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ABSTRACT

The maximum strength of initially imperfect, axially compressed, circular
e¢ylindrical shells has been studied with the use of Reissner's variation-
al principle, von Kérmdn-Donnell shell theory, and a deformation theory of
plasticity. The results of the present analysis reflect families of load-
end shortening curves for long circular cylinders. For a given material,
each curve relates not only to an imperfection parameter which provides a
loading path into the inelastic range but els50 to the radius-to-wall
thickness ratio. Significant maximum strength reductions are obtalned,
relative to predictions based on linear-elastic theory, for specific
materials in the range of radius-to-thickness ratios of practical inter-

est.
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INTRODUCTION

For almost forty years, many investigators have attempted to resolve the
discrepancy between classical theory and experiment for thin circular
cylindrical shells subjected to uniform axial compression. Within the last
several years, three comprehensive survey papers on shell buckling have
been prepared by Hoffl’2 and Stein% with the strongest emphasis directed
to thin-walled, circular cylindrical shells in axial compression. Both
survey authors attribute the discrepancy between the theory and experiment
to the combined effects, in varying degrees, of prebuckling deformations,
initial imperfections, and boundary conditions; yet, except for noting the
possible limitation of linear elastic thzoory, the quantitative effect of
inelastic deformations on the initial buckling (maximum) strength of such
shells is neither discussed nor estimated by either of the authors on the
basis of the literature surveyed. However, in view of the experimental
work of a number of investigators directed to initially imperfect,axially
compressed, circular cylindrical shells (see refs. 4,5,6,and 7), not ouly
have inelastic deformations been detected at buckling (maximum load) but
they have been shown to reduce the load-carrying capacity significantly as
a result. Further, several approximate analyses (refs. 4,7,8, and 9) have
indicated the presence of inelastic deformations at initial buckling of
imperfect shells. (The inelastic buckling of imperfect shells investigated
by Leelo is noted here but not discussed further, as interest is being
centered on shells which, in the absence of imperfections, would buckle
only in the elastic range.) Since the circular cylindrical shell is a basic
structural element in serospace design and since its initial buckling load
is indeed its maximum load, & clear understanding of all of the factors
influencing its initial or maximum load under axial compression and the
relutive magnitudes of these factors is necessary.

Now, in the case of plaies compressed beyond the classical buckling load,
it 1s well known that a unique load-shortening curve exists for all plates
of a given material independent of width-to-thickness ratio, 1s long as the
material follows a linear-elastic, stress-strain law. However, a series of
analyses by Mayers et al.ll’la’ls, leading to an essentially exact solution
for the maximum strength of compressed rectangular plates, based upon

1l

2 3 NP o A o R Ve e




-

o e

von Kdrmén's large-deflection, strain-displacement relations, has shown
that every plate of a given material, but different width-to-thickness
ratio, compressed beyond the classical buckling load into the inelastic
range, possesses a unique load-end shortening curve and, hence, maximum
load. Similarly, existing von KArmén-Donnell-type elastic postbuckling
analyses of axlally compressed, long, thin cylinders indicate again a
unijue load-shortening relationshlp for all radius-to-thickness ratios.
Now, as a result of the present study, families of load-shortening curves
have been obtained for initially imperfect, long circular cylinders.
Each curve for a given material relates to a particular value of the
radius-to-wall thickness ratio and tc an initial imperfection pattern
which provides a loading path into the inelastic range, since the classi-
cal buckling load for compressed cylinders, unlike plates, is never
reached in reality. In the range of radius-to-thickness ratios of
practical interest for both unstiffened and stiffened shells, significant
maximum strength reductions are obtalned relative to predictions based on

any theory utilizing linear stress-strain behavior.

The maximum strength behavior of initially imperfect, axlally compressed,
circular cylindrical shells has been studied with the use of a modified
form of Relssner's variational principlelu and the von Kdrmén-Donnell
strain displacement relations. 1In general, Reissner's variational prin-
ciple not only permits the selection of the stresses independent of the
displacements but also facilitates the incorporation of inelastic effects
into the analysis. Confidence in the inelastic analysis based on
Relssner's principle has been established herein by comparing the special
case of the purely elastic solution with that obtained by Kfempner15
through the use of the minimum total potential energy principle. A sim- ‘
ilar procedure was followed with respect to plates in the analyses of
reference 13. With confidence thus established in the method of solution,
inelastic, maximum strength, radius-to-thickness-dependent, load-sho.ten-
ing curves have been obtained for shells of different materials., To
obtain the present maximum strength criterla for thin shells, the problem
1§ investigated qualitatively and economically by using a beam-arch analog
for the cylinder and quantitatively by analyzing the circular cylindrical

shell on the basis of analog-generated trends.
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GENERAL THEORY

STATEMENT OF THE PROBLEM AND BASIC ASSUMPTIONS

The problem considered is that of the maximum strength analysis of a
long, initially imperfect,circular cylindrical shell. The solution for
the shell maximum strength is obtained through tne use of Reissner's
variational principle modified to include the effects of noriinear-
elastic material behavior. No unloading in the nonlinear-elastic range
is assumed to occur; thus, the terms nonlinear-elastic and inelastic are
used interchangeably. The presence of unloading in the plastic range is
investigated a posteriori,and the effect of unloading, if any, on the
solution obtained is assessed in the discussion of the results of the
analysis. To establisb confidence in the inelastic analysis, the elastic
solution for the postbuckling problem is extracted and compared with that
developed on the basis of the minimum total potential energy
principle.

As in the plate analyses of references 11-13, a two-element description

of the shell cross section (Figure 1) is used to avoid the complexity, due
to inelastic effects, of integrating a nonlinear stress distribution :
through the cylinder wall. The core separating the two elements is ‘
assumed to be rigid in shear, and the inelastic behavior (constitutive i
equations and yield criterion) is based upon simple deformation theory. l
Material compressibility effects in the inelastic analysis are assumed
to be negligible; therefore, Polsson's ratio is taken as one-half when- ;

ever the load-shortening relationship reflects nonlinear behavior.

The von Kdrmén-Donnell strain-displacement equations for an initially
imperfect, thin-walled, circular cylindrical shell are used in the
present analysis. For the radlal deflection-thickness ratio magnitudes
involved in an initial buckling or maximum strength analysis of a thin
shell in compression, and in view of the findings of Mayers and Rehfield9
based on & more accurate nonlinear theory for thin shells, the use of the

von KArmdn-Donnell strain-displacement relations is deemed Justified.
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BASIC EQUATIONS

The von Kdrmén-Donnell strain-displacement relations for the circular
cylindrical shell are modified to include the effect of initial imperfec-

tions. Initial imperfections, as defined herein, are deviations from the

exact circular cylindrical shape of the shell which are present before

any axial compression takes place.

The total displacements of the shell can be expressed as

bp = M
VT=V
WT=W° + W

(1)

vhere Yo is the initial radial deviation of the shell from its exact
shape and u, v,and w (see Figure 1) are the additional displacements of
the shell from the initial shape during the loading process. The mid-

surface strain-displacement equations in terms of total displacements are

1 2 2
! = —-— -
x Wy * 3 (wT,x wo,x)
1 2 2
€' = v + = (w - W -
y y 3 ( T,y o,y)
t =
"Yw = u,y + V,x + WT,wa,y

The curvature-displacement equations are

K = =W + W
X T,xx 0y XX

K = -W + W
y T,yy O,Yy

K = =W + W
Xy T,xy 0,Xy

The total strains are given by

€ = €' + zK
X b'e X
€ = €' + zK
y Y Yy
= ! + 2zK
W&y ka Xy

VARTATIONAL PRINCIPLE

The Relssner variational principle for prescribed surface

L

(2)

(3)

displacement



(shell under controlled end-shortening) selects from among all states of
stress and displacement which satisfy the boundary conditions of prescribed
surface displacement, the true state of stress and displacement by requir-

ing th2 satisfaction of the equation

8U = 5{Jg/_-/(ax€x + oyey + Tqu'ny = F')dv} =0 (5)

where the stress and displacement states are varied independently. F',
the stress energy density, is a function of the stresses such that the

stresses and strains are related by the constitutive equations

OF"! oF! oF'
ex = &— €y = F 'YJQ’ = BT_ (6)
x Y Xy

For linear problems, F' becomes the complementary energy density. The
principle establishes the Euler equations, which consist of three equi-~
librium equations and three stress-displacement relations, as well as the
assoclated boundary integrals from which natural boundary conditions,

if any, can be established. The Euler equations and boundary conditions
for the circular cylindrical shell behaving according to the von Kérmdn-
Donnell theory are developed in Appendix I.

The stress energy density F' is defined, in general, as

s T
X y Xy
F'=j €_do +f€d0’ +f d
A X X - vy A W&y Txy (7)

From the secant-modulus deformation theory of plasticity, for an incom-

pressible material, the "effective" strain can be written as

B

2 2 2 72
eeff = {? Jex + Ey + €x€y + —g (8)

and "effective" stress as

-
g = 02+02-0'0' +372
eff X Yy Xy Xy

(9)
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where

Oerr = Egerr ;
and Es is the secant modulus of the uniaxial stress-strain curve of the
material. For the present analysis, the unlaxial-stress strain curves in
tension and compression are taken as identical. Based upon equation (7), .
the incremental form of F' can be written as '
dF' = e._do_ + € do + v _dr (10)
X X y vy y xy
As shown in reference 11, the incremental quantity dF' can be expressed
also in the form
' -y
& €erri%rsr (11)
Therefore, |
Ters
! =
B f €erri%rs (12)
0

The Reissner functional is then expressed as

a
ff
U" = (0e. +a€e +1 7y - © € .40 .. )av (13)
X X Yy Xy'xXy A eff "eff
v

With the introduction of the Ramberg-Osgoodl6 three-parameter representation

of a uniaxial stress-strain curve 1n the form

n
o a
_ eff eff
eff T E +K( E ) (24)

the functional U" becomes

oo s \n*l
" o_ | _eff KE [ "eff
v M {dxex Tyt Txyyxy[ 2E n+1( T ) ]}dV (15)
v

Consistent with the two-element description of the shell and after inte-
gration over the thickness h, the result, as developed in Appendix I, is



a" o" " g 2 p n+l
X " " " l _J; eff) L( eff) ]
+(E_)€x+(fz)€y+ ('Eﬂ)"’xy Q[Z(E Y\ E .

o K . n+l
eff eff
E ) * n+l( 3 ) l}d“’de (16)

where o = x/L, € =y/2nR, and V = hnthR.

The totel stresses and strains are written in terms of midsurface and bend-
ing contributions,as denoted by the primed and double-primed quantities.
The subscript t refers to the top face and the subscript b refers to
the bottom face of the two-element cross section. With the von KZrmdn-
Donnell strain-displacement equations and the relations for the effective
stress in terms of the primed and double-primed quantities, as expressed

in reference 13, the Reissner functional becomes

Gl
U X 1l, 2 2
VE _ff {E_[u’x * E(WT,x - wo,x):I
00
o! (W = W)
+ L, +£(w2 e P el
E y 2 T,y o,y R
,rl
X
+ [v, + u, + wT,x T,y -

g n+l . n+
1 K eff) ( eff)
-5 T [( = + T dude (17)
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In consideration of the linear-elastic problem for a homogeneous cylinder,
and with the bending stresses related to the curvatures through Hooke's
law, a modified Reissner function (following ref. 13) is expressed in the

form

E Tyx T,y 0,X O,y
(50 () - o (B(E) o0 ()
-5 | \g) * 5 -2vig) g5 (5

+ ;h_(I—-% w?xx + w‘,ey_y + zw’xxw’yy + 2(l-v)w?xy]} dwde (18)
This modified form of Reissner's principle leaves only the displacements
and midsurface stresses as the variational quantities. As described in
the next section, equation (18) is used as the basis of correlation with
Kempner's minimum potential energy solution (ref. 15) for the postbuckling
load-shortening curve.

METHOD OF SOLUTION

17, Tsienls, and Hoffl9) have approximated the

Previous investigators (Cox
postbuckling behavior of both axially compressed and uniformly heuted,
circular cylindrical shells by analyzing various one-dimensional models.
These models consist of a basic beam member supported by one or more
springs whose load-deflection curves are chosen such as to force the models'
load-shcrtening curves to provide the snap-through behavior assccilated with

the pos”buckling behavior of thin shells in compression.

In the present analysis, a model consisting of a beam resting on a series

of shallow sinusoidally curved arches, as shown in Figure 2, is selected

8
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to be the analog of the shell. The behavior of an arch under radial
loading, shown in Figure 3, provides a nonlinear foundation for the beam

50 as to yield the snap-through behavior assoclated with axially com-
pressed, cylindrical shells. The beam length is equivalent to the cylinder
length; the arch lergzth is taken as a circumferential wave length of one
buckle. The spacing between arches is equivalent to the axial wave length
of one buckle of the cylinder. The radius R of the cylinder is brought

into the analog geometry through the rise parameter for circularly curved
plates of small chord; that i1s, the maximum rise a, of the sinusoidally
curved arch in Figure 3 is equated to the rise of a shallow, circularly
curved plate through the relationship a_ = Ki/SR.

SHALLOW ARCH BEHAVIOR

! A Reissner functional for a shallow arch subjected to a prescribed uniform
loading 1is

A
Uy o+ V) A(a! o

A A L2

____.J“ %[“y+'“y’%]+§%"’]

EA 2 ¥y
0
2
1
) ¥

S (EIREEN) (o

where V' = potentiasl of the prescribed loading

o

Q
Q

Pk
"k

PESY P P

l = variable curvature = - w
l p O)y-y
[ w, = initial shape

P = uniform load

DISPLACEMENT AND STRESS FOR 7".ONS

Functions for the displacements and stresses are chosen in the form

]

a

o__o L
bk sin Xi

= 8 w
5 sin

KA
v=20
9

oy 1
I




n
l‘il >Q

Q

" d
1A Ty
o sin e (20)

A

ke

The use of & vanishing v-displacement in conjunction with the modified-
Reissner-principle approach and the von KArmén strain- displacement
equations has been justified in reference 13 for plates. For the arch,
with the kinematics described by a specialization of the von Kérmen-
Donnell curved plate equations, the stresses and w displacement can be
determined from the first variation of the Reissner functional regardless
of the Fourier -seriles iepresentation for v. Thus, in the absence of any
possible coupling of o’y and v in the strain energy, it is obvious that
v can be equated to zero without any loss in generality.

LOAD-DEFLECTION CURVE

Substitution of equation (20) into equation (19) with subsequent integra-
tion over the arch length and varliation with respect to the amplitudes of
the displacements and stresses,results in three simultaneous equations for
the determination of the nondimensionalized displacement and stress param-
eters for a, 0,,and 0,, defined in equation (20). The simultaneous
equations can be vritten conveniently in terms of only one of the param-

eters (equation (60) of Appendix II); that is,

2 L4 -
3 3,2 ¢ 1,, (1642 D
& -5t +(2—n'§+g)§-(n—') = (1)
where

¢ = a/h
o %

2 a

2

el |
1]
2
—~
g §ou]
~r

A plot of p vs. £ is shown in Figure 3.
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It is interesting to note that the single variationally derived equation
gbove, for the case of a linear-elastic constitutive law (Hooke's law),
reproduces exactly the load-deflection curve for a shallow arch constructed
by Timoshenk020 from two equations derived from beam theory with midplane
stretching effects included.

BEAM-ARCH ANALOG

The Reissner functional for the entire beam-arch model, including the
effects of inelastic behavior and the use of the two-element ‘escription

for the beam and arch cross sections, is written as

1 11 1 '
u = .(.,E u + l w2 + W w
VE B E 'x T2 ’x ’x"0,x
0
' 2 2
] 1 1
S, )23 ()
E 2 xx 2 E B
n+l . n+l
__K Fxere) [ xetr i
2(n+l) E & E b

+

+ +
t=1 Q= (_________}
x k™

—

g E

' +
el f o o=
\s[\)

qu' e

S~—
n i“’
+
-
= Q
|
n
— )

g n+l g n+l
K ( eff) 1 ( eff) ]} a
- 5(ari) — = P (22)
2(n+l E % E b
where @ = y/7\A, W= x/)\B.

DISPLACEMENT AND STRESS FORMULATIONS

In eddition to equation (20) ; expressions for the beam displacement and

stresses are

u= =x
x__¢
E E
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X 1 X -
T CF sin E (20)

where e = prescribed end shortening. The use of midsurface displacements
involving no free parameters in conjunction with the modified-Reissner-
principle approach has been justified for plates and shells in references

9 and 13 and is demonstrated herein for the arch. Thus, the stresses and
w displacement can be determined from the first variation of the Reissner

functional regardless of any additional Fourler-series representation for

u; therefore, it 1s sufficlent to describe u as -ex.

LOAD-SHORTENING RELATIONSHIP (ELASTIC PROBLEM)

For elastic betavior, K is set equal to zero in equation (22). As shown
in Appendix II, substitution of equations (20) and (23) for the assumed
stresses and displacements of the arch and beam, respectively, into the
total Reissner functional (eq. (22)) for the analog, followed by integra-
tion over one wave length in each direction and variation with respect to
all free parameters, leads to five simultaneous equations which can be
reduced by elimination to only two equations; that is,

2
OR &R _pnr,2 .
T2 Eﬂ[g + 268 ] (2u)
and
2 N
§3[1+%I:]+§2[350-ﬁ3ﬂ j]+g[-%(ﬁ§) +2<6§+——H’2r )
M 2nu )| bn"u
168
+1+}E:]-T°(§—R) =0 ~ (25)
M T

These equations are solved in the following manner. First, for given values
of the parameters eR/h, u, 1, and 8 s equation (25) 1is evaluated
numerically for &. Then, for tlie given parameter values and the corre-
sponding t's, equation (24) is solved numerically to establish the
relationshi; between OR/Eh and eR/h; namely, the family of imperfection-
dependent load-shortening curves shown in Figure 4.



LQAD-SHORTENING RELATIONSHIP (INELASTIC PROBLEM)

The inelastic behavior is studied by retaining the two terms multiplied
by the parameter K in equation (22). To enter the inelastic range, an
elastic analysis is repeated at an end-shortening value which insures
elastic behavior. The parameter values obtained are utilized as starting
points for the inelastic analysis. A Newton-Raphson procedure is employed
to establish the load-shortening curves for inelastic behavior with
increasing values of the end shortening. Families of radius-to-thickness-
dependent, load-shortening curves are then obtained for E, K, and n
values corresponding to electroformed nickel (see stress-strain curve in
Figure 5). Such load-shortening curves are presented in Figure 6. The
thickness t of the homogeneous material is related to the distance
separating the two faces of the model by setting the critical load

of the two-element shell equal to the critical load of the homogeneous
shell of given R/t. The resulting relationship between h and t 1is
simply h/t = 1A/3.

CIRCULAR CYLINDRICAL SHELL

DISPLACEMENT AND STRESS FORMULATIONS

The maximum strength of a long,circular cylindrical shell is studied for
both the elastic and inelastic problems by enforcing the vanishing of the
first variation of functionals given by equations (18) and (17), respec-
tively. The variations are carried out with respect to assumed states of

stress and displacement, with the latter being kinematically admissible.

The approach followed is that of prescribing the stresses and the radial
deflection pattern in the same form as those formulated by Kempnerls.
After a point on Kempnar's elastic postbuckling curve is reproduced by
the elastic results of the present analysis (K = 0 in eq. (22)), confi-
dence in the elastic analysis is established. The radial displacement
in any one buckle of the shell is selected to be

- x Iy 21X 2y
W o= h(gOO + &, c08 Ax cos xy + geocos xx + goecos Ay ) (26)
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The corresponding midsurface displacemeri.s would in general be taken as

] inx o 30V
u= ex + Z uiJsinrcos)\
i=1 J=1 % y

@x [ -]
_ inx Jny
vV = Z. Z viJcos > sin X
i=1 J= x y

However, the use of expressions for u and v involving no free
parameters in conjunction with the modified-Reissner-principle approach
has been demonstrated in references 9 and 13 and discussed earlier with
reference to both the arch and the beam-arch analog. It has been shown
that the stresses and radial displacement may be determined from the first
variation of the Reigsner functional, regardless of the values of u

and viJ’ when the von Kdrmdn-Donnell strain-displacement relations iﬁe
used along with Fourier-series representations for both displacements and
stresses. Thus, it i1s once more concluded that uiJ and viJ can be
equated to zero without any loss in generality; the midsurface displace-

ments become simply

u = =ex : (27)

v=0 (28)
The rationale underlying the utilization of midsurface displacements
reflecting no free parameters in references g and 13 as well as the present
work is simply the realization that either nonexistent or very weak cou-

Pling exists between free midsurface stresses and displacements in a
Reissner formulation,depending upon the degree of nonlinearity in the plate

or shell kinematics belng employed.

The simplification of the expressions for the midsurface displacements
involving no free parameters permits the equilibrium equations in the x
and y directions to be satisfied independently of the magnitudes of the

free stress coefficients.

The inplane stresses, in addition to the average axial stress, consist of

the Fourier harmonics found in Kempner's stress function (ref. 15) and are

expressed in the form
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X o nx P bax ﬂ nx
— = -] =+ cos cos + 4A__ cos =—= cos +9 cos —
E A X; X}lr 22 A Ay A A

. sy 31X og 1Y 2n
cos 3 + A31 cos ¢ cos 3 + hAOE cos (29)
Y X Yy y
.rl
o nx ny 21x 2 nx
3 " [Au sin - sin 5 + 1+A22 sin S sin Xﬂ + 3A13 sin 5
% y % y X
By STy Ty
sin }\y + 3A5) sin rx— sin . (30)

c
¥ S 2 X o 2nx any nx 3ny
E K @lcos —)\x cos-xl +1$A22 cos N (o]} T + A13 cos o cos x

y x Yy X Yy
3nx x 2nx
. + 9A5, cos X-y— cos Xf + 1+A20 cos t] (31)

It is noted that the variable coefficients in c;(/E, 1;W/E, and o}',/E

are the same. This equivalence is established automatically from the
satisfaction of the inplarne equilibrium equations in the x- and y-directions,
respectively, prior to employing the variational principle, because the dis-
placements u and v in equations (27) and (28) are not arbitrary.

Now, instead of relating the bending stresses to the curvatures through
Hooke's law, they are selected in the form of the curvatures, but with
arbitrary coefficients, and are written as

1"

Q

: x_ T o B 2nx 2y
f F- = 817 COS 5= CO8 3 + &, COS 5= + &, COS % (32)
E X Yy X y
; 1"
; 2 X s 21X 2
1 A =2 Iy SO NS
F g =M [bll cos 3= cos 3= + b, €08 3= + by, cO8 T ] (33)
. X Yy X y
9. T
N S y
3 " [:dll sin X; sin “y (34)

The justification for this assumption is established in references 9 and
13 through comparison of results with those of well-known,essentially

exact solutions for postbuckling analyses of shells and plates, respece

tively.
15
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Because of the periodic nature of the assumed expressions for the nonuniform
stresses and displacements, the boundary integrals derived on the basis of
the Reissner variational principle in Appendix I can be reduced to

L
fd;’dx =0 for any y (35)
0
L
f’r}'(ydx =0 for any y (36)
0
2nR
.2_1,'5 j oydy = -0 for any x (37)
o

It can be seen immediately that expressions (29), (30), and (31) for the
stresses satisfy the integral conditions (35), (36), and (37).

INITIAL IMPERFECTION PATTERN

In & recent report by Tennyson and Wellesel, the authors note that the
first terms to be observed experimentally at the inceptior of buckling are
those described by the combination of an asymmetric -plus an axisymmetric
term. Moreover, from their analysis of free vibrations of thin-walled
cylinders, Mayers and Wrenn22 point out that for finite displacements of
the order of magnitude of the shell thickness, the minimum energy is
related to a slightly "modified-chessboard" radial deflection pattern
given by the same harmonics as those in reference 21. It is conjectured,
therefore, that in view of the random nature of imperfections in thin
shells, & reasonable imperfection shape to which the shell might be partic-
ularly sensitive is

X ookl Sike
v =h [511 COs £= cO8 5= + £, €O ¥ ] (38)
0 x Y 0 x

LOAD-SHORTENING RELATIONSHIP (ELASTIC PROBLEM)

To establish the all-elastic, load-shortening curves for the circular
cylindrical shell, a stationary value of the Reissner functional U" with
respect to the free parameters ¢ 15’ Ai 3 and o‘/E is sought (see Appendix

16



III). The set of equations established from the vanishing of the first
variation is reducible to four equations in the four unknowns G/E, gll,
520, and 502. This set of four equations is then used to construct the
imperfection-dependent, elastic loesd-shortening curves presented in
Figure 7 for p =1 and 10 = 0.45. These equations are used also to
reproduce a point on the Kempner load-shortening curve for ¢ = 0.3899,
n = 0.226, eR/t = 0.4, and A = 0.0 as & means of establishing the

accuracy of the analysis.

LOAD-SHORTENING RELATIONSHIP (INELASTIC PROBLEM)

In the inelsstic problem, the load-shortening curve for the circular
cylindrical shell is obtained by finding the extrema of the following

functional:

n+l a n+l
y" u" l K eff eff
VE = VE °lostic - 5 Ty ff[( ) *(E ) ]ME (39)

which consists initially of 17 free parameters.

The additional free parameters over the four required for the elastic
solution appeer tecause the bending stresses, even though taken in the
form of the curvatures, require seven additional free parameters when the
deflection function is as given by equation (26); further, the six mid-
surface stress components, Aij’ cannot be eliminated in terms of the
513 and o/E because the inelastic contribution to the total Reissner
functional, which contains the 513
of equation (39) be found numerically. As a result, equation (39) is
81082585587 5800581254 55A 05,
207%11°82078027%11 *Pp?Poasdyy»  nd 0/E. The double integral in equa-

written in terms of the 17 free parameters
A

tion (39) is evaluated numerically by a Newton-Raphson iteration technique,

and maximum-strength, radius-to-thickness-dependent, load-shortening
curves are obtained for three kinds of materials: 2024-T3 aluminum,
electroformed nickel, and electroformed copper. Bxcept for the radius-
to-thickness ratio, the parameter values used are the same as those taken

for the elastic analysis which is applicable to all values of R/t.
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unique load-shortening curve (independent of R/t) for all-elastic
analyses is typical of solutions based on the von Kérmén theory for
plates and the von KArmén-Donnell theory for shells (see, for example,
refs. 1, 2, 3, and 13).

RESULTS AND DISCUSSION

The maximum strength of initially imperfect, axially compressed, circular
cylindrical shells has been studied through the use of modified forms of
Reissner's variational principle, in conjunction with the von Kdrmén-
Donnell theory and a deformation theory of plasticity. Maximum-strength,
radius-to-thickness-dependent, load-shortening curves have been obtained

for three different materials,utilizing both a beam-arch analog to represent
the cylinder and a two-dimensional analysis of the circular cylindrical
shell itself. The fundamentel materials considered are nickel and copper,
in view of the fact that most of the experimental work carried out in

recent years to study imperfection sensitivity relative to axial compression
loading of carefully manufactured (electroformed) shells has dealt with
these materials. Results are presented also for 2024-T3 aluminum shells,

since design practice reflects such a more conventional material.

BEAM-ARCH ANALOG

With the use of the beam-arch analog, maximum-strength, radius-to-thickness-
dependent, loasd-shortening curves have been obtained that represent cylin-
ders with material properties corresponding to electroformed nickel. For a
given imperfection amplitude, the load-shortening curves for electroformed
nickel reflec: a radius-to-thickness dependence of significant magnitude, as
depicted graphically in Figure 6. The upper curve represents the results
of an all-elastic analysis. The family of curves belov the purely elastic-
analysis curve is obtained by incorporating inelastic effects into the
variational principle, using the stress-strain curve of Figure 5 and per-
turbing from the original elastic-sclution parameters establish~d in
developing the all-elastic behavior curve. It is noted that for R/t = 300
and A = 0.1, the reduction in maximum load from the maximum load obtained
in the purely elastic analysis is 16%. Also, for this arbitrary case, it
may be seen that for a sufficiently "thin" shell say, R/t > 1000, the

18



t inelastic analysis reflects the absence of inelastic strains and coalesces
with the unique elastic analysis result (a’l R/t).

CIRCULAR CYLINDRICAL SHELL

For circular cylindrical shells, maximumrstrength, redius-to-thickness
dependent, load-shortening curves have been obtalned utilizing stress-
strain curves representing several different materiaels. The survey papers
of Hoffl’ g and S’cein:’> indicate that a number of investigators have achieved
unusually high buckling stresses relative to the classical stress by
performing exacting experiments on very carefully fabricated specimens.

The results of these investigators are included in Figure 8, along with a
band encompassing the myriad tests performed prior to 19€0. The source of
the band is an indication of the significant discrepancy and scatter that

existed between experimént and classical theory over a period of about

30 years.

Abcve the upper bound of the scatter band, results are shown for the very
speclalized tests carried out by Babcock and Sechleres, Horton and Durham5 ’
Tennyson and We11e52]; and Almroth et al.2u The Babcock and Sechler tests
were performed on electroformed copper cylinders, the Horton et el. and
Almroth et al. tests were performed on electroformed nickel cylinders,

and the Tennyson and Welles tests were performed on a series of spun-cast
plastic cylinders. In each Instance, relatively small cylinders were
involved, and the control of any irregularities in the shell geometries is
obvious due ‘o the fact that the classical load 1s approached within 10
percent, on one end (R/t = 100) and 25 percent on the other (R/t = 1000),
which 1s well above the upper bound of the scatter band for much larger

shells fabricated in accordance with common shop practices over several decades.

From Figure 8, it would appear that the Almroth et al. and Babco:k and
Sechler electroformed nickel and copper shells are the most imperfection
sensitive; thus, these particular materials are of analysis 1interest. The

uniaxial stress-strain curve utilized in the analysls of the electroformed

nickel shells has been presented previous.y &s Figure 5, in conjunction 5
with the inelastic beam-arch analog leading to the load-shortening curves
shown in Figure 6. Now, with this stress-strain curve, the cylinder

analysls ylelds the load-shortening relationships presented in Figure 9.
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The results show that for w =1 and A= 0.1, the reduction from all-
elastic behavior to the R/t = 300 cylinder is about 25 percent. It is
noted then that (1) inelastic deformations can be preseni in cylinders
which if perfect would buckle at the classical elastic load and that (2)
the phenomenon of inelastic deformations produces a significant R/t-depen-
dence of the load-shortening curve for a cylinder of a given material and

imperfection parameter.

The family of load-shortening curves shown in Figure 9 is related to only
one value of this imperfection parameter. However, for usual allowable
design tolerances, imperfections for cylinders corresponding to large
radius-to-thickness ratios would be expected to be "effectively" greater
than those of cylinders corresponding to relatively small radius-to-
thickness ratlos. Therefore, the radius-to-thickness ratios are corre-
lated to reasonable imperfection varameters (namely, the average values
of the scatter band for practically fabricated shells of Figure 8) to
establish the imperfection parameter as a function of R/t; the ensuing

load-shortening curves are shown in Figure 10.

Each set of curves for various R/t values in Figure 10 is related to a
given imperfection parameter; the imperfection parameter increases as the
radius-to-thickness ratio increases. Clearly, as should be expected,
cylinders corresponding to large radius-to-thickness ratios (for example,
R/t = 800) possess lower maximum loads than cylinders of significantly
smaller radius-to-thickness ratios (for example, R/t = 400). This
phenomenon has been demonstrated experimentally by Kanemitsu and NoJima25
and Weingarten et al.6 It may be seen from Figures 9 and 10 that as the
radius-to-thickness ratio decreases, the effect of inelastic deformations
increases. In Figure 10, the load-shartening curves for R/t = 400, 600,
and 800 depart significantly from the elastic curves for the same imper-
fection amplitude, ranging from about 8 percent for the thinnest cylinder
to 25 percent for the thickest cylinder, which is still relatively thin
by design standards. It may be noted also that cylinders of different
geometries may exhibit the same maximum load as shown in Figure 10. A
cylinder of R/t = 600 and A = 0.1 has essentially the same maximum load as

a very thin cylinder (that is, R/t > 1000) and A = 0.16. The maximum loed
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of the first cylinder depznds not only on the initial imperfection ampli-
tude but also on local ylelding of the material, whereas the maximum

load of the second cylinder depends only upon the relatively large imper-
fection. This 1s attributed to the fact that bending predominates and
prevents the development of membrane strains which are of sufficient
magnitude to combine wilth the bending strains and cause local ylelding
of the material. As a result, the total effective stress remains well
below the yield polnt of the uniaxial stress-strain curve for the materi-

al, and essentially elastic behavior governs.

Now, 1t is essential to study more closely the actual nickel and copper
cylinder tests reported by Almroth et al. and Babcock and Sechler for
cylinders of about R/t = 850 and 890, respectively. The stress-strain
curve for electroformed copper 1s shown in Figure 11; the corresponding
stress-strain curve for electroformed nickel appears in Figure 5. With
the fit of the appropriate imperfection parameters, the maximum strengths
produced by the cylinder inelastic analysis are shown in Figure 12. The
results are obtained on the basis of equal buckle wavelengths (p =1)

and imperfection amplitudes (A = 0.02). When it is assumed that the
materials behave in linear elastic fashion, the cylinder analysis predicts
maximum strengths some 10-14 percent higher. In other words, the rela-
tively high ratio of a/ccl reached in the careful tests on carefully
fabricated cylinders could have been higher and closer to the classical
theory results reported by Stein:", had the materials behaved in perfectly

elastic fashion.

It 1s believed that sufficient theoretical evidence has been given,

in consideration of the results of the recent experimental references
presented, to reach the conclusion that inelastic deformation should
not be excluded from initial buckling or maximum strength analyses.
However, electroformed nickel and copper are not typical of practical
construction materials. Thus, attention is next directed to aluminum,
the most common material utilized in aerospace construction. For
analysis purpose, the stress-strain curve of 202k -T3 aluminum alloy
(Flgure 13) is utilized. The resulting load-shortening curves are
shown on Figure 1l4. Surprisingly, the behavior of 2024 -T3 aluminum

21
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cylinderse in the maximum strength analysis is markedly different from that
of the electroformed copper and nickel cylinders. The separation of

the Jload-shortening curves as a function of R/t does not begin until

the R/t ratio reaches the neighborhood of 200. 1In fact, appreciable
reduction in maximum strength does not occur until & radius-to-thickness
ratio of about 100 is approached. Obviously, there is an effect of the
nature of the stress-strain curve on the sensitivity to inelastic effects
at & glven R/t ratio. Alumirum and other conventional materials exhibit
much sharper knees of the stress-strain curve,and this can be noted
Quickly from the exponent in the Ramberg-Osgood stress-straln curve

representation. Whereas the electroformed copper and nickel stress=-

strain curves reflect exponents of 3, aluminum and most other conventional

DL SERSS BN

aerospace metals reflect exponents of 9 or greater. One exception 1s
stainless steel; the uniaxial stress-strain curve 1s represented quite

accurately by an exponent of 3.

Little comfort can be taken from the fact that the 2024-T3 aluminum 1
shells exhibit purely elastic behavior in the range R/t > 300. Regard-

less of choice of conventional structural material, thin shells for ;

i resisting compression loads are utilized either in orthotropically 3
| stiffened or sandwich forms. As pointed out by Hoffl) such shells ]
} possess "effective" R/t ratios as small as 50. Hence, maximum 3

strength determination for such shells should be based on analyses {

such as the one described here, which can account for the presence of
inelastic deformaticns. It should be noted that for "effectively"

thick shells, initial imperfections would tend to be minimized and the
effects of inelastic deformation maximiied. In reported compression
tests on large design-scale sandwich and orthotroplcally stiffened shells
(refs. 26, 27, 28), in the range (R/t)effective, 45-220, maximum calcu-

e
S

i lated stresses indicate inelastic deformations at maximum load. The
family of curves presented in Figure 14 illustrates the reduction in
meximum load due to plasticity of "effectively" thick compressed shells

AR TR ——

of 2024-T3 aluminum; the uniaxial stress-strain curve is shown in
i Flgure 13. For R/t = 60, the reduction in maximum strength due to
inelastic considerations is about 33%. It should be further noted that

22
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the imperfection parameter value (A = 0.1) would probably be smaller

in practice for shells of effective R/t < 100; thus, it would be expected
that at higher average stress level ratios, 0/d,), the percent of reduc-
tions in maximum strengths due to inelastic effects should be greater tnan
those shown in Figure 14. A particular curve of interest *n Figure 1L

is that for R/t = 167. This load-shorvening curve represents the analyt-
ical prediction for a 2024-T3 aluminum test cylinder of NASA (reference
28) with the cross section shown in Figure 1. The imperfection
parameter, A = 0.1, is taken from the average value of the scetter band of
Figure 8 for R/t = 167. In this case, little effect of plasticity is
seen. However, for R/t = 167 and a 2024-T3 stiffened aluminum cylinder,
the buckling mode is still representative of thin-cylinder behavior.

A photograph of the buckled test cylinder (see Figure 15) clearly shows
the "diamond"™ buckle pattern typicel of thin eylinder behavior in the
presence of initial imperfections. An efficient stiffened 2024-T3
aluminum cylinder would appear to be one of lower R/t than 167, with
resulting smaller imperfection amplitude and increased sensitivity to

inelastic deformations.

Finally, for the results obtained herein,based upon & simple deformation
theory of plasticity with no unloading mechanism provided, the occurrence
of unloading, if any, within a buckle must be assessed. In the case of
each shell analyzed, monitoring the numerical calculations for the
effective strain at a point, as the end shortening increased incrementally,
indicated that no detectable unloading in inelastic regions of a buckle
occurred as the maximum load of the shell was approached. Therefore,

the initial assumption that the present maximum strength analysis could

be undertaken on the basis that the material is of a nonlinear elastic

nature was indeed valid.

CONCLUDING REMARKS -

The study of the maximum strength of initially imperfect, axially com-
pressed, thin-walled, circular cylindrical shells has been undertaken to
determine the effects of inelastic deformations on maximum load-carrying
capacity to establish, as was found to be the case of compressed flat

plates, the degree of geometry dependence of load-shortening curves for a
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given material., Indeed, the load-shortening curves obtalned in the
present analysis for the inelastic behavior of shells reflect signifi-
cant radius-to-thickness ratio dependence. A family of load-shortening
curves, each corresponding to a different value of radius-to-thickness
ratio, 1s shown to result for a given material and a specific initial
imperfection amplitude. The significant spread between the load-shortening
curves in any family of such curves is a new result in application of the
von KArmAn-Donnell strain-displacement relations, which sheds further
light on a problem whose satisfactory solution has eluded investigators
for decades. The actual solution has been carried out with the use of
the ven Kdrmdn-Donnell formulation and a deformation theory of plasticity

in conjunction with a modified form of the Reissner variational principle.

In view of the results obtained for shells corresponding to experimentally
studied electroformed copper and nickel shells of relatively high geomet-
ric accuracy, it must be concluded thet initial imperfections cannot

be considered the only significant cause of such shells' failirng to
develop their classical buckling stresses. Further, the presence of
inelastic deformations and the nature of the nonlinearity of the

material stress-strain curve for a given shell cause conslderable scat-
ter in maximum strength results for cylinders of the same R/t ratio.

Thus, it is reasonable to conclude that inelastic deformations, along
with inital immerfections, prebuckling deformations,and boundary condi-
tions (factors previously established to be important), must be considered
in determirire the maximum strength of thin shells, especilally those

with small t woderate initial imperfections. Such imperfections would
be representative of orthotropically stiffened and sandwich shells in
aerospace vehicle designs. The more efficient stiffened or sandwich
shell would appear to be one in which elastic buckling would take place
except for the presence of some degree of imperfection which precipitates
bending with inelastic deformations. These two effects, coupled with
prebuckling deformations and boundary conditions, should make optimization

procedures more meaningful.

A beam-arch analog developed to represent a circular cylindrical shell
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and the shell itself have been used to establish the load shortening

curves presented. The analog 1s introduced to establish qualitative

trends and to achieve economy in computation for what must be considered
to be an extremely complicated problem in the nonlinear analysis of thin
shells.
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Figure 1. Circular Cylindrical Shell With Two-Element Cross Section.
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Figure 2.

Beam-Arch Analog for Circular Cylindrical Shell. (Pure
Diamond Nodel Pattern Shown for Illustrative Purposes
Only. ©Shell Analysis Is Based on Ovalized Deflection
Pattern,)
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Figure 3. Load Deflection Relationship for Snap-Through Buckling of
Shallow Arch.
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Load-Shortening Curves for a Circular Cylindrical Shell
Obtained for Elastic Behavior,
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Curves Corresponding to Different Imperfection Parameters
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APPENDIX I

EULER EQUATIONS AND BOUNDARY CONDITIONS DERIVED FROM THE
REISSNER FUNCTIONAL FOR A CYLINDER WITH PRESCRIBED END SHORTENING

The Reissner functional in the absence of prescribed surface loading is
defined as

A

The strain-displacement relations of von Kdrmen-Donnell theory, modified
for the two-element cylinder of Figure 1 and including initial radial

/ARE

deformation effects are
6 =¢e!' " =y, +—w,2+w , =W,
X v X 2 °x 0,x 'x ~ 2 'xx g
1
1l 2 h
€ =l te"=v_-Z+3Zw
Ye,b y oy T RTZ2%y T Toy VyEaVoyy {
Y. =y +v" =u, +v, +w,w, +Ww 7 W, '3
Wep X Xy y OsX 'Y 0,y "X j
+ hw,w (41)
i
The stresses in terms of midsurface and bending components are |
o =g! + c;
t,b X
G = d' :“: G" .
Ve,p Y Y b
T =1' + "
Wy WOOW (L2)
For the two-element section, equation (40) becomes 1
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U=t f 0 € +0 € +0 € +40 +
= ¥ € T 7
£ e X Xy X Xy Vg Yy Y ¥ XY XY
+ - rd Pl
Txyb7x.‘fb (Fg + Fb)} dxdy (43)

Then, in view of equations (41) and (42), equation (43) may be written as

L 2nR
1.2
=t g o =
fff {( X, + xb) [u’x ta Wt wo,xw’xJ
1l 2 W
g v + = + =g
(o) [ ]
+('r xyb) [ o +V, Valsy
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o,x y ,y x] ( X, xb)[ ) XX]
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(L)
The average stresses and the bending moments are
1
o! ==(c_ +0_)
x 2% X
o! ==(c +0 )
Yy Yy %
1
' = =(q +1 )
o2 Xy, ¥y,
M = -t h(cr . ) = -t_ho"
X f2 A fx
M = -t —}3(0 -0 )= -t ho"
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Substitution of equation (45) into equation (4k) gives
b L 2nR

' 1l 2
" ! -
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00
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then the vanishing of the first variation of U” with respect to

o}'{, c;r, T}:y’ Mo M, M, 4, v, and v requires that
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(47)
The result of carrying out the integration by parts is
L 27R
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For equation (48) to vanish for arbitrary variations in the states of

stress and displacement, consistent with prescribed displacement boundary

ol G A e

conditions, each of the above terms must vanish identically. The Euler

equations which result are

Stress-displacement relations:

JF'

2
=Uu, += W, +W_ W
Sox' ’x° 2 ’x To,x ’x

=] £

1.2
=V + =W + W w -
50y' 'y 2 Vy To,yly
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Moment-curvature relations:

OF' 1 “
= = 3t b
SMX 2tf XX
¥ 1
= = )
SMy 2t PR 2
OFf 1 =
= - e F}
SMXZY te Xy (50)

Midsurface equilibrium eaquations:

o! +1! =0
XyX XYY

' o4 oq! =0
vy Txysx (51)
Lateral equilibrium equation:
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(ox[":x"" Vo,x]),x + (Uy[V:y Wo’y])’y
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N + - oM =0
R m M Ny xy,xy] (52)

f

In view of equation (SlL the lateral equilibrium equation (52)
becomes
1

ox(w,xx+ w

) + o&(w,yy+ w )

0, XX oYy

O—l
+ 21! (w, _+w + =L
xy( ’xy o,xy) R

1

+ ——(M + M - 2M =0
2tf( Xy XX Y ¥y :q',xy)

(53)

which,for a homogeneous, isotropic body (2tf~t) and Hookean material,
reduces to the well-known lateral equilibrium equation of von Kdrmén-

Donnell theory (see, for example, ref. 15).

The midsurface stress-displacement boundary integrals are
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} R
' f olul ay = 0
é 21R L
1 -
0
- 27R
f o'dv| & =0
0 (Ske)
0
L o
! e
rxysucl) dx =0 (544)
0
The remalning boundary integrals are
2nR
1 L
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1 1
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L 1
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0 ‘
2nR 4
1 1 :
=M =M gw| ax =0
2ts Yoy te xy,x} 0 (55b) !
o
2M B =0 i
¥ oo (55¢) 2

For the present problem, that of a long, circular cylindrical
shell, the end shortening is prescribed; thus Su vanishes at x = O,L.

The remaining boundary conditions at x = O0,L can be ignored due to the

|

length assumed for the shell. The boundary conditions at y = 0, 2nR
are elther continuity conditions (55a, b, and c) or conditions which

preclude the transfer of any circumferential and shear loads across a
generator (54 ¢, 4).
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APFENDIX II

SHALLOW-ARCH AND BEAM-ARCH ~.OAD-SHORTENING RELATIONSREIPS

SHALLOW ARCH

The expressions for the displacements and stresses [equation (20)] can be
substituted into the Reissner functional given by equation (19). Upon
subsequent integration, the Reissner functional for a shallow arch under

uniform lnading is then

" 1"
U, + VA . GAR 36(52- f )
~ Eh 1 n

TN A

U, =
A yE(n/r)?

GlA 1 GAR 2

- R/ - =)

2

o -—
'1%(TM %) - SE (56)

lMtaRh 5 )

7k
\ 2 a,

7 = DB(Ry2
p=50E)

The first variation of U’ with respect to GA’ clA’ and & results in

A
o,R 2
A 2 =
w5 (57)
o, R
1A
= --3¢ (8)
and
o,R 2 o, R
A s 1A 2 —
- CRERED bR ERL (59)
These simultaneous equations can be written in terms of & alone as
2 L 2 =
3 3" .2 [=x ), [\ p
¢ -mt +(;§+3)§ "(n) x (60)

52



fa e AR

For prescribed values of 1 and p, equation (60) can be solved numerically
for 8. The results are shown in a plot of 5 vs. § in the lower portion
of Figure 3.

BEAM-ARCH ANALOG

The expressions for the displacements and stresses [equations (20) and

(23)]) can be substituted into the Reissner functional given by equation

(22). The result of invegrating the Feissner functional for a two-element

beam arch is

U" + Ull 2 ga u ﬂ
w_ B A ( g U )
U == —-————5 = = -—- - —8—
VE(h/R)
Oy R 2
oR § (A 21
" Eh ) K(Eh 'Eh>l(§n§)
i M"g R _ ;(SA_R)Q_ ;.("_uf*)
E16 h  2\Enh i \ Eh (61)
where
¢t = a/h
50 = ao/h
b= )\A/AB
e = applied unit end shortening
The first variation of U" with respect to o, al, s, Op> and alA results
in
oR _eR 1°n, .2
En"h ° Eﬁ(g * 2§60) (62)
o.-R 2
1 U
- 3 (63)
o,R 2
A 2 =
E—h-="%|]_3(§ -T]—E) (64)
¢, R
1A
- -8t (65)

(continued)
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GAR n n2 o'lAR
- E(ag)eE - ) - F- 15 = 0 (66)

The abcve equations can be written in terms of the parameter & alone as

2

53[1 ks 'JﬁI] o 52[380 - 3n
R nu
in
16 eR 2 LS 1
”['—z'h—*2(% *rﬂ) L +-1:]
R nu M
8 .
R
T -0 (67)
KT

For prescribed values of p, 1, 80, and eR/h, equation (67) can be
solved numerically for 8. Then, for the same parameter values and
corresponding §’s, equation (62) can be solved numerically to establish
the load-shortening relationship between oR/Eh and eR/h and to develop

the curves shown in Figure UL,

Sk




APPENDIX III

METHOD OF SOLUTION FOR ELASTIC CIRCULAR CYLINDRICAL SHELL

After the expressions for the assumed displacements [equations (26), (27),
and (28)] and stresses [equations (29), (30), and (31)] are substituted
into tke Reissner functional given by equation (18), subsequent integra-
tion yields

- U"

T" = —mr = -4 5 Foo~ Aoofoz- Aa(Fy* By
Et(-g—-)

! hhp(Fppt Hyp)-8hsy (Fap + 3Hy, )
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-e<g> (S 16A§2)(1+u2)2+ £ (9+°)
i . A§1(1+9u2)2+ s2(82,+ u'a2))]

—iﬁ&l-[(l+ 2)2 + 3~2(u!+§2 +e2)4 Se
g 2&(1- 2 2 E

(68)

where the F's and H's are defined as

§
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ll 02
F22 = u'n T + ugeog 2+2§ ( + _)]

13
2, 0. ‘11
31 = wn R[S 520"25110(_3‘ + 351

55

b T AR

|




2
Fiz = W glEya80p + §1lo§oe]

2
¢
2 t.°11 11 2 1
Heo‘“"'ﬁ‘a"'gno ) § &

2t 2t
By = wngleg 8ot 5110502] *REn
2
2 ¢

- T - 11
By, = wngl- 5= g110—1':]
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In the above, the substitution fn = gllo/h has been made for conve -
nience based on the postbuckling analysis results presented in reference

29. It is of interest to note that the same assumption has been
utilized by Tennyson et al. in reference 21 in conjunction with an

elastic analysis of the buckling process for compressed cylinders.

The equations found from the vanlshing of the first variation can be
reduced to four equations in the four unknowns gll 5 ;20’ 502 , and o/E.
This set of nonlinear algebraic equations can now be solved numerically
for given values of the parameters A, p, and n,and the relationship
between oR/Et and eR/t can be obtained. Curves of oR/Et vs. eR/t are
given in Figure 7.
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