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FOREWORD

This report was prepared by the McDonnell Aircraft Company, St. Louis,
Missouri, under an amendment to United States Air Force contract F33615-68-
C-1520, "Experimental Evaluation of Propulsion System Component Drag and
Stability Characteristics in the Transonic Mach Number Regime.' The test
program was sponsored by the Air Forca Aero Propulsion Laboratory, Harlan
J. Gratz/APTA, Project Engineer, as in the first phase of the contract effort.
The drag balance is U. S. Government property under loan to the McDonnell
Aircraft Company, St. Louis. The test models and other test apparatus were
furnished by the McDonnell Aircraft Company, St. Louis.

The contract period extended from U December 1968 to 15 September 1969.
The Phase II experimental effort was carried out at NASA-Ames in the 6 x 6
ft. supersonic wind tunnel in two parts. The Phase II - Part A series was
conducted in October 1968 and the Phase II - Part B series in June 1969,
with the assistance of ARO, Inc., Ames Division Personnel C. Prunty and
A. R. Boone. This report was prepared by F. D. McVey, J. V. Rejeske, and
E. J. Phillips of the McDonnell Aircraft Company, St. Louis. The authors
are indebted to T. C. Rochow, Dr. B. M. Sharp, and E. D. Spong for develop-
ment of the analytic techniques, and to D. R. Chamberlain, D. N. Kendall,
and D. A. Kopp for assistance in model design and test direction.

Publication of this report does not constitute Air Force approval of the
report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.
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ABSTRACT

This report presents the results of a test program to determine the
drag of supersonic inlets operating at transonic Mach number conditions.
It is a supplement to Air Force Report AFAPL~TR-68-119 describing the
results of additional tests conducted under Air Force Contract
F33615-68-C-1520.

Data are presented showing the additive drag and total inlet drag of
the F-4 aircraft inlet measured in the presence of the aircraft forebody
and in an undisturbed stream. Inlet drag test data are also presented
for a series of thirteen configurations where the sideplate geometry is
the primary variable. All thirteen configurations are variations on a
single two-dimensional inlet.

Tests to reproduce some of the data reported in AFAPI~TR-68-119

were conducted to evaluate the accuracy of the experimental procedure.
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SYMBOLS AND NOMENCLATURE
Ay Axisymmetric inlet body area.
A, Inlet capture area.
A'LIP Flow area at the inlet 1lip station.
Ao Captured freestream tube area.
ATH The minimum flow area of the internally contracted
ROAT
inlets.
A‘_:/A}3 Ratio of inlet capture area to model body area.
A‘LIP/Ac Inlet 1lip to inlet capture area ratio. %
Ao/Ac Mass flow ratio (capture area ratio).
(A_/A) Maximum theoretical inlet mass flow ratio (capture area
o' "c'max
ratio).
ATHROAT/Ac Inlet throat to inlet capture area ratio.
B.L. Indicates a Butt Line
c Additive drag coefficient based on inlet capture area - i
: ADD F, /q A “
: ADD’ 35™c* I
Cc Cowl drag coefficient based on inlet capture area - -
Fc/quco ‘.
(& Inlet drag coefficient (C, . +C ) based on inlet cap- :
I ADD “c i
ture area - FI/q A .
oc ]
Cp Pressure Coefficient (P-Po/qo) ; ;:
CR Ramp drag coefficient based on inlet capture area - b
FR/quco 3
4
FADD Inlet additive drag force. i
Fc Covwl drag force. _53
Py Inlet drag force (F ADD*Fc]'
FR Ramp drag force. §
4
F.S. Indicates a Fuselage Station. i
MD Inlet design Mach number.
xi b




Freestream Mach number.
Freestream static pressure.

Freestream total pressure.
Py Y ¥

Freestream dynamic pressure >

Axisymmetric cowl lip leading edge radius.
Indicates a Water Line

Angle of attack,

Ratio of specific heats.

F-4 fixed leading ramp angle.

F-I variable second ramp angle.
Axisymmetric or Two-Dimensional cowl angle.
Axisymmetric innerbody half-angle.
Two-Dimensional inlet ramp angle.

Yaw angle

xii



SECTION I
INTRODUCTION
E The inlet drag investigations described in the first report(Phase I) of this
program (Reference 1), yielded data defining the transonic drag characteris-
tics of Axisymmetric Single Cone and Normal Shock inlets, the basic F-k
inlet, and an unique design Opposed-Ramp inlet. The purpose of the extension
of this program was to:

0 Determine forebody effects on inlet drag,

o Define the details of the cowl lip pressure of an axisymmetric inlet, and
o Determine drag characteristics as influenced by radical variations
in sidepla;te geometry on a series of Two-Dimensional inlets which
were readily formed by simple modifications of the available model
hardware.
The forebody effects were determined with an F-4 inlet and F-4B aircraft
forebody configuration. F-4 inlet drag was determined with the forebody

attached, with the splitter plate configuration used in Phase I and with

neither forebody nor splitter plate.

In the Phase I tests the drag determined from surface pressure integra-

tions showed “‘consistent disagreement with force determined inlet drag, ' .

Insufficient definition of the cowl pressure in the region of the cowl lip

ke M

was believed to be a possible source of this difference. In this program one
axisymmetric configuration (Al0) was instrumented with additional cowl lip
pressures in an effort to resolve this question, Force data was also obtained
with this model to provide a correlation with the Phase I test results.

The Opposed-Ramp model of Phase I was modified to permit investigation
of sideplate geometry and cowl shape. The modifications to the ramps and

cowls provided a nominal two-dimensional inlet shape. Inlet configurations

with and without internal contraction were tested. Figure 1 presents

£ G I SR IS W v < oo =




photographs of the F-lL and Two-Dimensional inlet ccmponents.

Due to a drag balance malfunction during initial Phase II testing, these
tests were divided into two parts. In Phase II - Part A the forebody ef-
fects were evaluated oh the F-l4 inlet model and the fxisymmetric inlet was
tested. In the Phase II -~ Part B series the Two-Dimensional inlet configura-
tions were tested. The inlet drag balance was repaired and recalibrated
between the tests of Phase II A and B. The order of the testing and a
complete record of the test activity is present in the "run summary" of

Appendix A.

The complete test program was accomplished at the NASA-Ames Research
Center in the 6 x 6 ft. supersonic wind tunnel. The program involved tests
at transonic Mach numbers ranging from .7 to 1.05, and tests of selected
configurations at supersonic Mach numbers of 1.8 and 2.0. Only those models
and test equipment that were not employed in the Phase I tests are described
in this report.

The inlet drag data presented herein includes the results of both the
force and pressure tests. Force data was obtained on all models, whereas
pressure data was taken with the F-4 and Axisymmetric inlets only. The inlet
drag data is presented for each configuration and comparisons between these
are shown where appropriate. Selected surface pressure distribution data

is also presented.



TWO-DIMENSIONAL INLET COMPONENTS

FIGURE 1 - F-4 AND TWO-DIMENSIONAL INLET MODEL COMPONENTS




SECTION II
DESCRIPTION OF TEST EQUIPMENT

1. Drag Balance and Model Support

The drag balance and model support used in this test program was the
same as that employed in the previous drag program (Phase I), which is des-
cribed in detail in Reference 1.

A new balance calibration rig was designed and fabricated for this test
series allowing axial calibrations through the zero load point with normal
forces applied in any plane.

2. Inlet Models

One axisymmetric inlet model, five configurations of the F-4 inlet,
forebody and splitter plates, and thirteen configurations of a basic two-
dimensional inlet model are described in the following paragraphs. The
F-4 models are exactly 7.5% scale. Since the other configurations fit the
same balance and handle approximately the same mass flow they may also be

considered as approximately 7.5% scale models.

a. Axisymmetric Inlet Model
The axisymmetric inlet model employed in these tests was configura-

tion Al0 used in the Phase I drag program. The gecmetry of configuration
Al0 is given below and illustrated in Figure 2.

Capture Area Ratio, Ac/lxB = ,620

Cowl Angle, °c = 20°

Innerbody Half-Angle, OIB = 20°

Cowl Lip Radius, R ,p = 0.008"

Inlet Design Mach Number, MD = 2,70

Inlet Lip Area Ratio, ALIP/Ac = ,620
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Additional surface pressure taps were added on the Al0 model at the
inlet lip station. Five (5) pressure taps were added to the cowl lip, and

two (2) to the innerbody. These new pressure tap locations are shown in

the following table:

Axisymmetric Inlet Additional Pressure Instrumentation

Components Axial Location Measured From
Cowl 0.00" Cowl Lip Leading Edge
0.024"
0.048"
0.o72"
' 0.050" (Internal)
Innerbody 2.896" Innerbody Tip
' 3.096" f

The original six (6) cowl and eight (8) innerbody pressure taps were also
employed in these tests. Their locations are given in Reference 1.

b. F-4 Inlet Models

The F-4 inlet configuration was tested with and without the
splitter plate used in Phase I and in the presence of the F-UB aircraft
forebody. Figure 3 and 4 present typical inlet model assemblies. The
second ramp angle was tested at two positions to represent appropriate
values for the range of test Mach numbers. The first ramp angle was not

variable. The configuration geometry is listed below and described in

Figure 2,
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Configura- Leading Second
tion Ramp Angle (6)) Ramp Angle (85) ALIP/Ac ATHROAT/Ac Forebody

Fls 10° 0° 0.649 0.609 Splitter Plate
F1f 10° 0° F-LUB Aircraft

Flo 10° 0° { None

F3s 10° 8° 0.5k41 0.487 Splitter Plate
F3f 10° ge i F-L4B Aircraft

To identify the models in the above table the notation incorporates the
suffix (s), (f), and (o) to refer to the splitter plate, F-UB aircraft

forebody, and no forebody, respectively.
Schematic drawings of the F-4 inlet with the splitter plate and with the

F-U4B forebody are presented in Figures Sand 6. The mounting of the air-
craft forebody did not involve any changes to the windshield or support
hardware used in Phase I. The model geometry of the F-4 boundary layer
diverter was incorporated.

Pressure instrumentation was employed on configuration Fl1l only and in-
cluded cowl, ramp, forebody, and boundary layer diverter pressures. The
instrumentation locations on the ramp and cowl are presented in Refer-
ence 1.

¢. Two-~Dimensional Inlet Models

The Two-Dimensional inlet models were fabricated using the existing
Opposed-Ramp hardware from the Phase I tests. Simple modifications to the
inlet were made to allow replacement of the ramp, cowl and sideplates.
Thirteen Two-Dimensional inlet models were employed in the program to repre-
sent two basic inlet types. Eight (8) models were representative of single-
ramp external compression inlets, and five were Opposed-Ramp inlets similar
in design to that tested in Phase I. The inlet gecmetry for these thirteen
configurations is given in the table below. A schematic of the Two-Dimen-

sional inlet, with its nomenclature, is presented in Figure 2.
6




Two-Dimensional Inlet Geometry

Configura- Ramp Angle Cowl
tion (°1) Sideplate (e c) Arp/A,  Ammoar’A.
il 8° #1 Full None .T87 .T10
2 8° #2 Ported
3 8° #3 Partial
I 8° #i Partial
5 8° #5 Partial
6 8° None
8 8° #1 Full 15°
11 8° #7 Partial None L
12 8° #8 Louvered b
16 17.75° #1 Full 15° .540 .502
17 17.75° #1 Full 11° {
18 12° #2A Ported (Plexiglas) None .696 S5Th

The inner covl angle is fixed at 0° relative to the model centerline on all

configurations. The capture area for all models is 5.312 inz.

Figure T presents a drawving of the Two-Dimensional inlet model with per-

tinent dimensions, illustruting the ramp, cowl, and sideplate assembly, and
Figure 8 presents a schematic of the sideplate shapes also with pertinent
dimensions.

The Two-Dimensional models were included in the program to evaluate the
transonic drag of inlets of the Opposed-Ramp type and to compare these data ]
with the drag of inlets of more conventional designs. With the Opposed-Ramp
inlet a large quantity of flow spills through the sideplate downstream of
the cowl 1lip u opposed to spilling the flow over the cowl as in fully two-
dimensional configurations. The drag associated with an alteration of the
side spill mechanisms was evaluated using sideplates 2, 7, and 8 shown in
Figure 8. These sideplates vere variations on the Opposed-Ramp model illus-
trated as configuration 6 of Figure 8. With each of these designs, the
inlet was configured to operate properly at Mach 2.0. In adapting these

configurations to the available Opposed-Ramp model of Reference ], a
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slight internal contraction (7%) downstream of the throat station resulted.
As mentioned, this contraction was low enough to allow starting at Mach
numbers of 2.0 and above.

In order to produce some comparative data for configurations represen-
tative of simple two-dimensional inlets, additional sideplate configurations
vere fabricated (Sideplates 1, 3, 4, and 5). Of course, the configurations
developed in this fashion cannot be operated over the same rang= of mass
flow ratios, but do provide the required comparative data. This data also
illustrates the effect of sideplate geometry on two-dimensional inlets which
operate with similar Mach number conditions at the cowl 1lip station.

3. Drag Balance Modifications

Two problems were encountered with the drag balance during the Phase
II - Part A tests.

a. A zero shift (difference) developed in the zero readings taken be-

fore and after a run.

b. Normal loads on the balance were found to affect the balance

zero shift.
Inspection of the balance revealed that the metric portion had become loose
and misaligned due to the failure of 4 of the 8 bearing supports. This re-
sulted in an interference between the metric and non-metric elements and
caused the zero load output of the load cell to be erratic.

The balance was refurbished by replacing the failed bearing supports,

and by properly supporting and realigning the metric section.
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Dimension Table

L
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0.928"
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FIGURE 7 - TWO-DIMENSIONAL INLET MODEL TEST ASSEMBLIES AND GEOMETRY
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SECTION III
TEST PROGRAM AND TEST TECHNIQUES

1. Test Summary

The test program was conducted at the NASA-Ames Research Ceater in the
6 x 6 ft. continuous flow supersonic wind tunnel. The Phase II - Part A
series was accomplished in October 1968 and the Part B series in June 1969.

In Part A, a total of T9 force and pressure runs were performed on 6
inlet configurations; 5 F-l models and 1 Axisymmetric model. Four of the
F-U4 models were tested at several angles of attack. Table I presents a test
summary of the Phase II - Part A test program, and Appendix A describes the
complete run summary.

In the Part B test series, a total of 59 runs were performed on 15 in-

let configurations; 2 F-l4 models and 13 Two-Dimensional models. All runs

in this series were force runs. Three of the two-dimensional models were

run at angle of attack conditions. Table II presents a test summary of the
Phase II - Part B test program, and Appendix A describes the complete run

summary.

2. Test Procedures

The drag balance was calibrated extemnsively before each of the two test
series. With the balance installed in the wind tunnel, axial loadings
ranging from O to 50 lbs were applied in both the thrust and drag

directions. The effects of side and vertical loads of up to 50 lbs

on the axial force measurements were also exsmined. Post-test balance |

calibrations were also performed.

During the tests of Phase II - Part A, the balance was oriented to
position the splitter plate on the F-i inlet model in the vertical plane.

In the later tests, Phase II - Part B, the balance was rolled 90° to
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TABLE I
TEST SUMMARY

PHASE II - PART A

Mach Number - Mo a Type Test
Configuration | 0.70 0.80 0.90 1.05 2.0 | 0° 6° 12° Pres. Force

Fls b 4 x xl b x x b 4
Flf x x2 b4 b4 b b ¢ b 4 b 4 b 4
Flo x x x x x
F3s x x x x x b
F3t x x x x x X
Al0 x x x x x x x

(1) € a=12° only x

(2) Pressure Run € o = 0° only.

17
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PHASE II - PART B

Mach Number - M° a Type Test
Configuration ]| 0.70 0.90 1.8 2.0 | 0° 6° | Pres. Force

F3s X x:L xl x X
F3f x x x X x
1 X X X X X
1s X X x X
2 b ¢ x x2 x3 X X X
3 x x X x
L x x x x
9 x x x x
6 x x x x |x x
8  J x x x
11 x x X x x b 4
12 x X b4 b ¢ X X
16 x x x
17 x x x
18 xh x x x
(1) Also ran € Y = +2° (yaw)
(2) @ a = 0° only
(3) Also ren @ a = 10°, 1k°, 16°

(L)

Also ran @ a = 3°, 10°, 12°

18




position the splitter plate horizontally. This was to allow evaluation of
the effects of angle of attack in that plane and to insure that all side

loads (weight and aerodynamic forces) were in the same plane,

Pre-test and post-test balance zero readings were recorded for each
series of runs on a given configuration. The pre-test zero reading ves
used in the data reduction, and the post-test zero return was used to
evaluate the accuracy and validity of the drag measurements for each inlet
configuration tested, When the balance failed to return to its initial

zero reading within certain established limits (.5 1lbs), the runs were

repeated.

i Repeatability checks were performed throughout the test programs. Cer-

v S BEA

tain mass flow ratios were repeated during a given run, and selected runs

were also repeated.

e e

Tests of each inlet configuration were accomplished at a given Mach
number and angle of attack while varying the mass flow rate with the remotely
operated flow control plug. Datawere obtained at six (6) different mass flow 3
ratios during each run, including at least two (2) at the maximum flow rate. ;

The flow field was monitored with the Schlieren system throughout the
test program, and photos were taken at conditions where significant flow
field changes were observed.

The adaptor cavity on all two-dimensional models was sealed to prevent
airflow circuiation within the metric cavity. This cavity was vented to
the local ambient pressure downstreum of the model in order to minimize the

force on the adapter. Slack diaphragm gages were used for the more sensi-

S 2T i A e

tive pressure measurements. Reference pressures for the scanivalve trans-

ducers, used to record all remaining pressures, were carefully selected to

AP R S T W

permit use of low range transducers.

adaEid

It should be understood that the pressure recovery information available

R SRRy
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from this test data is not representative of the particular inlet configura-
tions tested since no attempt was made to incorporate bleeds or efficient
subsonic diffusers.

3. Accuracy and Repeatability of the Test Data

When comparing the results of the F-4 tests of this program with the
test results of Reference (1), a difference in the data shows up as a
consistent increment in the total inlet drag which is essentially independ-
ent of Mach number and mass flow conditions. This increment,in terms of
the inlet drag coefficient (CI) , was approximately .06 at both subsonic
and supersonic conditions. It must be noted that the drag increments
between various F-U configurations, and the drag slopes of each, were
consistent with those measured in the Phase I program.

The axisymmetric (A10) data comparison between the first and the second
test series was in near perfect agreement at all test Mach numbers.

It was concluded that the weight, large adapter area and asymmetrical
balance loadings of the two-dimensional inlets result in a larger tolerance
on absolute drag than indicated by Reference (1). The above increments in
drag coefficient for the repeated tests of the F-4 models can be viewed as
a tolerance on the accuracy of the absolute drag measurement of all two-
dimensional mcodels tested in Phase I and Phase II - Part A. However, it
should be recognized that the drag variation with mass flow ratio, and drag
comparisons within a particular test program are quite accurate as indicated
by the data of repeated runs.

The pressure determined additive drags, and also the cowl pressure
distributions, obtained in Phases I and II for the F-4 inlets agreed very
closely at all test Mach numbers. This was also true for the ivisymmetric

Al10 inlet.

The data obtained by repeating a mass flow setting during a single run

20




provides a measure of the accuracy of the slope of the drag versus mass
flow ~urves, The standard deviations of the drag coefficient for these
repeated data points are .005 for the Al10 inlet, .006 for the F-4 inlet
models, and .030 f&r the Two-Dimensional inlet models.

The balance zero read.ngs taken before anc after each series of runs
on a particular inlet configuration indicate the tolerance on drag coeffi-
cient for each class of configurations. The standard deviation indicated
by these readings was .04 1lbs for the Al10 model, .34 1lbs for the F-k
models, and .31 1lbs for the Two-Dimensional wnodels. The following table
presents the standard deviation applicable to the drag coefficient of the

three types of inlet configurations.

Standard Deviation in Inlet Drag Coefficient

M, Axisymmetric (A10) Inlet F-U Inlet Two-Dimensional Inlet
ol .001 .016 .018
.9 .001 .012 011

2.0 .001 .018 .016

The two-dimensional models were mounted so that their weight applied .
a larger moment on the balance bearings than the axisymmetric models.
This loading and the adAitional load due to the normal force on the two-
dimensional model were the apparent reasons for the mechanical difficulties
experienced with the balance and are the appar<-t cause of the lower

accuracy obtained with these models.

The test results of repeated runs support the data in the above table,
The maximum difference in drag coefficient obtained in these runs is .02

for the F-U4 models.
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SECTION IV
TEST RESULTS

1. F-=b Inlet Drag Data

All of the F-l inlet drag data obtained in the Phase II - Part A test
program is presented in Appendix B. This includes the inlet drag deter-
mined from force measurements, and the additive and ramp drags determined
from surface pressure measurements. The drag data is presented as a func-
tion of mass flow ratio for the various test Mach numbers and angles of
attack. Figures B.l through B.8 present the inlet drag data for the F-L
inlet model with the F-UB aircraft forebody, with no forebody, and with the
splitter plate attached. The splitter plate configuration data presented
in the Appendix is additional data which had not been obtained in the Phase
I tests. Figures B9 through B,18 present the additive and ramp drag data
for the F-l pressure models for these same configurations., The additive
drags were calculated from the pressure integrated ramp drag, and by assum-
ing one-dimensional flow and 100% total pressure recovery at the inlet lip
station.

The comparisons of the drag data presented in the Appendix illustrating
the forebody effects on F-4 inlet drag and additive drags are presented in
Figures 9 through 24 in the text. In all cases the inlet alone (no fore-
body) tests showed the highest drag.

The reduction in drag which occurred when the splitter plate or the air-
craft forebody was installed was expected. The splitter plate reduces
spill across the leading edge of the first ramp insuring that all spill
takes place in a region where the deflected streau can produce a reduced
cowl force. With the F-LB forebody, the drag reduction is most likely due

to the reduced flow angularity at the inlet plane., The drag levels are
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different between isolated and integrated configurations, but the drag
variation with mass flow (drag slope) is the same,

The (Ao/Ac )mx indicated on all F-4 drag data presentations is based
upon the inlet throat geometry presented in Section II assuming 100% pres-
sure recovery at the inlet throat plane.

2. Axisymmetric Inlet Drag Data

The axisymmetric single cone inlet, additive, and cowl drag data, at
Mach numbers of .T, .9, 1.05, and 2.0 are presented in Figures 25, 26, and
27. Excellent agreement with the Phase I (Reference 1) data was obtained
in both the force and pressure tests. The inlet drag data was obtained by
force measurement, the cowl drag was obtained from surface pressure integra-
tions, and the additive drag was determined by subtracting the pressure

determined cowl drag from the force determined inlet drag. It wes felt

that the pressure determined cowl drags were more accurate than the pressure
determined additive drags, especially at supersonic Mach numbers.

As was the case with the F-4 inlets, the (Ao/Ac)m shown on the curves
for the subsonic Mach numbers is based upon the inlet throat geometry pre-
sented in Section II, assuming 100% pressure recovery at the inlet lip
plane. The supersonic (Ao/Ac)m (at M, = 2.0) is also the theoretical
value, as determined from the information presented in Reference 2.

The Al0 inlet was included in the Phase II test program to determine the
covl drag by integration of surface pressure data using improved instrumen-
tation, and to establish repeatability with the Phase I data. The addi-
tional pressure instrumentation is described in Section II. The use of
this additional instrumentation did not improve the determination of the
total inlet Arag relative to that measured in Phase I. The effects of this
added cowl lip and innerbody pressure instrumentation on the calculation of

the total inlet drag was minor. The table below presents a summary of the

pressure integrated cowl drag computed using the instrumentation of
23




Reference 1 (6 pressure taps), and the improved instrumentation (10 pres-

sure taps).

Comparison of Cowl Drag Coefficients

Determined from Pressure Data

3"_ A /A, 10 Tap Data 6 Tep Data

0.90 0.266 -0.4133 -0.4192
0.488 -0,1628 -0.1609
0.607 -0.0640 : -0.0790

2.0 0.808 0.17Th 0.1620

Based upon this comparison it appears that the increment between the pres-
sure and force data of Reference 1 was due to the assumed flow angularity
at the inlet lip used to evaluate the additive drag. The difference in
pressure and force determined total inlet drag coefficients was approxi-
mately 0.05 in the Phase I tests.

The cowl and innerbody pressure distributions measured with the improved
instrumentation are presented in Appendix C in F"igu.res C.l through C,8 for
the full range of test conditions.

Figures 28 and 29 present comparisons between experimental cowl and
innerbody pressures with theoretical estimates obtained using References
3 and &,

3., Two-Dimensional Inlet Drag Data

The Two-Dimensional inlet drag data obtained in the Phase II - Part B
test program is presented in Figures D,l through D,12 in Appendix D. Since
pressure runs were not performed with these models, only total inlet drag
(cowl plus additive) is illustrated. The data is presented as a function
of mass flow ratio for each configuration at the respective test Mach

numbers.
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Comparisons of the inlet drag data illustrating the effects of side-
plate geometry, cowl geometry, and splitter plate are presented in Figures
30 through 37. Figures 30 and 31 present the effects of sideplate geametry
on the single-ramp external compression inlets which spill flow forward of
the cowl iip (Configurations 1, 3, 4, and 5). Figures 32 and 33 present
the drag data showing the effect of spilling flow through sideplates down-
stream of the cowl. For clarity, only the curves faired through the test
data are shown. The minor variations ir. subsonic drag level and slope
illustrated by this data lie within the tolerance on data accuracy. Only
the louvered configuration (config. 12) exhibited a drag characteristic dis-
tinetly different from the other configurations. The drag for the louvered
model was higher at the maximum mass flow ratio, but did not increase with
decreased mass flow ratio as rapidly as the other configurations. It would
be anticipated that the external louver drag would increase inlet drag at
low values of spill, and that the louver would increase the axial camponent
of momentum of the spilled flow.

Figures 34 and 35 illustrate the drag effect of a cowl attached to the
outer surface of the first ramp, shown schematically in Figure T. Although
the presence of this cowl did not affect the drag slope, it did cause a
reduction in drag. Apparently, there is sufficient spill around the ramp.

leading edge to induce a reduced pressure on the upper cowl.

Figures 36 and 37 demonstrate the effect of the splitter plate on inlet
drag at subsonic conditions. As would be expected the effect is the same as
was noted for the F-U configurations discussed previously.

The (Ao/Ac)max shown on all Two-Dimensional inlet drag date presenta-
tions is based upon the inlet throat area assuming 100% pressure iecovery at

the inlet throat plane, The "Ao/Ac Test Limit" shown on all figures is the

25
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theoretical maximum airflow actually obtainable with these Two-Dimensional
inlet models due to the constriction in the subsonic diffuser portion of the
models, described previously in Section II.

A limited number of supersonic tests were planned to measure the drag
of the configurations which could capture the full airflow. However, the
lack of boundary layer bleed on these models apparently restricted their
operation and no data was obtained where the inlets operated at their maxi-
mum theoretical capture. As a result, the data is not summarized in the
Appendix.

Comparisons of the slope of the curves of drag versus mass flow ratio
presented in the following table shows the effect of the sideplate geometry
on the "subecritical" drag.

Drag Slope Comparison
M =2.0 a=0°

o
Configuration ac,/ A(Ao/ A, ) Sideplate Geometry

2 -1.40 #2 Ported ANH

6 -1.20 None ﬁ

1 -1.b5 #7 Partial 3

12 -0.62 #8 Louvered Q

16 -1.70 #1 Full N

17 -1.70 #1 Full N

F-U4 -1.50 None £

The F-4 drag slope is presented for comparison. All configurations

except the louvered sideplate exhibit nearly the same characteristics.
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SECTION V

CONCLUSIONS
The presence of an aircraft forebody modifies the level of inlet and
additive drag relative to that measured on an isolated inlet; however,
it does not alter the variation of inlet drag with mass flow.
The variation of inlet drag with mass flow for all Two-Dimensional in-
lets (without louvers) tested in this program are essentially the same
as that measured on the F-l and Opposed-Ramp inlets reported in Refer-
ence 1.
The variation of inlet drag with mass flow for the Two-Dimensional
inlets (without louvers) are essentially unaffected by the sideplate
geometry at both subsonic and supersonic Mach number conditions.
The use of louvers in the sideplate reduces the effects of mass flow
variations on inlet drag.
The addition of a cowl shape on the external contours of the compres-
sion surface of Two-Dimensional inlets lowers the drag at subsonic
conditions. The drag "slope" is not changed.
Mhe data from this test program revealed that the drag balance pro-
duces accurate and repeatable measurements of inlet drag characteris-
tics for axis;mmetric inlets; however, only drag increments and drag
"slopes" are accurately determined for two-dimensional inlet configura-
tions.
The accurate determination of cowl drag from inteersted pressure data
cn axisymmetric iniets is reliable if sufficient instrumentation is

incorporatea near the cowl lip.
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RUN SUMMARY

PHASE II - PART A

RUN CONFIGURATION M a CORRELATION
° (Degrees) NUMBERS
1 F1Ps#* o) 0 14 - 20
2 .70 12 21 - 26
3 .90 0 27 - 3k
L .90 12 35 - Lo
5 1.05 12 b1 - 46 !
4
6 FlPo .90 0 56 - 61
7 070 62 — 69
8 F1Pf 1.05 l 85 - 91
9 96 - 103
10 4 l 6 104 - 109
11 F1Pf 1.05 12 110 - 116
12 .90 0 117 - 122
13 l 6 123 - 129
1k 12 130 - 135
15 V .80 0 136 - 12
16 F1Pf .70 0 143 - 149
17 6 150 - 15k
18 1 ' 12 155 - 160
19 .90 0 161 - 166
20%w F3s .70 0 178 - 183
2l F3s .70 6 184 - 188
22 .90 0 189 - 194
23 .90 6 195 - 199
24 2.00 0 200 - 205
25 ' 2.00 6 206 - 209
26 F3r .70 0 218 - 223 !
27 .TO 6 224 - 228
28 .90 0 229 - 234
29 .90 6 235 - 239
30 ' 2.00 0 240 - 244
31 F3r 2.00 6 245 - 249 A
32 Fls .70 0 257 - 262
33 .T0 12 263 - 268
34 .90 0 270 - 275
35 .90 12 276 - 283
36 Fls 1.05 12 284 - 289
37 F1f .70 0 415 - 421
38 ; .70 6 422 - k2%
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RUN SUMMARY

PHASE II - PART A (Continued)

RUN CONFIGURATION M a CORRELATION
< (Degrees) NUMBERS
39 Fls PR 0 525 - 531
4o | I .70 12 532 - 537
41 Fls .90 0 538 - 549
42 1.05 12 582 -~ 588
43 .90 0 589 - 600
LY .90 12 601 - 606
4s .70 0 607 - 613
46 Fls .70 12 614 - 619
L7 .90 0 620 - 625
48 Flf 1.05 0 635 - 6Ll
L9 1.05 6 6k2 - 647
50 ! 1,05 12 650 - 658
51 F1f .90 0 659 - 665
52 6 667 - 672
53 12" 673 - 677
SL .T0 0 735 - Thl
55 h (" 6 Th2 - TUT
56 Fir .70 12 T48 - 753
57 Flo .90 0 762 - 768
58 g .70 0 T69 - TT5
59 F3s 2.00 0 789 - 795
60 ‘ 2.00 6 796 - 800
61 F3s .90 0 801 - 806
62 .90 6 807 - 811
63 .70 0 812 - 817
64 .70 6 818 - 822
65 .90 0 823 - 827
66 F!;f 2,00 0 838 - 8k
67 2.00 6 8Lk2 - 846
68 .90 0 847 - 852
69 .90 6 853 - 857
70 .70 0 858 - 863
T1 F3f .70 6 864 -~ 868
T2 A10P .70 0 874 - 880
Th 1.05 0 888 - 895
75 | 2.00 0 896 - 9oL
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FETPANETS

t 4

Lo VR 5P DT <

RUN SUMMARY

PHASE II - PART A (Continued)

RUN CONFIGURATION M a
o
(Degrees)
76 Al0 .70 0
17 .90 0
78 1.05 0
79 2.00 0

% The "P" designates Pressure Model.

#*#Runs 20 through 38 were no good because of balance problems,
and therefore were repeated.
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CORRELATION
NUMBERS
917 - 923
92k - 930
931 - 937
938 - 9L6
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RUN

O\ m—1 O\ AC I ol UV I\

S

CONFIGURATION

F3s

F3s

ke

ly—

[l P —l VY] A ci—

VAV, RV}

RUN SUMMARY

PHASE II - PART B

M a
° (Degree:)
.T0 0
.70
.90 *
+1° (yaw)
l +2° (yaw)
2.00 0
+2° (yaw)
0
.90 0
.70 0
.90 0
.90 6
.70 0
6
0
190 0
.70
.90
.TO
.90
.70 0
.90 0
2.0 0
6
10
2.0 14
2.0 16
1.8 0
.90 0
090 6
.70 0
.70 6
2.0 0
1.8 o
.90 0
63

CORRELATION
NUMBERS
11 - 15
30 - 3k
35 - 39
Lo - LY
45 - L9
50 - Sk
55 - 59
64 - 69
70 = 715
76 - 80
91 - 102

103 - 108
109 - 115
116 - 122
131 - 138
139 - 146
150 - 156
157 - 164
17k - 181
182 - 190
194 - 201
202 - 210
221 - 227
228 - 234
235 - 240
241 - 246
b7

248 - 253
254 - 261
262 - 270
271 - 278
279 - 28k
316 - 320
321 - 325
326 - 332
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RUN SUMMARY
PHASE II - PART B (Continued)

CONFIGURATION M a
o
(Degrees)
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* e .
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CORRELATION
NUMBERS
333 - 339
343 - 348
349 - 355
356 - 363
364 - 370
374 - 379
380 - 386
387 - 394
395 - 402
410 - 416
417 - L2k
ko5 - 432
k33 - Lko
L4k - 450
451 - bsT
462 - LT0
UT1 - W77
481 - 492
k99 - 506
510 - 515
516 - 521
522 - 527
528 - 533
534 - 539
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APPENDIX D
TEST RESULTS FOR THE

TWO-DIMENSIONAL INLET MODELS
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