, 27, 28), in the range (R/tEffective» ^5-220, maximum calcu- 

lated stresses indicate inelastic deformations at maximum load. The 

family of curves presented in Figure Ik  illustrates the reduction in 

maximum load due to plasticity of "effectively" thick compressed shells 

of 2024-T3 aluminum; the uniaxial stress-strain curve is shown in 

Figure 13. For R/t ■ 60, the reduction in maximum strength due to 

Inelastic considerations is about 33^. It should be further noted that 
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the imperfection parameter value (A = O.l) would probably be smaller 

in practice for shells of effective R/t s 100; thus, it would be expected 

that at higher average stress level ratios, o/acl> tlie percent of raduc- 

tlons in maximum strengths due to inelastic effects should be greater than 

those shown in Figure Ik.    A particular curve of Interest '.n Figure Ik 

is that for R/t ■ l6T. This load-shortening curve represents the analyt- 

ical prediction for a 202ii-T3 aluminum teot cylinder of HASA (reference 

28) with the cross section shown in Figure lh.    The imperfectfon 

parameter, A = 0.1, is taken from the average value of the scetter band of 

Figure 8 for R/t = 167. In this case, little effect of plasticity is 

seen. However, for R/t ■ 167 and a 2024-T3 stiffened aluminum cylinder, 

the buckling mode is still representative of thin-cylinder behavior. 

A photograph of the buckled test cylinder (see Figure 15) clearly shows 

the "diamond" buckle pattern typical of thin cylinder behavior in the 

presence of initial imperfections. An efficient stiffened 202^-13 

aluminum cylinder would appear to be one of lower R/t than 167, with 

resulting smaller imperfection amplitude and increased sensitivity to 

Inelastic deformations. 

Finally, for the results obtained herein,based upon a simple deformation 

theory of plasticity with no unloading mechanism provided, the occurrence 

of unloading, if any, within a buckle must be assessed. In the case of 

each shell analyzed, monitoring the numerical calculations for the 

effective strain at a point, as the end shortening increased incrementally, 

indicated that no detectable unloading in inelastic regions of a buckle 

occurred as the maximum load of the shell was approached. Therefore, 

the initial assumption that the present maximum strength analysis could 

be undertaken on the basis that the material is of a nonlinear elastic 

nature was indeed valid. 

COKCLUDIMG REMARKS 

The study of the maximum strength of initially imperfect, axially com- 

pressed, thin-walled, circular cylindrical shells has been undertaken to 

determine the effects of inelastic deformations on maximum load-carrying 

capacity to establish, as was found to be the case of compressed flat 

plates, the degree of geometry dependence of load-shortening curves for a 
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given material. Indeed, the load-shortening curves obtained in the 

present analysis for the inelastic "behavior of shells reflect signifi- 

cant radius-to-thickness ratio dependence. A family of load-shortening 

curves, each corresponding to a different value of radius-to-thickness 

ratio, is shown to result for a given material and a specific initial 

imperfection amplitude. The significant spread between the load-shortening 

curves in any family of such curves is a new result in application of the 

von Karman-Donnell strain-displacement relations, which sheds further 

light on a problem whose satisfactory solution has eluded investigators 

for decades. The actual solution has been carried out with the use of 

the von Karman-Donnell formulation and a deformation theory of plasticity 

in conjunction with a modified form of the Reissner variational principle. 

In view of the results obtained for shells corresponding to experimentally 

studied electroformed copper and nickel shells of relatively high geomet- 

ric accuracy, it must be eoucluded thft  initial imperfections cannot 

be considered the only significant cause of such shells' failing to 

develop their classical buckling stresses. Further, the presence of 

inelastic deformations and the nature of the nonlinearity of the 

material stress-strain curve for a given shell cause considerable scat- 

ter in maximum strength results for cylinders of the same R/t ratio. 

Thus, it ifi reasonable to conclude that inelastic deformations, along 

with inital imperfections, prebuckling deformations,and boundary condi- 

tions (factors previously established to be important), must be considered 

in determirircr the maximum strength of thin shells, especially those 

with small t moderate initial imperfections. Such imperfections would 

be representative of orthotropically stiffened and sandwich shells in 

aerospace vehicle designs. The more efficient stiffened or sandwich 

shell would appear to be one in which elastic buckling would take place 

except for the presence of some degree of imperfection which precipitates 

bending with inelastic deformations. These two effects, coupled with 

prebuckling deformations and boundary conditions, should make optimization 

procedures more meaningful. 

A beam-arch analog developed to represent a circular cylindrical shell 
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and the shell Itself have been used to establish the load shortening 

curves presented. The analog is Introduced to establish qualitative 

trends and to achieve economy in computation for what must be considered 

to be an extremely complicated problem in the nonlinear analysis of thin 

shells. 

i: 
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Figure 1.    Circular 
Cylindrical Shell With Two-Element Cross Section. 
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Figure 2.    Beam-Arch Analog for Circular Cylindrical Shell.     (Pure 
Diamond Nodal Pattern Shown for Illustrative Purposes 
Only.    Shell Analysis Is Based on Ovalized Deflection 
Pattern,) 
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Figure 3. Load Deflection Relationship for Snap-Through Buckling of 

Shallow Arch. 
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Figure k,    Load-Shortening Curves for the Beam-Arch Analog Obtained 
for Elastic Behavior. 
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Figure 5.     Stress-Strain Curve for Electroformed Nickel Utilized in 
Present Inelastic Analyses. 
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BEAM-ARCH ANALOG 

€ = (r/E+K((r/E)n 

ELECTROFORMED NICKEL 
K = l.22xlO^   n = 3 

I 
Figure 6.    Family of Radius-to-Thickness-Dependent Load-Shortening 

Curves Corresponding to a Particular lorperfection Parameter 
for Electroformed Nickel Beam-Arch Analogs. 
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1.0 CIRCULAR CYLINDRICAL SHELL 
M=l 

'cl 

Figure  7«    Load-Shortening Curves for  a Circular Cylindrical Shell 
Obtained for Elastic Behavior. 
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cl 

CIRCULAR CYLINDRICAL SHELL 
^=1    A = .l 

€ = or/E + K((r/E)n 

ELECTR0F0RMED NICKEL 
KSI.22XI05    n = 3 

ELASTIC 

INELASTIC 

R/t = ALL> 
R/t=900> 
R/t = 6( 
R/t=300 

Figure 9. Family of Load-Shortening Curves for Electroforraed Nickel 
Circular Cylindrical Shells. 
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CIRCULAR CYLINDRICAL SHELL 

€ = o-/E + K(a/E)n 

Figure 10. Families of Radius-to-Thickness-Dependent, Load-Shortening 
Curves Corresponding to Different Imperfection Parameters 
for Electroformed Nickel Circular Cylindiicel Shells 
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Present Inelastic Analyses. 
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Figure 15. Buckled Stringer Stiffened, Circular 
Cylindrical Shell. 
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APPENDIX I 

EULER EQUATIONS AND BOUNDARY CONDITIONS lERIVED FROM THE 

REISSNER FUNCTIONAL FOR A CTtLIHIER WITH PRESCRIBED END SHORTENING 

The Reissner functional in the absence of prescribed surface loading Is 

defined as 

U" = /// (cr e + ö e + T Y  - F'^V 
JJJ      xx       y y  xyrxy 
V 

C^o) 

The strain-displacement relations of von Karman-Donnell theory, modified 

for the two-element cylinder of Figure 1 and including initial radial 

deformation effects are 

IP Vi 
e = e*  ± e" = u,    + ;r w,    + w      w,     ± r- v, 
xt ^        x        x x     2    'x       o,x   x      2     xx 

yt;b       7       y        ,y     R     2    'y        o,y    'y*2w, yy 

Yw     = y'    ±7"    = u*    + v,    + v, v,    + w     v,    + w     w, xyt b     xy      'xy       'y       'x       'x 'y       o,x 'y       o,y 'x 

± hv, 
xy (kl) 

The stresses in terms of midsurface and bending components are 

or = o' ± a" 
X.    , X X t,b 

J = or'  ± a" 
yt,b        y        y 

r = T'    ± T" 
xyt;b     xy       xy (42) 

For the tvo-element section, equation (^0) becomes 

h3 



L 2«R 

U" « t 
// 
0 0 

o   e     +ae      +ae     +ae      +T       y 
xt\     W     yt yt     yb yb     xyt  xy- 

+ T      j        _  (p' + F') I   dxdy 
xy,   xy       x t       b' ' 

t 

(1^3) 

Then,  in view of equations (hi) and (^-2), equation (U3) may be written as 

L 2jtB 

+ (a       +0     Wv,     +TrW,     +w       w,     -^1 
\ yt     ybj I   y   2   y    0'y y   R J 

+ /T    + T   \ru>  +v»  +w,w, (   xyt       xy^J        'y        'x        'x 'y 

+ w      v,    +w     w,    1+/(J      -a    \\ 7: W,xx1 

The average stresses and the bending moments are 

of.'. = -(0 + 0„ ) 
t 

X   c       *,_   X, 

o' = i(o + a ) 
y  2 yt  yb 

T1  = ^(T    + T   ) 
xy  2X xyt   xyb 

x     f 2V x.  x,     f x 
t   b 

M  = -t £(ct - a ) = -t„hö" 
y    f 2 ^t  yb    f y 

M  = t £(T  - T  ) = t-hr" 
xy   f 2V xyt  xyb

/   f xy 
(^5) 
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Substitution of equation (^5)  into equation (hk) gives 

L 2«R. 

U" = 2t. •x' • J J       1   xv  'x      2    'x        o,x 
0 0      ^ 

+ crlv.    + TT w,    + w      w,     - ■■-) 
yv   'y      2    'y        o,y 'y      R' 

+   T1    (v,       +   U,       +  W,   W,       +  W W,    +  W W,    ) xy      x        'y x 'y        o,x 'y      o,y 'x' 
M M M 

2tf    'xx      2tf    'yy     tf      'xy 

With cognizance taken of the fact that 

BF'  = l^- 6a    + — 6a   + 1^- 6T do        x      äa,r     y     dT_r      xy 

'•) 
dxdy 

or 

xy 

OF'  = IT- 6a'  + iS- 8a' + S- 8T 
35^     x     doj    y     drj;     xy 

+ I— 6M   + S- 6M   + ilr- &M 

air   x   air   y   awn;   xy 

W 

then the vanishing of the first variation of U" with respect to 

V ay' ^xy' Mx' My' Mxy' u, v' and w re<iuires that 

6U" = 2t, 

L 2itR 

//   (8o;K + iw'x+w'xwo^ 
00    Vw 

c   1/ .12, W\ 6a'(Vt    + x w>    + w, w        - =•; yv  'y     2    'y       'y o,y     R' 

+ 6T'   (V,    + u,    + W, W,  + W      v,  + v      w>   ) xy    'x       'y       'x 'y     o,x 'y     o,y V 

+ a'(6u,  + w,  6w,  + W      6w,   ) 
xv      x       x     x     o,x     x 

+ a'(&v,  + w, 6w, + w      6w,   )-a' s- 
yv    'y      'y     y     o,y    'y'    y R 

+ T'   (6V,  + 6u,  + 8w, w,  + w,  6w, 
xyv    'x       'y        x 'y     'x     y 

hi 



o,x    'y       o,y     x' 

BM 5M &M 

2tf    'xx 2tf    'yy       tf      'xy 

M M M 
- — 6w, - JL-bv,      + -&- &w, 2tf      'xx      2tf      'yy      tf        'xy 

^J     x ^     y     ^     xy^ 

^^x^^y^^xy  ]]^=0 

x y xy J 

The result of carrying out the Integration by parts is 

L 2itRr 

5U" *2t- f f    Uu, + i w? + w, w      - |^■)8a, 

f J J      1x2    'x       x o,x    do"    x 
0 0^ x 

v  'y    2    'y      'y o,y    R      day    y 

+(v,  + u, + w, w, + w      w,  + w      w, x    x       y       x   y     o,x   y     o,y 'x 

OT'        xy    v2t.    'xx    dM       x 
xy      ^ f x 

,1 , OF'xRU 

-^ W'yy+ ^r)8My 

Hf    'xy   dM    '   xy     x,x     xy^' 

-(o*    + T
1
      )6v -[(a'fw, + w      ]) 

y*y     xy^x' x     x     o,x Sx 

+(a'[v,  +w      ])    +(T,   [w, +w      ]) 
y      y      o,yJSy v xyL  'y      o,yJ  ,x 

+(T,    [W,    + W ]) +  =^ x xy      x     o,x Sy     R 

■} 
/li r «irtR 

a^uldy + 2tf ja;8v|    dx 

+ 2t JM        + M        - 2M ) ]6w > dxdy 
fv x,xx     y,yy       xy,xy/     J 

2flR       L rL     2nR 

(^7) 
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* 
> 

2t„ /    [a^w,  + w      )+ T
1
   (w,  + w      ) 

2nR 

r 
0 

i 1 L 

+ _i^ M      - ^- M        ]6w|dy 
2tf   x,x   tf    xy,y     ^ 

2rtR 

Vv|dy + 2tf j Vu|    dx 

L 

2t    /  [a'(w,  + w      ) + T'  (w, + w      ) 
FJ   L yV    y     o^       xyv  'x     o^7 

l i 2ltR 

+ _±_ M      - r- M       ]5w I    dx 
2tf   y,y   tf    xy,x     ^ 

0 0 o 0 

L 2rtR 
+ 2M   5w|   |      =0 (kB) 

xy   0 0 

For equation (kd)     to vanish for arbitrary variations in the states of 

stress and displacement,  consistent with prescribed displacement boundary 

conditions, each of the above terms must vanish identically.    The Euler 

equations which result are 

Stress-displacement relations: 

T—r = u, + TT w, + w     w, der        'x   2    'x      o.x 'x x ' 

dF'       ,    , 1    2 w 
^—r = v* + T: w, + w     w,    - - döj;       'y   2    'y      o,y 'y     R 

dF' v ■    = V,  + u,  + w, w,  + w      w, + w      w, 
dr 'x      'y      'x 'y     o,y 'y     o,y 'x 

xy (^9) 

^9 



Moment-curvature relations: 

ap' i 

2tf 
w, 

XX 

ap« i 

2tf yy 

OP' 

xy 

i 
xy 

Midsurface eaui] 

a' + 
xy^y 

= 0 

a« + 
y,y 

Txy,x 
= 0 

(50) 

(51) 

Lateral equilibrium equation: 

(o'Tw. + w  ])  + (a1[w, + w„ ]) v xl 'x  o,xJ/,x  v yl 'y  o,yJ/,y 

+ ^ * S^'W My,yy- ^«y.^1 = 0 (52) 
In view of equation  (5l), the lateral equilibrium equation (52) 

becomes 

xx 'xx  o^xx'   yv 'yy  o^yy' 
a» 

+ 2T, (w,  ■>- w   ) + T^ 
xyx 7xy  o,xy  R 

+ ^(M   + M   - 2M    ) = 0 . , 
2tf

N x,xx  y,yy  xy,xy/ (53) 

which^for a homogeneous, isotropic body (2tf-»t) and Hookean material, 

reduces to the well-known lateral equilibrium equation of von Karman- 

Donnell theory (see, for example, ref. 15). 

The midsurface stress-displacement boundary integrals are 
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> 

2«R 

J   a^8u| dy = 0 
(54a) 0 

2JtR 

0 

L 

0 

L 

2itR 
cr'Svl dx = 0 
y    0 (54c) 

/T'  BU 
J ^  o 

2JtR 
(k = 0 

0 

The remaining boundary integrals are 

2jtR 

21^ /        I o'iv, + v      ) + T'   (w, + w      ) 
f J 1   xx  'x      o,x xy^  'y     o,y 

L 

2t 

L 2JtR 
2M   owl   j       = 0 
^00 

(54a) 

-~li     - r- M        )&w|      dy=0 /,._ v 
2tf   x,x   tf   xy,yj       ^     ^ (55a) 

/   (a,(Lv,+v      ) + T'  (w,  + w      ) 
J    1   y     y     o,y xyv  'x     o^' 
0    V. 

>1     2«R 

2tf   y,y   tf   xy,x J    ^ (55b) 

(55c) 

For the present problem, that of a long, circular cylindrical 

shell, the end shortening is prescribed; thus 5u vanishes at x = 0,L. 

The remaining boundary conditions at x = 0,L can be ignored due to the 

length assumed for the shell.    The boundary conditions at y = 0, 2jtR 

are either continuity conditions (55a, b, and c) or conditions which 

preclude the transfer of any circumferential and shear loads across a 

generator (5^ c, d). 

51 

s 

m- m 



APPENDIX II 

SHALLOW-ARCH AND BEAM-ARCH ^PAD-SHORTENING RELATIONSKIFS 

SHALLOW ARCH 

The expressions for the displacements and stresses  [equation (20)]  can be 

substituted into the Reissner functional given by equation  (19)«    Upon 

subsequent integration, the Reissner functional for a shallow arch under 

uniform loading is then 

U" + V" ff.R „      0     2. 
U" = -A A_ = _ _A_ r. ( 2_ n_    v 

A     VE(h/r)2 ^   ^        ^ 

<5l* 1/ÖAR%2 

- vt*M* - Mr) 
2 

1/CT1AR\        2- 
■l2V-E-hi   -npl (56) 

where 

I = a/h 

kiTEh     « /h \ 
II = T2~ = 2"^ 

AA 

7 „ p^r^2 p " ETP 

The first variation of U^ with respect to a., cr ., and 5 results in 

sr= - hif - r&) (57) 
cr^R 

^h"   =-H5 (58) 

and 

" ET l5\21 TJ " ^h" * " « P
 

= 0 (59) 

These simultaneous equations can be written in terms of J alone as 

.3      SJT B2    IIC    ,  l\t     (l6\d p 
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For prescribed values of T] and p, equation (60) can be solved numerically 

for |. The results are shown in a plot of p vs. {in the lower portion 

of Figure 3. 

BEAM-ARCH ANALOG 

The expressions for the displacements and stresses [equations (20) and 

(23)] can be substituted into the Reissner functional given by equation 

(22). The result of incegrating the Reissner functional for a two-element 

beam arch is 

...      UB + Ul OR/   eR  ,  |V,   ,  jVS 

qiR IA   i^)2 vW-/!A% / 2_£ \ 
" Eh "lb " 2KmJ     ¥\Eh ' \Eh /lü\5 r\  s/ 

"ElS" h " 2\Eh / " k\ Eh / (61) 

where 

I = a/h 

&
0= 

a
0/

h 

e = applied unit end shortening 

The first variation of U* with respect to er, o , {, o., and a      results 

in 

i = eH.^(|2+2|5o) 
(62) 

tf^R    2 

Eh" r; " ¥ ^ (63) 

^h H l (65) 

2 0,R 2 

iw^»„) -^fe1 
(continued) 

f 
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Eh (66) 

The above equations can he written in terms of the parameter J alone as 

2 

(67) 
n n 

For prescribed values of n, il, 5 , and eR/h, equation (67) can be 

solved numerically for 5. Then, for the same parameter values and 

corresponding {'s, equation (62) can be solved numerically to establish 

the load-shortening relationship between aR/Eh and eR/h and to develop 

the curves shown in Figure k. 
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APPENDIX III 

NETHOD OF SOLUTION FOR ELASTIC CIRCULAR CflJNDRICAL SHELL 

After the expressions for the assumed displacements [equations (26),   (27), 

and (28)] and stresses [equations (29), (30), and (31)] are substituted 

into the Reissner functional given by equation (18), subsequent integra- 

tion yields 

ü" = 3^ = -k I Foc- W VFii+ ^i^ Et(-j-—) 

-kA22^22+ H22)-M3l(F31+ 3H3l) 

-A13(3F13+ hJ-^O 

.2(|)2. |[(41+ lÖA^Kl+n2) + 4^2) 

■>■ ^(1+9^) + 32(A^2+ ti^0)] 

+ imt^ftl + 32(^2 + ^ a e 
2J+(l-v2) 1 2 3 E ^o; 

where the F' s and H' s are defined as 

^11 ^ ^O, ^ - fn |[^ ♦ 4 + 2Sll (-? - -pi 00 

Fo2 
= A l[|ll f 2611 611] 

o 

2    t 02 
Fll = ^ R[2|lll20^11^02+2|11 (520+ " 

+ !?)^ 
6 ^n . ^02 

F-= ^ |t-r-^02^11 (-r+-r)] 22 

2    tr2. x0.       ^20  .  ^ll\i 
F31 = ^ ^ R^ll^O*26!! ("T + 32-)] 

55 



F13 = ^ lfllll02 + ^ll ?02] 

o 

_ 2n tr
5ll  , 5llx    2 1; . 

o 

HU = ^ l[lll502+ lllo
502] "^ I Sll 

I2 6 

o 

H31=0 

=13 = ^ l[-|ll502- 611 502] 

o 

In the atove. the substitution ipn   = §11 A has been made for conve - c o   "^0 
nlence based on the postbuckling analysis results presented in reference 

29« It is of interest to note that the same assumption has been 

utilized by Tennyson et al. in reference 21 in conjunction with an 

elastic analysis of the buckling process for compressed cylinders. 

The equations found from the vanishing of the first variation can be 

reduced to four equations in the four unknowns f.., {„_ {np, and a/E. 

This set of nonlinear algebraic equations can now be solved numerically 

for given values of the parameters A, n, and T^and the relationship 

between cffl/Et and eR/t can be obtained. Curves of crR/Et vs. eR/t are 

given in Figure 7. 

56 



" 

UNCLASSIFIED 

Securit^CUi»iftc«tion 

DOCUMENT CONTROL DATA -R&D 
(Smeurltr clmaalUcmllon ol tlilt, body of mbatrmct mnd indtKlnj mnnolmllen mu»t bt ggfgggrf mhun Ih» ovrmll 

ORIGINATINO  ACTIVITY  (Coipotmf tuthor) 

Stanford University 
Department of Aeronautics and Astronautics 
Stanford,  California 

f 'SUL 

UNCLASSIFIED 
a», anoui» 

N/A 
3. REPORT  TITLE 

THE MAXIMUM STRENGTH OF INITIALLY IMFERFECT, AXIALLY COMPRESSED, CIRCULAR 
CYLINDRICAL SHELLS 

4. DESCRIPTIVE NOTES (Trp* ot nporl md Inclutlr» dilf) 

Final Technical Report 
S. AUTHORIS) (Flnl naim; mlddlm Inlllml. Imtl nmw) 

Jean Mayers 
Donald L. Wesenberg 

• . REPORT DATE 

August 1969 
M.  CONTRACT OR  GRANT NO. 

DAAJ02-68-C-O035 
A. PROJECT NO. 

Task lFl6^20itA17002 

7«.   TOTAL NO. OP PAGE* 

66 
7*. MO. OP REP» 

29 
M. ORIGINATOR1! REPORT MUMBCRIEt 

USAAVLABS Technical Report 69-6O 

»I>. OTHER REPORT HOt»l (Attr 
thlm import) 

' h*mmt,*m* 

10. DISTRIBUTION STATEMENT 

This document is subject to special export controls, and each transmittal to foreign 
governments or foreign nationals may be made only with prior approval of US Army 
Aviation Materiel Laboratories,  Fort Eustis,  Virginia   23604. 
It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY  ACTIVITY 

U.S. Army Aviation Materiel Laboratories 
Fort Eustis, Virginia 

1».  ABSTRACT 

The maximum strength of Initially imperfect, axlally compressed, circular cylindrical 
shells has been studied with the use of Reissner's variational principle, von Kärmän- 
Donnell shell theory, and a deformation theory of plasticity. The results of the 
present analysis reflect families of load-end shortening curves for long circular 
cylinders. For a given material, each curve relates not only to an imperfection 
parameter which provides a loading path into the inelastic range but also to the 
radius-to-wall thickness ratio. Significant maximum strength reductions are 
obtained, relative to predictions based on linear-elastic theory, for specific 
materials in the range of radius-to-thickness ratios of practical interest. 

I- 

MMMM   4 M ~TF%    REPLACES OO PORM I4TS, I J 
IIWVMI4/£    ©••OL«TB PO« »RHIY USE. 

AN «4. «HICM IS 
UNCLASSIFIED 
Security Clauiflcalloa 

^" \mm 



■ ■■. ■ 

UNCLASSIFIED 
BgjjKjj CI«»»inc«tton 

KEY WOUDS 
ROLE WT 

Shell Structures 
Stability 
Maximum strength 
Failure Analysis 
Plasticity 
Stiffened and Sandwich Construction 

UNCLASSIFIED 
••cnrilf CL-Mtflcatto* 8099-69 

•'' 


